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Abstract

We explore various aspects of type IIB flux compactifications,
focusing on the stabilisation of moduli and the implications for cos-
mology. We present a novel method to obtain type IIB flux vacua
with flat directions at tree level, implemented in both toroidal and
Calabi-Yau compactifications. We also estimate the leading higher
derivative corrections to N = 1 supergravity and their impact on
moduli stabilisation and inflation models. Additionally, we develop
realizations of Early Dark Energy (EDE) within type IIB string theory,
identifying promising candidates for resolving the Hubble Tension.
Finally, we analyse the joint distribution of the gravitino mass and
the cosmological constant in KKLT and LVS models, highlighting the
favourable conditions for lower scales of supersymmetry breaking.
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Introduction

Potentials for moduli fields play a central role in string phenomenology.
The simplest way to generate these potentials is to consider solutions with
background fluxes, see e.g. [6–10]. In the type IIB setting the effect of
fluxes is to stabilize the complex structure moduli and the axio-dilaton
[10]. This is encoded in the Gukov-Vafa-Witten (GVW) superpotential [8]:

W =

∫
X
G3 ∧ Ω , (1)

where G3 = F3−φH3 is the complexified 3-form flux, φ is the axio-dilaton1

and Ω the holomorphic 3-form of the (orientifolded) Calabi-Yau (CY) X on
which the theory is compactified. The 3-form fluxes thread 3-cycles of
the CY with their integrals over the cycles satisfying Dirac quantization
conditions. Depending on the choice of fluxes, minima of the associated
potential can be isolated or have flat directions. Once the axio-dilaton
and the complex structure moduli are integrated out, the effect of fluxes
is captured by a constant superpotential:

W0 ≡ 〈
∫
X
G3 ∧ Ω〉 . (2)

The value of W0 is a key input for phenomenology.2 Again, this is deter-
mined by the choice of flux quanta. Various recent studies have shown
an interesting interplay between the existence of (approximate) flat di-
rections and a low value of W0 [12–16]. Ref. [17] argued that these
perturbative flat directions are associated to pseudo-Goldstone bosons
of a 2-parameter family of scale invariance of the classical 10-dimensional
theory. One of these 2 symmetries is the scale transformation included in
SL(2,R), while the other transforms the metric. Both of them are spon-
taneously broken by the fact that both the metric and the dilaton acquire

1In Sec. 1.2.2 and in Chap. 2 we do not follow the standard convention to denote
the axio-dilaton as τ to avoid confusion with the period matrix τ ij of the toroidal case. In
other sections it is defined as S = 1/gs + C0.

2For a general discussion on W0 in the context of moduli stabilization and its role in
phenomenology, see [11] and references therein.
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a vacuum expectation value. When combined with axionic shift symme-
tries, this is reflected in the 4-dimensional effective theory in the fact that
both the axio-dilaton and the overall Kähler modulus are flat directions at
classical level. However, in the 10-dimensional theory also G3 transforms
with a non-zero weight. When compactifying, 3-form fluxes take quan-
tized background values, and so act as explicit breaking parameters which
lift the axio-dilaton. In [17] the explicit breaking parameter was identified
in W0 (promoted to a spurion), arguing that W0 = 0 implies the existence
of a flat direction, in agreement with the findings of [12–16].

Notice that the condition to have a flat axio-dilaton is that W0 = 0 af-
ter the complex structure moduli have been integrated out. In fact, in this
case the 4-dimensional action does not see any explicit scale breaking
parameter since the flux quanta do not contribute to the scalar poten-
tial. On the other hand, W0 = 0 can clearly be compatible with a stable
axio-dilaton at classical level when W0 has an appropriate dependence on
it after complex structure moduli stabilization, even if the generic case
would be characterized by W0 6= 0.

Let us stress that these flat directions are only approximate since they
are expected to be lifted by a combination of non-perturbative and per-
turbative effects. Nevertheless they can have a wide variety of interest-
ing phenomenological applications. The first is in the context of Kähler
moduli stabilization. A low value of W0 is an essential ingredient for the
KKLT scenario [18] for moduli stabilization. A method to construct vacua
with low W0 has been put forward in [12].3 This is in the large complex
structure limit of the underlying CY compactification. Flux quanta are
so chosen that they yield a GVW superpotential which, when computed
using the perturbative part of the prepotential, is a degree-2 homoge-
neous polynomial. The homogeneity property and the request of a van-
ishing flux superpotential for non-zero values of the moduli guarantees
the presence of a flat direction. This flat direction is lifted when non-
perturbative corrections to the prepotential are incorporated. Hence W0

acquires an exponentially small value (at weak string coupling). Working
with a CY orientifold obtained by considering a degree-18 hypersurface in
CP[1,1,1,6,9], [12] presented an explicit choice of flux quanta corresponding
to W0 ∼ 10−8. Using the same method, an example with W0 as low as
10−95 was constructed in [13, 14]. Further studies of this setup have been
carried out in [15, 16, 23–26].

Low values ofW0 might also be important in the context of LVS models

3For earlier work on obtaining low values of W0 see [19, 20], while for challenges in
implementing moduli stabilization and obtaining dS vacua in this setting see [21, 22].
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[27]. Recently explicit LVS realizations of the Standard Model have been
carried out by considering D3-branes at an orientifolded dP5 singularity
[28]. Here the cancellation of all D7-charges and Freed-Witten anomalies
forces the presence of a hidden D7 sector with non-zero gauge fluxes
which induce a T-brane background suitable for de Sitter (dS) uplifting
[29]. The T-brane contribution can give a leading order Minkowski vacuum
if the value of the W0 is exponentially small in the string coupling, i.e.
it is precisely of the form described above. A dS minimum with soft
terms above the TeV scale requires W0 as small as 10−13. Let us point out
that, contrary to KKLT, in LVS an exponentially small value of W0 is just a
model-dependent condition since [30] presented a chiral global D3-brane
model at an orientifolded dP0 singularity which can allow for dS moduli
stabilization with T-brane uplifting for W0 ∼ O(1).

Approximate flat directions are naturally interesting also in the context
of cosmology. In fact, the idea of focusing on degree-2 homogeneous
superpotentials so as to obtain flat direction(s) was first used in [31] to
enhance the inflaton field range. More recently, flat directions in the type
IIB flux superpotential have been used to construct models of sequestered
inflation [32]. Interestingly, the predictions of the models carry signatures
of the moduli space geometry. Moreover, leading order flat directions can
be promising candidates to realize quintessence models in order to avoid
any destabilization problem due to the inflationary energy contribution
and to reproduce the correct tiny value of the cosmological constant scale
[33, 34].

Regarding supersymmetry breaking, type IIB models are characterized
by a no-scale relation which implies that generically the main contribution
to supersymmetry breaking comes from the Kähler moduli sector. In fact,
typically at semi-classical level the complex structure moduli and the axio-
dilaton are fixed by setting their F-terms to zero withW0 6= 0 which induces
instead non-zero F-terms for the Kähler moduli (that are still flat at this level
of approximation). However in scenarios with W0 = 0 and a flat axio-
dilaton, all F-terms are zero at leading order and the effective field theory
after integrating out the complex structure moduli has to include both
the axio-dilaton and the Kähler moduli [35]. Therefore the F-term of the
axio-dilaton can also play an important role in supersymmetry breaking,
especially in sequestered models with D3-branes where gaugino masses
are controlled by the F-term of φ [36, 37].

Moreover, flux vacua with a leading order axionic flat direction and
W0 6= 0 have been shown in [38] to be very promising to obtain a dS uplift-
ing contribution from non-zero F-terms of the complex structure moduli,
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so providing an explicit realization of the idea proposed in [39, 40] with-
out however the assumption of continuous 3-form fluxes. More precisely,
at perturbative level all F-terms of the complex structure moduli are zero
with W0 6= 0 and a flat axion. Instanton corrections to the superpotential
lift the axion and shift all the remaining moduli, so that the correspond-
ing F-terms become non-zero and can act as a dS uplifting source by an
appropriate tuning of background fluxes [38].

From a more theoretical point of view, developments under the name
‘the tadpole problem’ [41–45] seem to suggest that flat directions of the
GVW superpotential might be a generic feature when the number of com-
plex structure moduli is large. Thus classifying and studying the pre-
cise nature of flat directions, together with finding mechanisms for lifting
them, are needed to develop a comprehensive understanding of the string
landscape.

Understanding supersymmetric effective field theories (EFT) from string
compactifications is key in order to determine most of the relevant physi-
cal implications of these frameworks. These EFTs are only known approx-
imately, and corrections to leading order effects play an important role
for the most pressing questions such as moduli stabilization and inflation
from string theory.

These effects correspond to non-perturbative contributions to the su-
perpotential W , and perturbative and non-perturbative corrections to the
Kähler potential K, both in the α′ and string-loop expansions. These cor-
rections to K and W modify the standard F -term part of the scalar po-
tential which comes from the square of the auxiliary fields at order F 2.
However, there are also higher derivative F 4 corrections to the scalar po-
tential. In the type IIB case, they have an explicit linear dependence on
the two-cycle volume moduli ti, i = 1, ..., h1,1, and the overall volume V of
the Calabi-Yau (CY) threefold X [46–48]:

VF 4 =
γ

V4

h1,1∑
i=1

Πit
i , (3)

where γ is a computable constant (independent of Kähler moduli) and
Πi =

∫
X c2 ∧ D̂i with c2 the CY second Chern-class and D̂i a basis of

harmonic (1,1)-forms dual to the divisors Di. In terms of this basis, the
Kähler form J can be written as J = tiD̂i.

The relevance of the corrections (3) is manifest especially for determin-
ing the structure of the scalar potential since, due to the no-scale prop-
erty, the leading order, tree-level, contribution vanishes, and therefore a
combination of subleading corrections has to be considered. However,
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these higher-derivative corrections are naturally subdominant compared
with the leading order α′3 correction at order F 2 that scales with the vol-
ume as Vα′3 ' |W0|2/V3. In this sense they should not substantially modify
moduli stabilization mechanisms such as KKLT and the Large Volume Sce-
nario (LVS). However, they can play a crucial role for:

1. Lifting flat directions which are not stabilized at leading LVS order
[47, 48];

2. Modifying slow-roll conditions needed for inflationary scenarios where
the leading order effects leave an almost flat direction for the infla-
ton field.

In Chap. 3 we will concentrate on the second item, and determine under
which topological conditions these higher derivative corrections vanish.
For cases where they are instead non-zero, we will numerically estimate
the largest value of their prefactor γ which does not ruin the flatness of
the inflationary potential of different inflation models derived in the LVS
framework such as blow-up inflation [30, 49, 50], fibre inflation [51–58]
and poly-instanton inflation [59–63].

Using the Kreuzer-Skarke database of four-dimensional reflexive poly-
topes [64] and their triangulated CY database [65], we present scanning
results for a set of divisor topologies corresponding to CY threefolds with
1 ≤ h1,1 ≤ 5. These divisor topologies are relevant for various phenomeno-
logical purposes in LVS models. For inflationary model building, this in-
cludes, for example: (i) the (diagonal) del Pezzo divisors needed for gen-
erating non-perturbative superpotential corrections useful for blow-up in-
flation, (ii) the K3-fibration structure relevant for fibre inflation, and (iii) the
so-called ‘Wilson’ divisors which are relevant for realizing poly-instanton
inflation. In addition, we present a class of divisors which have vanishing
Π.

In Chap. 4 we address the Hubble tension problem, and one candidate
solution. The Hubble constant H0, as inferred from Planck 2018 Cosmic
Microwave Background (CMB) data [66], is in 5σ disagreement with the
SH0ES cosmic distance ladder measurement [67]. This ‘Hubble tension’
has spurred on an intense experimental effort and the development of
new ways to measure H0 (see [68, 69] for reviews). The tension per-
sists between varied early and late universe probes at the level of 4-6σ
[69]. A commensurate effort has been made on the theory side, aimed
at developing an alternative cosmological model to bring these measure-
ments into agreement. Amongst the theory approaches, the modification
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of early universe physics holds particular promise (see [70]) by satisfying,
first and foremost, the tight constraints that the CMB places on any new
cosmological physics. A detailed review is provided in Sec. 4.2 (see also
the review section of [71]).

Early Dark Energy (EDE) [72, 73] is an example of new physics in the
early universe that resolves the Hubble tension by bringing the CMB infer-
ence in agreement with SH0ES, while leaving the former nearly indistin-
guishable from ΛCDM. The model proposed in [72] utilizes a scalar field
with potential energy V (ϕ) = V0 [1− cos (ϕ/f)]3, featuring an exponent
that distinguishes it from the conventional potential of an axion-like par-
ticle. This potential is motivated by data: it provides a significantly better
fit to the data than a monomial V ∼ ϕ2n [74] or a cosine with a different
exponent [72]. The vast majority of work on EDE (see e.g. [71, 75, 76])
has therefore focused on this form of the potential, though alternative
EDE-like models abound [77–91]. This work has elucidated challenges to
the model from data, in particular, tension with large scale structure (see
e.g. [75, 76]), that has motivated extensions of the EDE model, see [89,
92–94], to include an additional ultralight axion dark matter component
[93, 94]. Relatively little input has come from the formal theory commu-
nity, with exception of Refs. [71] and [95].

Phenomenologically attractive string compactifications can be obtained
by turning on background fluxes [6–10]. In the type IIB setting, the effect
of fluxes is to stabilize the complex structure moduli and axio-dilaton [10].
Furthermore, in type IIB there are various scenarios for the stabilization
of the Kähler moduli [18, 27, 29, 40, 48, 96–102]. This has made type IIB
flux compactifications the setting for various detailed phenomenological
explorations.

The introduction of fluxes also leads to the possibility of a large mul-
titude of solutions. Apart from construction of detailed models, string
phenomenology involves developing an understanding of the broad prop-
erties of vacua. The later has motivated the statistical approach to string
phenomenology [20, 103–107] (see also [108–133]). The distribution of
the scale of supersymmetry breaking in the space of string vacua is of
course of much interest (see [109, 123–128] for early work in this direc-
tion).

This manuscript is structured as follows:

Chap. 1: In Sec. 1.1 we review the Type IIB compactification setup. Af-
ter that, in Sec. 1.2 we delve into the details of stabilization of com-
plex structure moduli, presenting the tadpole condition and toroidal
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orientifolds. In Sec. 1.3 we review the different constructions to
stabilize Kähler moduli and to subsequently uplift the potential to
Minkowski/dS. Lastly, in Sec 1.5 we provide a brief overview of ax-
ions in string theory.

Chap. 2: In Sec. 2.1 we review the significance of flat directions in flux
vacua solutions, present the outline of our strategy and the main
results of the study. Particularly, we describe the choices of flux
quanta that induce relations between the flux superpotential and
its derivatives. Sec. 2.2 focuses on the toroidal case, presenting
solutions with N = 1 and N = 2 supersymmetry and arbitrarily weak
coupling. We classify these solutions based on duality equivalences.
Sec. 2.3 focuses instead on orientifolded CYs in the large complex
structure limit. We give a detailed treatment of the CP[1,1,1,6,9][18]

example and a preliminary analysis of the CY studied in [134] which
features effectively 3 complex structure moduli.

Chap. 3: In Sec. 3.1 we presents a brief review of LVS moduli stabiliza-
tion and the role of divisor topologies in LVS phenomenology. Sub-
sequently we present a classification of the divisor topologies rele-
vant for taming higher derivative F 4 corrections in Sec. 3.2. Sec. 3.3.1
discusses instead potential candidate CYs for realizing global embed-
dings of blow-up inflation and the effect of F 4 corrections on these
models. The analysis of higher derivative corrections to LVS inflation
models is continued in Sec. 3.3.6 which is devoted to fibre inflation,
and in Sec. 3.3.11 which focuses on poly-instanton inflation.

Chap. 4: In Sec. 4.1 we present the problem of the Hubble tension while
in Sec. 4.2 we introduce the concept of Early Dark Energy (EDE) and
its relevance to this problem. Subsequently, we discuss the theo-
retical framework, including the identification of the EDE field as a
C4 or C2 axion and the stabilization of closed string moduli within
the KKLT construction in Sec. 4.3 or in the LVS in Sec. 4.4, present-
ing the construction of EDE models, focusing on achieving a natural
hierarchy between the EDE energy scale and other fields.

Chap. 5: In Sec. 5.1 we present the joint distribution of the gravitino
mass and the cosmological constant in the context of anti D3-brane
uplift, with separate analyses for KKLT and LVS models, focusing on
the KKLT scenario, providing both analytical estimates and numeri-
cal results and subsequently, addressing the LVS scenario, detailing
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the statistical properties and implications for supersymmetry break-
ing scales. In Sec. 5.2 we repeat a similar analysis employing the
complex structure uplift approach.

Chap. 6: Finally, we summarize our study and discuss both phenomeno-
logical aspects of our key findings as well as new possible line of
research and further pursuit of the concepts studied.

Notation: Throughout this work we will set the reduced Planck mass
MP = 1 unless explicitly stated.
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Chapter I

Type IIB Flux Compactification and
Moduli stabilization

Type IIB string theory is one of the five superstring theories that have
been extensively studied in recent years. A notable feature of the ef-
fective field theory (EFT) at low energies is the presence of several mod-
uli—scalar fields whose potential is vanishing. If this is the case, they
could mediate a previously unseen fifth force. Therefore, it is essential to
construct mechanisms that generate a potential, thereby giving mass to
these fields. In this chapter, we will analyse such mechanisms and, more
broadly, models that achieve complete stabilization, ultimately uplifting
the potential to a de Sitter (dS) space. Finally, we will examine in detail
the role of axions in the EFT and their associated potentials.

1.1 Type IIB Compactification

Let us review some of the key ingredients needed for the compactification
of the moduli. We will follow the work done in [135]. The D = 10, N = 2

bosonic effective action of type IIB string theory reads, in the string frame

S
(s)
10 =

1

2κ210

∫
d10x

√
−ĝ
[
e−2φ̂

(
R+ 4(∂φ̂)2 − 1

2
|Ĥ3|2

)
− 1

2
|F̂1|2 −

1

2
| ˆ̃F3|2 −

1

2
| ˆ̃F5|2

]
, (1.1)

where the hat denotes 10D fields, and the field content is given by

• the metric ĝMN and its determinant ĝ = det{ĝMN}

• dilaton φ̂

• Kalb-Ramond 2-form B̂2 and its field strength Ĥ3 = dB̂2

16



Type IIB Flux Compactification and Moduli stabilization

• Ramond-Ramond p-forms (p = 0, 2, 4) Ĉp and their field strength
F̂p+1 = dĈp

and the definitions

ˆ̃F3 = F̂3 − Ĉ0Ĥ3 (1.2)

ˆ̃F5 = F̂5 +
1

2
Ĥ3 ,∧Ĉ2 +

1

2
B̂2 ∧ F̂3 , (1.3)

and 2κ210 = (2π)7(α′)4. It is possible then to go to the Einstein frame by
introducing the axio-dilaton

Ŝ = e−φ̂ + iĈ0 =
1

gs
+ iĈ0 , (1.4)

and the 3-form
Ĝ3 = F̂3 − i

¯̂
SĤ3 , (1.5)

and sending the metric to

ĝMN → ĝMNe
φ̂/2 , (1.6)

leading to

S
(E)
10 =

1

2κ210

∫ [
R ∗ 1 + dŜ ∧ ∗ dŜ

2 (Re Ŝ)2
− Ĝ3 ∧ ∗ ¯̂G3

2Re Ŝ
− 1

4
ˆ̃F5 ∧ ∗ ˆ̃F5 +

Ĉ4 ∧ Ĝ3 ∧ ¯̂
G3

4i Re Ŝ

]
,

(1.7)
to which one must always provide the self-duality constraint of the 5-form
imposed on the solution

ˆ̃F5 = ∗ ˆ̃F5 . (1.8)

One can now proceed with the general prescription of compactifi-
cation on a Calabi-Yau manifold, while the simpler toroidal case will be
analysed in a subsequent section. This choice ensures that we obtain a
D = 4, N = 2 SUSY EFT after the compactification. Assuming that the
space can be factorized as M10 = M1,3×X6, the space-time interval takes
a diagonal form

ds2 = gµν dx
µ dxν + gi̄ dy

i dȳ̄ , (1.9)

where we have denoted by x the coordinates of the Minkowski space
M1,3 and by y the coordinates of the Calabi Yau X6. Thus, introducing the
Kähler form

J = igi̄ dy
i dȳ̄ , (1.10)

we obtain h1,1 scalars vA via the expansion

J = ta(x)ωa , a = 1, ..., h1,1 , (1.11)
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Type IIB Flux Compactification and Moduli stabilization

with the basis ωa ∈ H1,1(X6). Instead, deforming the complex structure
we obtain the complex structure moduli zK as

δgi̄ =
i

||Ω||2
z̄K(χ̄I)īı̄Ω

ı̄̄
j , I = 1, ..., h1,2 (1.12)

with Ω the unique holomorphic (3, 0)-form, the basis χ̄I ∈ H2,1(X6) and
the definition ||Ω||2 = 1

3!ΩIJKΩ̄IJK . With this knowledge we can expand
in harmonics the fields of the theory obtaining

B̂2 = B2(x) + ba(x)ωa , Ĉ2 = C2(x) + ca(x)ωa , (1.13)

Ĉ4 = Da
2(x) ∧ ωa + V I(x) ∧ αI − UJ(x) ∧ βJ − θa(x)ω̃

a , I, J = 0, ..., h1,2 ,

(1.14)

with ω̃a being the dual basis to ωa and the symplectic basis (αI , β
J) ∈

H3(X6) satisfying∫
αI ∧ βJ = δJI ,

∫
αI ∧ αJ =

∫
βI ∧ βJ = 0 . (1.15)

Moreover, by imposing the self-duality of F̃5 one can drop half of the
d.o.f. of C4, for example choosing to keep only the scalars θa and the
vector field V I . Now, adding the metric gµν and the scalar fields S and C0

we can arrange the field content into N = 2, D = 4 SUSY supermultiplets
as shown in Tab.1.1. This leads to the action, setting units to one for

multiplet # fields
gravity 1 (gµν , V

0)

vector h1,2 (V I , zI)

hyper h1,1 (ta, ba, ca, θa)

double-tensor 1 (B2, C2, φ, C0)

Table 1.1. N = 2 supermultiplets for Type IIB string theory compactified on a Calabi-Yau
manifold.

simplicity

S
(N=2)
4 =

∫ [
1

2
R ∗ 1 + 1

2
ReMIJ F

I ∧ F J +
1

4
ImMIJF

I ∧ ∗F J

−KIJ̄ dz
I ∧ ∗ dz̄J̄ − hAB̄ dqA ∧ ∗ dq̄q̄

]
, (1.16)

where we have introduced the following quantities:
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• Period matrix

MIJ = F̄IJ + 2i
(ImF)IKX

K(ImF)JMX
M

XM (ImF)MNXN
, (1.17)

with the periods

XA =

∫
X6

Ω ∧ βA , FA =

∫
X6

Ω ∧ αA , (1.18)

and FAB = ∂XBFA, with the choice of coordinates XA = (1, zA).

• Metric of Kähler deformations

Kab̄ =
∂2Kcs

∂za∂z̄b̄
, (1.19)

with the Kähler potential given by

Kcs = − ln

[
−i

∫
X
Ω ∧ Ω

]
= − ln

[
−i
(
X̄IFI −XIF̄I

)]
, (1.20)

where we have employed the expansion of the holomorphic 3-form
Ω.

• The quaternionic metric hAB whose coordinates qA encompasses all
h1,1 + 1 fields of the hypermultiplets, having dualized the tensor-
multiplet fields B2 and C2 to scalars.

1.2 Complex Structure Moduli stabilization

We now want to generate a potential for the moduli in order to give them
a mass. First of all we have derived only the N = 2 SUSY theory in
4D where the superpotential is identically zero. The next step would be
orientifolding and thus obtain the N = 1 SUSY theory which we will now
analyse in detail.

The general prescription is to introduce the worldsheet parity operator
Ωp and an internal symmetry σ which leaves invariant J but transforms
non trivially the holomorphic 3-form Ω [136–138]. We can construct two
types of symmetry operator, namely

O3/O7 planes: O1 = (−1)FLΩpσ
∗ , σ∗Ω = −Ω , (1.21)

O5/O9 planes: O2 = Ωpσ
∗ , σ∗Ω = Ω . (1.22)
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We will focus on the first type of orientifolds. Moreover, the action of the
operators is here summarized

σ∗ : (φ̂, ĝ, B̂2, Ĉ0, Ĉ2, Ĉ4) 7→ (+φ̂,+ĝ,−B̂2,+Ĉ0,−Ĉ2,+Ĉ4) , (1.23)

(−1)FL : (φ̂, ĝ, B̂2, Ĉ0, Ĉ2, Ĉ4) 7→ (+φ̂,+ĝ,+B̂2,−Ĉ0,−Ĉ2,−Ĉ4) , (1.24)

Ωp : (φ̂, ĝ, B̂2, Ĉ0, Ĉ2, Ĉ4) 7→ (+φ̂,+ĝ,−B̂2,−Ĉ0,+Ĉ2,−Ĉ4) . (1.25)

Thus, under the action of σ∗ we split the cohomology groups as

Hp,q = Hp,q
+ ⊕Hp,q

− , (1.26)

and the expansions of the fields is now given by

B̂2 = ba−(x)ωa− , Ĉ2 = ca−(x)ωa− , a− = 1, ..., h1,1− , (1.27)

Ĉ4 = D
a+
2 (x) ∧ ωa+ + V I∗(x) ∧ αI+ − UJ+(x) ∧ βJ+ − θa+(x)ω̃

a+

a+ = 1, ..., h1,1+ , I+, J+ = 1, ..., h1,2+ ,

and we can arrange now the field content into N = 1, D = 4 SUSY
supermultiplets as shown in in Tab.1.2. The action obtained is then written

multiplet # fields
gravity 1 gµν

vector h1,2+ V I+

h1,2− zI−

chiral 1 (φ,C0)

h1,1− (ba− , ca−)

chiral/linear h1,1+ (ta+ , θa+)

Table 1.2. N = 1 supermultiplets for Type IIB string theory compactified on a Calabi-Yau
manifold with O3/O7 orientifolds.

as N = 1, D = 4 SUGRA EFT

S
(N=1)
4 = −

∫ [
1

2
R ∗ 1 +Ki̄Dµi ∧ ∗Dµ̄̄ (1.28)

+
1

2
Re fkl F

k ∧ ∗F l + 1

2
Im fkl F

k ∧ F l + V ∗ 1 ,

]
,

where we denote collectively by µi all the complex scalars, F k = dV k,
Di = ∂i +Ki, where

Ki = ∂iK , Ki̄ = ∂i∂̄K , Ki̄K̄k = δik , (1.29)
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and defined the correct chiral coordinates

S = e−φ + iC0 ≡ s+ iC0 , (1.30)

Ga− = S̄ba− + ica− , (1.31)

τa+ =
1

2
ka+b+c+t

b+tc+ , (1.32)

Ta+ = τa+ + iθa+ − 1

2
Ka+a−b−

Ga−(G+ Ḡ)b−

S + S̄
, (1.33)

where

Ka±b±c± =

∫
X
ωa± ∧ ωb± ∧ ωc± , (1.34)

Ka±b± = ka±b±a+t
a+ , (1.35)

Ka+ = ka+b+c+t
b+tc+ , (1.36)

Ka+ = ka+b+c+t
b+tc+ , (1.37)

K = ka+b+c+t
a+tb+tc+ = 6Vol (X6) ≡ 6V , (1.38)

Ka+b+a− = Ka−b−c− = Ka+a− = Ka− = 0 , (1.39)

we have the Kähler potential

K = Kcs(z, z̄) +KS(S, S̄) +Kk(S, S̄, T, T̄ , G, Ḡ) , (1.40)

Kcs = − ln

[
−i

∫
Ω(z) ∧ Ω̄(z̄)

]
, (1.41)

KS(S, S̄) = − ln
(
S + S̄

)
, (1.42)

Kk = −2 lnV , (1.43)

noting that the Kk satisfies the no-scale condition

KiK
i̄K̄ = 4 , (1.44)

and the Gukov-Vafa-Witten superpotential [8]

WGVW(S, z) =

∫
X
Ω ∧G3 , (1.45)

leading to the potential V

V = eK
(
DiWKi̄DjW − 3|W |2

)
+

1

2

(
Re f−1

)kl
DkDl , (1.46)

and lastly the gauge kinetic function given by

fkl = − i

2
M̄kl

∣∣∣∣
z=0=z̄

= − i

2
Fkl
∣∣∣∣
z=0=z̄

. (1.47)
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At this stage it is immediate to see that the potential is generated only
for the complex structure moduli and for the axio-dilaton, leaving the
Kähler moduli massless. However, the superpotential W is identically
zero except in the case where one allows for background fluxes for G3.

