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Abstract 

The increasing availability of large quantities of data on species occurrence (i.e., presence and/or 

presence and absence of species) to support biodiversity studies and conservation actions is not 

always coupled with the data quality. Indeed, species occurrence data can present forms of bias 

(i.e., systematic deviation from the true value) and uncertainty (i.e., dispersion of values or lack of 

knowledge). In the PhD thesis, I evaluated different metrics and methods to address uncertainty 

and bias of species occurrence data. 

In the first chapter, the effect of the sampling method of the presences and absences and the 

effect of their ratio (i.e., sample prevalence) were tested on different Species Distribution Models: 

Favourability and Probability-based SDMs. In the second and third chapters, I employed various 

metrics to evaluate the quality of species occurrence data stored in a case study database, namely 

the sPlotOpen database. The taxonomic, spatial and temporal bias were measured at European 

and habitat levels respectively with i) the completeness of the species richness, ii) the Nearest 

Neighbor Index, iii) the Pielou's index. Besides, the temporal uncertainty—defined as the 

information decay of the species occurrence over time—was quantified using a negative 

exponential function. 

Among the main results, I found that the sampling methods (i.e., random and stratified sampling) 

of the species occurrences had no effect on the performance of the Favourability and Probability 

models. The Favourability model, in contrast, exhibited lower variability and only slightly higher 

accuracy than Probability in the predictions of species distribution. Moreover, the metrics used to 

assess the dimensions of bias in species occurrence data proved to be effective, revealing 

heterogeneous patterns. Additionally, the analysis of temporal uncertainty identified hotspot 

areas across Europe. Results that highlighted the necessity of assessing data quality prior to its use 

in biodiversity inferences. 

 

Extended abstract 

The collection of species occurrence data has risen considerably in the last decades. Policies and 

actions, aimed to reduce the intense impact of threats to the conservation status of species and 

habitats with the support of technological advancements, speeded up the demand for collection 

effort. However, a larger amount of data is not always coupled with a higher data quality, since 

many sources of inaccuracies and information gaps can still be hidden. In this PhD thesis, I focused 

on evaluating the quality of species occurrence data (i.e., presence and/or presence and absence 

of the species) and testing different methods to address its bias and uncertainty. 

Species occurrence data can store knowledge gaps in the actual distribution and in the taxa 

coverage, as well as imprecision in the records collection, leading to different forms of errors like 

bias (i.e., systematic deviation from the true value) and uncertainty (i.e., dispersion of values or 



 
 

lack of knowledge). The data quality was evaluated by measuring and representing bias and 

uncertainty under two methodological approaches: the first one involved the assessment of the 

accuracy and the variability of the predictions of species distribution estimated using Species 

Distribution Models and presences and absences data; the second one dealt with the direct 

measurement of bias and uncertainty of species occurrences in biodiversity databases. 

In the first chapter of the thesis, the assessment of species occurrence data was evaluated in the 

inference phase. I used virtual species modelling at the European scale for testing the effect of two 

standardized sampling methods (random and stratified) of presences and absences and different 

sample prevalence (i.e., ratio of number of presences and absences) in favourability-based and 

probability-based SDMs calibrated using a fix sample size (i.e., the number of presences and 

absences) and diverse statistical models (GLM, GAM, RF, BRT). The favourability model derives 

from the removal of the value of the sample prevalence to the predictions of probability-based 

SDM. 

The sampling methods did not have a great impact on the accuracy of SDMs, although they 

determined significantly different predictions of species distributions. A significant variation 

between the predictions of species distribution was also influenced by the ratio of presences and 

absences being sampled for both sampling methods and all of the statistical models. The 

probability model showed higher variability between the predicted species distributions calibrated 

using different sample prevalence. Moreover, the favourability-based SDMs performed slightly 

better (i.e., higher accuracy) than probability-based SDMs (more than half of the median 

Continuous Boyce index values were higher) in predicting the species distribution over space. 

Hence, the favourability model, thanks to the lower variability when the sample prevalence 

changes, may allow a better improvement in the comparisons between SDMs and a better 

understanding of the environmental conditions that shape the niche suitability of the species. 

In the second chapter of the thesis, the dimensions of bias (taxonomic, spatial and temporal) and 

the temporal uncertainty were measured on species occurrence data present in biodiversity 

databases through a new methodological framework aimed to be as reproducible as possible even 

changing the spatial scale and the ecological level. We used as a case study the vegetation plot 

records located in Europe of sPlotOpen, an open-access database. The bias was calculated by using 

common ecological metrics: the completeness of species richness for the taxonomic bias, the 

Nearest Neighbor Index for the spatial bias and the Pielou’s Index for the temporal bias. The 

temporal uncertainty, defined as the information decay of the species occurrence over time, was 

measured by applying a negative exponential transformation to the difference between the more 

recent year of recording among the plots and the date of recording of the data point. Across the 

grid cells, the completeness of the species richness (taxonomic bias) and the evenness of the 

sampling years (temporal bias) were heterogeneous, while the distribution of plots was mainly 

clustered, showing a high spatial bias. This suggests that the sampling of species occurrences was 

possibly opportunistic and/or not homogeneous and standardized within the grid cells over 

Europe. The temporal uncertainty highlighted hotspot areas that changed with the exponent being 

used. Overall, the new methods allowed us to assess the data quality of species occurrence in 



 
 

biodiversity databases providing a solid framework for a possible correction of information gaps 

based on the study context or for addressing future resampling campaigns. 

In the third chapter of the thesis, I measured the dimensions of bias (taxonomic, spatial, temporal) 

at the habitat level using the species occurrence data of the sPlotOpen database. The 

completeness of the species richness, the NNI and the Pielou’s Index were calculated for EUNIS 

level 1 E (i.e., grassland and lands dominated by forbs, mosses and lichens) and G (i.e., woodland, 

forest and other woodland) and for their sub habitats at level 2 (E1, E2, E3, E4, E5, G1, G2, G3) 

within grid cells covering European continent with a spatial resolution of 10 km. The patterns of 

bias were similar for E and G. Both showed low taxonomic bias, high spatial bias and an 

intermediate level of temporal bias. Also, for level 2 EUNIS, the patterns of bias were similar to 

those at level 1. However, the spatial and temporal bias exhibited greater differences in the values 

among the habitat types. The resulting values may have been influenced by biased sampling 

techniques and procedures, as well as, the geographic distribution of the habitat type. Otherwise, 

a measure of bias of species occurrences can help, at first instance, to better describe the degree 

of completeness of the actual description and representation of the habitat state, bearing in mind 

that the dimensions of the bias of species occurrence data are interconnected and often not 

independent of each other; evaluating them at the habitat level also adds the environmental 

dimension to the first three as the habitat is a complex system described also by its climatic and 

edaphic conditions.  

Awareness of the quality of data in biodiversity databases provides perspective on the efforts that 

still need to be made to ensure more complete monitoring and conservation of species and 

habitats. Furthermore, in light of this, in the inference phase of the data it is important to test the 

methods and models used to ensure greater accuracy and precision. 
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Introduction 

Overview: data on species occurrence 

Biotic and abiotic conditions together determine the physical and structural environment, as well 

as the interactions, behaviours, and biological processes of the organisms within an ecosystem 

(Schulze et al., 2019). Both living and non-living components play crucial roles in shaping the 

species population and community dynamics within an ecosystem together with its functions 

(Maestre et al. 2010). Nowadays, species distributions and habitat integrity suffer spatiotemporal 

changes under the pressure of different threats which are further exasperated by human activities 

(Pimm et al. 1995; Latombe et al. 2017; Wiens and Zelinka 2024). Indeed, human activities are 

known to be responsible for habitat fragmentation, land use change, climate change, biological 

invasions which, all together, are increasing the rate of biodiversity loss (Tilman et al. 2017). 

Nowadays, over 45,300 species face the threat of extinction including 26% of mammals, 41% of 

amphibians, 36% of reef corals, and 34% of conifers (IUCN 2024). Preserving or restoring 

populations, communities, and ecosystems is critically important for their survival , consequently, 

global initiatives and policy frameworks (e.g., the Convention on Biological Diversity, the 

Sustainable Development Goals, Habitat Directives) arise to quantify the conservation status of 

species and to address specific conservation actions preventing biodiversity loss (Pereira et al. 

2013). Many of them support sample collections, monitoring programs and sharing of biodiversity 

data. Numerous efforts are undertaken to share clear, accessible, harmonized and up-to-date 

biodiversity information that accurately reflects the species populations across different taxa and 

regions over time (Pereira et al. 2013; Jetz et al. 2019; Kühl et al. 2020). Indeed, reliable data are 

essential for obtaining accurate estimates of biodiversity conservation status.  

Studies on biodiversity conservation often estimate species diversity, community and species 

interactions using species occurrence data. Data on species occurrence provide information on the 

presence of the species, eventually, with their abundances or coverage (Jetz et al. 2019). They can 

also include the absence of the species when the inventories are carried out in small areas. 

However, the term absence should be taken with caution because the species could be simply 

unobserved. Hence, rather than a true absence, it would be better to consider it as a probability of 

absence which is strictly related to the sampling effort and the accuracy of the sampling design 

(Lobo, Jiménez‐Valverde, and Hortal 2010; Jetz et al. 2019).  Absence (or, according to the type of 

sampling, pseudo-absence or background data) and presence data are often combined with a set 

of variables that reflect the ecological and geographical conditions to understand species or 

community potential distribution across space (Elith and Leathwick 2009). The derived predictions 

are commonly estimated through models denominated Species Distribution Models or Ecological 

Niche Models. There are two main types of SDMs. Correlative SDMs model the species 

occurrences as a function of environmental conditions by using different statistical techniques, 

such as regression-based modeling (e.g., GLM, GAM, MARS), machine learning-based modeling 

(e.g., RF, GBM, SVM) and envelope modeling (e.g., BIOCLIM), to predict the geographic 

distribution of the species (Srivastava, Lafond, and Griess 2019). In contrast, mechanistic SDMs 
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combine spatial habitat features to functional traits (morphology, physiological and behavioural 

responses) of organisms (Kearney and Porter 2009). 

Data on species occurrence is retrieved from a variety of sources like field observations, museum 

and herbarium collections, scientific literature, along with the ones derived from “citizen science” 

campaigns (Chytrý 2001; Boakes et al. 2010; Tiago et al. 2017). Even so, species occurrence data 

can often drag on different facets of bias and uncertainty related to the taxonomic, geographic 

and temporal dimensions (Meyer, Weigelt, and Kreft 2016; Maldonado et al. 2015) which are 

generally originated by sampling and non-sampling errors. Sampling errors are often induced by 

chance or by the sampling designs that do not achieve a proper randomization failing to represent 

the entire population. In species occurrence data, the sampling errors can be created by 

opportunistic (i.e., non-probabilistic) sampling designs being used for collecting records (Boakes et 

al. 2010; Meyer et al. 2015). On the contrary, non-sampling errors can be determined by 

measurement errors such as researcher misreading and wrong species identification, 

miscalibrated scale, and a low accuracy of the instruments (e.g., taxonomic misidentification, 

erroneous or imprecise coordinates). Besides, non-sampling errors can derive from the union and 

use of heterogeneous, inaccurate and imprecise data being sampled with different goals and 

protocols and in different time (Boyd et al. 2022). Consequently, these errors stand for 

information gaps of various nature (Hortal et al. 2015) such as the lack of knowledge about the 

actual geographic distributions of species (i.e., Wallacean shortfall), the knowledge gap in taxa 

coverage (i.e., Linnean shortfall). However, although technological advancements over the years, 

such as remote sensing, camera traps, and GPS devices, have increased the ability to collect data, 

the potential presence of errors is not always removed (Hofmeester et al. 2019; Feng et al. 2021; 

Schad and Fischer 2023). Despite new methods are continuously developing also taking advantage 

of, remote sensing technologies such as Unmanned Aerial Vehicles (UAVs) (Kellenberger et al. 

2018, Ferreira et al. 2020) and Terrestrial Laser Scanners (TLS) (Terryn  et al. 2020), these 

intrinsically hold their degree of uncertainty. 

Data on species occurrence is often gathered in biodiversity databases, which are structured 

collections of information of various nature like species distribution and abundance, genetic data, 

habitat classification, and conservation status. Species occurrence data can be further collected in 

bigger repositories such as regional or global biodiversity databases of species occurrence and/or 

co-occurrence (e.g., GBIF, sPlot, iNaturalist, VertNet) where a few of them are also freely 

accessible (e.g., GBIF, sPlotOpen, BIEN). Indeed, over the years, with the improvement of 

computational capabilities, these databases have grown in number and size (Feng et al. 2022). 

However, even the biodiversity databases can hold knowledge gaps stemming from the different 

sampling protocols of the data types and the combination of multiple databases with diverse 

sampling designs and projects into a single database (Chytrý et al. 2014; Wüest et al. 2020). For 

example, the Global Biodiversity Information Facility (GBIF 2024), with more than 3 billion 

occurrence records, is the largest international network and data infrastructure of free and open 

access primary biodiversity data. Alongside its extraordinary and undoubtedly value, it exhibits 

limitations in data quality. Many taxa and regions are still under-sampled with records showing 
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biased temporal coverage and preferential sampling for specific functional traits (Hughes et al. 

2021; Daru and Rodriguez 2023; García-Roselló, González-Dacosta, and Lobo 2023), erroneous or 

imprecise geographic coordinates (Zizka et al. 2020) and differences in biodiversity patterns 

between records achieved by observations or from specimen or samples preserved in a natural 

history collections (Speed et al. 2018; Daru and Rodriguez 2023).  

Therefore, given the wide range of possibilities which generate information errors, data on species 

occurrence can often be biased and uncertain. 

Bias and uncertainty in species occurrence data 

In statistics, bias alludes to a systematic error or deviation from the true value in a data collection 

and, it generates an overestimation or underestimation of the outcomes, while uncertainty 

indicates the dispersion of the values within which the true value is expected to fall (ISO., I., & 

OIML, B. 1993; Bolker 2008). Bias and uncertainty can be described by accuracy and precision by 

using different measures. Bias is generally calculated as the expected difference between the 

estimate and the true value while, uncertainty is often evaluated using several measures such as 

the variance (the variability of the point estimates around their mean value) or the standard 

deviation and the confidence interval (upper and lower limit within which the true value is likely to 

fall) (Bolker 2008). However, uncertainty is also conceived as a lack of knowledge in which the 

current state cannot be precisely described (Hüllermeier and Waegeman 2021). 

Data on species occurrence can mainly show uncertainty in three dimensions: taxonomic, spatial 

and temporal. The taxonomic uncertainty derives from imprecise or erroneous species names with 

spelling errors or variants in scientific names, which can broadly depend on changes in taxonomy, 

and wrong species identification. Generally, longer taxonomic history occurs in regions with lower 

diversity (e.g., in European temperate forests, Stropp et al. 2022), resulting in a disparity in 

expertise and taxonomic identification. Therefore, the taxonomic effort is heterogeneous at a 

global scale and depends on the taxon under consideration (Stropp et al. 2022). 

The spatial or geographic uncertainty, instead, reflects the inaccuracy of the data coordinates i.e., 

the positional error, defined as the difference between the true and recorded location (Gábor et 

al. 2020; Moudrý  et al. 2024). One of the main sources of spatial uncertainty is the historical 

records held in museums, botanical gardens and other similar institutions (Marcer et al. 2022; 

Campbell 2024) while the observations derived from field surveys tend to be more precise. 

However, positional errors can also appear in georeferenced data using global navigation satellite 

systems (GNSS) where the number and position of satellites are incorrect or where the site 

characteristics act as a barrier (e.g., canopy density) (Moudrý et al. 2024). 

Lastly, a definition of temporal uncertainty is difficult to find in scientific literature. Tessarolo et al. 

(2017, 2021) defined it as the information decay of the species occurrence over time; in other 

words, the information becomes more imprecise as time passes from the date the data was 

recorded. Indeed, biodiversity data is likely to change because species distribution and community 
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composition are naturally prone to change over time (Wisz et al. 2013) or it is likely to become 

imprecise because changes in taxonomy or loss of metadata (Tessarolo et al. 2017). 

Data on species occurrence can also show bias in the taxonomic, spatial, environmental, and 

temporal dimensions. The taxonomic bias reflects the sample coverage gap between the observed 

species pool and the expected (Chao and Jost 2012). The gap is determined by the non detection 

of the species which is influenced by several factors such as taxonomic inexperience, erroneous 

sampling, preference for charismatic species, rarity of the species, low sampling effort (Adamo et 

al. 2021; Cazzolla Gatti et al. 2022). Due to these factors, taxonomic bias is also irregular among 

different taxa (García-Roselló, González-Dacosta, and Lobo 2023). 

A common metric to calculate it is the completeness of the species richness measured as the ratio 

of the observed species and the expected or rarely as the slope of the species accumulation curve 

(Chao et al. 2020; Yang, Ma, and Kreft 2013). However, another potential solution relies on the 

concept of species pool and dark diversity (Pärtel, Szava-Kovats, and Zobel 2011; Ronk, 

Szava‐Kovats, and Pärtel 2015), especially regarding the so-called community completeness (i.e., 

the proportion of observed diversity from site-specific species pool size) which may also provide 

hints about the uncertainty around the sampled communities. 

A disproportionate sampling in geographic space generates bias in the spatial dimension. Indeed, 

an heterogeneous sampling effort and an opportunistic sampling of the target species 

occurrences, which do not represent the entire niche of the species and geographic distribution, 

can lead to a geographic distortion of the data (Sumner et al. 2019). Similarly, in biodiversity 

databases, species occurrence data that is over-sampled in some regions rather than being 

uniformly distributed generates spatial bias (Meyer et al. 2015). The spatial bias is then commonly 

measured as the number of plots or records per unit area (Meyer, Weigelt, and Kreft 2016; 

Rocchini et al. 2023) and rarely as an index of data clustering (Boyd et al. 2021; Chesshire et al. 

