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Abstract

In the last decade, depth sensing has become a prominent tech-
nology in fields such as robotics, automotive, mobile, and aug-
mented reality. In such systems an active sensor is employed, i.e.,
a device exploiting illumination to infer the 3D structure of the
framed scene. Time-of-Flight sensors are mainly used indoors
on mobile devices, while Light Detection and Ranging sensors
are employed in automotive for landscape-like scenarios. Despite
the reconstruction accuracy of active depth sensors, their tech-
nical limitations demand their integration with other sensors to
achieve high accuracy and the technical properties required for
specific deployments. This PhD thesis aims to deeply analyze
existing technologies for depth estimation and active sensor em-
ployment with the ultimate goal of improving and innovating the
current technological scenario with novel depth sensing frame-
works able to overcome the current limitations. First of all, this
is achieved through a detailed analysis of the inherent limitations
of active sensors and the proposal of effective solutions. Then,
the integration with single or multiple RGB sensors is deeply an-
alyzed in different applicative scenarios, improving the current
state of the art with innovative frameworks. Eventually, a fully
integrated pipeline able to exploit effectively multi-modal infor-
mation is proposed.
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Chapter 1

Introduction

1.1 Depth Sensing Applications

Accurate 3D reconstruction is crucial across a wide spectrum of applications, where the ability
to precisely capture and replicate the three-dimensional structure of objects and environments
opens up many possibilities. In the realm of mixed reality and 3D content creation, for exam-
ple, the demand for highly detailed shape reconstructions is paramount. These reconstructions
enable the seamless integration of digital objects into real-world environments, allowing for
immersive experiences in virtual and augmented reality (VR/AR). For instance, a virtual ob-
ject in an AR application can be accurately placed on a real-world surface, such as a table, if
the table’s exact dimensions and surface details are known. This level of detail is essential for
creating convincing and interactive digital experiences that respond to the real world.

Historical preservation is another field where accurate 3D reconstruction plays a critical role.
Museums and cultural heritage organizations increasingly rely on digital modelling to archive
and analyze works of art, archaeological sites, and historical artefacts. By creating precise digi-
tal replicas, these institutions can preserve the intricate details of fragile or deteriorating objects,
ensuring that they remain accessible for future generations. Moreover, these digital models al-
low for detailed scientific analysis, such as studying the surface wear of ancient sculptures to
understand their history and usage. Digital archives also make it possible to share and exhibit
rare or delicate items globally, expanding access to cultural heritage.

In robotics and autonomous driving, precise depth estimation is vital for navigation, object
recognition, and interaction with the environment. Autonomous vehicles, for instance, need to
accurately perceive their surroundings to make safe and informed decisions in real time. This
involves detecting and tracking other vehicles, pedestrians, and obstacles, as well as under-
standing the road’s topography. Robotics, on the other hand, often requires 3D reconstruction
for tasks like object manipulation, where a robot arm must grasp objects with precision, or for
navigation in complex, dynamic environments. In these cases, depth information is crucial for
understanding the spatial relationships between objects and planning safe and efficient paths.

In summary, depth sensing applications are diverse and far-reaching, encompassing fields such

1
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as cultural heritage, robotics, and mobile technologies. Therefore, it is crucial to develop robust,
versatile, and lightweight methodologies to effectively support these varied use cases.

1.2 Active Depth Sensing

Traditionally, active 3D sensing technologies have been the preferred solution for depth sens-
ing applications. LiDAR (Light Detection and Ranging) and ToF (Time of Flight) sensors are
the prominent technologies used in this field. These technologies actively scan scenes using
modulated laser illumination or structured light patterns to infer depth. LiDAR systems, for
example, emit laser pulses and measure the time it takes for the light to return after reflecting
off surfaces, thereby calculating the distance to various points in the scene. This approach pro-
vides highly accurate depth measurements, making LiDAR an invaluable tool in applications
like autonomous driving, where it is critical to detect objects and obstacles at varying distances,
even in challenging lighting conditions.

Similarly, ToF sensors emit infrared light and measure the time it takes for the light to come
back from surfaces in the scene. This allows for real-time depth estimation, which is particularly
useful in applications such as gesture recognition in gaming or user interaction in smart devices.
For instance, ToF cameras are integrated into some smartphones and tablets to enable features
like facial recognition or augmented reality experiences. By providing real-time depth maps,
ToF sensors help these devices accurately track and interpret user movements and interactions
with their surroundings.

Finally it’s worth mentioning Structured Light techniques. These method evaluates 3D geom-
etry by projecting a known pattern, often grids, stripes, or dot arrays, onto a scene. The way
these patterns deform when striking surfaces provides information about the depth and shape of
the scene and can lead to accurate depth sensing. Nonetheless, these techniques are hampered
by the limited capability of the projector used – i.e. they might not work in full daylight or with
distant objects.

However, despite their accuracy, active 3D sensing technologies are not without limitations.
LiDAR systems, while effective in outdoor environments and at long ranges, tend to be bulky
and expensive. Additionally, the mechanical components involved in LiDAR systems, such as
rotating mirrors, limit their frame rates and can introduce reliability concerns over time due to
wear and tear. ToF sensors, on the other hand, are more compact and have been increasingly
integrated into consumer electronics. However, they also face challenges, particularly in envi-
ronments with strong ambient light, such as outdoor settings. The infrared signals used by ToF
sensors can be overwhelmed by sunlight, leading to reduced accuracy or even failure to gen-
erate depth data. They also consume significant amounts of energy, which can be a drawback
for mobile applications that require prolonged battery life, such as drones or handheld devices.
Moreover, both LiDAR and ToF sensors produce sparse depth data, meaning they provide depth
information for only a limited number of points in the scene. This sparsity can hinder their ef-
fectiveness in applications requiring detailed and continuous depth information across the entire
scene and requires supporting techniques to recover global knowledge of the scenario.
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1.3 Multi-Modal Depth Sensing

These limitations have prompted the exploration of alternative approaches to support and inte-
grate active technologies. Particularly, passive sensing approaches – i.e. using only standard
RGB cameras – are extremely interesting for a wide range of reasons. Indeed, unlike active
sensors, RGB cameras do not emit any light beam; instead, they rely on ambient light and
capture images in a more energy-efficient manner. This makes them ideal for a variety of appli-
cations where power consumption, size, and flexibility are critical considerations. For example,
in mobile augmented reality applications, the compactness and low power consumption of RGB
cameras are crucial for providing a seamless user experience without draining the device’s bat-
tery too quickly.

Among passive sensing techniques, stereo vision is a widely used approach. It involves using
two calibrated cameras to capture images of the scene from slightly different angles. By ana-
lyzing the differences between these two images, known as disparity, it is possible to estimate
the depth of objects in the scene. This technique restricts the depth estimation problem to a
one-dimensional search space, making it computationally efficient compared to other methods.
However, stereo vision has its own set of challenges. It requires the cameras to be positioned
such that they share the majority of the field of view and they must be calibrated to enforce
coplanarity. After such a step, their relative position must not change. This latter limitation
may lead to failure if the cameras move due to external agents. Moreover, stereo vision can
struggle in scenes with low texture or poor lighting, where it becomes difficult to match corre-
sponding points between the two images.

The most flexible, yet challenging, passive sensing approach involves using a single monoc-
ular RGB camera in motion. This method, known as structure-from-motion (SfM), estimates
depth by analyzing how objects in the scene move relative to the camera as it changes position.
While this approach offers greater flexibility in terms of camera placement and movement, it
is computationally intensive and can be less accurate than stereo vision or active sensing tech-
niques. SfM is particularly useful in scenarios where using multiple cameras or active sensors
is impractical.

Passive sensing approaches can also be used to support active devices and ameliorate the issues
of the latter still retaining their peculiar accuracy. An example of such integration is depth com-
pletion. Depth completion algorithms aim to fill in the gaps in depth information, especially
when passive sensors are combined with the sparse outputs of active sensors like LiDAR and
ToF. However, current depth completion methods face significant challenges. They are often
fragile and fail to accurately reconstruct scenes in areas where no depth points are available or
when the distribution of sparse points differs significantly from the conditions under which the
system was trained. This fragility limits the practical deployment of these methods, particularly
in dynamic or complex environments where sensor conditions can change rapidly. The reliance
on training data tailored to specific sensors or environments can prevent the seamless applica-
tion of depth completion techniques across different contexts. For example, a depth completion
algorithm trained on data from an expensive, high-resolution LiDAR system may not perform
well when applied to data from a lower-cost, lower-resolution active sensor. This limitation
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poses a challenge for applications that require adaptability, such as autonomous vehicles oper-
ating in diverse setups.

1.4 Thesis Proposal

Given these challenges, there is a pressing need to develop more robust and adaptable solutions
for depth perception that can effectively integrate the strengths of both active and passive sens-
ing technologies. Indeed, combining data from multiple sensors – such as using LiDAR data to
enhance the depth information from RGB cameras – can lead to more accurate and reliable 3D
reconstructions. Such advancements would significantly enhance the performance and appli-
cability of 3D reconstruction in critical fields. For instance, in autonomous driving, improved
depth perception could lead to safer navigation and more reliable obstacle detection in a wider
range of conditions, from bright sunlight to dark, rainy nights. In augmented reality, more
accurate and detailed 3D reconstructions would enable richer and more immersive user expe-
riences, where digital objects interact with the real world naturally and believably. Ultimately,
the continued development of these technologies will be key to unlocking the full potential of
3D reconstruction across various industries and applications.

This thesis endeavours to deliver a comprehensive and in-depth exploration of the current state
of the art in 3D reconstruction technologies, encompassing both passive and active sensing
methods. It seeks to address the complexities inherent in these technologies by proposing and
delineating solutions aimed at their integration. The study begins with an extensive examination
of the existing literature and the various technological advancements available for depth sensing.
This includes a critical analysis of the different approaches, highlighting their strengths and
limitations. Subsequently, the thesis addresses the primary challenges associated with depth
perception, particularly when dealing with sparse depth data. For each identified challenge,
effective and innovative solutions are proposed and thoroughly discussed.

In the final part of the thesis, attention shifts to the integration of multi-view cues, leading to
the development of a comprehensive and general framework for 3D reconstruction capable of
synergistically leveraging multi-view and monocular cues derived from passive RGB cameras in
conjunction with sparse depth cues obtained from active sensors. This framework is designed
to seamlessly incorporate both passive and active sensor data, offering a robust solution that
enhances the accuracy and reliability of depth perception in diverse applications.

Through this research, the thesis aims to contribute significant advancements to the field, offer-
ing both theoretical insights and practical methodologies for the integration of diverse sensing
technologies in 3D reconstruction.



Chapter 2

Related Work

2.1 Monocular Depth Prediction

Except for a few attempts to solve monocular depth prediction through non-parametric ap-
proaches [65], the practical ability to solve this ill-posed problem has been achieved only with
the deep learning revolution. At first, deploying plain convolutional neural networks [34] and
then, through more complex approaches. Specifically, [38] casts the problem as a classification
task, [2] exploits a bidirectional attention mechanism, [73] introduces novel local planar guid-
ance layers to better perform the decoding phase, [112] jointly computes panoptic segmentation
to improve depth prediction performance, [115] unifies multiple depth sources to coherently
train a neural network to better generalize. The previous methods required a massive quantity
of training data to achieve proper performance in unknown environments thus self-supervised
paradigms gained much attention. For instance, [46] relies on a supervisory signal extracted
from a monocular video stream.

2.2 Depth Completion

Depth completion is a crucial task in computer vision that aims to densify a sparse depth map,
typically obtained from an active depth sensor, by filling in missing depth values. This process
is essential because multi-modal samples captured by an RGB camera coupled with a LiDAR or
ToF sensor often result in a sparse depth map with valid measurements at only a limited number
of pixels in the associated RGB image. The challenge of filling these missing depth values to
generate a complete and accurate dense depth map is referred to as depth completion.

Approaches to depth completion can be broadly categorized into unguided and RGB-guided
techniques. Unguided methods, which operate solely on the sparse depth map without any
additional information from an RGB image, generally underperform compared to RGB-guided
methods. This performance gap arises because unguided methods lack critical information,
such as discontinuities and monocular cues, which can significantly enhance the accuracy of
depth estimation [146, 36, 88].
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RGB-guided methods, which have become state-of-the-art, utilize an aligned RGB image to
guide the depth completion process. These methods can be further classified based on the fusion
strategy employed to combine RGB and depth information. Early-fusion techniques directly
aggregate the image and sparse depth map in the initial convolutional layers [32, 60, 128], while
late-fusion techniques delay this integration until after an initial encoding of each modality
[76, 163, 37]. Alternatively, some methods manipulate explicit 3D representations, such as
surface normals or 3D point clouds, to directly infer depth [184], while residual models learn to
predict the residual difference between a coarse initial depth map and the final dense map [47].

Among the various techniques, Spatial Propagation Networks (SPN) based models have emerged
as the most effective. These models learn an affinity matrix that is iteratively applied to propa-
gate and refine depth values across the sparse map. The pioneering works in this area [18, 19]
introduced the use of 3 × 3 local affinity matrices, learned through a UNet architecture, to
perform depth refinement. Subsequent advancements, such as the introduction of deformable
sampling in the propagation process [99] and attention mechanisms [82], have further improved
the performance of these models. Most recently, novel approaches like the Geometric SPN
module [162] and unsupervised frameworks for self-supervised depth completion [164] have
continued to push the boundaries of what can be achieved with SPN-based methods.

In the broader context of deep learning-based approaches to depth completion, the standard
practice involves concatenating the RGB image and sparse depth map, then passing this com-
bined input through a 2D convolutional neural network to predict the dense depth map [92, 136,
57].

Overall, the evolution of depth completion methods highlights the growing sophistication and
effectiveness of techniques designed to integrate RGB and depth information, with SPN-based
models currently leading the field in terms of performance and versatility.

2.3 Stereo Depth Prediction

Stereo perception is a fundamental task in computer vision, focused on predicting depth from a
pair of calibrated, rectified images. Traditionally, this task was approached using hand-crafted
algorithms, which have been extensively explored and categorized in the literature. These con-
ventional stereo algorithms relied heavily on priors and handcrafted features to infer dense
disparity maps from stereo pairs, with various strategies ranging from local [140] and global
reasoning [135] to semi-global techniques [54]. These approaches have been deeply studied
and thoroughly surveyed in seminal works such as [121], and they formed the backbone of
stereo matching for many years [175, 148, 170, 169, 80, 137, 71, 55, 9].

The advent of deep learning brought a significant paradigm shift in stereo perception, starting
with the pioneering work of Zbontar and LeCun [176], which introduced the idea of replac-
ing hand-crafted features in stereo pipelines with learned features. This initial integration of
learning-based techniques led to a marked improvement in performance, eventually paving the
way for more sophisticated end-to-end stereo networks. These deep learning approaches have
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since become the dominant paradigm, offering substantial performance improvements over tra-
ditional methods [111].

Deep stereo networks are typically divided into two main categories: 2D and 3D architectures.
The former relies on an encoder-decoder design, inspired by the U-Net architecture [117], to
process stereo pairs and estimate disparity maps [95, 98, 81, 119, 132, 167, 174, 138]. On the
other hand, 3D architectures create a cost volume from the features extracted from the image
pair and then estimate disparity using 3D convolutions [67, 13, 68, 178, 19, 21, 33, 165, 155, 51,
129]. While 3D approaches tend to offer more accurate results, they also demand significantly
higher memory and computational resources.

More recent advancements in deep stereo perception have introduced innovative techniques,
such as iterative refinement, inspired by the RAFT model initially developed for optical flow
[139], and Vision Transformers, which capture broader contextual information from images
[78, 50, 84, 77, 183, 177, 160, 154]. Despite their success, these learning-based methods face
challenges, particularly in their need for massive amounts of annotated data for training and
their limited generalization capabilities when applied to out-of-domain distributions [179, 11,
3, 180, 85, 25, 157, 145].

To address these limitations, self-supervised techniques have been developed, enabling the
training of deep stereo models without the need for ground-truth annotations. These methods
typically leverage photometric losses on stereo pairs or video sequences or incorporate tradi-
tional algorithms and confidence measures [186, 143, 142, 72, 156, 22, 106, 141, 4]. Further-
more, some approaches have been designed to perform continuous self-supervised adaptation,
allowing models to cope with domain-shift issues by continuously adjusting to the input data
[143, 109, 110].

Overall, the evolution of stereo perception has been marked by a transition from traditional,
hand-crafted methods to sophisticated, learning-based approaches. These advancements have
not only improved the accuracy and efficiency of disparity estimation but have also introduced
new challenges, particularly in terms of data requirements and generalization. Ongoing research
continues to explore self-supervised and adaptive techniques to overcome these challenges and
further enhance the capabilities of stereo-perception systems.

2.4 Multi-View Stereo Depth Prediction

Multi-view depth sensing, essential for 3D reconstruction, extends the principles of stereo
matching to an arbitrary number of images captured from known viewpoints. This task aims to
recover the 3D structure of scenes, whether for objects or environments like indoor spaces, by
leveraging overlapping 2D projections of the 3D world. Traditional methods approached this
problem through triangulation and manually engineered features, producing dense reconstruc-
tions through voxel-based methods, surface evolution, patch matching, or depth map estimation
[131, 147, 126, 75, 39, 12, 41, 123]. Among these, the depth map-based approach has proven the
most practical and efficient, computing multiple per-view depth maps and later projecting them
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into 3D space to generate a point cloud. This method offers advantages in memory footprint
and processing time and has been widely adopted in modern deep learning-based multi-view
stereo (MVS) architectures.

With the rise of deep learning, MVS has seen significant advancements, primarily through cost-
volume-based methods. These methods build a 3D cost volume by integrating pixel-matching
scores from multiple views, guided by depth hypotheses that span the scene’s depth range.
Regularization is then performed using 3D convolutional layers to produce a depth map aligned
with the RGB view [171]. The first major breakthrough in this direction was MVSNet [171],
which warps multi-view images to construct a 3D cost volume relative to the reference cam-
era. Despite its success, MVSNet’s reliance on 3D convolutions resulted in high memory and
time consumption. Subsequent methods sought to alleviate these constraints through innovative
strategies. For example, R-MVSNet [172], D2HC-RMVSNet [161], and AA-RMVSNet [158]
replaced 3D convolutions with 2D GRU units to reduce computational overhead, while other
approaches like CAS-MVSNet [48] and UCSNet [17] introduced multi-stage architectures ca-
pable of coarse-to-fine inference or used pyramidal cost volumes for more efficient processing.

In addition to these methods, volumetric-based approaches offer another pathway for multi-
view depth perception, particularly in scenarios requiring global scene structure reconstruction.
These methods back-project rays of deep features into a global voxel grid, using 3D recur-
rent layers to refine and eventually extract the scene’s mesh structure [134, 10, 133, 116, 23].
While effective, these techniques often require processing the entire scene simultaneously, mak-
ing real-time or online reconstruction challenging. To address these issues, some methods in-
corporate complex sparsification [134] or attention mechanisms [10] to approximate real-time
updates, albeit with increased complexity.

Another significant advancement in multi-view depth sensing is the introduction of neural ren-
dering techniques. These methods learn an implicit representation of the 3D structure and
appearance of a scene as a continuous 5D radiance field. Initially popularized for novel view
synthesis and geometric reconstruction, neural rendering has also been integrated into MVS
pipelines. For instance, MVSNeRF [15] combines cost volumes with a sparser set of images,
while GeoNeRF employs cascade cost volumes [64], and Depth-Supervised NeRF [31] inte-
grates sparse depth supervision into the 3D reconstruction process. However, these approaches
are not suitable for real-time applications, as they often require test-time optimization and can-
not match the online capabilities of voxel grid-based methods.

In summary, multi-view depth sensing has evolved from traditional triangulation methods to
sophisticated deep learning frameworks that leverage cost volumes, volumetric representations,
and neural rendering. These advancements have significantly improved the accuracy and effi-
ciency of 3D reconstruction, although challenges remain in balancing computational demands
with real-time performance.



Chapter 3

Sparse Depth Confidence Analysis

3.1 Introduction

As highlighted in Chapter 2 the 3D structure of a sensed environment can be inferred through
passive and active sensing technologies. The former has been deployed for decades using stereo
[121, 111], structure-from-motion [122] or multi-view-stereo [127]. Each of these methods has
its flaws and constraints. For instance, stereo depth perception requires two calibrated cameras
and struggles where the scene lacks texture. On the other hand, active sensing relies on spe-
cialized sensors, and in the case of LiDARs (Light Detection And Ranging), flooding the scene
with a laser beam and computing the distance of each point by measuring the travelling time of
the ray. Despite being accurate, LiDARs struggle, for instance, when sensing not Lambertian
surfaces due to multi-path interference or subsurface scattering. Moreover, the resulting point
cloud is sparse and not coupled with any visual information. Thus, it is common to jointly
use it with a standard camera and project the LiDAR point cloud over the camera image plane,
resulting in a sparse depth map. However, this procedure raises a fundamental issue due to the
different points of view of the two devices and the intrinsic sparsity of the LiDAR’s output.
Specifically, it leads to wrong depth values in the final RGB-D image, as shown in Figure 3.1.
Therefore in this chapter, the LiDAR depth map filtering problem is explicitly tackled and a
technique to solve such a problem without input information other than the RGB-D sample is

RGB Lidar Point Cloud Projected LiDAR Clean Projected LiDAR

Figure 3.1. LiDAR Projection Over a RGB Camera. The sparse point cloud of a LiDAR
sensor can be projected over the image plane of an RGB camera, however, this process usually
leads to errors due to occlusion and sparsity that must be removed.

9
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proposed.

To date, LiDAR sensors are massively used to source ground-truth data in primary scientific
datasets, such as KITTI [43], DrivingStereo [166], and many others [14, 151, 42], powering
state-of-the-art deep learning techniques in computer vision. However, when projecting the
depth map over the camera image plane, the issue mentioned above is usually tackled by en-
forcing consistency between the depth map and the values obtained through a stereo algorithm
[55, 146] or deep stereo network [166]. Nonetheless, these approaches have some flaws as
well: i) they require stereo cameras during acquisition with the LiDAR and ii) they do not filter
out only the LiDAR errors, but also the stereo algorithm errors, thus affecting the cleaned data
with the intrinsic limitations of the stereo setup (e.g. filtering out depth measures in textureless
areas). Despite these limitations, such approaches are viable when pre-processing a dataset be-
forehand is feasible. However, they might not be applicable in real applications where a stereo
setup is unavailable or when the depth labels for training are needed at runtime, for instance, to
adapt stereo networks online [109].

To address all of these limitations, in this chapter a fast deep neural network framework is
proposed, trained in an unsupervised manner, capable of predicting accurately the uncertainty
of the projected LiDAR sparse depth map using a simple RGB-D setup. Such uncertainty,
or complementary confidence, can be then deployed to filter out the errors, for instance, by
enforcing a percentile to be removed or by using an absolute threshold. To this aim a peculiar
supervision scheme enabling unsupervised training – thus not requiring any expensive ground-
truth depth annotation – is deployed.

Moreover, the results provided in this chapter are upheld by experimenting over two splits of
KITTI [43] i) assessing the effectiveness of this method versus existing alternatives [185, 35],
constantly outperforming even supervised techniques [35] and ii) illustrating how filtering Li-
DAR depth maps with this approach yields consistent improvements in applications such as
depth completion [92, 91], guided stereo [108] and sensor-guided optical flow [103] frame-
works.

3.2 Proposed approach

In this section the reasons giving rise to outliers in LiDAR depth maps are deeply analyzed, and
then the framework specifically designed to filter them out is described.