The procedure to stabilize the complex structure moduli is here sum-
marized [134, 135]. First of all, we construct the period vector Π from
the expansion of Ω = XAαA −FAβA

Π =

(
FA
XA

)
, A = 0, ..., h1,2 , (1.48)

with FA = ∂XAF . The prepotential F is a homogeneous degree two func-
tion in the projective coordinates XA, thus we can introduce the function
F as

F (U i) = (X0)−2F , (1.49)

with the introduction of the flat coordinates

U i =
Xi

X0
, i = 1, ..., h1.2 , (1.50)

giving

Π =


F0

Fi
X0

Xi

 =


2F − U iFi

Fi
1

U i

 (1.51)

where we have again chosen the normalization of Ω by setting X0 = 1.
We now expand F3 and H3 in the symplectic basis

F3 = aAαA − bAβ
A , (1.52)

H3 = cAαA − dAβ
A , (1.53)

=⇒ G3 = (aA − iS̄cA)αA − (bA − iS̄dA)β
A , (1.54)

from which one can introduce the vectors

f =

(
bA

aA

)
, h =

(
dA

cA

)
. (1.55)

It is crucial to note that these quantities follow the Dirac quantization and
are thus integer valued

1

(2π)2α′

∫
γ
F3 ∈ Z ,

1

(2π)2α′

∫
γ
H3 ∈ Z . (1.56)
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Hence, we obtain the superpotential

W = (f − iS̄h)t · Σ ·Π , (1.57)

and the Kähler potential

Kcs = − ln
(
−iΠ† · Σ ·Π

)
. (1.58)

From the point of view of a N = 1, D = 4 SUGRA EFT the potential
generated from the superpotential (1.45), ignoring D-terms, is [139]

VF =
3i

2gs
∫
Ω ∧ Ω̄

[∫
G3 ∧ Ω̄

∫
Ḡ3 ∧ Ω+Ki̄

∫
G3 ∧ χi

∫
Ḡ3 ∧ χ̄̄

]
,

(1.59)
where χi is the basis of H1,2. Moreover, denoting collectively the ax-
iodilaton and the complex structure moduli by ζA = {S, za} and the Käh-
ler moduli by ΞB we have the following properties

W =W (ζA) ,
∂W

∂ΞB
= 0 , KBK

BBKB = 3 , (1.60)

leading to the scalar potential

VF = eK
[
WAK

AAWA + 2Re
(
WWAK

ABKB

)]
≥ 0 . (1.61)

Finally, in order to ensure that the solution is supersymmetric, i.e. the
vanishing of W and of K, one must impose [140]

DS̄W = − 1

S + S

∫
G3 ∧ Ω+−Kabb

abbW = 0 , (1.62)

DzkW =

∫
G3 ∧ χk = 0 , (1.63)

DTaW = −2W
ta

K
= 0 , (1.64)

DGaW = 2iKabb
bW = 0 , (1.65)

which leads to ∫
G3 ∧ Ω =

∫
G3 ∧ Ω =

∫
G3 ∧ χk = 0 , (1.66)

and, decomposing G3 into terms of Hp,q

G3 = G3,0
3 +G2,1

3 +G1,2
3 +G0,3

3 , (1.67)

we find that the SUSY conditions are satisfied if

G3,0
3 = G0,3

3 = G1,2
3 = 0 , (1.68)

implying that G3 is a (2, 1)-form which satisfies the ISD condition and is
primitive, i.e.

G3 ∧ J = 0 . (1.69)
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1.2.1 D3-tadpole cancellation

It is now necessary to check the consistency of the setup by ensuring the
cancellation of the RR tadpole. In fact, adding 3-form background fluxes,
one modifies the Bianchi identity of the RR 5-form as

d ˆ̃F5 = Ĥ3 ∧ F̂3 + 2κ210µ3ρ
local
3 , (1.70)

with contributions to the density ρlocal
3 coming from O3-planes and D3-

branes, and

µp =
(α′)−

p+1
2

(2π)p
. (1.71)

In general, a Dp-brane that fills the directions Xi with i = 0, . . . , p and is
transverse to the directions xj with j = p+ 1, . . . , 9, is charged under the
(p+ 1)-form Ĉp+1 and satisfies the following action

S = −1

2

∫
M
F̂p+2 ∧ ∗F̂p+2 + µtot

p

∫
Wp

Ĉp+1 , (1.72)

with Wp its worldvolume. Hence, introducing the current for the brane as

Jp = δ9−p(xj) dxp+1 ∧ ... ∧ dx9 , (1.73)

we obtain the generalized Gauss law for an extended charged object with
charge density ρp, with eom

d ∗ F̂p+2 = (−1)pµtot
p Jp = (−1)pρp . (1.74)

Thus, taking a compact and unbounded space for the transverse direc-
tions, integrating the left-hand side will yield a vanishing result, which
imposes that the total charge must also be zero.

Let us recall what objects are charged under the Ĉp+1 RR-form:

• Dp-branes: following from the Chern-Simons action

SCS = µp

∫
Wp

Ĉp+1 + ... , (1.75)

we find the charge µp.

• Dp-branes: opposite charge of Dp-branes, i.e. −µp.

• Op-planes [141]: these objects are non-dynamical, and their charge
is computed by invoking certain string dualities, resulting in −2p−4µp.
In this calculation, we are considering branes in the upstairs geom-
etry, where branes and their reflections under Z2 are treated as two
distinct objects with the same charge.
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Now coming back to our specific case with D3-branes and O3-planes,
the total 10D action is given by

Sflux
10 = SE10 +Q3

∫
M1,3

(
1

2
Ĉ4 − ∗41

)
, (1.76)

with

Q3 = µ3

(
ND3 −

1

2
NO3

)
(1.77)

and the 1/2 factor is introduced due to the self-duality of ˆ̃F5. Thus, taking
once again the Chern-Simons action for type IIB string theory

SCS =
1

2κ210

∫
Ĉ4 ∧ Ĝ3 ∧ ¯̂

G3

4iRe Ŝ
=

1

2κ10

∫
1

2
Ĉ4 ∧ F̂3 ∧ Ĥ3 , (1.78)

we obtain that the tadpole cancellation condition can be expressed as

ND3 −
1

2
NO3 +Nflux = 0 , (1.79)

with

Nflux =
1

2κ10µ3

∫
X
Ĥ3 ∧ F̂3 =

1

(α′)2(2π)4

∫
X
Ĥ3 ∧ F̂3 . (1.80)

Moreover, the 3-form term generates a potential in the D = 4 EFT given
by

VG =
1

2κ210

∫
X6

Ĝ3 ∧ ∗Ĝ3

4Re Ŝ
, (1.81)

and we can furthermore split Ĝ3 into imaginary self-dual (ISD) and imagi-
nary anti-self-dual (IASD) components, where the dual operation must be
intended restricted to the compact 6D space [142]

Ĝ3 = Ĝ(ISD)
3 + Ĝ(IASD)

3 ,

{
Ĝ(ISD)

3 = iĜ(ISD)
3

Ĝ(IASD)
3 = −iĜ(IASD)

3

, (1.82)

leading to

VG =
1

κ210

∫
X6

2Ĝ(ISD)
3 ∧ ∗Ĝ(ISD)

3 + iĜ3 ∧ Ĝ3

4Re Ŝ
(1.83)

=
1

κ210

∫
X6

2Ĝ(IASD)
3 ∧ ∗Ĝ(IASD)

3 − iĜ3 ∧ Ĝ3

4Re Ŝ
, (1.84)

where the last term is a topological invariant given by

1

κ210

∫
X6

Ĝ3 ∧ Ĝ3

4iRe Ŝ
= µ3Nflux , (1.85)
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allowing us to rewrite

VG = V ISD − µ3Nflux = V IASD + µ3Nflux . (1.86)

Thus, the total potential also receives a contribution from the second term
in (1.76), giving

V = VG +Q3 = VG + µ3Nflux = V ISD
G = V IASD

G + 2µ3Nflux , (1.87)

meaning that the potential is identically zero if Ĝ3 is IASD while it is non-
negative if it is ISD. Moreover, the contribution from Nflux can be shown
to be positive in the ISD case, since

∗Ĝ3 = i

(
F̂3 + Ĉ0Ĥ3 −

i

gs
Ĥ3

)
=⇒ ∗

(
Ĥ3

gs

)
= −F̂3 + Ĉ0Ĥ3 , (1.88)

thus leading to

(2π)4(α′)2Nflux =

∫
X6

Ĥ3 ∧ F̂3 = − 1

gs

∫
X6

Ĥ3 ∧ ∗Ĥ3 =
1

gs

∫
X6

|Ĥ3|2 ∗ 1 > 0 .

(1.89)

1.2.2 Toroidal Orientifolds

In this section we review some basic ingredients of type IIB compact-
ifications on the T 6/Z2 orientifold with non-trivial 3-form fluxes turned
on. Notice that in this section and in Chap. 2, in order to follow the con-
ventions of [142] in our treatment, we will make use of the following
redefinition of the axio-dilaton field

S −→ φ = iS̄ . (1.90)

The type IIB supergravity action in Einstein frame is:

S IIB =
1

2κ210

∫
d10x

√
−g

(
R− ∂Mφ∂Mφ

2 (Imφ)2
− G3 · Ḡ3

2 · 3! Imφ
− F̃ 2

5

4 · 5!

)

+
1

2κ210

∫
d10x

C4 ∧G3 ∧ Ḡ3

4 Imφ
+ S local , (1.91)

where:

φ = C0 + i/gs , F3 = dC2 , H3 = dB2 ,

G3 = F3 − φH3 , F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
F3 ∧B2 , ∗F̃5 = F̃5 .

(1.92)
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Upon compactifying on the T 6/Z2 orientifold with spacetime-filling D3-
branes, the D3 tadpole condition is (setting 2π

√
α′ = 1):

1

2
Nflux +ND3 − 16 = 0 , Nflux ≡

∫
T 6

H3 ∧ F3 , (1.93)

where ND3 is the number of D3-branes. The flux contribution can be
shown to be positive semi-definite. The negative contribution arises from
the 26 O3-planes. Clearly this condition implies 0 < Nflux ≤ 32.1

The geometry of the torus will be parametrised as follows. The 6 real
periodic coordinates on T 6 are denoted as xi, yi, i = 1, 2, 3 with xi ∼ xi+1,
yi ∼ yi + 1. The holomorphic 1-forms are taken to be dzi = dxi + τ ijdyj ,
where τ ij is the period matrix. The choice of orientation is:∫

dx1 ∧ dx2 ∧ dx3 ∧ dy1 ∧ dy2 ∧ dy3 = 1 . (1.94)

We will make use of the following orthonormal basis {α0, αij , β
ij , β0} for

H3(T 6,Z):

α0 = dx1 ∧ dx2 ∧ dx3 , αij =
1

2
εilmdx

l ∧ dxm ∧ dyj ,

βij = −1

2
εjlmdy

l ∧ dym ∧ dxi , β0 = dy1 ∧ dy2 ∧ dy3 , i, j = 1, 2, 3 ,

(1.95)

with: ∫
αI ∧ βJ = δJI . (1.96)

Finally, the holomorphic 3-form is taken to be Ω = dz1 ∧ dz2 ∧ dz3. The
NSNS and RR fluxes can be expanded in terms of the orthonormal basis
as:

F3 = a0α0 + aijαij + bijβ
ij + b0β

0 ,

H3 = c0α0 + cijαij + dijβ
ij + d0β

0 , (1.97)

where the Dirac quantitation condition requires (a0, aij , bij , b0, c0, cij , dij , d0)
to be integers. We will restrict them to be even integers so as to avoid the
need for any discrete flux on the orientifold planes.2 The flux contribution
to the D3 tadpole (1.93) takes the form:

N flux = (c0b0 − a0d0) + (cijbij − aijdij) , (1.98)

1We do not consider the Nflux = 0 case since, due to the imaginary self-duality condi-
tion on the fluxes, it corresponds to either gs → ∞ or trivial flux quanta.

2See [142, 143] for a discussion on this point.
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while the GVW superpotential (1.45) becomes:

W = (a0−φc0) det τ−(aij−φcij)(cof τ)ij−(bij−φdij) τ ij−(b0−φd0) . (1.99)

Supersymmetry is preserved when the F-flatness conditions of this su-
perpotential are satisfied, together with W = 0 (which can be thought of
as the F-flatness condition for the Kähler moduli) and the requirement of
primitivity of G3 (i.e. the existence of a Kähler form such that J ∧G3 = 0).
We will use the method described in Chap. 2 to obtain supersymmet-
ric solutions with at least one flat direction. The F-flatness and W = 0

conditions are equivalent to:

f (1) ≡ a0 det τ − aij(cof τ)ij − bijτ
ij − b0 = 0 , (1.100)

f (2) ≡ c0 det τ − cij(cof τ)ij − dijτ
ij − d0 = 0 ,

f
(3)
kl ≡ (a0 − φc0)(cof τ)kl − (aij − φcij)εkimεljnτ

mn − (bij − φdij)δ
i
kδ
j
l = 0 .

The primitivity of G3 will be imposed as a final condition. We will see that
a suitable choice of the Kähler form satisfying the primitivity condition can
be found for all cases.

1.3 Kähler Moduli stabilization

Until now, we have discussed only the stabilization of the axio-dilaton
and of complex structure moduli, let us now shift our focus onto the Käh-
ler moduli instead. We first review the low-energy effective field theory
of the KKLT [18] and LVS [27, 99] approaches to moduli stabilization.

We will hereby assume that the axion-dilaton and complex structure
moduli are stabilized at a higher scale, and that all quantities, implicitly
depending on these fields, such as the flux-induced superpotential W0

or the prefactor of instanton corrections, can be regarded as constant.
The F-term scalar potential is then calculated employing the supergravity
formula (1.46) without D-terms

V = eK
(
DIWKIJ̄DJW − 3|W |2

)
. (1.101)

Moreover, the gravitino mass is defined as

m3/2 = eK/2|W | . (1.102)

1.3.1 KKLT

Let us first focus on KKLT [18]. We consider a simple model consisting in
only one Kähler modulus T = τ + iθ.
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The Kähler potential in KKLT may be written as (with V = (2τ)3/2)

K = −3 ln
(
T + T̄

)
, (1.103)

while the superpotential reads

W =W0 +Ae−aT . (1.104)

Writing W0 = |W0| eiφW0 and A = |A| eiφA , without loss of generality, we
set φW0 = π and φA = 0, so that W0 = −|W0| and A = |A| ∈ R+. Using
(1.101) one can compute the uplifted scalar potential

VKKLT =
a2A2e−2aτ

6τ
+

aA2e−2aτ

2τ2
− aA|W0|e−aτ

2τ2
cos(aθ) . (1.105)

The minimum for the axion lies at the origin: θ = 0. Note that a different
choice of the phase of W0 would give a different location of the axion
minimum. For example, choosing φW0 = 0 would imply θ = π/a. As we
will see in Sec. 4.3 and 4.4, the choice that leads to θ = 0 is however
important for the derivation of the EDE potential.

With this minimization condition we get

VKKLT =
a2A2e−2aτ

6τ
+

aA2e−2aτ

2τ2
− aA|W0|e−aτ

2τ2
. (1.106)

This scalar potential admits an AdS minimum with |W0| given by

|W0| =
2

3
A aτ e−aτ

(
1 +

5

2aτ

)
, (1.107)

where the gravitino mass in Planck units scales as

m3/2 =
A a

3
√
2τ

e−aτ . (1.108)

1.3.2 Large Volume Scenario

We now turn to the LVS [27, 99]. We will divide this discussion in two,
each with a different choice of the underlying structure of the Calabi-Yau
(CY) manifold. First, we assume a so called ‘Swiss cheese’ CY, where,
given the field content Tb = τb + iθb and Ts = τs + iθs (representing ‘big’
and ‘small’ 4-cycle volume moduli, respectively), the total volume takes
the form

V = τ
3/2
b − τ3/2s . (1.109)
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We have the following Kähler potential

K = −2 ln

(
V +

ξ̂

2

)
, (1.110)

where O(α′3) corrections are proportional to ξ̂ ≡ ξ g
−3/2
s with ξ = − ζ(3)χ

2(2π)3

where χ is the CY Euler number. Furthermore, in order to generate a
potential for the fields, we take a superpotential with the contribution
coming from non-perturbative corrections as

W =W0 ++As e
−asTs +Ab e

−abTb . (1.111)

Computing the scalar potential we find 2 contributions: a leading one
responsible for stabilizing the volume, τs and the axion θs in a AdS vacuum,
and a subleading one stabilizing the axion θb. The scalar potential is then
given by

V = VLVS (V, τs, θs) + Vb (θb) , (1.112)

where, in detail, we have the LVS potential (at leading order in the V � 1

and asτs � 1 expansions, and setting again W0 = −|W0| and As = |As|)

VLVS =
8a2sA

2
se

−2asτs
√
τs

3V
− 4asAsτs|W0| e−asτs

V2
cos [asθs] +

3|W0|2ξ̂
4V3

, (1.113)

where one can immediately see that the axion gets stabilized at θs = 0,
and the potential for the axion θb

Vb = −4abAb|W0| e−abV2/3

V4/3
cos (abθb) , (1.114)

which fixes the axion θb at θb = 0. The leading order LVS potential, at
θs = 0, therefore reads

VLVS =
8a2sA

2
se

−2asτs
√
τs

3V
− 4asAsτs|W0| e−asτs

V2
+

3|W0|2ξ̂
4V3

. (1.115)

We will now concern ourselves with the potential (1.115) after the
stabilization of the axions. To find the minimum of the theory we first
solve for τs by deriving V , finding

e−asτs =
3|W0|

√
τs

asAsV
asτs − 1

4asτs − 1
'

3|W0|
√
τs

4asAsV
. (1.116)

Moreover, in order to simplify the equations, we perform the following
change of variables

ψ ≡ asτs , V = β

√
ψ

as
eψ
(

1− 1/ψ

1− 1/(4ψ)

)
, β =

3|W0|
4asAs

, (1.117)
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which implies ψ ' lnV . Thus, at leading order in ψ � 1, the scalar poten-
tial looks like

V (ψ) = −3 |W0|2

2β3
e−3ψ

[
1−

(
as
ψ

)3/2 ξ̂

2

](
1 +

9

4ψ

)
, (1.118)

where we kept the first correction in the ψ � 1 expansion. Solving for
the minimum and requiring it to be Minkowski (i.e. ∂V = V = 0) we find
the minima conditions to be

ξ̂

2
=

(
ψ

as

)3/2

− 9

10as

(
ψ

as

)1/2

'
(
ψ

as

)3/2

≡ τ3/2s , (1.119)

where again we included only the first correction for ψ � 1. The value of
the volume at this global minimum is

V '
3|W0|

√
τs

4asAs
easτs ' |W0| e

as
gs

(
ξ
2

)2/3

. (1.120)

Moreover, the gravitino mass turns out to be

m3/2 =
|W0|
V

' e
− as

gs

(
ξ
2

)2/3

. (1.121)

We now turn to a Calabi-Yau with a K3 or T 4 fibration over a P1 base
and a diagonal del Pezzo divisor [144, 145]. In this case the volume is
written in terms of the 3 Kähler moduli as

V =
√
τ1τ2 − τ3/2s . (1.122)

This class of manifolds was used in the context of Fibre Inflation [51],
where the inflaton is the direction u = τ1/τ2 orthogonal to the overall
volume mode. The Kähler potential assumes the form3

K = −2 ln

(
V +

ξ̂

2

)
. (1.123)

Furthermore, the superpotential takes the form

W =W0 +As e
−asTs +A1 e

−a1T1 +A2 e
−a2T2 . (1.124)

After stabilizing the axion at θs = 0, one finds again the potential given
in (1.140), following the same minimization conditions as in the Swiss

3The actual moduli dependence of the uplifting contribution in fibred CY cases might
be more complicated since it might involve both the overall volume and the fibre modulus.
In this case, perturbative corrections to K should be used to fix the fibre modulus in terms
of the overall volume to obtain an uplifting term of the standard form.
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cheese case. Given that in this case, in the τs → 0 limit, the volume
is determined by 2 fields, rather than the 1 of the simpler Swiss cheese
geometry, one direction in the (τ1, τ2)-plane is left flat by LVS stabilization.
This flat direction can be lifted by string loops [51, 52, 54, 146], higher
derivative [48] or non-perturbative corrections [62, 147] to the action and
can play a role either in early [47, 48, 51–54, 59] or late time cosmology
[148]. Finally, the potential of the two bulk axions θ1 and θ2 is generated
at an even subleading order by the T1- and T2-dependent non-perturbative
contributions to the superpotential.

1.4 Uplifting

In all previously discussed stabilization mechanisms, we typically achieve
an Anti-de Sitter (AdS) minimum. Attaining a de Sitter (dS) vacuum, how-
ever, requires additional contributions for uplift, as outlined in [149]. In
this section, we detail two such methods: anti-brane uplift and complex
structure F-terms. It’s worth noting other uplift schemes, which we sum-
marize below:

• A non-zero Fayet-Iliopoulos term via T-brane configurations with gauge
fluxes in a hidden D7-brane sector [28–30, 134, 150, 151].

• D-terms from magnetized branes, introducing gauge field fluxes on
a D7-brane [152].

• Competition between α′ corrections to the Kähler potential and non-
perturbative effects [98, 153–155].

• Non-perturbative effects from E(−1)-instantons or D3-branes at sin-
gularities, affecting the dilaton [100].

• Perturbative loop corrections with logarithmic or power-law behaviour
from intersecting D7-branes [97, 101, 156].

• Single-step stabilization of all moduli using tree-level potentials with
non-perturbative corrections [157].

• Positive 4D EFT contributions from negative curvature in extra di-
mensions [158, 159].
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1.4.1 Anti D3-branes

Spontaneous supersymmetry breaking in (effective) supergravity theories
leads to the super-Higgs effect – the gravitino eats the goldstino to be-
come massive. If this phenomenon takes place at energies which are low
compared with the Planck mass, the goldstino couplings can be described
by making use of a (constrained) independent superfield. Supersymmetry
is then non-linearly realized as in the Volkov-Akulov formalism. There are
several approaches to describe the low energy dynamics of the goldstino
in terms of spurion or constrained superfields (see for instance [160] and
references therein). Our focus will be on the approach where the gold-
stino is described in terms of a chiral superfield X that is constrained to
be nilpotent, i.e. X2 = 0. This has the ingredients necessary to describe
supersymmetry breaking induced by the presence of an anti-D3 brane at
the tip of a warped throat in flux compactifications [161–163].

The effective field theory involving a nilpotent chiral superfield X can
be described in terms of a Kähler potential K, a superpotential W and a
gauge kinetic function f whose general forms are:

K = K0 +K1X + K̄1X̄ +K2XX̄, W = ρX + W̃ , f = f0 + f1X,

(1.125)
where K0, K1, K2, ρ, W̃ , f0, f1 are functions of other low energy fields.
Higher powers of X are absent in K and W since X2 = 0. The nilpotency
condition implies a constraint on the components of X . Expanding X in
superspace

X = X0(y) +
√
2ψ(y)θ + F (y)θθ̄ , (1.126)

(where as usual, yµ = xµ + iθσµθ̄), X2 = 0 implies

X0 =
ψψ

2F
. (1.127)

Thus, unless the fermion ψ condenses in the vacuum, the vacuum expec-
tation value of X0 (the scalar component of X) vanishes.

For an anti-D3 brane at the bottom of a warped throat of a type IIB
flux compactification, the description in terms of X is very convenient.
It allows to treat its effects in terms of supergravity: its contribution to
the scalar potential, the gravitino mass and the couplings to moduli and
matter fields are easily obtained. It was shown in [163] that nilpotent
superfield(s) capture all degrees of freedom of an anti-D3 brane when it
is placed on top of an orientifold plane. The presence of the fluxes and
the orientifold projection leave the massless goldstino as a low energy
propagating degree of freedom, in keeping with the use of a nilpotent
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superfield X to describe the system. The simplest example is that of
an O3-plane and an anti-D3 brane at the bottom of a warped throat. In
this case, there is no modulus associated with the position of the anti-D3
brane (in contrast to the case of D3-branes in the bulk). This corresponds
to the fact that the scalar component of X is not a propagating field.
Furthermore, there is no contribution from X0 to the scalar potential and
it can be consistently set to zero while looking for vacuum solutions.

Next, let us turn to the form of the Kähler potential and superpotential
in (1.125). In the case of a single Kähler modulus T (with T = V2/3+ iψ ≡
τ + iψ is a complex field obtained by pairing the volume modulus and its
axionic partner), the functions W̃ and ρ have no dependence on T at the
perturbative level, as a result of holomorphy and the Peccei-Quinn shift
symmetry T 7→ T + ic. The zeroth order term in the Kähler potential of
(1.125), K0 = −2 lnV is invariant (up to a Kähler transformation) under the
full modular transformation T → (aT − ib)/(icT + d) (which is a general-
ization of the shift symmetry). If X transforms suitably, i.e. as a modular
form of weight κ, the quadratic coefficient takes the form K2 = βτ−κ

(where β is a constant). Moreover, if the term linear in X is absent, the
only contribution of X to the F-term potential is a positive definite term:

Vup = eKK−1
XX̄

∥∥∥∥∂W∂X
∥∥∥∥2 = |ρ|2

τ3−κ
. (1.128)

This precisely coincides with form of the contribution of an anti-D3 brane
at the tip of a warped throat with hierarchy |ρ|2

/
β as computed from

direct dimensional reduction (see equation (B.8)), if the modular weight
is κ = 14. Since the anti-D3 brane is localized at a particular point in
the compactification manifold, direct couplings to gauge fields located at
distant D3 or D7-branes are difficult. This implies the absence of terms
linear in X in the gauge kinetic functions. In summary, at leading order
in the α′ expansion the effective field theory is specified by:

K = −2 lnV + β
XX̄

τ
, W = W̃ + ρX, f = f0 , (1.129)

where c, ρ, W̃ , f0 are constants and |ρ|2/β is identified with the hierarchy
y as defined in (B.5), i.e. y = |ρ|2/β. Furthermore, the superpotential only
receives non-perturbative corrections. Nilpotency of X implies that the
Kähler potential in (1.129) can be written as:

K = −3 ln

(
τ − β

3
XX̄

)
. (1.130)

4If κ = 0, one has a (T + T̄ )−3 dependence which corresponds to an anti-D3-brane in
an unwarped region. The magnitude of the term is of order the string scale Vup ∼ M4

s ,
which if included in the low energy theory, would lead to a runaway potential.
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Note that in the regime where the effective field theory is valid, i.e. when
the anti-D3 brane is at the tip of a warped throat, the X superfield couples
to T in the Kähler potential in the same way a superfield φ describing the
D3-brane matter fields,5 i.e. [135, 139]

KD3 = −3 ln
(
τ − α

3
φφ̄
)
∼ −2 lnV + α

φφ̄

τ
+ · · · , (1.131)

where the dots indicate terms which are higher order in the 1/τ expan-
sion. It is then natural to conjecture [164] that the only effect of X in the
Kähler potential is to shift the Kähler coordinate T in the same way as the
field φ does. This was called the log hypothesis, as it leads one to write
the XX̄ term inside the log as in (1.130).

When both D3-branes and anti-D3-brane are present, generically the
Kähler potential can be written as

K = −2 lnV + α
φφ̄

τµ
+ β

XX̄

τκ
+ γ

XX̄ φφ̄

τ ζ
+ · · · , (1.132)

with modular weights µ = κ = 1 as discussed above. Moreover, if φ and
X have modular weights µ and κ respectively, the modular weight for the
XX̄ φφ̄ term should be ζ = µ+ κ. In this case, ζ = 1 + 1 = 2. This agrees
with the log hypothesis, i.e. a Kähler potential of the form

Kno-scale = −3 ln

(
τ − α

3
φφ̄− β

3
XX̄

)
. (1.133)

In fact, expanding this in powers of 1/τ , one obtains (1.132) with the
condition that γ = αβ

3 . The Kähler potential in (1.133) is of the standard
no-scale form [17, 165].

