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Abstract

In the physical study of Complex Systems where a large number of compo-
nents in interaction exhibits emergent collective states the typical models are
formulated in terms of coupled dynamical systems on a graph structure. This
is a natural choice on the one hand, as collective states are understood to be gen-
erated by the interplay of a component-intrinsic dynamics and the structure of
interactions between di�erent components, and a convenient one on the other,
since it allows scientists to implement dynamics and structure into a model in
two separate steps, highlighting the role of each in the behaviour of entire sys-
tems. Furthermore, with very few exceptions, most of the interaction networks
which we observe in Nature are revealed by some kind of dynamical process
that can be modeled as taking place on them, making networked dynamical sys-
tems a paradigmatic example also in the problem of network reconstruction.
Most of the available results on the dynamics of network-coupled dynamical
systems are formulated for coupled linear systems or by linearizing in the vicin-
ity of equilibrium solutions. This is due to the relatively simple relationships
that exist in this case between the spectral properties of the network matrices
and the global properties of the dynamics and to the possibility of interpreting
them as mean �eld models for random walks on a network. On undirected
networks in particular the relaxation to an equilibrium state is granted under
very broad detailed balance conditions, and in presence of directed links strong
correspondences have been proved between topological features of the network
and dynamical properties of the system. Nevertheless, most Complex Systems
are investigated at amesoscopic scale, and thus incorporate some degree of non-
linearity and directionality of interaction. For this reason, a renewed interest
is developing in these more realistic models.
In the present Thesis, we focus our attention on how the intertwining of time
scales plays a very important role in the emergence and self-sustainance of col-
lective states in these models, and propose an e�ective approach to account
for these e�ects based on Delay Di�erential Equations. We concentrate our
attention on models related to neuronal phenomena and epidemiological fore-
casting. Our work on neural models mainly consists in the elucidation of how



iii

neural spiking and refractoriness time scales interact with each other and with
cyclic structures in a directed interaction network giving rise to self-sustained
traveling waves, which could be a nonlinear analogue of the Non Equilibrium
Steady States of linear systems. We also build a description of the bifurcation
phenomenon and the dynamical steady state in terms of a single Delay Di�er-
ential Equation, which is equivalent up to global properties, and can be con-
sidered the equivalent for this type of traveling wave states of the synchronous
manifold equation used in the Master Stability Function framework. Focus-
ing on systems that exhibit privileged locations in phase space we formulate a
simple normal form model to explain how the interplay of a delayed feedback
and the natural timescale of the system can stabilize a periodic structure in the
vicinity of the mentioned locations. In light of the recent interest in neural
computation and information processes we also consider the problem of con-
structing a discrete stochastic model that can preserve the activation statistics
of a full nonlinear model in presence of noise, with a particular focus on the
di�erent time scales involved in the process.
The results on epidemiological modeling are mainly concerned with the usage
of Distributed Delay Di�erential Equations in the forecast of epidemic events
on the short and medium term on a metropolitan scale in Bologna. We show
that these models can cover for the shortcomings of models based on Ordinary
Di�erential Equations at the considered scales, despite the more complicated
nature of Delayed Equations. In particular we study the possibility of using
tra�c data as a proxy for model parameters on which otherwise a regression
should be performed, and �nd that these can be a valid device to reveal changes
in transmissive contact rates, on periods when other factors can be considered
to be approximately unchanging. We also set a basis for quantitative predictiv-
ity analysis, by obtaining linear response laws for the model and in particular
for the variables used in the regression process.
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Introduction

T
he Physics of Complex Systems deals with all those problems
where a great number of systems are in interaction and their dynam-
ical properties give rise to non-trivial collective states, which have of-
ten been studied in their own right as elementary objects in other sci-

ences or disciplines. The generality of the de�nition we have just given preludes
to the wide variety of Complex Systems that surround us, as the perspective at
which this branch of Physics typically situates itself is a mesoscopic one, at the
interface between a Dynamical Systems and Statistical Physics approach thus
addressing in general the emergent properties of ensembles of interacting units.
Because of this perspective situated at an intermediate scale, the typical model
considered in this branch of Physics consists of a set of dynamical systems cou-
pled according to a network structure, unless one is considering purely struc-
tural or relational studies where networks are merely used to express relation-
ships between objects. This is a natural choice, as at the mesoscale emergent
behaviours are dictated in general by an interplay of local dynamics, i.e. the
processes proper of each network node, and their interactions, which due to the
scales at play one can neither neglect nor treat in an average sense. While the
concept of graph as a mathematical object had been introduced historically by
Euler, the realization of the power of a network formalism in tackling complex
and emergent phenomena is a relatively recent development.

Several examples can be found from very di�erent �elds. In the study of hu-
man mobility often one considers networks with nodes which exchange agents
representing individuals, cars or means of transportation, in a natural schema-
tization of transportation networks at various scales [24, 67]. The spreading
of epidemics can analogously be approached through this class of models [74],
where nodes can represent individuals linked by a network of social contacts,
or also metapopulations, i.e. points of interaction where the infective dynam-
ics takes place, letting the network structure consequently represent mobility
patterns and the transfer of population from one interaction point to another
[85]. In the modelling of ecosystems, networks are often used to represent
relationships between species [57], and can be endowed with dynamics to rep-
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resent predation or more complex metabolic relationships [1]. Another classi-
cal example of dynamical systems on networks, and one of the earliest �elds to
adopt the network formalism, is the study of complex chemical reactions [5],via
models where nodes represent chemical species and links, usually directed and
weighted, the reactions with the associated rates. Recently, in response to the
challenges posed by climate change, dynamical network models have been em-
ployed also in the study of climate, in particular to model cascades of tipping
elements and their interaction [22, 97]. Finally, perhaps the most famous ap-
plication of dynamical systems on graphs is in the �eld of neural networks.
The network models used in the study of neural phenomenology are many
and highly variegated [9], but since we are interested in the Physics of such
models we will concentrate on those that include a dynamical behaviour. The
microscopic structure of the nervous system, with neurons that have an internal
dynamics and that can exchange signals through synapses, is very well suited
to be described in good approximation by dynamical systems, representing the
neurons, coupled according to a network representing the synapses. This mi-
croscopical approach was pioneered already in the 1940s by McCulloch and
Pitts [65], who introduced a very simple discrete neural model with a binary
activation level. Despite its simplicity, a networked population of such neurons
has been proved in subsequent years to be a Turing complete computingmodel
[19], and to model associative memory phenomena [50], shedding light on the
divide between the way in which machines and human beings recall previously
stored information. More recently, the usage of dynamical neural networks
has seen a surge as a method of information processing, with a progressive
detachment from physiological modeling, towards a purely technological en-
deavor, aimed to the improvement of prediction and data generation capabili-
ties of network models. The questions related to networks of realistic neurons,
though, are far from being completely understood. Indeed, while some issues
regarding the synchronization transition on undirected structures have been
addressed [60], many aspects of the dynamics still need to be characterized
when one considers directed architectures, which are the natural formulation
ground for neural models. Finally, there has recently been a renewed interest
in the study of the computation capabilities of realistic neural units, in the �eld
of reservoir computing [2]. This is particularly interesting for an investigation
of the role of structure and dynamics in de�ning information processing, as
it allows on the one hand to access structural and dynamical properties of the
system quite easily, and on the other hand to de�ne quite straightforwardly the
information processing capabilities, by framing them as a machine learning
task.
In the context of dynamical network models, the properties of the interac-
tion network are re�ected into properties of the coupling matrix that enters
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the dynamical equations of the coupled system. In particular, when Laplacian
couplings are considered, the spectrum of the Laplacian matrix carries a large
amount of information regarding the network topology [18], and this informa-
tion is re�ected into the dynamics. The relationship between a network topol-
ogy and the dynamical phenomena that take place on it has generally been
studied in linear models [88], where the simplicity of the dynamics allows for a
better investigation, and to directly construct the stable attractive solution from
graph theoretical considerations. In this picture, the detailed balance condition
on the link weights is su�cient to ensure stability of the equilibrium solution.
Following the same approach it is possible to establish a connection between the
directed cycles present in the network and the independent currents that can be
identi�ed on it. Additionally, by recognizing that the linear master equation on
a network corresponds to a mean �eld model for an associated random walk on
the same structure, it is possible to unify the study of properties of both system,
so that cycles can further be connected to the emergence of steady currents,
linked to the so called Non Equilibrium Steady States (NESS) in a Markovian
Dynamics on the network.
However, when considering mathematical models for real complex systems,
it is common to encounter some degree of nonlinearity. Although linear sys-
tems are fundamental to the formulation and development of key mathemati-
cal results and physical intuition, they often fail to capture the phenomenology
typical of actual complex systems. These features, from a mathematical per-
spective, can only be introduced by incorporating nonlinearities at some stage
during model construction. For example the mass-action dynamics, the ap-
plications of which extend far beyond physical chemistry to most models of
population and contagion dynamics, is inherently nonlinear. In social systems,
nonlinear models have been successfully applied to a range of phenomena, in-
cluding marriage dynamics [33], panic transitions, and tra�c congestion on
roads [68]. Among the most proli�c �elds for nonlinear dynamics are the re-
search areas of mathematical biology and biophysics. Nonlinearity is ubiqui-
tous at all scales in these disciplines, frommicro tomacroscopic systems. At the
cellular scale, nonlinear ordinary di�erential equations (ODEs) are commonly
used to model genetic regulatory networks [77] and cell metabolism [20]. A
specialized area at the single-cell level focuses on modeling membrane poten-
tials and ionic channel exchange in excitable cells, such as neurons and cardiac
tissue [29, 31, 45, 47, 53, 71], where several notable historical results have been
achieved, of which we give a brief account in Chapter 1. At the systemic scale,
nonlinear dynamics are classically applied in �elds such as immunology, viral
reproduction dynamics [73], and erythrocyte homeostasis [63].
Whenever network structure and nonlinearity are combined the established
picture based on the properties and the dynamics of the master equation and
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its analogue random walk gets considerably more complicated. In the case of
undirected networks, the main problem that has been addressed is that of syn-
chronization, i.e. the class of phenomena where the interaction structure a�ects
the local node dynamics in such a way to generate a coordinated motion of all
the nodes. This can be considered in some sense a paradigmatic example of
the e�ects of the interaction between structure and dynamics in networked dy-
namical system, as the compromise solution characterizing the synchronized
state is created explicitly by the interplay of these two elements. The most
classical model in this context is due to Kuramoto [56], who formulated it for
simplicity on a complete graph. A general framework to study the stability of
global synchronous states exists [75], and it can be extended to study the road to
synchronization, i.e. the cascade of partially synchronized macroscopic states
through which a dynamical network reaches a global synchronization solution
[10]. Despite its �exibility, that even allows to consider in some approxima-
tion delay-coupled systems [59], the main drawback of this approach lies in its
lack of general applicability to directed coupling networks. Indeed the study of
signal propagation in directionally coupled networks of dynamical systems has
been studied mostly in a phenomenological way so far, e.g. through numerical
simulations [42], revealing that when nonlinearity is involved, the time scales
of local processing, dictated e.g. by the dynamical system reaction time, and
those characterizing propagation may interact with each other in determining
the spreading of perturbations on the network. Particularly in propagation phe-
nomena, delay e�ects emerge, and these can play a role in the local stabilization
of dynamical solutions that in the original system would not be able to be self-
sustained.
It is in this context that we can situate Chapter 2 of the present thesis. In this
Chapter we address the emergence of persistent stationary solutions as a conse-
quence of the interplay of a neuron-like spiking dynamics and a loop structure.
In particular we �nd that such stable states are not originating from a Hopf
bifurcation of the system’s �xed point, corresponding to physiological station-
arity, but from a limit cycle saddle node bifurcation, that leaves unaltered the
system properties in the rest of phase space. Building on the intuition that
the bifurcation is caused by the interplay of reaction and propagation time, we
formulate an equivalent model that can express the same dynamical stationary
state as the limit cycle of a Delay Di�erential equation, where the explicit delay
is set in function of the inter-site propagation time of the nonlinear wavefront.
Observing the shape of the limit cycle stabilized by the action of delayed feed-
back, which rests for an extensive fraction of time in the vicinity of a system
nullcline, we conjecture that the mechanism of stabilization of this orbit rests
in its quasi-invariance, i.e. in the fact that the system is naturally brought near
it by the nonlinear part of its dynamics, spending there a long time despite
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eventually being attracted by a global �xed point.
We develop this intuition in Chapter 3, wherein we formulate a simpli�ed
model to address the problem analytically. By leveraging the formalism of
Birkho� normal forms and adapting it to the case of an isolated quasi-invariant
orbit, and are able to show in an ad hoc adiabatic ansatz that the interplay be-
tween a skew feedback with an explicit delay and the system’s natural timescale
is able to stabilize the quasi-invariant structure. Moreover, we are able to build
a sequence of �nite dimensional approximants to the full in�nite dimensional
dynamical system in a perturbative approach, which at the two lowest perturba-
tive orders display already the same bifurcation of the full model, showing the
phenomenon is planar, at least at its onset. By tracing back to the FitzHugh-
Nagumo system we show in a quasi-adiabatic approximation that the system
possesses an isolated quasi-invariant orbit, so that the stabilization mechanism
can in principle be the same of the simpli�ed system. We conclude the Chap-
ter by summarizing some features observed on a unidirectional chain of sim-
pli�ed system. The delay stabilization of limit cycles is not an entirely new
topic, as some seminal contribution to the theory have been given by Pyragas
[81, 82], who has investigated the problem in the framework of control theory
for chaotic systems. We remark that the key assumption of Pyragas control,
which is the identi�cation of feedback delay and stabilized orbit period, is jus-
ti�ed in chaotic systems that possess a dense spectrum of frequencies, but does
not necessarily hold in our approach, which is able to predict stabilization also
for macroscopic di�erences between the natural period of the system and the
feedback delay.
An inherent capability of many networks of active elements is some degree of
information processing, transmission and storage. This is expected for exam-
ple in genetic regulatory networks [92], where information clearly is transmit-
ted from the DNA to the expressed proteins, but regulatory mechanisms must
ensure that also the opposite is in some measure true. Similarly, the immune
system has been considered as computationally capable, due to the complex
reaction mechanisms it implements [21]. Finally, above all others, the nervous
system is capable of all these three types of operation with respect to informa-
tion sources, making an approach via information theory desirable and likely
fruitful in terms of insight on the information processing role of dynamics and
structure. An obstacle to this development is the fact that information theoret-
ical measures are most easily de�ned on discrete systems, and the a posteriori
discretization of a nonlinear dynamical system orbit can be a highly non-trivial
task. For this reason in Chapter 4 we set out to formulate a simpli�ed discrete
system that can preserve the �ring statistics of a FitzHugh-Nagumo nonlinear
di�erential equation in presence of noise. We do this by framing the system as a
Kramers escape rate problem, with a slow dependence of the potential wells on
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the time since the last activation, closing the equations for the interspike time
distribution in an approximated setting. With this distribution we are able to
construct, up to a parametric regression on data generated by the full neuron
dynamics, a binary neuron with a refractoriness mechanism that reproduces
the single neuron �ring statistics to a good accuracy. When a loop of these
simpli�ed neurons is considered, we observe qualitatively similar but quanti-
tatively di�erent dynamical states with respect to the full FitzHugh-Nagumo
case, highlighting once again how the timescale interplay is relevant in these
systems, so that any discretization or coarse graining of the dynamics must be
e�ected while preserving these relationships.
Finally, in Chapter 5 we present a typical application of Delay Di�erential
Equations to epidemiological modeling. Despite being formulated for the �rst
time in terms of Delay Di�erential Equations [54], the most commonly used
compartmental models are in general nonlinear Ordinary Di�erential Equa-
tions. While giving acceptable results for large populations, and in describing
general epidemiological trends on longer periods, ODE based models tend to
be less reliable in short-to-middle range forecasting, and for smaller popula-
tions, such as that of a city. Furthermore, whenever a disease presents highly
varying time scales, such as SARS-CoV-2 , which range from a few days of
infectivity to months of temporary immunity, the e�ective representation of
timescale separation which is implemented in regular SIR models via transi-
tion rates starts to show its shortcomings. In addition SARS-CoV-2 incuba-
tion times can have large inter-patient variations, so that any e�ective model
for medium-sized populations should encode it in its dynamics. Tasked with
the realization of a model to predict the hospitalization trend in the Bologna
Metropolitan Area, we have developed a distributed delay compartmentalmodel
for SARS-CoV-2 disease. Through a weekly regression procedure on the new
positive cases, we were able to follow the development of pandemic waves in the
region of interest, and aid the local health unit in its readiness e�ort. Proceed-
ing semi-analytically we are able to perform linear response studies on this dis-
tributed delay equation, and study extensively the sensitivity of the solutions on
a change in the regression parameter. The regression parameter, interpreted
as a sociability index measuring the relative number of unprotected social con-
tacts between individuals per unit time, has been compared to a normalized
mobility proxy obtained from magnetic coil data available through open data
policies of the local administration. A signi�cant correlation has been found
between the two time series, that could be enhanced by performing additive
shifts in correspondence of periods characterized by di�erent requirements in
terms of personal protection devices but by roughly similar levels of mobility
restrictions.



1 | Elements of dynamical neural
modeling

The most signi�cant electrophysiological characteristic of a neuron is its ex-
citability, i.e. its capacity to rapidly depolarize and repolarize relative to its
resting membrane potential, generating a sudden spike called an action poten-
tial, depicted in Figure 1.1, in response to electrical and chemical changes in
the surrounding extracellular medium. By membrane potential we refer to
the di�erence in electric potential between the interior and exterior of the cell
membrane, i.e., the intracellular and extracellular media. A brief summary of
the electrophysiological mechanisms underlying this phenomenon is provided
here, following the exposition of [53], to which the interested reader is referred
for a more detailed explanation of the dynamical aspects of neurophysiology,
and the fundamental contributions to their modelization.

1.1 | Elements of physical chemistry of action poten-
tial generation

The currents involved in neuronal electrophysiology are ionic in nature,
with charge carriers primarily consisting of Na+, K+, Ca++, and Cl−. Potassium
K+and negatively chargedmolecules, which are usually grouped together under
the symbol A−, are predominantly found in the intracellular medium, while
calcium ions Ca++, sodium ions Na+, and chlorides Cl−are more concentrated
outside the cell. The cellular membrane, which separates the intracellular and
extracellular environments, consists of a phospholipidic double layer that is
impermeable to ions. However, it contains protein channels that permit the
passage of these ions according to their electrical potentials and concentration
gradients, except for A−, which are too large to pass through. In theory, ions
can redistribute across the membrane to reduce concentration asymmetries be-
tween the intracellular and extracellular mediums. In practice, however, this is
not always the case, as the only signi�cant currents that �ow solely due to this
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Figure 1.1: Membrane potential time series for a mesencephalic neuron subject to
noisy input. Image from [53].

mechanism are those of K+and Cl−. Moreover, even for these ions, the concen-
tration gradient alone is insu�cient to eliminate the concentration asymmetry,
as several mechanisms work to maintain these imbalances. Among the most
relevant we mention:

• passive redistribution mechanisms, due to the electrostatic interaction of
the A− species, that attract K+and repel Cl−but are constrained by their
size to remain within the membrane, as they do not �t through any of
the channels, and thus contribute to the preservation of asymmetry,

• active transport mechanisms, due to the presence across the membrane
of active ion pumps, such as the Na+-K+pump, that brings within the cell
twoK+for each threeNa+that it releases in the extracellularmedium,main-
taining the concentration of K+higher inside the cell.

If we were to consider only the mechanisms responsible for maintaining the
concentration gradient, the ionic current driven by concentration asymmetry
would continue to �ow inde�nitely. However, since ions carry electric charges,
we must account for the electrical e�ects of their movement. For instance, in
the case of K+, the outward �ow of potassium ions gradually accumulates pos-
itive charge outside the membrane and negative charge inside, due to the re-
maining A− ions. This buildup creates a potential di�erence between the in-
terior and exterior of the cell. Eventually, equilibrium is reached when the
concentration-driven current is counterbalanced by the current resulting from
the electrical potential di�erence. The value of this potential di�erence, at
which the two opposing forces are in balance, is called the Nernst equilibrium
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potential, and it depends on the speci�c ionic species in question, as well as en-
vironmental factors such as temperature. In this context, if ES denotes the
Nernst potential for a given species S, the current of ion species S driven by a
total membrane potential di�erenceV can be described by

IS = gS (V − ES) , (1.1)

where gS is the conductance of the ion channel associated to species S. We will
comment soon more speci�cally on the form of this conductance. Now, if we
consider Equation (1.1), for the four major ion species mentioned before, and
treat the impermeable membrane as a capacitor of capacitance C 1 we are able
to formulate an equivalent circuit model for the membrane.

C ¤V = I − gNa(V − ENa) − gCa(V − ECa) − gCl(V − ECl) − gK (V − EK) (1.2)

where I is the total current across the membrane. Now, if all the channels were
Ohmic, i.e. if the conductances were all constants, for I = 0 the system would
simply relax to a weighted average of the Nernst potentials

Vrest =
gNaENa + gCaECa + gClECl + gKEK

gNa + gCa + gCl + gK
(1.3)

which for I ≠ 0 is simply displaced

Vrest →Vrest +
I

gNa + gCa + gCl + gK
(1.4)

This behavior is overly simplistic compared to the complicated phenomenol-
ogy observed in neurons, indicating that some crucial feature is missing to ex-
plain the typical spiking activity of neural cells. The key missing element lies
in the fact that, with the exception of some K+or Cl−channels, membrane ion
channels are not Ohmic. Their conductances are generally nonlinear and de-
pend on a multitude of other factors. This phenomenon is known as channel
gating. Ionic channels are large protein structures with aqueous pores that per-
mit ion transit. These channels, although, may also be associated with gating
particles that can open or close the channel depending on certain conditions in
the surrounding environment, known as gating variables. The most common
gating mechanisms include:

• Voltage gating: the opening or closing of a gate depends on the mem-
brane potential→ K+, Na+channels

1An average value for the speci�c membrane capacitance per membrane surface unit is
given as 0.90 ± 0.03 `F/cm2 for neurons in [30].
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• Intracellular agent gating: the gating variable for a species can be the
concentration of another ionic species→ Ca++-gated K+channels

• Extracellular agents (neurotransmitter) gating: opening and closing can
be triggered by some neurotransmitter substance in the extracellularmedium
→ W-Aminobutyric acid (GABA), N-Methyl-D-aspartic acid (NMDA)
gated channels

This being said, the study of gating dynamics is a rich �eld of research in its
own right. Typically, the phenomenon is treated as probabilistic in nature, with
activation and inactivation probabilities evolving over time as functions of the
relevant gating variables, from suchmodels it is then possible to reconstruct de-
terministic gating dynamical equations via mean �eld approaches, but a treat-
ment of such topics exceeds the scope of the present work.

1.2 | TheHodgkin-Huxleymodel of neural excitabil-
ity

One of themost in�uentialmodels that incorporate gated channels to repro-
duce neuronal electrophysiology, and perhaps the most physiologically com-
plete, is the Hodgkin-Huxley model [47]. Originally developed to model the
squid giant axon, it is now widely regarded as representative of the general dy-
namics of neurons. Through experimental observations, Hodgkin and Huxley
identi�ed the key ionic channels and gating mechanisms responsible for the
system’s behavior, which include:

• a voltage-gated K+current IK, with four activation gates,

• a voltage-gated Na+current INa, with three activation and one inactiva-
tion2 gate,

• an Ohmic leak current IL, mostly carried by Cl−ions.

2A closed and an inactivated channel correspond to di�erent situations: in the �rst case,
an activation gate simply has simply not opened, while in the second an inactivation gate has
closed a channel previously opened by an activation gate.
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from which the resulting dynamical equations are

C ¤V = I −

IK︷             ︸︸             ︷
ḡKn4 (V − EK) −

INa︷                  ︸︸                  ︷
ḡNam3h (V − ENa) −

IL︷         ︸︸         ︷
ḡL (V − EL)

¤n = Un (V ) (1 − n) + Vn (V )n
¤m = Um (V ) (1 − m) + Vm (V )m
¤h = Uh (V ) (1 − h) + Vh (V )h,

(1.5)

where the variables n, m, and h represent the activation probability for the
K+channel and the activation and inactivation probabilities for the Na+channel,
respectively. Each of these channel types has numerous specimens embedded
in the membrane, resulting in a large number of gates, so that a mean �eld
approach is justi�ed and one can treat the activation and inactivation proba-
bilities as the average fractions of gates that are activated or inactivated at any
given time. The functions U (V ) and V (V ) describe the transition rates be-
tween states. U (V ) is typically taken to be a sigmoidal function, while V (V )
is generally chosen in an exponential form. These functions contain numeri-
cal constants that depend on the choice of the origin for the potential and the
physical properties of the speci�c system under study.

1.3 | The FitzHugh-Nagumo model neuron

Although being very sound from a physiological point of view, theHodgkin-
Huxley model has several practical drawbacks. Due to its highly nonlinear dy-
namics, it can exhibit many di�erent and possibly chaotic behaviours, which
are quite di�cult to study in four dimensions, as many techniques, and espe-
cially the phase plane methods that can be used for nonlinear two-dimensional
systems, are much more di�cult to apply in this context. For these reasons
Richard FitzHugh and Jinichi Nagumo developed independently the so called
FitzHugh-Nagumomodel [29, 71] for neural excitability. The FitzHugh-Nagumo
model can be regarded either as a 2D projection of the Hodgkin-Huxleymodel,
as recognised by the author in the original paper [29], or as a modi�ed ver-
sion of the Van Der Pol oscillator in presence of a constant force, that can dis-
place and stabilize its �xed point in order to account for excitable behaviour. Its
dynamics is speci�ed by two nonlinear Ordinary Di�erential Equations, char-
acterised by the presence of two separate time scales, describing respectively
the reactive and the refractory e�ects that concur in de�ning neural dynamics.
Many formulations have been proposed, among which we choose, for simplic-
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ity

Y ¤u = u − u
3

3
− v + Iext(t)

¤v = u + a,
(1.6)

where u is the fast variable, presenting a quasi-threshold spiking dynamics, akin
to the membrane potential. Conversely, the slow variable v is a recovery vari-
able, representing the characteristic refractoriness of neurons after �ring. The
separation between the two time scales is dictated by the factor Y, so that the
fast timescale is Y−1 times faster than the slow one. Iext is an external stimulus,
possibly representing currents given by the interactions with other neurons, or
by external inputs. Finally, a is a dynamical parameter regulating the dynam-
ical regime of the model. Indeed, the system possesses a single �xed point

(u∗ , v∗)T =
(
−a, −a + a3

3

)T
that is stable for |a | > 1 and becomes unstable for

|a | < 1, when the system undergoes a supercritical Hopf Bifurcation and a
stable limit cycle appears.

The �rst dynamical regime, for |a | > 1 is termed excitable, and can be inter-
preted physiologically as that of a standard neuron, whereas the second is called
a tonic spiking state, and can be ideally interpreted as typical of a pacemaker neu-
ron. To understand the mechanisms of spike production in the FHN system
we can analyse its Phase Space (Figures 1.2, 1.3). We draw the nullclines, the
curves along which the time derivative of one of the variables is zero. The
v-nullcline takes the form of a vertical line at u = −a, while the u-nullcline
is a cubic curve, intersecting the u axis at −

√
3, 0 and

√
3, with a minimum

at −1 and a maximum at 1. The right and leftmost branches of the nullcline
are identi�ed respectively with the physiological refractory and active phases of
the neuron. In the tonic spiking regime, the limit cycle can be described as
composed of four stages:

1. slow upward motion, roughly along the right (active) branch

2. fast jump towards the left branch

3. slow downward motion, roughly along the left (refractory) branch

4. fast jump towards the right branch

In the tonic activity phase, these stages are inde�nitely repeated.
In the excitable phase, the �xed point is stable, and the unperturbed system

tends to approach it by following the cubic nullcline. For instance, if we con-
sider a positive value of a > 1, the �xed point will lie on the left branch of the
cubic nullcline. When a brief positive shock is applied via the Iext variable, the
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Figure 1.2: Phase space plot for the FHN system in the tonic spiking phase (a = 0.8,
Y = 0.01). The dashed lines are respectively the u (green) and v (red) nullclines. The
× marks the global �xed point.
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Figure 1.3: Phase space plot for the FHN system in the excitable state (a = 1.3, Y =
0.01). The dashed lines are respectively the u (green) and v (red) nullclines. The ×
marks the global �xed point. The spike is initiated via a square pulse input.
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system is displaced towards positive u values. Depending on the magnitude of
the shock, two outcomes are possible.

If the pulse is subthreshold, the system is recaptured by the refractory branch
and gradually moves back towards the �xed point. Conversely, if the pulse ex-
ceeds the threshold, the system jumps to the active branch, follows it up to the
maximum at u = 1, and then returns to the refractory branch, resuming its tra-
jectory toward the �xed point. This behavior is referred to as a quasi-threshold
e�ect because the critical value for spike generation depends on both the pulse
duration and shape. As a result, there is no universal threshold, only one that
applies to a �xed pulse duration and shape.

By analyzing the phase plane and conducting numerical experiments, we
can further re�ne our understanding of the phenomenology of spike produc-
tion. Evaluating the time derivative of u between the branches of the cubic
nullcline reveals that the central branch is repulsive along the u axis. More-
over, simulations show that as the pulse amplitude is varied while keeping its
duration and shape �xed, action potentials are consistently generated when the
pulse displaces the system across the central nullcline branch. Nevertheless, in
some cases where the system crosses the nullcline, no spike is produced. There-
fore, while such a statement cannot be made in an absolute sense, the crossing
of the central nullcline branch can be considered an approximate threshold for
action potential generation.