3.2.1 Outliers in LiDAR depth maps

There exist two leading causes of errors in LiDAR depth maps: i) erroneous measurements
consequence of the LiDAR technology, for instance, originated by reflective or dark surfaces
– over which the behavior of the emitted beams become unpredictable – or by other techno-
logical limitations (for instance, the mechanical rotation performed by the Velodyne HDL-64E
used in KITTI [44]) and ii) incorrect projection of depth values near object boundaries, due to
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(b)

(a)

Figure 3.2. Outliers formation process due to occlusions. When a LiDAR and an RGB
camera acquire from different viewpoints, projecting the point cloud into a depth map (a) on
the image (b) introduces outliers (blue oval), e.g. points visible by the LiDAR occluded to the
camera (red), yet projected near foreground points visible to both (green).

occlusions originated by the different viewpoints of the LiDAR sensor and the RGB camera.

Figure 3.2 provides an intuitive overview of the second issue: concerning an urban scene ac-
quired by a LiDAR and a camera, with a cyclist in the foreground and a wall far in the back-
ground (example available in the KITTI dataset). The different position of the two sensors
causes some background regions to be visible to one of the two while occluded to the other.
For instance, the red point on the wall is perceived by the LiDAR, but the cyclist occludes it
in the image acquired by the camera. On the other hand, regions in the foreground are visible
to both sensors, as the green point on the cyclist. When projecting LiDAR points into a depth
map, specifically by mapping them over the camera image plane, depth values from occluded
points in the background are projected into 2D pixel coordinates of foreground regions. The
sparse nature of LiDAR points makes them visible in the resulting depth map shown in Figure
3.2 (a), labeling the RGB image acquired by the camera (b) with wrong depth values in regions
occluding the background points sensed by the LiDAR.

This bleeding effect, agnostic to the sensor accuracy, occurs in all LiDAR-camera setups, in-
cluding the depth maps made available by the KITTI completion dataset [146], thus affecting
the methods competing over the completion benchmark itself. Therefore, a carefully unsuper-
vised deep learning framework is designed to deal with this issue, only using the RGB image
coupled with the LiDAR depth.

3.2.2 Architecture

Figure 3.3 depicts the architecture developed to estimate LiDAR confidence; it is composed of
a multi-scale encoder and a prediction MLP (Multi Layer Perceptron) head. The encoder is fed
with the concatenation of the RGB image and the sparse LiDAR depth map.

Features extraction. The encoder of the network consists of three 3 × 3 conv2D layers with
32, 64 and 64 output channels, followed by five encoding blocks made by a 2 × 2 MaxPool
operator with stride 2 and two 3×3 conv2D layers having the same number of output channels,
respectively 128, 256, 512, 512 and 512 for the five blocks. The encoder extracts features at
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Features concat

Sampling (NN)

Figure 3.3. Proposed architecture. A convolutional encoder (orange) extracts features at dif-
ferent resolutions. We query features for each pixel with a valid LiDAR value and concatenate
them (+) in a vector, fed to an MLP (blue) to estimate confidence.

full resolution from the first three conv2D layers, and at five more resolutions from the five
aforementioned blocks, respectively at 1

2
, 1
4
, 1
8
, 1
16

and 1
32

. Extracting features at multiple scales
allows for increasing the receptive field and considering complex features from large areas in the
image. This strategy, for instance, allows evaluating the shape of a large complex object such
as a car to tell which depth measurements are outliers. Furthermore, the multi-scale extraction
plays a crucial role since an MLP head – that does not consider the local information around
each feature vector – is applied. Leaky ReLUs follow each convolutional/fully connected layer.

Confidence estimation. Once multi-scale features have been extracted, a sampling process
occurs at each scale (using nearest-neighbor interpolation to sample at smaller scales) to com-
pose a feature vector of size 64 + 128 + 256 + 512 + 512 + 512 for each depth measurement
contained in the LiDAR sparse depth map. The MLP head infers confidence by processing
high-level information regarding the image context and the original sparse depth distribution.
Such an estimation comes in the form of variance, similar to predictive uncertainty strategies
[66] (the lower, the more confident). It is worth noting that a plain convolutional decoder could
be used in place of an MLP. However, this specific task does not require generating a dense
output. Thus a simple MLP can estimate the confidence only for the meaningful pixels in the
input depth map.

3.2.3 Unsupervised learning procedure

Proxy labels generation. To train the model can be observed that nearby pixels should share
similar depth values [107] except for points near discontinuities. Therefore, we take into ac-
count for each LiDAR depth point d the other valid depth points inside a patch PN(d) of size
N × N and compute a proxy label representing a plausibly correct depth for each original
LiDAR depth value available:

d∗d = f({d′ : d′ ∈ PN(d), d
′ > 0}) (3.1)

To speed up the training procedure and obtain a faster convergence, a fixed f function is used.
Precisely, the minimum depth among the valid depths contained in the patch is computed. An-
other approach might be to use the average of the valid depths in the patch. However, in the
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presence of occlusions, this strategy would cause both background and foreground depths to be
detected as outliers since both are far from the average depth occurring between the two. In
contrast, using the minimum depth value correctly selects the foreground points as reliable in
the presence of occlusions. As a drawback, it may lead to indiscriminately detecting as outliers
most of the pixels in the background, even if not occluded. However, in practice, it will be
shown that the network learns to ameliorate this issue and that the patch size affects the perfor-
mance to a lesser extent. To support the effectiveness of the proposal, in Sec. 3.3 the behaviour
using the minimum, the average, and the KITTI ground-truth depth itself as proxy labels are
compared.

Loss function. The LiDAR depth confidence d is modeled assuming a Gaussian distribution
centred in the proxy label d∗ with variance σ2, the latter encoding the depth uncertainty. Thus,
during training, the network learns to regress σ by minimizing the negative log-likelihood of
the distribution.

LG = − ln

(
1

σ
√
2π

e−
(d−d∗)2

2σ2

)
(3.2)

We can rewrite (3.2) as follows:

LG ≈ ln(σ) +
(d− d∗)2

2σ2
(3.3)

However, (3.3) becomes unstable when σ ≪ 1 since it leads to enormous loss values hampering
the learning procedure. Therefore, the network output is constrained to σ ≥ 1, obtaining the
following additional advantages. The regularization term ln(σ) is 0 when σ reaches its mini-
mum value (σ = 1). Besides, small σ values no longer magnify (d− d∗)2, an unwelcome event
since the network aims to minimise this term as much as possible.

Nonetheless, by taking into account the derivative of (3.3)

d

dσ
LG =

1

σ
− (d− d∗)2

σ3
(3.4)

and solving for the minimum, can be obtained that σmin = |d − d∗|. Hence, to constraint the
minimum of the loss function in the chosen domain (i.e. σ ≥ 1), there is also the need to enforce
(d− d∗)2 ≥ 1 in (3.3). Consequently, the final loss becomes:

LG∗ = ln(σ) +
(|d− d∗|+ 1)2

2σ2
, σ ≥ 1 (3.5)

In the next section the performance of (3.3), with σ ≥ 1, and (3.5) is compared to measure the
impact of this strategy.
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Window Size CV split [146] 142 split [96] Avg.
5×5 0.1517 0.2291 0.1904
7×7 0.1318 0.1975 0.1647
9×9 0.1292 0.1985 0.1639
11×11 0.1316 0.1999 0.1658
13×13 0.1372 0.2055 0.1714

Sampled Feat. CV split [146] 142 split [96]
1
32

0.2436 0.3220
1
32

+ 1
16

0.1941 0.2597
1
32

+...+1
8

0.1680 0.2302
1
32

+...+1
4

0.1486 0.2109
1
32

+...+1
2

0.1362 0.2010
All 0.1292 0.1985

(a) (b)
Proxy Head Loss CV Split [146] 142 Split [96] Avg.
d∗avg Decoder LL 0.5286 0.8796 0.7041
d∗avg Decoder LL∗ 0.2023 0.3730 0.2877
d∗avg Decoder LG 0.3692 0.5064 0.4378
d∗avg Decoder LG∗ 0.1805 0.2403 0.2104

‡ d∗avg MLP LL 0.5890 0.9624 0.7757
d∗avg MLP LL∗ 0.1565 0.2649 0.2107

‡ d∗avg MLP LG 0.2430 0.2811 0.2621
d∗avg MLP LG∗ 0.1546 0.2197 0.1872

Proxy Head Loss CV Split [146] 142 Split [96] Avg.
‡ d∗min Decoder LL 0.5569 0.7641 0.6605

d∗min Decoder LL∗ 0.1558 0.3693 0.2626
‡ d∗min Decoder LG 0.8715 1.2760 1.0738

d∗min Decoder LG∗ 0.1382 0.2548 0.1965
‡ d∗min MLP LL 0.6457 1.1370 0.8914

d∗min MLP LL∗ 0.1267 0.2446 0.1857
d∗min MLP LG 0.4801 0.6744 0.5773
d∗min MLP LG∗ 0.1292 0.1985 0.1639

(c) (d)

Table 3.1. Experimental Results – ablation study. In these ablation studies different parame-
ters affecting the behaviour of the framework are investigated. Respectively from left to right,
the impact of the window size used to extract proxy labels d∗, multi-resolution sampling and the
three main design strategies (proxy labels, decoding head and loss function). The AUC values
on the KITTI CV [146] and 142 [96] splits are reported. In each sub-table, the best , second -
best, and third -best are highlighted. ‡ means 10−6 learning rate to avoid divergence.

3.3 Experimental Results

In this section, the effectiveness of the proposed framework in comparison with state-of-the-art
is assessed.

3.3.1 Evaluation dataset and training protocol

The framework is evaluated on the KITTI dataset [44], a standard benchmark in the field pro-
viding both images and raw LiDAR depth maps obtained from 151 video sequences, as well as
accurate ground-truth labels. Such annotation, based on semi-automatic procedures, is highly
time-consuming and requires stereo images. For instance, the KITTI completion dataset [146]
provides ground-truth maps obtained by accumulating 11 consecutive LiDAR pointclouds.
Then, outliers (due to noise or moving objects) are removed by looking at inconsistency with
respect to the output of the Semi-Global Matching (SGM) stereo algorithm [55]. This labeling
strategy allows generating massive data (about 44.5K samples, 93K if considering stereo pairs)
with the side-effect of losing several labels where LiDAR and SGM are not consistent. An even
more accurate and laborious strategy consists of manually refining the labeling process, as done
for the KITTI 2015 stereo dataset [96]. In this case, 3D CAD models have been used to obtain
an accurate annotation for cars at the cost of much more effort (indeed, only 200 annotated
samples are available).

In the following experiments, two different splits are evaluated:

• CV split: composed of 1K images from the KITTI Completion Validation set [146]
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Method CV split [146] 142 split [96]
Surface [185] 0.7014 1.4446
|d− d∗avg| 0.2161 0.2641
|d− d∗min| 0.2053 0.2665
Ours 0.1292 0.1985
Optimal 0.0271 0.0393

(a) unsupervised

Method CV split [146] 142 split [96]
NCNN-Conf-L1 [35] 0.1530 0.3093
NCNN-Conf-L2 [35] 0.4624 0.8329
pNCNN-Exp [35] 0.8131 1.5430
Ours † 0.1172 0.2094
Optimal 0.0271 0.0393

(b) supervised

Table 3.2. Experimental results – outliers removal. AUC values on the KITTI CV [146] and
142 [96], comparing with unsupervised (a) and supervised (b) methods. † means d∗ = ground-
truth depth. In each sub-table, the best , second -best, and third -best are highlighted.

• 142 split: a subset of 142 images from KITTI 2015 overlapping with KITTI completion,
thus providing both raw LiDAR depth maps and manually annotated ground-truth

Models are trained using the 113 video sequences that do not overlap with any of the two
splits. Moreover, since the framework quickly converges, just a few samples are required to
achieve state-of-the-art results; thus, a subset of about 6K (one every five frames) samples is
used. Nonetheless, for a fair comparison, the supervised competitor [35] is re-trained over the
whole available training set, yet avoiding overlapping with the 142 split (over which the weights
released by the authors have been trained on).

The framework is trained for 3 epochs only, using the ADAM optimizer with a learning rate of
10−5, with batches of 2 samples made of 320× 1216 crops on a single NVIDIA RTX 3090. To
train the models by Eldesokey et al. [35] the authors’ code following the recommended settings
is used.

3.3.2 Outliers detection

Evaluation metrics. Let us start by evaluating the performance of the method and existing
approaches [35, 185] at detecting outliers in LiDAR depth maps. Purposely, the Area Under the
sparsification Curve (AUC) is computed, a standard metric for this task [59, 106, 104]. Namely,
for each depth map in the dataset, pixels with both LiDAR and ground-truth depth available are
sorted in increasing order of confidence score and gradually removed (2% each time). The Root
Mean Squared Error (RMSE) over the remaining pixels is computed each time and a curve is
drawn. The area under the curve quantitatively assesses the effectiveness at removing outliers
(the lower, the better). Optimal AUC is obtained by removing pixels in decreasing order of
depth error.

Ablation study. In Table 3.1 (a), the effect of the window size used to compute proxy labels
d∗ and multi-resolution features sampling on the final model is measured. For these experi-
ments, Eq. 3.5 is used as a loss function. Table 3.1 (a) shows that a 9×9 patch allows to train
the framework at its best, while models trained on proxy labels computed on smaller or larger
windows gradually achieve worse results. Intuitively, tiny windows lead the network toward
over-fitting on high confidence values (i.e., more LiDAR values are likely to be close to d∗).
While using larger windows leads to the opposite behavior (i.e., most LiDAR values will have
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(a) RGB Image (b) LiDAR Depth (c) Estimated Confidence

Figure 3.4. Qualitative results (142 split). RGB image (a), raw LiDAR depth (b) and estimated
confidence maps (c).

Filtering RMSE % filtered
Method (20.85% filt.) (∼0.68 RMSE)
SGM [55] 0.6886 28.85
Ours 0.2085 3.90

Filtering RMSE % filtered
Method (20.08% filt.) (∼0.92 RMSE)
Reversing [4] 0.9171 20.08
Ours 0.2518 2.39

Filtering RMSE % filtered
Method (1.47% filt.) (∼1.42 RMSE)
Surface [185] 1.4189 1.47
Ours 1.1841 0.97

Filtering RMSE % filtered
Method (12.99% filt.) (∼0.72 RMSE)
LiDARStereoNet [20] 0.7176 12.99
Ours 0.3261 3.75

Table 3.3. Experimental results – semi-automatic annotation. Annotation performance of
the proposed method on the 142 split, either by fixing the % of filtered points or the final RMSE
achieved by the competitors.

a high difference compared to d∗ and drive, for instance, the network to predict low confidence
in the presence of any depth discontinuity). Table 3.1 (b) reports that, not surprisingly, the best
results are obtained by sampling features from any resolutions, from full to 1

32
. Then, the impact

of the different design choices used to implement the model are measured in Tables 3.1 (c-d).
Specifically: i) different proxy label generation functions (d∗min and d∗avg for respectively the
minimum and the average among the valid depths in the patch), ii) the prediction head (MLP
or a five layers decoder with skip connections, where each layer has two 3 × 3 convolutional
blocks followed by 2× 2 nearest-neighbor upsampling) and iii) the distribution function under-
lying the loss term between Gaussian LG, Laplacian LL [66] and the modified version of both
LG∗ and LL∗ as described in Sec. 3.2.3. Table 3.1 (c-d) collects results by several variants of the
framework on both CV and 142 splits, using a 9×9 window and sampling features at all reso-
lutions following the outcomes from Table 3.1 (a-b). The scores are generally lower on the CV
split because of the many missing labels from ground-truth maps obtained semi-automatically,
resulting in several outliers being missing in the AUC evaluation. Can be also noticed that LL∗

and LG∗ always outperform their original counterparts, assessing the quality of the proposed
formulation. Moreover, the synergy between the minimum proxy label strategy and the MLP
yields the best results overall. Finally, even if both LL∗ and LG∗ are competitive, LG∗ has been
chosen since it leads to the best overall results.

Comparison with state-of-the-art. Table 3.2 reports a comparison with existing approaches,
namely Surface [185] and NCNN variants [35] on both splits, grouping unsupervised and non-
learned methods on the left (a) and supervised ones on the right (b). Since the proposed
framework can be trained on ground-truth labels as well, this additional experiment is reported,
marked with †, to compare it with supervised methods directly. While this slightly improves the
performance on the CV split, which is labeled with the same semi-automatic procedure of the
training set, it leads to worse results on the accurate ground-truth maps of the 142 split. This
outcome is not surprising since several outliers do not have a corresponding ground-truth value
on KITTI CV and are never observed during supervised training over it. In contrast, as reported
in the table, the unsupervised strategy is intrinsically unaffected by this bias.
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Overall, the framework turns out the best approach, both when trained with and without ground-
truth supervision. Indeed, even when trained in an unsupervised manner, it already outperforms
supervised methods [35]. Moreover, can be noticed that the absolute difference between LiDAR
values and proxy labels is already a good cue to remove outliers, easily outperforming Surface
[185] and often being better than supervised approaches [35]. The proposed framework learns to
leverage such proxy labels and steadily exceeds their limitations, leading to even better results.
Focusing on the former Table 3.2 (a), can be noticed how [185] performs poorly at sparsification.
Indeed, Surface performs a binary classification of inliers and outliers, removing only a small
set of pixels (respectively 1.60% and 1.47% of the pixels with available ground-truth on CV
split and 142 split), yet leaving many outliers on stage. Nonetheless, since a binary method is
penalized by AUC evaluation, a more fair comparison is provided in Sec. 3.3.3.

Concerning supervised methods in Table 3.2 (b), can be interestingly noticed that among NCNN
variants, the one performing better at modeling uncertainty after completion according to [35],
i.e. pNCNN-Exp, is the worst at detecting outliers in the input. On the contrary, NCNN-Conf-
L1 is the best variant on raw LiDAR – although always outperformed by the proposed approach,
either supervised or unsupervised.

The superior accuracy achieved comes at the cost of slightly higher complexity. the network
counts 16M weights versus the 300K of NCNN variants [35], leading to higher runtime on both
3090 and Jetson TX2 GPUs – respectively 0.02 and 1.02 seconds by the model versus 0.01 and
0.31 required by NCNN variants [35]. However, the proposed model achieves better results
and does not require any ground-truth depth label for training. For completeness, the runtime
required by Surface [185] has been analyzed. Although implemented on CPU, thus not directly
comparable with the other methods, [185] takes, respectively, 0.43 and 2.63 seconds on the
same desktop PC equipped with a 3090 GPU – and an i9-10900X – and the Jetson TX2 CPU.

Figure 3.4 shows qualitative examples of confidence maps estimated by the unsupervised frame-
work.

3.3.3 Applications

Finally, the unsupervised model’s impact on some relevant applications making use of LiDAR
data is evaluated.

Semi-automatic annotation. The first direct application consists of filtering LiDAR depth
maps to obtain accurate, per-pixel depth annotations. Semi-automatic processes [146] usually
rely on an external stereo setup and check for consistency between LiDAR values and disparity
maps. The proposed model is compared to this approach, either using a hand-crafted algorithm
[55] or state-of-the-art self-supervised stereo networks [4], Surface [185] and a LiDAR-stereo
fusion framework [152]. The comparison is performed on the 142 split since it provides manu-
ally annotated and refined ground truth, in contrast to the CV split obtained semi-automatically.
The experiment is limited to single depth map filtering, not accumulating point clouds over
time to avoid issues with moving objects. When filtering using stereo methods, the LiDAR
depth is converted into disparity and pixels having a difference with the stereo disparity > 1 are
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Model LiDAR filtering Removed points (%) RMSE (mm) MAE (mm) iRMSE (1/km) iMAE (1/km)
Self-Sparse-to-Dense [91] None None 1102.062 303.007 4.316 1.670
Self-Sparse-to-Dense [91] Surface [185] 3.74 974.443 295.587 4.313 1.665
Self-Sparse-to-Dense [91] Ours 1.20 959.100 288.457 4.187 1.640

(a)
Sparse-to-Dense [92] None None 676.061 274.109 3.097 1.705
Sparse-to-Dense [92] Surface [185] 3.74 703.597 276.701 3.087 1.689
Sparse-to-Dense [92] Ours 0.70 647.473 270.554 3.060 1.695

(b)
PENet [57] None None 593.196 178.869 2.242 0.940
PENet [57] Surface [185] 3.74 616.753 182.139 2.285 0.943
PENet [57] Ours 0.70 569.449 177.057 2.223 0.936

(c)

Table 3.4. Experimental results – Depth Completion. Results on CV split by different com-
pletion models processing LiDAR filtered according to different strategies. Range: 50m.

removed.

In Table 3.3, a sub-table for each competitor is reported, measuring the percentage of pixels
with both available LiDAR and ground-truth values that are discarded, as well as the filtered
RMSE. The RMSE without filtering is 2.5698 meters. Since the four competitors rely on a
binary criterion to remove outliers, this experiment is committed to i) remove the same amount
of pixels they do and prove that the proposed framework better reduces the error, ii) reduce the
RMSE to the same value as the competitors and prove that the framework can achieve such
an error by removing fewer points. Thus, in each comparison, respectively i) is removed the
same percentage of the competitor and measured the final RMSE (first column), ii) are filtered
pixels as long as the same RMSE of the competitor is obtained and is measured the % of pixels
removed to obtain it (second column). The proposed method consistently achieves a much
lower error when filtering the same percentage of pixels as the competitors. Moreover, it can
reach the same final RMSE by removing a fraction of points, i.e. about 7-8 times less compared
to stereo methods [55, 4] yet not requiring two cameras as they do. Moreover, by committing to
a single fixed threshold as one would do in a real application – e.g., by constantly removing only
5% pixels – the proposed model outperforms all the competitors, with 0.5850 RMSE. Finally,
can be noticed how leveraging stereo matching generally removes a high percentage of points
(20-30%) because of the several regions where stereo methods struggle, such as occlusions or
untextured regions. In contrast, Surface [185] removes very few points but yields a significantly
higher RMSE.

Self-supervised/supervised depth completion. In this section is shown that filtering outliers
improves the performance of networks for depth completion – the most iconic task performed
starting from LiDAR depth maps – without specifically retraining either the proposed frame-
work or the depth completion network. Following [185], Table 3.4 shows results achieved by the
Sparse-to-Dense framework – using the weights released by the authors trained either without
(a) [91] or with (b) [92] supervision – when processing inputs that have been filtered through un-
supervised techniques like ours and Surface [185]. Standard depth completion metrics are used,
such as Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE), inverse RMSE
and inverse MAE on points up to 50m, to focus on the foreground objects (mostly affected by
the outliers). Concerning the self-supervised variant (a), can be noticed how filtering with Sur-
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Model LiDAR Filtering Removed Points (%) > 2 (%) > 3 (%) > 4 (%) > 5 (%) MAE (px)
PSMNet-ft-gd-tr None None 5.14 3.39 2.69 2.29 1.08
PSMNet-ft-gd-tr Surface [185] 4.37 4.75 3.01 2.34 1.95 1.01
PSMNet-ft-gd-tr Ours 25.00 4.60 2.80 2.13 1.75 0.94

Table 3.5. Experimental results – Guided Stereo. Results on 142 split, with PSMNet weights
provided by [108] and guided with LiDAR filtered according to different strategies.