2023). 

Generally, a biased sampling in geographic space can also be associated with an environmental 

bias, i.e., an incomplete representation of the climatic and soil conditions (Speed et al. 2018; 

Monsarrat, Boshoff, and Kerley 2019) describing the species occurrence. Therefore, a greater 

sampling effort or an irregular sampling for some geographical areas and bioclimatic regions can 

create a distortion of the environmental space. For instance, considering global biodiversity 

databases like sPlot, the temperate zones appear to have greater data coverage than tropical and 

Mediterranean climates (Sabatini et al. 2021). 

The temporal bias, on the other hand, i.e., the uneven temporal coverage of the data (Meyer, 

Weigelt, and Kreft 2016) is mainly due to opportunistic sampling in time. Indeed, the temporal 

bias can reflect a non-uniform sampling over the years or an incorrect sampling over time (e.g., 

seasons, daily cycle) according to the ecology of the species (La Sorte and Somveille 2020; Bowler 

et al. 2024). 
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The dimensions of bias typically stem from opportunistic and unstructured sample collections, 

such as unstandardized sampling or socioeconomic preferences in the choice of sampling locations 

(Chapman et al. 2024). However, the absence of a common and coordinated monitoring scheme 

among the parties involved can also result in several information gaps (Kühl et al. 2020). For 

instance, some sampling campaigns rather than being probabilistic opt only for locations or 

regions species-rich (Chytrý 2001). Moreover, road accessibility, presence of infrastructures, 

human densely populated areas, low conflict risk, high research funds, and protected areas often 

influence the selection of the sampling sites (Mair and Ruete 2016; Meyer, Weigelt, and Kreft 

2016; Girardello et al. 2019; Hughes et al. 2021; Zizka, Antonelli, and Silvestro 2021a). 

Finally, the dimensions of bias of species occurrence data can manifest across various timeframes, 

at different spatial scales ranging from local to global, and at multiple ecological levels, from 

individual species to entire realms (Meyer et al. 2015; Hugo and Altwegg 2017; La Sorte and 

Somveille 2020; Hughes et al. 2021; García-Roselló, González-Dacosta, and Lobo 2023). 

Approaches to the assessment of bias and uncertainty 

Biased and uncertain species occurrence data can determine under or over-representation of 

biodiversity patterns (Hughes et al. 2021) but also induce poorly accurate and precise biodiversity 

estimates and predictions (e.g., Species Distribution Models) (Beck et al. 2014, Moudrý et al. 

2024). The presence of bias and uncertainty is then addressed by scientists using mainly three 

different approaches.  

The first approach consists of evaluating them in the inference phase calculating i) the accuracy 

and precision of estimates, ii) modelling predictions with known sampling errors, and iii) 

comparing variables affected by sampling errors. However, this approach does not correct the bias 

and the uncertainty of the data. Accuracy and precision of estimates (i) are tested by calculating 

statistical measures such as the bias, the variance, the standard deviation, the confidence interval 

(Bolker 2008) and the performance of the model. For instance, Bazzichetto et al. (2023) measured 

the bias between the estimated probability of the species distribution and the true probability of 

the species distribution, the variance of the estimated probabilities of species distribution and the 

Root Mean Squared Error as a combination of the values of bias and variance. Večeřa et al. (2019), 

as well as Dyderski et al. (2018), evaluated the effect of sampling bias on species diversity by 

calculating the species diversity using the species observations resampled with biased sampling 

strategies (ii). Testolin et al. (2024), instead, tested the possible bias in species richness generated 

by the sampling effort by comparing the Pearson correlation coefficient between the two variables 

(iii).  

The second approach relies on filtering and data cleaning of the existing database (e.g., 

García‐Roselló et al. (2014), Ronquillo, Stropp, and Hortal (2024)) or on gaps fixing solutions such 

as subsampling, weighting, imputation techniques (Bowler et al. 2024). This approach can involve 

removing records according to specific criteria before using them for biodiversity estimates 

(Maldonado et al. 2015; Führding‐Potschkat, Kreft, and Ickert‐Bond 2022) with particular attention 

to avoiding altering the real patterns of the species records (Ronquillo et al. 2023). For instance, 
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records with high positional error or older than a fixed date are often removed (Večeřa et al., 

2019) as well as records duplicates. Despite that, the customization of tests and thresholds for 

filtering different taxonomic groups or taxa and geographic areas is preferable to automated 

filtering (Zizka et al. 2020). Actually, each combination of species–ecological question–data set 

determines the condition under which dealing with gaps correction of species occurrence data 

(Bowler et al. 2024).  

Particular attention is paid to data used in Species Distribution Models in evaluating its effect on 

model performance (Beck et al. 2014) and in identifying methods to correct information gaps 

(Phillips et al. 2009; Varela et al. 2014). Information gaps can generally occur when species 

occurrences are uncertain for high positional error, the sampling does not follow the ecology of 

the species and/or because of opportunistic (i.e., non-probability) sampling (Moudrý et al. 2024). 

Indeed, high positional error can mask the actual environmental conditions that describe the 

species’ niche decreasing the performance of the model (Graham et al. 2008; Gábor et al. 2020). 

Instead, the sampling bias in geographic, temporal and environmental space can distort the 

predicted distribution of the species (Beck et al. 2014; Cosentino and Maiorano 2021). For 

instance, geographic bias, created by heterogeneous sampling intensity or distribution, can either 

alter the environmental characteristics of the species’ niche or fail to include them entirely 

(environmental bias) (Moudrý et al. 2024). There are many techniques that correct geographic and 

environmental bias of presences and pseudo-absences or background points, for example, by 

choosing background points with the same bias of the presence data (Phillips et al. 2009), by 

applying a spatial filter to the presences to reduce the spatial autocorrelation of the sampling 

effort (Veloz 2009), by uniformly sampling the pseudo-absences in the environmental space (Da Re 

et al. 2023). However, their effects on both dimensions of bias should be checked before 

calibrating the model (Varela et al. 2014; Cosentino and Maiorano 2021).  

Despite the possibility of applying various correction techniques, it is a good practice to measure 

bias and uncertainty of species occurrence data depicting them using specific metrics (Boyd et al. 

2022), like those of coverage or variance, before carrying out filtering, data cleaning and gaps 

fixing solutions; as well as, it is recommended to test the correction techniques being used (Boyd, 

Stewart, and Pescott 2024). However, despite this, bias and uncertainty of data are often not 

clearly represented. Hughes et al. (2021) described highly biased patterns of marine and terrestrial 

animal distribution data in GBIF and OBIS databases. According to their study, only 6.74% of the 

planet has been sampled for animal species with tropical regions poorly represented. Moreover, 

high elevations and deep ocean areas were largely unexplored and, in most taxonomic groups, 

more than half of the recorded data denoted less than 2% of all species. 

Nevertheless, a third approach still exists to address bias and uncertainty in species occurrence 

data which relies on performing an initial filtering and data cleaning of data during the creation of 

the database or a data standardization using tools such as Taxonstand (Cayuela et al. 2012) and 

CoordinateCleaner (Zizka et al. 2019). For example, the sPlotOpen database  (Sabatini et al. 2021), 

an open-access version of the sPlot database (Bruelheide et al. 2019) was developed by applying a 

balanced resample over the environmental space to the vegetation plots that were previously 
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filtered to eliminate lacking coordinates or locations with a position uncertainty greater than three 

kilometres.  

Beyond these three main approaches aiming to address bias and uncertainty in species occurrence 

data, it is a common practice also to  evaluate the effect of several factors, such as road proximity, 

population density, financial and institutional resources, in determining the different forms of 

information gaps (Yang, Ma, and Kreft 2014; Meyer et al. 2015; Tiago et al. 2017; Callaghan et al. 

2021; Shirey et al. 2021) to increase our insight and awareness. To support the evaluation, 

different tools are already available. For instance, Zizka, Antonelli, and Silvestro (2021a)  provided 

a tool to facilitate the assessment of the effect of accessibility biases in species occurrence data 

sets and Zizka et al. (2021b) provided a graphic interface to identify possible relationship between 

species occurrence and socio-political conditions in time.  

However, the availability of large amounts of data is not always coupled with the data quality 

(Bayraktarov et al. 2019; Wüest et al. 2020). Consequently, the presence of bias and uncertainty 

should be preventively tested and adequately accounted for or mitigated before in the modelling 

procedure.  
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Aims of the thesis 

The PhD project aims to provide methodologies to measure and represent the uncertainty and 

bias of species occurrence data. I addressed bias and uncertainty issues at the inference level (first 

approach) and at the database level (second approach). The thesis is organized into three distinct 

chapters. 

Chapter 1: 

Following the first approach, I tested the effect of sampling methods (i.e., random and stratified) 

and sample prevalence (i.e., the ratio of presences and absences) of presences and absences in 

Species Distribution Modeling. Furthermore, I evaluated the effect of Favourability model in 

Species Distribution Modeling in reducing the variability of predictions which may directly depend 

on the sampling bias in the geographic and environmental space. 

Chapter 2: 

Following the second approach, I presented a reproducible methodology to the measure of bias 

and uncertainty in biodiversity databases providing a detailed workflow of the use of new and 

common metrics and methods in ecology. The final goal of the study was to increase our 

awareness of knowledge shortfalls in taxonomic, spatial and temporal dimensions to implement 

best practices and protocols to fill information gaps and reduce sources of error. 

Chapter 3: 

Here I measured the dimensions of bias (taxonomic, spatial, temporal) of species occurence data 

at habitat level across Europe. As a peculiar and complex concept that bring together species 

interactions and environmental conditions, the assessment of possible forms of information gaps 

in the habitat type it can be crucial to ensure reliable estimates and conservation actions. 
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Abstract 

Predicting the occurrence probability of species is intrinsically dependent on the quality of the 

training dataset and, in particular, on the sample prevalence (i.e., the ratio between presences and 

absences). Whenever the number of presences and absences is not equal within the training 

dataset, the predictions deviate towards higher values as the sample prevalence increases and 

vice versa. As a result, probability models of species occurrence with different sample prevalence 

cannot be directly compared. The favourability concept was introduced to amend this limitation. 

Indeed, the favourability – i.e., the variation in the probability of occurrence regardless the sample 

prevalence – could reduce the degree of uncertainty when comparing species distributions despite 

different sample prevalences. To test this hypothesis, we simulated 50 virtual species and 

compared the predictive performance of four probability-based and favourability-based Species 

Distribution Models (GLM, GAM, RF, BRT) under a set of different prevalence values and sampling 

strategies (i.e, random and stratified sampling). Favourability-based models performed slightly 

better than probability-based models in predicting the species distribution over geographic space, 

confirming also their capability to reduce the variability of the predictions across different degrees 

of sample prevalence. 

Keywords: biodiversity; ecological informatics; spatial bias; spatial ecology; species distribution 

modelling; 

1 Introduction 

Correlative Species Distribution Models (SDMs) relate species observations with spatial-explicit 

environmental variables (e.g., climatic, edaphic, etc.) allowing to (i) possibly infer the relationships 

between the species and its environment, and (ii) map the habitat suitability of a species across 

space and time (Guisan and Zimmermann 2000; Guisan and Thuiller 2005; Elith and Leathwick 

2009; Guillera-Arroita et al. 2015; Guisan et al., 2017).  

Different correlative modelling techniques can be employed depending on the type of the 

response variable attributed to the species: presence–absence (e.g., Generalized Linear Model 

(GLM), Generalized Additive Model (GAM), Random Forest (RF), Boosted Regression Trees (BRT)), 

presence-background (e.g., MaxEnt, ENFA, GARP), and presence-only methods (e.g., Bioclim, 

Domain) (Sillero et al., 2021). By using presence–absence data, correlative SDMs estimate the 

occurrence probability of a species given a combination of environmental variables. However, 

probability-based SDMs estimated with different sample prevalence values suffer from the 

limitation that they cannot be compared (e.g., by niche overlap (Warren, Glor, and Turelli 2008) or 

by Stacked Species Distribution Models (D’Amen et al. 2015; Schmitt et al. 2017)) among 

populations or species and either considering the same species in diverse times without creating 

any degree of error in the outputs. To overcome these limitations Real, Barbosa, and Vargas 

(2006) introduced the concept of favourability. They used Laplace’s definition of probability 

(marquis de Laplace 1840), which is defined as the ratio of the number of favourable cases to the 

whole number of possible cases, to modify the ‘ordinary’ probability of species response and 

derive the favourability of species response. Favourability can be then calculated as follows: 
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being P the probability and  1 and  0 the respective number of presences and absences sampled 

where the ratio is defined as sample prevalence. 

Strictly speaking, the occurrence probability of the species depends on both the predictors and the 

sample prevalence, whereas the species favourability is determined by correcting the estimated 

probabilities for the sample prevalence value, regardless of the statistical model used (Acevedo 

and Real 2012). Therefore, favourability can be a suitable approach to compare SDMs calibrated 

for species with unequal proportions of presences and absences within the sample (Real, Barbosa, 

and Vargas 2006). 

However, despite this achievement, the species response curves estimated by SDMs are still 

conditioned by the collected data (i.e., presence samples, presence/absence samples, pseudo-

absences, background points) used for the model calibration. Indeed, different survey strategies 

may influence the accuracy and the quality of predictions (Hirzel and Guisan 2002; Thibaud et al. 

2014; Bazzichetto et al. 2022). Therefore, an efficient sampling method is crucial for avoiding 

spatial heterogeneity in the sampling intensity (e.g., incomplete sampling and over-sampling) of 

species occurrences and pseudo-absences/background points (Inman et al, 2021). 

Accordingly, virtual species, i.e., simulated entities with known species-environment relationships, 

can represent a proper approach for testing new methodologies and practices in species 

distribution modelling before applying them to real data (Schweiger et al. 2016; Meynard, Leroy, 

and Kaplan 2019). Indeed, virtual species modelling promises to be a suitable approach for 

understanding the effect of sample prevalence and sampling method on probability- and 

favourability-based models, allowing to a priori known the species-environment relationships and 

to simulate multiple species. 

In this study, we created 50 virtual species to test the effects of sample prevalence and sampling 

method on Species Distribution Models fitted by applying four modelling techniques (i.e., 

Generalized Linear Models, Generalized Additive Models, Random Forest and Boosted Regression 

Trees). Especially, we evaluated (i) the effect of sample prevalence and sampling method on 

model performances of probability- based and favourability-based SDMs; we tested (ii) the 

tendency of the favourability to maintain unchanged the prediction values across different 

degrees of sample prevalence in juxtaposition with the probability outcomes; finally, we 

investigated (iii) the impact of the sampling method on the probability-based and favourability-

based SDMs. 
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2 Materials and methods 

We generated 50 virtual species from bioclimatic variables. For each virtual species, we calibrated 

four modelling techniques (GLM, GAM, RF, BRT) using 1000 presence–absence points collected 

according to different sample prevalences (i.e., 0.2, 0.4, 0.5, 0.6, 0.8) and sampling method 

(random vs stratified). After having estimated the probability-based SDMs, we calculated the 

favourability-based SDMs. For each SDM we carried out different model evaluations (Coefficient of 

Variation, AUC, Continuous Boyce Index) and statistical tests (predictions’ levels of dispersion, 

Kruskal–Wallis rank sum test, Dunn’s test) Fig. 1. 

 

 

Fig. 1. Workflow methodology for a single virtual species. First, we generated the virtual species (yellow boxes), then 

we fitted the statistical models in accordance with the sampling method and the sample prevalence being used to 

derive probability-based and favourability-based SDMs (orange square). Finally, we evaluated the models and tested 

the predictions with different statistical analyses (green square). 

 

2.1 Generating virtual species 

In order to compare favourability-based and probability-based SDMs we used virtual species that 

were created by the virtualspecies R package (Leroy et al. 2016). We derived a virtual species using 

a subset of the WorldClim Bioclimatic variables at the European extent. We used the 

generateRandomSp function to create the environmental suitability for the virtual species 

distribution which was generated from a random subsampling (5 replicates) of the 19 bioclimatic 

variables (https://www.worldclim.org/data/bioclim.html) with 10 arc-minutes of spatial 
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resolution. The environmental suitability was calculated using an additive approach to the 

response functions of each bioclimatic variable, where the possible types of response function 

implemented are ‘‘gaussian’’, ‘‘linear’’, ‘‘logistic’’ and ‘‘quadratic’’. The obtained environmental 

suitability was then rescaled between 0 and 1 (i.e., range of possible probability values of the 

virtual species distribution). We used the convertToPA function to convert the raster layer 

reporting the environmental suitability into a probability of occurrence; the weighted probability 

of occurrence was then used to sample the presence or absence in each cell. We transformed the 

environmental suitability with a logistic conversion setting   and   parameters that determine the 

shape of the logistic curve (Meynard and Kaplan 2013).   controls the inflexion point and   drives 

the ‘slope’ of the curve, the latter was set equal to −0.05 such that the function detects an 

appropriate conversion by testing different values of   ; the species prevalence, i.e., the 

proportion of sites occupied by the species (Meynard and Kaplan 2012), was fixed at 0.2. 

2.2 Sampling methods 

We sampled 1000 presence–absence points for each virtual species (Wisz et al. 2008; van Proosdij 

et al. 2016), according to the different sample prevalence (i.e., 0.2, 0.4, 0.5, 0.6 and 0.8), using two 

different sampling methods: a random sampling and a stratified sampling. The random approach 

(sampleOccurrences function) consisted in randomly selecting the coordinates of presence and 

absence points across the study area, which makes all points equally likely to be sampled. The 

stratified approach collected presences–absences points by overlapping a grid of 0.3 degree of 

spatial resolution across the geographic area. Afterwards, if any binary pixel value (1 or 0) 

belonging to each polygon was equal to 1, then all of them were set as presence (1) otherwise to 

absence (0). Finally, in accordance with the sample prevalence, we randomly sampled 1000 

presence–absence points with coordinates respectively associated with the centroids of the spatial 

polygons. 

