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1 Abstract
This thesis presents a novel computational approach to RNA-targeted drug discovery,

addressing the challenges posed by RNA’s inherent flexibility and the limitations of

traditional protein-docking protocols. The first part of the research focuses on two

key aspects: druggability prediction and allosteric analysis. We introduce a one-class

learning approach using the Import Vector Domain Description (IVDD) algorithm

with customized DrugPred descriptors on pockets identified by NanoShaper. This

method, validated on a dataset of 100 proteins from the Potential Drug Target Database

(PDTD), offers a more nuanced and efficient approach to identifying druggable pockets

compared to traditional binary classifications. While the investigation of allostery

compares three computational methods – DyNet, DF, and Pocketron – across three

pharmaceutical targets: the adenosine A2A receptor, androgen receptor, and EGFR

kinase domain. Pocketron consistently demonstrates great performances in identifying

known allosteric pockets with high correlation to the orthosteric site. Applying our

refined protocols on proteins to the long non-coding RNAMALAT1, we used NanoShaper

and Pocketron to identify potential target pockets that could disrupt the triple helix

structure through long-range communication. Once the sites were defined we employ

molecular dynamics simulations (unbiased and enhanced) to generate a comprehensive

conformational ensemble. Having defined the ensembles we generated poses using two

pose generation software (AutoDock GPU and rDock), we then evaluated various scoring

functions (AutoDock, rDock, Vina, AnnapuRNA, and SPRank) for their ability to

predict experimental binding affinities of diminazene-based ligands to MALAT1. While

most scoring functions show limited correlation, AutoDock demonstrates promising

results in (at least) distinguishing between high- and low-affinity ligands. Finally, we

extend a non-equilibrium binding free energy estimation method to RNA molecules,

focusing on the Riboswitch-preQ1 system. Using steered molecular dynamics and the

Crooks Fluctuation Theorem, we calculate binding free energies for complexes with both

cognate and synthetic ligands. Our results highlighted the importance of protonation

states and unbinding pathways in these calculations for accurate results. This research

contributes to the advancement of RNA-targeted drug discovery by providing novel

computational tools and insights into the complex dynamics of RNA-ligand interactions.
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2 Introduction

2.1 Biological and Pharmaceutical rele-

vance of RNAs

Ribonucleic acid (RNA) is a crucial macro-molecule in biology, performing a variety of

functions essential for life. Messenger RNA (mRNA) acts as a temporary carrier of ge-

netic instructions [1], while transfer RNA (tRNA) serves as the molecular bridge between

these instructions and the amino acid building blocks of proteins [2]. The ribosome, a

complex molecular machine composed of both RNA and protein components, orches-

trates the translation process, ensuring accurate matching of mRNA codons with the

correct aminoacylated tRNAs and facilitating the formation of peptide bonds to build the

resulting protein [3, 4, 5]. The discovery of catalytic RNAs, known as ribozymes, unveiled

a revolutionary concept: RNA can not only store genetic information, akin to DNA, but

also catalyze chemical reactions, much like protein enzymes. These findings reshaped our

understanding of RNA’s capabilities, establishing its unique dual role in both preserving

genetic information and actively participating in crucial biochemical reactions [6].

Figure 1: Distribution of RNA transcripts in the human
genome. [7]

As the genomic landscape has expanded

over the past two decades, RNA’s func-

tional diversity has become increasingly

apparent, far exceeding its initially rec-

ognized roles. Riboswitches in bacteria,

for example, play a widespread role in

gene regulation, responding to various

physiological signals [8]. In more com-

plex organisms, such as eukaryotes, RNA

participates in a myriad of processes crucial for maintaining, regulating, and processing

genetic information [9, 10]. Noncoding RNAs (ncRNAs), the vast majority of RNA

transcripts in human cells, have emerged as key players in regulatory pathways even if

they are not translated into proteins 1. Therefore, deciphering RNA function has far-

reaching implications beyond fundamental research. For instance, mutations in ncRNAs

have been associated with various diseases, notably cancer [11, 12]. Consequently, both

riboswitches and ncRNAs are being investigated as promising drug targets, potentially

leading to novel therapeutic strategies that could be particularly beneficial in addressing
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drug resistance or targeting traditionally undruggable proteins. However, the sheer

number of RNA transcripts presents a challenge for experimental methods aiming to

decipher the complex relationships between RNA structure, dynamics, and function.

Computational tools offer a valuable solution by interpreting existing experimental data,

bridging the gap between structure and function, and generating hypotheses for experi-

mental validation. This synergistic approach promises to accelerate our understanding

of RNA’s diverse roles and therapeutic potential. [13].

2.2 Nucleic Acids: Structure and proper-

ties

RNA, a fundamental biological polymer, is constructed from four nucleotide monomers:

adenine (A), cytosine (C), guanine (G), and uracil (U). Each nucleotide comprises a flat,

aromatic base connected to a ribose sugar, which itself carries a 5’-phosphate group.

RNA chains are formed through phosphodiester bonds linking the 3’-carbon of one

ribose to the 5’-carbon of the next, resulting in a linear molecule with distinct 5’ and 3’

ends. The 5’ end, possessing a free phosphate group, is considered the starting point of

the chain, reflecting its role as the initiation site of RNA synthesis in biological systems

(Figure 2).

Figure 2: (A-C) 2D representations of the four nucleotides, showcasing the constituent bases (A, C, G, and U), ribose
sugar, and phosphate group, and their connectivity in RNA formation. (D) Illustration of potential interaction faces of

a nucleotide
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RNA molecules can be described through a hierarchical organization of their structure,

from the primary sequence of nucleotides to the complex three-dimensional (3D) folds

they adopt. The primary structure, a linear sequence of the nucleotides, which serves

as the foundation. The secondary structure, often depicted as a two-dimensional (2D)

representation, arises from the formation of canonical Watson-Crick (WC) base pairs

(A=U and G=C) between complementary nucleotide sequences within the RNA strand.

These base pairs are stabilized by hydrogen bonds, contributing significantly to the

overall stability of RNA structures (1-3 kcal/mol per base pair). [14, 15] Moreover,

RNAs favor short helices, usually containing fewer than 12 consecutive WC base pairs,

as longer stretches might be too rigid and stable for functional flexibility that is crucial

for their biological role. [13] While RNA is typically single-stranded, it often folds

back on itself, creating short antiparallel double helices interspersed with regions of

unpaired nucleotides, forming loops in the 2D structure. Non-canonical base pairing

plays a crucial role in RNA structure, as many nucleotides that appear ”unpaired”

actually participate in alternative interactions. These non-canonical interactions occur

when hydrogen bonds are formed between different faces of the nucleotides beyond the

standard Watson-Crick edge (Figure 2D). Examples include A-G Hoogsteen/Sugar-

edge or G-G Watson-Crick/Hoogsteen. These alternative binding modes expand the

structural repertoire of RNA beyond classical base pairing.

The tertiary structure, the full 3D conformation of the RNA molecule, is a product

of a complex interplay between canonical Watson-Crick base pairs and a multitude

of non-canonical base pairing interactions. The unique chemical properties of RNA,

particularly the 2’-OH group on the ribose sugar, differentiate it from DNA. This 2’-OH

group not only makes RNA more prone to self-cleavage but also acts as a versatile

hydrogen bond donor and acceptor, this versatility enables RNA to form intricate

and compact structures not observed in DNA. [16] The intricate interactions occur

across the sugar, Watson-Crick, and Hoogsteen faces of the nucleotide bases, facilitating

the formation of a vast array of base pairing combinations. From an evolutionary

perspective, this geometric diversity is advantageous, as it enables RNA molecules to

form highly specific interactions with a wide range of molecular partners, including

other RNAs, proteins, DNA, small molecules, and ions.

Evolution has harnessed these self-interaction capabilities to generate a remarkable

diversity of RNA structures, facilitating countless specific interactions with other

molecules, including RNA, proteins, DNA, small molecules, and ions.

The overall shape, or topology, of an RNA molecule is determined by the path its
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backbone takes, which in turn depends on the position and orientation of the backbone

segments connected to the bases. [16] This intricate relationship links the local geometry

of base pairs to the global topology, ultimately dictating the molecule’s biological

function, emphasizing the inherent flexibility of the target. Even an alteration in a base

pair, such as a non-isosteric substitution (a substitution with a base that alters the base

pair shape due to its differing geometry), can propagate changes throughout the RNA

structure. Two-dimensional (2D) RNA structures typically consist of short canonical

helices spaced with segments of nominally “unpaired” nucleotides, often depicted as

“loops” in 2D diagrams. These loops, comprising one or more strand segments, can be

classified into four main types (depicted in Figure 3):

1. Hairpin loops: Single, continuous strand segments folding back on themselves at

the ends of helices.

2. Internal loops: Two strand segments located between two helices.

3. Bulge loops: Similar to internal loops, but with one strand containing unpaired

nucleotides while the other is entirely base-paired.

4. Multi-helix junctions: Regions where three or more helices converge.

5. Pseudoknots: base pairing between a hairpin loop or another secondary structure

element and a distal complementary strand.

The nucleotides within these structured loops often form numerous interactions, both

with each other and with distant parts of the same RNA or other molecules. These

interactions make loop regions particularly interesting and functionally important, often

forming specific structural motifs crucial for RNA function, further broadening their

functional capabilities.

2.3 Drug Discovery campaign: from pro-

teins to RNAs

Rational drug discovery campaigns typically start with a rigorously preclinically vali-

dated biomolecular target, whose modulation is anticipated to yield therapeutic benefits

due to its pivotal role in a pathological process. Computational strategies are now

deeply embedded in the initial hit identification phase, particularly within the structure-

based drug discovery paradigm. These approaches include fragment-based methods
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Figure 3: Secondary structure 2D representation of RNAs molecules. [17]

[18], de novo design [19] and virtual screening [20]. In a virtual screening campaign,

a vast repository of small molecules is subjected to molecular docking simulations,

aiming to predict the binding modes of ligands to the target. This computational

methodology, characterized by its rapidity and ability to coarsely discriminate between

binders and non-binders, has emerged as a well-established strategy for the identification

of small-molecule hits with potential therapeutic relevance. However, adapting these

protocols to RNA targets may pose unique challenges, primarily in two critical areas:

accurately representing the inherently flexible and dynamic nature of RNA structures,

and quantitatively evaluating the resulting binding poses.

These challenges, already significant in protein-ligand docking, are amplified in the

context of RNA targets due to their increased conformational variability. Docking

campaigns fundamentally rely on a structural representation of the target, such as

experimental methods like X-ray crystallography, nuclear magnetic resonance (NMR),

and cryo-electron microscopy [21] that can provide atomistic 3D structures. In case these

are missing, modelling approaches offer varying degrees of accuracy when experimental

data is unavailable [22]. Notably, AlphaFold’s machine-learning-based approach has

achieved remarkable success in predicting protein 3D structures, but a comparable tool

for RNA remains elusive.
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Given a target structure, the docking procedure aims to identify plausible binding

modes, characterized by favorable interactions between the ligand and target. However,

the intrinsic flexibility of RNA presents a challenge, as it needs considering a vast con-

formational space during the docking process. This, coupled with the need for accurate

assessment of RNA-ligand interactions, underscores the complexity of extending docking

protocols to RNA systems.

Various software packages have been developed to address these challenges. While

tools like Glide [23], GOLD [24], and AutoDock Vina [25, 26] were initially designed

for protein targets, they can be adapted for RNA docking when necessary. While, on

the other hand, the growing interest in RNA-targeted drug discovery has led to the

development of new software such as MORDOR [27], rDOCK [28], RLDOCK [29],

and NLDock [30] designed specifically for RNAs. Validation studies often demonstrate

that these RNA-specific methods outperform generic macromolecule docking tools in

reproducing experimental binding poses, highlighting the importance of considering the

unique characteristics of RNA-ligand interactions. The quality of the poses identified

by the docking software is typically assessed using “scoring functions”. Several stan-

dalone scoring functions have been developed, including the RNA specific ones such as

the knowledge-based ITScore-NL [31] and the machine-learning-based RNAPosers [32],

RNAmigos [33], and AnnapuRNA [34]. These scoring functions aim to quantify the favor-

ability of a given binding pose, aiding in the prioritization of potential drug candidates.

Figure 4: Schematic representation of the chemical
space occupied by RNA-binding ligands in comparison
to the chemical space of FDA-approved drugs. [7]

In drug discovery, understanding the physic-

ochemical properties required for ligands to

bind to specific biomolecular targets is crucial.

For protein targets, the focus is on identifying

small organic molecules with properties that

align with the criteria for oral drugs, such as

solubility, bioavailability, permeability, stabil-

ity, and non-toxicity. Lipinski’s rule of five

[35] serves as a guiding principle in this en-

deavor, setting boundaries for parameters like

molecular weight, lipophilicity, and hydrogen-

bonding capacity, thus defining the chemical

space characteristic of small-molecule protein

binders. However, for RNA targets, the chemi-

cal space of small-molecule ligands remains less well-defined due to the limited number of
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known binders, making it an active area of research. Early RNA ligands often exhibited

a positive net charge and intercalated between bases [36, 37], resulting in non-specific

binding and poor selectivity due to interactions with the negatively charged RNA

backbone. However, researchers are gradually uncovering a distinct “RNA-privileged”

chemical space defined by characteristic molecular features. The structural hallmarks of

this space include an enriched nitrogen content coupled with reduced oxygen presence,

alongside predominant aromatic ring systems. These compounds also typically display

reduced molecular complexity, as evidenced by their limited number of stereocenters

and sp3-hybridized carbons.[38, 39, 40] Additionally, rod- and planar-like molecular

shapes are prevalent among RNA-targeting ligands [41] (Figure 4). Interestingly, this

RNA-privileged chemical space appears to be a subset of the broader chemical space

occupied by protein-binding ligands, suggesting that some protein-targeting compounds

may also possess RNA-binding potential [42].

Despite the valuable insights gained from current knowledge, the limited number of

known RNA-binding ligands necessitates continued exploration and refinement of the

chemical space. Thus, continued investigation in this area is expected to yield further

insights and potentially reshape our current understanding in the foreseeable future.

2.4 Molecular Dynamics simulation on

RNAs

While a reliable structure is a crucial starting point, alone it may not fully capture

the complexity of the target. Biomolecules are inherently dynamic, exhibiting varying

degrees of structural flexibility in solution. This dynamism can influence molecular

interactions and even be triggered by the binding of small molecules. Incorporating

information about the target’s dynamics into docking protocols offers a more realistic

depiction of molecular events and can potentially enhance prediction accuracy. Pro-

tein flexibility has been addressed in docking protocols through various approaches

[43], including soft-docking [44] and induced-fit docking [45], however, these meth-

ods typically account for limited structural changes. An alternative strategy involves

representing the target as an ensemble of multiple conformations [46, 47], allowing

for greater chemical space search, this approach increases computational demands,

as docking must be performed for each conformation in the ensemble. In practice,

conformational ensembles are generated independently from docking calculations us-
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Figure 5: Ensemble docking approach for RNA-ligand interactions. Multiple conformations of the target RNA are
included in the ensemble to account for its structural dynamics. Each conformation is subjected to the docking

procedure. The RNA structures shown here represent the conformational ensemble of the transactivation response
element (TAR) RNA from human immunodeficiency virus type-1 [48].

ing various computational methods. Due to the significant and complex structural

dynamics exhibited by RNA molecules compared to proteins [49], ensemble docking,

where ligand docking is performed against a collection of target conformations, is the

preferred approach for nucleic acids targets. This strategy has demonstrated success

in several studies [50, 51]. Molecular dynamics (MD) simulations, which model the

dynamic behavior of biomolecules under realistic conditions, are a valuable tool for

generating RNA conformational ensembles [13]. MD provides insights into atomistic

mechanisms and has become indispensable in structural biology and drug discovery [52,

53]. However, the accuracy of MD simulations heavily relies on the underlying force

field’s ability to capture the complex physics of molecular interactions. Historically,

force field development has been primarily focused on proteins, leaving RNA force fields

lagging behind.

Among the Amber force fields, the ff99 force field, combined with the bsc0 and χOL3

refinements, is widely regarded as the gold standard due to its extensive validation and

widespread use [54, 55, 56]. Notably, ff99 [54] represents a major advancement in the

Amber family, encompassing parameters for both proteins and nucleic acids, and builds

upon the earlier ff94 version [57]. Key refinements in ff99 include modifications to the
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sugar puckering and χ dihedral parameters for DNA and RNA. Further improvements

were introduced with the bsc0 correction [55], which addressed the formation of nonna-

tive backbone conformations and unrealistic helical twists in A-RNA by modifying the

α and γ dihedral angles of the nucleic acid backbone. The subsequent χOL3 refinement

[56] focused on the χ dihedral to prevent ladder-like, untwisted RNA structures.

However a thorough conformational sampling remains a challenge in both protein and

RNA modeling due to the inherent limitations in the timescales accessible through

conventional MD simulations. Despite these limitations, significant progress has been

made in overcoming the timescale barriers of conventional MD simulations, thanks to

advances in hardware [58, 59] and the development of sophisticated enhanced sampling

methods [60, 61] implemented in widely used tools such as PLUMED [62]. Additionally,

clustering algorithms, now routinely used in MD analysis [63], can effectively select

representative structures from MD-generated ensembles for subsequent docking and

virtual screening studies. Notably, enhanced sampling methods have been successfully

applied to challenging protein systems like intrinsically disordered proteins [64, 65, 66,

67, 68], paving the way for their increased uses in studying the complex dynamics of

RNA molecules.

Despite recent advancements, limitations in current force fields, coupled with sampling

challenges, can lead to RNA conformational ensembles that deviate from experimental

observations. However, incorporating experimental data during MD simulations can

guide sampling towards experimentally supported conformations, thereby improving

ensemble accuracy. Experimental methods offering coarser structural information, such

as small-angle X-ray scattering (SAXS), have proven valuable in this regard [69].
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3 Theory

3.1 Molecular Dynamics (MD)

Broadly speaking, MD simulations serve two primary functions: they enable the

exploration of theoretical models beyond specific approximations, and they provide

valuable insights to experimentalists, guiding further investigations. A significant

milestone was achieved in 1964 by A. Rahman [70], who performed the first MD

simulation on atoms interacting through using a Lennard-Jones potential to model

argon interactions and a finite difference scheme for integration. This pioneering work

marked a substantial advancement in the calculation of various dynamic properties,

laying the foundation for the widespread application of MD simulations in scientific

research today.

3.1.1 Intro to MD simulations

While diverse approaches exist for gaining insights into complex systems, particle

simulations necessitate a model to describe the dynamic interactions between the

system’s constituents. Such model must be rigorously tested against experimental

data, ensuring its ability to reproduce or approximate key experimental observations

like distribution functions or phase diagrams [71]. Moreover, the model should adhere

to fundamental theoretical constraints and conditions, guaranteeing adherence with

principles such as energy conservation. In essence, conducting MD simulations requires

three key ingredients:

• A model to represent the forces at play between the components of the system

under scrutiny, whether they are atoms, molecules, surfaces, or other entities.

• A numerical integrator, which employs a finite difference scheme to evolve trajec-

tories discretely from time t to t+ ∂t. The time step ∂t is meticulously chosen to

balance the integrator’s stability, accuracy, and computational efficiency.

• A statistical ensemble that governs the various thermodynamic conditions of the

system under investigation, such as pressure (p), temperature (T ), volume (V ) or

the number of particles (N).

This multifaceted approach empowers researchers to simulate and analyze the behavior

of complex systems with remarkable precision and detail, offering a powerful tool for
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unraveling the intricacies of molecular dynamics. A key factor in simulation studies is the

range of time and length scales that can be effectively addressed. Quantum simulations

(QM), capturing fast electron dynamics, operate on angstrom and picosecond scales.

In contrast, classical MD simulations employ a simplified electronic representation,

enabling them to cover longer timescales and larger length scales compared to QM-MD.

In classical MD, processes such as intermolecular collisions, rotational motions, and

intramolecular vibrations, being considerably slower than electron motions, dictate the

dominant timescales. Consequently, trajectory lengths typically reach nanoseconds, and

accessible length scales span up until tens of microseconds (depending on the available

computer resources).

Today, MM-MD simulations are widely used to investigate diverse problems, including

liquid properties, solid defects, fracture mechanics, surface phenomena, molecular

clusters, and biomolecules. Their ability to model systems at relevant time and

length scales, coupled with the continuous development of computational resources and

algorithms, has established MM-MD as a powerful tool in various scientific disciplines.

In classical molecular dynamics (MD) simulations, the complex dynamics of electrons are

not explicitly modeled through the Schrödinger equation. Instead, electronic interactions

are implicitly incorporated into a simplified model, where the nucleus and its surrounding

electrons are treated as a single particle, essentially representing atoms as inert spheres.

This simplification is grounded in the Born-Oppenheimer (BO) approximation, which

leverages the timescales of nuclear and electronic motion to express the system’s energy

solely as a function of nuclear coordinates. The evolution of the system’s state can then

be described using classical Newtonian mechanics.

−→
Fi = mi

∂2−→ri
∂t

(1)

Where
−→
Fi denotes the force acting on each particle of the system, −→ri accounts for the

generalized positions of the N particles in the systems (i spans from 1 to N), t is the

time and mi represents the masses of the particles. Moreover, if the particles interact

via a potential U(−→ri ), the forces acting on the systems can be expressed as:

−→
Fi = −∂U(−→ri )

∂−→ri
(2)
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Over the course of the MD simulations, particle positions and velocities are integrated

through Hamilton’s equations of motion providing insights into system dynamics.

−→̇
pi = − dĤ

d−→ri
−→̇
ri = − dĤ

d−→pi
(3)

In these equations, Ĥ represents the Hamiltonian function associated with the system.

The vectors
−→̇
ri account for the generalized velocities within the n-dimensional system

(where the index i ranges from 1 to n). Furthermore, −→pi represents the generalized

momentum coordinates, and
−→̇
pi denotes their corresponding time derivatives.

3.1.2 Force Fields (FF)

In classical MD simulations, forces are represented using a combination of mathematical

functions and parameters, collectively known as a force field (FF). This FF includes

information about the system’s energy and the forces acting on each particle within

various chemical environments regulated by Equation 1. The accuracy of commonly

used FFs relies on two assumptions: additivity and transferability. Additivity implies

that the system’s potential energy is the sum of individual potential energy terms (e.g.,

bond stretching, angle beinging, electrostatics). Transferability suggests that FF models

developed for small systems can be applied to larger systems with similar chemical

groups [72], this allows for the simulation of a wide array of molecular systems.

To simplify both computational demands and implementation, the majority of force

fields currently employed for molecular systems rely on a pairwise additive approach,

decomposing the system’s energy into contributions from intra- to inter-molecular forces.

Vtotal = Vbonded + Vnon−bonded (4)

Figure 6: Schematic breakdown of the total potential energy (Vtotal) in a molecular dynamics simulation into its bonded
and non-bonded components.
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The total potential energy of the system, Vtotal, consists of two main contributions: a

bonded component (Vbonded) and a non-bonded component (Vnon−bonded), which compo-

nents are schematized in Figure 6. The Vbonded focuses on pairwise interactions between

directly bonded atoms.

Vbonded = Vbond + Vangle + Vtortion + Vimproper =

=
∑
bonds

kb(b− b0)
2 +

∑
angle

kθ(θ − θ0)
2 +

∑
dihedral

kΦ[1 + cos(nΦ− δ)]+

+
∑

impropers

kω(ω − ω0)
2

(5)

In this formula, the energy associated with bonded interactions (Vbonded) is calculated

by summing the contributions from bond stretching (Vb), angle bending (Vθ), and

proper/improper dihedral torsions (VΦ and Vω). Each term involves a force constant (kb,

kΦ, kω) multiplied by the squared deviation of atom positions from their equilibrium.

This model, based on the harmonic approximation, is suitable for small deviations.

Larger deviations might necessitate more complex expressions like the Morse potential or

anharmonic terms. Essentially, intra-molecular interactions are assessed by comparing

current and reference nuclear positions, with energy changes reflecting conformational

adjustments. Force constants are generally lower for angle bending and dihedral torsions

as these deformations require less energy compared to bond stretching.

In contrast to the bonded term, the non-bonded term encompasses the factors that

account for potential interactions that extend beyond directly connected atoms within

the system. This includes both long-range interactions, as well as crucial electrostatic

interactions between charged or polar groups.

Vnon−bonded = VCoulomb + VLJ =

=
∑
i,j

qiqj
ϵDrij

+
∑
i,j

4ϵij

[(
σij

rij

)12

−
(
σij

rij

)6
]

(6)

The electrostatic component, Vnon−bonded, within the equation is modeled using

Coulomb’s law, where q represents the charges on the interacting particles i and

j, rij denotes the inter-molecular distance, and ϵD is the inverse of the Coulomb

constant ke =
1

4πϵ0
, where ϵ0 is the vacuum permittivity. However, accurately describing

the electrostatic term in simulations poses a challenge due to the lack of experimental

observables for atomic charges, which are crucial for representing the molecular elec-
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tronic density. For practical implementation and computational efficiency, common

approaches typically assign partial charges to atomic sites or nuclei. These charges

are derived through various methods such as fitting to experimental data, using atom

electronegativities, or performing ab-initio calculations. Coulomb’s law is then employed

to compute the electrostatic contribution to the total energy.

The Van der Waals term, VLJ , follows a Lennard-Jones 12-6 potential. In this potential,

ϵ represents the depth of the potential well (dispersion energy), occurring at a distance

of r = 21/6σ, while σ corresponds to the distance at which the particle-particle potential

energy VLJ is zero. The potential becomes predominantly repulsive when r < σ,

and attractive when r > σ. While the Lennard-Jones potential offers a reasonable

approximation in many scenarios, it’s worth noting that for neutral particles, these

contributions can also encompass London forces arising from induced dipole interactions

or fluctuations in electron distribution, which lead to transient dipole moments that

average out to zero.

