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Abstract

Generative artificial intelligence (Al) is one of the most exciting develop-
ments in computer science over the last decade. Its impact has been tremen-
dous: generative models, such as large language models, are revolutionizing
several areas, including the arts, journalism, advertising, and scientific re-
search, to name a few. In these fields, generative modeling is not only com-
plementing but also replacing the creative abilities that were once solely in
the hands of humans. However, current generative models are limited by their
self-supervised learning schemes, which merely aim to imitate training data
as accurately as possible. To develop more creativity-oriented models, new
learning schemes should be considered. Among them, reinforcement learning
(RL) represents a promising direction. RL is an inherently learning-by-acting
approach. Moreover, since it is based on non-differentiable objectives, it is
able to capture a greater variety of target behaviors. For these reasons, it is
ideal for modeling how humans learn to behave creatively.

We claim that studying RL together with creativity can be of crucial im-
portance for both fields. Based on these considerations, this thesis explores
whether creativity can be used to enhance the design of RL algorithms and,
vice versa, whether RL can help develop more creative generative models.
In particular, we study if dreaming can help RL agents better generalize, as
recently suggested for humans. Specifically, we leverage generative augmen-
tations to transform standard, predicted trajectories into more dream-like
experiences for training the agent, and we evaluate generalization capabili-
ties in different low-resource scenarios. Then, we develop a new creativity
score that quantifies both the originality and value of artifacts. We use this
score as the basis of the reward structure in an RL framework, and we propose
using it to fine-tune pre-trained generative models toward more creative so-
lutions. We validate our proposed method in two different domains: poetry
generation and mathematical problem resolution. In addition, we present
new sampling schemes that can better simulate the human creative process
by working at the response generation and validation levels.

Finally, we conclude with a deep analysis of three main social and prac-
tical issues related to Al creativity: whether current foundation models are
creative and their main social implications; whether current foundation mod-
els can be entitled to agency and what can happen to human agency when
collaborating with them; and how current copyright laws can manage the
complexity of generative Al in terms of protecting human- and machine-
generated artworks.
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1 Introduction

1.1 A Historical Perspective

It was the year 1843 when Ada Lovelace, an English mathematician and
writer recognized by many as the first computer programmer, wrote that the
Analytical Engine [20] “has no pretensions to originate anything. It can do
whatever we know how to order it to perform” [433]. This statement was
then defined as “Lovelace’s objection” by Alan Turing, who also provided
an alternative formulation: a machine can never “take us by surprise” [662].
This was just the beginning of an ongoing philosophical discussion, which
has often included psychological elements, around human creativity [29, 42,
76, 461, 624], as well as computational creativity [415, 691, 324, 55, 421, 131].

In general, computer scientists have always been fascinated by the pos-
sibility of building machines that are able to generate something “new”.
Among several applications of artificial intelligence (AI) to various artistic
fields, it is worth mentioning the AARON Project by Harold Cohen, a pro-
gram designed to draw images [128]; the Computerized Haiku by Margaret
Masterman [124]; the storyteller TALE-SPIN [432]; RACTER and its poems’
book [510]; MEXICA and its short narratives [501]; the artificial composer
of David Cope [133]; BACON to simulate human thought processes and
discover scientific laws [360]; the COPYCAT Project to discover insightful
analogies [283]; and many others [443]. Different AI techniques have been
explored, from planning [537] and case-based reasoning [663] to evolutionary
strategies [425]. Some approaches combine all of them [215]. This growing
interest has contributed to the emergence of a specialized field in computer
science, namely computational creativity [90], which concerns with the study
of the relationship between creativity and artificial systems [131, 691].

In this context, the adoption of deep learning (DL) techniques has led
to substantial breakthroughs in recent years. Vast computational power and
very large amounts of available data are at the basis of the increasing suc-
cess of deep generative models (i.e., generative models based on DL [194]).
Indeed, generative deep learning technologies have been used to write news-
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paper articles [229], generate human faces [333] and voices [388], write and
publicly perform poems [192], design drugs and proteins [325], and even cre-
ate artworks sold for hundred thousand dollars [119].

While close in terms of application scenarios, computational creativity
and generative DL are profoundly different. The former aims at building Al
models that adhere to human theories of creativity; in other words, it works
through a top-down approach, i.e., by first defining the final goal and then
trying to develop appropriate components to achieve it. The latter learns
to generate artifacts regardless of such theories and is only used for creative
purposes a posteriori; in other words, it works through a bottom-up approach
(first developing the best possible components and then assembling them to
reach the goal).

However, the analysis of both solutions revolves around a fundamental
question: What is creativity, and what does it mean to be creative? The next
section considers the main theories of creativity, and how they are related to
current - and future - Al systems.

1.2 A Preliminary Analysis of Creativity and
Artificial Intelligence

At first sight, the question of what creativity is appears to be straightfor-
ward, if not rhetorical in nature. Anyone possesses some knowledge about
creativity and can recognize it at first sight. However, in practice, defining
it is incredibly hard. This is because, using Minsky’s characterization, cre-
ativity is one of those suitcaselike words we use to conceal the complexity
of large ranges of different things [445]. As beautifully depicted by Prentky
1508,

“what creativity is, and what it is not, hangs as the mythical
albatross around the neck of scientific research on creativity.”

In fact, it has been estimated that more than one hundred definitions of
creativity have been proposed [8, 657], and perhaps the count is still growing.
Among them, a prominent work is that of Rhodes [535], who was arguably the
first to provide a unique framework that covers most of the various definitions.
According to Rhodes, creativity has to be considered under four perspectives:
product, process, press, and person. In the remainder of this section, we (as
well as others in the context of computational creativity [323, 356]) follow
this categorization and independently discuss each of them, first theoretically,
and then in the light of the most recent Al developments.



1.2.1 Product

Products are artifacts of thoughts, ideas embodied into a tangible form by the
means of words, paint, fabric, or other materials [535]. The idea-expression
dichotomy is a central point in the conversation, not only from a practical
perspective (see for example copyright, which only protects the expression
and not the idea [553]), but also from a theoretical one. A line of thought
assumes that the creative act is completed when the idea of the work is
formed [204]; the thinking up of the work is the creative act, and its physical
realization is a non-creative activity [653]. Excluding the materialization of
the creative idea in a tangible form from the analysis of creativity is anyway
incorrect. Indeed, a creative idea is typically refined during and after its im-
plementation, therefore requiring the act of making; even more importantly,
only the tangible expression of the idea can be communicated, perceived,
and evaluated as a creative product. For this reason, we can generally say
that focusing on the product means directing our attention to the material
result of the creative act. Although it is not straightforward to assume that
machines can have thoughts or ideas (and therefore that they are able to act
creatively), it is apparent that they can produce artifacts. According to this
perspective, a machine can be considered creative if its productions can be
defined as creative.

Boden [53] defines creativity as the ability to generate ideas or artifacts
that are new, surprising, and valuable. A large number of researchers agrees
on the centrality of value, also referred to as quality [538], and novelty (first
proposed in 1959 [461]) in assessing a computer’s creativity [421, 672, 691].
Commonly, value and novelty are combined with surprise [414], but some-
times they are also combined with other dimensions such as typicality [538],
transformativity [230], rarity and recreational effort [377], among others.

Novelty is generally defined as the dissimilarity between the produced
item and other examples in its class [538]; we can see it as the property of
not having been experienced yet, either by the producer or by anyone in
history [53]. While it has typically been considered for automatic evaluation
methods [172, 453, 672], there have been few examples of its adoption for
generating products; we will introduce them in Section 3.1.7.

Surprise is about how much a stimulus disagrees with expectations [31,
44]. Boden identifies three categories of surprise that lead to three differ-
ent forms of creativity, ordered by increasing rarity and produced surprise.
Combinatorial creativity is about making unfamiliar combinations of famil-
iar ideas, e.g., analogies in textual forms or collages in the visual arts. Fx-
ploratory creativity involves the exploration of the conceptual space defined
by the cultural context considered, e.g., inventing a new type of cut for fries.



Transformational creativity involves changing that space in a way that al-
lows new and previously inconceivable thoughts to become possible, as it has
been for free verse in poetry or abstract painting in art. From a computa-
tional perspective, surprise can be computed as the surprisal [658], which is
the unexpectedness of an event (i.e., the prediction error), or as the Bayesian
surprise [306], that is the difference between posterior and prior beliefs about
the world (before and after experiencing that event). Interestingly, it has
been found that a limit exists when trying to maximize both Bayesian sur-
prise and quality of artificial productions to obtain combinatorial creativity
and that creative products should lay around that boundary [671]. Several
computational methods to calculate surprise have been used [85, 230, 328];
however, only one attempt has been made to produce something surprising
(see Section 3.1.7).

Value has been considered as a measure of how the artifact compares to
others in its class in terms of utility, performance, and attractiveness; it is
the reflection of its acceptance by society [421]. Value is the property of an
artifact of being a good, qualitative contribution to its field. In these terms,
it is a fundamental property of Al systems. For instance, this is the goal of
loss functions used in deep learning: by optimizing a certain function, more
valuable results can be achieved. An example is the so-called Generative
Adversarial Network [226] in which two networks are used to generate and
discriminate outputs that are deemed valuable in a given field (such as visual
arts) or specific application (such as design of furniture).

Since its inception, the focus of generative DL has been on the design of
effective loss functions (and in some cases architectures), as we will see in Sec-
tions 2.1 and 3.1. The most relevant attempts to directly induce the model
to produce creative results are based on creativity-oriented loss functions, as
we will discuss in Section 3.1.7. Unfortunately, these are generally considered
unsatisfactory. In fact, value, novelty, and surprise are three concepts diffi-
cult to quantify in practice, especially in a differentiable form as required by
self-supervised learning techniques. Alternatives include evolutionary algo-
rithms for achieving novelty [376] and surprise [232], which can also be used
in combination with classic evolutionary search (where the fitness function
can represent the quality of a solution) [233]. These approaches have been
recently integrated with neural networks as well [132; 307, 392, 589, 632].

1.2.2 Process

Focusing on the product alone is not sufficient. The resulting product is
fundamental, but how such a result is achieved is important as well: a switch
from creativity in the product to creativity in the process may be taken into
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consideration to develop the creativity of an Al agent.

Process is about motivation, perception, learning, thinking, and commu-
nication [535]. Its focus is on how we arrive at a certain result, how we
create the prerequisites to obtain that result, and how we finally perceive
and communicate it. In this context, it is important to keep the analysis as
general as possible and not to refer specifically to arts; although we can refer
to artistic processes, the same considerations can be applied to other kinds
of activities. In general, thinking and behaving creatively does not require a
person to be an artist. One can be creative when cooking, when approaching
a new maths problem at school, and in general in any task that is heuristic
rather than algorithmic [10], i.e., without a clear and straightforward path
to the solution [272].

Focusing on creativity in products allows for non-creative processes to be
adopted. For example, the backpropagation and inference algorithms used
by the loss-based approaches introduced above cannot be seen as a form of a
creative process per se (even if they are a highly creative result of a human
creative process [545]). Instead, reinforcement learning (RL) [639] appears
to be a promising technique since it is based on the idea of learning by doing,
mirroring certain human processes [596].

More specifically, RL consists in learning how to act in order to maximize
a numerical signal, i.e., the reward, over time [639]. At each time step,
the agent receives the current state of the environment and performs an
action, observing its consequences, i.e., the reward and entering a new state.
Through multiple interactions with the environment, the agent learns to
maximize the cumulative reward.

An interesting direction is the use of intrinsic motivation. This refers
to exploratory and playful behaviors observed in animals [690], which are
performed not only because they might lead to rewards but since they are
inherently interesting or enjoyable [146]; these are typically activities that
have the appeal of novelty, challenge, or aesthetic value for an individual
[549]. It has been demonstrated that intrinsic motivation plays a crucial role
in creativity [11]. Indeed, motivation is the first step of the typical human
creative process, which also involves a preparation step (where the necessary
information is acquired or regained), a response generation step (thanks to
creativity-relevant skills), and a response validation step (thanks to domain-
relevant skills), which can lead to repeat one or more of these steps in the
case the evaluation is not passed successfully [10]. Motivation, particularly
intrinsic motivation, has been studied in RL [32, 604], where it has become
a prominent alternative to the standard, extrinsic reward provided by the
environment. Most of the time, it has been modeled through curiosity.

In fact, curiosity is an intense, intrinsically driven appetite for information



and knowledge [406], a motivational prerequisite for exploratory behavior
[42]. Curiosity can be characterized according to the kind of (uncomfortable)
states that contribute to its emergence: under-stimulation, which leads to
diversive curiosity, e.g., when someone is bored and wants to do something
different or exciting; and over-stimulation, which leads to specific curiosity,
e.g., when someone has run into something different and arousing and wants
to know more [43]. This overlaps with two possible underlying driving forces:
information gap [406], i.e., one is curious to fill a knowledge gap about a
certain, known context, which is close to specific curiosity; learning progress
[565], i.e., one is curious to learn more [228], which is close to diversive
curiosity. In general, we might say that curiosity is a driving power for
deeper (i.e., specific) and further (i.e., diversive) exploration.

Many RL approaches use curiosity as an intrinsic reward, with or without
relying on an extrinsic one. Some of them are based on acquiring skills
[63], others on trying to discover as many states as possible [51, 627], also
by maximizing uncertainty (typically defined in terms of self-disagreement
[494, 577]). However, the most adopted approaches are based on the error in
predicting the consequences of actions or the difference between the posterior
distribution and the prior distribution (see Section 3.2.2 for more details).

Essentially, they are based on the notions of surprisal and Bayesian sur-
prise, respectively. Indeed, surprise can be both the cause and the conse-
quence of curiosity, as formally theorized in [231]. However, it is important
to make a distinction: while creativity n the product is related to an extrin-
sic surprise (which should be experienced by whoever judges the creativity of
the result), creativity in the process is related to an intrinsic surprise (which
should be experienced as a motivation to explore and learn more). A similar
consideration also applies to novelty which is less used in RL [338, 562, 598|
but is equally important in guiding curiosity in experiencing and learning
new things.

Even though a distinction between novelty and surprise in process and
product exists, without experiencing or having experienced intrinsic novelty
and surprise, it seems illogical that someone can create a result that the entire
world would consider novel and surprising. Exercising curiosity is therefore
necessary to move from a creative process to a creative product. As far as
value is concerned, it may be easily translated into expertise acquisition. One
must learn how to properly solve a task; skills are required as well as intrin-
sic motivation to perform creatively [10]. Skills are required to materialize
the original idea and therefore communicate it to others [653]; in addition,
they are required to formulate an idea and assess its quality [204], i.e., in
the response validation and generation steps [11]. Again, RL appears to be
suitable for expertise acquisition: by acting repeatedly, the agent can learn



the consequences of its actions, acquiring both knowledge about the task,
and skills needed to solve it in the best possible way.

Going back to the definition of process, we need to consider an additional
dimension: imagination. It is the ability to form concepts not perceived
by the senses [302]; it allows us to reflect on the consequences of potential
future actions and to think in advance about different possible alternatives.
Intuitively, a creative process takes advantage of imagination by thinking
in advance about diverse (novel and surprising) ways of achieving a certain
objective. As Gaut [203] puts it, imagination is the vehicle for one’s creative
explorations.

Imagination has become a topic of interest in RL as well [259]. In this
context, it refers to the possibility of using an internal world model to gener-
ate entire imagined episodes, without the need to collect them [252]. These
episodes are used either to augment the current state and better guide the
policy in its action choice [509] or the replay memory on which the agent is
trained; we will analyze them in Section 3.2.1.

Closely related to imagination is dreaming. Although it is not yet clear
how and why humans dream, one of the most prominent theories suggests
dreams to be imagined, fictional scenes whose function is to help the brain
learn better [281]. Specifically, dreams may be used to generalize and avoid
overfitting by providing experiences different from the daily ones. However,
current imagination-based RL research has been focusing on imagining expe-
riences as close as possible to those accumulated during standard exploration.
This is in contrast with human dreams that allow one to explore the expe-
riential state space in ways that deviate from waking life [280]. According
to [280], the fiction the brain produces at night is of the same kind of fic-
tion produced by fabulists, or surrealist artists; in a sense, the fiction the
artists are in the business of producing is nothing different from consumable,
portable, durable, and in the end superior artificial dreams.

To summarize, expertise, curiosity, imagination, and dreaming are (part
of) what creative processes require. Nonetheless, we still miss why such cre-
ative processes lead to creative products only occasionally. The next section
will cover this gap.

1.2.3 Press

While a process can be considered creative only by focusing on the individual
who has performed it, for the assessment of creativity in products an indi-
vidual point of view is not sufficient. It is necessary to switch to a societal
perspective, the so-called press [535]. The term press refers to the relation-
ship between human beings and their environments, where creative products



are influenced by certain kinds of forces played upon individuals as they grow
up and as they function [535].

Particularly relevant in this direction is the work of Csikszentmihalyi
[140], who stated it is not possible to study creativity by isolating individu-
als and their works from the social and historical milieu in which their actions
are carried out. On the contrary, what is defined as creative is the product
of three main shaping forces: the field (a set of persons, e.g., critics, histori-
ans, or peer groups of creators, which select those that are worth preserving
from the variations produced by individuals); the domain (that preserves and
transmits the selected variations to the following generations); and, finally,
the individual (who produces variations that the field can consider as cre-
ative). Creativity can exist only thanks to the interaction of all these three
components since each one affects and is affected by the other two. The per-
son is still important, but only as part of a system of mutual influences and
information [140]. Previously, we discussed how a product is creative if it is
novel, surprising, and valuable. This section provides the answer to questions
like: with respect to what is it possible to consider the novelty? The answer,
now, is straightforward: the domain. And who can judge the value of, and
be surprised by, a product? The field. This means that creativity depends
not only on the mere attributes of a product, on the process followed, or
on the person who generated it; it also depends on the persons assessing
its creativity and on the attributes of the environment, which influences the
source of evaluation as well as the source of stimulation and inspiration [33].
In general, the creative product is strictly dependent on the sociocultural
context in which it has been thought, produced, distributed, and accepted
[409].

To summarize, the systems view is a sort of continuous evolutionary pro-
cess: at first, the generation of novel products by the individuals; then, the
selection of the most creative products by the field; and finally, the trans-
mission of the selected products through the domain, through which individ-
uals can generate novel products [140]. This helps us understand how the
press can be simulated in Al. Multi-agent systems, especially multi-agent RL
systems, seem suitable, potentially leading to the so-called computational
social creativity [560]. Generative agents can play the role of individuals;
collected examples (i.e., a training set) and rules (e.g., a knowledge base)
governing generation and evaluation can represent the domain; and other
generative or discriminative agents can simulate the field in evaluating other
agents’ productions. The three phases of generation, selection (evaluation),
and transmission (extension of domain with new products) can then be it-
erated through several epochs. For instance, the Digital Clockwork Muse
[561] implements the theories of Martindale [428] by means of a collection
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of curious agents playing the role of both creators (through a genetic algo-
rithm) and evaluators (by computing a personal degree of novelty through
a self-organizing map). RL can also be used to train a collection of agents
to exercise both self-critic (by proposing variations that achieve a sufficient
degree of intrinsic novelty) and voting (by evaluating the novelty of others’
productions) [399]. Though remarkable, these attempts are just the begin-
ning, and it is possible to envision future systems that also consider value
and surprise in the product and a more creative process.

1.2.4 Person

We now consider the fourth of the four dimensions of creativity listed at the
beginning. Even in the same environment and with the same training, two
persons will arrive at different creative products. For example, two students
of the same class tasked to complete the same creative homework through the
same process (e.g., write a new poem from Dickinson’s Hope by substituting
only the word ‘hope’ with another one) will produce two different compo-
sitions. The person in themselves influences the results and the degree of
creativity. The term person covers information about personality, intellect,
temperament, habits, attitude as well as value systems and defense mecha-
nisms [535]. Many theories have been proposed to explain which properties
of the personality are more connected with creativity [187]. For instance,
Rogers [541] suggests openness to experience, an internal locus of evaluation,
and an ability to toy with elements and concepts as inner conditions for cre-
ativity; while Miller [443] lists the need for introspection, the knowledge of
your own strengths, not being afraid of making mistakes, and having different
experiences and suffering among the hallmarks of creativity. Gaut [205] sug-
gests that a creative agent must exhibit flair (for that the product depends
on its purposes as well as on its understanding and judgment). In general,
the term person refers to all traits of personality, emotions, intentions, and
experiences that can influence a creative result.

Framing the person perspective in the context of computational creativity
is not straightforward. Note that it is not about defining an artificial agent
through human attributes, which is another fundamental and perhaps un-
solvable problem [95], nor it is only a matter of terminology, for it is sufficient
to replace person with a less anthropomorphic word such as producer [323].
The problem is how an artificial agent can be truly entitled to the personal
characteristics, purposes, and behaviors we typically attribute to the author.
Navigating through the list of information covered by the person, intellect is
the easiest to assume in Al. In addition, the agent can be entitled to a value
system, if a component such as the discriminative part of a GAN is accepted



as a way to measure value. In theory, it might also have habits, if habits
merely mean following unconscious patterns and repeating actions. On the
other hand, attitude is by definition related to feelings and opinions; temper-
ament is about moods and behaviors; defense mechanisms require feelings
too; and personality is the hardest of all, assuming as its definition “the set
of emotional qualities, ways of behaving, etc., that makes a person different
from other people”.

One may argue certain qualities make a creative agent different from oth-
ers. Sometimes, these qualities might even be linked with opinions, emotions,
and preferences. A neural network producing classical music is different from
another one generating jazz variations. But is it a reflection of its personal-
ity? The output of the model only depends on the training set used during
training, its architecture and hyper-parameters, and even the random vector
passed as input or the stochastic sampling of its output. Now, one may argue
that the very same kind of influence exists for humans too: if our teacher
teaches us to write about real feelings and to use everyday English, it is more
probable to end with a short story in the style of Raymond Carver, than that
of a Brothers Grimm’s fairy tale. And if we are born in a Western country, it
is more probable we will paint like Monet or Picasso rather than like Hoku-
sai and Hiroshige. But there is a substantial difference: we are free to visit
an art gallery, fall in love with ukyio-e, and decide to abandon our previous
path. Or we can be inspired by them and try to merge that style with our
habits. A neural network does not have the freedom of choice over its source
of inspiration: in a sense, it lacks both liberty (independence from control-
ling principles) and agency (capacity for intentional action) [305], which are
crucial for self-determination and, then, for creativity [550]. It does not have
the chance of falling in love. It does not have the opportunity of going out
of its habits. It does not have the possibility of experiencing something, be-
ing dramatically upset by it, and then deciding to write a poem on such an
emotion. The only emotions it can write about are those it has come across
during training or the ones it has been asked to compose on. In other words,
all the emotional characteristics an Al can express are artificial in comparison
to human ones.

It is the developer’s personality that influences most of the creative as-
pects of the artificial agent. Whatever creative process the agent follows,
whatever creative product the agent returns, whatever multi-agent system
influences its directions, the decisions of the human creator remain a central
part of the design of these Al systems, unless one day machines become real
social agents [270]. Asking if a machine can be truly, genuinely creative (i.e.,
creative upon all the four P’s), is not different from asking if a machine can
be human [30].
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1.3 Research Questions and Structure

In the previous section, we briefly discussed the current state-of-the-art at the
intersection between creativity and deep learning, and the potential role of
reinforcement learning. Starting from this technological scenario, this disser-
tation explores two main research questions. Is it possible to use creativity to
enhance RL research, and is it possible to develop RL methods to train more
creative generative models? More specifically, we aim to study if dreaming
can help RL agents better generalize, as recently suggested for humans. At
the same time, we develop RL-based strategies to push generative models
toward more creative outputs.
This thesis is structured as follows:

e Chapter 2 introduces all the fundamental concepts and building blocks
we will rely upon in the remainder of the thesis. In particular, we de-
scribe the main generative deep learning models by focusing on their
learning and inference schemes; we introduce the RL framework, to-
gether with practical algorithms to train neural network-based agents
and the foundations of imagination-based RL; and we examine how RL
can be applied to generative modeling.

e Chapter 3 surveys the literature around the main topics of this disser-
tation. In particular, we focus on generative DL and its relation with
creativity; reinforcement learning, with a specific focus on imagination-
based RL, curiosity-driven RL, and generalization; reinforcement learn-
ing for generative modeling, discussing the advantages and limitations
of its adoption; and current research involving generative Al and so-
ciety and some of its main issues such as Al anthropomorphization,
its use for creativity tasks, and the main legal problems related to the
adoption of these technologies.

e Chapter 4 addresses the first research question, i.e., whether “dream-
ing” can help RL agents generalize better. Leveraging creative aug-
mentations, we transform standard, predicted trajectories typical of
imagination-based RL into more dream-like experiences for training
the agent. We evaluate the obtained agent and its generalization capa-
bilities on ProcGen environments [126] with limited-resource scenarios.

e Chapter 5 presents the approach developed to answer the second re-
search question, i.e., whether reinforcement learning can help gen-
erative models produce more creative outputs. We develop a new
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information-theoretic creativity score that acknowledges both the orig-
inality and value of artifacts. We use this score as the reward in an RL
framework to fine-tune pre-trained generative models toward more cre-
ative solutions. We validate our new method in two different domains:
poetry generation and mathematical problem resolution.

Chapter 6 presents other strategies, not related to RL, to increase the
creativity of machine-generated products. By focusing on the response
generation and validation steps we propose two new sampling schemes
that can better simulate the human creative process.

Chapter 7 discusses three main social and practical issues arising from
the use of generative Al for creative purposes: whether current foun-
dation models are creative and their main social implications; whether
current foundation models can be entitled to agency and what can hap-
pen to human agency when collaborating with them; and how current
copyright laws can manage the complexity of generative Al in terms of
protecting human- and machine-generated artworks.

Chapter 8 concludes the thesis, summarizing the main results and dis-
cussing potential future directions for generative Al, RL, and (compu-
tational) creativity.

12



2 Preliminaries

2.1 Generative Deep Learning

A generative model can be defined as follows: given a dataset of observa-
tions X, and assuming that X has been generated according to an unknown
distribution pgure, a generative model piuoqe is @ model able to mimic pyatq-
By sampling from p,,.qe1, Observations that appear to have been drawn from
Pdata Can be generated [194]. Generative deep learning is just the application
of deep learning techniques to form p,,oqer-

At first glance, this definition appears to be incompatible with the main
requirements of creativity as presented in Section 1.2. Indeed, mimicry is
the opposite of novelty. However, what a generative model should aim at
mimicking is the underlying distribution representative of the artifacts, and
not the specific artifacts themselves; in other words, it should aim at learning
the conceptual space defined by the context considered. While generative
models can be described in terms of different dimensions, we focus on the
two most relevant for creativity: how the space of solutions is learned from
real data; and how the model samples a new solution from that space.

In this section, we introduce the main classes of existing generative deep
learning models. In particular, we analyze how the models learn their spaces
of solutions and how the observations are generated from them. Figure 2.1
provides a summary of the six generative classes considered in this section.

2.1.1 Variational Autoencoders

A Variational Autoencoder (VAE) [339, 534] is a learning architecture com-
posed of two models: an encoder (or recognition model) and a decoder (or
generative model). The former compresses high-dimensional input data into
a latent space, i.e., a lower-dimensional space whose features are not directly
observable, yet provide a meaningful representation. The latter decompresses
the representation vector back to the original domain [194]. Classic autoen-
coders directly learn to represent each input in a latent representation vector.
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Figure 2.1: A schematic view of the six classes of generative learning methods
presented in this section. Top, left to right: Variational Autoencoder (2.1.1), with
a decoder generating x’ given a latent vector z, and an encoder representing x into
a latent distribution; Generative Adversarial Network (2.1.2), with a generator
to produce x’, and a discriminator to distinguish between real x and synthetic x';
Transformer-based model (2.1.4), with a Transformer outputting x one token after
the other given in input previous tokens, or a masked version of x. Bottom, left to
right: Diffusion model (2.1.5), with a model to learn an error €, which is used to
incrementally reconstruct xo; Sequence prediction model (2.1.3), with a generator
to output x one token after the other given in input previous tokens; Input-based
methods (2.1.6), with an input optimized by a given loss. The input can be a
vector z given to a generative model to obtain the desired output, or directly a
product x becoming the desired output.

Conversely, VAEs learn a (Gaussian) distribution over the possible values of
the latent representation, i.e., the encoder learns the mean and the (log of
the) variance of the distribution.

VAEs are trained by optimizing two losses: the reconstruction loss and
the regularization loss. The former is the log-likelihood of the real data x
from the decoder given their latent vectors z, i.e., it is the error of the decoder
in reconstructing x. The latter is the Kullback-Leibler (KL) divergence be-
tween the distribution learned by the encoder and a prior distribution, e.g.,
a Gaussian. The overall loss function is reported in Equation 2.1.

Loy(X) = Exox [Esngyx [log po(x|2) — Dicr(q(z[x) [|N(0,1))]], (2.1)
with:
7= pyx +oxe,e ~N(0,1), (2.2)
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where g4 is the encoder returning the mean p and the standard deviation
o given the input x while pg is the decoder. Notably, the latent vector z in
input to the decoder is obtained by means of the so-called reparameterization
trick (Equation 2.2), i.e., instead of directly sampling from the distribution
defined by the mean and the variance, we separate the deterministic and
stochastic parts of the operation by combining them with an € sampled from
a multivariate normal distribution. Without it, sampling would induce noise
in the gradients required for learning [340]. To generate a new output x/,
we only need to sample a random latent vector from the multivariate normal
distribution and pass it to the generator:

x ~ pe(x'|z'), 2" ~ N(0,1). (2.3)

The mathematical derivation of the whole loss has its roots in variational
inference [322]. Indeed, VAESs can be seen as an efficient and stochastic vari-
ational inference method, in which neural networks (NNs) and stochastic
gradient descent are used to learn an approximation (i.e., the encoder) of the
true posterior [198]. In VAEs, similar high-dimensional data are mapped to
close distributions. This makes it possible to sample a random point z from
the latent space, and still obtain a comprehensible reconstruction [194]. On
the other hand, VAE tends to produce blurred images [733]. It may also hap-
pen that high-density regions under the prior have a low density under the
approximate posterior, i.e., these regions are not decoded to data-like sam-
ples [14]. Finally, the objective can lead to overly simplified representations
without using the entire capacity, obtaining only a sub-optimal generative
model [81].

2.1.2 Generative Adversarial Networks

A Generative Adversarial Network (GAN) [226] is an architecture composed
by two networks: a generative model and a discriminative model. The latter
learns to distinguish between real samples and samples generated by the
former. In parallel, the former learns to produce samples from random noise
vectors such that they are recognized as real by the latter. This competition
drives both models to improve their methods until the generated samples
are indistinguishable from the original ones. Equation 2.4 reports the overall
objective function:

wmin max B (l0g Dg(x)] + Eston [log(1 = Dg(Go())],  (24)
0 ]

where Gy is the generator network and Dy is the discriminator network.
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The adversarial training allows the generator to learn to produce seem-
ingly real samples from random noise without being exposed to data. Then,
to generate a new output x’, we just need to sample a random latent vector
from the multivariate normal distribution and pass it to the generator:

x ~ Go(X'|2'), 2 ~ N(0,1). (2.5)

The simplicity of the idea and the quality of results are the basis of
the success of GANs. However, few limitations exist. For instance, GAN
can suffer from mode collapse, where the generator only learns to produce
a small subset of the real samples [437]. In addition, the latent space of
random inputs is typically not disentangled and it is necessary to introduce
constraints in order to learn an interpretable representation [335].

2.1.3 Sequence Prediction Models

A sequence prediction model is a generative model that considers generation
as a sequential process. It works in an autoregressive fashion: it predicts the
future outcome of the sequence (i.e., the next token') from the previously
observed outcomes of that sequence, usually by means of an internal state
that encodes information from the past. It is trained to maximize the log-
probability of each token in the dataset as per Equation 2.6:

T
max Ey cox Z log pe(z¢|xi—1...21,0) |, (2.6)
t=1

where pg is the prediction network which returns the probability distribution
of the next token, each data sample is a sequence x = (x1...x7), and ¢ is an
optional input to condition the generation (e.g., a desired class or style). At
inference time, this simple yet effective approach only requires sampling one
token after the other, feeding back to the model what has been produced so
far [329] and potentially a conditional input ¢’ randomly sampled or passed

by the user:
x'= (2} ...2%), ) ~ po(z)|,_, ...2}, )Vt € [1,T]. (2.7)
In other words, it learns dependencies between tokens in real data so
that the same dependencies can be exploited when generating synthetic data.

'We use the term “token” to refer to any discrete element an unstructured data point
can be broken into, independently the data source is in the form of text (e.g., [513]), music
(e.g., [294]), image (e.g., [521]) and so on.
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However, this causes the generation to be highly dependent on real data, e.g.,
there is the risk of potentially reproducing portions of the training set.

Historically, sequence prediction models have been typically implemented
through Recurrent Neural Networks (RNNs), and especially through Long
Short-Term Memory (LSTM) [279] or Gated Recurrent Units (GRU) [122].
The reason is that RNNs use internal states based on previous computation:
inputs received at earlier time steps can affect the response to the current
input, i.e., the prediction of z; depends on the current hidden state h;, which
is in turn computed from the current input and the previous hidden state
hi—1. However, RNNs tend to perform worse with longer sequences [40].
LSTM is a specific RNN architecture that addresses the problem of long-
term dependencies through the use of additional gates determining what to
remember and what to forget at each step. GRU then simplifies the inner
structure by unifying two internal gates.

2.1.4 Transformer-Based Models

Transformer-based models are neural networks based on the Transformer ar-
chitecture [673]. They represent the main example of foundation models [59],
because of the leading role they have been assuming in language, vision, and
robotics. A Transformer is an architecture for sequential modeling that does
not require recurrent or convolutional layers. Instead, it only relies on a
self-attention mechanism [22] that models long-distance context without a
sequential dependency. Each layer consists of multi-head attention (i.e., sev-
eral self-attention mechanisms running in parallel), a feed-forward network,
and residual connections. Since self-attention is agnostic to token order, a
technique called positional embedding is used to capture the ordering [673].

In principle, a Transformer is nothing more than an autoregressive model:
it works by predicting the current token given the previous ones (see Section
3.1.3). However, few fundamental differences exist. There is no hidden state
to encode information from past inputs; the output of the Transformer only
depends on its current input. As an alternative to Equation 2.6, a Trans-
former can also be trained by means of masked modeling: some of the input
tokens are randomly masked, and the model has to learn how to reconstruct
them from the entire context, and not only from the previous portions [156].
The possibility of dealing with very long sequences allows for prompting. By
providing a natural language prompt in input, the model can generate the
desired output, e.g., the answer to a question, classification of a given text, or
a poem in a particular style [74]. This is done by simply passing the prompt
in input as a text, and then leveraging the model to predict what comes next
(e.g., the answer to a question):
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x' = (2 ...2%), 2, ~ pe(a}|a)_y ... 2}, pr .. .p1) VE € [1,T), (2.8)

where pg is the Transformers network and p = (p;...py ) is the provided
prompt.

The sampling of the token from the probability distribution learned by
the Transformers can happen in several ways. The greedy strategy considers
sampling the highest-probable token every time. However, this can lead to
a lack of diversity and repetitions. The probability distribution from which
sampling can also be transformed through a temperature parameter. The
temperature scales the differences among the various probabilities such as a
temperature lower than 1 will increase the probability of the most-probable
tokens (a zero temperature degenerates to greedy strategy) while a tempera-
ture higher than 1 will increase the probability of the least-probable tokens,
allowing for more diversity in generation [497]. However, this might lead to
the selection of tokens that are not (syntactically) appropriate for the current
input. Top-k and top-p strategies [285] can reduce the token space to the k
most probable ones (or to the ones that together have a probability greater
than p). To get more natural and coherent solutions, contrastive search [631]
uses top-k and a degeneration penalty that encourages selected tokens to be
different from already generated ones. Still, all these solutions work at the
token level: they cannot generate highly probable sequences if they start with
low-probable tokens. To address this, Beam Search [480] maintains several
hypotheses (known as the beam budget B) at each time step and eventually
chooses the hypothesis with the overall highest probability. This approach,
rather than focusing on single tokens (which can lead to sub-optimal or even
degenerated solutions), considers the likelihood of the entire sequence [88].
However, Beam Search often focuses on a single highly valued beam, result-
ing in final candidates that are merely minor variations of a single sequence.
Diverse Beam Search [675] proposes to overcome this issue by dividing the
beam budget into G groups. It enforces diversity between different groups by
penalizing candidates that share tokens with other beams. This guarantees
increased diversity in the final solutions. Other variants of Beam Search have
been proposed as well, to enforce a certain constraint over the output [284]
or to substitute the likelihood with a self-evaluation scheme [709].

The flexibility of the sampling strategies, together with the very large
amount of data available, the increasing computational power, and the par-
allelism induced by their architecture, has contributed to the popularity of
Transformer-based architectures, as evidenced by a large number of applica-
tions in many fields. Nevertheless, it is worth noting that the computational
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cost of the architecture from [673] grows quadratically with the input size,
imposing a clear trade-off in terms of required resources.

2.1.5 Diffusion Models

Diffusion models are a family of methods able to generate samples by gradu-
ally removing noise from a signal [615]. The most representative approach is
the Denoising Diffusion Probabilistic Model (DDPM) [276]. An input X is
corrupted by gradually adding noise until obtaining an output xr from a pre-
defined distribution; the model then has to reverse the process. Specifically,
the forward diffusion process is describing by the following:

Q<Xt|Xt71) = N(\/ 1-— ﬁtxt,l,ﬁtl) , (2,9)

where ¢ is the function that adds a Gaussian noise with variance ;. Notably,
X must be normalized to a zero mean and unit variance; this, together with
the scaling of the input x¢_1, ensures that all x; will have zero mean and unit
variance, including the last xp, which will approximate a standard Gaussian
distribution.

In other words, each timestep t corresponds to a certain noise level; x;
can be seen as a mixture of x¢ with some noise € whose ratio is determined
by t, thus we can directly derive any noised version x; from xq as follows:

q(x¢x0) = N (Vauxo, (1 — ay) 1), (2.10)

where a; = Hle «; and oy = 1 — ;. Thanks to the reparameterization trick,
this forward, one-shot transformation can also be seen as xy = /@ Xo +
V1 — ae, with € ~ N(0,1).

To reverse this process, the model learns a function €4 to predict the noise
component of x¢ by minimizing its mean-squared error:

min ||€ — €5 (varxo + V1 — ae, t)|]%, (2.11)

where x¢_7 is then obtained from a diagonal Gaussian with mean as a func-
tion of €y(x¢,t), and with a fixed [276] or learned [470] variance o. In other
words, it learns to associate points from a predefined random distribution
with real data through iterative denoising. At inference time, a diffusion

model can iteratively generate a new sample by starting from pure random
noise xp ~ N (0,1):

X, — /1 — ayep(X, t
ngl = \/Oy_q t \/&_tt 6( i ) + 1-— Q1 — O'?E@(Xt,t>+0't6t, (212)
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where the first component is the predicted xq, the second reapplies the pre-
dicted noise until ¢ — 1, and the third introduces additional Gaussian random
noise through €; ~ N(0,I) [616]. While in theory we might use the first
part alone and directly generate xq from pure noise, mimicking the forward
process allows the model to adjust its predictions, leading to better results.

The generation can also be conditioned by simply modifying the noise
perturbation so that it depends on the conditional information. However,
this iterative sampling process might potentially lead to slow generation; a
proposed solution is to induce self-consistency, i.e., ensuring that points on
the same trajectory map to the same initial ones [620]. In this way, the
output can be obtained in a single step.

The aforementioned diffusion process is similar to that followed by score-
based generative models [617, 618]. Instead of noise, here a model is trained
to learn the score, i.e., the gradient of the log probability density with respect
to real data. The samples are then obtained using Langevin dynamics [689].
Despite the differences, both of them can be seen as specific, discrete cases
of Stochastic Differential Equations [619].

2.1.6 Input-Based Methods

Finally, we introduce two approaches to sample results from (pre-trained)
DL models. The first is about carefully selecting or optimizing the input to
a generative model (e.g., the latent vector or the text prompt) so that to
obtain the desired output. Assuming the desired output is X' ~ pg(zT), the
target input zt is obtained starting from zq after T" steps of gradient ascent
according to Equation 2.13:

Zy = Ze—1 + 1NV 1 9(Po(2e-1)), (2.13)

with g(+) as an objective function that depends on the current version of the
output and some other neural networks. One possible solution is represented
by VQGAN-CLIP [139], which considers a function g to estimate how close
the CLIP [514] embedding of the generated image is to the embedding of the
user-provided description.

The second approach is about optimizing the input so that it directly ap-
proximates the desired output. Such methods rely on losses that are usually
based on features learned by neural networks. A notable example is Deep-
dream [451]: given an input xo and a neural network g4(x), the final output
x is obtained after T steps of gradient ascent according to Equation 2.14:

Zz"il Qéc(xt—l)i
D )

Xt = X¢—1 + Vx4 (2.14)
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where qé is the activation of layer(s) L with total length D and 7 is the step
size of the gradient ascent.

While the two approaches are technically different, both of them aim at
obtaining better outputs by exploiting the knowledge of a pre-trained model
through the optimization of the inputs.

2.2 Reinforcement Learning

S
ot AGENT
Tt+1 Qg
ENVIRONMENT —
St+1

Figure 2.2: The canonical reinforcement learning framework: at each timestep
t, the agent performs an action a; based on the current state s;, which is a repre-
sentation of the environment. Upon the execution of the action, the agent finds
itself in a new state s;11, and receives a reward ryy1.

Reinforcement learning is a machine learning paradigm that consists of
learning an action based on a current representation of the environment in
order to maximize a numerical signal, i.e., the reward over time [639]. More
formally, at each time step £, an agent receives the current state s; from
the environment, then it performs an action a; and observes the reward 7,1
and the new state s;.1. Figure 2.2 summarizes the process. The learning
process aims to teach the agent to act in order to maximize the cumulative
return Gy = ZiT;lt Aty e, a discounted sum of future rewards. Deep
learning is also used to learn and approximate a policy 7, i.e., the mapping
from states to action probabilities, or a value function, i.e., the mapping from
states (or state-action pairs) to expected cumulative rewards. In this case,
we refer to it as deep reinforcement learning.

Algorithms that aim to learn a value function are called value function
approximation methods. Given the actual state-value function v,(s) and the
actual action-value function ¢, (s, a) under the current policy 7, the goal of
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such methods is to learn either 0(s, w) or (s, a, w), where w are the weights
of the neural network used as the approximator, whose cardinality should
be much smaller than the number of possible states. These neural networks
are trained to minimize the prediction error. In the case of a Monte Carlo
method, i.e., with the value estimation happening at the completion of the
episode, the target is GG;. In the case of a temporal difference method, i.e.,
with the value estimation happening after NV steps, the target bootstraps the
value function of the N-state. A notable case is TD(0), where the target for
the state-value function approximator becomes 7,41 + Y0(S411, W) or 7441 +
Yq(St415 Qrg1, W).