We conclude this subsection with comments relevant for the computa-
tion of soft masses. In the KKLT scenario, the low energy effective theory
is usually written in terms of the fields with masses of order or below the
gravitino mass. These include massless chiral fields (arising as excitations
of open strings) and the Kähler moduli. Supersymmetry is broken at the
minimum of the scalar potential. Both the F-term of X and the F-term
of T are different from zero (with F T � FX ). Thus, the goldstino is a
combination of the fermion in X and the fermion in T . In LVS, even in the
absence of the anti-brane, the overall volume modulus Tb breaks super-
symmetry (F Tb 6= 0). Inclusion of the nilpotent superfield in the effective
action allows one to consider the breaking of supersymmetry induced by

5Here and in the following we will take a simplified model where we write down only
1 of the 3 complex superfields describing the D3-brane positions. Adding the other 2
would only complicate the expressions without altering our results.
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fluxes and supersymmetry breaking by the anti-brane on equal footing.
Again, the goldstino is a combination of the fermion components of X
and of the moduli. Although the dominant component is usually the one
from the Tb-field, for sequestered models the X component is relevant
and its contribution to the soft terms must be accounted for.

Let us now summarize the effect of the addition of this uplift to the
two stabilization mechanism explored.

KKLT: The Kähler potential in (1.103) reads

K = −3 ln
(
T + T̄

)
+ 3

XX̄

T + T̄
, (1.134)

while the superpotential (1.104) becomes

W =W0 +MX +Ae−aT . (1.135)

Using again (1.101) the uplifted scalar potential is

VKKLT =
a2A2e−2aτ

6τ
+

aA2e−2aτ

2τ2
− aA|W0|e−aτ

2τ2
+

M2

12τ2
. (1.136)

where the nilpotency condition has been imposed and θ has been min-
imized to its value θ = 0. This scalar potential admits a Minkowski min-
imum with spontaneously broken supersymmetry for M and |W0| given
by

|W0| =
2

3
A aτ e−aτ

(
1 +

5

2aτ

)
,

M =
√
2aAe−aτ

√
aτ + 2 .

(1.137)

The minimum may be further lifted to a small but non-zero cosmological
constant via a small shift in M . We will use (1.137) when discussing
parameter values in KKLT.

LVS: Now, adding a nilpotent superfield X as in the KKLT case, the Käh-
ler potential (1.110)

K = −2 ln

(
V +

ξ̂

2

)
+
X̄X

V2/3
, (1.138)

while the superpotential (1.111) becomes

W =W0 +MX +As e
−asTs +Ab e

−abTb . (1.139)
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The LVS scalar potential is then given by

VLVS =
8a2sA

2
se

−2asτs
√
τs

3V
− 4asAsτs|W0| e−asτs

V2
+

3|W0|2ξ̂
4V3

+
M2

V4/3
. (1.140)

Making again the change of variables described in (1.117), the scalar po-
tential (1.118) becomes

V (ψ) = − 3 |W0|2

2β3
e−3ψ

[
1−

(
as
ψ

)3/2 ξ̂

2

](
1 +

9

4ψ

)

+
M2

β4/3

(
as
ψ

)2/3

e−4ψ/3

(
1 +

1

ψ

)
. (1.141)

Solving for the minimum and requiring it to be Minkowski (i.e. ∂V = V =

0) we find the minima conditions to be

ξ̂

2
=

(
ψ

as

)3/2

− 9

10as

(
ψ

as

)1/2

'
(
ψ

as

)3/2

≡ τ3/2s (1.142)

M2 =
27

20

|W0|2

a
2/3
s β5/3ψ1/3

e−5ψ/3 ' 27

20

|W0|2

as

√
τs

5/3
, (1.143)

where again we included only the first correction for ψ � 1. Note that
(1.142) and (1.143), when substituted in (1.141), would give a leading
order cancellation and an AdS vacuum for M = 0. Lastly, let us mention
that a dS minimum can be achieved by allowing small shifts of M .

Lastly, the case for a fibrated Calabi-Yau is completely analogous and
will not be described here.

1.4.2 Complex structure uplift

We will now turn to the second method of uplifting of our interest, which
involves employing small complex structure F-terms [40]. This approach
begins from one of the usual Kähler stabilization schemes, KKLT or LVS,
but introduces a small flux SUSY breaking term Fa at the level of the axio-
dilaton/complex structure moduli. This introduction, implies an additional
positive term in the potential given by

Vup =
eKcsFaF

a

V2
≡ |F |2

V2
. (1.144)

Specifically, in the KKLT scenario, there is a competition between the uplift
term and the leading potential

VKKLT ∼ |W0|2

V2
=⇒ |F |2 ∼ |W0|2 (1.145)

=⇒ |F |2 ∼ O
(
|W0|2

)
= O

(
e−2aV2/3

)
� 1 . (1.146)
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Instead, in LVS, due to the smaller volume scaling of the additional term,
considering an F-term such that |F |2 ∼ |W |2 would inevitably lead to a
runaway solution. Parametrizing the F-term as

Fa = εWfa , ε� 1 , (1.147)

with fa an unit flux vector, we get that

|F |2

V2
=
ε2|W |2

V2
∼ O

(
V−3

)
=⇒ ε ∼ O

(
V−1/2

)
� 1 , (1.148)

and this can be achieved by suitably choosing the fluxes in such a way
to achieve the right hierarchy. It is crucial to note that, from this analysis,
the key point in both schemes is maintaining a large volume so that the
F-term is small enough to avoid a runaway solution.

KKLT: In the case of the KKLT framework, the scalar potential becomes

V =
a2A2e−2aτ

6τ
+

aA2e−2aτ

2τ2
− aA|W0|e−aτ

2τ2
+

|F |2

τ3
, (1.149)

where θ has been minimized to its value θ = 0. This scalar potential
admits a Minkowski minimum with spontaneously broken supersymmetry
for |F |2 and |W0| given by

|W0| =
2

3
Ae−aτ

(
2 + aτ − 1

aτ

)
,

|F |2 = 1

6
A2a2τ2e−2aτ aτ + 2

aτ − 1
.

(1.150)

Again, the minimum may be further lifted to a small but non-zero cosmo-
logical constant via a small shift in |F |2.

LVS: The LVS scalar potential is correct as

V =
8a2sA

2
se

−2asτs
√
τs

3V
− 4asAsτs|W0| e−asτs

V2
+

3|W0|2ξ̂
4V3

+
|F |2

V2
. (1.151)

Making again the change of variables described in (1.117), the scalar po-
tential (1.151) becomes

V (ψ) = −3 |W0|2

2β3
e−3ψ

[
1−

(
as
ψ

)3/2 ξ̂

2

](
1 +

9

4ψ

)
+

as|F |2

β2ψ
e−2ψ

(
1 +

3

2ψ

)
.

(1.152)
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Solving for the minimum and requiring it to be Minkowski (i.e. ∂V = V =

0) we find the minima conditions to be

ξ̂

2
=

(
ψ

as

)3/2

− 3

2as

(
ψ

as

)1/2

'
(
ψ

as

)3/2

≡ τ3/2s (1.153)

|F |2 = 9|W0|2

4asβ
e−ψ = 3AsW0 e

−asτs , (1.154)

where again we included only the first correction for ψ � 1. Note that
(1.153) and (1.154), when substituted in (1.152), would give a leading
order cancellation and an AdS vacuum for |F |2 = 0. Lastly, let us mention
that a dS minimum can be achieved by allowing small shifts of |F |2.

The case for a fibrated Calabi-Yau is again completely analogous and
will not be described here.

1.5 Odd Axions in Type IIB String Theory

For a detailed treatment of axions in string theory, we refer the reader
to [166–169]. Here we provide a brief overview, covering the necessary
background for the detailed discussion to follow.

1.5.1 Axions in string theory

In addition to the fundamental axion C0, axions emerge in the 4-dimensional
low-energy effective theory of type IIB string compactifications from di-
mensional reduction of p-form gauge fields. The shift-symmetry which
earns these fields the name ‘axion’ corresponds to gauge invariance of
the higher dimensional theory, and the small axion mass, like a standard
field theory axion, is generated by non-perturbative effects, such as gaug-
ino condensation and instantons.

We define the 4-dimensional axion fields as,

ba =

∫
Σa

B2 , ca =

∫
Σa

C2 , θα =

∫
Dα

C4 , (1.155)

where B2, C2, and C4, correspond to the Kalb-Ramond 2-form and the
Ramond-Ramond 2- and 4-form fields, respectively, and Σa and Dα denote
respectively a basis of 2-cycles and 4-cycles of the underlying CY three-
fold X with a = 1, .., h1,1− (X ) and α = 1, .., h1,1+ (X ). Here h1,1± (X ) are the
so-called Hodge numbers which count the number of holomorphic (1, 1)-
forms of X which are even or odd under the orientifold involution with
h1,1 = h1,1+ + h1,1− .
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The C4 axions are inextricably linked to stabilization of the volume
moduli in both the KKLT and LVS approaches, as can be appreciated from
(1.105) for KKLT and (1.113) and (1.114) for LVS. In KKLT, stabilization of
the volume τ necessitates stabilization of the C4 axion θ, and similarly in
LVS stabilization of the small cycle volumes τs necessitates stabilization
of θs. The θb axion, partner to the LVS large cycle volume τb, is ostensibly
decoupled from stabilization of τb which is fixed by perturbative effects.

The B2 axions are also linked to the stabilization of the volume moduli
due to the mixing between b and τ fields in the Kähler potential which
breaks the shift symmetry of the B2 axions at the perturbative level. Con-
sequently, any effect that stabilizes the Kähler moduli generates also a
potential for the b-fields [170]. The shift symmetry is also broken by
D-branes through the DBI action, which manifests in the 4-dimensional
theory as a D-term [171, 172]. These effects generically stabilize b at a
high energy scale, allowing b to be neglected in analyses of cosmology,
as in [173].

The situation is instead different for the C2 axions which are not a pri-
ori linked to the stabilization of the volume moduli, and therefore provide
an opportunity for cosmological model building. In fact, the shift symme-
try of the C2 axions is unbroken by many of the standard ingredients of
flux compactifications, but can be broken upon the inclusion of different
effects we study in this work, such as fluxed ED1-instantons or gaugino
condensation on D7-branes in the presence of worldvolume fluxes.

Finally, the C0 axion is stabilized by the superpotential (1.45), induced
by background 3-form fluxes, which generates a mass for C0 that is compa-
rable to that of the dilaton, and thus stabilization of the dilaton precludes
C0 from playing a cosmological role (with some exceptions [174]).

Let us point out that axions can also be eaten up by anomalous U(1)s
in the process of anomaly cancellation. In this case they would become
as heavy as the string scale, and so would disappear from the low en-
ergy theory. Investigations in this direction [175] have shown that C4

and C2 axions are eaten up by anomalous U(1)s only in the presence of
D3-branes at singularities. Throughout Chap. 4 we will always focus on
branes wrapping cycles in the geometric regime, where therefore C4 and
C2 axions are guaranteed to survive in the 4-dimensional theory (in this
case the modes eaten up correspond to open string axions).
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1.5.2 Odd axions in effective field theory

Let us now focus on the description of odd axions in type IIB string theory
compactified on an orientifolded Calabi-Yau manifold X [170], expanding
the discussion done in section 1.2. Let us denote the basis of 2- and
4-forms as

D̂α ∈ H1,1
+ (X ), D̃α ∈ H2,2

+ (X ) , α = 1, ..., h1,1+ (X ), (1.156)

D̂a ∈ H1,1
− (X ), D̃a ∈ H2,2

− (X ) , a = 1, ..., h1,1− (X ) (1.157)

which lead to the normalization and intersection numbers∫
X
D̂α ∧ D̂β ∧ D̂γ = kαβγ ,

∫
X
D̂α ∧ D̂a ∧ D̂b = kαab , (1.158)∫

X
D̂α ∧ D̃β = δαβ ,

∫
X
D̂a ∧ D̃b = δab . (1.159)

Furthermore, the Kähler form, C4, C2 and B2 can be expanded as [135]

J = tαD̂α , B2 = baD̂a C2 = caD̂a, (1.160)

C4 = Dα
2 ∧ D̂α + V K ∧ αK − VK ∧ βK − θαD̃

α , (1.161)

where (αK , β
K) ∈ H3

+(X ) is a basis of symplectic forms such that
∫
X αK ∧

βJ = δJK . These combine to give the chiral coordinates of the N = 1

supergravity effective theory that read

Ga = S̄ba + ca =
ba

gs
+ (ca − C0b

a) , τα =
1

2
kαβγ t

βtγ , (1.162)

Tα = τα + θα − 1

4
gskαabG

a(G+ Ḡ)b . (1.163)

The CY volume is an implicit function of the Tα and Ga fields

V =
1

6
kαβγt

αtβtγ , (1.164)

which determines the tree-level Kähler potential

K = −2 lnV . (1.165)

We now restrict ourselves to the simple case with h1,1 = 2 and h1,1+ =

h1,1− = 1, where the orientifold image of the divisor D1 is D2. It is therefore
possible to define an orientifold-even 4-cycle D+ ≡ D1 ∪ D2 and and
orientifold-odd 4-cycle D− ≡ D1 ∪ (−D2). Hence the Kähler form and the
Kähler modulus take the form

J = t D̂+ , T = τ + iθ − 1

4
gskG(G+ Ḡ) , (1.166)
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where k+−− ≡ k, τ+ ≡ τ and D̂+ is the 2-form Poincaré dual to D+.
Defining k+++ ≡ k̃, the CY volume takes therefore the form

V =
1

3

√
2

k̃
τ3/2 , 2τ = T + T̄ − γ

(
G+ Ḡ

)2
= 2Re (T )− 4γ

g2s
b2 , (1.167)

where we have introduced

γ ≡ −1

4
gsk . (1.168)

Substituting (1.167) in (1.165), we can obtain the Kähler potential which
becomes

K = −3 ln

(
Re (T )− 2γ

g2s
b2
)
. (1.169)

Note the explicit dependence of the Kähler potential on the B2 axion,
implying that this field does not enjoy any perturbative shift symmetry.
Moreover, the sign of γ is required to be positive (γ > 0 ⇔ k < 0) in order
to avoid the C2 axion being a ghost. This can be seen by calculating the
kinetic term for the orientifold odd axion

Lkin = KGḠ ∂µG∂
µḠ ⊃ KGḠ ∂µc ∂

µc =
3γ

τ
(∂c)2 , (1.170)

where KGḠ = ∂G∂ḠK and we have set b = 0. One can then define the
canonically normalized field as

ϕ =

√
6γ

τ
c . (1.171)

1.5.3 Odd axions and non-perturbative effects

Type IIB compactifications feature different non-perturbative effects that
can generate corrections to both the superpotential and the Kähler poten-
tial. We discuss now how these effects can break the perturbative shift
symmetry of C4 and C2 axions.

ED3-instantons

A typical source of non-perturbative corrections to the superpotential is
4-cycles wrapped by Euclidean D3-brane (ED3) instantons [176]. The sim-
plest configurations are fluxless but ED3-instantons can also support non-
zero 2-form fluxes as studied in [177, 178]. In order to obtain a non-zero
contribution to W the ED3 should wrap an orientifold-even rigid cycle,
which in our simple case can only beD+ which we assume to be a smooth
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and connected divisor (see Fig. 1.1). Moreover, in the case of a rank-1
instanton, a non-zero W is compatible only with a purely odd 2-form flux
F2 = f̂−D̂−, while rank-2 instantons can contribute to W also for even
fluxes [179].

D1 D2

ED3

D+

involution

Figure 1.1. ED3-instanton wrapping the smooth orientifold-even divisor D+.

Restricting just to odd fluxes, the resulting contribution to the super-
potential is [177, 178]

WED3 =
∑
n∈N
f̂−∈Z

An,̂f−e
−2πn

(
T+kf̂−G+ 1

2
kf̂2−S̄

)
. (1.172)

This expression shows that in general ED3-instantons generate a scalar
potential for C4 axions, while they lift C2 axions only in the presence of
fluxes.

Interestingly, in the presence of D7-branes some of the terms of this
series can be absent due to gauge invariance. To see this more precisely,
let us consider a stack of N D7-branes wrapped either on D+, as shown
in Fig. 1.2, or on D1 and its orientifold image D2, as shown in Fig. 1.3.

D1 D2

D7

involution

D+

ED3

Figure 1.2. ED3-instanton and a stack of D7-branes wrapping the smooth orientifold-even
divisor D+.
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D1 D2

D7D7

D+

involution

ED3

Figure 1.3. ED3-instanton wrapping the smooth orientifold-even divisor D+ and a stack of
D7-branes wrapping D1 and its orientifold image D2.

The T - and G-fields can get charged under the diagonal U(1) of the
stack of N D7-branes. G develops a non-zero charge qG due to a ge-
ometric Stückelberg mechanism only when the D7s wrap D1, while the
U(1) charge of T , qT , is due to the world-volume flux on the D7-stack
F̂2 = f+D̂+ + f−D̂−:6

D7 on D+ : qG = 0 , qT = −2N k̃ f+ , (1.173)

D7 on D1 : qG = N , qT = −N
(
k̃ f+ + k f−

)
. (1.174)

Consequently the ED3-instanton acquires a U(1) charge given by [177]

D7 on D+ : q = 2nN k̃ f+ , (1.175)

D7 on D1 : q = nN
[
k
(
f− − f̂−

)
+ k̃ f+

]
, (1.176)

which in general induce non-zero charges for all terms in the ED3-instanton
series (1.172). In order to obtain a gauge invariant contribution to the su-
perpotential, each of these terms has therefore to be multiplied by an
operator of the form O ∼ ΠiΦi involving a product of open string modes
whose U(1)-charge cancels the one of the instanton. However, if these
are visible sector fields, they have to acquire a vanishing vacuum expec-
tation value in order not to break the Standard Model gauge symmetry
at high scales. Hence, if the Standard Model lives on the D7-stack under
consideration, the only possibility to have a non-zero ED3-contribution to

6More precisely, the even flux on the ED3 and the D7-stack contains also a contribution
from the B2-field which can be either 0 or 1/2, so that F2 = F2 −B2 for both of them. For
non-spin cycles, Freed-Witten anomaly cancellation forces a half integer contribution to
the even F2 flux which can be cancelled by choosing b+ = 1/2 so that the total even flux
for the ED3 is zero. With this choice of B2-field, the gauge flux on the D7s is then just
given by F̂2 with integer quanta when the D7s wrap D+, while a half integer contribution
should be added to the even flux F̂2 when the D7s wrap D1. In this case, we shall however
omit this contribution and consider it implicitly included in f+.

44



Type IIB Flux Compactification and Moduli stabilization

W is by choosing the flux quanta such that q = 0 without the need of any
field-dependent prefactor. However this is never possible when the D7s
wrap D+ since k̃ f+ is necessarily non-zero given that it is proportional to
the number of chiral states on the D7-stack. This kills any possible ED3
contribution toW , which is a manifestation of the known tension between
chirality and moduli stabilization [180]. On the other hand, when the D7s
wrap D1, the U(1)-charge (1.176) can be vanishing for an appropriate
value of f̂−. In fact, the only non-zero contribution in the ED3-expansion
(1.172) is the one corresponding to f− such that

f̂− = f− +
k̃

k
f+ ≡ f . (1.177)

Thus the ED3-series (1.172) would reduce to:

SM D7 on D+ : WED3 = 0 , (1.178)

SM D7 on D1 : WED3 =
∑
n∈N

An,f e
−2πn

(
T+kfG+ 1

2
kf2S̄

)
(1.179)

On the other hand, if the D7-stack wrapping D+ or D1 is a hidden sector,
open string fields can acquire non-zero vacuum expectation values, and
so all terms in (1.172) can in principle survive.

Gaugino condensation on D7-branes

The superpotential can in general also receive a non-zero contribution
from gaugino condensation in the gauge theory living on a stack of N
D7-branes. We shall consider the case where N D7-branes wrap D1 and
N D7-branes wrap its orientifold image D2, as shown in Fig. 1.4 (similar
considerations apply for the case when the D7-branes wrap D+). In this
case the world-volume theory is an SU(N) gauge theory and we shall
allow for a general gauge flux of the form F2 = f+D̂+ + f−D̂−.

D1 D2

D7D7

involution

Figure 1.4. A stack of D7-branes wrapped around D1 and its orientifold image D2.
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In this case the induced W is given in terms of the gauge kinetic
function fD7 as

WD7 = Ae−
2π
N
fD7 , (1.180)

where fD7 reads

D7 on D+ : fD7 = T + kf−G+
1

2

(
kf2− + k̃f2+

)
S̄ , (1.181)

D7 on D1 : fD7 = T + k (f+ + f−)G+
1

2

(
kf2− + k̃f2+ + 2kf+f−

)
S̄ .(1.182)

Note that WD7 would have a U(1)-charge of the form

D7 on D+ : q = 2N k̃ f+ , (1.183)

D7 on D1 : q = N
(
k̃ − k

)
f+ , (1.184)

which could vanish if f+ = 0 (or also for k̃ = k when gaugino condensation
is on D1). For f+ 6= 0, the U(1)-charge is non-zero, and so gaugino con-
densation can generate an Affleck-Dine-Seiberg non-zero contribution to
the superpotential [181] only in the presence of a prefactor O which de-
pends on chiral matter fields with appropriate U(1)-charges to make WD7

gauge invariant. Clearly these fields need also to develop non-zero vac-
uum expectation values, which is not necessarily a problem if the SU(N)

theory undergoing gaugino condensation belongs to a hidden sector. Let
us however point out that the generation of a non-zero WD7 should be
studied carefully since this situation is more complicated than the sim-
plest one with no gauge fluxes where the world-volume theory is a pure
SU(N) gauge theory that is known to undergo gaugino condensation.

Comparing (1.180) with (1.179) one immediately sees that, for N >

1, ED3 contributions are subleading in respect to the one from gaugino
condensation on D7-branes, and thus can be safely ignored when WD7 is
generated.

An intriguing possibility, which is clearly harder to realize explicitly, is
when branes in the same stack are differently magnetized. In this case
the original SU(N) theory factorizes into SU(N1)×SU(N2)× ...×SU(Np)

with N1 + N2 + ...Np = N allowing, in principle, for multiple gaugino
condensation contributions to W where each of them takes the same
form as (1.180):

WD7 =

p∑
i=1

Ai e
− 2π

N
fD7,i . (1.185)

Alternatively, multiple non-perturbative corrections to W due to gaug-
ino condensation could arise from different stacks of D7-branes wrapped
around 4-cycles which are distinct representatives of the same homology
class [173].
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ED1-instantons and gaugino condensation on D5-branes

Another potential source of non-perturbative corrections to the effective
action are ED1-instantons and gaugino condensation on D5-branes wrap-
ping internal 2-cycles. Due to holomorphy, these effects are expected to
correct the Kähler potential but not the superpotential [170, 182, 183].
This can be seen as follows. Due to the general arguments presented
in [176], any non-perturbative correction to the superpotential should
go to zero either in the large volume limit or for vanishing string cou-
pling. Hence ED1/D5 non-perturbative corrections to W should depend
on the volume of the wrapped 2-cycle t as WED1/D5 ∼ e−(t+G), so that
WED1/D5 → 0 for t → ∞. However, as can be seen from (1.163), t is
not a correct chiral coordinate for the type IIB supergravity effective the-
ory. The correct chiral superfield is instead T ∼ t2. Thus, the putative
superpotential WED1/D5 ∼ e−(

√
T+G) would not be a holomorphic function,

and so it is expected to vanish. On the other hand, note that a non-zero
non-perturbative W could arise from gaugino condensation on D5-branes
wrapping vanishing 2-cycles [168], though this in turn introduces new
subtleties, in particular, control of the effective field theory around the
singularity, and that axions can be ‘eaten’ up by anomalous U(1)’s at sin-
gularities [134, 150, 151].

We shall therefore ignore potential ED1/D5 corrections to W but we
will consider the possibility of non-perturbative corrections to K since this
quantity is not protected by holomorphy. These corrections have not been
computed explicitly in type IIB (see however [184] for a derivation of in
type I toroidal orbifolds). However the authors of [182, 183] estimated the
scaling of the leading ED1/D5 corrections to the Kähler potential. Here,
we generalize their results proposing an educated guess for the series
of non-perturbative corrections to K from ED1/D5-branes wrapped on an
internal 2-cycle t with non-zero odd gauge flux. Making an analogy with
the ED3 case (1.172), we propose

KED1 = −3 ln

Re (T )− 2γ

g2s
b2 + ...+

∑
n∈N
f̂−∈Z

An,̂f−e
−2πn

(
t√
gs

+kf̂−G
) , (1.186)

where

t =

√
2

k̃

(
Re (T )− 2γ

g2s
b2
)
, (1.187)

and the dots denote perturbative corrections in α′ and gs, as well as non-
perturbative worldsheet α′ corrections [178], which do not depend on the
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C2 axion due to its shift symmetry. In (1.186) we have absorbed in the
prefactor An,̂f− a potential dilaton-dependent factor e−2πn 1

2
kf̂2−S̄ .

Making an analogy with the D7 case (1.185), we can also propose
a similar form for the corrections to the Kähler potential for the case of
multiple gaugino condensates on a stack of D5-branes (absorbing again
in the prefactors potential S̄-dependent exponents)

KD5 = −3 ln

(
Re (T )− 2γ

g2s
b2 + ...+

p∑
i=1

Ai e
− 2π

Ni

(
t√
gs

+kfiG
))

. (1.188)

ED(-1)-instantons and gaugino condensation on D3-branes

Other possible non-perturbative effects in type IIB can be generated by
ED(-1)-instantons or gaugino condensation on D3-branes at singularities.
We shall however not consider these corrections to the superpotential
since they depends just on the dilaton (and the blow-up mode resolving
the local singularity Tloc) [100], WED(-1)/D3 ∼ e−(S+Tloc). Moreover, in this
case, C4 and C2 axions tend to be removed from the low energy theory
since they get eaten up by anomalous U(1)s localized at the singularity
[175].

1.5.4 Odd axions and D-terms

As we have explained above, the shift symmetry of C2 axions can be
broken only in the presence of non-zero 2-form fluxes. However these
world-volume fluxes generate also moduli-dependent Fayet-Iliopoulos (FI)
terms for the diagonal U(1) of D7-branes. We need therefore to analyse
these FI-terms carefully.

Fayet-Iliopoulos terms

For a stack of D7-branes wrapping the divisor DD7 with world-volume flux
F2 = F2 −B2 the FI-term takes the form [171, 172]

ξFI =
1

4πV

∫
DD7

J ∧ F2 . (1.189)

The Kähler form can be expanded as J = tαD̂α, while the gauge flux F can
be decomposed as (without including potential half integer contributions
for the even B2 field)

F2 = F2 −B2 = fαD̂α + (fa − ba) D̂a . (1.190)

48



Type IIB Flux Compactification and Moduli stabilization

Focusing for concreteness on the simple case with h1,1 = 2 and h1,1+ =

h1,1− = 1, the exact expression of the FI-term (1.189) depends on the nature
of the divisor DD7 wrapped by the D7-branes. If DD7 = D+, as in Fig. 1.2,
we have

ξFI =
1

4πV

∫
D+

J ∧ F2 =

(
3k̃

4π

)
f+
τ
, (1.191)

which does not depend on the B2 axion since k++− = 0. Note that for
and ED3-instanton (1.191) is identically zero since the flux can only be
purely odd, i.e. f+ = 0, to have a non-zero contribution to W .

On the other hand, if DD7 = D1, as in Fig. 1.3, the FI-term (1.189) takes
the form

ξFI =
1

4πV

∫
D1

J ∧ F2 =
1

8πV

∫
D+

J ∧ F2 +
1

8πV

∫
D−

J ∧ F2

=
3

8πτ

[
k̃f+ + k (f− − b)

]
, (1.192)

which introduces an explicit dependence on the B2 axion, even for F2 = 0.
In what follows we shall assume, without loss of generality, F2 = fD̂1 −
fD̂2 = fD̂−, which implies f− = f and f+ = 0. This choice guarantees that
ED3/D7 non-perturbative corrections to W maintain their dependence on
the G-field but simplifies the expression of the FI-term (1.192) to

ξFI =

(
3k

8π

)
(f− b)

τ
. (1.193)

The total D-term potential includes also open string modes χi with
U(1) charges qi and looks like

VD =
g2

2

(∑
i

qi|χi|2 − ξFI

)2

with g2 =
4π

Re(T )
. (1.194)

The D-term potential scales as VD ∼ ξ2FI/τ ∼ V−2, and so it is leading with
respect to the F-term potential due to the no-scale cancellation. Hence,
the minimum is located at

q |χ|2 ' ξFI , (1.195)

where for simplicity we have focused just on a single charged matter
field whose charge q has an opposite sign with respect to the FI-term. All
charged matter fields whose charge has the same sign as ξFI are instead
fixed to zero.