2.3 Models settings 

For each virtual species, we estimated probability-based SDMs using four different modelling 

techniques which were trained relying on two sampling methods and 5 sample prevalences. We 

used the following modelling techniques available in different R packages: GLM, GAM, RF and BRT. 

The generalized linear models were generated with the R functions provided by FuzzySim package 

(Barbosa 2015), the generalized additive models with mgcv package (Wood 2017), the random 

forest regressions with ranger package (Wright and Ziegler 2017) and the boosted regression trees 

with dismo package (Hijmans et al. 2022). GLM algorithms were set using the default parameters 

of multGLM function avoiding a selected removal of variables (step=FALSE and trim=FALSE); GAM 

algorithms were set by gam function using the default parameters of thin plate regression splines 

(smooth term s and smooth class bs=‘‘tp’’); RF algorithms were set using the default parameters of 

ranger function providing as variable importance mode the variance of the responses; BRT 

algorithms were set using gbm.step function assigning tree.complexity=5, bag.fraction=0.75, 

learning.rate=0.005. Finally, to convert probability predicted values to favourability we employed 

equation (1). 
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Hence, we obtained 4000 SDMs as follows: 50 virtual species   5 sample prevalence values   2 

sampling methods (random vs stratified)   4 modelling techniques   2 strategies (favourability vs 

probability). 

2.4 Models evaluation 

We estimated the model performances of probability-based and favourability-based SDMs of 50 

virtual species with the Continuous Boyce Index, a presence-only based analysis focused on model 

predictions that removes the dependence on the Presence/Absence ratio. Especially, it measures 

how much model predictions differ from a random distribution of the observed presences (Boyce 

et al. 2002; Hirzel et al. 2006). 

Besides, the accuracy of the 50 virtual species’ probability SDMs under different degrees of sample 

prevalence were estimated by calculating the Area Under the Curve (AUC) of the receiver operator 

characteristic (ROC). 

Furthermore, for a single virtual species, we evaluated the variability of the predictions (i.e, the 

variability of the pixels) which was calculated as Coefficient of Variation (CV) of the probability and 

favourability predictions according to the change of sample prevalence. We also calculated the 

difference between the coefficients of variations of probability and favourability (i.e., CV 

probability - CV favourability) for each statistical model. The analysis was performed on multiple 

species in order to verify the consistency. 

2.5 Statistical tests 

The levels of dispersion of the predictions of 50 virtual species (for each statistical model) were 

compared by calculating the lower quartile qn (0.25) and the upper quartile qn (0.75). In addition, 

we carried out a Kruskal–Wallis rank sum test (Kruskal and Wallis 1952) for testing the evenness of 

SDMs across different sample prevalence degrees. The test was performed on favourability-based 

and probability-based predicted values of 50 virtual species for each sampling method and each 

statistical model comparing the sample prevalence groups. Eventually, we evaluated the effect of 

the sampling design on the favourability and the probability predicted values of 50 virtual species 

for each sample prevalence performing a posthoc pairwise comparisons using Dunn’s test (Dunn 

1964). The pairwise comparisons were carried out on a subsample of the favourability-based and 

the probability-based distribution values. 

3 Results 

3.1 Models performance evaluation 

For more than half of the sample prevalences, the favourability model had slightly higher median 

Continuous Boyce index values (i.e., better performances) than the probability model for all of the 

statistical models and for both sampling methods, except for RF trained using a random sampling 

of presences and absences. Especially, GLM had higher performances using the favourability-

based approach for both the sampling methods and for all of the sample prevalences. Overall, the 
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sampling method (i.e., random and stratified) did not have a great impact on the model 

performances Fig. 2. 

Furthermore, for all probability-based SDMs over the set of sample prevalence, calibrated using 

both the random sampling method and the stratified sampling method, the model performances, 

estimated with the Area Under the Curve (AUC) of the receiver operator characteristic (ROC), had 

a good accuracy ranging between 0.80 and 0.95 (Appendix: Fig. S6–S9). 

 

 

Fig. 2. Distribution between first and third quartiles of continuous Boyce index values of favourability-based and 

probability-based SDMs of 50 virtual species. The graphs show the distribution values of Continuous Boyce indices 

estimated by applying Generalized Linear Models, Generalized Additive Models, Random Forest and Boosted 

Regression Trees using random and stratified sampling methods. 

 

3.2 Effect of the sample prevalence on the predictions 

The favourability distribution values of 50 virtual species’ predictions were steadier across the 

degrees of sample prevalence than the probability distribution values (Appendix: Fig. S2–S5). 

Nevertheless, the Kruskal–Wallis test proved that there were significant variations in both 

probability and favourability predicted values as the sample prevalence changes for both sampling 

methods and for all of the statistical models (Appendix: Tables S1–S2). 

Besides, the variability of the predictions for a single species – i.e., the pixels variability – 

calculated as Coefficient of Variation across the sample prevalence values, showed higher stability 

(i.e., lower CV) for the favourability-based SDM both for the random sampling and for the 
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stratified sampling Figs. 3 and 4. Moreover, the difference between the pixels variability of the 

probability predictions and the pixels variability of the favourability predictions confirmed that the 

favourability SDM generates higher pixels stability as the sample prevalence changes. However, 

the generalized linear model showed a larger decrease in the pixels variability once the sample 

prevalence was removed from the probability predicted values Fig. 5. 

 

 

Fig. 3. Predictions variability, i.e., pixels variability, of a single virtual species calculated as Coefficient of Variation (CV) 

of favourability and probability SDMs related to a random sampling of presence–absence points. The left column 

shows the probability-based coefficients of variation for each statistical model (GLM, GAM, RF, BRT), the central 

column the favourability-based coefficients of variation, and the right column the difference values between the 

probability-based CV and the favourability-based CV for each statistical model. 
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Fig. 4. Predictions variability, i.e. pixels variability, of a single virtual species calculated as Coefficient of Variation (CV) 

of favourability and probability SDMs related to a stratified sampling of presence–absence points. The left column 

shows the probability-based coefficients of variation for each statistical model (GLM, GAM, RF, BRT), the central 

column the favourability-based coefficients of variation, and the right column the difference values between the 

probability-based CV and the favourability-based CV for each statistical model. 

 



30 
 

 

Fig. 5. Distribution values between first and third quartiles of the difference between probability-based and 

favourability-based coefficients of variation for each statistical model (i.e., GLM, GAM, RF, BRT) and sampling method 

(i.e., random and stratified sampling) for a single virtual species. 

 

3.3 Effect of the sampling method on the predictions 

Although the sampling methods did not determine a great difference in the range of the predicted 

values, the random sampling showed a lower range in comparison to SDMs estimated using the 

stratified sampling (Appendix: Fig. S2–S5). Besides, the Dunn’s test proved that the sampling 

designs generated significantly different species predictions for all probability and favourability 

outcomes at the spatial scale (Appendix: Tables S3–S6). 

4 Discussion 

In this study we tested to which extent the favourability-based and the probability-based SDMs 

are affected by sample prevalence and sampling method. 

Concerning models’ performance, the Continuous Boyce index did not show a great difference in 

the performance efficiency between favourability and probability models. This behaviour could 

depend on the fact that the models have been calibrated with the default parameters in order to 

be extended to 50 different species. Indeed, several authors showed that the model 

parametrization has an impact on SDMs output (e.g., Fourcade 2021). However, for more than half 

of sample prevalences we considered, median Continuous Boyce Index values were slightly higher 

for favourability-based SDMs than for probability-based SDMs. Besides, although van Proosdij et 

al. (2016) and Tessarolo et al. (2021) report a linear relationship between the model performance 
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and the sample prevalence, our outcomes of AUCs indicate an independence of the accuracy of 

predictive models with respect to prevalence values (Guo et al. 2015). 

Concerning the spatial variability of predictions of a single virtual species, the pixels variability 

across the degrees of sample prevalence was lower for the favourability-based SDMs than for the 

probability-based. By comparing the distribution values of 50 virtual species’ predictions this 

pattern was also retained; favourability-based predictions showed steadier values across different 

sample prevalences than the probability-based predictions, although they retain a certain degree 

of variability. Indeed, the Kruskal Wallis rank sum tests highlighted a difference in the values of 

both probability and favourability predictions across the different degrees of sample prevalence. 

Hence, favourability-based SDMs do not maintain unchanged the prediction values across 

different sample prevalence values (Real, Barbosa, and Vargas 2006; Acevedo et al., 2010; Romero 

et al. 2019), since they are created with a posteriori removal of the sample prevalence after 

statistical model calibration, so that the correction is made on the probability predictions. 

Consequently, the favourability model does not lose any information about sample prevalence 

and, therefore, about species or species-environment interactions, since the statistical model is 

still dependent on the prevalence value. Furthermore, it allows obtaining more effective 

comparisons among SDMs of different species or populations and time scales as a consequence of 

a lower pixels variability. This makes the favourability an extremely powerful tool to broaden our 

understanding of ecological trends such as the ecological niches pattern between species (Pulido-

Pastor et al. 2021), the environmental factors that favour the spread of an invasive species 

(Romero et al., 2014; Baquero et al., 2021) or an epidemiological vector (Aliaga-Samanez et al. 

2021), the areal shift range under land and climate changes (Muñoz et al, 2005; Chamorro, Real, 

and Muñoz 2020). 

However, it is of paramount importance to point out that the favourability-based SDMs are 

dependent on the extent of analysis being chosen (VanDerWal et al. 2009), as well as on the 

spatial resolution of the predictors (Sillero and Barbosa 2021), and it is unequivocally associated 

with the environmental features of the study area (Barbosa et al. 2009). On the other hand, the 

possible errors deriving from the modeling technique being chosen (Rocchini et al. 2017) can 

invalidate the overall performance and make the favourability SDMs matchless (Elith and Graham 

2009). Moreover, although the benefits of favorability are promising, we cannot exclude the 

uncertainty determined by biased sample collections both in occurrence (Rocchini et al. 2011) and 

in background data (Phillips et al. 2009; Grimmett, Whitsed, and Horta 2020) which can affect the 

results of the modelling process (Leitão, Moreira, and Osborne 2011; Beck et al. 2014). Indeed, 

misleading or unstandardized sampling schemes can result in the so-called Wallacean shortfalls 

(Lomolino 2004; Hortal et al. 2015). For instance, biased sampling effort, as a consequence of 

survey preferences in proximity to roads, centres of research, infrastructures, or protected areas, 

may cause incomplete and distorted presences-absences samples (Oliveira et al. 2016; Ronquillo 

et al., 2020). Consequently, for those modelling procedures that ignore the sampling effort bias, 

the local density of occurrences of a species may be over- or under-estimated over space (Rocchini 

et al. 2017, 2019). 



32 
 

According to our results, the sampling method of presences and absences does not have a decisive 

impact on the predictions variability of favourabiliy-based and probability-based SDMs across the 

degrees of sample prevalences. However, the random sampling determined a greater uniformity 

around a narrower range of values (Appendix: Fig. S2–S5). Besides, Dunn’s test confirmed that the 

sampling methods generate different prediction values at the spatial scale. 

Broadly speaking, the sampling strategy we applied did not affect model performances. Indeed, 

the influence of the sampling design often depends on the intensity of bias of the samples used to 

train the model (e.g., location bias, geographical bias and so on) (Syfert et al. 2013) but, in our 

case, there was no source of bias in the sampling that could have considerably affected the 

accuracy. It has been shown as some sampling methods can actually reduce the effect of the bias 

and increase the model performance (Fourcade et al. 2014). However, Tessarolo et al. (2014) 

stated that the sampling method is not the most important factor affecting SDMs performance, 

even though they also concluded that the design may become more and more important as the 

spatial extent of the species’ geographical distribution increases. However, the question of what 

effect the sampling method would have on the model calibration using presences and pseudo-

absences rather than presences and absences remains still open (Barbet-Massin et al. 2012). 

5 Conclusion 

Favourability might provide an important contribution to map species distribution, especially for 

the fact that training datasets are often biased, as in the case of rare species of important 

conservation value. Indeed, favourability-based SDM, although it does not maintain unchanged 

the predictions values across different sample prevalences, proved to be effective in reducing their 

variability across different prevalence degrees compared to probability-based SDM. Besides, 

favourability model showed high model performances for all of the modelling techniques being 

applied. Therefore, according to our results, favourability-based SDM can definitely improve 

knowledge in community and population dynamics and provide useful tools for biogeography 

conservation allowing to achieve more effective comparisons among species distributions in space 

and their possible shifts over time. Nevertheless, being aware that the favourability is not 

independent of the uncertainty related to the sampling effort, the extent and the resolution of 

analysis, in a future study, these elements should also be considered. In our study, the sampling 

methods, i.e., random and stratified, revealed that they have a great impact neither in the 

variability of the predictions across the set of sample prevalence values nor in the performance of 

the models if no source of bias is present in the sampling. However, having proved the advantages 

of favourability-based SDM with virtual species, future studies on real species distribution models 

can be definitively promising in testing the real empirical power of favourability-based approach. 
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Appendix 

 

Complete code with virtual data for probability- and favourability-based SDMs: 

https://github.com/elisamarchetto/Favourability-Probability 

 

Tables 

 
Table S1: p-values and chi-squared values of Kruskal-Wallis rank sum test. The test was carried out on the 

favourability-based and probability-based predictions of 50 virtual species estimated using a random sampling of 

presence/absence points comparing the sample prevalence groups. 

 

RANDOM SAMPLING 

 

MODEL TEST FAVOURABILITY PROBABILITY 

GLM chi-squared 631.912 (p value 

<0.001) 

396401.700 (p value 

<0.001) 

GAM chi-squared 225.600 (p value 

<0.001) 

115436.000 (p value 

<0.001) 

RF chi-squared 2588.089 (p value 

<0.001) 

144298.500 (p value 

<0.001) 

BRT chi-squared 29368.390 (p value 

<0.001) 

238044.100 (p value 

<0.001) 

 

Table S2: p-values and chi-squared values of Kruskal-Wallis rank sum test. The test was carried out on the 

favourability-based and probability-based predictions of 50 virtual species estimated using a stratified sampling of 

presence/absence points comparing the sample prevalence groups. 

 

STRATIFIED SAMPLING 

 

MODEL TEST FAVOURABILITY PROBABILITY 

GLM chi-squared 433.493 (p-value 

<0.001) 

367401.200 (p-value 

<0.001) 

GAM chi-squared 275.230 (p-value 

<0.001) 

118533.600 (p-value 

<0.001) 

RF chi-squared 3201.369 (p-value 

<0.001) 

146264.600 (p-value 

<0.001) 

BRT chi-squared 13729.390 (p-value 217202.200 (p-value 
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<0.001) <0.001) 

 

Table S3: p-values and Z values of Dunn’s test computed for GLM. According to the pairwise comparisons, ”F” 

indicates favourability, ”P” probability, ”R” random sampling and ”S” stratified sampling, while the decimal number is 

referred to the sample prevalence. 

 

GLM 

comparison Z test statistic adjusted p value 

F0.2R - F0.2S - 10.501 3.829 x 10−24 

F0.4R - F0.4S - 10.020 5.604 x 10−22 

F0.5R - F0.5S - 10.521 3.098 x 10−24 

F0.6R - F0.6S - 10.714 3.930 x 10−25 

F0.8R - F0.8S - 10.457 6.156 x 10−24 

P0.2R - P0.2S - 10.641 8.655 x 10−25 

P0.4R - P0.4S - 9.948 1.156 x 10−21 

P0.5R - P0.5S - 10.213 7.806 x 10−23 

P0.6R - P0.6S - 10.344 1.998 x 10−23 

P0.8R - P0.8S - 9.652 2.169 x 10−20 

 

Table S4: p-values and Z values of Dunn’s test computed for GAM. According to the pairwise comparisons, ”F” 

indicates favourability, ”P” probability, ”R” random sampling and ”S” stratified sampling, while the decimal number is 

referred to the sample prevalence. 

 

GAM 

comparison Z test statistic adjusted p value 

F0.2R - F0.2S -16.169 3.769 x 10−57 

F0.4R - F0.4S -15.604 3.063 x 10−53 

F0.5R - F0.5S -16.311 3.693 x 10−58 

F0.6R - F0.6S -16.194 2.506 x 10−57 

F0.8R - F0.8S 15.612 2.727 x 10−53 

P0.2R - P0.2S -15.656 1.355 x 10−53 

P0.4R - P0.4S -15.521 1.131 x 10−52 

P0.5R - P0.5S -16.224 1.540 x 10−57 

P0.6R - P0.6S -16.088 1.385 x 10−56 

P0.8R - P0.8S -15.493 1.742 x 10−52 

 

Table S5: p-values and Z values of Dunn’s test computed for RF. According to the pairwise comparisons, ”F” indicates 

favourability, ”P” probability, ”R” random sampling and ”S” stratified sampling, while the decimal number is referred 

to the sample prevalence. 

 

RF 

comparison Z test statistic adjusted p value 

F0.2R - F0.2S -12.601 9.383 x 10−35 
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F0.4R - F0.4S -12.752 1.361 x 10−35 

F0.5R - F0.5S -13.432 1.761 x 10−39 

F0.6R - F0.6S -13.980 9.343 x 10−43 

F0.8R - F0.8S -13.467 1.100 x 10−39 

P0.2R - P0.2S -12.494 3.602 x 10−34 

P0.4R - P0.4S -12.696 2.799 x 10−35 

P0.5R - P0.5S -13.345 5.704 x 10−39 

P0.6R - P0.6S -13.911 2.431 x 10−42 

P0.8R - P0.8S -13.332 6.744 x 10−39 

 

Table S6: p-values and Z values of Dunn’s test computed for BRT. According to the pairwise comparisons, ”F” indicates 

favourability, ”P” probability, ”R” random sampling and ”S” stratified sampling, while the decimal number is referred 

to the sample prevalence. 