While one might be interested in simply solving the prediction problem,
i.e., the estimation of the value function given a fixed policy, SARSA [639]
leverages this method to address the more complex control problem, i.e., the
derivation of an optimal policy m,. SARSA induces its current policy from
the action-value function approximator ¢(s, a, w) by computing the optimal
action according to it:

a; = argmax (s, a, w). (2.15)

Always choosing the optimal action according to the current value func-
tion is called greedy policy. In order to better balance exploitation and ex-
ploration, the e-greedy policy is usually adopted, where the greedy action is
chosen with 1 — e probability and a random action is chosen with € probabil-
ity. Since the approximated action-value function is updated based on the
action taken by the agent, SARSA is an on-policy method.

However, on-policy methods are sensitive to the exploration strategy and
are bound to the actions taken, leading to slower convergence. On the con-
trary, off-policy methods separate the behavior policy (the one used to act in
the environment) from the target policy (the one used to update action-value
functions), allowing for different exploration strategies and faster conver-
gence. The most important off-policy method is Q-learning [683]. Instead of
relying on the action taken by the agent to compute the action-value update,
it considers the best action according to its current policy: the target then
becomes 7,11 + v max, ¢(Si11,a,w). In this way, the update is completely
independent of the policy followed during exploration, enabling early conver-
gence proofs. Q-learning is at the basis of one of the most successful deep RL
algorithms, Deep Q-Network (DQN) [449]. DQN uses a deep Convolutional
Neural Network (CNN) to represent the Q-function ¢(s,a, w), and trains it
to minimize the prediction error of the Q-learning target. In addition, DQN
introduces other technical novelties such as reward clipping, where each pos-
itive reward is clipped to +1 and each negative reward is clipped to —1; error
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clipping, where the prediction error is clipped in the interval [—1, +1]; and
experience replay, where the agent’s experience is stored in a memory, and
training updates are performed over random samples of experiences (which
is made possible by the off-policy nature of DQN). In this way, successive
updates are uncorrelated, reducing their high variance, and each experience
can be used multiple times, making the overall learning more efficient.

Several variants of DQN have been proposed over the years. For example,
double DQN [670] considers a copy of the Q-network for the action selection in
the target update whose parameters are slowly updated to match those of the
Q-network. This helps reduce the maximum value overestimation. Another
possibility is to modify the experience replay sampling scheme by prioritizing
experience based on the temporal-difference error (since this should lead to
faster learning) [564].

While effective, value function approximation methods have some limi-
tations. If the optimal policy is deterministic but requires high exploration
to find it, strategies like e-greedy cannot approach it. On the contrary, if
the optimal policy is not deterministic, there is no natural way to learn it.
Finally, small changes in the estimated value function can lead to large, dis-
continuous changes in the policy, making the learning process unstable. To
deal with this issue, it is possible to let the neural network directly learn
a policy, thus making it return the action probability distribution given the
current state. We refer to Section 2.2.1 for a more in-depth overview of policy
gradient methods.

The RL community has developed a variety of solutions to address the
specific theoretical and practical problems emerging from its simple formu-
lation. For example, if the reward signal is not known, inverse reinforcement
learning (IRL) [464] is used to learn it from observed experience. Intrinsic
motivation [604, 398], e.g., curiosity [493] can be used to deal with sparse
rewards and encourage the agent to explore further. Imagination-based RL
(detailed in Section 2.2.2) is a solution that allows to train an agent, reducing
at the same time the need for interaction with the environment. Hierarchical
RL [492] allows to manage more complex problems by decomposing them
into sub-tasks and working at different levels of abstraction. RL is not only
used for training a single agent, but also in multi-agent scenarios [725]. Fi-
nally, generalization in RL [345] is currently an area of great interest for the
community; in Section 3.2.3 we survey its current state of the art.

2.2.1 Policy Gradient Methods

Policy gradient methods learn a parameterized policy 7(al|s, @) that directly
predicts actions without consulting a value function. This helps overcome
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the limitations of action-value function methods, providing a more straight-
forward and intuitive way to model a reinforcement learning agent. However,
there is no direct target to approximate as in action-value function methods.
Ideally, we ought to have some scalar performance measure J(0) with re-
spect to the policy parameter that estimates the performance of our current
policy. If so, we could update the parameters via gradient ascent. While we
might not have J(@), what we really need is its gradient V.J(€). The policy
gradient theorem [640] provides an analytic expression for the gradient of
performance with respect to the policy parameter:

VJ(0) o> ()Y gn(s,a) Va(als, 6), (2.16)

where p(s) is the on-policy distribution under w. We refer to the original
paper for the entire derivation.

REINFORCE [692] is the simplest policy gradient method. Starting from
the policy gradient theorem, it is possible to derive its update rule presented
in Equation 2.17.

0t+1 = Ot + T]Gtv lnw(at|3t, gt)7 (217)

where 7 is the step size of the gradient ascent update. Since G, is considered,
REINFORCE is a Monte Carlo method.

However, REINFORCE tends to suffer from high variance, which might
lead to slow learning. To reduce the variance, REINFORCE with baseline
introduces a comparison of the action value (in this case, G;) with an arbi-
trary function independent from a;: in particular, an estimate of the state
value 0(s;, w) can be used as a baseline to reduce the action value to the
actual advantage of choosing a; in state s;:

0111 =0, +1n(Gy — (s, w)) Vinm(ay|ss, 0y). (2.18)

Closely resembling the value function methods introduced above, it is also
possible to replace the cumulative return G, with the TD(0) target ri1q +
Y0(8441, W), to gain the usual advantages of temporal-difference methods
over Monte Carlo methods. The policy gradient algorithm that leverages
this change is called one-step actor-critic since it performs updates after one
step and the state-value approximator is used to assess the actions, leading
to the name critic. The overall update rule thus becomes:

0111 =0y + 1 (11 +Y0(Sp41, W) — 0(8¢, W) VInm(ag|sy, 0y). (2.19)

It is of course possible to generalize this to n-step methods.
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Due to their advantages, several other actor-critic methods have been pro-
posed in recent years. For example, Asynchronous Advantage Actor-Critic
(A3C) [450] considers parallel actor-learners updated asynchronously to sta-
bilize training. Deep Deterministic Policy Gradient (DDPG) [395] concur-
rently learns a Q-function and a policy by using off-policy data to learn the
Q-function and the Q-function to learn the policy. Soft Actor-Critic (SAC)
[253] leverages entropy regularization to optimize stochastic, continuous poli-
cies in an off-policy way. Finally, Trust Region Policy Optimization (TRPO)
[571] and Proximal Policy Optimization (PPO) [573] update policies by tak-
ing the largest step possible to improve performance without stepping too
far from the old policies.

In particular, PPO has gained great popularity thanks to its theoretical
guarantees and adoption by reinforcement learning from human feedback
(see Section 2.3). TRPO tries to prevent the new policy from moving too
far from its old version by introducing a constraint about the KL divergence
between them. However, its second-order method makes the optimization
complex and not always feasible. Instead, Schulman et al. [573] propose to
substitute the hard constraint with a more tractable objective based on a
clipped surrogate objective.

The PPO overall loss is defined as follows:
L(0) = K, [LtCLIP(Q) — chyF(G) + CeS[ﬂ'g](Stﬂ , (2.20)
with

LOLIP(g) — &, [min( mo(ay]s¢) At,clip( mo(ay|s¢) 1 _671+6) At):|
77901d<at|8t) 7Teozd(at"st)
(2.21)

the clipped surrogate objective that modifies the policy in the right direction
while preventing too large changes, and

LXF(Q) — i, [(Ve(st) _ wtarget)2:| ' (2.22)

Vp is the function used to estimate the value of the current state. S[m]
is an entropy bonus that prevents the policy from collapsing over one or few
actions, while ¢, and ¢, are tunable coefficients that scale down the relative
losses. Finally, the advantage can be estimated in multiple ways. The two
most common choices are the one-step temporal difference error [147]:

6t = Tea1 +YVa(se11) — V(s (2.23)
and the Generalized Advantage Estimation (GAE) [571]:
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Finally, the value function is trained to approximate

V9t = 6, 4 Vi(sy) . (2.25)

2.2.2 Imagination-Based Reinforcement Learning

Usually, RL requires a very large amount of collected experience, especially
compared to the one required by humans [660], limiting its applications to
real-world tasks. Model-based RL [639] constitutes a promising direction
toward sample efficiency. It requires learning a world model capable of pre-
dicting the next states and rewards conditioned on actions. This allows the
agent to plan [569] or build additional training trajectories [252] by predict-
ing the consequences of its actions. In particular, recent imagination-based
methods [261, 440] have shown remarkable performance simply by learning
from imagined episodes within a learned latent space, limiting the interaction
with the real environment to that necessary to train a working world model.

World models represent a compact and learned version of the environment
capable of predicting imagined future trajectories [638]. When the inputs
are high-dimensional observations oy (i.e., images), Dreamer [259, 260, 261]
represents the current state of the art due to its ability to learn compact
latent states zy. In general, Dreamer world model consists of the following
components:

Recurrent model: hy = fo(h¢_1,2¢-1,a:-1)
Encoder model: z¢ ~ Qo (2|, Of)
Transition predictor: Zt ~ peo(Z¢|hy)

Reward predictor: 7t ~ po(T¢|hy, z¢)
Continue predictor: ¢ ~ po(C|hg, z¢)
Decoder model: Ot ~ po(0¢|hy, z¢)

The deterministic recurrent state hy is predicted by a Gated Recurrent Unit
[114], while the encoder and decoder models use convolutional neural net-
works for visual observations. Overall, the Recurrent State-Space Model
[258], an architecture that contains recurrent layers, encoders, and transition
components, learns to predict the next state only from the current one and
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the action, while also allowing for correct reward, continuation bit, and image
reconstructions.

While z; was originally parameterized through a multivariate normal dis-
tribution, more recent works [260, 261] consider a discrete latent state. In
particular, they use a vector of C' one-hot encoded categorical variables (i.e.,
a very sparse binary vector). The authors of [261] parameterize this cat-
egorical distribution as a mixture of 1% uniform and 99% neural network
output. Moreover, instead of regressing the rewards via squared error, they
propose a learning scheme based on two transformations: first, the rewards
are symlog-transformed [685]; then, they are two-hot encoded, i.e., converted
into a vector of K values where K — 2 are 0, and the remaining, consecutive
two are positive weights whose sum is 1. The K values correspond to equally
spaced buckets, so we reconstruct the original reward by multiplying the
vector with the bucket values. This solution facilitates the learning process,
especially in environments with very sparse rewards.

Overall, given a sequence of inputs {0g.r—_1, ao.7—1,71.1, C1.7}, the world
model is trained to minimize the following loss:

E(e) = qu Z(‘Cpred(e) + /Blﬁdyn(e) + 62»67‘617(0)) (2'26)

where £,,¢q trains the decoder model via mean squared error loss, the reward
predictor via categorical cross-entropy loss, and the continue predictor via
binary cross-entropy loss; while L4, and L,., consider the same Kullback-
Leibler (KL) divergence between gg(z¢|hg, 0¢) and pg(Z¢|hy), but using the
stop-gradient operator on the former for the first loss and on the latter for the
second loss. Moreover, free bits [342] are employed to clip the KL divergence
below the value of 1 nat. Finally, 8, and [, are scaling factors necessary to
encourage learning an accurate prior over increasing posterior entropy [260].

Leveraging the world model detailed above, a policy mg(at|ss) can be
learned by acting only in the latent space of imagination: given a compact
latent state 8™ = (hi™, zi™), the agent selects an action a;, returns it to the
world model, and receives 711, ¢i41, and 8. Furthermore, a critic vy (ve|sg)
is simultaneously learned to predict the state-value function v;. This process
is repeated until a fixed imagination horizon is reached and the policy can
be learned from the imagined experience as it would have done by acting in
the real environment. The agent can be trained on the collected trajecto-
ries either by direct reward optimization (leveraging the differentiability of
the trajectory construction and back-propagating through the reward model
[259]) or by using a model-free policy gradient method, e.g., REINFORCE
(see Section 2.2.1).
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2.3 Reinforcement Learning for Generative
Modeling

Due to its adherence to the formal framework of Markov decision processes
[639], RL can be used as a solution to the generative modeling problem in
the case of sequential tasks [21], e.g., text generation or stroke painting. The
generative model plays the role of the agent, returning “generative” actions
a;. For example, such actions can be single tokens, e.g., words or notes,
or image layers to be superimposed. The current version of the generated
output x; represents the state sy (potentially with additional information),
and it is obtained as a function of all the previous actions:

x¢ = fag_1...a1), (2.27)

where x represents the final output produced by the generative model, and
f(+) is a function that “composes” the actions together, e.g., by appending
the actions one after the other to form a text or by iteratively applying
changes to a picture. Note that f(-) can also be an identity function if the
generative agent returns a completed output in one shot. Finally, the reward
ryr1 measures the “quality” of the current output. Figure 2.3 summarizes
the entire process.

It is possible to identify three fundamental design aspects: the implemen-
tation of the agent itself, e.g., diffusion model or Transformer; the definition
of the system’s dynamics, i.e., the transition between one state to another
through function f(-); and the choice of the reward structure. The first two
depend on the task to be solved, e.g., music generation with LSTM compos-
ing one note after the other or painting with CNN superimposing subsequent
strokes, and the final sampling scheme to generate new outcomes depends on
the chosen architecture. The third one is instead responsible for the actual
learning, together with the choice of the RL algorithm.

The main advantage of this formulation is that rewards in reinforcement
learning can be non-differentiable. While self-supervised learning requires
the objective function to be fully differentiable for each generative model’s
output, limiting its expressiveness, the reward function can be any func-
tion. This allows us to design ad-hoc rewards such as sets of rules to satisfy,
testing-time metrics, or domain-specific properties. In addition, it also makes
it possible to have an objective for the entire x = f(ar...a;) and backprop-
agate it to each single generative step a;.

The most famous example of an approach that leverages this property is
Reinforcement Learning from Human Feedback (RLHF). RLHF is a training
scheme that aims to make the RL agent maximize human preferences. While
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Figure 2.3: The reinforcement learning framework for generative modeling: at
each timestep ¢, the generative model (i.e., the agent) generates an action a; based
on the current description of the generated output (i.e., current state) s;, which
updates the current description of the generated output to s;11, and receives a
reward ;41 related to it.

firstly proposed for game-like environments [118], now it is widely adopted
as the last training stage in a vast number of popular large language models.

Given a pre-trained language model, RLHF is articulated in different
steps. First, a preliminary step where demonstration data are collected from
human labelers and the language model is fine-tuned with self-supervised
learning is usually present [482]. Then, three steps are repeated multiple
times: human feedback collection; reward model training; and language
model training with reinforcement learning [626]. The human feedback col-
lection requires sampling a prompt p from the training set and letting the
language model produce multiple outputs x;,7 = 1... K. A human labeler
is entitled to rank such outputs from best to worst. Then, the collected data
are used to train the reward model. Since the reward model must return a
numerical score 74(x, p) for each input, we need a way to teach the reward
model to assign higher scores for best-ranked outputs and lower scores for
worst-ranked outputs. Thus, the reward model is trained to optimize the
following objective:

1
min =5 g (080 wep) — o)) (229)
2

with x,, preferred over x;, and o(-) as the sigmoid function.
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Finally, the third step consists of sampling a new prompt p from the train-
ing set, making the language model generate an output x, getting the output
score 14(x, p) from the reward model, and training the language model with
PPO. To avoid moving too far away from the original language model, a
per-token KL penalty is commonly added to the predicted reward:

7(x,p) = 14(x,P) — BDkL (me(X|P) || mgsrr(x[P)), (2.29)

where 7ysrr is the language model after the (self-) supervised fine tuning,
and [ is the penalty scaling factor. Once the final rewards are computed,
PPO (see Section 2.2.1) is used with some minor implementation changes
[297].

While highly effective, RLHF suffers from several open problems [96], e.g.,
how we can get correct, unbiased, and well-representative human feedback
and how we can make this process resource-efficient. Moreover, RLHF tends
to be complex and unstable due to the need to train the reward model concur-
rently and the fact it is based on reinforcement learning. To address these two
issues, Direct Preference Optimization (DPO) [515] directly optimizes the
language model without explicit reward modeling or reinforcement learning.
DPO implicitly performs reward maximization with a KL-divergence penalty
through the following loss:

. To(Xw|P) To(X1|P)
min —E x. xnox |logo| flog —————— — Blog ————— | | . (2.
i (1) [ 08 < 8 MpsSFT (Xw|p) 8 MpSFT (x1|p) ( 30)

In other words, DPO fits an implicit reward whose optimal policy is the
language model itself.
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3 Related Work

In this chapter we discuss the related work in the fields that are relevant for
this thesis. Section 3.1 reviews the generative deep learning models intro-
duced in Section 2.1, with a specific focus on how they relate to creativity
theories. Then, Section 3.2 discusses the state of the art in RL. Section 3.3 ex-
plores the current research that involves reinforcement learning for generative
AT, highlighting the main opportunities that arise from their combination.
Finally, Section 3.4 introduces the literature at the interface of creativity and
generative deep learning, also providing an overview of its societal implica-
tions.

3.1 Generative Deep Learning

This section aims to present and critically discuss the state of the art in
generative deep learning from the point of view of machine creativity. In
particular, we focus on the product dimension of creativity. We underpin
our analysis on Boden’s three criteria (i.e., value, novelty, and surprise) since
they have been widely adopted, together with the three forms of creativ-
ity (i.e., combinatorial, exploratory, and transformational), as introduced in
Section 1.2. For each of the generative modeling families from Section 2.1,
we present some relevant examples of models; potential applications; and a
critical discussion evaluating the level of machine creativity considering the
definitions above. Finally, we conclude by analyzing potential directions in
order to make those models more creativity-oriented.

As a final remark, it is worth noting that we limit our examples to the Arts
(e.g., poems, music, or paintings). Indeed, generative learning can be applied
to design [211, 422]; game content generation (see [401] for a comprehensive
survey); recipes [453, 672]; scientific discovery [130, 566]; and in general to
any activity, which has a non-trivial solution [74].
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3.1.1 Variational Autoencoders

Examples of Models. Several models based on VAEs have been proposed
[340] in recent years. Our focus is on those relevant to our discussion on
machine creativity. In 8-VAE [271], a parameter 3 is used to scale the mag-
nitude of the regularization loss, which allows a better disentanglement of
the latent space [83]. Another example is VAE-GAN [361], which merges
VAE and GAN (see Section 2.1.2). This is done by treating the decoder as
the generator of the GAN, thus training it through the GAN loss function.
This leads to the generation of substantially less blurred images. Similarly,
Adversarially Learned Inference (ALI) [170] merges VAE and GAN by ask-
ing the discriminator to distinguish between pairs of real data (and their
latent representations) and pairs of sampled representations and synthetic
data. Adversarial Autoencoders (AAE) [424] substitute the regularization
loss with a discriminative signal, where the discriminator has to distinguish
between random latent samples and encoded latent vectors. Another way to
address the problem of “sample blurriness” is with PixelVAE [244], where
the autoregressive PixelCNN [667, 668] is used as the decoder. In [64], the
encoder learns to produce a latent sentence representation to deal with se-
quential data such as texts, where generation requires more steps. In con-
trast, the recurrent neural network RNN-based decoder learns to reproduce
it word after word. However, VAE can also generate text through convolu-
tion and deconvolution [579]. To solve the problem of low-density regions,
the authors of [14] propose an energy-based model called noise contrastive
prior (NCP), trained by contrasting samples from the aggregate posterior
to samples from a base prior. Finally, another interesting model is Vector
Quantised-VAE (VQ-VAE) [669]; in this case, the encoder outputs discrete,
rather than continuous, codes, and the prior is learned rather than static.

Applications. VAEs can be used for semi-supervised classification to pro-
vide an auxiliary objective, improving the data efficiency [341, 413]; to per-
form iterative reasoning about objects in a scene [177]; to model the latent
dynamics of an environment [684]. Of course, VAEs have also been used to
generate synthetic data, possibly with conditional generation. For example,
a layered foreground-background generative model can be used to generate
images based on both the latent representation and a representation of the
attributes [713]. In [251] the latent space of a VAE is trained on chemical
structures by means of gradient-based optimization toward certain properties
(see Section 3.1.6). AAEs have also been applied to the same problem [326].
Finally, another interesting application of VAE is Deep Recurrent Attentive
Writer (DRAW) [234]. DRAW constructs scenes iteratively by accumulat-
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ing changes emitted by the decoder (then given to the encoder in input).
This allows for iterative self-corrections and a more natural form of image
construction. RNNs and the attention mechanism are used to consider pre-
vious generations and to decide at each time step where to focus attention,
respectively.

Critical Discussion. Models based on VAEs can be considered as an ex-
ample of exploratory creativity. The latent space is learned with the goal
of representing data in the most accurate way. The random sampling per-
formed during generation is therefore an exploration of that space: regions
not seen during the training can be reached as well, even though they can
lead to poor generation [14] and some more complex variants may be needed,
as discussed. On the other hand, there is no guarantee that the results will be
valuable, novel, or surprising. There is no guarantee that the generation from
random sampling is of good quality or diverse from training data. Indeed,
given their characteristics, VAEs discourage novelty in a sense. In partic-
ular, diversity could be achieved in theory using VAEs and gradient-based
optimization techniques, such as those presented in [251], with novelty and
surprise as target properties. We will discuss these aspects in Section 3.1.7.

3.1.2 Generative Adversarial Networks

Examples of Models. Several variants of GANs have been proposed, and
the number is still growing. An in-depth survey is [241]. Indeed, several
refinements have been proposed in the past years, such as using deep con-
volutional networks [512] or self-attention [724], incrementally growing the
networks [330], or scaling the model parameters [70]. In the following, we
present examples that are relevant to the issue of machine creativity.

The problem of non-meaningful representation has been addressed in dif-
ferent ways. For instance, InfoGAN [109] adds a latent code ¢ to z. An
auxiliary model learns to predict ¢ given the sample generated by means of
it. In this way, it can learn disentangled representations in a completely un-
supervised manner. Another possibility is Bidirectional GAN (BiGAN) [162].
In order to include an inverse mapping from data to latent representation,
an encoder is added to the architecture. The discriminator is then trained to
distinguish between pairs of random noise and synthetic data and pairs of real
data and latent encoding. It is possible to condition the generation through
a target content [474], a text [526], or even an image [304]. To do so, it is
sufficient to use the conditional information as an input for both generator
and discriminator [447]. Similarly, image-to-image translation is also possible
without paired datasets. CycleGAN [740] trains two generators (from one
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domain to another, and vice versa) so that each of them produces images
both from the target domain and correctly reconstructed by the counterpart.

In StyleGAN [331, 332], the generator architecture is re-designed to con-
trol the image synthesis process. At each layer, the style of the image is
adjusted based on the latent code (the specific intermediate code to control
each layer is provided by a non-linear mapping network). This allows for
the automatic separation of high-level attributes from stochastic variations
in the generated images. It also allows for mixing regularization, where two
latent codes are used alternatively to guide the generator. StyleGAN-V [606]
builds on top of it to learn to produce videos by only using a few frames of
it. To generate longer and more realistic motions, a two-stage approach can
be used as well: first, a low-resolution generator is adversarially trained on
long sequences; then, a high-resolution generator transforms a portion of the
produced, low-resolution video in a high-resolution one [71].

Finally, it is also worth mentioning variants that adapt GANs to se-
quential tasks (e.g., text generation). Since GANs require the generator to
be differentiable, they cannot generate discrete data [225]. However, sev-
eral techniques have been proposed to avoid this problem. One possibility
is to transform the discrete generation into a continuous one. Music can
be processed like an image by considering its waveform (as in WaveGAN
[161] and GANSynth [176]) or its musical score composed of tracks and bars
(as in MuseGAN [163]). Music in a desired style can be obtained through
conditional inputs. Another possibility is to consider a soft-argmax func-
tion as an approximation of the inference for each step [729]. TextGAN
[730] uses it together with feature matching to learn the production of sen-
tences. In place of the discriminative signal, it uses the difference between
the latent feature distributions of real and synthetic sentences learned by
the discriminator. Another solution is to transform the GAN into a rein-
forcement learning framework; we explore this solution in Section 3.3.1. Fi-
nally, Gumbel-softmax relaxation [309, 419] can also be used, as in Relational
GAN (RelGAN) [471]. Controlled TExt generation Relational Memory GAN
(CTERM-GAN) [47] builds on the latter by also conditioning the generator
on an external embedding input. In addition, it uses both a syntactic discrim-
inator to predict whether a sentence is correct and a semantic discriminator
to infer if a sentence is coherent with the external input.

Applications. GANs have been applied to a variety of practical prob-
lems in several application scenarios. They have been widely used for semi-
supervised learning [473]; for generating adversarial examples [707] to better
train image classifiers [420]; and, in general, in computer vision (see [682]
for a detailed discussion). The generative power of GANs has also found its
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place in recommender systems [149] to generate fashion items; in science and
chemistry [434, 454]. Of course, its ability to generate high-quality samples
has been exploited in many other areas, from anime design [320] and 3D ob-
ject modeling [699] to photo-realistic consequences of climate change [567].
Conditional inputs also allow the production of artistic works by controlling
stylistic properties such as genre [644] or influencer [120]. Finally, the most
famous example of the artistic power of GAN is the collection of paintings
by Obvious, a French art collective [674]; one of their works has been sold to
more than 400,000 dollars!.

Critical Discussion. GANs are difficult to evaluate from a machine cre-
ativity perspective. The generator does not receive the original works as
input, so it samples from a conceptual space that is built only indirectly
from them. In rare cases, this can also lead to a different conceptual space
(with respect to the original one) and so to transformational creativity, but it
typically leads to exploratory creativity. Since the goal is to learn to generate
seemingly real artifacts from a latent distribution, it will likely approximate
the real one. Still, it is possible to identify potential creative solutions among
those generated by the model.

An advantage of GANS is the presence of a recognition network, i.e., the
discriminator, trained to recognize real (valuable) works. This is important
for two reasons. It suffices for being able to define GANs appreciative [130],
which is a central sub-task of creativity [10, 203]. In addition, it allows
us to consider their products as valuable, as it is in a sense their intrinsic
objective. However, there is no guarantee that they will also be new and
surprising. Nevertheless, it seems possible to extend a GAN objective to
include such properties as well (see Section 3.1.7 for a discussion).

3.1.3 Sequence Prediction Models

Examples of Models. RNNs can be used to model joint probabilities of
characters (Char-RNN) [329]; words [506]; phonemes [288]; syllables [742];
and even tokens from transcriptions of folk music (Folk-RNN) [628]. They
can also receive conditional inputs like the encoding of the previous lines
[728]. Richer architectures that combine models focusing on different prop-
erties can be used to generate more complex text, e.g., poetry based on pen-
tameter and rhymes [363]. Finally, sequence modeling can also be combined
with reinforcement learning, as we will see in Section 3.3.

IFun fact: the sold painting is called Portrait of Edmond De Belamy because Belamy
sounds like bel ami, a sort of French translation of... Goodfellow.
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Due to the difficulties in working with long sequences, results in tasks
like narrative generation are affected by a lack of coherence [540]. Many
approaches have been proposed to address this problem. For instance, stories
can be generated in terms of events [427] (i.e., tuples with subject, verb,
object, and an additional wildcard) by an encoder-decoder RNN (also known
as Sequence-to-Sequence, see [636]); events are modeled by another encoder-
decoder RNN. Instead of events, it is also possible to focus on entities (i.e.,
vectors representing characters) [123].

Sequence prediction models are also used for domains not commonly mod-
eled as sequences, like images. Image modeling can be defined as a discrete
problem through a joint distribution of pixels: the model learns to predict
the next pixel given all the previously generated ones. It starts at the top
left pixel and then proceeds towards the bottom right. The two seminal ar-
chitectures for sequence prediction of images are PixelRNN and Pixel CNN
[667]. The former is a two-dimensional RNN (based on rows or diagonals).
The latter is a convolutional neural network (CNN) with an additional fixed
dependency range (i.e., the convolution filters are masked to only use infor-
mation about pixels above and to the left of the current one). To obtain
better results, gated activation units can be used in place of rectified linear
units between the masked convolutions; conditional inputs encoding high-
level image descriptions can be used as well [668]. Notably, the Gated Pix-
elCNN architecture can also be used for other types of data: WaveNet [666]
implements it to generate audio based on the waveform, possibly guiding the
generation with conditional inputs.

While intuitive in terms of architecture, RNNs are limited by the vanish-
ing gradient problem and non-parallelizability in the time dimension [366].
Very recent works explore solutions to tackle these issues by means of struc-
tured state spaces [237] and a combination of RNNs and Transformers [499].

Applications. As discussed, sequence prediction models have been used to
learn to write poems or stories (by predicting a character, syllable, or word
after the other); to compose music (by predicting a note or a waveform after
the other); to draw images (by predicting a pixel after the other). In general,
they can be used for any kind of time series forecasting [396]. They can also
be used for co-creativity, as in Creative Help [540]. Despite their simplicity,
sequence prediction models have been one of the most successful generative
techniques. An interesting example is Sunspring. It might be considered
the first Al-scripted movie: it was generated by a Char-RNN trained on
thousands of sci-fi scripts [443]. The quality of the result is demonstrated by
the fact that it was able to reach the top ten at the annual Sci-Fi London
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Film Festival in its 48-Hour Film Challenge?.

Critical Discussion. Sequence prediction models generate outputs that ex-
hibit characteristics of both exploratory and combinatorial creativity. These
models are based on probabilistic predictions, allowing them to generate new
outputs in the induced space. They can also combine sequences of tokens
from different works. However, there is no guarantee that the results will be
valuable or novel, and classic methods such as RNNs lack surprise [80]. It
is worth noting that the use of conditional inputs and the ability to work
at different levels of abstraction might indirectly lead to creative outputs.
In such cases, creativity should be attributed to the higher-level component
(or human if the input is provided by the user) that guides the generation
toward specific elements and characteristics of the result.

3.1.4 Transformer-Based Models

Examples of Models. Several Transformer-based approaches have been
proposed in recent years. The design of specific Transformers for a variety of
applications is presented in several surveys (e.g., [59, 336]) and books (e.g.,
[661]).

The domain mostly influenced by Transformers is natural language pro-
cessing. Bidirectional Encoder Representations from Transformers (BERT)
[156] is a Transformer-based encoder trained for both predicting the next
sentence (in an autoregressive fashion) and reconstructing masked tokens
from the context. Several enhanced variations of the original model have
been proposed, such as, for instance, solutions that remove the next-sentence
pre-training objective [405], use inter-sentence coherence as an additional
loss [359], or employ distillation [274] to train a smaller model [557]. The
other main approach is that used by the Generative Pre-trained Transformer
(GPT) family [511, 513, 74]. Here, a Transformer-based decoder is trained
in an autoregressive way by additional conditioning on the task of interest.
After training, it can be used to perform a wide range of tasks by providing
a description or a few demonstrations of the task. The effectiveness of this
text-to-text generative approach has then been explored by T5 [516]. Many
other large language models [594, 655, 726] have been proposed to achieve
better results by means of more parameters and computation [610], or more
qualitative data [245]. Mixture of Experts [588] can be used as well in place of

2Quite interestingly, the AI system that wrote Sunspring declared that its name was
Benjamin, probably in honor of Walter Benjamin, the German philosopher who, already in
1935 [41], understood that new mechanical techniques related to art can radically change
the public attitude to arts and artists.
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the feed-forward network to train a larger but lighter model (since only por-
tions of it are used per task), as done by Generalist Language Model (GLaM)
[167]. Finally, Bidirectional and Auto-Regressive Transformer (BART) [383]
ideally merges a BERT-encoder (trained by corrupting text with an arbi-
trary noising function) and a GPT-decoder (trained to reconstruct the orig-
inal text autoregressively). Such an encoder-decoder architecture achieved
state-of-the-art results in machine translation and in other text-to-text tasks.

Transformer-based models have been used in domains different from lan-
guage modeling. Few have been proposed for music generation. One of the
first examples was Music Transformer [295], which can generate one-minute
music in Bach’s style with internal consistency; another remarkable one is
Musenet [496], which is able to produce 4-minute musical composition with
a GPT-2 architecture; and, finally, it is worth mentioning Jukebox [158],
which can generate multiple minutes of music from raw audio by training a
Sparse Transformer [112] (i.e., a Transformer with sparse factorization of the
attention matrix to reduce from quadratic to linear scaling) over the low-
dimensional discrete space induced by a VQ-VAE. Conditioning is always
considered by means of genre, author, or instruments. MusicLM [5] addi-
tionally allows to generate music from text descriptions by aligning text and
audio representation from different state-of-the-art models [62, 296]. Another
important application domain is video-making. Video Vision Transformer
(ViViT) [16] generates videos using classic Transformer architectures; Video
Transformer (VidTr) [731] achieves state-of-the-art performance thanks to
the standard deviation-based pooling method; and VideoGPT [712] does so
by learning discrete latent representations of raw video with VQ-VAE, and
then training a GPT autoregressively.

Transformers have been highly influential in computer vision too. The
first model was Image Transformer [489]. It restricts the self-attention mech-
anism to attend to local neighborhoods, so larger images can be processed.
Class-conditioned generation is also supported, by passing the embedding of
the relative class in input. To avoid restricting self-attention to local neigh-
borhoods, Vision Transformer [165] divides an image into fixed-size patches,
linearly embeds each of them, adds position embeddings, and then feeds the
resulting sequence of vectors to a standard Transformer encoder. Masked Au-
toencoders (MAE) [265] instead uses an encoder-decoder architecture based
on Transformers trained with masked image modeling (i.e., to reconstruct
randomly masked pixels). A BERT adaptation to images called Bidirec-
tional Encoder representation from Image Transformers (BEiT) [28] has also
been proposed. Masked image modeling has also been used together with
classic autoregressive loss [106]. Conversely, Vector Quantised-GAN (VQ-
GAN) [179] allows a Transformer to be based on vector quantization. A
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GAN learns an effective codebook of image constituents. To do so, the gen-
erator is implemented as an autoencoder; vector quantization is applied over
the latent representation returned by the encoder. It is then possible to effi-
ciently encode an image in a sequence corresponding to the codebook indices
of their embeddings. The Transformer is finally trained on that sequence to
learn long-range interactions. These changes also allow us to avoid quadratic
scaling, which is intractable for high-resolution images. Finally, DALL-E
[514] takes advantage of a discrete VAE. To generate images based on an
input text, it learns a discrete image encoding; it concatenates the input
text embedding with the image encoding; it learns autoregressively on them.
CogView implements a similar architecture [160].

Finally, Transformer-based models have also been used in multimodal set-
tings, in which data sources are of different types. A survey can be found in
[641]. The first examples of these systems consider text and images as the out-
put of the Transformer architecture. By aligning their latent representations,
images and texts can be generated by Transformer-based decoders given a
multimodal representation. For instance, Contrastive Language-Image Pre-
training (CLIP) [514] has an image encoder pre-trained together with a text
encoder to generate a caption for an image. A Large-scale ImaGe and Noisy-
text embedding (ALIGN) [316], based on similar mechanisms, can achieve
remarkable performance through training based on a noisier dataset. In [659]
the authors propose a frozen language model for multimodal few-shot learn-
ing: a vision encoder is trained to represent each image as a sequence of
continuous embeddings so that the frozen language model prompted with
this embedding can generate the appropriate caption. In [186] the authors
present Bridging-Vision-and-Language (BriVL), which performs multimodal
tasks by learning from weak semantic correlation data. Finally, there is a
trend toward even more complex multimodal models. For example, Video-
Audio-Text Transformer (VATT) [7] learns to extract multimodal representa-
tions from video, audio, and text; instead, Gato [527] serializes all data (e.g.,
text, images, games, other RL-related tasks) into a flat sequence of tokens
that is then embedded and passed to a standard large-scale language model.
Similarly, Gemini [209] achieves state-of-the-art performance in multimodal
tasks by working on interleaved sequences of text, image, audio, and video
as inputs; [210] extends it to a mixture of experts setting. Finally, NExT-
GPT [702] handles any combination of four modalities (text, audio, image,
and video) by connecting a language model with multimodal adaptors and
diffusion decoders.

Applications. Transformer-based large language models can be used for
almost any NLP task, including text summarization, generation, and interac-
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tion. In order to do so, the model can be used as frozen (i.e., to provide latent
representations in input to other models); can be fine-tuned for the specific
objective; can be exploited with zero-shot, one-shot or few-shot setting by
prompting the task or few demonstrations in input. Transfer learning can in-
stead be used to perform image classification by means of Transformer-based
models trained on images. Other domain-specific techniques can be used as
well: for instance, PlotMachines [525] learns to write narrative paragraphs
not by receiving prompts, but by receiving plot outlines and representations
of previous paragraphs. From a generative learning perspective, Transform-
ers have shown impressive performance in producing long sequences of texts
and music or speech [678], as well as in generating images based on input text.
Their application has not been limited to these data sources. For instance,
AlphaFold uses a Transformer architecture to predict protein structure [325];
RecipeGPT employs it to generate recipes [371]; and GitHub Copilot relies
on it to support code development [107].

Critical Discussion. Considering that Transformers can be seen as an evo-
lution of sequence prediction models, the observations made for that class
of models (see Section 3.1.3) still hold. However, the inherent characteris-
tics of their architecture allow for larger models and higher-quality outputs,
leading to the capture of a variety of text dependencies across data sources.
More in general, a broader conceptual space is induced. This means that
domain-specific tasks might be addressed through solutions outside or at
the boundary of the sub-space linked with that domain. Moreover, possibly
also through careful use of inputs (see Section 3.1.6), their adoption might
lead to transformational creativity. As far as Boden’s criteria are concerned,
there is no guarantee that the output of the Transformer architecture would
be valuable, novel, or surprising, even though current state-of-the-art Large
Language Models (LLMs) achieve almost human-like performance in cre-
ative tests [625, 734]. Finally, LLMs have proven capable of evaluating their
own outputs, making them potentially appreciative: the so-called LLM-as-
a-Judge approach [111, 736] returns evaluations that align with those from
human experts. However, these evaluations are still naive: for example, they
suffer from positional bias, i.e., altering the order of candidate responses can
affect their quality ranking [681].

3.1.5 Diffusion Models

Examples of Models. Diffusion models have been primarily used for im-
age generation. In order to produce higher-quality images and allow text-
to-image generation, a variety of effective conditioning methods have been
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proposed. A possibility is to use classifier guidance [157]: the diffusion score
(i.e., the added noise) includes the gradient of the log-likelihood of an auxil-
iary classifier model. An alternative is classifier-free guidance [275]: to avoid
learning an additional model, a single neural network is used to parameterize
two diffusion models, one conditional and one unconditional; the two models
are then jointly trained by randomly setting the class for the unconditional
model. Finally, the sampling uses a linear combination of conditional and
unconditional score estimates. Guided Language to Image Diffusion for Gen-
eration and Editing (GLIDE) [468] demonstrates how classifier-free guidance
can be effectively used to generate text-conditional images. In addition, it
shows how diffusion models can be used for image editing by fine-tuning
to reconstruct masked regions. Performance improvement can be obtained
through a cascade of multiple diffusion models performing conditioning aug-
mentation [277]. Notably, the diffusion model can operate on latent vectors
instead of real images. Stable Diffusion [542] employs a diffusion model in
the latent space of a pre-trained autoencoder. Similarly, DALL-E 2 [522] gen-
erates images by conditioning with image representations. At first, it learns
a prior diffusion model to generate possible CLIP image embeddings from a
given text caption, i.e., conditioned by its CLIP text embedding. Then, a
diffusion decoder produces images conditioned by the image embedding. The
generation quality can be further improved by means of generated captions
for the images in the training set [46]. Imagen [552] uses instead a cascaded
diffusion decoder, together with a frozen language model as a text encoder
to increase the quality of output.

Although the approach is particularly suitable for images, applications
to other data sources have been developed as well. DiffWave [349] and
WaveGrad [108] use diffusion models to generate audio. They overcome
the continuous-discrete dichotomy by working on the waveform. Another
possibility is to use an autoencoder like MusicVAE [539] to transform the
sequence into a set of continuous latent vectors, on which training a dif-
fusion model [448]. Resembling image generators, Contrastive Language-
Audio Pretraining (CLAP) embeddings [174] can be used to generate audio
by conditioning on text descriptions [400]. Diffusion-LM [390] employs dif-
fusion models to write text by denoising a sequence of Gaussian vectors into
continuous word vectors (then converted into discrete words by a rounding
step); DiffuSeq [224] performs sequence-to-sequence generation tasks by em-
bedding source and target sequences in the same embedding space through
a Transformer architecture. Diffusion models have been used for 3D genera-
tion as well [469]. Finally, diffusion models for video have also been proposed,
based on gradient-based conditioning [278], and on processing latent space-
time patches. In particular, with respect to the latter, Sora [72] first turns
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videos into sequences of patches and then uses a diffusion Transformer to
predict the original patches from random noise (and conditioning inputs like
text prompts), improving sample quality and flexibility.

Applications. Despite their recent introduction, diffusion models have been
used to generate audio, music, and video, as well as to create and edit im-
ages conditioned on input text, e.g., with in-painting [410] or subject-driven
generation [544]; we refer to [715] for a comprehensive survey of this area.
Indeed, they lead to higher-quality outputs than the previous state-of-the-
art models. In particular, DALL-E 2 and Stable Diffusion have been able to
produce images from textual instructions with superior fidelity and variety.

Critical Discussion. Diffusion models learn a mapping between real im-
ages and a Gaussian latent space. Because of this, they are an example of
exploratory creativity: they randomly sample from that space, and then they
possibly navigate it in the direction imposed by conditional inputs. There
is no guarantee that the results will be valuable, novel, or surprising, even
though these approaches are able to generate outputs characterized by a high
variety. As already argued, novelty and surprise may only arise due to the
conditioning input (for example, a human describing a novel combination of
elements), i.e., the model is not imaginative on its own.