3.2 Enhanced sampling methods

Within this broader context, it is crucial to recognize the limitations of relying solely on

conventional MD simulations to adequately sample the conformational space of complex

systems, especially when slow events are involved. To address this challenge, a class of

techniques known as enhanced sampling methods has been developed. The unifying

principle of these methods, regardless of their specific strategies, is to facilitate a more

efficient and statistically accurate exploration of the phase space. Enhanced sampling

methods can be broadly categorized into two major subclasses:

• CV-based methods: These methods use reaction coordinates, also referred to as

collective variables (CVs), to guide the exploration of phase space. By focusing on

specific slow degrees of freedom, CV-based methods can efficiently sample relevant

conformational transitions. Notable examples include steered molecular dynamics

(SMD), and metadynamics.

• Non-CV-based methods: In contrast, these enhance sampling techniques, they move

across all degrees of freedom within the system, without relying on predefined

reaction coordinates. Examples include methods such as Hamiltonian replica

exchange (HREX).

In this thesis, we strategically employed both CV-based and non-CV-based enhanced
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sampling methods to overcome the timescale limitations of traditional MD and gain a

deeper understanding of the systems under investigation. The following section provides

a concise theoretical overview of the specific techniques employed.

3.2.1 Collective Variables (CV)

Achieving comprehensive sampling of a vast phase space, especially one with high energy

barriers, poses a considerable computational challenge. Conventional simulations risk

becoming trapped in local energy minima, hindering the exploration of other regions

and making accurate free energy surface (FES) estimation difficult. To address this,

numerous enhanced sampling techniques have been developed to accelerate sampling

and optimize computational resources. Metadynamics and SMD are prime examples

of methods that effectively reconstruct complex free energy surfaces (FESs) using

appropriate estimators.

However, a significant limitation is the challenge of selecting appropriate collective

variables (CVs) to guide the sampling process. On one hand, the chosen CVs need

to encompass all relevant slow degrees of freedom to ensure the simulation accurately

captures the system’s behavior, while on the other hand, too many CVs can lead to

impractically slow simulating times. Finding a balance between comprehensiveness and

efficiency is crucial. This issue is particularly pronounced in protein-ligand binding

simulations, where a multitude of slow processes, such as solute desolvation, ligand con-

formational changes, and protein residue rearrangements, can influence the process. To

address this, the path CV formalism has been developed to streamline the management

of high-dimensional phase space and minimize the need for manual CV selection.

Suppose we have a conceptual understanding of a complex reaction pathway and can

represent it as a series of intermediate frames. We can then leverage this “guess path”

to guide the sampling process using specific collective variables (CVs).

S(X) =
1

P − 1

(∑P
i=1 (i− 1)e−λ(X−X(i))2∑P

i=1 e
−λ(X−X(i))2

)
(7)

Z(X) = −1

λ
ln

(
P∑
i=1

e−λ(X−X(i))2

)
(8)

For a given microscopic configuration X during the simulation, the collective variable S

varies between 1 and P , where P represents the total number of frames in the predefined
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frameset. The summations encompass all frames i within the frameset, and for each

frame, the squared difference (X −X(i))2 quantifies the distance between the current

configuration X and the configuration represented by frame i. Importantly, the choice

of distance metric is flexible, but mean square deviation (MSD) is commonly employed,

resulting in squared distance units. MSD is often preferred over root mean square

deviation (RMSD) due to numerical considerations, although they are conceptually

equivalent.

When the system’s configuration aligns precisely with a specific frame i, all other terms

in the summation vanish, resulting in S(X) = i. Therefore, S effectively tracks progress

along the predefined pathway. The second parameter, Z, functions orthogonally to S,

measuring the deviation from the guess path. As the system traverses the pathway, Z

allows exploration of neighboring regions within the conformational space. To visualize

this, imagine the accessible configurational space as a cylinder, with the axis representing

the frameset and Z defining the radius. In the aforementioned functions, λ is a tunable

parameter ensuring smooth progression along the path. It is inversely proportional to

the average MSD between consecutive frames, with a suggested formula provided as a

general guideline.

λ =
2.3(P − 1)∑P−1

i=1 |Xi −Xi+1|
(9)

The high-dimensional phase space is simplified into a 2D representation using CVs that

track progression along a hypothesized pathway. Combining S and Z allows for flexible

exploration around the guess path, enabling the identification of the minimum free

energy pathway within the reconstructed FES.

Additionally, a suitable frameset for path collective variables must fulfill certain criteria.

Primarily, it should depict a unidirectional progression towards the final state, avoiding

any loops or back-and-forth movements. Secondly, equidistant spacing between consec-

utive frames is necessary, as defined by the metric used to parameterize the pathway.

Finally, the number of frames should be carefully chosen to ensure that the distance

between them is not too large, as the resolution of the reconstructed free energy surface

(FES) will be directly influenced by this spacing.

3.2.2 Steered Molecular Dynamics

In the context of steered molecular dynamics simulations one effective strategy for

applying external forces to a protein-ligand complex involves restraining the ligand to a
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designated point in space through an external potential, often a harmonic potential.

By systematically shifting this restraint point along a predetermined trajectory, the

ligand is compelled to move away from its initial binding site within the target. This

controlled movement allows the ligand to explore new interactions and potential binding

sites along its unbinding pathway. [73].

So a parabolic potential (∆U) is added to the standard MD potential (U) to bias

the system towards exploring a specific region of the phase space. The center of

this parabolic potential is dynamically shifted along the desired range of the reaction

coordinate ξ.

∆U =
1

2
K(ξ − ξ0(t))

2 (10)

In this expression, the center of the parabolic potential, ξ0(t), is moved at a constant

velocity, defined as:

ξ0(t) = ξ0(0) + vt (11)

v represents the constant velocity at which the center of the parabolic potential moves

within the collective variable space. Building upon this concept, Park and Schulten [74]

developed a groundbreaking theory for extracting the potential of mean force (PMF),

or free energy profile, from steered MD simulations. Their work established a crucial

link between non-equilibrium processes like SMD and the equilibrium concept of the

PMF. This theoretical framework is rooted in the Jarzynski equality [75], a fundamental

principle in statistical mechanics, or alternatively, utilizes bidirectional non-equilibrium

estimators based on the Crooks Fluctuation Theorem (CFT) [76]. By conducting

multiple independent replicas of the same steering process, the free energy landscape

can be reconstructed.

3.2.3 Metadynamics

In Metadynamics, a history-dependent bias potential is introduced along specific reaction

coordinates, or collective variables (CVs), within the system. These CVs represent slow

degrees of freedom and guide the sampling process towards relevant regions of the phase

space. By employing CVs, the exploration of the system’s high-dimensional phase space

is effectively reduced to a lower-dimensional problem. The bias potential added during

Metadynamics is expressed through the following function:

VG(q, t) =
∑

t=0,τ ,2τ ,...

We−(q−q(t))2/2σ2

(12)
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in practice, metadynamics involves periodically adding small Gaussian potentials (with

width W and height σ) along the chosen collective variable (CV) at regular intervals

throughout the simulation. The overall bias potential at a given time t is the sum of

all the deposited Gaussians. These Gaussians act as repulsive forces, discouraging the

system from revisiting previously explored regions of the CV space, thus promoting

exploration of new areas.

For instance, if the simulation starts with the system in a local energy minimum,

the bias potential will initially encourage exploration within that basin. This can be

visualized as gradually filling the energy basin, as depicted in Figure 7.

Figure 7: Schematic representation of a Metadynamics simulation. The red line depicts the free energy surface (FES)
projected onto the collective variable (CV). Metadynamics progressively deposits Gaussian potentials (dark blue to

white) along the CV, gradually filling the energy landscape until the system achieves diffusion across the CV space [77].

Initially, if the system resides in basin A, Metadynamics progressively fills this basin

with bias potential, eventually prompting the system to transition into basin B. This

process continues, with the bias potential sequentially filling each basin until the entire

CV space is explored, enabling free diffusion. Once this state is achieved, the free

energy surface (FES) in the CV space can be reconstructed using the accumulated bias

potential.

VG(q, t → ∞) = −F (q) (13)
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Two major challenges arise when using Metadynamics: assessing simulation convergence

and choosing appropriate collective variables (CVs). Determining when to stop the

simulation is not straightforward, in standard metadynamics, continuous deposition

of bias potential after all basins have been explored leads to overfilling of the FES

and exploration of high-energy regions, potentially compromising the accuracy of the

reconstructed FES. Well-tempered Metadynamics addresses this issue by gradually

reducing the bias potential over time, mitigating the overfilling effect. The Gaussian

height becomes a function of simulation time, according to the following equation:

W (t) = W0e
−VG(q,t)/kB∆T (14)

where the initial Gaussian height (W0) is gradually reduced based on the total bias

potential deposited at a given time (VG(q, t)). The parameter ∆T represents the upper

limit of the temperature range within which the CVs are sampled. In essence, the

gradual addition of bias potential in standard Metadynamics is analogous to sampling

at progressively higher temperatures. With well-tempered Metadynamics, each time the

system enters a new basin, the Gaussian height is reset to W0, and the time-dependent

scaling restarts. This approach leads to smoother convergence of the bias potential over

time.

The second challenge lies in identifying a suitable set of collective variables (CVs),

to ensure convergence and avoid non-physiological behavior, the chosen CVs must

encompass all relevant slow degrees of freedom within the system. Failure to account

for these crucial variables can hinder the simulation’s ability to accurately explore the

conformational space and converge.

3.2.4 Hamiltonian Replica Exchange

Let’s consider a system with coordinates r and potential energy U(r), constructed as a

sum of few-body terms, as is typical in atomistic biomolecular modeling [78, 57]. This

system is assumed to be in thermal equilibrium at temperature T, with the probability

of exploring a specific configuration given by the Boltzmann distribution.

P (r) ∝ e
−U(r)

kBT (15)

Replica exchange methods generally involve sampling one “cold” replica, from which

unbiased statistics are extracted, and several “hot” replicas to accelerate sampling.
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The ‘hottest’ replica should efficiently overcome barriers relevant to the process being

studied, while intermediate replicas bridge the gap between the hottest and coldest

ensembles. The number of replicas required depends on the temperature difference

between the hottest and coldest ensembles. In traditional parallel tempering, “hot”

and “cold” refer to physical temperature controlled by a thermostat. However, in the

more general Hamiltonian replica exchange (HREX), “hot” replicas can be biased in

any way that enhances sampling. It’s worth noting that parallel tempering may be less

effective for processes hindered by entropic barriers, as their transition rates might not

increase with temperature [79]. In the most general formulation, each replica within

the system is governed by a distinct Hamiltonian, resulting in simulations at different

effective temperatures. The collective coordinates of all N replicas (represented as ri

for the i− th replica) are considered to generate the final product ensemble.

P (r1)× · · · × P (rN) ∝ e
−U1(r1−···−UN (rN ))

kBT (16)

Since ensemble probability depends solely on U/(kBT ), doubling the temperature is

equivalent to halving the energy. Scaling potential energy, instead of temperature, offers

the advantage of selectively targeting specific system regions or Hamiltonian components

for “heating”, while however, scaling coupling terms involves some arbitrariness.

This approach partitions the system into designated “hot” and “cold” regions, with

each atom assigned to one of these regions. Subsequently, a parameterized Hamilto-

nian dependent on λ is formulated, incorporating specific scaling factors to modulate

interactions within and between these regions and enhance slow dynamic processes.

• Charges in the “hot” region are scaled by
√
λ.

• Lennard-Jones parameter ϵ in the “hot” region is scaled by λ.

• Proper dihedral potentials with both first and fourth atoms in the “hot” region

are scaled by λ.

• Proper dihedral potentials with either the first or fourth atom in the “hot” region

are scaled by
√
λ.

This approach focuses on scaling force-field terms contributing to energy barriers (elec-

trostatics, Lennard-Jones, and proper dihedrals). Interactions within the “hot” region

experience an effective temperature of T/λ, while those between “hot” and “cold” re-

gions experience T/
√
λ. All interactions within the “cold” region remain at the original
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temperature T.

It’s important to emphasize that the effective temperature is not enforced by a thermo-

stat; rather, simulations and replica exchanges occur under conditions of thermodynamic

equilibrium. The scaling parameter λ can take any value between 0 and 1, with 1

representing the reference (unmodified) system. While the code permits setting λ to

0 (equivalent to infinite temperature in the “hot” region), this typically results in low

acceptance rates and is therefore not recommended. Additionally, if the “hot” region

carries a net charge, the ’hot’ replicas will have a different total charge compared to

the unbiased replica. This discrepancy is resolved in periodic calculations employing

Ewald-like methods [80], as a neutralizing background is implicitly added. Finally, our

approach to scaling dihedral parameters ensures consistent treatment of both dihedral

potentials and their associated 1-4 interactions.

Figure 8: Schematic representation of the Hamiltonian replica exchange algorithm. Above: Arrows represent replicas,
with potential exchanges (crosses) subject to acceptance criteria. Below: Reconstructed trajectories after all exchanges.

The Hamiltonian replica exchange algorithm, illustrated in Figure 8, begins with an

unconditional exchange of coordinates between replicas at the start of a time step

requiring an exchange. The total energy of the system is then calculated using the

local force field for the swapped coordinates, this energy is then stored for future use,

and the original (unswapped) coordinates are restored through another unconditional

exchange. At the end of the number of steps specified, when the actual exchange

is attempted, the previously stored energy is employed to determine acceptance or

rejection of the exchange [81]. This acceptance criterion is evaluated in a generalized
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manner, accommodating replicas with different Hamiltonians.

α = min

(
1,

Pi(xj)Pj(xi)

Pi(xi)Pj(xj)

)
(17)

In this expression, Pi and Pj is the probability associated with the potential energy of

the specific conformation xi and xj, which is calculated as the sum of the force-field

potential and any additional potentials computed by PLUMED.

3.3 Molecular Docking

Molecular docking simulations aim to predict the binding mode and score of a ligand

within a target receptor’s binding site. This computationally driven approach plays a

crucial role in drug discovery, aiding in the identification and optimization of potential

therapeutic compounds [82].

The docking process typically involves two fundamental steps: pose prediction and scor-

ing. Pose prediction focuses on determining the optimal conformation and orientation

of a ligand within the binding site. This step is computationally challenging due to the

inherent flexibility of both the ligand and the receptor. Efficient sampling algorithms

are essential to explore the vast conformational space and identify the most favorable

binding pose [47].

Scoring functions are then employed to evaluate the predicted poses and estimate their

binding score. Early scoring functions relied on simplified models, primarily considering

shape and electrostatic complementarity. While these methods remain valuable for ini-

tial screening, more sophisticated scoring functions have been developed to incorporate

detailed energetic contributions, such as van der Waals interactions, solvation effects,

and even entropic considerations. However, accurately capturing the delicate balance

between enthalpic and entropic contributions to binding remains a significant challenge.

Beyond the complexities of scoring, several factors can further complicate accurate

docking predictions. These include limitations in the resolution of experimental struc-

tures used to define the target, the inherent flexibility of both the ligand and receptor,

induced-fit effects upon binding, and the often crucial role of water molecules in medi-

ating ligand-receptor interactions [83, 84]. Addressing these challenges requires careful

consideration of the limitations of current docking methodologies and interpretation of

the results.
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3.3.1 Poses generation

To assess docking methods, it’s vital to consider how the target and ligand are repre-

sented. The three main representations for the receptor are atomic, surface, and grid

[85]. Among these, the atomic representation, due to its computational demands in

evaluating pairwise interactions, is typically employed in conjunction with a potential

energy function [86] and often reserved for the final ranking stages of docking.

Surface-based docking programs, while often applied to protein-protein docking [87, 88],

employ molecular surface representations, largely inspired by Connolly’s pioneering work

[89, 90], to align points on surfaces and minimize intermolecular angles [91]. However,

many of these techniques still rely on a rigid body approximation, which may not fully

capture the dynamic nature of the target interactions. Several docking programs employ

grid representations for energy calculations. The core idea is to pre-compute and store

information about the receptor’s energetic contributions at grid points, enabling efficient

ligand scoring during docking. Typically, these grid points contain information about

electrostatic and van der Waals potentials, simplifying the energy evaluation process.

The treatment of ligand flexibility in docking software can be broadly categorized

into three distinct approaches: systematic, random search, and simulation methods.

Each of these approaches employs different strategies to account for the conformational

flexibility of ligands during the docking process [92].

(i) Systematic search: systematic methods aim to comprehensively explore all confor-

mational possibilities of a ligand, but they face the inherent challenge of combina-

torial explosion due to the vast number of potential combinations [93]. To address

this, ligands are often incrementally constructed within the active site. This can be

achieved through fragment-based docking, where molecular fragments are docked

and then linked together, or by dividing ligands into rigid cores and flexible side

chains. In the latter approach, the rigid cores are docked first, followed by the

flexible side chains, thereby reducing the complexity of the conformational search.

(ii) Random search: stochastic methods, such as Monte Carlo and genetic algorithms,

introduce random changes to a single ligand or a population of ligands. The

acceptance or rejection of a new conformation is determined by a pre-defined

probability function. Tabu search (another stochastic method) keeps track of

previously explored conformations, preventing the algorithm from revisiting them

and promoting exploration of new areas of the conformational space [94, 95]. The
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decision to accept a conformation is based on the root mean square deviation

(RMSD) calculated between the current conformation and previously recorded

ones.

(iii) Simulation methods: Molecular dynamics, a widely used simulation approach,

often encounters limitations in crossing high-energy barriers within practical simu-

lation times, potentially trapping ligands in local energy minima. To address this,

researchers sometimes simulate different parts of the receptor-ligand system at

varying temperatures [96]. Another strategy involves initiating molecular dynamics

calculations from diverse ligand positions. Unlike molecular dynamics, energy min-

imization methods, which only reach local minima, are rarely used independently

but frequently complement other search methods like Monte Carlo [97].

While progress in modeling ligand flexibility has advanced considerably, the treatment

of receptor flexibility in docking remains less sophisticated. Nevertheless, various

techniques have been employed to introduce flexibility into at least parts of the target

[98]. These include molecular dynamics and Monte Carlo simulations [99, 100, 101],

rotamer libraries [102, 103], and target conformational ensemble [104]. Rotamer libraries

(used in case of protein complexes) model the receptor conformational space using a

finite set of experimentally observed side-chain conformations. Another approach is

ensemble docking (efficient also in case of nucleic acid complexes [105]), which uses

multiple conformations of the target as starting points for docking.

3.3.2 Scoring Functions

Evaluating and ranking predicted ligand conformations is pivotal in structure-based

virtual screening. Even with accurate binding pose predictions, the success of virtual

screening hinges on the ability to distinguish true ligands from incorrect poses. While

free-energy simulation techniques offer quantitative modeling of complexes interactions

and binding affinity prediction [106, 107], their computational expense limits their

applicability to large-scale virtual screening.

Current scoring functions employed in docking programs often incorporate assumptions

and simplifications, neglecting certain physical phenomena that govern molecular

recognition, such as entropic effects. Broadly, scoring functions can be classified into

three categories: force-field-based, empirical, and knowledge-based, each with its own

strengths and limitations.
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(i) Force-field-based: molecular mechanics force fields typically quantify the energy

landscape of a complex by summing two key components: the interaction energy

between the receptor and ligand, and the internal energy of the ligand, which in-

cludes factors like steric strain induced upon binding. Ligand-receptor interactions

are primarily described using van der Waals and electrostatic energy terms. The

van der Waals term employs a Lennard-Jones potential, where the parameters

influence the “hardness” of the potential, affecting how close receptor and ligand

atoms can approach each other. Higher-order terms, like 12-6 Lennard-Jones, lead

to more repulsive potentials, while lower-order terms, like 8-4, result in softer

potentials. Electrostatic interactions are modeled using Coulomb’s law, but with a

distance-dependent dielectric function to dampen the contribution of charge-charge

interactions. The internal ligand energy is typically calculated using a similar

functional form to the target-ligand interaction energy, incorporating van der

Waals and/or electrostatic terms. Conventional force-field scoring functions, while

valuable, possess inherent limitations. These functions were initially designed to

model enthalpic contributions in the gas phase, neglecting crucial solvation and

entropic terms. Additionally, the need for arbitrarily chosen cut-off distances for

non-bonded interactions complicates the accurate representation of long-range

effects often critical in ligand binding.

(ii) Empirical: empirical scoring functions, first proposed by Böhm [108], aim to

reproduce experimental data like binding energies and conformations by fitting

a sum of parameterized functions. They operate under the assumption that

binding energies can be approximated as the sum of independent terms. The

coefficients associated with these terms are determined through regression analysis,

employing experimentally measured binding energies and, in some cases, structural

data from X-ray crystallography. Empirical scoring functions, although based on

similar approximations to force-field functions, often apply simpler functional forms,

making them computationally more efficient. Their terms are straightforward to

evaluate, but they heavily rely on the specific molecular datasets used for regression

and fitting. This reliance leads to varying weightings for different terms, making

it difficult to combine them from disparate scoring functions. Consequently, the

performance of empirical scoring functions can be highly dependent on the training

data, potentially limiting their generalizability.

(iii) Knowledge-based: Knowledge-based scoring functions are primarily designed to re-
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produce experimental structures rather than explicitly focusing on binding energies.

These functions employ relatively simple atomic interaction-pair potentials, with a

variety of atom-type interactions defined according to their molecular environment.

Within the realm of knowledge-based scoring functions, a notable subset comprises

ML-based approaches. These leverage machine learning algorithms to train scoring

functions based on existing data, enabling the assessment of binding poses based

on learned patterns of interactions and distances observed in a training set of

receptor-ligand complexes. One of the main advantages of knowledge-based scoring

functions is their computational efficiency, enabling the rapid screening of extensive

compound databases. However, a notable drawback is that their derivation relies

on the implicit information embedded within limited sets of complex structures,

which can potentially introduce biases and limit their generalizability.

Given the inherent limitations of individual scoring functions, a recent trend in the

field has been the adoption of consensus scoring schemes [109]. These schemes leverage

information from multiple scoring functions to mitigate errors [110] associated with any

single function, thereby enhancing the likelihood of identifying true ligands. However, the

potential benefits of consensus scoring might be limited if terms within different scoring

functions exhibit significant correlation. Such correlations could amplify calculation

errors rather than balance them, potentially hindering the overall accuracy of ligand

prioritization.

3.4 Machine Learning

Machine Learning (ML) is a field of artificial intelligence that focuses on developing

algorithms that allow machines to learn from data without being explicitly programmed.

Instead of following rigid instructions, ML algorithms use data to identify patterns,

make predictions, and make decisions. There are several categories of ML algorithms,

including:

1. Supervised learning: The algorithm learns from a labeled dataset, where each

example has a corresponding label or output value. The goal is to learn a function

that can predict the output for new examples. A common algorithms in this

category, also used in this thesis, include k-Nearest Neighbors (k-NN), which is a

non-parametric classification algorithm that assigns a label to a new sample based

on the labels of its k nearest neighbors in the feature space. The k-NN algorithm
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aims to classify a data point by finding its closest neighbors in the dataset and

assigning it the predominant class label among those neighbors. To achieve this,

k-NN relies on a distance metric, which measures how similar data points are, and

the value of k, which determines the number of neighbors to consider. Selecting an

appropriate distance metric and k value is crucial for the algorithm’s effectiveness.

2. Unsupervised learning: The algorithm learns from an unlabeled dataset, where no

labels or output values are available. The goal is to discover patterns or hidden

structures in the data, such as clusters or associations. Principal Component

Analysis (PCA) is a prime example of unsupervised leaning method. PCA is

a powerful dimensionality reduction technique, effectively simplifying complex

datasets by identifying and highlighting their most significant features. This

dimension reduction is accomplished through a linear transformation of the original

variables into a new coordinate system of uncorrelated variables called principal

components (PCs). These PCs are ordered by the amount of variance they explain

in the original data, with the first few components often capturing the majority of

the information. This allows for a lower-dimensional representation of the data

while preserving its salient characteristics, facilitating visualization, noise reduction,

and subsequent analysis. In essence, PCA can be conceptualized as a process

of “information compression,” where a high-dimensional dataset is projected onto

a lower-dimensional subspace spanned by the PCs. This projection maximizes

the variance of the data in the new subspace, ensuring that the most important

information is retained. By reducing the number of variables needed to represent

the data, PCA simplifies analysis and can reveal hidden structures or relationships

that may not be apparent in the original high-dimensional space.

3. Reinforcement learning: The algorithm learns by interacting with an environment.

It receives feedback in the form of rewards or penalties, and the goal is to learn

a strategy that maximizes rewards over time. In particular a one-class learning

method learns from a dataset with examples from only one class. The goal is

to identify patterns in the data that can be used to distinguish between samples

belonging to that class and those that do not. Import Vector Domain Description

(IVDD) is a one-class learning algorithm that uses a kernel function to map the

data into a high-dimensional feature space, which used is detailed in Chapter 5.2.2.
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4 Aim and Objectives
The goal of this project is to develop and validate novel computational methodologies

for RNA-targeted drug discovery, with a particular focus on addressing the unique chal-

lenges presented by RNA’s dynamic nature. Traditional protein-focused drug discovery

approaches often fall short when applied to RNA targets, necessitating the development

of specialized tools and protocols.

To address these challenges, this thesis is structured into three applications: we begin

by developing and validating computational methods to identify druggable pockets and

map allosteric communication patterns in protein systems. Building on these validated

protein-based pocket trakers approaches, we then conduct a computational drug discov-

ery study on RNA, integrating specialized RNA-specific methods. Finally, we implement

non-equilibrium simulations to accurately calculate standard binding free energies in

RNA-ligand complexes. The first phase focuses on validating and establishing a robust

computational protocol for pocket detection, druggability and pocket communication

analysis. This involves evaluating two complementary methodologies: NanoShaper

for pocket detection, coupled with a sophisticated one-class learning approach using

the Import Vector Domain Description (IVDD) algorithm and customized DrugPred

descriptors to assess pocket druggability. In parallel, we validate Pocketron’s ability

to analyze communication networks between pockets by comparing its performance

with other established methods (DyNet and DF) across three pharmaceutical targets.