Guide Source LiDAR Filtering Removed Points (%) EPE (px) Fl (%) Density (%)
Ego +RIC +MaskRCNN [52] None None 0.80 2.35 3.16
Ego +RIC +MaskRCNN [52] Surface [185] 4.37 0.74 2.35 3.06
Ego +RIC +MaskRCNN [52] Ours 7.00 0.73 2.17 2.93

Guide Source LiDAR Filtering Removed Points (%) EPE (px) Fl (%)
guided-QRAFT [103] None None 2.08 5.97
guided-QRAFT [103] Surface [185] 4.37 2.07 5.98
guided-QRAFT [103] Ours 7.00 2.05 5.82

(a) (b)

Table 3.6. Experimental results – Sensor-Guided Optical Flow. Results on 142 split. (a)
Accuracy of flow hints, obtained from LiDAR filtered according to different strategies, (b)
accuracy of guided QRAFT [103] (CTK).

face [185] improves all metrics by removing nearly 4% of the total pixels with available LiDAR
values. Concerning the proposed method, can be achieved a larger improvement by limiting
this percentage to 1.20%, hinting that more precise filtering of the outliers, yet limited to fewer
pixels, is more effective for the depth completion task. This is confirmed by experiments on the
supervised variant (b): in this case, using Surface [185] only improves inverse metrics, while the
proposed method always improves all metrics by removing 0.70% pixels only, resulting slightly
worse only in iMAE compared to Surface [185]. Finally, 3.4 (c) experiments with PENet [57],
a state-of-the-art framework for supervised completion, which confirms the previous findings.

Guided Stereo Matching. The proposed framework can also boost the performance of a sensor
fusion pipeline combining passive stereo with LiDAR sensors filtering raw data. Purposely, the
chosen framework is guided stereo [108] (since it does not explicitly take into account noise,
differently from [20]). In Table 3.5 is reported the accuracy yielded by PSMNet-ft-gd-tr – the
model provided by the authors – on the 142 split and the percentages of pixels with errors
larger than 2, 3, 4 and 5, together with MAE as in [108]. While Surface [185] can slightly
improve all metrics by removing less than 5% of the total pixels with available LiDAR value,
by filtering a more significant amount of pixels with the proposed method, up to 25%, the
proposed method can further improve and achieve the best accuracy. Interestingly, the guided
stereo framework has the opposite behavior with respect to depth completion, as it benefits more
from strict filtering.

Sensor-Guided Optical Flow. Finally, the framework is exploited to improve the performance
of the Sensor-Guided Optical Flow pipeline [103]. It combines flow hints sourced using a
LiDAR sensor with a deep optical flow network by filtering LiDAR points before hints com-
putation. Table 3.6 collects both the accuracy of flow hints (a) and the final results achieved
by QRAFT weights trained on Chairs, Things and KITTI (CTK), as provided by the authors
of [103]. On top, can be noticed how Surface [185] reduces the flow end-point error (EPE)
of the computed hints, yet it cannot reduce the number of outliers with an error larger than 3
pixels or 5% (Fl). In contrast, by removing 7% least confident pixels, the proposed method
can effectively improve all metrics. At the bottom, are reported the results achieved by guided
QRAFT by using filtered hints. The impact of filtering is lower compared to other depth-related
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tasks. Indeed, in this task, LiDAR points are only one of several sources of errors, among cam-
era pose estimation, flow estimation for dynamic objects and semantic segmentation. However,
the proposed method can consistently reduce both EPE and Fl metrics, whereas Surface cannot
[185].



Chapter 4

ToF and Multi-View Integration

4.1 Introduction

This chapter studies the relationship between sparse depth data obtained through an active sen-
sor and the depth perception intrinsic in multi-view cues. This study is carried out by analyzing
the behaviour of common state-of-the-art multi-view techniques when explicit accurate sparse
depth information is injected into their innermost mechanisms.

Multi-view stereo (MVS) is a popular technique to obtain dense 3D reconstructions of real-
world objects or scenes from a set of multiple, posed images. It represents the first, pivotal step
towards a variety of higher-level applications, such as augmented/virtual reality, robotics, cul-
tural heritage and more. Moreover, it represents one of the fundamental problems in computer
vision and it has been studied for years, at first by developing classical algorithms [6, 12, 39,
41, 123], making use of hand-crafted matching functions to measure consistency among the
multiple views. However, many challenges keep MVS an open problem, such as occlusions
between the views, lack of texture, or non-Lambertian surfaces, to name a few [1, 70, 124].
The advent of deep learning in computer vision, in particular with the introduction of Con-
volutional Neural Networks (CNNs), allowed for rapid progress even in geometric tasks such
as MVS, partially overcoming some of the issues mentioned above. Indeed, deep MVS net-
works [171, 172, 158, 150, 48, 90] are spreading, thanks to their ever-increasing accuracy on
popular benchmarks [62, 124, 70]. Common to most CNNs developed for this purpose is the
presence of a 3D cost volume [171], built using plane-sweeping over the source views features
and computing their similarity with respect to the reference image features. Such a volume is
usually regularized through 3D convolutional layers – or other, more efficient alternatives, such
as 2D Long-Short Term Memory (LSTM) layers [172] – before regressing the final depth map.
However, despite the more robust feature representation extracted by 2D CNNs and the strong
regularization achieved through 3D convolutions, the high-demanding computational require-
ments still limit the full deployment of such solutions, often requiring some trade-off between
accuracy and complexity. For instance, inferring depth at a resolution lower than the one of the
input images [171] or implementing coarse-to-fine strategies [48, 168, 17]. Moreover, several
challenges mentioned above, such as dealing with untextured regions, thin objects or occlusions,

21
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RGB Predicition w/o Hints Point Cloud w/o Hints Hints Predictio w/ Hints Point cloud w/ Hints

Figure 4.1. Multi-View Guided Multi-View Stereo in action. Deep MVS networks struggle
to generalize from synthetic to real images, yielding inaccurate depth maps and poor 3D re-
constructions. Guiding the network with a set of sparse depth measurements, aggregated over
the multiple views can greatly ameliorate the results. Sparse depth hints are dilated by a 2 × 2

kernel to ease visualization.

remain open.

Most of the challenges mentioned so far are inherent to the image domain itself. Thus, their
impact could be significantly softened given the availability of additional information with dif-
ferent modalities, for instance, by having access to a sparse set of depth measurements perceived
by an active sensor. Nowadays, such sensors are at hand and readily available as standalone off-
the-shelf devices. Moreover, they are always more frequently integrated into consumer prod-
ucts like mobile phones and tablets (e.g., Apple iPhones and iPads). However, despite their
ever-increasing diffusion, they often provide only sparse depth data (i.e., at a much lower reso-
lution compared to standard cameras). The recent literature supports such intuition, highlight-
ing the evidence of approaches effectively exploiting the synergy of color images with sparse
depth data. For instance, in the case of depth completion [146], fusion with stereo algorithms
[100, 101] and networks [108, 20, 152] or, more recently, with optical flow deep architectures
[103] as well.

Driven by these facts, in this chapter, it is proposed a framework for guided multi-view stereo
depth estimation. Assuming the availability of a sparse set of depth measurements acquired
together with images, the cost volume built by any state-of-the-art MVS network [171, 48, 161,
17, 150] is modulated [108] to provide stronger guidance to the architecture towards inferring
more accurate depth maps. Moreover, by exploiting the possibility of having multiple sets of
sparse depth points acquired from the different viewpoints of the source images, an integration
mechanism is introduced to accumulate the multiple depth hints enabling modulating the cost
volume inside the deep network with a higher density of guiding points. This allows to boost
the performance of an MVS network, allowing it to infer more accurate depth maps, and conse-
quently higher quality 3D reconstructions, for instance when trained on synthetic data and tested
on real images, as shown in Fig. 4.1. To validate this claim, an exhaustive set of experiments
has been carried out by training a variety of state-of-the-art MVS architectures and their guided
counterparts on the BlendedMVG [173] and DTU [62] datasets and assessing their accuracy on
them. This proves that the proposed approach consistently boosts the accuracy achievable with
any considered deep network in terms of depth map estimation and overall 3D reconstruction
when guidance is available. The contributions carried out by this chapter can be summarized as
follows:
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• Proposal of the Guided Multi-View Stereo framework (gMVS), extending [108] to cope
with this chapter’s purposes. Then, on top of that, the Multi-View Guided Multi-View
Stereo (mvgMVS) is proposed to exploit multiple sets of depth hints acquired from dif-
ferent viewpoints of the multi-view reconstruction task.

• Introduction of coarse-to-fine guidance by applying cost volume modulation multiple
times during the forward pass, compliantly to the coarse-to-fine strategy followed by
recent MVS networks [48, 17, 150].

• Implementation of the proposed mvgMVS framework within five state-of-the-art deep
architectures [171, 48, 161, 17, 150], each one characterized by different regularization
and optimization strategies.

4.2 Proposed framework

In this section, the Multi-View Guided Multi-View Stereo (mvgMVS) framework is introduced.
First, the background relevant to the proposal is reviewed, specifically concerning deep MVS
networks’ inner mechanisms. Then, the guided stereo matching framework [108] is applied to
the MVS setting and, finally, extended to deal with multi-view depth hints and coarse-to-fine
architectures.

4.2.1 Deep Multi-View Stereo background

Most learning-based MVS pipelines follow the same pattern. Given a set of N images, one
assumed as the reference and the other N − 1 as source images, deep MVS networks process
them to predict a global dense depth map aligned with the reference one. To this aim, common
to most deep networks designed for this purpose is the definition of a cost volume, encoding
features similarity between pixels in the reference image and potential matching candidates
from the source images. The latter are retrieved along the epipolar lines in the source views,
given intrinsic and extrinsic parameters K,E for any camera collecting the N images involved.
Specifically, for a particular depth hypothesis z ∈ [zmin, zmax], features Fi extracted from a given
source view i are projected using a homography-based warping operation π.

F z
i = π(Fi, z,K0, E0, Ki, Ei) (4.1)

Then, to encode the similarity between reference features F0 and F z
i , a variance-based volume

is defined as follows

V(z) =
∑N

i=0(F z
i − µ)2

N
, µ =

∑N
i=0F z

i

N
(4.2)

with F z
i consisting of F0 for i = 0. Accordingly, for a given pixel, the lower the variance score,

the more similar the features retrieved from the source views are and, thus, the more likely
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hypothesis z is the correct depth for it.

However, implementing this solution requires high memory and results computationally com-
plex. Consequently, several state-of-the-art networks [48, 161, 17, 150] implement a coarse-to-
fine solution. Specifically, a set of variance-based cost volumes is built as

Vs(z) =

∑N
i=0(F̂d

(i,s) − µ)2

N
, µ =

∑N
i=0 F̂ z

(i,s)

N
(4.3)

being s a specific resolution or scale at which the cost volume is computed and F̂ z
(i,s) features

from image i at resolution s sampled as

F̂ z
(i,s) = π(F(i,s), zs, K(0,s), E0, K(i,s), Ei) (4.4)

with K(i,s) being the intrinsic parameters for camera i adjusted to resolution s and zs sampled
in a range [zsmin, z

s
max] that differs at any scale.

4.2.2 Guided Multi-View Stereo

By assuming a setup made of a standard camera and a low-resolution depth sensor, for instance
a LiDAR, the output of the latter is leveraged to shape the behavior of a deep network estimating
depth from a set of color images. When this set is limited to a single frame, a neural network
is usually trained to complete the sparse depth points [146] guided by the color image [136].
When multiple images are available, the mechanism often reverses, and depth measurements
are used as hints to guide the image-based estimation process. This strategy is implemented,
for instance, by the Guided Stereo framework [108] applied to binocular stereo, by applying a
Gaussian modulation to the features volume to peak it in correspondence of a depth hint z.

In analogy, this mechanism can be applied also to multi-view stereo, implementing a Guided
Multi-View Stereo pipeline (gMVS). Indeed, the variance volume introduced in Sec. 4.2.1 can
be conveniently modulated as well. In this case, since low variance encodes a high likelihood
of the corresponding depth hypothesis z to be correct, the Gaussian curve is flipped to force the
variance-based cost volume to have a minimum near depth hint z∗

V ′(z) =

[
1− v + v · k ·

(
1− e−

(z−z∗)2

2c2

)]
· V(z) (4.5)

with v being a binary mask equal to 1 for pixels with a valid hint (0 otherwise) and k, c being
the amplitude and width of the Gaussian itself. The gMVS formulation outlined so far extends
the Guided Stereo framework [108] to MVS. In the remainder, two significant additional con-
tributions are introduced explicitly to deal with the MVS setup and the models designed for
it.
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(a) (c)

 (b)

   (d)

(a) Hints Aggregation (b) Depth Hints Filtering

Figure 4.2. Hints Aggregation and Filtering. Depth hints from many views can be aggregated
on the reference image viewpoint as shown in (a). On the right, is shown the proposed depth
filtering approach. From top to bottom, sparse hints over the region inside the red rectangle in
the RGB view, respectively from the single viewpoint, aggregated over multiple viewpoints and
filtered. Regions in yellow rectangles highlight the effect of filtering. Depth points are densified
to ease visualization.

4.2.3 Multi-View Guided Multi-View Stereo

MVS relies on the availability of multiple images acquired from different viewpoints. Moreover,
in the proposed use case there is the additional assumption of the availability of sparse depth
measurements registered with the color images in the proposed setup. Therefore, a different set
of hints is available for each source image. In such a case, aggregating the multiple sets of depth
hints from each viewpoint can provide stronger guidance to the network and further improve
the results of the baseline gMVS framework. To this aim, two main steps are performed.

Depth hints aggregation. Given a pixel having homogeneous 2D coordinates qi from any
source image i ∈ [1, N ] for which a depth value d∗qi is available, the 3D coordinates p0 in the
reference image viewpoint are obtained as:

p0 = E0E
−1
i pi with pi = d∗qiK

−1
i qi (4.6)

From p0, the new depth hint d∗q0 expressed in the reference image viewpoint can be obtained,
and projected it on the image plane according to K0 at coordinates q0. This allows to aggregate
depth hints on the reference view, as shown in Fig. 4.2 (a), and thus obtain a denser depth
hints map to modulate the volume in the network with stronger guidance. This extension of
the gMVS framework is reported as Multi-View Guided Multi-View Stereo (mvgMVS) in the
below sections.

Depth hints filtering. Because of the different viewpoints, some of the depth measurements
acquired in one of the source views may belong to occluded regions in the reference view.
However, given the sparse nature of the hints, this would cause the aggregation of several wrong
values if it were limited to naively projecting them across the views without reasoning about
their visibility, as shown in Fig. 4.2 (b). As a consequence, the deep network would be guided
by wrong depth hints, harming its accuracy. To detect and remove these outliers, the filtering
strategy by Zhao et al. [185] is deployed, defining as outlier any pixels q0 for which exists at
least a pixel s in its neighborhood S(q0) such that:
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• q0 changes the relative position with respect to s, because occluded. This occurs if the
difference between q0 and s pixels coordinates and angles (in spherical coordinates) have
different sign, i.e. if either (xq0 − xs)(θq0 − θs) or (yq0 − ys)(ϕq0 − ϕs) are negative

• q0 distance from the camera is much higher compared to s, i.e. dq0 > ds + ε, with ε set
according to the specific dataset used

Although simple, this strategy allows for removing most of the outliers at a minor computational
cost, as shown in Fig. 4.2 (b). For this specific use case, the approach employed in [185] is more
suitable than the one proposed in Chapter 3 since this latter i) requires to train a further network
for filtering and ii) overfits the camera relative positions and thus it is more suited to a static
camera setup, which is not always the case with multi-view stereo.

In the ablation experiments will be shown how this step is necessary to achieve optimal guid-
ance. This final implementation is referred to as filtered mvgMVS (fmvgMVS).

4.2.4 Coarse-to-Fine Guidance

Unlike deep stereo networks, which usually build a single volume processed through stacked
3D convolutions, MVS networks are often designed to embody coarse-to-fine estimation to
reduce the computational burden, as introduced previously in Sec. 4.2.1. Any of the multiple
cost volumes built by the network represent a possible entry point for guiding the network.
Accordingly, any Vs is modulated during the forward pass

V ′
s(zs) =

[
1− vs + vs · k ·

(
1− e−

(zs−z∗s )2

2c2

)]
· Vs(zs) (4.7)

with vs and z∗s being respectively the binary mask v and the depth hints map z∗ downsampled to
resolution s, with nearest-neighbor interpolation. The following experiments will show how the
stronger guidance yielded by these multiple modulations improves the overall network accuracy.

4.3 Experimental Results

4.3.1 Datasets

Since none of the existing MVS data collection provides sparse depth points, in the following
experiments the availability of sparse hints is simulated randomly sampling from ground-truth
depth maps, similarly to [108, 103]. Consequently, have been selected datasets providing such
information only, e.g. Tank & Temples [70] can’t be used for evaluation.

BlendedMVG. This dataset [173] collects about 110K images sampled from about 500 scenes.
It has been created by applying a 3D reconstruction pipeline to recover high-quality textured
meshes from images of well-selected scenes. Then, meshes are rendered to color images and
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depth maps. Following [173] 8 sequences for validation and 7 for testing have been retained,
using the rest for training.

DTU [1]. This indoor dataset counts 124 different scenes, all sharing the very same camera
trajectory. Images are acquired with a structured light scanner mounted on a robot arm, using
one of the cameras in the scanner itself. Training, validation, and testing splits have been
selected following existing works [171, 48, 161, 17, 150]. Moreover, evaluation is carried out
using both networks trained on BlendedMVG only or also fine-tuning on the DTU training set.

4.3.2 Implementation details

The Guided Multi-View Stereo framework is implemented in PyTorch, starting from existing
solutions [150]. Sparse depth hints availability is simulated by randomly sampling 3% of pix-
els from the ground-truth depth maps. Regarding filtering, ε = 3 is used. Experiments are
conducted implementing Guided Multi-View Stereo and variants on top of five state-of-the-art
networks.

MVSNet [171]. The very first deep network for MVS: it builds a single variance volume and
processes it through 3D convolutions – similarly to 3D stereo networks [67] – and estimates
depth at a quarter of the input resolution.

D2HC-RMVSNet [161]. A recurrent architecture, replacing 3D convolutions with 2D convo-
lutional LSTM to reduce memory requirements.

CAS-MVSNet [48]. It implements a cascade cost volume formulation, inferring depth in a
coarse-to-fine manner to achieve higher efficiency.

UCSNet [17]. It builds Adaptive Thin Volumes for coarse-to-fine processing. The volumes
consist of only a few depth hypotheses selected by modeling uncertainty.

PatchMatchNet [150]. A very efficient model, implementing a differentiable variant of the
PatchMatch algorithm [6] within a deep network.

Any network is implemented by integrating the authors’ code in the framework and following
their default configuration – except for the number of depth hypotheses used by MVSNet and
D2HC-RMVSNet, set to 128 due to memory constraints. During both training and evaluation,
if the final output of the original network is lower than the input resolution, it is upsampled to
the original size through interpolation.

4.3.3 Training and testing protocol

The number of images processed by the networks is set to 5, both during training and testing.
Accordingly, depth hints are accumulated from 5 views for mvgMVS.

Training schedule. Each network is trained for 100K iterations on the BlendedMVG dataset on
576 × 768 images, with a constant learning rate of 10−3 – except D2HC-RMVSNet, for which
it was set to 10−4 to avoid instability. Any training has been carried out on a single Titan Xp
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Network Hints dens. >1 Px. >2 Px. >3 Px. >4 Px.
MVSNet [171] - 0.139 0.073 0.046 0.031
MVSNet-g 0.03 0.095 0.046 0.027 0.018
MVSNet-mvg 0.03 0.081 0.040 0.024 0.016
MVSNet-fmvg 0.03 0.076 0.037 0.023 0.015

MVSNet-g 0.15 0.068 0.032 0.020 0.013

Network Hints dens. >1 Px. >2 Px. >3 Px. >4 Px.
GuideNet-fmvg 0.03 0.290 0.124 0.080 0.058
MVSNet-fmvg 0.03 0.076 0.037 0.023 0.015

(a) Guiding Strategy (b) Depth Completion Comparison

Table 4.1. Ablation study – Guiding Strategy and Depth Completion Comparison. On the
left, is an ablation study on the guiding strategy used. From top to bottom, MVSNet [171]
without guiding, guided, guided accumulating points from 5 views without filtering and finally
filtering the accumulated depth. Below, is the guided version with sparse depth at a higher
density from the target view only (thus, without outliers due to occlusion).

Network Stages >1 Px. >2 Px. >3 Px. >4 Px.
CAS-MVSNet [48] - 0.071 0.036 0.023 0.016
CAS-MVSNet-fmvg 1 0.057 0.024 0.014 0.010
CAS-MVSNet-fmvg 2 0.084 0.042 0.027 0.019
CAS-MVSNet-fmvg 3 0.078 0.041 0.027 0.020
CAS-MVSNet-fmvg All 0.048 0.018 0.012 0.009

Network Test Hints >1 Px. >2 Px. >3 Px. >4 Px.
MVSNet [171] - 0.139 0.073 0.046 0.031

MVSNet-fmvg 0.00 0.244 0.165 0.126 0.101
MVSNet-fmvg 0.01 0.109 0.054 0.033 0.022
MVSNet-fmvg 0.02 0.087 0.043 0.026 0.017
MVSNet-fmvg 0.03 0.076 0.037 0.023 0.015

(a) Multi-Stage Guidance (b) Test Time Density Change

Table 4.2. Ablation Study – Multi-Stage Guidance and Test-Time Hints Density Change.
On the left is the ablation study analyzing the impact of sparse depth multi-stage injection.
On the right, the impact of injecting sparse depth at densities different from the one used for
training.

GPU, allowing only for a single sample per batch – except for PatchMatchNet, for which batch
2 fits in memory. Moreover, each network is also fine-tuned for 50K further iterations on the
DTU training set, processing 512× 640 images and using the hyper-parameters as detailed for
BlendedMVG.

Testing protocol. Networks are evaluated on the BlendedMVG testing sequences and on the
DTU testing split. For each dataset, the percentage of pixels in the estimated depth map having
an error larger than τ is reported – respectively in pixels and millimeters on the two datasets,
with thresholds set to 1, 2, 3, and 4. Concerning DTU, also the quality of reconstructed point
clouds is evaluated: in the former case, accuracy and completeness metrics defined as in [1] and
their average are reported – the lower the better. Fused point clouds are obtained as in [150].

4.3.4 Ablation study

Multi-View Guided MVS. Initially the improvements yielded by multi-view guidance are eval-
uated. To this aim, experiments with MVSNet are carried out training different variants on the
BlendedMVG training split and evaluating on the testing sequences. Tab. 4.1 (a) collects the
outcome of this experiment. From top to bottom, the error rates achieved by the original MVS-
Net architecture, by a variant implementing the baseline guided MVS framework described in
Sec. 4.2.2 (-g), followed by mvgMVS versions respectively without (-mvg) and with (-fmvg)
filtering.
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Network >1 Px. >2 Px. >3 Px. >4 Px.
MVSNet [171] 0.139 0.073 0.046 0.031
MVSNet-fmvg 0.076 0.037 0.023 0.015

D2HC-RMVSNet [161] 0.174 0.094 0.059 0.040
D2HC-RMVSNet-fmvg 0.081 0.041 0.025 0.017

CAS-MVSNet [48] 0.071 0.036 0.023 0.016
CAS-MVSNet-fmvg 0.048 0.018 0.012 0.009

UCSNet [17] 0.071 0.038 0.024 0.017
UCSNet-fmvg 0.040 0.018 0.011 0.008

PatchMatchNet [150] 0.075 0.039 0.025 0.018
PatchMatchNet-fmvg 0.062 0.033 0.022 0.016

Table 4.3. Evaluation on BlendedMVG [173] testing scans. Comparison between original
MVS networks[171, 48, 161, 17, 150] and their guided counterparts.