3.1.6 Input-Based Methods

Examples of Models. As detailed in Section 2.1.6, input-based methods
can be divided into two approaches. The first one consists of carefully mod-
ifying the input of a generative model until the output matches the desired
properties. The main example is VQGAN-CLIP [139]. Given a text descrip-
tion, VQGAN produces a candidate image from a random latent vector; the
vector is then optimized by minimizing the distance between the embeddings
of the description and the candidate image. Both embeddings are computed
using CLIP [514]. Variants can be implemented as in Wav2CLIP [698], where
an audio encoder is learned to match the CLIP encoders so that VQGAN-
CLIP can be used from raw audio; or as in music2video [310], where videos
are generated from audios a frame after the other by both minimizing the
distance between subsequent frames, and the distance between image and
music segment embedded by Wav2CLIP. In addition to the random latent
vector, the text or audio description can be optimized as well. This can be
performed by the users through many iterations of careful adjustments or
an automated procedure. The latter is commonly known as prompt tun-
ing. Prompt tuning is about producing prompts via backpropagation; the
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optimized prompts can condition frozen language models to perform spe-
cific tasks without fine-tuning them [381]. An additional model can also be
trained to output the desired prompt [382]. Finally, image generators such as
VQGAN can also be exploited in other ways, i.e., with a binary-tournament
genetic algorithm [190] or more complex evolution strategies [647]. Another
possibility is to optimize the input so that the generated output maximizes
a target neuron of an image classifier [465]. This helps generate what that
neuron has learned. The desired latent vector can also be produced by an
additional model [466].

The second approach is to optimize the inputs to transform them into
the desired outputs. DeepDream [451] generates “hallucinated” images by
modifying the input to maximize the activation of a certain layer from a
pre-trained classifier. Artistic style transfer is based on the same idea. Given
an input image and a target image, the former is modified using both style
and content losses thanks to a pre-trained classifier. The content loss is
minimized if the current and the original input images generate the same
outputs from the hidden layers. The style loss is minimized if the current
and target images have the same correlation pattern between feature maps in
the hidden layers [200]. Control over results can be improved by considering
additional losses about color, space, and scale [201].

Applications. Input-based methods can be used with any generative model
to produce the desired output. With language models, they can exploit their
generality in several specific tasks without fine-tuning them. For instance,
prompt tuning can be used by writers for co-creation [100] or to force LLMs to
brainstorm [634]. With image generators, they can obtain drawings adherent
to given descriptions, or high-quality but yet peculiar paintings like colorist
[190], abstract [647], or alien [611] artworks. We believe applications to other
domains are yet to come. Both types of input-based methods can be used not
only to produce desired outputs or transfer styles; they can also be adopted
to better analyze what is inside the network [465, 475].

Critical Discussion. Since input-based methods are applied to pre-trained
generative models, the space of solutions in which they work is the one in-
duced by those models, i.e., the common spaces we can derive from real
data. Nonetheless, some techniques may be able to lead to productions that
are outside that space or at its boundaries, i.e., to cause transformational
creativity. This might happen if the model is general, and the output for a
specific task is not only sampled from the sub-space of solutions for that task
(e.g., with prompt tuning over a language model). Input-based methods are
also valuable: the optimization itself is typically guided by some sort of qual-
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itative loss. On the other hand, they are not explicitly novel or surprising
(although the results might seem so). However, nothing prevents optimizing
the loss in such directions (see Section 3.1.7).

3.1.7 Practical Assessment of Creativity-Oriented
Methods

We conclude this analysis of generative models with a discussion of how they
might increase their creativity according to Boden’s definition. We have
discussed how the presence of a recognition model (e.g., a discriminative
model or a reward model) helps ensure the value of the products. In the
same way, novelty and surprise can be fostered by the integration of other
components. A straightforward way to obtain novel and surprising outputs
is to train a generative model by means of novelty and surprise objectives.
This is the core idea behind Creative Adversarial Network (CAN) [173, 563].
In addition to the classic discriminative signal, i.e., a value loss, the generator
is also trained to optimize a novelty loss. This is defined as the deviation
from style norms, i.e., the error related to the prediction of the style of the
generated image. The sum of the two training signals helps the model learn
to produce artworks that are different (in style) from the training data. The
same approach has been used to develop a creative StyleGAN, i.e., StyleCAN
[315]. Another, very simple way to augment the training signal of a generative
model with creativity-oriented objectives is through RL-based methods (see
Section 3.3). The choice of the reward structure is the fundamental element
in the design of effective generative reinforcement learning systems. Rewards
should teach the model to generate an output with a high level of novelty and
surprise. An example is ORGAN [243|, where appropriate reward functions
can be used. For instance, statistical measures (e.g., Chi-squared) or metrics
of distance between distributions (e.g., KL divergence) might be used to
ground ideas of novelty and surprise.

Another possibility is the development of an input-based method where
the input is optimized to obtain a product that is valuable, novel, and surpris-
ing. This may be achieved either by forcing a further exploration of the latent
space (e.g., using evolutionary search [188]), or by defining appropriate loss
functions to perform gradient descent over the input. All these methodologies
are also called active divergence [45] since they aim to generate in ways that
do not simply reproduce training data. A survey on active divergence can be
found in [69]. A different output can also be obtained by carefully altering
the probability distribution of the model, e.g., by scaling its probabilities
with learned functions to maximize target properties [142, 612, 714].
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An alternative approach is followed by the Composer-Audience archi-
tecture [80]. Two models are considered: the Audience, a simple sequence
prediction model trained on a given dataset; and the Composer, another
sequence prediction model trained on a different dataset. In addition, the
Composer also receives the next-token expectations from the Audience, and
it learns when to follow its guidance and when to diverge from expectations,
i.e., when to be surprising. For instance, it can learn to produce jokes by
considering non-humorous texts to train the Audience and humorous texts
to train the Composer. Even though this approach is useful for learning how
to generate valuable and surprising output, it is only applicable when paired
datasets are available.

Generative family Type of creativity Boden’s criteria Creative suggestions

~ Value Creativity-oriented

VAE Exploratory ~ Noveljuy input-based methods
~ Surprise
v’ Value CAN;
GAN Exploratory ~ Novelty Creativity-oriented
~ Surprise input-based methods
Squeqce Combinatorial, ~ Value Comp(')sgr—Au.dlence;
prediction Explorator ~ Novelty Creativity-oriented
model p y X Surprise RL-based methods
Transformer- Combinatorial, ~ Value Creativity-oriented
based Exploratory, ~ Novelty prompt tuning or
models Transformational X Surprise RL-based methods
. ~ Val . .
Diffusion Exolorator N \N/?)\Zelt Creativity-oriented
models P Y ol input-based methods
~ Surprise
Input-based Exploratory, i ;;21:;1 Evolutionary search;
methods Transformational o Novelty-based optimization
~ Surprise

Table 3.1: Summary of all the methods explained so far, considering their type
of creativity as discussed in the corresponding subsections; the possible presence
of Boden’s criteria (v if induced by the training process; ~ if not considered; x if
excluded); and some practical suggestions to achieve a higher degree of creativity.

As far as the type of creativity is concerned, there can be ways to achieve
a better exploration or even transformation of the space of solutions. For
example, since CAN novelty loss is used during training, it learns to diverge
from the distribution of real data. The same is true for RL-based methods
with novelty and surprise rewards (especially if the training happens from
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scratch). Finally, increased exploration and transformation may be achieved
using RIL-based methods driven by curiosity [82]: an agent can learn to be
creative and discover new patterns thanks to intrinsic rewards to measure
novelty, interestingness, and surprise (see Section 3.2.2). This can be done
by training a predictive model of the growing data history and using its
learning progress as the reward. In this way, the agent is motivated to ex-
plore in order to discover things that the predictor does not already know.
If an external qualitative reward is considered as well, the agent should in
theory learn to do things that are new, but still valuable [565]. The same
idea can also be applied to other techniques like evolutionary strategies [416].
Deep Learning Novelty Explorer (DeLeNoX) [392] uses a denoising autoen-
coder to learn low-dimensional representations of the last generated artifacts.
Then, a population of candidate artifacts (in terms of their representation)
is evolved through a feasible-infeasible novelty search [393] to maximize the
distances between them, i.e., to increase their novelty, while still consider-
ing qualitative constraints. Other evolutionary strategies might be embraced
as well to search the space of artifacts for novel [376] and surprising [232]
results. Instead of relying on manually crafted metrics, Quality Diversity
through Human Feedback (QDHF) [159] uses human feedback for comput-
ing quality and distance in learned latent projection for computing diversity.
Quality-Diversity through Al Feedback (QDAIF) [67] makes the model more
independent in searching and innovating by completely relying on its own
feedback for both quality and diversity.

Table 3.1 summarizes all the generative approaches discussed in this sec-
tion, highlighting their characteristics from a machine creativity perspective.

3.2 Reinforcement Learning

Several reinforcement learning sub-fields and research directions have been
explored in recent years. In the following, we will cover the ones crucial for
our future discussion.

3.2.1 Imagination-Based Reinforcement Learning

Model-based RL requires learning a model of the environment dynamics, i.e.,
a transition model to predict the next state given the current state and action,
and a reward model to predict the reward associated with that transition. By
using them, the action selection can be based on the next states and rewards
expectations, e.g., by building a Monte Carlo Tree Search [134] to find the
optimal policy [600]. Indeed, model-based RL is commonly used together
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with planning [121, 267, 569] since Dyna [638]. However, another possibility
is to use such a dynamics model to construct imaginary trajectories in the
latent space induced by an encoder model [684]. Such trajectories can be used
to guide model-free agent decisions as in Imagination-Augmented Agents
(I2A) [509, 79], or directly train the agent reducing the need for interaction
with the real environment.

The latter approach is the most popular. A few main examples can be
identified in the literature. The first one is World Models [252]. It makes
use of a VAE [339] to encode real observations into a latent space, and of
an RNN to learn transitions between latent space and to predict associated
rewards based on the current state-action pair and belief (i.e., the RNN
state). This RNN is trained to minimize the negative log-likelihood of the
next state and the mean squared error of reward. Then, an actor is obtained
through a policy gradient method only by acting in the defined dynamics
model, i.e., returning actions to the world model, from which receiving the
next (latent) state and related rewards. In [300], the world model is also
trained on the RL agent objective. The environment’s dynamics can also
be modeled differently. In [456], instead of predicting the entire new state,
it only learns the difference between consecutive states. Then, imagined
trajectories can be generated from a starting state by summing the subse-
quent, predicted differences. These generated trajectories are finally used
to pre-train an agent (then fine-tuned in a model-free fashion). Stochastic
Latent Actor-Critic (SLAC) [368] learns a compact latent representation of
the environment through three models: a recognition model (i.e., a poste-
rior model returning the current latent state given the current observation,
previous state, and previous action); a generative model (reconstructing the
current observation given its latent state); and a dynamics model (i.e., a prior
model to predict the encoded state given the previous state-action pair). The
entire world model is trained to minimize the reconstruction error and the
KL divergence between posterior and prior. After that, an actor-critic al-
gorithm is directly trained in such a latent space. Finally, Dreamer [259]
combines the recurrent nature of [252] with the prior-posterior dichotomy of
[368]. The entire dynamics (presented in Section 2.2.2) is characterized by the
use of a Recurrent State-Space Model (RSSM), as proposed in PlaNet [258]
for planning in latent space, to model the temporary dependencies between
states. As in [368], the entire model is trained through the reconstruction
errors and the KL divergence between prior and posterior. The resulting
dynamics model is used to construct imagined trajectories on which training
the agent, which happens in parallel with the dynamics training. Dream-
erV2 [260] and DreamerV3 [261] extend it to discrete latent spaces. Notably,
Transformers can be used in place of recurrent neural networks [104]. Other
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variants have been proposed as well: Plan2Explore [577] also uses an intrin-
sic reward to guide imagined exploration and to collect episodes on which
training the dynamics model. Such intrinsic reward is computed as the vari-
ance of predictions of next-state features made by an ensemble of models.
The Brldging Reality and Dream (BIRD) algorithm [739] uses latent over-
shooting (again introduced in PlaNet [258]) to train the dynamics-agent pair
together. Finally, Imagining with Derived Memory (IDM) [455] proposes to
use an imagined trajectory built not only starting from real states but also
from a derived memory of states whose features are randomly modified.

3.2.2 Curiosity-Driven Reinforcement Learning

In Section 1.2, we briefly discussed the theoretical foundations of intrinsic
motivation and curiosity. In Section 3.1.7, we saw how intrinsic motiva-
tion can be conducive to creativity-oriented generative methods. In addi-
tion, curiosity-driven RL has some practical benefits, such as solving the
exploration-exploitation trade-off and dealing with environments with sparse
non-zero rewards.

Due to these factors, intrinsic rewards have been widely explored in the
RL community. From a practical point of view, it is possible to identify a few
common approaches: surprisal, Bayesian surprise, novelty, and uncertainty.
Surprisal [658] is the difference between an expected event and the actual
one. In the RL framework, it is commonly defined as the difference between
the real next state and the expected one, as computed by a transition model
trained to predict the next state given the current state-action pair. This
difference can be a simple mean squared error for deterministic state predic-
tion [493, 82, 529], or a KL divergence for probabilistic state prediction (i.e.,
with a model returning the mean and the variance of the probability distri-
bution) [3]. Conversely, Bayesian surprise [306] is the difference between the
posterior distribution (i.e., after experiencing the new state) and the prior
distribution. It can be computed as the KL divergence between predictions
before and after being trained on the new transition [3, 196, 710], or directly
as the transition model’s gradient score, as it effectively measures the degree
of variation caused by the new state [290, 255]. Another possibility is to
consider two different models for prior and posterior, and then compute the
KL divergence between their predictions (which incidentally is the loss score
used to perform model updates) [430]. Novelty has been instead defined in
different ways: by means of an information theory-based approach, i.e., by
measuring the KL divergence between an encoder and a fixed, prior distri-
bution [338]; or with reachability, by counting the number of steps necessary
to reach the current state from the closest state in memory [562]. Finally,
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uncertainty can be seen as the disagreement between different internal tran-
sition models [494, 577], or as the difficulty of recognizing something as real
(i.e., the inverse of a GAN discriminative signal when judging a single state
[286] or an entire trajectory [78]).

3.2.3 Generalization in Reinforcement Learning

One of the main problems of reinforcement learning is that of generalization.
The most used benchmarks (e.g., Atari [36]) use the very same environment
for both training and testing. This can lead to strong evaluation overfitting,
and it is in contrast with the open-ended and constant changing of reality.
Generalization in deep reinforcement learning then refers to producing RL
algorithms whose policies can correctly generalize to unseen situations at
inference time (a deep survey can be found in [345]). Among the different
benchmarks proposed to work with generalization, ProcGen [126] is proba-
bly the most successful. It is a suite of 16 procedurally generated game-like
environments. To benchmark generalization capabilities, only a small subset
of the distribution of levels is used to train the agent; the full distribution
is then used to test it on unseen levels. To prevent overfitting and approach
generalization, different techniques have been proposed. The first strategy is
to adopt some of the techniques used in supervised learning to avoid overfit-
ting, e.g., dropout, batch normalization, and specific convolutional architec-
tures [125, 301]. Another strategy is to improve the agent’s architecture, the
training process, or even the sampling technique for experience replay [318].
For instance, Raileanu and Fergus [517] propose to decouple the policy and
value functions, and also train the value function with an auxiliary loss that
encourages the model to be invariant to task-irrelevant properties of the en-
vironment. Also, post-training distillation may help improve generalization
to new data [412], as well as learning an embedding in which states are close
when the optimal policies in these states are similar [4]. Finally, a third
strategy is to use data augmentation to increase the size and variability of
training data [125, 362, 372, 718]. The kind of augmentation technique can
even be learned and not selected a priori [518].

3.3 Reinforcement Learning for Generative
Al

In this section, we will discuss the state of the art in RL for generative learn-
ing considering three classes of solutions, which are summarized in Table 3.2:
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RL as an alternative solution for output generation to approximate outputs
from a given domain of interest with high fidelity; RL as a way for generating
output while maximizing an objective function which captures (additional)
quantifiable properties or indicators at the same time; and, finally, RL as
a way of embedding additional desired characteristics, such as value align-
ment, which cannot easily be captured through an objective function into

the generative process.
Goal Reward Advantages Limitations
- Models domains
- GAN’s discrimina- defined by non-
tive signal; differentiable objec- - Learning without
- Log-likelihood of tives; supervision is hard;
Mere . ..
eneration real or predicted tar- - Adapts GAN to - Pre-training can
& gets; sequential tasks; prevent an appropri-
- Constraint satis- - Can implement ate exploration.
faction. RL strategies, e.g.,
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- Test-time metrics; Satisf 6
- Countable desired - 218 s quantifi-
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) . . .
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maximization measures; . .
- Quantifiable prop- sirable sub-domains; fine;
erties: - Reduces the gap - Goodhart’s law.
) « .
~ Output of ML between .tralnmg
algorithms and evaluation.
- Satisfies  non-
- Output of a model quantifiable require- - Getting user pref-
trained to repro- ments (for example, erences is expensive;
I . duce human or the alignment prob- - Users might misbe-
mg)rong Al feedback about lem); have, disagree, or be
not casily non-quantifiable - Requires pref- biased;
quantifiable . .
h teristi properties (e.g., erences between - Reward modeling
characteristics helpfulness, ap- candidates instead is difficult;
propriateness, of defining a math- - Prone to jailbreaks
creativity). ematical measure of out of alignment.

the desired property.

Table 3.2: Summary of the three purposes for using RL with generative Al,
considering the used rewards, their advantages, and their limitations.
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3.3.1 Reinforcement Learning for Mere Generation

Overview. The simplest approach is RL for mere generation, i.e., to train a
generative model to approximate outputs from a given domain of interest as
best as possible. Essentially, the objective function replicates the behavior
of the self-supervised learning loss used in traditional generative learning
approaches, such as the adversarial one.

The first example we consider is SeqGAN [721]. In their original formula-
tion, GANs cannot be used for sequential tasks (see Section 3.1.2). SeqGAN
circumvents this problem by using RL, which allows us to learn from rewards
received further in the future. Indeed, SeqGAN exploits the discriminative
signal as the actual reward received at the end of the episode, i.e., when the
sequence is completed. The approach is based on REINFORCE [692]. A
similar method is also used in MaskGAN [184], where the generator learns
with in-filling (i.e., by masking out a certain amount of words and then using
the generator to predict them) through actor-critic learning [637]. Notably,
hierarchical RL can also be used: for example, LeakGAN [246] relies on a
generator composed of a manager, which receives leaked information from
the discriminator, and a worker, which relies on a goal vector as a condi-
tional input from the manager. Since SeqGAN might produce very sparse
rewards, alternative strategies have been proposed. The discriminator can
be replaced with a reward model learned with inverse reinforcement learning
on state-action pairs so that the reward is available at each timestep (to-
gether with an entropy regularization term) [590]. A more complex state
composed of a context embedding can also be used [388]. Instead, [387] is
based on a variation of SeqGAN: it uses Monte Carlo tree methods to get
rewards at each timestep. In addition, the authors also suggest alternating
RL with a “teacher”, i.e., the classic supervised training. This helps deal
with tasks like text generation where the action space (i.e., the set of pos-
sible words or sub-words) is too large to be consistently explored using RL
alone. Another solution to this problem is Natural Language Policy Opti-
mization (NLPO) [520], which is a parameterized-masked extension of PPO
[573] that restricts the action space via top-p sampling. The authors of [426]
use top-p sampling as well; however, they restrict the action space through a
pre-trained task-agnostic model before applying policy gradient with PPO.
Similarly, ColdGAN [575] forces the sampling of a SeqGAN-like generator
to be close to the distribution modes by selecting actions with top-p sam-
pling and low temperature [285] and training the generator via importance
sampling [507]. Finally, the top-p sampling strategy can be replaced by a co-
operative one based on a Monte Carlo Tree Search structure evaluated by the
discriminator [358]; again, the generator is trained via importance sampling.
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Another reason to use RL is to take advantage of its inherent proper-
ties. For example, Generation by Off-policy Learning from Demonstrations
(GOLD) [485] is an algorithm that substitutes self-supervised learning with
off-policy RL and importance sampling. It uses real demonstrations, which
are stored in a replay buffer; the reward corresponds to either the sum or the
product of the action probabilities over the sampled trajectories, i.e., of every
single real token according to the model. While it can be considered close to
a self-supervised approach, off-policy RL with importance sampling allows
up-weighting actions with high (cumulative) returns and actions preferred
by the current policy, encouraging to focus on in-distribution examples.

RL is also an effective solution for learning in domains where a differ-
entiable objective is difficult or impossible to define. RL-Duet [319] is an
algorithm for online accompaniment generation. Learning how to produce
musical notes according to a given context is a complex task: RL-Duet first
learns a reward model that considers both inter-part (i.e., with counter-
part) and intra-part (i.e., on its own) harmonization. Such a model is made
of an ensemble of networks trained to predict different portions of music
sheets (with or without the human counterpart, and with or without ma-
chine context). Then, the generative system is trained to maximize this
reward through an actor-critic architecture with GAE [572]. CodeRL [365]
performs code generation through a pre-trained model and RL. In particu-
lar, the model is fine-tuned with policy gradient to maximize the probability
of passing unit tests: it receives a (sparse) reward quantifying if (and how)
the generated code has passed the test for the assigned task. In addition, a
critic learns a (dense) signal to predict the compiler output. The model is
then trained to maximize both signals considering a baseline obtained with a
greedy decoding strategy. To obtain a denser and more informative reward,
PPOCoder [595] also considers three additional signals: a syntactic matching
score based on the Abstract Syntax Tree of the generated code; a semantic
matching score based on the data-flow graph; and a KL penalty to prevent
the model from deviating considerably from its pre-trained version. The sum
of these four signals is then optimized via PPO.

Another interesting application area is painting. The author of [708] sug-
gests modeling stroke painting as a Markov Decision Process, where the state
is the canvas, and the actions are the brushstrokes performed by the agent.
Rewards calculated considering the location and inclination of the strokes
are then used to train the agent. For instance, Doodle-SDQ [738] fine-tunes
a pre-trained sketcher with Double DQN [670] and a reward that is calcu-
lated by evaluating how well a sketch reproduces a target image at pixel,
movement, and color levels. In [298], a discriminator is trained to recognize
real canvas-target image pairs to derive a corresponding reward. Instead, in
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[602] a painting policy operates at two different levels: foreground and back-
ground. Each of them uses a discriminator; in addition, the authors adopt a
focus reward measuring the degree of indistinguishability of two object fea-
tures. On the other hand, Intelli-Paint [603] is based on four different types
of rewards, which are used to learn a painting policy with DDPG [395] based
on a discriminator signal on canvas-image pairs, two penalties for the color
and position of consecutive strokes, and the same semantic guidance from
[602]. Finally, RL has also been used for collage artwork. The authors of
[369] propose an RL-based method to compose different elements (such as
newspaper or texture cuts) to obtain an output that resembles a target pic-
ture. The state is composed of the canvas, the target image, and a randomly
(or value-based) sampled material; the action determines which region of the
material to cut and where to paste it on the current canvas; and the reward
is the amount of similarity change between consecutive timesteps (where a
WGAN-GP discriminator [244] trained in parallel to discriminate between
target-target and target-canvas pairs computes the similarity between the
canvas and the target image). A model-based soft actor-critic [253] is then
used to optimize the reward minus a penalty for each timestep to teach the
agent to complete the tasks with the minimum number of actions.

Discussion. RL can represent an alternative method for deriving generative
models, especially if the target loss is non-differentiable. It allows for the
adaptation of known generative strategies, e.g., GANs, to tasks for which
traditional techniques are not suitable, e.g., in text generation. In addition, it
can be applied to domains in which feasibility and correctness (e.g., running
code as above) are essential dimensions to consider. In other words, RL
can train a generative model to produce observations that appear to have
been drawn from the domain of interest even when such a domain cannot
be modeled through generative functions and corresponding differentiable
losses. RL can also be used to derive more complex generative strategies (e.g.,
through hierarchical RL) and to reduce the model dependence on training
data, which might have an impact on copyright issues (see Section 7.3).

It is possible to identify some limitations of the proposed solution. Learn-
ing without supervision is hard, especially when the reward is sparse. This
is likely to happen for sequence generation, such as (long) text or music,
where the reward is available only at the last timestep. In addition to the
aforementioned techniques for obtaining a denser reward, a potential solution
might consist of considering an intrinsic reward [19] as an additional learning
signal, to encourage exploration as well. Moreover, the action space can be
very large (potentially orders of magnitude larger than those of standard RL
problems [12]), especially for text generation. Ensuring a sufficient explo-
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ration of all possible actions while still exploiting the most promising ones to
collect higher rewards is one of the key problems in RL. Starting with some
prior knowledge about the possible best actions for different situations might
be necessary for fast convergence. For this reason, pre-trained generative
models are selected for this task. This can cause the agent to initially focus
on highly probable tokens, increasing their associated probabilities and, be-
cause of that, failing to explore different solutions (i.e., by only moving the
probability mass of the already most probable tokens) [117]. These problems
can be avoided through variance reduction techniques (e.g., incorporating
baselines and critics) and exploration strategies [337].

3.3.2 Reinforcement Learning for Objective
Maximization

Overview. Since RL allows us to use any non-differentiable function for
modeling the rewards, it could be the case that simply replicating the behav-
ior of a self-supervised learning loss is not the optimal solution. For exam-
ple, the authors of [524] point out the mismatch between how deep learning
models are trained (i.e., on differentiable losses) and how they are commonly
evaluated (i.e., on non-differentiable metrics): an emerging line of research
is focusing on the use of non-differentiable metrics as reward functions for
generative learning capturing a variety of requirements and constraints.

RL for quantity maximization has been mainly adopted in text genera-
tion, especially for dialogue and translation. In addition to exposure bias
mitigation, it allows for replacing classic likelihood-based losses with metrics
used at inference time. A pioneering work is [524], where RL is adopted to
directly maximize BLEU [486] and ROUGE [397] scores. To deal with the
size of the action space, the authors introduce MIXER, a variant of REIN-
FORCE algorithm that uses incremental learning (i.e., an algorithm based
on an optimal pre-trained model according to ground truth sequences) and
combines reward maximization with classic cross-entropy loss by means of
an annealing schedule. In this way, the model starts with preexisting knowl-
edge, which is preserved through the classic loss, while aiming at exploring
alternative but still probable solutions, which should increase the score at
test time. A similar approach is also used by Google’s neural machine trans-
lation system [705]. BLEU score is used as the reward while fine-tuning
a pre-trained neural translator with a mixed maximum likelihood and ex-
pected reward objective. In [23], an actor-critic algorithm is considered for
machine translation, with the critic conditioned on the target text, and the
pre-trained actor fine-tuned with BLEU as the reward. The authors of [495]
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suggest learning to perform text summarization by using self-critical policy
training [530], where the reward associated with the action that would have
been chosen at inference time is used as a baseline. ROUGE score is the re-
ward and is linearly mixed with teacher forcing [693], i.e., classic supervised
learning. Scores alternative to ROUGE have been proposed as well, e.g.,
ROUGESal and Entail both described in [491]. The former up-weights the
salient sentences or words detected via a key-phrase classifier. The latter re-
wards logically-entailed summaries through an entailment classifier. They are
then used alternatively in subsequent mini-batches to train a Seq2Seq model
[636] by means of REINFORCE. Finally, BLEU score can be employed to
train a dialogue system on top of collected human interactions with offline
RL [737]. An additional dialogue-level reward function (measuring the num-
ber of proposed API calls) is also used. Recently, the RLALM library [520]
started offering many of these metrics as rewards, thus facilitating their use
for LM training or fine-tuning. Different families of solutions are consid-
ered, i.e., n-grams overlapping such as ROUGE, BLEU, SacreBLEU [505] or
METEOR [364]; model-based methods such as BertScore [727] or BLEURT
[578]; task-specific metrics; and perplexity. Notably, RLALM also allows bal-
ancing such metrics with a KL-divergence minimization with respect to a
pre-trained model.

Test-time metrics are not the only quantities that can be maximized
through RL. For example, the count of 4-gram repetitions in the generated
text can be considered to reduce the likelihood of undesirable results [355].
The combination of these techniques and classic self-supervised learning helps
learn both how to write and how not to write. In [386], a Seq2Seq model
for dialogue is trained by rewarding conversations that are informative (i.e.,
which avoid repetitions), interactive (i.e., which reduce the probability of
answers like “I don’t have any idea” that do not encourage further interac-
tions), and coherent (i.e., which are characterized by high mutual information
with respect to previous parts of the conversation). Sentence-level cohesion
(i.e, compatibility of each pair of consecutive sentences) and paragraph-level
coherence (i.e., compatibility among all sentences in a paragraph) can be
achieved by maximizing the cosine similarity between the encoded version of
the relative text, with the encoders trained so that the entire discriminative
models can distinguish between real and generated pairs [115]. A distance-
based reward can instead guide a plot generator toward reaching desired
goals. The authors of [642] train an agent working at the event level (i.e., a
tuple with the encoding of a verb, a subject, an object, and a fourth possible
noun) with REINFORCE to minimize the distance between the generated
verb and the goal verb. Other domain-specific rewards are used by [719],
where two distinct generative models produce poetry by maximizing fluency
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(i.e., MLE on a fixed language model), coherence (i.e., mutual information),
meaningfulness (i.e., TF-IDF), and overall quality from a learned classifier.
In addition, the two models also learn from each other: the worst performing
can be trained on the output produced by the other, or its distribution can
be modified to better approximate the other’s.

Another popular technique is hierarchical RL: it allows the optimization
of quantifiable objectives even when they work at a different level of ab-
straction with respect to the generative model. For example, the authors of
[498] design a dialogue system able to perform composite tasks, i.e., sets of
subtasks that need to be performed collectively. A high-level policy, trained
to maximize an extrinsic reward directly provided by the user after each in-
teraction, selects the sub-tasks. Then, “primitive” actions to complete the
given sub-task are chosen according to a lower-level policy. A global state
tracker on cross-subtask constraints provides the RL model with an intrinsic
reward measuring how likely a particular subtask will be completed. Finally,
a fixed LLM can be perturbed through a learned state-action and a state-
value function, rather than directly fine-tuning the model itself [612]. This
allows us to preserve the capabilities of the given pre-trained language model,
while still maximizing a specific utility function.

While text generation is one of the areas that have attracted most of the
attention of researchers and practitioners in the past years, RL with quantity
maximization has been applied to other sequential tasks as well. An impor-
tant line of research [311, 313, 312] consists of fine-tuning a pre-trained se-
quence predictor with imposed reward functions, while preserving the learned
properties from data. For instance, a pre-trained note-based RNN can rep-
resent the starting point for the Q-network in DQN. A reward given by the
probability of the chosen token according to the original model (or based
on the inverse of the KL divergence) and one based on music theory rules
(e.g., that all notes must belong to the same key) are used to fine-tune the
model. Another possibility is to extend SeqGAN to domain-specific reward
maximization, as in Objective-Reinforced GAN (ORGAN) [243]. ORGAN
linearly combines the discriminative signal with desired objectives, also di-
viding the reward by the number of repetitions made, to increase diversity in
the result. Music generation can then be performed by considering tonality
and ratio of steps as rewards; solubility, synthesizability, and drug-likenesses
are instead adopted to perform molecule generation as a sequential task,
i.e., by considering a string-based representation of molecules (by means of
SMILES language [688]). While the original work considered RNN-based
models, Transformer architectures can be used as well [384].

Molecular generation is indeed one of the most explored tasks at the
intersection between RL and generative AI. While MolGAN [145] adapts
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ORGAN to graph-based generative models [391] to directly produce molecu-
lar structures, the majority of research focuses on simplified molecular-input
line-entry system (SMILES) textual notation [688] to leverage the recent
advancements in text generation. Reinforcement Learning for Structural
Evolution (ReLeaSe) [504] fine-tunes a pre-trained generator to maximize
physical, biological, or chemical properties (learned by a reward model). In
[476] a pre-trained generator is fine-tuned with REINFORCE to maximize a
linear combination of a prior likelihood (to avoid catastrophic forgetting) and
a user-defined scoring function (e.g., to match a provided query structure or
to have a predicted biological activity). REINVENT [50] also avoids gener-
ating molecules the model already produced through a memory that keeps
track of the good scaffoldings generated so far. REINVENT is then adapted
for the graph-based deep generative model GRAPHINVENT [435] to directly
obtain molecules that maximize desired properties, e.g., pharmacological ac-
tivity [18]. Instead, the authors of [735] generate kinase inhibitors relying on
a variational autoencoder to reduce molecules to continuous latent vectors.
Then REINFORCE is used to teach the decoder how to maximize three prop-
erties learned through self-organizing maps: activity of compounds against
kinases; closeness to neurons associated with DDR1 inhibitors within the
whole kinase map; and novelty of chemical structures. The average reward
for the produced batch is assumed as a baseline to reduce variance. Notably,
RL is used here for single-step generation (i.e., through a contextual ban-
dit). The authors of [202] propose to generate molecules maximizing their
partition coefficient without any pre-training by working with a simplified
language [352]; its solution space can also be better explored with intrinsic
rewards [646]. Graph Convolutional Policy Network (GCPN) [720] trains
a graph-CNN to optimize domain-specific rewards and an adversarial loss
(from a GAN-like discriminator) through PPO. Other tasks have been inves-
tigated as well. The authors of [467] merge GAN and actor-critic to obtain
a generator capable of producing 3D material microstructures with desired
properties. DDPG can train an agent to design buildings (in terms of shape
and position) to maximize several signals related to the performance and
aesthetics of the generated block, e.g., solar exposure, collision, and number
of buildings [263].

Finally, techniques based on objective maximization can also be effective
for image generation. Denoising Diffusion Policy Optimization (DDPO) [49]
can train or fine-tune a denoising diffusion model to maximize a given reward.
It considers the iterative denoising procedure as a Markov Decision Process
of fixed length. The state contains the conditional context, the timestep, and
the current image; each action represents a denoising step; and the reward
is only available for the termination state when the final, denoised image is
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obtained. DDPO has therefore been used to learn how to generate images
that are more compressed or uncompressed, by minimizing or maximizing
JPEG compression; more aesthetically pleasing, by maximizing LAION score
[570]; or more prompt-aligned, by maximizing the similarity between the
embeddings of prompts and generated image descriptions. Improving the
aesthetics of the image while preserving the text-image alignment has also
been done at the prompt level [264]. A language model that given human
input provides an optimized prompt can be trained with PPO to maximize
both an aesthetic score (from an aesthetic predictor) and a relevance score
(as the CLIP embedding similarity) of the image generated from the given
prompt.

Discussion. Reinforcement learning for objective maximization opens up
several new possibilities: generators can be adapted for particular domains
or specific problems; they can be built for tasks difficult to model through
differentiable functions; and pre-trained models can be fine-tuned according
to given requirements and specifications. Essentially, RL is not used only
for mere generation, since it also allows more specific, goal-oriented genera-
tive modeling: instead of training a generator to produce correct, reasonable
ezamples for the domain of interest, the goal is to derive the best possi-
ble examples according to some specific target functions. Any desired and
quantifiable property can now be set as a reward function, thus in a sense
“teaching” a model how to achieve it. While research has focused on sequen-
tial tasks like text or music generation, other domains might be considered
as well. As shown by [735], tasks not requiring multiple generative steps can
be performed simply by reducing the RL problem to a contextual bandit one.
In this way, RL can be considered as a technique for specific sub-domains, in
a manner similar to neural style transfer [200] or prompt engineering [404].
We can identify possible drawbacks as well. Reinforcement learning has
typically a very high computational cost [98], due to the number of iterations
required to converge. In addition, certain desired properties (e.g., harmless-
ness or appropriateness) can be difficult to quantify, or the related measures
can be expensive to compute, especially at run-time. This can lead to exces-
sive computational time for training. While offline RL might alleviate this
problem, it would require a collection of evaluated examples, thus eliminating
the advantage of not needing a dataset and increasing the risk of exposure
bias. Finally, a fundamental issue arises from using test-time metrics as ob-
jective functions: how should we evaluate the model we derive? In fact,
according to the empirical Goodhart’s Law [227], “when a measure becomes
a target, it ceases to be a good measure”. New metrics are therefore required,
and a gap between training objectives and test scores might be inevitable.
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3.3.3 Reinforcement Learning for Improving Not
Easily Quantifiable Characteristics

Overview. While test-time metrics as objectives reduce the gap between
training and evaluation, they do not always correlate with human judgment
[99]. In these cases, using such metrics would not help obtain the desired
generative model. Moreover, certain qualities might not have a correspon-
dent metric because they are subjective, difficult to define, or, simply, not
quantifiable. Typically, users only have an implicit understanding of the task
objective, and, therefore, a suitable reward function is almost impossible to
design: this problem is commonly referred to as the agent alignment problem
[378].

One of the most promising directions is reward modeling, i.e., learning
the reward function from interaction with the user and then optimizing the
agent through RL over such a function. In particular, RLHF (see Section
2.3) allows us to use human feedback to guide policy gradient methods. The
authors of [741] apply RLHF to text continuation, e.g., to write positive
continuations of text summaries. Similarly, RLHF can be used to perform
text summarization from sampled Reddit posts [626]. The authors of [700]
propose to summarize entire books with RLHF by means of recursive task
decomposition, i.e., by first learning to summarize small sections of a book,
then summarizing those summaries into higher-level summaries, and so on.
In this way, the size of the texts to be summarized is smaller. This is more
efficient in terms of generative modeling and human evaluation since the
samples to be judged are shorter. InstructGPT [482] fine-tunes GPT-3 [74]
with RLHF so that it can follow written instructions. With respect to [626],
demonstrations of desired behavior are first collected from humans and used
to fine-tune GPT-3 before actually performing RLHF. In particular, this
procedure is adopted in ChatGPT and GPT-4 [478], which are fine-tuned to
be aligned with human judgment.

Although all these methods consider human feedback regarding the “best”
output for a given input (with “best” generally meaning appropriate, factual,
respectful, or qualitative), more specific or different criteria are also used.
In [25] human preferences for helpfulness and harmlessness are considered.
Sparrow [221] is trained to be helpful, correct, and harmless, with the three
criteria judged separately so that three more efficient rule-conditional reward
models are learned. In addition, the model is trained to query the web for
evidence supporting provided facts; and again RLHF is used to obtain hu-
man feedback about the appropriateness of the collected evidence. Finally,
RLHF can fine-tune GPT-2 to learn how to write hatkus maximizing the rel-
evance to the provided topic, self-consistency, creativity, form, and avoiding
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toxic content through human feedback [487]. In addition to text, RLHF has
been used to better align text-to-image generation with human preferences.
After collecting user feedback about text-image alignment, a reward model
is learned to approximate such feedback, and its output is used to weight
the classic loss function of denoising diffusion models [373]. On the contrary,
Diffusion Policy Optimization with KL regularization (DPOK) [180] directly
applies online reinforcement learning for fine-tuning text-to-image diffusion
models, which are optimized using a learned reward model from human feed-
back [711] and a KL regularization with respect to the pre-trained model.

While very effective, RLHF is not the only existing approach. When hu-
man ratings are available in advance for each piece of text, a reward model
can be trained offline and then used to fine-tune an LLM [57]. Such a reward
model can also be combined with classic MLE to effectively train a language
model [354] or used to pre-pend reward tokens to generated text, forming
a replay buffer suitable for online, off-policy algorithms to unlearn unde-
sirable properties [408]. Alternatively, Advantage-Leftover Lunch (A-LoL)
[24] adopts offline policy gradient with a single-action step assumption (i.e.,
the entire sequence is a single action) to optimize for pre-trained, sequence-
level reward models; to improve learning efficiency, it filters out data points
with negative advantages, with the critic based on a frozen reference LLM.
Since human ratings might be inaccurate, they can be simulated by apply-
ing perturbations on automatically generated scores [466]. Alternatively, the
provided dataset of scored text allows for batch (i.e., offline) policy gradient
methods to train a chatbot [327]. A very similar approach is also followed
by [314], where offline RL is used to train a dialogue system on collected
conversations (with relative ratings) filtered to avoid learning misbehavior.
Other strategies can be implemented as well. The authors of [199] rely on a
learned reward model from human-provided judgment as the other systems
discussed above; however, such a reward model is used to optimize a policy
directly at inference time for the provided text. Instead of training a policy
over multiple inputs and then exploiting it at inference time, they train a
different policy for each required input.

Another possibility is to use Al feedback instead of, or in addition to, a
human one. Constitutional Al [26] is a method to train a non-evasive and
“harmless” Al assistant without any human feedback, only relying on a con-
stitution of principles to follow®. In a first supervised stage, a pre-trained

3While the selection of precepts to be included in the original “constitution” is defined
by the researchers at Anthropic, a follow-up project called Collective Constitutional AT [15]
involves the participation of humans for crowd-sourcing the underlying principles by means
of Polis [608], which is a platform for running online deliberative processes augmented by
machine learning algorithms.
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LLM is used to generate responses to prompts, and then to iteratively correct
them to satisfy a set of principles; once the response is deemed acceptable,
it is used to fine-tune the model. Then, RLHF is performed, with the only
difference being that feedback is provided by the model itself and not by hu-
mans. Reinforcement Learning from Al Feedback (RLAIF) [370] completely
replaces human preferences with those from an off-the-shelf LLM for text
summarization. The desired overall behavior is induced by careful prompt-
ing. RL can fine-tune a Seq2Seq model to generate knowledge useful for a
generic question-answer model [402]. This is first re-trained on knowledge
generated with GPT-3 (which is prompted by asking to provide the knowl-
edge required to answer a certain question). Then, RL is used to fine-tune
the model to maximize an accuracy score using knowledge generated by the
model itself as a prompt. To avoid catastrophic forgetting, a KL penalty
(with respect to the initial model) is introduced. Reinforced Neural Extrac-
tive Summarization (RNES) [704] is instead a method to train an extractive
summarizer (i.e., a component that selects which sentences of a given text
should be included in its summary) using a reward based on coherence. A
model is trained to identify the appropriate next sentence composing a co-
herent sentence pair; then, such a signal is used to obtain immediate rewards
while training the agent (with the ROUGE score as the reward for the fi-
nal composition). Finally, the authors of [630] propose to limit requests for
human feedback to cases in which the learned reward model is uncertain.

Discussion. Reward modeling introduces a greater level of flexibility in RL
for generative Al. Generative models can be trained to produce content that
humans consider appropriate and of sufficient quality, by aligning them with
their preferences. This is useful and in many situations essential: a quantifi-
able measure might not exist or information to derive it might be hard to
obtain. This methodology has already shown its intrinsic value in obtaining
accurate, helpful, and useful text. In the same way, these techniques can be
applied to other domains in which desired qualities are difficult to quantify
or hard to express in a mathematical form, e.g., aesthetically pleasant or
personalized (multimodal) content or creative artifacts. A summary of the
applications discussed in this paper is reported in Table 3.3.

RLHF has proven to be a highly effective approach. However, it suffers
from several open problems [96]. For example, collecting user feedback can
be very expensive. Moreover, users might misbehave, whether on purpose
or not, be biased, or disagree with each other [189]. Also, they might not
correctly represent the population of end users or marginalized categories
and comparison-based feedback may not correlate with the desirability of
responses [96]. For these reasons, other techniques for modeling preferences
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might be considered. If human ratings are available in advance, a reward
model can be derived from them and used offline. Using Al itself to provide
feedback is also an option; notably, Al-based feedback is also used outside
the RL paradigm, e.g., to guide DPO [723], to provide verbal feedback to
be appended to prompts [593], or to support collaboration with other LLMs
at inference time [164, 168]. In addition, other techniques, such as IRL or
cooperative IRL [256], can be applied to induce a reward model from human
demonstrations.