This comprehensive validation demonstrates Pocketron’s great performance in identi-

fying known allosteric pockets and their correlation with orthosteric sites. Building

upon these validated tools for protein systems, our second objective focuses on their

application to the long non-coding RNA MALAT1. Here, we employ the established

NanoShaper-Pocketron protocol to identify potential pockets able to accommodate a

ligand and their communication along the structure. This phase incorporates unbiased

molecular dynamics simulations to capture RNA’s conformational flexibility. We then

incorporated biased simulation to enhance the conformational search of the MALAT1 in

order to construct a conformational ensemble of the target sites identified by Pocketron.

We then evaluate various docking approaches (AutoDock GPU and rDock) and scoring

functions (AutoDock, rDock, Vina, AnnapuRNA, and SPRank) for their ability to

predict experimental binding affinities of diminazene-based ligands. Finally, we aim

to extend and validate non-equilibrium methods for binding free energy calculations

to RNA systems, using two Riboswitch-preQ1 complexes as a model systems. This
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includes investigating the critical role of protonation states and unbinding pathways

in achieving accurate predictions through steered molecular dynamics and the Crooks

Fluctuation Theorem.

Through these interconnected objectives, our project seeks to contribute significantly

to the field of RNA-targeted drug discovery by providing validated computational tools

and deepening our understanding of RNA-ligand interactions.
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5 Application Case 1:

Pocket druggability and

allosteric communication [111][112]

5.1 Introduction

5.1.1 Drug Discovery and Target identification

Drug discovery is a complex and time-consuming process [113]. It involves a multistep

pipeline from understanding biological mechanisms to fine-tuning the lead candidate

(for small molecules), often utilizing computational methods [114, 115]. Over the past 20

years, computation has made significant contributions to many steps in drug discovery

through physics-based simulations, machine learning modeling, and their combination

[53, 116].

Computer-aided drug discovery and design (CADDD) use information technologies

to aid in the identification and development of novel chemical structures with opti-

mal physicochemical and biological properties. This process heavily depends on the

structural information of the pharmacological target receptor (direct drug design) or

known ligands that bind to these targets (indirect drug design). Computational ap-

proaches have become indispensable in contemporary drug discovery, offering essential

tools for both the initial identification of promising compounds and the subsequent

optimization of their pharmacological and biopharmaceutical properties. [117]. The

selection, prioritization, and validation of drug targets pose critical challenges, which

are now often addressed through the integration of computational methods in the initial

phase of rational drug discovery projects. The process begins by selecting one or more

drug targets. If no known ligand binds to the potential target, druggability prediction

can be performed, which generally involves analyzing the target surface for binding

sites or identifying similar proteins that have already been shown to be druggable

[118]. Druggable binding pockets for small molecules in proteins can be identified using

structural information, ranging from primary to quaternary structures. Sequence-based

approaches, often called “evolutionary algorithms”, analyze residue conservation, oper-

ating under the assumption that binding residues are essential for functionality and thus

likely to be conserved through evolution [119][120]. While advantageous, these methods
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often have low accuracy because non-binding residues can also be highly conserved

due to other functions. Moreover, allosteric binding sites, which have recently gained

significant interest in the drug discovery community [121], are less likely to be conserved

across species.

Computational approaches for predicting protein druggability have evolved signifi-

cantly in recent years. Modern structure-based prediction tools integrate two key

components: automated detection of binding pockets and machine learning algorithms

that assess the druggability of these sites. Building upon these traditional methods,

newer template-based approaches employ sophisticated matching algorithms to com-

pare microenvironments and physicochemical properties between protein pairs. This

advancement enables the identification of similar binding sites even among proteins

that lack evolutionary relationships [122]. Computational modeling plays a crucial role

in identifying potentially druggable targets and pockets that can bind small molecules.

A protein is considered druggable if it can be inhibited by a drug, although some

experts argue that the term ligandability is more precise for describing a protein’s

ability to bind drug-like molecules without considering the complex pharmacokinetic

and pharmacodynamic factors [123]. In this discussion, we use the term druggable

pocket to denote a protein region likely to accept a small molecule. Identifying these

pockets reliably through computational methods is vital for drug discovery. Discovering

new druggable hot spots are particularly significant for finding allosteric binders and im-

proving selectivity, which is critical when designing chemical entities such as PROTACs

[124][125], where selectivity is often more important than the affinity of the warhead.

Although researchers are often aware of a protein’s orthosteric pocket, identifying

alternative druggable pockets requires a deep understanding of both geometric and

chemical properties, making it a challenging task. Thus, effective computational tools

are necessary to help medicinal chemists detect and prioritize new pockets to design

highly selective drugs.

5.1.2 Computational method for druggability pre-
diction

Numerous studies have explored the computational estimation of druggability [126],

offering a range of tools for this task. These tools include standalone software like

P2Rank [127] and online platforms such as PockDrug [128]. Typically, prediction

methods involve characterizing geometric and chemical features to train and apply
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machine learning techniques [129], like for example DrugPred [130]. Additionally, recent

deep learning approaches frequently use 3D voxel grids of physicochemical properties

for their predictions. DoGSiteScorer [131] is an algorithm that identifies pockets

and assesses their druggability by evaluating both global and local pocket properties,

with the support of vector machines to construct a predictive model. PRANK [132]

employs decision trees and random forests to re-rank and rescore pockets identified

by other tools, such as ConCavity [133] and Fpocket [134], potentially enhancing the

accuracy of existing prediction techniques. PRANK specifically focuses on predicting

the ligandability of particular points near the pocket surface. Additionally, TRAPP

[135], known for its molecular dynamics trajectory analysis, has recently been equipped

with druggability assessment capabilities, allowing it to analyze entire ensembles of

structures.

Our work addresses the challenge of estimating protein druggability with particular

emphasis on mitigating the bias. The conventional approach to druggability assessment

relies on a binary classification between druggable and less druggable (or nondruggable)

pockets, suggesting machine learning classifiers as a natural solution. However, this

binary classification presents an inherent challenge: while certain cases, such as extremely

small pockets, can be definitively classified as “nondruggable”, most binding sites fall

into a more ambiguous middle ground making the classification less definitive. In this

way, labeling a pocket as nondruggable introduces bias into the model, potentially

obscuring the identification of potentially valuable targets. Therefore, we propose that

druggability estimation should be treated as a one-class unsupervised learning task

rather than a classification task. Building on this observation, we developed a protocol

employing the Import Vector Domain Description method (IVDD), a probabilistic

one-class nonlinear learner [136][137]. This method constructs a hypersphere that

encompasses druggable pockets. To assist the learner, we employed a NanoShaper-based

version of the DrugPred [130] descriptors, incorporating some minor adjustments, such

as adding the entrance area computed by NanoShaper as an additional descriptor.

From a protein dataset perspective, specific datasets highlighted in the literature could

be used as benchmarks. These datasets are frequently employed for training and

validating machine learning algorithms, establishing a standardized framework for

assessment. In this work, the Non-Redundant set of Druggable and Less Druggable

(NRDLD) dataset, introduced by Hajduk et al. [130], was selected for both training

and validation. This dataset comprises 113 unique proteins, which were subsequently

divided into two subsets: one for training, consisting of 71 druggable proteins, and
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another for testing, containing 42 less druggable proteins. Finally, we established a new

dataset comprising 100 protein targets to test the method. This dataset is extracted

from the Potential Drug Target Database (PDTD) [138].

Figure 9: Training workflow [111].

In Figure 9, it is reported the workflow for druggability prediction, distinguishing clearly

between the training and testing phases. The training phase, essential for development,

consists of three primary steps:

1. Descriptor calculation for training for each protein:

(a) The protein component is extracted from the input PDB file, and the

Amber99SB-ildn force field radii are assigned it;

(b) The PDB file is processed to obtain a .xyzr file and subsequently processed by

NanoShaper to detect all pockets;
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(c) A primary druggable pocket is identified for each training protein (the one

with a docked small molecule);

(d) The geometric/chemical descriptors for those pockets are calculated.

2. All accumulated data from the previous steps is compiled to construct the training

dataset, which includes descriptors specific to each primary druggable pocket

identified across the training dataset.

3. Ultimately, the training dataset is employed to train the Import Vector Domain

Description (IVDD) machine learning method. During this phase, the model learns

a sphere that assigns probability value to each pocket, enabling the distinction

between druggable (probability > 0.5) and nondruggable pocket (probability

< 0.5).

Figure 10: Testing workflow [111].

Conversely, the testing or operative protocol, during which the model is exclusively
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used for predictions, involves three steps (Figure 10):

1. Initially, we calculate the descriptors specific to the current target protein. In

particular:

(a) The protein component is extracted from the input PDB file and the

Amber99SB-ildn force field radii are assigned to it;

(b) The PDB file is processed to obtain a .xyzr file and subsequently processed by

NanoShaper to detect all pockets;

(c) The geometric/chemical descriptors for ALL pockets are calculated.

2. All information from the preceding step is aggregated into single file containing

the descriptors for each pocket of the current target.

3. Ultimately, the hypersphere estimated during the training phase is employed to

predict the probability for each of the newly detected pockets. Pockets with the

highest probability are considered most likely to be druggable.

In the Methods section 5.2.1 and 5.2.2, we provide more details regarding the above-

mentioned steps.

5.1.3 Dynamic Communication Network

Biomolecular systems rely on coordinated conformational changes, both global and local,

to execute their diverse functions. These changes establish intricate communication

networks within the systems, collectively known as allosteric regulation [139] [140] [141].

The concept of allostery has broadened over time to encompass any long-range signaling

triggered by a local perturbation at a distant site, including protein-protein interactions,

covalent modifications, mutations, and the binding of small molecules to sites other

than the main active site [140] [142] [143]. Allosteric regulation ultimately modulates

the activity of biomolecules, making it a fundamental mechanism in biological processes

[139] [143] [144]. Despite its importance, the landscape of allosteric pathways remains

largely uncharted [145]. Elucidating these mechanisms holds considerable promise for

advancing fundamental biological knowledge, particularly in drug discovery where, the

development of allosteric modulators, for instance, can lead to increased selectivity,

safer dosages, and reduced risks of toxicity or side effects [146] [147] [148].

However, investigating allostery experimentally poses significant challenges with com-

monly used methods like X-ray crystallography, NMR, and mutagenesis [139] [145] [149].
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Additionally, studies on allosteric mechanisms often involve comparing the structural

dynamics of biomolecules in the presence (holo state) and absence (apo state) of the

effector that triggers the allosteric response. This scenario also applies to computational

studies, where simulations and analysis of a biomolecular target are often conducted

both in the presence and absence of ligands [150] [151] [152]. The outcomes of these sim-

ulations are then compared to identify the relevant allosteric sites. In a dynamics-based

perspective of allostery, structural fluctuations within the biomolecule can facilitate

intramolecular communication between different binding sites, even in the absence of

ligands [140] [153]. This indicates that, in certain cases, characteristics of allostery may

be inherent to biomolecules and can be observed even in their apo forms [154] [155]

[156].

Figure 11: Allosteric pocket crosstalk pipeline [112].

In this work, computational approaches were employed to investigate intramolecular

communication of three biomolecules of pharmaceutical interest, known for exhibiting

allosteric behaviors in their apo state. Specifically, the effectiveness of three distinct

methods was compared across the adenosine A2A receptor (A2A), the androgen receptor

(AR), and the epidermal growth factor receptor (EGFR) kinase domain. The adenosine

A2A receptor, a transmembrane protein, is implicated in diseases such as inflammation,

cancer, and Parkinson’s disease [157] [158]. The AR, a nuclear receptor, is essential

in the progression of prostate cancer [159], whereas EGFR is involved in signaling

pathways that regulate cell growth, differentiation, and survival [160]. Our aim is to

assess the extent to which allosteric communication can be extracted from simulations

of the apo form of these proteins using three different methods and to compare their
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results.

Our methodology combines molecular dynamics (MD) simulations [52] with graph

theory for a clearer interpretation of the data. As depicted in Figure 11, we begin

with microsecond-long MD simulations. We then identify pockets in the MD-sampled

structures using a pocket-tracking algorithm called Pocketron [150]. To further analyze

the relationships between these identified pockets, the correlations between the identified

pockets are further analyzed using three computational techniques: pocket crosstalk

analysis [150], dynamic network analysis [161], and distance fluctuation analysis [152],

detailed in the Methods. Finally, to facilitate comparison and understanding, we present

the results as network diagrams, highlighting the most significant communication

pathways.

5.2 Methods

5.2.1 Pockets Detection and Orthosteric Identifica-
tion

Detecting all accessible pockets is crucial for assessing the druggability of each pocket in

the target protein. To accomplish this, we employ the NanoShaper tool [162] [137], which

efficiently identifies these pockets. NanoShaper was selected for its precise estimation

of the molecular surface [163], and it triangulates the detected pockets using the same

method used for the molecular surface, ensuring smooth triangulated meshes. The

identified pockets are stored as mesh files in MSMS or .off format, facilitating easy

parsing for subsequent descriptor generation. NanoShaper also computes key properties

such as volume, surface area, and lists of constituent atoms for all internal cavities

and pockets within the molecular system. This is achieved through a methodical

approach involving the volumetric differentiation of regions enclosed by the system’s

solvent-excluded surfaces (SESs), using two probe radii: a large probe (radius R) and a

small probe (radius r) [137]. These probe sizes influence the pocket shapes: a higher R

value enhances detection of shallower pockets, while a higher r value smooths out inner

surface gaps.

To build our training dataset, we used NanoShaper to automatically detect protein

pockets, including the orthosteric one. Since NanoShaper identifies multiple pockets

across the protein structure, we used the Jaccard index (J) to identify which can

38



automatically detected the pocket that best matches the known orthosteric site:

J(O,Pi) =
|O ∩ Pi|
|O ∪ Pi|

(18)

Here, O represents the set of indices for the atoms of the orthosteric site, and Pi

denotes the set of detected atom indices in the ith pocket identified by NanoShaper.

The orthosteric pocket was defined as the one with the highest Jaccard index relative to

reference indices derived from the ligand’s surrounding atoms. Moreover, the Jaccard

index can be decomposed into two components by multiplying and dividing for O the

numerator and denominator separately. In this case we obtain two new metric called in

this work: Jint and Jor

Jint(O,Pi) =
|O ∩ Pi|

|O|
(19)

Jor(O,Pi) =
|O|

|O ∪ Pi|
(20)

These indices reach their maximum values when there is perfect overlap between

the reference orthosteric pocket (O) and the detected pocket (Pi). Jint measures, in

particular, the completeness of the pocket detection (all the atoms of O are identified

in the pocket Pi). Meanwhile, Jor quantifies the precision of the detection relative to

the reference pocket, decreasing when the sets contain non-shared indices (the indices

identified in the pocket Pi from Nanoshaper match the one in the orthosteric one). In

this work, all three metrics will be used to comprehensively evaluate the quality of

pocket detection.

5.2.2 Descriptors Building and Druggability Predic-
tion

Each pocket identified by NanoShaper were analyzed employing the descriptors outlined

by Krasowski et al. [130], in conjunction with the data provided by the software itself

(Table 1).

The size, shape, polarity, and amino acid composition were computed using NanoShaper

output files as input for the descriptor builder. Specifically, to determine volume (vol),

total surface area (areab) and entrance area (areae), NanoShaper’s calculation were

directly employed. The hydrogen-bond donor and acceptor properties (dsat and asat)

were determined by considering the surface areas surrounding all polar atoms. The
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Descriptor Abbreviation

Binding site volume vol

Total surface area areab

Entrance area areae

Binding site compactness cness

Relative hydrogen-bond donor surface area dsar

Hydrogen-bond donor surface area dsat

Relative hydrogen-bond acceptor surface area asar

Hydrogen-bond acceptor surface area asat

Relative hydrophobic surface area hsar

Hydrophobic surface area hsat

Relative occurrence of polar amino acids paa

Relative occurrence of non-polar amino acids haa

Relative occurrence of multifunctional amino acids maa

Relative occurrence of charged amino acids caa

Relative polar surface area (dsar + asar) psar

Incidence of amino acid X in binding site relative to the surface inX

Table 1: Descriptors for the characterization of the pockets identified by NanoShaper.

hydrophobic surface area (hsat) was calculated as the total surface area minus the

combined surface areas of the hydrogen-bond donors and acceptors. Relative descriptors

for hydrogen-bond donors (dsar), acceptors (asar), and hydrophobic surface areas (hsar)

were obtained by dividing each respective surface area by the total surface area of the

binding site. The relative polar surface area (psar) was defined as the sum of the relative

hydrogen-bond donor and acceptor surface areas. Moreover, to describe the shape of

different cavities, they were used the compactness descriptor defined by Krasowski et

al. [130], which quantifies how closely a cavity’s shape approaches a sphere.

cness =
4π
(

3

√
vol
4
3π

)2
areab

(21)

based on this equation, when compactness approaches 1, the pocket is more spherical.

Other descriptors related to amino acid composition were determined by assessing

the presence of various classes of amino acids categorized by their physicochemical

properties. The proportion of each amino acid group relative to the total number of
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amino acids in each cavity (paa, haa, maa and caa) were determined.

We employed a specialized one-class learning method called Import Vector Domain

Description (IVDD) to identify druggable pockets. IVDD works by mapping training

samples into a kernel space, where they are embedded within a hypersphere. In our

study, this hypersphere exists in a 35-dimensional space, corresponding to our 35 pocket

descriptors. Unlike traditional methods, this allows for the encapsulation of data within

complex surfaces that may not be spherical in the original input space. This flexibility is

enhanced by a probabilistic model associated with the enclosing surface, which assigns

probabilities indicating whether a sample belongs inside or outside the sphere (Figure

12).

Figure 12: IVDD method: each pocket is a single point in a 35-dimensional space. The mapping between the feature
space and the kernel space is given by the function ϕ [111].

During training, the descriptor are used by IVDD to optimizes the configuration of the

hypersphere, its center position and radius minimizing a defined cost function.

min
Γ,a

Γ2 − Ĉ
n∑

i=1

log(pi) (22)

with Γ2 is the radius of the hypersphere, Ĉ balances the relationship between the size

of the radius and minimizing the error in the model (initially set at 0.5) and pi the
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probability calculated as:

pi =
1

1 + eβfi
(23)

where β is a fixed coefficient (equal to 25 for these analyses) and fi is the decision

function. Equation 22 balances the inclusion of as many samples as possible within

the sphere while controlling the sphere’s size, potentially allowing some samples to lie

outside, with the optimal sphere configuration being unique due to the convex nature

of the problem, where at least 80-90% of the data is included in the sphere.

In the testing phases, the determined sphere configuration guides the predictions.

Non-druggable pockets are interpreted based on probability values; strictly speaking,

a one-class learning assesses the adherence of a pocket to the druggability concept

rather than providing a definitive classification. For crisp classification, a probability

threshold can be applied: samples outside the sphere are predicted as non-druggable

(probability < 0.5), whereas those inside are classified as druggable (probability > 0.5).

Pockets closer to the sphere’s center are associated with higher probabilities of being

druggable, with probability decreasing towards the sphere’s periphery.

5.2.3 MD simulations for pocket crosstalk analysis

Molecular dynamic simulations were performed to study three molecular systems: the

adenosine A2A receptor (modelled using PDB IDs 3uzc and 4eiy as reported in the

literature [150]), the androgen receptor (PDB ID: 1t63 ), and the EGFR kinase domain

(PDB ID: 2jit). In the last case the simulation was taken from a previous work [164].

The systems are prepared using BiKi Life Science [165], they were removed any small

molecules that were bound to the receptors, but kept the water molecules and ions that

were present in the original crystals. The simulations were set up using a standard force

field ff99SB-ILDN [166] and the TIP3P model for water [167], each system ended up

with around 60000 − 75000 atoms then, ions (Na+ and Cl−) were added to balance

the electrical charge of the systems. Finally, the systems were brought to a stable

state at 300 K and 1 bar through simulations in the NVT and NPT ensembles. The

A2A system, within a POPC membrane, underwent a more extensive equilibration

process in the NPT ensemble. This involved 50 ns of simulation with restraints on

the protein’s heavy atoms, followed by another 50 ns without restraints. Molecular

dynamics simulations were then performed on all systems: 3 µs for A2A and EGFR,

and 2.6 µs for the AR. Using GROMACS 2021.4 [168] with a 2 fs time step, 50000

frames (approximately 48000 for the androgen receptor) were extracted for analysis
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using the Pocketron algorithm [150] in BiKi Life Sciences.

5.2.4 Correlation Matrices

The simulations are then subjected to three distinct analysis methods to generate a

correlation matrix. These matrices quantify the degree of communication or interaction

between pockets, and subsequently, between different regions of the receptors.

1 Pocketron [150]: Pocketron is an algorithm that tracks the dynamic evolution of

pockets in molecular trajectories. It uses NanoShaper to identify pockets frame by

frame based on solvent SES as detailed in Section 5.2.1. Each pocket is assigned a

unique identifier (pIDs), and the algorithm tracks changes in pocket composition

over time. If the newly identified pockets differ from those previously recorded,

the new pocket is added to the existing list and given a unique pID. Moreover,

it monitors atom movement within and between pockets, identifying “merging”

events (atoms from different pockets combining) and “splitting” events (atoms

from a single pocket dividing). This analysis of “pocket crosstalk” provides insights

into how pockets interact, the output includes pocket IDs with associated atom

indices and split-merge matrices representing the propensity for atom exchange. A

final, symmetric split-merge matrix is derived for subsequent network analysis.

2 Generalized correlation-based dynamical network analysis [161]: It was also em-

ployed a graph-based approach called Dynamic Network (DyNet) analysis to

examine the dynamic movement and communication between residues in the MD

simulation. The correlations between motions of residue pairs are quantified using

a metric known as generalized mutual information, as described by Lange and

Grubmüller [169].

I[x1, x2, . . . , xN ] =

∫
p(x) ln

p(x)∏N
i=1 pi(xi)

dx. (24)

rMI [xi;xj] =
(
1− e−2I[xi;xj ]/d

) 1
2 (25)

The mutual information (I) quantifies the pair-correlations between amino acid

residues by measuring how their motions deviate from an uncorrelated distribution,

while the generalized mutual information is denoted as rMI , where d is the dimen-

sionality of the variables xi and xj . It measures the correlation between the motions

of the two residues throughout the MD simulation. Then to construct the protein
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graph, each node represents the alpha-carbon (Cα) of an amino acid residue, an

adjacency matrix (A) is defined as the connections (edges) between nodes based on

a distance cutoff, specifically, Aij = 1 if the distance between residues i and j is less

than or equal to 5.5 Å, and Aij = 0 otherwise. A dynamic weighted network is then

constructed by assigning weights to the edges. For connected residue pairs i and j

(i.e., where Aij = 1), the edge weight wij is calculated as −log(rMI[xi, xj ]), where

rMI[xi, xj] represents a measure of mutual information between the fluctuations

of residues i and j. In this dynamic weighted network, the edge betweenness (EB)

of an edge is defined as the number of shortest paths (SPs) that traverse that

edge. Edges with high EB values are considered crucial for information flow within

the protein, as they mediate a large number of communication pathways between

different parts of the protein structure.

3 Distance fluctuation analysis [152]: This analysis method, adapted from Chennub-

hotla and Bahar’s approach [153] by Colombo’s lab, investigates signal propagation

in all-atom molecular dynamics simulations. An elastic network model is used

to analyze protein signal transduction by examining atomic fluctuations during

molecular dynamics simulations. The method relies on the distance fluctuation,

also known as communication propensity, which is the mean-square fluctuation

of the inter-residue distance (dij) calculated between the alpha-carbons (Cα) of

residues i and j.

DF = ⟨(dij − dij)
2⟩ (26)

In this method, dij represents the average inter-residue distance over the entire

simulation. By calculating the distance fluctuation (DF) for each Cα−Cα pair,

an NxN DF matrix is generated, where N is the number of Cα atoms. Low DF

values often occur for residues within the same structural element (e.g., α−helix)

and are considered trivial. To avoid these, a double filtration is applied [152][170]:

not only are low fluctuating pairs (below a threshold) identified, but a minimum

distance threshold for dij is also imposed to ensure that only small fluctuations

between distant residues are detected. The DF upper bound is estimated using

the average DF value for consecutive amino acids along the sequence, considering

neighbors within a range of i−4 and i+ 4. This system-specific value reflects local

fluctuations, resulting in DF upper bounds of 0.06, 0.04, and 0.10 Å2 for A2A, AR

and EGFR, respectively. The lower bound for dij is set to 8 Å to filter out trivially

correlated distances.
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5.2.5 Matrices Coarse-Graining and Network Dia-
grams

Comparing the results of the three different methods used in this work is challenging due

to their varying output formats. Pocketron’s crosstalk analysis yields an MxM matrix

(M being the number of pockets), with each element representing the probability of

crosstalk between two pockets. DyNet produces a weighted network with edge between-

ness for Cα pairs, while the DF method generates an NxN matrix of pairwise distance

fluctuations between all Cα. To unify these representations, we aggregated DyNet and

DF data into a pocket-oriented format, emphasizing correlations between whole pockets.

This involved dividing the DyNet network into communities corresponding to Pocketron-

identified pockets, resulting in an MxM matrix where each element represents the total

edge betweenness between residues connecting two pockets. Similarly, the DF matrix

was condensed into an MxM matrix, with elements representing average DFs between

residues within pocket pairs. When creating the MxM matrices, a challenge arises due

to Pocketron setup that allows residues to belong to multiple pockets, reflecting the

dynamic nature of pockets, which can merge and split.

As a result, summarizing DyNet and DF data into MxM matrices is not straightforward.

To resolve this, when pockets i and j shared residues, the calculation was performed

twice: once assigning all shared residues to pocket i, and once to pocket j. For DyNet,

the highest value from these calculations was used, representing the strongest correlation.

While for DF, the lowest value was chosen, indicating the smallest fluctuation (most

coordinated movement) between the pockets. To make the MxM matrix values easier

to understand, the DFs values were additionally transformed into a more intuitive

distance fluctuation score (DFS), as the DF approach favors lower values

DFS = e−βDF (27)

spanning values in the range [0,1]. To achieve a standardized range of [0, 1], the distance

fluctuation score (DFS) values were linearly rescaled to ensure that higher DFS values

(closer to 1) indicate stronger correlations. The parameter β acts as the inverse of the

distribution’s variance, and a value of 10 was chosen to enhance the differentiation of

values near 1 by shifting the distribution towards lower DFS values.