This behaviour in the excitable state can be explained also by exploiting the
explicit time scale di�erence between the two variables. We proceed along the
lines of the original article [29]. The motion along variable u is of time scale
Y, while that along variable v is of time scale 1. This allows us to consider,
approximately, the motions along the two variables separately: the one along u
can be considered to happen for constant v, the one along v can be considered
to happen for a value of u = u(v) that is a function of the coordinate v. Let’s
�rst consider the motion along u, which is governed by the equation

Y ¤u = u − u
3

3
− v̄ (1.7)

where v̄ is the value of v that we consider to be �xed for evolution times of order
Y. Equation (1.7) has three equilibria for |v̄ | < 2

3 , one for |v̄ | > 2
3 and two in

the limiting cases |v̄ | = 2
3 . The type of equilibrium at the �xed points depends

on the u-nullcline branch on which they lay, Figure 1.4. For |v̄ | < 2
3 , the two

outermost equilibria are attractive, while the one lying on the central branch is
repulsive, for |v̄ | > 2

3 , the only equilibrium is attractive, and in the limiting cases
we have one attractive point and a saddle node. With these considerations in
mind, we can describe the generation of action potential-like spikes as follows.
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Figure 1.4: One-dimensional con�guration space for the u variable for di�erent values
of v. Dotted line: |v | < 2

3 , two stable and one unstable �xed point. Solid line: |v | > 2
3 ,

single stable �xed point.
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Consider a quiescent neuron, modeled by a FitzHugh-Nagumo system, situ-
ated near the global dynamic equilibrium point (u∗ , v∗). Since we are working
within the excitable regime, we can take this point to lie on the left branch of
the u-nullcline without loss of generality. The one-dimensional phase space of
the Y time scale dynamics resembles that depicted by the dotted line in Figure
1.4, where the global �xed point corresponds to the left-most equilibrium in
the reduced dynamics. Let us now apply a Dirac delta function pulse to force
the system in the direction of positive u. Depending on the magnitude of the
pulse, two outcomes are possible: the system may either stop before reaching
the unstable �xed point or jump across it, in the former scenario, the system is
repelled back towards the initial equilibrium point, while in the latter, it is re-
pelled towards the stable equilibrium point on the right branch of the nullcline,
thus completing the �ring event. Once the system reaches the right-most equi-
librium, the u variable remains near this position while the v variable increases,
as the term u + a > 0 is positive in the governing equation

¤v = u + a, (1.8)

where since we are now considering the dynamics of time scale 1, we can take
u to approximately be given by the right-branch solution of equation

v = u − u
3

3
(1.9)

therefore, as v grows, u approximately follows the right nullcline branch. As
v increases, it eventually crosses the threshold at v = 2

3 . Beyond this point,
the Y time scale dynamics along u changes abruptly as the �xed points on the
right and central nullcline branch coalesce in a saddle point transition, leaving
a single �xed point on the left branch of the u-nullcline, corresponding to the
phase space illustrated by the continuous black line in Figure (1.4). Becaus of
this, the Y dynamics quickly drives the system toward the left branch. Once
the nullcline is reached, the dynamics of time scale 1 resumes, this time in a
downward direction, as one has u + a < 0. As the system moves along the left
branch of the nullcline, it approaches the global dynamics �xed point, thereby
re-entering a quiescent state, awaiting further stimuli. If we look at a time se-
ries of the system trajectory in Figure 1.5, we observe that the excursion of the
u variable has produced an action potential-like spike, followed by a refractory
period during which u gradually returns to the �xed point. Additionally, we
note that the v time series exhibits maxima immediately after the action po-
tential peaks, after which it slowly decreases back to its �xed point value. This
behaviour highlights its role as a recovery variable associated with the neuron’s
refractoriness, which is maximal right after the action potential production.
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Figure 1.5: Time series of the dynamical variables, u in blue and v in orange, for an
excitable FitzHugh-Nagumo system Y = 0.01, a = 1.3). The external stimulus, the
green line, is a square wave pulse of amplitude 2, and of duration 10−3 time units,
applied periodically each 5 time units.



2 | Equivalence of stationary solu-
tions between a directed chain
of neurons and a Delay Di�er-
ential Equation

2.1 | Introduction

Complex networks theory has been mainly focused on understanding the
topological structure of networks, often neglecting the dynamical properties of
the interactions represented by the structure itself [72]. Di�usion processes on
networks have been considered to study the relationship between the spectral
properties of the Laplacian matrix associated to a network structure and the
corresponding dynamical properties of the random walks stochastic dynamics
in the relaxation process toward a stationary state [88]. Recently Boccaletti and
collaborators [10] have extended the study of synchronization phenomena of
network-coupled dynamical systems to the cascade of events that leads to the
onset of global synchrony, highlighting how the network structure a�ects the
dynamical path to macroscopic synchronized states. The considered models
are an ensemble of N identical dynamical systems coupled by a network struc-
ture

¤xn = f (xn) − J
N∑
m=1

Lnmg (xm) n = 1, ..., N (2.1)

where xn ∈ ℝd is the dynamical state of the n node that evolves according
to the vector �eld f (x) and L is a Laplacian matrix (

∑
mLnm = 0) describing

the interaction among the nodes through the output function g (x). The syn-
chronous state xm (t) = y(t) is an equilibrium state of the system (2.1) where y(t)
is an orbit of the unperturbed system for J = 0. The matrix Lnm introduces
a self-feedback dissipative e�ect (Lnn ≠ 0) so that the interaction depends on
the di�erences in the dynamical state between di�erent nodes. If the matrix
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L is symmetric, all the eigenvalues are positive real, so that the synchronized
state is stable. In particular, if the single node dynamics has a stable �xed point
y(t) = y0, the solution xn = y0 is a global stable solution of the system and we
have a particular case of synchronized state corresponding to all nodes resting
at the �xed point, and if the system ¤y = f (y) has a periodic attractive solution,
the equilibrium state corresponds to a synchronous oscillation of all the nodes
with the same phase. In this framework the main problems are the study of
the robustness of stable synchronized states, and the study of the relationships
between the relaxation process, the spectral properties of the interaction matrix
and the e�ect of stochastic perturbations.
From a statistical mechanics point of view, a symmetric character of the ma-
trix L implies that the detailed balance (DB) condition [88] is satis�ed for the
stationary states and each node is in equilibrium with the environment, repre-
sented by the other nodes. In such a case, a local �uctuation of a node’s state
spreads in the network with a delay that depends on the local dynamics without
any current density in the di�usion process. However the applications of com-
plex network theory [28] to physical systems like neural networks [4], epidemic
spread [74] and tra�c dynamics [89], have pointed out that the Laplacian ma-
trix associated to real networks do not satisfy the DB condition for the existence
of a physical equilibrium, mainly due an intrinsically directed nature of the cou-
plings. In such cases the di�usion processes on the network relax towards non-
equilibrium stationary states (NESS), in which stationary currents persist in the
system. The NESS are usually studied in the framework of Markov processes,
in particular random walks on graphs, modeled by a master equation where
the transition rate matrix is in turn built from the original network interaction
structure. The existence of currents in the stationary states is strictly related to
the cycle space of the graph, since we have as many independent currents as the
cardinality of the cycle base, a fact that re�ects the stochastic non reversibility
of the microscopic dynamics. When each node is associated to a dynamical
system, the relationship between the interaction structure and the existence of
attractive global dynamical states has to be studied. If the single node dynam-
ics has an attractive �xed point and the interaction structure is dictated by a
Laplacian matrix, we always have a constant global solution. But simulations
[70] suggest the existence of periodic stationary solutions, whose appearance
can be related to a phase transitions of the system[49] as the result of bifur-
cation phenomena in phase space. A relevant observation highlighted by the
numerical simulations is that the bifurcation phenomena can be explained by a
low dimensional system even if the number of degrees of freedom is very large.
We conjecture that the existence of stationary currents in the stationary state
of a master equation could be related with the existence of a bifurcation phe-
nomenon that breaks the symmetry of the synchronized solution in networked
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dynamical systems, creating a traveling stationary wave in the system.
In the case of dynamical neural networks, the existence of cycles could induce
feedback processes that create a self-consistent stable periodic solutions whose
existence depends both on the interaction structure (i.e. the link weights) and
on the dynamics on the single nodes. In this chapter we address the problem of
the existence of periodic stable stationary states for an ensemble of FitzHugh-
Nagumo (FHN) neurons coupled through a directed cycle when the single neu-
ron dynamics has a single equilibrium point. This is the fundamental building
block to understand how the graph geometry a�ects the global dynamics, thus
we perform extensive numerical simulations to study the dependence of the
solution on the model parameter. The directed character of the graph implies
an asymmetric interaction among the nodes and the corresponding Laplacian
matrix has a complex spectrum, which is a �ngerprint of the non-reversible
character of the Markov process associated to the network. The single node
neuron model has an attractive equilibrium state so that the synchronized so-
lution for the system corresponds to all the neurons at the equilibrium state. If
the coupling strength reaches a critical threshold, the simulations highlight the
rise of a periodic solution that bifurcates into a stable and unstable solutions
so that the equilibrium state remains stable. To characterize the periodic so-
lution we use a self-consistent approach based on a delay di�erential equation
(DDE) whose periodic solution corresponds to the stationary solution of the
neural network. We numerically study the bifurcation phenomenon on the
DDE that gives rise to the periodic solution to perform a quantitative compar-
ison with the neural network dynamics. Due to the sti� character of the FHN
dynamics, speci�c algorithms have to be used to integrate the DDE [35–37].
The study of the existence of periodic solutions to DDEs has been considered
[98] as model for systems exhibiting temporal dissipative solitons. We propose
to interpret the solution described in the following as a spatial self-consistent
wave on network-coupled interacting FitzHugh-Nagumo systems, whenever
the interaction network exhibits cycles.

2.2 | The coupled FitzHugh-Nagumo oscillatorsmodel

We have explicitly considered the case of interacting FHN neurons as a rel-
evant example of dynamical systems on a graph due to possible applications
in neuroscience, as the solution of dynamical neural networks could highlight
some relevant phenomena that would allow a better understanding of the dy-
namics of biological networks. In a general case, we consider an ensemble of
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interacting FHN neurons according to the equations

Y ¤un = un −
u3
n

3
− vn + J

∑
m

(wnmum −wmnun)

¤vn = un + a
(2.2)

where wnm > 0, the link weights, de�nes the interaction network and quantify
the e�ect of the state of neuron m on neuron n. We recall the un represents the
cell potential of the n-th neuron and vn a recovery variable, in principle repre-
senting several other internal variables. The parameter J de�nes the coupling
strength of the neural network. The sum

I in (t) = J
∑
m

wnmum (t)

is the input signal from the other neurons whereas

Ion (t) = J
∑
m

wmnun (t) = wnun (t)

is the total output signal that introduces a dissipative e�ect in the neuron dy-
namics. Being interested in studying the role of �uctuations among the neuron
states we assume the Laplacian condition for the weights∑

m

wnm = wn (2.3)

which means that the synchronized state (un (t) , vn (t)) = (u(t) , v(t)) has to be
a solution of the single neuron dynamics. The parameter a is chosen so that
the single node dynamics has a single stable �xed point in phase space and the
synchronized solution reduces to the equilibrium position (u∗ , v∗) (see (2.7)).
Our aim is study the existence of stationary attractive solutions u∞n (t) of the
system (2.2)

u∞n (t) = lim
T→∞

un (t +T ) (2.4)

given an initial condition. A mean �eld approach would provide

Y

N

∑
n

¤un =
1
N

∑
n

(
un −

u3
n

3
− vn

)
1
N

∑
n

¤vn =
1
N

∑
n

un + a (2.5)

and, if it is possible to neglect local �uctuations, one recovers for the average
network activity U (t) = ∑

n un (t)/N the single neuron dynamics. When one
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considers directed graphs (wnm ≠ 0⇒ wmn = 0), the mean �eld approximation
cannot describe the signal propagation observed in neuron networks since the
presence of feedback e�ects due to loops in the network can create new station-
ary global solutions that are not solutions of the averaged equation (2.5). Due
to the algebraic relevance of loops in the structure of graphs and their physi-
ological role as origins of feedback, these stationary solutions may be related
to the emergence of memory mechanisms in brain structures. To study the
existence of such solutions we consider a simpli�ed model where N FHN neu-
rons interact by a directed loop and the general network-coupled system (2.2)
reduces to

Y ¤un = un −
u3
n

3
− vn + J (un−1 − un)

¤vn = un + a
(2.6)

where once the network is �xed the only free parameter is the excitatory cou-
pling strength J > 0 and we identify site N + 1 and site 1 imposing a periodic
boundary condition, see Fig. 2.1 for a schematic representation. We choose the
parameter value |a | > 1 so that the equilibrium solution of the FHN oscillator

u∗ = −a v∗ =
a3

3
− a (2.7)

is a stable equilibrium for the whole system (2.6) and the single-node FHN sys-
tem does not admit any other solutions. We recall that in the case |a | < 1 the
single neuron exhibits a stable limit cycle, which for an undirected network im-
plies the existence of a synchronized solution un (t) = u(t) for all n (i.e. all the
neurons move in a synchronous way on the limit cycle of the FHN oscillator)
whose stability depending on the strength of the coupling J [76]. Indeed the
single neuron dynamics undergoes a supercritical Andronov-Hopf bifurcation
at |a | = 1 and a stable limit cycle appears in the single node dynamics, contex-
tually to a loss of stability of the global �xed point. On the other hand, in the
considered case |a | < 1 the only global equilibrium is the �xed point (2.7) that
is stable, so that the existence of a non-trivial stationary solution (2.4) has to
be the result of a global bifurcation of di�erent nature that does not a�ect the
�xed point stability.
In the case Y � 1 the system (2.6) has a sti� character, since the variables
un and vn evolve respectively on a fast timescale and a slow timescale. The
fast timescale Y can be viewed as the reaction timescale of the neuron, i.e. the
order of magnitude for the time it takes for a neuron to reach the peak of its
action potential after receiving a triggering signal, whereas the slow time scale
of order O (1) is the relaxation time scale to the single neuron equilibrium state.
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Figure 2.1: Schematic representation of the neuron ring.

Noticeably the limit Y → 0 is singular and we loose the regularity of the solu-
tions at Y = 0, since for the equation becomes a di�erential-algebraic equation,
however it is possible that the limit solution still exist despite loosing continuity.
This problem therefore belongs to the class of singularly perturbed problems,
and the numerical integration has to cope with the intrinsic sti�ness of the sys-
tem (2.6).
We address the existence problem of stable stationary solutions for a feed-
forward loop of neurons which do not change the stability of the �xed point
(2.7) (i.e. the physiological resting state of the neural network) by looking for
a self-consistent solution

un (t) = u (t − nX)
vn (t) = v (t − nX) ,

(2.8)

that corresponds to a wave propagating in the direction of increasing site num-
ber. The time interval X is the time displacement between two consecutive
neurons and it depends on the neuron dynamics. To obtain the relationship
between X and the other parameters, one should in principle study the equation

Y ¤u = u − u
3

3
− v + J (u(t + X) − u(t))

¤v = u + a,
(2.9)

with periodic boundary conditions u(t + T ) = u(t) and v(t + T ) = v(t) and
T = NX as the period. The bifurcations of (2.9) correspond to the bifurcations
of a traveling wave solution to the full ring of excitable neurons, and could
be obtained in principle by using a perturbation approach on the X parameter,
that has to be computed in a self-consistent way. On the other hand, since from
simulations (see Sec. 2.3) we observe that X cannot bemade arbitrarily small, so
the condition X � 1 that would justify a perturbative approach is not satis�ed.
A direct numerical solution of (2.9) is complicated by its advanced character
and we use the periodic boundary condition to get a delay di�erential equation.
Letting

g =T − X =T N − 1
N

, (2.10)
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the existence of a stationary periodic solution to (2.6), and equivalently to (2.9),
corresponds to a solution of a delayed di�erential equation (DDE)

Y ¤u = u − u
3

3
− v + J (ug − u)

¤v = u + a,
(2.11)

where ug = u(t − g) and g is the positive delay de�ned in (2.10). We shall see
that the limit N → ∞ corresponds to T → ∞ and X = T/N remains �nite so
that the stationary solutions tend to a soliton wave in the system (2.6).
A stationary state of period T for (2.6) is a solution of the DDE with g given
by (2.10), but, since no speci�c boundary condition is required in the solution
of (2.11), we cope with the problem of the existence of periodic solutions of
the DDE for a delay g when the coupling parameter J overcomes a critical
threshold for a given n . For |a | > 1 the �xed point (2.7) is a stable solution of
(2.11). Using a heuristic argument, one observes that for J = 0 the dynamics
is dissipative in the whole phase space, but the FHN system is able to create
an orbit that follows the stable branch of the nullcline and relaxes to the �xed
point, when the resting state is perturbed in a suitable way. If the perturbation
is applied at a given position along the nullcline near the resting state we can
create a periodic orbit with arbitrarily long periodsT . The pertubation ampli-
tude compensates the dissipation of the dynamics, but the average dissipation
along the orbit depends inversely on the periodT . If the average dissipation is
small (i.e. |a | − 1 � 1) and the parameter J is su�ciently large, the delayed
term J (ug −u) can induce a bifurcation in the phase space acting as continuous
perturbation, thus creating a stable and an unstable periodic orbit. IfT − g = X
is weakly dependent on the period, the study of this bifurcation phenomenon
in the DDE varying g implies the existence of stationary state for the neuron
loop (2.6) when T/X = N is integer. From the previous formulation of the
problem, both the single system dynamical parameters a, Y and the coupling
strength J will be the same across the two systems, whereas the relationship
between the delay time g and N is given by eq. (2.10). The dependence of
the periodic solution on the coupling parameter J has to be the same for both
cases.
The correspondence between the periodic solutions of the systems (2.6) and
(2.11) only refers to the solutions admissibility, their stability and the measure
of eventual attraction basins remains to be established.
We �nally remark that the existence of a self-consistent wave solution is a con-
sequence of the discrete character of the system and we shall see that we can
obtain one with a �nite period only for �nite N .
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2.2.1 | Stability problem of the stationary solution

The solution of the stability problem for the self-consistent wave solution
un (t) = u(t − Xn) , vn (t) = v(t − Xn) requires to study the linearized system

YX ¤un =
(
1 − u2(t −Tn/N )

)
Xun − Xvn + J (Xun−1 − Xun)

X ¤vn = Xun ,
(2.12)

where (Xun , Xvn) are small perturbations to the wave solution. Due to the peri-
odic dependence onT one can consider the Poincaré matrix of the system and
study its spectral properties. The stability property requires that for any choice
of the perturbation the linearized system has all eigenvalues with a negative real
part, so that the critical values of the parameters correspond to the existence
of an imaginary eigenvalue. If one considers (2.11) linearized at the periodic
solution u(t) , v(t), the equation for the periodic orbit’s stability is obtained, in
the form

YX ¤u =
(
1 − u2(t)

)
Xu − Xv + J (Xug − Xu)

X ¤v = Xu ,
(2.13)

and the periodicity of the solution to (2.11) allows us to look for a solution in
Floquet form

Xu = e_ tXū(t) , Xv = e_ tXv̄(t) ,
where _ ∈ ℂ is the Floquet exponent, corresponding to the Lyapunov exponent
of the Poincaré map, and Xū(t) , Xv̄(t) is periodic with periodT . Inserting this
form in (2.13) we get

YX ¤̄u = −_ Xū +
(
1 − u2(t)

)
Xū − Xv̄ + J (e−_ gXūg − Xū)

X ¤̄v = −_ Xv̄ + Xū.
(2.14)

These solutions correspond to the eigenvectors of the Poincaré matrix com-
puted at a given section ts ∈ [0,T ] with _ their associated eigenvalue. By
construction we have

Xū(t − g) = Xū(t +T/N ) , Xv̄(t − g) = Xv̄(t +T/N )

and if we set
Xun (t) = e_ tXū(t −Tn/N )
Xvn (t) = e_ tXv̄(t −Tn/N )

(2.15)

we get a solution for the system (2.12). Therefore, if (2.14) admits a periodic
solution Xū(t) withℜ(_ ) > 0 we have instability for the self-consistent wave so-
lution of the initial system (2.6). Since the stability of the origin of the Poincaré
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matrix implies linear stability for the self-consistent wave, the study of the peri-
odic solutions of (2.14) when _ varies allows to solve the stability problem, in an
approach reminiscent of the Master Stability Function framework, developed
for the synchronization of dynamical systems [75].

2.3 | Numerical simulations results

We have studied the relationship between the system (2.6) and the DDE
(2.11) by performing extensive numerical simulations. This approach has been
preferred since due to the combination of sti�, delayed and nonlinear charac-
ter of the system an analytical study of the parameter dependence and of the
stability properties of solutions is highly not trivial.

2.3.1 | Chain solution dependence on the parameter values

We explore the dependence of the wave solution features on the parame-
ters, in particular the number of neurons N and the coupling strength J . To
gain some insight into the character of the self-consistent solutions we study
the dependence of the wave speed on the coupling strength J for several val-
ues of size N . Since no explicit length scale can be identi�ed in the model, we
identify the wave speed as the inverse of the period, i.e. we �x without loss of
generality the length of the chain to unit. The simulation results are collected
in Fig. 2.2. Each of the selected system sizes displays the same value for the
lower threshold of the coupling, below which no stable wave solution exists. Re-
peating simulations with several other values of N , the critical coupling value
of J ≈ 0.05 appears to remain the same independently of the selected system
size. Above the critical value all the speeds start by growing concavely in func-
tion of the coupling and later settle into a roughly linear growth regime. An
interesting feature of the system is the disappearance of the wave solution for
too large values of J . This is clearly visible in the N = 100 and N = 325 plots
of Fig. 2.2, but has been veri�ed to happen, at larger values of J , for the other
values of N as well. By looking at the velocity in units of sites per unit time
in panel b of the Figure, we observe that at larger values of J the growth ap-
proaches a linear trend, of slope apparently common among the various chain
size values, despite the presence of an o�set which does not allow for a full su-
perimposition. Performing a linear �t on the trend for each value of chain size
we obtain the coe�cients reported in Table 2.1.

In Fig. 2.3 we plot the dependence of the period T of the ring wave so-
lution on the coupling strength J in a log-log scale, where we can see that as
N grows larger and for the greater values of J the trend generally adapts to a
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Figure 2.2: Panel a: self-consistent periodic wave speed as a function of J for sev-
eral values of the chain size N . From top to bottom N = 100 (blue), 325 (orange)
, 550 (green), 725 (red), 1000 (purple). Panel b: the same quantity multiplied by the
chain size N . From bottom to top N = 100 (blue), 325 (orange) , 550 (green), 725
(red), 1000 (purple). The dashed lines mark the linear �ts performed on the �nal 25%
of the curve for each value of chain size. In both panels the interruption on the right
end of the two lines N = 100 and N = 325 marks the disappearance of the wave
solution.

power law. A power law �t to the tail of the plot for N = 1000, reproduced
in Fig. 2.4, yields an exponent ≈ −0.84 pointing out the reasonable existence
of some �ner underlying trend with respect to the apparently linear growth ob-
served in Fig. 2.2. To interpret these �ndings we propose the following picture.
The lower coupling threshold is a consequence of the nonlinear nature of the
system: J plays the role of magni�cation/attenuation factor for the preceding
neuron signal, and as a consequence of the choice of the coupling increments
the linear dissipation by an extra Jun. In this context the lower critical value of
J can be interpreted as the minimal scaling which a spike from a FHN neuron
can undergo, while still eliciting a spike in an identical unit, provided that an
extra Jun dissipation is added to the driven unit. In light of this interpreta-
tion, also the linear trends in Fig.2.2 can be motivated. Indeed if we assume
that existence of the wave solution for a given J requires that input from each
preceding neuron rises to a su�ciently high level in a su�ciently short time to
produce a spike in its following neuron, doubling the value of J will intuitively
have the e�ect of halving the time it takes to reach said critical value. Since
the timescale of the fast dynamics is Y we expect that analogous phenomena
can take place when the latter is varied. From this discussion, and in the ab-
sence of scaling w.r.t. N in the coupling, it is apparent that the existence of
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N slope intercept

100 86.67 ± 0.08 12.87 ± 0.04
325 94.18 ± 0.03 31.55 ± 0.06
550 95.15 ± 0.02 47.06 ± 0.06
725 94.49 ± 0.02 64.76 ± 0.04

1000 94.75 ± 0.01 77.64 ± 0.02

Table 2.1: Values for the slopes and intercepts of the linear �ts to the plots in Fig. 2.2b.
The average slope value is 93 ± 3, where the uncertainty is attributed as the standard
deviation of the sample.

self-sustained site to site transmission of the neural pulse is a matter that en-
tirely depends on the satisfaction of local requirements at each of the links, but
does not depend on any global coordination e�ect in the solution. On the other
hand, the disappearance of the wave solution for high values of the coupling can
be justi�ed by considering the increasing trend of the wave speed w.r.t. J , such
that at some point the wave is too fast, and travels all the way around the ring,
trying to excite neurons which are still in a refractory phase, i.e. too far from
the �xed point to be displaced across the central nullcline branch by the spike
of an identical neuron, so that a spike cannot be elicited self-sustainedly any
longer, and the wave disappears. This picture could also explain how longer
chains can attain larger speeds before the solution disappears when w.r.t. to
shorter ones, even though at the same coupling value they always admit slower
waves in comparison, the proposed reason being that due to the lack of a nat-
ural spatial scale in the system, in chains with more sites the wave can reach
higher speeds without colliding with refractory neurons which cannot be ex-
cited yet. A relevant feature of the discussed self-consistent periodic wave is
that throughout its existence the stable �xed point of the system remains such,
as it would be expected with a directed Laplacian coupling, so that the observed
phase transition cannot be regarded as an Andronov-Hopf bifurcation of the
�xed point.

2.3.2 | Delay Di�erential Equation solution dependence on
the parameter values

In this paragraph we study the properties of limit cycle solution to the DDE
(2.11), versus the choice of parameters of the system J and g. In particular we
are interested in the existence of a sharp transition between a quiescent neuron,
and a fully active and continuously spiking one. To study these properties we
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Figure 2.3: Dependence of the period T of the ring solution on the coupling J for
several values of N in a log-log scale. The interruption of the N = 100 and N = 325
series on the right hand side of the plot indicates disappearance of the wave solution.
The values of N with the corresponding symbols are 100 blue triangles, 325 orange
crosses, 550 green dots, 725 red diamonds and 1000 purple stars.
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Figure 2.4: Dependence of the periodT on the coupling J for a chain of N = 1000
sites. The dashed line is a power law �t, with an exponent ≈ −0.84.



Numerical simulations results 31

simulate the system many times, varying J ∈ [0.2, 2] and g ∈ [0.5, 2] and
calculate the area of the limit cycle that appears in the system, when it exists.
In delayed systems the initial condition must be supplied as a function over the
interval [−g , 0] so to have a de�ned value for the delay term during the �rst g
of integration. Our choice for the initial condition is

iu (t) = −a +
1

√
2cf

e−(t−g/2)
2/2f2

iv (t) = −a + a3/3
(2.16)

which amounts to starting the system in its �xed point and providing a Gaussian
stimulus in the fast variable. The value of choice for the width parameter has
been set to f = 10−1. The results of this simulation are collected in Fig. 2.5.
For any �xed J we observe that there exists a minimal value of g below which
the limit cycle is not created, and above which the cycle sharply appears, and
a similar picture appears if we �x g , highlighting the existence of a minimal
critical J . Moreover we observe an increasing trend of the limit cycle area in
function of the delay for a �xed J , and an analogous increasing trend versus J
for a �xed g. The properties of the solution for delayed systems can in principle
depend strongly on the initial condition, due to the in�nite dimensionality of
the problem. To assess how much the properties of the initial spike in�uence
the solution we change normalization of the initial spike and parametrize it as
follows

iu (t) = −a + Ae−(t−g/2)
2/2f2

iv (t) = −a + a3/3
(2.17)

so that we can act independently on its width f and amplitude A. As in the
previous case, for each simulation we measure the value of the limit cycle area,
when one is created. We perform also in this case extensive simulations, the
results of which are collected in Fig. 2.6. The emerging picture is that both for
A and f there exist optimal values, for which the value of the other parameter
becomes unimportant. Our interpretation for the optimal value of A is that it is
the value for which the system starts out optimally displaced across the central
nullcline, far enough from the �xed point to elicit a spike, but not too far, where
the dissipative component of the dynamics would be dominant. Indeed, since
the selected value for the delay is g = 1, as f grows closer to 1 we are merely
giving the system a nearly constant input, but we are still able to reach the limit
cycle. We also observe the existence of a minimal f value, which reasonably is
the minimal duration that a pulse must have in order to generate a response in
the system. On the other hand, for the optimal f ≈ 0.1 range, the proposed
explanation is that in this interval we are feeding the system with pulses of a
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Figure 2.5: Phase diagram for the Delay Di�erential equation (2.11). The colour scale
indicates the area of the limit cycle. In the lower right corner of the heatmap, the
colour seems to suggest the existence of a limit cycle, but is in fact an artifact due to
long transients before relaxation to the �xed point. The parametrization used for the
initial spike is the one of Eq. (2.16).

similar duration to those that will appear in the limit cycle, in a sense putting it
in closer proximity to it w.r.t. other initial condition choices. In this context as
well, we observe a minimal A value below which, despite the optimality of the
pulse shape, the input is too low to cause any activity in the system. In addition
to these �ndings, we observe that whenever the limit cycle exists, there is hardly
any dependence of the actual value of the area on the system parameters. As it
is in the chain, the stable �xed point of the system (u∗ , v∗) is not destabilized by
the appearance of the limit cycle, so that an Andronov-Hopf bifurcation can
be ruled out in this case as well.

2.3.3 | Correspondence of the solutions

We compare numerically the self-consistent periodic solutions for the loop
of neurons with those of the single delay di�erential equation (2.11). To do so
we �x a number of neuronsN and check with a simulation for the existence of a
stable periodic solution of the system (2.6). If it exists we calculate its periodT
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Figure 2.6: Area of the limit cycle in function of the amplitude A and width f of the
initial pulse for equation (2.11) with J = 1 and g = 1.

bymeasuring the time interval between two consecutive crossings of a Poincaré
section. Then the relation (2.10) determines the delay time g to be inserted in
eq. (2.11) to get the corresponding periodic solution. In Fig. 2.7 we show some
examples of comparison between the continuous stable periodic solution of eq.
(2.11) and the self-consistent periodic wave solution of the neuron ring de�ned
by the neuron states at a given time.