Network

MVSNet [171]
MVSNet-fmvg
D2HC-RMVSNet [161]
D2HC-RMVSNet-fmvg
CAS-MVSNet [48]
CAS-MVSNet-fmvg
UCSNet [17]
UCSNet-fmvg
PatchMatchNet [150]
PatchMatchNet-fmvg

Depth map evaluation Point cloud evaluation
>1 mm >2 mm >3 mm >4 mm Acc. (mm) Comp. (mm) Avg. (mm)
0.658 0.457 0.368 0.326 0.764 0.468 0.616
0.393 0.227 0.194 0.180 0.383 0.264 0.324
0.708 0.519 0.423 0.372 0.764 0.586 0.675
0.401 0.177 0.134 0.115 0.393 0.234 0.314
0.558 0.385 0.330 0.303 0.589 0.310 0.450
0.323 0.243 0.220 0.207 0.345 0.286 0.316
0.541 0.402 0.357 0.333 0.561 0.344 0.453
0.199 0.174 0.164 0.157 0.290 0.264 0.277
0.627 0.440 0.370 0.335 0.574 0.484 0.529
0.446 0.328 0.301 0.287 0.339 0.297 0.318

Depth map evaluation Point cloud evaluation
>1 mm >2 mm >3 mm >4 mm Acc. (mm) Comp. (mm) Avg. (mm)
0.555 0.340 0.268 0.237 0.635 0.304 0.470
0.219 0.103 0.081 0.072 0.324 0.235 0.280
0.630 0.423 0.329 0.283 0.662 0.342 0.502
0.168 0.079 0.061 0.054 0.327 0.240 0.284
0.480 0.307 0.257 0.233 0.528 0.262 0.395
0.082 0.056 0.047 0.042 0.228 0.279 0.254
0.506 0.332 0.277 0.254 0.551 0.272 0.412
0.119 0.105 0.098 0.095 0.319 0.281 0.300
0.475 0.310 0.260 0.236 0.461 0.298 0.380
0.336 0.228 0.204 0.193 0.325 0.230 0.278

(a) trained on BlendedMVG (b) fine-tuned on DTU

Table 4.4. Evaluation on DTU [1] testing scans. Comparison between MVS networks [171,
48, 161, 17, 150] and guided counterparts, trained on BlendedMVG and tested (a) without re-
train or (b) after fine-tuning on DTU training split.

Starting from the gMVS baseline, it consistently achieves reduced error rates compared to
MVSNet by exploiting the sparse depth guidance. Concerning mvgMVS, there are further im-
provements thanks to the aggregation of multiple sets of depth hints coming from the 5 different
viewpoints. Nonetheless, even if this strategy increases the hints density from 3% up to roughly
15%, the improvement might appear not significant as one might expect with a more extensive
set of hints. This fact is due to the several hints in non-visible parts of the source images that are
wrongly projected in the reference point of view, as discussed previously. Indeed, by filtering
out these outliers and consequently reducing the hints density to about 14%, the performance of
MVSNet can be improved further. At the bottom of the table, is also reported the performance
achieved by MVSNet when guided by the baseline gMVS implementation and 15% hints den-
sity. Not surprisingly, having a higher density of depth hints from the single reference viewpoint
is more effective than aggregating them over multiple viewpoints because they are not affected
by visibility and possible collisions between projected points. However, fmvgMVS achieves
performance close to what is attainable with a depth sensor providing a much denser guide.

To conclude this study, the performance of MVSNet-fmvg is also compared with a depth com-
pletion framework. Purposely, GuideNet [136] has been trained to process single, RGB images
and multi-view aggregated sparse depth points – the very same used to guide MVSNet – for
100K iterations on BlendedMVG as done for MVSNet. Tab. 4.1 (b) directly compares the
error rates achieved by both highlighting how, when multiple sets of depth hints are available,
the guided multi-view framework yields better depth maps compared to a depth completion
approach.
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RGB D2HC-RMVSNet [161] Hints D2HC-RMVSNet-fmvs

CAS-MVSNet [48] CAS-MVSNet-fmvs

Figure 4.3. Qualitative results on DTU dataset – scan9 (top) and scan114 (bottom). Depth
maps and point clouds yielded by D2HC-RMVSNet (top), CAS-MVSNet (bottom), and guided
counterparts trained on BlendedMVG.

Coarse-to-fine strategy. This section provides an ablation study over the coarse-to-fine guid-
ance mechanism introduced in Sec. 4.2.4, by training different variants of CAS-MVSNet. Tab.
4.2 reports results on the BlendedMVG testing split. From top to bottom, error rates achieved
by the original CAS-MVSNet without guidance, three models guided during one out of the total
three stages implemented by the network (i.e. modulating only one out of the three volumes
built during inference), and finally the model guided by modulating any single volume. All
guided models implement the filtered mvgMVS formulation. In general, guiding the volume
computed only during the first stage already improves the results of the original network. Guid-
ing the second or third stage alone fails at even improving the results by CAS-MVSNet when
not guided. Nonetheless, providing a consistent modulation across the three stages allows for
the best results.

4.3.5 Multi-View Guided MVS networks

The impact of the mvgMVS framework is now evaluated on the five state-of-the-art networks
selected for experimentation. Specifically, both the original networks and their counterpart
guided employing filtered mvgMVS have been trained.

Evaluation on BlendedMVG. In Tab. 4.3 are collected the results obtained evaluating all the
networks on the BlendedMVG testing split. By looking at the original networks, can notice
be noticed that models implementing coarse-to-fine processing [48, 17, 150] result, in general,
more accurate compared to MVSNet and D2HC-RMVSNet, achieving about half the error rates
with any threshold. This gap is bridged by guiding both with the filtered mvgMVS framework.

Guided counterparts of CAS-MVSNet, UCSNet and PatchMatchNet are further improved too.
In particular, CAS-MVSNet-fmvg and UCSNet-fmvg almost halve the error rates at any given
threshold, while PatchMatchNet-fmvg benefits from the guidance in minor measure. This latter
fact can be ascribed to the random initialization performed at the very first stage of PatchMatch-
Net, left unchanged when implementing its guided counterpart.

Generalization to DTU. The impact of the multi-view guided framework on the generalization
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capacity of the networks to unseen datasets is now assessed. Purposely, the five networks and
their guided counterparts are evaluated on the DTU testing split without fine-tuning on the DTU
training split. Tab. 4.4 (a) collects the outcome of this experiment, reporting error metrics on
both estimated depth maps (left), as well as on 3D point clouds (right).

By focusing on the former, differently from the experiments on BlendedMVG, can be noticed a
consistent margin between MVSNet/D2HC-RMVSNet and coarse-to-fine models [48, 17, 150]
only concerning the number of pixels with error larger than 1 or 2 mm, with mixed results at
the increase of the threshold. By looking at guided counterparts, can be appreciated how they
always produce much more accurate depth maps, dramatically reducing the error rates.

Concerning the quality of the reconstructed 3D point cloud, can be observed that coarse-to-
fine models achieve both better accuracy and completeness than MVSNet/D2HC-RMVSNet,
confirming their effectiveness. Finally, when guided by accumulated depth hints, any network
dramatically improves the quality of the fused point clouds, confirming that considerable im-
provements on single depth maps translate into better 3D reconstructions.

To summarize, this experiment suggests that mvgMVS notably improves the generalization
capacity of MVS networks concerning depth map accuracy and 3D reconstruction quality. Fig.
4.3 shows some qualitative examples.

Fine-tuning and evaluation on DTU. To confirm that the effect of the proposed framework
on 3D reconstructions is not limited to generalization scenarios, all the previous networks have
been also fine-tuned on the DTU training split and evaluated. Tab. 4.4 (b) collects results
concerning both estimated depth maps (left) and point clouds (right).

Concerning the original networks, a behavior similar to the one observed in Tab. 4.4 (a) appears,
with a margin between coarse-to-fine models and the others, which is consistent only regarding
pixels with errors larger than 1 mm. Not surprisingly, any network performs better after being
fine-tuned, both in terms of depth map accuracy and point cloud quality. However, by looking at
guided networks, can be noticed how their accuracy is further boosted by the fine-tuning phase,
with drops of the error rates much higher than those achieved by the original models.

By looking at reconstructed point clouds, for the original networks, can be observed the same
trend as in Tab. 4.4, with coarse-to-fine models generally producing higher quality point clouds.
Once again, the more accurate depth maps yielded by mvgMVS correspond to better reconstruc-
tions.

To summarize, the previous experiments highlight that the mvgMVS framework constantly
outperforms the original counterpart concerning generalization capability, as well as when data
for fine-tuning is available.

Limitations. Although the previous experiments highlight the potential of the Multi-View
Guided Multi-View Stereo framework, effective on both synthetic and real datasets, the pro-
posal suffers from a limitation that may be important in some environments: networks trained
with a specific hints density do not generalize to less dense hints inputs. Specifically, once a
guided network has been trained with a fixed density of input depth points, if such density is not
guaranteed at the testing time, the performance will drop. Table 4.2 investigates this behavior
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with a further experiment carried out using MVSNet guided with 3% hints aggregated over the
views during training and tested with varying density. Can be noticed how, by reducing the
number of hints, the network performance lowers as well, although still resulting better than the
original MVSNet trained without guidance (first row). However, by neglecting the hints at all
(last row), the performance dramatically drops below the original MVSNet. This behavior high-
lights that the network itself exploits the hints almost blindly when trained with them, losing
much accuracy when the hints are not available during deployment, consistently with [108].



Chapter 5

ToF and Monocular View Integration
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(a) RGB image (b) completion with 500 input points (c) completion with 5 input points

Figure 5.1. Sparsity-agnostic depth completion. From left to right: (a) reference image, (b)
completed depth and point cloud using 500 depth points, (c) completed depth and point cloud
using only 5 depth points. SpAgNet (top) dramatically outperforms NLSPN [99] (bottom) when
both are trained with 500 points and tested with much fewer.

5.1 Introduction

In Chapter 2 has been highlighted that to date, accurate depth perception is demanded either
to multi-view imaging approaches [171] or to specifically designed sensors such as LiDAR
(Light Detection and Ranging) or ToF (Time of Flight) sensors. In Chapter 4 multi-view and
active sensors have been integrated. Nonetheless, not in all applicative scenarios ego-motion
is available. In this Chapter, the monocular RGB and sparse depth case (depth completion) is
deeply studied highlighting the main challenges and proposing a proper solution.

Although more expensive than standard cameras, depth sensors usually allow for higher accu-
rate measurements even though at a lower spatial resolution. On the one hand, ToF sensors are
cheap, small, and have been recently integrated into mobile consumer devices [63, 89]. They
perturb the scene through coded signals less effective in outdoor daytime environments. To
limit power consumption, a sparse emitting pattern is used, yielding meaningful depth mea-
sures for only a few points in the scene (∼500 points) [63]. On the other hand, LiDAR sensors

33
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employ a moving array of laser emitters scanning the scene and outputting a point cloud [114],
which becomes a sparse depth map once projected over the image camera plane due to its much
higher resolution. Devices leveraging such technology are expensive and bulky however, be-
ing applicable even in daylight outdoor environments, became standard for autonomous driving
applications [146]. Since all these depth sensors provide – for different reasons – only sparse
information, techniques aimed at recovering a dense depth map from an RGB image and a few
measurements have gained much popularity in recent years [92, 99, 18].

Unfortunately, in real scenarios, LiDAR and ToF sensors are affected by additional issues other
than sparsity, which may easily lead even to sparser depth points often unevenly distributed.
For instance, the noise originating from multi-path interference – when multiple bouncing rays
from different scene points collide on the same pixel – might lead the sensor to invalidate the
measurement and consequently reduce density. Moreover, low-reflectivity surfaces/materials
absorb the whole emitted signal while others reflect it massively, leading to saturation. Despite
the two opposite behaviors, depth cannot be reliably measured in both cases, possibly leading
to large, unobserved regions.

State-of-the-art depth completion techniques are fragile and fail at reconstructing the structure
of the scene for areas where no depth points are available or when the sparsity changes signif-
icantly compared to the one used at training time. Indeed, the incapacity to deal with uneven
spatial distributions of the sparse depth points – which will be unveiled in this chapter – threat-
ens the possibility of deploying such solutions in different practical contexts. Moreover, this
behavior also prevents their seamless deployment when using a different sensor inferring the
depth according to a spatial pattern different from the one used while training (e.g., switching
from an expensive Velodyne [149] LiDAR system to a cheaper one).

Unfortunately, as reported in this chapter and shown in Figure 5.1, convolutional layers strug-
gle at generalizing when fed with variable sparsity input data. Hence, here is proposed a de-
sign strategy that diverges from the literature to overcome this issue by not directly feeding
sparse depth points to the convolutional layers. Purposely, the sparse input points are iteratively
merged with multiple depth maps predicted by the network. This strategy allows to handle
highly variable data sparsity, even training the network with a constant density distribution
as done by state-of-the-art methods [99, 18, 35, 49] yet avoiding catastrophic drops in accu-
racy witnessed by competitors. Such an achievement makes the completion solution a Sparsity
Agnostic Network, dubbed SpAgNet.

This chapter’s contribution can be summarized as follows:

• A novel module designed to incorporate sparse data for depth completion yet being in-
dependent by their distribution and density. Such a module plugged into a competitive
neural network architecture trained effortlessly can effectively deal with the previously
mentioned issues.

• The performance of SpAgNet and state-of-the-art methods is assessed on a set of highly
challenging cases using KITTI Depth Completion (DC) and NYU Depth V2 (NYU)
datasets highlighting the superior robustness of the proposed solution compared to state-
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of-the-art when dealing with uneven input patterns.

5.2 Sparsity Agnostic Depth Completion

Figure 5.2. SpAgNet architecture. The network follows an encoder-decoder design, with
a backbone to extract features from the image and a custom decoder to iteratively merge at
multiple scales sparse depth hints without directly feeding them as a sparse depth map. Finally,
we leverage non-local propagation [99] to improve accuracy further.

As pointed out by [146, 24], 2D convolutions struggle to manipulate sparse information. Ad-
ditionally, can be further noticed that the density of such input depth data and its spatial distri-
bution – which could be highly uneven – might lead state-of-the-art networks to catastrophic
failures, as depicted at the bottom of Figure 5.1. Moreover, these networks mostly rely on
the sparse depth input overlooking the image content and substantially ignoring the geometric
structure depicted in it.

SpAgNet relies on an encoder-decoder structure with skip connections, as depicted in Figure
5.2. However, unlike current depth completion techniques [99, 18, 49, 35], the encoder is
not fed with sparse depth information for the reasons previously outlined. Instead, features are
extracted from the RGB frame only in order to get rid of the sparse input data and, consequently,
its density. This strategy allows to constrain the network to exploit the image content fully and,
as discussed later, to enforce the network at extracting the geometry of the scene from the RGB.

The decoding step predicts – iteratively and at multiple scales – dense depth from the RGB
image and fuse it with the sparse input data. The first iterative step takes the input features
extracted from the RGB image and generates a lower-scale depth map and a confidence map.
Then, the next iterative steps process the same inputs plus the depth map and its confidence, both
augmented with the sparse input points computed in the previous iteration. Moreover, since
each intermediate depth map provides information up to a scale factor, it is scaled according
to the sparse input points before each augmenting step. This is required due to the ill-posed
nature of monocular depth prediction. Experimental results will corroborate this design choice,
especially when dealing with a few sparse input points. At the end of the iterative steps, non-
local spatial propagation proposed in [99] is applied to refine the depth map inferred by the
network. Figure 5.2 describes the whole framework.
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(a) RGB (b) dense depth

(c) confidence map (d) depth error (e) depth scaling linear regression

Figure 5.3. Confidence aware depth scaling. Example of confidence usage to scale depth. On
left, the input image (a), the predicted depth map (b), the estimated confidence (c) and the errors
with respect to groundtruth (d). On right, the outcome of the scaling procedure (red means a
lower confidence prediction, green a higher one).

5.2.1 Encoder Architecture

Since the proposed framework encodes features from the image only any pre-trained network
can be leveraged as an encoding backbone. Such backbone is pre-trained on ImageNet [118].
Among the multiple choices [53, 58, 159] ResNeXt50 [159] has been chosen due to its good
trade-off between performance and speed. Specifically, it downsamples the image to scales 1

2
, 1
4
,

1
8
, 1
16

and 1
32

and the features are used in the decoding step as input and in the skip connections.

5.2.2 Scale and Place Module

The Scale and Place (S&P) module is in charge of inferring a dense and scaled depth map and
its confidence. It takes as input the backbone features, the output of the previous S&P module
at a different scale, and the sparse depth points as depicted in Figure 5.2.

Specifically, S&P leverages the input features to jointly generate an initial up-to-scale depth
map and its confidence deploying a stem block composed of two convolutional layers and two
heads in charge of generating them. Each convolutional layer consists of a 2D convolution, a
batch normalization [61] and a Leaky ReLU. Then in the Scale step, the S&P module performs a
weighted linear regression to scale the depth map according to the available sparse input points,
weighted by means of confidence. The parameters of the weighted linear regression can be
computed in closed form and in a differentiable way, as described in Eq. 5.1 where pi is the
predicted depth value and ci its confidence corresponding to an available input sparse point si.

β =

∑
i ci(pi − p̂)(si − ŝ)∑

i ci(pi − p̂)2
α = ŝ− βp̂ (5.1)

p̂ =

∑
i cipi∑
i ci

ŝ =

∑
i cisi∑
i ci
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Then, in the Place step, for those points where a sparse input depth value is available, the
corresponding value in the scaled depth map is replaced with it. Additionally, the same point
in the confidence map is updated with the highest score. The latter step can be summarized as
follows

D̂[x, y] =

{
Ds[x, y] if H[x, y] = 0

H[x, y] if H[x, y] ̸= 0
(5.2)

Ĉ[x, y] =

{
Cs[x, y] if H[x, y] = 0

1 if H[x, y] ̸= 0
(5.3)

where Ds is the scaled depth map, Cs is the confidence map and H is a sparse depth map
containing zeros where an input sparse depth point is not available. The predicted confidence
has an empirically chosen range of [0.1 .. 0.9] while confidence 1 is associated with each valid
value in H .

The S&P module is applied at scales 1
8
, 1

4
and 1

2
. The module at 1

8
computes the initial depth

and confidence maps leveraging only the RGB features. The others take in input also the up-
sampled dense depth and confidence maps from the previous module to iteratively correct the
prediction relying on both the predicted depth and the injected sparse points. Thus, with this
strategy, the decoder does not deal directly with sparse data in any of its steps. Nonetheless,
the network can locate and effectively leverage reliable sparse information. An example of this
mechanism is shown in Figure 5.3, where can be clearly seen how the network learns to locate
the most reliable depth values as those closer to the ground truth depth.

It is worth noting that confidence plays a crucial role in the S&P module. At first, in the Scale
step, it helps to locate outliers in the estimated depth map enabling to soften their impact when
performing the scaling procedure. Additionally, in the Place step, assigning the highest confi-
dence to the sparse input points enables the network to rely on them effectively. Nonetheless,
SpAgNet also exploits the other predicted depth points according to their estimated confidence.

Since the S&P module needs the sparse data at multiple scales, it is downsampled by employing
a non-parametric sparsity aware pooling: moving a 3×3 window with stride 2, the mean of
the available measures in its neighborhood is assigned to each coordinate. This approach is
iteratively applied to reach lower resolutions. This method leads to a densification of the sparse
depth map and helps, at all scales, to include even the meager few sparse points available into a
large field of view.

5.2.3 Non-Local Spatial Propagation

Spatial propagation concerns the diffusion of information in a localized position to its neigh-
borhoods. This strategy represents a common practice in the depth completion literature [86,
18, 99, 57] and can be achieved by a neural network in charge of learning the affinity among
neighbors. Let X = (xm,n) ∈ RM×N be a 2D depth map to be refined through propagation,
at step t it acts as follows:
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xt
m,n = wc

m,nx
t−1
m,n +

∑
(i,j)∈Nm,n

wi,j
m,nx

t−1
i,j (5.4)

Where (m,n) is the reference pixel currently being updated, (i, j) ∈ Nm,n the coordinate of
the pixels in its neighborhood, wi,j

m,n the affinity weights, and wc
m,n the affinity weight of the

reference pixel:

wc
m,n = 1−

∑
(i,j)∈Nm,n

wi,j
m,n (5.5)

The various existing methods differ by the choice of the neighborhood and by the normalization
procedure of the affinity weights, the latter is necessary to ensure stability during propagation
[86, 18, 99]. Within SpAgNet, the non-local approach [99] is implemented, letting the network
dynamically decide the neighborhood using deformable convolutions [30]. Formally:

Nm,n = {xm+p,n+q | (p, q) ∈ fϕ(I,H, n,m)} (5.6)

p, q ∈ R

Where I and H are the RGB image and the sparse depth, and fϕ(·) is the neural network deter-
mining the neighborhood. The non-local propagation module requires in input an initial depth
map generated through two convolutional blocks from the last S&P block output, scaled using
the full-resolution sparse depth points. However, in this case, the weighted scaling is not used to
obtain the best result on the entire frame. Finally, as usual, the sparse depth points override the
predicted output. The resulting depth map is then fed along with features to two convolutional
blocks to generate the guiding features and confidence required by the propagation module.

5.2.4 Loss Function

At each scale, the network is trained by supervising the depth obtained by the S&P module
before Place step. The confidence weights the loss of each depth prediction, and a regularization
term (controlled by η) enforces the network to maintain the confidence as high as possible.
Following [99], both L1 and L2 losses are computed. the loss function, at a specific scale,
is described by Eq. 5.7 where Cs and Ds are respectively confidence and depth at a specific
scale s. Confidence is not computed for the full-size scale, hence C0 = 1. Finally, it is worth
mentioning that lower scales are weighted less through an exponential decay factor γ.

L =
n∑

s=0

γs 1

N

m∑
i

Cs
i L

12
i − η lnCs

i where L12
i = |Ds

i −Gi|+ |Ds
i −Gi|2 (5.7)



5.3. EXPERIMENTAL RESULTS 39

5.3 Experimental Results

SpAgNet has been implemented in PyTorch [102] training with 2 NVIDIA RTX 3090 and
using the ADAM optimizer [69] with β1 = 0.9 and β2 = 0.999. The final model requires 35
milliseconds to perform a prediction on an image of 640×480 resolution employing a single
NVIDIA RTX 3090 GPU.

5.3.1 Datasets

NYU Depth V2. The NYU Depth V2 [97] dataset is an indoor dataset containing 464 indoor
scenes gathered with a Kinect sensor. The official train/test split is used as previous works,
relying on the pre-processed subset by Ma et al. [92] using 249 scenes for training (∼50K
samples) and 215 scenes (654 samples) for testing. Each image has been down-sampled to
320×240 and then center-cropped to 304×228. As a common practice on this dataset, 500
random points per image have been extracted to simulate sparse depth. The network is trained
for 15 epochs starting with a learning rate 10−3 and decreasing it every 3 epochs by 0.1, setting
γ = 0.4 and η = 0.1. Batch size 24 (12 for each GPU) is used; hence the network is extremely
fast to converge since the whole training accounts for less than 30K steps. Color and brightness
jittering and horizontal flips are applied while training to limit overfitting.