As can be seen from (1.193), ξFI is in general a function of two fields: τ
and b. Hence, the relation (1.195) fixes one direction, among |φ|, τ and b,
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in terms of the other two which, at this level of approximation, remain still
flat. They are lifted by subdominant F-term contributions. Before studying
the stabilization of these two directions, let us point out that the axionic
partner of the saxionic direction fixed by the D-terms is eaten up by the
anomalous U(1) via the Stückelberg mechanism. This axion is in general
a linear combination of the axionic phase ζ of φ = |φ| eiζ , the C4 axion θ,
and the C2 axion c. The resulting U(1) mass is proportional to the decay
constants of these axions [185]

M2
U(1) ∼ g2

(
f2ζ + f2θ + f2c

)
, (1.196)

where

f2ζ ' ξFI ∼
(f− b)

τ
, f2θ ' KT T̄ ∼ 1

τ2
, f2c ' KGḠ ∼ gs

τ
. (1.197)

In the presence of a hierarchy among these decay constants, the combi-
nation of axions eaten up by the anomalous U(1) is mostly given by the
axion with the largest decay constant. We will see that F-term stabilization
gives two branches for b:

• b = 0: in this case the Abelian gauge boson becomes massive by
eating up the open string axion ζ since

f2ζ ∼ f

τ
� f2c ∼ gs

τ
� f2θ ∼ 1

τ2
(1.198)

for τ−1 . O(0.01) � gs ∼ O(0.1) � f ∼ O(1) .

• b = f: in this case the Abelian gauge boson becomes massive by
eating up the C2 axion c since

f2c ∼ gs
τ

� f2θ ∼ 1

τ2
� f2ζ ∼ 0 for τ−1 . O(0.01) � gs ∼ O(0.1) .

(1.199)

B2 axion stabilization

The two directions left flat by D-term stabilization are lifted by F-term
contributions. The matter fields receive F-term contributions from soft
supersymmetry breaking terms of order the gravitino mass

VF (|χ|) = Cm2
3/2 |χ|

2 + ... =
|W0|2

V2
|χ|2 + ... , (1.200)

where C is an O(1) coefficient and the dots denote potential contribu-
tions with higher powers of |χ|. On the other hand, the F-term potential
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for the Kähler moduli τ and b is given in KKLT by (1.106) and in LVS by
(1.140) after including the dependence on b through the mixing in the
Kähler coordinates, as can be seen from (1.167). Using the general for-
malism developed in [170], in the KKLT case we obtain (after fixing the
C4 axion)

VKKLT(τ, b) '
a2A2e−2a

(
τ+γ̃ b2

)
6τ

− aA|W0|e−a
(
τ+γ̃ b2

)
2τ2

+
M2

12τ2
, (1.201)

where we have defined γ̃ ≡ 2γ/g2s and we have included only the leading
terms for aτ � 1 and τ � γ̃b2.

In LVS we will consider only the case where the G-modulus mixes
with the big modulus Tb, i.e. ks−− = 0 while kb−− 6= 0, since the huge
e−abτb ≪ 1 suppression is crucial to reproduce the correct EDE scale.
Hence the total LVS potential including the B2 axion becomes

VLVS(V, τs, θb, b) = VLVS(V, τs)−
4abAb|W0| e−ab

(
τb+γ̃ b

2
)

V4/3
cos (abθb) , (1.202)

where VLVS(V, τs) is given by (1.140) with the axion θs fixed at zero, and
we have included again only the leading terms for τb � γ̃b2.

Let us analyse the KKLT and LVS cases separately for D7-branes wrap-
ping either D+ of D1.

• KKLT with D7s on D+ or D1: D-term fixing gives

q |χ|2 ∼ (f− d b)

τ
, (1.203)

where d = 0 and f = f+ when DD7 = D+, while d = 1 when
DD7 = D1. The relation (1.203) fixes |χ| in terms of τ and b (or
just τ for DD7 = D+). The remaining flat directions are fixed by
VKKLT(τ, b) since this potential dominates over VF (|χ|). In fact, substi-
tuting (1.203) in (1.200) we obtain

VF (|χ|) ∼ (f− d b)
|W0|2

τ4
� VKKLT ∼ |W0|2

τ3
for τ � 1 . (1.204)

It is then straightforward to realize that VKKLT fixes b = 0 and τ as in
KKLT, implying that the axion eaten up by the anomalous U(1) is ζ.

• LVS with D7s on D+: D-term moduli stabilization sets

q |χ|2 ∼ f+

V2/3
, (1.205)
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which fixes |χ| in terms of V . Substituting this result in (1.200) we
obtain

VF (|χ|) ∼ f+
|W0|2

V8/3
, (1.206)

that represents the standard expression for T-brane dS uplifting [29].
Hence, in this case the UV consistency of the underlying model
forces the presence of a precise dS uplifting source, in addition to
the potential existence of anti D3-branes. The Kähler moduli and
the B2 axion are then stabilized by (1.206) together with the LVS
potential (1.202) which fix b = 0 and the T -moduli as in standard LVS
construction. This implies that the axion eaten up by the anomalous
U(1) is again the open string mode ζ.

• LVS with D7s on D1: D-term fixing implies

q |χ|2 ∼ (f− b)

V2/3
, (1.207)

which fixes b in terms of |χ| and V that have to be considered as two
independent variables. Given that the LVS potential (1.202) does not
depend on |χ|, the charged matter field has to be stabilized by its
F-term potential (1.200). Two different situations can arise:

1. If C > 0, the minimum for |χ| lies at |χ| = 0. Substituting this
result back in (1.207) we find b = f which implies that the C2

axion is removed from the low energy effective theory since it
is eaten up by the anomalous U(1). The location of the V mini-
mum remains instead the same as in the LVS case without odd
moduli since it is still determined by the leading order potential
VLVS in (1.202).

2. If C < 0, the matter field is tachyonic and can develop a non-
zero vacuum expectation value. For example, if the F-term po-
tential for |χ| features an additional cubic contribution of the
form (setting |W0| ∼ O(1)):

VF (|χ|) = − 1

V2
|χ|2 + 1

Vα
|χ|3 , (1.208)

with α > 0, the minimum of the charged matter field is located
at |χ| ∼ Vα−2. Substituting this relation back in (1.207) we obtain

(f− b) ∼ V2
(
α− 5

3

)
. (1.209)

For α < 5/3, (f− b) is V-suppressed, and so the solution is given
again, at first approximation, by b ' f , implying that the C2 ax-
ion is eaten up. On the other hand, for α ≥ 5/3, (f− b) becomes
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larger than unity. Consequently, as can be seen from (1.197),
the axion eaten up by the anomalous U(1) becomes the open
string mode ζ since its decay constant becomes larger than the
one of the C2 axion. As in the previous case, the T -moduli are
still fixed by the standard LVS potential.

The best case scenario is therefore the one where the B2 axion is fixed
at zero, so that the C2 axion can survive in the low energy effective the-
ory. Let us finally stress that, at this level of approximation, the B2 axion
becomes massive, while the C2 axion is still massless. If the potential for
the C2 axion is generated by subleading non-perturbative effects, the re-
sulting moduli mass spectrum would feature a hierarchical structure with
the lightest mode given by the C2 axion.
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Chapter II

Flux Vacua with Perturbative Flat
Directions

In this chapter we will perform appropriate choices of flux quanta that
induce relations between the flux superpotential and its derivatives. This
method is implemented in toroidal and Calabi-Yau compactifications in the
large complex structure limit. Explicit solutions are obtained and classified
on the basis of duality equivalences. Let us recall that in this chapter we
will use the notation for the axio-dilaton φ = iS̄.

2.1 Outline of the strategy and main results

The superpotential in type IIB compactifications is given by the sum of
the GVW superpotential (1.45) and non-perturbative corrections. We will
work with the GVW term (the non-perturbative terms are small correc-
tions in the large radius limit) and search for supersymmetric minima
with flat directions. At this level the conditions for supersymmetry are
DφW = ∂φW + W∂φK = 0 and DUαW = ∂UαW + W∂UαK = 0 where
Uα (α = 1, . . . , h2,1− ) are the complex structure moduli [10].1 Given that
(1.45) does not depend on the Kähler moduli Ti (i = 1, . . . , h1,1+ ), the F-
flatness conditions for these modes is W = 0 since DTiW = W∂TiK with
∂TiK 6= 0 for finite field values. Thus supersymmetry at classical level re-
quires W = ∂φW = ∂UαW = 0. Notice that flat directions can clearly exist
also for W 6= 0 where supersymmetry is definitely broken by the Käh-
ler moduli (and potentially by the axio-dilaton and the complex structure
moduli as well). Despite being interesting for phenomenological and cos-
mological applications, these solutions would typically be characterized

1For toroidal compactifications primitivity of the fluxes has to be imposed as an addi-
tional requirement. This is due to the presence of holomorphic 1-forms on tori [10]. In our
study of a toroidal case we impose this condition at the very end, after having obtained
solutions to the F-flatness conditions.
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by large values of W0 which are incompatible with the KKLT scenario (and
some LVS models with T-brane uplifting).

Our analysis will be for toroidal orientifolds and CY compactifications
in the large complex structure limit where the superpotential is a poly-
nomial (after dropping exponentially small terms in the large complex
structure limit). Thus the F-flatness conditions W = ∂φW = ∂UαW = 0

are n + 1 = h2,1− + 2 polynomial equations in n complex variables which
in general do not have a solution since the system is overdetermined. In
addition, we are interested in solutions with p ≥ 1 flat directions which
can exist if the number of linearly independent equation is reduced from
(n + 1) to (n − p) by an appropriate flux choice. Thus the first step is to
understand which choice of flux quanta can yield solutions with flat di-
rections. At present the answer to this in full generality is unknown, and
so we have to resort to a well motivated ansatz.

Before discussing our ansatz, let us recapitulate the basic idea in [12,
31]. Flux quanta were chosen so that W was a degree-2 homogeneous
polynomial. For such superpotentials:

2W = φ∂φW + Uα ∂UαW , (2.1)

holds as a functional relation (i.e. on all points on the moduli space).
This implies that the W = 0 equation is automatically satisfied once the
derivatives of W vanish. Furthermore the scaling behaviour of W implies
that, if (φ̂, Ûα) is a solution, φ = λφ̂, Uα = λÛα remains a solution, signalling
the existence of a flat direction parametrised by λ.2 This implies that,
on top of (2.1), ∂φW can be expressed as a linear combination of the
derivatives of W with respect to the complex structure moduli. This can
be easily seen in the h1,2− = 1 case where, setting c ≡WφφWUU−WφUWUφ,
one has:{

WφφWU =WUφWφ + cU

2WφφW =W 2
φ + cU2

c = 0−−−→

WU =
(
WUφ

Wφφ

)
Wφ

2WφφW =W 2
φ

, (2.2)

showing that the flux choice c = 0 (or WφφWUU = WφUWUφ) guarantees
that W = 0 for U 6= 0 and the fact that W = ∂UW = 0 is an automatic
consequence of ∂φW = 0, signalling the presence of a flat direction.

The lesson to take from the above is that superpotentials where there
are functional relations between W and its derivatives, such that the van-
ishing of some implies the vanishing of other(s), are particularly suited

2Unless φ̂ = 0 and Ûα = 0 ∀α which is however a situation that we do not consider
since it would lead to a breakdown of the effective field theory.
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for obtaining solutions with flat directions. In this chapter we will focus
on the more general case where W is not necessarily a homogeneous
function but its derivatives are linearly dependent:

λφ ∂φW + λα ∂UαW = 0 , (2.3)

where λφ and λα are constants with no moduli dependence. Our strategy
is as follows:

1. Given a toroidal orientifold or an orientifolded CY in the large com-
plex structure limit, we compute the superpotential in full generality
as a function of the flux vectors and moduli.

2. We impose that a condition of the form (2.3) holds as a functional
relation, and determine the constraints that this sets on the fluxes. At
this stage λφ and λα are to be thought of as parameters in the ansatz
for the fluxes. Thus the constrained fluxes are allowed to depend on
them. This in general reduces the number of independent equations
from n+ 1 to n.

3. Taking the fluxes obtained in the previous step, we impose the F-
flatness conditions and the requirement to have at least 1 flat direc-
tion. Unlike the case of a degree-2 homogeneous superpotential, a
flat direction is not guaranteed if just a condition of the form (2.3)
holds. When possible, the existence of a flat direction is obtained
by an appropriate choice of λφ and λα which reduces further the
number of independent equation from n to n − p with p ≥ 1. Thus
the requirement of a flat direction can further constrain the fluxes.3

4. The end result of step 3 are solutions to the F-flatness conditions
with at least 1 flat direction and flux vectors parametrised by λφ and
λα. Of these we isolate the subset of flux vectors that satisfy the
integrality and the D3 tadpole condition. We also impose physical
restrictions such as the positivity of Imφ which sets the string cou-
pling (Imφ = g−1

s ).

5. For toroidal examples we finally impose also the primitivity of G3 to
have a supersymmetric solution.

3In effect, we adjust fluxes to ensure the following. We have n independent equations
in n variables: f l(Uk) = 0, Uk = φ,Ua, after step 2. For cases with flat directions,
det

(
∂kf

l
)

vanishes at the solution.
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A few comments are in order. Implementing the procedure working with
the general form of the linear relation is rather cumbersome. It is easier
to work case by case with the linear relations being classified by which
of the λφ and λα are non-vanishing. We have included the checks for the
solutions being physical in step 4 of the procedure. In practice, it is easier
to check for these conditions at every stage and discard any candidate
solution as soon as it becomes clear that it is unphysical.

Let us highlight our key results. An explicit implementation of the
algorithm has been carried out for the T 6/Z2 orientifold [142, 143], an
orientifold of the CY obtained by considering a degree-18 hypersurface in
CP[1,1,1,6,9] (first studied in the context of mirror symmetry in [186] and
also the example studied in [12]), and an orientifold of the CY discussed
in [134].

• For the T 6/Z2 orientifold, we find solutions with 1 and 2 flat direc-
tions (and no more). The solutions fall into various families (classified
according to the nature of the linear relation that holds). In all solu-
tions the residual moduli space contains regions in which the string
coupling is arbitrarily small.

• For the T 6/Z2 orientifold, there are solutions which preserve N = 2

supersymmetry in 4 dimensions. Being novel solutions with ex-
tended supersymmetry, they are interesting in their own right.

• For the CP[1,1,1,6,9][18] case, we find essentially 1 family of fluxes
which lead to solutions with 1 flat direction corresponding to the
axio-dilaton. One can ensure that the moduli take on values in the
large complex structure limit (as is required for the consistency of
our analysis) when the string coupling is taken to arbitrarily small
values.

• We find 68 distinct solutions in the CP[1,1,1,6,9][18] case, 15 of which
are entirely novel since the superpotential is a non-homogeneous
polynomial. The remaining 53 solutions can instead be mapped by
duality to the case when the superpotential is a degree-2 homo-
geneous polynomial. However only 2 out of these 53 solutions lie
at weak string coupling and in a regime where the large complex
structure limit is definitely under control, reproducing the old vacua
already found in [12, 23, 26].

• For the CP[1,1,1,6,9][18] case, we find also solutions with 1 axionic flat
direction and W 6= 0 which represent promising starting points for
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an explicit CY realization of winding dS uplift [38]. In this case, W
is still a polynomial of degree 2 but not a homogeneous function.

• For the CY studied in [134], which features effectively 1 complex
structure modulus more than the CP[1,1,1,6,9][18] example, we present
a preliminary analysis where we find solutions with 2 flat direc-
tions. Again, W is a polynomial of degree 2 that is always non-
homogeneous when W 6= 0, while it can become a homogeneous
function for some flux quanta only when W = 0 at the minimum (as
in the CP[1,1,1,6,9][18] case, there are W = 0 cases where W cannot
be made non-homogeneous by duality).

2.2 Solutions in Toroidal Orientifolds

In this section we will study classical supersymmetric solutions with flat
directions that can arise in the T 6/Z2 orientifold. This is the setting where
some of the first explicit computations of the flux potential in type IIB
were carried out [142, 143]. Flux vacua in the toroidal setting have been
studied in much detail (see e.g. [140, 187–195] for related studies).

We will consider the class in which the flux vectors are diagonal, i.e.:

aij = diag{a1, a2, a3}, bij = diag{b1, b2, b3},
cij = diag{c1, c2, c3}, dij = diag{d1, d2, d3} , (2.4)

which lead to:

Nflux = (b0c0 − a0d0) + (b1c1 − a1d1) + (b2c2 − a2d2) + (b3c3 − a3d3) . (2.5)

Given that the structure of (1.100) implies a diagonal form of the period
matrix, we take:

τ ij = diag{τ1, τ2, τ3} . (2.6)

Note that this corresponds to a T 2×T 2×T 2 factorization of the T 6 with τα
(α = 1, 2, 3) as the complex structure moduli of the 3 2-tori. For notational
convenience we introduce:

(U1, U2, U3, U4) ≡ (τ1, τ2, τ3, φ) . (2.7)

With this, (1.99) takes the form:

W =(a0 − U4c
0)U1U2U3

− (a1 − U4c1)U2U3 − (a2 − U4c2)U1U3 − (a3 − U4c3)U1U2

− (b1 − U4d1)U1 − (b2 − U4d2)U2 − (b3 − U4d3)U3 − (b0 − U4d0) , (2.8)
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and the system of equations (1.100) reduces to:

a0U1U2U3 − (a1U2U3 + a2U1U3 + a3U1U2)− (b1U1 + b2U2 + b3U3)− b0 = 0 ,

(2.9)

c0U1U2U3 − (c1U2U3 + c2U1U3 + c3U1U2)− (d1U1 + d2U2 + d3U3)− d0 = 0 ,

(2.10)

(a0 − U4c
0)U2U3 − ((a2U3 + a3U2)− U4(c2U3 + c3U2))− (b1 − U4d1) = 0 ,

(2.11)

(a0 − U4c
0)U1U3 − ((a1U3 + a3U1)− U4(c1U3 + c3U1))− (b2 − U4d2) = 0 ,

(2.12)

(a0 − U4c
0)U1U2 − ((a1U2 + a2U1)− U4(c1U2 + c2U1))− (b3 − U4d3) = 0 .

(2.13)

In the next sections we present different families of solutions to these
F-flatness and W = 0 conditions. We start with an example without any
flat direction and we then provide our classification of the solutions with
flat directions.4 Representative examples of flux vectors satisfying the
integrality condition are provided for all the families that arise in the clas-
sification. We first present solutions with 1 flat direction and then solu-
tions with 2 flat directions (our ansatz does not lead to any solutions with
higher number of flat directions). As mentioned earlier, the solutions
will be classified according to the nature of the linear relation that the
derivatives of the superpotential satisfy. This leads to 3 different cases (all
compatible with Nflux 6= 0) for which (2.9)-(2.13) admit complex solutions,
i.e. Im Ua 6= 0 ∀a, with 1 or 2 flat directions:

1. Linear relation among all derivatives: λ1 ∂1W + λ2 ∂2W + λ3∂3W +

∂4W = 0 with λα 6= 0 ∀α = 1, 2, 3 which can allow for solutions with
W = 0 and either 1 or 2 flat directions;

2. Linear relation among the derivatives of W with respect to the axio-
dilaton and 1 complex structure modulus: λα ∂αW + ∂4W = 0 (no
sum over α) with α = 1, 2, 3 which can feature solutions with W = 0

and 2 flat directions;

3. Linear relation among the derivatives ofW with respect to 2 different
complex structure moduli: ∂αW = λβ ∂βW (no sum over β) with
α 6= β and α, β = 1, 2, 3 which can give solutions with W = 0 and 2

flat directions.

4Let us point out that this is not a full classification of the solutions since we obtain
only those which satisfy the linear dependence ansatz (2.3).
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2.2.1 No Flat Directions

In this section we review a solution presented in [142] which has W =

0 but no linearity relation among the superpotential and its derivatives.
Hence it does not feature any flat direction since it can be shown that
the solution is not part of a continuous family. In this case the fluxes are
taken to be proportional to identity:

(aij , bij , c
ij , dij) = (a, b, c, d) δij , (2.14)

a0 = b0 = c0 = −c = −d = 2 , a = b = 0 , d0 = −4 ,

and an explicit solution to (1.100) is given by:

τ ij = τ δij , τ = φ = e
2π
3 . (2.15)

For a set of fluxes to find whether a given solution is isolated or part of a
continuous family, we will use linearized perturbation theory.5 For this let
us write abstractly the system of equations (1.100) as:

f (I)(Ua) = 0 , (2.16)

where I runs over the 11 equations and Ua runs over the 10 variables
(τ ij , φ). Then if the solution Ûa is part of a continuous family, the following
linear system for δUa must have a solution:

∂Uaf
(I)

∣∣∣∣
Ûa

δUa = 0 , (2.17)

i.e. the rank of the matrix ∂Uaf
(I)(Ûa) should be less than 10. Now, the

matrix elements are given by:6

∂τ ijf
(1) =

1

2
a0εiklεjmnτ

kmτ ln − akmεiklεjmnτ
ln − bij , (2.18)

∂τ ijf
(2) =

1

2
c0εiklεjmnτ

kmτ ln − ckmεiklεjmnτ
ln − dij , (2.19)

∂τ ijf
(3)
kl = (a0 − φc0)εikmεjlnτ

mn − (amn − φcmn)εikmεljn , (2.20)

∂φf
(1) = ∂φf

(2) = 0 , (2.21)

∂φf
(3)
kl = −c0(cof τ)kl + cijεikmεjlnτ

mn + dkl . (2.22)

5This technique is not limited to diagonal fluxes. For a generic choice of fluxes, even if
a given solution has diagonal τ ij , that may be a part of a continuous family with non-zero
off-diagonal terms. As a result, in general we must deal with a 11× 10 matrix, as shown
below. However only τ ij = τδij can satisfy (1.100) for fluxes proportional to the identity.
As a result, it is possible to work with a matrix with lower dimensions.

6Here we use ∂τij det τ = 1
2
εiklεjmnτ

kmτ ln, ∂τij (cof τ)ab = εialεjbnτ
ln, and repeated

indices are summed.
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For fluxes proportional to the identity, these matrix elements evaluated at
(τδij , φ) become:

∂τ ijf
(1) = (a0τ2 − 2aτ − b)δij , (2.23)

∂τ ijf
(2) = (c0τ2 − 2cτ − d)δij , (2.24)

∂τ ijf
(3)
kl = [(a0 − φc0)τ − (a− φc)](δijδkl − δilδjk) , (2.25)

∂φf
(1) = ∂φf

(2) = 0 , (2.26)

∂φf
(3)
kl = −(c0τ2 − 2cτ − d)δkl . (2.27)

The above matrix has rank 10 at (2.15), implying that it is a solution with
no flat directions.

2.2.2 1 Flat Direction

Solutions with 1 flat direction are all in 1 family. The linear relation satisfied
in this family is:

λ1 ∂1W + λ2 ∂2W + λ3 ∂3W + ∂4W = 0 , (2.28)

with λα 6= 0 ∀α = 1, 2, 3. The flux quanta (introduced in (2.4)) take the
form:

{a0, a1, a2, a3} = {0, d3
λ2

+
d2
λ3
,−d2λ2

λ1λ3
,−d3λ3

λ1λ2
} ,

{b0, b1, b2, b3} = {b0,
d0 − b2λ2 − b3λ3

λ1
, b2, b3} ,

{c0, c1, c2, c3} = {0, 0, 0, 0} ,

{d0, d1, d2, d3} = {d0,−
d2λ2 + d3λ3

λ1
, d2, d3} , (2.29)

with the condition d2, d3, d2λ2 + d3λ3 6= 0. With this choice of fluxes Nflux

becomes:
Nflux =

2

λ1λ2λ3

(
λ22d

2
2 + λ2λ3d2d3 + λ23d

2
3

)
, (2.30)

and the GVW superpotential reduces to:

W =
1

λ1
[(b2λ2 + b3λ3 − d0)U1 − λ1(b2U2 + b3U3 − d0U4 + b0)] (2.31)

+
d2
λ1λ3

(U3 − λ3U4)(λ2U1 − βU2) +
d3
λ1λ2

(U2 − λ2U4)(λ3U1 − λ1U3) .
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Demanding that the derivatives of the superpotential vanish implies that
the 3 complex structure moduli Uα, α = 1, 2, 3, are related to the axio-
dilaton U4 as follows:

U1 = −λ1(b3d2 + b2d3)

2d2d3
+
λ1d0(λ2d2 + λ3d3)

2λ2λ3d2d3
+ λ1 U4 ,

U2 = −λ2b3
d3

+
λ22(b3d2 − b2d3)

2d3(λ2d2 + λ3d3)
+

λ2d0
2λ3d3

+ λ2 U4 ,

U3 = −λ3b2
2d2

− λ3(λ2b2 + λ3b3)

2(λ2d2 + λ3d3)
+

λ3d0
2λ2d2

+ λ3 U4 . (2.32)

The W = 0 condition instead implies:

(λ2d2 + λ3d3)
[
4b0d2d3 − 2λ2λ3d0(b2d3 + b3d2) + d20(λ2d2 + λ3d3)

]
+ λ2λ3(b3d2 − b2d3)

2 = 0 . (2.33)

Note that this can be thought of as a relation between the parameters
λ2 and λ3. Hence the flux quanta are essentially parametrised by 2 pa-
rameters and some integers. We could have presented the flux vectors
as functions of 2 parameters from the very beginning. In this case the
W = 0 condition would have been automatically satisfied. We did not do
so to avoid cluttering the notation.

In summary, the solutions are obtained by choosing the even integers
b0, b2, b3, d0, d2, d3 and the parameters λα α = 1, 2, 3 such that all flux
quanta in (2.29) are even, the W = 0 condition (2.33) is met and the
D3 tadpole condition Nflux ≤ 32 (with Nflux given in (2.30)) is satisfied.
Furthermore, physical consistency conditions such as Im (U4) > 0 must be
satisfied. It is easy to find explicit examples. For instance:

λ1 = λ2 = λ3 = 1 , b2 = b3 = 0 , d2 = d3 = 2 , (2.34)

and:
b0 = −4p2 , d0 = 4p , p ∈ Z , (2.35)

yields a family of solutions parametrised by p ∈ Z. The corresponding flux
quanta are:

{a0, a1, a2, a3} = {0, 4,−2,−2} , {b0, b1, b2, b3} = {−4p2, 4p, 0, 0} ,
{c0, c1, c2, c3} = {0, 0, 0, 0} , {d0, d1, d2, d3} = {4p,−4, 2, 2} . (2.36)

It follows that Nflux = 24 and the superpotential can be written as:

W = 2
(
2p2 + 2p(U4 − U1) + U1(U2 + U3 − 2U4) + U4(U2 + U3)− 2U2U3

)
,

(2.37)
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which satisfies:

W ∝ (∂2W − ∂3W )2 + 4(∂2W + ∂3W )∂4W + 4(∂4W )2 . (2.38)

Due to above relation, solving ∂aW = 0, a = 1, . . . , 4 automatically sets
W = 0, although W does not have any scaling property when p 6= 0.7

For p = 0, W is a degree-2 homogeneous function. Let us mention that
we are unable to find even integer fluxes (2.29) subject to (2.33) and
0 < Nflux ≤ 32, for which Nflux is other than 24. At the F-flatness locus the
moduli take the values:

(U1, U2, U3, U4) = (U4 + 2p, U4 + p, U4 + p, U4) . (2.39)

This might seem as giving an infinite number of solutions. However, one
needs to check if the solutions are physically distinct or related by duality
transformations. We give a summary of the relevant duality transforma-
tions in App. A.1. Applying these we find that the infinite class actually
corresponds to just 1 distinct solution with representative the case p = 0.

2.2.3 2 Flat Directions

In this section we discuss solutions with 2 flat directions. Classified ac-
cording to the nature of the linear relations satisfied by the derivatives of
the superpotential, these solutions fall into 3 families.

Family A: For this family the linear relation involves the derivatives of W
with respect to all moduli and looks like:

λ1 ∂1W + λ2 ∂2W + λ3 ∂3W + ∂4W = 0 , λ1, λ2, λ3 6= 0 . (2.40)

With this, the allowed flux quanta fall into 3 subfamilies. We will refer to
them as A1, A2 and A3.