 

BRT 

comparison Z test statistic adjusted p value 

F0.2R - F0.2S -11.616 1.536 x 10−29 

F0.4R - F0.4S -13.220 3.011 x 10−38 

F0.5R - F0.5S -13.814 9.383 x 10−42 

F0.6R - F0.6S -14.413 1.934 x 10−45 

F0.8R - F0.8S -14.823 4.711 x 10−48 

P0.2R - P0.2S -12.824 5.410 x 10−36 

P0.4R - P0.4S -13.281 1.341 x 10−38 

P0.5R - P0.5S -13.380 3.572 x 10−39 

P0.6R - P0.6S -13.596 1.907 x 10−40 

P0.8R - P0.8S -13.208 3.555 x 10−38 
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Figure S1: Pixels variabilities of mean probability and mean favourability predictions. The first column on the left 

shows the pixels variability of the mean probability of species occurrence calculated for GLM, RF, GAM and BRT, the 

central column, the pixels variability of the mean favourability of species occurrence calculated for GLM, RF, GAM and 

BRT and the right column the difference between the pixels variabilities of mean probability and mean favourability 

outcomes. 
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Figure S2: Distribution values of 50 virtual species between first and third quartiles within the range of prevalence 

values of the favourability and the probability predictions estimated with GLM. (A) favourability-based and 

probability-based species distribution values related to a random sampling of presence-absence points, (B) 

favourability-based and probability-based species distribution values related to a stratified sampling of presence-

absence points. The mean value is represented with * symbol. 

 

 
Figure S3: Distribution values of 50 virtual species between first and third quartiles within the range of prevalence 

values of the favourability and the probability predictions estimated with RF. (C) favourability-based and probability-

based species distribution values related to a random sampling of presence-absence points, (D) favourability-based 
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and probability-based species distribution values related to a stratified sampling of presence-absence points. The 

mean value is represented with * symbol. 

 

 
Figure S4: Distribution values of 50 virtual species between first and third quartiles within the range of prevalence 

values of the favourability and the probability predictions estimated with GAM. (E) favourability-based and 

probability-based species distribution values related to a random sampling of presence-absence points, (F) 

favourability-based and probability-based species distribution values related to a stratified sampling of presence-

absence points. The mean value is represented with * symbol. 
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Figure S5: Distribution values of 50 virtual species between first and third quartiles within the range of prevalence 

values of the favourability and the probability predictions estimated with BRT. (G) favourability-based and probability-

based species distribution values related to a random sampling of presence-absence points, (H) favourability-based 

and probability-based species distribution values related to a stratified sampling of presence-absence points. The 

mean value is represented with * symbol. 

 

 
Figure S6: Distribution values between first and third quartiles of AUCs related to GLM within the range of sample 

prevalence. The first distribution (A) is referred to the random sampling method, the second distribution (B) is 

referred to the stratified sampling method. The mean value is represented with * symbol. 

 

 
Figure S7: Distribution values between first and third quartiles of AUCs related to RF within the range of sample 

prevalence. The first distribution (C) is referred to the random sampling method, the second distribution (D) is 

referred to the stratified sampling method. The mean value is represented with * symbol. 
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Figure S8: Distribution values between first and third quartiles of AUCs related to GAM within the range of sample 

prevalence. The first distribution (E) is referred to the random sampling method, the second distribution (F) is referred 

to the stratified sampling method. The mean value is represented with * symbol. 

 

 
Figure S9: Distribution values between first and third quartiles of AUCs related to BRT within the range of sample 

prevalence. The first distribution (G) is referred to the random sampling method, the second distribution (H) is 

referred to the stratified sampling method. The mean value is represented with * symbol. 

 

 REAL SPECIES SCENARIO 

 

 We analyzed the tendency of favourability to reduce the variability of the predictions across 

different degrees of sample prevalence in juxtaposition with the suitability outcomes for two real 

species that share part of their geographic distribution (Fig. S10). Since the real absences were not 

provided we could infer only the habitat suitability and we could not estimate the actual 

probability of occurence. However, the study focused on the calculation of the coefficients of 

variations of Picea abies and Fagus sylvatica. 

The species occurrences in Italy of Picea abies and Fagus sylvatica were selected from EU-Forest 

(Mauri et al., 2017), a dataset of European tree species distribution 
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(http://dx.doi.org/10.6084/m9.figshare.c.3288407) that blends forest plot surveys from National 

Forest Inventories on an INSPIRE-compliant 1km × 1km grid. We randomly sampled 1000 presence 

and pseudo absence points in order to fulfill the sequence of sample prevalence values (i.e., 0.2, 

0.4, 0.5, 0.6, 0.8) and we randomly subsampled 5 replicates of the 19 bioclimatic variables with 10 

arc-minutes of spatial resolution which were also used as predictors. Suitability and favorability 

models for each prevalence values were estimated using the generalized linear model. The 

favourability predictions variability of Picea abies and Fagus sylvatica proved to be more stable 

across the degrees of sample prevalence than the suitability outcomes (Fig. S11), (Fig. S12) 

demostrating that comparisons of species distributions of real species are more reliable using the 

favourability models. 
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Figure S10: Habitat suitability of Fagus sylvatica and Picea abies. The first map on the left shows the suitability of 

Fagus sylvatica’s occurrence estimated using a random sampling of presences and pseudo-absences (sample 

prevalence value: 0.2), the second on the right represents the suitability of Picea abies’s occurrence estimated using a 

random sampling of presences and pseudo-absences (sample prevalence value: 0.2). 
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Figure S11: Predictions variability of Fagus sylvatica and Picea abies. The first column on the left represents the 

suitability-based predictions variability, calculated as Coefficient of Variation (CV) across the sample prevalence values 

of Fagus sylvatica and Picea abies, while, the second column shows the favourability-based predictions variability. 
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Figure S12: Distribution values of the difference between suitability-based coefficients of variation and favourability-

based coefficients of variation for Fagus sylvatica and Picea abies. The median value is represented with * symbol. 
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Abstract 

The availability of biodiversity databases is expanding at unprecedented rates. Nevertheless, 

species occurrence data can be intrinsically biased and contain uncertainties that impact the 

accuracy and reliability of biodiversity estimates. In this study, we developed a reproducible 

framework to assess three dimensions of bias—taxonomic, spatial, and temporal—as well as 

temporal uncertainty associated with data collections. We utilized the vegetation plot data located 

in Europe, from sPlotOpen, an open-access database, as a case study. The metrics proposed for 

estimating bias include completeness of the species richness for taxonomic bias, Nearest Neighbor 

Index for spatial bias, and Pielou’s index for temporal bias. Additionally, we introduced a new 

method based on a negative exponential curve to model the temporal decay in biodiversity data, 

aiming to quantify temporal uncertainty. Finally, we assessed the sampling bias considering the 

influence of various spatial variables (i.e, roads density, human population count, Natura 2000 

network and topographic roughness). We discovered that the facets of bias and the temporal 

uncertainty varied throughout Europe, as did the different roles played by spatial variables in 

determining biases. sPlotOpen showed a clustered distribution of the vegetation plots, and an 

uneven distribution in sampling completeness, year of sampling and temporal uncertainty. The 

facets of bias were significantly explained mainly by the presence of Natura 2000 network and 

marginally by the human population count. These results suggest that employing an efficient 

procedure to examine biases and uncertainties in data collections can enhance data quality and 

provide more reliable biodiversity estimates. 

Keywords: biodiversity; community composition; data quality; spatial bias; taxonomic bias; 

temporal bias; temporal uncertainty 

1 Introduction 

Biodiversity and ecosystem functioning are experiencing a widespread degradation globally. The 

main drivers of biodiversity decline are represented by an increase in the intensity of human 

activities such as land and sea-use, the exploitation of organisms and natural resources, 

atmospheric and water pollution as well as the introduction of alien species (IPBES 2019). 

Together with climate change, whose impact on biodiversity is expected to increase in the coming 

years (Di Marco et al. 2019), these factors pose a significant threat to the integrity of ecosystems 

and biodiversity. To monitor biodiversity change, we need records that capture the occurrence 

and/or co-occurrence (i.e. community composition) of species within specific time frames and 

geographical locations. These raw records, now increasingly available through global biodiversity 

collections such as the BIEN and sPlot database (Enquist et al. 2016; Bruelheide et al. 2019), play a 

crucial role in ecological research and represent essential sources of information for guiding and 

monitoring actions aimed at meeting global biodiversity targets (Boakes et al. 2010; Meyer et al. 

2015). Their utility spans over a wide range of applications, including investigations into species 

redistribution (Jandt et al. 2022b), community reassembly (Bertrand et al. 2011), threat 

assessment and conservation planning (Ricci et al. 2024), as well as the study of invasive species 

propagation (Turbelin, Malamud, and Francis 2017). 
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Since the 2000s, the number of publicly available biodiversity databases has risen, alongside their 

use (Ball-Damerow et al. 2019). Data availability alone, however, is not sufficient to ensure reliable 

ecological inferences. As a matter of fact, data quality should be considered and checked, both in 

terms of spatial and temporal representativeness (Wüest et al. 2020). One common issue with 

biodiversity databases relates to the way in which data are collected. Frequently, these databases 

contain opportunistic collections of data, which are characterized by uneven sampling effort and 

might hide subtle sources of bias and uncertainties (Daru and Rodriguez, 2023; García-Roselló,  

González-Dacosta, and Lobo 2023; Rocchini et al. 2023). When these limitations are not accounted 

for, our ability to describe and analyse biodiversity might be compromised (Hortal et al. 2015). 

Bias and uncertainty are terms developed in the statistical literature, and refer to the theory of 

sampling (Walther and Moore 2005). Bias occurs when the sampling is unrepresentative of the 

target statistical population. It might depend on uneven sampling across geographic areas, 

taxonomic groups or time periods (Walther and Moore 2005). Uncertainty, on the other hand, 

refers to the lack of precision in measurements, which also affects the degree to which data can 

represent reality (Hortal et al., 2015). Biodiversity data are particularly prone to these problems, 

and considerations on the bias and uncertainty of the data acquire particular relevance across 

three specific dimensions: taxonomic, spatial and temporal (Meyer, Weigelt, and Kreft 2016). 

While assessments of the limitations posed by the use of biodiversity databases do exist (Ronquillo 

et al. 2020; Monsarrat, Boshoff, and Kerley 2019; Colli-Silva et al. 2020), most studies focus on one 

dimension at the time, commonly spatial or taxonomic (but see Meyer, Weigelt, and Kreft (2016) 

for a multidimensional approach), and often consider only bias but not their related uncertainty. 

Taxonomic bias is a well-known issue in biodiversity research, where the study of specific taxa is 

favoured over others (Troudet et al. 2017) (e.g. vertebrates over invertebrates and vascular plants 

over bryophytes and lichens). As a result, biodiversity databases may over- and under-represent 

different taxonomic groups (García-Roselló,  González-Dacosta, and Lobo 2023). In the 

geographical space, taxonomic bias can be analysed using measures of inventory or sampling 

completeness, which estimate taxonomic coverage of the collected data within a given surface 

area (Chao and Jost 2012). Traditionally, sampling completeness is calculated using parametric or 

non-parametric estimators of the expected species richness within a given spatial unit and then 

computing the ratio of observed versus expected species richness (Chesshire et al. 2023). 

Alternatively, a metric of completeness is given by the final slope of Species Accumulation Curves 

for the investigated geographic unit(Yang, Ma, and Kreft 2013; Girardello et al. 2019). Reliable 

methods for species richness estimation based on a combination of probabilistic and opportunistic 

data are now available (Chiarucci et al. 2018) but can hardly be applied only using 

opportunistically collected data. 

Spatial bias arises when data distribution and density are uneven in space, as a result of an 

unbalanced sampling design (Tessarolo et al. 2014; Rocchini et al. 2023). The spatial distribution of 

collected data is often the result of socio-economic factors such as accessibility and the presence 

of road networks (Oliveira et al. 2016), uneven financial investments in research across regions 

(Meyer et al. 2015), but also the preference for sampling in nature protected areas hosting rare or 
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charismatic species (Yang, Ma, and Kreft 2014). The spatial distortion of the data resulting from 

these factors might yield inaccurate modelling outputs, especially when modelling species 

distribution (Rocchini et al. 2023; Bazzichetto et al. 2023). 

For being aggregated over long time periods, considerations on biodiversity data should take into 

account the temporal dimension. This aspect is gaining attention as reliably estimating biodiversity 

loss and change in time stand as a paramount challenge in ecological research (Jandt et al. 2022b). 

However, surveys are often not conducted systematically over time, leading to collections 

characterized by uneven data coverage and large temporal gaps where no record is present. 

Like bias, uncertainty is present in all the components of biodiversity data and can stem from 

various sources. For instance, in the taxonomic dimension uncertainty may arise from imprecise or 

equivocal species names (Stropp et al. 2022), whereas in the geographic space, positional 

inaccuracy of survey locations is recognized as a contributor to the overall uncertainty in the data 

(Gábor et al., 2020). While these aspects of taxonomic and spatial uncertainty are routinely 

considered in macroecological research, the uncertainty derived from the temporal dimension of 

the data is often neglected. Natural communities are not constant over time and exhibit spatial 

and/or compositional shifts in response to natural variability and/or human-induced alteration in 

land use, climate and introduction of alien species (Newbold et al. 2015). Because of the 

dynamism of ecological systems, the information associated with any data on the occurrence of a 

certain species or species assemblage in a specific area inevitably decays with time (Tessarolo et 

al. 2017). Understanding this process of information decay becomes particularly relevant when 

biodiversity records are used in conservation planning, where accurate and up-to-date knowledge 

is essential (Boitani et al. 2011). 

Given all the above factors, it is important to recognize the different limitations of biodiversity 

databases and identify new approaches to tackle them. Here, we showcase how different aspects 

of bias and uncertainty can be quantified. As an example, we used vegetation plot data in Europe 

from the openaccess database sPlotOpen (Sabatini et al. 2021b). We assessed four specific aspects 

of error through the use of different metrics: taxonomic bias, spatial bias, temporal bias and 

temporal uncertainty, so to explore the geographical pattern of these sources of error. Finally, we 

explored how these sources of error relate to a set of geographic variables, namely human 

population count and road density, the occurrence of protected areas and topographic roughness. 

The ultimate goal is to provide a workflow (Fig. 1) that can be generalized and applied to other 

biodiversity databases, regardless of the spatial scale of the analysis. 

2 Material and Methods 

2.1 Data preparation 

sPlotOpen is an open-access, stratified subset of the sPlot database. It includes only vascular plant 

species and was built based on climatic and soil variables as resampling strata (Sabatini et al., 

2021b). The stratified resampling used to build sPlotOpen specifically focuses on maximizing the 

representativeness of the vegetation plot data in the environmental space, at the expense of the 

geographical space. After accessing sPlotOpen (March 2023 version 2.0, (Sabatini et al., 2021a)), 
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we exclusively extracted data 1) located in Europe and within the boundaries of LAEA Europe 

coordinates system (WGS84 bounds: -16.1, 32.88, 40.18, 84.73), 2) having coordinates uncertainty 

lower than 250 m, and 3) with a year of recording equal to or greater than 1992. We did this to 

minimize errors coming from the inaccurate location of the plots, mainly deriving from possible 

errors of data georeferencing, and to be consistent with the year of establishment of the Natura 

2000 network. This filtering phase reduced the data from 94,951 to 9,481 vegetation plots. We 

superimposed a grid of 0.5 degree resolution (EPSG:4326) over the European extent and projected 

it to LAEA Europe coordinates system (ETRS89-extended, EPSG:3035). Accordingly, the resolution 

of the grid cells was transformed from 0.5 degrees to 39.5 km. Finally, we assigned each 

vegetation plot to its corresponding grid cell. 

 

 

Figure 1: Methodological workflow to assess the presence of taxonomic, spatial and temporal shortfalls in biodiversity 

databases. The assessment of bias in raw data involves the following measurements: sampling completeness for 

taxonomic bias, Nearest Neighbour Index for spatial bias, Pielou’s index for temporal bias. The temporal uncertainty is 

calculated using a negative exponential curve. The different facets of bias and the temporal uncertainty are computed 

for grid cells of 39.5 km. The response of biases to spatial variables is estimated by fitting generalized additive models. 

 

2.2 Bias 

We measured and represented three facets of bias (taxonomic, spatial and temporal) and we 

plotted them in a trivariate map (Appendix: Supplementary methods). 

2.2.1 Taxonomic bias 

We represented the spatial distribution of the taxonomic bias, according to the taxonomic 

coverage of the vascular plants in sPlotOpen, in terms of completeness in species richness. Using 

Chao’s formula to estimate the total number of species in a grid cell, we calculated the sample 

completeness as the ratio of the observed species in a sample to the true species richness 

(observed plus undetected) in the entire assemblage (Chao et al. 2020). We used the R package 

iNEXT (version 3.0.1) (Hsieh, Ma, and Chao 2016), to determine the species richness for each grid 
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cell of 39.5 km. For each grid cell, the input data comprise the number of sampling units (T) (i.e., 

vegetation plots), the observed incidence frequencies and the Hill number q = 0. We set k, the 

equally spaced knots (samples sizes), to 5 and we removed to the input data all those grid cells 

containing two vegetation plots or less. The values of the completeness of species richness were 

calculated without considering that plots varied in size, within and across grid cells. 