KITTI Depth Completion (DC). KITTI DC [146] is an outdoor dataset containing over 90K
samples, each one providing RGB information and aligned sparse depth information (with a
density of about 5%) retrieved by a high-end Velodyne HDL-64E LiDAR sensor. The images
have 1216×352 resolution, and the dataset provides a standard split to train (86K samples),
validate (7K samples), and test (1K samples). The ground truth has been obtained temporally
accumulating multiple LiDAR frames and filtering errors [146], leading to a final density of
about 20%. On this dataset 10 training epochs are used with batch size 8 (4 for each GPU),
starting with learning rate 10−3 and decreasing it every 3 epochs by 0.1, γ = 0.4 and η = 20.0.
Data augmentation follows the same scheme used for NYU.

5.3.2 Evaluation

In this section, the performance of SpAgNet and state-of-the-art methods are assessed. Follow-
ing standard practice [99, 18], the following metrics are used:

RMSE =

√
1

N

∑
i

|Di −Gi|2 MAE =
1

N

∑
i

|Di −Gi| REL =
1

N

∑
i

∣∣∣∣Di −Gi

Gi

∣∣∣∣
For evaluation purposes, in addition to the standard protocol deployed in this field [99, 18],
the robustness of the networks is also deeply studied in much more challenging scenarios but
always training with the standard procedure (i.e., using 500 points on NYU and 64 LiDAR lines
on KITTI). Since KITTI DC is thought for autonomous driving tasks and the sparse depth is
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500p 5p shifted grid Livox

Figure 5.4. Sparse depth patterns. Examples of different sparse depth patterns, from left to
right: 500 random points, 5 random points, shifted triangular tiling dot pattern and a Livox-like
pattern (e.g. Livox Mid-70).

acquired with a high-end 64 Lines Lidar which provides in output always the same pattern,
the switch to a cheaper device is simulated providing in output fewer lines. This scenario
demonstrates the capability of SpAgNet to generalize over sparse depth density. On NYU
Depth V2, sparse depth points are traditionally extracted randomly from the ground truth [92,
99, 18] which is almost dense. Thus, the following cases are tested: i) the extreme case of
having only 5 random points, ii) the impact of having large empty areas, and iii) the impact
of changing the sparsity pattern. Case ii) is implemented sampling from the ground truth a
triangular tiling dot pattern aimed at simulating the output of a commercial VCSEL [89] ToF
sensor and then randomly shifting this pattern to leave behind large empty areas where no sparse
hints are available while iii) extracting from the ground truth sparse points with the pattern of a
Livox Mid-70 [87]. All these patterns are shown in Figure 5.4. The publicly pre-trained state-
of-the-art models available either on NYU Depth V2 or KITTI DC are taken into account as
competitors. While evaluating, is guaranteed that each architecture sees exactly the same sparse
points for a fair comparison.

Results on NYU Depth v2. Table 5.1 (a) compares state-of-art methods and SpAgNet on
the NYU dataset using different input configurations: in the upper portion by changing the
number of samples and in the lower portion by changing the pattern type. From the table, can
be noticed that SpAgNet achieves competitive results, being very close to NLSPN [99] and
better than other methods when the number of points used is the same as the training phase
(i.e., 500). Similar behavior occurs with 200 points. However, when the density of input points
decreases further, SpAgNet vastly outperforms the state-of-the-art. The performance gap with
other methods gets much higher when decreasing the density further. For instance, with 50
points, the RMSE by SpAgNet is 0.272 m, while the second one (NLSPN [99]) accounts for
0.423 m. Notably, with only 5 points, the same metrics are 0.467 m and 1.033 m (NLSPN
[99]), further emphasizing the ability of the proposal to deal even with meager input points,
in contrast to competitors. It is worth observing that SpAgNet outperforms competitors with
randomly selected input points starting from 100.

The bottom portion of Table 5.1 (a) reports the outcome of the evaluation with different spatial
distributions and their average density of depth input points. Specifically, results using the two
distributions depicted in the rightmost images of Figure 5.4 are shown. From the table, can be
observed that when the spatial distribution covers the whole image, as in the case of the Livox-
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Method Samples REL ↓ RMSE (m) ↓
pNCNN [35]

500

0.026 0.170
CSPN [18] 0.016 0.118
NLSPN [99] 0.013 0.101
PackNet-SAN [49] 0.019 0.120
SpAgNet 0.015 0.114
pNCNN [35]

200

0.040 0.237
CSPN [18] 0.027 0.177
NLSPN [99] 0.019 0.142
PackNet-SAN [49] 0.027 0.155
SpAgNet 0.024 0.155
pNCNN [35]

100

0.061 0.338
CSPN [18] 0.067 0.388
NLSPN [99] 0.038 0.246
SpAgNet 0.038 0.209
pNCNN [35]

50

0.108 0.568
CSPN [18] 0.185 0.884
NLSPN [99] 0.081 0.423
SpAgNet 0.058 0.272
pNCNN [35]

5

0.722 2.412
CSPN [18] 0.581 2.063
NLSPN [99] 0.262 1.033
SpAgNet 0.131 0.467

pNCNN [35] 0.519 1.922
CSPN [18] shifted grid 0.367 1.547
NLSPN[99] (∼ 100) 0.175 0.796
SpAgNet 0.110 0.422
pNCNN [35] 0.061 0.333
CSPN [18] livox 0.066 0.376
NLSPN [99] (∼ 150) 0.037 0.233
SpAgNet 0.039 0.206

Method Lines RMSE (mm) ↓ MAE ↓
NLSPN [99]

64

778.00 199.50
pNCNN [35] 1011.86 255.93
PackNet-SAN [49] 1027.32 356.04
PENet [57] 791.62 242.25
SpAgNet 844.79 218.39
NLSPN [99]

32

1217.21 367.49
pNCNN [35] 1766.84 615.93
PackNet-SAN [49] 1836.84 914.33
PENet [57] 1853.06 1025.42
SpAgNet 1164.18 339.22
NLSPN [99]

16

1988.52 693.10
pNCNN [35] 3194.69 1321.74
PackNet-SAN [49] 2841.35 1570.05
PENet [57] 3538.02 2121.46
SpAgNet 1863.25 606.92
NLSPN [99]

8

3234.93 1491.28
pNCNN [35] 5921.94 2999.92
PackNet-SAN [49] 3231.03 1575.41
PENet [57] 6015.02 3812.45
SpAgNet 2691.34 1087.21
NLSPN [99]

4

4834.22 2742.80
pNCNN [35] 9364.58 5362.45
PackNet-SAN [49] 4850.20 2255.08
PENet [57] 9318.86 5819.36
SpAgNet 3533.74 1622.64

(a) NYU Depth v2 Evaluation (b) KITTI DC Evaluation

Table 5.1. SpAgNet Evaluation. Comparison with state-of-the-art methods, trained with 500
random points extracted from the ground truth or a subsampled number of scan lines as input.
Each model is then tested with different densities and patterns. The best , second -best and
third -best are highlighted.

like pattern, SpAgNet and NLSPN [99] achieve similar performance while other methods fall
behind. However, when the input points do not cover significant portions of the scene and the
density decreases further, like in the shifted-grid case, SpAgNet dramatically outperforms all
competitors by a large margin.

Figure 5.5 shows qualitatively how SpAgNet compares to CSPN [18] and NLSPN [99] on an
NYU sample when using 500 random points, 5 points, and the shifted grid. It highlights how
only SpAgNet yields meaningful and compelling results with 5 points and the shifted grid,
leveraging the image content much better than competitors, thanks to the proposed architectural
design. At the same time, it achieves results comparable to competitors with 500 randomly
distributed points. This fact further highlights that the robustness of SpAgNet is traded with the
capacity of entirely leveraging the sparse depth information when fully available.

Results on KITTI DC. Once assessed the performance on the indoor NYU dataset, Table 5.1
(b) reports the evaluation on KITTI DC. From the table, can be noticed that with 64 lines,
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Figure 5.5. Qualitative results on NYU-Depth v2. CSPN [18] and NLSPN [99], when pro-
cessing 5 points or the shifted grid pattern, manifest the complete inability to handle them, while
SpAgNet maintains the scene structure.
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Figure 5.6. Qualitative results on KITTI DC. Results are reported using, respectively, from
left to right, 64, 8, and 4 lines. From top to bottom the predicted depth and error map of [99],
[57], and SpAgNet.

SpAgNet results are almost comparable to the best one, NLSPN. However, by reducing the
number of lines from 32 to 4, SpAgNet gets always the best performance with an increasing
gap. Interestingly, PackNet-SAN [49], which has been specifically trained to perform well in
both depth completion (64 lines) and depth prediction (0 lines) is not able to deal with fewer
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lines. Indeed, the accuracy it achieves when processing 16, 8, or 4 lines is even lower than
the one achieved when performing depth prediction, i.e. with RMSE equal to 2.233 mm. This
behavior could be ascribed to the fact that they train an external encoding branch to extract
features from sparse data and feed them to the network employing a sum operation. Even
though such a branch applies a special and bulky sparse convolution operator [24], it does not
seem capable of generalizing to fewer points. On the contrary, the whole network seems to
suffer from the same issues of fully convolutional models, resulting effective only when fed
with 64 LiDAR lines or none – the only configurations observed during training.

Figure 5.6 shows, on an image of the KITTI DC dataset and for three different numbers of lines,
the outcome of NLSPN, PENet, and SpAgNet. In contrast to competitors, SpAgNet consistently
infers meaningful depth maps, even when the number of lines decreases. This behavior can be
perceived better by looking at the error maps. For instance, it is particularly evident with 4 lines,
focusing on the road surface and the far and background objects.

NLSP Confidence Scaling Samples RMSE (m) ↓
✗ ✗ ✗ 0.161
✗ ✓ ✓

500

0.127
✓ ✗ ✓ 0.122
✓ ✓ ✗ 0.115
✓ ✗ ✗ 0.132
✗ ✓ ✗ 0.145
✗ ✗ ✓ 0.135
✓ ✓ ✓ 0.114
✗ ✗ ✗ 0.770
✗ ✓ ✓

5

0.474
✓ ✗ ✓ 0.479
✓ ✓ ✗ 0.526
✓ ✗ ✗ 0.566
✗ ✓ ✗ 0.823
✗ ✗ ✓ 0.484
✓ ✓ ✓ 0.467

Backbone Size Samples RMSE (m) ↓
ResNet18 27M

500

0.116
ResNet34 37M 0.121
ResNet50 51M 0.117
ResNeXt50 51M 0.114
DenseNet121 30M 0.118
DenseNet161 61M 0.115
ResNet18 27M

5

0.504
ResNet34 37M 0.474
ResNet50 51M 0.664
ResNeXt50 51M 0.467
DenseNet121 30M 0.678
DenseNet161 61M 0.564

(a) Single Components (b) Different Backbones

Table 5.2. Ablation study on NYU. Training with 500 points, testing either with 500 or 5 points
on the same dataset. The best , second -best and third -best are highlighted.

5.3.3 Ablation Study

Finally, an ablation study concerning the main components of SpAgNet is carried out to measure
their effectiveness. Specifically, in Table 5.2, two main studies are conducted, respectively, to
evaluate (a) the impact of i) the Scale step of the S&P modules, ii) the usage of confidence and
iii) the non-local propagation head, and (b) results achieved with different backbones. From
(a), can be noticed that with 500 sparse points, scaling does not significantly improve since the
network already learns to generate an output that is almost in scale. However, with only 5 points,
applying a global scaling procedure helps retrieve the correct scale even in regions lacking depth
measurements. Focusing on confidence, it turns out to be effective with high and low densities
of input points. Finally, Non-Local Spatial Propagation further boosts performance in both
cases.
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In (b), most backbones yield comparable results when tested with 500 points, with ResNeXt50
achieving slightly better results. A significant gap in accuracy emerges when testing the same
networks with only 5 points, with ResNeXt50 achieving the best results again.



Chapter 6

Multi-View Cues in Video Depth
Estimation

Source Views Reference View Prediction Ground Truth

Prediction Ground Truth

Figure 6.1. Depth Estimation and 3D reconstruction with RAMDepth on Blended [173].
On top: given five images of the same scene, RAMDepth can estimate accurate depth maps
through multi-view geometry without requiring any knowledge about the reference view depth
range. At the bottom: the point cloud obtained from the prediction of the network and the
respective ground-truth.

6.1 Introduction

In previous Chapters, a deep focus has been placed on the effectiveness and issues of active sen-
sors. Nonetheless, RGB information is always important to ameliorate such issues and provide
effective reconstructions. Thus, in this Chapter, the focus shifts to the RGB-only capabilities
of performing 3D modeling in the wild from video sequences with the final goal to provide the
groundwork for the final framework presented in Chapter 7. Compared with active sensors, pas-
sive sensing from standard RGB cameras by triangulation has many advantages. Indeed, RGB

45
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cameras are energy efficient, compact in size, and may operate in various conditions. Among
passive approaches, stereo vision leverages two calibrated cameras to restrict the matching prob-
lem to a 1D search space, yet requires two cameras in a constrained setting – i.e., being nearly
coplanar to allow for simpler calibration and rectification. On the other hand, a single monocu-
lar RGB camera in motion is the most flexible (as well as challenging) approach.

Traditionally, multi-view 3D reconstruction techniques can be classified in the following broad
families: voxel, surface evolution, patch, or depth-based [131, 147, 79, 41, 171]. Despite being
tackled with hand-crafted algorithms at first [12, 39], most state-of-the-art methods leverage
depth-based deep learning architectures. These frameworks process a set of source views and a
reference view and yield an estimated depth map for the latter. Most deep architectures tackle
this task by (i) extracting deep features from the images, (ii) building a cost volume sampled
over the epipolar lines through a set of depth hypotheses using differentiable homography, and
(iii) predicting depth with a typically 3D convolutional module. The depth estimation pipeline
sketched so far is effective but affected by some limitations.

First, according to step (ii), prior knowledge of the scene depth range is strictly required to
sample depth hypotheses and build a meaningful cost volume [125]. Indeed, on the one hand,
sampling hypotheses out of an underestimated range would make the network unable to predict
depth values in out-of-range areas. On the other hand, overestimating the depth range will result
in sampling coarser hypotheses, thus reducing the fine-grained accuracy of estimated depth
maps. Unfortunately, such knowledge cannot be straightforwardly retrieved in real scenarios.
When raw images are provided, camera poses can be obtained through traditional Structure-
from-Motion (SfM) algorithms [123], possibly estimating the depth range as well. However,
such a range might be erroneously estimated due to a number of reasons – e.g., untextured
regions, visual occlusion, or poor field of view (FoV) overlap. Can be pointed out that many
applications in which camera poses are known by other means exist (e.g., as often occurs in
robotic applications [62]) and that modern mobile platforms provide pose information through
dedicated inertial sensors.

Second, source frames must be carefully selected to allow proper depth estimation, with a set
of requirements such as enough distance between optical centers to allow meaningful displace-
ments, as well as sufficient cross-view overlap, to allow matching. Moreover, the quality of
the views must be considered as well: abrupt light or color changes, moving objects, or scene-
specific occlusions must be taken into account to maximize matches. Unfortunately, all these
aspects cannot be evaluated by simply considering pose similarity since many of them require
an analysis of the images themselves. A better approach could be to apply SfM algorithms
and analyze the distribution, quality, and amount of keypoint matches across different views,
which would require additional offline processing. Can be argued that distinguishing meaning-
ful matches from unreliable ones would ease the depth estimation task – as highlighted by prior
works [181, 93] – as well as possibly reduce the computational overhead by limiting the number
of source views to those being strictly necessary to estimate accurate depth, although this latter
aspect has never been explored.

Prompted by the previous observations, this chapter proposes a novel framework that is (i) free
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from prior knowledge of the depth range from which one samples hypotheses, and (ii) capable
of distinguishing the most meaningful source frames among many. It will be showed that the
Range Agnostic Multi-View framework (RAMDepth) enjoys the following properties:

• Scene Depth Range Invariance. It is completely independent of any input depth range
assumption and thus applicable everywhere a set of images along with their pose is pro-
vided. Instead of sampling features along epipolar lines according to a fixed set of depth
hypotheses and then predicting depth, the reversed mechanism is employed: the frame-
work iteratively updates a depth estimate dynamically moving along epipolar lines ac-
cording to this latter to compute correlation scores. In this way, fixing an a priori set of
depth hypotheses is not required.

• Keyframes Ranking. The proposed approach not only estimates depth but also provides
insights about the match quality of each source view and its contribution to the final
prediction, allowing within a single inference step to rank input source views according
to their actual matching against the reference view.

To assess the performance of RAMDepth, different challenging benchmarks with heterogeneous
specifics have been considered. On Blended [173] and TartanAir [153], it’s demonstrated the
capability of the proposed framework to seamlessly estimate accurate depth in diverse scenes
such as large-scale outdoor environments, top-view buildings, and indoor scenarios. Indeed,
on the one hand, Blended [173] is characterized by significant pose changes, occlusions, and
large FoV overlap. On the other hand, TartanAir [153] provides video streams characterized by
small, unpredictable pose changes, where the depth range of each frame can change abruptly.
Moreover, on UnrealStereo4K [144] it is assessed the generalization capability of RAMDepth
to video streams and the possibility of applying it to the stereo setup. To conclude, RAMDepth
is also validated on DTU [62], where the depth range is fixed. Along with this validation, the
peculiar capabilities of this approach are shown through specifically designed experiments. Fig.
6.1 shows the outcome of RAMDepth on Blended [173].

6.2 Proposed Framework

RAMDepth is a deep framework to tackle 3D reconstruction from multiple posed views lever-
aging 2D convolutional layers only, and an iterative optimization procedure aimed at refining an
internal depth map. This design builds upon the following principle: given the reference view,
matches over an arbitrary source view can be found given their relative pose and enough visual
overlap. Thus, provided an initial depth map, dense matching costs can be computed between
the reference and source views. Such information is then fed to a 2D learned module to properly
refine the predicted depth map. This way, unlike any other framework that builds a cost volume
relying on a set of a priori depth hypotheses, RAMDepth can dynamically navigate the match-
ing space, while storing best matches as depth values into an inner state. Epipolar geometry
comes into play since updating the stored depth values means moving over the epipolar lines
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Figure 6.2. RAMDepth Architecture Description. RAMDepth instantiates an initial depth
map and builds a pair-wise correlation table between the target view and each source image (in
dark and light blue). Then, deformable sampling is iteratively performed over it, and the depth
state is updated accordingly. Final depth prediction is upsampled through convex upsampling.

defined by pose information. This approach can be thought of as reverting the common pipeline
composed of (i) cost volume building and (ii) depth estimation. Moreover, can be pointed out
that the dense matching costs computed by this framework, each expressing the relationship
between a specific source view and the reference one, can be regarded as a hint of the overall
matchability between the views, that takes into account both FoV overlap and overall image
quality. Quantitative and qualitative evidence of this will be provided in Section 6.3.

RAMDepth, sketched in Fig. 6.2, can be decomposed into the following modules: (i) image
features encoding, (ii) correlation sampling (iii) depth optimization, and (iv) output depth de-
coding. Steps (ii) and (iii) are performed multiple times for a fixed number of iterations. Thus,
the framework outputs a sequence of depth maps (Ds)s∈N getting progressively more accurate.

6.2.1 Features Encoding

Given a set of views I i, i ∈ [0, N ] I0 is referred to as the reference view – i.e., the one for which
the depth map is predicted – and I i, i ∈ [1, N ] as the source ones. Each view I i is forwarded
to a deep convolutional encoder to extract latent features F i ∈ RW

8
×H

8
×F , that will be used to

compute correlation scores in the next step. These are depicted in shades of blue in Fig. 6.2
and share the same weights. Moreover, exclusively for I0, it’s also extracted a disentangled
set of feature maps to provide monocular contextual information F̂ ∈ RW

8
×H

8
×F , depicted in

green in Fig. 6.2. Despite the iterative nature of RAMDepth, features are extracted only once,
at bootstrap.

6.2.2 Correlation Sampling

Once the reference and source views have been encoded into deep latent features, at any iteration
the current depth estimate Ds

u0v0
for pixel q0 = [u0, v0, 1]

T – in homogeneous coordinates – can
be used to index a specific pixel qi = [ui, vi, 1]

T of a source view I i as described in Eq. 6.1,
according to camera intrinsic and extrinsic parameters K0, Ki and E0, Ei.
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qi = KiEiE
−1
0 Du0v0K

−1
0 q0 (6.1)

This procedure leverages epipolar geometry since changing Ds
u0v0

means moving over the cor-
responding epipolar line while not being bound to a priori depth hypotheses. Then, source view
features are sampled accordingly to compute a pixel-wise correlation map Cu0v0uivi – shown in
Fig. 6.2 in shades of blue according to the selected source view

Cu0v0uivi =
F∑

f=1

F0
u0v0f

F i
uivif

(6.2)

However, this correlation map does not provide useful information on the direction in which bet-
ter matches can be found. Thus, to better guide the optimization process correlation scores are
computed in a neighborhood N (ui, vi) of qi. Specifically, such a neighborhood is predicted by a
2D convolutional module Θ, predicting Z index offsets conditioned by the reference features F̂
and each iteration hidden state Hs – generated by the depth optimization step, see Section 6.2.4.
The Z output channels are summed to the ui, vi coordinates to obtain the sampling locations.

N (ui, vi) =
[
(ui, vi) + Θ(F̂u0v0 ,Hs)z, z ∈ Z

]
(6.3)

This mechanism resembles deformable convolutions [30] in that it samples from a dynamic
neighborhood, yet it differs since it does not accomplish a proper convolution with the sampled
features but instead performs correlation with the features sampled from another view. It is
worth observing that since Θ is conditioned with a state that changes at each iteration, these
offsets may change at each iteration accordingly. The reference view context potentially allows
to adaptively sample correlation scores in a narrower or wider region depending on the ambi-
guity of the reference image itself, like in the presence of object boundaries or low-textured
regions.

The correlation sampling mechanism described so far works on a single source view at a time.
This is a problem when multiple source views are available. Following existing approaches,
correlation features could be extracted from each source view and then fused together. However,
this approach would require developing a merging mechanism independent of the number of
source views – e.g., simple concatenation would be unsuitable as it fixes the number of input
channels. Many existing models compute feature-level variance to combine the volumes [171].
Instead, in RAMDepth a different source view is used for each update step, following a simple
round-robin approach. This methodology is simple and elegant since it exploits the iterative
nature of the architecture, does not require hand-crafted fusing modules, and can be extended
to any variable number of source views. While different scheduling strategies can be employed,
in this chapter only the simplest one is investigated, leaving the in-depth study of possible
alternatives to future developments.
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6.2.3 Keyframes Ranking

Since RAMDepth exploits a single source view at each iteration, C is related to a single specific
source view, as it contains correlation scores between deep features of the source and refer-
ence views. Such correlation grows as the source view features are correctly projected over the
reference view, and thus can be regarded as a score about matching quality [83]. It is worth
mentioning that such a score is susceptible to the FoV overlap but also moving objects, blur-
ring, or any other factor violating the multi-view geometry assumptions or that the encoding
procedure is not robust against. Thus, it is directly linked with the capability of the network to
exploit such source views to improve its prediction. Accordingly, each view can be ranked by
taking the last correlation map computed for each source view and averaging it over the spatial
dimensions. Since the network learns to perform good matches directly from depth supervision,
there is no need to directly supervise this output which is a byproduct of the framework.

6.2.4 Depth Optimization

With the components defined so far, RAMDepth estimates a depth map for the reference view
iteratively. At any stage s, a shallow recurrent network – in purple in Fig. 6.2 – made of a Gated
Recurrent Unit processes the sampled correlation scores C and reference features F̂ together
with the current hidden state Hs and depth map Ds (i.e., coming from the previous optimization
stage) to output an updated hidden state Hs+1. Then, two convolutional layers predict a depth
update ∆Ds yielding a refined depth map Ds+1 := Ds + ∆Ds. At bootstrap, D0 is initialized
to zero and then the aforementioned iterative process allows for rapidly updating the depth map
state towards a final, accurate prediction. At the first iteration, the correlation scores C will not
be meaningful for depth, thus the network learns to provide a monocular initialization for D1.
Other approaches could consist of either randomly initializing D0 or inserting a further module
to learn an initialization. The former would be inaccurate if no information about the depth
range is assumed, the latter is equivalent to zero initialization yet requires an extra component.