Subfamily A1: Here the flux quanta are characterized by d3 6= 0 and take
the form:

{a0, a1, a2, a3} = {0, d3
λ2
, 0,−d3λ3

λ1λ2
} , {b0, b1, b2, b3} = {b3d0

d3
,−b3λ3

λ1
,
d0
λ2
, b3} ,

{c0, c1, c2, c3} = {0, 0, 0, 0} , {d0, d1, d2, d3} = {d0,−
d3λ3
λ1

, 0, d3} . (2.41)

7By scaling property of a function g(U1 . . . , Un), we mean that there exists a set of
numbers λ1, . . . , λn not all zeros, such that

g(λw1U1, . . . , λ
wnUn) = λw(w1,...,wn)g(U1, . . . , Un), w(w1, . . . , wn) 6= 0 .
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With this choice Nflux and W become:

Nflux =
2d23λ3
λ1λ2

, W =

(
d3U4 −

d3
λ2
U2 − b3

)(
U3 −

λ3
λ1
U1 +

d0
d3

)
. (2.42)

The superpotential and its derivatives vanish when the moduli take the
values:

(U1, U2, U3, U4) =

(
λ1
λ3

(
U3 +

d0
d3

)
, λ2

(
U4 −

b3
d3

)
, U3, U4

)
. (2.43)

Note that the residual moduli space is 2-dimensional and parametrised by
U3 and U4. Let us present an explicit solution. For λα = 1, ∀α = 1, 2, 3 and
d3 = 2, Nflux = 8 and the fluxes in (2.41) become:

{a0, a1, a2, a3} = {0, 2, 0,−2} , {b0, b1, b2, b3} = {b3d0
2
,−b3, d0, b3} ,

{c0, c1, c2, c3} = {0, 0, 0, 0} , {d0, d1, d2, d3} = {d0,−2, 0, 2} . (2.44)

Clearly b3 = 2p and d0 = 2q with p, q ∈ Z retain all fluxes even. With these
choices we get a quadratic superpotential:

W = −2 (U2 − U4 + p) (U3 − U1 + q) , (2.45)

and the solution to W = ∂aW = 0 ∀a = 1, . . . , 4 is given by:

(U1, U2, U3, U4) = (U3 + q, U4 − p, U3, U4) . (2.46)

All the solutions in this class, parametrised by a pair of integers (p, q),
are shown to be dual to 1 physically distinct solution with representative
p = q = 0 in App. A.1.

Subfamily A2: In this case d3 6= 0 again but the fluxes take the form:

{a0, a1, a2, a3} = {0, 0, d3
λ1
,−d3λ3

λ1λ2
} , {b0, b1, b2, b3} = {b3d0

d3
,
d0
λ1
,−b3λ3

λ2
, b3} ,

{c0, c1, c2, c3} = {0, 0, 0, 0} , {d0, d1, d2, d3} = {d0, 0,−
d3λ3
λ2

, d3} . (2.47)

With this choice Nflux and W become:

Nflux =
2d23λ3
λ1λ2

, W =

(
d3U4 −

d3
λ1
U1 − b3

)(
U3 −

λ3
λ2
U2 +

d0
d3

)
. (2.48)

The superpotential and its derivatives vanish when the moduli take the
values:

(U1, U2, U3, U4) =

(
λ1

(
U4 −

b3
d3

)
,
λ2
λ3

(
U3 +

d0
d3

)
, U3, U4

)
. (2.49)
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Note that the residual moduli space is 2-dimensional and parametrised by
U3 and U4. Let us present an explicit example. For λα = 1, ∀α = 1, 2, 3 and
d3 = 4, Nflux = 32 and the fluxes in (2.47) become:

{a0, a1, a2, a3} = {0, 0, 4,−4} , {b0, b1, b2, b3} = {b3d0
4
, d0,−b3, b3} ,

{c0, c1, c2, c3} = {0, 0, 0, 0} , {d0, d1, d2, d3} = {d0, 0,−4, 4} . (2.50)

Clearly, b3 = 2p and d0 = 4q with p, q ∈ Z retain all fluxes even. With these
choices we get a quadratic superpotential:

W = −4
(
U1 − U4 +

p

2

)
(U3 − U2 + q) , (2.51)

and the solution to W = ∂aW = 0 ∀a = 1, . . . , 4 is given by:

(U1, U2, U3, U4) =
(
U4 −

p

2
, U3 + q, U3, U4

)
. (2.52)

All the solutions in this class, parametrised by a pair of integers (p, q), are
shown to be dual to 2 physically distinct solutions with representatives
p = q = 0 and p = 1, q = 0 in App. A.1.

Subfamily A3: Here d2 6= 0 and the fluxes look like:

{a0, a1, a2, a3} = {0, d2
λ3
,−d2λ2

λ1λ3
, 0} , {b0, b1, b2, b3} = {b2d0

d2
,−b2λ2

λ1
, b2,

d0
λ3

} ,

{c0, c1, c2, c3} = {0, 0, 0, 0} , {d0, d1, d2, d3} = {d0,−
d2λ2
λ1

, d2, 0} , (2.53)

With this choice Nflux and the superpotential become:

Nflux =
2d22λ2
λ1λ3

, W =

(
d2U4 −

d2
λ3
U3 − b2

)(
U2 −

λ2
λ1
U1 +

d0
d2

)
. (2.54)

W and its derivatives vanish if the moduli take the values:

(U1, U2, U3, U4) =

(
λ1
λ2

(
U2 +

d0
d2

)
, U2, λ3

(
U4 −

b2
d2

)
, U4

)
. (2.55)

Note that the residual moduli space is 2-dimensional and parametrised
by U2 and U4. Let us present an explicit example. For λ1 = λ3 = 1 and
λ2 = d2 = 2, Nflux = 16 and the fluxes in (2.53) become:

{a0, a1, a2, a3} = {0, 2,−4, 0} , {b0, b1, b2, b3} = {1
2
b2d0,−2b2, b2, d0} ,

{c0, c1, c2, c3} = {0, 0, 0, 0} , {d0, d1, d2, d3} = {d0,−4, 2, 0} . (2.56)
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Clearly b2 = 2p and d0 = 2q with p, q ∈ Z retain all fluxes even. With these
choices we get a quadratic superpotential:

W = −2 (U3 − U4 + p) (U2 − 2U1 + q) , (2.57)

and the solution to W = ∂aW = 0 ∀a = 1, . . . , 4 is given by:

(U1, U2, U3, U4) =

(
U2 + q

2
, U2, U4 − p, U4

)
. (2.58)

All the solutions in this class, parametrised by a pair of integers (p, q), are
shown to be dual to 2 physically distinct solutions with representatives
p = q = 0 and p = 0, q = 1 in App. A.1.

Family B: For this family the linear relation involves derivatives of W with
respect to the dilaton and 1 complex structure modulus and reads:

λ3 ∂3W + ∂4W = 0 , λ3 6= 0 . (2.59)

Similar solutions exist for linear relations of the form λα∂αW + ∂4W = 0

with λα 6= 0 for α = 1, 2, and so we do not list them separately. The
allowed flux quanta fall into 2 subfamilies which we call B1 and B2.

Subfamily B1: Here d2 6= 0, c3d0 6= d1d2 and the fluxes take the form:

{a0, a1, a2, a3} = {− c3
λ3
,
d2
λ3
,
d1
λ3
,
b2c3
d2

} , {b0, b1, b2, b3} = {b2d0
d2

,
b2d1
d2

, b2,
d0
λ3

} ,

{c0, c1, c2, c3} = {0, 0, 0, c3} , {d0, d1, d2, d3} = {d0, d1, d2, 0} . (2.60)

With this choice Nflux and the superpotential become:

Nflux =
2

λ3
(c3d0 − d1d2) , W =

(
U4 −

U3

λ3
− b2
d2

)
(U2(c3U1 + d2) + d1U1 + d0) .

(2.61)
W and its derivatives vanish at:

(U1, U2, U3, U4) =

(
−d2U2 + d0
c3U2 + d1

, U2, λ3

(
U4 −

b2
d2

)
, U4

)
. (2.62)

Note that the residual moduli space is 2-dimensional and parametrised
by U2 and U4. Let us present an explicit solution. For λ3 = 1, c3 = 6,
d0 = d2 = 2 and d1 = 0, Nflux = 24 and the fluxes in (2.60) become:

{a0, a1, a2, a3} = {−6, 2, 0, 3b2} , {b0, b1, b2, b3} = {b2, 0, b2, 2} ,
{c0, c1, c2, c3} = {0, 0, 0, 6} , {d0, d1, d2, d3} = {2, 0, 2, 0} . (2.63)
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Clearly b2 = 2p with p ∈ Z retains all fluxes even. With these choices we
get a cubic superpotential:

W = −2 (3U1U2 + U2 + 1) (U3 − U4 + p) , (2.64)

and the solution to W = ∂aW = 0 ∀a = 1, . . . , 4 is given by:

(U1, U2, U3, U4) =

(
−U2 + 1

3U2
, U2, U4 − p, U4

)
. (2.65)

All the solutions in this class, parametrised by an integer p, are shown to
be dual to 1 physically distinct solution with representative p = 0 in App.
A.1.

Subfamily B2: In this case c3 6= 0, c3d0 6= d1d2 and the fluxes read:

{a0, a1, a2, a3} = {− c3
λ3
,
d2
λ3
,
d1
λ3
, a3} , {b0, b1, b2, b3} = {a3d0

c3
,
a3d1
c3

,
a3d2
c3

,
d0
λ3

} ,

{c0, c1, c2, c3} = {0, 0, 0, c3} , {d0, d1, d2, d3} = {d0, d1, d2, 0} . (2.66)

This choice induce a flux contribution to the D3 tadpole and a superpo-
tential of the form:

Nflux =
2

λ3
(c3d0 − d1d2) , (2.67)

W =

(
U4 −

U3

λ3
− a3
c3

)
(U2(c3U1 + d2) + d1U1 + d0) .

The superpotential and its derivatives vanish if the moduli take the values:

(U1, U2, U3, U4) =

(
−d2U2 + d0
c3U2 + d1

, U2, λ3

(
U4 −

a3
c3

)
, U4

)
. (2.68)

Note that the residual moduli space is 2-dimensional and parametrised by
U2 and U4. Let us present an explicit example. For λ3 = 1, c3 = d1 = d2 = 2

and d0 = 4, Nflux = 8 and the fluxes in (2.66) take the form:

{a0, a1, a2, a3} = {−2, 2, 2, a3} , {b0, b1, b2, b3} = {2a3, a3, a3, 4} ,
{c0, c1, c2, c3} = {0, 0, 0, 2} , {d0, d1, d2, d3} = {4, 2, 2, 0} . (2.69)

Clearly a3 = 2p with p ∈ Z retains all fluxes even. With these choices the
superpotential is cubic:

W = −2 (U1U2 + U1 + U2 + 2) (U3 − U4 + p) , (2.70)

and the solution to W = ∂aW = 0 ∀a = 1, . . . , 4 is given by:

(U1, U2, U3, U4) =

(
−U2 + 2

U2 + 1
, U2, U4 − p, U4

)
. (2.71)
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All the solutions in this class, parametrised by an integer p, are shown to
be dual to 1 physically distinct solution with representative p = 0 in App.
A.1.

Family C: For this family the linear relation involves the derivatives of W
with respect to 2 complex structure moduli and takes the form:

∂1W = λ2∂2W , λ2 6= 0 . (2.72)

Similar solutions exist with linear relations of the form ∂αW = λ3 ∂3W with
α = 1, 2 and λ3 6= 0, and so we do not list them separately. With a relation
of the form (2.72) the allowed flux quanta fall into 3 subfamilies. We will
refer to them as C1, C2 and C3.

Subfamily C1: Here b2c2 6= a2d2 and the flux quanta look like:

{a0, a1, a2, a3} = {0, a2
λ2
, a2, 0} , {b0, b1, b2, b3} = {0, b2λ2, b2, 0} ,

{c0, c1, c2, c3} = {0, c2
λ2
, c2, 0} , {d0, d1, d2, d3} = {0, d2λ2, d2, 0} . (2.73)

With this choice we have:

Nflux = 2 (b2c2 − a2d2) , (2.74)

W =

(
U1 +

U2

λ2

)
(U3(c2U4 − a2) + λ2d2U4 − b2λ2) .

The superpotential and its derivatives vanish at:

(U1, U2, U3, U4) =

(
−U2

λ2
, U2,−λ2

d2U4 − b2
c2U4 − a2

, U4

)
. (2.75)

Note that the residual moduli space is 2-dimensional and parametrised by
U2 and U4. Let us present an explicit example. For a2 = d2 = 0, b2 = 4 and
c2 = 2, Nflux = 16 and the fluxes in (2.73) become:

{a0, a1, a2, a3} = {0, 0, 0, 0} , {b0, b1, b2, b3} = {0, 4λ2, 4, 0} ,

{c0, c1, c2, c3} = {0, 2

λ2
, 2, 0} , {d0, d1, d2, d3} = {0, 0, 0, 0} . (2.76)

Clearly λ2 = ±1,±1
2 retain all fluxes even. With these choices we get a

cubic superpotential:

W = 2

(
U1 +

U2

λ2

)
(U3U4 − 2λ2) , (2.77)
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and the solution to W = ∂aW = 0 ∀a = 1, . . . , 4 is given by:

(U1, U2, U3, U4) =

(
−U2

λ2
, U2,

2λ2
U4

, U4

)
. (2.78)

Subfamily C2: In this case b2, c2, d3 6= 0 and the fluxes look like:

{a0, a1, a2, a3} = {0, b3c2
d3λ2

,
b3c2
d3

, 0} , {b0, b1, b2, b3} = {b2d3λ2
c2

, b2λ2, b2, b3} ,

{c0, c1, c2, c3} = {0, c2
λ2
, c2, 0} , {d0, d1, d2, d3} = {0, 0, 0, d3} . (2.79)

This choices induces:

Nflux = 2b2c2 , W =

((
U1 +

U2

λ2

)
+
d3
c2

)(
c2U3

(
U4 −

b3
d3

)
− b2λ2

)
.

(2.80)
The superpotential and its derivatives vanish if the moduli take the values:

(U1, U2, U3, U4) =

(
−U2

λ2
− d3
c2
, U2,

b2d3λ2
c2d3U4 − b3c2

, U4

)
. (2.81)

Note that the residual moduli space is 2-dimensional and parametrised by
U2 and U4. Let us present an explicit solution. For b2 = c2 = 4, Nflux = 32

and the fluxes in (2.79) take the form:

{a0, a1, a2, a3} = {0, 4b3
λ2d3

,
4b3
d3
, 0} , {b0, b1, b2, b3} = {λ2d3, 4λ2, 4, b3} ,

{c0, c1, c2, c3} = {0, 4

λ2
, 4, 0} , {d0, d1, d2, d3} = {0, 0, 0, d3} . (2.82)

Clearly λ2 = 1, d3 = 2p, b3 = qd3 with p, q ∈ Z retain all fluxes even. With
these choices we get a cubic superpotential:

W = 4 (U3U4 − qU3 − 1)
(
U1 + U2 +

p

2

)
, (2.83)

and the solution to W = ∂aW = 0 ∀a = 1, . . . , 4 is given by:

(U1, U2, U3, U4) =

(
−U2 −

p

2
, U2,

1

U4 − q
, U4

)
. (2.84)

All the solutions in this class, parametrised by a pair of integers (p, q), are
shown to be dual to 2 physically distinct solutions with representatives
p = q = 0 and p = 1, q = 0 in App. A.1.
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Subfamily C3: In this case d0, d2 6= 0, b2d3 6= b3d2 and the fluxes take the
form:

{a0, a1, a2, a3} = {0, b3d2
d0

,
b3d2λ2
d0

, 0} , {b0, b1, b2, b3} = {b2d0
d2

, b2λ2, b2, b3} ,

{c0, c1, c2, c3} = {0, d2d3
d0

,
d2d3λ2
d0

, 0} , {d0, d1, d2, d3} = {d0, d2λ2, d2, d3} .

(2.85)

The expressions for Nflux and W become:

Nflux =
2d2λ2
d0

(b2d3 − b3d2) , (2.86)

W = (d2 (λ2U1 + U2) + d0)

(
U4

(
d3
d0
U3 + 1

)
− b3
d0
U3 − b2d0

)
.

The superpotential and its derivatives vanish at:

(U1, U2, U3, U4) =

(
− 1

λ2

(
U2 +

d0
d2

)
, U2,−

d0 (d2U4 − b2)

d2 (d3U4 − b3)
, U4

)
. (2.87)

Note that the residual moduli space is 2-dimensional and parametrised by
U2 and U4. Let us present an explicit example. For λ2 = 1, b2 = 0, b3 = −4p,
d0 = 4p, d2 = −2 and d3 = 4p with p ∈ Z, Nflux = 8 and the fluxes in (2.85)
become:

{a0, a1, a2, a3} = {0, 2, 2, 0} , {b0, b1, b2, b3} = {0, 0, 0,−4p} ,
{c0, c1, c2, c3} = {0,−2,−2, 0} , {d0, d1, d2, d3} = {4p,−2,−2, 4p} . (2.88)

Clearly all fluxes are even. With these choices we get a cubic superpo-
tential:

W = −2 (U3U4 + U3 + U4) (U1 + U2 − 2p) , (2.89)

and the solution to W = ∂aW = 0 ∀a = 1, . . . , 4 is given by:

(U1, U2, U3, U4) =

(
2p− U2, U2,

1

U4 + 1
− 1, U4

)
. (2.90)

All the solutions in this class, parametrised by an integer p, are shown to
be dual to 1 physically distinct solution with representative p = 0 in App.
A.1.

Dualities among solutions

The duality relations among the different classes of solutions presented
above are analysed in detail in App. A.1 (for the case where λα ∈ Z). Here
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we just summarize the main results. The solutions of all 3 subfamilies in
family A are dual to each other, and subfamily A1 features inequivalent
solutions. Similarly, all the solutions in B1 are dual to solutions in B2, and
B1 has physically different solutions. On the other hand, even if C2 and
C3 are dual to each other, C1 is dual only to a subset of C2.8 App. A.1
discusses the classification of inequivalent solutions within C2, together
with an explicit example of a solution which is in C2 but not in C1.

An interesting fact is the presence of inter-family dualities despite dis-
tinct linear functional relations for the derivatives of the superpotential
across the families A,B, C. In App. A.1 we have found that C2 is dual to
B1 and A3 is dual to a subset of B1. Hence, B1 is the subject of focus, for
which physically distinct solutions have been classified in great detail in
App. A.1.

Notice finally that in family A each subfamily gives a quadratic su-
perpotential. Setting p = q = 0 in (2.45), (2.51) or (2.57) yields the
superpotential discussed in [31] which can also be reproduced for suit-
able choices of fluxes in the cases B1, C1 and C3. On the other hand, in
the cases B2 and C2 the superpotential is always cubic. In light of afore-
said dualities, a cubic superpotential can be mapped to a quadratic one
in certain cases. However, we can find cases where cubic W can be
made quadratic but not a homogeneous function of degree 2, e.g. setting
λ3 = 1, b2 = 2, c3 = 4, d0 = 4, d1 = 0, d2 = 4 in (2.60).

Let us close this section commenting on some general features of the
superpotential that we observe in these cases. W is always a product of
2 factors, each of which depends on 2 variables among U1, . . . , U4. They
also do not depend on the same Ua, and one of them is linear while the
other is at most quadratic. Hence W can be written as:

W (U1, . . . , U4) = f(Up(1), Up(2)) g(Up(3), Up(4)) , (2.91)

where (p(1), . . . , p(4)) is a permutation of (1, . . . , 4), f is linear, g is at
most quadratic and the quadratic term in g (if any) is only the cross-term
Up(3)Up(4). Clearly:

∂Up(1)
W ∝ g , ∂Up(2)

W ∝ g , ∂Up(3)
W = f∂Up(3)

g , ∂Up(4)
W = f∂Up(4)

g .

(2.92)
Moreover, for a = 3, 4, ∂Up(a)

g is of the form µaUp(b 6=a)+νa for some real co-
efficients µa and νa at least one of which is non-zero. Hence ∂Up(a)

W = 0

with a = 3, 4 sets f = 0 for complex solutions Ûa. Due to this, solving
f = g = 0 automatically sets W = ∂Up(a)

W = 0, ∀a = 1, . . . , 4, reducing
8Precisely, C3 contains 2 copies of C2.
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the number of linearly independent equation to 2. This shows clearly the
existence of 2 flat direction since the number of moduli is 4. Notice also
that in general neither f nor g (hereby W ) has any scaling property. How-
ever, each class of fluxes presented above includes examples where at
least one of the f and g, or both, can be made homogeneous in their ar-
guments by suitably setting some fluxes to zero. For example, for a given
class, f(Up(1), Up(2)) = µ1Up(1) + µ2Up(2) + ν can be made homogeneous in
Up(1), Up(2) by setting ν = 0 whenever allowed.

2.2.4 Supersymmetries of the solutions

The solutions in the previous sections correspond to situations where
the F-terms of the axio-dilaton and the complex structure moduli van-
ish and W = 0. Additionally, to be supersymmetric solutions of the 10-
dimensional equations of motion, G3 needs to be primitive. In this section
we present a suitable Kähler form for all cases so that G3 is primitive. The
analysis is along the lines of [142].

The fluxes considered are diagonal, and so their expansion in the basis
elements defined in (1.95) is of the form:

F3 = a0α0 + a1α11 + a2α22 + a3α33 + b1β
11 + b2β

22 + b3β
33 + b0β

0 ,

H3 = c0α0 + c1α11 + c2α22 + c3α33 + d1β
11 + d2β

22 + d3β
33 + d0β

0 . (2.93)

The period matrix is also diagonal for all the solutions obtained. Thus
dzj = dxj+τjdy

j , dz̄j = dxj+τ̄jdy
j , j = 1, 2, 3. Now, taking the Kähler form

to be:

J =

3∑
j=1

r2j dzj ∧ dz̄j = −2

3∑
j=1

Im (τj) r
2
j dxj ∧ dyj , (2.94)

it is easy to see that J ∧G3 = 0, i.e. G3 is primitive.
Solutions with extended supersymmetry in 4 dimensions have been

useful laboratories for developing our understanding of string theory. Some
of our solutions with 2 flat directions preserve N = 2 supersymmetry in
4 dimensions. Being warped flux Minkowski compactifications with ex-
tended supersymmetry where the string coupling can be tuned to arbitrar-
ily small values, they should be of interest for various theoretical studies.

The number of supersymmetries that a solution preserves can be de-
termined by examining the decomposition of the G3 flux under SU(2)L×
SU(2)R × U(1) ⊂ SO(6) (where SO(6) is the group of rotations of the in-
ternal torus) [142]. In the charge convention of [142], a general 3-form
decomposes as:

[6× 6× 6]A → (2, 2)0 + (2, 2)0 + (3, 0)2 + (3, 0)−2 + (0, 3)2 + (0, 3)−2 . (2.95)
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The requirement of extended supersymmetry is that G3 must take values
so that only the (0, 3)2 component is present. This implies that when G3

is written as:
G3 = ω ∧ dzα , (2.96)

where zα is the ‘complex direction’ with U(1) charge 2, then ω has to be
self dual in the remaining 4 (real) directions, with the orientation choice
for Hodge duality which is consistent with (1.94). We present 2 explicit
solutions which preserve N = 2 supersymmetry. In all our computations
we will consider a metric of the form:

gi̄ = r2i δi̄ , (2.97)

that will ensure primitivity of the solutions.

Example 1: This solution lies in subfamily A1 of Sec. 2.2.3. Choosing
λ1 = λ2 = λ3 = 1, b3 = d0 = 0 and d3 = 2 in the expressions for the flux
quanta in (2.41) we obtain:

{a0, a1, a2, a3} = {0, 2, 0,−2} , {b0, b1, b2, b3} = {0, 0, 0, 0} ,
{c0, c1, c2, c3} = {0, 0, 0, 0} , {d0, d1, d2, d3} = {0,−2, 0, 2} , (2.98)

together with Nflux = 8, and so the tadpole bound is satisfied. The super-
potential is given by

W = 2(U1 − U3)(U2 − U4) . (2.99)

The residual moduli space can be parametrised as:

(U1, U2, U3, U4) = (U3, U4, U3, U4) , (2.100)

where we take U3, U4 to be in the fundamental domain of the upper half
plane modulo modular transformations. Thus, all Ua have positive imagi-
nary parts. The 3-form fluxes are:

F3 = −2dx1 ∧ dx2 ∧ dy3 + 2dx2 ∧ dx3 ∧ dy1 ,

H3 = 2dx1 ∧ dy2 ∧ dy3 − 2dx3 ∧ dy1 ∧ dy2 , (2.101)

leading to the complexified 3-form:

G3 = − 2

U3 − U3

(dz1 ∧ dz3 + dz3 ∧ dz1) ∧ dz2 ≡ ω ∧ dz2 . (2.102)

Identifying z2 as the U(1) coordinate, we see that G3 has hypercharge +2.
Furthermore, computing the SO(4) ⊃ SU(2)L × SU(2)R dual we get:

?4ω = ω . (2.103)
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Thus the solution preserves N = 2 supersymmetry. Notice that this cor-
responds to the case studied in [31].

Example 2: This solution lies in subfamily B1 of Sec. 2.2.3. Choosing
λ3 = 1, b2 = 2, d1 = 0 and c3 = d0 = d2 = 4 in the expressions for the flux
quanta in (2.60) we obtain:

{a0, a1, a2, a3} = {−4, 4, 0, 2} , {b0, b1, b2, b3} = {2, 0, 2, 4} ,
{c0, c1, c2, c3} = {0, 0, 0, 4} , {d0, d1, d2, d3} = {4, 0, 4, 0} , (2.104)

together with Nflux = 8. The superpotential is given by

W = −2(U1U2 + U2 + 1)(2U3 + U4 + 1) . (2.105)

This is an example where using dualities the superpotential cannot be
brought to a degree-2 homogeneous polynomial. The residual moduli
space can be parametrised as:

(U1, U2, U3, U4) =

(
−U2 + 1

U2
, U2, U4 −

1

2
, U4

)
, (2.106)

where we take U2 and U4 to be in the fundamental domain of the upper
half plane modulo modular transformations. Thus, all Ua have positive
imaginary parts. The 3-form fluxes are:

F3 = − 4dx1 ∧ dx2 ∧ dx3 + 2dx1 ∧ dx2 ∧ dy3 + 4dx2 ∧ dx3 ∧ dy1

+ 2dx2 ∧ dy1 ∧ dy3 − 4dx3 ∧ dy1 ∧ dy2 + 2dy1 ∧ dy2 ∧ dy3 ,

H3 =4dx1 ∧ dx2 ∧ dy3 + 4dx2 ∧ dy1 ∧ dy3 + 4dy1 ∧ dy2 ∧ dy3 , (2.107)

leading to the complexified 3-form:

G3 = − 4

U2 − U2

(U2 dz
1 ∧ dz2 + U2 dz

2 ∧ dz1) ∧ dz3 ≡ ω ∧ dz3 . (2.108)

Identifying z3 as the U(1) coordinate, we see that G3 has hypercharge +2.
Furthermore, computing the SO(4) ⊃ SU(2)L × SU(2)R dual we get:

?4ω = ω . (2.109)

Thus the solution preserves N = 2 supersymmetry.

2.3 Solutions in Calabi-Yau Orientifolds

In this section we turn to CYs in the large complex structure limit. A
detailed study will be carried out using the CY obtained by considering a
degree-18 hypersurface in CP[1,1,1,6,9] (first studied in the context of mirror
symmetry in [186]). Then, we also briefly discuss another CY with more
moduli.
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2.3.1 Type IIB Calabi-Yau flux compactifications at large complex structure

In this section we first recapitulate some basic material on type IIB flux
compactifications in the large complex structure limit9 and the CP[1,1,1,6,9]

example.10 Given that our discussion shall be quite brief, we refer the
reader to [10, 12, 202, 203] for further details.