To maintain uniformity, the MxM matrices derived from Pocketron and DyNet were

also normalized to fall within the range [0,1]. The correlations within the MxM
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matrices were visually represented as network diagrams. In these diagrams, each node

corresponds to a pocket (identified by its pID), with node size reflecting the average

non-zero pocket volume throughout the simulations. The color of each node indicates

pocket persistency, defined as the proportion of MD snapshots where the pocket had a

non-zero volume. Both pocket volume and persistency data are derived from Pocketron

analysis and the edges connecting nodes represent correlations between pockets (the

ij element of the matrices), with thicker edges signifying stronger correlations. To

enhance the distinction between strong and weak correlations, the edges weights in the

network diagrams were also normalized to a consistent range across all three systems.

The network diagrams were created using the NetworkX Python package [171] where

nodes were placed in a 2D space derived from multidimensional scaling of the 3D pocket

center coordinates, preserving pocket distances to aid interpretation.

5.3 Results and Discussions: Pocket drug-

gability

5.3.1 Datasets

In this work, two distinct datasets were employed, each with two variations: one

including hydrogen atoms and one excluding them. The first dataset, NRDLD [130], is a

publicly available, non-redundant resource for developing and validating structure-based

druggability assessment methods. It consists of 113 proteins (71 druggable and 42

less druggable). Each binding site was characterized by 35 descriptors as reported in

Chapter 5.2.2.

Additionally, a second dataset was created, comprising 100 proteins sourced from the

PDTD (Potential Drug Target Database) [138]. These targets encompass a diverse

range of protein types, including enzymes, receptors, antibodies, signaling proteins,

and lipid-binding proteins. From these structures, all pockets and their associated

descriptors were extracted, resulting in 4807 binding sites without hydrogen atoms

and 5692 binding sites with hydrogen atoms, respectively, including 100 orthosteric

sites (one per target). The orthosteric site is defined as the pocket hosting the drug

or substrate (excluding cofactors), these pockets were characterized as orthosteric (or

main) pockets throughout the text, additionally each binding site and pockets were also

characterized by the same 35 descriptors used for the NRDLD dataset.
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Regarding the pocket detection probes radii, various values for the small and large

NanoShaper probes were tested to optimize pocket detection. The small probe was

readily set at 1.4 Å, approximating the size of a water molecule however, selecting the

optimal large probe value it proved to be more challenging. It was found that A probe

size value of 3.5 Å was found to be more effective than 3 Å in identifying both shallow

and buried pockets. Larger probe sizes generally led to less accurate pocket shapes, as

evidenced by lower Jaccard index values.

For further details regarding the targets in both the NRDLD and PDTD datasets refer

to Table 6 and Table 7, respectively.

5.3.2 Train IVDD with NRDLD

IVDD was trained on 71 druggable protein structures from the NRDLD dataset. An

RBF kernel was used, with initial Ĉ = 0.5, β = 25 and an accepted sample range of

80-90% to avoid overfitting. The learning phase adjusted Ĉ until 90% of samples were

within the sphere, resulting in a final Ĉ values of 0.1 (without hydrogens) and 0.12

(with hydrogens).

In the analysis without hydrogen atoms (Figure 13a), sample 1udt, with a compact and

well-defined pocket, received the highest probability score and is closest to the center

of the sphere, since IVDD performs optimally when the pocket tightly encloses the

bound ligand. In contrast, samples outside the sphere (10% of the dataset) exhibited

low scores due to their pocket shapes, especially structures like 1kvo, 4cox, and 1k7f

appear as merged pockets, resulting in descriptors that deviate from the druggable

reference learned by the algorithm. These structures are then classified as outliers,

emphasizing the power that a pre-processing segmentation could have to avoid this

limitation. However, IVDD can manage such cases by excluding or marginalizing

percolating pockets. Another outlier, 2aa2, highlights a limitation of NanoShaper, as

the identified pocket is too shallow to accurately represent the binding site, leading to

a low probability score. This is expected, as NanoShaper’s ability to detect shallow

pockets is limited by the probe size, which is primarily optimized for deep, buried

pockets.

On the other hand, in the analysis with hydrogen atoms (Figure 13b), sample 1xm6

received the highest probability score so, the inclusion of hydrogens made the pocket

structure more compact around the ligand, leading to a higher Jint value. This improved

NanoShaper’s accuracy in identifying the orthosteric pocket, resulting in a higher IVDD
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Figure 13: Training results are visualized through dimensionality reduction using PCA. Each point represents a main
protein pocket, with color-coding indicating the probability assigned by IVDD. Some 3D structures corresponding to

select training samples are displayed. Panel a) shows results without hydrogen atoms, while panel b) includes hydrogens
[111].

probability. Similarly, for 1k7f, the addition of hydrogens closed a channel that previously

led to an overly large pocket, significantly improving the Jaccard index for the pocket

identification. However, some NanoShaper errors persisted, such as with 1kvo, 4cox,
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and 2aa2, where pockets remained either too large or too shallow.

5.3.3 Validation IVDD with NRDLD

Next, the previously trained model was validated using the 42 less druggable structures

from Krasowski et al. (2011) [130] to predict their druggability. Figures 14 display the

probabilities assigned by IVDD to each structure, for the models without and with

hydrogen atoms, respectively.

Figure 14: Druggability prediction of the less druggable subset of NRDLD using our model, both without A) and with B)
hydrogens. For each protein binding site (shown on the x-axis), the predicted druggability probability is displayed on the

y-axis and indicated by the color of the bar [111].

Overall, the results from both models are comparable, in particular, the IVDD model
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predicted a probability exceeding 0.8 for roughly half of the “less druggable” set. This

suggests a potential bias in the dataset classification (classified as undruggable proteins),

indeed this unsupervised approach doesn’t impose a pre-defined distinction. Notably,

over half of the pockets received high probability scores where, for the remaining

cases (low probability), the “less druggable” classification can be attributed to shallow

pockets, where NanoShaper’s large probe size (3.5 Å) can still allow (in roughly half

the cases) for their correct detection.

This finding seems to contradicts the “less druggable” labeling of this dataset, par-

ticularly, in the NRDLD the proteins are classified as less druggable if none of its

ligands satisfied specific criteria: oral bioavailability (assessed by Lipinski’s rule of

five), lipophilicity (clogP ≥ −2), and ligand efficiency (≥ 0.3 kcal/mol per heavy

atom). Defining druggability based on specific ligands is problematic because it requires

sampling the entire chemical space, which is impractical. Due to limited sampling and

biases in the drug discovery process, this classification it could be unreliable while, a

pocket’s true druggability may be defined by the activity of its most effective ligand

within the entire chemical environment. So, this approach avoids pre-labeling and

focuses on learning from known druggable pockets.

A systematic analysis reveals a trend where lower probability pockets tend to be smaller,

shallower, and have more solvent-exposed ligands compared to higher probability

pockets, which are deeper and more compact. This shift is illustrated in Figure 15,

showcasing orthosteric pockets of a sub-sample of 1 every 5 receptors of the less

druggable proteins (without hydrogens).

For example, 1onz, with a shallow pocket and partially exposed ligand, scores a low

probability of 0.46 conversely, 1cg0, featuring a well-defined and accommodating pocket,

is assigned a high probability of 0.97. This pattern, where lower scores correlate with

smaller, less enclosed pockets, holds true for most cases, except for 1qxo, where the

detected pocket is unrealistically large. Moreover, the less druggable set includes

interesting cases like 1kts, 1gpu, 1ucn, and 1cg0, where the ligands are small molecules

/ small molecule-like ligands where, missing these pockets in drug discovery campaign

would be detrimental, but our method scores them highly. This is important beyond

the traditional small molecule drug paradigm, as even moderately active warheads can

be effective for example in PROTACs or molecular glue degraders.

A technical comparison of pocket probabilities with and without hydrogen atoms reveals

interesting findings such as, the inclusion or exclusion of hydrogen atoms does not affect

NanoShaper’s identification of the main pocket (as indicated by the highest Jaccard
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Figure 15: Main pockets (computed without hydrogens) of 1onz, 1bmq, 1m0n, 1mai, 1nnc, 3jdw, 1f9g and 1cg0. The
pocket surface is depicted in blue, while the bound ligand from the PDB file is represented in Van der Waals (VdW)

style. The accompanying number indicates the calculated probability of the pocket being druggable [111].

index). However, it does influence the pocket’s shape and its relative ranking in terms

of probability for example, adding hydrogens doesn’t necessarily solve NanoShaper’s

percolation issues, as seen in 1qxo. Another interesting case is 1icj (Figure 16) here,

the main pocket detection remains consistent but shifts between monomers depending

on hydrogen presence.

Importantly, this pocket is always identified as druggable, though with varying prob-

abilities. This suggests that while druggability is a consistent feature, the specific

pocket conformation and hydrogen inclusion influence the probability score, therefore,

considering dynamic aspects and conformational probabilities is crucial for accurately

assessing overall druggability, treating it as a quantifiable characteristic.

5.3.4 Test experiment on PDTD

At this point, the method was tested on a curated 100-protein dataset, a subset of

the PDTD, to assess classification accuracy and investigate potential biases. While

pocket volume is known to be crucial for druggability, as demonstrated by Nayal et al.

[172] using SCREEN obtaining a success rate of 64%. But, relying solely on volume

51



Figure 16: Shift of the main pocket in 1icj with the co-crystallized ligand. (A) Main pocket identified with hydrogen
atoms. (B) Main pocket without hydrogen atoms. The orthosteric pocket remains functionally the same but shifts

between monomers. All three ligands from the PDB structure are shown [111].

can introduce biases due to various factors, for example, overly large pockets might

be mistakenly identified as main sites if they only partially contain the true binding

site. This phenomenon that can occur due to percolation effects of the pocket detection

engine.

We compared IVDD’s performance with a simple ranking based on pocket volume,

considering both cases with and without hydrogen atoms and with IVDD algorithm

(Table 2 and Figure 17 show the results). While volume ranking achieved a higher top 5

accuracy (97% without hydrogens, 89% with hydrogens), IVDD identified 90% and 92%

of orthosteric pockets within the top 5 for the respective cases. This suggests that IVDD,

although slightly less accurate in terms of raw top-5 accuracy, excels at identifying

high-quality pockets, considering both their correct identification by Nanoshaper and

physicochemical properties.

Pocket quality is crucial in both scenarios, adding hydrogen atoms can sometimes

fragment overly large pockets, improving accuracy in druggability estimation but

potentially leading to tighter shapes due to NanoShaper’s behavior. This is demonstrated

in Figures 18 and 19, Figure 18 reports the distribution of the three Jaccard indexes

(J , Jint and Jor) for the main pockets of the PDTD subset. While, Figure 19 presents

cumulative scores for the top-ranked pockets using the three metrics, comparing volume

and IVDD ranking. The results show that IVDD without hydrogen atoms consistently

yields higher values across all three metrics. Interestingly, despite lower accuracy than
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Description IVDD Volume IVDD+H Volume+H

Top 1 50 60 50 50

Top 2 67 76 69 65

Top 3 81 87 81 79

Top 5 89 97 92 89

Top 10% 90 97 87 86

Table 2: Outcomes for identifying orthosteric/main sites in the PDTD subset using the IVDD method and a simple
descending ranking of pocket volumes, with and without hydrogen atoms.

Figure 17: Enrichment analysis of the top 10% highest-probability pockets in the 100-protein dataset, comparing IVDD
and volume ranking methods for identifying orthosteric sites. (a) Results without hydrogens show IVDD accuracy of
90% (avg. 5.28 pockets/protein) and volume ranking accuracy of 97%. (b) Results with hydrogens show IVDD accuracy

of 87% (avg. 4.43 pockets/protein) and volume ranking accuracy of 86% [111].

volume ranking in this case, the remaining pockets identified by IVDD exhibit higher

quality scores. This highlights the risk of over-fitting to volume-based ranking, where a

percolating volume may lead (paradoxically) to a misleading 100% accuracy, by not

over-fitting, IVDD mitigates this bias and prioritizes pocket quality over quantity.

Comparing IVDD results with and without hydrogen atoms provides further insights,

many structures not ranked in the top 5 share common features: they either have large

pockets with low/intermediate J and low Jor values (e.g., 1vkg, 1qpb, and 1ht8 ), or they

are shallow pockets with high Jor but low Jint scores. In some cases, the presence of

hydrogen atoms improves the results, reducing the number of structures outside the top

five from 11 to 8. However, for some shared structures (e.g., 1ht8, 1h9u, and 1v8b), the

inclusion of hydrogen atoms doesn’t significantly change the shape of the orthosteric

pocket, leading to only minor changes in probability. These structures exhibit similar

characteristics with or without hydrogens, maintaining either their large pocket-size or
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Figure 18: Distribution of NanoShaper scores (J, Jint and Jor) with and without hydrogen atoms [111].

Figure 19: Cumulative scores (J, Jint and Jor) for the top-ranked orthosteric sites identified by both IVDD and volume
ranking. Inset (a) displays results without hydrogen atoms, while inset (b) shows results with hydrogen atoms [111].

shallowness, despite the presence of hydrogen atoms.

The proposed methodology, designed to mitigate biases and enhance robustness, yields

comparable accuracy to existing methods in druggability prediction. Specifically,

excluding hydrogen atoms from the model, we achieve 81% and 89% accuracy in

identifying druggable pockets within the top 3 and top 5 predictions, respectively. Some

misclassifications can be attributed to limitations in the pocket detection algorithm,
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NanoShaper. Notably, our approach achieves comparable accuracy to established

methods such as DoGSiteScorer (88% accuracy) [131], DrugPred (91% accuracy) [130],

and fpocket (83% top 3 accuracy) [134]. Overall, the method achieves comparable

accuracy to existing methods, but with the added benefit of inherent precautions against

biases related to labels and volume.

To better understand the IVDD results, it was investigated the impact of each feature

on predictions. Since IVDD doesn’t have built-in feature selection, a post-labeling

strategy was required. The average probability for orthosteric sites (0.852 without

hydrogens, 0.877 with hydrogens) were calculated and used these as thresholds to label

binding sites (0 for lower, 1 for higher probability). Moreover, a random forest classifier

was employed to estimate feature importance, the classifier employed 100 decision trees

(estimators) [173] and utilized the Gini index as the criterion for splitting the data.

Figure 20: Random forest feature importance in descending order by assigning ex post labels to the IVDD predictions.
Results shown are without hydrogens; similar results are obtained with hydrogens [111].

As shown in Figure 12, volume (vol) was the most influential feature, followed by pocket

surface area (areab), hydrophobic surface area (hsar), hydrogen-bond acceptor/donor

surface areas (asat and dsat), binding site compactness (cness), and entrance surface

area (Areae). Less influential, but still notable, is the slightly higher ranking of

hydrophobic residues (LEU, PHE, MET, and GLY) and some charged residues (GLU
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and ARG). The importance of hydrophobic residues and volume is consistent with the

chemical understanding of binding pockets.

Finally, looking ahead, it is planned to enhance our methodology through several

refinements. Implementing a dedicated volume segmentation algorithm could improve

accuracy, especially in selecting the optimal large probe value, offering greater flexibility

for this parameter. Segmentation, as demonstrated in Aggarwal et al. [174], can help

identify the real pockets (without the percolation effect) that are better suited for

virtual screening and docking. Additionally, developing a user-friendly web server would

make this tool more accessible to the broader scientific community.

5.4 Results and Discussions: Pocket com-

munication

5.4.1 Convergence of the methods

Molecular dynamics simulations were run on three systems: the adenosine A2A receptor

(A2A), the androgen receptor (AR), and the epidermal growth factor receptor (EGFR)

kinase domain, generating 3 µs-long trajectories (2.6 µs for AR) without ligands.

Pocketron was used to identify pockets within these trajectories, providing a common

baseline for subsequent analysis. The residue composition of these pockets was used to

generate correlation matrices spanning [0,1] for Pocketron, DyNet, and DF analysis,

with 1 indicating maximum correlation. For each system, three distinct correlation

matrices were derived, quantifying the inter-pocket communication observed in the

MD simulations (Figures S1-S3). Higher matrix elements were assigned to pocket

pairs that exhibited: (i) frequent merge and split events (Pocketron), (ii) high edge

betweenness, indicative of significant information exchange (DyNet), or (iii) minimal

distance fluctuations (DF).

As a preliminary assessment, it was evaluated the convergence of matrix entries for

the three methods using the EGFR system as a reference. The Frobenius norm [175]

was calculated to measure the difference between matrices at various time points (1.0,

1.5, 2.0, 2.5, and 3.0 µs) and the initial 0.5 µs matrix. The analysis, detailed in the

supplementary material (Figures S4-S6), reveals that DyNet converges fastest, stabilizing

its values after 1.0 µs. While DF and Pocketron, they require longer simulation times,

reaching convergence approximately at 2.5 µs. Notably, Pocketron’s convergence is
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influenced by the rate of pocket emergence throughout the trajectory, whereas the other

methods benefit from the final pocket set identified by Pocketron.

Upon comparing the final results of the three methodologies, a notable disparity in the

sparseness of the correlation matrices emerged. The DF method exhibited a generally

uniform distribution of signals, with distinct areas of heightened correlation. Conversely,

the DyNet approach produced fewer signals, primarily concentrated in specific matrix

regions. Notably, Pocketron yielded the sparsest matrices with the fewest signals. This

variance in sparsity stems from the different mechanisms employed by each method to

assign values to the correlation matrices. Pocketron, for instance, only identifies pocket

communication if residues are exchanged between pockets, a stringent criterion that

naturally results in sparser matrices. In the DyNet method, betweenness is calculated

exclusively for pocket pairs with inter-residue distances below a predetermined cutoff

(5.5 Å in this case). This inherently limits the detection of direct communication

for spatially distant pockets. Conversely, the DF method directly computes distance

fluctuations for every pocket pair, resulting in non-zero values and a denser matrix, even

after applying a DF upper bound filter allowing the identification of signals between

pockets located further apart.

In the following network diagrams, each node represents a pocket, with size indicating

its average non-zero volume during simulation and color representing pocket persistency.

The thickness of edges between nodes reflects the strength of correlation between

pockets, as determined by the three different methods. For clarity, only the top 30 most

relevant correlations are displayed. To facilitate interpretation, the nodes are projected

onto a 2D plane using multidimensional scaling based on the 3D coordinates of pocket

centers of mass, thus preserving spatial relationships. These results are presented for

each protein system individually.

5.4.2 Adenosine A2A Receptor

Following the assessment of general principles and convergence behavior, a detailed

analysis of the results obtained for each individual protein system is presented.

Figure 21 illustrates the analysis results for the A2A receptor. The largest identified

pocket (pID 4) corresponds to the orthosteric site, deeply embedded within the seven

transmembrane helices near the extracellular region. This site, along with pIDs 3, 5,

and 6, exhibits high persistency, indicating their consistent presence throughout the

simulation. The resulting pocket correlation network offers valuable insights into the
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Figure 21: Network representation of pocket communication in the A2A system. Node size correlates with average
non-zero pocket volume, color indicates pocket persistency, and edge thickness denotes correlation strength (top 30

shown) as determined by (b) DyNet, (c) Pocketron, and (d) DF analyzes. (a) 2D node topology, obtained via
multidimensional scaling, is superimposed on the A2A receptor structure to visualize pocket locations [112].

interconnectivity of different protein regions, revealing potential pathways of communi-

cation that may be relevant to protein function and dynamics.

DyNet analysis (Figure 21(b)) reveals extensive connections between the orthosteric

site and neighboring pockets, with the strongest communication observed with pIDs

11, 13, 19, 33, 37, and 58. Pocketron results (Figure 21(c)) also validate these findings,

highlighting connections between the orthosteric site (pID 4) and surrounding pockets.

Notably, Pocketron uniquely identifies a direct connection with pID 3, not mediated
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by intermediate pockets, and maintains the connection between pIDs 3 and 5. The

DF approach (Figure 21(d)) also identifies connections involving the most persistent

pockets 3, 4, and 5, including the conserved connection between pIDs 3 and 5, but does

not detect any direct or indirect pathways between pIDs 4 and 3. Additionally, DF

analysis reveals a dense network of connections in the lower intracellular region of the

receptor.

The DF method, as mentioned, prioritizes connections with smaller distance fluctua-

tions, often within highly structured regions. To focus on longer-range correlations,

we filtered out local fluctuations by considering only inter-pocket residue distances

exceeding specific cutoffs (Figures S7-S9). For the A2A receptor, filtering out distances

< 10 Å revealed long-range correlations between the orthosteric site and surrounding

pockets, including a pathway from pID 4 to pID 3 via pID 14, mirroring a pathway

identified with DyNet. Increasing the cutoff to 15 Å kept the connection between

pID 4 and 3 but made it direct, eliminating intermediate pockets 13 and 14 with

closer inter-pocket residue distances. This approach effectively highlights long-range

correlations hidden by local fluctuations. Importantly, while the choice of distance

cutoffs may appear arbitrary, it was carefully considered in relation to the system size.

For example, while AR and EGFR exhibit maximum inter-pocket residue distances

of 46 Å and 55 Å respectively, the A2A receptor reaches 76 Å. This wider range in

the A2A receptor allows for the investigation of long-range correlations using larger

distance cutoffs, which would not be feasible for the smaller systems.

To validate and contextualize our findings, we compared the identified pockets with

known hotspots reported in the literature. For the A2A receptor, we observed a striking

agreement between the locations of these hotspots according to literature [176] [177]

[178] and the pockets identified by Pocketron (Figure 22).

Specifically, we detected pockets in the regions corresponding to the “G Protein-Coupling

Site” (pID 3), the “Lipid interface” (pID 6), the “C-Terminus Cleft” (pID 8), and

the “Extracellular Cleft” (pID 33). While the “Intracellular Crevice” is known to vary

according to the conformation (active, intermediate 1, intermediate 2, inactive), but

still it was identified a small pocket (pID 5) within a portion of this region. Notably, the

pockets in the “C-Terminus Cleft” (pID 8) and “Extracellular Cleft” (pID 33) regions,

visible only in the active conformation, displayed low persistency in our analysis, but

still demonstrating a degree of correlation with the orthosteric pocket.

Regarding the sodium ion site, a known hotspot often displaced by allosteric drugs

(Figure 22, yellow residues), was also considered in our analysis. Studies suggest that
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Figure 22: Comparative analysis of literature-reported hotspots (colored licorice) and pockets identified by Pocketron
(colored spheres) for the A2A system. Sphere size reflects average non-zero pocket volume, with color consistency
between corresponding hotspots and pockets. Sphere placement corresponds to the center of mass of pocket residues.
Color code: Orthosteric site (gray), Intracellular Crevice (blue), G Protein-Coupling Site (purple), Lipid Interface

(green), C-Terminus Cleft (orange), Extracellular Cleft (red), and Na+ site (yellow) [112].

sodium binding deactivates the receptor, with the ion remaining stable in the inactive

form [178] [179]. In contrast, the active receptor conformation constricts the ion pocket,

preventing ion binding. In this case, MD simulations, initiated from a crystal structure

(PDB ID 3uzc) with sodium in the ion pocket, maintained this configuration through-

out. However, the ion pocket was not identified as an independent pocket in the final

analysis. This indicates the presence of a channel connecting the ion pocket to the

neighboring orthosteric site, resulting in the ion pocket residues being incorporated into

the orthosteric pocket definition.
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5.4.3 Androgen Receptor

Pocket analysis of the AR revealed three large pockets (pID 7, 8, and 13) and a medium-

sized one (pID 3), all showing high persistency throughout the MD simulation. However,

comparing the results from the three analysis methods (DyNet, Pocketron, and DF)

revealed inconsistencies (Figure 23).

Figure 23: Network representation of pocket communication in the AR system as determined by (b) DyNet, (c)
Pocketron, and (d) DF analyzes. (a) 2D node topology, obtained via multidimensional scaling, is superimposed on the

AR receptor structure to visualize pocket locations [112].

DyNet (Figure 23b) indicated strong correlations between the orthosteric pocket (pID

13) and several neighboring pockets, most notably pIDs 8 and 39. While no direct
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connection with the large, persistent pID 7 was observed, indirect connections via other

pockets were identified. Additionally, a pathway between pID 7 and pID 1 was found,

passing through pIDs 10 and 11. In contrast, Pocketron (Figure 23c) highlighted the

central role of the orthosteric site (pID 13), which was connected to multiple surrounding

pockets, including the large and persistent pIDs 7 and 8. However, Pocketron did not

detect any connections between the persistent pID 3 and the larger pockets. This may be

attributed to the protein conformation, where helix 4 separates these regions, potentially

hindering residue exchange and thus communication as detected by Pocketron. Finally,

the DF analysis (Figure 23d) identified two key clusters with strong correlations: one

around pID 3 and 1, and another surrounding the orthosteric pocket (pID 13), primarily

connected through pIDs 7 and 27. This suggests that communication pathways within

the AR may be more complex than those revealed by DyNet or Pocketron alone.

The AR possesses three primary hotspots: the orthosteric binding pocket (Figure 24,

gray residues), the BF-3 pocket (cyan residues), and the AF-2 pocket (green residues).

Figure 24: Comparative analysis of literature-reported hotspots (colored licorice) and pockets identified by Pocketron
(colored spheres) for the AR system. Sphere colors correspond to the respective hotspots: orthosteric site (gray), BF3

site (cyan), and AF2 site (green) [112].

The AF-2 site [180] is crucial for the binding of co-activator proteins, essential for
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AR-regulated gene transcription. Conversely, BF-3 site [181] functions as a potential

target for antagonists, preventing co-activator binding and inhibiting AR activation.