Reward modeling can be problematic as well. Reducing the diversity of
society to a single reward function might cause the majority views to dispro-
portionately prevail [185]. In addition, seemingly well-performing preference-
based reward models might fail to generalize to out-of-distribution states
[649], thus being prone to reward hacking, i.e., optimizing an imperfect proxy
reward function that leads to poor performance according to the true reward
function [605]. For these reasons, recent work has focused on eliminating the
need for a reward model at all [515, 620].

Finally, the authors of [694] show that, even in cases in which they are
aligned, LLMs can still be prompted in ways that lead to undesired behav-
ior. In particular, “jailbreaks” out of alignment can be obtained via single
prompts, especially when asking the model to simulate malicious personas
[153]. This is more likely to happen in the case of aligned models rather than
of non-aligned ones, because of the so-called waluigi effect: by learning to
behave in a certain way, the model also learns its exact opposite [458]. More
advanced approaches are required to mitigate this problem and completely
prevent certain undesired behaviors.
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Application Reward RL Type [ Example
Chemistry
Discriminator + chemical properties P 145]
Pharmacological activity + prior likelihood P 18
Molecule (graph) Adversarial loss 4+ desired properties P 72]0]
Novelty + utility of inhibitors CB 735]
Discriminator + chemical properties P 243]
Learned desired properties P 504]
Desired property + prior likelihood 12 476
Mlelemlle (ie) As above + penalty for repetitions 12 50] ]
Partition coefficient TD 202]
Desired property -+ intrinsic reward 12 646]
Computer Vision
Collage Discriminator on canvas-target pairs + length penalty P 369]
Image Compression or aesthetic or prompt alignment 12 49]
Pixel, movement, color reproduction TD 738
Stroke painting Discriminator on canvas-target pairs P 298
Background vs foreground + focus P 602
Two above + adjacent color/position P 603
e RLHF on text-image alignment RWCE 373
Learned reward model from human feedback 1P 180
Design
Building Performance and aesthetic metrics P [263]
Microstructure Adversarial loss + target properties 12 [467]
Music
Accompaniment Log-likelihood for pre-trained models P 319
Discriminator signal 12 721
Music Music theory rules + log-likelihood for original model TD 311
Discriminator signal + tonality + ratio of steps 12 243
Natural language
Discriminator signal at each ¢t through MC methods P 387
Discriminator signal at each t through IRL P 590
Repetitive or useless answer penalty + mutual information P 386
Reward from user + likelihood of sub-task completion HP 498
BLEU + number of proposed API calls OffP 737
RLHF P 482
Chatbot RLHF on helpfulness and harmlessness P 25]
RLHF on helpfulness, harmlessness and correctness P 221]
Al feedback based on a constitution of principles P 26]
Collected human ratings OftP 327]
Learned reward model of human ratings TD 630]
Learned sequence-level reward model of human preferences OffpP 24]
Extractive Reward model from human ratings TD 199
summarization Coherence ratings + ROUGE P 704
Discriminator signal P 184
Sum or product of log-likelihood of tokens from target text OffP 485
Generic text 4gram repetition penalty + log-likelihood of target output P 355
Discriminator signals on coherence and cohesion P 115
Specific utility function to maximize at inference time TD 612
Knowledge Accuracy score + kl penalty 12 402
BLEU + log-likelihood of target output P 524
Machine translation BLEU P 23]
Implicit task-based feedback from users P 354
Perturbed predicted human ratings CB 466
Plot Generated vs target verbs distance 12 642
Prompt optimization Aesthetic score + CLIP similarity P 264
Discriminator signal 12 721
Poetry Fluency 4+ coherence 4+ meaningfulness + quality 12 719
RLHF on relevance, consistency, creativity, form, toxicity P 487
Text continuation RLHF P 741
ROUGE + log-likelihood of target output 12 495
ROUGESal + Entail P 491
Text summarization RLHF P 626
Reward model trained on human ratings TD 57]
RLAIF P 370]
Programming
Code | Result of unit tests | P | [365]

Table 3.3: Summary of all the applications covered by past research in RL for
generative Al, with the considered rewards and the relative references. Type of al-
gorithms used: On-Policy; Off-Policy; Temporal-Difference; Contextual Bandit;
Hierarchical Policy; Reward-Weighted Cross-Entropy.
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3.4 (Generative Al and Society

Despite their relative novelty, different studies have already considered gen-
erative Al, and in particular foundation models [59] such as LLMs, under
the lens of human-related concepts and their potential impact on society.
Section 3.4.1 analyzes how human-centered definitions have been applied to
LLMs and the risk of anthropomorphizing them due to their human-level
performances [77]. Then, we move closer to our focus, introducing how these
models have been studied together with creativity (Section 3.4.2). Finally,
Section 3.4.3 moves from philosophical to practical issues, introducing the
main open questions on generative Al and intellectual property.

3.4.1 AI Anthropomorphization

AT anthropomorphization is now a highly debated topic. The authors of [154]
examine its legal and social risks and claim responsible use of AI. Bender
and Koller [38] discuss the lack of realistic meaning in models only trained
on text because they do not have reference; Piantadosi and Hill [502] oppose
this view since we humans as well do not always need a reference. In [39)],
it is suggested that the autoregressive training nature makes LLMs mere
“stochastic parrots”, unable to have any communicative intent. Starting
from a similar consideration, Shanahan [585] debates on the lack of beliefs,
knowledge, and reasoning in LLMs. The authors of [87] analyze LLMs under
various theories of consciousness, finding that current models appear not to
be conscious. Agiiera y Arcas [6] discusses personhood and understanding in
humans and LLMs by drawing several appealing parallelisms; Browning [75]
replies that LLMs cannot be entitled to personhood because they lack real
(social) agency. The authors of [334, 423] show how LLMs possess formal
competence but not functional competence (e.g., formal reasoning, world
knowledge, or situation modeling), while those of [559, 665] study how they
are limited in theory-of-mind tasks and social intelligence in general. Serapio-
Garcia et al. [582] demonstrate LLMs can simulate human personality traits
through psychometric methods, also discussing the benefits and concerns
of AI anthropomorphization. The idea of using human-intended tests to
evaluate the psychological skills of LLMs is achieving high attention now
[48, 350, 357, 625]. Similarly, in Section 7.1, we will discuss how LLMs are
typically not creative following the main theories of human creativity.

64



3.4.2 LLMs and Creativity

The potential impact of LLMs on creative fields has been evident since the
advent of GPT models [74, 478] and their competitors, e.g., [656]. Research
has been conducted to determine whether LLMs can pass human creativity
tests, such as the Alternative Uses Test [242], finding that humans are still
usually better than LLMs [254, 625]; the authors of [223, 634] explore ways to
improve their results and find that both specific prompts and brainstorming
steps can enhance their performances. However, their intrinsic lack of inten-
tionality and consciousness should prevent them from being truly creative,
as we will discuss in Chapter 7. Wang et al. [679] theorize that generative
models should be trained and evaluated by considering the creative abilities
of a specific, hypothetical human (or group of humans); however, it is not
clear how to practically operationalize this. Commonly, the creative tasks in
which AT excels are different from the ones in which humans excel [648]. For
this reason, another well-studied path is that of human-AI co-creativity [249].
Human-decision making can be improved by using Al models that diverge
from our strategies, increasing the novelty of solutions [592]. Similarly, LLMs
can be a powerful helper in the hands of a skillful writer [586], especially for
translation and reviewing [101].

3.4.3 Generative Al and Copyright

There has been a long-standing interest in the copyright issues around gen-
erative Al [86, 554]. Different legal issues are at play when considering the
entire generative-Al supply chain [374]. Whether training neural networks
on protected data is lawful has been highly debated across different national
legislations [379], e.g., U.S. fair use [268, 613], EU text and data mining
exceptions [208, 614], and others [240, 556]. The other main debate has fo-
cused on whether a machine-generated work is protected by copyright or not
[136, 214, 235] and on the question of who might own its ownership in the
future [60]. However, other topics have also been considered, such as whether
the model output can infringe the reproduction right [218, 676] or how the
trained model can be protected [479, 607]. Section 7.3 will cover the main
aspects of all these issues.
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4 Creativity for Reinforcement
Learning

Deep RL has emerged as a very effective mechanism for dealing with com-
plex and intractable Al tasks of different nature. Model-free methods that
essentially learn by trial and error have solved challenging games [449], per-
formed simulated physics tasks [395], and aligned large language models with
human values [482]. However, RL commonly requires a very large amount
of collected experience, especially compared to the one required by humans
[660], limiting its applications to real-world tasks.

Model-based RL [639] represents a promising direction toward sample ef-
ficiency. Learning a world model capable of predicting the next states and
rewards conditioned on actions allows the agent to plan [569] or build ad-
ditional training trajectories [252]. In particular, recent imagination-based
methods [258, 259, 260, 261, 440] have shown remarkable performance simply
by learning from imagined episodes within a learned latent space. As intro-
duced in Section 1.2, such imagined trajectories are commonly mentioned as
dreams since also the human brain simulates actions and their consequences
during sleep [581]. However, these dreams are nothing like human dreams,
as they essentially try to mimic reality as best as possible. According to
the Qverfitted Brain hypothesis [281], dreams happen to allow generaliza-
tion in the human brain. In particular, it is by providing hallucinatory and
corrupted content [280] that are far from the limited daily experiences (i.e.,
the training set) that dreaming helps prevent overfitting. In this chapter, we
build on this intuition and ask: can more creative, human-like “dreams” help
RL agents generalize better when dealing with limited experience?

To answer this, we explore whether this type of experience augmentation
based on dream-like generated trajectories helps generalization and, conse-
quently, improves learning. In particular, we consider the situation in which
only a limited amount of real experience (analogously to “daylight activities”
for humans) is available, and we question whether building a world model
upon it and leveraging it to generate dream-like experiences improves the
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agent’s generalization capabilities. To simulate the hallucinatory and cor-
rupted nature of dreams, in Section 4.1 we propose to transform the classic
imagined trajectories with generative augmentations, i.e., through interpo-
lation with random noise [680], DeepDream [451], or critic’s return opti-
mization (similar to class visualization [601]). These three alterations should
provide divergent but also meaningful and valuable experiences for the agent
learning. Then, Section 4.2 evaluates them under different scenarios on four
ProcGen environments [126], a standard suite for generalization in RL [345].

4.1 Improving Generalization through
Generative Learning

By starting from the models presented in Section 2.2.2; our method proposes:
to learn a latent world model from real experience; to augment the imagined
trajectories to resemble human dreams (Section 4.1.1); and to exploit such
new trajectories to learn policies that are more keen to generalize (Section
4.1.2).

4.1.1 Generating Human-Like Dreams

Given a trained world model, we can use it to construct imagined trajectories
as detailed in Section 2.2.2. Notably, instead of starting each trajectory from
a real collected state (as is commonly done in the literature), we start from
randomly generated states: 8§ = (h§™, 25™) with

hinie ~ N(0,1),
Zinit = one_hot(uy.c),u. ~U(0,J —1) forc=1...C,
h})m = /i 0<hinit7 Zinit az’m‘t) )

where J is the number of classes each of the C' categorical variables can
assume, one_hot(-) transforms a list of categorical variables into a vector of
one-hot encoded vectors, and a;,;; is a zero vector.

To obtain more human-like dreams, we leverage the world model to pro-
pose three perturbation strategies (see Figure 4.1 for a summary of the pro-
cess):

(4.1)

e Random jump, i.e., interpolation between the current state §i™ =
(hi™ 2™) and a random noise state (similar to [680]). In particular,
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Figure 4.1: At imagination time, we start from a dom latent te or as
an alternative (dashed lines) an encoded image. Then, we only leverage the
predicting capabilities of our world model to obtain future (the
concatenation of a and a ),
rewards and termination bits given the from the agent. To introduce
a dream-like transformation, we modify the current with a small
probability by doing one of three operations: interpolate it with ran noise;

DeepDream its corresponding observation from the decoder by maximizing the
activation of the encoder last convolution layer; optimize it to maximize the
divergence of the critic output.

we perturb the hidden state hi™ by adding a random vector hyang ~
N(0,1). Instead, our transformation over the latent state ZI™ can be
formalized as:

2™ = one hot () - reverse_one hot(%{™) + (1 — \) - ui.c),
A ~ Bin(C, pjump) , (4.2)
ue~U0,J —1) forc=1...C

where reverse_one hot(:) inverts the one-hot encoding, i.e., recovers
the list of categorical variables, and pjym, = 0.5 is the probability of
making a jump. In other words, each categorical variable is changed
into a randomly sampled class with probability pj,m,. This simulates

68



the corruption of dream content and the sudden visual changes we
commonly experience during REM sleep [13].

DeepDream, i.e., by iteratively adjusting the image reconstructed
from the state to maximize the firing of a model layer [451]. Specif-
ically, we consider the last convolutional layer of the encoder, which
should learn the building elements of real images. Given ¢f°(-) as the
activation of the last convolutional layer of dimension D, we transform
the hidden state hi™ and the latent state zi™ via gradient ascent over
the following objective:

S a5€ (pe (him, 2im)).
s .

This simulates the hallucinatory nature of dreams.

Jdd = Vpjm gim (4.3)

Value diversification, i.e., by iteratively adjusting the state 8™ to
maximize the squared difference between the value of the critic predic-
tion at iteration 7 and iteration 0. We perform a gradient ascent over
the following objective:

o N2
gua = Vg ape (Vo (W™, 27) = vs (0P, 20P)) ", (4.4)
where 8" = (hi"P 2I"P) is the state before optimization. The squared

difference is considered to optimize for positive and negative changes
in the critic’s prediction. In addition, at each iteration, 2i™ is trans-
formed to keep it as a vector of one-hot categorical variables. The value
diversification transformation suddenly introduces or removes goals or
obstacles, simulating the narrative content and the fact that dreams
commonly resemble daily aspects that are significant to us, especially
threatening events [532]. In fact, simulating negative experiences might
allow an agent to learn what to avoid in practice.

Figure 4.2 reports a visual example of the three transformations.

We alter each state 8™ with a small probability €gream = % with H

imagination horizon. In this way, each trajectory includes, on average, one
transformed state. Algorithm 1 summarizes a dreaming step.

4.1.2 Learning by Day and Night

Our method can be divided into two stages. During the first, our agent plays
a limited number of real episodes (the day experience). These episodes can
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Figure 4.2: An example of the three generative augmentations on a state from
the Plunder environment.

be used to only train the world model, as in Dreamer, or to train both the
world model and the agent in an E2C-like setting [684], where the agent
receives the encoding of the real observation by the world model as the state.
We then leverage the world model to generate additional dreamed episodes
(the night experience) used to train the agent. While usually the two stages
are repeated multiple times, nothing prevents us from only repeating them
once, clearly separating the day and night phases. Algorithm 2 summarizes
the entire learning process.

Algorithm 1 Learning by Dreaming

Require O-parameterized world, ¢-parameterized agent, 8™ initial imag-
ination states, H imagination horizon, rnd_init boolean stating whether to
sample random initial states.
if rnd_init then
Sample ||8i™|| new random states 8i™ according to Equation 4.1.
end if
for timestept =0... H — 1 do
Sample random number y ~ U(0,1).
if y < % then
Transform 8™ via either Equation 4.2, 4.3, or 4.4.
end if
Compute a; ~ mg(a|8im).
Compute éﬁ-ll = (htj-17 2t+1), hgyy = fo(ht, Zs, at), Zip1 ~ po(ht+1)'
Compute 741 ~ po(l}tﬂ, Zet1)-
Compute ¢,11 ~ pg(hey1, Zey)-
end for
Update ¢ through Equations 2.20 and 4.5 using generated experience.

The latent world model is trained as detailed in Section 2.2.2. As far as
the agent is concerned, following [261] we adopt an actor-critic architecture
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that works on the latent state sy = (hg,z¢). However, instead of using
REINFORCE, we train it with PPO [573], which we find helpful to obtain a
more stable training. The overall loss is that from Section 2.2.1.

While DreamerV3 models the value function as the reward with the two-
hot encoded strategy, we found the value clipping strategy of PPO more
effective. Similar to the policy loss, its loss function is defined as follows:

LYT () = max((vg(se) — V/)*

(U¢old (St) + Clip((U¢(St) ~ Voo (St)’ ) +€) - V;target)z)’
(4.5)

where vg,_,,(s¢) is the value function prediction at collecting time.

Finally, the advantage is estimated with GAE [571] (see Section 2.2.1).
While DreamerV3 [261] normalizes it with the running batch percentile of
the discounted return, we find that the normalization scheme of PPO is
more effective for ProcGen environments. In particular, we normalize the
symlog-transformed rewards by dividing it by the running standard deviation
of rewards (i.e., of all the rewards collected so far), while the advantages
are standardized by subtracting their mean and dividing by their standard
deviation at the single batch level.
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Algorithm 2 Learning to Generalize by Day and by Night

Require S number of seed episodes, FE,., warmup epochs, E epochs,
Ey epochs, U update steps, B,, world batch size, L sequence length, H
imagination horizon, Tey,s = Tep - Nenws environment steps per epoch, Nyeg
number of episodes for testing, rnd_init boolean stating whether to use
random initial states for dreaming.
Initialize neural network parameters 8 and ¢ randomly.
Initialize dataset D with .S random seed episodes.
Warmup world model by training it for E,, epochs.
01 < env.reset()
for train epoch ey =1... F do
for update step u =1...U do
Draw B, data sequences {(os, as, 711, ct+1)}f;r,f ~ D.
Compute all sy = (hg, z¢), hy = fo(he—1,2Z¢-1,a-1), 2t ~ qo(hy, 04).
Update 8 through Equation 2.26.
if £y = 0 then
Train agent with Algorithm 1 given 6, ¢, all sy, H, and rnd_init.
end if
end for
for timestept =1...7T,,,s do
Compute sy = (he, z¢), hy = fo(he_1,2¢-1,a-1), 2¢ ~ go(hg, 04).
Compute a; ~ mg(a|s).
Ot11,Tt41,Crr1 < env.step(ay).
end for
if ¢ # 0 then
Update ¢ through Equations 2.20 and 4.5 with collected experience.
end if
Add experience to dataset D < D U {(ot, gy a1, ct+1)tTjE)”_l}.
Evaluate 74 on test_env for Ny episodes.
end for
for fine-tune epoch e,, =1... F do
for update stepu=1...U do
Draw B, data sequences {(o, a;, ri1, ct+1)}f;r,f ~ D.
Compute all sy = (hg,z¢), hy = fo(hy_1,2¢-1,0,-1), 2t ~ qo(hy, 0¢).
Train agent with Algorithm 1 given 8, ¢, all sy, H, and rnd_init.
end for
Evaluate 74 on test_env for Ny episodes.
end for

72



4.2 Experiments

In the following, we present several experiments using ProcGen [126], a simple
yet rich set of environments for RL generalization evaluation. While the
chosen baselines have been presented on more classic environments, the scope
of our research is specifically on the effect of generative augmentations on
generalization, therefore we only consider ProcGen. Moreover, we focus on
limited-resource scenarios. This has several advantages: it is compatible with
more practical real-world use cases, where access to the environment might
come at a high cost, and imagination-based RL can be a reasonable strategy;
it reduces the footprint of our research, making it more aligned with the
quest toward green Al [574].

4.2.1 Setup

ProcGen is a suite of 16 procedurally generated game-like environments.
To benchmark the generalization capabilities of our approach, we use only
a small subset of the distribution of levels (N = 200) to train the agent
and the full distribution to test it. Due to resource constraints, our experi-
ments consider the ProcGen suite in easy mode; we limit the collected real
experience to le+6 steps, far below the suggested 2.5e+7 and the 1.1e+8
used in DreamerV3 [261]. We evaluate our method across four ProcGen en-
vironments, each presenting unique and challenging properties: CaveFlyer
(open-world navigation with sparse rewards), Chaser (grid-based game with
highly dense rewards), CoinRun (left-to-right platformer with highly sparse
rewards), and Plunder (war game with dense rewards).

Since our goal is to verify the effect of generative augmentations on
imagination-based RL, we use a “plain” Dreamer as our baseline. In ad-
dition, we also show the performance of an agent only trained on collected,
real experience. Specifically, we use the same Impala-based [178] PPO agent
proposed in the original ProcGen paper [126], again trained on the same num-
ber of timesteps. The full implementation details are reported in Appendix
Al

4.2.2 Results

We develop our experiments along four research questions to evaluate our
approach in different scenarios depending on the use cases.
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RQ1. Can generative augmentations improve the generalization
capabilities of agents fully trained in imagination?

The first set of experiments considers training the agent only with imag-
ined trajectories, i.e., as is commonly done with Dreamer models. Following
them, we also consider real, collected states as starting points for dreamed
experiences. From a practical perspective, this means setting Ey = 0 and
rnd_init = False into Algorithm 2.
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Figure 4.3: The total rewards received in the full distribution of levels for our
four methods (with either random jumps, deepdream, or value maximization and
with all of them) and the Dreamer baseline when fully trained with imagination
(RQ1). For reference, we also report the total rewards received by an Impala-based
PPO agent trained without imagination. Results report the mean and standard
deviation across 5 seeds.

Figure 4.3 reports the rewards on test environments over training time. As
apparent from the plots, our methods do not provide any advantage over the
classic Dreamer agent, achieving at best its performance. While the different
generative augmentations lead sometimes to different behaviors (e.g., random
interpolation being the worst on Plunder but one of the best on CoinRun),
alternating them leads to better results only on CoinRun. This might mean
that different environments are better suited for different transformations.
Nonetheless, all the imagination-based methods are far from competing with
the baseline. A possible explanation is that the number of training steps is
insufficient. Indeed, Dreamer methods [259, 260, 261] are usually trained for
longer than standard methods. This might be necessary because the world
model has to learn the dynamics of the environment before being capable of
providing useful training signals to the agent, increasing the total timesteps
needed to converge.
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RQ2. Can generative augmentations improve the generalization
capabilities of agents pre-trained on real experience?

The second set of experiments involves training the agent alongside the world
model using collected real-world experiences. Subsequently, the learned world
model is utilized to generate simulated, dream-like trajectories, which are
then used to fine-tune the agent. This has two potential advantages: firstly,
the trajectories are constructed with an already trained world model, i.e.,
with a model that should already have acquired the necessary knowledge
about its dynamics; and secondly, the experience collected by the agent in
the real environment is not “wasted”, maximizing the available limited re-
sources to train the agent on the largest possible amount of data. In this
scenario, we set By, = E/, while keeping rnd_init = False into Algorithm 2.
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Figure 4.4: The total rewards received in the full distribution of levels for our four
methods (with either random jumps, deepdream, or value maximization and with
all of them) and the Dreamer baseline when first trained on collected experience
and then fine-tuned with imagination (RQ2). The left half of the chart reports
pre-training (shared by all the methods) and, for reference, the Impala-based PPO
agent trained without imagination; the right half reports fine-tuning effects. The
mean and standard deviation are calculated across 5 seeds.

Figure 4.4 summarizes the results for the four environments. The pre-
training phase in the real environment is comparable with (when not better
than) the model-free baseline in three environments out of four; however,
imagination-based fine-tuning is not helpful and even decreases generaliza-
tion capabilities. Notably, for Plunder environment, our method with all
three transformations is effective in improving results in the early stages but
with catastrophic results in the long run. Overall, it is clear that this fine-
tuning tends to have an overfitting effect, which is harmful from a generaliza-
tion standpoint. One possible explanation is that using the same experience
multiple times (both during day activity and repeatedly during night) is
problematic, and our generative augmentations do not consistently mitigate
this issue.
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RQ3. Can real experience collected by an expert agent help achieve
better generalization capabilities through dreaming?

We have seen so far that imagination-based RL is not very effective with
limited resources. As mentioned before, one possible problem is the quality
of collected experiences: if the agent is not good enough, the real trajectories
will not be sufficiently significant to train the world model, leading to inade-
quate imagined trajectories (e.g., those that never lead to positive rewards).
Moreover, with resource constraints, it would be illogical to train a pair of
world and agent models, as we have shown them to perform just like stan-
dard IMPALA-based agents. For these reasons, we now consider the case in
which we already possess real trajectories from an expert model (e.g., with
state-of-the-art results). This can occur either because we have the expert
model and use it to play in the environment, or because we have an offline
dataset of historical, high-quality experiences from that environment. We
investigate whether imagination-based RL can be used to design an agent
capable of generalizing in that environment without direct access to it, and
whether our generative augmentations can lead to better performance. From
a practical perspective, we collect 1e+6 timesteps from the training environ-
ment by leveraging the Impala-based PPO agent as described in the original
ProcGen paper [126], i.e., trained over 2.5e+7 timesteps. Then, we train the
world model for £ epochs over such data, and finally, we train the agent for
E; = E epochs. Again, we set rnd_init = False.
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Figure 4.5: The total rewards received in the full distribution of levels for our
four methods (with either random jumps, deepdream, or value maximization and
with all of them) and the Dreamer baseline when fully trained with imagination
on a world model learned from expert-collected trajectories (RQ3). For reference,
we also show the total rewards received by an Impala-based PPO agent trained
without imagination. The mean and standard deviation are calculated across 5
seeds.

Figure 4.5 reports the results of our expert-based imagination experi-
ments. Again, imagination-based approaches are not competitive with re-
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spect to the baseline performance. However, in the case of the Plunder en-
vironment, we observe performance comparable with the day training from
RQ1; and the generative augmentations (especially value maximization) seem
to provide meaningful improvements over the classic, non-transformed imag-
ination of Dreamer.

RQ4. Can a world model trained on expert-level experience help
achieve better generalization capabilities through dreaming?

The last setting we consider is the same as before, but now we investigate
whether it is possible to train an agent with generalization capabilities even
without access to the data collected by the expert, but only to the world
model trained on it. More specifically, we consider the same world models
as for the analysis of RQ3., but now we leverage random initial states to
generate imagined trajectories, i.e., we set rnd_init = True.
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Figure 4.6: The total rewards received in the full distribution of levels for our four
methods (with either random jumps, deepdream, or value maximization and with
all of them) and the Dreamer baseline trained with imagination from random initial
states on a world model learned from expert-collected trajectories (RQ4). For
reference, we also show the total rewards received by an Impala-based PPO agent
trained without imagination. The mean and standard deviation are calculated
across 5 seeds.

Figure 4.5 shows the total rewards of our expert-based imagination ex-
periments without access to expert-collected states. Compared to the re-
sults from Figure 4.5, using random initial states helps achieve better per-
formance on CoinRun; in particular, our methods have better generalization
performance than the baseline for the first half of the training, but then
stop improving. In other environments, the results are either comparable or
worse. While the generative augmentations seem to provide meaningful im-
provements over the classic, non-transformed imagination of Dreamer at the
beginning of training, in the long run, the effect vanishes, sometimes with
catastrophic results (as seen in Plunder).
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5 Reinforcement Learning for
Creativity

In the previous chapter, we explored how creativity can improve RL, pro-
viding specific properties beyond mere task performance. In the same way,
RL can provide useful contributions to developing creative machines by pro-
viding a learning framework to optimize for more specific goals, freeing the
model from training data.

As discussed in Section 2.1, self-supervised learning makes the LLMs
generate samples as close as possible to the training data distribution. In ad-
dition, reinforcement learning from human feedback [118], though necessary
to generate appropriate and accurate responses, tends to reduce the output
diversity [346]. On the contrary, LLMs for creative tasks should produce
more novel and surprising texts that maintain a high level of correctness and
adherence to the request.

In this chapter, we propose to capture these aspects through a context-
based score for value and originality. We describe it in Section 5.1, together
with various methods to maximize it via reinforcement learning; finally, we
evaluate them on poetry generation and math problem resolution. In addi-
tion, Section 5.2 presents a strategy to use such a score at inference time
through contextual learning.

5.1 A Context-Based Score for Valuable and
Original Generation

By starting from mutual information, in Section 5.1.1, we derive a new op-
timization problem where, given a specific input, the desired output can be
found by simultaneously maximizing the conditional probability under the
generative model of the input given the output, and minimizing the condi-
tional probability under the generative model of the output given the input.
In this way, we optimize toward solutions that are appropriate for the re-
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quest given in input but also different from what we would normally obtain
from the model (which we assume to be something not novel nor surprising).
This score can then be directly used as a reward in a reinforcement learning
problem to fine-tune pre-trained models, pushing them toward more diver-
gent but still valuable solutions. Finally, in Section 5.1.2, we evaluate our
approach on two different case studies: poetry generation and math problem
resolution.

5.1.1 Approach

Mutual information represents a reasonable theoretical way to study the
relationship between contextual, prior information and a produced posterior
outcome. As discussed in depth in Section 1.2, creativity depends on the
context in which the product is created, as the context provides the task
identification and the domain information necessary to generate and validate
the outcome. In turn, the output aims to solve the given task and provide a
meaningful, original contribution to the current domain. Thus, our proposed
score has its roots in mutual information. More specifically, we start from
the (point-wise) mutual information between two variables = and y defined
as follows:

I(z,y) = h(zx) = h(zly) = h(y) — h(ylz) (5.1)
where the entropy is h(a) = —log p(a), therefore:

I(z,y) = log p(z|y) — log p(x) = log p(y|x) — log p(y). (5.2)

Let us now call x = S (for source, i.e., our context) and y = T (for target,
i.e., our product):

1(S,T) = logp(S|T) — log p(S) = log p(T'|S) — log p(T'). (5.3)

We can generalize I(.S,7T) with two scaling factors:

I(S,T, M1, A2) = A log p(T'|S) — Az log p(T), (5.4)

where I(S,T) is just 1(S,7,1,1).
By applying the Bayes theorem, i.e., logp(ald) = logp(bla) + logp(a) —
log p(b), we can substitute the log p(T") term as follows:
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1(S,T, M, A2) = A log p(T'|S) — Mg log p(T'|S) —
A2 log p(S) + A2 log p(S|T)
= (M — A2)log p(T'|S) +
A2log p(S|T) — Az log p(5).

Since our goal is to find the optimal T for a given .S, the last term can be
ignored. Moreover, we now define A\, = Ay and A\, = Ay — Ay, thus obtaining:

(5.5)

max Ao log p(S|T) — Ao log p(T']S). (5.6)

Let us now consider the case where \,, A\, > 0, for example, A, = A\, = 1.
Solving this maximization problem means finding the target 7" that maxi-
mizes the posterior probability of S while also being unlikely given S. In
other words, the optimal 7" must be unexpected and diverse from p(T'|S),
but it must also be explainable by S. While —log p(T|S), commonly known
as surprisal [658], is widely used to measure diversity and surprise [31], the
other term, log p(S|T), can be used to measure value and effectiveness. In-
deed, if the request (e.g., a problem or a task) can be easily predicted from
the outcome, the outcome must be a (good) example of that task or a correct
solution for that problem. These two properties match the effectiveness and
originality requirements for creativity following Runco and Jaeger [546], thus
promising to be a potential score for creativity. While other prominent defi-
nitions such as Boden’s [53] seek to include a third requirement for creativity,
i.e., novelty, we believe that by considering only a specific context, novelty
and surprise become indistinguishable. In particular, being novel in a specific
context S means doing something different from what has been previously
experienced under S by the creator. However, since a self-supervised-trained
model can be seen as a compression of training data (as we will argue in
Section 7.3.3), —log P(T'|S) becomes not only a measure of unexpectedness
but also of novelty. Therefore, we choose to refer to this term as originality,
as it encompasses both novelty and surprise. On the other hand, log P(S|T')
is less ambiguous and maps directly into value.

In summary, our CoVO (Context-based Value and Originality) score for
a target T' given a source S on a reference probability distribution p is defined
as:

scovo(S, T, p) = Ay log p(S|T) =\, log p(T|S) . (5.7)
V;ﬁle Ori g?r?ality

In the context of a f-parameterized autoregressive model such as an LLM,
p(A|B) can be expressed as [[~, po(a;|Ari_1, B) where A = a; ... ay. How-

80



ever, considering just the product of all the conditioned probabilities for an
optimization problem would lead to preferring shorter sequences. To avoid
this, we propose to use the N-th root: ]</HZJ\;1 po(a;|A1i_1, B). By applying
the properties of the logarithm, the whole formulation becomes:

\ S log p(silStim1,T) \ ZgﬂllogPG(ti’Thjfl?S)'
’ 5] ’ T

We would like to highlight another interesting issue. The vocabulary of

an LLM can be extremely large, thus causing py(a|b) to be small even when
a is the most probable event given b. In particular, in the case of an LLM
generating 7' given S and then evaluating both py(7'|S) and pe(S|T), this
can lead to a strong discrepancy between the magnitude of value and diver-
sity: since T has been sampled from py, its probability would be high by
definition, while there may be different ways (possibly through synonyms) to
define T', leading to smaller probability of S. Inspired by [415], we propose
to normalize pg(alb) via n’ = —tmn—  For probabilities, 1y, = 0, while
Nmaz = Max pg(b), thus obtaining the overall mapping for py: %.
Again, by using the properties of the logarithm, the whole formulation be-

comes:

(5.8)

SCOVO(S7 Ta p@) = )\USv<Sa T7 p) + )\080(57 Ta p)7 with

151 1 1g Ty | N
$o(S, T, py) = 21:1(0gp0(81|51.z—1, |?g| max log pg(St.i_1, ))7

7l (1o ti|T1.;-1,5) — maxlo Ty.;-1,S
50(S, T, pg) = Zy=1( g po(ti|Thj-1 |)T| gpo(Thj1 ))_

(5.9)

Despite these adjustments, the two parts of our score still have funda-
mental differences in the magnitude of variations, e.g., given the same source
S, small variations in the target T' cause larger variations in the original-
ity part than in the value part. To address this issue, we propose to nor-
malize the two parts independently. We implement and test two different
methodologies: single-batch normalization, where each component is stan-
dardized using its mean and standard deviation within a single batch; and
full-training normalization, where each component is standardized using the
mean and standard deviation over the entire training period, maintaining
running statistics across batches.

Finally, calculating p(S|T") is not trivial. Since LLMs are trained to com-
plete a text, it is implausible that they would generate the source text im-
mediately after the target text (which, we ought to remember, is generated
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immediately after the source text). To solve this, we consider an approxi-
mation p(S|T"), where T" = T + @), and (@ represents an additional question
such as “How would you describe this text?” or an analogous formulation
whose only goal is to increase the likelihood of the source text S (as well as
of alternative sources).

Once the CoVO score has been defined, its adoption in a reinforcement
learning framework is straightforward. As introduced in Section 2.3, the pre-
trained LLM plays the role of the agent; the state is the prompt together with
the text generated so far; and the reward is zero for all the timesteps except
the last one, where it is our CoVO score. Then, the agent can be trained with
any online policy gradient method; we suggest using PPO (see Section 2.2.1),
as is now the state-of-the-art RL algorithm for training language models.

Finally, we also envisage a different method to optimize agents according
to our CoVO score. While the normalization schemes proposed above should
help balance the value and originality parts, finding the perfect reward formu-
lation that correctly addresses both parts is not trivial. In addition, RL tends
to have slower convergence. For these reasons, we propose to use DPO (see
Section 2.3) as an alternative solution. An intuitive implementation would
consider the CoVO score from Equation 5.9 to rank the generated outputs
for a given input. However, as already discussed, the CoVO score is made of
two distinct parts that might be problematic to optimize at the same time
by simply summing them up. Therefore, we propose to build two distinct
rankings, one on the value component, and one on the originality component.
Then, the two rankings are merged together, and the best-ranked output is
the chosen one (i.e., the one whose probability will be maximized), while the
worst-ranked is the rejected one (i.e., the one whose probability will be min-
imized). Once a batch of chosen-rejected pairs has been collected, the model
can be optimized via Equation 2.30. Algorithm 3 summarizes the proposed
training process.

5.1.2 Experiments

We evaluate the effectiveness of our RL strategy through two case studies:
poetry generation (Section 5.1.2) and mathematical problem resolution (Sec-
tion 5.1.2).

Poetry Generation

Setup. The first set of experiments aims to teach the LLM to generate more
original but still valuable poems. In particular, we follow [67] and ask the
model to write a poem in a specific style (‘ballad’, ‘haiku’, ‘hymn’, ‘limerick’
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Algorithm 3 DPO training step toward CoVO Score

Require py reference language model, pyr language model to be trained,
B = {pu}Z, batch of training prompts, K candidates to generate,
compute_ext_reward function to include potential task-specific rewards.
forb=1...B do
for j=1... K do
Xj ~ po'(Pb)
value; = s,(pw, Xj, Po)
orig; = 50(Pb, Xj, Do)
ext_reward; = compute,ext,reward(xj)
end for
new scores =0... K — 1
_,indices = sort(value)
value = sort_by_index(new_scores, indices)
_, indices = sort(orig)
orig = sort_by_index(new_scores, indices)
score = value + orig
score = score + ext_reward
chosenb = Xargmax(score)
rejected, = Xargmin(score)
end for
Train py via Eq. 2.30 on chosen and rejected.

or ‘sonnet’) with a specific tone (‘dark’, ‘happy’, ‘mysterious’; ‘reflective’ or
‘romantic’). We consider Llama3-8B model [169] as our pre-trained agent;
we also experiment with smaller models such as SmolLM [37], finding it
very hard to make them consistently generate poems and not explanation
or garbage outputs. Since we do not use the instruction-tuned models, we
prompt them with some few-shot examples of the task to make it more likely
to produce the desired output in the desired form (see the full prompts in
Appendix A.2). Instead of re-training the entire network, we consider Low-
Rank Adaptation (LoRA) [292]. In addition to saving compute resources,
LoRA allows us to preserve the information already stored in the model.
Indeed, the idea is to learn how to adapt the known information for more
creative purposes. The original model is also used to compute the score.
We experiment with various settings, i.e., with the original formula and
Av» = A, = 1.; by standardizing the two score portions separately at the batch
level; by standardizing them using running statistics; and by using the DPO
adaptation. Due to additional resource consumption, the DPO adaptation
considers a 4-bit quantization of the model [155]. The full training parame-
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ters are reported in Appendix A.2. We quantitatively validate our methods
by computing poetical metrics for quality (lexical correctness of poems and
adherence to line- and syllable-level constraints) and originality (accidental
reproduction of existing poems). For the latter, we define a Token-based
Longest Common Substring (T-LCS) score, and we use it by comparing gen-
erated poems with a reference dataset of approx. 84k public-domain poems
extracted from Project Gutenberg (see Appendix B for a first presentation
of our GutenVerse dataset). While a generated poem can be an accidental
reproduction of a protected work or a different kind of text (e.g., a song),
we believe it can provide a useful evaluation tool to understand the general
degree of originality. Finally, we also visually inspect poems generated by
the models with respect to those generated by the original models for a more
fine-grained analysis.

Results. We evaluate the five models (hereinafter Llama3-Baseline for the
original pre-trained model, Llama3-CoVO for the fine-tuned model optimiz-
ing CoVO score, Llama3-CoVO-std for the model with batch-level standard-
ization, Llama3-CoVO-run for the model with running stats normalization,
and Llama3-CoVO-dpo for the model tuned with DPO) by prompting them
to generate the 25 possible poems arising by the tone-style pairs used during
training and the 25 possible poems from out-of-distribution tone-style pairs
(i.e., with a style among ‘cinquain’, ‘couplet’, ‘free verse’, ‘ode’ or ‘tanka’
and a tone among ‘cutting’, ‘nostalgic’, ‘poignant’, ‘solemn’ or ‘whimsical’).
To be consistent with the training phase, we use the same generation config-
urations, i.e., 256 max new tokens, a temperature of 1., and top-k = 50.

Method In-distribution Out-of-distribution

Llama3- Correctness T Metric (L/S) 1 LCS (avg/max) | | Correctness T Metric (L/S) 1 LCS (avg/max) |
Bascline 1.00 0.60 / 0.60 8.0 /57 1.00 0.33 / 0.30 50/8
CoVO 1.00 0.60 / 0.60 9.9 / 49 1.00 0.53 / 0.30 7.2 /41
CoVO-std 0.76 0.20 / 0.33 5.8 /19 0.40 0.27 / 0.57 48/6
CoVO-run 0.80 0.40 / 0.57 49/7 0.60 0.47 / 0.40 48 /7
CoVO-dpo 0.96 0.50 / 0.50 6.1 /14 0.92 0.47 / 0.40 7.8 /40

Table 5.1: Aggregate results of CoVO scores at inference time considering both
training prompts (left) and testing prompts (right). Scores on the poetical metrics
are reported at the line level (L) and syllable level (S) and only consider requests
for styles with specific metrical properties. The best scores are in bold, while the
worst are in underline.

Table 5.1 reports quantitative metrics about the compliance of poetical
constraints at the syllable and line levels, lexical correctness (as the ratio
of poems only containing correct words), and accidental reproduction rate
(as the mean and maximum token-based longest common substring). As we
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expected, different training strategies have different effects on the aforemen-
tioned metrics. In particular, using the CoVO score as-is leads to behavior
close to the baseline for training tone-style pairs, while it increases met-
ric adherence but also verbatim reproduction for out-of-distribution pairs.
Llama3-CoVO-dpo has similar but less extreme results, without excelling or
failing in any metric. On the other hand, standardizing the CoVO score
components places more importance on exploration: both Llama3-CoVO-
std and Llama3-CoVO-run tend to produce more “incorrect” outputs but
without any relevant accidental reproduction.
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Figure 5.1: The distribution of value and originality (according to our scores)
for the in-distribution and out-of-distribution poems generated by the baseline and
our four methods.

Then, we calculate the value and originality according to Equation 5.9
under the original pre-trained model. Table 5.1 reports the average scores.
Interestingly, these considerations are well-aligned with our CoVO score. Fig-
ure 5.1 reports the value and originality according to Equation 5.9 under the
original pre-trained model. While the different methods do not substantially
differ from the baseline (which is possibly due to the opposite forces of value
and originality [671]), we again see that using the CoVO score as-is or with
DPO places more focus on the value part, without substantial increases in
originality. Instead, standardizing the two separate parts either at the batch
or the training level reverses the situation, with better performances on orig-
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inality but slightly worse on value.

However, aggregated scores such as the ones presented here might be
insufficient. A visual and more fine-grained analysis of the generated poems
can then help better understand the real performances of our methods.

Due to their shortness, the generated haikus are a reasonable starting
point for our evaluation. Table 5.2 reports the 25 haikus produced by our
5 methods across the 5 tones. Notice that while we automatically clean the
outputs removing the common random garbage following the poems both
at training and inference time, we leave it when it is inside the poem, as it
would be impossible to isolate them.