6.2.5 Depth Decoding

Since RAMDepth iterates at a lower resolution, a final upsampling of the depth maps to the
original input resolution is required. Many approaches leverage either bilinear upsampling
[171, 172, 48, 17, 150] or a deep convolutional decoder. Instead, a weighting mask is computed
with an upsampling module – in orange in Fig. 6.2 – fed with the latest hidden state Hs+1

and the reference view features F̂ , then convex upsampling [139] is applied. This approach is
faster than employing a decoder and yields much better results compared to using hand-crafted
upsampling approaches.
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Method

Yao et al. [171]
Yao et al. [172]
Cheng et al. [17]
Wang et al. [150]
Gu et al. [48]
Zhang et al. [181]
Sayed et al. [120]
Ma et al. [94]
RAMDepth

Ground Truth Depth Range
MAE RMSE >1 m >2 m >3 m >4 m >8 m

0.6168 1.5943 0.1392 0.0731 0.0457 0.0309 0.0103
0.7815 1.7397 0.1864 0.1007 0.0637 0.0433 0.0141
0.3590 1.3589 0.0704 0.0378 0.0244 0.0171 0.0064
0.3849 1.3581 0.0749 0.0386 0.0247 0.0175 0.0067
0.3684 1.3449 0.0714 0.0365 0.0234 0.0165 0.0062
0.3318 1.2396 0.0662 0.0323 0.0197 0.0133 0.0044
0.5921 1.4340 0.1404 0.0584 0.0308 0.0191 0.0057
2.1666 26.934 0.0752 0.0441 0.0316 0.0247 0.0138
0.2982 1.1724 0.0645 0.0285 0.0159 0.0102 0.0033

Unique Depth Range
MAE RMSE >1 m >2 m >3 m >4 m >8 m

2.1115 5.3122 0.3021 0.1637 0.1194 0.0964 0.0526
1.2568 2.6033 0.2918 0.1464 0.0933 0.0676 0.0286
1.6489 4.1094 0.1844 0.1235 0.1046 0.0932 0.0602
22.420 25.026 0.6721 0.5067 0.4989 0.4956 0.4761
1.8978 4.2927 0.2341 0.1427 0.1101 0.0921 0.0597
1.0536 2.8939 0.1682 0.0913 0.0643 0.0508 0.0285
0.5921 1.4340 0.1404 0.0584 0.0308 0.0191 0.0057
8.2120 55.710 0.5780 0.5400 0.4960 0.3540 1.1150
0.2982 1.1724 0.0645 0.0285 0.0159 0.0102 0.0033

(a) (b)
Table 6.1. Blended Benchmark. Comparisons with existing methods under two settings: (a)
by providing full knowledge about the scene depth to each method, (b) by assuming a unique
depth range to cover the whole test set. Since RAMDepth does not exploit any knowledge about
such range, its accuracy is not affected by the setup, unlike others.

6.2.6 Loss Function

RAMDepth is supervised by computing a simple L1 loss between the ground-truth depth Dgt

and each estimated depth map, with a weight decay γ set to 0.8

L =
S∑

s=1

γS−s||Dgt −Ds||1 (6.4)

6.3 Experimental Results

To assess the effectiveness of RAMDepth in the most challenging environments available, ex-
periments are performed on Blended [173], TartanAir [153], UnrealStereo4K [144] and DTU
[62]. These datasets cover a wide range of applications of interest – e.g. outdoor multi-view set-
tings, monocular video sequences, stereo perception, and object-centric indoor setups. Specif-
ically, Blended [173] provides large complex aerial views of buildings characterized by high
inter-view pose displacements, while TartanAir provides outdoor and indoor monocular video
sequences with small but unpredictable pose changes. In both, it is difficult to decide the depth
range a priori as it is not usually constant within the same scene as well between scenes. On Un-
realStereo4K [144], the generalization capability of RAMDepth and the possibility to perform
stereo depth perception seamlessly are assessed – to further support its strong matching effec-
tiveness. Finally, DTU [62] provides interesting cues about the performance in a controlled
environment, where the depth range can be accurately known a priori. RAMDepth consists
of 5.9M parameters. In any experiment, it is computed the mean absolute error (MAE), root
mean squared error (RMSE), and the percentage of pixels having depth error larger than a given
threshold (> τ ).

Blended Benchmark. The Blended dataset [173] collects 110K images from about 500 scenes,
rendered from meshes obtained through 3D reconstruction pipelines. It features large overhead
views where the scene depth range would be hard to be properly recovered in a real use case, but
also several object closeups. Following [105], each method is tested with five input images on
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Reference View Yao et al. [171] Wang et al. [150] RAMDepth Ground Truth

Figure 6.3. Qualitative results on Blended. RAMDepth extracts consistent and visually pleas-
ant depth maps, not showing any visible outliers as can be observed in competitor methods.

Convex Deformable
MAE >1 m

Upsampling Sampling
Baseline 0.4673 0.1085
Baseline + Deform. ✓ 0.4525 0.1046
Baseline + Convex ✓ 0.3406 0.0756
Full ✓ ✓ 0.3197 0.0695

Full (Tuned) ✓ ✓ 0.2982 0.0645

(a) Ablation Study (b) Keyframes Ranking

Table 6.2. Ablation study on RAMDepth. On the left, the impact of convex upsampling
and deformable sampling modules are assessed on Blended [173]. Each ablation has been
performed with the same number of training steps, smaller than the total used to train the final
model (Tuned). When convex upsampling is not applied bilinear upsampling is used instead.
On the right, RMSE is achieved by dropping input views in random order (red) or according to
the ranking information provided by RAMDepth (black)

the standard test set, composed of 7 heterogeneous scenes. In this experiment, each method ex-
cept RAMDepth exploits the reference view ground-truth depth range. Results are collected in
Table 6.1 (a). RAMDepth consistently produces more accurate depth maps, despite not exploit-
ing any knowledge about the depth range of any scene. It’s worth pointing out how RAMDepth
produces much better depth maps than other methods, which show frequent artifacts as shown
in Fig. 6.3.

Depth Range Analysis. In this section the focus is on the importance of not depending on prior
knowledge about the scene depth range. Purposely, a benchmark tailored to study this specific
aspect on the Blended test set has been designed, given the wide set of heterogeneous scenes
with depth ranges varying from a few meters up to hundreds. In Table 6.1 (b) each competi-
tor relying on the depth range is fed with a global unique depth range, computed to cover the
whole dataset one. To ease the task for competitor methods the following steps are performed:
(i) normalize the extrinsic translations between the reference and the source views to have a
mean value equal to 1 and compute the corresponding depth scaling factor, (ii) compute the
mean depth on the test set using the rescaled ground-truth depth and estimate an appropriate
set of depth hypotheses equal for every sample to cover the whole dataset depth range, (iii) the
depth predictions by models processing depth hypotheses are scaled back to the original metri-
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Method

Yao et al. [171]
Yao et al. [172]
Cheng et al. [17]
Wang et al. [150]
Gu et al. [48]
Zhang et al. [181]
Sayed et al. [120]
Ma et al. [94]
RAMDepth

Lipson et al † [84]

Monocular Video Benchmark
MAE (m) RMSE (m) >1 m >2 m >3 m >4 m >8 m

5.330 8.638 0.590 0.418 0.329 0.273 0.166
4.077 7.106 0.550 0.376 0.278 0.216 0.118
6.511 9.935 0.635 0.468 0.375 0.314 0.196
7.883 10.84 0.637 0.495 0.413 0.359 0.244
6.364 9.521 0.630 0.469 0.373 0.314 0.197
6.287 8.949 0.602 0.454 0.373 0.319 0.208
5.460 7.951 0.743 0.566 0.439 0.350 0.168
7.344 13.74 0.645 0.474 0.372 0.306 0.187
3.773 6.876 0.514 0.353 0.264 0.201 0.101

- - - - - - -

Stereo Benchmark
MAE (px) RMSE (px) >1 px >2 px >3 px >4 px

9.1420 16.142 0.685 0.456 0.352 0.304
8.9630 16.057 0.663 0.425 0.320 0.270
7.5390 16.096 0.357 0.261 0.230 0.211
3.4850 10.462 0.240 0.160 0.129 0.112
18.408 68.167 0.424 0.342 0.304 0.278
9.8990 26.357 0.319 0.256 0.226 0.206
22.323 27.022 0.979 0.959 0.944 0.924
3.8320 10.156 0.268 0.196 0.161 0.137
1.837 5.7930 0.157 0.099 0.076 0.063

1.646 4.8090 0.139 0.089 0.069 0.057
(a) (b)

Table 6.3. UnrealStereo4k Benchmark. Application of RAMDepth and competitor frame-
works to UnrealStereo4k either selecting source views from monocular video sequences (a) or
using rectified left and right stereo couples as target and source views (b). Images processed at
960× 544 resolution.

Method
2D Metrics

MAE RMSE >1 m >2 m >3 m >4 m >8 m
Yao et al. [171] 1.887 4.457 0.278 0.183 0.138 0.110 0.056
Yao et al. [172] 2.191 4.729 0.346 0.228 0.170 0.134 0.066
Cheng et al. [17] 1.461 3.860 0.216 0.141 0.106 0.084 0.043
Wang et al. [150] 2.351 4.980 0.331 0.228 0.176 0.144 0.078
Gu et al. [48] 1.582 4.017 0.230 0.150 0.113 0.090 0.047
Sayed et al. [120] 1.561 3.303 0.316 0.167 0.112 0.083 0.036
Ma et al. [94] 3.405 10.20 0.322 0.211 0.163 0.134 0.077
RAMDepth 1.258 3.289 0.203 0.125 0.090 0.070 0.034

Method
2D Metrics 3D Metrics

>1 mm >2 mm >3 mm >4 mm acc. compl. avg
Yao et al. [171] 0.5550 0.3400 0.2680 0.2370 0.6350 0.3040 0.4695
Yao et al. [172] 0.6300 0.4230 0.3290 0.2830 0.6620 0.3420 0.5020
Cheng et al. [17] 0.5060 0.3320 0.2770 0.2540 0.5510 0.2720 0.4115
Wang et al. [150] 0.4750 0.3100 0.2600 0.2360 0.4610 0.2980 0.3795
Gu et al. [48] 0.4800 0.3070 0.2570 0.2330 0.5280 0.2620 0.3950
Ma et al. [94] 0.4126 0.2556 0.2029 0.1770 0.4966 0.2581 0.3773
RAMDepth 0.3683 0.2439 0.2063 0.1884 0.4466 0.2775 0.3620

(a) TartanAir Benchmark (b) DTU Benchmark

Table 6.4. TartanAir & DTU Benchmark. Results achieved by existing multi-view frame-
works and RAMDepth on TartanAir [153] and DTU [62]. On TartanAir the proposed method
consistently demonstrates better performance. On DTU RAMDepth is comparable in perfor-
mance despite the advantage of the other methods, knowing the fixed depth range of the dataset.

cal range. This procedure acts on the scene scale only, not affecting the performance of trained
networks, except for changing the set of depth hypotheses used to build cost volumes. This
procedure is a precaution adopted to have closer values for minimum and maximum depth in
large-scale scenes, to ease numerical stability. Nonetheless, results reported in Table 6.1 (b) em-
phasize how the lack of precise knowledge about the depth range of the scene heavily penalizes
existing methods, whereas RAMDepth remains unaffected.

Keyframes Ranking. To assess the quality of the source views ranking produced by RAMDepth,
a peculiar experiment is proposed: for each sample in the Blended test set, its source frames are
ranked according to the method described in Section 6.2. Then, the number of source frames
provided to the framework is progressively decreased by selecting them either randomly or ac-
cording to the generated ranking. Fig. 6.2 (b) shows the results of this experiment. Selecting
frames according to the proposed ranking approach yields an overall error that diverges much
more slowly. Despite not being the direct goal of this chapter, this experiment lays the ground-
work for interesting potential applications like automatically removing blurred, out-of-view, or
non-static frames from the set of source views, as may happen on video sequences.

UnrealStereo4k Benchmark. The UnrealStereo4K dataset [144] provides synthetic stereo
videos in different challenging scenarios. On this dataset, it’s assessed the generalization ca-
pabilities of RAMDepth on monocular video sequences and, peculiarly, at dealing with the
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Reference Prediction Ground Truth Reference Prediction Ground Truth

Figure 6.4. TartanAir Qualitatives. TartanAir provides a wide range of complex environ-
ments, in figure a few examples along with the predictions by RAMDepth.

Figure 6.5. Benchmark on Memory and Time Requirements. Each model is tested in evalu-
ation mode on a single NVIDIA RTX 3090 in 32FP precision, with input size 768× 576 and 5
input views. peak memory is measured since it is the minimum memory needed to run a model
in evaluation, time in milliseconds and RMSE on Blended [173].

rectified stereo use case. Thus, the Blended pre-trained models are used without any kind of
fine-tuning. Concerning the stereo perception application, the right view is used as the reference
view and the left as the source one. Even in this case, the ground-truth depth range is provided
in input to all the methods requiring a priori depth hypotheses. However, it is worth mentioning
that from a practical point of view, this is an unrealistic assumption when dealing with left-right
stereo pairs, yet necessary to deploy multi-view networks relying on depth hypotheses in this
setting – except for RAMDepth. In Table 6.3 five consecutive frames are leveraged (a) or a
single stereo pair (b). In both cases, it achieved substantial improvements over existing models,
highlighting a dramatic margin by RAMDepth over other solutions. As a reference, it is also
reported the performance achieved by [84], a state-of-the-art stereo network trained on a vari-
ety of stereo datasets, to highlight how close the proposed solution gets to it, despite not being
trained explicitly to deal with this specific setting – since Blended is not even a stereo dataset.
This evidence further supports the great flexibility of RAMDepth.

TartanAir Benchmark. The TartanAir dataset [153] is a large synthetic dataset composed of
a wide spectrum of indoor, outdoor, aerial, and underwater scenarios recorded by a monocular
camera, with different moving patterns of variable toughness. It also contains a few moving
objects like fishes, steam, and industrial machines as well as high-frequency details like tree
leaves. In this scenario, the depth range of each single view is hard to define since it can
embrace hundreds of meters in a landscape view or a few meters when the camera moves around
a wall, and this can happen within the same scene as well. Thus, this environment is a perfect
benchmark for RAMDepth. Table 6.4 (a) shows the performance of the proposed approach
and existing multi-view methods, where each competitor is fed with the depth range from the
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ground-truth depth. Even though this is unfair to RAMDepth, not knowing anything about the
prediction range, still it exhibits the best performance. A few qualitative examples are shown in
Fig. 6.4.

DTU Benchmark. DTU [62] is a dataset composed of small objects whose 3D structure is
captured by means of a robotic arm and a structured light sensor. Due to these specifics, it
exhibits a really small and fixed depth range. In this context, methods relying on the scene
depth range are advantaged since they can make use of robust and precise information which
limits outliers, especially in texture-less areas. Following [105] each method is pretrained on
[173]. In Table 6.4 (b) are showed both 2D depth metrics and standard 3D metrics obtained with
the same reconstruction pipeline from [105] on [62]. RAMDepth is still competitive in both 3D
point cloud reconstruction and depth estimation, despite being disadvantaged in this context.

Ablation study. A simple ablation study about neighborhood sampling and depth decoding
components is shown in Table 6.2 (a). Such an experiment is performed with a slightly smaller
number of training steps on Blended [173] with respect to the final tuned model, thus are re-
ported also the results of the final model for a better comparison. RAMDepth greatly benefits
from both of these modules.

Memory and Time Analysis. In this section, an analysis of the time and memory requirements
of the proposed method is provided, compared with existing approaches in Fig. 6.5. Peak
memory usage, runtime, and RMSE error are measured using 5 input views of size 768× 576,
on a single NVIDIA RTX 3090. The choice to measure peak memory is justified by the fact that
this latter is the minimum memory required when deploying these models in a real application
and thus it is the most significant metric in this sense. In Fig. 6.5 can be clearly observed that
despite being neither the fastest nor the lighter approach, RAMDepth provides a good balance
in memory usage and inference time, while still being the best one in performance.

Qualitative Results. In this section are reported a few sample scenes from the datasets used
in this chapter to show the network’s capability to extract fine details. In Figure 6.6 4 out of
5 views from TartanAir [153] are plotted along with the prediction and the ground truth (dark
black represents missing values in the ground truth).

In Figure 6.8 a few samples from the available sequences of UnrealStereo4K are shown. Unre-
alStereo4K is a very challenging dataset containing heterogeneous indoor and outdoor scenes.
RAMDepth is not fine-tuned on the dataset itself – i.e. the model trained on Blended is used to
assess the generalization capabilities of the proposed approach.

In Figure 6.9, qualitative results about 3D reconstruction on DTU are reported. A depth map for
each view available for a single scene is generated, leveraging a total of 5 views for each pre-
diction. Then, such depth maps are assembled together by applying geometric and photometric
filtering common in the literature [62].

Keyframes Ranking Qualitatives. In this section, a qualitative example of the effectiveness
of keyframes ranking enabled by RAMDepth is provided. Figure 6.10 showed a scene from
Blended composed of 6 frames: the first one is the reference view, then source views follow in
random order. Correlation scores are extracted with the procedure described in Section 6.2.2
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Source 1 Source 2 Source 3 Reference Prediction Ground Truth

Figure 6.6. Qualitative results on Blended. Predictions obtained by using 5 views as input
(only 4 are showed for representative purpose).

and order views accordingly in the second row. Can be noticed that higher scores are assigned
to views with a higher visual overlap, e.g. the first source view in the ordered row is the one that
maximizes matches with the building highlighted in red, the street on its left, and the garden
between buildings, which are largely occluded in the other views. Finally, in the last row, the
first 2 most correlated views according to the framework output are corrupted with a simple
Gaussian blur to simulate out-of-focus images and rank once more. Can be observed that the
proposed framework now assigns the lowest score to the out-of-focus views, although these
were the best before. These experiments qualitatively demonstrate that RAMDepth approach
takes deeply into account not only the relative position between views but also the 3D structure
of the scene and the quality of matches it can recover from the available views. Thus, the
proposed framework provides a view-centric methodology to discard poorly correlated views
(e.g. out-of-focus, blurred, with moving objects), which cannot be achieved by reasoning only
about relative pose.

Source Views Scheduling Analysis. As already previously detailed, a simple round-robin
schedule is applied to sample the source view used to sample correlation matches at each net-
work iteration. This approach does not cause any particular problem. Indeed, even though the
source view is changed at each iteration the depth state is independent of the latter, thus enforc-
ing consistency. To assess that the proposed approach is not significantly affected by source
views ordering, a simple experiment is performed: on the Blended [173] test set, metrics can
be computed for each permutation of the source views, and then the standard deviation can be
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Figure 6.7. Wrong Depth Range Effects Example on Blended On left: five views from
the Blended [173] scene and their ground-truth depth, followed by depth maps estimated by
RAMDepth, [48] and [150]. RAMDepth does not require any knowledge about the depth range
and thus provides consistently smoother depth maps on the entire scene, even out of the pre-
defined range where [48] and [150] struggle. On the right: 3D reconstruction obtained by
merging the predictions, the floor reconstruction is limited to better highlight the object details,
despite the fact that RAMDepth is able to reconstruct the whole area.

evaluated. In Table 6.5 are reported the results of such experiment. The very low variance re-
ported at the very bottom confirms how the ordering used to iterate over the source views has a
negligible impact on the final quality of the predicted depth map.

Impact of the Depth Range. An example showing the negative impact that an inaccurate depth
range can produce on the predictions of existing frameworks is reported in this section. Figure
6.7 shows, from top to bottom, five images taken from Blended, their corresponding ground-
truth depth, and the predictions by RAMDepth and two previous works [48, 6]. These latter
expose large artifacts in the farthest regions of the images, caused by the inaccurate depth range
over which they operate. Indeed, as can be noticed in the second row, ground-truth depth is not
provided for those regions, and thus the depth range used for computing the depth map does not
contain them – since it is estimated directly from ground-truth. On the contrary, RAMDepth
produces clean and detailed depth maps even in these portions of the images.

Architecture Details. In this section, the core components of RAMDepth are described in
detail. In Table 6.6, each module is detailed in terms of layers along with their parameters,
inputs (in red), and outputs (in blue). Input source and target views are encoded through the
Feature Encoder, then disentangled information is extracted from the reference view through the
Reference Encoder (called context in Table 6.6 and accounting 128 channels). Depth, hidden
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Left Image Right Image Prediction Ground Truth

Figure 6.8. Qualitative results on UnrealStereo4K Stereo. The pre-trained model on Blended
are used to show the capability of the proposed method to generalize across datasets.

state, and reference features are used to predict sampling offsets, correlation scores are sampled
according to the methodology in previous sections and the recurrent block predicts a new hidden
state and a ∆depth update. Finally, a shallow module predicts upsampling weights from the
hidden state and reference information and performs convex upsampling. RAMDepth is trained
on Blended, TartanAir, and DTU with AdamW, learning rate 10−4 and weight decay 10−5.
Gradients are always clipped with global norm 1 to stabilize the behavior of Gated Recurrent
Units. On Blended, the relative pose translation (between the reference and source views) is
normalized to have a mean value of 1 for better numerical stability. On Blended, 200K steps
are performed, and then 100K steps with a learning rate of 10−5 are applied for fine-tuning. On
DTU, the 200K Blended checkpoint is fine-tuned for 100K steps with a learning rate of 10−4.
Training is always with batch size 1 on 2 RTX 3090 in mixed precision. During training and
evaluation, 10 cycles over the input source views are always used, that is 40 total steps with 4
source views, except for the UnrealStereo4K stereo benchmark where 40 total updating steps on
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Figure 6.9. Qualitative results on DTU. 3D reconstruction of different objects and scenes pro-
vided by DTU to assess the capability of the proposed approach to generate accurate point cloud
reconstructions even though RAMDepth is focused on highly detailed depth map estimation.
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Figure 6.10. Keyframes Ranking Example. In the first row, a scene from Blended containing
5 source views in random order is showed. In the second row, the framework reordering. If
Gaussian blur is applied to the images with the best score and apply again reordering (last row),
RAMDepth assigns to them the worst score this time.

the unique source view available are used. In all the experiments, dynamic offsets are computed
in a neighborhood of size ||N || = 9× 9 for a total of 81 sampling coordinates.
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Permutation MAE RMSE >1 m >2 m >3 m >4 m >8 m
N. 1 0.316181 1.186300 0.069861 0.031390 0.017675 0.011238 0.003503
N. 2 0.317703 1.188342 0.070145 0.031508 0.017682 0.011203 0.003491
N. 3 0.318048 1.187708 0.070530 0.031465 0.017649 0.011226 0.003501
N. 4 0.319271 1.187811 0.070630 0.031412 0.017647 0.011224 0.003536
N. 5 0.315665 1.186850 0.069935 0.031355 0.017527 0.011122 0.003460
N. 6 0.316765 1.187873 0.070035 0.031531 0.017691 0.011216 0.003522
Std. 0.001328 0.000755 0.000319 0.000069 0.000061 0.000042 0.000026

Table 6.5. Source Views Scheduling Analysis. For each sample in the test set of Blended
each source views permutation is evaluated the standard deviation of the metrics is computed.
3 source views are used to limit the number of permutations.