Antagonist binding to the AF-2 or BF-3 sites can modify AR activity by inducing

conformational changes that modify the affinity with co-activator. Our simulations

identified several pockets within these hotspot regions, including pIDs 5 and 6 in

the AF-2 region, even if with low persistence. Despite the known communication

between the orthosteric site and the AF-2 region, our analyses did not reveal significant

communication between them. Only Pocketron’s crosstalk analysis showed a weak

connection between pID 13 (orthosteric site) and the small cluster comprising pockets 6,

5, and 36, via pID 39. Regarding the BF-3 pocket (pIDs 1 and 4), Pocketron detected no

relevant communication with other pockets. However, DyNet revealed a pathway from

pID 1 to pID 5, passing through pIDs 11, 10, and the orthosteric pID 13. Importantly,

Pocketron correctly identified a notable communication between pID 13 and pID 21,

located at the terminal part of H11, which undergoes conformational changes upon

agonist or antagonist binding. This finding supports the possibility of information

exchange between these two regions.

5.4.4 Epidermal Growth Factor Receptor kinase do-
main

Analysis of the EGFR system (Figure 25) consistently identified pID 1, corresponding

to the hinge region, as a central hub connecting two distinct areas of the structure

involved in inter-pocket communication.

DyNet analysis [Figure 25(b)] revealed numerous connections between the hinge region

(pID 1) and nearby pockets (pIDs 30, 44, 53, and 57) as well as pockets formed by the

A loop (pIDs 7, 8, 37, and 45). Additionally, a clear connection between pID 57 and

pID 44 was observed. Pocketron results [Figure 25(c)] largely corroborated the DyNet

findings, showing consistent connections between pID 1 and pIDs 57 (located between

beta-strands and the alpha C-helix) and 44 (a deep interfacial groove). Both methods

also identified a communication network within the A loop region, involving pID 1 and

pIDs 7 and 8. The DF analysis [Figure 25(d)] further supported these observations,

highlighting strong correlations within two opposing regions of the EGFR system. These

regions, connected through the persistent pID 1, could potentially exchange structural

dynamics information, underscoring the importance of the hinge region as a central

communication hub.
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Figure 25: Network representation of pocket communication in the EGFR system as determined by (b) DyNet, (c)
Pocketron, and (d) DF analyzes. (a) 2D node topology, obtained via multidimensional scaling, is superimposed on the

EGFR receptor structure to visualize pocket locations [112].

The literature highlights several key structural elements within the receptor that govern

its activation and deactivation. A hinge region, composed of flexible amino acids,

enables bending and rotation without compromising the overall structure. In proximity

to the hinge, we find the αC-helix, five β-strands, the A loop, and the orthosteric

ATP binding pocket containing the “DFG” motif (residues D855, F856, G857). These

elements collectively contribute to the dynamic regulation of the receptor’s functional

state.

A detailed study by Qiu et al. investigated the conformational changes of the EGFR

kinase in response to ligand binding. They found that Osimertinib, when bound to
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Figure 26: Comparative analysis of literature-reported hotspots (colored licorice) and pockets identified by Pocketron
(colored spheres) for the EGFR system. Sphere colors correspond to the respective hotspots: orthosteric site (gray),

MEK site (yellow), and pocket X (purple) [112].

the ATP binding pocket, induced an αC-out conformation with an open A loop. In

contrast, the presence of the allosteric inhibitor JBJ in the MEK pocket led to an

inactive “Src-like” state, characterized by a closed A loop interacting with the out-

rotated αC-helix. Figure 26 highlights key regions within the EGFR structure: the

ATP binding pocket (gray residues), the MEK pocket (red residues), and a potential

allosteric site (purple residues) identified by Qiu et al. [182]. Our pocket detection

analysis largely corroborates these findings, with pIDs 44 and 57 corresponding to

the ATP and MEK pockets, respectively. Furthermore, our analysis identified the A

loop (around pID 7) as another significant region, frequently showing correlations with

the hinge region (pID 1) and pID 57 in both DyNet and Pocketron analyzes. This

observation aligns with the literature’s view of the hinge as a central communication

hub within the EGFR structure. The connections between the hinge, the A loop, and

pID 57 suggest an intricate communication network within this region, potentially

playing a crucial role in the receptor’s activation and function.

65



6 Application Case 2:

Application of established compu-

tational methods in drug discov-

ery to target RNAs

6.1 Introduction

6.1.1 Long non-coding RNAs

The organization of the eukaryotic genome is intricate, with nearly 98% of the human

genome not encoding proteins [183]. This non-coding DNA, once dismissed as “junk

DNA” [184, 185, 186], is now recognized as a repository of valuable information,

encompassing diverse nucleotide elements and various non-coding RNAs (ncRNAs).

The extent of functionality within these non-coding sequences remains a subject of

ongoing debate. However, the Encyclopedia of DNA Elements (ENCODE) project has

revealed that approximately 80.4% of the genome participates in biochemical activities,

including chromatin structure regulation, histone modification, and RNA transcription

[187].

Non-coding RNAs, which lack protein-coding capacity, are further classified based

on size such as: short ncRNAs, less than 200 bases in length, that include tRNAs,

rRNAs, miRNAs, snoRNAs [189]. In contrast to their shorter counterparts, long non-

coding RNAs (lncRNAs), exceeding 200 nucleotides in length, constitute a diverse

class of regulatory molecules [190]. lncRNAs can be categorized based on various

factors, including their structure, function, localization, metabolism, and interaction

with protein-coding genes or other DNA elements [191]. Interestingly, lncRNAs exhibit

greater conservation in their secondary and tertiary structures compared to their

primary sequences. However, due to the high flexibility, investigating the structure-

function relationship of these large molecules remains challenging due to difficulties

in crystallization, even with new technique such as cryo-EM [192, 193]. Transcribed

from intergenic, exonic, or distal protein-coding regions by RNA polymerase II, lncRNA

precursors undergo a maturation process that includes a 3’-polyadenylation and a 5’-

capping with methyl-guanosine [194]. They also frequently undergo alternative splicing,
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Figure 27: Non-coding RNAs (ncRNAs) play a diverse role in gene expression, expanding upon the traditional ”central
dogma.” Long ncRNAs primarily interact with chromatin, influencing DNA accessibility and thus transcription levels
(blue arrow to the right). Small and mid-size ncRNAs directly regulate various stages of gene expression, including

transcription, RNA processing, and translation (blue arrows to the left). Additionally, certain long ncRNAs can control
the abundance of miRNAs, adding another layer of complexity to gene regulation (grey arrow). [188]

a mechanism that generates protein diversity and can be broadly categorized into three

modes of action: interaction with splicing factors, formation of RNA-RNA duplexes

with pre-mRNAs, and modulation of chromatin remodeling [195].

lncRNAs, being the most prevalent class of ncRNAs, are involved in critical biological

processes such as epigenetic regulation, transcriptional control [196], X chromosome

inactivation [197, 198], genomic imprinting [199, 200], and cell development [201].

Consequently, their dysregulation is linked to various diseases, including cancer [202].

6.1.2 Pharmacological relevance of MALAT1

A prime example of the pharmacological relevance of lncRNAs is the metastasis-

associated lung adenocarcinoma transcript 1 (MALAT1). Its overexpression has been

linked to various cancers [203], while its knockdown has been shown to reduce oncogenic

processes [204, 205], among other phenotypic effects [206, 207, 208]. However, the

precise mechanisms and interactions underlying MALAT1’s regulatory functions remain

an active area of research [209]. MALAT1 represents a promising target for small-

molecule-based therapeutics due to the presence of a well-characterized 3’-triple helix,

implicated in transcript stability. This structure, functionally assessed in cell-based

assays [210] and structurally resolved through X-ray crystallography [211], protects
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MALAT1 from degradation by sequestering its adenine-rich 3’-tail through base pairing

with a uridine-rich stem loop.

Figure 28: Structural Insights into MALAT1. The left panel shows a 2D representation with the distinctive triple helix
(in green) and poly(A) tail (in purple). The right panel presents the 3D conformation of Malat1 in its apo state,

color-coded to match the 2D structure. (PDB ID: 4PLX)

Beyond overall stability, recent research suggests that local conformational dynamics

play a crucial role in triplex-mediated transcript protection [212]. Notably, small

molecules can influence both the global stability and the conformational landscapes

of RNA molecules [213, 50, 214, 215], further highlighting the potential for targeted

therapeutic intervention.

Although the complete functional and structural landscape of MALAT1 remains to be

fully elucidated, the formation of a 3’-terminal A-U rich RNA triple helix is known to

be instrumental in its cellular accumulation [210]. This triplex structure sequesters the

poly(A) tail within the major groove of a uridine-rich stem loop, effectively shielding

the transcript from RNase degradation and extending its half-life [211]. Consequently,

the MALAT1 triple helix has emerged as a promising target for small molecules that

modulate its stability [216, 217, 213]. However, the lack of knowledge regarding the

molecular recognition features that differentiate stabilizers and destabilizers of the

MALAT1 triplex poses a challenge for targeted drug development. Additionally, the
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limited availability of in vitro functional assays has hindered the understanding of the

mechanisms governing RNA triplex modulation. A deeper comprehension of these

mechanisms is crucial for improving the efficiency of future efforts aimed at targeting

the MALAT1 triple helix and exploiting its therapeutic potential.

To assess the proficiency of current docking software and scoring functions in accurately

predicting ligand experimental trend within RNA structures, a dataset of 21 small

molecules (from the work of Hargrove et al. [218]) was employed. The molecules in

this dataset share a common diminazene scaffold, but are differentiated by various

substituents at the ortho, meta, and para positions, denoted by numeric codes and the

prefixes “o-”, “m-”, and “p-”, respectively.

Figure 29: Dataset employed in the project, featuring diminazene as the central scaffold. Substitutions are indicated by
codes and can occur at ortho, meta, or para positions. [218], the results on the right of the IDA experimental binding

affinities are expressed in µM

Diminazene is an FDA-approved [219] antiparasitic agent and a known nucleic acid

binder [220, 221, 222]. It has also been shown to preferentially bind A-U rich RNA

triple helices [221], making it an attractive case study possible triple helix disruption

by targeting the A-U rich MALAT1 triple helix. This dataset was chosen due to

the availability of experimental binding affinity data for these ligands with the target,

enabling us to evaluate the ability of the scoring functions to identify the correct ranking

trends. The experimental binding affinities shown in Figure 29 were determined by

the group of Hargrove [218] using Indicator Displacement Assay (IDA), a colorimetric
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sensing technique [223] employing RiboGreen as dye. This method provides both

qualitative and quantitative measurements by analyzing the different signals between

the apo and complex states [224].

6.1.3 Methodology Workflow

The primary objective of this investigation is to critically assess the ability of current

docking pipeline methodologies, predominantly developed for protein complexes, to

identify possible ligand rankings when applied to RNA targets. As highlighted in Chap-

ter 2.4, the inherent structural flexibility of RNA presents a formidable challenge in such

endeavors. To address this, our pipeline starts with the generation of a conformational

ensemble focusing on the receptor’s triple helix, employing enhanced sampling tech-

niques to capture its conformational landscape comprehensively. Subsequent docking

calculations are then performed on each conformation within this ensemble to elucidate

ligand binding modes and, crucially, to estimate the binding scores of the ligands under

investigation. The selection of a suitable ligand library for this study needs a scaffold

known to exhibit affinity for the target, with experimental validation documented in

the literature. This ensures a meaningful comparison between computational predic-

tions and established experimental data, facilitating a robust evaluation of the docking

pipeline’s performance in the context of RNA-ligand interactions.

A focused library based on the diminazene scaffold was constructed by Hargrove’s

group [218]. This choice was motivated by them considering the scaffold’s synthetic

accessibility and established nucleic acid binding properties, enabling an investigation

into the fundamental recognition principles governing triplex modulators. The library

incorporated variations from the central scaffold and subunit chemical groups to maxi-

mize diversity in the 3D shapes of the analogues. A comprehensive assessment of this

21-member library was conducted using four in vitro assays designed and/or optimized

to specifically probe small molecule-RNA triplex interactions. These assays revealed

that the previously observed trend for RNAs of rod-like 3D shapes correlation held true

also for the MALAT1 triplex for the library compounds. However, while affinity also

correlated with the impact of small molecules on triplex thermal stability, strikingly

different trends emerged in enzymatic degradation assays.

In this study, we started our investigation with the crystallographic structure of the

apo form of the MALAT1. Subsequently, both unbiased and biased (Hamiltonian

replica exchange) molecular dynamics (MD) simulations were performed. The unbiased
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simulations were subjected to Pocketron dynamic analysis to identify potential binding

pockets for subsequent virtual screening.

A clustering analysis was then performed on these selected pockets, and centroids of

clusters with an eRMSD distance above a predefined cutoff were extracted to generate

an ensemble of target conformations. This ensemble was used for docking simulations,

where ligand poses were generated for each conformation using AutoDock GPU [225]

and rDock [28] software. Finally, the generated poses were evaluated using a diverse

set of scoring functions, including AutoDock [226], rDock [28], AutoDock Vina [25,

26], AnnapuRNA [34], and SPRank [227]. This multi-faceted approach allowed us to

comprehensively explore the conformational landscape of the MALAT1 structure and

evaluate the ability of current scoring functions to accurately predict experimental

ligand binding affinities for RNA systems.

Figure 30: Computational pipeline for evaluating scoring functions in RNA ligand docking, using an MD generated
conformational ensemble and a diminazene based ligand library
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6.2 Methods

6.2.1 System preparation

To conduct molecular dynamics simulations, the PDB target file (PDB ID 4PLX) was

processed using GROMACS 2021.4 [168], adhering to established protocols. Initially,

the system was converted into a GROMACS-compatible input file, employing the

state-of-the-art Amber ff99 force field with the bsc0 and χOL3 refinements, specifically

devised for RNA simulations. The system was solvated using the four-point OPC water

model, ensuring an appropriate representation of the aqueous environment. To maintain

charge neutrality, potassium (K+) and chloride (Cl−) ions were added to achieve a

concentration of 0.15 M. Subsequently, the system underwent energy minimization

followed by equilibration in both the NVT and NPT ensembles, with a total simulation

time of 1.2 ns (600 ps for each ensemble). This meticulous preparation ensured a stable

and well-equilibrated system for subsequent production MD simulations.

The equilibrated system was subsequently employed as the starting point for the

unbiased molecular dynamics simulations, which were conducted within the NPT

ensemble. In contrast, for the Hamiltonian replica exchange simulations, an additional

step was incorporated into the equilibration process. Specifically, the fluctuations in

the simulation box volume were analyzed, and the frame exhibiting a volume closest to

the mean value (preferably in the second half of the equilibration) was carefully chosen

as the initial configuration for subsequent biased MD simulations. This selection was

made to mitigate potential artifacts caused by fluctuations in box dimensions, which

could result in artificially high or low pressures. By choosing a starting frame with

a volume close to the average, we aimed to ensure stable pressure conditions for the

subsequent biased simulations performed in the NVT ensemble.

6.2.2 MD simulations

Following the established protocol, two distinct molecular dynamics (MD) simulations

were conducted on the MALAT1 system: an unbiased MD simulation and a Hamil-

tonian replica exchange simulation. The unbiased MD simulation, performed in the

NPT ensemble, was initiated from the pre-equilibrated system and comprised three

independent replicas, each with a simulative time of 500 ns. These simulations were

carried out under constant temperature and pressure conditions of 300 K and 1 bar,
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respectively, maintained using the V-rescale thermostat and the C-rescale barostat. The

resulting trajectories from these three replicas were then concatenated for subsequent

analysis.

To enhance conformational sampling and overcome potential energy barriers, Hamilto-

nian replica exchange (HREX) MD simulations were also employed. Sixteen replicas

were created, with the scaling parameter λ ranging from 0.7 to 1, specifically targeting

the poly(A) triple helix residues (residues 55 to 76 highlighted in purple in the Step

1 of Figure 30). As detailed in Section 3.2.4, Coulomb interactions, Lennard-Jones

potentials, and dihedral parameters within the “hot” region were scaled by factors

of λ or
√
λ. This approach facilitates exploration of conformational space beyond

local minima, particularly compared to unbiased simulations. As outlined in Chapter

6.2.1, simulations were initiated from the frame with the volume closest to the average

value, ensuring consistent pressure conditions. These biased simulations were conducted

in the NVT ensemble using the V-rescale thermostat, with each replica running for

approximately 100 ns (precisely 96 ns). During the simulations, exchanges between

replicas were attempted every 240 steps based on the Metropolis criterion (Equation

17). The unscaled replica (λ = 1) was subsequently extracted, processed and subjected

to further analysis to generate the conformational ensemble.

6.2.3 Conformational ensemble preparation

Upon termination of the simulations, we started on the trajectory analysis to extract

representative frames for subsequent docking campaigns. Initially, the combined unbi-

ased trajectory was analyzed using Pocketron to identify dynamic pocket formation and

communication patterns. A communication matrix was constructed to pinpoint residues

belonging to pockets exhibiting the largest volume, highest persistency, and significant

long-range communication. Subsequently, we examined the conformational variability

of these residues across both the unbiased and biased (λ = 1 replica) trajectories,

employing two distinct metrics: RMSD and eRMSD [228]. While RMSD is a common

measure of structural deviation, eRMSD, specifically designed for nucleic acids, offers

a more nuanced understanding of base pairing alterations. High RMSD values may

not necessarily indicate substantial conformational changes in RNA (in comparison to

proteins), whereas elevated eRMSD values (typically exceeding 0.7-0.8) signify a more

significant base pairing rearrangements.

Figure 31 shows the distance rij between two bases that can be also expressed in its
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Figure 31: Graphical representation of the resultant g-vector between base i and base j, considering their 3D spatial
distances and relative orientations.

cylindrical coordinates (ρ, θ and z). In this way it can be introduced the anisotropic

position vector (Equation 28):

r̃ =
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ry
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,
rz
b

)
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sin θ,

z

b

)
(28)

where a = 5Å and b = 3Å are spatial scaling parameters that define the ellipsoidal

interaction shell. These parameters are chosen to ensure that the normalized distance r̃

between interacting base pairs falls within the range 1 < r̃ <
√
2.5.

To compute eRMSD for trajectory frames, a 4-dimensional vector known as the g-

vector is calculated (Equation 29) [228]. This vector includes information regarding the

relative positions and orientations of base pairs, enabling a more accurate assessment

of conformational changes in RNA structures.

G(r̃) =


sin(γr̃)r̃x/r̃

sin(γr̃)r̃y/r̃

sin(γr̃)r̃z/r̃

1 + cos(γr̃)

× Θ(r̃cutoff − r̃)

γ
(29)

eRMSD =

√
1

N

∑
i,j

|G(r̃α)−G(r̃β)|2 (30)

where r̃cutoff represents the distance threshold beyond which g-vectors are set to zero,

set to 2.4. The parameter r̃ denotes the anisotropic position vector between the two

bases pair expressed in Equation 28, while γ is defined as π/r̃cutoff . The resulting

g-vectors, when applied to Equation 30, enable the calculation of eRMSD values between

conformations or their selected regions.
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Following the calculation of g-vectors, Principal Component Analysis (PCA) was

performed to reduce the dimensionality of the simulation data with particular attention

to the residues within the selected pockets and verify the adequate sparseness of the

points (conformations) in the reduced space. Subsequently, the Quality Threshold cluster

method [229] was implemented to extract cluster centroids, enabling the construction

of a total eRMSD matrix for the corresponding frames. To generate the final (filtered)

ensemble, frames with eRMSD values below 0.7 were excluded, ensuring the retention

of only those conformations exhibiting significant structural variations.

6.2.4 Poses generation

For the docking campaign, a dataset of 21 small molecules, comprising analogues of the

diminazene scaffold with a diverse set of substituents in ortho-, meta-, and para-, was

employed. Docking poses for each ligand were generated within every conformation of

the ensemble using two distinct software packages: AutoDock GPU and rDock.

The molecular docking protocol comprised two key preparation stages: target and ligand

processing. Preparing the target RNA structure required specific steps tailored to the

requirements of each docking software. In both cases, we used a united-atom approach,

explicitly adding hydrogen atoms only to polar atoms. However, the methodology for

assigning partial charges varied significantly between the softwares. For AutoDock

GPU, the target RNA structure was first converted from PDB to PDBQT format, with

partial charges automatically assigned using AMBER force field parameters. In contrast,

rDock start from a MOL2 file format for the coordinates while it adopts a different

method to assign charges. Instead of directly reading charges from the MOL2 file, rDock

assigns partial charges based on predefined substructure patterns and standard atom

nomenclature.

For the ligands, we started from SMILES strings and processed them through the Epik

tool [230] within Maestro (Schrodinger 2022.2) [231] for protonation state prediction at

specific pH values, particularly 7.3 ± 0.1, converting them in SDF format files. The

resulting ligands exhibited net charges of +2 or +4. The subsequent processing differed

between the two docking software: For AutoDock GPU, the SDF files were converted to

PDBQT format, retaining hydrogen atoms only on polar groups and assigning Gasteiger

charges to the atoms. In contrast, rDock, which does not incorporate partial charges in

its scoring function, processed the SDF files directly using a united-atom representation.

The grid calculation phase also differed between the two docking software. For both
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methods, the grid was centered on the center of mass (excluding hydrogens) of the

pocket-defining residues of the site. AutoDock GPU required a rectangular grid box

configuration. We employed dimensions of 110 × 110 × 130 points for the first site and

110 × 80 × 80 points for the second site, with a consistent spacing of 0.3 Å between

points. These dimensions were chosen to ensure complete coverage of the binding

pockets identified by Pocketron.

Conversely, the rDock algorithm employ a two-sphere approach for grid file generation.

A radius of 17 Å was employed for both sites, with a small probe of 1 Å and a large

probe of 17 Å. This strategy aimed to create a spherical grid closely approximating the

dimensions of the AutoDock grid box, thus ensuring comparability between the results

obtained from the two docking software.

6.2.5 Poses rescoring

For scoring the generated poses, we employed a variety of functions encompassing both

force field-based (AutoDock, rDock and Vina) and machine learning-based (AnnapuRNA

and SPRank) approaches. AutoDock evaluates binding affinity through a two-step

process. First, it estimates the intramolecular energetics required for the ligand and

target to transition from their unbound conformations to their bound states. In the

second step, it calculates the intermolecular energetics of the ligand-target complex in

the bound conformation. The AutoDock force field accounts for six pairwise potential

components (V X−XY ) and an entropy loss term associated with binding (∆Sconf),

leading to the total binding free energy:

∆G = (V L−L
bound − V L−L

unbound) + (V P−P
bound − V P−P

unbound) + (V P−L
bound − V P−L

unbound +∆Sconf ) (31)

where L represents the ligand and P the protein. Each pairwise energy term includes

contributions from dispersion/repulsion forces, hydrogen bonding, electrostatics, and

desolvation effects. Conversely, Vina’s scoring function follows a different approach, as

it does not explicitly include electrostatics or solvation terms [26]. Instead, it relies on

a van der Waals-like potential constructed from a repulsion term and two attractive

Gaussian functions, a non-directional hydrogen bond term, a hydrophobic interaction

term, and a conformational entropy penalty [25]. Similarly, the rDock scoring function

(Stotal) is computed as a weighted sum of multiple contributions, including intermolecular

interactions (Sinter), ligand intramolecular energy (Sintra), site intramolecular energy

(Ssite), and external restraints (Srestraint). The key component, Sinter, quantifies the
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protein-ligand (or RNA-ligand) interaction strength. Sintra represents the relative

energy of the ligand conformation, while Ssite reflects the relative energy associated

with flexible regions within the active site. Finally, Srestraint encompasses a collection

of non-physical restraint functions, which can be strategically employed to bias the

docking calculation in several beneficial ways.

Stotal = Sinter + Sintra + Ssite + Srestraint (32)

Furthermore, AnnapuRNA, an ML-based scoring function, was employed. To derive a

general model of RNA-small molecule interactions, this approach uses a coarse-grained

representation of both binding partners based on a vast set of RNA-small molecule

complex structures available in the literature. For RNA molecules, a coarse-grained

representation similar to that used in the SimRNA simulation method is adopted

[232], featuring five “beads” per ribonucleotide residue, strategically positioned at

the locations of real atoms. Small-molecule ligands are represented using the concept

of pharmacophores, as implemented by Taminau et al. [233]. Six pharmacophore

types are employed, each with associated Euclidean vectors indicating their direction

(Figure 32). The centers of HDON (hydrogen bond donor), HACC (hydrogen bond

acceptor), POSC (positive charge), and NEGC (negative charge) points match with

the corresponding heavy atoms. The AROM (aromatic ring) point is located at the

center of the represented aromatic ring. The LIPO (lipophilic) point is generated

through a multi-step process where adjacent lipophilic regions are averaged into a

single pharmacophore, weighted by their lipophilic contributions. This coarse-grained

representation facilitates the training of a machine learning model capable of predicting

RNA-small molecule binding affinities.

Therefore, the total score for an RNA-ligand complex is calculated as the sum of two

terms:

E = ERNA−Ligand + ELigand (33)

In this model, the final score (E) of the complex is calculated as the sum of two

components: the RNA-Ligand interaction score (ERNA−Ligand) and the ligand’s internal

conformation score (ELigand). The RNA-Ligand interaction score is determined by

summing the probabilities (p) of each interaction between RNA atoms and ligand

pseudoatoms within a 10 Å cutoff distance. These interaction probabilities are derived

from a machine learning model, representing the likelihood of a specific interaction
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Figure 32: Coarse-grained representations used for RNA and ligand molecules. The upper left panel shows the
simplified building blocks (atoms and pseudoatoms) for RNA. The upper right panel shows the corresponding

representation for ligand molecules. The bottom left provides an example of a ribonucleotide as depicted in the SimRNA
model. The bottom right displays a small molecule represented using pharmacophore features [34].

belonging to the “positive” (favorable) class.

ERNA−Ligand = −1 ∗
∑

interactions

pinteractions (34)

The score for the internal energy of the ligand, denoted as ELigand, is derived from the

GAFF (General Amber Force Field) internal energy of the ligand [234] and is computed

as follows:

ELigand = (EGAFF − b) ∗ w (35)

The ligand internal energy contribution is scaled by the factor b, effectively shifting

positive GAFF energy values to negative values within the scoring function.

Lastly, the SPRank knowledge-based and ML scoring function operates on two fun-

damental principles [235, 236, 237]. Firstly, it assumes that the overall strength of

interactions within an RNA-ligand complex (both between the RNA and ligand, and

within each molecule) can be determined by summing up the individual interaction
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energies between all pairs of atoms.