We observe that the numerical solutions of the delay di�erential equation
interpolate perfectly the periodic solutions of the FHN neuron loop when the
parameters are varied, and that due to the sti�ness of the problem most of the
chain sites are on the nullclines of the system. We can also infer some qualita-
tive aspects of the limit cycle dependence on the system parameters. Namely,
raising the value of the coupling J makes the cycle thinner along the vertical
axis, this is easily noticeable e.g. comparing insets a) and b) or c) and d) from
Fig. 2.7. This observation suggests that in the context of the chain model the
wave solution speed is a non-decreasing function of the coupling J , causing the
system to close the cycle in shorter and shorter times as J is increased. Since
changing the system size N at �xedT amounts to changing the delay g in the
DDE, it is easy to match the a)→ c) or b)→ d) trend with the one observed for
�xed J in Fig. 2.5. Conversely, the apparently contrasting decreasing trend of
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Figure 2.7: Examples of the limit cycles of the delayed equation (continuous blue
line), and the chain sites (red crosses). Notice how the cycle area decreases with larger
couplings and increases with the number of neurons in the chain.
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the area from a) → b) or from c) → d) can be justi�ed by remembering that
when J is changed at �xed system size in the chain, the equivalent delay of
the DDE is in�uenced as well, through the dependence of T on J , therefore
in the phase diagram of Fig. 2.5 the equivalent displacement to an increase
of J in the chain is a diagonal motion to the right and down. We use a Gaus-
sian external stimulus for the delay di�erential equation and we let the system
relax to the attractive periodic solution, when it exists. In both cases the peri-
odic solution is a stable attractive state of the dynamics with a de�ned stability
basin. The numerical integration of the delay di�erential equation has been
performed using the RADAR5 [35–37] integration algorithm, which is specif-
ically built to integrate delay di�erential equation with a sti�ness character and
even algebraic di�erential equations. In Table 2.2 we report the numerical val-
ues of the two sides of eq. (2.10) obtained for the values of the coupling J and
N of Fig. 2.7, in these simulations the sti�ness parameter Y is �xed at 10−2.
We observe a reasonable accord between the r.h.s. and the l.h.s. of Eq. (2.10)
in the considered cases. The likely source of the small di�erences observed in
some cases reasonably lies in the di�erent attractivity of the solutions between
the DDE and the unidirectional chain, i.e. in a di�erent rate of convergence to
the limit cycle in the two cases.

N J T − g T/N
250 0.5 0.0134 0.0139
250 1.5 0.0057 0.0060
500 0.5 0.0125 0.0119
500 1.5 0.0053 0.0053

Table 2.2: Values of the phase di�erence between two consecutive chain sites and the
corresponding gap between the DDE solution period and the delay. The value of g
used to compute the second quantity is the equivalent delay as calculated via eq. (2.10).
All reported digits have been found to be stable across three orders of magnitude of
tolerance of the integrator.

On both sides of Eq. (2.10) there is an implicit dependence, viaT , on the
coupling strength J , therefore we can check their scaling versus the coupling.
In Fig. 2.8 we show the quantity T/N dependence on J , this amounts to the
time it takes for the wave to travel from a site to the following one. We observe
that all system sizes superimpose on each other for most of the plot, while for
N = 100 and N = 325 we observe a deviation from the power law behaviour
immediately before the disappearance of the wave solution. This can be inter-
preted as a slowdown of the wave due to the fact that its front is beginning to
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Figure 2.8: Dependence of the T/N site-to-site propagation delay on the coupling
strength J for several values of chain size N . The values of N with the corresponding
symbols are 100 blue triangles, 325 orange crosses, 550 green dots, 725 red diamonds
and 1000 purple stars.

encounter neurons earlier and earlier into their refractory phase.
We proceed similarly for the Delay Di�erential Equation, this time �xing

g while varying J . In Fig. 2.9 we plotT − g , the analogous quantity to T/N
for the delay system, which in this case can be interpreted as the advance of
the delay w.r.t. the �nal period of the solution. Also in this case we observe a
power law behaviour, this time with exponents ≈ −1.

2.3.4 | Sti�ness Dependence

In the whole of the preceding part of the chapter we kept Y = 10−2 �xed
but in principle the properties of the self-consistent wave/limit cycle solution
should depend on it, since it represents the reaction timescale of the system,
setting the time of O(Y) that it takes for the system to jump from a nullcline to
the other, and therefore to react whenever a su�ciently strong and sharp input
is provided. From the discussion of paragraph 2.3.1 we expect that decreasing
Y in the chain system (2.6) will have a similar e�ect on the global properties
of the solution as increasing J . On a single node the two scalings remain dis-
tinguishable, as decreasing Y forces the single node dynamics to adhere more
closely to the nullclines, while the J scaling has no such e�ect. Indeed we ob-
served in simulations that depending on the size of the system, there exists an
inferior critical Y below which the wave solution disappears in the same way as
it does for too large J , i.e. by becoming too fast and colliding with neurons that
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Figure 2.9: Dependence of theT −g gap on the coupling strength J for several values
of the delay g. The values of g with the corresponding symbols are 1 blue triangles,
1.5 orange crosses and 2 green dots. The dashed lines in corresponding colours are
power law �ts, all yielding an exponent ≈ −1.

are still too refractory. In accord with the picture proposed for J , the critical Y
decreases when the size of the system is increased, as larger rings make it easier
to accommodate faster waves. This behaviour is strikingly similar to what is ob-
served in tra�c models such as [69], where albeit originating from an explicit
delay term, a too short reaction time causes the wave solution to destabilize and
disappear. When studying the DDE, instead, we observe no disappearance of
the solution for small Y ≈ 10−12. This property makes it easier to study the
dependence e.g. ofT on Y, and indeed we can study the l.h.s. of (2.10)T − g
at �xed g and J by varying Y. We do so by performing extensive simulations,
reported in Fig. 2.10. Consistently with what we expect, we observe a power
law behaviour with a positive ≈ 1.14 exponent in function of Y.

2.4 | Conclusion

In this chapter we have discussed the properties of the traveling wave solu-
tions that appear in directed loops of excitable dynamical systems, whichmimic
the properties of biological neurons. By means of extensive and accurate simu-
lations, which were performed with methods suited to the intrinsic sti�ness of
the system at hand, we were able to �nd evidence that the self-consistent peri-
odic wave that appears in suchmodels does not arise as a consequence of aHopf
bifurcation of the system’s �xed point, which remains stable and that it is a phe-
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Figure 2.10: T − g gap dependence on the value on the sti�ness parameter Y, for the
Delay di�erential equation. The coupling and the delay were �xed at values J = 1.5,
g = 1. The dashed line is a power law �t, yielding an exponent ≈ 1.14.

nomenon without a natural length scale. More speci�cally for the trend of the
wave speed an explanation has been proposed in terms of the system nonlinear-
ity and proof has been found that the wave formation is a consequence of the
balanced interplay between the discrete nature of the system and the �nite re-
action timescale Y. We show that evidence supporting these arguments can be
obtained by examining the mechanism by which the wave disappears for large
coupling values and that an increase in the coupling is to an extent equivalent to
a reduction of the reaction timescale. This kind of interplay is similar to what is
observed e.g. in tra�c models [69], hinting to a possible degree of universality.
In addition, we are able to formulate an analogue setting in terms of a single
neuron Delay Di�erential Equation, which admits a stable limit cycle solution
for a certain set of parameters if and only if the chain admits a self-consistent
wave, and from which the self-consistent periodic solution can be easily inter-
polated. The mapping of systems and solutions is bidirectional so that given
the parameters of the DDE or of the chain, and the solution period, one is able
to calculate the parameters of the equivalent system. The DDEs constructed
through this procedure display a perfect correspondence of solutions with the
chain. The attraction basins, on the other hand, are observed to be di�erent
between the chain and the DDE, as it is expected since they are global features
of the system. Similarly, the dissipation rate of solutions approaching the self-
consistent periodic solution/limit cycle is found to greatly di�er between the
two systems, the chain being much quicker in relaxing to the self-consistent so-
lution than the DDE to the limit cycle. Furthermore, themapping to an in�nite
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dimensional system such as a DDE could in principle open up new approaches
to the study of the chain solution based on this analogy.

Appendices

2.5 | Numerical details

We gather in this appendix some details concerning technical aspects of the
simulations performed for this chapter. The simulations of the chain (2.6) were
performed through the Radau method routines [39] provided by the Scipy
package [94], with the initial perturbation being a Gaussian pulse in the fast
variable parameterized as follows

un (0) = −a + Ae−(n−`N )
2/2f2

N

vn (0) = a − a3/3
(2.18)

with `N = N/2, fN = 10−2N , A = 2. The integrator was set to operate with
a relative and an absolute tolerance of 10−4, and an initial timestep of 10−6.
All the speed and period values reported in Figures 2.2, 2.3, 2.4 and 2.8 were
calculated as follows. First the maximum of the wave pro�le, corresponding
to the rising wave front was located for each integration timestep. Then the
location values were mapped to a monotonically nondecreasing time series by
accounting for the periodicity of the system, and thus adding an N for each
revolution around the ring. Finally, the monotonic time series trend has been
�tted with a line versus time, so to obtain the wave speed as the angular coe�-
cient. To perform the linear regression Scipy [94] routines were used. All the
aforementioned simulations had a duration of 25 time units, which has been
deemed su�cient to let the transients relax in the chain systems.

The simulations for theDelayDi�erential Equation (2.11) were all performed
with the RADAR5 [35–37] integrator. Both the relative and absolute tolerance
of the integrator were set at 10−12, and the initial step size to 10−6. In Figures
2.5 and 2.6 the system was simulated for a time of 30g , the area of the limit
cycle being calculated from the average of the cycles present in the �nal 30%
of the trajectory. The detection and separation of cycles has been performed
by means of a Poincaré section in the form of a vertical line through the �xed
point. The calculation of areas has been performed via the well-known Sur-
veyor’s formula. In both Fig. 2.9 and Fig. 2.10, the simulation duration was of
100g for each instance of the system, the reason for the longer runs being the
attempt to mitigate the e�ect of transients �ner measurements. Periods were
calculated here as well by means of Poincaré section.
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For Fig. 2.7 there was again a need formitigation of transients so that a total
duration of 80 time units was selected for both the chain and the DDE simula-
tions. The isolation of the DDE limit cycle has been performed via Poincaré
section. Initial pulses were of the form (2.18) with A = 2.5 for the chain and
of the form (2.17) with A = 12.5 for the DDE. The reason for the larger pulse
in the DDE is that from our studies the delayed system appears much more
dissipative than the chain, so that even if a stable limit cycle exists, a too weak
initial pulse could be unable to push the system onto it.

2.6 | The RADAR5 integration algorithm

All the simulations involving DDEs in this chapter and in the rest of this
thesis, have been performed using the RADAR5 integration algorithm [35–
37], by Nicola Guglielmi and Ernst Hairer. The algorithm is designed for the
solution of initial value problems of the form

M ¤y(t) = f (t , y(t) , y(U1(t , y(t)) , . . . , y(Um (t , y(t))))
y(t0) = y0 , y(t) = g(t) for t < t0

(2.19)

where the real state variables y are arranged in a d dimensional vector, M is a
d × d dimensional real matrix, and we use the notation Ui (t , y(t)) ≤ t to indi-
cate that the value of the equation vector �eld can depend also on the state at a
di�erent time along the system orbit, and that the amount of delay or advance-
ment can in principle be time and state dependent. Many problems can be cast
in this form. For example, the matrixM could arise from the discretization of a
time-delayed Partial Di�erential Equation. The algorithm, in particular, does
not need to invert M , therefore avoiding the disruption of its sparsity pattern,
which can lead to problems due to small denominators or in general increase
the numerical overhead of the computation, in the case for example of very
large systems. M can also be singular, thus making the algorithm able to solve
also Di�erential-Algebraic problems. A class of equations, solvable by the al-
gorithm, is that of singularly perturbed problems, i.e. those problems where the
mass matrix takes the form

M =

(
I 0
0 YI

)
(2.20)

with Y � 1, which is clearly the case for the FitzHugh-Nagumo system. These
equations form an important class of so called sti� problems.

A clear de�nition of a sti� problem is di�cult to give, as an equation is
sti� in a strict sense only in relationship to a given algorithm. Nevertheless
in general a problem is referred to as sti�, if one or more algorithms yield
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numerically unstable solutions to it, unless a very small integration step is set.
Singularly perturbed problems, in particular, are sti� with respect to explicit
integration algorithms due to the separation of timescales, that can cause an
exponential magni�cation of approximation errors for �xed step schemes, or a
convergence of the step for variable step ones. Numerical integration schemes
can be categorized as explicit or explicit, depending on how the calculation of
the advanced state of the system is e�ected.

• In an explicit scheme, the state at a future time is calculated purely as a func-
tion of the present state and parameters, and of the system’s trajectory in
the case of DDEs. Schematically, for a single delay g

y(t + Δt) = F(y(t) , y(t − g)) (2.21)

The construction and choice of the form of F is an integral part of the
algorithm design process andmust be adapted to possible special require-
ments of the problem one is considering. Generally, these methods the
least computationally expensive, as an integration step requires a single
functional evaluation, up to the implementation of variable step control
strategies.

• In an implicit scheme the evolved state at a future time is found by solving
an equation, that in general can be nonlinear, depending on the features
of the system. Using the same notation of the previous example, we can
outline the procedure involved in performing an integration step as

G (y(t + Δt) , y(t) , y(t − g)) = 0 (2.22)

As in the previous case, the choice of G is a fundamental part of the al-
gorithm design. A step of this type of algorithms is more costly, as it
requires solving (2.22) in a general way, via numerical root �nding meth-
ods.

The suitability of one or the other type of scheme depends on the problem
one is solving. When one is confronting sti� problems, implicit algorithms are
more useful than explicit ones, as the additional time complexity entailed in
the execution of numerical root �nding routines for each step is often more
convenient than the abnormally small step that would be required by using a
�xed step explicit algorithm. RADAR5 is an implicit scheme, making it suited
to the solution of sti� and singularly perturbed Delay Di�erential Problems.
The algorithm itself is based on Radau methods, which are a family of fully
implicit Runge-Kutta methods. In particular, the code on which RADAR5 is
built originates from the well known previously developed routines RADAU-II
[95].



3 | A simple model for delay sta-
bilization of nonlinear dissipa-
tive systems

3.1 | Introduction

The presence of delay is ubiquitous in the description of natural phenom-
ena, and especially when one is considering coarse-grainedmesoscopic descrip-
tions of complex systems delays can make their appearance quite naturally in
physical models. A typical source of delay can be found, for example, when-
ever information exchange processes are modeled. Suppose e.g. that one is
studying a physical system that modi�es its current state in function of the state
itself. If processing the state information involves a series of tasks which take
a signi�cant amount of time with respect to the typical timescales on which
the system itself is operating, the function at a given time will depend on the
state the system had when the processing began, thus introducing an explicitly
delayed e�ect in the process. Some famous examples of this type of con�g-
uration can be found in biological systems such as erythrocyte homeostasis,
where the production of healthy red blood cells by the bone marrow can take
up to days since the detection of a low hematocrit. To model this feature of
the blood-bone marrow system, the well-known Mackey-Glass model [63] in-
cludes an explicit delay in the term representing the synthesis rate of new cells.
Chemical systems can also display delayed e�ects [27], due to �nite time trans-
port phenomena or �nite time reactions, in particular when complex processes
with intermediate byproducts are considered. Delayed e�ects are also typical
of technological applications, where systems are engineered to achieve speci�c
tasks or functions through carefully designed feedbackmechanisms, in such ap-
plications the processing time between state sensing and feedback actuation can
have relevant dynamical e�ects [91]. From a mathematical point of view if one
starts with a system modeled by an Ordinary Di�erential Equation (ODE) and
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introduces delay, a Delay Di�erential Equation (DDE) is obtained. A DDE is
formally a substantially di�erent object: it is an in�nite dimensional dynamical
system where a function should be provided as the initial condition. Among
the manifestations of the irreversible nature of time evolution in a DDE we
should account for the fact that the phase �ow is no longer a group, but rather
a monoid, since in general it may not be possible to construct the inverse for
a time-evolution transformation. Analogously, in the ODE phase space, the
DDE orbits may have intersections, as the existence and uniqueness theorem
is lifted to a functional space. In general the introduction of delay can have dra-
matic e�ects on the qualitative dynamics of a system, generating various types
of chaotic and pre-chaotic behaviour such as period doubling and intermit-
tences in otherwise regular systems [96], inducing bifurcation, or, conversely
to the �rst point, stabilize regular orbits in chaotic systems [8, 81, 82, 90].

In the previous chapter we have shown numerically that dynamical steady
states in a chain of excitable neurons correspond to limit cycles in an e�ective
DDE, which shares the non-delayed dynamics with the chain sites but has the
inter-site coupling term replaced with a delayed feedback. Additionally, we
have gathered numerical evidence that the bifurcation by which these limit cy-
cles are stabilized is a saddle-node bifurcation of limit cycles, whereby a pair of
closed one-dimensional structures in phase space are created, one stable and
one unstable, without altering the stability of the global �xed point of the sys-
tem, and thus giving rise to a multistable con�guration where the system orbit
goes toward either the stable cycle or the �xed point depending on the features
of the initial impulse.
Inspired by the theory of normal forms for dynamical systems in the vicinity of
attractors [16], in this chapter we formulate a simpli�ed model for the stabiliza-
tion induced by a delayed feedback in nonlinear dissipative systems. Starting
from an intuition gained in the study of the excitable FitzHugh-Nagumo sys-
tem, which spends a long time in the neighbourhood of the u nullcline during
its evolution towards the �xed point, we identify the presence of such a privi-
leged locus, in an average sense, as one of the key ingredients for this type of
bifurcation. By building a model with this feature directly in normal coordi-
nates, we are able to identify a further requirement, the skewness of the delayed
term coupling, as we are able to prove that diagonal feedback terms are unable
to stabilize limit cycles. Thanks to a couple very simple insights obtained from
numerical simulations, we are able to introduce an ansatz for the solution that
allows us to apply an averaging principle and some techniques from adiabatic
theory, which allow us to reconstruct the equation of the invariant manifolds
for small values of the delay coupling. Using this approach we are also able to
reconstruct analytically the limit cycle stability region in parameter space, and
draw analytical bifurcation diagrams showing the dependence of the limit cycle
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area as a function of the system parameters. To gain some insight on the reason
underlying the relative simplicity of the system’s stationary dynamics, despite
the formally in�nite dimension of the dynamical system, we perform a pertur-
bative expansion in terms of the di�erence between the natural period of the
system and the feedback delay, showing that at the �rst perturbative orders the
dynamical phase transition appears to be planar. The foremost contribution in
literature to the understanding of the e�ects of the introduction of an explicit
delay feedback in nonlinear systems is credited to Pyragas [81, 82], who formal-
ized the problem in terms of control theory for chaotic systems, where unstable
periodic orbits of arbitrary periods can be stabilized by a delayed feedback that
vanishes once the orbit is achieved. This approach has also been adapted to
study the synchronization of networks of delayed systems that do not necessar-
ily exhibit chaotic behavior [59]. While the Pyragas control scheme maintains
validity in a broad number of cases due to its generality, it assumes that the
period of the stabilized orbit will be equal to the delay time of the feedback, an
assumption that is justi�ed in chaotic systems displaying dense power spectra.
Our approach shows that the stabilization of quasi-invariant orbits in regular
systems revolves entirely around the existence of a small but �nite di�erence
between the orbit period and the delay, which the system can exploit to balance
the dissipation, in an averaged sense, over a full revolution along the cycle. We
conclude by applying the developed method to the FitzHugh-Nagumo system
in a spiraling regime where we are able to construct the normal coordinates in
proximity of the �xed point, con�rming the �ndings obtained on the simpli�ed
model. As a byproduct we collect signi�cative evidence of higher order e�ects
in the dissipation landscape of the FitzHugh-Nagumo neuron, which could
provide an explanation for the bifurcation observed in the use cases from the
previous chapter, when combined with a di�erent set of normal coordinates
which, at the time of writing, the author was unable to �nd.

3.2 | Normal form for isolated almost invariant or-
bits and model de�nition

The aim of this chapter is the formulation of a simple model that captures
all the relevant features of a delay-induced bifurcation of limit cycles in systems
that exhibit a nonlinear dissipation. To do so, we �rst construct a normal form
approach to systems that exhibit isolated almost invariant orbits. In particular
our approach to normal forms is based on their usage in perturbation theory
[17], within which they are used as a starting point to approximate more com-
plicated systems in the neighbourhood of an orbit or a domain of interest for
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the properties one is interested in studying.
A feature of the FitzHugh-Nagumo model is that the orbits spend a long time,
of order O (1) in the slow timescale, in the vicinity of the external branches of
the u nullcline, which is the locus in phase space where the time derivative of
u vanishes. This is a general aspect of the model dynamics for Y � 1, as it is
observed both for the stable limit cycle present in the system for |a | < 1 and for
the dissipative orbit of the |a | > 1 case. In particular in this latter case we can
refer to the external nullcline branches as to an almost invariant orbit, since the
system spends a long time in their vicinity, apart from the time of order O (Y)
which it takes to jump from the right to the left one, eventually approaching the
�xed point which lies on the nullcline itself. Even though our inspiration for
the model that follows was this aspect of the FitzHugh-Nagumo system, simi-
lar phenomena are quite general, as many nonlinear systems of interest show
quasi invariant structures in phase space, so that our discussion is valid in gen-
eral near any quasi invariant structure of a dynamical system. In the vicinity of
an elliptical point of a nonlinear dynamical system, a system of normalized co-
ordinates can be introduced, called Birkho� coordinates [16], in which closed
orbits are mapped into circles on which the system moves with a constant ve-
locity, casting the dynamical system in the form of a rotator. The same type of
transformation can be introduced near an attractive point, mapping dissipative
orbits that fall on the point to spirals of an underdamped rotator, governed by
the standard equations

¤q = lp − `q
¤p = −lq − `p.

(3.1)

where l > 0 and ` > 0 are respectively the imaginary part and the magnitude
of the real part of the original system’s linearization in a neighbourhood of the
�xed point. In this context, (3.1) is referred to as a normal form for the original
system in the neighbourhood of the �xed point.
In our case, we assume that by setting the origin of the normal coordinates
within the region delimited by the quasi invariant orbit, the orbit itself is cast
into a quasi invariant circle of radius

√
2Ī with Ī the value of the geometrical

action on the circle. Now, for consistency with the previous assumptions and
to encode the privileged nature of the quasi invariant orbit in phase space, we
modify the system by making the dissipation term nonlinear,but dependent
only on the geometrical action of the system, turning (3.1) into

¤q = lp − W (q , p) q
¤p = −lq − W (q , p) p,

(3.2)
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where W is the nonlinear dissipation which we set to

W (q , p) =
(
q2 + p2

2
− Ī

)2

+ ` =
(
I (q , p) − Ī

)2
+ ` Ī > 0

where I is the system’s geometrical action, and ` and l are the magnitudes of
the real and imaginary part of the eigenvalues of the original system, linearized
in the vicinity of the quasi invariant orbit. Notice that, because of the quasi
invariance, i.e. the fact that the original system spends a long time near the
quasi invariant orbit, we can assume ` � 1. This way, the simpli�ed system
reduces to a normal form approximating the original system in the vicinity
of the quasi invariant orbit only in the vicinity of the quasi invariant circle to
which the latter was mapped.

3.3 | Bifurcation study

3.3.1 | Self-consistent linearization and conditions on the feed-
back coupling

The dynamical e�ects of the introduction of a feedback in a dynamical sys-
tems can depend greatly on the type of coupling that is implemented. Letting
X = (x , y) denote the state vector of a dynamical system and f (X) the sys-
tem’s right hand side in absence of feedback, we will focus on feedback terms
that enter the system equations in the form

¤X = f (X) + YB (Xg − X) ,

where we denote with the subscript g the term Xg = X (t− g), Y > 0 a coupling
strength and B is a two by two coupling matrix with binary entries that can be
either 0 or 1. In this context, we distinguish two types of coupling:

• Diagonal, where the matrix B is chosen to be either of the following

Πx =

(
1 0
0 0

)
, Πy =

(
0 0
0 1

)
,

i.e. a projector on one of the two dynamical variables subspace,

• Skew, where the matrix is chosen among

Πxy =

(
0 0
1 0

)
, Πyx =

(
0 1
0 0

)
,

so that there is a mixing of the coordinates in the feedback term.
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In general we can prove that the only feedback able to stabilize a quasi invariant
orbit is of the skew type. To prove this, let us consider a system that has already
been linearized in the vicinity of the quasi invariant orbit, taking the form of a
damped oscillator, its equation will read

¤x = y
¤y = −l2

0x − `0y
(3.3)

where the subscript 0 indicates that the frequency and dissipation factor refer
to the system in its original coordinates. Provided that the system is under-
damped, we can cast it into normal coordinates via a transformation in the
form

T =

(
t 0
s t−1

)
,

which will map the x , y coordinates to the normal coordinates q , p and where
the free parameters are only two since the transformation is determined up to a
basis change and the mapping must be area preserving. In order to correspond
to its de�nition,T must solve the equation(

0 1
−l2

0 −`

) (
t 0
s t−1

)
=

(
t 0
s t−1

) (
−` l

−l −`

)
, (3.4)

where the frequency l is the imaginary part of the eigenvalues of (3.3) and `
is just a scaled counterpart of `0

` =
`0

2
, l =

√
4l2

0 − `0

2
(3.5)

so that the transformation maps (3.3) to the standard form of a damped rotator.
Solving (3.4) we get the matrix parameter values

t2 =
1
l

, s = − `
√
l

.

If the considered system has a diagonal feedback term, which we take without
loss of generality to be in the y coordinate, the mapping of the equations be-
tween the di�erent sets of coordinates will be

¤X =

(
0 1
−l2

0 −`

)
X + YΠy (Xg − X)

⇓

¤Q =

(
−` l

−l −`

)
Q + YTΠyT−1(Qg −Q) ,

(3.6)
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Where we have used the notation Q = (q , p) and the explicit form of the pro-
jector in the new coordinates is

TΠyT−1 =

(
0 0
−`/l 1

)
. (3.7)

Searching for a solution to the lower equation in (3.6) in the form(
q(t)
p(t)

)
=

(
q0
p0

)
exp(_ t)

we obtain the self-consistent secular equation

det
(

_ + ` −l
l + Y `

l

(
e−_ g − 1

)
_ + ` − Y

(
e−_ g − 1

) )
= _ 2 + 2`_ + `2 + l2 − Y_

(
e−_ g − 1

)
.

(3.8)

The birth of a repulsive structure between the quasi invariant orbit and the
origin is detected in the linearized system as a change of stability of the origin,
i.e. a purely imaginary exponent _ = iΩ. Setting this condition into (3.8) and
separating real and imaginary part, we obtain for the latter

2`
Y
= cosΩg − 1, (3.9)

which has no solution for positive Y. If, conversely, we perform the same cal-
culation for a skew system, we will observe simply a scaling of the coupling of
a factor l−1, further remaking that the translation into normal coordinates is
well posed only for a system with nonzero imaginary part of its eigenvalues.
These �ndings enable us to state that in systems that are approximated in the
vicinity of the quasi invariant orbit by an underdamped oscillator, said orbit
cannot be stabilized by a diagonal feedback. An analogous calculation shows
that also the introduction of a diagonal feedback in a system that is already in
normal coordinates is unable to stabilize the orbit. For these reasons, in the fol-
lowing we will consider a system with skew feedback, in particular one where
the q variable is fed into the p dynamical equation without loss of generality.

With these considerations in mind we propose as a normal form for a delay
induced bifurcation of limit cycles in nonlinearly dissipative systems the model

¤q = lp − W (q , p)q
¤p = − lq − W (q , p)p + Y (qg − q)

(3.10)
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where Y is the feedback coupling strength and W (q , p) is the previously intro-
duced nonlinear dissipation factor, in the form

W (q , p) =
(
q2 + p2

2
− Ī

)2

+ ` =
(
I (q , p) − Ī

)2
+ ` Ī , ` > 0

where we take ` � 1, Ī = O (1), and we have introduced the geometrical action

I (q , p) = q
2 + p2

2
.

The dynamical variables are taken to be evaluated at time t, the present time,
if no subscripts are present, while we use the notation

qg = q(t − g) , pg = p(t − g)

for the delayed variables, notating as g the feedback delay.
We study the system with the same self consistent linearized approach that

has been used previously to rule out diagonal feedback con�gurations. In prox-
imity of the quasi invariant circle we can approximate (3.10) by

¤q = lp − `q
¤p = −lq − `p + Y (qg − q)

(3.11)

so that the system is locally linear. By looking for a solution to (3.11) in the
form (

q(t)
p(t)

)
=

(
q0
p0

)
exp(_ t)

we can write the eigenvalue equation as

det (_ I − A(_ )) = det

(
_ + ` −l

l − Y
(
e_ (t−g) − 1

)
_ + `

)
= _ 2 + 2`_ + `2 + l2 − Yl

(
e−_ g − 1

)
= 0.

(3.12)

While in a linear system the existence of a closed orbit is granted only for an
exactly vanishing real part of the eigenvalues, i.e. at the point where the eigen-
values lie exactly on the imaginary axis, this may not be the case for nonlinear
systems. Indeed in systems such as the one currently under study, the increase
of the dissipation coe�cient for larger and larger values of I , grants that even
for a system that is locally expanding in the vicinity of the quasi invariant orbit,
such expansion will be balanced by the dissipation. This can also be argued for
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in topological terms: since the point at in�nity must remain repulsive because
of its diverging dissipation value, the birth of an expanding circular region wrap-
ping around the origin warrants the birth of an attractive structure around itself.
Substituting _ ↦→ iΩ at the critical point and separating the real and imaginary
part equations we obtain respectively

l2 + `2 −Ω2

Yl
= cosΩg − 1

2`Ω = −Yl sinΩg .
(3.13)

We reparameterise the delay g by setting

Ωg = 2c −ΩΔ,

where we de�ne Δ as the delay advancement, i.e. the amount of time by which
the feedback delay is shorter than the period of the orbit. With this de�nition
we can recast the previous equations as

l2 + `2 −Ω2

Yl
= cosΩΔ − 1

2`Ω = Yl sinΩΔ.
(3.14)

Since in numerical simulations we observe the critical value of Δ to be small,
we can expand these equations to leading order and combine them to obtain

Δc =
2`
Yl

(3.15)

Ω2
c =

l2 + `2

1 − 2`2/Yl
(3.16)

which are respectively lower critical value of the advancement for the appear-
ance of an orbit and the correction to the natural frequency of the system at
the critical point. Within our hypotheses ` � 1, Y , l = O (1) we see that
the correction to the frequency is relatively small, with the contribution due
to the feedback amounting to the −2`2/Yl term in the denominator. The be-
haviour of the dominant frequency of the orbits at the critical point is therefore
dominated by that of the original frequency l.
If we are interested in the behaviour of the eigenvalues for choices of param-
eters close to, but beyond, the critical point we can trace back to (3.12) and
set

_ = Λ + iΩ, Λ � 1

keeping only contributions at �rst order in Δ and Λ we get

Λ =
YlΔ − 2`

2 (1 + cYΔ) (3.17)
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for the scaling of the real part near the transition point, and

Ω2 = l2 + `2 + 2cY2lΔ − (2` − YlΔ)2
2(1 + cYΔ) (3.18)

for the correction to the frequency in a neighbourhood of the transition point,
so that the behaviour is once more dominated by the original frequency l. A
�rst test of the accuracy of this approach can be performed by �xing a value
` and checking that for �xed Y we have a stable solution only for Δ > Δc,
and analogously �xing a Δ and varying Y in order to move the critical value
Δc above or below the former. The results of such an experiment are shown
in Fig.3.1, where we observe that a limit cycle is born for Δ > Δc, around
the quasi invariant orbit. Moreover, we can see that the main e�ect on the
shape of the solution of the Y value is to a�ect the eccentricity of the orbit,
which for low values is quite circular. By looking at the system trajectories in
the time domain, we can gain additional insight. When the cycle is stabilized
an example of the typical behaviour is shown in Fig.3.2. The coordinate and
the momentum exhibit out of phase sinusoidal oscillation, corresponding to a
detuned version of the typical solution of a conservative harmonic oscillator,
with frequency close to l, the frequency of the normal form. Because of this,
the action appears to oscillate sinusoidally with double the frequency of the
coordinates with a small amplitude.