2.2.2 Spatial bias 

We estimated the degree of spatial bias (or geographical sampling bias) by estimating the spatial 

pattern of the plots locations within each grid cell through the Nearest Neighbor Index (NNI) (Clark 

and Evans 1954). We used the R package spatstat (version 3.0.8) and the package spatstat.explore 

(Revision: 1.21, Date: 2023/10/17). The NNI was computed using the function clarkevansCalc 

(Baddeley, Rubak, and Turner 2016) and it evaluates whether the plots exhibit a clustered or 

random distribution. The NNI is expressed as the ratio of the observed average distance between 

each plot and its nearest neighbor and the expected average distance in a random distribution 

with the same number of plots. Values of the index less than one indicate clustering i.e., higher 

spatial bias, values around one a random distribution i.e., lower spatial bias, whereas values 

greater than one imply overdispersion (e.g., systematic distribution). We also modified the original 

clarkevans.test function in clarkevans.test2 to calculate the grid-based NNI with Standardized 

Effect Size (NNI SES) as the difference between the observed NNI and the mean of NNI simulations 

divided by the standard deviation of the simulations. We used Monte Carlo approach to generate 

999 populations of plots location under the condition of a Complete Spatial Randomness (CSR) of 

the observed number of plots. Then, for each valid simulation we calculated NNI within the extent 

of the grid cell. 

2.2.3 Temporal bias 

Pielou’s index (J) is a metric commonly used in ecology to assess how equitable or even the 

abundance of species is within a specific community or ecosystem (Pielou 1966). In this work, we 

used Pielou’s evenness to estimate the temporal bias of plot data based on the years of different 

plots were recorded for each grid cell. We computed the metric using the functions provided by 

the R package vegan (version 2.6.6). Pielou’s index is calculated as follow: 

 

J   
 

    
                                                                                                                                                           (1)                                                                                                                                                                                                                                                                                                                            

 

Where H is the Shannon-Wiener index and it is calculated as: 

 

H = −            
                                                                                                                                              (2)                                                                                                                                                                                                                                                                                             
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Traditionally, N represents the total number of species and pi is their relative abundances for each 

species i ∈ {1, . . . ,N}. The maximum value of Shannon’s index is expressed as: Hmax = lnN. It is the 

value that indicates an even distribution, which is attained when all species have equal relative 

abundances. In our study, N refers to the total number of years of recording, where i is the ith year 

of recording, and pi is the proportion of plots in a grid cell being sampled in year i. This means that 

the Pielou’s evenness was calculated by taking into account the number of plots per grid cell, 

instead of the number of individuals, that share the same year of recording. Higher is the value of 

Pielou’s index lower is the temporal bias. 

2.3 Temporal uncertainty 

The information associated with any biodiversity data decays with time. We modelled the 

temporal decay of the information by applying a negative exponential transformation to our data. 

The function is defined as follows: 

 

y(t) = e−z(t)                                                                                                                                                            (3)                                                                                                                                                                       

 

Where y is the temporal precision, i.e., the remaining information associated with a vegetation 

plot, and t is the difference between the year of the most recent surveyed plot (i.e., 2014) and the 

date of recording of the data point. Since there is no way of knowing the actual rate of information 

decay for a vegetation plot, we calculated our results using three different exponents (i.e., z1= -1, 

z2= -1/5, z3= -1/25) so that the curves decrease with different rates (according to the slope, 

Appendix: Fig. S1). Therefore, for each plot we calculated three values of temporal precision. 

Finally, we quantified the temporal uncertainty of the vegetation plot data in a given grid cell as 

the median value of 1 - temporal precision of each plot. We chose negative exponential functions, 

as they have four desirable properties, when compared to other linear transformations. First, 

negative exponentials are consistent with the assumption that the information associated to a 

vegetation plot can only decrease (or be stable) with time (i.e., is monotonically decreasing), and 

that this information will never reach zero. This corresponds to the reasonable assumption that 

having vegetation plot data for an area, no matter how old the data is, will always provide more 

information than having no data at all. Second, negative exponentials can be used to constrain the 

amount of remaining information to a 0-1 interval, which is intuitive and easy to communicate. 

Third, negative exponentials are simple and versatile functions that can assume a range of shapes, 

including a linear shape for short time intervals. Finally, negative exponentials have often been 

used to model the decrease of a quantity against time or space. Radioactive decay is the most 

typical example, but see Xu et al. (2019) for an application on population decrease over time, or 

Newling (1969) for the decrease in population as a function of the distance from the city center. 

However, we also tested the temporal decay of the plot information (i.e., temporal uncertainty) as 

a linear function of the median value of the differences between the year of the most recent 
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surveyed plot (i.e., 2014) and the year of recording of the ith plot (see Appendix: Supplementary 

methods for further details). 

2.4 Spatial variables of bias 

We selected a number of variables (number of plots, human population count, road density, 

Natura 2000 network, and topographic roughness), which are likely to be related to the facets of 

bias (taxonomic, spatial, temporal) in sPlotOpen data. We chose these variables because they have 

already been tested as sources of bias in several studies (Ballesteros-Mejia et al. 2013; Geldmann 

et al. 2016; Girardello et al. 2019). 

Human population count: The human population count per pixel at 0.0083 degrees of spatial 

resolution for the year 2014 (year of the most recent plots in the database) was obtained from 

World Pop (https://hub. worldpop.org/geodata/listing?id=64 (Stevens et al. 2015). We calculated 

the human population count for each grid cell of 39.5 km as the mean value of the human 

population counts at the plot locations to be consistent with the method applied to calculate the 

facets of bias. Accordingly, We extracted the values of the variable at 0.0083 degrees for each plot 

within the grid cell then, we calculated the mean value. 

Road density: Road density was employed as a metric to quantify the level of accessibility at the 

collection sites; road data shapefile for the European network were obtained from the Global 

Roads Inventory Project (GRIP) (https://www.globio.info/download-grip-dataset) (Meijer J.R. et al. 

2018) and filtered by retaining only highways, primary and secondary roads. The road density was 

then calculated with a Kernel Density Estimation (KDE) at 1 km of spatial resolution through the 

spatstat package (Baddeley, Rubak, and Turner 2016). Kernel density function is frequently 

employed to produce a continuous, smooth surface that depicts the spatial density of data points. 

We obtained the road density at 39.5 km by extracting the values from the original raster layer for 

each plot location then, we calculated the mean of the values included in each grid cell. 

Natura 2000 network: We measured the relative number of plots inside the Natura 2000 network 

to detect if the locations of the records were biased toward Natura 2000 areas. The polygon layer 

of the Natura 2000 network was obtained from the European Environment Agency website 

(https://www.eea.europa.eu/data-and-maps/data/natura-13, Published: 6 Oct 2022, Temporal 

coverage: 2021). For each grid cell, we calculated the ratio between the number of plots located 

inside the Natura 2000 area and the total number of plots present in that grid cell, so as to obtain 

a grid-based measure of the number of plots inside the protected area which accounts also for the 

records size. 

Topographic roughness: It refers to the variation in elevation and the spatial distribution of 

landform elements. This variable, which measures the topographic heterogeneity, was taken from 

Amatulli et al. (2018). We selected the topographic heterogeneity cause it determines the 

establishment of different habitats and diverse microenvironments that support different species 

(Stein, Gerstner, and Kreft 2014; Barajas-Barbosa et al. 2020). Therefore, if the sampling is not 

appropriately distributed across these different habitats, it can underestimate or lose certain 

species. 
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The variable at 39.5 km of spatial resolution was obtained by extracting the values from the 

original rater layer with a spatial resolution of 0.4 degrees for each plot location then, calculating 

the mean of the values included in each grid cell. 

Finally, we used these variables as predictors in three Generalized Additive Models (GAMs), one 

for each measure of taxonomic, spatial and temporal bias (i.e., completeness of species richness, 

NNI, and Pielou’s evenness). We used the thin plate splines as spline-based technique for each 

smooth term of GAM. The variables of GAMs were standardized to zero mean and one standard 

deviation before rescaling to a 0-1 range. We also considered the spatial autocorrelation including 

the term s(x,y) to the GAM, where s is a smoothing spline and x and y are the longitude and 

latitude coordinates of the centroid of the grid cell. To control for the varying number of 

vegetation plots across grid cells, we added sampling effort as an additional explanatory variable 

to the models. Sampling effort was calculated as the number of plots within each grid cell. 

3 Results 

3.1 Bias 

The taxonomic bias, described by the completeness of the species richness, was not evenly 

distributed over Europe (Fig. 2, Appendix: Fig. 3), following a similar pattern as the number of 

vegetation plots recorded per grid cell (Appendix: Fig. S4, Fig. S9). Besides, the spatial distribution 

of the plots, measured through the Nearest Neighbor Index (NNI), was clustered almost 

everywhere in Europe (Fig. 2, Appendix: Fig. S6). Most grid cells (97.4%) exhibited a clustered 

spatial pattern. The values of the NNI SES confirmed that the effect size was large, pointing out 

that the magnitude of the deviation from the random expectation was substantial (Appendix: Fig. 

S7). 

Furthermore, we observed that the temporal bias, calculated using Pielou’s index to estimate the 

distribution of data across years, followed a different and independent pattern from the 

taxonomic and spatial bias (Fig. 2, Appendix: Fig. S8). However, it highlighted a heterogeneous 

evenness of plots inventory over time. Indeed, surveys turned out to be evenly distributed (i.e., 

lower bias) in several countries such as Slovakia, Netherlands and Czech Republic. Overall, the 

European data in sPlotOpen had high spatial clustering and heterogeneous temporal evenness and 

completeness of the species richness. Additionally, the prevalence of one type of bias over 

another varied across geographic areas in Europe, with some countries being characterized by the 

prevalence of one facet of bias over another (Appendix: Fig. S2). The completeness of the species 

richness (i.e., low taxonomic bias) showed to be preponderant in Norway. An high temporal 

evenness ( i.e., low temporal bias) was observed in some plots in Lithuania and in the Netherlands, 

while low values of spatial bias were detected in Czech Republic. 
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Figure 2: Grid-based map of three facets of bias. The map shows A the uneven distribution of the taxonomic bias, B 

the distribution of the vegetation plots through the Nearest Neighbour Index (spatial bias) and, C the heterogeneous 

distribution of the temporal bias. NNI values greater than 1 indicate a random distribution of plots within a grid cell, 

while values less than 1 indicate a clustered distribution; high completeness of the species richness implies low 

taxonomic bias; high values of Pielou’s index reveals low temporal bias. 

 

3.2 Temporal uncertainty 

The different negative exponential functions being used for calculating the temporal uncertainty 

revealed that different exponents (i.e., z1= -1, z2= -1/5, z3= -1/25) allow for discriminating in 

different ways the pattern and intensity of the hotspots of temporal uncertainty (Fig. 3). The 

temporal uncertainty measured using the exponent z1 = -1 was high across the entire European 

extent, except for some grid cells primarily distributed in Estonia. The temporal uncertainty 

calculated with z2 = -1/5 highlighted new areas with lower uncertainty values, namely the Danish 

peninsula and Bulgaria. Finally, the temporal uncertainty calculated using z3 = -1/25 smoothed out 

the values of temporal uncertainty, making uncertainty hotspots less visible compared to the 

uncertainties based on the other exponents. This exponent most closely approximated the 

negative exponential curve to a linear trend. Indeed, its pattern of values was comparable with 

that obtained by calculating the uncertainty as median difference of the year of recording of the 

plot with the most recent one (Appendix: Fig. S11). 
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Figure 3: The map shows the median temporal uncertainty of the vegetation plots per grid cell of 39.5 km; the 

intensity of the temporal uncertainty changes according to the exponents being used setting the exponential negative 

function (i.e., exponents: z1= -1, z2= -1/5 and z3= -1/25). 

 

3.3 Spatial variables of bias 

The Generalized Additive Models showed that most facets of bias are related to the presence of 

Natura 2000 areas. The regression models of taxonomic, spatial and temporal bias had 

respectively a deviance explained of 49.5%, 14.8% and 22.2% (Table 1). 

Only Natura 2000 network and human population count contributed to influencing the three 

facets of bias (Fig. 4). Specifically, the relative number of plots inside the Natura 2000 network 

significantly explained the variability in all response variables while human population count was a 

significant predictor only for spatial bias. Concerning the relative number of plots in Natura 2000 

network, lower values were associated with higher completeness of the species richness (lower 

bias), nevertheless the relationship was not linear (effective degree of freedom (edf) = 3.083); the 

completeness slightly decreased when the share of plots in Natura 2000 areas increased from 

about 0.30 to 0.65 and, then increased again. Also the NNI did not follow a complete linear 

relationship with Natura 2000 protected area (edf = 2.208) showing higher bias (low NNI value) 

where the share of Natura 2000 areas was higher. Instead, the temporal bias reached its lowest 

value (highest Pielou’s index) when the plots were almost evenly distributed both inside and 

outside the Natura 2000 network; the degree of non-linearity was low with an edf value of 2.606. 

Finally, the spatial bias decreased to about 0.30 of the human population count and then 

increased until it reached almost stability as the covariate increased (edf = 3.830). The control 

variable sampling effort had a significant effect on the variability of the three biases and the same 

applied to the term s(x,y) except for the spatial bias. Overall, about 47% of the vegetation plots 

were inside Natura 2000 protected areas, although this network only accounts for 18% of EU’s 
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land area. This showed how vegetation plots were not uniformly distributed inside and outside 

Natura 2000 areas (Appendix: Fig. S10). 

 

Table 1: Terms of quality and fitting process of Generalized Additive Models, as well as, overall significance of 

explanatory variables. N2K refers to relative number of plots in Natura 2000 network, pop to human population count, 

road to road density, rough to topographic roughness. Significance codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

REML refers to Restricted maximum likelihood, R-squared to coefficient of determination, Deviance expl. to deviance 

explained. 

 

 Taxonomic bias Spatial Bias Temporal Bias 

R-squared 0.461 0.117 0.187 

Deviance expl. 49.5% 14.8% 22.2% 

- REML -115.35 -89.511 150.18 

 F p value F p value F p value 

N2K 2.927 < 0.05 * 3.807 < 0.05 * 4.117 < 0.01 ** 

pop 0.809 0.358 3.547 < 0.01 ** 1.903 0.118 

road 0.081 0.918 1.392 0.239 2.377 0.124 

rough 2.088 0.102 0.425 0.687 1.700 0.171 
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Figure 4: Trends of significative predictors with respect to the response variables of GAMs. N2K refers to the relative 

number of plots inside Natura 2000 network, pop refers to the human population count. The plot A) represents the 

estimated values of taxonomic bias (i.e., completeness of species richness) at each value of N2K, B) the estimated 

values of spatial bias (i.e., NNI) at each value of N2K, C) the estimated values of temporal bias (i.e., Pielou’s index) at 

each value of N2K, D) the estimated values of spatial bias at each value of pop. The estimated values of the response 

variable are represented in the y-axis while the observed values of the spatial variable in the x-axis. The ”ticks” in the 

x-axis indicate the distribution of the values. Finally, the line shows the estimated smooth and the point the partial 

residuals. 

 

4 Discussion 

Biodiversity big data are being increasingly used to understand ecological patterns and monitor 

biodiversity trends (García-Roselló,  González-Dacosta, and Lobo 2023). Yet, these large collections 

of opportunistic data come with intrinsic sources of bias, that require careful considerations 

(Caldwell et al. 2024). Here, we proposed a methodological framework and a set of useful metrics 

to quantify three different dimensions of bias (taxonomic, spatial, and temporal), as well as the 

underappreciated dimension of temporal uncertainty in biodiversity data, using vegetation plot 

data from the open-access database sPlotOpen as an example. 

We found that the completeness of the species richness estimates varied across grid cells in 

Europe, and vegetation plot data varied both in terms of their level of spatial clustering, and their 

level of temporal unevenenness at the European extent. In addition, the prevalence of one 
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dimension of bias over the others also exhibited a non-uniform distribution, highlighting the 

presence of several hotspots of bias. 

In sPlotOpen, the taxonomic bias varied unevenly across Europe and accordingly to the plot size 

(Appendix: Fig. S5). As expected, we found that the observed species richness is significantly 

influenced by the sample size (Chao and Jost 2012), with high completeness occurring in grid cells 

with a high number of plots. However, the sampling completeness still presents some limitations. 

In particular, the Species Accumulation Curve assumes that there is no spatial and temporal 

autocorrelation between the species occurrences (Gotelli and Colwell 2001; Yang, Ma, and Kreft 

2013), and the values of the completeness of the species richness do not represent the degree of 

sampling of different habitat types (Lobo et al. 2018). Regardless, to address this constraint, a 

measure of the dark diversity, i.e., the species that are potentially present in a given community 

but have not yet been detected, can provide a more complete representation of the taxonomic 

sampling bias by associating it with the value of sampling completeness (Carmona and Pärtel 

2021). Despite these limitations, the use of sampling completeness is particularly common. Its use 

appears in several applications such as for calculating the taxonomic gaps of species records at 

both multi (La Sorte and Somveille 2020) and single-taxa level (Chesshire et al. 2023), and in 

assessing the efficacy of a sampling method (Pelayo-Villamil et al. 2018). Here, we provided an 

example of how sampling completeness can be employed to depict the distribution of the 

taxonomic information gaps, based on the taxonomic coverage of the vascular plants, at the 

continental scale. 

As far as we know, the use of the Nearest Neighbor Index to assess the spatial bias of raw data is 

not widespread (e.g., Geldmann et al. (2016); Oliveira et al. (2016); Hughes et al. (2021); Rocchini 

et al. (2023)). In sPlotOpen, we observed a high spatial bias, where most of the grid cells had a 

clustered distribution of plots. Consequently, a high spatial bias in data collection can alter the 

current representation of community composition and environmental conditions, as well as the 

potential distribution of a species (Michalcová et al. 2011; Bazzichetto et al. 2023). However, the 

high clustering we found may depend on the environmental-based resampling of sPlotOpen and 

possibly on the further filtering we applied to the database which, may have promoted the 

process of concentration of the plots in a restricted area. Furthermore, the NNI SES displayed 

values different from random expectations, suggesting a clustered pattern which, can have been 

determined by multiple factors, such as the sampling within the network of protected areas. 