Upair =
∑
ij

µij (36)

This equation calculates the total interaction energy (Upair) within an RNA-ligand

complex by summing the individual interaction energies (µij) for every pair of atoms.

Moreover, SPRank also relies on the principle that the statistical distribution of

interatomic distances observed in experimental RNA-ligand structures should mirror

the distribution predicted by the scoring function. In simpler terms, the scoring

function must effectively differentiate between correct binding poses—those that closely

resemble native or near-native conformations—and incorrect ones, known as decoys.

This distinction is based on how well the predicted poses replicate the patterns of

interatomic distances observed in real-world experimental data. [31, 238, 235, 236].

This is achieved through an iterative process that refines the scoring parameters until

they effectively capture these observed distance distributions. Equation 37 provides a

mathematical expression for deriving the pairwise potentials.

uk+1
ij (r) = uk

ij(r) + λkBT ln[gkij(r)/g
obs
ij (r)] (37)

where k, kB, and T denote the iteration step, Boltzmann constant, and temperature,

respectively. This method considers the inherent properties of the RNA and ligand,

such as their shape and flexibility, by incorporating simulated decoy structures. These

decoys account for factors like excluded volume and chain connectivity. The scoring

function is refined by comparing the predicted interatomic distance distribution with

the one observed in experimental data. Ideally, these distributions should align perfectly.

However, to ensure numerical stability and prevent potential issues during the refinement

process, a modified equation is used instead of Equation 37, avoiding the logarithmic

ratio. This adjustment helps maintain robustness in the calculations and avoids

numerical errors.

uk+1
ij (r) = uk

ij(r) + λkBT (g
k
ij(r)− gobsij (r)). (38)

The calculations can be simplify by setting the thermal energy (kBT ) to 1 and using a

parameter called λ to control how quickly the scoring function is refined set to 1.0. The

variable gobsij (r) represents the experimentally observed distribution of distances between

atom pairs, weighted by factors that account for the structural variability of the RNA.

While variable gkij(r) represents the predicted distribution of distances between atom
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pairs at each step of the refinement process. This prediction is calculated by averaging

the Boltzmann-weighted distances for each RNA-ligand complex and then weighting

them further based on the structural variability of the RNA.

6.3 Results and Discussions

6.3.1 Comparative Analysis of Unbiased and Biased
Simulations

As outlined in the Methods (Chapter 6.2.2), three independent, unbiased MD simulations

of 500 ns each were conducted to investigate the dynamic behavior of the MALAT1

structure.

Figure 33: Conformational Analysis of MALAT1 Unbiased Simulations. A-B) RMSD and eRMSD of polyA residues
along with their respective probability distributions, across three independent unbiased simulations. The minimized

crystallographic structure is used as the reference point for these calculations. C) PCA of all conformations sampled
during the unbiased simulations, color-coded by replica with crystallographic reference in purple. The medoids

representing the three main clusters from each run are shown superimposed with the crystal structure, using the same
color scheme.

Figure 33 provides insights into the conformational dynamics of the poly(A) tail during

unbiased simulations. The RMSD analysis (Figure 33A) indicates significant structural
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fluctuations, particularly in Run 1 (blue line), where RMSD values reach approximately

8 Å. In contrast, the eRMSD (Figure 33B) indicates much greater stability, with

values for all three replicates fluctuating around 0.7 and only Run 3 (green line) briefly

approaching 1. This suggests that the high RMSD values observed in Figure 33A

do not necessarily correspond to significant base pairing rearrangements, emphasizing

the importance of eRMSD as a metric specifically designed to capture changes in the

relative arrangement of nucleic acids. Furthermore, the PCA plot, color-coded by

replica, demonstrates the accessibility of diverse conformational clusters within a short

timeframe, resulting in three distinct clusters representing each replica.

To assess the conformational flexibility of the system during the simulations, a principal

component analysis (PCA) was performed on the combined trajectory. Specifically,

the dimensionality reduction was achieved using g-vectors calculated for the poly(A)

residues (residues 55 to 76 highlighted in purple in the Step 1 of Figure 30) within

the triplex helix region. This approach allowed to test if the metric used gave us

a comprehensive characterization of the conformational landscape explored by the

MALAT1 during the unbiased simulations. Furthermore, we combined the unbiased and

biased (λ = 1 replica) trajectories, using a stride of 10 and 2, respectively, to investigate

the expanded conformational space captured by incorporating the hREX simulations.

This approach allowed us to assess the impact of enhancing sampling specifically within

the triple helix region.

Figure 34 illustrates the effectiveness of the replica exchange method in sampling a

similar range of RMSD and eRMSD values compared to the unbiased simulations.

Notably, the hREX simulation reaches eRMSD values near 1.2, indicating broader

exploration of conformational space. This expansion is clearly visualized also in the

PCA plot, where the hREX conformations (gray points) not only overlap with the regions

explored by unbiased simulations (blue, orange, and green dots) but also form distinct

clusters, especially one located further away, highlighting the greater conformational

sampling achieved with hREX.

6.3.2 Pocket analysis and selection

After confirming our simulation setup’s capability to accurately represent conformational

dynamics, we employed the Pocketron algorithm to analyze inter-pocket communication

patterns. We processed the joined unbiased MD trajectories through the BiKi Life

Sciences platform, selecting non-hydrogen atoms of the MALAT1 as our input. To
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Figure 34: Conformational Analysis of MALAT1 unbiased plus biased simulations. A-B) RMSD and eRMSD of polyA
residues along with their respective probability distributions, across three independent unbiased and the biased hREX
simulations. The minimized crystallographic structure is used as the reference point for these calculations. C) PCA of
all conformations sampled, color-coded by replica with crystallographic reference in purple. The medoids representing
the four main clusters from each run (unbiased or biased) are shown superimposed with the crystal structure, using the

same color scheme.

focus on potentially druggable pockets capable of mediating long-range communication

across the structure, only pockets with a volume greater than three water molecules

were tracked using Pocketron. This criterion ensured our analysis targeted pockets with

the potential to accommodate a small molecule and by induced fit, potentially, disrupt

the triple helix structure through allosteric mechanisms.

The analysis yielded a total of 37 pockets, encompassing those present in the initial

structure and those dynamically formed during the trajectory. Figure 35A offers a

comprehensive view of pocket communication within the MALAT1 structure. It displays

the 37x37 correlation matrix derived from Pocketron analysis, where each element

quantifies the communication between corresponding pocket IDs (pIDs). These pockets

are visually represented as spheres in Figure 35B, where the sphere radius correlates

with pocket volume, and color denotes pocket persistency (percentage of frames with
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Figure 35: Inter-pocket communication analysis of the MALAT1 structure. A) Pocketron-derived correlation matrix,
where rows and columns represent pocket IDs. B) 3D visualization of pockets and their connections. Edge thickness
indicates correlation strength C) Residues selected for ensemble generation and docking campaign named Site 1 (red)

and Site 2 (yellow).

non-zero volume). The color scheme reflects the following pockets persistency ranges:

yellow (<33%), orange (33-66%), and red (>66%). As shown in Figure 35B, the

most persistent pockets (red and orange) also exhibit larger volumes, suggesting their

potential suitability for further analysis and targeting in drug discovery efforts.

To further assess the suitability of these pockets for ligand binding, we employed

Pocketron to track residue exchange between pockets and quantify the extent of

communication across different target regions. This involved calculating the average

number of “merge” and “split” events, which was then visualized in a 3D graph.

This analysis provided crucial insights into the dynamic interplay of pockets within

the MALAT1 structure, highlighting promising sites for the docking campaign and

potentially uncovering key allosteric pathways (ideally able to disrupt the triple helix).

Moreover, Figure 35B provides a spatial context for these correlations, with edge

thickness visually representing the strength of communication between pockets. The

analysis reveals two promising regions which harbor the largest and most persistent

pockets. These pockets not only engage in frequent residue exchange with neighboring

pockets, fundamental to be a suited docking site, but also exhibit communication across

the two sites, albeit to a lesser extent. This inter-site communication hints a potential

allosteric effects that could propagate through the structure and ultimately influence

the stability of the crucial triple helix. A notable short communication pathway is

observed, originating from pocket 19 at the base of the triple helix and traversing

through pockets 3, 5, 1, and 6 towards the upper portion of the structure. Additionally
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to those communications, a localized exchange of residues around the high volume and

high persistence pocket 2 can be seen.

Based on these insights, we next focused our analysis on the residues within these

persistent pockets (Table 3), the targeted regions, visually highlighted in red and yellow

in Figure 35C as Site 1 (pIDs 2, 3 and 19) and Site 2 (pIDs 1 and 6), respectively,

represent promising areas for further exploration of ligand binding sites, in perfect

agreement with the work of Khanna et al. [239].

pID Av. Volume (Å3) Residues Persistency

1 455 9, 10, 11, 39, 40, 68, 69, 70 96%
6 99 6, 7, 64, 65 42%
2 297 1, 2, 3, 4, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62 69%
3 179 45, 47, 48, 64, 65 62%
19 294 47, 48, 49, 50 35%

Table 3: Pocket characteristics identified in the MALAT1 structure, including pocket IDs (pID), average volumes,
constituent residues, and pocket persistency values across the simulation trajectory.

6.3.3 Conformational ensembles

With the pocket definitions established, we proceeded with dimensionality reduction

analysis to assess the conformational space explored for each of the two identified

sites. Initially, we analyzed the combined unbiased simulation trajectory, following a

similar approach to the poly(A) residue analysis in Chapter 6.3.1. Subsequently, we

incorporated the λ = 1 replica from the 96 ns Hamiltonian replica exchange simulations

to evaluate the effect of biased sampling on the conformational landscape, particularly

with the triple helix region designated as the “hot” region.

For both sites, g-vectors were calculated and PCA plots were generated, focusing solely

on the pre-selected residues. This approach allowed us to visualize and quantify the

conformational variability captured within the entire simulation dataset, encompassing

both unbiased and biased sampling.

Figure 36 illustrates the eRMSD values for both sites, ranging from 0.6 to approximately

1.3, with the hREX simulations effectively expanding the conformational space sampled

by the unbiased simulations. This increase in conformational diversity is particularly

evident in the PCA analysis, where the gray points (representing hREX-derived con-

formations) not only encompass the regions explored by the unbiased simulations but

also venture into new clusters, revealing additional conformations not captured by the

unbiased approach alone. Comparing the two sites, we observe that site 1 exhibits
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Figure 36: Structural dynamics investigation: eRMSD-based comparison of plain and hREX simulations, complemented
by PCA analysis of the joined trajectory for both binding sites.

greater stability in base pairing compared to site 2, whose dynamics are regulated by

the triple helix. This is highlighted in the eRMSD time series (referenced against the

crystallographic structure), where site 1 spans values between 0.7 and 1.2, whereas

site 2 shows higher eRMSD values, excluding replica 3 (green line), reaching up until

approximately 1.3. This indicates a greater degree of base pairing rearrangements

within the triple helix region of site 2.

Subsequently, the Quality Threshold clustering algorithm was employed to cluster the

conformations defined by the g-vectors. Centroids of clusters with an eRMSD cutoff of

0.7 were extracted to generate two initial ensembles. From these, two matrices were

constructed for both sites, with each element representing the eRMSD value between

the corresponding centroid pairs. This approach enabled us to systematically assess

the conformational diversity captured within each centroid and help in the selection of

representative structures for subsequent docking studies.

These matrices were subsequently filtered to reduce redundancy among cluster cen-

troids, thereby generating a more manageable set of conformations for downstream

docking analysis. An eRMSD cutoff of 0.7 was employed to eliminate frames with lower

eRMSD values between each other. This step is necessary because the QT-clustering

algorithm generates clusters where points within the same cluster do not have eRMSD

values exceeding the cutoff. However, this doesn’t guarantee that the eRMSD between

centroids of different clusters will also be above the cutoff. This resulted in two refined
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matrices, comprising 10 and 5 elements respectively, with eRMSD values spanning a

range from 0.7 to 1.4 for Site 1 and form 0.7 to 1.2 for Site 2.

Figure 37: Principal Component Analysis (PCA) of the combined trajectory, supplemented with eRMSD and RMSD
matrices calculated from filtered centroids for both binding sites.

Comparing the eRMSD and RMSD matrices reveals a higher flexibility for Site 1, with

a wider range of distinct structures found during the analysis and selected. Specifically,

Site 1 exhibits eRMSD values reaching up to 1.4 and RMSD values extending to 7 Å.

In contrast, the other sites show a lesser conformational diversity, with eRMSD values

reaching 1.2 and RMSD values reaching only 3 Å. This reduced flexibility is likely

attributed to the inherent stability of the triple helix, conferring greater rigidity to this

region compared to Site 1. The refined ensemble effectively captures the full range of

conformational dynamics observed in our simulations, while optimizing computational

efficiency for subsequent docking studies through careful selection of a minimal, yet

representative, set of conformations.

6.3.4 Docking: Pose generation

The second phase of this study involves a docking campaign employing the previously

identified conformational ensembles. We then proceeded to dock all 21 small molecules

into each of the 16 conformations comprising the two ensembles (10 for Site 1, 5 for

Site 2 and the crystallographic structure for both sites). Two docking software were

employed: AutoDock GPU (designed for proteins) and rDock (designed for nucleic

acids). For each ligand-target pair, 250 poses were generated per software, resulting in
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a total of 500 poses for each case.

To accommodate the docking process within the specific sites, different input parameters

were required for each software. In AutoDock GPU, a grid box was generated, centered

on the center of mass of each site. For Site 1, a box of 110, 110, and 130 points along

the x, y, and z dimensions, respectively, was used with a 0.3 Å spacing between points.

For Site 2, a box of 110, 80, and 80 points was employed, maintaining the same spacing.

The dimensions of the grid box were tailored to each site to ensure comprehensive

coverage of the binding pocket identified by Pocketron. For instance, Site 1 required a

larger number of points, particularly along the z-dimension, to encompass pocket pID 2

in addition to pIDs 3 and 19.

In contrast, for rDock, the two-sphere method was employed to define the docking

cavity. The center of mass of the residues within each site was used as the center point,

and a small probe radius of 1 Å and a large probe radius of 17 Å were employed for

cavity detection. The large probe radius was carefully selected to ensure that the target

regions encompassed were comparable to those used in the AutoDock GPU simulations.

Notably the same probe radii were applied to both sites, particularly, the 17 Å large

probe radius was chosen based on the size of the AutoDock grid box, effectively treating

the sides of the box as the diameter of the large search sphere. This approach was used

to prevent overlap between the spheres generated for the two sites, ensuring accurate

and independent docking calculations for each site, while being able to explore docking

poses for both software in the same regions (Figure 38). To investigate the ability of

Figure 38: Comparison of AutoDock grid box (in red) and rDock cavity search (in blue) results for both binding sites.
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the two docking software to generate diverse and potentially complementary poses, we

performed dimensionality reduction on the generated poses for all conformations within

each site. Specifically, we focused on the ligand with the highest number of heavy

atoms (p13), as its larger size and steric hindrance would pose the greatest challenge

for successful accommodation within the target.

Figure 39: PCA analysis of ligand p13 poses at each site. Representative poses from opposing regions of the PCA plot
are shown.

Figure 39 presents a PCA analysis of 5000 poses for ligand p13 across 10 RNA conforma-

tions for Site 1 and 2500 poses across 5 RNA conformations for Site 2. While AutoDock

GPU (blue dots) and rDock (orange dots) show some overlap in pose generation, rDock

(for Site 1) uniquely samples regions of the target not accessed by AutoDock GPU

(right snapshot). In contrast, the left snapshot showcases poses from both software that

are in good agreement with each other, derived from the same region of the PCA plot.

This observation highlights the importance of employing multiple docking software to

enhance the ability to capture the full spectrum of potential binding poses.

In contrast, for the more confined Site 2, the generated poses occupy a similar region in

the PCA plot, suggesting less diversity between the poses generated by the two software.
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The two snapshots from opposite PCA regions highlight distinct binding modes: the

left pose is elongated along the major groove, whereas the right pose adopts a more

compact, sphere-like conformation within the upper part of the site.

6.3.5 Docking: Rescoring

Having assessed the conformational diversity of the generated poses, we proceeded

to rescore them using various scoring functions: AutoDock, rDock, AutoDock Vina,

AnnapuRNA and SPRank. The aim was to compare the performance of these scoring

functions, particularly those capable of evaluating poses generated by other software, in

accurately predicting the experimental affinity trends among the ligands.

For Vina, AnnapuRNA and SPRank, the output poses from AutoDock GPU and rDock

were directly used after input format conversion. However, in the case of AutoDock

GPU, some poses generated by rDock using the original grid box (used for the pose

generation) fell outside the box, leading to artifacts (high score values) due to the

specific algorithm employed by rDock in order to generate poses. To address this, the

grid box for both sites was extended to 130, 130, and 130 points in the three dimensions.

To ensure comparability, not only were rDock poses rescored with this extended grid

box, but the AutoDock GPU poses were also rescored using the new grid.

Conversely, for rDock, simply increasing the large sphere radius did not necessarily

result in a larger cavity. This is because rDock defines the cavity as grid points accessible

to the small probe but not the large probe, meaning solvent-exposed target regions

are always excluded. Therefore, we rescored the AutoDock GPU poses using the same

probe radii as those employed during pose generation. This ensured consistency in

the cavity definition and allowed for a fair comparison of scoring function performance

across different docking software.

Upon plotting the scoring function results Figure S10-S13, it becomes evident that

the different scoring functions span a wide range of values, with the ML-based ones

reaching as low as -500. However, our primary focus lies not in comparing the absolute

scores of different scoring functions. Our analysis revealed a trend for poses have more

favorable scores when evaluated by their native scoring function. This trend is clearly

visible in Figures S10 and S11, where poses generated by AutoDock GPU scored better

under AutoDock’s scoring function (blue and orange lines), while poses from rDock

performed better when evaluated by rDock’s scoring function (red and green lines).

While both software exhibit this trend, the difference in scores between the two sets is
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more pronounced for the rDock scoring function.

Vina (Figure S10 and Figure S11), similar to AutoDock, displays a comparable pattern,

albeit less pronounced, with greater overlap between the two lines. This suggests that

Vina identifies stable poses derived from both software more frequently. Furthermore,

AnnapuRNA (Figure S12 and Figure S13) presents two distinct patterns, in some

cases, the lines representing poses from both software overlap significantly within the

same score range. However, in other cases, particularly for hindered ligands, it shows

numerous unstable poses, generated by AutoDock GPU. This observation highlights

that AnnapuRNA, a tool specifically designed for RNA structures, showed perfect

compatibility with poses generated by rDock, another RNA-focused software, finding no

structural clashes. However, when evaluating poses from AutoDock GPU, AnnapuRNA

frequently detected problematic interactions. While, SPRank exhibited the opposite

behavior, it consistently assigned higher scores to poses generated by AutoDock GPU

rather than rDock.

Then we proceeded to plot the best score for each combination ligand-target coloring the

point accordingly to the pose generation software from which are generated. Plotting the

top-scoring poses for each software-scoring function combination (Figure 40) confirms

our previous observations. Notably, for both Site 1 and Site 2, AutoDock and rDock

scoring functions favor poses generated by their respective software, while AnnapuRNA

scoring function consistently scores rDock-generated poses more favorably. This suggests

that RNA-specific scoring functions, like AnnapuRNA, are more compatible with poses

generated by RNA-specific docking software, such as rDock. In contrast, Vina exhibits

a site-dependent preference. For Site 1, Vina generally favors rDock-generated poses,

with a few instances where AutoDock GPU poses are preferred (blue dots). Conversely,

for Site 2, Vina primarily prefers AutoDock GPU poses, with occasional instances of

favoring rDock poses. Similarly, SPRank favored mainly poses generated by AutoDock

GPU for site 2, while for site 1, the top-scoring poses are originated from both AutoDock

GPU and rDock.

To investigate the influence of different target conformations within the ensemble on

the docking results, we generated plots similar to Figure 40, but with points color-

coded according to the specific conformation from which they were derived (with the

crystallographic structure results in black). This allowed us to visually assess the

impact of conformational variability on the predicted binding poses and scoring function

performance for both sites. By examining these plots, we aimed to determine if any

specific scoring function, in conjunction with any particular conformation for either
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Figure 40: Evaluation of ligand-target binding using multiple scoring functions for both sites. Top-ranked poses for each
conformer are color-coded by docking software: AutoDock GPU (blue), rDock (orange).

site, could reproduce the experimental affinity trends. Analyzing the best scores for

each ligand, color-coded according to the target conformation from which they were

derived (with the results from the crystallographic structure in black), reveals distinct

patterns for Site 1 and Site 2. In the case of Site 1, the best scores originate from

various conformations within the ensemble, however, conformer 10 (cyan in Figure 41)

consistently yields top scores across multiple scoring functions.

Conversely, Site 2 demonstrates a higher degree of consistency in terms of the con-

formations associated with the best scores. For both AutoDock and Vina, a mix of

conformations 1, 3 and the crystallographic predominantly produce the most favorable

scores. Conformer 4 consistently ranked as the optimal conformation across all ligands
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Figure 41: Evaluation of ligand-target binding using multiple scoring functions. Top-ranked poses for each target’s
conformation with colors indicating their respective ensemble element for both sites.

when scored with rDock. This preference for conformer 4 was also largely observed with

AnnapuRNA, although occasionally interspersed with conformer 1. On the other hand,

SPRank favored conformer 4 and 3, appearing among the top-ranked conformations in

the majority of the cases but with also some cases derived from the other conformations

not observed anywhere else.

Figure 42 visualizes the previously discussed observations by highlighting the best score

for each ligand in each site across different scoring functions, ensuring a consistent

y-axis range for comparisons between sites. Although a direct comparison between

the two sites doesn’t provide additional information, it is evident that, except for

AutoDock, no discernible trend between (at least) the best- and worst-affinity ligands
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Figure 42: Evaluation of ligand-target binding using multiple scoring functions. Top-ranked pose for each conformation
is extracted with colors indicating their respective element in the ensemble for both sites.

is observed. In the case of AutoDock, a slight distinction emerges between the left and

right regions of the plot, suggesting potential ligand affinity differences, though not a

direct reproduction of experimental results. This observation suggests that AutoDock

scores could be used to distinguish ligands with potentially higher or lower affinities

for the target. Additionally, the AutoDock results for both binding sites exhibit a

remarkably similar scoring trend across ligands, a pattern not observed with any other

scoring function. This implies that the target’s contribution to the AutoDock score

may be largely independent of the specific binding site, highlighting a potential limi-

tation of this scoring function in accurately capturing site-specific interactions. The

similarity in scoring results across different sites may be rationalized by examining the

93



chemical composition of the binding regions. Both sites exhibit a similar nucleotide

architecture, dominated by A-U base pairs with two G-C pairs in the middle. This

compositional similarity is particularly relevant for force-field based scoring functions,

which rely heavily on atomic partial charges and van der Waals parameters. While

AutoDock showed the strongest site-independent behavior, similar scoring patterns

emerged, though less pronounced, when comparing Vina and SPRank results across

different binding sites. Particularly interesting is the correlation observed within Site 1

between AnnapuRNA and SPRank scores. This partial reproducibility of scoring trends

across different methods could suggest that certain ligand properties might dominate

the scoring outcomes, regardless of the specific algorithm used. However, the more

moderate nature of these correlations, compared to AutoDock, indicates that these

scoring functions maintain some degree of site-specificity in their evaluations.

In conclusion, our analysis is consistent with previous findings [240], reinforcing the

known limitations in accurately generating and evaluating docking poses for nucleic

acid-ligand complexes. The sensitivity of scoring functions to initial target conforma-

tions, along with the challenges associated with ligand and target flexibility, highlights

the need for further methodological improvements in this area. Moreover, the scarcity of

high-quality experimental binding affinity data for nucleic acid-ligand complexes remains

a significant hurdle in the development and validation of robust scoring functions.

Our work contributes with addressing these challenges by emphasizing the importance

of incorporating conformational dynamics and employing diverse scoring approaches in

RNA-ligand docking studies. Future efforts in this field should prioritize the generation

of more comprehensive and diverse experimental datasets, as well as the development of

novel scoring functions that explicitly account for the unique characteristics of nucleic

acid-ligand interactions.
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7 Application Case 3:

Non equilibrium binding free en-

ergy estimation

7.1 Introduction

7.1.1 Biological relevance of the target

The binding free energy (∆Fb) quantifies the affinity of a potential drug for its biological

target, making ∆Fb a central thermodynamic observable in drug discovery campaigns

[53]. Over the past few decades, numerous computational methods have been developed

to estimate ∆Fb, yet accurately predicting this parameter remains challenging in many

cases. The difficulties stems from various aspects, including the high degrees of freedom

of the systems and the inherent flexibility of both the receptor and ligand.

Motivated by the goal of developing a systematic protocol for computing binding free

energy with path-based methods, a semi-automatic computational workflow successful

on systems of moderate size was designed by our group. [241] However, challenges

emerged when dealing with intricate systems, such as the RNAs complex, where a very

high dissipation may occur and, hence poor convergence of free energy estimates. This

prompted the development of a refined strategy to mitigate dissipation, particularly

relevant for improving convergence in complex systems. The possibility of targeting

RNAs with small molecules to achieve therapeutic effects has recently gained increas-

ing interest. Nevertheless, peculiar features of RNA molecules, such as the complex

structural dynamics or the high charge density that hinders the capability of forming

hydrophobic binding sites, make the transition from protein to RNA targets partic-

ularly challenging from both the experimental and computational standpoint. Thus,

further investigations in this respect are highly desirable and may promote tangible

advancements towards the design of RNA-targeting small-molecule drugs.

Within this context, Riboswitches represent a compelling class of RNA molecules

(FMN [242], TPP [243] and preQ1 [244]), since they are able to bind metabolites and

modulate gene expression as a result. In particular, riboswitches typically display

complex three-dimensional structure by adopting non-trivial folding, and are able to

form binding pockets with varying levels of complexity to host the native ligands. This

95



natural disposition to bind small molecules make them suitable targets for the rational

design of small molecules binders. A concrete example in this respect is the campaign

against the bacterial FMN riboswitch, leading to a compound at the preclinical stage.