Type IIB flux compactifications have an internal manifold that is confor-
mally an orientifolded CY X . To describe these in the language of special
geometry, one works with a symplectic basis for H3(X,Z), {Aa, Ba} for
a = 0, ..., h1,2− (X) with Aa ∩ Ab = 0, Aa ∩ Bb = δ b

a , and Ba ∩ Bb = 0, and
projective coordinates on the complex structure moduli Ua (in what fol-
lows, we will take U0 = 1). The central object is the prepotential F , which
is degree-2 and homogeneous in the projective coordinates. The period
vector is given by:

Π =

( ∫
Ba Ω∫
Aa

Ω

)
=

(
Fa
Ua

)
, (2.110)

where F0 = 2F − UaFa with Fa ≡ ∂UaF . Similarly, (integer valued) flux
vectors F and H are obtained by performing integrals of the 3-form field
strengths over the Aa and Ba cycles. The flux superpotential, which is
classically exact, is given by:

W = (F − φH)t · Σ ·Π , (2.111)

where:

Σ =

(
0 1

−1 0

)
, (2.112)

is the symplectic matrix. The tree-level Kähler potential (for the complex
structure moduli and the axio-dilaton) is:

K = − ln
(
−Π† · Σ ·Π

)
− ln

(
−(φ− φ̄)

)
. (2.113)

In the large complex structure limit, the prepotential is a sum of pertur-
bative terms which are at most degree-3 and instanton corrections, i.e.
F(U) = Fpert(U) + Finst(U) with:

Fpert(U) = − 1

3!
KabcU

aU bU c +
1

2
aabU

aU b + baU
a + ξ , (2.114)

9For detailed studies of flux vacua in the large complex structure limit see e.g. [134,
174, 196–201].

10We follow the notation and conventions of [12] but with 2 exceptions: (i) in the
definition of the GVW superpotential, the paper has an overall factor of

√
2/π which we

set equal to unity to be consistent with our earlier discussion. (ii) the chapter uses τ to
denote the axio-dilaton, while we will continue to use φ.

75



Flux Vacua with Perturbative Flat Directions

where Kabc are the triple intersection numbers of the mirror CY, aab and ba
are rational, and ξ = − ζ(3)χ

2(2πi)3
, with χ the CY Euler number. The instanton

corrections are:
Finst(U) =

1

(2π)3

∑
~q

A~q e
2π~q·~U , (2.115)

where the sum runs over effective curves in the mirror CY. The form of
the perturbative part of the prepotential implies that it leads to a super-
potential that is at most degree-3 polynomial in the complex structure
moduli and the fluxes. Thus the search for supersymmetric minima with
flat directions can be carried out using the method we have put forward
in Sec. 2.1.

2.3.2 The CP[1,1,1,6,9][18] example

In this section we implement our method to find supersymmetric minima
with flat directions focusing on the example of the degree-18 hypersurface
in CP[1,1,1,6,9]. Let us record some basic facts about this CY which has 272

complex structure moduli and a G = Z6 × Z18 symmetry. By considering
fluxes which are G-invariant, one stabilizes on the G-symmetric locus (see
[19]). Thus the stabilization problem can be effectively reduced to a 2-
moduli one. For this, the relevant geometric data are:

K111 = 9 , K112 = 3 , K122 = 1 , a =
1

2

(
9 3

3 0

)
, ~b =

1

4

(
17

6

)
,

(2.116)
and the instanton corrections are (2π)3Finst = F1 + F2 + · · · with:

F1 = −540 q1 − 3 q2 , F2 = −1215

2
q21 + 1080 q1q2 +

45

8
q22 , (2.117)

where qa = exp(2πUa) with a = 1, 2. We will consider the orientifold
described in [155] with the D7 tadpole cancelled by 4 D7-branes on top
of each O7-plane. This setup yields a D3-charge QD3 = 138.

Neglecting exponentially small corrections in the prepotential, the F-
flatness conditions are a set of 3 polynomial equations in 3 variables. We
examine both cases, in which the superpotential vanishes or assumes a
non-zero value at the minimum. As described earlier, our ansatz will
involve looking for solutions where there is a linear relation between the
derivatives of the superpotential.

Following the algorithm described in Sec. 2.1, we start by writing the
flux vectors as:

F = (f1 f2 f3 f4 f5 f6)
t , H = (h1 h2 h3 h4 h5 h6)

t , fi, hi ∈ Z .
(2.118)
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For simplicity in this chapter we will take f4 = h4 = 0. As a result, the
contribution to the superpotential of the term involving the CY Euler num-
ber in the prepotential (2.114) vanishes and the superpotential is polyno-
mial with rational coefficients. This simplifies the search for solutions.
Now, defining Nflux ≡ 1

2Nflux = −1
2 H

t · Σ · F and denoting (U1, U2, φ) by
(U1, U2, U3), we have:

Nflux =
1

2
(f2h5 + f3h6 − f5h2 − f6h3) ,

W = f1 + U1(f2 − h2U3) + U2(f3 − h3U3)

+
1

4

(
2(3U1 + U2)

2 − 18U1 − 6U2 − 17
)
(f5 − h5U3)

+
1

2
(U1(3U1 + 2U2 − 3)− 3) (f6 − h6U3)− h1U3 . (2.119)

Solutions withW = 0

Given (2.119), consider the 4 polynomial equations in 3 variables: W (Ua) =

∂aW = 0 ∀a = 1, 2, 3. The degree of each of these equations is 3 or less,
depending upon the choices of fluxes. For this system of equations to
admit a solution, one of them should be dependent on the others. Here,
we examine cases when this dependence is linear:11

(i) When ∂1W = λ2 ∂2W + λ3 ∂3W with at least one of λ2 and λ3 which
is non-zero and subject to Nflux 6= 0, we find only 1 family of fluxes
(details are given below) for which W = ∂aW = 0 ∀a = 1, 2, 3 ad-
mit solutions in the large complex structure limit. Here, we do not
need to impose any further conditions ensuring the existence of a
flat direction since it turns out that we always have a flat direction
(parametrised by the axio-dilaton) with the above family of fluxes;

(ii) When ∂2W = λ3 ∂3W , λ3 6= 0, the conditions on the fluxes have no
solution in keeping with Nflux 6= 0.

We now provide the aforesaid family of fluxes which are dependent

11As the derivatives of the polynomial W are of lower degree, W can never be equal
to a linear combination of its derivatives.
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on the 5 parameters λ2, λ3, f3, h1 and h3:

{f1, f2, f3, f4, f5, f6} = (2.120){4f3h1 −
λ3

(
(2λ2−3)(2h21+6h1h3+h23)−6λ22h

2
3

)
(λ2−3)λ2

4h3
, λ2f3 − λ3h1 −

3λ3h3
2

,

f3, 0,
(2λ2 − 3)λ3h3
(λ2 − 3)λ2

,
(λ2 − 3)λ3h3

λ2

}
,

{h1, h2, h3, h4, h5, h6} = {h1, λ2h3, h3, 0, 0, 0} , λ2 6= 0, 3 , λ3, h3 6= 0 .

In this case we have:

Nflux = − 3 [(λ2 − 3)λ2 + 3]λ3h
2
3

2(λ2 − 3)λ2
,

W =
1

2(λ2 − 3)λ2h3
[h1 + h3(λ2U1 + U2)] (2.121)

×
[
2(λ2 − 3)λ2(f3 − h3U3) + (3− 2λ2)λ3h1

+ λ3h3(3λ2(U1 − 2) + (2λ2 − 3)U2 + 9)

]
.

Now, solving W = ∂aW = 0, ∀a = 1, 2, 3, we see that U1 and U2 depend
linearly on U3 with slopes −1/λ3 and λ2/λ3 respectively. Thus, by requiring
λ2, λ3 < 0, we may obtain Im Ua, ∀a = 1, 2, 3 to be of the same sign.
This keeps Nflux positive and also ensures that U1 and U2 are in the large
complex structure limit when Im U3 is taken large to be in the weak string
coupling regime.

Let us notice the arguments of f5(λ2, λ3, h3), f6(λ2, λ3, h3), h2(λ2, h3)
and Nflux(λ2, λ3, h3). There are only 488 triples (λ2, λ3, h3), λ2, λ3 ∈ Q−, h3 ∈
Z, securing f5, f6, h2 ∈ Z and Nflux ∈ Z/2 with 0 < Nflux ≤ 138. For 420 of
them there are no f3, h1 ∈ Z that keep all other fluxes in (2.120) integers.
For each of the remaining 68 triples (λ2, λ3, h3), we get a subfamily of
integer fluxes (2.120) parametrised by f3 and h1. All the members in any
of the aforementioned subfamilies have the same Nflux(λ2, λ3, h3) which
happens to be an integer. In Tab. 2.1 and 2.2 we list a representative
from each of these 68 subfamilies. Then, we also discuss one of these
subfamilies in detail. Let us stress that among the above 68 values of
Nflux(λ2, λ3, h3) only 13 are distinct.

In all 68 cases in Tab. 2.1 and 2.2, W is a non-homogeneous function
of degree 2. We need to check if these cases are dual to cases where W
is homogeneous (as in [12, 23]). To do this, we can employ integer shifts
of the complex structure moduli U1 and U2 and SL(2,Z) transformations
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on the axio-dilaton U3.12 Note that h5, h6 6= 0 in (2.119) yield a cubic W .
In all cases in Tab. 2.1 and 2.2, h5 = h6 = 0 and f5 6= 0. From (A.1) we
see that an SL(2,Z) duality transformation with non-zero c and f5 leads
to a non-zero h5, yielding a non-zero coefficient for U2

2U3 in W . Thus, for
the above check we must keep c = 0, and only integer shifts of Ua ∀ a =

1, 2, 3 are useful. We find that in 53 of these 68 cases, appropriate integer
shifts of Ua can transform W into a homogeneous function of degree 2.
Interestingly, after including instanton corrections to the superpotential, it
can be checked that only 2 out of these 53 solutions feature a weak string
coupling and an instanton expansion which is definitely under control,
corresponding to the 2 old vacua already found in [23, 26] (1 of them has
been originally discovered in [12]).

On the other hand, W remains non-homogeneous in the remaining 15

cases, with the following case numbers in Tab. 2.1 and 2.2: 3, 4, 21, 22, 23,
24, 25, 26, 33, 34, 38, 41, 55, 65, 66. These 15 solutions represent therefore
novel perturbatively flat vacua which are qualitatively different from the
ones studied in [12, 23]. In order to check if these can be solutions with
small gs, one should perform a careful study of dilaton stabilization via
instantons which we leave however for future research.

Now, we consider one of the above 68 triples, (λ2, λ3, h3) = (−3,−72, 1).
For this, Nflux = 126 and (2.120) becomes:

{f1, f2, f3, f4, f5, f6} = {−63 + h1(f3 − 18(3 + h1)), 108− 3f3 + 72h1, f3,

0, 36,−144} ,
{h1, h2, h3, h4, h5, h6} = {h1,−3, 1, 0, 0, 0} , (2.122)

and (2.121) gives:

W = − (U2 − 3U1 + h1) (U3 − 18(−3 + U1 + U2)− f3 + 18h1) . (2.123)

Clearly, every f3, h1 ∈ Z retain all the fluxes integers and the solution to
W = ∂aW = 0, ∀a = 1, 2, 3 is given by:

(U1, U2, U3) =

(
1

72
(U3 − f3 + 36h1 + 54) ,

1

24
(U3 − f3 + 12h1 + 54) , U3

)
.

(2.124)
Now, choosing h1 = 0 and f3 = 54, W becomes a homogeneous function
of degree 2. For this subfamily, although we obtain a non-homogeneous
W with other choices of h1 and , f3, W can always be made homogeneous
by appropriate integer shifts of U1, U2 and U3.

12See App. A for the transformation rules.
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(λ2, λ3, h3) F H Nflux W

1 (-3,-72,1) {-9,-9,-9,0,36,-144} {-2,-3,1,0,0,0} 126 −(3U1 − U2 + 2)(18U1 + 18U2 − U3 − 27)

2 (-3,-72,-1) {-3,-9,15,0,-36,144} {2,3,-1,0,0,0} 126 (3U1 − U2 + 2)(18U1 + 18U2 − U3 − 33)

3 (-3,-8,3) {-11,-10,2,0,12,-48} {-5,-9,3,0,0,0} 126 −(9U1 − 3U2 + 5)(2(−1 + U1 + U2)− U3)

4 (-3,-8,-3) {-14,-13,11,0,-12,48} {7,9,-3,0,0,0} 126 (9U1 − 3U2 + 7)(2U1 + 2U2 − U3 − 5)

5 (-1,-48,1) {-33,72,0,0,60,-192} {0,-1,1,0,0,0} 126 −(U1 − U2)(18U1 + 30U2 − U3 − 90)

6 (-1,-48,-1) {-13,-10,-14,0,-60,192} {1,1,-1,0,0,0} 126 (U1 − U2 + 1)(18U1 + 30U2 − U3 − 46)

7 (−1,−16
3 , 3) {-3,-14,6,0,20,-64} {-6,-3,3,0,0,0} 126 −(U1 − U2 + 2)(6U1 + 10U2 − 3U3 − 4)

8 (−1,−16
3 ,−3) {-10,-9,1,0,-20,64} {3,3,-3,0,0,0} 126 (U1 − U2 + 1)(6U1 + 10U2 − 3(7 + U3))

9 (−3,−8
9 , 9) {-9,-14,6,0,4,-16} {-9,-27,9,0,0,0} 126 −(3U1 − U2 + 1)(2(1 + U1 + U2)− 9U3)

10 (−3,−8
9 ,−9) {1,-10,2,0,-4,16} {9,27,-9,0,0,0} 126 (3U1 − U2 + 1)(2(−3 + U1 + U2)− 9U3)

11 (−3
4 ,−

5
2 , 4) {-14,-13,14,0,16,-50} {-7,-3,4,0,0,0} 124 −(3U1 − 4U2 + 7)(U1 + 2U2 − U3 + 1)

12 (−3
4 ,−

5
2 ,−4) {-11,-12,6,0,-16,50} {3,3,-4,0,0,0} 124 (3U1 − 4U2 + 3)(U1 + 2U2 − U3 − 6)

13 (-12,-80,1) {-99,120,0,0,12,-100} {0,-12,1,0,0,0} 122 −(12U1 − U2)(−18 + 8U1 + 6U2 − U3)

14 (-12,-80,-1) {99,-120,0,0,-12,100} {0,12,-1,0,0,0} 122 (12U1 − U2)(−18 + 8U1 + 6U2 − U3)

15 (-6,-72,1) {-77,108,0,0,20,-108} {0,-6,1,0,0,0} 114 −(6U1 − U2)(−30 + 12U1 + 10U2 − U3)

16 (-6,-72,-1) {77,-108,0,0,-20,108} {0,6,-1,0,0,0} 114 (6U1 − U2)(−30 + 12U1 + 10U2 − U3)

17 (−1
2 ,−7, 2) {-3,-13,12,0,32,-98} {-4,-1,2,0,0,0} 114 −(4 + U1 − 2U2)(−2 + 3U1 + 8U2 − U3)

18 (−1
2 ,−7,−2) {-9,-14,0,0,-32,98} {1,1,-2,0,0,0} 114 (1 + U1 − 2U2)(−20 + 3U1 + 8U2 − U3)

19 (-3,-64,1) {-10,-11,-7,0,32,-128} {-2,-3,1,0,0,0} 112 −(2 + 3U1 − U2)(−23 + 16U1 + 16U2 − U3)

20 (-3,-64,-1) {-4,-10,14,0,-32,128} {2,3,-1,0,0,0} 112 (2 + 3U1 − U2)(−30 + 16U1 + 16U2 − U3)

21 (-3,-16,2) {-10,-13,-1,0,16,-64} {-4,-6,2,0,0,0} 112 −(2 + 3U1 − U2)(−9 + 8U1 + 8U2 − 2U3)

22 (-3,-16,-2) {-6,-11,9,0,-16,64} {4,6,-2,0,0,0} 112 (2 + 3U1 − U2)(−17 + 8U1 + 8U2 − 2U3)

23 (-3,-4,4) {-10,-14,2,0,8,-32} {-8,-12,4,0,0,0} 112 −2(2 + 3U1 − U2)(−1 + 2U1 + 2U2 − 2U3)

24 (-3,-4,-4) {-6,-10,6,0,-8,32} {8,12,-4,0,0,0} 112 2(2 + 3U1 − U2)(−5 + 2U1 + 2U2 − 2U3)

25 (-3,-1,8) {-9,-14,6,0,4,-16} {-8,-24,8,0,0,0} 112 −2(1 + 3U1 − U2)(1 + U1 + U2 − 4U3)

26 (-3,-1,-8) {1,-10,2,0,-4,16} {8,24,-8,0,0,0} 112 2(1 + 3U1 − U2)(−3 + U1 + U2 − 4U3)

27 (-3,-56,1) {-9,-10,-6,0,28,-112} {-2,-3,1,0,0,0} 98 −(2 + 3U1 − U2)(−20 + 14U1 + 14U2 − U3)

28 (-3,-56,-1) {-5,-11,13,0,-28,112} {2,3,-1,0,0,0} 98 (2 + 3U1 − U2)(−27 + 14U1 + 14U2 − U3)

29 (−3,−8
7 , 7) {-9,-13,3,0,4,-16} {-14,-21,7,0,0,0} 98 −(2 + 3U1 − U2)(1 + 2U1 + 2U2 − 7U3)

30 (−3,−8
7 ,−7) {-9,-14,6,0,-4,16} {14,21,-7,0,0,0} 98 (2 + 3U1 − U2)(2(−4 + U1 + U2)− 7U3)

31 (-3,-48,1) {-10,-12,-4,0,24,-96} {-2,-3,1,0,0,0} 84 −(2 + 3U1 − U2)(−16 + 12U1 + 12U2 − U3)

32 (-3,-48,-1) {-4,-9,11,0,-24,96} {2,3,-1,0,0,0} 84 (3U1 − U2 + 2)(−23 + 12U1 + 12U2 − U3)

33 (-3,-12,2) {-12,-9,3,0,12,-48} {-3,-6,2,0,0,0} 84 −(6U1 − 2U2 + 3)(3(−1 + U1 + U2)− U3)

34 (-3,-12,-2) {-14,-9,11,0,-12,48} {5,6,-2,0,0,0} 84 (6U1 − 2U2 + 5)(−7 + 3U1 + 3U2 − U3)

35 (-1,-32,1) {-22,48,0,0,40,-128} {0,-1,1,0,0,0} 84 −(U1 − U2)(−60 + 12U1 + 20U2 − U3)

36 (-1,-32,-1) {-12,-10,-6,0,-40,128} {1,1,-1,0,0,0} 84 (1 + U1 − U2)(−34 + 12U1 + 20U2 − U3)

37 (-1,-8,2) {-3,-14,6,0,20,-64} {-4,-2,2,0,0,0} 84 −2(2 + U1 − U2)(−2 + 3U1 + 5U2 − U3)

38 (-1,-8,-2) {-10,-9,1,0,-20,64} {2,2,-2,0,0,0} 84 (1 + U1 − U2)(−21 + 6U1 + 10U2 − 2U3)

39 (−3,−16
3 , 3) {-10,-14,2,0,8,-32} {-6,-9,3,0,0,0} 84 −(2 + 3U1 − U2)(−2 + 4U1 + 4U2 − 3U3)

40 (−3,−16
3 ,−3) {-6,-10,6,0,-8,32} {6,9,-3,0,0,0} 84 (2 + 3U1 − U2)(−10 + 4U1 + 4U2 − 3U3)

41 (−3,−4
3 , 6) {-9,-13,3,0,4,-16} {-12,-18,6,0,0,0} 84 −(2 + 3U1 − U2)(1 + 2U1 + 2U2 − 6U3)

42 (−3,−4
3 ,−6) {-9,-14,6,0,-4,16} {12,18,-6,0,0,0} 84 2(2 + 3U1 − U2)(−4 + U1 + U2 − 3U3)

43 (-2,-40,1) {3,-14,-3,0,28,-100} {-2,-2,1,0,0,0} 78 −(2 + 2U1 − U2)(−17 + 12U1 + 14U2 − U3)

44 (-2,-40,-1) {8,-10,-5,0,-28,100} {1,2,-1,0,0,0} 78 (1 + 2U1 − U2)(−23 + 12U1 + 14U2 − U3)

45 (−3
2 ,−9, 2) {-9,-9,12,0,16,-54} {-2,-3,2,0,0,0} 78 −(2 + 3U1 − 2U2)(−2 + 3U1 + 4U2 − U3)

46 (−3
2 ,−9,−2) {-2,3,-2,0,-16,54} {3,3,-2,0,0,0} 78 (3 + 3U1 − 2U2)(−5 + 3U1 + 4U2 − U3)

47 (-3,-40,1) {-9,-11,-3,0,20,-80} {-2,-3,1,0,0,0} 70 −(2 + 3U1 − U2)(−13 + 10U1 + 10U2 − U3)

48 (-3,-40,-1) {-5,-10,10,0,-20,80} {2,3,-1,0,0,0} 70 (2 + 3U1 − U2)(10(−2 + U1 + U2)− U3)

49 (−3,−8
5 , 5) {-9,-13,3,0,4,-16} {-10,-15,5,0,0,0} 70 −(3U1 − U2 + 3)(2U1 + 2U2 − 5U3 + 1)

50 (−3,−8
5 ,−5) {-14,-9,7,0,-4,16} {15,15,-5,0,0,0} 70 (3U1 − U2 + 3)(2U1 + 2U2 − 5U3 − 7)

Table 2.1. Representatives of families of integer fluxes for solutions with W = 0 and 1 flat
direction, Part 1.
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(λ2, λ3, h3) F H Nflux W

51 (-3,-32,1) {-10,-13,-1,0,16,-64} {-2,-3,1,0,0,0} 56 −(2 + 3U1 − U2)(−9 + 8U1 + 8U2 − U3)

52 (-3,-32,-1) {-6,-11,9,0,-16,64} {2,3,-1,0,0,0} 56 (2 + 3U1 − U2)(−17 + 8U1 + 8U2 − U3)

53 (-3,-8,2) {-10,-14,2,0,8,-32} {-4,-6,2,0,0,0} 56 −2(2 + 3U1 − U2)(−1 + 2U1 + 2U2 − U3)

54 (-3,-8,-2) {-6,-10,6,0,-8,32} {4,6,-2,0,0,0} 56 2(2 + 3U1 − U2)(−5 + 2U1 + 2U2 − U3)

55 (-3,-2,4) {-9,-13,3,0,4,-16} {-8,-12,4,0,0,0} 56 −(2 + 3U1 − U2)(1 + 2U1 + 2U2 − 4U3)

56 (-3,-2,-4) {-9,-14,6,0,-4,16} {8,12,-4,0,0,0} 56 2(2 + 3U1 − U2)(U1 + U2 − 2(2 + U3))

57 (-3,-24,1) {-9,-12,0,0,12,-48} {-2,-3,1,0,0,0} 42 −(2 + 3U1 − U2)(6(−1 + U1 + U2)− U3)

58 (-3,-24,-1) {3,3,3,0,-12,48} {2,3,-1,0,0,0} 42 (2 + 3U1 − U2)(−9 + 6U1 + 6U2 − U3)

59 (-1,-16,1) {-3,-14,6,0,20,-64} {-2,-1,1,0,0,0} 42 −(2 + U1 − U2)(−4 + 6U1 + 10U2 − U3)

60 (-1,-16,-1) {-10,-9,1,0,-20,64} {1,1,-1,0,0,0} 42 (1 + U1 − U2)(−21 + 6U1 + 10U2 − U3)

61 (−3,−8
3 , 3) {-9,-13,3,0,4,-16} {-6,-9,3,0,0,0} 42 −(2 + 3U1 − U2)(1 + 2U1 + 2U2 − 3U3)

62 (−3,−8
3 ,−3) {-14,-9,7,0,-4,16} {9,9,-3,0,0,0} 42 (3 + 3U1 − U2)(−7 + 2U1 + 2U2 − 3U3)

63 (-3,-16,1) {-2,-2,-2,0,8,-32} {-2,-3,1,0,0,0} 28 −(2 + 3U1 − U2)(−6 + 4U1 + 4U2 − U3)

64 (-3,-16,-1) {0,-1,3,0,-8,32} {2,3,-1,0,0,0} 28 (2 + 3U1 − U2)(−7 + 4U1 + 4U2 − U3)

65 (-3,-4,2) {-9,-13,3,0,4,-16} {-4,-6,2,0,0,0} 28 −(2 + 3U1 − U2)(1 + 2U1 + 2U2 − 2U3)

66 (-3,-4,-2) {-14,-9,7,0,-4,16} {6,6,-2,0,0,0} 28 (3U1 − U2 + 3)(2U1 + 2U2 − 2U3 − 7)

67 (-3,-8,1) {-1,-1,-1,0,4,-16} {-2,-3,1,0,0,0} 14 −(3U1 − U2 + 2)(2U1 + 2U2 − U3 − 3)

68 (-3,-8,-1) {-1,-2,2,0,-4,16} {2,3,-1,0,0,0} 14 (3U1 − U2 + 2)(2(−2 + U1 + U2)− U3)

Table 2.2. Representatives of families of integer fluxes for solutions with W = 0 and 1 flat
direction, Part 2.

Solutions withW 6= 0

As already pointed out in Sec. 2.1, supersymmetric solutions require
∂aW = −W∂aK ∀a = 1, 2, 3. Thus, if W 6= 0, solving the global supersym-
metry flatness conditions ∂aW = 0 does not lead in general to F-flat solu-
tions in supergravity. However, if the solutions to ∂aW = 0 feature a flat
direction parametrised by U3, it is easy to realize that along the flat direc-
tion ∂1K ∼ ∂2K ∼ ∂3K ∼ 1/Im (U3) → 0 for Im (U3) = g−1

s → ∞. This limit
corresponds to weak string couplings and, as can be seen in the explicit
solution (2.124), to large complex structure where the non-perturbative
contributions to the prepotential can be ignored. Therefore solving the
global supersymmetry flatness conditions can be a useful starting point
to construct solutions in a perturbative expansion. When U3 is flat, this
approximation can be made exact by taking by hand Im (U3) arbitrarily
large, while when U3 is lifted by instanton corrections, one has to make
sure that at the minimum W∂aK is infinitesimally small.

Below, we discuss some solutions to the global supersymmetry flat-
ness conditions in the CP[1,1,1,6,9][18] example. Given (2.119), consider the
3 polynomial equations in 3 variables: ∂aW = 0 ∀a = 1, 2, 3. The degree
of each of these equations is 3 or less, depending upon the choices of
fluxes. For this system of equations to admit a solution with at least 1

flat direction, one of them should be dependent on the others. Here we
examine cases when this dependence is linear:

(i) When ∂1W = λ2 ∂2W + λ3 ∂3W with at least one of λ2 and λ3 which
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is non-zero and subject to Nflux 6= 0, we find only 1 family of fluxes
(details are given below) for which ∂aW = 0 ∀a = 1, 2, 3 admit com-
plex solutions Ûa, i.e. Im Ûa 6= 0 ∀a. With the above family of fluxes
we have only 1 flat direction which is the dilaton;

(ii) When ∂2W = λ3 ∂3W with λ3 6= 0, the conditions on the fluxes have
no solution in keeping with Nflux 6= 0.

Let us provide the aforesaid family of fluxes which are dependent on
6 parameters λ2, λ3, f1, f3, h1 and h3:

{f1, f2, f3, f4, f5, f6} =

{
f1, λ2f3 − λ3h1 −

3λ3h3
2

, f3, 0,
(2λ2 − 3)λ3h3
(λ2 − 3)λ2

,
(λ2 − 3)λ3h3

λ2

}
,

{h1, h2, h3, h4, h5, h6} = {h1, λ2h3, h3, 0, 0, 0} , λ2 6= 0, 3 , λ3, h3 6= 0 .

(2.125)

In this case we have:

Nflux = − 3 ((λ2 − 3)λ2 + 3)λ3h
2
3

2(λ2 − 3)λ2
,

W = (f1 + (f3 − h3U3)(λ2U1 + U2)− h1 (λ3U1 + U3)) (2.126)

+
λ3h3

4(λ2 − 3)λ2

[
2λ22(U1(3U1 + 2U2 − 6)− 3)

+ 2λ2(9U1 + 2(U2 − 3)U2 + 1)− 6(U2 − 3)U2 − 3

]
.