3.3.2 | Poincaré map and bifurcation diagrams

A saddle node bifurcation of limit cycles in a di�erential equation corre-
sponds to a saddle node bifurcation of �xed points in its Poincaré map. For
this reason, to detect the saddle node transition that gives birth to the stable
limit cycle that we observe, we aim to reconstruct the Poincaré map, approxi-
mately if necessary, and qualify its �xed points. To do so we write the dynamics
of the action from the dynamical equations of the system, and get

¤I = −2W (I)I + Yp (qT − q) . (3.19)

Due to the delay, we have a term in the equation that still depends on the coor-
dinates, which we would like to remove in order to obtain a one-dimensional
dynamical system that speci�es the dynamics of the action in terms only of
the action itself. Guided by the results of numerical simulations, we make the
following pseudo-elliptical ansatz1

q(t) =
√

2I sin (Ωt − U/2) , p(t) =
√

2I cos (Ωt + U/2) ,
1The curve used in the pseudo-elliptical ansatz is actually a special case of a Rhodonea of

Grandi, but we use the term pseudo-elliptical due to its resemblance to an ellipse for U � 1.
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Figure 3.1: Orbits of the system for parameter choices that yield qualitatively di�erent
result. The value of the base dissipation is ` = 10−2. The dashed orange line marks
the quasi invariant circle I (q , p) = Ī = 1/8.



Bifurcation study 53

3136 3137 3138 3139 3140 3141
t

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

q,
p

q
p

0.28

0.30

0.32

0.34

0.36

I

I

Figure 3.2: Representation in the time domain over a window 2c/l of the trajectory
of the simpli�ed system (3.10), for a choice of parameters ` = 10−2 , Y = 0.25, Δ =
0.5, corresponding to the top right quadrant of Fig.3.1. Coordinate values are read
on the left, action values on the right axis. The system has been evolved for a time
interval of 500 × 2c/l units in order to dissipate transients.
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and noticing that the �uctuation in the action along such a solution is

q2 + p2

2
= I (1 − sin U sin 2Ωt) ,

we immediately reparameterize

q(t) =
√

2I (1 − sin U sin 2Ωt) sinΩt , p(t) =
√

2I (1 − sin U sin 2Ωt) cosΩt ,

so to have an expression for the position and momentum in terms of a rota-
tion multiplied by an oscillating action. This allows us to rewrite the action
dynamics (3.19), yielding the form

¤I = − 2I (1 − sin U sin 2Ωt)
[
` +

(
I (1 − sin U sin 2Ωt) − Ī

)2
]

+ 2YI (1 − sin U sin 2Ωt) cosΩt (sinΩ(t − g) − sinΩt) .
(3.20)

Provided we are considering motion in a region of phase space relatively close
to the quasi invariant circle of minimal dissipation, i.e. where we can assume
` + (I − Ī)2 � Ω, so that we can treat I as a constant on time intervals of order
`−1, we can average (3.20) over a period Ω/2c [7], or equivalently along one
revolution around the origin, and get

2c
Ω
(In+1 − In) = −2

[
` +

(
In − Ī

)2
+ In sin2 U

(
3
2
In − Ī

)]
In

+Y
(
sin U sin2

(
Ωg

2

)
− sinΩg

)
In ,

(3.21)

where by In we indicate the average action during the n-th revolution around
the origin. The meaning of (3.21) is analogous to that of a Poincaré map, but
in an averaged sense, in the fact that it is a discrete dynamical system that maps
the average action during the n-th revolution to that during the n + 1-th, with
the important advantage with respect to the other descriptions of dynamical
system (3.10) that the dynamics is no longer delayed, so that to determine the
average action at the next iteration of themap only the previous value is needed.
Despite this dimensionality reduction the information about the e�ect of the
explicit delay in the original system is preserved, since g remains as a parame-
ter.
Fixed points of themap (3.21) correspond by de�nition to closed one-dimensional
invariant manifolds in the phase space of (3.10). From these considerations it
is easy to recover the equation for the attractors in phase space

Y

2

[
sin U sin2 Ωg

2
− sinΩT

]
= ` +

(
I − Ī

)2
+ I sin2 U

(
3I − 2Ī

)
, (3.22)
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which for the time being is underdetermined, since it is a single equation for
two variables I and U. To better compare it to the previous results we recast the
terms containing the delay g in terms of the delay advancement Δ = 2c/Ω− g ,
which yields

Y

2

[
sin U sin2 ΩΔ

2
+ sinΩΔ

]
= ` +

(
I − Ī

)2
+ I sin2 U

(
3I − 2Ī

)
. (3.23)

The geometrical interpretation of the parameter U is linked to the pseudo-
eccentricity of the pseudo-elliptical orbit, i.e. the quantity governing the amount
by which the orbit deviates from a circle. Since from numerical evidence we
expect that close to the critical point the orbit will be scarcely eccentric and
well approximated by a circle, we can set in �rst approximation U = 0 in (3.23),
simplifying the equation to

Y sinΩΔ = 2` + 2
(
I − Ī

)2
. (3.24)

At the critical point the stable and unstable limit cycle coalesce, de�ning an
invariant manifold with saddle node-like stability, i.e. attractive from one side
and repulsive on the other. This allows us to de�ne the critical point of the
bifurcation as the point where (3.24), interpreted as an equation for I , admits
two degenerate real roots I± = Ī . Imposing this condition we get the following
expression for the critical advancement

Δc =
1
Ω

arcsin
2`
Y

(3.25)

where Ω at this point remains undetermined, but in light of the �ndings of
the previous sections can be approximated near the transition as Ω ≈ l. If,
in addition to this, we expand the sinus in (3.24) for small Δ we recover the
familiar expression of the previous sections

Δc =
1
Ω

arcsin
2`
Y

→ Δc =
2`
Yl

.

By solving for I in (3.24) we can also �nd the equation for the action values of
the circular approximants to the invariant manifolds

I± = Ī ±

√
YΩ

2

(
sinΩΔ
Ω

− Δc
)

(3.26)

which can simpli�ed as well for Δ � 1

I± = Ī ±
√
Yl

2
(Δ − Δc). (3.27)
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Since they originate from a saddle node bifurcation, and both the origin and
the point at in�nity do not change their stability, we expect the innermost cycle
to be an unstable one and the outermost to be stable. By linearising the map
near the �xed points I±, working with U = 0, we �nd the Lyapunov exponent
in a neighbourhood of the �xed points

Λ± = 4
(
Ī − I±

)
I±

thus con�rming the intuition that I− is repulsive and I+ attractive and providing
grounds to expect a multiattractive behaviour, depending on the initial value
of the action I (t0) = I0. Indeed, in general, we expect to �nd that most of the
orbits with I0 > I+ will end up on the stable attractor from outside, that most
of those that start with I0 < I− will end up on the �xed point, and that in the
region I− < I0 < I+ we can �nd orbits that are attracted by the stable attractor
from inside. The statement is di�cult to make in a broader and more rigorous
sense due to the fact that technically the initial condition for a DDE is a func-
tion, and depending on how it is taken, some orbits with I0 > I+ could go to the
�xed point, or in general not adhere to the description we have just furnished.
Nonetheless, the reported behaviour was found in the great majority of simu-
lations that were performed. An example of the multiattractive behaviour can
be observed in Fig. 3.3.
To test the validity of (3.25) we perform extensive simulations. The �rst set of
results is displayed in Figures 3.4, 3.5, 3.6, 3.7 and 3.8 containing phase dia-
grams built from simulations and the transition line predicted by (3.25). The
general trend we observe is an increase in the minimal coupling strength re-
quired to stabilize the orbit for higher dissipations, which is expected from the
previously developed expressions and reasonable from a physical point of view,
as it corresponds to the gain that the system can exploit to recovery the e�ect
of the dissipation. On the other hand we observe a limited displacement of the
stable region along the Δ axis as, despite the tendency of the region to become
narrower for higher values of `, the value of Δ for which the minimal Y value
is able to stabilize the cycle does not move signi�cantly, except for large values
of `. As far as the accord with the analytical transition line is concerned, it
is observed to be good for the lowest dissipation values up to ` = 1 × 10−2,
while for higher values the prediction worsens, as it can be expected from re-
sults originating in an adiabatic approach. It is interesting to note although,
that for ` = 5×10−2, even though for the upper critical values of Δ the predic-
tion is quite lacking, the approximation remains reasonably good for the lower
critical value. For the highest dissipation value that was tested, ` = 10−1, the
prediction has already deteriorated much more. This is likely due to the loss
of applicability of the adiabatic approach on the one hand, and of the U = 0
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Figure 3.3: Three trajectories of the simpli�ed system: with I0 > I+ (blue), with I− <
I0 < I+ (orange) and I0 < I− (green). The continuous and dashed red lines represent
respectively the circular approximants to the stable and unstable invariant manifolds.
The solid black line marks the almost invariant orbit. The system parameters were
taken Y = 0.25, ` = 10−2 , Δ = 10−1 , l = 1, Ī = 0.125.

approximation on the other. The �ndings of this �nal section allow us to
construct an analytical approximation to the bifurcation diagram of the origi-
nal dynamical system, which allows to test the goodness of our prediction of
the attractor location in phase space, in terms of its corresponding action value.
The bifurcation diagram is displayed in Fig.3.9, where we observe a very good
accordance between the predicted value and the simulated one at the onset of
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Figure 3.4: Phase diagram for the simpli�ed system (3.10) with parameters ` =

10−3 , l = 1, Ī = 0.125. Colour scale represents the stable cycle action from sim-
ulations, the black line is the critical line predicted by (3.25).

the bifurcation for small Δ and ` (blue and orange plots), while there is a small
but noticeable undershoot at the upper critical value. For larger values of `
(green plot) we are overestimating also the action at the cycle appearance. As
a general trend the prediction gets worse whenever the observed pseudoeccen-
tricity, corresponding to the vertical width of the shaded area, gets larger. This
behaviour is quite expected, as our analytical formulae were all obtained in the
approximation U = 0, which ceases to be accurate when the orbit is remarkably
not circular anymore.
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Figure 3.5: Phase diagram for the simpli�ed system (3.10) with parameters ` =

5 × 10−3 , l = 1, Ī = 0.125. Colour scale represents the stable cycle action from
simulations, the black line is the critical line predicted by (3.25).

3.3.3 | Advancement perturbative expansion

An interesting feature of the system, observed in numerical simulations,
is that despite the formally in�nite dimensionality the system displays a very
simple dynamics. To try to make sense of this aspect we pose the question
of whether we can construct, perturbatively, planar dynamical systems that un-
dergo the same transition, i.e. that stabilize a cycle for a critical value of Δ,
equal to the one obtained in the previous section. From (3.25) we know that at
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Figure 3.6: Phase diagram for the simpli�ed system (3.10) with parameters ` =

10−2 , l = 1, Ī = 0.125. Colour scale represents the stable cycle action from sim-
ulations, the black line is the critical line predicted by (3.25).

the critical point, the stable orbit will lie onto the circle of minimal dissipation,
corresponding to the stabilization of the quasi invariant orbit. For this reason,
we neglect the nonlinear dissipation, keeping only the linear contribution from
the normal form in the vicinity of the almost invariant orbit

W (I) ≈ `. (3.28)
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Figure 3.7: Phase diagram for the simpli�ed system (3.10) with parameters ` =

5 × 10−2 , l = 1, Ī = 0.125. Colour scale represents the stable cycle action from
simulations, the black line is the critical line predicted by (3.25).

The equation then reads

¤q = lp − `q
¤p = −lq − `p + Y (qg − q) ,

(3.29)

From our previous treatment of the system in Section 3.3.1, we know that the
dominant contribution to the frequency of the stabilized orbit near the transi-
tion point is of order l. Our idea is then to expand the feedback term in a
series of the deviation between the delay and the, approximate, period of the
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Figure 3.8: Phase diagram for the simpli�ed system (3.10) with parameters ` =

10−1 , l = 1, Ī = 0.125. Colour scale represents the stable cycle action from sim-
ulations, the black line is the critical line predicted by (3.25).

orbit 2c
l
. The formal expansion reads

Δq ≡ qg − q =
∞∑
n=0

1
n!

dnq
dtn

����
t+ 2c

l

(
2c
l
− g

)n
− q ≡

∞∑
n=1

dnq
dtn

Δ

n!
. (3.30)

where in this Section we de�ne Δ = 2c/l−g , in accord with the approximation
Ω ≈ l.
With these de�nitions, truncations of (3.30) to any �nite order will furnish
ODE approximations to (3.10) with polynomial a polynomial dependence on
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Figure 3.9: Bifurcation diagram for the system (3.10) for di�erent values of the linear
dissipation: ` = 10−3 (blue), ` = 5 × 10−3 (orange) and ` = 10−2 (green). Solid lines
mark the analytical value of the action on the attractor. Dots mark the averages from
simulations, shaded areas indicate the oscillation of the action on the attractor. The
other system parameters were �xed at Y = 0.025, Ī = 0.125, l = 1.

Δ in the system matrix. We will consider the �rst two perturbative orders.

I order

At the �rst order the expansion (3.30) reduces to

Δq = (lp − `q)Δ

so that the linearised system becomes(
¤q
¤p

)
=

(
−` l

−l − YΔ` −` + YΔl

) (
q
p

)
≡ A1(Δ)

(
q
p

)
, (3.31)

where we have denoted the matrix of the planar approximant of �rst order with
A1(Δ). The stability of the origin is dictated by the eigenvalues of the matrix,
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which can be expressed in terms of its trace and determinant:

Tr A1(Δ) = −2` + YΔTl
det A1(Δ) = `2 + l2 > 0

_± =
1
2

(
Tr A1(Δ) ±

√
(Tr A1(Δ))2 − 4 detA1(Δ)

)
.

(3.32)

At the critical point, the birth of a stable cycle is signaled by the presence of a
pair of purely imaginary eigenvalues. Since the system parameters are real, the
condition for this to happen is that the tracemust vanish and the determinant be
positive. Since det A1(Δ) is positive by construction, the stability of the system
is determined entirely by the sign of the trace. By imposing a vanishing trace
condition we obtain the expression for the critical delay deviation at �rst order

Δ∗1 =
2`
Yl

. (3.33)

Interestingly we �nd Δ∗1 = Δc, so that the �rst order approximant �nds the exact
same transition point as the adiabatic methods or the self consistent lineariza-
tion. Analyzing the signs of the eigenvalues under a change of value of the pa-
rameters we are able to �nd two unilaterally unlimited sets on the Δ where the
cycle is stable. These are for Δ < 2(`−

√
`2 + l2)/(Yl) and for Δ > 2`/(Yl).

One could argue that negative values for Δ could be mapped to positive values
near 2c/l due to the the periodicity of the stable orbit but we have not investi-
gated further this line, as it is likely that the other limit is simply an unphysical
solution. Remapping (3.33) for delays through the de�nition of Δ we get

g∗1 ≤ 2
cY − `
Yl

, (3.34)

which is the delay below which we expect a stable orbit to be found.

II order

At the second order the expansion (3.30) reduces to

Δq = (lp − `q)Δ + Δ
2

2

(
−l2q − 2l`p + lYΔq + `2q

)
Notice that we could also solve this as an equation forΔq, but we are now choos-
ing to neglect the Δq in the expansion as it is a higher order term in ΔT . The
linearized system becomes(
¤q
¤p

)
=

©­«
−` l

−l + Y
[
Δ2

2
(
`2 − l2) − `Δ]

−` + Yl
[
Δ − `Δ2

]ª®¬
(
q
p

)
≡ A2(Δ)

(
q
p

)
.

(3.35)
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The trace and determinant read

Tr A2(Δ) = −2` + YlΔ − Y `lΔ2

det A2(Δ) =
(
`2 + l2

) (
1 + YlΔ

2

2

)
> 0

(3.36)

By the same argument used to obtain (3.33) we can determine this time a seg-
ment where a positive real part is obtained

1 −
√

1 − 8`2/Yl
2`

≤ Δ ≤ 1 +
√

1 − 8`2/Yl
2`

(3.37)

which for ` � 1 can be approximated

2`
Yl
≤ Δ ≤ 1

`
− 2`
Yl

(3.38)

thus recovering the same result that is obtained at �rst order and via the full
solution for the left limit. A comparison of the right limit with that speci�ed by
(3.25) may not be meaningful, in particular since for ` � 1 we obtain in the
perturbative expansion a small denominator. The remarkable fact that both
perturbative expansions in the limit of small ` match the value from (3.25)
could be interpreted as a piece of evidence that, at least at its onset, the delay
induced limit cycle bifurcation is actually a planar phenomenon, regardless of
the potentially in�nite dimensionality of the full dynamics. We remark though
that what has been found in this Section can be considered only a hint, as a full
proof of planarity of the transition would require to prove convergence of the
planar approximants order by order, for example by an iterative construction
of the spectral perturbation to a given order given by the addition of the next
one.

3.4 | Connection to the FitzHugh-Nagumo system

While the model proposed in this chapter is not usually considered per se
as representing any speci�c physical phenomenon, it was formulated to repre-
sent a large class of models in a simpli�ed way. In this section we intend to
trace back our steps to the model that inspired this approach, to check to what
extent the assumptions that we made on the necessary properties for the tran-
sition to be observed are actually met in the original systems. We consider the
FitzHugh-Nagumo model for neural excitability, parameterizing time in the
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fast timescale, and insert a delayed feedback in the fast variable

¤u = u − u
3

3
− v + J (ug − u)

¤v = Y (u + a) ,
(3.39)

where the parameters a and Y have the usual meaning considered in the rest
of this work, respectively of a dynamical parameter and a timescale separation.
We use the notation ug = u(t − g) for the delayed term and assume that in ab-
sence of subscripts the variables are considered at time t. We start by reverting
the Liénard transformation [62], we reobtain a second order ODE

¥u − (1 − u2) ¤u + Y (u + a) = 0. (3.40)

From this form of the equation we recover the close relationship between the
FitzHugh-Nagumo model and the Van Der Pol oscillator: indeed the former
corresponds to the latter in presence of a constant forcing of magnitude Ya,
which displaces the �xed point from the origin to u∗ = −a. We translate the
�xed point to the origin and return to a bidimensional system by performing
the coordinate transformation

x = u + a, y = ¤x ,

so to obtain an equation in the centered coordinates

¤x = y

¤y =
(
1 − a2 + 2ax − x2

)
y − Yx.

(3.41)

It is straightforward to observe that (3.41) admits a stable �xed point in the
origin, in the neighbourhood of which its linear approximation has eigenvalues

_± =
1
2

(
1 − a2 ±

√(
1 − a2

)2 − 4Y
)

, (3.42)

so that for |a | > 1 the �xed point is attractive. The value of Y from this point
of view regulates only the spiraling, for Y > (1 − a2)2/4, or otherwise over-
damped nature of the motion towards the �xed point. From this observation
we can draw the conclusion that for a diagonal feedback like the one we are
considering, in the spiraling regime we cannot have any stabilization as the sys-
tem is e�ectively a damped harmonic oscillator. Nonetheless, let us carry on
with the calculation, in order to explore whether at least we can �nd a quasi in-
variant orbit by casting the system in normal coordinates. The transformation
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matrix T mapping the normalized coordinates back to the centered ones can
be searched for in the form

T =

(
t 0
s t−1

)
,

as we already observed in the general case. For the FitzHugh-Nagumo neuron,
the de�ning equation ofT reads(

0 1
−Y 1 − a2

) (
t 0
s t−1

)
=

(
t 0
s t−1

) (
−` l

−l −`

)
, (3.43)

where the linear dissipation coe�cient ` and the frequency l are respectively
themagnitude of the real part and the imaginary part of the eigenvalues de�ned
in (3.42)

` =
a2 − 1

2
, l =

√
4Y − (1 − a2)2

2
(3.44)

so that the transformation casts the linear part of (3.41) to the standard form
of a damped rotator. Since for the above transformation to be well de�ned
the system eigenvalues in the vicinity of the �xed point must be complex and
conjugate, the following discussion will consider only the spiraling case Y >

(1 − a2)2/4. Solving (3.43) yields the transformation matrix parameters

t2 =
1
l

, s = − `
√
l

.

As expected, these parameters become singular as the system transitions from
the underdamped to the overdamped regime, signaling the failure of the coor-
dinate transformation. When the mapping from the normalized coordinates
q , p to the centered coordinates x , y is well de�ned, it reads(

x
y

)
=

(
l−1/2 0
−`l−1/2 l1/2

) (
q
p

)
. (3.45)

The delayed feedback term in (3.39) translates into (3.41) as a term JΠy (Xg − X),
with

Πy =

(
0 0
0 1

)
, X =

(
x
y

)
,

respectively the projector on the y component and the bidimensional vector
collecting the two centered coordinates. As the system is moved to Birkho�
coordinates, the linear part of (3.41) is cast to a standard damped rotator and
the feedback term is transformed via a standard matrix basis change

JΠy (Xg − X) ↦→ JT−1ΠyT (Qg −Q) =
(

0 0
−`/l 1

) (
qg − q
pg − p

)
,
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where analogously to the previous notation we have introduced Q = (q , p)
for the vector of normalized coordinates. From the form of the y subspace
projector in normalized coordinates it is evident that any diagonal y feedback
term originally present in the equation is mapped to a mixed term in normal
coordinates, of the form that will cause cancellations in the secular equation
that forbid the stabilization of the cycle, as observed in Section 3.3.1.
To check for the existence of a quasi invariant orbit, we study the action dy-
namics, and search for a minimum of the action dissipation. The point of min-
imum will mark the action value of the quasi invariant circle corresponding to
the almost invariant orbit mapped in normal coordinates. To build the aver-
aged Poincaré map in the action variable we write down the full system (3.39)
in normal coordinates, in the absence of feedback

¤q = lp − `q

¤p = −lq − `p +
(
2aq
√
l
− q

2

l

) (√
lp − `q

√
l

)
.

(3.46)

The equation for the evolution of the action is obtained from this one via a
direct calculation, and reads

¤I = −2`I − 2a`
l
q2p + 2aqp2 + `

l3/2 q
3p − q

2p2

√
l

. (3.47)

To study the dynamics of the action, and look for a quasi invariant circle we
�rst try to build the Poincaré map in a quasi-adiabatic approximation. The
quasi-adiabatic approximation [7] consists in approximating the nonlinear ac-
tion dissipation on the system orbits with its linear part, on times shorter than
the order l`−1, whenever the timescale of the dissipation is much longer than
that of the rotationmotion, i.e. if `/l � 1. We implement the quasi-adiabatic
approximation via an ansatz for the solution in the form

q(t) =
√

2Ie−`t coslt , p(t) = −
√

2Ie−`t sinlt ,

where we can see that the factor e−`t implements an exponential shrinking of
the areas over one revolution, dominated by the linear part of the system dissi-
pation. We remark that due to the noninvariance of the nonlinear dissipation
term in (3.47) under exchange of the coordinates, the rotation direction one
chooses in the ansatz for the construction of the map matters. Indeed the rota-
tion must be chosen coherently with what is observed in the full nonlinear sys-
tem. In our case, the orbits of the original FitzHugh-Nagumo system revolve
around the �xed point in a counterclockwise direction, but one must observed
that in passing from the u , v variables in (3.39) to the centered variables x , y in
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(3.41) we have reversed the rotation into a clockwise one, so that in normal co-
ordinates we must integrate in a clockwise direction. Furthermore, the choice
of the initial condition, i.e. of the Poincaré section, for the construction of
the map can yield quantitative, but not qualitative di�erences in the map itself.
For this reason we select, without loss of generality, an initial condition rest-
ing on the q axis, due to the better interpretability of the �nal map expression.
Substituting this form for the solution into (3.47) and averaging over a period
T = 2c/l, we recover the averaged Poincaré map for the FitzHugh-Nagumo
system in the vicinity of its �xed point in a quasi adiabatic approximation

In+1 − In
T

= −
[
2` − 12

√
2a`2

9`2 + l2
I1/2
n + 8`2 + l2

2
√
l

(
4`2 + l2

) In] In (3.48)

= −WI (In) In . (3.49)

The function WI , within square brackets in the �rst row, is the average action
dissipation over one revolution. Treating it as a second-degree polynomial of
the square root of the action, to check for the existence of a minimum we must
check for the sign of the coe�cient multiplying the I term, i.e. the quadratic
term with respect to

√
I . This term in the present case is

1
2
m2WI

m
√
I

2
=

8`2 + l2

2
√
l

(
4`2 + l2

) , (3.50)

which is a real and positive function for positive arguments, so that the quadratic
function of the square root is upwards concave and it always has a minimum.
Checking that the minimal dissipation value is also positive entails solving a
quadratic inequality with quite unwieldy parameters, therefore we check ex-
plicitly the shape of the function by evaluating it numerically. We set Y = 1
and using typical values of a we plot WI in Figure 3.10. We observe that for
all choices of a > 1 the WI function admits a minimum for positive I , while
for the Hopf bifurcation point a = 1 the function is a straight line, so that the
only minimum coincides with a root in I = 0. For the largest choice of a, that
is a = 1.4, we observe that the function crosses the x axis, a behaviour that in
general signals the appearance of an unstable and a stable �xed point, but in this
case is due to higher-order e�ects. To check this we can compute the Poincaré
map in the adiabatic approximation, i.e. taking the action to be exactly constant
on times of order l/`. The map in this approximation coincides at the �xed
points with the full Poincaré map of the system, so that any physical closed or-
bits of the full system would be detected already in this simpler approximation.
We implement the adiabatic approximation with the choice of solution

q(t) =
√

2I sinlt , p(t) =
√

2I coslt.
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Figure 3.10: Plot of the WAI (dashed lines) and WI (solid lines) functions for some typical
values of the dynamical parameter a, a = 1 (blue), a = 1.1 (orange), a = 1.2 (green), a =
1.3 (red) and a = 1.4 (purple). The timescale separation is �xed at Y = 1 throughout
to ensure the well-posedness of transformation (3.45).
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Substituting it into (3.47) and averaging over a period T = 2c/l we get the
map

In+1 − In
T

= −
(
2` + 1

2
√
l
In

)
In = −InW (In)AI , (3.51)

so that isolating the nonlinear dissipation function WAI (I) that multiplies −In in
the adiabatic approximation it reads

WAI (I) = 2` + 1
2
√
l
I (3.52)

which has the shape of a straight line and is always positive, so that nominimum
of the dissipation exists, apart from the origin. If the roots of WI , observed in
Fig. 3.10 for a = 1.4 were physical, they should also be roots of WAI , but the lat-
ter function admits none, except for the degenerate case a = 1, where the two
approximations coincide. From this comparison, and from numerical simula-
tions, we conclude that for larger values of a higher order terms become more
relevant and introduce unphysical equilibria in (3.48), yet leave the convexity
unmodi�ed.
Since for values of a ≈ 1.3 the dissipation function WI appears to have a well de-
�nedminimum for a positive I , we check qualitatively with simulations whether
a skew feedback is able to stabilize a cycle, in the underdamped regime with
Y > (1 − a2)2/4. We consider the equation

Y ¤u = u − u
3

3
− v + J (vg − v)

¤v = u + a,
(3.53)

which di�ers from (3.39) only in the coupling scheme. The initial condition, a
function (u0(t) , v0(t)) : [−g , 0] → ℝ2, in this case is provided in the shape of
a Gaussian pulse centered on the �xed point, in the form

u0(t) = −a

v0(t) =
a3

3
− a + A

√
2cf

e−(t−g/2)
2/f2

,

Performing some simulations with a = 1.3, Y = 0.5, g = 4.5, J = 1, f =

5 × 10−2, two examples of which are represented in 3.11, we can observe that
depending on the magnitude of A we can either end up on a limit cycle or back
on the �xed point, a behaviour corresponding to that observed in the simpli�ed
model (3.10) in Fig.3.3. An important di�erence with respect to the simpli�ed
model, although, is that the limit cycle in (3.53) does not wrap around the �xed
point, a feature that carries over to the system in the overdamped regime as we
have extensively observed in the previous chapter.
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Figure 3.11: Two trajectories for the FitzHugh-Nagumo system with skew delayed
feedback. Limit cycle (blue line) obtained for a magnitude of the initial pulse A = 1,
dissipative orbit (orange) for a magnitude A = 10−1. The remaining parameters were
set to Y = 0.5, a = 1.3, J = 1, g = 4.5. Width of the initial pulse f = 5 × 10−2. The
dashed lines are the nullclines of the u variable (green) and v variable (red).