Name Layer K S In/Out Input
Residual Block Stride 2

conv0 Conv2D + BatchNorm2D + ReLU 3 2 In/Out input
conv1 Conv2D + BatchNorm2D + ReLU 3 1 Out/Out conv0
downs Conv2D + BatchNorm2D + ReLU 1 2 In/Out input
out ReLU - - Out/Out downs + conv1

Residual Block Stride 1
conv0 Conv2D + BatchNorm2D + ReLU 3 2 In/Out input
conv1 Conv2D + BatchNorm2D + ReLU 3 1 Out/Out conv0
out ReLU - - Out/Out conv1 + input

Feature Encoder & Reference Encoder
conv0 Conv2D + BatchNorm2D + ReLU 7 2 3/64 image
conv1 Residual Block Stride 2 - - 64/64 conv0
conv2 Residual Block Stride 1 - - 64/64 conv1
conv3 Residual Block Stride 2 - - 64/96 conv2
conv4 Residual Block Stride 1 - - 96/96 conv3
conv5 Residual Block Stride 2 - - 96/128 conv4
conv6 Residual Block Stride 1 - - 128/128 conv5
conv7 Residual Block Stride 2 - - 96/128 conv6
conv8 Residual Block Stride 1 - - 128/128 conv7
feats Conv2D 1 1 128/256 conv8

Name Layer K S In/Out Input
Offsets Computation

conv0 Conv2D + BatchNorm2D + ReLU 3 1 128+128+1/256
context, hiddens−1,
depths−1

offsets Conv2D 1 1 256/9×9×2 conv0
Recurrent Block

corr0 Conv2D + ReLU 1 1 9×9/256 corrfeats
corr1 Conv2D + ReLU 3 1 256/192 corr0
dfeats0 Conv2D + ReLU 7 1 1/128 depths−1

dfeats1 Conv2D + ReLU 3 1 128/64 dfeats0
conv0 Conv2D + ReLU 3 1 192+64/128-1 dfeats1, corr1

hidden0 ConvGRU2D (1, 5) 1 128+1+128+128/128
context, conv0,
depths−1, hiddens−1

hiddens ConvGRU2D (5, 1) 1 128/128 hidden0

conv1 Conv2D + ReLU 3 1 128/64 hiddens

∆depth Conv2D + ReLU 3 1 64/1 conv1
Convex Upsampling

conv0 Conv2D + ReLU 3 1 128+256/128+256 hiddens, context
upmask Conv2D 1 1 128+256/8×8×9 conv0

Table 6.6. Framework Modules Description. Each learned component of RAMDepth. Each
module inputs and outputs are shown in red and blue, respectively.



Chapter 7

ToF and RGB Video Streams Integration

Low Frame Rate Depth Sensor (e.g., 10 FPS) Low Frame Rate Depth Sensor (e.g., 10 FPS) + High Frame Rate Color Camera (e.g., 50 FPS)
(a) Depth Completion (d) Depth on Demand (ours)(b) Multi-View Stereo (c) (Projected) Depth Completion

(a) (b) (c) (d)

Figure 7.1. 3D reconstruction with a low frame rate, sparse depth sensor. Running depth
completion (a) on low FPS, sparse depth maps generate holes in the final reconstruction. Adding
a higher FPS color camera allows for obtaining depth from Multi-View Stereo (b) or projecting
depth to nearby color views and running completion (c), with unsatisfactory results. DoD (d)
performs temporal completion using two views and one sparse depth frame, yielding denser
and more accurate meshes.

7.1 Introduction

High frame rate and accurate depth estimation play an important role in several tasks crucial
to robotics and automotive perception. To date, this can be achieved through ToF and LiDAR
devices for indoor and outdoor applications, respectively. However, their applicability is lim-
ited by low frame rate, energy consumption, and spatial sparsity. In this Chapter is proposed
Depth on Demand (DoD) – a framework that allows for accurate temporal and spatial depth
densification achieved by exploiting a high frame rate RGB sensor coupled with a potentially
lower frame rate and sparse active depth sensor. Such a framework jointly enables lower energy
consumption and denser shape reconstruction, by significantly reducing the streaming require-
ments on the depth sensor thanks to its three core stages: i) multi-modal encoding, ii) iterative

61
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multi-modal integration, and iii) depth decoding. Extended evidence is reported assessing the
effectiveness of DoD on indoor and outdoor video datasets, covering both environment scan-
ning and automotive perception use cases. In the following, the intrinsic issues related to active
depth sensing are deeply and how DoD addresses them is deeply described.

In the last decade, RGB-D camera systems have become prominent in fields such as robotics,
automotive, and augmented reality, and have scaled down from Kinect v1 to mobile handheld
devices such as the Apple iPad. In such systems, one or more conventional RGB cameras are
coupled with an active depth sensor, i.e., a device that leverages active illumination to infer the
3D structure of the framed scene [113]. Among these sensors, Time-of-Flight (ToF) cameras
infer the distance by emitting modulated infrared light into the scene and measuring its return
time [113, 8, 5]. On the other hand, Light Detection And Ranging (LiDAR) sensors allow for
long-range measurements up to hundreds of meters with or without sunlight at much higher
energy consumption and footprint.

Despite the reconstruction accuracy of active depth sensors, their inherent structure places lim-
its on their usability. ToF sensors are mainly used for mobile devices and can achieve high
frame rates, but imply high energy consumption compared to the limited available battery and
overheating. Usually, a drastic reduction of their frame rate is required since it corresponds to a
drastic reduction in energy consumption. On the other hand, LiDAR sensors are bulky devices
mainly used for autonomous driving, and their moving mechanical components (scanning mir-
rors) limit the frame rate. Finally, both these technologies manifest spatial sparsity, generating
meaningful predictions only for specific spatial locations. Such sparsity can intentionally be in-
duced to minimize acquisition time (in scanned LiDAR [91, 7]) or energy consumption (in ToF
[63, 89]). Due to these constraints, the adoption of RGB-D camera systems is difficult in vari-
ous scenarios. Indeed, Augmented Reality (AR) requires extremely low-power camera systems
to fit severely constrained energy budgets. Autonomous driving requires high frame rate depth
perception to allow reactive safety-critical applications. 3D shape reconstruction from video
streams benefits high frame rate reconstruction to achieve dense meshes without requiring very
slow movements from the operator.

This chapter proposes Depth on Demand (DoD), a framework addressing the three major issues
related to active depth sensors in streaming dense depth maps – i.e. spatial sparsity, energy
consumption, and limited frame rate. The spatial resolution problem represents a well-known
issue deeply investigated by the research community through depth completion [56]. On the
other hand, energy footprint and low frame rate issues have often been ignored in the literature,
although prominent in the deployment of RGB-D systems. It’s worth observing that reducing
the active sensor temporal resolution – i.e. its frame rate – power consumption can be modulated
accordingly. Indeed, ToF sensors’ energy consumption scales almost linearly with frame rate
[16]. DoD allows coupling together an active depth sensor and an RGB camera to stream dense
depth at the RGB camera frame rate, which may be much higher than the former one. The
benefit is twofold. On the one hand, it allows the adaptation of active depth sensor energy
consumption to the task specifications, thus meeting the energy constraints of the ToF use case.
On the other, it unlocks frame rates higher than the maximum attainable by the active depth
sensor itself – this effectively tackles the LiDAR use case, where acquisition is limited to 10
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Figure 7.2. Temporal Depth Stream Densification Setup. On the left, is an example of DoD
applied to an indoor video sequence where only a few frames (red views) are associated with
sparse depth data. On the right, is a close-up example of the supposed setup. Using an RGB-D
video stream with only a few sparse depth frames requires the integration of monocular, multi-
view, and sparse depth cues. DoD smoothly enables the recovery of temporal and spatial depth
resolution in such a scenario.

Hz while RGB cameras can easily attain 30 Hz or more. Increasing the depth perception frame
rate is of great interest in safety-critical applications such as autonomous driving. However,
decoupling frame rates benefits also 3D scene reconstruction as it reduces energy consumption
and allows for denser reconstructions. This is showcased in Figure 7.1: by performing depth
completion only at a low frame rate (a) several holes appear in the mesh. Integrating information
from a higher frame rate RGB camera (b-d) produces denser meshes. A simple solution to
achieve the latter would be relying on Multi-View Stereo algorithms without using depth sensor
data (b), or performing depth completion by projecting previous sparse depth points (c). Both
these approaches introduce several artifacts as in the highlighted boxes. DoD produces denser
and more accurate reconstructions (d). To summarize, this chapter’s main contributions are as
follows:

• Introduction of the temporal depth stream densification task, in which the aim concernings
matching the spatial and temporal resolution of a sparse active sensor with one of a higher
frame rate RGB camera.

• Design of a deep architecture devoted to this purpose, exploiting sparse depth measure-
ments and RGB data collected at time t− n to obtain a dense depth map aligned with the
RGB frame at time t.

• Evaluation of the proposed framework on several datasets featuring RGB-D video streams
and comparison with existing approaches compatible with the outlined setting, proving
the superiority of DoD.

7.2 Proposed Framework

DoD consists of exploiting the higher framerate of an RGB camera to increase the temporal
resolution of an active depth sensor. This is carried out by leveraging multi-view geometry on
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the RGB video stream and estimating depth for any RGB frame, both those for which mea-
surements from the active sensor are available and those for which are not. To this aim, the
minimum amount of information needed to exploit geometry is leveraged – i.e. for each RGB
view on which computing depth is required (the target view) it is retained a previously collected
RGB frame (source view) and sparse depth points (source depth). The supposed setup is illus-
trated in Figure 7.2. The framework can be conceptually divided into a set of three sequential
steps: i) multi-modal encoding, ii) iterative multi-modal integration, and iii) depth decoding.

7.2.1 Multi-Modal Encoding

DoD exploits information from different modalities to perceive 3D structures – i.e., multi-view
geometry, monocular cues, and sparse depth measurements. To this extent, the framework can
be defined as multi-modal. Accordingly, it is important to properly extract useful cues for each
of such information sources. Instead of performing early fusion [40], domain-appropriate fea-
tures are separately computed and a fusion is delegated to a specific module, detailed in Section
7.2.2, to properly integrate them in a common representation. In this section, the encoding of
each domain is specified, while Figure 7.3 depicts an overall overview of DoD.

Geometry Encoding. Multi-view geometry cues stem from the capability to perform matching.
The first layers of a ResNet18 [53] are employed to design a shared encoder, used to extract
features F t,F s at 1

8
spatial resolution, from target and source views respectively. Such features

are exploited to compute correlation scores between pixels of the target view and those of the
source view. Given the predicted depth at a specific coordinate of the target view Dut,vt , the
matching coordinates of the same point in the source view can be obtained as

qs = KPDut,vtK
−1qt (7.1)

where K and P are the camera intrinsic parameters and the relative pose between target and
source views, while qs = [us vs 1]

T and qt = [ut vt 1]
T are homogeneous point coordinates in

the two frames respectively. These latter coordinates allow for sampling features from F s and
F t and compute per-point correlation cues as

C =
1√
F

F∑
f=1

F t
utvtfF

s
usvsf (7.2)

However, single pixel-wise correlation scores are not sufficient to guide the depth update pro-
cess effectively. According to multi-view geometry, as the depth value of a pixel in the target
image changes, its corresponding matching pixel in the source view is supposed to move along
the epipolar line, moving away or approaching the epipole. Meaningful multi-view cues are
guaranteed only if the correct updating direction for estimated depth can be inferred. Thus,
for each Dutvt a set of depth hypotheses are sampled relative to the former, moving along the
epipolar line. Then, for each of them, a patch of correlation values is computed to increase the
distinctiveness of each sampling. Such procedure generates the “Epipolar Correlation Features”
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Figure 7.3. Depth on Demand Framework Overview. DoD embeds multi-view cues and
monocular features in the Visual Cues Integration, then integrates sparse depth updates in the
Depth Cues Integration. To properly exploit both these information these stages are applied
iteratively in the form of depth updates.

represented in the early stages of Figure 7.3. If not otherwise specified, 41 3 × 3 patches are
linearly sampled within a range of 2 meters, which corresponds to sampling at intervals of 0.1
meters.

Monocular Encoding. Sparse depth information and multi-view correlation data are crucial to
deliver accurate 3D reconstructions. Nonetheless, such information fails in the case of moving
objects or is not available when large camera pose changes happen, potentially leaving large
areas of the field of view empty of information. Thus, it is important to provide a fallback
monocular source of information to smoothly complete the not-covered areas. Purposely, a
monocular encoder exploiting the first layers of a ResNet34 [53] is introduced to output multi-
scale feature maps F̃ t

2, F̃ t
4 and F̃ t

8 at respectively 1
2
, 1
4
, 1
8

resolution out of the target view alone.

Sparse Depth Encoding. Finally, the availability of sparse depth data obtained from an active
sensor captured at a previous time instant is assumed. Such sparse depth points are projected
onto the target view by means of pose information, obtaining a coarse depth map D̃ that will
be exploited for both initialization and iterative multi-modal fusion. Since projecting at a lower
resolution may lead to inaccurate positioning when building the sparse depth map, sub-pixel
projection coordinates are also propagated too. Unlike the depth completion task, projected
sparse depth is characterized by errors on moving objects and occlusion, making it more difficult
to exploit as a source. Their management is delegated to the integration phase, where the
exploitation of multiple modalities ameliorates such issues.

7.2.2 Multi-Modal Integration

Once features have been extracted for each input modality, a fusion module is employed to
combine such information in the common representation of a target-aligned depth map, that is
iteratively refined for a fixed number of steps N . The integration module is depicted in Figure
7.3 and can be logically divided into two sequential components.

Visual Cues Integration. The first stage of the fusing module is in charge of extracting depth-
related features by visual cues only. Features extracted in the Monocular Encoding step are
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integrated with the geometric information. This latter consists of a set of correlation features
extracted by sampling over the epipolar lines in a relative range with respect to the current depth
estimate, as detailed in Section 7.2.1. All these cues are embedded in the hidden state (H)Ni of a
Gated Recurrent Unit, where (·)Ni indicates a sequence of tensors across a set of iterations from
i = 0 to i = N − 1. (H)Ni=0 is initialized with a deep convolutional module fed with monocular
features.

Depth Cues Integration. The second stage of the fusing module takes into account sparse
depth data availability. First, a branch predicts a depth update ∆Dc from visual depth-related
cues only. Then, a sparse depth update ∆Dd is computed pixel-wise versus the current predic-
tion as

∆Dd =

{
D̃i,j −Di,j if D̃i,j > 0

0 otherwise
(7.3)

It is worth observing that this latter step generates an update that seeks to refine the current
prediction by injecting the exact sparse points, for which zero means either that the depth is
correct versus a priori information or that the depth measurement is missing for a specific pixel.
Finally, the fusion of these updates is carried out by a further branch predicting ∆Df , which
is used to update the current depth prediction. This integration procedure allows for filtering
the sparse depth which is likely to contain several outliers due to reprojection – e.g., as in the
case of background points being blended with foreground points at occlusions [27]. Moreover,
since the sparse depth data is fused in the update space, missing values can be integrated as zero
updates, effectively dealing with the varying sparsity problem often affecting depth completion
methods [28].

Iterations and Depth Initialization. The previously described multi-modal updating strategy
is applied multiple times, generating at each iteration a refined depth map that is then used at the
subsequent iteration to improve the multi-view correlation samples and the sparse depth update.
Accordingly, an initial depth state is required: the sparse depth data are used to initialize the
depth for the first iteration, filling the missing coordinates with the mean value of the valid ones.
In case no projected sparse depth points are available in the target view a reasonable depth value
of 3 meters is used as initialization.

7.2.3 Depth Decoding

The multi-modal integration module outputs a sequence of incrementally refined depth maps
(D)Ni at 1

8
resolution. While working at a lower resolution is beneficial in terms of memory

and computational time, a method to perform effective upsampling is required. A learned pro-
cedure inspired by convex upsampling [139] is exploited, given the depth map at 1

8
resolution,

it’s employed a set of three modules θs(·) s ∈ {2, 4, 8} performing a 2× resolution upsam-
pling composed of two convolutional layers. Each module takes in input the depth map to be
upsampled, monocular context information F̃s s ∈ {2, 4, 8} and a set of features from the pre-
vious step, then it outputs H

s
× W

s
×M feature channels and an upsampling mask Ws of shape
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Method Views
2D Metrics 3D Metrics

MAE↓ RMSE↓ Abs Rel↓ Sq Rel↓ σ < 1.05↑ Comp↓ Acc↓ Chamfer↓ Prec↑ Recall↑ F-Score↑
M

V
S

Sayed et al. [120] 8 0.093 0.151 0.047 0.016 0.717 0.062 0.056 0.059 0.702 0.646 0.671
Wang et al. [150] 8 0.184 0.270 0.102 0.048 0.437 0.106 0.086 0.096 0.511 0.433 0.467
Gu et al. [48] 8 0.170 0.254 0.091 0.044 0.507 0.086 0.082 0.084 0.545 0.498 0.519
Cheng et al. [17] 8 0.167 0.252 0.088 0.042 0.512 0.084 0.082 0.083 0.547 0.502 0.522

M
V

S
+

D
ep

th

Guided PatchMatch-Net [150]+[105] 8 0.183 0.267 0.102 0.048 0.437 0.106 0.085 0.095 0.512 0.432 0.467
Guided CAS-MVSNet [48]+[105] 8 0.124 0.203 0.068 0.029 0.635 0.064 0.061 0.062 0.667 0.634 0.649
Guided UCS-Net [17]+[105] 8 0.133 0.210 0.074 0.030 0.576 0.070 0.065 0.068 0.616 0.578 0.595

Guided PatchMatch-Net [150]+[105] 2 0.291 0.384 0.160 0.096 0.284 0.135 0.125 0.130 0.406 0.315 0.353
Guided CAS-MVSNet [48]+[105] 2 0.286 0.388 0.154 0.094 0.304 0.099 0.109 0.104 0.447 0.419 0.431
Guided UCS-Net [17]+[105] 2 0.258 0.353 0.148 0.093 0.328 0.103 0.099 0.101 0.451 0.385 0.414

D
ep

th

SpAgNet [28] 1 0.069 0.138 0.039 0.016 0.824 0.046 0.037 0.042 0.836 0.789 0.810
NLSPN [99] 1 0.067 0.137 0.037 0.017 0.847 0.046 0.035 0.041 0.851 0.799 0.822
CompletionFormer [182] 1 0.075 0.149 0.041 0.019 0.829 0.047 0.037 0.042 0.846 0.795 0.818
DoD 2 0.041 0.103 0.022 0.008 0.899 0.039 0.025 0.032 0.904 0.845 0.871

(a) (b)

Method
3D Metrics

Comp↓ Acc↓ Chamfer↓ Prec↑ Recall↑ F-Score↑
DoD – Low Temporal Resolution 0.064 0.014 0.039 0.961 0.778 0.856
DoD – High Temporal Resolution 0.039 0.025 0.032 0.904 0.845 0.871

(c)

Table 7.1. Results on ScanNetV2. On top, (a) 2D and (b) 3D performance by DoD and
competing approaches. At the bottom, (c) 3D performance by DoD with low/high temporal
resolution. The best , second -best and third -best are highlighted.

H
s
× W

s
× (2 × 2 × 9). This latter is used to perform a weighted combination over the 3 × 3

neighborhood of each depth value normalized by a softmax operation and yields a 2× upsam-
pled depth map. Features are upsampled by nearest neighbor interpolation. The first module
θ8(·) takes in input the last hidden state (H)Ni=N−1. This approach enables both embedding
fine-grain monocular contextual information and enforcing locally smooth and consistent depth
propagation. Moreover, it allows for a drastic reduction of the upsampling module weights
number with respect to conventional convex upsampling. While optimizing, the upsampling
module is applied at each iteration for supervision; however, at deploying time it can be used
only once for the final prediction, to maximize efficiency.

7.3 Experimental Results

DoD is evaluated in a wide range of scenarios – i.e. indoor video sequences, aerial scenes, au-
tomotive environments – to evaluate its accuracy within single domains, as well as its general-
ization capabilities. Since each setting manifests its own challenges, experiments are classified
by scenario and highlight the main difficulties faced on a per-dataset basis.

Training Protocol. For each target frame Ii is associated a buffer of previous N frames
{(Ij, D̃j) : j ∈ [i − N, i − 1]}. Then, at each iteration, a frame from such buffer is se-
lected randomly as the source one. This is done to augment as much as possible the number of
relative poses observed between the source and target view. Random color jitter and horizontal
flips are applied, adjusting the pose accordingly. For each sample, progressively refined depth
maps yielded by the multi-modal integration unit are recorded and upsampled to full resolution
with the depth decoding approach described in Section 7.2.3. Supervision of such a sequence of
depth maps (D)Ni exploits an exponentially decayed ℓ1-loss, as described in Equation 7.4 with
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Source View Target View NLSPN [99] SpAgNet [28] Depth on Demand

NLSPN [99] SpAgNet [28] Depth on Demand

Figure 7.4. Qualitative results on ScanNetV2. On top: from left to right the source view with
sparse depth points, the target view with projected sparse depth points, and predictions by com-
petitors and DoD. At the bottom: reconstructed meshes by competitors and DoD, respectively
at low and high temporal resolution.

decaying factor ν = 0.8.

L =
N∑
i=1

νN−i||(D)Ni −Dgt||1 (7.4)

Testing Protocol. While testing, an RGB video stream with a higher frame rate than the active
depth sensor is assumed. Thus, given a sequence of RGB frames [I0, . . . , In] only a few of
them will be associated with a depth frame {D̃0, . . . , D̃m}. In each testing video sequence,
each RGB view Ii is linked with the immediately preceding RGB image coupled with a depth
frame (Ij, D̃j), j ≤ i. DoD and competing methods are fed with such data to predict a dense
depth map. By modulating the temporal sparsification ratio between the depth and RGB frames
τ = fD/fRGB the frequency of sparse depth frames can be controlled; with ratio 1 the task is
equivalent to depth completion as depth would be given at every frame.

Competitors. To fairly compare with existing approaches, each one is retrained following the
authors’ guidelines but applying the previously described training protocol to increase their ro-
bustness to the peculiarities of the proposed task since the standard original training protocol for
depth completion struggles at dealing with the considered setup. Concerning depth completion,
state-of-the-art frameworks [27, 99, 182] are used for comparison projecting sparse depth points
from the source frame onto the target view Ii. Concerning Multi-View Stereo methods, [105]
stems as a natural competitor since it enables standard MVS frameworks [150, 48, 17] to exploit
both sparse depth and multi-view data natively. Also in this latter case, training happens with
the aforementioned scheme. Since Multi-View Stereo methods usually exploit a large number
of views, training, and evaluation is performed with both 2 and 8 input views.
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Source View Target View NLSPN [99] SpAgNet [28] Depth on Demand

Figure 7.5. Qualitative results on 7Scenes. From left to right: source view with sparse depth
points, the target view with projected sparse depth points, and predictions by DoD and existing
methods.

7.3.1 Indoor Scenario

For indoor applications, ToF sensors are a popular solution to perceive depth, even though
they are characterized by relatively low spatial resolution and a short working range. In this
setting, the temporal resolution of the ToF sensor is limited as well, in order to reduce power
consumption and overheating. The main challenge in indoor environments is the FoV overlap
across consecutive views, which may vary from being almost complete – e.g., the camera is not
moving – to completely absent. DoD is trained on ScanNetV2 [29] and tested on both this latter
and 7Scenes [45], following the protocols described in Section 7.3 by randomly sampling 500
sparse depth points consistently with the depth completion literature [18, 99, 82]. For testing,
depth is sparsified over time according to τ = 0.2.