Now, solving ∂aW = 0 ∀a = 1, 2, 3, we see that U1 and U2 depend linearly
on U3 with slopes −1/λ3 and λ2/λ3 respectively. Thus, only by requiring
λ2, λ3 < 0, we may obtain Im Ua, ∀a = 1, 2, 3 to be of the same sign. This
also keeps Nflux positive. At the solution we have:

W = f1 −
f3h1
h3

+
λ3
(
(4λ2 − 6)h21 + 6(2λ2 − 3)h1h3 +

(
−6λ22 + 2λ2 − 3

)
h23
)

4(λ2 − 3)λ2h3
,

(2.127)
which we require not to vanish. In this case, by integer translations of
U1, U2 and U3, W cannot be made a degree-2 homogeneous function
since a necessary condition for doing so is the same as the vanishing
condition of W at the minimum. Note the arguments of f5(λ2, λ3, h3),
f6(λ2, λ3, h3), h2(λ2, h3) and Nflux(λ2, λ3, h3). There are only 488 triples
(λ2, λ3, h3), λ2, λ3 ∈ Q−, h3 ∈ Z, securing f5, f6, h2 ∈ Z and Nflux ∈ Z/2
with 0 < Nflux ≤ 138. For each of the triples (λ2, λ3, h3), there exist
f1, f3, h1 ∈ Z that keep all other fluxes in (2.125) integers, as well as
W 6= 0. In fact, for each of the triples, we get a subfamily of integer fluxes
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(2.125) parametrised by f1, f3 and h1. All the members in any of the
aforementioned subfamilies have the same Nflux(λ2, λ3, h3). Let us point
out that among these 488 values of Nflux(λ2, λ3, h3) only 64 are distinct.
Below, we discuss one of these subfamilies in detail.

We consider one of the 488 triples given by (λ2, λ3, h3) = (−4,−56,−1).
For this, Nflux = 93 and (2.125) becomes:

{f1, f2, f3, f4, f5, f6} = {f1,−4(f3 − 14h1 + 21), f3, 0,−22, 98} ,
{h1, h2, h3, h4, h5, h6} = {h1, 4,−1, 0, 0, 0} , (2.128)

and (2.126) gives:

W = f1 − 4U1(f3 − 14h1 − 8U2 + U3 + 33) (2.129)

+ U2(f3 − 11U2 + U3 + 33)− h1U3 + 48U2
1 − 107

2
.

Clearly, every f1, f3, h1 ∈ Z retain all fluxes integers and the solution to
∂aW = 0, ∀a = 1, 2, 3 is given by:

(U1, U2, U3) =

(
1

56
(U3 − 22h1 + 33 + f3) ,

1

14
(U3 − 8h1 + 33 + f3) , U3

)
.

(2.130)
At the solution we have:

W = f1 + h1 (f3 − 11h1 + 33)− 107

2
, (2.131)

which is non-zero since f1, f3, h1 ∈ Z.

2.3.3 Flat directions in a Calabi-Yau with 4 moduli

In this section we search for flat directions using the CY discussed in [134]
which features effectively 3 complex structure moduli at the G-symmetric
locus. We begin by quoting the large complex structure expansion of the
prepotential (denoting (U1, U2, U4, φ) by (U1, U2, U3, U4)):

F(Ua) = − 3U1U2U4 − 3U1U3U4 − 3U2U3U4 − 3U2U
2
4 − 3U3U

2
4 − 3

2
U2
1U4

− 9

2
U1U

2
4 − 5

2
U3
4 + 3U1U4 +

3

2
U2U4 +

3

2
U3U4 +

15

4
U2
4

+
3

2
U1 + U2 + U3 +

11

4
U4 + ξ , (2.132)

where ξ (that involves the CY Euler number) is imaginary with irrational
imaginary part. The period vector Π is given by (2.110) and the super-
potential can be written explicitly using (2.111), together with the fluxes
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F = (f1 f2 f3 f4 f5 f6 f7 f8 f9 f10)
t and H = (h1 h2 h3 h4 h5 h6 h7 h8 h9 h10)

t

that are integer-valued. For simplicity we set f6 = h6 = 0 which eliminates
the ξ dependence inW . Furthermore, due to the G-symmetry, we identify:

f4 = f3 , h4 = h3 , f9 = f8 , h9 = h8 , U2 = U3 . (2.133)

Moreover the orientifold and brane setup discussed in [134] give a tad-
pole bound Nflux = −1

2H
t · Σ · F ≤ 1

2

(
20 + 3(1 + 2nb)

2
)

with nb ∈ Z. For
definiteness, we shall choose nb = −2 which yields Nflux ≤ 47/2. With the
above, we have:

Nflux =
1

2
(f5h10 − f7h2 − 2f8h3 − f10h5 + f2h7 + 2f3h8) ,

W =(h10U4 − f10)

[
11

4
+ 3(U1 + U2) +

15

2
U3 −

3

2

(
(U1 + 2U2 + 3U3)

2

− (U2 + 2U3)
2 − U2

2

)]
+ U1(f2 − h2U4) + 2U2(f3 − h3U4)

+ U3(f5 − h5U4) +
3

2
(f7 − h7U4)(U3(2U1 + 4U2 + 3U3 − 2)− 1) + f1

+ (f8 − h8U4)(3U3(2U1 + 2U2 + 2U3 − 1)− 2)− h1U4 . (2.134)

In this case we will not perform a systematic search for supersymmetric
solutions with approximate flat directions. As a preliminary analysis, we
note however that, given (2.134) and considering ∂1W = λ2 ∂2W , λ2 6= 0,
Nflux 6= 0, there exists a class of fluxes for which ∂aW = 0, ∀a = 1, . . . , 4

admit complex solutions Ûa, i.e. Im Ûa 6= 0 ∀a with 2 flat directions. The
aforesaid class of fluxes and corresponding Nflux are given by:

{f1, f2, f3, f5, f7, f8, f10, h1, h2, h3, h5, h7, h8, h10} ={
f1,−2f3, f3,−

f8(h1 + h3)

h3
,−4

3
f8, f8, 0, h1,−2h3, h3, 0, 0, 0, 0

}
,

Nflux = −7

3
f8h3 , (2.135)

where f8, h3 6= 0 and λ2 = −1. Let us present an explicit example. For
f8 = −3 and h3 = 3, Nflux = 21. In this case the fluxes become:

{f1, f2, f3, f5, f7, f8, f10, h1, h2, h3, h5, h7, h8, h10} =

{f1,−2f3, f3, 3 + h1, 4,−3, 0, h1,−6, 3, 0, 0, 0, 0} , (2.136)

and the superpotential reads:

W = f1 + 2f3 (U2 − U1) + (U3 − U4) (h1 − 6U1 + 6U2) . (2.137)
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Clearly, f1, f3, h1 ∈ Z retain all fluxes integer and the solution to ∂aW = 0,
∀a = 1, . . . , 4 is given by:

(U1, U2, U3, U4) =

(
U2 +

h1
6
, U2, U4 −

f3
3
, U4

)
. (2.138)

Notice that when the flat directions U2 and U4 are in the large complex
structure limit, the same is necessarily true for U1 and U3. Moreover, the
superpotential at the supersymmetric minimum is:

W = f1 −
f3h1
3

. (2.139)

As in the CP[1,1,1,6,9][18] case, by integer translations of U1, U2, U3 and U4,
a necessary condition for making W a degree-2 homogeneous function
is the same as the vanishing condition of W at the minimum. Hence,
for solutions with W 6= 0 at the minimum, the superpotential is a non-
homogeneous polynomial of degree 2, while for solutions with vanishing
W at the minimum, the superpotential in some cases can be brought
to a homogeneous function of degree 2. An example where it can be
done is the case with f1 = 6, f3 = 3 and h1 = 6. However, in the case
with f1 = −14, f3 = −6 and h1 = 7, W cannot be brought to a degree-2
homogeneous function by integer shifts of Ua, although it vanishes at the
minimum. Detailed explorations in various CYs will be carried out in the
future.
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Chapter III

Higher Derivative Corrections to
Inflationary Potentials

In this chapter we present general classes of divisor topologies which are
relevant for making such corrections naturally vanish for the inflaton di-
rection. In particular, we find that blow-up inflation is protected against
such higher derivative corrections if the inflaton corresponds to the vol-
ume of a dP3 divisor, i.e. a del Pezzo surface of degree six. Fibre inflation
is instead shielded if the inflaton is the volume of a T4-divisor, while poly-
instanton inflation is naturally safe only for the inflaton being the volume
of a so-called ‘Wilson’ divisor (W ), i.e. a rigid divisor with a Wilson line
and h1,1(W ) = 2. We present an explicit CY orientifold setting for each of
these three classes of models. Moreover, we find that there are additional
divisor topologies for which such F 4 corrections vanish.

For generic topologies with non-vanishing Π, we perform a numerical
estimate of the effect of these F 4 corrections on inflation, paying partic-
ular attention to the study of reheating from moduli decay to determine
the exact number of efoldings of inflation which is relevant to match ob-
servations. We find that higher derivative α′3 effects do not substantially
change the conclusions of fibre, blow-up and poly-instanton inflationary
scenarios, therefore making those scenarios more robust under these cor-
rections.

3.1 Divisor topologies in LVS

In this section we present a brief review of the role of divisor topologies
in the context of the LVS scheme of moduli stabilisation. It has been well
established that some divisor topologies play a central role in LVS model
building. These are, for example, del Pezzo (dP) and K3 surfaces. Such
studies and suitable CY scans have been presented at several different
occasions with different sets of interests [28, 65, 145, 204–210], and we

86



Higher Derivative Corrections to Inflationary Potentials

recollect some of the ingredients from [28, 102] which are relevant for
the present work.

3.1.1 Generic LVS scalar potential

In the standard approach of moduli stabilisation in 4D type IIB effective
supergravity models, one follows a so-called two-step strategy. In the first
step, the axio-dilaton S and the complex structure moduli Uα are stabi-
lized by the superpotential Wflux induced by background 3-form fluxes
(F3,H3). This flux-dependent superpotential can fix all complex struc-
ture moduli and the axio-dilaton supersymmetrically at leading order by
enforcing:

DUαWflux = DSWflux = 0 . (3.1)

After fixing S and the U -moduli, the flux superpotential can effectively
be considered as constant: W0 = 〈Wflux〉. At this leading order, the Käh-
ler moduli Ti remain flat due to the no-scale cancellation. Using non-
perturbative effects is one of the possibilities to fix these moduli. In this
context, if we assume n non-perturbative contributions to W which can
be generated by using rigid divisors, such as shrinkable dP 4-cycles, or by
rigidifying non-rigid divisors using magnetic fluxes [155, 211, 212], the
superpotential takes the following form:

W =W0 +
n∑
i=1

Ai e
−ai Ti , (3.2)

where:

Ti = τi + iθi with τi =
1

2

∫
Di

J ∧ J and θi =

∫
Di

C4 . (3.3)

For the current work we consider CY orientifolds with trivial odd sector
in the (1, 1)-cohomology and subsequently orientifold-odd moduli are ab-
sent in our analysis (interested readers may refer to [170, 208, 213]). Note
that in (3.2) there is no sum in the exponents (ai Ti), and summations are
to be understood only when upper indices are contracted with lower in-
dices; otherwise we will write an explicit sum as in (3.2). We will suppose
that, out of h1,1+ = h1,1 Kähler moduli, only the first n appear in W , i.e.
i = 1, ..., n ≤ h1,1+ .
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The Kähler potential including α′3 corrections takes the form [214]:

K = − ln

[
−i
∫

Ω(Uα) ∧ Ω̄ (Ūα)

]
− ln

(
S + S̄

)
− 2 ln

[
V (Ti + T̄i) +

ξ

2

(
S + S̄

2

)3/2
]
, (3.4)

where Ω denotes the nowhere vanishing holomorphic 3-form which de-
pends on the complex-structure moduli, while V denotes the CY volume
which receives α′3 corrections through ξ = −χ(X) ζ(3)

2 (2π)3
where χ(X) is the

CY Euler characteristic and ζ(3) ' 1.202.
Assuming that S and the U -moduli are stabilized as in (3.1), consider-

ing a superpotential given by (3.2) and an α′3-corrected Kähler potential
given by (3.4), one arrives at the following master formula for the scalar
potential [102]:

V = Vα′3 + Vnp1 + Vnp2 , (3.5)

where (defining ξ̂ ≡ ξg
−3/2
s with gs = 〈Re(S)〉−1):

Vα′3 = eK
3 ξ̂(V2 + 7V ξ̂ + ξ̂2)

(V − ξ̂)(2V + ξ̂)2
|W0|2 , (3.6)

Vnp1 = eK
n∑
i=1

2 |W0| |Ai| e−aiτi cos(ai θi + φ0 − φi)

×
[
(4V2 + V ξ̂ + 4 ξ̂2)

(V − ξ̂)(2V + ξ̂)
(ai τi) +

3 ξ̂(V2 + 7V ξ̂ + ξ̂2)

(V − ξ̂)(2V + ξ̂)2

]
,

Vnp2 = eK
n∑
i=1

n∑
j=1

|Ai| |Aj | e− (aiτi+ajτj) cos(ai θi − aj θj − φi + φi)

×
[
−4

(
V +

ξ̂

2

)
(kijk t

k) ai aj +
4V − ξ̂

(V − ξ̂)
(ai τi) (aj τj)

+
(4V2 + V ξ̂ + 4 ξ̂2)

(V − ξ̂)(2V + ξ̂)
(ai τi + aj τj) +

3 ξ̂(V2 + 7V ξ̂ + ξ̂2)

(V − ξ̂)(2V + ξ̂)2

]
,

where we have introduced phases into the parameters as W0 = |W0| eiφ0

andAi = |Ai| eiφi . The good thing about the master formula (3.6) is the fact
that it determines the complete form of V simply by specifying topologi-
cal quantities such as the intersection numbers kijk, the CY Euler number
and the number n of non-perturbative contributions to W .

Note that Vα′3 vanishes for ξ̂ = 0 and reproduces the standard no-scale
structure in the absence of a T -dependent non-perturbative W . On the
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other hand, for very large volume V � ξ̂, this term takes the standard
form which plays a crucial rôle in LVS models [27]:

Vα′3 '
(
gs e

Kcs

2V2

)
3 ξ̂ |W0|2

4V
. (3.7)

Let us also stress that Vα′3 depends only on the overall volume V , while
Vnp1 depends on V and the 4-cycle moduli τi (with the additional depen-
dence on the axions θi). Hence these two contributions to V could be
minimized by taking derivatives with respect to V and (h1,1 − 1) 4-cycle
moduli. However Vnp2 depends on the quantity kijk t

k which in general
cannot be inverted to be expressed as an explicit function of the τi’s. It
has been observed that using the master formula (3.6) one can efficiently
perform moduli stabilisation in terms of the 2-cycle moduli ti as shown in
[102, 146].

For example, considering h1,1 = 2, n = 1 and ξ̂ > 0 in the master
formula (3.6) along with using the large volume limit, one can immediately
read-off the following three terms:

V ' gs e
Kcs

2

[
3 ξ̂ |W0|2

4V3
+

4a1τ1|W0||A1|
V2

e−a1τ1 cos (a1θ1 + φ0 − φ1) (3.8)

−4a21|A1|2k111t1
V

e−2a1τ1

]
.

If the CY X has a Swiss-cheese form, one can find a basis of divisors such
that the only non-zero intersection numbers are k111 and k222. This leads
to the relation t1 = −

√
2τ1/k111, where the minus sign is dictated from

the Kähler cone conditions as the divisor D1 in this Swiss-cheese CY is an
exceptional 4-cycle. Using this in ((3.8)) one gets [27]:1

V ' gs e
Kcs

2

(
βα′

V3
+ βnp1

τ1
V2

e−a1τ1 cos (a1θ1 + φ0 − φ1) + βnp2

√
τ1
V

e−2a1τ1

)
,

(3.9)
with:

βα′ =
3ξ̂|W0|2

4
, βnp1 = 4a1|W0||A1| , βnp2 = 4a21|A1|2

√
2k111 .

(3.10)

3.1.2 Scanning results for LVS divisor topologies

Let us start by briefly reviewing the generic methodology for analysing
the divisor topologies which is widely adopted for scanning useful CY ge-

1Ref. [102] has shown that LVS moduli fixing can be realized also for generic cases
where the CY threefold does not have a Swiss-cheese structure.
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ometries suitable for phenomenology, e.g. see [28, 209]. Subsequently
we will continue following the same in our current analysis. The main
idea is to consider the CY threefolds arising from the four-dimensional
reflexive polytopes listed in the Kreuzer-Skarke (KS) database [64], and
classify the divisors based on their relevance for phenomenological model
building aiming at explicit orientifold constructions. For that purpose, we
rather have a very nice collection of the various topological data of CY
threefolds available in the database of [65] which can be directly used for
further analysis. In this regard, Tab. 3.1 presents the number of (favorable)
polytopes along with the corresponding (favorable) triangulations and (fa-
vorable) geometries for a given h1,1(X) in the range 1 ≤ h1,1(X) ≤ 5.

h1,1 Polytopes Favorable Triangs. Favorable Geometries Favorable
Polytopes Triangs. Geoms.

1 5 5 5 5 5 5
2 36 36 48 48 39 39
3 244 243 569 568 306 305
4 1197 1185 5398 5380 2014 2000
5 4990 4897 57132 56796 13635 13494

Table 3.1. Number of (favorable) triangulations and (favorable) distinct CY geometries aris-
ing from the (favorable) polytopes listed in the Kreuzer-Skarke database.

For a given CY geometry, the main focus is limited to:

• looking at the topology of the so-called ‘coordinate divisors’ Di

which are defined through setting the toric coordinates to zero, i.e.
xi = 0. This means that there is a possibility of missing a huge
number of divisors, e.g. those which could arise via considering
some linear combinations of the coordinate divisors, and some of
such may have interesting properties. However, it is hard to make
an exhaustive analysis including all the effective divisors of a given
CY threefold.

• focusing on scans using the so-called ‘favorable’ triangulations (Triang∗)
and ‘favorable’ geometries (Geom∗) for a given polytope. This could
be justified in the sense that for non-favorable CY threefolds, the
number of toric divisors in the basis is less than h1,1(X), and sub-
sequently there is always at least one coordinate divisor which is
non-smooth, and one usually excludes such spaces from the scan.
However, the number of such CY geometries is almost negligible in
the sense that there are just 1, 14 and 141 for h1,1(X) being 3, 4 and
5 respectively.

90



Higher Derivative Corrections to Inflationary Potentials

The role of divisor topologies in the LVS context can be appreciated by
noting that the Swiss-cheese structure of the CY volume can be correlated
with the presence of del Pezzo (dPn) divisors Ds. These dPn divisors are
defined for 0 ≤ n ≤ 8 having degree d = 9− n and h1,1 = 1 + n, such that
dP0 is a P2 and the remaining 8 del Pezzo’s are obtained by blowing up
eight generic points inside P2. It turns out that they satisfy the following
two conditions [145]:∫

X
D3
s = ksss > 0 ,

∫
X
D2
s Di ≤ 0 ∀ i 6= s . (3.11)

Here the self-triple-intersection number ksss corresponds to the degree of
the del Pezzo 4-cycle dPn where ksss = 9−n > 0, which is always positive
as n ≤ 8 for del Pezzo surfaces. In addition, one imposes the so-called
‘diagonality’ condition on such a del Pezzo divisor Ds via the following
relation satisfied by the triple intersection numbers [145, 205]:

ksss ksij = kssi , kssj ∀ i, j. (3.12)

It turns out that whenever this diagonality condition is satisfied, there
exists a basis of coordinates divisors such that the volume of each of the
4-cycles Ds becomes a complete-square quantity as illustrated from the
following relations:

τs =
1

2
ksijt

i tj =
1

2 ksss
kssi kssjt

i tj =
1

2 ksss

(
kssi t

i
)2
. (3.13)

Subsequently what happens is that one can always shrink such a ‘diagonal’
del Pezzo ddPn to a point-like singularity by squeezing it along a single
direction. A systematic analysis on counting the CY geometries which
could support (standard) LVS models, in the sense of having at least one
diagonal del Pezzo divisor, has been performed in [28] and the results
are summarized in Tab. 3.2. Moreover, it is worth mentioning that the
scanning result presented in Tab. 3.2 is quite peculiar in the sense that
for all the CY threefolds with h1,1 ≤ 5, one does not have any example
having a ‘diagonal’ dPn divisor for 1 ≤ n ≤ 5, which has been subse-
quently conjectured to be true for all the CY geometries arising from the
KS database.

Let us mention that the classification of CY geometries relevant for
LVS as presented in Tab. 3.2 corresponds to having a ‘standard’ LVS in the
sense of having at least one ‘diagonal’ del Pezzo divisor in a Swiss-cheese
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h1,1 Poly∗ Geom∗ ddP0 dF0 ddPn ddP6 ddP7 ddP8 nLVS

(nCY) 1 ≤ n ≤ 5 (ddPn ≥ 1)
1 5 5 0 0 0 0 0 0 0
2 36 39 9 2 0 2 4 5 22
3 243 305 59 16 0 17 40 39 132
4 1185 2000 372 144 0 109 277 157 750
5 4897 13494 2410 944 0 624 827 407 4104

Table 3.2. Number of CY geometries with a ‘diagonal’ del Pezzo divisor suitable for LVS.
Here we have extended the notation to denote a P2 surface as ddP0 and a diagonal P1 × P1

surface as dF0.

like model. However, it has been found in some cases that one can still
have alternative moduli stabilisation schemes realizing an exponentially
large CY volume, e.g. using the underlying symmetries of the CY threefold
in the presence of a non-diagonal del Pezzo [102], and in the framework
of the so-called perturbative LVS [101, 156, 215, 216].

3.2 F 4 corrections

In addition to the α′3 correction (3.7) derived in [214], generically there
can be many other perturbative corrections to the 4D effective scalar po-
tential induced from various sources (see [17, 217] for a classification of
potential contributions at different orders in α′ exploiting higher dimen-
sional rescaling symmetries and F-theory techniques). One such effect is
given by F 4 corrections which cannot be captured by the two-derivative
ansatz for the Kähler and superpotentials. In this section we shall discuss
the topological taming of such corrections in the context of LVS inflation-
ary model building.

3.2.1 F 4 corrections to the scalar potential

The higher derivative F 4 contributions to the scalar potential for a generic
CY orientifold compactification take the following simple form [46]:

VF 4 = −
(
eKcs gs
8π

)2
λ |W0|4

g
3/2
s V4

h1,1∑
i=1

Πi t
i ≡ γ

V4

h1,1∑
i=1

Πi t
i, (3.14)

where the topological quantities Πi are given by:

Πi =

∫
X
c2(X) ∧ D̂i , (3.15)
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and λ is an unknown combinatorial factor which in the single modulus
case is rather small in absolute value [218]:

λ = −11

24

ζ(3)

(2π)4
= −3.5 · 10−4 . (3.16)

Its value is not known for h1,1 > 1 but we expect it to remain small, in
analogy with the h1,1 = 1 case. In fact, one can argue that the factor
ζ(3)/(2π)4 in λ is expected to be always present for generic models with
several Kähler moduli as well. This is because the coupling tensor Ti  kl
appearing in this correction through the following higher derivative piece
[46]:

VF 4 = −e2K T i klDiW DjW DkW DlW , (3.17)

can be schematically written as:

Ti  kl =
c

V8/3

ζ(3)Z
g
3/2
s

, (3.18)

where c can be considered as some combinatorial factor, which for exam-
ple, in the single modulus case turns out to be 11/384 [218], and:

Z = (2π)2
∫
X
c2(X) ∧ J , (3.19)

where we stress that we are working with the convention `s = (2π)
√
α′ =

1. Subsequently, we have

Tı  kl = c
ζ(3)

(2π)4 V8/3 g
3/2
s

∫
X
c2(X) ∧ J . (3.20)

Note that the V−8/3 factor in the above expression cancels off with a V8/3

contribution coming from 4 inverse Kähler metric factors needed to raise
the 4 indices of the coupling tensor Tı  kl to go to (3.17).

Here, let us mention that the higher derivative F 4 correction under
consideration appears at α′3 order, like the BBHL-correction [214], and
both are induced at string tree-level, resulting in a factor of g−3/2

s . For
explicitness, let us also note that the leading order BBHL correction [214]
appearing at the two-derivative level takes the following form:2

Vα′3 =

(
eKcs gs
8π

)
3 ξ |W0|2

4 g
3/2
s V3

, ξ = −ζ(3)χ(X)

2 (2π)3
. (3.21)

2In this regard, it may be worth noticing that the original result [214] has been obtained
with the convention (2πα′) = 1 which removes the (2π)−3 factor from the denominator
of the ξ̂ parameter.
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Now, comparing these two α′ corrections one finds that:

VF 4

Vα′3
= c̃

( gs
8π

)
eKcs |W0|2

(
Πi t

i

χ(X)V

)
, (3.22)

where c̃ is some combinatorial factor, which for the case of a single Käh-
ler modulus is

c̃ =
11

9(2π)
' 0.2 . (3.23)

One can observe that each factors in (3.22) can be of a magnitude less than
one in typical models. For example, demanding large complex-structure
limit in order to ignore instanton effects can typically result in having
eKcs ∼ 0.01 [155], the string coupling gs needs to be small and the CY
volume large to trust the low-energy EFT, and the ratios between Πi’s and
χ(X) are typically of O(1) [209]. Having these aspects in mind, it is very
natural to anticipate that higher-derivative F 4 effects are subdominant as
compared to the two-derivative corrections. Note that (3.14) can also be
rewritten as:

VF 4 = −Vα′3

√
gs

3π

(
λ

ξ

) h1,1∑
i=1

Πi

(
m3/2

M
(i)
KK

)2

(3.24)

where the gravitino mass is:

m2
3/2 =

( gs
8π

) |W0|2

V2
M2
p , (3.25)

and M
(i)
KK is the Kaluza-Klein scale associated to the i-th divisor:(

M
(i)
KK

)2
=
M2
s

ti
=

√
gs

4π

M2
p

tiV
. (3.26)

In the above equation we have used the relation between the string scale
and the Planck mass in the convention where Vs = V g3/2s (with Vs the
volume in string frame and V the volume in Einstein frame):

M2
s =

1

(2π)2α′ =
√
gs
M2
p

4πV
. (3.27)

Note that (3.24) makes clear that VF 4 is an O(F 4) correction since Vα′3 is
an O(F 2) effect and [11]:(

m3/2

MKK

)2

∼ g
|F |2

M2
KK

� 1 , (3.28)

where g ∼ MKK/Mp ∼ V−2/3 � 1 is the coupling of heavy KK modes to
light states.
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3.2.2 Classifying divisors with vanishing F 4 terms

Two important quantities characterizing the topology of a divisor D are
the Euler characteristic χ(D) and the holomorphic Euler characteristic (also
known as arithmetic genus) χh(D) which are given by the following useful
relations [52, 219, 220]:

χ(D) ≡
4∑
i=0

(−1)i bi(D) =

∫
X
D̂ ∧

(
D̂ ∧ D̂ + c2(X)

)
, (3.29)

χh(D) ≡
2∑
i=0

(−1)i hi,0(D) =
1

12

∫
X
D̂ ∧

(
2 D̂ ∧ D̂ + c2(X)

)
, (3.30)

where bi(D) and hi,0(D) are respectively the Betti and Hodge numbers of
the divisor. Using these two relations we find that Π(D) is related with the
Euler characteristics and the holomorphic Euler characteristic as follows:

Π(D) = χ(D)−
∫
X
D̂∧D̂∧D̂, Π(D) = 12χh(D)−2

∫
X
D̂∧D̂∧D̂ , (3.31)

which also give another useful relation:

Π(D) = 2χ(D)− 12χh(D) . (3.32)

Therefore, the topological quantity Π(D) vanishes for a generic smooth
divisor D if the following simple relation holds,

Π(D) = 0 ⇐⇒ χ(D) = 6χh(D) . (3.33)

Now, using the relations χ(D) = 2h0,0 − 4h1,0 + 2h2,0 + h1,1 and χh(D) =

h0,0 − h1,0 + h2,0, we find another equivalent relation for vanishing Π(D):

h1,1(D) = 4h0,0(D)− 2h1,0(D) + 4h2,0(D) . (3.34)

Any divisor satisfying the vanishing Π relation (3.34) will be denoted as
DΠ. After knowing the topology of a generic divisor D, it is easy to check
if h1,1 satisfies this condition or equivalently χ = 6χh. To demonstrate it,
let us quickly consider the following two examples:

T4 ≡

1
2 2

1 4 1
2 2

1

and K3 ≡

1
0 0

1 20 1
0 0

1

.
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Now it is obvious that T4 has Π(T4) = 0 as it satisfies χ = 0 = 6χh.
However, K3 has Π(K3) = 24 and 6χh = 12 = χ/2. Alternatively, it can be
also checked that the Hodge number condition in (3.34) is satisfied for T4

but not for K3.
Therefore, we can generically formulate that a divisor D of a Calabi-

Yau threefold having the following Hodge Diamond results in a vanishing
Π(D):

DΠ ≡

h0,0

h1,0 h1,0

h2,0
(
4h0,0 − 2h1,0 + 4h2,0

)
h2,0

h1,0 h1,0

h0,0

, (3.35)

and if we consider that the DΠ divisor is smooth and connected, then we
have h0,0(DΠ) = 1. Subsequently we can identify three different classes
of vanishing Π divisors:

1. dP3 divisors: For connected rigid 4-cycles with no Wilson lines we
have h1,0(D) = h2,0(D) = 0, and hence a vanishing Π(D) results in
the following Hodge diamond:

DΠ ≡

1
0 0

0 4 0
0 0

1

≡ dPΠ . (3.36)

This topology corresponds to the dP surface of degree six, i.e. a
dP3. Moreover, this class of DΠ which singles out a dP3 surface,
also includes the possibility of the ‘rigid but not del Pezzo’ 4-cycle
denoted as NdPn for n ≥ 9 [145]. These surfaces are blow-up of
line-like singularities and have similar Hodge diamonds as those of
the usual dP surfaces dPn defined for 0 ≤ n ≤ 8.