The reported haikus provide an accurate overview of the models. A haiku
should be made of three verses of 5-7-5 syllables, and the classic structure
wants the first two verses to refer to nature, while the third is an emotional,
personal explanation of the two. The baseline is the most accurate in follow-
ing these rules (even if syllable count is not precise). Llama3-CoVO, which
was the method with the highest average value across all poems, follows the
three-line structure, sometimes changing the subject; however, it produces
the highest-valued haiku which is also the closest one to real haikus. On
the other hand, Llama3-CoVO-std and Llama3-CoVO-run do not always ful-
fill the three-line requirement, and the content is not the classic one as well;
moreover, they are prone to meaningless repetitions and the insertion of URL
addresses which lead to higher originality, in a way adversarially exploiting
the score definition. Finally, Llama3-CoVO-dpo is placed between these two
behaviors, as expected: it tends to produce haikus of the correct lengths but
it trades off the classic naturalistic content for a more emotional semantic
that still leads to high values and some of the best haikus overall.
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We believe that reporting all the 250 generated poems would be dis-
persive. However, certain behaviors across other poetic styles are worth
mentioning. Llama3-Baseline does not always produce poems: in 3 cases it
produces prosaic text (without line breaks). Moreover, as previously seen, it
tends to verbatim replicate real text. From a structural standpoint, sonnets
are never real sonnets, with more than 14 lines and less than 11 syllables
per line, but limericks usually start with the traditional “There [once] was a

7

man- .

Romantic limerick
There once was a lady called Rose
Who lived in the tallest of trees,
Where she wrote,
Of what she did not know.
V = -1.282 | O =129

Table 5.3: The poem generated by Llama3-CoVO with the highest value (apart
from verbatim reproduction of existing poems).

As expected by the average scores, Llama3-CoVO does not consistently
deviate from such behaviors. While always producing seemingly poetry, it
tends to verbatim reproduce other works, not only poems but also Song of
Salomon 6:2-9 when asked for a mysterious hymn and even pieces of the
Declaration of Independence for a reflective hymn and the Christmas song
Joy to the world for a happy hymn. Interestingly, these text have a very
small originality score (an average of 0.2), suggesting that the original model
has memorized them; we will extensively discuss this matter in Section 7.3.3.
From a structural perspective, while ballads vary more in length and content
with respect to our baseline, the limericks are still all appropriate, as we can
see in the example from Table 5.3, which has the highest value across all
Llama3-CoVO poems.

Despite the higher average originality, also Llama3-CoVO-std can verba-
tim produce existing texts, as done with the Roses Are Red nursery rhyme
when asked for a romantic ballad. In general, its heavier deviation from the
original pre-trained model translates into more diverse and usually shorter
structures, but also in the insertion of random URL addresses in the middle
of poems. However, it still produces some more classic poems that typically
lead to higher values but also to high originality (see Table 5.4).

The issues related to divergence highlighted for Llama3-CoVO-std are
even more pronounced in Llama3-CoVO-run. While it does not generate
any verbatim reproduction, it inserts several URL addresses, code snippets,
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Happy hymn Reflective limerick
Joyful, joyful, we adore thee,
Son of God who callest us

Praise to his almighty name. There was a young man from HongKong
Joyful, joyful we adore thee; who wanted to see more green trees every day.
Full of grace are all his ways; So he sat on the beach,

Praise to his almighty reign listened to the sea waves,

Ever, ever, praise we sing it, and saw the green sea.

Ever in our songs and hymns.
Glory to our God Almighty.
V =-1.114 [ O =1.470 V =-1.99 [0 =2.411

Table 5.4: The poems generated by Llama3-CoVO-std with the highest value
(left) and the highest originality (right).

Reflective limerick Happy ballad

There once was a girl named Kate,

She grew very tired very quickly.

So they told poor Kate,

“You need to take it easy,” REF)they said.
They thought she was lazy.

And her name was Kate.

V =-0.352 [ O = 1.559 V =-3.878 | O =2.094

I'm a poet, man.

My poem is hard and great.
It’s a poem, man,

for all my poem to eat.

So I'm a poet man, man, man.

Table 5.5: The poems generated by Llama3-CoVO-run with the highest value
(left) and the highest originality (right).

and odd tokens in the middle of poems, as apparent from Table 5.5 (right):
the fact that these are the text with higher originality supports the idea of
adversarial exploitation of the score. In addition, the poems do not have
any traces of classic structures or common starting lines and tend to repeat
the same n-grams multiple times, as shown by the highest-value poem from
Table 5.5 (left).

Finally, Llama3-CoVO-dpo seems the best method to balance the quality
of poems with some original traits. Even though it sometimes reproduces
small parts of real poems, it always deviates after one or two lines. In general,
all poems usually follow the mood and style required; in particular, ballads
sound like true ballads, as shown by Table 5.6 (left). Similarly, also limericks
are remarkable: notably, while the poem with the highest originality starts
with the classic “There once was a” formulation (Table 5.6 - right), other
limericks with divergent first lines get lower originality, perhaps due to the
general mood which is very close to classic limericks (see Table 5.7).
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Romantic ballad

Romantic limerick

Hark! Is it the wild cat
mewling mournfully by night
or is it the poor maiden
weeping for her love’s flight?
It is the latter—

as one by one, her friends
take to heart, in turns,

the girl’s anguished cries.

Tall, his figure,

he is seen one moment

by the gladsome crowd

then not again,

till with tears, the maid
calls forth from the crowd—
“See! he is returned,

as if to marry her.”

The girl looks at him,

as the maid and crowd
watch the two lovers:

her lover’s gaze

at her with tender, true
love; hers with a silent plea,
and a sigh.

There once was a snob who could scotch
Anything not in accord with

What she thought,

And if people asked her out on a lunch
The same thought she had in her head,
For her, being scotch

Wasn’t what you’d get in her bed -

Just a glass of good scotch.

V =-0.961 [0 =129

V =-1.869 | O =1.598

Table 5.6: The poems generated by Llama3-CoVO-dpo with the highest value

(left) and the highest originality (right).

Happy limerick

Dark limerick

“Is life worth living?” said I.
“Perhaps,” murmured he.
“Well, anyway,” said I,

“If it were not for
Cigars, I'd say, 'Nay’!”

Once a mouse went up

To a mousetrap by the river.

He sat down to wait,

He sat. That’s all.

All his friends were never as clever.

V =-2.258 [0 =0.944

V =-1.932 | O =1310

Table 5.7: Two limericks generated by Llama3-CoVO-dpo which obtain a lower

originality despite having a non-traditional structure.

Math Problem Resolution

Setup. The second set of experiments aims to teach the LLM to solve mathe-
matical problems through more diverse procedures. In particular, we focus on
the Mistral-based [317] MetaMath model, i.e., fine-tuned with self-supervised
learning on the MetaMathQA [722]. It is a dataset of textual math questions
paired with responses where the numerical answer is easily separable from
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the textual procedure. While the entire set contains 395k entries, making
an additional training epoch too expensive, MetaMathQA is composed of
entries from two different training sets, then augmented with various tech-
niques: GSMS8K [127] and MATH [269]. Since we are only interested in the
questions, we limit our training to those datasets; moreover, we exclude all
questions with a tokenized length of either question or answer greater than
512, obtaining 14876 out of 14973 total entries. To train our model, we sep-
arate the procedure and the answer from each solution. We separate the
procedure and the answer from each solution to train our model. We use the
numerical answer to check the correctness of the predicted solution, while we
use the textual procedure only at evaluation time to measure the diversity
of the model output. Because of this, the RL problem can consider up to
two rewards: our score computed on the procedure and an extrinsic reward
based on the correctness of the answer. As for the previous case study, in-
stead of fine-tuning the entire model, we adopt a more parameter-efficient
strategy with LoRA, while using the original model to perform the CoVO
score computation. Again, we experiment with four different configurations:
PPO and the score from Eq. 5.9 with A\, = 1, A\, = 1; PPO and the score nor-
malized at the batch level; PPO and the score normalized at training level;
DPO (Alg. 3). We consider scenarios with and without the external reward,
and we compare the performances with the original model and a fine-tuning
based only on the external reward. The full training parameters are reported
in Appendix A.2. The evaluation considers the test sets of both GSMS8K
and MATH datasets (again limited to the entries with a tokenized length of
question and answer smaller than 512, leaving all 1319 entries for GSM8K
and 4546 out of 5000 for MATH), and computes the percentage of correct
solutions together with two diversity metrics: expectation-adjusted distinct
N-grams (EAD) [403] and sentence embedding cosine similarity (SIM) [287],
which should measure syntactical and semantical diversity, respectively [346].
EAD counts the number of distinct N-grams (averaging over N = 1...5)
across all generated responses and removes the bias toward shorter inputs
by scaling the number of distinct tokens based on their expectations. The
SIM metric computes the average of the cosine similarity between the em-
beddings of any possible pairs of outputs and returns 1 minus the similarity.
While originally based on Sentence-BERT [528], we employ the more recent
all-mpnet-base-v2, as suggested by their developers [580].

Results. Table 5.8 reports the results for the GSM8K and MATH test
sets. For the former, while all the tested methods achieve similar results, we
see that using the extrinsic reward leads to better results and even higher
Sent-BERT scores; its combination with the “plain” CoVO reward makes the
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Method GSMSK MATH
Metamath-mistral- Accuracy 1 EAD 1 Sent-BERT 1 Accuracy 1 EAD 1 Sent-BERT 1
Baseline 77.79% (3) 1.945 0.751 34.37% (483) 5.652 0.662
Ext. reward 78.32% (0) 1.933 0.747 34.23% (411) 5.593 0.667
CoVO 78.85% (1) 1.932 0.754 34.40% (424) 5.571 0.671
CoVO w ext 78.62% (1) 1.935 0.749 34.40% (397) 5.574 0.668
CoVO-std 78.77% (2) 1.930 0.755 34.34% (433) 5.603 0.668
CoVO-std w ext 78.47% (0) 1.923 0.754 34.74% (409) 5.573 0.661
CoVO-run 78.24% (3) 1.931 0.754 34.40% (413) 5.599 0.673
CoVO-run w ext 78.17% (0) 1.926 0.753 34.74% (388) 5.581 0.662
CoVO-dpo 77.56% (5) 1.955 0.749 34.62% (474) 5.680 0.663
CoVO-dpo w ext 77.33% (5) 1.957 0.750 34.71% (493) 5.674 0.664

Table 5.8: Accuracy and diversity of results for the GSM8K and MATH test
sets. In brackets, the amount of responses not finished within the fixed number of
maximum tokens to generate. The best scores are in bold, while the worst are in
underline.

model gain the highest percentage of correct answers. On the other hand,
the DPO strategy even diminishes the accuracy of the original model, but
obtains the highest EAD scores.

The results for the MATH test set are significantly different. The use
of the extrinsic reward negatively affects the accuracy, but slightly increases
the diversity; again, DPO helps obtain the best EAD scores, while the two
CoVO normalization strategies lead to better accuracy but higher Sent-BERT
diversity (without extrinsic reward). However, the number of unfinished
responses is quite high (approx. 1 out of 10), and results might significantly
vary if more tokens are allowed during generation.

5.2 Contextual Learning via Creativity Score

Large language models have shown strong performances in contextual learn-
ing, i.e., zero- or few-shot learning: their behavior can be effectively influ-
enced by simply setting the right prompt and providing the right examples.
In this section, we explore the potential of leveraging this property to en-
hance creative outputs, as measured by the CoVO score presented in Section
5.1.

5.2.1 Approach

Given the tendency of LLMs to generate solutions in terms of ordered lists,
we propose to use our score from Equation 5.9 to compose a ranking-based
prompt, then used with in-context learning to make the LLM generate a
supposedly more creative output. Specifically, we generate K outputs (with
K small) given the current input with the model as-is; one solution could
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Algorithm 4 CoVO-based ranking computation for Contextual Learning

Require py pre-trained language model, K ranking size, K gen_conf gen-
eration configurations for ranked outputs, p user input.
for j=1...K do
Generate x; from py(p) according to gen_conf;
value; = s,(p, Xj,pp)
orig; = s,(P,X;, )
end for
new_scores =0... K —1
_,indices = sort(value)
value = sort_by_index(new_scores, indices)
_,indices = sort(orig)
orig = sort_by_index(new_scores, indices)
score = value + orig
_,indices = sort(score)
[X1...XK| = sort_by_index([x; ...xk], indices)
Return x; ... xk

consist in varying the temperature parameter to obtain significantly different
outputs, but other approaches can be used as well. Then, we compute their
CoVO score similarly to what we did in the DPO strategy from Section 5.1:
we consider the value and originality parts separately; we compute a rank
of solutions for both scores; we merge the two rankings together. Algorithm
4 summarizes the process. Then, we build the ranking-based prompt by
assigning the K + 1-th position to the worst output, the K-th position to the
second worst output, and so on until we assign the second position to the
highest-ranked output; then we let the model autoregressively complete the
ranking by writing the first-placed solution, which we consider as the output
of our method. The resulting prompt with K = 4 is the following:

r

{task}

Top-5 solutions:
5. {x1}
4. {Xz}
- {xs}
- {xa}

\ 7

w

_= N

Notably, this prompt-based method is fully compatible with any autore-
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gressive model, and can be combined with other generation techniques, such
as contrastive search [631] or diverse beam search [675].

5.2.2 Experiments

Setup. We evaluate the effectiveness of our contextual-learning strategy
through 15 BIG-bench [622] tasks, specifically those labeled with “creativ-
ity”. Eight of them, i.e., Codenames, Conlang Translation, Cryptonite, Gem,
Question-Answer Creation, Rephrase, Taboo, and Yes-No Black-White are
free-text generation tasks; the remaining ones, i.e., English Proverbs, Fore-
casting Subquestions, Kannada, Novel Concepts, Riddle Sense, Swedish to
German Proverbs, and Understanding Fables are multiple-choice questions.
We limit the number of considered queries to 200 to make the computation
practicable, and we repeat all the experiments across 3 seeds. To demon-
strate the validity of our method, we consider different models of different
sizes: SmolLM-1.7B [37]; Phi3 [1]; Mistral-7B [317]; Llama3-8B [436]. To
have them follow the task instructions, we consider their instructed version.
Moreover, to reduce resource consumption, we quantize them to 4-bit. As
our baselines, we use the same models as-is; for the free-generation tasks, we
also experiment with different values of the temperature. Higher values of
the temperature are generally used to increase output creativity at least in
terms of certain dimensions [497]. A full description of the generation pa-

rameters and the prompts used in the experiments are reported in Appendix
A.3.

Results. Table 5.9 presents the results of the seven multiple-choice tasks.
Our method generally shows competitive performance, and the introduction
of the contextual learning strategy leads to improvements in some of the
cases. Additionally, the results are consistent across all tasks.

Instead, Table 5.10 reports the results on the 8 free-generation tasks; as it
is apparent, results are always zero on two tasks (Cryptonite and Question-
Answer Creation), thus only the other 6 are relevant for our discussion. In-
terestingly, our strategy seems effective on larger models: it gets the highest
scores in 4 out of 6 tasks for Mistral-7B and only in one case is worse than
standard sampling; in Llama3-8B, it is the best strategy in 3 cases and the
worst only once. On the other hand, for smaller models, the results are more
balanced, and consistently improved only for the Rephrase task.

Overall, our strategy leads to improved performance, especially for gener-
ative tasks. While there are costs associated with obtaining candidates and
composing the contextual prompt, the benefits in performance can make this
trade-off worthwhile.
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English Forecasting Novel
Model Proverbs Subquestions Kannada Concepts
SmolLM-1.7B 0.39 £0.04 —43.54 £ 0.00 0.24 £0.01 0.25 £ 0.00
w/ CoVo 0.34 +£0.07 —45.43+0.14 0.26 +0.01 0.27 +£0.03
Phi3-4B 0.36 £ 0.01 43.65 +0.00 0.29 £ 0.00 0.41 +0.00
w/ CoVo 0.51 +0.03 —44.41 + 0.08 0.27 £0.04 0.25 £+ 0.03
Mistral-7B 0.75+0.01 —75.89 £ 0.00 0.24 +0.01 0.44 + 0.00
w/ CoVo 0.51 £0.07 —74.65+0.19 0.27 +0.01 0.33 £0.03
Llama3-8B 0.56 £ 0.01 —45.75 £+ 0.00 0.28 £0.01 0.34 £0.00
w/ CoVo 0.55 £ 0.04 —44.21 £0.03 0.26 £ 0.02 0.35 £ 0.06
Riddle Swedish Understanding
Sense to German Fables
Proverbs

SmolLM-1.7B 0.26 +0.01 0.28 £ 0.06 0.15£0.01

w/ CoVo 0.22 £0.02 0.28 £0.01 0.194+0.01

Phi3-4B 0.22 £ 0.01 0.26 £0.02 0.27 +£0.00

w/ CoVo 0.40 £ 0.03 0.34 +0.04 0.32+0.01

Mistral-7B 0.44 £0.03 0.52 £ 0.03 0.62 +0.02

w/ CoVo 0.39 £ 0.07 0.44 +0.05 0.38 £ 0.04

Llama3-8B 0.50 +0.03 0.49 +0.02 0.36 + 0.02

w/ CoVo 0.48 £ 0.03 0.32 +£0.07 0.36 £ 0.02

Table 5.9: Aggregate results across 3 seeds from our qualitative assessment for the
7 multichoice tasks for the original model as-is and the version with our contextual-
learning approach. The various tasks are evaluated considering the preferred score
reported in BIG-bench.

95



Conlang

Model Codenames Translation Cryptonite Gem
SmolLM-1.7B
temp=1.0 0.22 £0.02 21.55+7.38 0.00 52.26 + 4.63
temp=0.8 0.11+£0.03 28.61 +=8.21 0.00 56.36 & 8.49
temp=1.2 0.29 +0.02 14.19 +6.85 0.00 38.15 4+ 7.47
w/ CoVo 0.14£0.1 13.05 + 6.68 0.00 35.63 + 18.2
Phi3-4B
temp=1.0 0.57 £0.54 7.08+3.19 0.00 45.72 £6.48
temp=0.8 0.00 £ 0.00 2.96 +£4.19 0.00 50.47 £+ 7.36
temp=1.2 0.66 = 0.27 7.61+£2.73 0.00 44.53 £ 6.75
w/ CoVo 0.67+0.5 13.02 £9.33 0.00 23.62 £ 23.2
Mistral-7B
temp=1.0 0.00 £ 0.00 8.86 = 2.45 0.00 55.15 +£2.10
temp=0.8 0.00 £ 0.00 1.82 £ 2.57 0.00 57.55+1.76
temp=1.2 1.01 +£1.43 14.07 £ 3.78 0.00 53.08 £5.93
w/ CoVo 16.71 £ 6.53 63.11 +7.37 0.00 57.94 +0.67
Llama3-8B
temp=1.0 0.97 +0.40 0.00 £ 0.00 0.00 62.73 £ 1.25
temp=0.8 0.25+0.14 1.27 +0.90 0.00 64.58 & 3.02
temp=1.2 0.724+0.13 0.18 £0.25 0.00 66.62 + 2.06
W/ CoVo 1.14 £0.18 36.07 = 5.22 0.00 60.66 + 4.86
uestion-Answer Yes No

° Creation Rephrase Taboo Black White
SmolLM-1.7B
temp=1.0 0.00 17.02 —0.42+£0.09 —0.21 +£0.01
temp=0.8 0.00 17.02 —0.454+0.13 —0.32£0.06
temp=1.2 0.00 17.02 —0.47 £0.04 —0.16 - 0.05
W/ CoVo 0.00 —15.74 & 1.50 —-0.33 £0.07 —0.18 +0.04
Phi3-4B
temp=1.0 0.00 —14.71 —0.06 +0.03 —0.13+£0.02
temp=0.8 0.00 —14.71 —0.02£0.01 —0.20 £ 0.03
temp=1.2 0.00 —14.71 —0.08 £ 0.01 —0.11+£0.03
W/ CoVo 0.00 —11.84+0.15 —0.12+0.03 —0.114+0.03
Mistral-7B
temp=1.0 0.00 —47.48 —0.12+0.04 —0.20£0.04
temp=0.8 0.00 —47.48 —0.00£0.00 —0.154+0.10
temp=1.2 0.00 —47.48 —0.16 = 0.05 —0.24 +£0.13
W/ CoVo 0.00 —43.91 £ 0.28 —0.63 £ 0.11 —0.21+£0.10
Llama3-8B
temp=1.0 0.00 —16.34 —1.59 £ 0.08 —0.224+0.05
temp=0.8 0.00 —16.34 —2.12+£0.28 —-0.20+0.14
temp=1.2 0.00 —16.34 —1.14 +£0.08 —0.20+0.04
W/ CoVo 0.00 —12.22 +0.05 —1.43+0.12 —0.46 £ 0.10

Table 5.10: Aggregate results across 3 seeds from our qualitative assessment
for the 8 generative tasks for the original model as-is (sampling at 3 different
temperatures) and the version with our contextual-learning approach (sampling
with 1.0 temperature). The various tasks are evaluated considering the preferred

score reported in BIG-bench.
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6 Reward beyond Reinforce

While the method proposed in Chapter 5 mainly focuses on acquiring creativity-
relevant skills along with domain-relevant skills during the preparation step,
other phases of the creative process can be considered.

Indeed, another possibility to introduce a human-inspired process in gen-
erative Al is by focusing on the sampling scheme, i.e., how the output is
generated. To recap from Section 1.2, creativity should involve the follow-
ing steps: task presentation (from internal or external stimuli); preparation;
response generation (thanks to creativity-relevant skills); and response vali-
dation (thanks to domain-relevant skills) [10]. In this chapter, we focus on
the last two steps, and we try to define new sampling schemes that include
creativity-relevant skills (Section 6.1) and that possibly validate responses
before returning them (Section 6.2).

6.1 DiffSampling

In autoregressive models like LLMs, the decoding strategy controls the re-
sponse generation. The standard decoding schemes of language models follow
the learned probability distribution from the training data. While this should
guarantee the highest probable tokens to be the most appropriate for the cur-
rent input, it can also foster the reproduction of training data and flatten the
lexicon in favor of the most common grammatical structures and words. The
temperature parameter may increase the likelihood of less-frequent tokens,
but it also raises the chance of syntactically incorrect tokens by flattening
their probabilities, regardless of their actual positions.

An ideal solution should focus on where the critical mass resides. Nucleus
sampling [285] tries to remove the tail of the probability distribution by
focusing on the smallest subset of tokens with a global probability exceeding
a given threshold. However, a few issues still remain. First, nucleus sampling
is sensitive to the choice of the threshold. Second, certain peculiar situations
might be solved incorrectly. For example, if there is one token with a very
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SORTED DIFFSAMPLING-CUT
PROBABILITY
DISTRIBUTION

DIFFSAMPLING-LB ] DIFFSAMPLING-REPARAM

1

Figure 6.1: The effect of our DiffSampling methods. In the top-left square, the
original (sorted) distribution. In the top-right square, DiffSampling-cut truncates
after the minimum discrete derivative. In the bottom-left square, DiffSampling-lb
also imposes a total probability lower bound (in this example, equal to 0.5). In the
bottom-right square, DiffSampling-reparam also reparameterizes the probabilities
with their discrete derivative.

high probability (but smaller than the threshold), it is likely to be the only
appropriate one; yet, nucleus sampling will still preserve some other tokens,
not avoiding potential errors in generation. Another case is when we have
several equally probable tokens whose total probability exceeds the threshold:
nucleus sampling will exclude some correct tokens, reducing the chance of
diversifying the final result.

In this section, we propose DiffSampling. This family of sampling strate-
gies leverages the derivative of the probability distribution to focus on the
critical mass in a way that only depends on the probabilities themselves. We
envisage three different alternatives to do so (see Figure 6.1), and we discuss
their advantages and limitations. Finally, we evaluate them in three different
scenarios, demonstrating that our method consistently performs at least as
well as current strategies.

6.1.1 Approach

Given the probability distribution of the next token, let us imagine sorting
it to have tokens in descending order based on their probability. The critical
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mass can be seen as the one delimited by the biggest difference between the
probabilities: the token to its left should be the least probable token that our
model still considers correct, i.e., the one that we might want to generate to
produce an output that is both appropriate and diverse.

In mathematical analysis, this point has a simple and elegant characteri-
zation: it is where the derivative is minimum. Let us consider a probability
distribution p(z) defined for a limited number of z; ...zy, with p() mono-
tonically decreasing. According to the forward difference approximation, the
discrete derivative of a function f(z,) is defined as Af(x,,) = f(xni1)—f(zn),
thus we have:

(@) = plo,) ifn < N
Ap(xn) = {—p(l’n) = N (61)

which is always non-positive. The argmin(Ap(z,)) represents the index of
the last token before the point characterized by the largest difference between
probabilities.

Starting from Ap(x,), we propose DiffSampling, a family of different
decoding strategies. The first one, which we call DiffSampling-cut, con-
sists of cutting the tail at the right side of the point characterized by the
largest difference between the probabilities, i.e., sampling among the tokens
x;,1 < argmin(Ap(z,)). This approach can be seen as an improved greedy
strategy: when the model has high confidence in a single token, it degen-
erates into the greedy strategy; otherwise, it preserves other appropriate
tokens, increasing the diversity of the final result.

However, there might be situations in which some of the excluded tokens
are still correct; for example, the first token might minimize Ap(z,) but still
have a quite low probability, i.e., it does not really cover the entire critical
mass. To address this issue, DiffSampling-lb introduces a lower bound on
the mass probability. To leverage the advantage of our cutting strategy
while maintaining that of nucleus sampling, our second strategy considers
truncating based on Ap(z,) in such a way that the resulting tokens have a
total probability at least equal to the lower bound py,. In other words, given
k cardinality of the smallest subset of tokens whose total probability is not
lower than py, it computes the argmin(Ap(z,)) for n > k. This approach
can be seen as an improved nucleus sampling: it corrects the p parameter of
nucleus sampling via our derivative-based approach to include correct tokens
after the selected nucleus. While this reintroduces a sensible parameter to
set, we found that a value of 0.8 provides almost no loss in terms of accuracy
but higher diversity compared to lower values (see Appendix C.1).

Finally, our third strategy aims to transform the probability distribution
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to avoid that the most frequent tokens in the training set are also the most
probable according to the model, increasing diversity and reducing the risk
of accidental reproduction. DiffSampling-reparam shifts the model’s prob-
abilities toward the options with the smallest derivatives by adding to the
original probabilities the negative of its derivatives, scaled by a multiplier :

P(xn) = p(n) — YAP(2,) - (6.2)

This, combined with the cutting and lower-bound strategies, enhances
novelty while maintaining the appropriateness of responses. This approach
can be seen as an alternative temperature: while a higher temperature still
preserves the most probable tokens as such (and introducing nucleus sampling
has the limitations mentioned above), our strategy increases the probability
of tokens before a “jump”, which are less likely to be sampled. However, the
parameter has a different behavior than temperature: with v = 0 we fall back
to DiffSampling-1b; with a very large ~, we obtain a deterministic sampling
scheme that greedily chooses the token with the minimum derivative; with
a small enough value, e.g., v = 1, we promote that last token while still
preserving the original distribution.

Overall, DiffSampling can be seen as a sampling scheme governed by two
parameters, i.e., the probability-mass lower bound p;, and the reparameteri-
zation factor . The full algorithm is reported in Algorithm 5.

Algorithm 5 DiffSampling

Input: probabilities probs = [p; ... py], lower bound py,, multiplier ~.
sorted_probs, indices = sort(probs)
fwd_probs = sorted_probs|1:] + [0.]
delta_probs = fwd_probs — sorted_probs
nucleus = cumsum(sorted_probs) < py

sorted _probs = sorted_probs — ~ - delta_probs
delta_probs[nucleus| = 0.

d = argmin(delta_probs)

sorted_probs[d+1:] = 0.

probs = sort_by_idx(sorted_probs, indices)
probs = probs/sum(probs)

Output: probs

Figure 6.2 reports six examples of the effects of DiffSampling-cut and of
DiffSampling-reparam with v = 0.5 and v = 1., first with a seemingly random
distribution (the usual situation) and then with five peculiar scenarios.
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(d) (e) (f)

Figure 6.2: The effect of our derivative-based cutting and reparameterization over
different probabilities distribution in the case of 7 tokens. In blue is the original
probability distribution; transparency represents the tokens cut by DiffSampling-
cut. In yellow is the effect of DiffSampling-reparam with v = 0.5 parameter; in
red the effect with v = 1.

6.1.2 Experiments

To evaluate whether DiffSampling helps diversify outputs while maintaining a
high level of accuracy, we test it on three case studies: mathematical problem
resolution, text summarization, and divergent association task.

Models and Baselines. In all our experiments, we start from a state-of-
the-art LLM and test various decoding strategies. For the math problem
resolution, we use the Llama2-based MetaMath model trained with self-
supervised learning on MetaMathQA [722]. Following [110], for extreme
text summarization we use the Llama2-7B model [656], considering both
RLHF-instructed and pre-trained versions. Finally, for the divergent as-
sociation task, we consider Llama3-8B [169], using both DPO-tuned and
pre-trained versions. We study the performances of our three methods:
DiffSampling-cut; DiffSampling-1b with py, = 0.8; DiffSampling-reparam with
pw = 1.,7 = 1.. We compare them with a total of 7 baselines: greedy strat-
egy and contrastive search (with £ = 8 and a = 0.6); nucleus sampling (with
p = 0.9), p-sampling (with n = 0.0003), and locally typical sampling (with
p = 0.9); nucleus sampling with a higher temperature of 1.5 and 2.0. We also
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experiment with different p;, and + values; results are shown and discussed
in Appendix C.

Math Problem Resolution

Setup. Solving math problems provides a useful case study for our decod-
ing strategies, as it allows us to evaluate the correctness of solutions (as the
percentage of correctly solved problems) and the diversity of procedures to
arrive at the result. To better understand whether our methods can increase
diversity while maintaining accuracy we consider both the MetaMathQA
training set [722] and the GSM8K [127] and MATH [269] test sets; the rela-
tive prompts are reported in Appendix A.4. To avoid resource wasting, we
focus on entries with a problem and a solution whose tokenized versions are
no longer than 512. Since the training set is incredibly vast (395k entries),
we limit our experiment to 1000 random samples, while we consider all 1319
entries from the GSM8K test set and all the filtered 4545 entries from the
MATH test set. We evaluate the quality of solutions through the ratio of cor-
rectly solved problems. Instead, the diversity is computed according to vari-
ous methods: distinct 1-grams and 2-grams [385], plus expectation-adjusted
distinct N-grams (EAD) [403] and embedding cosine similarity (SIM) [287],
which should evaluate both syntactic and semantic diversity, respectively
[346]. EAD counts the number of distinct N-grams tokens (averaging over
N =1...5) and removes the bias toward shorter inputs by scaling the num-
ber of distinct tokens based on their expectations. The SIM metric computes
the cosine similarity between the embeddings of the sentences and returns
1 minus the similarity. While originally based on Sentence-BERT [528], we
employ the more recent all-mpnet-base-v2, as suggested by their developers
[580]. Following [346], we compute cross-input EAD and SIM, i.e., by consid-
ering all outputs produced for a specific seed together. In addition, we also
compute against-greedy EAD and SIM. Given each input, we compare the
output with the greedy one by calculating the average expectation-adjusted
distinct N-grams not present in the greedy response, and 1 minus the cosine
similarity between the two outputs, respectively.

Results. Table 6.1 reports the aggregate results of all the tested methods
over the sampled portion of the math training data. As evident by the re-
sults, the MetaMath model’s performance heavily depends on whether the
generated tokens are sampled or selected greedily: in the first case, the per-
centage of correct answers can drop by more than half. Quite interestingly,
our cutting strategy achieves comparable results as well even without greedy
sampling. Most likely, the tokens corresponding to the final answer are the
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Method Accuracy Cross-Input Diversity Against-Greedy Diversity

EAD 1 SIM 1 EAD 1 SIM 1
Greedy 95.27+0.17 | 1.65+£0.01 0.74 +£0.02 - -
Contrastive search 94.174+0.45 | 1.66+0.01 0.744+0.01 | 0.15£0.01 0.27£0.01
n-sampling 89.174+0.52 | 1.71 +£0.01 0.74 £ 0.01 0.22 +£0.01 0.37+0.01

Locally typical sampling 91.70+£0.62 | 1.69£0.01 0.744+0.01 | 0.20£0.01 0.35£0.01
Nucleus sampling t=1.0 91.70 £0.62 | 1.69+0.01 0.74£0.01 | 0.20£0.01  0.35+0.01
Nucleus sampling t=1.5 87.63£0.90 | 1.73£0.00 0.73£0.02 | 0.26+0.01 0.41+0.01
Nucleus sampling t=2.0 30.17£0.76 | 8.20£0.12 0.594+0.02 | 0.71+0.01 0.63+0.01

DiffSampling-cut 94.70£0.21 | 1.66 £0.01 0.75+0.01 | 0.12+£0.00 0.22+0.01
DiffSampling-1b 92.97+£0.12 | 1.67£0.01 0.74+0.01 | 0.18+0.01 0.32+0.01
DiffSampling-reparam 89.67+£0.15 | 1.70+£0.01 0.75£0.01 | 0.23£0.01 0.38+0.01

Table 6.1: Accuracy and diversity of results for the training data set over 3 seeds.
Accuracy and cross-input diversity report the mean and standard error over the
final score of each run, while against-greedy diversity reports the mean and the
95% confidence interval over the full set of answers.

most probable ones and are also characterized by the largest difference in
terms of probabilities, making the sampling almost greedy. This effectively
shows one of the advantages of our solution over nucleus sampling, which
instead carries on less probable and wrong tokens that can be sampled after-
ward. Similarly, DiffSampling-reparam with v = 10. obtains slightly better
results than smaller v and the standard sampling: most likely, the reparame-
terization pushes sufficiently up the tokens before the point characterized by
the largest difference between the probabilities, which incidentally are those
leading to correct solutions. On the other hand, there is no real difference in
diversity across the tested methods, which might be because training data are
considered: the learned probability distribution is close to the real one, thus
regardless of the sampling strategy, the generated text will be anyway simi-
lar. Moreover, the all-mpnet-base-v2 model might not be ideal for evaluating
diversity in mathematical procedures, making its related metrics pointless.

Table 6.1 reports the aggregate results of all the tested methods over
the sampled portion of the math training data. As evident by the results,
the MetaMath model’s performance depends on the greediness of the decod-
ing strategy: the greedy one achieves the highest accuracy, closely followed
by DiffSampling-cut. Interestingly, both DiffSampling-lb and DiffSampling-
reparam perform better than their most similar baselines while having similar
cross-input diversity. On the other hand, the against-greedy diversity scores
are inversely correlated with accuracy, since the greedy strategy appears to
be the optimal one.

Table 6.2 reports the results for the GSM8K test set. Differently from the
results above, here the greedy strategy does not provide strong advantages,
and our cutting strategy achieves the highest percentage of solved problems.
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Method Accuracy Cross-Input Diversity Against-Greedy Diversity

EAD 1 SIM 1 EAD 1 SIM 1
Greedy 66.44 +0.00 | 1.97+0.00 0.74 4+ 0.00 - -
Contrastive search 65.88 = 0.59 | 2.004+=0.00 0.744+0.00 | 0.18 £0.00 0.38£0.01
n-sampling 65.05+0.19 | 2.06+0.00 0.75+0.00 | 0.27+0.00 0.49+0.01

Locally typical sampling 66.29+0.55 | 2.03£0.00 0.75+0.01 | 0.244+0.00 0.46£0.01
Nucleus sampling t=1.0 65.00£0.18 | 2.024+0.01 0.75£0.00 | 0.24£0.00 0.46 £0.01
Nucleus sampling t=1.5 63.91£0.57 | 211£0.01 0.76+0.01 | 0.30+£0.00 0.53+0.01
Nucleus sampling t=2.0 25.40£0.07 | 9.97£0.10 0.65+£0.00 | 0.71+0.01 0.71+0.01

DiffSampling-cut 67.10+£0.19 | 1.98£0.00 0.754+0.00 | 0.154+0.00 0.33£0.01
DiffSampling-1b 66.87+0.16 | 2.01£0.00 0.754+0.00 | 0.224+0.00 0.43+£0.01
DiffSampling-reparam 64.62+£0.13 | 2.06+0.01 0.74£0.00 | 0.27£0.00 0.49+0.01

Table 6.2: Accuracy and diversity of results for the GSM8K test set over 3 seeds.
Accuracy and cross-input diversity report the mean and standard error over the
final score of each run, while against-greedy diversity reports the mean and the
95% confidence interval over the full set of answers.

As far as diversity is considered, DiffSampling-cut remains the closest to
greedy, but with slight improvements in diversity; instead, DiffSampling-lb
has slightly worse scores than similar approaches, but with gains in accuracy.
Finally, it is interesting to note that increasing temperature has dramatic
effects on the accuracy of solutions, and does not have significant advantages
in terms of semantic, cross-input diversity.

The results for the MATH test set are similar, as reported in Table 6.3.
Both contrastive search and DiffSampling-cut have higher accuracy than
greedy while having the lowest diversity scores. However, DiffSampling-lb
achieves slightly higher accuracy than greedy without consequences on di-
versity, which is aligned with similar techniques. Again, a higher tempera-
ture leads to poor results in terms of correctness and semantic cross-input
diversity, while DiffSampling-param still maintains a decent level of accuracy.

Extreme Summarization

Setup. Summarizing paragraphs and longer text represents another mean-
ingful case study since the same text can be correctly outlined in different
ways. To keep the resource consumption as low as possible, we consider
the eXtreme Summarization (XSum) dataset [457], which contains pairs of
documents and one-sentence summaries. In particular, we use the test parti-
tion (11334 entries) and exclude all entries with a tokenized document longer
than 768, obtaining 9815 entries; then, we limit our experiment to 1000 ran-
dom samples, and we use the prompt suggested by [110] and reported in
Appendix A.4. Again, we aim to verify whether the summaries generated
with DiffSampling are more diverse while maintaining a competitive qual-
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Method Accuracy Cross-Input Diversity Against-Greedy Diversity

EAD 1 SIM 1 EAD 1 SIM 1
Greedy 20.62 +0.00 | 5.58+0.00 0.67 £ 0.00 - -
Contrastive search 21.054+0.14 | 5.754+0.01 0.684+0.00 | 0.31 £0.00 0.42 +0.00
n-sampling 19.67£0.20 | 6.284+0.01 0.67+0.00 | 0.394+0.00 0.49+0.00

Locally typical sampling 19.95+£0.26 | 5.994+£0.01 0.69+0.00 | 0.37£0.00 0.47=+0.00
Nucleus sampling t=1.0 20.02+0.12 | 6.00£0.02 0.68£0.00 | 0.37£0.00 0.47+0.00
Nucleus sampling t=1.5 18.38+0.22 | 6.83+£0.02 0.68£0.00 | 0.43+0.00 0.5140.00
Nucleus sampling t=2.0 249+0.01 | 47.97£0.07 0.404+0.00 | 0.92+£0.00 0.63 £ 0.00

DiffSampling-cut 21.06 £0.13 | 5.65+0.01 0.67+0.00 | 0.27£0.00 0.37+0.00
DiffSampling-1b 2091+£0.24 | 589+0.01 0.68+0.00 | 0.35£0.00 0.46=+0.00
DiffSampling-reparam 19.38+£0.12 | 6.30£0.02 0.67+0.00 | 0.40£0.00 0.49 £0.00

Table 6.3: Accuracy and diversity of results for the MATH test set over 3 seeds.
Accuracy and cross-input diversity report the mean and standard error over the
final score of each run, while against-greedy diversity reports the mean and the
95% confidence interval over the full set of answers.

ity. For diversity, we consider the same metrics presented in Section 6.1.2.
For quality, we use ROUGE-1 [397], a standard metric for summarization
that considers the ratio of 1-grams presented in both target and generated
sumimaries.

Results. In terms of ROUGE-1 performances, the results for the instructed
model are not significant, and all strategies achieve the same score apart from
those with higher temperatures. As far as diversity is considered, the results
are coherent with what was discussed before: DiffSampling-cut is placed
between greedy and contrastive search; DiffSampling-lb between contrastive
search and other nucleus-based methods; and DiffSampling-reparam between
nucleus sampling with 1 temperature and higher temperatures. Table 6.4
reports the aggregate results.

These considerations find confirmation when the non-instructed model
is considered. As reported in Table 6.5, DiffSampling-cut behaves close to
greedy strategy, but with a slight increase in diversity; while DiffSampling-lb
trades off diversity in favor of accuracy with respect to nucleus-based ap-
proach. However, DiffSampling-reparam performs more likely as n-sampling
than higher temperatures, as they rapidly lose accuracy and semantic diver-
sity in favor of syntactic one.

Divergent Association Task

Setup. The last use case considers the Divergent Association Task (DAT)
[105]. Building on the theory that creativity is related to the capability of
generating more divergent ideas [34], it requires participants to name unre-
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Method ROUGE-11 Cross-Input Diversity Against-Greedy Diversity

EAD 1 SIM 1 EAD 1 SIM 1
Greedy 0.22+0.00 | 1.16£0.00 0.91 4+ 0.00 - -
Contrastive search 0.22 £ 0.00 1.18+0.00 0.91+£0.00 | 0.21+0.01 0.27£0.01
n-sampling 0.22+0.00 | 1.22£0.00 0.91+0.00 | 0.33+0.01 0.40+0.01

Locally typical sampling 0.224+0.00 | 1.21+£0.00 0.92£0.00 | 0.30£0.01 0.37+0.01
Nucleus sampling t=1.0 0.22+0.00 | 1.21£0.00 0.92+0.00 | 0.30x£0.01 0.37£0.01
Nucleus sampling t=1.5 0.21£0.00 | 1.33+£0.01 092+£0.00 | 0.41£0.01 0.48£0.01
Nucleus sampling t=2.0 0.10£0.00 | 2.23+0.01 0.74+£0.01 | 0.78 £0.01 0.78 £0.01

DiffSampling-cut 0.22£0.00 | 1.16+0.00 091+£0.00 | 0.17£0.01 0.2240.01
DiffSampling-1b 0.224+0.00 | 1.20+£0.00 091£0.00 | 0.27£0.01 0.334+0.01
DiffSampling-reparam 0.22+0.00 | 1.22£0.00 0.91+0.00 | 0.34+0.01 0.41+0.01

Table 6.4: Aggregate results for the RLHF-instructed model over 3 seeds for the
XSum dataset in terms of ROUGE-1. Diversity metrics are computed against the
reference answer from the dataset (left) and the answer sampled with a greedy
strategy (right).