Herein, we test our approach on the preQ1 riboswitch. Given the availability of crystal

structures in complex with different ligands and experimental data quantifying their

affinity, this system represents an optimal test case. In particular, the available data

refer to two different ligands: the cognate ligand PreQ1 (7-aminomethyl-7-deazaguanine)

and a synthetic ligand (2-[(dibenzo[b,d]furan-2-yl)oxy]-N,N-dimethylethan-1-amine),

[245, 244] here referred to as cognate and dibenzofuran for conciseness, respectively.

7.1.2 Function and binding mode of Riboswitch-
PreQ1

Riboswitches, typically found in the 5’-UTR (untranslated regions) of mRNA, are genetic

regulatory elements prevalent in bacteria [246, 247, 248]. These RNA elements function

by binding specific small molecules, independent of protein factors, and subsequently

control gene expression by inducing conformational changes in the mRNA. Primarily

located upstream of bacterial mRNAs encoding biosynthetic enzymes or metabolite

transporters, riboswitches consist of two domains: an aptamer domain responsible for

ligand binding and an expression platform that regulates downstream gene expression

(Figure 43) [244].

Figure 43: Schematic representation of a generic riboswitch in its unbound and ligand-bound conformations.

Upon ligand binding to the aptamer domain, the riboswitch undergoes a significant

conformational change (as illustrated in Figure 43). This structural rearrangement

stabilizes specific elements within the expression platform, triggering regulatory effects

on both transcription and translation mechanisms. The versatility of riboswitches
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is demonstrated by their ability to detect and respond to a diverse array of cellular

metabolites, such as pre-quenosine (preQ1) - a molecule synthesized from GTP through

a complex multienzyme pathway [249, 250].

The preQ1 riboswitch, characterized by its three loops and two stems (3D structure

depicted in Figure 44A, color-coded by secondary structure), creates a binding pocket

organized into three distinct layers.

• Ceiling: The top layer where a G-C base pair at the bottom of stem 2 forms an

C-G-C triple above the binding core (Figure 44B).

• Binding core: The central layer where preQ1 forms hydrogen bonds with one

residue from each of the three loops, creating a preQ1-C-A-U base quartet (Figure

44C).

• Floor: The bottom layer where a C-G base pair at the top of stem 1 forms an

A-C-G-A base quartet with two adjacent adenine from loop 3 (Figure 44D).

Within the binding core, preQ1 specificity is maintained by hydrogen bonds involving

all of its proton donors and acceptors. C15 in loop 2 forms a standard Watson-Crick

base pair, while A29 in loop 3 and U6 in loop 1 interact with the sugar edge of preQ1.

Although a bound sulfate ion sterically hinders the interaction between preQ1’s exocyclic

amine and G5 in WT crystal structure, substitution of G5 significantly reduces binding

affinity, suggesting its importance. This interaction, along with the base quartet and

triple above and below the binding core, stabilizes preQ1 through stacking interactions

and limits its exit to the major groove side.

7.1.3 Methodology’s workflow

Our research introduces an enhanced computational approach incorporating advanced

sampling techniques and principal component vectors (PCVs). This novel method em-

ploys S(X) (explained in detail in chapter 3.2.1) as collective variable to avoid inherently

sequential algorithms like Metadynamics, opting for steered molecular dynamics (SMD)

for sampling instead. As SMD is a non-equilibrium method, the Crooks Fluctuation

Theorem (CFT) [251] is employed to reconstruct the potential of mean force (PMF)

and estimate binding free energy. This integration of PCVs with bi-directional SMD

and CFT significantly improves convergence speed and enables easy parallelization of

simulations, consistently improving the computational cost.

Our recent computational pipeline is followed to run non-equilibrium SMD simulations,
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Figure 44: Binding pocket and binding mode of Riboswitch preQ1 with its cognate ligand (Q1). A) 3D structure with
residues colored according to their secondary structure. B-D) Stick representation of the three layers (ceiling, binding

core, and floor) of the binding pocket.

reconstruct the PMF, i.e. the free energy as a function of the collective variable used to

perform the enhanced sampling simulation, and finally estimate the binding free energy

difference of each complex studied.

1. Generation of unbinding MD trajectories starting from a bound complex through

Adiabatic Bias MD (ABMD) [252] to promote target-ligand dissociation. Among

these trajectories, the one with the smoothest unbinding path (with no rolling

around the structure or going back) with a plausible mechanism is selected as

guess path.

2. The guess path is optimized using two path algorithms, the principal path algorithm

[253] and the equidistant waypoints algorithm. Consequently, the reference path
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for PCVs is obtained.

3. Non-equilibrium bidirectional (binding and unbinding) SMD simulations are per-

formed following the reference path with PCVs, collecting the Jarzynski work (WJ)

performed.

4. By applying the CFT to the WJ values collected during binding and unbinding

SMD simulations, the PMF is reconstructed.

5. The binding free energy is calculated by applying the Crooks Fluctuation Theorem

and adding the correction for the desolvatation of the ligands and the results are

then compared with the one extracted via Metadynamics simulation.

Figure 45: Schematic representation of the workflow employed for this work

7.2 Methods

7.2.1 System setup

The RNA-ligand complexes were modelled from PDB IDs 6E1W and 6E1U for the

cognate and synthetic ligand, respectively. Ligands were parametrized according to

the GAFF force field and AM1-BCC charges, considering a total charge of +1, due to

presence of a quaternary nitrogen in both. The systems were then solvated with TIP4P-

D water model and charges neutralized with Na+ and Cl− ions, using a concentration

of 0.15 M. The solvated systems were then equilibrated in two steps. First, 100 ps

of MD were conducted at 300K in the NVT ensemble, with positional restraints of

1000 kJ ·mol−1 · nm−2 on all heavy atoms were and temperature control via the Bussi-
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Parrinello [254] velocity rescaling thermostat. Second, a 100 ps MD was conducted

in the NPT ensemble applying the same restraints, with the Berendsen barostat for

pressure control[255].

Topology and starting structure for the PreQ1 riboswitch in complex with the two

ligands, based on the PDB IDs 6E1U and 6E1W, were taken from a recent work.[244] For

the cognate ligand, the complex with the alternative tautomeric state was constructed

by replacing the newly parametrized ligand in such form with the other one in the

original structure. Further re-parameterization of the cognate ligand with Restrained

Electrostatic Potential (RESP) charges and optimized dihedral parameters was achieved

via the PlayMolecule web server [256]. Specifically, RESP charges were derived via

quantum mechanism using the 6− 311++G∗∗ basis set at the wB97X-D level of theory,

while optimization of dihedral angle parameters via neural network potentials using the

xTB fitting method.

7.2.2 Adaptively Biased Molecular Dynamics

This phase focused on generating ligand unbinding trajectories from the RNA binding

pocket using enhanced sampling molecular dynamics (MD) simulations, specifically the

ABMD method. We relied on the intrinsic electrostatics of the RNA-ligand system,

using the Debye-Huckel interaction energy as a collective variable (CV) to guide the

dissociation process. This strategy steered the simulations towards a state of zero

electrostatic interaction between the RNA and ligand, effectively representing complete

unbinding.

Ten ABMD replicate simulations, each lasting 10 ns, were performed for each system.

Analysis of these simulations revealed consistent unbinding pathways for both ligands,

with dissociation occurring through the solvent-exposed side of the binding pocket

between loop 2 and stem 1. The force constant for ABMD was carefully tuned to

ensure a smooth and controlled ligand dissociation, minimizing undesirable rolling

motions on the RNA surface (approximately in the order of 10-1 and 10-2 kcal/mol*C2

for the cognate and synthetic ligand, respectively). The final ABMD trajectories were

truncated to include only frames where the ligand remained within 20 Å of the RNA,

guaranteeing a fully solvated unbound state.

From these replicates, a representative ABMD trajectory was selected as an initial guess

for the unbinding pathway, considering both the unbinding time and the mechanistic

plausibility. From these replicates, a representative ABMD trajectory was selected as
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an initial guess for the unbinding pathway, considering both the unbinding time and the

mechanistic plausibility. The initial path underwent a two-step refinement process. First,

we applied a principal path algorithm to optimize the trajectory configurational space

[253]. Second, we implemented an equidistant waypoint algorithm to maintain uniform

spacing between consecutive conformations [257]. This refined approach produced a

smooth unbinding pathway with consistently spaced frames, characterized by an average

RMSD of approximately 1 Å between consecutive conformations.

7.2.3 SMD Simulations and PMF reconstruction

According to the protocol, the reference minimum free energy path is followed with

PCVs during bidirectional non-equilibrium SMD simulations. As mentioned (Chapter

3.2.2), in SMD a time-dependent harmonic restraint R(x, t) is added to the potential of

the system:

R(x, t) ≡ 1

2
k(S(x)− Ŝ(t))2 (39)

In detail, the harmonic restraint is applied along the pulling coordinate, representing the

progress along the reference path. Additionally, harmonic walls are employed to confine

the system along Z(x), activating only when a Z(x) value surpasses the threshold of

0.05.

The amount of work performed on the system during the transformation is known as

the Jarzynski work WJ [258, 259] as is the path integral of ξ̇∂Hξ/∂ξ along the trajectory

Γt:

WJ =

∫ ts

0

dt ξ̇
∂Hξ

∂ξ
(Γt) (40)

where Hξ represents the time-dependent part of Hamiltonian that is added to the

regular potential in SMD and ξ is the time-varying variable. The total Jarzynski work

(WJ) of an irreversible simulation accounts for the energy required to transition the

system from the initial to the final state (or vice versa).

According to the second law of thermodynamics, in a quasi-static transformation,

this amount of work corresponds to the free energy difference ∆FAB. However, for

non-equilibrium irreversible transformations, the total Jarzynski work will, on average,

exceed the free energy difference by a quantity known as the dissipated work:

W diss
J = ⟨WJ⟩ −∆FAB ≥ 0 (41)
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The higher the pulling speed of SMDs of a system, the greater the total WJ , and in

turn the higher the dissipated work. Multiple binding and unbinding simulations with

a constant pulling speed are necessary to achieve convergence in free energy estimation,

in particular 30 replicas of binding and 30 of unbinding simulations with a pulling

constant setted at 20 kJ/mol for a total simulation time of 100 ns each.

Free energy profiles along the path collective variable (PCV) S(x) are reconstructed

from the work values obtained in binding and/or unbinding simulations. Two estimators

are employed for this reconstruction: the unidirectional Jarzynski estimator (applied

to both forward and reverse transformations) [75] and the Bennett Acceptance Ratio

(BAR) estimator. In detail, we rely on the automatic procedure we devised leveraging

the CFT in a maximum likelihood form [260].

e−β∆FAB = ⟨e−βWx
J ⟩ (42)

Pf (WJ)

Pb(−WJ)
= e[β(WJ − ∆FAB)] (43)

The equations above illustrate the conversion of work values into a potential of mean force

(PMF) as a function of the collective variable S(x). They are solved iteratively for each

interval Si, Si+1, where the PMF point F (Si+1) is calculated as F (Si) +∆F (Si, Si+ 1).

Here, the index i denotes the i-th configuration along the reference pathway

Equation 42 represents the unidirectional PMF using the Jarzynski estimator, where x

can correspond to either forward or backward simulations. Equation 43, on the other

hand, represents the bidirectional non-equilibrium estimator derived from the minimum

of the maximum likelihood of the Bennett acceptance ratio method, employing both

forward and backward work profiles for PMF reconstruction.

7.2.4 Standard Binding Free Energy Estimation

Standard binding free energies can be determined as the sum of the binding free energy

(∆Fb) and the standard volume correction term (∆Fv) as described by Doudou et al.

[261]:

∆F ◦
b = ∆Fb −∆Fv = −RTln

Qsite

Qbulk

−RTln
Vbulk

V ◦ (44)

∆Fb is the ratio between the probabilities of the bound and unbound ligand states, i.e.

of the canonical partition functions of the bound (Qsite) and unbound (Qbulk) states.
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To compute this, the PMF is integrated in both the bound and unbound region:

Qsite

Qbulk

=

∫
site

exp
(
−F (S)

RT

)
dS∫

bulk
exp

(
−F (S)

RT

)
dS

(45)

where F (S) is the PMF along the S(x) PCV. The value of S(x) discriminating between

the bound and unbound region required to perform this integration is determined via

visual inspection of the PMF (when it starts to decrease right after the maximum) and

of the predicted path. The standard volume correction ∆Fv quantifies the variation

of the free energy due to considering the standard-state volume V ◦ corresponding to

1661 Å3 (concentration of 1 M) instead of the effectively sampled unbound volume Vbulk.

This contribution is computed through NanoShaper as in our previous work [165].

By adding this correction term to ∆Fb, standard binding free energy differences directly

comparable with experimental values can be determined. The same procedure was

used to estimate ∆Fb from the MetaD simulations, after reconstructing the free energy

profile along the S(x) PCV. Finally, errors associated with standard binding free energy

are calculated via bootstrapping [262] employing 500 bootstrap iterations.

7.2.5 Metadynamics setup

The deposition time of Gaussians was set to 250 MD steps, and a bias factor of 15 was

used. Gaussian height of 1.0 kcal/mol was used, while Gaussian width was set to 0.2

nm2 along S(x) and 0.01 nm2 along Z(x). Moreover, the available space along the Z(x)

PCV was restricted by placing a wall at Z(x) equal to 0.1 nm2 with force constant of

40000000.0 kJ/mol.

Convergence was determined based on two conditions: the system’s full diffusivity

along the PCV S(x) , and the residual Gaussian height being less than 10 % of the

initial height, aligning with previous methodologies [257]. Post-processing analysis

involved reconstructing the PMFs, with a free energy of zero defined at their lowest

point corresponding to the ligand bound state. After reconstructing the free energy

profile along the S(x) PCV, the same procedure used to estimate ∆Fb from the SMD

simulations was used.

Statistical errors associated with standard binding free energy are calculated via boot-

strapping [262] employing 500 bootstrap iterations.
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7.3 Results and Discussions

7.3.1 Path Definition

A critical major difference between protein and RNA systems is the greater structural

flexibility displayed by the latter. Given such peculiar features of the RNA target, the

definition of the pulling pathway for the RNA-ligand complexes required dedicated

adjustments. The optimal alignment of the target structure on the reference pathway

is a crucial prerequisite for meaningful mapping of trajectory frames along the S(x)

PCV. This can be compromised when including highly flexible regions of the target

structure in the alignment. Thus, this can be particularly critical in the case of the

RNA systems. In order to mitigate this effect, we only included the most stable residues

in the RNA structure. To identify these regions, we ran three independent, unbiased

MD simulations of 100 ns each. The trajectories were then combined to compute the

residue-wise root-mean-square-fluctuation (RMSF) (Figure 46).

Figure 46: RMSF (Root Mean Square Fluctuation) analysis for cognate (blue) and synthetic (orange) ligands calculated
across three combined 100 ns unbiased trajectories. Black and red dots represent phosphate atoms of residues with

RMSF < 0.18 Å, included in the unbinding pathway.

This allowed us identifying low-fluctuating residues, specifically, those displaying RMSF

below a 1.8 Å. We used these low-mobility residues as alignment references for the

final path, systematically excluding both high-fluctuation regions and their neighboring

104



residues to ensure robust structural comparisons, thus minimizing potential artifacts in

the mapping of the S(x) path-CV arising from regions of the RNA displaying higher

structural flexibility.

Additionally, to remove possible noise associated with a large number of atoms con-

tributing to both the alignment and calculation of the S(x) path-CV, we reduced the

number of atoms included in this task. To this end, we applied a coarse-grained like

selection of RNA residue atoms (Figure 47).

Figure 47: Schematic representation of the selected atoms for the coursed grain like unbinding path. It is represented in
orange the atom selection for the alignment and in yellow the ones for the RMSD calculation

Specifically, for alignment we included phosphate and C1’ carbon atoms from the

RNA backbone. Notably, this is also conceptually consistent with the selection used

in a previous work of our group for the protein system [241], where only Cα carbon

atoms from the protein backbone are used for alignment. Moreover, the unbinding

simulations via ABMD revealed notable structural rearrangements of RNA residues

during the dissociation process, which needed to be carefully taken into account in the

pathway definition. Therefore, in the guess path we also included all the RNA residues

displaying a distance within a 6 Å from the ligand in the ABMD unbinding trajectories.

In particular, concerning the calculation of the RMSD, N1 and C8 atoms of purines

and C6 and N3 atoms of the pyrimidines were considered, in addition to the C1’ carbon

backbone atom used for the alignment (Figure 47).

This process yielded an equidistant unbinding pathway, comprising 31 to 37 frames in

total, with an average RMSD of approximately 1 Å between consecutive frames. These
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pathways are illustrated in Figure 48.

Figure 48: Unbinding pathways for both ligands, visualized with licorice representations (hydrogens omitted). Cyan dots
indicate alignment atoms, green dots represent atoms used for RMSD calculation.

7.3.2 Water model effect on binding free energy
estimates

After optimizing the path for the RNA-ligand system, we performed 30 replicates of

SMD binding and unbinding simulations. The path definition we devised proved to

be suitable for the RNA-ligand systems. This could be appreciated by the higher

degree of consistency between work profiles in the replicates, demonstrating adherence

to the reference path, in comparison with the initial attempts. Accurately capturing

the structural flexibility of the target is a critical aspect for correctly describing the

process, and in turn obtain reliable results, evidenced by smooth work profiles without

abrupt increases. This becomes particularly relevant when complex conformational

rearrangements upon (un)binding are involved. Thus, while taking this into account

becomes essential for the highly flexible RNA molecules, it is particularly important
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in the case of the RNA-ligand systems considered herein, were ligand (un)binding is

associated with rearrangement in the stem 1 comprising residues 12 to 16. Such region

establishes an intricate network of hydrogen bonds with the cognate ligand and adopts

specific conformations of residue C15 to accommodate the bulkier synthetic ligand in

the binding site (Figure S14).

As typically observed, inspection of the work profiles revealed that work in the unbind-

ing simulations was smoother and increasing nearly monotonically (Figure 49). This

indicates presence of a significant energy barrier that needs to be overcome by the ligand

to disrupt the interactions of the bound state and escape the binding pocket, and is

higher in the case of the cognate ligand. Once complete detachment of the ligand from

the target is achieved, the work profile reaches a plateau at S(x) around 0.5, indicating

the ligand has reached the unbound state and is fully solvated.

Figure 49: Jarzynski work profiles for the cognate ligand (A) and synthetic ligand (B) regarding unbinding (upper
section) and binding (lower section) simulations measured over a simulation time of 100 ns in TIP4P-D.

Conversely, the work profiles obtained from the SMD binding simulations displayed

a rather consistent trend for both ligands at the beginning of the simulations, which

tended to diverge in the different replicates as the ligand approached the RNA target

and eventually the bound state, specifically from simulation time 40 ns, corresponding

to S(x) of about 0.4 (Figure 49). Such work fluctuations in the second part of the

binding simulations reflects the complexity of the ligand association process, which
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includes remarkable conformational rearrangements required by the target for properly

accommodating the ligand. Notably, the final stages of the binding simulations displayed

in general only a slight increase in the work, indicating minor difficulties for the ligand

to precisely adopt the known binding mode in the crystal structure once the binding site

is reached. Comparing the binding work profiles between the two ligands, the process

appeared slightly smoother for the synthetic ligand as it approached the RNA target

(Figure 49B, lower panel), with few replicates terminating with higher work values,

suggesting a deviation from the reference path and, particularly, the crystallographic

bound state of this ligand. Indeed, this indicates the ligand preference for a bound state

that is slightly different than the reference one included in the predicted pathway.

Figure 50: Free energy profiles along S(x) obtained by applying CFT to SMD (simulation time of 100 ns in TIP4P-D)
for the cognate (A) and synthetic (B) ligands

Figure 50 shows the FE profile calculated applying the CFT on the SMD simulations of

both ligands in TIP4P-D waters. Basing on the profile of the free energy, we selected a

discriminating region corresponding to values of S(x) = 0.6 and 0.4 for the cognate and

synthetic ligands, respectively. Our results were compared with experimental affinity

data from recent works in the literature [244, 245].

The binding free energy calculations showed varying levels of agreement with experimen-

tal values. For the synthetic ligand, we calculated a ∆F of -5.6 ± 1.1 kcal/mol, deviating

by approximately 2 kcal/mol from the experimental measurement of -7.9 kcal/mol. The

cognate ligand showed a more substantial discrepancy: our calculated value of -17.2

± 1.2 kcal/mol differed by about 6 kcal/mol from the experimental reference of -10.9

kcal/mol. Although the CFT-derived free energy profile for the cognate ligand appeared

reasonable, further analysis of the binding and unbinding PMFs (calculated via the

Jarzynski equality, Figure S15A) revealed problematic features. Specifically, the binding
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PMF showed considerable scatter and poorly defined bound and unbound states, likely

explaining the inaccurate free energy estimate.

Notably, all simulations were conducted with the TIP4P-D water model, the four-site

model typically used in combination with the DESRES force field for RNA. To in-

vestigate the possibility of an effect in the estimate of the binding free energy due to

the use of this water model in our non-equilibrium SMD simulations, we repeated all

simulations with the most popular and less computationally demanding TIP3P model

[263], using the same reference path. Thus, the systems were re-solvated with TIP3P

waters, equilibrated and, subsequently, production SMD simulations were conducted

using the same setup employed for the TIP4P-D case.

Interestingly, this revealed a non-negligible effect on the obtained work profiles (Figure

51) and free-energy values (Figure 52), with a different impact for the two ligands. The

results for the synthetic ligand (Figure 51B) revealed no significant differences compared

to the TIP4P-D results (Figure 49B). In particular, we observed a highly similar trend

in the unbinding simulations, while the binding simulation replicates displayed a slightly

more consistent profile between them, with no relevant barrier identified until the final

10 ns, i.e. S(x)=0.9, where the binding pocket residues need to rearrange in order to

accommodate the bulky ligand and the necessary work rises as a result.

Concerning the cognate ligand (Figure 51A), also here the unbinding replicates exhibited

a pattern consistent with the simulations in TIP4P-D, with an small barrier at about 40

ns, i.e. S=0.4, followed by a plateau region. Conversely, a more marked difference was

observed in the binding simulations. Specifically, the simulations showed that lower work

was necessary to reach the bound state if compared with the results in TIP4P-D (see

Figure 49A), with some replicate undergoing notable stabilization close the bound state.

Furthermore, within this fluctuating region, the majority of the replicate demonstrated

consistent trend, suggesting a stricter adherence to the reference pathway. This led to

an improvement in the trend of the corresponding PMF derived from JE (Figure S16A).

Interestingly, simulations with different water models revealed conformational differences

in the final state of the RNA target. Specifically, stem 1 (residues 12-16) failed to adopt

the reference pathway and crystal binding mode when using the TIP4P-D model.

Accordingly, the CFT-estimated binding free energy differed from those obtained with

the two models. In particular and interestingly, the improved work profiles for the

synthetic ligand translated into a calculated ∆F of -8.7 ± 0.7 kcal/mol (discriminating

frame: S(x)=0.4), around 3 kcal/mol lower than the value obtained in TIP4P-D, and

showing a remarkably improved agreement with the reference experimental data (-7.9
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Figure 51: Jarzynski work profiles for the cognate ligand (A) and synthetic ligand (B) regarding unbinding (upper
section) and binding (lower section) simulations measured over a simulation time of 100 ns in TIP3P.

kcal/mol). Differently, the value obtained for the cognate ligand only showed a slightly

decreased value compared to TIP4P-D results, with a computed value of -18.5 ± 2.9

kcal/mol, still remarkably deviating from the reference experimental value of -10.9

kcal/mol.

Figure 52: Free energy profiles along S(x) obtained by applying CFT to SMD (simulation time of 100 ns in TIP3P) for
the cognate (A) and synthetic (B) ligands

Our simulations showed that the choice of water model significantly impacted the

results, especially for the synthetic ligand. TIP4P-D substantially underestimated
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the binding free energy (∆F ), while TIP3P values were within the experimental error

range. In contrast, the water model had less effect on the cognate ligand, which is

less hindered and has higher affinity. Notably, SMD results for the cognate ligand

showed a marked discrepancy with experimental data, regardless of the water model. To

further validate these results, we used well-tempered metadynamics with the path-CV

(using the same reference pathway as the SMD runs and the TIP4P-D model) as an

independent sampling method.

The metad simulations were able to adequately sample the path-CV, allowing to observe

multiple (un)binding events in each simulation, as the ligands were able to transition

multiple times between associated and dissociated states (Figure S19). Interestingly,

the cognate ligand populated the bound state for a significant fraction of the simulation

time. This is reasonable, given the higher amount of RNA-ligand interactions found

for the cognate ligand in the bound state. After reconstructing the free-energy profile

(Figure S20), we estimated the binding free energy, considering the same discriminating

region, to distinguish the bound and unbound states, used to analyze the corresponding

SMD analysis. The results obtained from the metadynamics simulations are reported

in Table 4 and compared with the SMD results. Considering the totally independent

SMD Metad

Cognate -17.2 ± 1.2 -19.4 ± 0.8
Synthetic -5.6 ± 1.1 -7.4 ± 0.3

Table 4: Comparison of binding free energies (kcal/mol) for the cognate and synthetic ligands using TIP4P-D water
model in Steered Molecular Dynamics and Metadynamics simulations.

nature of the estimation, relying on a remarkably different simulative approaches, it is

worth noting how the binding free energy values from the metad were consistent with

those obtained with the SMD simulations, within statistical errors. Additionally, the

metad results, obtained from equilibrium simulations and the TIP4P-D water model,

demonstrated higher agreement with the out-of-equilibrium SMD conducted with the

TIP3P waters. For the synthetic ligand, this also corresponded with improved agreement

with respect to the reference experimental data. This is particularly interesting, as

it indicates that a more accurate, and computationally expensive, water model can

provide results in agreement with experiments when used in equilibrium simulations.