ScanNetV2. ScanNetV2 [29] is an RGB-D video dataset containing more than 1500 scans of
indoor environments. Table 7.1 (a) shows the 2D performance of DoD on standard metrics for
depth map evaluation. At the top, the performance of RGB-only methods [120, 150, 48, 17]
is reported with 8 views in input. Below, is the performance of [105] with either 8 or 2 input
views and projected sparse depth. In such methods, integrating sparse depth in the proposed
applicative scenario provides a small improvement, nullified by using only 2 views, i.e. the
target and a single source view. this may be ascribed to their specific design, poor at processing
sequential frames. On the contrary, depth completion methods [28, 99, 182] relying only on the
target view and projected sparse depth from the source view – showed at the bottom of Table 7.1
– result in being the most competitive solution for temporal depth stream densification among
those existing in the literature. Eventually, DoD indisputably outperforms completion models
on any metric, thanks to the joint use of monocular, multi-view, and sparse depth cues. This
superior accuracy of the predicted depth maps also translates into more accurate, dense 3D
reconstructions: Table 7.1 (b) shows how even a few temporally sparse depth measurements
largely improve performance versus RGB-only reconstruction carried out by state-of-the-art
methods. Again, DoD outperforms existing depth completion solutions by an evident margin.
Table 7.1 (c), instead, highlights the effect of increasing the temporal resolution at which depth
is estimated. Can be noticed how keeping a low temporal resolution – i.e., the same as the depth
sensors – yields slightly accurate reconstructed meshes, while a higher temporal resolution
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Method Views
2D Metrics

MAE↓ RMSE↓ Abs Rel↓ Sq Rel↓ σ < 1.05↑
M

V
S

Sayed et al. [120] 8 0.121 0.169 0.068 0.021 0.536
Wang et al. [150] 8 0.193 0.268 0.112 0.048 0.390
Gu et al. [48] 8 0.177 0.251 0.101 0.041 0.421
Cheng et al. [17] 8 0.176 0.250 0.099 0.040 0.428

M
V

S
+

D
ep

th

Guided PatchMatch-Net [150]+[105] 8 0.191 0.264 0.112 0.047 0.391
Guided CAS-MVSNet [48]+[105] 8 0.120 0.192 0.071 0.024 0.587
Guided UCS-Net [17]+[105] 8 0.141 0.209 0.083 0.028 0.484

Guided PatchMatch-Net [150]+[105] 2 0.267 0.345 0.158 0.080 0.268
Guided CAS-MVSNet [48]+[105] 2 0.250 0.338 0.141 0.069 0.303
Guided UCS-Net [17]+[105] 2 0.228 0.306 0.139 0.063 0.303

D
ep

th

SpAgNet [28] 1 0.068 0.139 0.040 0.014 0.806
NLSPN [99] 1 0.061 0.134 0.037 0.014 0.842
CompletionFormer [182] 1 0.067 0.144 0.039 0.015 0.827
DoD 2 0.043 0.106 0.025 0.008 0.896

Table 7.2. Results on 7Scenes. 2D performance by DoD and competing approaches in gener-
alization on 7Scenes. The best , second -best and third -best are highlighted.

Method Views
2D Metrics

MAE↓ RMSE↓ Abs Rel↓ Sq Rel↓ σ < 1.05↑

M
V

S
+

D
ep

th

Guided PatchMatch-Net [150]+[105] 8 2.353 5.259 0.234 2.285 0.470
Guided CAS-MVSNet [48]+[105] 8 1.296 3.753 0.126 1.270 0.647
Guided UCS-Net [17]+[105] 8 1.231 3.624 0.115 1.106 0.675

Guided PatchMatch-Net [150]+[105] 2 3.629 6.564 0.438 3.669 0.230
Guided CAS-MVSNet [48]+[105] 2 1.985 4.845 0.185 1.794 0.492
Guided UCS-Net [17]+[105] 2 1.804 4.513 0.177 1.526 0.486

D
ep

th

SpAgNet [28] 1 0.841 2.273 0.090 0.561 0.718
NLSPN [99] 1 0.941 2.327 0.113 0.623 0.613
CompletionFormer [182] 1 0.961 2.411 0.106 0.608 0.625
DoD 2 0.648 2.230 0.056 0.490 0.832

Table 7.3. Results on TartanAir. 2D performance of DoD and competing approaches on
TartanAir [153]. The best , second -best and third -best are highlighted.

trades accuracy to increase completeness. Nonetheless, maintaining a high temporal resolution
yields better F-Scores overall. Finally, Figure 7.4 shows some qualitative results.

7Scenes. Generalization capabilities of DoD and the existing alternatives are assessed in differ-
ent indoor environments on the 7Scenes dataset [130], by testing the models trained on Scan-
NetV2 [29] without any fine-tuning. Results are collected in Table 7.2, where can be noticed
a trend consistent with what was observed on ScanNetV2: DoD shows remarkable capabil-
ities concerning generalization in the indoor scenario, staying in the lead of the competing
approaches. In Figure 7.5 a comparison of handling erroneous sparse depth points due to oc-
clusion is provided, DoD is able to disregard outliers by exploiting multi-view cues.

7.3.2 Outdoor Scenario

3D reconstruction in outdoor environments poses significantly different challenges compared
to indoor – e.g., it features much larger depth ranges and, possibly, scattering of the depth
measurements. To study temporal depth completion in this context, two datasets are leveraged:
TartanAir [153] and KITTI [44].
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Source View Target View Prediction

Figure 7.6. KITTI Setup. On KITTI, the 360° LiDAR point cloud is projected over the target
point of view. If the camera is moving forward – as usually happens – the furthest scan lines
are used only, leading to noisy and spaced depth values on the target view. However, the FoV
of the target image is usually fully covered.

Method Views
2D Metrics – LiDAR 1Hz 2D Metrics – LiDAR 0.5Hz

MAE↓ RMSE↓ Abs Rel↓ Sq Rel↓ σ < 1.05↑ MAE↓ RMSE↓ Abs Rel↓ Sq Rel↓ σ < 1.05↑

M
V

S
+

D
ep

th

Guided PatchMatch-Net [150]+[105] 8 2.649 5.149 0.216 3.090 0.453 2.809 5.353 0.232 3.330 0.416
Guided CAS-MVSNet [48]+[105] 8 0.608 2.126 0.034 0.229 0.888 0.873 2.501 0.052 0.350 0.786
Guided UCS-Net [17]+[105] 8 0.575 1.930 0.034 0.229 0.881 0.828 2.321 0.050 0.303 0.789

Guided PatchMatch-Net [150]+[105] 2 1.898 4.165 0.117 0.863 0.496 2.282 4.564 0.145 1.154 0.404
Guided CAS-MVSNet [48]+[105] 2 0.676 2.203 0.035 0.225 0.872 0.916 2.562 0.052 0.328 0.773
Guided UCS-Net [17]+[105] 2 0.545 1.859 0.030 0.146 0.885 0.837 2.330 0.049 0.277 0.779

D
ep

th

SpAgNet [28] 1 0.532 1.626 0.027 0.095 0.879 0.687 1.865 0.037 0.133 0.808
NLSPN [99] 1 0.426 1.282 0.023 0.069 0.902 0.614 1.591 0.035 0.121 0.827
CompletionFormer [182] 1 0.348 1.299 0.019 0.085 0.939 0.555 1.695 0.031 0.150 0.868
DoD 2 0.347 1.288 0.017 0.061 0.944 0.492 1.544 0.025 0.094 0.890

Table 7.4. Results on KITTI. 2D performance by DoD and competing approaches. The best ,
second -best and third -best are highlighted.

TartanAir. TartanAir [153] is a large synthetic dataset featuring photo-realistic environments
with different weather and light conditions. It provides a drone-like point of view in a wide
set of scenarios featuring high-frequency details and fast camera motion. Table 7.3 collects the
results achieved by existing methods combining multi-view geometry and sparse depth mea-
surements [105] or performing depth completion [99, 182, 28] and DoD. As for the indoor
case, completion models largely outperform competitor networks, confirming the limitations of
these latter at dealing with the considered problem. Again, DoD shines in accuracy, achieving
the lowest errors by a notable margin.

KITTI. The KITTI [44] dataset is a well-known outdoor benchmark with LiDAR data, widely
used for visual odometry, monocular depth prediction, and depth completion. For automotive
applications, 360° LiDAR sensors are usually employed, providing long-range depth at a fre-
quency limited by the revolution time required by the rotating laser beams. Thus, despite the
color cameras can acquire frames at a much higher rate, this is usually constrained to the LiDAR
frame rate when performing tasks exploiting both – e.g., depth completion. Nonetheless, when
the LiDAR scans are projected from a previous frame over a consequent one as it is done to
perform temporal depth completion, the target FoV is almost always fully covered with sparse
depth points, yet with higher spatial sparsity. Figure 7.6 shows an example where a LiDAR
point cloud collected at a certain time frame is projected over an RGB image collected there-
after, with the camera having moved forward in between the two acquisitions. This causes only
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Figure 7.7. Memory and Time Study. Time and memory footprint in evaluation on a single
RTX 3090 GPU of DoD and competing methods 7Scenes.

the furthest scan lines to be projected over the target view, looking sparser, noisier, and mani-
festing errors due to occlusions or moving objects. Large areas missing any depth measure may
occur in case of occlusion caused by objects in the source view, but still, the FoV is usually
fully covered. In this scenario, DoD is at a disadvantage compared to other methods cause i)
the reduced multi-view visual overlap on long distances does not provide large benefits and ii)
the spatial distribution of the depth measurements is more steady.

Table 7.4 shows the results achieved by existing methods and DoD on this dataset, by simulat-
ing different temporal sparsification levels – i.e. RGB camera at 10Hz and the LiDAR sensor
at respectively 1Hz and 0.5Hz. An off-the-shelf keypoint matcher [83], perspective-n-points
[74], and locally-optimized RANSAC [26] are exploited to estimate accurate pose, as already
done in the depth completion literature [91]. Despite the more challenging setting, DoD still
outperforms any existing alternative.

7.3.3 Temporal Sparsification Study

The sensitivity of DoD to different temporal densities – i.e. frame rate imbalances between the
RGB and depth sensor (that is, τ = fD/fRGB) – is deeply studied. In Figure 7.7(a) it is reported
the Mean Absolute Error (MAE) on the 7Scenes test split with the testing protocol described in
Section 7.3, while varying the temporal sparsification τ from 0.1 – i.e. one out of ten frames
– to 1. Actually, when τ = 1 the source view always matches with the target view, and sparse
points are aligned with it. Thus, τ = 1 is equivalent to the well-studied depth completion case.
This may also occur in real use cases where the camera is static.

7.3.4 Memory and Time Analysis

Figures 7.7 (b) and 7.7 (c) report the memory footprint and execution time of the main methods
involved in the experiments. The peak memory and computation time the model requires for
inference when processing 640 × 480 inputs are measured. All measurements are based on a
single RTX 3090 GPU and 32-bit floating-point precision. DoD approach excels in terms of
both.
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MVS Depth
2D Metrics 3D Metrics

MAE↓ RMSE↓ Chamfer↓ F-Score↑
✓ 0.187 0.257 0.084 0.530

✓ 0.049 0.115 0.033 0.870
✓ ✓ 0.041 0.103 0.032 0.871

(a) Components Ablation

Module
Single Inf. Time Calls Tot. Time

(ms) (nr.) (ms)
Geometry Encoding 2.060 ± 0.182 1× 2.060 ± 0.182
Monocular Encoding 2.175 ± 0.031 1× 2.175 ± 0.031
Correlation Features 0.373 ± 0.001 10× 3.733 ± 0.015
Visual Cues Integration 1.748 ± 0.008 10× 17.480 ± 0.082
Depth Cues Integration 0.274 ± 0.005 10× 2.724 ± 0.053
Depth Decoding 1.444 ± 0.040 1× 1.444 ± 0.040
Total Time 30.196 ± 0.260

(b) Detailed Runtime

Table 7.5. Ablation studies. Experiments on ScanNetV2 aimed at highlighting (a) the impact
of multi-view stereo and depth cues, and (b) runtime for each component.

7.3.5 Ablation study

This section describes an ablation study to assess the impact of each module composing DoD.
Table 7.5 reports results on ScannetV2 concerning two main studies. In (a), is shown how
processing multi-view stereo cues and sparse depth impacts the overall accuracy achieved by
DoD. Not surprisingly, depth points play a prevalent role, yet alone are insufficient to achieve
the best results. In (b), it is reported the detailed runtime required by any single component in
DoD.
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Figure 7.8. Pose Noise Sensitivity Study. Impact of noisy pose in DoD and competitor frame-
works perturbing pose information with Gaussian noise. At the top, is shown qualitatively how
such a noise affects depth point projection. At the bottom, methods performance versus noise
intensity on TartanAir [153]. Each model tested is trained with the noise-free pose.
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7.3.6 Number of Iterations Study

DoD is characterized by an iterative module for depth refinement and multi-modal integration,
in this section is studied the impact of applying a different number of iterations at testing time.
During training, 10 iterations are always performed. Figure 7.9 shows the mean absolute error
in meters on the test split of 7Scenes [130] performing a different number of iterations. As
can be clearly seen the network stabilizes its performance starting from 8 iterations, demon-
strating its capability to reach a point of convergence. The number of iterations applied affects
the time-accuracy trade-off of the approach. Thus, this latter can be adapted to the deploying
requirements modulating such a parameter.
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Figure 7.9. Number of Iterations. Performance using a different number of iterations on
7Scenes [130]. DoD allows to change the number of iterations to adapt the time-accuracy
trade-off required by the deploying environment.

7.3.7 Pose Noise Sensitivity

In this section an additional experiment against test-time pose noise sensitivity is proposed,
in the event that the pose estimator – e.g., any visual-inertial odometry or SLAM pipeline
– may introduce an error in the pose estimate. Let us represent a pose by a six degrees of
freedom vector q := (t, r) ∈ R6 with translation t and rotation r (in Euler angles). Given
each ground truth pose q, random Gaussian noise is drawn on it, yielding the perturbed pose
q̂ ∼ N (q, λ2 diag(q)2) where λ is the pose noise factor. q̂ is fed everywhere q would be used
in the pipeline. At the top of Figure 7.8, it is reported a visual example where a known sparse
depth point is projected with a set of 100 noisy poses drawn from the aforementioned distribu-
tion with pose noise factor λ = 0.3 for a given q. Such noise not only affects DoD but any other
depth completion method as well, in the assumption that the pose is used to reproject the sparse
depth points since it corresponds to a significant uncertainty in the depth hints localization. In
the DoD case, the impact of pose errors is more subtle; first off, it affects the geometry cues, in
that the epipolar correlation block samples along perturbed epipolar lines. Secondly, it affects
the reprojected sparse depth points on the target view, as per the completion case. At the bottom
of Figure 7.8 quantitative results are reported sweeping λ ∈ [0, 0.3] (where 0 is the noiseless
case). Each model in this evaluation is trained with the noise-free pose on TartanAir [153]. As
it would seem that DoD could be more affected by pose errors, by this test can be assessed that
the gap in performance between DoD and depth completion methods remains fixed w.r.t. λ,
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i.e., in a fair evaluation pose noise causes a degradation that increases gracefully with λ whilst
keeping an almost fixed quality gap between all methods.

7.3.8 Moving Objects

Furthermore, the behavior of the proposed approach on scenes with moving objects is also eval-
uated. Traditionally, multi-view methods work under the assumption of a static environment, to
enable the use of multi-view geometry cues. Nonetheless, moving objects can occur in real use
cases. In the automotive scenario, other vehicles move [44]; in the indoor scenario, people or
objects can move. In this chapter, we didn’t focus on the challenge of dealing with scene mo-
tion. Nonetheless, the existence of this issue must be acknowledged and thus a qualitative study
of how DoD behaves in moving areas is provided. Figure 7.10 provides an example scene from
TartanAir [153] where a robotic arm moves on an assembly line. When sparse depth points are
projected from the source view It−N to the target view It sparse depth points gathered on the
arm are wrongly projected. Moreover, multi-view cues are not useful in this case – i.e. even if
the network predicts the correct depth on the target view for a moving object the projection on
the source view leads to a wrong position. Thus, the monocular features are the unique useful
information to estimate depth in the dashed red box. DoD demonstrates to better exploit such
information than NLSPN [99], effectively ignoring misleading multi-view and sparse depth
information. Nonetheless, monocular depth estimated from a non-specialized approach is far
from being fully accurate, as can be observed in the point cloud at the bottom of Figure 7.10.

7.3.9 Architectural Details

In this section, the core components of DoD are deeply detailed – described in Section 3. Table
7.6 provides implementation details of the main components of the architecture. The visual cues
integration module encodes separately the epipolar correlation features and the current depth
estimate (D)Ni , then it fuses such data with monocular data F̃ t

8 using two Gated Recurrent
Units with kernel size of 1 × 5 and 5 × 1; this latter choice is done as it leads to a lighter
model than using a single 5 × 5 kernel. The depth cues integration module, composed of only
four convolutional layers, fuses different depth representations obtained by different sources,
as described in Figure 2. The depth decoding module computes multi-scale depth maps. At
each iteration a set of upsampling weights and features are computed, then the upsampling is
performed using convex upsampling. Finally, the hidden state (H)Ni=0 initialization is performed
by means of a simple convolutional layer. Our model is trained on ScanNetV2 [29], TartanAir
[153], and KITTI [44] with AdamW, 10−4 learning rate and 10−5 weight decay. 100K training
steps are always performed, dividing the learning rate by 10 at 60K and 90K steps. Trainings
are performed on 2 RTX 3090 in mixed precision with (total) batch size 8. Moreover, gradients
are clipped with global norm 1 to stabilize the behavior of Gated Recurrent Units and the same
random seed is enforced in each training to increase reproducibility. On ScanNetV2 [29] the
training is performed on the same split defined by [120] with a buffer of 7 source frames to
enable consistent comparisons. However, evaluation happens on the whole test video sequences
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Visual Cues Integration
Input Tensor Layer K S In Out Output Tensor

C Conv2D + ReLU 1 1 32 × 41 256 corr0
corr0 Conv2D + ReLU 3 1 256 192 corr1
(D)Ni Conv2D + ReLU 7 1 1 128 depth0
depth0 Conv2D + ReLU 3 1 128 64 depth1
depth1, corr1 Conv2D + ReLU 3 1 192+64 128-1 conv0
conv0, F̃ t

8, (H)Ni , (D)Ni ConvGRU2D (1, 5) 1 128+128+128 128 hidden0
hidden0 ConvGRU2D (5, 1) 1 128 128 (H)Ni+1

Depth Cues Integration
Input Tensor Layer K S In Out Output Tensor

(H)Ni+1 Conv2D + ReLU 3 1 128 64 conv0
conv0 Conv2D 3 1 64 1 ∆Dc

(H)Ni+1, ∆Dc, ∆Dd Conv2D + ReLU 3 1 128+1+1 64 conv1
conv1 Conv2D 3 1 64 1 ∆Df

Depth Decoding
Input Tensor Layer K S In Out Output Tensor

(H)Ni=N−1, F̃ t
8, (D)Ni=N−1 Conv2D + ReLU 3 1 128 + 128 + 1 32 × 4 + 64 conv0

conv0 Conv2D 3 1 32 × 4 + 64 32 × 4 + 64 upweights8,feats8
upweights8, (D)Ni=N−1 ConvexUpsample - - 32 × 4 + 1 1 D4

F̃ t
4, D4, feats8 Conv2D + ReLU 3 1 64 + 64 + 1 32 × 4 + 32 conv1

conv1 Conv2D 3 1 32 × 4 + 32 32 × 4 + 32 upweights4,feats4
upweights4, D4 ConvexUpsample - - 32 × 4 + 1 1 D2

F̃ t
2, D2, feats4 Conv2D + ReLU 3 1 64 + 32 + 1 32 × 4 conv2

conv2 Conv2D 3 1 32 × 4 32 × 4 upweights4
upweights4, D2 ConvexUpsample - - 32 × 4 1 D1

Hidden State Initialization
Input Tensor Layer K S In Out Output Tensor

F̃ t
8 Conv2D + Tanh 3 1 128 128 (H)Ni=0

Table 7.6. Architecture Modules Description. Description of the main components of DoD in
terms of layers, input, and output dimensions. Each line represents a layer of a module where
“Input Tensor” is the name of the input, “Layer” the type of layer used, “K” the kernel size
if the layer is convolutional, “S” the stride if the layer is convolutional, “In” the number of
input channels, and “Out” the number of output channels. Finally, “Output Tensor” is the name
associated to the output tensor.

subsampled by a factor of ten to mimic a fast-moving camera in an indoor environment; since
the camera moves really slow with respect to its high frame rate. 7Scenes [130] is used in the
same way. On TartanAir [153] training and testing are performed on the whole video sequences
without any frames subsampling using a buffer of 7 source frames while training. Finally, on
KITTI [44] trainings are performed with a buffer of 3 source frames sampled with a frequency
of 2Hz.
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DoD (ours) NLSPN [99] Ground-truth

Target (t) Source (t−N) Sparse Depth (t−N→t)

3D Point Cloud

Figure 7.10. Moving Objects. Example of DoD behavior on moving objects in a video se-
quence from TartanAir [153]. On top, ours and [99] depth estimation. Below, are the target,
source, and depth points used. In the dashed red bounding box is highlighted a robotic arm
moving regardless of the camera. Last, is the 3D projection of the depth estimation. DoD pro-
vides consistent monocular depth estimation where multi-view and depth cues are wrong.



Chapter 8

Conclusions

8.1 Summary of Thesis Achievements

In this PhD thesis, the foundational concepts and applications of depth perception have been
introduced. Depth sensing is a crucial component in a wide range of downstream tasks, such
as robotics, autonomous systems, and augmented reality. Given its broad applicability, vari-
ous approaches have been developed, each tailored to different operational contexts and input
modalities. For example, depth perception can be derived from monocular RGB frames, stereo
image pairs, video streams, or active sensing technologies such as Time-of-Flight (ToF) cameras
and LiDAR systems.

Despite the diversity of these techniques, many of these technologies are often available con-
currently, suggesting the potential to combine and integrate multiple information sources into a
unified depth perception framework. This thesis investigates the performance and limitations of
different depth-sensing modalities in several key chapters. In Chapter 3, Chapter 6, and Chapter
5, each modality is studied independently, with each analysis contributing novel insights and
advancements to its respective sub-field.

Finally, this accumulated expertise is fully harnessed in Chapter 7, where active and multi-
modal passive sensors are jointly leveraged. A novel framework is proposed that integrates
these different sensing technologies, offering an innovative solution to enhance depth perception
accuracy and robustness in complex environments.

8.2 Future Work

While this thesis has laid the groundwork for understanding and advancing depth perception
across various sensing modalities, many promising paths may be investigated for further explo-
ration. Future research could focus on the fusion of additional sensing modalities such as event
cameras or hyper-spectral imaging, and adaptation to diverse environmental conditions such as
low light or scenarios with fast and large moving objects. Finally, there is significant potential

78



8.2. FUTURE WORK 79

to apply the findings of this thesis in emerging fields such as augmented reality where accu-
rate depth perception is crucial for seamless user experiences. Further work could explore the
adaptation of the proposed multi-modal frameworks to these domains, considering the unique
challenges they present like improving real-time processing and efficiency on embedded plat-
forms. By addressing these areas, future research can continue to push the boundaries of depth
perception technologies, ultimately improving their performance and broadening their applica-
bility across both established and emerging fields.
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