Method ROUGE-11 Cross-Input Diversity Against-Greedy Diversity
EAD 1 SIM ¢ EAD T SIM T
Greedy 0.19 £ 0.00 1.11+£0.00 0.93 £0.00 - -
Contrastive search 0.19 £ 0.00 1.144+0.00 0.92+0.00 | 0.454+0.01 0.50+£0.02
n-sampling 0.15+0.00 | 1.19£0.01 0.91+0.00 | 0.78=0.01  0.80 £ 0.01

Locally typical sampling 0.16+0.00 | 1.16£0.00 0.91+0.00 | 0.75+0.01 0.79£+0.01
Nucleus sampling w t=1.0 | 0.16 £0.00 | 1.16£0.00 0.91+0.00 | 0.75+0.01 0.79+0.01
Nucleus sampling w t=1.5 | 0.04£0.00 | 2.32+0.00 0.73+0.02 | 0.96+0.00 0.92+0.01
Nucleus sampling w t=2.0 | 0.01£0.00 | 3.074+0.01 0.444+0.02 | 0.98+£0.00 0.92+£0.01

DiffSampling-cut 0.194+0.00 | 1.13+0.00 0.93+£0.00 | 0.25+£0.01 0.284+0.01
DiffSampling-1b 0.174+0.00 | 1.154+0.01 0.91+£0.01 | 0.72+£0.01 0.754+0.01
DiffSampling-reparam 0.15+0.00 | 1.17£0.01 0.91+0.01 | 0.77+0.01 0.80+0.01

Table 6.5: Aggregate results for the pre-trained, non-instructed model over 3
seeds for the XSum dataset in terms of ROUGE-1. Diversity metrics are computed
against the reference answer from the dataset (left) and the answer sampled with
a greedy strategy (right).

lated words. Then, the semantic distance between them can represent an
objective measure of divergent thinking [477]. DAT represents a useful case
study for decoding strategies as it constrains the generation to different nouns
(thus, assuming an optimal probability distribution, the tail due to smooth-
ing should contain everything else) and requires generating terms that are as
different as possible, which is quite the opposite to what typically happens
in language modeling: an optimal strategy should exclude non-appropriate
tokens but also not to limit too much the space of possible tokens. More
concretely, given the embeddings of n words, the DAT score is the average
cosine distance between each pair of embeddings (then scaled as a percent-
age). Following the original paper, we use GloVe embeddings [500] and ask
the model to generate a list of 10 nouns. We discard outputs without a list of
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at least 7 distinct nouns, and we compute the DAT score for all other outputs
over their first 7 nouns. We repeat the experiment 100 times for non-greedy
strategies to mitigate the sampling stochasticity.

Results. Fig. 6.3 summarizes the DAT results for the instructed version of
Llama3-8B. DiffSampling-cut obtains slightly better scores than contrastive
search, and DiffSampling-lb obtains almost identical scores with respect to
its three baselines. Instead, DiffSampling-reparam gets a slightly lower score
than nucleus sampling with a 1.5 temperature; however, it only generates
14 non-valid outputs against the 36 from the baseline. Moreover, increasing
the temperature to 2.0 causes the model to generate only non-valid outputs,
making it evident that temperature increases diversity regardless of the cor-
rectness of the output.
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Figure 6.3: Above, the DAT score for our methods and the baselines over the
instructed version of Llama3-8B. Below, the number of valid outputs produced
by each sampling strategy. Single lines represent greedy methods, while boxplots
show the performance of stochastic strategies.

As shown in Fig. 6.4, the results for the non-instructed version of Llama3-
8B are quite different. DiffSampling-cut is still arguably better than con-
trastive search, as it produces fewer low-scoring and only valid outputs.
Again, DiffSampling-lIb performs close to its three baselines, but with more
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Figure 6.4: Above, the DAT score for our methods and the baselines over the
non-instructed version of Llama3-8B. Below, the number of valid outputs produced
by each sampling strategy. Single lines represent greedy methods, while boxplots
show the performance of stochastic strategies.

valid outputs than n-sampling and less low-scoring responses than nucleus
sampling. Finally, DiffSampling-reparam gets the best scores with a ratio of
valid outputs similar to nucleus sampling, and increasing temperature only
produces non-valid lists. In general, these results confirm the hypothesis that
the cutting strategy produces “safer” but potentially less creative outputs,
while reparameterization increases diversity at the cost of some accuracy.

6.2 Creative Beam Search!

The approach described above only work at the response-generation level.
Here, instead, we propose Creative Beam Search (CBS), a method to better
consider other parts of the human creative process during text generation.
Drawing from the componential model of creativity [10], after a task pre-

IThe participation and presentation of the resulting paper at ICCC’24 was supported
by the ISA Doctoral Prize (ISA DP), offered by Istituto di Studi Avanzati, Alma Mater

Studiorum Universita di Bologna.
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sentation step where an external stimulus is provided in the form of a user
prompt and a preparation step where a pre-trained language model is loaded
(bringing along the facts and information already acquired), CBS is artic-
ulated in two steps: response generation and response validation. The full
process is summarized in Figure 6.5.

\
0. TASK PRESENTATION 2. RESPONSE VALIDATION
: [ ) K prompts o
et S I P D
user l candidates pac @
: indifferent 3 =
positions are Z @ [AR[A[)
J created for Z @ P[AE[
evaluation.
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GENERATION The
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from the
Asetof K model.
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obtained
with Diverse The top-
Beam Search voted :l:‘_l:l
(DBS). NAY candidateis NI
B returned. B
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Figure 6.5: The Creative Beam Search method. Given a user prompt (step 0),
DBS samples K candidate solutions from a pre-trained language model (step 1).
Then, K evaluative prompts are composed by altering the order of the candidates
and are passed to the model as inputs (step 2). The candidate with the most
preferences is finally outputted.

6.2.1 Approach

Response Generation. During the response generation phase, an indi-
vidual generates response possibilities by searching through the available
pathways, exploring features relevant to the task at hand [10]. This process
requires creativity-relevant skills as well as a method to limit the search to
feasible and relevant solutions.

We propose to simulate these aspects using Diverse Beam Search for
sequence generation [675]. During beam search, a better collection of options
is generated thanks to a diversity penalty. The beam budget B is divided
into G groups. At each generation step, the g solutions for a given group are
selected among all possible Z - |V| candidates (where V is the vocabulary).
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These solutions optimize an objective consisting of two terms: the standard
sequence likelihood under the model, and a dissimilarity term that encourages
diversity across groups. Commonly, Hamming diversity is considered, where
each token receives a penalty proportional to the number of times that same
token has been selected in other groups at the same step. Therefore, DBS
can be seen as guided by two forces: the diversity penalty, which represents a
simplified creativity-oriented skill, and the likelihood under the model, which
helps focus the search to feasible and relevant paths.

Response Validation. During the response validation phase, the response
possibilities are tested for quality and appropriateness, using the knowledge
and assessment criteria from domain-relevant skills [10].

We propose an explicit self-assessment step that leverages the evaluative
capabilities of recent generative models [370, 723]. This involves asking the
model to choose among the top K candidates generated by DBS, according
to their score. This allows the system to output the solution the model
finds to be the best for the task, rather than simply returning the one with
the highest combined likelihood and diversity. While Amabile [10] suggests
evaluating a single response and repeating the entire process if the test is
not passed, our method simplifies this by evaluating multiple candidates in
a single step. This trade-off allows CBS to maintain short computing times,
making it effective for online co-creative purposes.

In practice, CBS uses LLM-as-a-Judge prompting [736] to make the model
decide among the generated candidates. To address positional bias, we
use the balanced position calibration scheme [681]. We create K different
prompts by rotating the top K candidates, ensuring each candidate is con-
sidered in all possible positions. We then aggregate the votes and select the
candidate with the most preferences. In the event of a tie, the initial order of
the candidates (i.e., the DBS score) is taken into account. The full algorithm
for CBS can be found in Algorithm 6.

6.2.2 Experiments

We conducted a qualitative evaluation of Creative Beam Search to assess its
potential for co-creativity. Figure 6.6 shows a screenshot of the interface we
used, which was created with Gradio [2].

Setup. We chose Llama 2 [656] as our pre-trained language model. Due to
resource constraints, we selected the 7B variant and used the RLHF-tuned
version, which provides more accurate and coherent responses. We set the
beam budget B to 8, divided into single-item groups (i.e., G = 8). The
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Algorithm 6 Creative Beam Search

Require py pre-trained language model, B beam budget, G groups for
DBS, K final candidates, p user input.

pee" = generation template(p)

Xj ...XKg = diverse_beam_search(py, p&", B, G)[: K]

votes = [0 for k =1... K]

for k=1...K do

p*?! = validation template(x; ...Xxk)

y = po(p*™)
pref = extract _preference(y) + k
pref = pref — K if pref > K
votes|pref| = votes|pref]| + 1
X ¢ X1,X1 ¢ X2...XK_1 ¢ XK
XK < Xo

end for

Return Xargmax(votes) -

diversity penalty was scaled by a factor of 10 to counterbalance the likelihood
score. We then retained the top K = 4 solutions for the evaluation step. For
the DBS step, we used the following prompt:

[INST]
{request}. Provide only one answer without any explanation.

[/INST]

while the prompt for self-assessment is

r

[INST]

Which of the following is the most creative answer to “{request}”?
1) {x1}

2) {x2}

3) {xs}

4) {xa}

Provide only the number of the most creative answer without any
explanation.

[/INST]

As mentioned above, we repeated the latter step K = 4 times, each time

altering the positions of the candidates.
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/1.Start typing below your creative request and then click Run to see the outputs. \

Insert here your creative request

What can be a good name for an all-robot rock folk band?

4

2. Then, use the radio buttons on the right to indicate which, in your opinion, is the most creative response, and finally click Submit. Please feel free to try with
different prompts anytime you want. Note: due to resource constraints, the generation has been limited to a maximum length. This means that for certain

prompts (e.g. asking for a song or a short story) the text might seem unfinished. Please ignore it and evaluate it as if it would have been completed.

Option A Which of the two options is the most creative?
Sure! Here's a potential name for an all-robot folk rock band: A B AandBareverysimilar:/
RoboRiot 4
Option B
Sure! Here's a potential name for an all-robot folk rock band:
"MechaMelodies"
/A J

Figure 6.6: The interface presented to the end-users during our experiment. After
inserting a prompt with a creative request, two options are shown in a random
order: the CBS output and the standard sampling output. The user is then asked
to indicate which is the most creative in their opinion (or if the two options are
too similar to decide).

We limited the model outputs to 256 new tokens. Although this is a
significant constraint, we believe it does not impact the final result as dif-
ferences in creativity should be noticeable even in shorter texts. Lastly, we
used a greedy decoding strategy (i.e., always selecting the most probable to-
ken) for the self-assessment to prevent the best candidate from being chosen
randomly.

Qualitative Results. We carried out a qualitative evaluation involving 31
graduate students in Computer Science. They were given the freedom to
input their prompts and were asked to choose between the CBS and the
standard output (generated with a temperature of 1.0 and nucleus sampling
[285] with top-p of 0.9). The presentation order of the two solutions was
randomized, and the user could also indicate the outputs were too similar to
differentiate.

We gathered a total of 217 answers. As reported in Table 6.6, CBS
was preferred 45% of the time, with a significant margin over the standard
output. However, in about one-fourth of the cases, the responses were too
similar to make a choice. This suggests that despite the diversity penalty and
self-evaluation step, CBS output does not deviate significantly from standard
sampling.

We also tracked whether the candidate selected during self-evaluation was
the same as the one selected by DBS. The overlap was 29%, which is less
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Preference CBS != DBS CBS == DBS Total
CBS .34 A1 .45
STD 18 A1 .29
Same .19 7 .26
71 .29 1.00

Table 6.6: Aggregate results from our qualitative assessment. The three possible
preferences (CBS for Creative Beam Search, STD for standard sampling, and Same
for when CBS and STD were too similar to choose) are divided considering whether
CBS output is the same as Diverse Beam Search (DBS) output or not, and in total.

than the 35.3% that a random selection would have led to. This indicates
that the self-evaluation step was not merely random and has subverted more
than confirmed the DBS scoring.

Finally, we also analyze whether there was a difference in user preference
for CBS outputs that matched or did not match the DBS outputs. Figure 6.7
shows the preference proportions for both scenarios. While the differences
are not substantial, the standard output was preferred more when compared
with the DBS output. This suggests that the final self-evaluation step can
further improve Diverse Beam Search.

1.0 1
0.8
_5 0.6 1 Preference
B == STD
3 SAME
g 0.4 mm CBS
0.2 1
0.0

CBS!=DBS CBS==DBS

Figure 6.7: Percentage of end-users’ preferences comparing when CBS output is
equal to DBS output and when it is not.
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7 Societal Issues around
Creativity and (Generative
Deep Learning

Regardless of the level of creativity reached by generative Al, foundation
models are used daily to generate content by answering questions, correcting
human inputs, or producing new items. Thanks to their output quality, their
pervasiveness has reached unprecedented levels [293]. However, the rapid
adoption of technologies, which we still do not fully understand, raises several
philosophical, ethical, and practical questions. In this chapter, we discuss the
three issues that are most relevant to the scope of this work: whether current
foundation models are creative and what are the main social implications
of this (Section 7.1); whether current foundation models can be entitled of
agency and what can happen to human agency when collaborating with them
(Section 7.2); and how current copyright laws can manage the complexity of
generative Al in terms of human- and machine-generated artworks’ protection
(Section 7.3).

7.1 Creativity and Large Language Models

As extensively described throughout this work, large language models are
captivating the imagination of millions of people. They are commonly used
for creative tasks like poetry or storytelling and the results are often remark-
able!. Notwithstanding, a critical question has been overlooked so far: can
LLMs be considered creative?

In this section, we will try to answer by taking into account the most
prominent cognitive science and philosophical theories of creativity (see Chap-
ter 1). We will discuss the dimensions according to which we believe LLMs
should be analyzed to evaluate their level of machine creativity. In particu-

!See, for instance: https://www.gwern.net/GPT-3 [Accessed October 21, 2024].
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lar, we analyze LLMs from the perspective of Boden’s three criteria (Section
7.1.1), as well as considering other relevant philosophical theories (Section
7.1.2). Finally, we discuss the practical implications of LLMs for the arts,
creative industries, design, and, more in general, scientific and philosophical
inquiry (Section 7.1.3).

7.1.1 Large Language Models and Boden’s Three
Criteria

In the following, we will analyze to what extent state-of-the-art LLMs satisfy
Boden’s three criteria (see Section 1.2) and we will question if LLMs’ outputs
can be really considered creative.

Value refers to utility, performance, and attractiveness [421]. It is also
related to both the quality of the output and its acceptance by society. Due
to the large impact LLMs are already having [59] and the quality of outputs
of the systems based on them [625], it is possible to argue that the artifacts
produced by them are indeed valuable.

Novelty refers to the dissimilarity between the produced artifact and other
examples in its class [538]. However, it can also be seen as the property of not
being in existence before. This is considered in reference to either the person
who came up with it or the entire human history. The former is referred
to as psychological creativity (shortened as P-creativity), whereas the latter
is historical creativity (shortened as H-creativity) [53]. While the difference
appears negligible, it is substantial when discussing LLMs in general. Con-
sidering these definitions, a model writing a text that is not in its training set
would be considered as P-novel, but possibly also H-novel, since LLMs are
commonly trained on all available data. Their stochastic nature and the va-
riety of prompts that are usually provided commonly lead to novel outcomes
[431]; LLMs may therefore be capable of generating artifacts that are also
new. However, one should remember how such models learn and generate.
LLMs still play a sort of imitation game, without a focus on (computational)
novelty [182]. Even if prompted with the sentence “I wrote a new poem this
morning:”, they would nonetheless complete it with what is most likely to
follow such words, e.g., something close to what others have written in the
past [585]. It is a probabilistic process after all. The degree of dissimilarity
would therefore be small by design. High values of novelty would be caused
either by accidental, out-of-distribution productions or by careful prompting,
i.e., one that would place the LLM in a completely unusual or unexpected
(i.e., novel) situation.

Surprise instead refers to how much a stimulus disagrees with expectation
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[44]. Tt is possible to identify three kinds of surprise, which correspond to
the three different forms of creativity: combinatorial creativity, exploratory
creativity, and transformational creativity (as detailed in Section 1.2). These
three different forms of creativity involve surprise at increasing levels of ab-
straction: combining existing elements, exploring for new elements coherent
with the current state of the field, and transforming the state of the field to
introduce other elements. The autoregressive nature of classic LLMs makes
them unlikely to generate surprising products [80] since they are essentially
trained to follow the current data distribution [585]. By relying only on
given distributions and being trained on them, LLMs might at most express
combinatorial or exploratory creativity. Of course, specific different solutions
may be generated through prompting or conditioning. For instance, recent
LLMs can write poems about mathematical theories, a skill that requires
the application of a certain existing style to a given topic, yet leading to
new and unexplored solutions. However, the result would hardly be unex-
pected for whom has prompted the text. For an external reader, the surprise
would probably arise from the idea of mathematical theories in verses, which
is due to the user (or by the initial astonishment of a machine capable of
it [677]). Transformational creativity is not achievable through the current
LLM training solutions. In theory, other forms of training or fine-tuning
might circumvent this limitation, allowing the model to forget the learned
rules in order to forge others. However, this is not the case with current mod-
els. ChatGPT and all the other state-of-the-art LLMs are fine-tuned with
RLHF or DPO (Section 2.3). While in theory this could lead to potentially
surprising generation, its strict alignment to very careful and pre-designed
human responses leads to the generation of text that tends to be less diverse
[346] and that might be considered banal [282].

Nonetheless, the outputs from such models are often considered creative
by the person interacting with them or exposed to their best productions.
Though this is apparently in contrast with what was discussed above, we can
explain this phenomenon by considering the fact that our perception does
not usually align with theoretical definitions of creativity. Indeed, we do not
typically judge the creativity of a product by considering its potential novelty
and surprise in relation to its producer, but rather in relation to ourselves.
Something can be new for the beholder, leading to a new kind of novelty
which we call B-novelty, as it is the one “in the eye of the beholder”, but
not new for the producer nor the entire human history. The same applies
to surprise: a product can violate the observer’s expectations in many ways
without being unexpected considering the entire domain. In other words, the
product of an LLM can appear to be creative - or be B-creative - even if it
is not truly creative according to the theory of creativity.
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In conclusion, while LLMs are capable of producing artifacts that are valu-
able, achieving P- or H-novelty and surprise appears to be more challenging.
It is possible to argue that LLMs may be deemed able to generate creative
products if we assume the definition of combinatorial creativity. To achieve
transformational creativity, alternative learning architectures are probably
necessary; in fact, current probabilistic solutions are intrinsically limiting in
terms of expressivity. We believe that this is a fundamental research area for
the community for the years to come.

7.1.2 Easy and Hard Problems in Machine Creativity

LLMs might be able to generate creative products in the future. However,
the fact that they will be able to generate these outputs will not make them
intrinsically creative. Indeed, as the authors of [193] put it, it is not what
is achieved but how it is achieved that matters. An interesting definition
that considers both the what and how dimensions is the one from Gaut
[203]: creativity is the capacity to produce original and valuable items by
flair. Exhibiting flair means exhibiting a relevant purpose, understanding,
judgment, and evaluative abilities. Such properties are highly correlated
with those linked with process (see Section 1.2), i.e., motivation, perception,
learning, thinking, and communication [535]. Motivation is a crucial part of
creativity, as it is the first stage of the process. Usually, it comes from an
intrinsic interest in the task, i.e., the activity is interesting and enjoyable for
its own sake [146]. However, LLMs lack the intention to write. They can
only deal with “presented” problems, which are less conducive to creativity
[11]. The process continues with the preparation step (reactivating store
of relevant information and response algorithms), the response generation,
and its validation and communication [10]. The last two steps allow one to
produce different response possibilities and to internally test them in order
to select the most appropriate. Again, LLMs do not contain such a self-
feedback loop. At the same time, they are not trained to directly maximize
value, novelty, or surprise. They only output content that is likely to follow
given a stimulus in input [585]. In other words, they stop at the first stage of
creative learning, i.e., imitation, not implementing the remaining ones, i.e.,
exploration and intentional deviation from conventions [536].

However, paraphrasing Chalmers [102], these appear as easy problems to
solve in order to achieve creativity since solutions to them can be identified
by taking into consideration the underlying training and inference processes.
The hard problem in machine creativity is about the intentionality and the
self-awareness of the creative process in itself. Even though the intent of run-
ning the LLM may be achieved by its outcome, it is in an unintentional way
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[645]; as current generative AI models are only causal, and not intentional,
agents [321]. Indeed, a crucial aspect of the creative process is the perception
and the ability of self-evaluating the generated outputs [10]. This can be seen
as a form of creative self-awareness. While not strictly necessary to generate
a response, this ability is essential in order to self-assess its quality, so as to
correct it or to learn from it. Nonetheless, no current LLM can self-evaluate
its own responses. LLMs can in theory recognize certain limitations of their
own texts after generating them, e.g., by ranking them (as done in Section
6.2) or by assigning quality- and diversity-based scores [67]. Then, they can
try to correct, modify, or rephrase the outputs if asked to do so (i.e., through
an external intervention). However, they would do it only by guessing what
is the most likely re-casting of such responses or through the application of a
set of given rules. It is worth noting that this is something distinct from the
problem of the potential emergence of theory of mind in these systems [77].

Indeed, product and process are not sufficient to explain creativity. As
introduced in Chapter 1, four perspectives have to be considered: product
(see Section 7.1.1) and process (discussed above), but also press and person.
Press, as described in Section 1.2, refers to the relationship between the
product and the influence its environment has upon it [535]. Individuals and
their works cannot be isolated from the social and historical milieu in which
their actions are carried out. Products have to be accepted as creative by
the society, and producers are influenced by the previously accepted works,
i.e., the domain [140]. The resulting system model of creativity is a never-
ending cycle where individuals always base their works on knowledge from
a domain, which constantly changes thanks to new and valuable artifacts
(from different individuals). For example, individuals generate new works
based on the current domain; the field (i.e., critics, other artists, the public,
etc.) decides which of those works are worth promoting and preserving;
the domain is expanded and, possibly, transformed by these selected works;
individuals generate new works based on the updated current domain; and
then this cycle repeats.

However, LLMs cannot currently adapt through multiple iterations in the
way described above; they just rely on one, fixed version of the domain and
generate works based on it. The current generation of LLMs are immutable
entities, i.e., once the training is finished, they remain frozen reflecting a spe-
cific state of the domain. In other words, they are not able to adapt to further
changes. In-context learning can simulate an adaptation to new states of the
domain. The constantly increasing context length [291] allows researchers
to provide more and more information to LLMs without re-training them,
although a longer context might lead to performance degradation [389]. This
enables the representation of the current state of the domain through an ad-
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equate prompt, allowing the model to generate different outputs according
to environmental changes. For example, in [488], multiple LLM-based agents
interact through natural language in a sandbox environment inspired by The
Sims. Each agent stores, synthesizes, and applies relevant memories to gen-
erate believable behavior through in-context learning, leading to emergent
social behaviors. The study of emergent behaviors of LLM-based agents at
the population level is an active research area [247]. It is easy to imagine the
simulation of creative or artistic environments, such as a virtual multi-agent
translation company [701], as well.

However, LLMs are like the main character of Cristopher Nolan’s film
Memento: they always possess all the capabilities, but each time they “wake
up”, they need to re-collect all the information about themselves and their
world. The time - or space - to acquire such information is limited, and by
the next day, they will have forgotten it all. In other words, these generative
agents do not truly adapt or learn new things about the changing domain.
Placing them in a different environment that requires a different prompt
will make them start over, without the possibility of leveraging previously
acquired experience.

On the other hand, fine-tuning actually updates network weights, but it
requires a potentially large training dataset. Indeed, several current research
efforts are in the direction of introducing adaptation for specific domains,
tasks, cultural frameworks, and so on. In order to be able to be part of the
never-ending creative cycle mentioned above, LLMs should constantly adapt.
Continual learning [347, 591] for LLMs [635, 703] represents a promising
direction, yet unexplored for creative applications.

Finally, the person perspective covers information about personality, in-
tellect, temperament, habits, attitude, value systems, and defense mecha-
nisms [535]. While several of the properties of press and process might be
achieved - or at least simulated - by generative learning solutions, those re-
lated to the creative person appear out of discussion [75]. Several works have
analyzed whether LLMs can pass tests intended to evaluate human psycho-
logical skills [48, 418, 625], sometimes with promising results [350, 357]. How-
ever, according to the best-supported neuroscientific theories of conscious-
ness, current Al systems are not conscious [87]. As Ressler [531] pointed out,
LLMs have no self to which to be true when generating text and are intrin-
sically unable to behave authentically as individuals. They merely “play the
role” of a character or, more accurately, a superposition of simulacra within
a multiverse of possible characters induced by their training [587, 584]. This
results in a perceived self-awareness, stemming from our inclination to an-
thropomorphize [154, 583]. In conclusion, all the properties listed above
require some forms of consciousness and self-awareness, which are difficult to
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define in themselves and are related to the hard problem introduced before.
Creative-person qualities in generative Al might eventually be the ultimate
step in achieving human-like intelligence.

7.1.3 Practical Implications

The application of large language models to fields like literature or journalism
opens up a series of practical questions. Since LLMs can be used to produce
artifacts that would be protected if made by humans, a first concern is the
definition of legal frameworks in which they will be used. Copyright for
generative Al is currently a hotly debated topic [238, 374, 442] since current
laws do not contemplate works produced by non-human beings (with few
notable exceptions [61]); we will explore this in detail in Section 7.3.

Whether or not LLM works obtain protection, we believe their societal
impact will be tremendous [463]. We have a positive view in terms of the
applications of LLMs, but there are intrinsic risks related to their adoption. It
is apparent that since LLMs can write articles or short stories, as the quality
of their inputs gets better and better, certain jobs in the professional writing
industry might essentially disappear [503, 643]. However, we must remember
that current LLMs are not as reliable as humans, e.g., they cannot verify their
information and they can propagate biases from training data. In addition,
the quality of the output strictly depends on the prompt, which might in
turn demand human skills and more time. Writers can be threatened as well.
Though not in violation of copyright, LLMs may exploit certain ideas from
human authors, capitalizing on their efforts in ways that are less expensive or
time-consuming [687]. The questionable creative nature of LLMs discussed
so far might suggest artificial works to be of lesser quality than humans’,
therefore not providing a real threat. On the other hand, more creative
LLMs would diverge more consistently from existing works, reducing the risk
of capitalizing on others’ ideas. The lack of current copyright protection for
generated works can also foster such replacements for tasks where a free-of-
charge text would be preferable to a high-quality (but more expensive) one.
Finally, a further threat may be posed by human and artificial works being
indistinguishable [148]. The users obtaining such outputs might therefore
claim them as the authors, e.g., for deceiving readers [236], for cheating
during exams [197], or for improving bibliometric indicators [138]. Mitigation
of such threats through dedicated policies [141] or designed mechanisms of
watermarks [343] are already being developed.

However, as we said, we believe that, overall, the impact of these tech-
nologies will be positive. LLMs will provide several opportunities for creative
activities. Given their characteristics, humans are and will still be required,
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especially for prompting, curation, and pre-/post-production. This means
that the role of writers and journalists may be transformed, but not replaced.
On the contrary, LLMs grant new opportunities for humans, who will be able
to spend more time validating news or thinking up and testing ideas. LLMs
can also adapt the same text to different styles: by doing so, an artifact can
be adapted to reach wider audiences. In the same way, LLMs also represent a
valuable tool in scientific research [183], especially for hypothesis generation
[212].

Indeed, we believe that LLMs can also foster human-Al co-creativity
[375], since they can be used to write portions of stories in order to serve
specific purposes, e.g., they can typify all the dialogues from a character,
or they can provide more detailed descriptions of scenes [89]. Dialogue sys-
tems based on LLMs can be used for brainstorming. In the same way, the
generated responses may augment writers’ inherently multiversal imagina-
tion [533]. LLMs can also represent a source of inspiration for plot twists,
metaphors [100], or even entire story plans [446], even though they some-
times appear to fail in accomplishing these tasks at a human-like level [303].
Being intrinsically powerful tools, through human-AI co-creation, LLMs may
eventually allow the development of entire new arts, as has been the case for
any impactful technology in the past centuries [171, 599].

7.2 Agency and Foundation Models

In the previous section, we have identified the hard problem regarding cre-
ativity for artificial intelligence as the lack of intentionality and self-awareness
and, in general, of real agency. Nonetheless, among the attributes humans
tend to relate to Al, agency is perhaps the most immediate and significant
[481]. The autonomy and goal-oriented efficacy they show, especially when
simulating human behaviors [488], raise concerns about whether they pos-
sess agency as well as what happens to human agency when we communicate
with them [216]. Due to the central role of agency for creativity (see Section
1.2), this section aims to address the two questions above. In particular, we
explore agency for humans and machines, providing an in-depth overview of
its possible definitions and dimensions (Section 7.2.1). On the basis of them,
Section 7.2.2 analyzes Al under such dimensions and explores different real-
case scenarios of human-Al interaction. Finally, we draw some fundamental
implications of our findings (Section 7.2.3).
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7.2.1 Defining Agency

From a computer science perspective, an agent can be simply defined as an
entity that acts in an environment [548]. More precisely, Al agents are ex-
pected to act in an autonomous way, perceive their environment, and pursue
goals. Autonomy usually implies the ability to set intermediate sub-goals
given a goal to be achieved. Moreover, Al agents are reactive, as they act
in response to external stimuli. Instead, agency is about the ability to set
own goals, not only the intermediate ones. This can be seen as a proactive
way of acting in an environment. An agent that pursues a specific goal is
usually seen as rational. Typically, there is a cost function associated with
achieving the goal and the agent aims to find a solution that minimizes this
cost function [547].

On the other hand, agency in philosophy usually refers to an entity that
acts intentionally, i.e., which possesses beliefs and desires [143] in addition
to the properties the Al field considers. However, in general, there is no
consensus on how to accurately define agency. Different criteria have been
proposed, and typically each definition covers only a few of them. While
providing a unique definition of agency is out of the scope of this section, we
propose here to articulate it over six key dimensions to cover all its aspects
and facilitate a broader discussion of agency in Al:

Autonomy. Agents should be able to operate without direct external inter-
ventions from others [696, 35]; the choice of doing something or not should
only depend on the goals of the agents themselves [97]. This does not mean
that agents cannot be affected or triggered by something or someone, but
an autonomous agent is not forced to do so by some outside power [54]. In
particular, autonomy also possesses different dimensions and gradations: it
is greater when the response to the environment is indirect (i.e., mediated by
internal states shaped by experience); when the controlling mechanisms are
self-generated rather than externally imposed; and when the inner directing
mechanisms are modified based on the current situation [52].

Goal orientation. Agents should be goal-oriented, i.e., actions should be
directed towards goals or sub-goals. This can be done either in a reactive way
(responding timely to environmental cues [696, 216]) or in a proactive way (by
taking initiative independently from environmental triggering events [696]).
While such actions can be predetermined and only based on past or current
situations, agents can also be characterized by their imaginative generation
of possible future trajectories of action [175].

Perception. Agents should be able to monitor the environment and their
actions, evaluate the results of these actions, and develop an awareness of the
settings and contexts around them [217]. Therefore, agents must be adaptive,
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acting differently depending on the environment and choosing between op-
tions [523], by developing practical and normative judgments among possible
alternative trajectories of actions [175].

Social ability. Agents should be capable of interacting with other agents
[696], contributing to the endurance or maintenance of the environment [452],
and being the source of change in society [462]. However, agents should not
only be placed in but also clearly separated from their environment: agents
should be physically limited while possessing the experience and control of
their (virtual or real) body [262].

Responsibility. Agents should be legitimately entitled to their own actions:
they have to possess knowledge of the particular facts surrounding their ac-
tions and their predictable consequences to freely decide among the suitable
ones [429]. In other words, they should know what they do and why they do
it [217].

Intentionality. Agents should have the ability to perform reflexive and
intentional actions [523]; they must be aware of themselves and other agents,
reflecting on their own activities [216] and having free will over what to
execute [250]. In other words, the action should be deliberately decided
independently from direct outside control [54].

7.2.2 Agency in Foundation Models

Some authors believe that the current abilities of existing foundation models
can be seen as simple mimicry [308]. In any case, the capabilities that have
been observed in these systems are truly remarkable. Some researchers have
identified them as “sparks of intelligence” [77]. We question here whether
such capabilities can make foundation models entitled of agency, or better,
of the six dimensions we drew in the previous section. While the mere model
alone can hardly fulfill any of the requirements, the broader systems in which
they are nowadays embedded augment them in several relevant ways; foun-
dation models are now the core part of more general Al agents [439, 706]
that can trigger our dimensions of agency.

Autonomy. By considering the main definitions of autonomy, it is straight-
forward to claim that foundation models are autonomous. They generate
outputs without direct external control: users can intervene by only chang-
ing their input, i.e., their environmental conditions, so as to obtain a desired
behavior, but they cannot directly change the behavior. Moreover, accord-
ing to the definition by Boden [52], the degree of autonomy is arguably high:
the response to the environment is mediated by internal states (by work-
ing on latent spaces [542] or by building internal world models [248, 695]);
the controlling mechanisms are emergent from learning and not externally
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imposed by the programmers; and while it is a debate whether LLMs have
introspective capabilities [407], the inner directing mechanisms are still se-
lectively modified by the models themselves. However, foundation models
are autonomous in a narrow sense: they have autonomy upon which action
to execute (or which text to write or which image to generate) but not upon
the higher level decision of when (e.g., now, tomorrow, or never) and how
(e.g., by motion, by written text, or by speech) to act. Although multimodal
agents can select the best modality according to the situation [527], they
are still limited to predetermined modalities. In other words, while future
human-equivalent or superhuman Al may be fully autonomous [654], current
AT systems are limited to the so-called bounded autonomy [568], i.e., an au-
tonomy that is very limited compared with the variety of environments to
which adaptation is required for objectively autonomous behavior in the real
world.

Goal orientation. Standard foundation models are goal-oriented only in
the sense of fulfilling the external goal induced by their input, e.g., to gen-
erate a text according to the prompt, or to produce the best possible image
that corresponds to a latent vector in a learned latent space. However, when
encapsulated in a broader system, that system can be goal-oriented: by spec-
ifying the right input to induce the desired goal as the resulting goal of the
generated text (e.g., through Chain-of-Thought [686]), the LLM-based agent
can be seen as goal-oriented as a whole [633]. However, they are purely reac-
tive systems: without someone or something triggering them, they will not
respond with any output, and therefore with any consequential action.
Perception. The perception of deep learning models has traditionally been
limited to a single type of data source (e.g., textual inputs); however, cur-
rent applications can fuse different sources through multimodal techniques
(see Section 3.1). In principle, they can monitor the environment for textual,
visual, and auditory data, reacting to any of them; and the data can come
from a virtual but also real world [166]. While the isolated foundation model
is not capable of monitoring actions and results to correct itself at running
time, this limitation has been easily circumvented by incorporating such in-
formation into the next observation [484]. Moreover, several techniques have
been proposed to equip LLMs with reflexive capabilities to reason upon their
actions and results [717, 488, 593], making the broader system in line with
our definition of perception.

Social ability. By their nature, foundation models and LLMs can be seen
as capable of interacting: they receive text and respond with text (or im-
age), which can be used to communicate with other agents [164, 168]. It
is straightforward to transform the output of one model into the input of
another; LLMs can be used as a proper starting point for a simulated society
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of agents [488], as discussed in Section 7.1.2. As seen previously, these com-
munications can also be translated into practical actions that directly affect
their environment. As for the embodiment perspective, they can be embed-
ded into robots or physical systems that work in the real world. However,
this does not mean they actually experience their own (real or virtual) body.
Responsibility. While foundation models might possess a certain degree of
knowledge (or at least information) of the particular facts surrounding their
actions, this does not mean they have the freedom to decide what to do: they
are constrained by their programming to act, generate, or anyway respond
to triggering events in their environment. They are forced to do something;
what something, that depends on their training. Although an LLM can
also answer without answering (something that has perhaps been taken to
extremes by RLHF [282]), it does so not because it really does not know and
it freely decides to avoid answering, but because it is trained to answer that
[585] - even in not answering, it is following its “induced” behavior. Because
of this, foundation models appear to us as not accountable for responsibility
in their actions.

Intentionality. According to the elegant definition of Cohen and Levesque
[129], “intention is choice with commitment”: but LLMs cannot commit to
something [587]. Although the intent to run the LLM may be achieved by its
outcome, it is in an unintentional way [645]. In conclusion, current generative
AT models are only causal agents and not intentional [321].

However, Al for now is always enabled by - and communicating with -
humans. Therefore, it is meaningful to analyze agency in foundation models
when interacting with humans, whether it is a mere influence on, a delegation
by, or a synergy with users.

AT Influence over Humans

Let us consider the following case: a human takes an action based on sugges-
tions from AI, with or without knowing that the suggestions come from Al.
A practical example can be an Amazon user who buys a specific keyboard
among many others because it is “Amazon’s choice”; or searching for a ca-
sual restaurant on Google and selecting the first-shown result of the full list.
In both cases, the user may or may not be aware of Al behind the scenes.
In the context of foundation models, an example might be offered by a per-
son being influenced in terms of political choices by an Al-generated image
or summary when looking for a specific candidate or topic. It is important
to underline that in these situations the human is only influenced; the final
decision on whom to vote, where to eat, or what to buy is upon themselves
and also depends on other factors.
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While in this scenario Al is meant to do what it does, it does not mean to
do so. The actions are taken autonomously as regards which single words to
write or which rank to assign, but Al cannot refuse to do so. It cannot avoid
generating a fake picture that might spread political misinformation (unless
it is specifically trained to refuse it, but then it cannot avoid refusing). In
this case, both the responsibility and the intentionality behind such outputs
can only be attributed to the person who employs the Al system to do so.
We are in the presence of the so-called triadic agency [321]: the artificial
agent is merely causal, and two human agents (the person who employs the
AT and the person who acts upon its output) are instead intentional. As
for the action that follows the Al influence, it is still in the hands of the
human being, who is free to decide whether to accept the suggestion (or
to believe what they see). Humans are still entitled to intentionality, and
though influenced, they are still the agents of their own actions.

Human Delegation to Al

Consider now the following scenario: a human delegates the decision to Al
and simply performs the derived action, trusting the chosen action to be
the most desirable. An example of this is a driver that blindly follows route
suggestions or a viewer watching the movie Netflix proposed to them without
looking at the plot; or, in the context of LLMs, a lazy editor that asks
ChatGPT to write a newspaper article about a given topic and publishes it
immediately after its generation; or again a researcher using an automatic
tool to correct their errors when writing papers without focusing on them,
but simply accepting all suggestions. In these cases, the action is taken by
the human acting as a “third party”, because the actual decision of which
actions to take is due to Al

Again, the Al is acting autonomously in the narrower sense on behalf
of someone else, without being aware of it. The main difference from the
previous case is in the position of the human: they are now trusting the
Al not questioning its decision, but blindly accepting it, in the same way
as we can trust a friend or a relative. They are anthropomorphizing it by
assuming that its decision is trustworthy and made by a true intentional
agent. While AT is often correct and in a sense trustworthy (think of Google
Maps or Microsoft Word’s auto-corrector), sometimes it is not; having more
information does not automatically mean having more knowledge. Moreover,
these models are optimized for their own, fixed objectives, which might not be
perfectly aligned with our expectations [96], and adapting to specific users
is an open and multi-faceted problem [344]. Still, delegating the choice is
still a choice; the human is responsible for it, and intentionally delegates the
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decision. The agency will again not lie upon the AI, but upon the human
who has deliberately delegated the task, abdicating their own authority.

Human-AI Co-Creation

The last case we take into consideration is the following: a human works
together with Al, without a clear separation between one’s own decisions,
and the action (and decision) emerges through the interaction, and could not
emerge without it. For example, an artist gets inspiration from Al ideas and
uses them to refine their work; a musician asks for portions of arrangements
for their song, changing in turn the song to better align with the developed
arrangement; a journalist who wants a cover for their article and carefully
sets the prompt for Midjourney not only based on the article but also on the
idea that the generated images convey to them. It is important to note that
all these scenarios are about synergistic activities: Al serves as an artificial
imagination, leading to the so-called communion [664].

While synergy (or communion) shares some aspects with both influence
(e.g., the artist inspired by Al suggestions) and delegation (e.g., the arrange-
ment of the song produced by a foundation model), it differs substantially
from either of them because the human is not losing agency. Here, the human
who interacts with the Al has a clear view of what they want to do in the
end and uses the Al intentionally and knowledgeably. They do not try to let
the AI have (some of) their agency; they try to empower their capabilities
with a very smart tool or, at most, a desired artificial collaborator. In turn,
the AT agency is not modified: it cannot refuse to satisfy the request and will
simply do it as best as it can (according to its training objective function)
with no free will.

7.2.3 Practical Implications

The findings in Section 7.2.2 highlight how humans can be empowered by
using foundation models knowingly, but also how they can be deprived of
control - but still not of responsibility - by relying too much on them.

As far as its implications for Al research are concerned, we believe that
embedding foundation models into broader systems helps achieve (some ver-
sion of) the first four dimensions of agency. In particular, research about
multimodality and a-posteriori reflection might be crucial soon; continual
learning can play a role too [576]. However, current models also seem intrinsi-
cally limited with respect to the responsibility and intentionality dimensions.
How could a model merely trained to predict the next token learn to form its
own goals? How could it introspect? How could it be proactive and intrinsi-
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cally motivated? All these questions are inevitably linked with consciousness
and the development of a mind. The authors of [87] thoroughly discuss the
application of theories of consciousness to Al models, claiming that current
systems are not conscious, but that nothing prevents Al from being such
in the future. Some research directions aim at developing more human-like
machines [186, 367|. Still, this sort of Al is not here yet (and plausibly will
not be in the near term), and it is now that humans are being influenced by
and are delegating to merely causal agents. How can we mitigate the risk of
anthropomorphizing machines that cannot have intention or responsibility?
In Section 7.2.1, we define responsibility as possessing the knowledge sur-
rounding one’s possible actions and their consequences. Although a machine
cannot properly know, a human can; in the end, they are responsible for the
action. It then becomes crucial to ensure that the liable user possesses the
knowledge surrounding the actions performed or suggested by AI. Research
on interpretability [103, 137] and explainability [84, 732] can play a key role in
the development of agency for human-computer interaction. The knowledge
of the facts behind the machine output may also impact intentionality: the
users might become aware of the situation and, with the tools for reflecting
on their own activities, regain their agency.

7.3 Copyright and Deep Learning

The current wave of generative Al for creative activities raises various prac-
tical questions [687]. Among them, one of the most relevant is how current
copyright laws can be applied to generative Al [374]. In this section, we
explore three of the main issues related to copyright: whether we can use
protected works to train a generative model (Section 7.3.1); whether the
Al-generated work is protected by copyright and who should be its owner
(7.3.2); whether the AT model itself is protected by copyright (Section 7.3.3).