3.5 | Connection to networked systems

Since in the previous chapter we introducedDelayDi�erential Equations as
e�ective models for directed loops of dynamical systems, we would like to trace
back our steps to that setting, in order to �nd out what dynamical behaviours
can emerge when we consider a directed loop of simpli�ed systems. In partic-
ular we concern ourselves with the types of state that can emerge in a chain of
systems like (3.10), and their similarity to stationary states of the DDE. We
consider the system

¤qn = lpn − W (qn , pn)qn
¤pn = −lqn − W (qn , pn)pn + Y (qn−1 − qn) ,

(3.54)
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Figure 3.12: Oscillating stationary state for the nonlinear oscillators chain. For each
oscillator only the q variable is displayed. Single system parameters were taken to be
identical between di�erent nodes, and set to l = 1, ` = 10−2 , Y = 10−1. The chain
size is N = 10.

where the nonlinear dissipation depends only on the node’s dynamical variables
through the action, in the usual form

W (qn , pn) = ` +
(
q2
n + p2

n

2
− Ī

)2

,

and the index n runs from 1 to N , the size of the system, and we identify
N + 1 = 1, implementing periodic boundary conditions. By performing sim-
ulations, we see that such a system can express stationary states analogous to
those of the simpli�ed nonlinear oscillator (3.10) with delay. For example, con-
sidering a chain of N = 10 nodes, we can see that an oscillating stationary state
exists, of which we display a snapshot in Fig. 3.12. Plotting the coordinates
of all the chain nodes at the same time in phase space, we get Fig. 3.13, show-
ing that the systems likely interpolate the trajectory of a DDE, analogously to
what was seen in the previous chapter for the FitzHugh-Nagumo unidirectional
chain. An important di�erence with the FitzHugh-Nagumo chain rests in the
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Figure 3.13: Depiction in phase space of the states of the nodes of the nonlinear oscilla-
tor chain for the same collective state and system parameters of Fig. 3.12. The black ar-
rows mark the directionality of couplings, pointing from the driver to the driven node,
the number one marks chain site number 1, to allow comparisons with Fig. 3.12. The
red arrow points in the systems rotation direction. The dashed orange circle marks the
quasi invariant circle for the node dynamics.
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Figure 3.14: Snapshot of the chain for the same single node parameters of 3.12. The
chain size has been changed to N = 15, so that the system displays 2 oscillations along
the whole chain.

fact that while the neurons have no natural period, so that a scaling of the so-
lution periodT ∝ N is observed, the simpli�ed nonlinear oscillators have one.
This means that considering the same choice of single system parameters of
Figures 3.12 and 3.13 but changing the number of nodes we expect to observe
compromise stationary states displaying di�erent numbers of full oscillations
along the length of the chain. Some examples of this behaviour are displayed
in Figures 3.14 and 3.15. From the performed simulations, we expect the
number of oscillations to be determined by an interaction of the single systems
properties and the chain size, although further investigation is required to de-
termine this analytically. In addition, more complicated states including long
transients and beats have been observed and require further study, in particular
in regard to their link to states of the delayed system.
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Figure 3.15: Snapshot of the chain for the same single node parameters of 3.12. The
chain size has been changed to N = 18, so that the system displays 3 oscillations along
the whole chain.
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3.6 | Conclusion

In this chapter we have formulated a simpli�ed model to capture the essen-
tial features of delay induced saddle point bifurcations of limit cycles. By work-
ing with a normal coordinate model in standard form we are able to address
a great number of problems with a uni�ed approach, as our model essentially
represents a whole class of systems that exhibit quasi invariant orbits, i.e. have
a one dimensional locus in phase space that is privileged during the system’s
time evolution. Indeed, provided that a system of such features can be set in
normal coordinates, it will reduce into the system we have considered at least
in the vicinity of the quasi invariant manifold. From this point of view the pro-
posed model could be regarded in itself as a normal form for the limit cycle
stabilizing transition. A necessary condition is formulated with respect to the
feedback coupling scheme, which is required to be skew, i.e. to mix the coor-
dinates, since diagonal feedbacks are shown not be able to stabilize the quasi
invariant orbit due to cancellations. The bifurcation diagram is drawn using
an averaging argument to approximate the location of attractors thanks to an
ansatz on the shape of the stable solutions. Furthermore, constructing planar
approximations to the full delayed dynamics, we are able to show that at the two
lowest perturbative orders the stabilization transition is planar, so that no role
is played by the in�nite dimensionality of the system, a typical behaviour of
complex systems, observed ubiquitously in applications. Retracing the steps to
the original problem of the stabilization of an orbit in the FitzHugh-Nagumo
system, we show that the system possesses a quasi invariant orbit by building
the dissipation function for its averaged Poincaré map in normal coordinates,
so that despite being unable to explicitly construct normal coordinates for the
Y � 1 case, we suppose that the underlying mechanism should be the same as
that we are able to observe explicitly in a case with Y not too small and for a
skew feedback. In particular we conjecture that the necessary skewness is intro-
duced during the transformation to a set of normal coordinates centered within
the limit cycle of the Y � 1 case, through a variable change which is generally
di�erent from the standard one considered in the chapter. Finally, we show
that in a unidirectional chain of such simpli�ed systems, states can exist that
are reminiscent of the correspondent DDE. Despite this, in the chain system,
also more complex states are observed, requiring a more careful examination.

Possible prosecutions of this research would mainly entail extending this
analysis to systems that do not express an intrinsic oscillatory dynamics, but
are very close to doing so in the sense that a minimal periodic perturbation can
create one. These systems have a strong dependence of the expressed period on
the feedback delay, like in the excitable FitzHugh-Nagumo neuron, and cover
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many examples relevant in Complex Systems Physics. From a more technical
point of view, a relevant step will be the more careful analysis of the pseudo-
elliptical ansatz used to construct the averaged Poincaré map, in order to de-
termine the dependence of the pseudoeccentricity on the system parameters,
possibly through an approach based on the comparison of equivalent Poincaré
maps. In the perturbative treatment, a full proof of planarity would require to
extend our considerations, which were made at the �rst two orders, to an arbi-
trary order of perturbation, which generally can be attained via a recursive or
inductive approach. A full comprehension of the unidirectional chain dynam-
ics should go through the independent analytical characterization of the system,
so that an explicit comparison of the solutions and of the bifurcations can be
performed, in particular with regard to the mentioned complicated states ob-
served in the extended system.

Appendices

3.7 | Generality of the skewness condition

In the chapter we have stated that in system (3.10) the feedback term can be
taken to feed qg − q into p without loss of generality. We show in this appendix
that choosing a skew coupling with pg − p feeding into q produces an analogous
bifurcation. Let us consider, in analogy with (3.10), the following DDE

¤q = lp − W (q , p)q + Y (pg − p)
¤p = −lq − W (q , p)p,

(3.55)

where the nonlinear dissipation W is taken in the same form of (3.10).In a neigh-
bourhood of Ī the system reduces to a linear one

¤q = lp − `q + Y (pg − p)
¤p = −lq − `p,

(3.56)

so that we can study its local stability properties with a self-consistent secular
equation, which we write by looking for a solution to (3.56) in an exponential
form and imposing a vanishing determinant. We get

det (_ I − A(_ )) = det

(
_ + ` −l − Y

(
e_ (t−g) − 1

)
l _ + `

)
= _ 2 + 2`_ + `2 + l2 + Yl

(
e−_ g − 1

)
= 0.

(3.57)
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Setting _ = iΩ at the bifurcation point, and separating into real and imaginary
part we get

l2 + `2 −Ω2

Yl
= 1 − cosΩg

2`Ω = Yl sinΩg .
(3.58)

We introduce the delay advancement consistently withwhat was done in Sec. 3.3.1in
order to compare straightforwardly the two results.

Ωg = 2c −ΩΔ,

The previous equations become

l2 + `2 −Ω2

Yl
= 1 − cosΩΔ

2`Ω = −Yl sinΩΔ.
(3.59)

Expanding at leading order we �nd the critical values

Δc(p) = −
2`
Yl

(3.60)

Ω2
c(p) =

l2 + `2

1 + 2`2/Yl
. (3.61)

A comparison with those obtained in Sec. 3.3.1 shows the relationship

Δc(p) = −Δc

Ω2
c(p) =

Yl − 2`2

Yl + 2`2
Ω2
c ,

so that we canmap one bifurcation into the other with a reversal of the coupling
strength Y → −Y.



4 | Inter-spike time and �ring rate
estimates for a noisy FitzHugh-
Nagumo neuron

4.1 | Introduction

The available models for neural excitability are mainly formulated in terms
of highly nonlinear di�erential equations [46, 48] or nonlinearmaps [87], in or-
der to replicate the rich and complicated behaviour of membrane potentials in
neural cells. Despite being unavoidable, this nonlinearity can make such mod-
els quite di�cult to study and interpret, especially when they are considered
in a networked context, which is the natural setting required by neuroscienti�c
applications. Furthermore, whenever one is considering real world applica-
tions, or the e�ect of randomly �uctuating inputs, a degree of stochasticity has
to be included in the model, which can have a highly nontrivial interplay with
the nonlinear dynamics. Considering in particular the FitzHugh-Nagumo neu-
ron, which so far has been our model of reference for neural phenomena, the
inclusion of noise collocates the problem in the branch of stochastic analysis
concerned with the study of stochastic slow-fast systems. This matter has been
investigated in recent years due to its wide range of applications, that spans fur-
ther than neural systems into problems from solid state physics and climatol-
ogy, with some important formal contributions given in [12, 13], and a speci�c
approach to the FitzHugh-Nagumo neuron [14]. The results in the �rst two
works apply to the FitzHugh-Nagumo neuron in a qualitative sense, so that
depending on the temperature value two phases are distinguished, of rare ver-
sus frequent �ring. In [14], a topological approach is formulated, based on the
number of windings that the orbit completes around the �xed point between
two �ring events. In neither case an inter-event time distribution is derived,
which is the �rst aim of the present chapter.
We derive an expression for the inter-event time distribution based on an adap-
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tation of Kramers escape rate theory to systems with an event-triggered slow
modulation of the potential wells. While the approach is derived from �rst
principles, the expression is found to match simulation values only upon re-
gression on the rate parameter, supposedly due to the emergence of correla-
tions as a side e�ect of the interdependence between the evolution of the two
variables. The relevance of this distribution rests in the fact that, together with
its average, i.e. the reciprocal of the �ring rate, it represents one of the most
easily measurable quantities in actual neuroscienti�c measurement campaigns.
The second problem addressed in this chapter is the formulation of a simpli�ed
discrete model that can reliably reproduce the statistics of a noisy FitzHugh-
Nagumo neuron. This is done by interpolating discretely the rate function
obtained by the previous analysis and turning it into a suitable transition prob-
ability for a binary system with states interpreted as �ring or non-�ring events.
We then develop a minimal coupling scheme to allow the implementation of
dynamical networks, and discuss its applicability. The latter is in principle the
end goal of the whole chapter, as the formulation of a simple and interpretable
yet realistic model for dynamical neural networks can pave the way to new the-
oretical and numerical approaches to information theoretical investigation of
neural phenomena at the micro and mesoscale. Indeed, despite some contri-
butions [51, 84], even the core concept of channel capacity remains to be fully
elucidated with respect to neural communication mechanisms, especially if one
tries to move beyond a purely descriptive statistical point of view, an important
step in the exploration of neural encoding strategies.

4.2 | The Stochastic FitzHugh-Nagumo model

We consider a FitzHugh-Nagumo neuron under the e�ect of an additive
white noise

¤u = u − u
3

3
− v +

√
2T b

¤v = Y (u + a)
(4.1)

with b a white noise with zero mean and autocorrelation given by

〈b (t)b (t + g)〉 = X (g) ,

u the fast variable, v the slow variable and a a dynamical parameter. The sepa-
ration of timescales is determined by the factor Y which speci�es that the evo-
lution timescale of the slow variable is Y−1 times slower than that of the fast
one. Notice that (4.1) as it is written, corresponds to a unit choice for time
where the fast dynamics is observed on a scale O(1) and the slow one on a scale



The Stochastic FitzHugh-Nagumo model 82

O(Y−1). For this reason, (4.1) will be referred to as the equation in the fast time.
In order to �nd the correct transformation to slow time units, i.e. such that u
evolves in time O(Y) and v in time O(1), we �rst write down (4.1) in the form
of a Stochastic Di�erential Equation

du =
(
u − u

3

3
− v

)
dt +
√

2TdWt

dv = (u + a) Ydt ,
(4.2)

where the separation between the stochastic and deterministic terms is made
more clear, and dWt is the di�erential of a Wiener process, i.e. an uncorrelated
Gaussian random noise with mean and variance given by

〈dWt〉 = 0, 〈dW 2
t 〉 = dt.

so that the overall variance of the noise term will be 2Tdt, which has the same
order Y0 of the deterministic evolution of the variable to which it is applied.
When one performs the scaling t ↦→ Y−1t, to pass from fast to slow time units,
the naif transformation of (4.2) would be

du =
(
u − u

3

3
− v

)
dt
Y
+
√

2T
Y

dWt

dv = (u + a) dt ,
(4.3)

but this would yield a scaling of the overall variance 2TY−2dt. For consistency
therefore the temperature must be scaled according to T ↦→ YT when one
switches time scale. The overall scaling therefore reads

t ↦→ Y−1t
T ↦→ YT ,

(4.4)

For ease of usage we can also map back this scaling on the original equation
with the white noise (4.1), obtaining

Y ¤u = u − u
3

3
− v +

√
2YT b

¤v = u + a,
(4.5)

which will be referred to as the equation in slow time. Regardless of the chosen
time scale, the equation admits a �xed point atT = 0 in (u∗ , v∗) = (−a, a3/3−
a), which is stable for |a | > 1 and unstable for |a | < 1, since at the point
|a | = 1 the system undergoes a Hopf bifurcation. Through the usage of a
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stochastic Runge-Kutta method of order 4 we can simulate the system (4.1)
and compute several quantities of interest. The most relevant in real-world
neuroscienti�c �eld measurements is the inter-spike interval (ISI) distribution,
i.e. the probability distribution of the time elapsed between subsequent �rings
of the neuron. An equivalent quantity, more common in physics, would be
the �ring rate, i.e. the rate with which units transition from the quiescent to
the �ring state, which clearly corresponds to the inverse of the ISI, at least
on average. As it can be expected, running simulations for di�erent values
(Fig.4.1) of temperature we can see that higher temperatures correspond to
higher rates, and correspondingly lower ISI. The relationship between the rate
and the temperature is not trivial though, because for very high temperatures
the rates begins to growmore and more slowly, representing the point at which
the noise starts to interact with the refractoriness of the system.
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Figure 4.1: Time series of the u variable for the noisy FitzHugh-Nagumo neuron (4.5).
Noise temperatures are set to the following values from top to bottom and from left to
right: T = 5× 10−3 , T = 10−2 , T = 2.5× 10−2 , T = 5× 10−2. The other parameters
are set to a = 1.3, Y = 10−2.
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4.3 | Estimation of the �ring rate and of the Inter-
spike Interval distributions

To try and understand analytically the dependence of the �ring rate on the
system temperature, we try to approach the problem using the framework of
the Kramers escape rate problem [55]. Such framework is concerned with an-
alytically estimating the rate with which a particle trapped on one side of a
generic double well potential and subject to a white noise, will jump to the other
well, or more precisely with the estimation of the current with which an ensem-
ble of point particles injected into one of the wells transitions to the other under
the action of the noise.
A generic unidimensional Smoluchowski equation for a particle moving over-
dampedly under the e�ect of a potentialV (x) and an uncorrelated white noise
b with temperatureT reads

¤x = −dV
dx
+
√

2T b , (4.6)

where x denotes the position of the particle. The Kramers problem can be
formulated e.g. if we takeV (x) in the shape

V (x) = ax
4

4
+ bx

3

3
− cx

2

2
,

which is a classical asymmetrical double well potential, which becomes sym-
metrical for b = 0. In general it admits three critical points

x± =
−b ±

√
b2 + 4c
2

, x0 = 0,

where x± are stable equilibrium points for the dynamics (4.6) and x0 is an un-
stable point marking the maximum of the potential barrier separating the two
wells. Let us consider an ensemble of particles with dynamics ruled by (4.6),
that are inserted in the system in the vicinity of x− at thermal equilibrium. The
Kramers formula for the average rate at which they will cross over to x+ is given
by

k−→+ =
l0l−

2c
e−VΔV , (4.7)

where V = 1/T is the usual inverse of the temperature used in Statistical
Physics, ΔV is the height of the potential barrier

ΔV =V (x0) −V (x−) ,
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and l− , l0 are the values of the potential function curvature at x− and x0, i.e.

l− =

√����d2V
dx2
(x−)

����, l0 =

√����d2V
dx2
(x0)

����, d2V
dx2

= 3ax2 + 3bx − c.

From (4.7) we understand that the Kramers approach provides a correction
based on the curvature of the potential at the critical points to the exponential
Arrhenius factor. The transition rate is exponentially suppressed by the barrier
height, with respect to which the temperature acts as a scaling, so that transition
is facilitated for higher temperatures.

4.3.1 | Kramers approach for a frozen FitzHughNagumo neu-
ron

Our�rst step towards an approach based onKramers theory to the FitzHugh-
Nagumo neuron will be the study of the fast dynamics of a unit in the Y → 0
limit. By considering the equation in fast time (4.1), and taking the limit we
obtain the following Smoluchowski equation

¤u = u − u
3

3
− v +

√
2T b , (4.8)

where it is important to notice that the equation for the v dynamics in (4.1)
becomes just ¤v = 0 in the limit, and so v enters (4.8) not as a dynamical variable
but as a parameter, its value needing to be �xed a priori, possibly depending
on the point during the full system (4.1) orbit at which the limit is considered
to be taken. In (4.8) we can interpret the force term as originating from a
unidimensional potential that reads

V1(u; v) =
u4

12
− u

2

2
+ vu , (4.9)

plotted in Fig. 4.2, with a purely parametric dependence on v, so that in no
circumstance it can be considered a potential for the full system. Nonetheless,
these considerations allow us to treat the fast dynamics of the neuron in the
limit of an in�nitely slow v dynamics, as that of a point particle in a double well
de�ned by potential (4.9) under the action of a noise. We refer to this system
in the Y → 0 as to the frozen neuron, as we are e�ectively freezing the slow
dynamics and only considering the e�ects of noise on the fast one.
By setting v = v∗ we are studying, up to the e�ect of the slow dynamics that
we would have for positive Y, the mean escape rate for a FitzHugh-Nagumo
neuron resting at the �xed point in presence of noise. Notice that this is a
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Figure 4.2: Potential for the fast variable dynamics at �xed values of v = −2/3 (blue),
v = −1/3 (orange), v = 0 (green), v = 1/3 (red), v = 2/3 (purple). Dashed line is for
v∗. Crosses mark potential values at the critical points for v = v∗, from left to right
u− , u0 , u+.

di�erent quantity with respect to the �ring rate of the full unit that we aim
to compute, as the former quantity refers to the activation rate for a single
neuron under the action of noise, i.e. accounts for the full �ring dynamics
and refractoriness of the neuron, while in the frozen case we are considering
an ensemble of noisy neurons resting in the vicinity of the �xed point, which
represents the physiological resting state. From a di�erent perspective, if we
want to look at the frozen system as to a single neuron, we could view it as a
neuron that is immediately reset to the physiological resting state as soon as it
�res, skipping the refractoriness and the whole action potential dynamics.
Keeping these considerations inmind, we can write straightforwardly the Kramers
rate expression for the frozen neuron at the �xed point. The search for the crit-
ical points ofV1(u; v) requires the solution of the cubic equation

mV1

mu
=
u3

3
− u + v = 0, (4.10)

which can be written via the Cardanic formulae or the Viète trigonometric form.
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The critical points of (4.7) have then in general a parametric dependence on the
value of v. Due to the form of the problem, we notice that equation (4.10) for
the critical points of the potential is equivalent to the de�ning equation of the
full system’s (4.1) u nullcline, so that the value of v assumes the meaning of the
ordinate at which a horizontal line intersects the nullcline, individuating 1, 2 or
3 intersection points. In particular, since in the present case we are considering
the neuron at the �xed point, we are considering v = v∗ = a3/3 − a, so that
the critical point u−, i.e. the potential minimum of the left well, coincides by
construction with the full system’s global �xed point, allowing us to factor it
out and �nd the two additional �xed points through the solution of a quadratic
equation, ending up with

u− = −a, u0 =
a
2
−
√

3

√
1 − a

2

4
, u+ =

a
2
+
√

3

√
1 − a

2

4
. (4.11)

Analogously, the left well depth is in general a function of v

ΔV1(v) =V1(u0(v)) −V1(u−(v)) , (4.12)

that with the choice of v = v∗ becomes a function only of the system’s dynamical
parameter a

ΔV ∗1 (a) = ΔV1(v∗(a)) =
3
8
a4 − 3

4
a2 − 1

8

(
a3 − 4a

) √
12 − 3a2 − 3

4
. (4.13)

If we expand the potentialV1(u , v) in the vicinity of a generic equilibrium point
ueq we get

V (u) =V (ueq) +
1
2
(u2
eq − 1) (u − ueq)2 + O

(
(u − ueq)3

)
,

so that equilibria with
��ueq �� < 1 are maxima ofV1 and thus unstable, and equi-

libria with
��ueq �� > 1 are stable. From this expression we can obtain the general

form for the potential’s curvature at an equilibrium point, which is

l(ueq) =
√��u2

eq − 1
��. (4.14)

At this point we have all the necessary elements to write down (4.7) for the
frozen FitzHugh-Nagumo neuron in the vicinity of the �xed point, which gives

f (a,T ) = l0(a)l−(a)
2c

e−VΔV
∗

1 (a) , (4.15)
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where the explicit values of the curvatures are given by

l− =
√
a2 − 1, l0 =

√√√�����2 − √3

√
1 − a

2

4
a − a

2

2

�����. (4.16)

We can already test (4.15) with simulations, providedwe take into account in the
simulation setup of the features of the approximation in which we are working.
Using a Runge-Kutta algorithm of order 4 adapted to Stochastic Di�erential
Equations, we simulate equation (4.8) for particles with initial conditions drawn
according to the equilibrium Boltzmann distribution in the left well

u(0) ∝ exp
(
−Vl2

−(u(0) − u−)2/2
)
).

For each temperature value we integrate the equation several times, in an event
based approach, stopping the integration once a certain target value is reached,
signalling exit from the left well. The target value is set on the right in�exion
point of the potential, i.e. at u = 1, where the slope is maximal, and thus the
probability of re-crossing the barrier backwards at the next timestep minimal,
in order to minimize miscounts. Moreover, a maximum time of integration is
set in order to avoid in�nite loops, corresponding to the minimal rate measur-
able in the experiment. The results are collected in Figure 4.3. A very good
accord is observed roughly untilT = 2.5 × 10−2. Above this value the theoret-
ical value remains well within the error bars at all times, but larger deviations
are observed. Another quantity of interest in this type of system is the inter-
event time, or Inter-Spike Interval for neurons. For the frozen system this is
distributed according to an exponential distribution, as is typical for Poisson
processes of constant rate, i.e. following

d(t , V ) = f ( V )e−f ( V )t , (4.17)

which has its maximum in t = 0, i.e. immediately after the system has �red,
which is an expected unphysical aspect with respect to the full FitzHugh-Nagumo
system, as we are neglecting the part of the dynamics responsible for the refrac-
toriness.

4.3.2 | Dependence on the time of last �ring as an adiabatic
potential modulation

Comparing the frozen system Kramers rate with the full system simulation
data in Fig.4.4, we �nd a mismatch, indeed the theoretical rate for the frozen
system in general overestimates the one obtained via numerical experiments.
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Figure 4.3: Escape rate, measured in fast time, for the FitzHugh-Nagumo neuron at
the global �xed point in the limit Y → 0. The system dynamical parameter was set
at a = 1.3. For each value ofT the escape time was averaged over 50 measurements,
error bars mark the standard deviation, showing a relevant amount of �uctuations for
higher rates. The orange line is the Kramers prediction given by (4.15).

This is expected, since as the temperature is increased, the frozen system has
no impediment in decreasing the time between �ring events, which follows
the exponential distribution typical of a Poisson process. This is not the case
in the full FitzHugh-Nagumo system, where the full dynamics implements a
refractoriness that suppresses too short interspike times. In this sense we can
say that in the full system the rate at which the neuron �res, or equivalently the
mean escape time, has a dependence on the time that has elapsed since the last
activation. Starting from this intuition we intend to build towards amore suited
form for the inter event time distribution, by accounting for the full system
dynamics as a slow modulation of the well parameters. From this distribution
it is then possible in principle to obtain the mean escape time, which is the
reciprocal of the rate, as its average value.
To gain some insight into ways of modelling the full system dynamics role in
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Figure 4.4: Firing rate in fast time for the full system (4.1) as a function of the tem-
perature. The rate is measured by evolving the system for 2.5 × 104 time units and
calculating the reciprocal of the average inter-spike time. Error bars are obtained by
propagating the standard deviation of the inter-spike time on the �ring rate calculated
from its average. The orange line marks the same Kramers prediction of Fig.(4.3).
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in�uencing the noise-induced activation rate, it is a good idea to consider the
system in the slow timescale and in the Y → 0 limit. We start by casting (4.1)
into slow time via the scaling (4.4), which yields

Y ¤u = u − u
3

3
− v +

√
2YT b

¤v = u + a.
(4.18)

In the limit Y → 0 the �rst equation becomes an algebraic equation, which
plays the role of a constraint that links u and v at any given time during the
system evolution. We get therefore a Di�erential Algebraic Equation (DAE),
that reads

v = u − u
3

3
¤v = u + a.

(4.19)

Since the inversion of the algebraic equation in (4.19) is not in general a uniquely
de�ned operation, as u(v) can take up to three values depending on the choice
of v, we can reduce the DAE to an ODE only by con�ning the problem on a
single branch of the cubic nullcline. We can do this in terms of any of the two
dynamical variables, choosing u we get

¤u = u + a
1 − u2

, (4.20)

while if we choose v we must parameterize the cubic equation solutions. We
can do this using Viète’s trigonometric form, from which we obtain

¤v = 2 cos
[
1
3

arccos
(
−3v

2

)
− 2ck

3

]
+ a with k = 0, 1, 2, (4.21)

and choosing the value of k selects the branch of the cubic on which we are
considering the motion to take place, going from right to left for growing k.
Let us consider a system as it has just jumped away from the �xed point, in the
limit it will be on the right branch of the u nullcline, at a location (u−(v∗) , v∗).
At this point, the system starts climbing the right branch on a solution to either
(4.20) or equivalently (4.21) with k = 0. Once the value v = 2/3 is reached,
corresponding to the right maximum of the u nullcline, the coalescence and
subsequent disappearance of roots u0(v) , u+(v) leaves only (u−(2/3) , 2/3) as
an admissible location for the system, so that the system jumps back to the
left branch of the u nullcline, through a discontinuity in the solution in the
Y → 0 limit or in a time O (Y) to a vicinity of the point for 0 < Y � 1. Once
the system is on the left nullcline branch, it resumes moving on a solution
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to (4.20) or (4.21) with k = 2 towards the global �xed point. If we assume
these considerations to hold su�ciently accurately also for 0 < Y � 1, we
expect to be able to model the e�ect of the slow dynamics on the �ring rate
as a slow variation of v in the Kramers rate expression, noticeable on times
O

(
Y−1) in the fast timescale. Since the �ring event is de�ned as a jump from

the left to the right nullcline branch, or equivalently from the left to right well of
V1(u; v), during the time spent traversing the right branch we set the transition
probability to 0.
We write in general the v dependent Kramers rate as

k(v) = Π(v)A(v) , (4.22)

with

Π(v) = l0(v)l−(v)
2c

, A(v) = e−VΔV1 (v) , (4.23)

which are respectively the Kramers curvature-dependent correction prefactor
and the exponential Arrhenius factor for a certain value of v. The two terms
play quite a di�erent role in the de�nition of the Kramers rate. The value of
the Arrhenius factor A(v) is dependent on the product of the depth of the left
potential well ΔV1(v) and the inverse temperature V so that the typical scales
on which Kramers escape rate theory is considered to be reliable are those for
which VΔV > 1, in order to consider small rates. From this consideration,
and plotting the potential well depth ΔV1(v) in Fig.4.5, we see that the V range
for which we expect to obtain a reasonable result in a neighbourhood of the
�xed point, starts around V ≥ 10 if we are considering values of a in the range
1 < a <

√
3 so to have values of v∗ < 0 and an attractive �xed point. These

features re�ect in the plots of A(v), which shows an almost exponential decreas-
ing trend for increasing v, with a rate proportional to V , so that for V not too
small the activation of the neuron is exponentially suppressed proportionally
to the vertical distance from the �xed point v−v∗. On the other handΠ(v) is by
construction a limited concave function, de�ned on the [−2/3, 2/3] interval,
plotted in Fig.4.7. Its two roles in this context can be interpreted as a correc-
tion which becomes relevant in the vicinity of the �xed point on the one hand,
and a cuto� that suppresses the transition rate for values of v for which the two
wells of the potential are not de�ned in the �rst place, i.e. for v ∉ ]−2/3, 2/3[.