Although the sampling effort is the most commonly used method to represent the spatial bias of 

raw data, recent studies (Sumner et al. 2019; Boyd et al. 2021) have proposed the NNI as a 

suitable index to measure and represent it. In this regard, combining the NNI with the sampling 

effort can complement our understanding of spatial bias in its possible facets. 

Here, we also represented the temporal bias, calculated using Pielou’s index. In sPlotOpen, the 

temporal bias follows an heterogeneous distribution across Europe; high values (i.e., low bias) 

indicate a more uniform distribution of data across years. However, most of the studies tested the 

effect of irregular collection over time of raw data in ecological modelling or indices. Examples are 

the temporal variation of the inventory completeness (Stropp et al. 2016; Ronquillo et al. 2020), 
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the temporal change in species occupancy (Powney et al. 2019; Outhwaite et al. 2020), the 

temporal coverage of the species records (Meyer, Weigelt, and Kreft 2016; Daru and Rodriguez 

2023), or the temporal variation of Species Distribution Models due to biased sampling of species 

records under land-use change (Bowler et al. 2022). Here, we propose a new method to quantify 

temporal bias using a common metric employed in ecology, i.e., the Pielou’s index, focusing on the 

distribution of the year of recording of the plots data rather than determining the impact of an 

uneven sampling over time of the species records. 

In our study, we tested three metrics commonly used in ecology to measure the bias of raw data 

at different dimensions. Nevertheless, many other approaches exist to assess gaps and biases in 

biodiversity data and one does not exclude the others. Some methods use directly raw data to 

evaluate the errors, others use predictions or estimations. For instance, Ruete (2015) proposed an 

ignorance score representing the sampling effort of raw data; Oliver et al. (2021) developed 

indicators of biodiversity data coverage and sampling effectiveness; Moura and Jetz (2021) 

analyzed one aspect of taxonomic and geographic knowledge gaps by modelling species discovery 

probability. Eventually, it is even possible to face biases in raw data by a pre-processing procedure 

through their standardization and filtering to improve the accuracy of the inferences (Ronquillo et 

al. 2023). 

In this study, we also provide a measure of the temporal uncertainty. To account for the wide 

uncertainties in the process of temporal decay, we quantified temporal precision using different 

negative exponential curves. With the method proposed, it is possible to appreciate different 

patterns of temporal uncertainty based on the exponents used. As lower z-values are used, the 

rate of decay of information increases. This allows us to identify areas where temporal uncertainty 

is always low and the information contained is consistently more precise. On the other side, it is 

possible to notice how areas that appeared to be more precise with higher z-values (e.g., -1/25) 

become highly uncertain with lower exponents. However, temporal precision is likely to decrease 

with different rates across different regions and vegetation types, due to many possible drivers of 

changes, such as anthropogenic pressures, climatic changes, or successional trajectories. This 

means that using the same function to model information decay across large areas is just an 

approximation since different contexts might be subjected to different drivers and intensities of 

change. In future research, it would be interesting to relate the rate of biodiversity information 

decay to rates of habitat loss and species assemblage turnover (Jandt et al. 2022a,b). 

Only a few studies paid attention to the temporal uncertainty of raw data (Meyer, Weigelt, and 

Kreft 2016; Tessarolo et al. 2021; D’Antraccoli, Bedini, and Peruzzi 2022). For instance, when 

creating a map of ignorance (Rocchini et al. 2011) for Species Distribution Models, Tessarolo et al. 

(2021) calculated the temporal decay of the information provided by each occurrence record 

through a kernel Gaussian function that increases the uncertainty for the increment in years since 

the last recording date. To our knowledge, no study has modelled temporal uncertainty using 

negative exponential functions. However, future research should investigate how to calibrate the 

most appropriate set of decay functions to model information loss across regions and vegetation 

types rather than arbitrarily choosing the exponent. 
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It is most likely that the biases and uncertainties of the vegetation plots we found in sPlotOpen 

reflect those of European Vegetation Archive (EVA) (Chytrý et al., 2016); in fact, the integration 

into EVA database is necessary before European data can be contributed to sPlot. EVA is an 

archive of multiple databases, and has continued accumulating, compared to the version 

sPlotOpen was built upon. Although many of the gaps in geographic coverage and representation 

of specific vegetation types might have been filled in the meantime (Chytrý et al. 2014; Sporbert et 

al. 2019), it is likely that some aspects of spatial, taxonomic or temporal bias remain. The resulting 

biases inevitably stem from errors embedded in individual contributing databases as well as 

challenges related to integrating data from databases with different objectives and adhering to 

diverse national and regional rules for structuring them. 

The relative number of plots inside the Natura 2000 network and the human population count 

play a role in determining some facets of bias. Ballesteros- Mejia et al. (2013); Girardello et al. 

(2019) showed how the sampling collection in protected areas increases the completeness of the 

species richness, as well as, Ricci et al. (2024) demonstrated the effectiveness of Natura 2000 

protected area in increasing the species diversity. Furthermore, we found that, as the number of 

plots inside the Natura 2000 network increases, the distribution of the plots is more clustered (i.e., 

higher spatial bias). Regarding the temporal evenness of the record collection, we found a non-

linear relationship with the number of plots inside the Natura 2000 network, with data collection 

being more even in time where plots are located both inside and outside the network of protected 

areas (Fig. 4). In any case, the initial removal of vegetation plots in sPlotOpen to maximize the 

representation of the environmental space may have altered the current representation of bias 

dimensions from that of the original sPlot database and their subsequent relationship with the 

spatial variables we considered. Nevertheless, our outcomes show the strength of the presence of 

protected areas in shaping the three facets of bias and in influencing the sampling location of the 

vegetation plots (Boakes et al. 2010). However, the role played by each spatial variable is limited 

by its release year, which does not reflect the entire temporal period covered by the plots 

considered in the analysis. 

It is crucial to note that in many studies the taxonomic and spatial bias of biodiversity databases 

correlates with human population density and road density (Ballesteros-Mejia et al. 2013; 

Geldmann et al. 2016; Mair and Ruete 2016). This was partially observed in our models. In fact, 

only the spatial bias was significantly influenced by the human population count. This can probably 

depend on the initial environmental-based resampling of sPlotOpen or by the possible masking 

effect that the sampling effort had on the other spatial variables in explaining the variability of the 

models. Eventually, it is likely that human population count and presence of roads are better 

predictors of the spatial bias in sampling effort across grid cells, rather than predicting the level of 

clustering within cells (Geldmann et al. 2016; Mair and Ruete 2016; Oliveira et al. 2016). 

Different facets of bias and uncertainty can be present in biodiversity databases because of many 

natural and anthropogenic factors that influence the choice of collecting data in a specific place 

and at a specific time. Not accounting for these sources of errors in biodiversity data could create 

knowledge shortfalls and hinder our capacity to monitor real trends in biodiversity and 
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consequently develop effective conservation strategies. It is, therefore, necessary to take into 

consideration the different facets of bias and uncertainty in biodiversity data by incorporating a 

routine to check for their presence. Here, we proposed and tested a methodological framework 

that can be reproduced and applied at different spatial scales (local, ecoregions, biomes, global) 

and for other databases such as vegetation plots, or simple occurrence data, as those contained in 

GBIF (GBIF 2024). 

We argue that our framework can be useful for quantifying, making visible, and possibly 

addressing different sources of bias and uncertainty transparently both when creating a new 

biodiversity database, and when highlighting priorities for gap-filling in existing ones. For instance, 

it can be helpful to point out where more actions to fix gaps and sources of errors could be 

allocated and to provide guidance to data users on how to avoid falling into potential pitfalls and 

drawing biased inferences. 
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Appendix 

Supplementary methods 

TRIVARIATE MAP 

We represented in a trivariate map, which is a graphic representation that shows the relationship 

between three variables at once, the three dimensions of bias. We used the functions provided by 

“tricolore” R package for creating the map. The variables selected for the trivariate map were the 

Nearest Neighbour Index, the completeness of the species richness and the Pielou's evenness. The 

variables were first standardized to have a mean of zero and a standard deviation of one, then 

rescaled to a 0-1 range and subsequently mapped over our study area. We also removed all grid 

cells that had missing values for at least one facet of bias. 

The trivariate map highlighted those area where the prevalence of one type of bias prevail to the 

others. The grid cells with different colours from those of vertices (e.g., brown) tend to be more 

and more influenced uniformly by the three dimensions of bias as the colour approaches the 

center of the triangle. 

FACETS OF BIAS  

Single grid-based map of each metric of bias with unstandardized grids number. 

TEMPORAL UNCERTAINTY 

Here we represented the temporal uncertainty by assessing the difference between the most 

recent year in the database (2014) and the year of each record. The higher the difference, the 

more uncertainty we have. The uncertainty per grid cell was calculated as the median value of the 

differences between the year of the most recent surveyed plot (i.e., 2014) and the date of 

recording of the ith plot within the grid cell. 
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Figure S1: Negative exponential curves fitting using three different exponents, i.e., z1=-1, z2=-1/5 and z3=-1/25. 

 

 

Figure S2: Grid-based trivariate map of taxonomic bias (i.e., completeness of species richness, abbrv. legend comp), 

spatial bias (i.e., NNI, abbrv. legend nni) and temporal bias (i.e., Pielou's evenness, abbrv. legend J). Each grid cell has a 

spatial resolution of 39.5 km. The highest sampling completeness is represented by light green color (low taxonomic 
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bias), the highest temporal evenness by light blue color (low temporal bias), the highest uniform distribution of the 

plots (low spatial bias) by pink color. 

 

 

Figure S3: Completeness of the species richness per grid cell of 39.5 km. 

 

 

Figure S4: A) Completeness of the species richness and B) logarithm to base 10 of the number of plots per grid cell of 

39.5 km with standardized number of grid cells.  



82 
 

 

Figure S5: A) Completeness of the species richness per grid cell of 39.5km including only the vegetation plots with area 

less than or equal to 150 m
2
. B) Completeness of the species richness for plots with an area greater than 150 m

2
. The 

area size was determined by relying on Sabatini et al. 2022
1
 and to have a comparable number of plots belonging to 

the two categories. 

 

 

                                                      
1
 Sabatini, F. M., Jiménez-Alfaro, B., Jandt, U., Chytrý, M., Field, R., Kessler, M., ... & Bruelheide, H. (2022). Global 

patterns of vascular plant alpha diversity. Nature Communications, 13(1), 4683.
1
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Figure S6: NNI per grid cell of 39.5 km. NNI values greater than 1 indicate a random distribution of plots within a grid 

cell, while values less than 1 indicate a clustered distribution. 

  

 

Figure S7: Spatial distribution of the vegetation plots per grid cell. A represents the map of NNI and B represents the 

map of NNI with a standardized effect size. NNI values greater than 1 indicate a random distribution of plots within a 

grid cell, while values less than 1 indicate a clustered distribution. There is no value of NNI with a standardized effect 

size between – 0.8 and 0.8, meaning that the effect size is large. 

 

 

Figure S8: Pielou’s Index per grid cell of 39.5 km. 
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Figure S9: Logarithm to base 10 of the number of plots per grid cell of 39.5 km.  

 

 

Figure S10: Map of the relative number of plots in the Natura 2000 network per grid cell. 
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Figure S11: Median of the temporal distance between the most recent year (i.e., 2014) and the year of each record 

per grid cell of 39.5 km. 
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Abstract 

Habitats are essential to the survival of organisms, playing a fundamental role in biodiversity 

conservation. Monitoring habitat changes and loss is thus of critical importance, however, 

sampled data may inherently present bias and precision errors. A measure of the data quality may 

ensure a correct representation of the habitat state and, if required, it help address information 

gaps corrections. In this study, we propose three metrics (completeness of the species richness, 

Nearest Neighbor Index, Pielou’s Index) for the assessment respectively of taxonomic, spatial, and 

temporal bias of species occurrence data at habitat level. The study was applied to the European 

plant records of sPlotOpen database representing two EUNIS habitat types, i.e., E (i.e., grassland 

and lands dominated by forbs, mosses and lichens) and G (i.e., woodland, forest and other 

woodland), observed in 3,642 vegetation plots across Europe. 

For both habitats at EUNIS level 1 and 2, we found a generally low taxonomic bias, high spatial 

bias, and moderate values of temporal bias for both  EUNIS level 1 and 2. An exception occurred 

with the temporal bias, where broadleaved evergreen woodland (G2) had particularly low values 

of Pielou's Index (i.e, high bias). Nonetheless, there was a greater variation in values among the 

habitat types at level 2 for the spatial and temporal bias suggesting that the number of plots, the 

habitat distribution and a possible opportunistic sampling can play a key role in shaping the 

dimensions of bias. Assessing data quality is crucial for addressing information gap-filling and 

deriving the most accurate representation and estimates for the conservation of a complex system 

like that of habitat.  

Keywords: bias; data quality; habitat type; sampling data; species occurrence 

1 Introduction 

The quantity of biodiversity observations increased in the last decades (Wüest et al. 2020), and 

similarly  their integration in large databases (e.g., GBIF, EVA, sPlot). Also, the quality of the 

observations improved significantly. Nevertheless, several sources of errors are still present 

(Hughes et al. 2021). Typically, opportunistic (i.e., non-probability) sample collections— such as 

non-standardized sampling or sampling driven by socioeconomic preferences (e.g., road 

accessibility, protected area, physical barriers) in the sampling locality — led to biased species 

observations (Yang, Ma, and Kreft 2014; Lessa et al. 2019). Moreover, social and political inequity, 

such as armed conflicts, the presence of infrastructures and urban centers, and the availability of 

research funds, shapes biodiversity data disparities in space and time (Zizka et al. 2021; Maitner et 

al. 2023; Chapman et al. 2024) generating inevitably gaps and bias in biodiversity information. 

Likewise, the union of biodiversity observations in big data repositories, raised from multiple 

databases with different projects and sampling methods (Beck et al. 2014; Chytrý et al. 2014), 

produces knowledge shortfalls which affect the accuracy and reliability of the ecological estimates 

(Daru and Rodriguez 2023; Johnson et al. 2024). 

The bias is one of the possible forms of error in biodiversity data (Marchetto et al. 2024). It 

denotes a systematic error that deviates the observed values from the true value (Bolker 2008). In 
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this regard, the sampling design or even the union of biodiversity observations in bigger data 

inventories can generate several facets of bias (Garcia-Rosello et al. 2023a) of which the most 

common are the taxonomic bias, the spatial bias and the temporal bias (Marchetto et al. 2024). 

The taxonomic bias reflects the discrepancy between the observed pool of species and the 

expected, the spatial bias the irregular distribution of the samples (sample units like plots or, 

species occurences) in the geographic space and the temporal bias represents the inequality of the 

sampling across time.  

Preference in specific taxa (Troudet et al. 2017) or the occurrence of undetected species (Moura 

and Jetz 2021; Lessa et al. 2024a) distorts the taxonomic dimension of the data. Typically, sample 

completeness—which calculates the taxonomic coverage of the gathered data within a certain 

area—is used to quantify the taxonomic bias. Traditionally, it is calculated as the ratio of the 

observed versus the expected species richness (Cazzolla Gatti et al. 2022) or rarely as the slope of 

Species Accumulation Curves (SACs) (Yang, Ma, and Kreft 2013). In the spatial dimension, an 

uneven distribution of the plots or species occurences (i.e., spatial bias) is frequently caused by 

sampling preferences such as for nature protected areas, accessible roads or unequal funding 

(Girardello et al. 2019) and, it also determined by an heterogeneous sampling effort over space of 

the sample units. In this context, the sampling effort (Ruete 2015; Geldmann et al. 2016), 

commonly measured as the number of plots or species occurrences per unit area, is the most 

investigated metric to evaluate the spatial bias. Variations in the strength of sampling efforts exist 

among data sets and taxonomic groups, as well as, in terms of time period and geographic regions 

(Stropp et al. 2016; Hughes et al. 2021). Nevertheless, in some studies, the Nearest Neighbour 

Index (Boyd et al. 2021, 2022)  has been proposed to evaluate the possible biased distribution of 

data rather than its quantity or intensity in space. Finally, in the temporal dimension, if species-

specific monitoring is missed or there are temporal gaps in data information, the identification of 

changes in time, such as the community loss and turnover (Graco-Roza et al. 2022; Jandt et al. 

2022), can be biased. 

Biased species occurrences are generally caused by opportunistic and disorganized survey efforts, 

similarly, inaccurate resurveys or irregular temporal monitoring might further skew species 

observations (Lobo et al. 2007). Hence, any inferred variables, indices, and models — such as 

Species Distribution Modeling (Baker et al. 2022; Baker, Maclean, and Gaston 2024) and diversity 

metrics (Maldonado et al. 2015; Ronquillo et al. 2023)  — can be impacted by biased species 

occurrences.  

In biodiversity databases, the three dimensions of the bias can appear at different temporal 

ranges, spatial levels, from local to global scale, and ecological levels, from species to realms 

(Meyer et al. 2015; Hugo and Altwegg 2017; La Sorte and Somveille 2020; Hughes et al. 2021; 

García-Roselló, González-Dacosta, and Lobo 2023b). At the habitat level, forms of bias can occur 

and their characterization is particularly distinctive given the habitat's peculiar ecological concept 

and classification. Habitat is defined, according to EUNIS habitat classification, as "a place where 

plants or animals normally live, characterized primarily by its physical features (topography, plant 

or animal physiognomy, soil characteristics, climate, water quality etc.) and secondarily by the 
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species of plants and animals that live there" (Davies, Moss, and Hill 2004). Habitat is then a 

species-specific concept (Hall, Krausman, and Morrison 1997). Given its unique characteristic, it 

allows only peculiar species to inhabit and adapt under specific resources and environmental 

conditions (Pardini and Püttker 2017). Habitat loss and fragmentation are some of the greatest 

threats to biodiversity (Haddad et al. 2015), raising the attention for their particular importance 

for conservation biology. The most important European initiative for habitat conservation was 

established by the EU in 1992, including the habitat types in Directive 92/43/EEC. The Habitat 

Directives envisages the conservation of habitats of community interest and the integration of the 

sites hosting the habitat types listed in Annex I in protected areas of Natura 2000 network. In 

Europe, the main habitat classification method is the EUNIS (European Nature Information 

System) Habitat Classification, developed by the European Environment Agency (EEA) in 

collaboration with the European Topic Centre on Biological Diversity (ETC/BD) in the 1990s and 

early 2000s (Davies and Moss 1999; Davies, Moss, and Hill 2004). The classification and 

identification are based on vegetation types in terms of species composition and vegetation 

structure and on the abiotic environment distinguishing the geographic location. 