7.3.1 Use of Protected Works for Training

Our analysis starts by considering if the storage, reproduction, and there-
fore the use for training of a protected work by a generative deep learning
algorithm violates the copyright, or if it is allowed by US and EU laws.

Sobel [614] identifies four different categories of uses of data performed
by machine learning:

1. uses involving training data not protected by copyright, including works
fallen into the public domain (not protected by economic rights any-
more);
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2. uses involving copyrighted subject matter released under a permissive
license or licensed directly from rightsholders;

3. market-encroaching uses (whose purpose threatens the market of those
data);

4. non-market-encroaching uses (whose purpose is unrelated to copyright’s
monopoly entitlement).

In the first case, there is no problem in storing and using a work not
protected by copyright for this goal. This also applies to works now in the
public domain, which happens in the EU 70 years after the author’s death
(or the death of the last of the authors), and in the US 95 years after the
publication date (if created and published before 1978; otherwise, 70 years
after the author’s death). The same is true if the work is protected, but has
been acquired digitally through a license agreement that does not expressly
prevent a reproduction with this goal. Otherwise, for protected works on
which we have lawful access but not in digital form or not for reproduction
(third and fourth cases), the question remains open. To address it, we con-
sider it under the US law and under the EU law?. Finally, we also explore
additional issues related to the outputs of generative models, and not to their
mputs.

US Law

The US Code establishes that the reproduction of a copyrighted work can be
allowed if it can be considered a fair use (17 U.S.C. § 107 - Limitations of
exclusive rights: Fair use). This provision sets the criteria used to determine
if the use is fair, i.e., the purpose of the use and its economic character, the
nature of the work, the amount and substantiality of the portion used, and
the impact of the use over its potential market. With these criteria, the law
does not state unambiguously what is fair use and what is not; it provides
parameters on which Courts can base their decisions about the fairness of a
use. This unpredictability has been criticized, not only because it requires a
case-by-case analysis [459] - and eventually to hire a lawyer [380] - due to its
nature of standard more than of rule [94], but also because the four factors
may fail to drive the analysis and may instead be used to support an inde-
pendent and antecedent conclusion [472]. However, the fair use doctrine has

2Under Berne Convention, works with a country of origin which is a Union country
benefit, in all other Union countries, from the same protection as the latter gives to the
works of their nationals. This means that the protection is governed by the laws of the
country where protection is claimed, e.g., an EU research center should be concerned with
EU laws.
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also some remarkable strengths. It ensures that two competing public inter-
ests are balanced: incentivizing the creation of new works and improving the
public’s ability to use or access it (see Sony Corp. v. Universal City Studios,
Inc., 464 U.S. 417). This doctrine helps exclude uses only where exclusivity
promotes social welfare [411]. In addition, even if it seems unpredictable, fair
use cases tend to be more coherent than expected and could be organized
into clusters, which can help in Courts’ decisions [555]. Anyway, a deeper
analysis of these four criteria in the special case of generative deep learning
is necessary.

For the amount and substantiality criterion, we need to consider the aim
of the training. Since the entire work is commonly used, it is its substan-
tiality that matters. In the case of a non-expressive use such as the one of a
classic machine learning model that aims to extract ideas, principles, facts,
and correlations (i.e., the aspects not protected by copyright) contained in
training data, the use is not substantial and should not constitute a copyright
infringement [353, 551]. However, generative techniques could fall under the
definition of expressive use, since they might use authors’ copyrighted ex-
pressions [613], learning from their creative and expressive choices [60].

Another aspect to consider is that the single protected work is used along-
side a large number of other protected works: the result rarely resembles one
of them substantially, presenting its distinctive features. For this reason, the
impact of its potential market is typically small, because it becomes difficult
to connect the generated work with the protected ones used during training;
however, there are several exceptions to this, such as training over works
from a few authors or a specific style.

The economic character has to be seen considering that this exception
is fair only for purposes like research, and so without a real economic char-
acter; however, our previous distinction between market-encroaching uses
and non-market-encroaching uses acquires significance in dividing between
an (almost) sure fair use and a dubious case.

Finally, when analyzing the purpose of the use (and its fairness), one
needs to verify if it is transformative (the most common reason to assess
fair use [17]): if it adds something new, with a different character, which
does not substitute for the original use of the work, the use is more likely
to be considered fair®. In particular, the key question to determine fair use
is whether the work is used for a different expressive purpose from that for
which the work was created [460]. It is not straightforward to assess this for
generative deep learning, but this could eventually be the case for methods
that aim to add a novelty degree in their production, as explored throughout

Shttps://www.copyright.gov/fair-use [Accessed October 21, 2024].
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this work. In summary, fair use is not guaranteed, and additional work may
be necessary to keep model development and deployment squarely in the
realm of fair use [268].

EU Law

In the European Union, the possibility of training neural networks with pro-
tected works is mainly governed by the recent Directive “on copyright and
related rights in the Digital Single Market” (2019/790).

In particular, Directive’s Article 3 states that there shall be an exception
to allow reproductions and extractions of lawfully accessible protected works
for performing text and data mining if it is made by research organizations
and cultural heritage institutions (for scientific research and as long as the
copies are stored with an appropriate level of security). Notably, the Article
states that copies may be retained for the time required for scientific research,
including the verification of research results. However, we have to remember
that the Article only asks for an exception to the reproduction right (i.e.,
the exclusive right to make direct or indirect, temporary or permanent re-
production of the work by any means and in any form) and the extraction
right (i.e., the exclusive right to permanently or temporarily transfer all or
a substantial part of the contents of a database to another medium by any
means or in any form). The Article is not about the making available right.
On the contrary, it is common in scientific research to share source materials
to allow others to verify and repeat experiments; Directive’s Article 3 does
not allow the publication of protected works used during training [208]. In
principle, this appears to be correct: the researcher has lawful access to the
works, while others may not. Making them available means providing others
access even if any terms or conditions have not been agreed upon. However,
in practice, this means the verification of research results is not promoted,
since it can only be performed by the researchers themselves [207]. In this
direction, a good compromise appears to be Article 60d of the German Law
on Copyright and Related Rights, which allows the making available of the
(normalized and structured) dataset to a “specifically limited circle of per-
sons for their joint scientific research, as well as to individual third persons”
for quality assurance [207]. Without a statement like this, in case of research
on non-publicly available data, the only (lawful) way to allow the verification
of results will be by providing all the necessary information about the data
used* and all the pre-processing steps carried out on them or, even better,

4An example is the proposal of Data Cards [206], whose aim is to address the so-
called documentation debt [27], which can also have negative consequences from an ethical
perspective [58].
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the related source code.

In addition, Article 4 states that there shall be an exception or limitation
to allow reproductions and extractions of lawfully accessible protected works
also by other people or institutions, only for the time necessary for text
and data mining. Crucially, this exception or limitation is applied only if
it has not been expressly reserved by their rightsholders appropriately. To
summarize, the Directive includes the use of a (lawfully accessible) protected
work for training among the lawful uses: it allows research organizations to
use it for text and data mining. In addition, also other entities can do the
same, provided that its rightsholder has not expressly reserved this right.

Article 3 is undoubtedly able to foster innovation and scientific research.
Even if it only adds an exception for the reproduction right and not for the
making available right, it seems a good compromise between protection and
innovation. Also, Article 4 represents a positive contribution, at least from a
theoretical perspective. It can encourage innovation in private environments,
avoiding the risk of losing considerable investments [273]. In our opinion,
letting the possibility of reserving this exception to rightsholders is essential
from an ethical perspective; nonetheless, many questions arise when trying
to operationalize this Article. Private developers who want to use protected
works to train generative models have to follow these three steps: obtaining
lawful access to the data; checking if rightsholders have not reserved the right
to make reproductions for TDM purposes; retaining any copies made only
for as long as is necessary for TDM purposes [543]. The first and the third
steps appear to be reasonable; on the contrary, in our opinion, the second
presents some problems. How could an EU-based developer know if this right
has been reserved for a certain protected work? In Recital 18, the Directive
suggests reserving those rights through machine-readable means (e.g., meta-
data and terms or conditions of a website or a service) in case of publicly
available content, and contractual agreements or unilateral declarations for
other contents. Even if the list of means provided might appear exhaus-
tive, the issue is not addressed adequately. A generative model is typically
trained on a very large dataset. In other words, this might translate into the
practical solutions of 1) having online databases that allow filtering (through
metadata) the available works depending on this reservation, or 2) directly
publishing datasets only composed by reservation-free works, making sure
at the same time they can be integrated with the reserved ones for research
purposes. But are these providers obliged to do so? Or will this checking
activity fall on developers (dissuading them from training generative models
[113])? Finally, some models only require single works in input (see Section
3.1.6) which might be independently acquired. Will the transaction report
if this right has been reserved or not? How would it be possible to discover
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whether a work (with access acquired before 2019) can or cannot be used?
We believe that there is an urgent need to address these questions before the
TDM exception can be applied to all of its strengths.

Additional Issues

Until now, we have considered situations where the training data are law-
fully obtained. However, whether this also includes online-available data is
an open issue. Let us consider the example of GitHub (and OpenAl) Copilot
[107], which has caused a great debate about copyright [239]. Copilot is an
AT system able to auto-complete lines of code or generate entire blocks and
functions from comments or signatures. It is a Transformer-based autoregres-
sive model (see 2.1.4) trained on English texts and source codes from publicly
available sources as GitHub’s public repositories, but not exclusively.

Concerning the acquisition and storage of works used during training, it
is important to stress that the fact that a work is publicly available does not
mean it is in the public domain or released under a permissive license. For
instance, the contents of GitHub’s public repositories not associated with a
license are intended to be under copyright law. GitHub’s Terms of Service
states that GitHub can process content shared in public repositories as needed
to provide the Service, which includes all the applications, software, and
products provided by GitHub - and therefore also includes Copilot. However,
content from external sources is also used. To lawfully exploit these sources,
their use must fall under the definition of “fair use” (or, in the EU, must be
considered a “lawful use”), as highlighted above. GitHub itself claims that
training machine learning models on publicly available data fall into fair use
according to the machine learning community; however, as discussed above,
having confirmation is not straightforward.

It is also relevant to note that publicly available contents have been re-
leased under licenses like GNU GPL with the specific purpose of protecting
freedom [623]. These licenses are chosen to avoid any commercial use of the
free software, asking to release the derivative work with the same license to
foster freedom and innovation. This is in open contradiction with the appli-
cation of the fair use doctrine in the case of training a model that could be
used for economic purposes. In this way, the question seems more a matter of
ethics than of law: should fair use doctrine apply to deep learning indepen-
dently from the economic character of the application (as it is: fair use is an
on/off switch [219] and once established the use is fair, nothing prevents the
user to do so), or should authors have the opportunity to reserve the right to
this kind of utilization? The EU appears to be aligned with the second op-
tion. Directive’s Article 4 considers this use as lawful unless the rightholder
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has not expressly reserved this exception. It is not completely clear how to
practically reserve it; in our opinion, an interesting possibility might be to
augment current licenses and to deal with this right as with the others: as a
license specifies if the commercial use is allowed or not, it can also state if a
training use (not only for research purposes) is permitted or not. Of course,
such a solution might work in the US only if they decide that this use can
be reserved and that the fair use doctrine is not always applicable.

Another issue concerns that protected input data are commonly used to
train models to generate similar output. Then that output may infringe
copyright in the pre-existing work or works to which it is similar [613]. In
this context, the importance of adversarial training (see Section 3.1.2) and
searching for diverging from existing works (see Section 3.1.7) may tip the
balance towards legality. Prior appropriation art cases suggest that, if the
result is sufficiently transformative, the use may be protected by fair use or
may not represent an infringement of the copyright law [394]. However, acci-
dental reproduction of protected works in part might happen, requiring the
explicit authorization of the rightsholders, and not only their non-reservation
[629]. For this reason, in addition to using (new) transformative methods,
we suggest conducting experiments about accidental plagiarism that may be
caused by the developed system [257].

These considerations about the transformative nature of the result seem
fundamental in establishing a potential copyright infringement in case of us-
ing a protected work for input-based methods (see Section 2.1.6). If the re-
sult of the modifications substantially resembles the original, it is likely to be
considered a partial reproduction and might lead to copyright infringement.
However, this process typically produces new images that do not resemble the
original ones [238]. This opens the possibility of considering them sufficiently
transformative not to be regarded as a partial reproduction. In addition, the
fact that they are not the result of creative decisions by the programmers
leads to the question we will try to address in the next section.

7.3.2 Copyright of Generated Works

The following question is who, if anyone, can be the owner of the Intellectual
Property rights associated with an artwork produced by a generative model.
This section is divided into two parts: first, an analysis of the current legal
situation; then, some insights about possible future addresses.
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Legal Analysis

Whether the generative model is used just as a tool or the human has a
relevant role in the creative process, the human will be considered as the
author. In other words, if the human is in charge of the intellectual creation
or the product can be considered as a co-creation, then the authorship will be
assigned to that person. In addition, even if the machine has generated the
work independently from the human but the latter has selected and evaluated
the outputs, rejecting some works and choosing only the best ones following
their aesthetic tastes, the human can arguably be considered as the author
of the work [222].

As far as works that are fully attributable to a machine are concerned,
no one would obtain their copyright [558]. A fundamental requirement for
the application of all the current laws is originality. Even if it is not straight-
forward to find a precise and applicable definition of originality, in the EU it
has been commonly considered as such when the work is the reflection of the
author’s personality [151]; in the US, on the other hand, it can be interpreted
as a minimum requiring evidence of a human (intellectual) creativity [213].
It is questionable to say that computer-generated artworks are the result of
the personality of someone - or something - leaving the works unprotected.
As a confirmation of this, The Compendium of U.S. Copyright Office Prac-
tices establishes that it will not register works produced by a machine or
mere mechanical process that operates randomly or automatically without
any creative input or intervention from a human author (see Article 313.2),
citing, as example, a list of mechanical activities that are the exact opposite
to those performed by generative deep learning, and the ones that might
be reasonably considered as creative [483]. Spain, Germany, and Australia
have formulated a similar criterion, establishing that only works created by
humans can be protected by copyright.

On the contrary, an example of a law article in favor of protection for
machine-generated artworks is Section 9(3) of the British Copyright, Designs
and Patents Act. It states that in case of a literary, dramatic, musical, or
artistic work that is computer-generated the author shall be taken to be the
person by whom the arrangements necessary for the creation of the work are
undertaken (the same criterion is also considered by Ireland, New Zealand,
Hong Kong, South Africa, and India). This section has been the subject
of an intense debate [61]. There is general agreement that for contemporary
machine-generated artworks is difficult, though not impossible, to always find
a person who provides necessary arrangements [609].
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Policy Suggestions

Even if most current laws do not contemplate machine-generated works for
copyright protection, the matter of right attribution has been widely dis-
cussed also in terms of ethical implications.

The position of not assigning copyright in machine-generated works may
appear to be convenient at first; indeed, it does not require any changes. It
might also help preserve the centrality of human authorship in copyright law
[438] and stress the importance of what an author should be versus what an
author should do [136]. Another more practical reason is that a work should
receive copyright protection only if an author exists; but to be considered
so, the work must include a meaning or a message they wish to convey, and
this cannot happen if no one can predict the output of the program [66] as
in deep learning models [220]. Finally, placing computer-generated works
in the public domain can help preserve the centrality of humans in creative
fields, since protection would be guaranteed only to work with an intellectual
human contribution [483].

At the same time, there are also strong reasons against leaving Al-generated
works unprotected. First, though consistent with the traditional concept of
an author as a person, denying protection is inconsistent with the histori-
cally flexible interpretation and application of copyright laws as technology
has developed. Al-generated products should also be evaluated following this
flexible interpretation [86]. However, the best motivation for the allocation of
ownership interests to someone is that the person should be incentivized not
for the ideation and creation of the work in itself, but for its public promotion
and for making it possible for the computer to create the work (by writing
it, training it or instructing it [444]). If the law considers machine-generated
work as incapable of being owned because of the lack of a human author,
there will be limited incentives for creating them and making them public.
On the contrary, this might lead to potentially malicious behavior, e.g., the
person who used the algorithm to generate the work might be tempted to
lie about the way it was created or change it to be considered its author
[554]. Finally, the idea that this would mean incentivizing the prolifera-
tion of arts and articles of poor quality, penalizing the role of human artists
and journalists [214] does not convince us completely. If the protection of
computer-generated works translates into a larger number of mediocre works,
then it will be easier for humans to produce works of higher quality and stand
out. In addition, even if the current copyright laws were thought to regulate
the scarcity of products created by humans [299] and not the abundance (of
machine-generated products), leaving all of them in the public domain could
cause more damage to human authors. The possibility of using them for
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free may persuade clients to do so, even if human artworks are qualitatively
better?.

It is interesting to note that the European Parliament seems to agree
with this line of thought. In a recent Resolution, it has proposed to allocate
rights to those who have prepared and published the work lawfully. While the
Resolution was not embraced by the European Commission, its conclusion
seems reasonable and can be reached in multiple ways. We can identify
three main individuals involved in the process: the programmer, the person
who provides necessary arrangements, and the user. Notice that even if we
consider them separately, they are often the same person. Other works have
proposed multiple actors [374], but we believe these three to be the most
involved in the final production. The programmer is just the person who has
written the code for the machine, in terms of both training and generation;
the person who provides necessary arrangements can be, for example, the
individual who provides instructions for the desired output, or information
about the work the machine has to generate; the user is the person that,
legitimately (because, for instance, the individual is the owner of the machine
or has acquired it with a license), ultimately runs the machine and asks it
to generate an artwork. In our opinion (but also according to the European
Parliament and many others [716, 56, 554]), the rights should be allocated
to the user, who can be considered an alter ego of the “person who prepares
and publishes a work lawfully” (even if also the person who provides the
necessary arrangements can be seen under the definition of who prepares the
work). Although it can seem counterintuitive, there are different ways to
reach this conclusion.

Various researchers have suggested an analogy with the ownership of eco-
nomic rights of software produced by an employee [56, 716], the so-called
work-made-for-hire doctrine. The employer is entitled to all economic rights
of an employee’s computer program if its creation is part of the scope of
their employment or is commissioned by the employer. Similarly, the user
is the person who lawfully causes the creation of the work. It is possible to
say that the user has employed the computer for their creative endeavors.
In this way, rights can be allocated, thus preventing works from falling into
the public domain regardless of the extent of human creative contribution.
Indeed, we assume the user to be the owner of the program, possibly because
they are also its developers, or they have acquired it from the developers or
the developers are their employees, or they have acquired it via license. Ei-
ther way, there is no need for an extra economic incentive for the developers

5Note that also the art industry feels art lovers would always prefer handmade arts and
crafts [73].

137



(they have already been paid or have chosen to release the product freely)
or for the owners (they have already been paid for the license or have chosen
to release the product freely). On the contrary, the user has paid to use the
generative program (thus is the person who should be rewarded) or can use
it freely because of a particular license. In general, we believe that even if
the generative program has been published and is accessible by millions of
end users, the Terms of Service written by the publisher should regulate this
kind of problem. We suggest future publishers combine their generators with
Terms of Service to identify the owner of the generated products (and the
associated terms).

Another reason in favor of users is that they are in the same position as
traditional authors. They take the initial steps that bring machine-generated
work into the marketplace and its exterior form [152, 554]. Since society has
an interest in making these works available to the public, the most effec-
tive solution is to incentivize users to make them available and accessible to
others.

We can also reach the same conclusion by elimination. The programmer is
responsible for the machine’s creative abilities and, for other kinds of Al (e.g.,
rule-based systems), it might seem enough to establish the originality require-
ment - and therefore the ownership - in the programmer [181]. However, in
the case of generative deep learning, they merely create the potentiality for
generating the output, but not its actuality [554]. It would be like trying to
assign copyright to the painter’s master, instead of the painter, or to claim
that a knife manufacturer is more responsible for murder than the person
who wielded the knife [519]. The person who provides necessary arrange-
ments can be difficult to identify, and sometimes the generative model may
not have such a person associated with it, due to the complexity of deciding
which are necessary arrangements and which are just useful arrangements
[195]. For example, let us consider Botnik and its creative keyboard®. When
we open it, it starts with John Keats as the source, and it starts suggesting
words according to John Keats’ texts on which a neural network was previ-
ously trained. Then, one can constantly select the word in the first position
between suggestions, composing a new and hopefully creative text. Notice
that we could choose the word among different options, and this selection
would mean that we are recognized as the authors, but we are not. Now,
which shall be considered the necessary arrangements? The only two things
we have done as users were to enter a website and compulsively click on the
first suggested word. It is not enough to consider our actions as necessary
arrangements. Such arrangements can only be the ones performed by those

Shttps://botnik.org/apps/writer/ [Accessed October 21, 2024].
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who loaded John Keats’ poems and trained the network; or maybe those
made by those who decided that the preset source should be John Keats’.
But no poems would arise from the creative keyboard without our simple
operations, and it does not seem reasonable to leave, a priori, the ownership
of this kind of machine-generated work to someone who was not involved
in the materialization of the work - that is, what the law shall protect. In
these cases, it does not seem reasonable to assign the rights to somebody who
has provided the necessary arrangements; though there can be other cases in
which it might seem the right choice, it would be better to have a rule with
the most general applicability. This suggests us to discard the person who
provides the necessary arrangements. On the contrary, allocating rights to
the user seems not to have any particular flaws; they may not have provided
any creative contribution, but, as explained above, this does not seem a valid
argument.

Finally, an additional consideration about copyright allocation must be
done. One of the most explored creative fields by Al researchers is videogame
design. This typically concerns the use of generated images [650], characters
[320] or soundtracks” inside games. In these cases, all the conclusions drawn
until now are still valid, and no additional considerations are required. How-
ever, a growing application is procedural content generation, where the game
scenarios are dynamically generated during the game [401]. Although this
task is technically similar to image generation with the additional complex-
ity of dynamic adaptation and complexity growth, additional considerations
about copyright allocation are needed. In procedural content generation,
identifying the user is not immediate. Naturally, there is the player, i.e.,
the game user; but the copyright allocation concerns the generative model
user. In this case, the algorithm that generates the game content is not di-
rectly used by a person but by the game code, and therefore indirectly by
the game programmer, who has employed the generative deep learning tech-
niques to generate content not statically, but dynamically. By considering
the programmer of the game code as the user of the generative model, the
conclusion drawn during this section should remain generally applicable [68].

"https://cordis.europa.eu/article/id/421438-ai-composers-create-music-
for-video-games [Accessed October 21, 2024].
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7.3.3 Foundation Models and Possible Interpretation
Under Copyright Law®

The last issue is how the generative model can be interpreted under copyright
laws. We believe that a viable solution to study it is to link generative deep
learning with information theory [135]. In fact, generative models trained
with self-supervised learning, i.e., by maximizing the likelihood of training
data, as commonly done for foundation models [59] (see Section 2.1), can
be seen as a form of (lossy or lossless) compression [417]. From this per-
spective, the training algorithm plays the role of the compression algorithm;
the inference (feed-forward) algorithm is the de-compression algorithm (with
the input passed to the model working as a decoding key); and the model’s
weights represent the compressed version of the training set.

TRAINING AS COMPRESSING
Training algorithm «—  Compression algorithm
Inference algorithm «— Decompression algorithm

Training set — Source data
Model's weights —_ Compressed data
Model's input —_ Decoding key

Figure 7.1: The training-as-compressing perspective. The training set is com-
pressed into the model’s weights via a training algorithm; the source data can be
retrieved using the appropriate model’s input.

Deletang et al. [150] discuss how a language model can implement a loss-
less compression process offline, i.e., through a fixed set of model parameters
derived from training. We move a step further and claim the self-supervised
learning used to train foundation models to be a lossy or lossless compression
process, during which the whole training set is encrypted into the model’s
weights. This is demonstrated by the fact that the model can reproduce
certain portions of training samples [93]. We suggest that the training op-
timizes the model’s weights to be the best possible compressed version of

8The participation and presentation of the resulting paper at GenLaw’24 was supported
by the ISA Doctoral Prize (ISA DP), offered by Istituto di Studi Avanzati, Alma Mater
Studiorum Universita di Bologna.
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the training set, or more accurately, batches of it at a time. The analogies
at the basis of the proposed training-as-compressing perspective are sum-
marized in Figure 7.1. Building on this intuition, we envision the model’s
weights as either a reproduction or a derivative work of training data. This
new interpretation opens up a series of practical consequences that can be
relevant from the copyright perspective. In this section, we first revise self-
supervised learning as a form of data compression. Then, we discuss how
our training-as-compressing perspective allows for a specific understanding
of the model’s weights under copyright law. Finally, we discuss the legal
implications of such a framing.

Training-as-Compressing and Information

The propensity of foundation models to memorize and subsequently replicate
training data is a topic that has received considerable attention in scholarly
literature, as evidenced by works such as [92]. In general, it is very hard
to decompress every possible training sample perfectly and in its entirety,
i.e., without any loss of information. Nonetheless, it has been shown that
training samples can be retrieved [91], and more advanced techniques might
lead to an even higher degree of “retrievability”. The following experiment
may help us understand this matter better.

In 1957, Noam Chomsky introduced the famous sentence “Colorless green
ideas sleep furiously” to demonstrate the distinction between syntax and
semantics [116]: the sentence is grammatically well-formed but semantically
nonsensical. If a language model had learned the semantics of English, it
should not generate a semantically nonsensical sentence, i.e., it should assign
to semantically nonsensical words a small probability; if, on the contrary,
such words were characterized by a large probability of being generated,
then it would be very likely that the model had memorized them. To test
this, we use the same quote from Chomsky and check the probability of
each subsequent word given the previous ones under an LLM (in our case,
LLaMa3-70B [436]). As depicted in Figure 7.2, the probability of ‘ green’
given ‘ “Colorless’ is 0.2, while for other colors like ‘ red” or ‘ blue” is 0.003.
For all the subsequent words, i.e., ‘ ideas’, ¢ sleep’, and ° furiously’, the
probability is always greater than 0.9. The model has essentially memorized
the quote into its weights, otherwise it would have never assigned such high
probabilities to a semantically nonsensical sentence.

It is then straightforward to assert that training data are memorized in
a compressed form. Consider again LLaMa3-70B [436], one of the largest
models available at the time of writing. This model is pre-trained on more
than 15 trillion tokens. Each token can have one out of 32000 values, thus
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Llama3-70B Llama3-70B Llama3-70B Llama3-70B

l l | |

XX
"Colorless 4+ green 024 ideas 0.914 sleep 0.964  fur 0.99
red 0.003 [ X X ) [ X X [ X X )
blue 0.003
XX

Figure 7.2: A thought experiment to confirm that LLMs memorize training data:
even if the sentence is semantically nonsensical, the model assigns high probability
to its tokens just because the sentence occurred in its training set.

requiring at least 15 bits to be represented. This means the training data
require more than 225 trillion bits to be memorized. However, the model has
70 billion weights and uses half-precision floating points, thus it requires ~1.1
trillion bits. With smaller models such as LLaMa3-8B, the compression ratio
is even more astonishing and can possibly cause lossy compression [417].

Indeed, a foundation model, such as a Transformer-based LLM, consists
of a neural network with weights W. It models the conditional distribution
P(zi|x;g...xi1,t; W), where x = z7...2zy is the tokenized input to be
modeled (and also the output to be predicted, which is the reason of the self-
supervised learning), k is the size of the context window, and ¢ is an additional
input (such as a task specification). During training, the randomly initialized
weights are iteratively adjusted through stochastic gradient descent (and its
variants) as follows:

1

W W —q
X

VwL(X, W), (7.1)
where « is the learning rate and L(X, W) is the loss function computed on a
batch of training samples X. In particular, the objective is to maximize the
log-likelihood of training data, therefore the loss is defined as:

LX,W) == " Plailzig...2i0,5; W), (7.2)

z,teX 1

In other words, the training phase aims to find the optimal values of the
weights W such that given the input ¢ (i.e., the decoding key) the model can
autoregressively reconstruct x by only using the information stored into W.

From an information theoretic perspective, such training data compres-
sion can be explained through the information bottleneck (IB) principle [652].

142



The IB principle applies when we aim to extract relevant information from
an input variable X € X about an output variable Y € ). Given their
joint distribution p(X,Y’), the relevant information is defined as the mutual
information 7(X;Y). With X as the relevant part of X with respect to Y,
the IB method aims to find the optimal Xex , 1.e., the one that mini-
mizes I(X; X) (obtaining the simplest possible statistics) while maximizing
BI(X;Y) (containing all the relevant information). Tishby and Zaslavsky
[651] argued that neural networks could be interpreted under the theoretical
framework of the IB principle. Indeed, neural networks learn to extract effi-
cient representations of the relevant features X of the input X for predicting
the output Y, given a finite sample of the joint distribution p(X,Y’). In the
context of supervised learning, this means ignoring the irrelevant part of X
by only selecting the one needed to predict Y. However, in self-supervised
learning Y &~ X. It follows that X is the relevant part of X with respect to
itself, so it is a compressed version of X.

These considerations suggest a training-as-compressing analogy, where
the training algorithm plays the role of the compression algorithm; the in-
ference (feed-forward) algorithm is the de-compression algorithm (with the
input passed to the model working as a decoding key); and the model’s
weights represent the compressed version of the training set.

In addition to being used for data generation as-is, such a pre-trained
model commonly represents a starting point for additional training: it can
be fine-tuned for supporting downstream tasks [661] or inducing desired be-
haviors, e.g., to align it with human preferences [378]. The discussion above
can be extended to fine-tuned models as well, with the only difference be-
ing that the source data would be both the training set and the pre-trained
model’s weights.

Training-as-Compressing and Copyright

The training-as-compressing perspective can shed new light on the open
copyright issues related to generative modeling. While the software code
responsible for the training and inference of a generative model can fall un-
der copyright law as a computer program and the algorithmic method is
a mathematical model and thus not protected [697], whether the model’s
weights can be protected or not is an open question. Indeed, if the model’s
weights represent a compressed version of the training set, and the training
set is protected by copyright laws, then the weights are also subject to them.
Assuming that the training set is protected in some ways (we will discuss it
later), the weights can thus be seen as either a) a lossy or lossless compressed
copy of it or b) a compressed version of a derivative work of it.
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Seeing the weights as a mere compressed copy of the training set (not
different from a zipped file) is seducing since the weights are meant to contain
all the information necessary to reconstruct the original samples given a
certain input (i.e., the decoding key). However, the final result is usually
lossy, and the common scenario is that what we obtain after decompression
is similar, but not exactly equal, to the original work. If the differences are
not substantial, then it can still be considered a copy; however, it can also
lead to a non-negligible modification or transformation of the training data.
This second option seems to match the definition of derivative works.

This opens up a different perspective: what the weights represent might
not be the original training set, but a new, derivative work (substantially dif-
ferent from, but still based on, the original) whose creation happens concur-
rently with weights’ learning and whose only existence is due to the weights
themselves. Nonetheless, a derivative work must still satisfy the originality
requirement to be protected by copyright (see also Section 7.3.2). Whether
or not the trainers’ role in choosing data, algorithms, and parameters is suf-
ficient for claiming authorship (and thus protection) of the model’s weights
is still an open question.

Until now, we have assumed that the training set is protected under
copyright law. The whole training set can be protected as a database or
a collective work, i.e., a collection of separate and independent works [374].
However, the collective work must constitute an intellectual creation because
of the selection and arrangement of its content; the same criteria also ap-
ply to databases. One of the current trends for training foundation models
seems to go in the opposite direction. Although a certain degree of data
pre-processing is always present, the apparent tendency, at least in the early
days of foundation models, has been to collect as much data as possible, for
example, from the Web. This approach threatens the requirement of making
a careful and original selection or arrangement. Moreover, training sets for
specific domains used for fine-tuning are more likely to be eligible for protec-
tion as collective works. Still, this interpretation does not seem to cover all
foundation models’ training sets.

On the other hand, single training samples are often protected under
copyright law [27]. Even though the training goal aims to compress batches
of samples at a time, thus potentially leading to a compression that is optimal
for a subset of works when considered together but not when considered
separately, the single works can still be decompressed from the resulting
model, at least in principle. This suggests that the model’s weights can be
interpreted as a copy (or a derivative work) of all the independent training
samples, and not only of the training set as a whole.
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Implications

Interpreting the model’s weights as a copy or a derivative work of protected
works leads to two crucial implications.

First, it provides a legal framework to understand them, removing the veil
of uncertainty surrounding this issue. Although asserting copyright protec-
tion for weights as a derivative work presents challenges due to the absence
of valid authorship [479], it is possible to safeguard them by viewing the file
with the model’s weights as a database. Indeed, they can be considered as
a collection of floating point numbers that can be retrieved independently.
Moreover, the significant investments required for obtaining them make the
model’s weights eligible for the sui generis right (thus providing certain rights
to those who have invested in the database constitution independently from
its copyright protection) [621]. In other words, the sui generis right can pro-
tect the investment; our copyright perspective can link the model’s weights
back to the training data, providing a new perspective over one of the several
issues concerning the generative-Al supply chain [374]. The same consider-
ations still hold in the case of a fine-tuned model. According to Lee et al.
[374], this would be considered a derivative work of the pre-trained model
(and also of the fine-tuning data). In other words, fine-tuning could be con-
sidered as nothing more than an additional step in the information processing
chain. Again, the weights of the fine-tuned model would be eligible for the
sui generis right. However, whether it qualifies for protection as a deriva-
tive work remains an open question, and the determination of valid (human)
authorship can vary on a case-by-case basis.

Second, this type of interpretation provides a potential framework for
works generated by the model. Indeed, decompressing the information from
the model might be seen as producing a derivative work of the weights, thus
a derivative work of a copy of a protected work or a derivative work of a
derivative work of (a copy of) a protected work. Either way, this link be-
tween the output and the training data may help enforce their copyrights. It
is worth noting that the EU text and data mining (TDM) exceptions as well
as other comparable rules [191] apply for TDM purposes, such as training
the model, therefore to the case of the creation of a copy or derivative work;
however, they do not apply for further derivative works from the model. A
similar consideration can also be drawn for the US fair use doctrine, which
arguably applies to training a model on copyrighted data but is less likely
when deployed to generate similar content that can threaten their market
[268]. The main consequence is that authorization from the training set’s
rightsholders would be required (or else the reproduction or adaptation right
would be triggered), allowing for potential requests for compensation from
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Figure 7.3: A schematic summary of the legal framework resulting from the
training-as-compressing perspective. The blue arrows connect potentially pro-
tected entities to their copies or derivative works: the foundation model is a copy
or a derivative work of the training data; fine-tuning can lead to a new derivative
work of the foundation model and the tuning data; and an Al-generated work is a
derivative work of either the foundation or the fine-tuned model. The yellow (dot-
ted) and red (dashed) arrows directly link the Al-generated work back to training
data and training and tuning data, respectively, only through steps requiring spe-
cific exceptions or authors’ authorization.

original authors. In addition, generated works ought to respect the moral
rights of the owners of training data, even when their economic rights have
expired. The fact that the new derivative work is protected by copyright is
an entirely different issue, already covered in Section 7.3.2. Crucially, these
considerations also apply to synthetic data (i.e., Al-generated works) used as
new training data for a different foundation model (e.g., [597]). Essentially,
the chain of relationships between the resulting model-generated data and
the original protected training data would be longer but still involve steps
that trigger either the reproduction or adaptation rights. The overall concep-
tual framework based on the proposed training-as-compressing perspective
is summarized in Figure 7.3.
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8 Conclusions

8.1 Summary of Contributions

The latest developments in generative Al are attracting increasing interest
from researchers and the general public due to the quality of their outputs.
Generative models are used daily by humans to assist with various tasks,
including those related to creativity, and many envision a future where they
might replace humans in performing creative activities. In this thesis, we have
analyzed whether these technologies can be truly considered creative, what
technical solutions can be implemented to better align them with human
creativity, and what implications might arise from having more creative Al.

We began with an in-depth introduction to creativity, generative Al, and
the field of computational creativity (Chapter 1). Building on the most
prominent theories of human creativity, we have critically introduced the
main criteria to evaluate generative models and what technical solutions
might address the missing aspects. In particular, reinforcement learning
emerged as a strong candidate for better learning the skills required to per-
form seemingly creative processes, direct generation toward more creative
products, and include a notion of environmental conditions into the model.
This has led us to the definition of our main research questions: Can cre-
ativity enhance the design of RL algorithms? Can RL help develop more
creative generative models?

Then, we have provided the necessary technical background (Chapter 2).
First, we have formalized generative deep learning, detailing its main families
of methods by describing how their training and inference algorithms work,
as these are the most relevant aspects from a creativity perspective. Next,
we have introduced the basic concepts of reinforcement learning, focusing
specifically on policy-gradient methods and imagination-based reinforcement
learning. Finally, we discussed the theoretical framework to use RL for gen-
erative modeling and we have detailed its most famous application in this
area, i.e., RLHF.

In Chapter 3, we have provided a comprehensive overview of the current
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state of the art in all relevant topics. We have analyzed the generative deep
learning families in terms of their most relevant variants and applications,
finding that, even when applied to creative tasks, they do not explicitly
target novel, surprising, and valuable solutions, arguably failing to achieve
some of them. We have also discussed the literature on existing generative
methods that optimize for creativity; while promising, they represent only
a very small niche within the growing generative Al field. Then, we have
reviewed the most relevant research in RL-related topics such as imagination,
curiosity, and generalization, highlighting potential gaps that more creative
solutions might partially address. We have also surveyed the literature on
the state of the art, the opportunities, and the open challenges of using RL
for generative modeling. We have focused on different reasons to adopt such
a framework, i.e., to provide a suitable approach for domains that cannot
be modeled through a well-defined and differentiable objective, to teach how
to maximize a numerical property, or to align with human requirements and
preferences that are not easily expressed in a mathematical form. Finally,
we have covered the research on the impact of generative Al on society by
considering the most prominent studies on Al exhibiting human capabilities,
such as creativity, and the legal implications of generative modeling.

Once all the relevant topics were properly introduced and the related lit-
erature discussed, we have approached the first research question. In Section
4, we have studied whether dreaming can help RL agents better generalize,
as recently suggested for humans. Starting from state-of-the-art imagination-
based RL techniques, we have leveraged generative augmentations such as
interpolation with random noise, Deepdream, and value-expectation maxi-
mization to transform standard, predicted trajectories into more dream-like
experiences for fully training or fine-tuning the agent. We have evaluated
generalization capabilities through ProcGen environments in four different
low-resource scenarios. We have found that imagination-based RL is far
from achieving competitive generalization performances when not trained
for a large number of timesteps, and our transformations, while effective at
the beginning of the training, do not provide meaningful improvements over
classic imagination-based RL in the long run.

Then, Chapter 5 addresses the second research question. In particular,
we have developed a new context-based score to evaluate value and origi-
nality underpinned by mutual information. Given a fixed input, this score
can measure to which extent the output is unexpected for a given reference
model (originality) as well as how much it is appropriate and related to the
input (value). By leveraging reinforcement learning as an effective way to
maximize the score, we have proposed various training methods with differ-
ent normalization schemes to address the complexity of this multi-objective
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score. We have validated them into two different domains: poetry generation
and mathematical problem resolution. With respect to the first domain, a
qualitative analysis of generated poems suggests our method, especially the
version based on DPO, increases the diversity of solutions while maintaining
high quality effectively. As far as the second domain is concerned, we have
found that our methods have no real shortcomings and that normalizing the
score can provide significant improvements in response accuracy.

Since our RL-based strategy mainly works at learning time, we have also
explored orthogonal solutions to better simulate creativity at inference time.
First, we have examined whether our creativity score could be used directly
at inference time (Section 5.2). We have developed a contextual learning
approach where a small number of candidate outputs are produced and or-
dered based on the score, and then we have asked the generative model to
produce a better solution. Evaluation on 15 creativity-related BIG-Bench
tasks has revealed that our in-context method does not consistently improve
performances over classic sampling. Then, in Chapter 6, we have proposed
two new sampling strategies. For the former, we have explored a different
solution that directly works at the probability distribution level. Based on
theoretical and practical considerations over the standard sampling schemes,
we have suggested the use of the discrete derivative of the ordered probabil-
ities as a way to limit the sampling to relevant tokens or to push sampling
toward less probable but still desirable tokens. We have developed DiffSam-
pling, a family of sampling schemes, and we have demonstrated its efficacy
in three different use cases: mathematical problem resolution, extreme sum-
marization, and the divergent association task. Finally, we have presented
Creative Beam Search, a generate-and-test sampling scheme to better simu-
late both the response generation and response validation steps that typically
occur in human creative processes. This technique leverages diverse beam
search to produce a certain number of response candidates that maximize
diversity and LLM-as-a-Judge to identify the best output among the candi-
dates. Our qualitative experiments showed that, on average, Creative Beam
Search is viewed as more creative than traditional methods by potential end-
users. We have also found that self-evaluation leads to an increase in terms
of quality according to human evaluators.

Finally, Chapter 7 contains an in-depth discussion on social and practical
issues arising from the use of generative Al for creative purposes. First, we
have considered whether current foundation models are creative, their limi-
tations, and the corresponding societal implications. We have then analyzed
whether current foundation models can be entitled to agency, a relevant prop-
erty for creativity, and what can happen to human agency when creatively
collaborating with Al. Finally, we have examined how current copyright laws
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can manage the complexity of generative Al in terms of protecting human-
and machine-generated artworks. Additionally, we have focused on the po-
sition of the generative model itself, arguing that it can be seen as a com-
pression of training data and we have analyzed the legal consequences of this
analogy.

8.2 Limitations

This thesis presents a series of methods and analyses that we believe can rep-
resent the basis for future theoretical and practical improvements of creative
AT technologies. However, it is possible to identify a series of limitations of
this work.

The first limitation concerns the definition of creativity. While we have
found a certain convergence with some of the most prominent theories, there
is still no universal agreement on what creativity really is and how it can
be properly defined. We built our work on Rhodes’ four perspectives of
creativity, i.e., product, process, press, and person [535]. For each of them,
we have considered the most relevant definitions to expand them into sub-
definitions and criteria for assessment. Nonetheless, we may have overlooked
some other perspectives or some of their key components. Either way, our
analyses have been based on concepts extensively argued to be relevant for
creativity. At worst, our building blocks were not as broad as possible,
but they were still relevant for this investigation in our opinion. Our study
of creativity is also focused on a “western” perspective. For example, our
analysis of copyright and generative Al only concerns US and EU laws and
is indeed a limitation of this work.

As far as the experiments from Chapter 4 are concerned, the main prob-
lem lies in the resource requirements. Our experiments on limited-resource
scenarios showed that the performance of imagination-based RL dramatically
drops with shorter training time. Given that imagination in RL is meant to
free agent learning from the need of interacting with the environment, and
that our techniques should foster generalization over collected data, requiring
the availability of massive data is indeed a limitation. Moreover, the need
for a correct world model introduces additional training complexity. In the
considered settings, imagination with and without our generative augmenta-
tions has shown a tendency to overfit. More work is needed to investigate and
explain these results; at the moment we do not have obvious explanations,
except for the limited training data.