Indeed, the force field we used for the RNA in our simulations is typically employed

in conjunction with the TIP4P-D model for waters. Conversely, a water model that is

less accurate, though less expensive, such as the popular TIP3P, may be preferred for
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conducting non-equilibrium simulations.

7.3.3 Effect of ligand parametrization on binding
free energy estimates

The binding free energy values obtained for the cognate ligand deviated remarkably

from the reference experimental value, consistently in both the SMD and metad simula-

tions. To gain further insights into possible determinants underlying such disagreement,

we investigated potential sources of discrepancy. Despite still being imperfect, force

fields for macromolecules have significantly been improved over the years, becoming

progressively more reliable and increasingly capable of quantitative prediction of ex-

perimental observables. While this is true for macromolecular species such as proteins

and RNAs, small molecule parameterization is still lagging behind, mainly due to the

heterogeneity and wide size of the chemical space associated with the small organic

molecules that can potentially be designed/assembled. In particular, inaccuracies in

charge and dihedral angle parameters can impact remarkably simulations results. In

this respect, nowadays it is rather standard to use the AM1-BCC topological model to

assign charges to ligands for MD simulations. Despite these may results in high-quality

description of electrostatic properties of ligands in most cases, they may be insufficient

in more complex scenarios, where substantial differences in charges for certain atom

types, particularly the ammonium nitrogen (atom type nh) and certain aliphatic car-

bon atoms (atom type c3) may influence the results [264]. In these cases, resorting

to a more accurate description, such as using the Restrained Electrostatic Potential

(RESP) charges, may be more appropriate (charges differences are shown in Figure S24.

Therefore, considering the higher amount of heteroatoms concurring to formation of

hydrogen bond interactions with the RNA target in the bound state, we pursued full

re-parametrization of the cognate ligand with RESP charges and optimized dihedrals.

We then applied the already described protocol to generate a guess unbinding pathways

for the new complex with RESP charges for the ligand via ABMD simulations, and

performed the production SMD runs. Interestingly, the preferred unbinding pathway,

passing through Loop 2 and Stem 1 (Figure 44), was consistent with the one observed

using the previous ligand parametrization and was similar across all ABMD runs. To as-

sess the effect of the different water models in combination with the newly parametrized

ligand, both the TIP4P-D and TIP3P water models were considered (Table 5). This

allowed achieving a more comprehensive picture for systematically comparing results
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TIP4P-D TIP3P

RESP -21.2 ± 1.0 -21.4 ± 1.2
AM1-BCC -17.2 ± 1.2 -18.6 ± 2.9

Table 5: Binding free energies (kcal/mol) for the cognate ligand with RESP and AM1-BCC charges in different water
models.

under different force-field variants. Consistently with what observed using the first

set of parameters, the different water models returned highly similar results for this

ligand, compatible within statistical error (Figure 5). Interestingly and unexpectedly,

the values deviated further from the experimental binding free energy compared to the

AM1-BCC parametrized ligand, suggesting that the newly devised set of parameters

increased stabilization of the bound state through hydrogen bond interactions.

Inspecting the crystallographic pose of the two ligands reveals how the binding mode of

the cognate ligand is driven by a higher number of interactions with the RNA target.

In particular, while both ligands form a comparable amount of stacking interactions

with the RNA, the cognate ligand is able to establish a remarkably higher number

of hydrogen bonds (7 vs 2, see Figure 53B, Figure S23). On the one hand, this un-

doubtedly supports the experimentally-reported higher affinity of the cognate ligand

for the RNA target. On the other hand, one would expect remarkable discrepancy in

the experimental affinities, larger than the reported about 3 kcal/mol.

Since we obtained results in remarkable agreement with experiments for the synthetic

ligand, we further investigated possible sources of inaccuracy for the cognate ligand.

An extensive exploration of ligand conformational and tautomeric states in solution

revealed the possibility of having an N1-N2 tautomer, i.e. where the proton is on the

N1 instead of N2 (Figure 53A). In particular, such alternative state appeared to be

promoted in solution by the intramolecular hydrogen bond between the carbonyl and

the protonated amine groups.

Note that PreQ1 is structurally similar to the Guanine nucleobase, with relatively subtle

modifications. Therefore, such tautomeric state was counterintuitive and unexpected,

since the typical expected hydrogen bonding network for PreQ1 in the binding site

involves an interaction with nucleobase C15 via their Watson-Crick edges, as expected

for a Guanine in such three-dimensional arrangement (Figure 53).

Indeed, the cognate ligand looses two hydrogen bond interactions, with the C15 and

A29, respectively (Figure 53B). Nevertheless, we decided to included it in our simula-

tion panel by repeating the entire pipeline with the cognate ligand in the alternative
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Figure 53: The two tautomeric forms considered for the cognate ligand (A) and the corresponding hydrogen bonding
networks (B).

tauromeric form. To obtain a comprehensive picture and compare with the other results,

we conducted SMD runs with the TIP4P-D and TIP3P water models and performed

metad simulations.

The work profiles do not exhibit any unexpected behavior, showcasing a fluctuation

region after approximately 60 ns, followed by good stabilization within the binding

pocket, that is more pronounced in the TIP3P simulations compared to the TIP4P-D

simulations (Figure S17-S18).

Figure 54 summarizes the results for this ligand. Surprisingly, we observed a remarkably

improved agreement with experimental data. Specifically, in TIP4P-D simulations, the

binding free energy amounted to -13.2 ± 1.4 kcal/mol, while in TIP3P, it was -11.9 ±
1.0 kcal/mol. Both estimates of the binding free energy align well with the experimental

value of -10.9 kcal/mol (especially the TIP3P results), with again the validation of the

metad simulation in TIP4P-D water with a free energy of -13.9 ± 0.4 kcal/mol.
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Figure 54: Binding free energies for all complexes tested. Dashed lines indicate experimental values (green: synthetic,
blue: cognate). The x-axis represents the calculation method (SMD in TIP4P-D and TIP3P or Metadynamics), while

the y-axis shows the corresponding binding free energy with associated errors. Ligands are color-coded: synthetic
(green), cognate with AM1-BCC charges (orange) and cognate tautomer (light blue).
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8 Conclusions
To sum up, this thesis has explored the intricate landscape of RNA-targeted drug

discovery, focusing on the development and application of computational methods to

address the unique challenges posed by RNA’s dynamic nature and the limitations

of traditional docking protocols. Through a multi-faceted approach encompassing

druggability prediction, allosteric analysis, conformational ensemble generation, docking,

and scoring, we have sought to advance our understanding of RNA-ligand interactions

and pave the way for the rational design of novel RNA-targeting therapeutics.

Our investigation into druggability prediction has challenged the conventional binary

classification of “druggable” vs. “non-druggable” targets, proposing instead a one-class

learning approach that leverages the unambiguous information derived solely from

known druggable pockets. This strategy, implemented through the Import Vector

Domain Description (IVDD) algorithm with customized DrugPred descriptors, has

demonstrated promising results in identifying potential druggable pockets with enhanced

focus and efficiency.

Complementing this effort, our exploration of allostery has highlighted the complex

interplay of factors that govern long-range communication within biomolecular systems.

By comparing different computational methods for correlation estimation, we have

gained valuable insight into the identification and characterization of allosteric sites,

underscoring the importance of considering different methods of correlation in drug

discovery endeavors. Notably, our analysis has revealed the great performance of

Pocketron in consistently identifying known allosteric pockets with high correlation.

These methodologies for druggability prediction and allosteric analysis (NanoShaper

and Pocketron in particular) have been implemented in the development of a refined

computational protocol, which we have applied to investigate the long non-coding

RNA MALAT1, a promising therapeutic target implicated in various cancers. Through

the strategic application of NanoShaper and Pocketron, we have identified potential

druggable pockets within MALAT1, focusing on those that could (potentially) disrupt

the functionally critical triple helix structure of the RNA.

To account for RNA’s inherent flexibility, we have employed unbiased and biased

molecular dynamics (MD) simulations, specifically Hamiltonian replica exchange, to

generate a comprehensive conformational ensemble of MALAT1. This ensemble has

served as the foundation for our docking campaign, enabling us to evaluate the ability

of different scoring functions to accurately predict experimental binding affinities for a
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library of diminazene-based ligands with known activity against MALAT1.

Our findings have revealed limitations in the performance of most scoring functions,

highlighting the need for further methodological refinements in RNA-ligand docking.

Nevertheless, AutoDock has demonstrated a promising capacity to distinguish between

high- and low-affinity ligands, suggesting its potential utility in RNA-targeted drug

discovery.

Finally, we have extended our investigation beyond equilibrium methods by adapting a

non-equilibrium binding free energy estimation method, originally designed for proteins,

to RNA molecules. Our work on the Riboswitch-preQ1 system, employing steered

molecular dynamics (SMD) simulations and the Crooks Fluctuation Theorem, has

demonstrated the feasibility of extending this approach to RNA-ligand systems, while

also underscoring the critical influence of protonation states and unbinding pathways

on the accuracy of the calculations.

In conclusion, this thesis has contributed to the advancement of RNA-targeted drug

discovery by introducing novel computational tools and insights into the complex

dynamics of RNA-ligand interactions. Our work has addressed key challenges associated

with targeting RNA, paving the way for the development of innovative therapeutic

strategies against challenging diseases.
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9 Supplementary Materials

Application Case 1: Pocket druggability

Table 6 describes all the proteins included in the druggable (training) and the less

druggable datasets. Druggable proteins are marked with d (training set), less druggable

proteins are marked with n.

PDB

code

Name Category

1pwm Aldose reductase d

1lox 15-lipoxygenase d

3etr Xanthine oxidase d

3f1q Dihydroorotate dehydrogenase d

3ia4 Dihydrofolate reductase d

2cl5 Catechol-O-methyltransferase d

1uou Human thymidine phosphorylase d

1t46 c-Kit kinase d

1unl cyclin-dependent kinase5 d

1q41 Glycogen synthase kinase 3 d

2i1m FMS kinase d

1pmn c-Jun kinases d

1fk9 HIV reverse transcriptase (nonnu-

cleoside reverse transcriptase in-

hibitor binding site)

d

1e66 Acetylcholinesterase d

1xoz Phosphodiesterase 5A d
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1owe Urokinase plasminogen activator d

1r55 A disintegrin and metalloprotease d

3f0r Histone Deacetylase 8 d

1oq5 Carbonic anhydrase II d

1kzn DNA gyrase d

2aa2 Mineralocorticoid receptor d

3b68 Androgen receptor d

1sqn Progesterone receptor d

1v16 Branched-chain alpha-keto acid de-

hydrogenase

n

3jdw Arginine:glycine amidinotrans-

ferase

n

1ajs Aspartate aminotransferase n

1wvc CDP-D-glucose synthase n

1kc7 Pyruvate phosphate dikinase n

1mai Phospholipase C n

1px4 Beta-galactosidase n

1od8 Xylanase n

1bmq Interleukin-1 beta-converting en-

zyme 1

n

1bls Beta-lactamase n

1m0n Dialkylglycine Decarboxylase n

1ec9 D-glucarate dehydratase n

1b74 Glutamate racemase n
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1g98 Phosphoglucose isomerase n

1e9x Cytochrome P450 14alpha -sterol

demethylase

d

1hw8 3-hydroxy-3-methylglutaryl-CoA d

1sqi 4-hydroxyphenylpyruvate dioxyge-

nase

d

1r9o Cytochrome P450 2C9 d

4cox Cyclooxygenase 2 d

1c14 Enoyl reductase d

2bxr Monoamine oxidase A d

2gh5 Glutathione reductase d

1hvy Thymidylate synthase d

1rsz Purine nucleoside phosphorylase d

1n2v tRNA-guanine transglycosylase d

1v4s Hexokinase d

1u4d ACK1 kinase d

1m17 Epidermal growth factor receptor

kinase

d

2dq7 Fyn kinase d

1qpe Lck kinase d

1qhi Thymidine kinase d

2fb8 B-Raf kinase d

1ke6 cyclin-dependent kinase2 d

2br1 Chk1 kinase d
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1ywr p38 Mitogen-activated protein ki-

nases

d

2ivu RET kinase d

2hiw Abl tyrosin kinase d

2i0e Protein kinase C d

1ywn Vascular endothelial growth factor

receptor-2

d

1ig3 Thiamin pyrophosphokinase d

1yvf Hepatitis C virus polymerase NS5B d

1k8q Gastric lipase d

1kvo Phospholipase A 2 d

1xm6 Phosphodiesterase 4B d

1udt Phosphodiesterase 5 d

1u30 Amylase d

1r58 Methionine aminopeptidase-2 d

1rwq Dipeptidyl peptidase-IV d

1lpz Factor Xa d

2g24 Renin d

1hvr HIV protease d

1gkc Matrix metalloproteinase-9 d

1yqy Lethal factor d

1o5r Adenosine deaminase d

1js3 DOPA decarboxylase d

1k7f Tryptophan synthase d
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1j4i FKBP13 d

1vbm Tyrosyl-tRNA synthetase d

1rv1 Ubiquitin-protein ligase E3 Mdm2 d

1gwr Estrogen receptor d

1m2z Glucocorticoid receptor d

3d4s Beta-2-adrenergic receptor d

1ai2 Isocitrate dehydrogenase n

3pcm 3,4-dioxygenas n

1d09 Aspartate transcarbamoylase n

1c9y Ornithine carbamoyltransferase n

1gpu Transketolase n

1qmf Penicillin binding protein-2X n

1moq Glucosamine 6-phosphate synthas n

1ucn Nucleoside diphosphate kinase n

1t03 HIV reverse transcriptase (nucleo-

side binding site)

n

1qs4 HIV integrase n

1fth Acyl carrier protein synthase n

1rnt Ribonuclease T2 n

1onz Protein-tyrosine phosphatase 1B n

1x9d Mannosidase n

1nnc Neuraminidase n

1olq Endo-beta-1,4-glucanase n
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1jak Beta-N-Acetylhexosaminidases n

1kts Thrombin n

1nlj Cathepsin K n

1icj Peptide deformylase n

1hqg Arginase n

2gsu Phosphodiesterase-nucleotide Py-

rophosphatase

n

1g7v 3-deoxy-D-manno-2-octulosonate-

8-phosphate synthase

n

1f9g Hyaluronate lyase n

1qxo Chorismate synthase n

2gyi D-xylose isomerase n

1o8b Ribose-5-phosphate isomerase n

1cg0 Adenylosuccinate synthetase n

Table 6: Proteins description of the NRDLD dataset.

Table 7 describes all the proteins included in the PDTD (100-proteins) dataset.

PDB

code

Name Category

1a28 Progesterone receptor d

1acj Acetylcholine esterase d

1aco Aconite with transaconitate bound d

1adc NAD analogues bound to alcohol

dehydrogenase

d
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1coy Cholesterol oxidases d

1cqe Prostaglandin H2 synthase-1 d

1d3g Dihydroorotate dehydrogenase d

1d6u E. Coli amine oxidase d

1db1 Nuclear receptor for vitamin D d

1dht Estrogenic 17-beta hydroxysteroid

dehydrogenase

d

1diy Cyclooxygenase active site of

PGHS-1

d

1dkf Heterodimeric complex of RAR and

RXR

d

1e1f Beta-glucosidase d

1e3g Androgen receptor d

1e3k Progesteron receptor d

1e55 Mutant Monocut beta-glucosidase d

1eet HIV-1 reverse transcriptase d

1efh Hydroxysteroid sulfotransferase d

1f2a Cruzain hydrolase d

1fm6 Heterodimer of the RXR-α and

PPAR-γ

d

1gii Cyclin dependent kinase d

1gos Monoamine oxidase B d

1gp6 Anthocyanidin synthase d

1gpk Acetylcholinesterase d
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1gqs Acetylcholinesterase complexed

with NAP

d

1gs4 Androgen receptor ARccr d

1h5u Glycogen phosphorylase B d

1h9u Retinoid X receptor beta d

1hb2 Isopenicillin N synthase d

1hdy Alcohol dehydrogenase variant d

1hfc Fibroblast collagenase d

1hj1 Estrogen receptor beta d

1hld Liver alcohol dehydrogenase d

1ho4 Pyridoxine 5-phosphate d

1ht8 Oxidoreductase COX-1 d

1hy3 Estrogen sulfotransferase V269E d

1hzx Bovine Rhodopsin d

1i7g Human PPAR-α d

1ie9 Nuclear receptor for vitamin D d

1iiu Plasma retinol-binding protein d

1j90 Deoxyribonuclease kinase d

1jbp Catalytic subunit of c-AMP depen-

dent protein kinase

d

1jkh HIV-1 reverse transcriptase d

1js3 Dopa decarboxylase d

1k3u Tryptophan synthase d

1k4w Nuclear receptor ROR-β d
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1k74 Heterodimer of PPAR-γ and RXR-

α

d

1k7l Human PPAR-α d

1lde Liver alcohol dehydrogenase d

1ldy Liver alcohol dehydrogenase com-

plexed to NADH and cyclohexyl

formamide

d

1mup Pheromone binding to two urinary

proteins

d

1n7i Phenylethanolamine N-

metyltransferase

d

1nwk Monomeric actin in the ATP state d

1og5 Human cytochrome P450 CYP2C9 d

1oi9 Human thr160-phospho

CDK2/cyclin A

d

1p1n GluR2 ligand binding core (S1S2J)

mutant

d

1p2d Glycogen phosphorylase B d

1p4g Glycogen phosphorylase B in

complex with C-(1-azido-alpha-D-

glucopyranosyl) formamide

d

1p93 Glucocorticoid receptor d

1pcg Helix-stabilized cyclic peptides d

1pha Cytochrome P450-CAM d

1pig Pancreatic alpha-amylase d

1ppl Aspartyl proteinases d
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1qab Retinol binding protein d

1kvo Phospholipase A 2 d

1qkm Estrogen receptor β d

1qkt Mutant estrogen nuclear receptor d

1qpb Pyruvate decarboxylase d

1r18 Isoaspartyl methyltransferase d

1r1k Heterodimer EcR/USP bound to

ponasterone A

d

1rbp Serum retinol binding protein d

1rlb Retinol binding protein complexed

with transthyretin

d

1rt6 HIV-1 reverse transcriptase d

1tvr HIV-1 RT/9-CL TIBO d

1uhl LXRα-RXRβ LBD heterodimer d

1ulb Purine nucleoside phosphorylase d

1uom Estrogen receptor complexed with

Tetrahydroisochiolin

d

1upv Liver X receptor β d

1v8b Hydrolase d

1vkg HDAC8 d

1vlb Aldehyde oxidoreductase d

1vot Acetylcholine esterase d

1w6k Human OSC d
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1x07 Undecaprenyl pyrophosphate syn-

thase

d

1xnx Androstane receptor d

1y0s PPAR-γ d

1zhy Oxysterol binding protein Osh4 d

2a3i Mineralocorticoid receptor d

2a3l Adenosine 5’-Monophosphate

deaminase

d

2ack Acetylcholinesterase d

2ae2 Tropinone reductase-II d

2bx8 Human serum albumin d

2dln D-alanine ligase d

2mas Purine nucleoside hydrolase d

3bto Liver alcohol dehydrogenase d

3ert Estrogen receptor-α d

3hvt Human immunodeficiency virus

type 1 reverse transcriptase het-

erodimer

d

4thi Thiaminase I d

6cox Cyclooxygenase-2 d

8cat Liver catalase d

Table 7: Proteins description of the PDTD dataset.
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Application Case 1:

Pocket communication

Figure S1: Correlation matrices for the A2A systems. Results are from the DyNet (a), Pocketron (b), and DF (c)
approaches are displayed. The colour bar for the matrix’s elements is shown next to the middle panel.
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Figure S2: Correlation matrices for the AR systems. Results are from the DyNet (a), Pocketron (b), and DF (c)
approaches are displayed. The colour bar for the matrix’s elements is shown next to the middle panel.
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Figure S3: Correlation matrices for the EGFR systems. Results are from the DyNet (a), Pocketron (b), and DF (c)
approaches are displayed. The colour bar for the matrix’s elements is shown next to the middle panel.
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Figure S4: Correlation matrices obtained with the DyNet analysis for the EGFR system, at increasing simulation
lengths (0.5 ms, 1.0 ms, 1.5 ms, 2.0 ms, 2.5 ms, 3.0 ms). For each correlation matrix, the Frobenius distance with

respect to the matrix obtained at simulation time 0.5 ms is also reported in the upper right corner. The analysed pockets
are those obtained with Pocketron from the total simulation time.

Figure S5: Correlation matrices obtained with Pocketron for the EGFR system, at increasing simulation lengths (0.5
ms, 1.0 ms, 1.5 ms, 2.0 ms, 2.5 ms, 3.0 ms). For each correlation matrix, the Frobenius distance with respect to the
matrix obtained at simulation time 0.5 ms is also reported in the upper right corner. Values of 0 have been assigned to

correlations with pockets that were not discovered yet in the initial fractions of simulations.

149



Figure S6: Correlation matrices obtained with the distance fluctuation analysis for the EGFR system, at increasing
simulation lengths (0.5 ms, 1.0 ms, 1.5 ms, 2.0 ms, 2.5 ms, 3.0 ms). For each correlation matrix, the Frobenius

distance with respect to the matrix obtained at simulation time 0.5 ms is also reported in the upper right corner. The
analysed pockets are those obtained with Pocketron from the total simulation time.
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Figure S7: Correlation matrices obtained with the distance fluctuation analysis for the EGFR system, at increasing
simulation lengths (0.5 ms, 1.0 ms, 1.5 ms, 2.0 ms, 2.5 ms, 3.0 ms). For each correlation matrix, the Frobenius

distance with respect to the matrix obtained at simulation time 0.5 ms is also reported in the upper right corner. The
analysed pockets are those obtained with Pocketron from the total simulation time.
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Figure S8: Correlation matrices obtained with the distance fluctuation analysis for the EGFR system, at increasing
simulation lengths (0.5 ms, 1.0 ms, 1.5 ms, 2.0 ms, 2.5 ms, 3.0 ms). For each correlation matrix, the Frobenius

distance with respect to the matrix obtained at simulation time 0.5 ms is also reported in the upper right corner. The
analysed pockets are those obtained with Pocketron from the total simulation time.
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Figure S9: Correlation matrices obtained with the distance fluctuation analysis for the EGFR system, at increasing
simulation lengths (0.5 ms, 1.0 ms, 1.5 ms, 2.0 ms, 2.5 ms, 3.0 ms). For each correlation matrix, the Frobenius

distance with respect to the matrix obtained at simulation time 0.5 ms is also reported in the upper right corner. The
analysed pockets are those obtained with Pocketron from the total simulation time.
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Application Case 2:

Application of established computational

methods in drug discovery to target RNAs

Figure S10: Docking scores for all the generated poses on Site 1, color-coded by scoring function and docking software:
AutoDock (blue/orange), rDock (green/red), Vina (purple/gray). Blue/green/purple lines represent poses generated with

AutoDock GPU, while orange/red/gray lines represent those from rDock.
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Figure S11: Docking scores for all the generated poses on Site 2, color-coded by scoring function and docking software:
AutoDock (blue/orange), rDock (green/red), Vina (purple/gray). Blue/green/purple lines represent poses generated with

AutoDock GPU, while orange/red/gray lines represent those from rDock.
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Figure S12: Docking scores for all the generated poses on Site 1, color-coded by scoring function and docking software:
AnnapuRNA (blue/orange) and SPRank (green/red). Blue and green lines represent poses generated with AutoDock

GPU, while orange and red lines represent those from rDock.
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Figure S13: Docking scores for all the generated poses on Site 2, color-coded by scoring function and docking software:
AnnapuRNA (blue/orange) and SPRank (green/red). Blue and green lines represent poses generated with AutoDock

GPU, while orange and red lines represent those from rDock.
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Application Case 3:

Non equilibrium binding free energy estima-

tion

Figure S14: Structural superposition of the apo (white), cognate ligand-bound (purple), and synthetic ligand-bound
(yellow) states of the receptor, highlighting the conformational rearrangement of Stem 1. A close-up view, on the left,

reveals the distinct orientations of residue C15 induced by the different ligands.
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Figure S15: PMF reconstruction using Jarzynski Equality (JE) for both unbinding (upper section) and binding (lower
section) simulations in TIP4P-D water model for the cognate (A) and synthetic (B) ligands.
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Figure S16: PMF reconstruction using Jarzynski Equality (JE) for both unbinding (upper section) and binding (lower
section) simulations in TIP3P water model for the cognate (A) and synthetic (B) ligands.

Figure S17: Jarzynski work profiles for the tautomer of the cognate ligand regarding unbinding (upper section) and
binding (lower section) simulations measured over a simulation time of 100 ns in TIP4P-D (A) and TIP3P (B).
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Figure S18: Free energy profiles along S(x) obtained by applying CFT to SMD simulations in TIP4P-D (A) and TIP3P
(B) for the tautomer of the cognate ligand.

Figure S19: Time series of the collective variable S(x) along the metadynamics trajectories for the cognate (top) and
synthetic (bottom) ligands. The red dotted line represents the discriminating frame used for free energy calculations in

both cases.

161



Figure S20: Reweighted free energy profile as a function of the collective variable S(x) from metadynamics simulation
for the cognate (top) and synthetic (bottom) ligands.

Figure S21: Time series of the collective variable S(x) along the metadynamics trajectory for the tautomer. The red
dotted line indicates the discriminating frame used for free energy calculations.

Figure S22: Reweighted free energy profile as a function of the collective variable S(x) from metadynamics simulation
for the tautomer.
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Figure S23: 2D representation of the hydrogen bonds established by the synthetic ligand within the riboswitch-preQ1
complex.

Figure S24: Atomic charge differences between RESP charges (calculated by PlayMolecule) and AM1-BCC charges
(calculated by antechamber) for the cognate ligand.
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Figure S25: PMF reconstruction using Jarzynski Equality (JE) for both unbinding (upper section) and binding (lower
section) simulations in TIP4P-D (A) and TIP3P (B) water model for the cognate ligand with RESP charges
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Figure S26: PMF reconstruction using Jarzynski Equality (JE) for both unbinding (upper section) and binding (lower
section) simulations in TIP4P-D (A) and TIP3P (B) water model for the tautomer of the cognate ligand.
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