Nevertheless, programs aimed at the characterization of habitats and their monitoring can present 

forms of bias in the information collected. For instance, some habitats are more attractive than 

others, leading to disparities in sample coverage and possibly showing irregularities in the survey 

over time. Indeed, according to Geldmann et al. (2016), natural habitats received higher sampling 

intensity than human-modified habitats, as well as terrestrial habitats and aquatic habitats 

showed different sampling efforts (Rocha‐Ortega, Rodriguez, and Córdoba‐Aguilar 2021). 

However, even the characteristics of the landscape can influence people's sampling making some 

areas more accessible than others. 

Regardless of the conditions under which data are collected, from a survey collection or released 

from biodiversity databases (big data), an assessment of data quality is recommended before any 

ecological inference (Boyd et al. 2022). Therefore, maps of ignorance or awareness (Ruete 2015; 

Lessa et al. 2024b) of the sampled data are crucial to prevent or correct as much as possible 

potential errors in biodiversity estimates and in conservation actions. 

Leveraging the European plot records in sPlotOpen (Sabatini et al. 2021a), an open-access subset 

of the sPlot, we aimed to identify ecological metrics to measure and represent the bias at habitat 

level and within habitat types of the same EUNIS level in three dimensions (taxonomic, spatial and 

temporal). Here, we hypothesize that the values of the dimensions of bias change between habitat 

types and among sub habitat types. Finally, we aimed to define a methodological framework (Fig. 

1) for measuring the dimensions of habitat bias that can be reproducible to different data sources 

such as inventories and local, regional or global databases. 

 2 Material and Methods 

For the measurement of the dimensions of bias, we replicated the same methodology proposed 

by Marchetto et al. (2024) which uses three common metrics to calculate them: the completeness 

of the species richness, the NNI, and the Pielou’s Index. 
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Figure 1: Methodological workflow which provides a first phase of data preparation and a second phase involving the 

calculation of the metrics for each habitat type. 

 

2.1 Data preparation 

We extracted the data records from sPlotOpen (March 2023 version 2.0, Sabatini et al., 2021b) in 

Europe with coordinates uncertainty lower than 250 m and with information about the plot size 

area. We also projected the vegetation plot coordinates to the LAEA Europe coordinates system 

(ETRS89-extended, EPSG:3035) to mitigate area distortions at higher latitudes. 

The taxonomic, spatial and temporal biases were measured at EUNIS (European Nature 

Information System) habitat types of levels 1 and 2. We performed the analyses for the habitat 

types E (i.e., grassland and lands dominated by forbs, mosses and lichens) and G (i.e., woodland, 

forest and other woodland), classified according to EUNIS-ESy (Chytrý et al. 2020). Since not all 

habitat types included in sPlotOpen were equally distributed within the European continent, we 

selected only the ones that have a wide distribution and at least 2500 plots in the database 

according to our filtering criteria. In particular, the dimensions of bias were measured for the 

following habitat types:  E, G (EUNIS level 1) and E1, E2, E3, E4, E5, G1, G2, G3 (EUNIS level 2). We 

only retained the plots located within the land cover type (Corine Land Cover) matching with the 

EUNIS habitat type at level 1. We overlaid the vegetation plots with the grid cells of the land cover 

type aggregated at 10 km of spatial resolution and we assigned each vegetation plot to its 

corresponding grid cell. To identify the CLC classes that match with the level 1 habitats, we 

followed the crosswalk between EUNIS habitats Classification and Corine Land Cover defined by 
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European Topic Centre on Biological Diversity (https://www.eea.europa.eu/data-and-

maps/data/eunis-habitat-classification-1/documentation/eunis-clc.pdf). Specifically, the crosswalk 

matches the EUNIS code at level 2 and 3 with CLC at level 3. The Corine Land Cover was 

downloaded from Copernicus in the raster format for the year 2012 to be as much as possible 

consistent with the last year of recording of the database (i.e., 2014). We opted for a raster file 

with a resolution of 100 meters which represented the best trade-off between accuracy and 

computation effort. To ensure optimal computational speed, a sufficient number of plots per grid 

cell and a great number of pixels covered by the land cover, the spatial resolution of the CLC was 

aggregated to 10 kilometres. We aggregated the classes fixing the condition, as a threshold, that 

the new pixel became an NA value if at least 75\% of the pixels were NA values. For testing the 

effect of the threshold, we replicated the measure of the dimensions of bias using different values 

of thresholds (i.e., 0.65 and 0.85) for the aggregation of the pixels of the CLC (results in Appendix, 

Fig. S1 – S4). The data filtering decreased the plot records from 94,951 (total number of plots in 

sPlotOpen) to 3,642 (sum of the number of plots in E and G for threshold value 0.75 ).  

According to the value of the threshold, the number of grid cells, in which the dimensions of the 

bias were calculated, changed for each habitat type as a consequence of their different geographic 

distribution and number of plots. In addition, we decided to retain the values only of those grid 

cells shared by all of the dimensions of bias (Table 1).  

Table 1: Number of grid cells (0.75 threshold condition) per habitat type (E, G, E1, E2, E3, E4, E5, G1, G2, G3) in which 

the dimensions of bias were calculated. 

 

Habitat Name N. of grid cells 

E Grassland and lands dominated by 

forbs, mosses and lichens 

58 

G Woodland, forest and other woodland 186 

E1 Dry grasslands 5 

E2 Mesic grasslands 25 

E3 Seasonally wet and wet grasslands 5 

E4 Alpine and subalpine grasslands 19 

E5 Woodland fringes and clearings and 

tall forb stands 

7 

G1 Broadleaved deciduous woodland 98 

G2 Broadleaved evergreen woodland 8 

G3 Coniferous woodland 78 

https://eunis.eea.europa.eu/habitats/2421
https://eunis.eea.europa.eu/habitats/2421
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2.2 Dimensions of bias 

The dimensions of bias were calculated using different metrics (completeness of the species 

richness, NNI, Pielou’s Index) for each grid cell of 10 km of spatial resolution as explained below. 

 2.2.1 Taxonomic bias 

Based on the taxonomic coverage of vascular plants in sPlotOpen, we depicted the taxonomic bias 

as the completeness of species richness. Sample completeness was gauged as the ratio of the 

observed species richness to the true richness (observed plus undetected) (Chao et al., 2020). The 

sample completeness was calculated via the R package iNEXT (version 3.0.1) using Hill number q = 

0, the vegetation plots as sampling units, and the observed incidence frequencies for the species 

records.  

We set “incidence” as datatype, and for EUNIS level 1 and 2, we designated k, as the number of 

equally spaced knots (sample sizes), equal to 5. Finally, we excluded from the input data all grid 

cells that contained two or fewer vegetation plots. Essentially, the higher the value of the 

completeness of the species richness, the lower the taxonomic bias. 

 2.2.2 Spatial bias 

We evaluated the extent of spatial bias of plot records by analyzing the spatial arrangement of 

plot locations using the Nearest Neighbor Index (NNI) (Clark and Evans 1954). This index is 

determined as the ratio of the observed average distance between each plot and its nearest 

neighbor to the expected average distance in a random distribution with an equivalent number of 

plots. Values less than 1 indicate a clustered pattern, values close to 1 imply a random distribution, 

and values greater than 1 suggest overdispersion or a more organized, systematic arrangement. A 

clustered distribution of plots corresponds to high spatial bias while a random or systematic 

distribution denotes low spatial bias. We used the R package spatstat (version 3.0.8) and the 

package spatstat.explore (version 3.2.7) to calculate the NNI by means of clarkevans.test function 

(Baddeley, Rubak, and Turner 2016), which assesses whether the plots demonstrate clustering or 

random distribution.  The NNI was calculated for each EUNIS level 1 habitat type selected (i.e., E, 

G) and within each habitat type at EUNIS level 2. We considered as a geographic area for the index 

computation each Corine Land Cover (CLC) grid cell at 10 km of spatial resolution. Hence, for the 

analysis, only the plots that overlaid the CLC grid cells were selected for the measure of the NNI. 

The grid cells (spatstat windows of the analysis) were obtained by vectorizing the CLC pixels of the 

raster object at 10 km of spatial resolution.  

2.2.3 Temporal bias 

In this study, we used the Pielou's index (Pielou 1966) to estimate the temporal bias of plot 

records based on the years of recording of the vegetation plots. Pielou's index (J) commonly 

assesses the evenness of the abundance of the species within a community. It was calculated 

using the functions provided by the R package vegan (version 2.6.6) and it is defined as follows: 
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J   
 

    
                                                                                                                                                           (1)                                                                                                                                                                     

 

Where H is the Shannon-Wiener index and it is calculated as: 

 

H = −            
                                                                                                                                              (2)                                                                                                                                                        

 

N represents the total number of species, pi their relative abundances for every species i ∈ {1, . . . 

,N} and Hmax = lnN the maximum value of Shannon's index. Here, we refer to N as the total 

number of years of recording, where i is the ith year of recording, and pi is the proportion of plots 

(belonging to the habitat type) in a grid cell being sampled in the year i. So, high values of Pielou's 

Index indicated low temporal bias and vice versa. 

In other words, the temporal bias was calculated for each habitat as the distribution of the year of 

recording of the plots within each grid cell. 

2.3 Statistical analyses 

We measured for each habitat type and dimension of bias the mean, the median and, the range 

between the minimum and the maximum value. We also calculated the Standard Error of the 

median value of 1000 nonparametric bootstrap replications with replacement. To test if there was 

any statistical difference between E and G, we performed a Wilcoxon rank sum test for each 

dimension of bias, then for the habitats at EUNIS level 2, we carried out a Kruskal-Wallis test. In 

the case of a significant Kruskal-Wallis test, we evaluated pairwise comparisons across habitats 

using Dunn’s test with Holm’s correction of the p-value (R package FSA version 0.9.5).   

3 Results 

The completeness of the species richness showed high values (i.e., low taxonomic bias) for both E 

and G habitat types, with a median value of 0.789 for G and 0.772 for E (Appendix: Table S1). On 

the contrary, the NNI was low (i.e., high spatial bias) with a median value of 0.382 for G and 0.352 

for E (Appendix: Table S2). Finally, the temporal bias at level 1 EUNIS was medium. The habitat 

type E showed a slightly higher value (0.523) of Pielou's Index (i.e., lower temporal bias) than G 

(0.445) (Fig. 1 and Appendix: Table S3). With respect to the entire spectrum of values that the 

metrics can cover, the temporal bias was the one that covered the whole range of possible values 

(range from 0 to 1). For the level 2 EUNIS, the habitats showed a taxonomic bias with all the 

median values above 0.75, except for E1 (0.703). Whereas, the spatial bias was generally high, 

with a clustered distribution of plots, and a median below 0.5, except for E3 (0.716). The median 

values of Pielou’s index were heterogeneous. E3 showed greater temporal evenness, with low bias 

and a median value of 0.750, while G2 showed higher temporal bias with a median value of 0 (Fig. 

2). Even for level 2 EUNIS habitats, the distribution of values was less widespread for taxonomic 
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bias while the temporal bias showed a generally higher dispersion of values (Appendix: Tables S1-

S2-S3). 

We found no significant difference between E and G for all dimensions of bias (Appendix: Table 

S4), on the contrary, the habitat types at level 2 EUNIS showed significant differences for the 

spatial and the temporal bias (Appendix: Table S5). For the spatial bias, only the pairwise 

combination E3 – E5 exhibited significant variation. Otherwise, the temporal bias showed 

significant differences for E3 – G1 and E3 – G2 combinations (Appendix: Tables S7-S8). 

The patterns of values for EUNIS level 1 of E and G were the same irrespective of the value of 

threshold set for the aggregation of the pixels of CLC, except for the median of the spatial bias 

obtained with 0.65 of threshold which was slightly higher for E than G (Fig. 1, Figs. S1, S2). In 

contrast, the distribution of values for level 2 EUNIS was different changing the thresholds (Fig. 2, 

Figs. S3, S4), especially for the spatial and temporal bias (Appendix: Tables S8, S9, S10). 

Peculiarities in the median values of some habitat types exist. In E1, the median value of the 

temporal bias was 0 for 0.65 of the threshold, while the median value was 0.406 for 0.75 of the 

threshold and 0.579 for 0.85 of the threshold. In E3, the median value of the spatial bias for 0.65 

of the threshold was 0.860, which was also higher than the median value of the taxonomic bias. 

Whereas the median value of the spatial bias for 0.75 of threshold was 0.716, and for 0.85 of 

threshold was 0.335. Finally, the median value of the temporal bias of G2 was very low for all 

cases: 0 for 0.75 of the threshold, 0.154 for 0.65 of the threshold and 0.154 for 0.85 of the 

threshold. 

 

 

Figure 1: Distribution values of the dimensions of bias (taxonomic, spatial, temporal) at EUNIS level 1 for E (grassland 

and lands dominated by forbs, mosses and lichens) and G (woodland, forest and other woodland). 
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Figure 2: Distribution of values of the dimensions of bias (taxonomic, spatial, temporal) at EUNIS level 2 for E (i.e., 

E1,E2, E3, E4, E5) and G (i.e., G1, G2, G3). 

 

4 Discussion 

We measured the dimensions of bias (i.e., taxonomic, spatial and temporal) at the habitat level of 

sPlotOpen records to point out which habitat might suffer the highest level of inaccuracy across 

Europe. We observed a generally low level of taxonomic bias, a high level of spatial bias, and 

moderate levels of temporal bias for habitat types E and G at levels 1 and 2 EUNIS. The pattern of 

values at level 2 EUNIS changed with different values of threshold and showed variations among 

habitats especially for the spatial and the temporal bias. No significant variations were highlighted 

between E and G, demonstrating that the intensity of the bias was the same regardless of the 

habitat type. Nevertheless, few habitats at level 2 showed significant differences between them, 

as in the case of E3 – E5 for the spatial bias and E3 – G1, E3 – G2 for the temporal bias. These 

results may rely on the low number of recorded plots, according to our filtering criteria, over 

Europe representing the habitats E3 (seasonally wet and wet grasslands), E5 (woodland fringes 

and clearings and tall forb stands), and G2 (broadleaved evergreen woodland). Indeed, many are 

the conditions that could have influenced these outcomes: the number of plots describing each 

habitat type, their geographic distribution, a non-probability sampling, and the aggregation set-up 

of CLC which excluded different grid cells according to the threshold value (as happened for 0.65 

of threshold). Differences may also occur when changing the spatial resolution of the grid cells, 

however, particular attention should be paid to the choice of the resolution because the grid cell 

https://eunis.eea.europa.eu/habitats/2421
https://eunis.eea.europa.eu/habitats/2421
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must cover the corresponding land cover as much as possible, especially for the calculation of the 

spatial bias. Overall, higher effort is needed to sample species occurrence data at spatial and 

temporal scales in a way that the sampling is as uniform, complete and standardized as possible 

taking into account the specific condition needed to fulfil the study purposes.  

In this study, the taxonomic bias at EUNIS level 1 was low (i.e., higher completeness of the species 

richness) for both E and G habitat types. Also, the habitats at EUNIS level 2 showed low bias. 

Nevertheless, differences can exist between habitats. Indeed, the completeness of the species 

richness can be driven by several natural and anthropogenic drivers. High species richness does 

not always reflect high sample completeness because many species may still be undetected 

(Cazzolla Gatti et al. 2022), and their potential for discovery can depend on the sampling effort 

(Button and Borzée 2024). Moreover, some species can be more difficult to detect because of 

their inaccessibility or rarity. However, the tendency to sample more charismatic species can be 

another factor which leads to ignoring some species rather than others (Troudet et al. 2017; 

Adamo et al. 2021; Callaghan et al. 2021). On overall, the knowledge of species distribution can be 

biased by road accessibility (Hughes et al. 2021), human population density (Mair and Ruete 

2016), the amount of financial resources (Meyer, Weigelt, and Kreft 2016) and the presence of 

protected area (Girardello et al. 2019). For instance, Chanachai et al. (2024) showed that some 

ecoregions had low forest sample completeness associated with low protected land area and 

natural habitat, as well as, low sample completeness per sampling units where prevailed low 

forest integrity. Heterogeneity in our actual knowledge of taxonomic coverage may result in 

misrepresentations of the species diversity and occurrences and unsuccessful conservation actions 

(Cazzolla Gatti et al. 2022). 

Eventually, higher accuracy on the outcomes of the completeness of species richness may be 

obtained if the metric is calculated for vegetation plots of equal size area and by using plots with 

the same sampling year, as the completeness changes over time (Hortal et al. 2008; La Sorte and 

Somveille 2020). However, we should always consider the potential presence of taxonomic bias in 

the sampling procedures by prioritizing unbiased sampling, particularly in regions with unique 

climatic conditions where endemic and rare species are more likely to occur (Enquist et al. 2019; 

Sandel et al. 2020). 