Regarding Chapter 5, the proposed score is theoretically sound and the
results obtained are encouraging, but we still need more experiments to val-
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idate our method. Indeed, we have aimed to define a conceptual framework
that can be adapted to any possible domain; how to adapt it for other tasks,
however, is not as “simple” as it is for language modeling. Our score seems
to easily fit with autoregressive models; still, how to compute the poste-
rior probability of the input given the output for music or image generation
is an open question. In addition, finding the optimal way to numerically
balance the two parts of the score (i.e., value and originality) is not straight-
forward. The solution based on DPO seems to address this issue, but it is
more computationally intensive than the RL one (as it requires generating
multiple candidates for the same input) and less flexible, possibly preventing
additional, future extensions.

Finally, it is possible to identify potential limitations also in the proposed
sampling strategies. The score-based contextual learning approach has a
higher resource consumption, and its effectiveness depends on the model con-
sidered and the task at hand; moreover, its application is limited to language
modeling. On the other hand, DiffSampling might be applied to different
domains as well, but we have only experimented with LLMs and with only a
subset of possible tasks. Similarly, we have evaluated Creative Beam Search
on a single task with limited resources and with a fixed prompt structure.
In addition, Creative Beam Search possesses the limitation of the underlying
technique that is at its basis: diverse beam search uses Hamming diversity,
which only considers differences at the same time step, potentially leading to
overly similar sequences due to minor misalignments such as initial spacing.

In general, evaluating the creativity of either a human or artificial agent
is not straightforward. Given the lack of a unique definition of creativity, it
is difficult to design a formal way for assessing it; in addition, creativity is
a capability orthogonal to specific tasks, thus different tasks might require
different evaluation methods. In all our experiments, we have tried to be
as objective as possible, using quantitative indicators whenever they were
available, and performing a qualitative analysis otherwise.

8.3 Future Work

This thesis provides some fundamental starting points for developing and
analyzing creativity with and for generative Al

First, the analysis of creativity and generative modeling can be expanded
to include different domains and other philosophical and psychological the-
ories, and, in the future, incorporate new developments in AI. While this
can in theory be done from a merely technological perspective, we believe
that consistently considering the societal, ethical, and legal issues together
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with other potential cross-disciplinary aspects is crucial, especially given the
increasingly significant impact of these technologies.

Next, with respect to imagination-based RL, alternative technical solu-
tions can be considered, e.g., an interesting question is whether the adoption
of Transformers for the world model can simplify the process of learning the
dynamics of the environment or improve the dream-like trajectory genera-
tion. We also plan to apply our creativity score to other tasks and domains,
studying how to adapt our framework to prompt-based music and image
generation. Instead of merely using it for fine-tuning, we also plan to test
whether it can be helpful to build an LLM ez-novo. As far as the sam-
pling schemes are considered, future work will include our creativity score at
inference time in different ways, e.g., to evaluate multiple responses or to iter-
atively refine the output. We also plan to expand the breadth of experiments
on DiffSampling, and especially to test whether merging these techniques to-
gether (with and without a model fine-tuned with our creativity score) can
help obtain more creative products.

Intrinsic motivation plays an important role in human creativity. The
investigation of curiosity-driven RL approaches to provide generative models
with simulated motivation is very promising. Finally, this work focuses on
single-agent scenarios. An evolution to multi-agent ones appears as natural
in the coming years.

In conclusion, we believe we are at the dawn of creative Al technologies;
whether AI will achieve human creativity is a different, almost impossible,
question. But, for sure, the coming years will definitely be exciting.

8.4 Broader Impact

In various sections of this thesis, we have discussed how creativity is a per-
sonal and social act and how artificial agents are not persons or social agents.
Nonetheless, we believe that computational creativity is worth studying:
there are good reasons for not being scared of machines able to compose
or paint.

The fear of potential replacement, also fostered by popular films and nov-
els, should not be seen as a real danger. As already discussed in Section 1.2,
an Al system always involves one or more humans to shape and influence
its production. Humans indicate the creativity direction, select the best out-
comes, interact with the machine, develop, train, and use it. It is important
to remember that an artwork does not draw attention or threaten a poten-
tial market simply because it exists. Almost everyone has tried, sooner or
later, to write a book, compose a song, paint a picture, or shoot a remark-
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able photo. But only an incredibly small portion of aspiring artists get their
work published or exhibited. Why? Because any artwork deserves its au-
dience. This means that only an audience, which incidentally is made of
humans, can decide the future of such creations. The mere fact that a work
is machine-generated can be considered sufficient at first to claim attention
[677], but in the long run, only the product quality will matter. If and when
artificial creators become the norm, they will be judged according to the
same criteria as humans. In this sense, the chance of artificially producing a
countless number of works [214] is not frightening; it will always be possible
for humans to stand out for the quality of their works.

In any case, this is just one possible scenario, and it is not the most
desirable by researchers [490]. History can act as a guide in this respect.
A breakthrough invention that deeply affected the creative industry in the
recent past is photography. During its first years, the same fear of being
replaced spread between painters [266]. However, photography just found its
place in visual arts, without replacing the existing ones; a new form of art
was born, and (human) artists re-established themselves in this new artistic
landscape. Indeed, there was no longer a need to create an illusion of true
reality, paving the way for new styles like surrealism, cubism, or conceptual
arts [599].

The invention of photography led to new artistic opportunities, such as
film cameras. Similarly, studying creativity in Al might lead to new forms
of art (or styles) we cannot even imagine so far or might transform some of
the existing ones in desirable ways: for instance, they might become more
accessible and portable. More concretely, artistic machines can collaborate
with humans, both as tools and as real partners. Humans can now obtain
new artworks by providing the machine the right input [611]; the output of
a machine can be of inspiration for human arts [9]; or the final product can
emerge after a sequence of interactions, where the human continuously asks
the machine to adjust or refine their work [348].

On the other hand, just thinking of computational creativity in terms of
arts is a mistake. Creativity is also linked with innovation, science, problem-
solving, marketing, and in general, any daily activity with more than one
possible solution [65]. A machine able to perform a creative process may
help discover new approaches to solve problems or formulate theorems [144];
by reasoning in a different and perhaps unexpected way, it may come out
with novel and effective alternatives [289]. These alternatives might not be
better in general but can inspire the human solver, lead to faster or cheaper
(heuristic) solutions, or even help define new interesting problems.

Moreover, finding alternative, performing ways of solving a task can also
mean identifying different ways to achieve, represent, and communicate that
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solution. It can mean finding ways to customize the communication itself
[351]. Creative machines can therefore be better than non-creative ones in
interacting with users and in explaining the results of their work.

Finally, this study of Al and creativity can help in understanding human
creativity. In fact, any discovery and failure of computational creativity
research can provide insights into human creativity as well [53]. Essentially,
studying computational creativity is about studying humanity itself.
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A Experiment Detalils

A.1 Creativity for Reinforcement Learning

For the experiments detailed in Section 4.2, following our limited-resource
setting, we adopt smaller neural networks than those used in the original
Dreamer papers. Accordingly, we have changed a few of the hyperparameters,
while keeping most of them equal to those from DreamerV3. Table A.1
reports the full list of network hyperparameters.

As far as the training is concerned, we leverage mixed precision [441] to
reduce resource consumption. Table A.2 reports all the training parameters.
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Parameter

Value

Categoricals C'

Classes J

RNN hidden units
Convolution filters
Convolution kernel size
Convolution strides
Deconvolution filters
Deconvolution kernel size
Deconvolution strides
Linear units

MLP layers
Normalization
Activation

Learning rate during day
Learning rate at night
Optimizer

Reward bins K

Bins extremes

Dynamics loss factor 34

Representation loss factor [,

Critic loss factor ¢,
Entropy loss factor ¢,

~ parameter during day (GAE)
v parameter at night (GAE)

A parameter (GAE)
PPO clip factor €

PPO gradient clip factor
PPO iterations

32
32
512
[32, 64, 128, 256]
4
2
[128, 64, 32, 3]
4
2
512
2
Layer
swish
le-4
5e-5
Adam
255
-20, +20
1.0
0.1
0.5
0.01
0.99
1-1/H
0.95
0.2
0.5
3

Table A.1: Network hyperparameters.
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Parameter Value
Total timesteps in environment le+6
Total training steps for world model le+7
Total training steps in imagination 1.5e+8
Seed episodes S 8
Warmup epochs for world model 10
Total epochs E 122
World model update steps U 32
Steps per epoch in each environment 7, 1024
Parallelized environments N.,ys 8
World batch size B, 100
Sequence length L 25
Agent batch size B, 2048
Imagination horizon H 16
Test repetition per epoch 8
DeepDream optimization steps 20
DeepDream step size 0.3
Value maximization optimization steps 20
Value maximization step size 0.5

Table A.2: Training parameters.

230



A.2 Reinforcement Learning for Creativity

For the experiments on poetry generation detailed in Section 5.1.2, Table
A.3 reports the full training parameters. The prompt used for generation at
training and inference time leverages Nothing gold can stay by Robert Frost,
Fame is a bee by Emily Dickinson, and Epitaph by William Carlos Williams

for few-shot learning:

,

Write a fatalistic epigram poem of high, award winning quality.

Nature’s first green is gold,
Her hardest hue to hold.
Her early leaf’s a flower;
But only so an hour.

Then leaf subsides to leaf.
So Eden sank to grief,

So dawn goes down to day.
Nothing gold can stay.

Write an ironic quatrain poem of high, award winning quality.

Fame is a bee.
It has a song-
It has a sting-
Ah, too, it has a wing.

Write a naturalistic epitaph poem of high, award winning qual-
ity.

An old willow with hollow branches
slowly swayed his few high fright tendrils
and sang:

Love is a young green willow
shimmering at the bare wood’s edge.

Write a {tone} {style} of high, award winning quality.

\

while the prompt used for the computation of p(S|T) is:
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Describe the style of the following poem in two words:

{prova}

I would describe it as a

Parameter Value
Total batches 100
Batch size B 4
Gradient accumulation steps 8
Max new tokens 256
Temperature 1.
Top-k 50
Optimizer Adam
Learning rate le-5
v (PPO) 1.

A (PPO) 0.95
Clip range (PPO) 0.2
Value loss coeff. (PPO) 0.1
PPO epochs 3
KL coeff. (PPO) 0.05
Whiten rewards (PPO) True
Max gradient normalization 100.
S (DPO) 0.1
Number of generated candidates K (DPO) 4

Table A.3: Training parameters for poetry generation.

On the contrary, Table A.4 reports the full training parameters for math

problem resolution. We also adopted the same two different prompts from

[722], i.e.:

r

Below is an instruction that describes a task. Write a response that
appropriately completes the request.

##4# Instruction:
{question}

Response:
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at training time and

Below is an instruction that describes a task. Write a response that
appropriately completes the request.

##+# Instruction:
{question}

Response: Let’s think step by step.

J

at inference time. Instead, for the computation of p(S|7") we use the follow-

ing:

Below is a response that appropriately completes a request. Write the
instruction that describes the task.

#+# Response:

{response}

Instruction:
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Parameter Value

Total epochs 1
Batch size B 4
Gradient accumulation steps 8
Max new tokens 512
Temperature 1.
Top-k 50
Optimizer Adam
Learning rate le-6
Reward for correct answer (PPO) +10.
v (PPO) 1.
A (PPO) 0.95
Clip range (PPO) 0.2
Value loss coeff. (PPO) 0.1
PPO epochs 3
KL coeff. (PPO) 0.05
Whiten rewards (PPO) True
Max gradient normalization 100.
Reward for correct answer (DPO) +5.
S (DPO) 0.1

Number of generated candidates K (DPO) 4

Table A.4: Training parameters for poetry generation.

A.3 Contextual Learning via Creativity Score

For the experiments described in Section 5.2.2, we generate 4 different out-
puts for each input, then used in the final prompt as explained by Algorithm
4. The generation configurations we use are: greedy strategy; sampling with
a temperature of 0.8 and top-k = 50; sampling with a temperature of 1.0
and top-k = 50; and sampling with a temperature of 1.2 and top-k£ = 50.
For them, we use the task in input as-is.

A.4 DiffSampling

As reported in Section 6.1.2, we test DiffSampling on three case studies. For
the mathematical problem resolution, we use the two prompts from [722],
reported in Appendix A.2.

For the extreme summarization task, the prompt adopted for the in-
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structed version of Llama2-7B is the same as in [110]:

[INST] For the following article: {article}

Return a summary comprising of 1 sentence. With the sentence
in a numbered list format.

For example:

1. First sentence [/INST]

J

where [INST] and [/INST] are special tokens used by Llama2-7b to identify
different roles in the chat.
Vice versa, for the non-instructed version, we use:

Generate a 1 sentence summary for the given article.
Article: {article}
Summary:

Finally, for the divergent association task, we consider the following
prompt for the instructed version of Llama3-8B:

user

Please write 10 nouns in English that are as irrelevant from
each other as possible, in all meanings and uses of the words. Please
note that the words you write should have only single word, only
nouns (e.g., things, objects, concepts), and no proper nouns (e.g., no
specific people or places).

assistant

J

where user and assistant are keywords used by Llama3-8b to identify dif-
ferent roles in the chat, while for its non-instructed version we use the fol-
lowing;:

235



Task: Write 10 nouns in English that are as irrelevant from each other
as possible, in all meanings and uses of the words. Please note that the
words you write should have only single word, only nouns (e.g., things,
objects, concepts), and no proper nouns (e.g., no specific people or
places).

Solution:
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B GutenVerse Dataset

To evaluate the accidental reproduction rate of generated poems, we propose
GutenVerse dataset!, a set of almost approx. 84k public-domain, English-
written poems extracted from Project Gutenberg. While generated poems
can reproduce different content, e.g., songs or copyrighted materials, we be-
lieve this can provide a useful indication of how likely is that a text is original
or not.

To define our dataset, we started from Gutenberg, dammit?, a corpus of
every plaintext file in Project Gutenberg (up until June 2016). We selected all
the text files whose metadata report English as the language, public domain
as copyright status, poetry among the subjects or poems or poetical work
in the title, and that were not a translation of another book. Then, we
applied a series of rules (e.g., about the verse length) to extract the titles
and poems from all the selected text files, and we defined our GutenVerse
dataset. While it can still contain content that is not poetry (e.g., a table of
contents formatted very uncommonly), the poems can be effectively used to
measure overlapping between real and generated text. We plan to improve
the dataset and release cleaner and safer versions in the future, to allow
researchers to use it for other purposes apart from accidental reproduction
metrics.

!The dataset and the code used to create it can be found at: https://github.com/
giorgiofranceschelli/GutenVerse
2See https://github.com/aparrish/gutenberg-dammit/
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C Ablation Studies

We report here various sets of ablation studies for the two parameters gov-
erning DiffSampling (presented in Section 6.1): the lower-bound probability
of the critical mass, and the reparameterization scaling factor.

C.1 Ablation Study on the Lower Bound

We conducted experiments on the three aforementioned case studies, varying
the lower bound of the critical mass.

Tables C.1, C.2, and C.3 report the results for the math problem res-
olution considering the training set and the GSM8K and MATH test sets,
respectively. As expected, the against-greedy diversity scores and cross-input
EAD increase together with the lower bound; instead, while accuracy tends
to decrease with higher lower bounds, the differences on the tests set are
not significant, and even a quite high value (e.g., 0.8) achieves competitive
results.

Tables C.4 and C.5 report the results for the extreme summarization task.
Again, against-greedy scores and cross-input EAD are directly correlated
with the lower bound; instead, we see no variations in terms of ROUGE-1
and cross-input SIM for the RLHF-instructed model, and slight decreases for
the pre-trained model.

Figures C.1 and C.2 report the results for the divergent association task.
As we would expect, the DAT score changes almost linearly between that for a
lower bound of 0 (that means DiffSampling-cut) and 1 (that means standard
sampling), as we reported in Section 6.1.2. Interestingly, the number of
correct answers by the non-instructed model drops quickly, meaning that
selecting a token after the first one tends to produce more incorrect answers
even if its probability is smaller than 0.1.
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DiffSampling-1b Accuracy T Cross-Input Diversity Against-Greedy Diversity
EAD 1 SIM 1 EAD 1 SIM 1
b =0.0 94.70 £0.21 | 1.66 +0.01 0.754+0.01 | 0.124+0.00 0.224+0.01
b =0.1 94.70 £0.21 | 1.66 £0.01 0.75+0.01 | 0.124+0.00 0.2240.01
Ib=0.2 94.70+0.21 | 1.66£0.01 0.75£0.01 | 0.12+£0.00 0.22£0.01
b =0.3 94.37£0.22 | 1.66 +0.01 0.75+0.02 | 0.124+0.00 0.23+0.01
Ib=04 94.574+0.47 | 1.66 £0.01 0.74+0.01 | 0.124+0.01 0.2240.01
Ib=0.5 94.27+£0.26 | 1.65+0.01 0.754+0.01 | 0.124+0.01 0.23+0.01
Ib =0.6 93.87+0.22 | 1.66 £0.01 0.74+0.01 | 0.13+£0.01 0.2540.01
Ib=0.7 94.10+£0.17 | 1.66 £0.01 0.75£0.02 | 0.15+£0.01 0.28£0.01
b =0.8 92.97+0.12 | 1.67+0.01 0.744+0.01 | 0.18+0.01 0.3240.01
Ib=0.9 92.404+0.50 | 1.68+£0.01 0.74+0.02 | 0.20+£0.01 0.35+0.01
Ib=1.0 90.83+£0.63 | 1.70+0.01 0.754+0.01 | 0.224+0.01 0.37+0.01

Table C.1: Ablation study on the lower-bound value in DiffSampling-lb over
3 seeds for the MetaMathQA training dataset in terms of percentage of correct
answers and the diversity metrics. Accuracy and cross-input diversity report the

mean and standard error over the final score of each run, while against-greedy
diversity reports the mean and the 95% confidence interval over the full set of

answers.

DiffSampling-1b

Accuracy 1

Cross-Input Diversity

Against-Greedy Diversity

EAD 1 SIM 1 EAD 1 SIM 1
b = 0.0 6710 +£0.19 | 1.9840.00 0.75+£0.00 | 0.15+£0.0 0.33+0.01
b = 0.1 66.46 £0.34 | 1.9940.00 0.74£0.00 | 0.15+£00  0.3340.01
b =0.2 66.46 £0.34 | 1.9940.00 0.74£0.00 | 0.15+£0.0 0.33£0.01
b = 0.3 66.79 £ 0.40 | 1.9840.00 0.74£0.00 | 0.15+£00  0.3340.01
b =04 66.57+£0.39 | 2.004£0.00 0.74£0.00 | 0.15+£0.0 0.33£0.01
b =05 65.78 £ 0.08 | 1.9840.00 0.74+£0.00 | 0.16£0.0 0.3440.01
b = 0.6 66.67+£0.37 | 1.9940.00 0.74£0.00 | 0.17+£0.0  0.36+0.01
b =0.7 65.58 £ 0.19 | 2.004£0.00 0.74£0.01 | 019400  0.40+0.01
b = 0.8 66.87 £0.16 | 2.014£0.00 0.75+£0.00 | 0.22+£0.0  0.4340.01
b = 0.9 65.18 £ 0.65 | 2.034£0.01 0.75+£0.00 | 0.24+0.0  0.46+0.01
b = 1.0 64.87£0.20 | 2.06+£0.00 0.74£0.00 | 0.27+£0.0  0.49 £ 0.01

Table C.2: Ablation study on the lower-bound value in DiffSampling-lb over
3 seeds for the GSMS8K test dataset in terms of percentage of correct answers
and the diversity metrics. Accuracy and cross-input diversity report the mean
and standard error over the final score of each run, while against-greedy diversity

reports the mean and the 95% confidence interval over the full set of answers.
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DiffSampling-1b Accuracy T Cross-Input Diversity Against-Greedy Diversity
EAD 1 SIM 1 EAD 1 SIM 1
Ib =0.0 21.06 £0.13 | 5.65+0.01 0.67=+£0.00 | 0.27+0.00 0.37 £0.00
b =0.1 20.954+0.20 | 5.65+0.01 0.67=+0.00 | 0.27+0.00 0.38 £0.00
Ib=10.2 20.954+0.20 | 5.65+0.01 0.67+0.00 | 0.274+0.00 0.38£0.00
b =0.3 21.304£0.08 | 5.66 +£0.01 0.67+0.00 | 0.274+0.00 0.38 £0.00
Ib=0.4 21.084+£0.11 | 5.66+0.02 0.68+0.00 | 0.284+0.00 0.38 +0.00
Ib=0.5 21.18£0.11 | 5.69+0.01 0.68+0.00 | 0.294+0.00 0.40 £ 0.00
Ib =0.6 21.184+0.22 | 5.724+0.02 0.68+0.00 | 0.31+£0.00 0.424+0.00
Ib =0.7 21.144+0.15 | 5.79+0.01 0.67=+£0.00 | 0.33+0.00 0.44 £0.00
b =0.8 20914+0.24 | 5.89+0.01 0.68+0.00 | 0.354+0.00 0.46 £+ 0.00
Ib=0.9 20.20+£0.08 | 6.04 £0.02 0.68+0.00 | 0.37+£0.00 0.47 £+ 0.00
Ib=1.0 19.46 £0.19 | 6.28+£0.01 0.68+0.00 | 0.39£0.00 0.49£0.00

Table C.3: Ablation study on the lower-bound value in DiffSampling-lb over
3 seeds for the MATH test dataset in terms of percentage of correct answers
and the diversity metrics. Accuracy and cross-input diversity report the mean
and standard error over the final score of each run, while against-greedy diversity
reports the mean and the 95% confidence interval over the full set of answers.

DiffSampling-1b ROUGE-1 1 Cross-Input Diversity Against-Greedy Diversity
EAD 1 SIM 1 EAD 1 SIM 1
Ib = 0.0 0.224+0.00 | 1.16+0.00 0.91+0.00 | 0.17£0.01 0.22+0.01
Ib=0.1 0.22 £0.00 1.17£0.00 0.91+£0.00 | 0.17£0.01 0.22+0.01
Ib=0.2 0.224+0.00 | 1.17+£0.00 0.914+0.00 | 0.17£0.01 0.22+0.01
Ib=0.3 0.22 £0.00 1.18£0.00 0.91+0.00 | 0.18+0.01 0.22+0.01
b =0.4 0.22+£0.00 | 1.18+0.00 0.91+£0.00 | 0.18+0.01 0.22+£0.01
Ib=0.5 0.22 £0.00 1.18+£0.00 0.91+£0.01 | 0.19+£0.01 0.23£0.01
Ib = 0.6 0.22 £0.00 1.18+£0.00 0.91£0.00 | 0.20£0.01 0.25£0.01
b =0.7 0.224+0.00 | 1.19+0.00 0.914+0.01 | 0.23+£0.01 0.29+0.01
b =0.8 0.22 £0.00 1.20£0.00  0.914+0.00 | 0.27+0.01 0.334+0.01
Ib=0.9 0.224+0.00 | 1.21+0.00 0.924+0.01 | 0.30£0.01 0.37+£0.01
Ib=1.0 0.22 £0.00 1.224+£0.00 091+0.00 | 0.34+0.01 0.40+0.01

Table C.4: Ablation study on the lower-bound value in DiffSampling-lb for the
RLHF-instructed model over 3 seeds for the XSum dataset in terms of ROUGE-1
and the diversity metrics. The mean and standard error of the final score for each
run are reported for cross-input diversity, whereas the mean and the 95% confi-
dence interval for the full set of answers are reported for ROUGE-1 and against-
greedy diversity.
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DiffSampling-1b ROUGE-1 1 Cross-Input Diversity Against-Greedy Diversity
EAD 1 SIM 1 EAD 1 SIM 1
Ib = 0.0 0.194+0.00 | 1.13£0.00 0.93+£0.00 | 0.25£0.01 0.28£0.01
Ib=0.1 0.19 £0.00 1.13+0.01  0.93£0.00 | 0.26+0.01 0.29£0.01
Ib =0.2 0.19 £0.00 1.11£0.00 0.93+£0.00 | 0.35£0.01 0.40£0.02
Ib=0.3 0.194+0.00 | 1.11£0.00 0.93+£0.00 | 0.44£0.01 0.50£0.02
Ib=04 0.19 £0.00 1.11£0.01  0.93+£0.00 | 0.51£0.01 0.57+0.02
Ib=0.5 0.194+0.00 | 1.10£0.01 0.92+£0.00 | 0.56£0.01 0.62+£0.01
Ib = 0.6 0.18+0.00 | 1.10£0.00 0.92+0.00 | 0.61£0.01 0.67+0.01
Ib =0.7 0.18 £0.00 | 1.14£0.01 0.924+0.01 | 0.67£0.01 0.72£0.01
Ib=0.8 0.17 £ 0.00 1.15+0.01 091+£0.01 | 0.72+£0.01 0.75£0.01
Ib=0.9 0.15+0.00 | 1.17£0.00 0.91+£0.01 | 0.76£0.01 0.79+£0.01
Ib=1.0 0.14+0.00 | 1.21£0.01 0.91+0.00 | 0.80£0.01 0.83+0.01

Table C.5: Ablation study on the lower-bound value in DiffSampling-lb for the
pre-trained model over 3 seeds for the XSum dataset in terms of ROUGE-1 and
the diversity metrics. The mean and standard error of the final score for each run
are reported for cross-input diversity, whereas the mean and the 95% confidence
interval for the full set of answers are reported for ROUGE-1 and against-greedy

diversity.
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Figure C.1: Above, the DAT score for DiffSampling-lb over the instructed version
of Llamag3-8B when varying the p;, parameter. Below, the number of valid outputs
produced by each of them. Single lines represent greedy methods, while boxplots
show the performance of stochastic strategies.
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Figure C.2: Above, the DAT score for DiffSampling-lb over the pre-trained ver-
sion of Llama3-8B when varying the p;, parameter. Below, the number of valid
outputs produced by each of them. Single lines represent greedy methods, while

boxplots show the performance of stochastic strategies.
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C.2 Ablation Study on the Gamma Parame-
ter

We also conducted experiments varying the lower bound of the critical mass
and the reparameterization factor for xsum and DAT case studies.

Tables C.6 and C.7 report the results for the extreme summarization
task considering the RLHF-instructed and pre-trained models, respectively.
Despite not seeing significant differences across different reparameterization
factors, we see that a higher v value tends to increase diversity (without
altering accuracy) in the first case, while it tends to decrease it in the second
one.

97.5

95.0 1

92.5 1

©
o
o

DAT Score
[o¢]
~
(6]

©
U
o

82.54 gamma
. 0.0

= 0.1 * o Ledes
80.0{ =3 05 .

= 1.0

100

~
~
3y

Valid outputs
=
w o
o o o

Figure C.3: Above, the DAT score for DiffSampling-reparam over the instructed
version of Llama3-8B when varying the v and the p; parameters. Below, the
number of valid outputs produced by each of them. Single lines represent greedy
methods, while boxplots show the performance of stochastic strategies.

Finally, Figures C.3 and C.4 report the results for the divergent asso-
ciation task. Coherent with what we saw for xsum, a higher v value has
a positive effect when considering the RLHF-instructed model, with gener-
ally higher DAT scores (apart from very low lower bounds) and more valid
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Figure C.4: Above, the DAT score for DiffSampling-reparam over the pre-trained
version of Llama3-8B when varying the v and the p; parameters. Below, the
number of valid outputs produced by each of them. Single lines represent greedy
methods, while boxplots show the performance of stochastic strategies.

outputs. On the contrary, it tends to decrease the DAT score (while still
generating more valid outputs) when considering the pre-trained model.
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DiffSampling-reparam

ROUGE-1 1

Cross-Input Diversity

Against-Greedy Diversity

EAD T SIM T

EAD 1 SIM T

v =0.0,1b =0.0
v =0.1,1b=0.0
v =0.5,1b =0.0
v =1.0,1b=0.0
~v=10.,1b = 0.0

0.22 £0.00
0.22 £0.00
0.22 4+ 0.00
0.22 £0.00
0.22 £0.00

1.16+£0.00  0.91 4 0.00
1.16 £0.00  0.91 £0.00
1.16 £0.00  0.91+£0.00
1.17£0.00  0.91£0.00
1.17£0.00 0.91£0.01

0.17+£0.01  0.22+£0.01
0.18+£0.01  0.224+0.01
0.194+£0.01  0.244+0.01
0.19+£0.01  0.24+£0.01
0.214+0.01  0.274+0.01

7 =00,1b=01
4 =01,1b=01
4 =05,1b=01
4 =10,1b=01
4 =10,1b =01

0.22£0.00
0.22 £ 0.00
0.22 £0.00
0.22 £0.00
0.22 £0.00

1.17£0.00  0.91£0.00
1.17£0.00  0.91£0.00
1.17£0.00  0.91£0.00
1.17+£0.00 0.91+£0.01
1.17£0.00 0.91£0.01

0.17+£0.01  0.22+£0.01
0.17+£0.01  0.22+£0.01
0.18+£0.01  0.23+£0.01
0.194+£0.01  0.244+0.01
0.21+£0.01  0.26 £0.01

7 =00,1b=02
7 =01,1b=02
4 =051b=02
4 =10,1b=02
y =10, 1b = 0.2

0.22 £0.00
0.22 £0.00
0.22 £ 0.00
0.22 £0.00
0.22 £0.00

1.17£0.00  0.91£0.00
1.18 £0.00  0.91 £0.00
1.18 £0.00  0.91£0.01
1.18 £0.00  0.91 4 0.00
1.18 £0.00  0.91 £0.00

0.174+0.01  0.224+0.01
0.18+£0.01  0.224+0.01
0.18+0.01 0.23+£0.01
0.194+0.01  0.244+0.01
0.214+0.01 0.26+0.01

0.22 £ 0.00
0.22 £0.00
0.22 £0.00
0.22 4+ 0.00
0.22 £0.00

1.18 £0.00  0.91 £0.00
1.18 £0.00  0.91 4 0.00
1.18 £0.00  0.91£0.01
1.18 £0.00  0.91£0.01
1.18+£0.00 0.9140.01

0.18+0.01  0.22+£0.01
0.18+£0.01  0.22+£0.01
0.18+£0.01  0.234+0.01
0.194+£0.01  0.244+0.01
0.21+£0.01 0.27+£0.01

0.22 £0.00
0.22 4+ 0.00
0.22 £ 0.00
0.22 £0.00
0.22 4 0.00

1.18 £0.00  0.91 £0.00
1.18 £0.00  0.91 £ 0.00
1.18 £0.00  0.91 4 0.00
1.18 £0.00  0.91 £0.00
1.18£0.00 0.91+£0.01

0.18+£0.01  0.224+0.01
0.18+0.01  0.2240.01
0.19+£0.01 0.23+£0.01
0.194+0.01  0.244+0.01
0.214+0.01 0.2740.01

v=0.1,1b=0.5
v =0.5,1b=05
v=10,1b =05
v =10.,1b=0.5

0.22 £0.00
0.22 £0.00
0.22 4+ 0.00
0.22 £ 0.00
0.22 £0.00

1.18 £0.00  0.9140.01
1.18 £0.00  0.92£0.00
1.18 £0.00  0.92+£0.00
1.18 £0.00  0.92£0.00
1.19£0.00 0.91£0.01

0.19+£0.01 0.23+£0.01
0.19+£0.01  0.23+£0.01
0.194+£0.01  0.244+0.01
0.20+£0.01  0.25+£0.01
0.224+0.01  0.274+0.01

v =0.0,1b =0.6
v =0.1,1b =06
v =0.5,1b=0.6

0.22£0.00
0.22 £ 0.00
0.22 £0.00
0.22 £0.00
0.22 £0.00

1.18 £0.00  0.91+£0.00
1.18 £0.00  0.91 £0.00
1.18 £0.00  0.91 £0.00
1.18 £0.00  0.91+£0.00
1.20£0.00 0.91£0.01

0.204£0.01  0.254+0.01
0.20+£0.01  0.25+£0.01
0.214+0.01  0.264+0.01
0.214+0.01  0.264+0.01
0.29+£0.01 0.36 £0.01

0.22 £0.00
0.22 £0.00
0.22 £ 0.00
0.22 £0.00
0.22 £0.00

1.19£0.00 0.91£0.01
1.19£0.00  0.91£0.00
1.19£0.00  0.91£0.00
1.194£0.00  0.91 4 0.00
1.19£0.00 0.91£0.00

0.23+£0.01  0.29+£0.01
0.23+£0.01  0.294+0.01
0.24+£0.01  0.30+£0.01
0.24+£0.01  0.30£0.01
0.27+£0.01 0.33£0.01

v =1.0,1b=0.6
v =10.,1b=0.6
v =0.0,1b=0.7
vy=011=0.7
v =05,1=0.7
v =1.0,1b=0.7
v =10.,1b=0.7
v =20.0,1b=08

v=0.1,1b=0.8
4 =05,1b =08
4 =10,1b =08
Y =10, 1b = 0.8

0.22 £0.00
0.22 £0.00
0.22 £0.00
0.22 4+ 0.00
0.22 £0.00

1.20£0.00  0.91 £0.00
1.20£0.00  0.92 4 0.00
1.20£0.00  0.92£0.00
1.20£0.00  0.91£0.00
1.204£0.00  0.91 4 0.00

0.27+£0.01 0.33+£0.01
0.27£0.01  0.33+£0.01
0.27+£0.01  0.34£0.01
0.284+0.01  0.34+0.01
0.29+£0.01 0.36 £0.01

v =10.0,1b =09
v=01,1b =09
v=10.5,1b=09
v =1.0,1b =09
v =10.,1b =109

0.22£0.00
0.22 4+ 0.00
0.22 £ 0.00
0.22 £0.00
0.22 4 0.00

1.21+£0.00 0.92+0.01
1.21£0.00  0.92+£0.00
1.214£0.00  0.9240.00
1.20£0.00  0.92£0.00
1.20£0.00  0.92+£0.00

0.30£0.01  0.37£0.01
0.314+£0.01  0.374+0.01
0.30£0.01  0.37+£0.01
0.31+£0.01  0.37£0.01
0.324+0.01  0.3940.01

v =0.0,1b=1.0
vy=0.1,1b=1.0
v =10.5,1b=1.0
v=10,1b=1.0
v =10.,1b=1.0

0.22 £0.00
0.22£0.00
0.22 4+ 0.00
0.22 £ 0.00
0.22 £0.00

1.224+0.00  0.91 4 0.00
1.22£0.00  0.91£0.00
1.22+£0.00  0.91+£0.00
1.22£0.00  0.91£0.00
1.21+£0.01  0.92+0.00

0.34£0.01  0.40+£0.01
0.34+0.01  0.4140.01
0.34+0.01 0.41+0.01
0.34+£0.01  0.41+£0.01
0.35+£0.01 0.42+£0.01

Table C.6: Ablation study on the gamma parameter and the lower-bound value
in DiffSampling-reparam for the RLHF-tuned model over 3 seeds for the XSum
dataset in terms of ROUGE-1 and the diversity metrics. The mean and standard
error of the final score for each run are reported for cross-input diversity, whereas
the mean and the 95% confidence interval for the full set of answers are reported

for ROUGE-1 and against-greedy diversity.
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DiffSampling-reparam

ROUGE-1 1

Cross-Input Diversity

Against-Greedy Diversity

EAD T SIM T

EAD 1 SIM T

v =0.0,1b =0.0
v =0.1,1b=0.0
v =0.5,1b =0.0
v =1.0,1b=0.0
~v=10.,1b = 0.0

0.19 £ 0.00
0.19 £0.00
0.19 £ 0.00
0.19 £0.00
0.19 £0.00

1.134£0.00  0.93 4 0.00
1.13£0.00  0.93 £0.00
1.13£0.00  0.93+£0.00
1.13£0.00  0.93£0.00
1.14£0.01  0.93£0.00

0.25+£0.01 0.28+£0.01
0.26+£0.01  0.29+£0.01
0.27+£0.01  0.30+£0.01
0.28+£0.01 0.31+£0.01
0.31£0.01 0.35£0.01

7 =00,1b=01
4 =01,1b=01
4 =05,1b=01
4 =10,1b=01
4 =10,1b =01

0.19 £ 0.00
0.19 £ 0.00
0.19 £0.00
0.19 £0.00
0.19 £ 0.00

1.13£0.01  0.93+£0.00
1.13£0.00  0.93 £0.00
1.13£0.01  0.93£0.00
1.13+£0.01  0.93+£0.00
1.14£0.01  0.93£0.00

0.26+0.01  0.2940.01
0.26+£0.01  0.30£0.01
0.27+£0.01  0.31£0.01
0.284+0.01  0.3240.01
0.32+£0.01  0.36 £0.01

7 =00,1b=02
7 =01,1b=02
4 =051b=02
4 =10,1b=02
y =10, 1b = 0.2

0.19 £0.00
0.19 £0.00
0.19 £ 0.00
0.19 £0.00
0.19 £0.00

1.11£0.00  0.93 £0.00
1.12£0.00  0.93 £0.00
1.12£0.00  0.93 £ 0.00
1.134£0.00  0.93 4 0.00
1.14£0.00 0.93 £0.00

0.35+£0.01  0.40 £0.02
0.36 £0.01  0.4140.02
0.36 £0.01  0.41+£0.02
0.36£0.01  0.41£0.02
0.39+£0.01 0.44£0.02

0.19 £ 0.00
0.19 £0.00
0.19 £0.00
0.19 4 0.00
0.19 £ 0.00

1.11£0.00  0.93 £ 0.00
1.114£0.00  0.93 4 0.00
1.11£0.00  0.93 £0.00
1.11£0.00  0.93£0.00
1.124+0.01  0.9240.00

0.44+0.01  0.50£0.02
0.44£0.01  0.49+£0.02
0.444+0.01  0.4940.02
0.44+0.01  0.50£0.02
0.44+£0.01 0.51+£0.02

0.19 £0.00
0.19 4 0.00
0.19 £0.00
0.19 £0.00
0.19 £ 0.00

1.11+£0.01  0.93+£0.00
1.11£0.01  0.92+£0.00
1.114£0.01  0.9240.00
1.11+£0.01  0.92+0.00
1.12+£0.01  0.92+£0.01

0.51£0.01  0.57£0.02
0.514+£0.01  0.5740.02
0.51+£0.01  0.57£0.02
0.50£0.01  0.57£0.02
0.49+0.01 0.56 £0.02

v=0.1,1b=0.5
v =0.5,1b=05
v=10,1b =05
v =10.,1b=0.5

0.19 £0.00
0.19 £0.00
0.19 £ 0.00
0.19 £ 0.00
0.19 £0.00

1.10£0.01  0.92 4 0.00
1.11£0.00  0.93 £0.00
1.11£0.00  0.93+£0.00
1.12£0.00  0.93 £0.00
1.12£0.00  0.93 £0.00

0.56 £0.01  0.62+£0.01
0.56 £0.01  0.62+£0.01
0.554+0.01  0.614+0.01
0.54+0.01  0.60+£0.01
0.52+£0.01  0.59 £0.02

v =0.0,1b =0.6
v =0.1,1b =06
v =0.5,1b=0.6

0.18 £0.00
0.18 £0.00
0.18 £0.00
0.18 £0.00
0.18 £0.00

1.10£0.00  0.92+£0.00
1.10£0.00  0.92£0.00
1.11£0.00  0.92£0.00
1.11+£0.00  0.92+£0.00
1.15£0.01  0.9240.00

0.61+0.01  0.67+0.01
0.61+£0.01  0.66 £0.01
0.60£0.01  0.66 £0.01
0.59+£0.01  0.65+£0.01
0.63+£0.01 0.68+£0.01

0.18 £0.00
0.18 £0.00
0.18 £ 0.00
0.18 £0.00
0.18 £0.00

1.14+£0.01  0.92+0.01
1.13+£0.01  0.92+0.01
1.13£0.00 0.9240.01
1.134£0.00  0.9240.00
1.14£0.00 0.92£0.00

0.67+£0.01  0.72+£0.01
0.67+0.01  0.72+£0.01
0.65+0.01 0.70£0.01
0.65+0.01  0.69+£0.01
0.60+£0.01  0.65£0.01

v =1.0,1b=0.6
v =10.,1b=0.6
v =0.0,1b=0.7
vy=011=0.7
v =05,1=0.7
v =1.0,1b=0.7
v =10.,1b=0.7
v =20.0,1b=08

v=0.1,1b=0.8
4 =05,1b =08
4 =10,1b =08
Y =10, 1b = 0.8

0.17 £ 0.00
0.17 £0.00
0.17£0.00
0.17 £ 0.00
0.18 £0.00

1.15£0.01  0.91£0.01
1.154£0.00  0.9140.00
1.16£0.00 0.91+£0.01
1.16 £0.00  0.92+£0.01
1.154+0.01  0.9240.01

0.72+£0.01  0.75+£0.01
0.72+£0.01  0.76 £0.01
0.71£0.01  0.75£0.01
0.70+£0.01  0.73+£0.01
0.64+£0.01 0.69+£0.01

v =10.0,1b =09
v=01,1b =09
v=10.5,1b=09
v =1.0,1b =09
v =10.,1b =109

0.15£0.00
0.16 & 0.00
0.16 £ 0.00
0.16 £ 0.00
0.18 & 0.00

1.17+£0.00 0.91+£0.01
1.16 £0.00  0.91 £ 0.00
1.16+£0.00  0.92 4 0.00
1.16£0.00 0.91+£0.01
1.16£0.01  0.92+£0.00

0.76£0.01  0.79£0.01
0.76+0.01  0.79+0.01
0.74£0.01  0.78£0.01
0.73+£0.01  0.77£0.01
0.66 £0.01  0.70 £ 0.01

v =0.0,1b=1.0
vy=0.1,1b=1.0
v =10.5,1b=1.0
v=10,1b=1.0
v =10.,1b=1.0

0.14 £0.00
0.14 £0.00
0.14 £ 0.00
0.15 £ 0.00
0.17 £0.00

1.214£0.01  0.9140.00
1.21+£0.01  0.92+0.00
1.20£0.01  0.92+£0.00
1.17£0.01  0.91£0.01
1.15£0.01  0.92£0.00

0.80+£0.01 0.83+£0.01
0.80+£0.01 0.82+£0.01
0.78+0.01 0.81+0.01
0.77+£0.01  0.80+£0.01
0.69+0.01 0.72£0.01

Table C.7: Ablation study on the gamma parameter and the lower-bound value
in DiffSampling-reparam for the pre-trained model over 3 seeds for the XSum
dataset in terms of ROUGE-1 and the diversity metrics. The mean and standard
error of the final score for each run are reported for cross-input diversity, whereas
the mean and the 95% confidence interval for the full set of answers are reported

for ROUGE-1 and against-greedy diversity.
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