Supported by these considerations, we approximate linearly (4.22) in the neigh-
bourhood of v∗, obtaining

k(Δv) = Π(v∗) exp
(
−VΔV1(v∗) − V

dV1

dv

����
v∗
Δv

)
, (4.24)
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Figure 4.5: Plot of the left well depth ΔV1(v) as a function of the slow variable v.

where we have set Δv = v − v∗ the vertical distance to the �xed point and the
prefactor has not been expanded since its role becomes relevant only near the
�xed point, being exponentially suppressed by the Arrhenius factor elsewhere,
and due to its concave shape, because of which a linear approximation near the
�xed point would rapidly loose accuracy with Δv. The total derivative of the
well depth with respect to v expands to

dΔV1

dv

����
v∗
=

d
dv

[
V1(u0; v) −V1(u−; v)

] ����
v∗

=
mV1

mu

����
u0 ,v∗

mu0

mv

����
v∗
− mV1

mu

����
u− ,v∗

mu−
mv

����
v∗
+ mV1

mv

����
u0 ,v∗
− mV1

mv

����
u− ,v∗

= u0(v∗) − u−(v∗) ,

(4.25)

where the �rst two terms in the second row vanish at the �xed point, since u0
and u− are by construction critical points of the potential. Interestingly we get
a term which is proportional to the well spatial width, intended as the distance
between the bottom of the well and the top of the barrier separating the two
wells. Therefore we have derived for the v dependent rate in the vicinity of the
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Figure 4.6: Plot of the A(v) Arrhenius factor for the FitzHugh-Nagumo system for
several values of V = 1 (blue), V = 10 (orange), V = 50 (green) and V = 100 (red).
A(v) values are in a logarithmic scale.

global �xed point the following approximation

k(Δv) = f ( V ) e−VΔuΔv , (4.26)

where we denoted Δu = u0(v∗) −u−(v∗) the well width and indicated with f the
rate for the frozen system, as de�ned in (4.15). To recover the evolution of k
over time, in terms of the time since the last activation of the neuron, we must
specify now the value of Δv as a function of time. In principle both (4.20) and
(4.21) are integrable by separation of variables, but their solutions cannot be in-
verted and cast as u(t) or v(t), so that their explicit solutions have little use for
our purposes. On the other hand, due to the aforementioned exponential sup-
pression of the rate away from the �xed point, we expect the actual dynamics of
v to matter only in the vicinity of v∗. Additionally, the Hartman-Grobman the-
orem [34, 41] grants that in the vicinity of a hyperbolic �xed point, the orbits a
system of nonlinear di�erential equations are qualitatively equivalent to those
of a linear one, which is mapped to the former up to a nonlinear transforma-
tion of coordinates. Assuming that the part of the v trajectory that is relevant
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Figure 4.7: Plot of the Π(v) function for the FitzHugh-Nagumo system.

for our problem lies in the neighbourhood where the theorem applies, we can
reduce the dynamics to its linearization near the �xed point. The linearized
dynamics in terms of the displacement Δv = v − v∗ is given by the v dynamics
equation for the FitzHugh-Nagumo neuron, which in fast time reads

dΔv
dt

= Y (u + a) , (4.27)

which can be expressed as follows by approximating the motion as constrained
on the nullcline (i.e. in a limit Y → 0)

dΔv
dt

= Y (u − u−(v∗)) = Y
du
dv

����
Y→0

Δv, (4.28)

where the derivative of u with respect to v on the nullcline du/dv |Y→0 can be
obtained by deriving implicitly with respect to v the algebraic equation in (4.19).
Eventually one gets

dΔv
dt

=
YΔv

1 − a2
, (4.29)
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which is solved by the exponential trajectory

Δv(t) = Δv0e−Y_ t , (4.30)

where we denote _ = 1/(a2 − 1) the trend of the exponential up to a factor Y
which makes the trend correctly vanishes in the Y → 0 limit, and 0 < Δv0 ≤
2/3 − v∗ the initial condition on the v displacement at the instant at which we
begin to approximate the system as a slowly modulated double well. In this
respect several choices can be made, of which we will discuss a few. Setting
Δv0 = 2/3 − v∗ amounts to treating the system as a slowly modulated dou-
ble well for the whole extent of its motion on the left branch of the nullcline,
after having treated the motion on the right branch as well described by the
system in the limit Y → 0, i.e. by the di�erential algebraic noiseless system
(4.19). This would introduce in principle a discontinuity in the rate function,
that jumps from an identical 0 during the motion on the right branch to an ex-
ponentially small but positive value on the left. Furthermore, in this approach
we are neglecting the possible e�ect of the noise in accelerating the return to
the left nullcline branch with respect to the description obtained in the Y → 0
limit, in a sense over determining the system with respect to the e�ects of noise.
Another possible choice is to carry Δv0 into the exponent as a term g0 = logΔv0,
letting it assume the role of a time translation used as a free parameter to be
estimated from data through a regression procedure. This choice has the side
e�ect of yielding very small yet positive �ring rates even for t = 0, i.e. for the
time of the preceding activation itself, which in principle is unphysical, but can
be considered still a very good approximation since the unphysical rates are
exponentially low. Another drawback of this choice is that, despite allowing
us to �t the distribution of interevent times, by de�nition it does not allow us
to build a rate function as a function of the temperature for the full FitzHugh-
Nagumo system, unless we �nd a way to �t g0 independently of the choice of
temperature. The advantage of this more phenomenological choice, though, is
to make fewer assumptions on the dynamics on the right branch and of the tran-
sition from the right to the left branch in presence of noise, which is a desirable
feature. We will proceed in the following with the second choice.
In light of the previously elucidated �ndings we can write the �ring rate in
function of the time t since the last activation of the neuron

k(t , V ) = f ( V ) exp
(
−e−Y_ t+g

)
, (4.31)

where we have introduced

g = g0 + g1 , g0 = logΔv0 , g1 = log VΔu. (4.32)



Estimation of the �ring rate and of the Interspike Interval distributions 97

so to explicitly separate the time translation component that must be �tted g0
from that which we know from �rst principles g1. The functional form of (4.31)
takes the name of Gompertz curve and can be considered as a logistic curve with
varying slope. To simplify the expression we approximate it by bringing the
outermost exponential to denominator and expanding it in a power series to
�rst order, obtaining

k(t , V ) = f ( V )
1 + e−Y_ t+g

=
f ( V )

2

[
1 + tanh

1
2
(Y_ t − g)

]
, (4.33)

which as expected approximates the shape between the two plateaus in the
much simpler form of a hyperbolic tangent, see Fig. 4.8 for a comparison.
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Figure 4.8: Comparison of the full Gompertzian curves (solid lines) and the approxi-
mated logistic curves (dashed lines) forT = 1 × 10−2 (blue), T = 1.5 × 10−2 (orange)
andT = 2×10−2 (green). The value of the regression parameter has been set to g0 = 0
for plotting. The dynamical parameter was set to a = 1.3. Time is expressed in the
fast time scale.

Expression (4.33), once g0 is provided, gives an approximation to the �ring
probability per unit time of a FitzHugh-Nagumo neuron, a time t after its pre-
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ceding activation. This is in principle not a simple function to measure in
experiments or simulations as operatively it de�nes the number of neurons per
unit time that �re after a time t after having �red at time 0, over an in�nite pop-
ulation where each neuron that �res is immediately removed from the popula-
tion. A much more practical and useful time is the Inter-Spike Interval (ISI)
distribution d(t , V ), i.e. the probability density of measuring a certain time t
between two neural spikes produced by the cell. Such a quantity can be related
to the rate k(t , V ) by introducing the negative cumulative function of the ISI
distribution

F̄ (t , V ) =
∫ ∞

t
dt′d(t′, V ). (4.34)

Indeed by discretizing the [0, t] interval into N parts of equal duration t/N we
can write an N-dependent approximation F̄N to the negative cumulative as

F̄N (t , V ) =
N∏
n=0

(
1 − nt

N
k (nt/N , V )

)
. (4.35)

By taking logarithms on both sides we get

log F̄N (t , V ) =
N∑
n=0

log
(
1 − nt

N
k (nt/N , V )

)
≈ −

N∑
n=0

nt
N
k (nt/N , V ) ,

(4.36)

where we have expanded log(1 − x) ≈ −x. In the limit N → ∞ we expect that
F̄N will tend to F̄ , and by de�nition of Riemann integral we can transform the
summation into an integral, getting

log F̄ (t , V ) = lim
N→∞

log F̄N (t , V ) = −
∫ t

0
dt′k(t′, V ). (4.37)

Integrating and exponentiating the result we get the negative cumulative func-
tion

F̄ (t , V ) = exp
(
−

∫ t

0
dt′k(t′, V )

)
= cosh

f
Y_ (g/2) e−

f
2 t

cosh
f
Y_ 1

2 (Y_ t − g)
. (4.38)

The ISI probability density function is by de�nition the derivative of (4.38)
with respect to time, with a sign reversal

d(t , V ) = −mF̄
mt

=
f

2
cosh

f
Y_ (g/2)

e−
f
2 t

(
1 + tanh 1

2 (Y_ t − g)
)

cosh
f
Y_ 1

2 (Y_ t − g)
. (4.39)
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To ensure that d is well de�ned as a continuous probability measure we must
check for normalization over its domain [0, ∞[. We can verify this easily
through the limits of F̄ , which are

lim
t→0

F̄ (t , V ) = 1, lim
t→∞

F̄ (t , V ) = 0,

thus ensuring the correct normalization of d. The shape of (4.39) correctly
re�ects the properties we expect from a neuron in presence of noise, as �ring is
suppressed for small t values by the hyperbolic tangent. A peak is then reached,
marking the modal �ring time, and for large times we can approximate the full
expression to

d(t , V ) ≈ d∞(t , V ) = (2 cosh (g/2))
f
Y_ fe−ft+

fg
2Y_ ≈ fe−f (t− g

Y_ ) , (4.40)

in which the last approximation holds for g � 1. The information carried
by this expression is that once the refractoriness has faded, the neuron is essen-
tially well approximated again by the frozen system, and d recovers the Poisson
process exponential distribution up to a scaling factor.
We make a consideration on timescales before proceeding, since up to now we
have worked in the fast timescale. Indeed our usage of the Y → 0 limit has until
now been that of an approximation, so that nothing forbids to look at the rate
function (4.33) or at the ISI distribution (4.39) in the slow timescale. Changing
from fast to slow time is equivalent to performing a scaling

_ ↦→ _/Y
f ↦→ f/Y ,

which can be derived by propagating the scaling (4.4) on the unidimensional
potential and on the temperature through all the subsequent calculations. In
slow time, and de�ning the frozen rate in slow time f′ = f/Y, (4.33) and (4.39)
read respectively

k(t , V ) = f
′

2

[
1 + tanh

1
2
(_ t − g)

]
, (4.41)

d(t , V ) = f
′

2
cosh

f ′
_ (g/2)

e−
f ′
2 t

(
1 + tanh 1

2 (_ t − g)
)

cosh
f ′
_ 1

2 (_ t − g)
. (4.42)

Plotting expression (4.39) in Fig.4.9 for several values ofT = V−1 we con�rm
the described shape, and as expected we get more and more peaked functions
for higher T , with the peak receding closer and closer to the origin. The ex-
ponential rate of the right tail, being governed by the frozen system rate f , is
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Figure 4.9: d(t , V ) plotted in fast time units for various values of temperature T =

1/V : T = 7.5 × 10−3 (blue), T = 10−2 (orange) and T = 1.25 × 10−2 (green). The
regression parameter has been �xed to an arbitrary value g0 = 10 to allow plotting.
System parameters were set to Y = 10−2 , a = 1.3.

accordingly steeper and steeper for higher temperatures. It is important to note
that the value of g0 that we used in Fig.4.9 is not derived from data, but only
selected for plotting, and may in principle be V dependent.
In order to apply (4.39) to the full system we must �t it on data coming from
simulations. In particular, due to our setup of the problem, we expect to only
need to �t the parameter g0, which can be regarded in some sense as an e�ec-
tive refractory time. Approaching the problem from this point of view, we ob-
serve a general mismatch in the exponential trend of the right tail, red curves
in Figures 4.10, 4.11 and 4.12, which in principle we would expect to be the
most robust part of our approach. In particular we observe that the system
always has a lower rate of decreasing with respect to the frozen one. In our
interpretation of the FitzHugh-Nagumo system as a modulated well, this can
be interpreted as a lower frozen system rate, corresponding to a deeper left
well. Indeed, implicit in our derivation was the assumption that the location
of the global �xed point (u∗ , v∗) =

(
−a, a3/3 − a

)
remains the same in pres-
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Figure 4.10: Fit of d(t , V ) on simulated data for T = V−1 = 10−2. Solid lines mark
�ts respectively on g0 (red) as de�ned in (4.32), f and g0 (green) and all parameters
(orange). The histogram is density normalized with bins of width 3 slow time units.
The system was simulated for a total of 5 × 104 slow time units.
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Figure 4.11: Fit of d(t , V ) on simulated data for T = V−1 = 1.5 × 10−2. Solid lines
mark �ts respectively on g0 (red), f and g0 (green) and all parameters (orange). The
histogram is density normalized with bins of width 1 slow time unit. The system was
simulated for a total of 5 × 104 slow time units.
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Figure 4.12: Fit of d(t , V ) on simulated data for T = V−1 = 2 × 10−2. Solid lines
mark �ts respectively on g0 (red), f and g0 (green) and all parameters (orange). The
histogram is density normalized with bins of width 1 slow time unit. The system was
simulated for a total of 5 × 104 slow time units.
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ence of noise, as �uctuations are averaged out. If this were not to be the case, a
parametric noise-like e�ect could displace the global �xed point on average in a
temperature dependent way, thus modifying the e�ective well depth governing
the fast escape-like dynamics. To check this we can look at the average value
of v on long evolutions of the system at various temperature values, excluding
�ring events, i.e. �ltering out the activity that happens far from the �xed point:
a parametric noise e�ect would give a net average displacement from the �xed
point, while in a purely additive context �uctuations are expected to cancel out
and not alter the equilibria of the system. To de�ne the non-�ring activity, we
consider as signi�cative neighbourhood of the �xed point a rectangle

u − u∗ ≤
√

2T , v − v∗ ≤
√

2T
a2 − 1

,

i.e. we measure an e�ect on the average of v within the standard deviation we
would expect from a purely additive phenomenon with the system constrained
to the nullcline. We plot the result in Fig.4.13, and observe a roughly linear
dependence, which is a strong piece of evidence towards the presence correla-
tions introduced in the slow variable by the e�ect of the fast noise giving rise
to parametric noise-like e�ects.
Having pointed out the likely origin of the mismatch, we can �t the functional
form by considering also f a free parameter, so to match the rate with an ef-
fective well depth for the system due to correlations in the noise. By doing so
we are able to better adapt our analytical forms to the simulation data, as is
shown by the green lines in Figures 4.10 through 4.12. Since in principle also
_ depends on the location of the �xed point, we should adapt its value based
on the �tted frozen rate f. Indeed �tting over its value as well, we obtain an
even better accord with simulations, as indicated by the orange lines in Figures
4.10,4.11 and 4.12, but this could be simply the e�ect of an additional param-
eter in a �tting procedure so that a separate �t, or a functional estimate of _
from f could resolve the ambiguity.

4.4 | Formulation of a simpli�edmodel for networked
systems

The aim of this chapter is to develop a simpli�ed model that can reproduce
the statistics of the FitzHugh-Nagumo neuron, for applications related to the
study information processing capabilities of neuronal networks. Speci�cally,
we would like to reduce the full FitzHugh-Nagumo dynamics to a discrete bi-
nary system, which should bridge the gap between the easily treatable and in-
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Figure 4.13: Average value of the Δv = v − v∗ displacement versusT . Averages were
taken on evolutions of 100 slow time units. System parameters were �xed to Y =

10−2 , a = 1.3.
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terpretable, but sharply simplistic, McCulloch-Pitts neuron, and the rich but
complicated dynamics of nonlinear neural models.
To simplify the dynamics we build a system with discrete state variables and
evolving at discrete time n ∈ ℤ. Let us consider a binary unit, whose state takes
a value s ∈ {0, 1}, representing for now generically a quiescent and activation
state of the system. Let us then de�ne the variable n∗ ∈ ℤ which keeps track
of the last time that the neuron has �red, i.e. switched from s = 0 to s =
1, as a minimal mechanism for keeping track of the dynamical history of the
neuron. Our goal is then to calibrate a symbolic stochastic system as the one
just introduced to reproduce the statistics of a noisy FitzHugh-Nagumo neuron,
and to this end we need to introduce suitably the activation probability for the
discrete unit. To do so, we consider time bins with a width of the order of the
duration of a �ring event, i.e. of a successful escape from the left well in the
full system. This is a time Δt = O (Y) in the slow dynamics or O (1) in the fast
one. Working equivalently in any of the two timescales, we introduce the �ring
probability, i.e. the probability of transitioning from s = 0 to s = 1, between
time n and n + 1 after having last �red at n∗ by interpolating the rate function
k(t , V ) as follows

pn ( V ) =
f

2

[
1 + tanh

1
2
(Y_ (n − n∗) − g)

]
. (4.43)

We de�ne accordingly qn ( V ) = 1 − pn ( V ) the probability of not �ring, i.e. of
remaining in state s = 0 while going from timestep n to n + 1. Whenever a
�ring transition is performed, i.e. the system �nds itself in state s = 1, the
value of n∗ is set to n∗ = n, the current timestep, and the system will transition
to state 0 with probability qn = 1, so that the system cannot remain for more
than one timestep in the �ring state s = 1. Considering the system at timestep
n the transitions that can take place going to the next timestep are summarized
as follows in terms of the activation state s and of the memory variable n∗

0, n∗ ≤ n −→ 0, n∗ ≤ n with probability qn
0, n∗ ≤ n −→ 1, n∗ ≤ n with probability pn
1, n∗ ≤ n −→ 0, n with probability 1
otherwise with probability 0.

(4.44)

Once the time dependent rate is de�ned, we can calculate the ISI probability
mass function, obtaining the same result we would get by interpolating (4.39)
according to the previously speci�ed scheme. Multiplying by Δt so to obtain a
probability mass from an interpolated density we get

d(Δn , V ) = f
2

cosh
f
Y_ (g/2)

e−
f
2 Δn

(
1 + tanh 1

2 (Y_Δn − g)
)

cosh
f
_ 1

2 (Y_Δn − g)
. (4.45)
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To test out our construction, we proceed by simulating a FitzHugh-Nagumo
neuron and �tting the g0 and f parameters in (4.39) with regression routines.
We then use the parameter values to setup a discrete unit and simulate a sample
of interspike times from it. In Fig. 4.14 a comparison can be seen, showing
good accord once the bins are mapped back to continuous time using the cor-
rect scaling.
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Figure 4.14: Comparison of the ISI histograms for the full FitzHugh-Nagumo system
(4.18) (blue) and the discrete model (4.43) (orange). The solid greed line is the �t to ISI
distribution of the full system, to obtain the values of f and g for the discrete model.
Both systems were simulated for a total of 105 slow time units. Histogram are drawn
in density and bins are 1 slow time unit wide.

4.4.1 | Adaptation to networked systems

In order to be able to construct networks of discrete units, we must devise
a consistent way of representing external inputs. While a mapping of coupling
terms present in FitzHugh-Nagumo neurons to a term in this simpli�ed model
is in principle a challenge, we propose a minimal substitution that allows to take
into account the e�ect of an external stimulus on a discretized unit.
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To get an insight we consider (4.1) in presence of a slow external input term
I (t) in the u variable dynamics, it reads

¤u = u − u
3

3
− v + I (t) +

√
2T b

¤v = Y (u + a) .
(4.46)

This modi�cation in the full dynamics translates into a change in the form of
V1 which becomes

V1(u; v, I) =
u4

12
− u

2

2
+ (v − I)u , (4.47)

so that the value of I can change the slope of the linear term in the double
well potential, possibly boosting or suppressing the �ring rate. To encode this
feature in the discretized model rate function (4.43), we propose to introduce
a modi�cation of the frozen rate factor f , implemented as follows

pn ( V ) =
1
4

[
1 + tanh

1
2
(Y_n − g)

]
[(1 + f) + (1 − f) tanh ( J I (n) − k)] ,

(4.48)
where J , k are two constants to be set phenomenologically, essentially depend-
ing on the relevance that one wants to give to the external input I in the elicita-
tion of a spike. The role of k is essentially that of a threshold, and it should be
set to k � 1 so that for I = 0 we recover a �ring rate without input very close to
f. J on the other hand is an input gain, and to have a meaningful role it should
be set to J = O (k), in order to balance out k in presence of nonzero input with
the exact value to be chosen according to the increase in �ring probability one
wants to have for a given input strength.
We now aim to simulate a closed chain of FitzHugh-Nagumo neurons in pres-
ence of noise with a chain of simpli�ed systems. The dynamics of the FitzHugh-
Nagumo chain is given by

Y ¤ui = ui −
u3
i

3
− vi + J (ui−1 − ui) +

√
2YT bi

¤vi = ui + a,
(4.49)

where J is a coupling strength, bi is a vector of independent white noise with
zero mean and autocorrelation function

〈bi (t)b j (t + g)〉 = Xi jX (g) ,

and we identify N + 1 = 1 implementing periodic boundary condition, so that
essentially we are simulating the chain of Chapter 1 in the presence of noise.
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Figure 4.15: Raster plot of the u variable for the chain system (4.49) for three values
of temperature: (a) T = 10−2, (b) T = 2.5 × 10−2, (c) T = 5 × 10−2. The system
is initialized with a spike of magnitude 1 on the i = 50 node. Node indices are read
on the ordinate axis, time in slow units is read on the abscissa. The remaining system
parameters are set to a = 1.3, J = 0.2, Y = 10−2 and N = 100.
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Some typical trajectories are shown in Fig. 4.15. For low temperatures we
observe a periodic self consistent solution, reminiscent of that of the system
without noise, stable over �nite times which we expect to be exponentially long
as a function of the inverse temperature. As the temperature is raised, stronger
�uctuations are observed, prolonging the transient before the onset of the stable
wave. For even higher values of T we observe a progressive disruption of the
wave pattern by the white noise. The foremost mechanism through which this
happens is given by the wave front colliding with neurons that have anticipated
it, �ring purely because of the noise. Since the Laplacian coupling modi�es the
dissipation of the single chain node, we �t the discrete system to the statistics
of an isolated system given by

Y ¤u = (1 − J )u − u
3

3
− v +

√
2YT b

¤v = u + a,
(4.50)

in order to be able to treat the input of the driver neuron like the term J I (t)
of (4.46). We now de�ne a chain of simpli�ed systems, denoting with the sub-
script i ∈ {1, . . . , N } the chain site and identifying N +1 = 1 so to implement
periodic boundary conditions. The activation probability for site i reads

pn ,i ( V ) =
1
4

[
1 + tanh

1
2

(
Y_n − n∗i − g

) ]
[(1 + f) + (1 − f) tanh ( J si−1(n) − k)] ,

(4.51)
where we have implemented a directed chain coupling via the previously intro-
duced substitution designed to deal with external inputs. Trajectories of the
simpli�ed chains are represented in Figure 4.16 and a close up is available in
Fig.4.17. Despite observing qualitatively similar behaviour to the full system,
using the �tted values we do not observe (Fig. 4.51 (a)) the stabilization of a trav-
eling wave, as expected from simulation of the full system (Fig. 4.15 (b)), but
rather very sparse activity that cannot be quali�ed as a propagating wave. We
conjecture that such a behaviourmay be dictated by the fact that, as observed in
the previous chapters for deterministic chains, the inter-site propagation time
is O (Y) in slow time, but not exactly Y, so that we cannot represent with a single
discrete step width the duration of both phenomena. To assess the in�uence of
this fact we coarse grain the discrete system time, panels (b), (c) of Fig. 4.16 and
close-up in Figure 4.17, respectively of a factor 10 and 100. A stabler situation
is observed in both cases, with longer-lived wave fronts propagating through
the system, but there are still no strong traces of a behaviour similar to that of
SDE (4.49).
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Figure 4.16: Raster plots of the state variable si for the simpli�ed chain (4.51). The
system parameters in panel (a) have been �tted on the single full neuron dynamics
(4.50) with values ff = 5.1 × 10−4 , ^ f = 7.25 × 10−3 , gf = 447.36. In the two other
panels the simulation is performed respectively for (b) f = 10ff , ^ = 10^ f , g =

gf /10 and (c) f = 100ff , ^ = 100^ f , g = gf /100. The full system parameters on
which the units of panel (a) have been �tted are a = 1.3, Y = 10−2 , J = 2×10−2 , T =

2.5 × 10−2. Time is marked in slow units of the full dynamics.
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Figure 4.17: Close up of Fig. 4.16, panel (c) for the �rst 20 simpli�ed units on the
last 20 slow time units of the full system. Time is marked in discrete timesteps of
the simpli�ed system, corresponding to fast time units in the stochastic di�erential
equation (4.49).
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4.5 | Conclusion

In this chapter we have studied the statistical behaviour of the FitzHugh-
Nagumo neuron in presence of fast, additive noise. By approximating the slow
dynamics with its trajectory in the limit Y → 0 we are able to treat it as a slow
modulation triggered by the previous �ring event. This approach allows us to
close an approximated functional form for the ISI distribution, which despite
being derived from �rst principles needs �tting in order to reliably represent
the statistics of actual units. Investigating the reason of this mismatch we reveal
a limit of our approximation, which rests in the assumption that for small values
of Y we can treat the slow and fast dynamics as decoupled. Indeed the coupling
of timescales introduces correlations in the e�ective noise applied to v through
the dependence on u of its dynamics, so that a displacement of the �xed point
is observed, in a parametric noise-like scenario reminiscent of Stratonovich
equations. This average displacement of the �xed point, in turn, a�ects the
�ring rate signi�cantly, through the exponential dependence of the Arrhenius
factor on the well depth. From amoremodel-focused point of view, we observe
that the ISI distribution takes the shape of a smoothed-out asymmetric Laplace
distribution, which is observed in a broad class of models related to survival
analysis, where the time necessary for an event to take place is modeled as
having a clear modal value but long asymmetric tails [66].
In the �nal part of the chapterwe are able to formulate a discretemodel that well
represents the �ring statistics of the FitzHugh-Nagumo neuron, while relying
solely on a binary state variable and an integer memory variable. While the
accord is quite good for the �ring statistics of a single unit, the behaviour for
a ring of units is noticeably di�erent between the discrete and the continuous
system, despite showing qualitative correspondences.
Further research on these topics should surely deal with the emergent para-
metric noise e�ects via dedicated techniques, in order to possibly reconcile the
e�ective discrete model with �rst principles. With respect to the discrete unit,
care should be devoted to the study of appropriate coupling schemes for the
study of networked systems, in particular with respect to the correct implemen-
tation of the inter-neuron propagation timescale of signals, which despite be-
ing often an overlooked feature, appears from our studies to play a paramount
role in the dynamics, pointing out that its representation in simpli�ed models
should be given proper consideration.



5 | A distributed delay model for
pandemics short-term forecast-
ing in a metropolitan area

Parts of this chapter together with other research by a larger working group, have
resulted in an article by F. Durazzi, E. Lunedei, G.C., G. Gatti, V. Sambri, A. De Ce-
sare, C. Crippa, F. Pasquali, Bologna MODELS4COVID Study Group, G. Castellani,
D. Remondini, A. Bazzani,Humanmobility and sewage data correlatewith COVID-19
epidemic evolution ina3-year surveillanceof themetropolitanareaofBologna, submit-
ted to PNAS Nexus for review.

5.1 | Introduction

The COVID-19 pandemic has been one of the most challenging world-
wide events of recent contemporary history, prompting a society-wide e�ort
towards the comprehension of the pandemic phenomenon and the develop-
ment of containment measures. A leading direction in this e�ort has been the
collection of large amounts of data and the integration of di�erent data sources,
thus making the COVID-19 outbreak one of the most documented worldwide
epidemic events. In particular, in response to the great infectivity of the dis-
ease, forecasting attempts have been carried out often on short, i.e. weekly, to
very short, daily, time spans, conditions which can be referred to as nowcasting
and that often require specialized approaches.
In this chapter we present our work on delayed epidemiological models for
short-term forecasting on a metropolitan area level of the COVID-19 pan-
demic. We begin with a short presentation of the mathematical basics of epi-
demiological modeling, and how they can be interfaced with commonly used
clinical indicators such as the basic reproduction number. We then present
our distributed delay compartmental model, and comment on its application
in weekly scale forecasts of the new positives time series. Subsequently we dis-
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cuss a relationship observed between an inferred sociability parameter used in
the regression phase and a mobility proxy for the average contact rate in the
population of the metropolitan area. We remark that such a relationship can
prove quite relevant in such cases, as on short periods of time it can provide
a reliable almost a priori estimate from easily retrievable data for a parame-
ter otherwise di�cult to measure. The construction of the proxy itself, more-
over, can provide insightful information on the population compliance with
the government-mandated safety measures. Finally we present some linear
response theory results for the delayed model, which can be applied to the re-
gression problem, in order to quantify the sensitivity of the inferred sociability
parameter time series to �uctuations in the clinical admissions data. This latter
application is particularly relevant, as it can lay the basis for quantitative mod-
els to study the e�ciency of di�erent measures for pandemic containment, in
particular to reach a trade-o� with the social cost and economical impact often
implied by such provisions.

5.2 | Some notions of mathematical epidemiology

5.2.1 | Compartmental models

The most common type of models employed in the study of epidemiologi-
cal phenomena consists of compartmental models. As the name implies these
models simplify the course of an infectious disease in a susceptible individual
as a series of movements between compartments, each one representing a stage
of the infection or the symptoms that the individual is manifesting. As patients
transition to and from compartments, the compartments populations are in-
creased or diminished accordingly, so that the time series of the compartments
populations furnishes the number of patients a the various stages over time.
Historically, the �rst development of such models has been done in terms of
DistributedDelayDi�erential Equations [54], as they were formulated with the
idea of reproducing adherently the distributed character of various stages of a
disease. Due to the potentially complicated dynamics of delayed models, and
since in many cases the delay kernels can be approximated by average transi-
tion rates, a simpli�ed version has been formulated in the subsequent decades,
in terms of Ordinary Di�erential Equations. The simplest example of a com-
partmental epidemiological model is the SIRmodel [43], which subdivides the
individuals into three containers: Susceptibles S, Infected I and Removed R.
It models a disease with no possibility of reinfection, for which no vaccination
campaign is active and with no variations to the freedom of movement of the



Some notions of mathematical epidemiology 115

individuals. The governing di�erential equations are

¤S = −V I
N
S

¤I = V I
N
S − WI

¤R = WI ,

(5.1)

where the variables represent:

• S: population of the Susceptibles compartment, i.e. individuals that have
not had any contact with the disease yet,

• I : population of the Infected compartment, representing patients which
have had contact with the disease, developed symptoms and the ability
to infect other susceptible individuals,

• R: population of the Removed compartment, comprehensive of all in-
dividuals for which the disease has run its course, which are therefore
removed from any further role in the dynamics.

The model presents two parameters V and W. V is usually referred to as the
e�ective contact rate and it corresponds to the conditional probability per unit of
time that a Susceptible individual have a contact and become infected as a con-
sequence of this, provided that this encounter be with an Infected individual.
W which is the probability per unit time that an Infected individual be removed
from the dynamics, i.e. the rate at which the disease runs its course in patients
who have contracted it. From this de�nition of the parameters we intuitively
expect that model (5.1) could be considered a mean �eld approximation for a
stochastic process modeling the epidemics, so that the compartments may be
considered as the mean values for the stochastic model populations. This can
be proved using several approaches, and in particular by considering Poisson
processes with time varying rates [4, 6]. It is important to notice, as an element
of consistency, that since no birth/death dynamics has been implemented aside
from the possible deadly outcome of the disease, accounted for in the R com-
partment, the dynamics speci�ed by (5.1) preserves the sumN = S+I+R, where
N is the overall population of the model. An important additional assumption
for (5.1) is the so-called well stirred hypothesis, which amounts to requiring that
the chance of meeting an infected individual is the same for each susceptible,
i.e. there are no spatial features that may play a di�erence. While being for-
mulated initially in the context of chemical physics, the well stirred hypothesis
amounts to treating geographical structures as negligible in the formulation of
the epidemiological model. A typical trajectory for the SIR model looks like
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Figure 5.1: Trajectory for a SIR model with V = 1 and W = 1/4. The initial fraction
of infected individuals is the 1% of the whole population.

Figure 5.1: after the introduction of some infected individuals (1% of the whole
population in this example) the number of infected cases starts to grow, then
it reaches a maximum and starts to decline. Notice that it is quite common to
observe a residual population of susceptibles after the epidemics ends.

5.2.2 | Relationship between model parameters and epidemi-
ological indicators

The parameters V and W can be estimated in applications by several means,
but it is important to try to relate them to themeasured quantities used by physi-
cians and epidemiologists in the �eld to track the evolution of epidemics. The
principal indicator considered in practical cases is the basic reproduction number
R0 [25]. This quantity is a dimensionless constant and represents the expected
number of secondary infections that result from a single infected case in a fully
susceptible population. From an operative point of view, R0 can be de�ned
via

R0 = g c̄ TI , (5.2)
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where

• g is the disease transmissibility, i.e. the probability that during an unpro-
tected contact between an infected and a susceptible individual the latter
be infected,

• c̄ is the contact rate, the average number of contacts between infected and
susceptible population individuals per unit time,

• TI is the duration of infection in infected individuals.