The spatial bias was high (i.e., low NNI) for both E and G habitat types at level 1 and for the 

habitats at EUNIS level 2, meaning that the sampling in the geographic space had a clustered 

distribution for all of them. Several factors may have determined this arrangement of the plots, 

such as the environmental resampling of the plots of sPlot, which may affect the geographic 

coverage (Sabatini et al. 2021a), the combination of several databases in one with different 

designs and research purposes, the opportunistic data collections with socio-economic 

preferences. Another factor that can have shaped the spatial bias is the original biased distribution 

of the vegetation plots of sPlot gathered from the EVA database (version Chytrý et al. 2014). 

Furthermore, the geographic distribution of the habitats may have influenced the NNI outcomes. 

Indeed, although grassland habitats are widely distributed around Europe, we observed that many 

of them have a peculiar location and some of them have a restricted distribution. Just to cite a 
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few, E4.4b is distinctive of the high mountains of the Balkan and Apennines, E2.4 is a unique 

Iberian summer pasture, and E5.2c is a Macaronesian habitat in the Canary Islands catheterized by 

perennial herbaceous communities. The same goes for the forest and woodlands which have some 

habitats of restricted distribution, such as Macaronesian laurophyllous woodland (G 2.3), sub 

endemic Alnus cordata woodland (G 1.Ba), Mediterranean montane Cedrus woodland (G 3.4d). 

These specific locations and restricted distributions of the habitats may have determined a 

clustered sampling of the vegetation plots. In any case, since there are no georeferenced polygons 

of EUNIS habitats at the second and third levels for the European extent, we could not evaluate 

how much the values of spatial bias were determined by the distribution of the habitats 

themselves. However, we believe that providing free accessible EUNIS habitat polygons or vector 

data on a small spatial scale (e.g., region or country) may address this issue. 

Finally, particular attention must be paid to data derived from preferential sampling. Many studies 

demonstrated that a preferential sampling of plots rather than a probability sampling can distort 

estimates (Botta-Dukát et al. 2007; Michalcová et al. 2011; Alessi et al. 2023). Chytrý (2001) 

showed that preferential sampling is more prone to sample species-rich locations. Especially, this 

sampling method is particularly common in historical surveys (Chytrý 2001; Reddy and Dávalos 

2003; Monsarrat, Boshoff, and Kerley 2019). 

In this study, the temporal bias had medium values for EUNIS level 1 E and G meaning that the 

habitats surveys were more intense in some years rather than others being the relative 

abundances of the years not uniform. The EUNIS habitats at level 2 showed different values of 

Pielou's Index with a distribution of values that in most of the cases covered all the possible values 

of the index (range from 0 to 1), denoting that the sampling was very irregular in the temporal 

dimension across the grid cells in Europe. Peculiar is the case of G2 with a median value of the 

Index equal to zero, circumstance that happens when the year of recording of the plots inside the 

grid cell is equal. Indeed, if a habitat has a high Pielou's Index (low temporal bias), the data 

information could have a greater coverage at the taxonomic level; nevertheless, this assumption is 

not sufficient to confirm the reliability of the data since the data might still suffer from possible 

taxonomic and spatial bias. The bias dimensions are not independent of each other (Meyer, 

Weigelt, and Kreft 2016), in fact, one dimension of bias can influence the others and vice-versa 

with a specific direction and intensity (Fisher-Phelps et al. 2017). In our view, direction and 

intensity should be evaluated depending on the purpose of the study (Zizka et al. 2020). 

 The habitat, as a complex ecological identity (Yapp 1922), can involve changes in the interactions 

and co-presence of multiple species in space and time but also in the physical and environmental 

conditions. Hence, if data characterizing a habitat type shows bias in one or more dimensions 

(taxonomic, spatial and temporal), intrinsically, it can implicate a bias in the environmental 

conditions (edaphic and climatic). A few studies measured the environmental dimension of bias of 

collected data at the species level only. Oliveira et al. (2016); Monsarrat et al. (2019) measured the 

environmental bias as the effect of uneven sampling of the species observations. 

Given the peculiar characteristics of the habitat and its importance for conservation biology, the 

extent of sampling bias should not be underestimated, even more so considering that habitats are 
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prone to habitat fragmentation and loss. Approximately half of grassland habitats are threatened 

by agricultural intensification or abandonment, natural succession, urbanization, and forestry 

activities (Habel et al. 2013; Schils et al. 2022). Forest habitats, instead, are threatened by 

sylviculture, natural hazards, climate change, alien species invasion (Janssen et al. 2016; Dyderski 

et al. 2018). These threats contribute to habitats change in their coverage and distribution and to 

the re-assemblage of the local pool of species (Lindborg et al. 2012; Riibak et al. 2020; Pazúr et al. 

2024). For instance, sampling of species occurrence data that does not reflect the condition of the 

habitat prior to and after habitat alteration can influence biodiversity trends and produce biased 

estimates (Zhang et al. 2021). Similarly, sampling bias of the species occurrences alongside with 

their environmental conditions can affect the accuracy of Species Distribution Models in predicting 

the habitat suitability of the species (Stolar and Nielsen 2015; Bardon et al. 2021) providing distort 

reccommendations to biodiversity conservation and invasive species distribution restrictions. 

As a consequence of these changes, the quality of data and how data is sampled need to be taken 

into account when dealing with habitat-based studies and conservation actions. In fact, it applies 

the principle that the data collected or taken from databases should be as free as possible from 

errors and information gaps. 

Data availability statement 

The data that support the findings of this study are openly available in Zenodo at DOI 

https://doi.org/10.5281/zenodo.14840330 
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Appendix 

 

Table S1: Statistical measures of the mean, the median, the bootstrap estimate of the standard error, and the range 

for each habitat type for the taxonomic bias. 

 

Habitat Mean Median SE Range 

E 0.732 0.772 0.031 0.222 - 0.982 

G 0.761 0.789 0.009 0.206 - 0.982 

E1 0.644 0.703 0.157 0.273 - 0.917 

E2 0.763 0.793 0.041 0.477 - 0.951 

E3 0.735 0.849 0.130 0.274 - 0.929 

E4 0.796 0.850 0.025 0.155 - 0.979 

E5 0.781 0.798 0.074 0.596 - 0.939 

G1 0.761 0.791 0.015 
 

0.198 - 0.955 

G2 0.872 0.874 0.030 0.779 - 0.982 

G3 0.772 0.795 0.017 0.206 - 0.970 

 

Table S2: Statistical measures of the mean, the median, the bootstrap the estimate of standard error, and the range 

for each habitat type for the spatial bias. 

 

Habitat Mean Median SE Range 

E 0.399 0.352 0.044 0 - 1.177 

G 0.415 0.382 0.025 0.022 - 1.299 

E1 0.316 0.321 0.095 0.043 - 0.558 

E2 0.399 0.372 0.115 0 - 1.044 

E3 0.621 0.716 0.246 0.211 - 1.014 

E4 0.287 0.261 0.078 0.019 - 0.518 

E5 0.141 0.127 0.031 0.067 - 0.292 
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G1 0.411 0.370 0.033 0.023 - 1.349 

G2 0.225 0.227 0.101 0.032 - 0.533 

G3 0.363 0.341 0.046 0.012 - 1.488 

 

Table S3: Statistical measures of the mean, the median, the bootstrap the estimate of standard error, and the range 

for each habitat type for the temporal bias. 

 

Habitat Mean Median SE Range 

E 0.452 0.523 0.053 0 - 1 

G 0.419 0.445 0.038 0 - 1 

E1 0.324 0.406 0.237 0 - 0.635 

E2 0.466 0.556 0.115 0 - 1 

E3 0.732 0.750 0.101 0.579 - 1 

E4 0.419 0.406 0.091 0 - 1 

E5 0.441 0.337 0.189 0 - 1 

G1 0.372 0.406 0.027 0 - 1 

G2 0.155 0 0.123 0 - 0.579 

G3 0.451 0.484 0.048 0 - 1 

 
Table S4: Outcomes of Wilcoxon rank sum tests of the habitat types E and G EUNIS level 1 for each dimension of bias. 

 

Bias W statistic p-value 

Taxonomic 5405.5 0.572 

Spatial 5366.5 0.519 

Temporal 606 0.439 

 

Table S5: Outcomes of Kruskal-Wallis tests of the habitat types EUNIS 2 for each dimension of bias. 

 

Bias chi-squared p- value 

Taxonomic 10.700 0.15 
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Spatial 17.322 < 0.05 

Temporal 22.3375 < 0.05 

 

Table S6: Outcomes of Dunn’s test of the habitat types EUNIS 2 for spatial bias. 

 

Comparison Z statistic p-value adjusted 

E1 - E2 -0.266 1.000 

E1 - E3 -1.564 1.000 

E1 - E4 0.266 1.000 

E1 - E5 1.425 1.000 

E1 - G1 -0.541 1.000 

E1 - G2 0.804 1.000 

E1 - G3 -0.081 0.936 

E2 - E3 -1.941 1.000 

E2 - E4 0.867 1.000 

E2 - E5 2.185 0.664 

E2 - G1 -0.526 1.000 

E2 - G2 1.449 1.000 

E2 - G3 0.405 1.000 

E3 - E4 2.535 0.281 

E3 - E5 3.330 0.024 

E3 - G1 1.833 1.000 

E3 - G2 2.772 0.150 
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E3 - G3 2.440 0.353 

E4 - E5 1.558 1.000 

E4 - G1 -1.523 1.000 

E4 - G2 0.770 1.000 

E4 - G3 -0.668 1.000 

E5 - G1 -2.642 0.214 

E5 - G2 -0.750 1.000 

E5 - G3 -2.125 0.739 

G1 - G2 1.921 1.000 

G1 - G3 1.391 1.000 

G2 - G3 -1.334 1.000 

 

Table S7: Outcomes of Dunn’s test of the habitat types EUNIS 2 for temporal bias. 

 

Comparison Z statistic p-value adjusted 

E1 - E2 -0.890 1.000 

E1 - E3 -2.471 0.296 

E2 - E3 -2.452 0.298 

E1 - E4 -0.517 1.000 

E2 - E4 0.578 1.000 

E3 - E4 2.799 0.128 

E1 - E5 -0.534 1.000 

E2 - E5 0.288 1.000 
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E3 - E5 2.111 0.695 

E4 - E5 -0.120 0.905 

E1 - G1 -0.253 1.000 

E2 - G1 1.428 1.000 

E3 - G1 3.728 0.005 

E4 - G1 0.574 1.000 

E5 - G1 0.503 1.000 

E1 - G2 1.070 1.000 

E2 - G2 2.574 0.231 

E3 - G2 4.138 0.001 

E4 - G2 2.063 0.743 

E5 - G2 1.782 1.000 

G1 - G2 1.973 0.873 

E1 - G3 -0.833 1.000 

E2 - G3 0.225 1.000 

E3 - G3 2.886 0.102 

E4 - G3 -0.486 1.000 

E5 - G3 -0.181 1.000 

G1 - G3 -1.768 1.000 

G2 - G3 -2.677 0.178 

 

Effect of threshold condition 

The dimensions of bias (taxonomic, spatial, temporal) were calculated per grid cells of 10 km of 

spatial resolution. Each grid cell was determined by aggregating the CLC raster layer at 100m of 
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spatial resolution, applying a threshold (i.e., 0.65, 0.65, 0.85) for the number of NA values to which 

the pixels were classified as NA. 

 

 

Figure S1: Distribution values of the dimensions of bias (taxonomic, spatial, temporal) at EUNIS level 1 for E and G per 

grid cells aggregated with a threshold of 0.65. 

 

Figure S2: Distribution values of the dimensions of bias (taxonomic, spatial, temporal) at EUNIS level 1 for E and G per 

grid cells aggregated with a threshold of 0.85. 
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Figure S3: Median (dot) and range (max-min) between minimum and maximum values (line) of the dimensions of bias 

(taxonomic, spatial, temporal) at EUNIS level 2 for E (i.e., E1, E2, E3, E4, E5) and G (i.e., G1, G2, G3) per grid cells 

aggregated with a threshold of 0.65. 
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Figure S4: Median (dot) and range (max-min) between minimum and maximum values (line) of the dimensions of bias 

(taxonomic, spatial, temporal) at EUNIS level 2 for E (i.e., E1, E2, E3, E4, E5) and G (i.e., G1, G2, G3) per grid cells 

aggregated with a threshold of 0.85. 

Table S8: Median values of the taxonomic bias per grid cells aggregated with 0.65, 0.75, 0.85 of thresholds. 

 

Habitat Median 0.65 Median 0.75 Median 0.85 

E 0.777 0.772 0.749 

G 0.787 0.789 0.790 

E1 0.703 0.703 0.727 

E2 0.756 0.793 0.806 

E3 0.849 0.849 0.751 

E4 0.888 0.850 0.828 

E5 0.719 0.798 0.719 

G1 0.786 0.791 0.804 

G2 0.874 0.874 0.897 

G3 0.810 0.795 0.791 
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Table S9: Median values of the spatial bias per grid cells aggregated with 0.65, 0.75, 0.85 of thresholds. 

 

Habitat Median 0.65 Median 0.75 Median 0.85 

E 0.389 0.352 0.291 

G 0.381 0.382 0.364 

E1 0.378 0.321 0.344 

E2 0.338 0.372 0.265 

E3 0.860 0.716 0.335 

E4 0.261 0.261 0.222 

E5 0.100 0.127 0.100 

G1 0.370 0.370 0.320 

G2 0.227 0.227 0.318 

G3 0.341 0.341 0.305 

 

Table S10: Median values of the temporal bias per grid cells aggregated with 0.65, 0.75, 0.85 of thresholds.    

 

Habitat Median 0.65 Median 0.75 Median 0.85 

E 0.557 0.523 0.579 

G 0.491 0.445 0.424 

E1 0 0.406 0.579 

E2 0.568 0.556 0.418 

E3 0.750 0.750 0.75 

E4 0.460 0.406 0.387 

E5 0.579 0.337 0.579 

G1 0.406 0.406 0.406 

G2 0.154 0 0.154 

G3 0.527 0.484 0.463 
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Conclusion  

In my PhD thesis, I addressed the issue of bias and uncertainty of species occurrence data by using 

different methodological approaches.  

In Chapter 1, I tested the effect of two sampling methods (i.e., random and stratified) and 

different sample prevalences in Favourability and Probability-based Species Distribution Models. 

In this study, we highlighted that the standardized sampling methods used did not considerably 

affect the accuracy of the models although the predictions of the species distribution changed 

with the spatial scale. Possibly, a biased sampling method might have a greater impact on the 

performances of the SDMs. Although the effect of sampling bias was not tested in this study, the 

sampling bias may have different effects on the predictions of favorability and probability model. 

Indeed, a disproportionate sampling effort for some geographic areas or environmental conditions 

can fail to determine the actual niche of the species. Favorability and probability predictions can 

change significantly when the sampling bias leads to a variation in the sample prevalence. A test of 

the impact of the sampling bias under different conditions on the performances of favourability-

based and probability-based models would provide valuable insights. However, even without 

testing the effect of the sampling bias, we found that the Favourability showed high accuracy in 

the prediction values and slightly higher performance of the models with respect to probability 

models (more than half of the median Continuous Boyce index values were higher). Then, it 

exhibited lower variability of the predicted species distributions when varying the ratio of 

presences and absences (i.e., sample prevalence) while keeping the sample size fixed (i.e., number 

of presences and absences being sampled). In future studies, it would be interesting to compare 

the outcomes by setting different sample size values. However, the property of lower variability of 

the favourability model has the potential to get more precise comparisons between SDMs and to 

better detect the environmental conditions that favour the presence of the species.  

In Chapter 2, we provided a method to evaluate the bias and uncertainty of species occurrence 

data in biodiversity databases. We aimed to measure and represent them to raise awareness of 

possible knowledge gaps in taxonomic, spatial and temporal dimensions when using this data or 

for correcting them by using methods appropriately calibrated to the study context. We proposed 

three common metrics to assess bias: i) the completeness of the species richness, ii) the Nearest 

Neighbor Index, iii) the Pielou’s index, and iv) a new easy-apply method for measuring the 

temporal uncertainty, which relies on the negative exponential function. Certainly, a strength of 

this study is that the codes are freely accessible making this methodological framework 

reproducible for biodiversity databases currently available regardless of the spatial scale and for 

different ecological levels. Future studies might combine the proposed metrics for measuring bias 

and uncertainty with tests to identify the most suitable methods to correct them by 

contextualizing them with differente data use (e.g., type of study, ecological level) and the ecology 

of the species. In fact, the species ecology, for example for mobile and immobile species (generally 

plants vs animals), can lead to different patterns of bias depending on how the species occurrence 

data is sampled in the spatial and temporal dimensions. In this context, the metrics of bias were 

also applied to the species occurrence data to identify possible taxonomic, spatial and temporal 
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bias at the habitat level (Chapter 3). The advantage of assessing the three dimensions of bias at 

the habitat level is that it inherently encompasses the environmental bias being the habitat a 

complex concept that also includes the climatic, edaphic and physical conditions. Likewise, getting 

reliable information on data gaps can help address resampling campaigns or data fixing actions for 

data completion and ensure more reliable recommendations for biodiversity conservation. 

In this thesis, I also dealt with the possible role played by different spatial variables (presence of 

Natura 2000 network, human population count, road density, topographic roughness) in shaping 

the dimensions of bias (taxonomic, spatial, temporal) of species distribution data in sPlotOpen 

founding out that Natura 2000 network had a significant impact on the sampling bias in the three 

dimensions. Future studies may test further variables to obtain an even more complete 

representation of the factors influencing the sampling bias to address correct design campaigns 

and monitoring programs. It would also be interesting to test whether the data from before the 

Natura 2000 establishment shows variations on their dependence with the spatial variables. 

Understanding the quality of data in biodiversity databases helps address efforts to guarantee 

more thorough monitoring and conservation of species and their habitats. Additionally, given this, 

testing the models and techniques employed throughout the data inference phase is crucial to 

assure increased accuracy and precision. 
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