This de�nition is clearly more apt to clinical settings, but we can easily relate it
to the model parameters. Indeed in (5.1) the de�nition of V as the conditional
rate of infectious contacts enables us to recognize V = g c̄. Furthermore, since
W is the rate at which Infected individuals are removed, it is natural to identify
TI = W−1, thus yielding for the basic SIR model (5.1)

R0 =
V

W
. (5.3)

This identi�cation is further backed by the role played by (5.3) in the SIR dy-
namics. Indeed by considering the equation for the I compartment right at the
beginning of the outbreak, i.e. approximating S ≈ N , we get

¤I = (R0 − 1) WI , (5.4)

so that if R0 < 1 we get a decreasing exponential trend and the potential epi-
demic is reabsorbed before gaining momentum, conversely for R0 > 1 the
exponential is increasing and the population su�ers an epidemic outbreak. If
instead we write (5.4) at a certain time instant t further during the evolution
of the epidemics, we get a scaling on the threshold for a decreasing exponen-
tial, which becomes VS (t)/WN < 1 and is interpreted as an indicator of the
epidemic phase the system is in, i.e. whether a peak in the cases is still coming
or it has already passed. Such threshold varies from model to model and is
usually called the e�ective reproduction number, and denoted Rt, as it generalizes
(5.3) to a di�erent time from the beginning of the outbreak. Therefore we are
able to connect the empirical interpretation of the basic reproduction number
with its role in the dynamics of a very simple epidemiological model.

5.2.3 | Limitations and possible extensions of the basic SIR
model

As we have formulated it so far, the SIR model is very simplistic and fails
to capture many aspects of an epidemic phenomenon that may play a relevant
role in real world scenarios, to name a few:
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1. the model lacks any possibility of reinfection, since after transitioning
into compartment R the individuals stop playing any active role in the
dynamics and cannot become susceptible again,

2. no mitigation policy (lockdowns, social activity regulations, etc.), varia-
tion of disease infectivity (e.g. as caused by di�erent variants becoming
prevalent) or vaccination strategy is present, since transition rates are con-
stant over time and there is no modeling of vaccination in any form,

3. the model does not account for any immigration or emigration of popu-
lation to and from the region of interest, which is for all purposes consid-
ered closed, similarly there is no geographical structure within the region,

4. no role is given to the age of individuals, be it through di�erent response
to the pathogen or through di�erentiated social interactions between age
groups,

5. an instantaneous dynamics such as that of (5.1) considers neither the ex-
plicit duration of the various disease stages nor possible �uctuations of
the duration, since these are modeled on average via the transition rates.
The representation of these characteristic times as rates of instantaneous
processes may also be a poor approximation in the case of widely di�er-
ing characteristic timescales.

It must be noted that none of these aspects is a limitation per se, but rather may
ormay not be one depending on the case under study. The Physics of Complex
Systems and Mathematical Biology literature is rich with variations and elab-
orations of the ideas presented so far depending on the characteristics of the
problem being tackled. The simple addition of a reinfection process yields the
classical SIS or SIRS model [44]. Similarly, the promotion of parameters such
as V and W to time dependent quantities is a classical procedure inmathematical
epidemiology, to account for environmental e�ects such as seasonality, emer-
gence of pathogen variants, changes in social interaction regulations and even
evolution of the clinical approach. A vaccination dynamics can be taken into
account [64] where susceptibles are removed without infection. The e�ects of
age groups can be taken in consideration, both modeling di�erent responses to
the disease and accounting for the di�erent interactions structures between age
brackets [83]. A spatial structure can be added, e.g. with metapopulation mod-
els on geographical networks such as [85], with cellular automata or even with
partial di�erential equations comprising of di�usion phenomena [93]. Explicit
delay e�ects can be taken into account in various forms, such as in systems of
delay di�erential equations [23, 86] or also combined with spatial e�ects with
delayed partial di�erential equations [38].
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5.3 | Compartmental model for the COVID-19 epi-
demic in the Bologna Metropolitan Area

5.3.1 | Model de�nition

The aim of this part of the work has been to develop an epidemiological
model for the COVID-19 pandemic in theMetropolitan Area of Bologna, with
the practical purpose of following the course of the pandemics and making
weekly forecasts of the number of new positives and their peaking time. This
work has been carried out in collaboration with the Local Health Authority
(Italian Azienda Unità Sanitaria Locale, short AUSL), which provided data on a
daily basis to inform the forecasts. The data consisted in the daily time series of
admissions into ordinary wards and Intensive Care Units of the Metropolitan
Area hospitals and of the new positive cases detected from swabs. The goal
of the nowcasts obtained from the model was to provide the Bologna AUSL
COVID Task Force with weekly information on the course of the pandemic,
in particular to inform the readiness of the health infrastructure in terms of the
expected need of ordinary ward and ICU beds, so to avoid dangerous resource
stress conditions on the local healthcare system.

Tomodel the epidemic spreading in a metropolitan area, we construct a dis-
tributed delay compartmental SEUIR model based on [11]. This model com-
plements the SIR dynamics presented in the previous section with two com-
partments: the Exposed individuals who have had a contact with the SARS-
CoV-2 virus but are not yet contagious and the infective Unreported individu-
als, who play a key role in the spread of the COVID-19 epidemics [61]. We con-
sider a delayed model speci�cally to account for the signi�cant lag between the
beginning of the infectious phase and the possible development of symptoms,
during which infectious individuals are free to move and spread the contagion.
Moreover, the necessity of a distributed delay approach was made evident in
data by the lag observed between the application of containment measures and
the observation of their e�ect. Speci�cally, for any time t ≥ 0, the total popu-
lation is subdivided into two groups

N (t) = P (t) + I (t) ,

where N (t) is the total population in the area which we assume to be constant
over time except for a small decrease given by dead individuals. The groupP (t)
is the active population, that takes part in social activities and contributes to the
contagion dynamics while group I (t) contains the isolated infected population,
i.e. cases that have developed some degree of symptoms and in consequence
are quarantined or admitted into hospital care and are assumed not contribute
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to the epidemic spread. The active population, P (t) is divided into four com-
partments:

P (t) = S (t) + E(t) +U (t) + R(t) ,

where S (t) is the number of Susceptible individuals, E(t) is number of Exposed
individuals (i.e. people that have had a contact with the pathogen, but are not
yet contagious),U (t) is number ofUnreported infected individuals (i.e. infected
individuals that have not developed serious symptoms or anyway have not been
reported) and R(t) is number of Recovered individuals that have been immu-
nized. In the R compartment we account for both subjects that have acquired
immunity naturally and subjects who have been vaccinated. The epidemic evo-
lution is simulated by a compartmental model according to the following steps
(see also the diagram in Figure 5.2):

1. a Susceptible individual may become Exposed after meeting an Unreported
infected individual. The rate at which infection-bearing contacts occur
is regulated by V . The rate V is further modulated during the evolu-
tion of the system by two multiplicative factors, the relative infectivity
g with respect to wild-type SARS-CoV-2 and the relative sociability s
which represent the variation of the average number of at-risk social con-
tacts between individuals. Both factors are relative as the baseline value
for both quantities is contained in the V parameter;

2. an Exposed individual becomes an Unreported infected one after a time
intervalTE;

3. an Unreported individual can infect other people. After a random time
interval drawn with meanTU they can develop a symptomatic form with
a probability U and be isolated, thus transitioning to compartment I , or
with probability 1 − U recover and be transferred to compartment R;

4. reportedly infected individuals are Isolated either in home isolation or in
a hospital ward. After a timeTI they transition to the Recovered compart-
ment or succumb to the illness. For simplicity we considered a time TI
corresponding to the initial quarantine period established by the Italian
Health Ministry, which works as an average value between the large ma-
jority of short domestic isolations and the minority of prolonged hospital
admissions, e.g. in ICUs or sub-ICUs;

5. after a longer time TR, Recovered individuals are returned to the Suscep-
tible compartment, as immunization is lost. For simplicity it has been
assumed that the e�ective duration of immunity is the same regardless
of its natural or vaccine-induced origin.
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Figure 5.2: Schematic representation of the compartmental model described by (5.5).

A vaccination �ow was added in correspondence of the beginning of the vacci-
nation campaign in late 2020 (the �rst doses were administered to physicians
and healthcare personnel from the the 28th of December), using daily data pro-
vided by the AUSL. The main ingredient of the model dynamics is the average
infection �ux between Susceptible and Exposed individuals, from which all the
other �uxes are obtained. We de�ne it as

ΦSE (t) = V s(t)g (t)
U (t)
P (t) S (t) ,

where one assumes that the probability of meeting an infected unreported in-
dividual U is proportional to their concentration in the active population P .
This stems from the well-stirred assumption, which in this context takes the
name of homogeneous mixing, i.e. that individuals are evenly di�used across the
region of interest by their own mobility patterns. The parameter V has the
same interpretation as in the classical SIR model of Sec. 5.2.1, but we intro-
duce two additional relative time-dependent factors s(t) and g (t). The relative
sociability parameter s(t) is proportional to the average number of at-risk social
contacts per unit time, for each individual belonging to the active population.
It can be modulated over time to represent variations in social activity policies
such as lockdowns, curfews, social distancing and the suspension or remote re-
organization of in-presence jobs and commercial activities. The adoption of
personal protection devices such as face masks is also accounted for in this fac-
tor, since they make otherwise at-risk contact safer. Another contribution to
this term stems from environmental factors, such as weather seasonality, with
higher temperatures acting both on a biochemical ground, by accelerating the
degradation of viral capsids [40], and on a social ground by promoting the re-
location of social activities in outdoor settings. It is a relative term due to the
intrinsic di�culty of measuring directly an absolute value for the number of
social contacts per unit time in a privacy-regulations-compliant way. With re-
spect to the factorization of V observed in Sec. 5.2.2 it can be regarded as a
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time-dependent scaling of the c̄ term. The relative infectivity parameter g (t)
represents the changes in the virus infectivity with respect to wild-type SARS-
CoV-2 and accounts for virus evolution. In particular it can be changed based
on a-priori estimates coming from available biological literature whenever a
new COVID variant becomes prevalent.

The compartmental dynamics presented so far is represented schematically
in Figure 5.2, and it is described by the following distributed delay di�erential
equation:

¤S (t) = −ΦSE (t) − v(t)S (t) + v(t −TR)S (t −TR)

+ (1 − U)
∫ ∞

0
dg ΦSE (t −TE −TR − g) d(g;TU , fU )

+ U
∫ ∞

0
dg ΦSE (t −TE −TI −TR − g) d(g;TU , fU )

¤E(t) = ΦSE (t) −ΦSE (t −TE)

¤U (t) = ΦSE (t −TE) −
∫ ∞

0
dg ΦSE (t −TE − g) d(g;TU , fU )

¤I (t) = U
∫ ∞

0
dg ΦSE (t −TE − g) d(g;TU , fU )

− U
∫ ∞

0
dg ΦSE (t −TE −TI − g) d(g;TU , fU )

¤R(t) = (1 − U)
∫ ∞

0
dg ΦSE (t −TE − g) d(g;TU , fU )

− (1 − U)
∫ ∞

0
dg ΦSE (t −TE −TR − g) d(g;TU , fU )

+ U
∫ ∞

0
dg ΦSE (t −TE −TI − g) d(g;TU , fU )

− U
∫ ∞

0
dg ΦSE (t −TE −TI −TR − g) d(g;TU , fU )

+ v(t)S (t) − v(t −TR)S (t −TR)

(5.5)

where d(s;TU , fU ) is the probability distribution function of the permanence
time in the Unreported compartment. The choice for the functional form is a
Gamma distribution, which is a typical choice for incubation periods distribu-
tions, with average valueT and variance f2

d(s;T , f) = ba

Γ(a) s
a−1e−bs (5.6)

with a = (T/f)2 and b = T/f2 and Γ(x) the Gamma function. (5.5) are
the equations for the full epidemiological model used for predictions in the
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metropolitan area of Bologna. Global solutions to (5.5) cannot be written in
a closed form, so simulations were performed through numerical integration:
due to the regularizing e�ect of the Gamma convolution 1despite potential dis-
continuities that can be present in the s(t) function we can integrate numeri-
cally (5.5) with a simple Euler scheme. A hourly or half-hourly timestep was
usually chosen, with a rebinning of the resulting trajectory to a daily resolu-
tion for comparison with the data. Recapitulating, to run a simulation of the
pandemic, model (5.5) requires the speci�cation of several parameters, some
as constants and some as functions of time:

• the permanence timesTE , TU , TI , TR and the standard deviation for the
U compartment fU , in principle it is possible to take them as functions
of time we chose to keep them �xed for the sake of simplicity, 2

• the fraction of symptomatic patients U,

• the parameter V ,

• the relative transmissivity g (t) as a function of time to represent the
takeover of the various SARS-CoV-2 variants,

• the relative sociability s(t) as a function of time,

• the vaccination forcing term v(t) as a function of time.

In addition to these parameters a suitable initial condition must be selected.
Since these equation contain a distributed delay, the initial condition formally
is a function C0(t) : ]−∞, 0] → ℝ5. This adds in principle to the �exibil-
ity of the model, as we could for example simulate a rebound wave of cases
after a pandemic wave has already struck the population, but elaborate initial
conditions can sometimes have hard-to-control behaviours in DDEs, so we
opt for a simpler approach. In our case we choose a constant initial condition
C0 = (N , 0, 0, 0, 0) where the population is fully susceptible, and move a
Susceptible to the Exposed compartment via a point-like external forcing, sim-
ulating the return into the area of an individual infected elsewhere.

1It is a known result that the convolution of any locally absolutely integrable function f ∈
L1

loc (ℝ) with a kernel g ∈ Ck (ℝ) yields a function of class Ck. Since our kernel d ∈ C∞ (ℝ) we
will obtain an analytical function.

2Taking any parameter, other than those de�ningΦSE , to be time dependent requires great
care in model implementation from both an analytical and a numerical point of view in order
to avoid retrocausal e�ects.
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5.3.2 | Sensitivity analysis of the model

While the full process used to make predictions will be presented in the
following section, we can anticipate that the most of it rests on the tuning, over
time, of the sociability parameter s(t) during the epidemic, which has been
varied to account for the social restriction measures mandated by the Italian
government, for the adoption by individuals of personal protection devices in
their social activities (e.g. face masks) and for the environmental conditions,
in order to match the weekly trend of new positive cases. The parameter was
changed, if necessary, on a weekly basis, in order tomatch the exponential trend
of new positive cases obtained from the AUSL clinical data. A precise estimate
of this parameter is critical to the model predictions and its �uctuations may
have a relevant e�ect during the evolution of the epidemic. The quanti�cation
of these e�ects can be performed by computing the sensitivity of the model
during the evolution for small perturbations of the sociability parameter.

Considering a perturbation to the s(t) parameter at a time t0, we start by
assuming that at t0 the prevalence ratio of susceptibles S (t)/P (t) can be ap-
proximated as constant in short time scale, i.e. for Δt = t − t0 small. This
approximation is most accurate for low number of unreported individuals and
if we can consider the vaccination process to be slow with respect to the dy-
namics. We further assume that in the time scale TU (healing or symptom
manifestation time) the s(t) parameter can be considered a constant s(t) = s, in
a more general case an average value for a short time interval 'TU can be con-
sidered. To unburden the notation we also assume to keep constant the relative
transmissivity g and absorb its value in the V factor. Since it is a multiplicative
factor as well, the same treatment we are about to develop for the sociability
parameter can be applied straightforwardly to g. Within these approximations
it is possible to reduce the system (5.5) to a single delay di�erential equation,
setting S (t0)/P (t0) = n0 ≤ 1,

¤U = Vn0s
[
U (t −TE) −

∫ ∞

0
dgU (t −TE − g) d(g;TU , fU )

]
∀ t ≥ t0 (5.7)

We look for solutions of the dynamics (5.7) in the formU (t) =U (t0)e_ (t0) (t−t0).
After some algebraic manipulations one gets the condition

_ (t0)
Vn0s

e_ (t0)TE = 1 −
∫ ∞

0
dg e−_ (t0)g d(g;TU , fU ) .

By substituting the Gamma distribution (5.6), the equation for _ (t0) becomes

_ (t0)
Vn0s

=

(
1 − ba

(_ (t0) + b)a

)
e−TE_ (t0) . (5.8)
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The epidemic spreads exponentially if the above equation admits a positive so-
lution, whereas the cases decrease if we have a root _ < 0. On these grounds
we call _ the local Lyapunov exponent (of the origin) of the system. Indeed in
such epidemiological models the global Lyapunov exponent in its standard for-
mulation tends to carry very little information, due to the fact that on long
periods of time the dynamics tends to assume a relaxational character towards
the post-epidemic equilibrium, which is not a uniquely de�ned attractor �xed
by the system parameters, but depends on the initial conditions of the system.
In this sense even if the qualitative character of the �nal state is the same, one
can speak of multi-attractive behaviour. Solving (5.8) in principle can be done
via numerical root-�nding algorithms, but a closer inspection allows us to de-
termine analytically the region in parameter space where it yields a positive
solution. It is straightforward to note that if _ ≥ 0, the second derivative of
the r.h.s. of (5.8) is always negative, this means that the slope is always smaller
than

d
d_
(r.h.s.)

����
_=0

=
a
b
=TU ,

and decreases as _ increases. So, a necessary and su�cient condition for the
existence of a positive solution to (5.8) is that

TU >
1

s(t0) Vn0
→ TU s(t0) Vn0 > 1 . (5.9)

Introducing the adimensional parameter ` ≡ TU_ , the relation (5.8) can be
written in the form

`

TU s(t0) Vn0
=

(
1 − aa

(` + a)a

)
exp

(
−TE
TU

`

)
= F (`) (5.10)

We call ` adimensional Lyapunov exponent since it represents the exponential
rate of change for the linearized system in a time scale TU that is the average
lifetime of an individual in the unreported compartment: i.e. the time interval
during which an individual spreads the infection. It is convenient to consider
the quantity

r (s) =TU sVn0 (5.11)

so that according to eq. (5.9) if r (s) > 1 we have a positive solution of (5.8) and
the unreported infected individuals increase exponentially, whereas if r (s) < 1
we have a negative solution _ < 0 and the Unreported compartment decreases.
r (s) = 1 is the critical value, for which _ = 0: by construction this condition is
satis�ed when the Unreported compartment is at its maximal value, i.e. at the
peak time of infections, or it can be achieved by applying social activity restric-
tion policies to limit the epidemic spread. It can easily proved, e.g. by following
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[26], that r (s(t0)) is theRt0 parameter of the model, entirely analogous to what
we presented in Sec. 5.2.2 for basic models.
The sensitivity analysis of the model considers the e�ect of local �uctuations of
the sociability parameter and how they a�ect the value of the local Lyapunov
exponent in order to estimate the uncertainty in the short term predictions.
The susceptivity estimate depends on the derivative d`/ds computed on the
solutions of (5.8). Indeed, a �uctuation Δs in the sociability parameter at a
time t0 introduces an error Δ` in the adimensional local Lyapunov exponent
so that the expect variation in the short term prediction reads

ΔU (t0 + Δt) =U (t0) exp
(
`(t0 , s0)

Δt
TU

)
Δt
TU

d`
ds
Δs (5.12)

The error depends exponentially on the local Lyapunov exponent and increases
linearly with Δs. A direct calculation of the susceptivity d`/ds provides

d`
ds

=
`(s)

s(1 − r (s)dF/d`) (5.13)

If we look at the evolution of the local Lyapunov exponent and its susceptiv-
ity along a sample trajectory of (5.5) we observe what follows. The adimen-
sional Lyapunov exponent has a decreasing sigmoid behavior as a function of
t (see Figure 5.3) with an in�ection point close to the critical value ` = 0. The
derivative d`/ds is continuous at the critical value and has a decreasing sig-
moid behaviour as well. This means that the presence of small �uctuations in
the sociability parameter s(t) mainly increases the prediction error during the
expansion of the epidemic wave, whereas they play a limited role when the herd
immunity is reached. From this analysis it becomes also evident that enforcing
restrictions on social activities to control the epidemic spread also improves the
prediction capabilities of the model, that could in turn be used to optimize the
application of the social restriction policies.

5.4 | Epidemic forecasting and data analysis

5.4.1 | Nowcasting the COVID-19 pandemic in the Bologna
metropolitan area

As it has been pointed out in Sec. 5.3, several parameters must be �xed in
order to perform simulations of the pandemic using (5.5). More speci�cally,
making short-term forecasts using a dynamical model entails adapting its pa-
rameters according to a data driven approach, in order to match the dynamical
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Figure 5.3: Example of epidemic evolution (blue continuous line) using model (5.5)
for a �xed value of V = (1.2 d)−1 and a baseline relative sociability parameter s = 0.7.
The red brackets show the variability of weekly forecasts under a ±10% change in the
value of m. The dashed green line represents the adimensional Lyapunov exponent
`. The dash-dotted orange line is the local Lyapunov exponent susceptivity d`/ds.
Population values are read on the left axis, exponent and susceptivity values on the
right. Time on the abscissae is marked in days.
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Parameter Time (days) f (days)

TE 2 –
TU 5.5 2.3
TI 21 –
TR 180 –

Table 5.1: Permanence times of each compartment in the model. The standard devi-
ation fU is reported only for the compartment where it is de�ned.

state at the time of prediction to a decided accuracy and then project it in the
near future via the dynamics speci�ed by the model. From this point of view,
having many free parameters can result in instability of the estimates, and pos-
sibly lead to over�tting phenomena. The value of the reported symptomatic
fraction has been �xed to U = 0.14 according to the available literature [61],
and has been treated as a �xed constant throughout the simulations. The per-
manence times have been set to the values presented in Table 5.1 and were
kept �xed as well. Their values have been taken from literature [58], except for
the I compartment, where the value TI = 21 d was chosen in the beginning
as it corresponded to the duration of the state-mandated isolation period for
individuals who tested positive to SARS-CoV-2 , and has been kept later as
an e�ective duration in order to account for both short-term home isolations
and hospital admissions of longer duration. The relative transmissivity g was
changed three times during the simulation, at the times when it was estimated
that variants had arrived in Bologna. Fixed in the beginning to a value of g0 = 1
it has been changed for the �rst time on the 20th of October 2020 to a value
g1 = 1.56 accounting for the increased infectivity of the Alpha variant. Subse-
quent changing points were on the 1st of April 2021 to a value g2 = 2.50 for
the arrival of Delta variant and �nally to a value g3 = 12.5 accounting for the
estimated arrival of the Omicron variant on the 1st of December 2021. These
values were not obtained from data, but corresponded to values published in pe-
riodic bulletins [52] available from the Italian National Health Institute (Italian
Istituto Superiore di Sanità) Since in the initial stage of the pandemic no social
restrictions were in place, also the relative sociability parameter s has been set
in the beginning to a value of s = 1. This allowed us to obtain the value of
V from testing data during the initial exponential growth phase of the cases,
as it is unmodulated by the other factors. An exponential �t on the daily new
positive cases in Bologna for the �rst 10 days of data from 24/02/2020 to
04/03/2020 yielded the value V = (0.833 ± 0.34) d−1 ≈ (1.2 d)−1. Using
(5.11) we can compute the value of R0 in our model, obtaining R0 = 4.6± 1.9
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which is compatible with the value R0 = 2.9 ± 0.5 at 95% con�dence interval
reported e.g. in [15]. Finally, the e�ect of the vaccination campaign, modeled
through the termΦV (t) = v(t)S (t), with v(t) the function quantifying the e�ect
of vaccination in reducing the susceptible population S. The vaccination rate
function v(t), which lowers the number of susceptible individuals because of
immunization, was set to 0 up to the 28th of December 2020 and its value was
afterwards updated to the vaccination rates provided by the local health unit
on a weekly basis. This leaves the relative sociability parameter s(t) as the only
free parameter of the model, around which our prediction strategy was con-
structed. The relative sociability parameter s was de�ned as a piecewise con-
stant function and varied on an approximately weekly basis during two years
from the beginning of COVID-19 epidemic, in order to minimize the di�er-
ence between predicted and observed new cases of infections (i.e. considering
the incoming �ow into the I compartment). To formalize the procedure we
write the sociability function as

s(t) = sn ∀ t∗n ≤ t < t∗n+1

where {t∗0 = 0, t∗1 , . . . , t∗n , . . . , ∞} is the sequence of the changing times of
the function (with the change at in�nity being included for consistency with the
de�nition) and {s0 = 1, s1 , . . . , sn , . . . , s∞} its constant values. If we consider
a new variation being introduced at a time t∗n we select the new value through a
grid search, performed with a granularity of 10−2, selecting the optimal point
as the minimizer of the weekly RMSE, i.e.

sn = arg min
s=sn−1+10−2 [−Δ,+Δ]

1
√

7

[∫ t∗n+Te�+7

t∗n+Te�

dt (Φmodel(t; s) −Φdata(t))2
]1/2

(5.14)

where Φdata(t) is the weekly running average of the measured new positives
at time t, t∗n is the beginning of the n-th constant interval in the piecewise so-
ciability function, Φmodel(t) is the �ow of new isolated cases estimated by the
model and Δ is the maximum allowed number of optimization steps 3 away
from the previous sociability value. By denoting the Φmodel(t; sn = s) we in-
tend that we are keeping all sociability values �xed up to sn−1 and varying s,
i.e. the sn candidate to minimize the RMSE. Notice how we have to insert
an o�set Te� = TE + TU in the integration limits, since to start noticing the
e�ect of a change in the parameter at t∗ we need to wait approximately Te� ,

3This quantity has changed through the period during which forecasts were being made,
as sometimes very strong restrictions, or the lifting thereof, made large variations necessary.
Nevertheless, the values were always selected that allowed the best accord with data through a
minimal perturbation of the sociability parameter.



Epidemic forecasting and data analysis 130

i.e. the average time between exposition to the pathogen and manifestation
of symptoms, before we see any e�ects. Therefore, using a data driven ap-
proach such as the one described so far, applied in the Metropolitan area of
Bologna during the COVID-19 pandemic, when a time series of the incom-
ing �ow to the I compartment is available from the observations, it is possible
to infer the value of s(t). To mitigate the risk of over�tting, the levels of s(t)
were generally tuned in correspondence of changes in the sociability restric-
tion policies applied in Italy during the COVID-19 epidemic, or changed as
a consequence of wide-impact social events (such as the reopening of schools),
but small weekly modi�cations in the social activity parameter could often be
necessary for unpredictable causes. In Fig. 5.4 we show how the model (5.5)
was able to reproduce the observed new reported infected during the �rst two
years of COVID-19 epidemic. The Mean Absolute Error (MAE) achieved by
the model is 42 patients (RMSE = 97 patients) over a study duration of 866
days. As discussed in Sec. 5.3.2 and showcased in Fig. 5.3, the possibility of
performing accurate short-time predictions is sensitive to �uctuations of the
s(t) parameter and hence strictly related to the possibility of estimating the
parameter accurately using the real-time observed data. One of the foremost
disturbances in the regression was related to the time delay between the so-
ciability changes and their e�ect in the new detected infected and despite the
good interpolation of the observed data, the short term predictions were some-
time a�ected by this fact. Therefore the possibility of having a precise, ideally a
priori, measure of the sociability parameter is a fundamental step in the deploy-
ment of predictive models that could allow to mitigate the spread of epidemics
like COVID-19 where the number of unreported infected individuals has a rel-
evant role. In the next section we show how mobility data could be used as a
proxy for a real time estimate of the changes in the sociability parameter, thus
potentially improving the predictivity of the model.

5.4.2 | Construction of a proxy for the sociability parameter
using mobility data

The mobility data used for this study are part of the “Open Data Bologna"
project of the Bologna township [78–80], which is an open access repository
containing several datasets, among which are tra�c �ows data with a hourly
resolution, measured from 292 magnetic coils in the city of Bologna and in
the Bologna metropolitan area. The available data cover the full span of the
study from year 2020 through 2022. Our working assumption is that tra�c
�ow data are a proxy of the level of social activity taking place in the city, one
of the foremost contribution to the spreading of the COVID-19 epidemic and
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Figure 5.4: The blue dots are the daily number of new positive recorded in the
metropolitan area of Bologna (AUSL dataset) whereas the orange triangles are a run-
ning average over a week. The red curve is the data-driven model simulation results in-
ferring the sociability parameter. Note the di�erent scales in the two timespans due to
the increase e�ciency in the detection of the new positive during the epidemic waves.

the only free parameter in (5.5), thus we expect that changes in the tra�c �ows
will correspond to changes in the social activity levels. The interest in this ap-
proach lies in the fact that while the mobility data are easily measurable and
often made available under open data policy initiatives, it is quite di�cult to es-
timate a-priori the levels of social activity in a population. To build the proxy
we apply a weekly moving average to the data, in order to mitigate the peri-
odic �uctuations corresponding to the natural weekly cycle of mobility (e.g. a
drop in the weekends due to the reservation to pedestrians of various areas).
Finally, the total tra�c �ow was normalized to a maximum value of 1 at the
local maximum anterior to the start of the COVID-19 pandemic, so to match
it to the value of the relative sociability parameter at the beginning of the sim-
ulation. We de�ne this rescaled value as the mobility index m(t). In Fig. 5.5
we show the mobility index derived for the tra�c �ows time series. With the
onset of the �rst national lockdown (march 2020, �rst red shaded region of
5.5), the tra�c �ow index undergoes a drop to ' 20% of the initial value. Upon
lifting of the national lockdown, several restrictions were kept in place to miti-
gate the resurgence of cases, with a corresponding growth of the mobility index
to values that remained smaller than the pre-pandemic ones (a reduction ap-
proximately to the 80% of the pre-COVID value in June 2020) that could also
give an interesting estimate of the impact of measures such as remote working
on the urban tra�c of Bologna. The regional-scale introduction of pandemic
severity-dependent restrictions and curfews (Autumn 2020) in Italy is marked
by the second red shaded region in Fig. 5.5 and corresponds to a mobility index
value around the 70% of pre-pandemic levels. A further reduction in mobility
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Figure 5.5: The red-shaded areas mark in, in chronological order: the Italian national
lockdown during the �rst epidemic wave, from the 3rd of March to the 4th of May
2020, a set of government-mandated countermeasures during the second pandemic
wave, such as the shutting down of in-presence commercial activities, the introduction
of night curfews and of pandemic severity-based color-coded regions from the 19th of
October 2021 to the 3rd of December 2020 and winter-time restrictions from the 26th

of February to the 26th of April 2021. The blue-shaded areas mark winter holidays
and the month of August, which is a typical month for company holiday periods in
Italy.

is measured inMarch andApril 2021, this period corresponds to the enactment
of some restrictions on social activities by the national authorities. Ulterior par-
ticularly localized trendsmay re�ect the behavior of individuals, also in�uenced
by the news, social media and personal risk perception. Other oscillations are
observed in conjunction with holiday periods, shaded in blue in Fig. 5.5, during
summer (August 2020 and 2021) or the end of the year (Christmas holidays).
In the case of Christmas holidays, the decrease is often preceded by a short and
sudden increase in the mobility time series, likely related to Christmas shop-
ping. The mobility drop during holiday periods can be also the consequence
of the population leaving the the Bologna area. We �nally observe a global
trend to recover the initial value of the mobility index during the course of the
pandemic, which is approximately re-achieved around December 2021.
A slightly more elaborate version of model (5.5), accounting for a very simple
hospitalization dynamics (i.e. a dynamics completely internal to the I compart-
ment, which has not been presented for simplicity) has been used to weekly
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predict the number new positive and the hospitalizations in the metropolitan
area of Bologna during COVID-19 epidemic. The model provided reasonable
short term predictions of epidemic evolution on a city spatial scale. We intend
to perform a comparison of the inferred piecewise constant s(t) parameter and
the m(t) time series obtained from the data, to understand to which extent we
can treat the latter as a proxy for the former. The use of the mobility index as a
proxy of the social activities is justi�ed by the fact that among the containment
measures implemented during the pandemic, there were mobility restrictions
and the implementation of remote-working whenever possible, which are both
aspects we expect to be able to retrace in the urban mobility. A direct compari-
son of the mobility index and the inferred values of s(t) during more than two
years from the outbreak of the pandemic is made in Fig. 5.6.
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Figure 5.6: Comparison between the inferred sociability parameter s(t) (red crosses)
and the weekly running average of the normalized daily mobility, i.e. the mobility
index m(t) (green dots). The shaded regions mark the the same events as in Fig. 5.5.

5.4.3 | The role of social activity regulations

At the start of the �rst lockdown (�rst red shaded area) the mobility index
and the inferred sociability s have roughly the same behaviour, so that the val-
ues of m(t) could have been taken as a good estimate for s(t). However, once
the mobility restrictions are partially lifted (May 2020), we start to observe a
systematic mismatch between the mobility index value and the sociability pa-
rameter. While the m(t) time series goes back to ≈ 80% the pre-pandemic
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Day Event Shift
18/05/2020 Activities reopening (bars, restaurants) 0.58
17/05/2021 Delta variant in Emilia Romagna 0.23
15/09/2021 Schools reopening 0.71

Table 5.2: Breakpoints for the correlation analysis between sociability and mobility
indexes. The values in the Shift column were added separately (not cumulatively) to
the baseline sociability index.

mobility value, the s(t) parameter remains much lower, only slightly above the
lockdown level. Possible explanations could be a radical change in the popu-
lation’s behaviour during social activities due to regulations, such as the com-
pulsory use of respiratory masks, which reduce drastically the risk involved in
social contacts, nonetheless allowing most social activities to happen. The dis-
crepancy between the two indices can be removed by introducing a systematic
additive shift s ↦→ s + 0.58 without changing the relative �uctuations. The
results shown in Fig. 5.7 suggest that, after the shift, the mobility index �uctu-
ations are still able to reproduce the changes of the sociability parameter, even
if care should be taken regarding mobility index drops during holiday periods.
The introduction of the shift allows better agreement over a period of almost a
year, after which it is likely that the e�ect of the vaccination campaign, the Delta
variant (black line in Fig. 5.7) and the warmer summer climate changed the con-
tagion dynamics, thus requiring a smaller shift of s ↦→ s + 0.23. This smaller
mismatch can be interpreted as the result of a possible diminished compliance
with social distancing and respiratory hygiene practices on the one hand and
of a faster environmental degradation of the pathogen due to the warmer tem-
peratures. To this it shall be added that the number of new positive recorded
during Summer 2021 was very low (see e.g. Fig. 5.4 right), conditions that
make compartmental models generally less reliable. In the early autumn of
2021 a resurgence of the epidemic is observed, that can likely be attributed
to the reopening of schools (see Table 5.2), and the realignment of the socia-
bility index s with the mobility m requires a positive shift of the former of an
amount 0.71. Finally we observe that, in early 2022, the empirical sociability
parameter starts to decrease and there is no apparent correlation with the mo-
bility index despite the shift. However at that time the epidemic dynamics was
complicated by the presence of several variants and the heterogeneous e�ects
of vaccination coverage in the population so that the simple compartmental
model (5.5) was likely not able to capture the epidemic evolution correctly any
longer. An interesting perspective o�ered by these results is that they could
allow a quanti�cation of the impact on the epidemic spread of the measures
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increasing social distancing, such as the use of face masks or the crowding limit
in public locations. For example, after the �rst lockdown of 2020, the e�ective
reduction in the contagion probability is almost a factor 4, while a comparable
mobility of individuals on the metropolitan area scale was restored with respect
to pre-pandemic levels. The measurement of the e�ect of these policies at the
beginning of the COVID-19 epidemic spread could have been a useful quan-
titative guide for government o�cials, e.g. when evaluating the necessity of
a complete lockdown versus other e�ective strategies with a lower economic
impact.
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Figure 5.7: The shifted piece-wise constant sociability rate function s (red crosses) is
plotted against the mobility data (green dots). The shaded regions refer to di�erent
shifts applied to the sociability rate (see legend).

5.4.4 | Estimation of the e�ects of sociability �uctuations on
the accuracy of predictions

We can use the �ndings of Sec. 5.3.2 to estimate the amount by which the
accuracy of our prediction will be a�icted by �uctuations in the sociability pa-
rameter s(t). To follow the pandemic course in Bologna the parameter has
been adjusted weekly, regressing with respect to the number of new cases in
the Metropolitan area, thus de�ning over time a piecewise constant function.
The levels of the piecewise constant function are solutions to the optimization
problem (5.14), which is solved every time a new sociability level is introduced.
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Since the new positive cases are the Unreported individuals that develop symp-
toms and are isolated, we identify

Φmodel(t) = U
∫ ∞

0
dg d(g;TU , fU )ΦEU (t − g)

which is the incoming �ow for the I compartment, where we have denoted
ΦEU (t) = ΦSE (t−TE). Our aim is to quantify how large can the �uctuations in
s(t) be, while causing a relative �uctuation in our prediction of the new cases
ΔΦmodel(t0)/I (t0) below a certain accuracy threshold which we may decide to
set. We can formalize the problem as follows: let us consider a positive instant
t0 > 0 during the evolution of the model, at which we decide to readjust the
sociability parameter to �t better the clinical data. To do so, we solve the op-
timization problem (5.14) for s, and obtain a value s∗, which is our best guess
for the new sociability level. Let us then consider an ensemble of simulations,
all identical to each other until time t0, in particular with the same piecewise-
constant sociability function up to that time, and let us perturb, in each copy
of the simulation, the sociability for t > t0 with a value drawn from a Gaussian
distribution N(0, f), i.e. for each simulation let us take

s∗ ↦→ s∗ + Δs, Δs =N(0, f).

We then evolve the simulations for theTe� +7 days necessary to solve problem
(5.14), and calculate the quantity

fmodel(t0) =
∫ t0+Te�+7

t0+Te�

dt
√
〈Φ2

model(t; s∗ + Δs)〉Δs − 〈Φmodel(t; s∗ + Δs)〉2Δs ,

(5.15)
i.e. the ensemble standard deviation of the predicted new positives, averaged
over the prediction period of a week starting from t0 +Te� . Up to the further
normalization over I (t0) this is to all e�ects the standard deviation of the �uctu-
ations in the new positives induced by a sociability random perturbation. With
these de�nitions in place, we can ask the question of how large we can take f
in the sociability parameter perturbation while still having fmodel(t0)/I (t0) ≤ r
where we denote by r the chosen threshold value.
The estimation of �uctuations in the compartments is a typical question ad-
dressed via linear response theory, which we considered for the model at hand
in subsection 5.3.2. Indeed according to our results, and considering a localized
variation Δs at time instant t0, we can write

ΔU (t0 + Δt) =U (t0) exp
(
`(t0 , s0)

Δt
TU

)
Δt
TU

d`
ds
Δs (5.16)
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which corresponds to (5.12). This is the linear response approximation for the
�uctuation in the population of the Unreported compartment induced by a
change Δs of the sociability parameter. If we consider Δs = N(0, f) we can
take the variance on both sides

Var [ΔU ] (t0 + Δt) =U2(t0) exp
(
2`(t0 , s∗) Δt

TU

)
Δt2

T2
U

(
d`
ds

)2

f2 (5.17)

This is not completely satisfactory, though, because our regression has been
performed on the newly isolated infected patients, the only infection data avail-
able with a reasonable accuracy, and these correspond to a fraction U of the
outgoing �ow from the Unreported compartment. The relationship between
the �ow and the compartment is

¤U (t) = ΦEU (t) −
∫ ∞

0
dg d(g;TU , fU )ΦEU (t − g) (5.18)

whereΦEU is the Exposed-Unreported �ow and dU is the Gamma distribution
of the permanence time within the Unreported compartment, with parameters
as explained in section 5.3. By introducing the linear integral operator L

L [ f ] (t) =
∫ ∞

0
ds(X (s) − dU (s)) f (t − s) ≡

∫ ∞

0
dsg (s) f (t − s)

we can recast (5.18) as
¤U (t) = L [ΦEU ] (t) (5.19)

we can formally invert the �ow-compartment relationship as

ΦEU (t) = L−1 [ ¤U ]
(t) (5.20)

such an inversion, technically referred to as a raw deconvolution problem, is usu-
ally tackled exactly via a Laplace transform.
By linearity of L, the relationship between �uctuations in the �ow and the
compartment derivative caused by a parameter change has the same form of
(5.20), i.e. ΔΦEU (t) = L−1

[
Δ ¤U

]
(t). A direct calculation provides for Δ ¤U

Δ ¤U (t0 + Δt) =U (t0) exp
(
`
Δt
TU

) (
`Δt
TU
+ 1

)
d`
ds
Δs
TU

, (5.21)

for the sake of clarity in the following let us collect ^ =U (t0) d`ds
Δs
TU

and perform
the scaling `Δt/TU ↦→ t, so that the linear response law for the time derivative
of theU compartment reads

Δ ¤U (t) = ket (t + 1) . (5.22)
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By the properties of the Laplace transform, which we denote for a function
f (t) as f̃ (ℓ), we can recast (5.20) for the case of the �uctuation as

Φ̃EU (ℓ) = Δ̃ ¤U (ℓ)/g̃ (ℓ) =
^ℓ

(ℓ − 1)2
(

ba
(ℓ+b)a + 1

) (5.23)

Taking the antitransform of the r.h.s. of (5.23) will yield the linear response
law for the �ow perturbation. In light of recent developments [32], it is likely
possible to leverage results from fractional calculus and at least express the an-
titransform in a convolution form, but further investigation is necessary.
For this reason we trace back to (5.18) applied to �uctuations and try to work out
an approximation. We start by expanding the integral in the central moments
of the distribution d(t;TU , fU ). Keeping the contribution at lowest order we
get

Δ ¤U (t) = ΔΦEU (t) − ΔΦEU (t −TU ). (5.24)

In this simpli�ed version of the �uctuation dynamics the outgoing �ow, in
which we are interested, is just a delayed version of the incoming one. For
this reason it is easier to study the latter, and take its scaled and delayed value
as the rate of new identi�ed infected people. Isolating ΔΦEU from (5.24), and
identifying t = t0 + Δt as it is intended in the formulation of the argument, we
get

ΔΦEU (t0 + Δt) = Δ ¤U (t0 + Δt) + ΔΦEU (t0 + Δt −TU ). (5.25)

On causality grounds, any term in the previous formula is identically 0 when
evaluated with an argument smaller than t0. For this reason, in the whole inter-
val Δt ∈ [0, TU [, the �ow �uctuation ΔΦEU corresponds to the �uctuation in
the compartment time derivative. For larger Δt ∈ [TU , 2TU [ we must include
an additional delayed term, but this eventually is just the derivative perturba-
tion evaluated at an earlier time. At longer delaysΔt ∈ [nTU , (n + 1)TU [ wewill
have to consider n additional terms, which can all be lead back to the derivative
perturbation in the �rst interval4.

ΔΦEU (t0 + Δt) =U (t0)
d`
ds
Δs
TU

bΔt/TU c∑
k=0

exp
(
`Δt
TU
− k`

) (
`Δt
TU
+ 1 − k`

)
(5.26)

where b·c denotes the �oor function, i.e. the truncation to the closest smaller
integer. While (5.26) is the linear response law for the incoming �ow into the
Unreported compartment, we need to delay it of TU to obtain the law for the

4To this it shall be added that, for a nonlinear system, linear response theory will yield sensi-
ble results only for short durations of time so that reasonable evaluation of the �ow perturbation
will contain just few terms.
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outgoing �ow. Moreover, if we scale it by the symptomatic cases ratio U we
obtain

ΔΦmodel(t0 + Δt) = UU (t0)
d`
ds
Δs
TU

bΔt/TU c∑
k=1

exp
(
`Δt
TU
− k`

) (
`Δt
TU
+ 1 − k`

)
(5.27)

which is a sensible expression only for Δt > TU on causality grounds, i.e. be-
cause we cannot observe the outgoing perturbation before at least a perma-
nence time has elapsed. For consistency therefore we set

ΔΦmodel(t0 + Δt) = 0 ∀Δt < TU .

By bringing Δs to denominator we get the susceptivity of ΔΦmodel with respect
to sociability

ΔΦmodel(t0 + Δt)
Δs

=
UU (t0)
TU

d`
ds

bΔt/TU c∑
k=1

exp
(
`Δt
TU
− k`

) (
`Δt
TU
+ 1 − k`

)
,

(5.28)
which is set to 0 for Δt < TU . This susceptivity provides the scaling factor that
relates a �xed perturbation of the sociability parameter Δs at time t0 with its
e�ect after a time interval Δt on the �ow of newly infected isolated patients in
the model. In particular this allows us also to compute the quantity fmodel(t0)
without performing an ensemble of simulations, but directly from the ensem-
ble standard deviation f. The explicit calculation reads

fmodel(t0) =
∫ Te�+7

Te�

dt
����ΔΦmodel(t0 + t)

Δs

����f
≈ fUU (t0)

TU

d`
ds

∫ 2TU

TU
dt

(
`t
TU
+ 1 − `

)
exp

(
`t
TU
− `

)
=
UU (t0)
TU

d`
ds
e`f ,

where we have approximatedTe� ≈ TU , Te� + 7 ≈ 2TU to obtain a more man-
ageable �nal form. Dividing by I (t0) we can write down an explicit formula
for the standard deviation of the sociability perturbations as a fraction of the
current positive cases

fmodel(t0)
I (t0)

=
UU (t0)
I (t0)

d`
ds

e`

TU
f . (5.29)

The problem in applying the above formula rests in the fact that U (t0) is by
construction an unobservable compartment, so that in real application cases
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one has no means of comparing the simulated value with data. For this reason,
we approximate U (t0)/I (t0) ≈ U/(1 − U). We can now bound from above
fmodel/I (t0) ≤ r with the acceptable error threshold r and solve for f

f ≤ TU e
−`

1 − U

(
d`
ds

)−1

r . (5.30)

Formula (5.30) estimates the maximal acceptable �uctuation in the sociability
for the prediction �uctuation of new positives to remain below a fraction r of
the current number of isolated patients. To gain an insight on the values at play,
using the physical values for V , U and the delays, we evaluate the equality value
for f given by (5.30) as a function of the Susceptibles concentration n0 and the
mean sociability value s0 around which the �uctuations oscillate. In Fig. 5.8

Figure 5.8: Heatmap of the maximal acceptable sociability �uctuation f yielding an
average new positives prediction error relative to the current Isolated Infected patients
inferior to r = 10%.

we show the maximal f that keeps the prediction �uctuations below a value
of r = 10% of the value of isolated patients. The emerging interpretation is
interesting and potentially relevant for policymakers. Indeed we are able to see
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that for high concentrations of susceptibles and high sociabilities the admissible
�uctuation is quite low, tending to 0, as the system is at its highest sensitivity in
these conditions. If we decrease the concentration of susceptibles we observe a
higher tolerance to �uctuations, as the system is inherently less reactive. The
trend of the tolerance increase is quicker for lower sociabilities, as the foremost
contribution to new infection comes still from the mean value.
These �ndings highlight a double implication for policy making and the plan-
ning of response strategies to pandemic events. On the one hand these re-
sponse estimates are a valid instrument when evaluating the necessity of strict
containment measures. Indeed measures such as complete lockdowns have a
high economic impact and a considerable social cost for individuals, and their
deployment should be mandated with great care. Our analysis shows in this
regard that these are most e�ective in the initial stages of the pandemic, i.e.
for large n0, where imposing a low s0 allows the system to accommodate some
degree of sociability �uctuations while keeping their in�uence limited. On the
contrary once the pandemic peak has passed or vaccines have been deployed,
i.e. for lower values of n0, our analysis shows that a higher average sociability
can be restored without amplifying the e�ects of �uctuations on predictions.
On the other hand, our results have implications concerning the importance
of contact tracing and case reporting in the di�erent phases of the pandemic, to
ensure accurate predictions. What Fig. 5.8 tells us in this regard is that accurate
positive reporting is paramount in the early stages, where even an arbitrarily
small �uctuation can signi�cantly alter model predictions. In the later stages
of a pandemic wave, instead, we expect that even less resolute tracing and test-
ing campaigns will su�ce to follow with reasonable accuracy the development
of epidemiological events. In the present state of a�airs, the design of man-
agement strategies for pandemic phenomena on regional and national scales
must indeed not only consider the signi�cant economical endeavour of testing,
tracing and reporting infrastructures, but also carefully address the understand-
able growing concern among citizens on privacy and personal data processing.
For these precise reasons we believe our contribution can be a valuable aid in
quantifying trade-o�s between various approaches in responding to pandemic
events.

5.5 | Conclusion

In this chapter we present our approach to the problem of short term fore-
casting the evolution of the COVID-19 epidemic in the metropolitan area of
Bologna using a simple compartmental model based on delay di�erential equa-
tions and a data driven approach. The available data consisted of new positive



Conclusion 142

cases recorded daily by the testing campaign, and further during the course of
the pandemics, of the daily number of vaccinated individuals. With this knowl-
edge, the sociability parameter of the model was tuned on a roughly weekly
basis to match the trend of new cases, and taking into account the social re-
striction policies applied by the central government to get weekly forecast of
the epidemic evolution. While the introduction of explicit delays in the model
is fundamental for capturing the evolution of the COVID-19 spread, the reli-
ability of the predictions su�ers from the delay between the changes in social
activity and its impact on new positives. Indeed, we show that a theoretical com-
putation of local Lyapunov exponent and its susceptivity allows an estimate of
the predictability error due to the �uctuations of the sociability parameter, and
that especially in the initial stages of a pandemic wave data quality is paramount
to adequate predictions. Hence we expect that the predictivity of the model
would enjoy a great improvement with the introduction of a real time mea-
sure of the social activity. Comparing the tra�c data recorded by a system of
magnetic coils in the city of Bologna and the time series of the sociability pa-
rameter s(t) inferred by the model (5.5) from the new positive individuals time
series, we show that the urban mobility index can be a good and robust proxy
of the sociability parameter �uctuations, at least on a medium range of predic-
tion. At the beginning of the epidemic there is a strong correlation between
mobility and social activities since strong mobility restrictions were the main
measures implemented by the central government to control the spread of the
epidemic. However, the introduction of other mitigating measures which do
not impact directly mobility, but are related to people behaviour during social
activities (i.e. sanitary masks, willing reduction of social contacts, crowding lim-
its for enclosed spaces), paired with the lifting of lockdowns, seems to introduce
a discontinuity in the observed correlation. One can take into account of the
discontinuity by shifting the sociability parameter to recover a quite good cor-
relation between the �uctuations of the two time series for a period of almost
one year, up to the summer 2021. At this point a smaller shift must be consid-
ered, up to the reopening of schools in September 2021, possibly accounting
for the reduced care in observing respiratory hygiene and social distancing and
the environmental e�ect on the basis transmissivity of the virus. After the sum-
mer 2021 when there was a resurgence of the epidemic, the scenario changes
again both for the e�ect of the vaccination campaign and emergence of new
virus variants. A new shift value is required to match the mobility data: these
recover almost the pre-COVID values whereas the sociability parameter has a
small increase. By this �nal shift we recover a correlation up to the beginning
of 2022 when the pandemic began to draw to a close, at least for the dynamics
captured by our model. These �ndings point to the fact that a proxy for the
sociability parameter can be constructed frommobility data, provided that soft
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containment measures are not varied too greatly during the period of predic-
tion, otherwise a realignment will be needed. The relevance of these �ndings
rests particularly in the fact they could provide a �rst approach for the quan-
titative inference of the e�ect of containment measures, especially when these
are adjusted and introduced continuously with respect to the propagation time
scales of a pandemic, which has been recognized as di�cult task [3] in general.
Moreover, if one assumes that mobility data can estimate up to a normalization
the social activity in an area of interest, the shift needed to match inferred and
measured data could quantify the di�erence between the overall rate of contact
and that of unprotected contacts, that contribute to the dynamics of contagion,
which can in some sense estimate in turn the compliance of the population
with mandated measures. The quanti�cation of the shift, in addition, suggests
that even softer measures, such as those in place after the lifting of the �rst
lockdown, had a strong e�ect (a reduction of a factor ' 4 of the relative socia-
bility parameter) on mitigating the contagion di�usion during social activities.
Furthermore, it may be argued that once a strong lockdown is in place, softer
measures are scarcely e�ective (e.g. the widespread adoption of face masks has
a limited additional e�ect if most people are home con�ned in the �rst place).
We would therefore like to remark that in a future scenario of a quick-spreading
pandemic disease, dynamical models, used in conjunction with mobility data
in data-driven approaches, could be an important asset for policy making and
the optimization of control strategies, in particular by providing quantitative
predictions to compare di�erent measures.
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In the present thesis we have examined the emergence and the role that
delay e�ects play in the context of Complex Systems, and the possibility to
model them by using DDEs as e�ective equations for collective states. In the
�rst part of the thesis we have focused our attention on problems originating
from the �eld of neurobiological modeling.
In Chapter 2 we have shown how in the context of directed networks, loop
structures can give rise to stationary soliton-like waves, which we conjecture
to originate in a similar way to Non Equilibrium Steady States upon breaking
of a detailed balance condition in a master equation. We are able to show nu-
merically that the soliton wave in a directed loop arises in analogy to an attrac-
tive limit cycle in a DDE with an explicit feedback term, and the two solutions
correspond, so that an interpolation of the DDE solution yields a solution to
the networked system. By studying the solution dependence on the inherent
timescale separation of the FitzHugh-Nagumo, a task made much simpler by
the DDE analogue of the chain system, we are able to elucidate that it plays
a fundamental role in the de�nition of the solitonic state, as a scaling of Y is
to some extent analogous to one of the global coupling. The physical inter-
pretation of this fact is that the properties, and even the existence, of this type
of solution, rests fundamentally on the interplay of local timescales, linked to
the reactivity time of a single neuron, and propagation timescales a�ecting the
global coordination of the solution, regulated by the coupling strength. The
natural outlook of this work rests in the extension of these �ndings tomore elab-
orate network structures, in order to see howmuch of a full network’s dynamics
can be disentangled by looking at the role of loops. Furthermore, the univer-
sality of such behaviour holds some interest in itself. This type of saddle-node
bifurcation of limit cycles, is observed in several other systems, such as tra�c
models [68], where the origin of the bifurcation is in an interaction of explicit
delays on a network. The particular interest in this mechanism of stabilization
rests also in its interpretation from a functional viewpoint. The most common
bifurcation for the birth of an attractive limit cycle, the Hopf bifurcation, is
indeed a quite destructive phenomenon, as a global �xed point of the system,
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i.e. a physical equilibrium, must loose stability in order to let self-sustained
activity arise, while a saddle node bifurcation of limit cycles leaves the phase
space untouched, save for a tubular neighbourhood of the cycle itself, so that
other invariant manifolds can survive the bifurcation hardly, if at all, a�ected
by it. If we interpret the dynamical states as playing functional roles for a self-
organized system, we can conjecture that the introduction of new functions, i.e.
the bifurcation of solutions, will be favoured to happen without an excessive
perturbation or destruction of the other ones, i.e. pre-existing attractors. This
functional interpretation could be particularly interesting to consider when re-
lated to reservoir computing models, in order to connect it intuitively with the
capabilities of a network of neurons to perform computation and information
processing tasks.
In Chapter 3 we have developed and expanded our intuition on delay induced
bifurcations by formulating a simple nonlinear model. Our �ndings clarify the
interplay between the natural frequencies of a dynamical system and a delayed
feedback in the presence of quasi-invariant orbits. In particular we elucidate
how, for systems that do not possess a dense frequency spectrum, the princi-
pal bifurcation parameter is the di�erence between the quasi-invariant orbit
period and the feedback delay, and a skewness condition is required on the
coupling with the delayed term, at least when the system is cast in normal coor-
dinates. This is in contrast with previous theories [82] introduced for chaotic
systems but often applied in general, which assume that the di�erence is in-
�nitesimal or vanishing, while we have analytical and numerical evidence that
in systems endowed with a speci�c frequency, at the bifurcation point the gap
is small but nonzero. Moreover, we lay down the construction of perturbative
2-dimensional approximation to the full delayed dynamics, expanding in the
gap between delay and period, and prove at the �rst two lowest order that these
approximations exhibit the same bifurcation of the full system, thus providing
evidence towards the planarity of the bifurcation, at least at its onset. This is
a particularly remarkable feature, especially in reference to the phenomenon
of spontaneous dimensionality reduction, often observed in datasets obtained
from Complex Systems, where highly dimensional data prove to contain in
fact very few independent or signi�cative dimensions. Considering our origi-
nal problem concerning a FitzHugh-Nagumo model neuron, by building a set
of normal coordinates near its �xed point we are able to show the existence of
a quasi-invariant orbit in a quasi-adiabatic setting, and we con�rm numerically
that a skew delay coupling can stabilize it. We remark though that the case in
which we are able to build the coordinate mapping is not the original one, as
we must enforce a speci�c condition on the timescale separation Y to be able
to construct it. Despite this, we expect that in the original setting the bifurca-
tion mechanism shall be the same, if an adequate set of normal coordinates is
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constructed in the vicinity of the origin of the initial coordinates. Finally we
observe that a directed loop of this type of simpli�ed units can show analogous
states to those of the DDE, with a few di�erence and the presence of somemore
complicated states, which are worthy of further investigation. A natural contin-
uation of this chapter’s work can be developed mainly along one of three lines.
The �rst and foremost would be the formulation of an analogous approach
for systems that do not have a proper period, such as the original FitzHugh-
Nagumo neuron with its parameters taken at the values of chapters 1, 2 and
4, which is an example of overdamped oscillator. We expect our approach to
be extensible to this setting as in numerical simulations we still observe a small
but �nite di�erence between feedback delay and period, which we believe to be
the hallmark of the described stabilization mechanism. The second line would
have to contend with the formulation of adequate normal coordinates centered
in the coordinate origin, which is a highly unstable area for the dynamics. This
is to some extent correlated with the �rst line, and could in principle allow for
a full characterization of the FitzHugh-Nagumo system with our approach. Fi-
nally, the third line would deal with the further investigation of the DDE↔ di-
rected loop relationship, and investigate the more complicated states that have
so far been just observed on a loop of simpli�ed systems.
In Chapter 4 we have approached the reconstruction of the �ring statistics for
a FitzHugh-Nagumo neuron in the presence of a stochastic input, with the ul-
timate goal of constructing a simpler binary model to be used in information
theoretical approaches. To this end we have developed an original approach,
based on the approximate separation of dynamical timescales and Kramers es-
cape rate theory. By introducing a self interaction between the time since the
last �ring and the probability of �ring after a certain time, we are able to re-
construct the shape of the InterSpike Interval distribution from �rst principles.
Due to emergent correlations in the noise, our approximations hold only par-
tially, and the system parameters have to be inferred from a statistical sample of
the full system. If this datum is available, although, through a simple regression
procedure we can �t a discrete model to the data and replicate the isolated neu-
ron �ring statistics. We devise a minimal coupling strategy to study networked
systems, but this proves to be satisfactory only to a qualitative level, highlight-
ing once again that the interplay of activation and propagation timescales in this
type of system cannot be simpli�ed straightforwardly, under risk of the removal
of the destruction of dynamical stationary states, which may be meaningful in
applications and real systems. A furthering of this research line should primar-
ily deal with the parametric-noise like e�ects, and account for the interaction
between slow and fast local timescales of the neuron, i.e. for the lack of full
separability of the dynamics. Concentrating one’s view on the networking of
the binary systems, on the other hand, one should investigate possibilities for
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the improvement of the correspondence between networked noisy FitzHugh-
Nagumo units and the simpli�ed ones, a possible direction being the introduc-
tion of inter-unit explicit discrete delays. Once these developments have been
considered, the natural application of these models would consist in the con-
textualization of concepts like channel capacity in more realistic neural models
with respect to what is available in past literature, in particular with respect to
systems that can evolve di�erent encoding and information passing strategies.
In Chapter 5 we have turned our attention to the use of distributed delay
equations for the short term nowcasting of the course of pandemic events in
a metropolitan area. We show that distributed delay equations are the right
tool for this type of task as they encompass both the di�erences and the inter-
individual variability of timescales in respiratory pandemic diseases such as the
SARS-CoV-2 disease. In addition to this we have performed a parametric lin-
ear response analysis for this type of model, a contribution we were not able
to �nd elsewhere in literature, which despite some approximations allows us to
quantify the impact of a change in restrictions on the population of infectious
individuals after a certain time, and highlight that e�ective restriction strate-
gies improve both the actual pandemic situation and the accuracy of the model
predictions. A comparison of urban mobility open data and of the time series
of the e�ective sociability parameter inferred from clinical data through the
model has also highlighted the important role that the integration of this type
of information can play in a pandemic containment context. Indeed, provided
that soft measures such as social distancing and personal protection devices regu-
lations or climatic conditions do not change too signi�cantly during the period
of interest, these anonymous mobility data can provide a useful proxy for the
average sociability in the metropolitan area. The main development of inter-
est for this line of work consists in the further study of the regression problem,
so to better formalize it and tackle it with the appropriate tools. In particular
building on the linear response results, it would be important to fully extend
them to the �ows, such as that from the Unreported to the Isolated Infected
compartment, which are actually observed, so to pave the road to the solution
of the regression on clinical data in terms of the solution of a constrained opti-
mization problem.
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