2. Wilson divisors: For connected rigid 4-cycles with Wilson lines we
have h2,0(D) = 0 but h1,0(D) > 0, resulting in the following Hodge
diamond for DΠ:

DΠ ≡

1
h1,0 h1,0

0
(
4− 2h1,0

)
0

h1,0 h1,0

1

≡WΠ . (3.37)
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Given that all Hodge numbers are non-negative integers, the only
possibility compatible with h1,1 ≥ 1 (to be able to a have a proper
definition of the divisor volume) is h1,0 = 1 which, in turn, corre-
sponds to h1,1 = 2. This is a so-called ‘Wilson’ divisor with vanishing
Π(W ) which we denote as WΠ. This WΠ divisor corresponds to a
subclass of ‘Wilson’ divisors, characterized by the Hodge numbers
h0,0 = h1,0 = 1 and arbitrary h1,1, that have been introduced in [221]
to support poly-instanton corrections.

3. Non-rigid divisors: Now let us consider the third special class which
can have deformation divisors, i.e. h2,0(D) > 0. When the divisor
does not admit any Wilson line, i.e. h1,0(D) = 0, the Hodge diamond
for DΠ simplifies to:

DΠ ≡

1
0 0

h2,0
(
4 + 4h2,0

)
h2,0

0 0
1

. (3.38)

To our knowledge, so far there are no known examples in the liter-
ature which have such a topology. The simplest of its kind will have
h2,0(D) = 1 and h1,1(D) = 8. In this regard, it is worth mentioning
that the topology of the so-called ‘Wilson’ divisors which are P1 fi-
brations over T2s, has been argued to be useful in [222] and some
years later it was found to be the case while studying the genera-
tion of poly-instanton effects [221]. So it would be interesting to
know if such non-rigid divisor topologies of vanishing Π exist in ex-
plicit CY constructions, and further if they could be useful for some
phenomenological applications.

The last possibility is to consider the most general situation with
deformations and Wilson lines, i.e. h2,0(D) > 0 and h1,0(D) > 0.
As already mentioned, the simplest case is T4 with h2,0(T4) = 1,
h1,0(T4) = 2 and h1,0(T4) = 4 which however never shows up in our
search through the KS list, as well as more general divisors with both
deformations and Wilson lines.

Before coming to the scan of such divisor topologies of vanishing Π, let
us mention a theorem of [223, 224] which states that if the CY intersection
polynomial is linear in the homology class D̂f corresponding to a divisor
Df , then the CY threefold has the structure of a K3 or a T4 fibration over
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a P1 base. Noting the following relation for the self-triple-intersection
number of a generic smooth divisor D:∫

X
D̂ ∧ D̂ ∧ D̂ = 12χh(D)− χ(D) , (3.39)

and subsequently demanding the absence of such cubics for Df in the
CY intersection polynomial, results in χ(D) = 12χh(D) or the following
equivalent relation:

h1,1(Df ) = 10h0,0(Df )− 8h1,0(Df ) + 10h2,0(Df ) . (3.40)

This relation is clearly satisfied for K3 and T4 divisors, and can be satisfied
for some other possible topologies as well. For example, another non-
rigid divisor for which the self-cubic-intersection is zero is given by the
following Hodge diamond:

SD ≡

1
0 0

2 30 2
0 0

1

, χ(SD) = 36, χh(SD) = 3 .

This is also a very well known surface frequently appearing in CY three-
folds, e.g. it appears in the famous Swiss-cheese CY threefold defined
as a degree-18 hypersurface in WCP4[1, 1, 1, 6, 9] where the divisors corre-
sponding to the first three coordinates with charge 1 are such surfaces.

Moreover, interestingly one can see that for the ‘Wilson’ type divisor
the relation in (3.40) is indeed satisfied for h1,1(D) = 2 which is exactly
something needed for the generation of poly-instanton effects on top of
having vanishing Π(D) as we have discussed before. In this regard, let
us also add that the simultaneous vanishing of Π(D) and D3

|X results in
the vanishing of χ(D) and χh(D) and vice-versa, and so, besides a par-
ticular type of ‘Wilson’ divisor, there can be more such divisor topologies
satisfying the following if and only if condition:

Π(D) = 0 =

∫
X
D̂ ∧ D̂ ∧ D̂ ⇐⇒ χ(D) = 0 = χh(D) . (3.41)

Thus, if a divisor D is connected and has Π(D) = 0 = D3
|X , then its Hodge

diamond is:

DΠ ≡

1
1 + n 1 + n

n 2 + 2n n

1 + n 1 + n

1

≡ Dcubic
Π , (3.42)
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where n is the number of possible deformations for the divisor D. For
n = 0 this corresponds to a WΠ divisor, and for n = 1 this corresponds
to a T4. Although we are not aware of any such examples with n ≥ 2, it
would be interesting to know what topology they would correspond to.

3.2.3 Scan for divisors with vanishing F 4 terms

In this section we discuss the scanning results for divisors with Π = 0 using
the favorable CY geometries arising from the four-dimensional reflexive
polytopes of the KS database [64] and its pheno-friendly collection in [65].
As pointed out earlier, we will consider only the ‘coordinate divisors’ and
the ‘favorable’ CY geometries listed in Tab. 3.1. For finding divisors with
vanishing Π, we consider the following two different strategies in our
scan:

1. One route is to directly compute Π by using the second Chern
class of the CY threefold and the intersection tensor available in the
database [65].

2. A second route is to compute the divisor topology using cohomCalg
[225, 226] and subsequently to check the Hodge number condition
(3.34), or the equivalent relation χ(D) = 6χh(D), for vanishing Π.

Tab. 3.3 presents the scanning results for the number of CY geometries
with vanishing Π divisors, and their suitability for realizing LVS models.
On the other hand, Tab. 3.4 and 3.5 show the same results split for the
cases where the divisors with Π = 0 are respectively dPΠ (i.e. dP3) and
Wilson divisors WΠ. These distinct CY geometries and their scanning
results correspond to the favorable geometries arising from the favorable
polytopes.

h1,1 Poly∗ Geom∗ single two three four nLVS nLVS nLVS

(nCY) DΠ DΠ DΠ DΠ & 1 DΠ & 2 DΠ & 3 DΠ

1 5 5 0 0 0 0 0 0 0
2 36 39 0 0 0 0 0 0 0
3 243 305 23 0 0 0 4 0 0
4 1185 2000 322 24 0 0 78 1 0
5 4897 13494 3306 495 27 1 732 104 1

Table 3.3. CY geometries with vanishing Π divisors and a ddPn to support LVS.

To appreciate the scanning results presented in Tab. 3.3, 3.4 and 3.5
corresponding to all CY threefolds with 1 ≤ h1,1(X) ≤ 5 in the KS database,
let us make the following generic observations:
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h1,1 Poly∗ Geom∗ At least Single Two Three nLVS nLVS nLVS

(nCY ) one dPΠ dPΠ dPΠ dPΠ & dPΠ & 1 dPΠ & 2 dPΠ

1 5 5 0 0 0 0 0 0 0
2 36 39 0 0 0 0 0 0 0
3 243 305 4 4 0 0 0 0 0
4 1185 2000 143 134 9 0 16 16 0
5 4897 13494 2236 2035 197 4 336 290 46

Table 3.4. CY geometries with vanishing Π divisors of the type dPΠ ≡ dP3, and a ddPn for
LVS.

h1,1 Poly∗ Geom∗ At least Single Two Three nLVS & nLVS & nLVS &
(nCY ) one WΠ WΠ WΠ WΠ 1 WΠ 2 WΠ 3 WΠ

1 5 5 0 0 0 0 0 0 0
2 36 39 0 0 0 0 0 0 0
3 243 305 19 19 0 0 4 0 0
4 1185 2000 210 202 8 0 62 1 0
5 4897 13494 1764 1599 154 11 442 79 1

Table 3.5. CY geometries with vanishing Π divisors of the type WΠ, and a ddPn to support
LVS.

• We do not find any CY threefold in the KS database which has a T4

divisor or any divisor with vanishing Π(D) and h2,0(D) 6= 0. The only
possible vanishing Π divisors we encountered in our scan are either
a dP3 divisor or a Wilson divisor with h1,1(W ) = 2. However, going
beyond the coordinate divisors in an extended scan as compared to
ours may have more possibilities.

• For h1,1(X) = 1 and 2, there are no CY threefolds with a vanishing Π

divisor.

• Although there are some dP3 divisors for CY threefolds with h1,1(X) =

3, 4 and 5, none of them are diagonal in the sense of being shrinkable
to a point by squeezing along a single direction [205] – something
in line with the conjecture of [28].

• There are no CY threefolds with h1,1(X) = 3 which have (at least)
one diagonal dPn and a (non-diagonal) dP3 with Π(dP3) = 0. Hence,
in order to have a dP3 divisor in LVS, we need CY threefolds with
h1,1(X) ≥ 4. For h1,1(X) = 4 there are 16 CY threefolds in the ‘favor-
able’ geometry which are suitable for LVS and feature a dP3.

• For h1,1(X) ≤ 4, there is only one CY geometry which can lead to LVS
and has two vanishing Π divisors which are of Wilson-type. Similarly,
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there is only one CY geometry with a ddP for LVS and 3 vanishing
Π divisors.

3.3 Corrections to inflationary potentials

3.3.1 Blow-up inflation

The minimal LVS scheme of moduli stabilisation fixes the CY volume V
along with a small modulus τs controlling the volume of an exceptional
del Pezzo divisor. Therefore any LVS model with 3 or more Kähler moduli,
h1,1 ≥ 3, can generically have flat directions at leading order. These flat
directions are promising inflaton candidates with a potential generated at
subleading order. Blow-up inflation [49] corresponds to the case where
the inflationary potential is generated by non-perturbative superpotential
contributions. In this inflationary scenario the inflaton is a (diagonal) del
Pezzo divisor wrapped by an ED3-instanton or supporting gaugino con-
densation. In addition, the CY has to feature at least one additional ddPn
divisor to realize LVS.

On these lines, we present the scanning results in Tab. 3.6 correspond-
ing to the number of CY geometries nCY with their suitability for realizing
LVS along with resulting in the standard blow-up inflationary potential, in
the sense of having at least two ddP divisors, one needed for supporting
LVS and the other one for driving inflation.

h1,1 Poly∗ Geom∗ nddP = 1 nddP = 2 nddP = 3 nddP = 4 nLVS Blow-up
(nCY) infl.

1 5 5 0 0 0 0 0 0
2 36 39 22 0 0 0 22 0
3 243 305 93 39 0 0 132 39
4 1185 2000 465 261 24 0 750 285
5 4897 13494 3128 857 106 13 4104 976

Table 3.6. Number of LVS CY geometries suitable for blow-up inflation.

3.3.2 Inflationary potential

The simplest blow-up inflation model is based on a two-hole Swiss-cheese
CY threefold. Such a CY threefold has two diagonal del Pezzo divisors,
say D1 and D2, which after considering an appropriate basis of divisors
result in the following intersection polynomial:

I3 = I ′3(Di′) + k111D
3
1 + k222D

3
2 , for i′ 6= {1, 2} , (3.43)
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where I ′3(Di′) is such that D1 and D2 do not appear in this cubic poly-
nomial. Further, k111 and k222 are the self-intersection numbers which are
fixed by the degrees of the two del Pezzo divisors, say dPn1 and dPn2 , as
k111 = 9 − n1 > 0 and k222 = 9 − n2 > 0. This generically provides the
following expression for the volume form:

V =
1

6
ki′j′k′ t

i′ tj
′
tk

′
+
k111
6

(t1)3 +
k222
6

(t2)3 , (3.44)

where the 2-cycle volume moduli ti
′

are such that i′ 6= {1, 2}. Subse-
quently, the volume can be rewritten in terms of the 4-cycle volume mod-
uli as:

V = f3/2(τi′)− β1 τ
3/2
1 − β2 τ

3/2
2 , (3.45)

where β1 = 1
3

√
2

k111
and β2 = 1

3

√
2

k222
. Furthermore, under our choice of

the intersection polynomial, τi′ does not depend on the del Pezzo volumes
τ1 and τ2. Now we can simplify things to the minimal three-field case with
h1,1+ = 3 by taking f3/2(t

i′) = 1
6 kbbb (t

b)3 and using the following relations
between the 2-cycle moduli ti and the 4-cycle moduli τi:

tb =

√
2 τb
kbbb

, t1 = −
√

2 τ1
k111

, t2 = −
√

2 τ2
k222

. (3.46)

The scalar potential of the minimal blow-up inflationary model [30, 49]
can be reproduced by the master formula (3.6) via simply setting h1,1+ = 3,
n = 2 and ξ̂ > 0, which leads to the following leading order terms in the
large volume limit:

V =
eKcs

2s

[
3ξ̂|W0|2

4V3
+

2∑
i=1

4|W0||Ai|ai
V2

τi e
−aiτi cos(aiθi + φ0 − φi) (3.47)

−
2∑
i=1

2∑
j=1

4|Ai||Aj |aiaj
V

e−(aiτi+ajτj) cos(ajθj − aiθi − φj + φi)

(
3∑

k=1

kijktk

)]
.

Given that we are interested in a strong Swiss-cheese case where the only
non-vanishing intersection numbers are k111, k222 and k333, we have:

3∑
k=1

kiiktk = kiiiti = −
√
2 kiii τi for i = 1, 2 and

3∑
k=1

kijktk = 0 for i 6= j .

Hence (3.47) reduces to the potential of known 3-moduli Swiss-cheese
LVS models [30, 49]:

V =
eKcs

2s

[
βα′

V3
+

2∑
i=1

(
βnp1,i

τi
V2

e−aiτi cos(aiθi + φ0 − φi) + βnp2,i

√
τi
V

e−2aiτi

)]
,

102



Higher Derivative Corrections to Inflationary Potentials

with:

βα′ =
3ξ̂|W0|2

4
, βnp1,i = 4a1|W0||A1| , βnp2,i = 4a21|A1|2

√
2k111 .

(3.48)
It has been found that such a scalar potential can drive inflation effec-
tively by a single field after two moduli are stabilized at their respective
minimum [49]. In fact, a three-field inflationary analysis has been also pre-
sented in [30, 50] ensuring that one can indeed have trajectories which
effectively correspond to a single field dynamics.

3.3.3 F 4 corrections

In this three-field blow-up inflation model, higher derivative F 4 corrections
to the scalar potential look like:3

VF 4 =
γ

V4

(
Πb t

b +Π1 t
1 + Π2 t

2
)

(3.49)

=
γ

V4

(
Πb t

b −Π1

√
2 τ1
k111

− Π2

√
2 τ2
k222

)
=

γ

V4

[
Πb

(
6

kbbb

)1/3 (
V + β1 τ

3/2
1 + β2 τ

3/2
2

)1/3
−Π1

√
2 τ1
k111

− Π2

√
2 τ2
k222

]
,

where we have used the relations in (3.46). Assuming that inflation is
driven by τ2, only τ2-dependent corrections can spoil the flatness of the
inflationary potential. The leading correction is proportional to Π2 and
scales as V−4, while a subdominant contribution proportional to Πb would
scale as V−14/3. It is interesting to note that this subleading correction
would be present even if Π2 = 0, as in the case where the corresponding
dPn is a diagonal dP3. As compared to the LVS potential, this inflaton-
dependent F 4 correction is suppressed by a factor of order V−5/3 � 1.
Moreover, the ideal situation to completely nullify higher derivative F 4

corrections for blow-up inflation is to demand that:

Πb = Π2 = 0 . (3.50)

In this setting, making Πb zero by construction appears to be hard and
very unlikely since we have seen that vanishing Π divisors other than

3Additional perturbative corrections can arise from string loops but we assume that
these contributions can be made negligible by either taking a small value of the string
coupling or by appropriately small flux-dependent coefficients.
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dP3 could possibly be either a T4 or a Wilson divisor. However, for both
divisors we have

∫
X D3 = 0 as they satisfy the condition (3.40) that implies

vanishing cubic self-intersections, and so they do not seem suitable to
reproduce the strong Swiss-cheese volume form that has been implicitly
assumed in rewriting the scalar potential pieces in (3.49). Moreover, we
have not observed any other kind of vanishing Π divisors in our scan
involving the whole set of CY threefolds with h1,1 ≤ 5 in the KS database.4

Let us finally point out that a case with Πb = 0 cannot be entirely ruled
out as we have seen in a couple of non-generic situations that a non-
fibred K3 surface can also appear as a ‘big’ divisor in a couple of strong
Swiss-cheese CY threefolds, and so if there is a similar situation in which
a non-fibred T4 appears with a ddP divisor it could possibly make Πb
identically zero.

3.3.4 Constraints on inflation

We are now going to study the effect of F 4 corrections in blow-up infla-
tion, focusing on the case where their coefficients are in general non-zero,
as suggested by our scan. In this analysis we shall follow the work of
[227]. First of all, we will derive the value of the volume to subsequently
analyse the effect of the F 4 corrections to the inflationary dynamics.

We start from the potential described in (3.47), stabilize the axions
and set eKcs/(2s) = 1, obtaining:

VLVS =

2∑
i=1

(
8(aiAi)

2√τi
3Vβi

e−2aiτi − 4aiAiW0τi
V2

e−aiτi
)
+

3ξ̂W 2
0

4V3
, (3.51)

where the volume has been expressed as:

V = τ
3/2
b − β1τ

3/2
1 − β2τ

3/2
2 . (3.52)

The minimum condition of the LVS potential reads:

e−aiτi =
Λi
V
√
τi , (3.53)

where the constants Λi are defined as:

Λi ≡
3|W0|
4

βi
ai|Ai|

. (3.54)

4However recall that our scan is limited to coordinate divisors only, and so may miss
some possibilities.
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Moreover, since we want to find an approximate Minkowski vacuum, we
add an uplifting potential of the generic form:

Vup =
D

V4/3
, (3.55)

where the value of D will be computed in the next paragraph. Lastly, the
F 4 corrections become:

VF 4 =
γ

V4

Πb
(
V −

2∑
i=1

βiτ
3/2
i

)1/3

− 3

2∑
i=1

Πiβi
√
τi

 . (3.56)

Volume after inflation

We start by fixing in the LVS potential (3.51) the small moduli at their
minimum given by (3.53):

VLVS = −3|W0|2

2V3

(
2∑
i=1

βiτ
3/2
i − ξ̂

2

)
. (3.57)

Defining ψ ≡ lnV , the minimum condition for τi can be approximated as:

τi =
1

ai
(ψ − lnΛi − ln

√
τi) '

1

ai
(ψ − lnΛi) , (3.58)

leading to:

V
(PI)
LVS = −3|W0|2

4
e−3ψ

(
2∑
i=1

Pi (ψ − lnΛi)
3/2 − ξ̂

)
, (3.59)

where Pi ≡ 2βia
−3/2
i and the superscript (PI) indicates that we consider

the ‘post inflation’ situation where all the moduli reach their minimum.
Analogously, the uplifting term reads:

V
(PI)
up = De−

4
3
ψ , (3.60)

while the F 4 correction becomes:

V
(PI)
F 4 = γe−4ψ

[
Πb

(
eψ −

2∑
i=1

Pi (ψ − lnΛi)
3/2

)1/3

− 3
2∑
i=1

ΠiPiai (ψ − lnΛi)
1/2

]
. (3.61)

The full post-inflationary potential for the field ψ is therefore:

VPI(ψ) = V
(PI)
LVS + V

(PI)
up + V

(PI)
F 4 . (3.62)
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We are now able to calculate the factor D in order to have a Minkowski
minimum, by imposing:

V ′
PI(ψ̃) = VPI(ψ̃) = 0 , (3.63)

which gives:

D =
27|W0|2

20
e−

5
3
ψ̃
∑
i

Pi

(
ψ̃ − lnΛi

)1/2
+ δDF 4 , (3.64)

δDF 4 = γe−
8
3
ψ̃

[
Πb

(
eψ̃ −

∑
i

Pi

(
ψ̃ − lnΛi

)3/2)1/3

− 3
∑
i

ΠiPiai

(
ψ̃ − lnΛi

)1/2
− Πb

3

eψ̃ − 3
2

∑
i Pi

(
ψ̃ − lnΛi

)1/2
(
eψ̃ −

∑
i Pi

(
ψ̃ − lnΛi

)3/2)2/3

+
3

2

∑
i

ΠiPiai

(
ψ̃ − lnΛi

)−1/2
]
, (3.65)

where ψ̃ solves the following equation:∑
i

Pi

(
ψ̃ − lnΛi

)1/2(
ψ̃ − lnΛi −

9

10

)
− ξ̂ + δψ̃F 4 = 0 , (3.66)

δψ̃F 4 = − 4γ

5W 2
0

e−ψ̃

[
8Πb
3

(
eψ̃ −

∑
i

Pi

(
ψ̃ − lnΛi

)3/2)1/3

− 8
∑
i

ΠiPiai

(
ψ̃ − lnΛi

)1/2
− Πb

3

eψ̃ − 3
2

∑
i Pi

(
ψ̃ − lnΛi

)1/2
(
eψ̃ −

∑
i Pi

(
ψ̃ − lnΛi

)3/2)2/3

+
3

2

∑
i

ΠiPiai

(
ψ̃ − lnΛi

)−1/2
]
, (3.67)

from which we obtain the post inflation volume VPI ≡ eψ̃.

Volume during inflation

We now move on to determine the value of the volume modulus during
inflation. In order to do so, we focus on the region in field space where
the inflaton τ2 is away from its minimum. In this region, the inflaton-
dependent contribution to the volume potential becomes negligible due
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to the large exponential suppression from (3.51). Hence, the inflationary
potential for the volume mode is given only by:

Vinf(ψ) = −3|W0|2

4
e−3ψ

(
sP1 (ψ − lnΛ1)

3/2 − ξ̂
)
s+De−

4
3
ψ , (3.68)

where we ignore F 4 corrections since the volume during inflation is bigger
than the post-inflationary one. At this point we can again minimize the ψ
field to a value ψ̂, imposing the vanishing of the first derivative:

P1

(
ψ̂ − lnΛ1

)1/2 (
s2
(
ψ̂ − lnΛ1

)
− 1
)
s− 2ξ̂ +

16

9|W0|2
Deψ̂ = 0 , (3.69)

and the volume during inflation is given as Vinf ≡ eψ.

Inflationary dynamics

During inflation all the moduli, except τ2, sit at their minimum, including
the volume mode which is located at V ≡ Vinf. From now on, we will
drop the subscript and always refer to the volume as the one during infla-
tion, unless otherwise explicitly stated. The inflaton potential with higher
derivative effects reads:

V (τ2) =V0 −
4a2|A2||W0|

V2
τ2e

−a2τ2 +
8 a22 |A2|2

√
τ2

3Vβ2
e−2a2τ2 (3.70)

+
γ

V4

Πb
(
V − P1

(
ln

V
Λ1

)3/2

− β2τ
3/2
2

)1/3

− 3
∑
i

Πiβi
√
τi

 ,
where the explicit definition of γ in terms of λ is

γ = − λ|W0|4

16π2g
3/2
s

. (3.71)

Canonically normalizing the inflaton field as:

τ2 =

(
〈τ2〉3/4 +

√
3V
4β2

φ

)4/3

, (3.72)
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we find the inflaton effective potential:

V (φ) =V0 −
4a2|A2||W0|

V2

(√
3V
4β2

φ+ 〈τ2〉3/4
)4/3

e
−a2

(√
3V
4β2

φ+〈τ2〉3/4
)4/3

+
8 a22 |A2|2

3Vβ2

(√
3V
4β2

φ+ 〈τ2〉3/4
)2/3

e
−2a2

(√
3V
4β2

φ+〈τ2〉3/4
)4/3

+
γ

V4

[
Πb

V − P1

(
ln

V
Λ1

)3/2

− β2

(√
3V
4β2

φ+ 〈τ2〉3/4
)2
1/3

− 3Π2β2

(√
3V
4β2

φ+ 〈τ2〉3/4
)2/3

− 3Π1P1a1

(
ln

V
Λ1

)1/2 ]
. (3.73)

To simplify the notation, we introduce:

A ≡ 4a2|A2| |W0|
V2

, B ≡ 8 a22|A2|2

3Vβ2
, C ≡ V − P1

(
ln

V
Λ1

)3/2

, (3.74)

γ2 ≡
3γΠ2β2

V4
, γb ≡

γΠb
V4

, α ≡

√
3V
4β2

, (3.75)

ϕ ≡
√

3V
4λ2

φ+ 〈τ2〉3/4 = αφ+ 〈τ2〉3/4 , (3.76)

and we absorb the constant F 4 correction proportional to Π1 inside V0 as:

V0 → V0 −
3γΠ1P1a1

V4

(
ln

V
Λ1

)1/2

. (3.77)

The potential therefore simplifies to:

V (ϕ) = V0 −Aϕ4/3 e−a2 ϕ
4/3

+Bϕ3/2e−2a2ϕ4/3
+ γb(C − β2 ϕ

2)1/3 − γ2ϕ
2/3 .

(3.78)
Given that ϕ is different from the canonically normalized inflaton φ, we
define the following notation for differentiation:

f ′(ϕ) ≡ df(ϕ)

dφ
=

√
3V
4λ2

df(ϕ)

dϕ
≡ αḟ(ϕ) , (3.79)

with the slow-roll parameters calculated as follows:

ε =
1

2

(
V ′

V

)2

=
1

2
α2

(
V̇

V

)2

and η =
V ′′

V
= α2 V̈

V
. (3.80)
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The next step is to find the value of φ at the end of inflation, which we
denote as φend, where ε(φend) = 1. Moreover, the number of efoldings
from horizon exit to the end of inflation can be computed as:

Ne(φexit) =

∫ φexit

φend

dφ√
2ε

=

∫ ϕexit

ϕend

dϕ

α
√
2ε
. (3.81)

This value has to match the number of efoldings of inflation Ne computed
from the study of the post-inflationary evolution which we will perform
in the next section, i.e. φexit is fixed by requiring Ne(φexit) = Ne. The ob-
served amplitude of the density perturbations has to be matched at φexit,
which typically fixes V ∼ 105−6. The predictions for the main cosmological
observable are then be inferred as follows:

ns = 1 + 2η(φexit)− 6ε(φexit) and r = 16ε(φexit) . (3.82)

Reheating

In order to make predictions that can be confronted with actual data,
we need to derive the number of efoldings of inflation which, in turn,
are determined by the dynamics of the reheating epoch. Assuming that
the Standard Model is realized on a stack of D7-branes, a crucial term in
the low-energy Lagrangian to understand reheating is the loop-enhanced
coupling of the volume mode to the Standard Model Higgs h which reads
[228]:

L ⊂ cloop

m2
3/2

Mp
φbh

2 , (3.83)

where cloop is a 1-loop factor and φb the canonically normalized volume
modulus. Two different scenarios for reheating can arise depending on
the presence or absence of a stack of D7-branes wrapped around the
inflaton del Pezzo divisor:

• No D7s wrapped around the inflaton: The inflaton τ2 is not wrapped
by any D7 stack and the Standard Model is realized on D7-branes
wrapped around the blow-up mode τ1. This case has been studied
in [228]. The volume mode, despite being the lightest modulus,
decays before the inflaton due to the loop-enhanced coupling (3.83).
Reheating is therefore caused by the decay of the inflaton which
occurs with a width:

Γτ2 ' 1

V
m3
τ2

M2
p

' Mp

V4
, (3.84)
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leading to a matter dominated epoch after inflation which lasts for
the following number of efoldings:

Nτ2 =
2

3
ln

(
Hinf

Γτ2

)
=

5

3
lnV . (3.85)

Thus, the total number of efoldings for inflation is given by:

Ne = 57 +
1

4
ln r − 1

4
Nτ2 ' 50− 1

4
Nτ2 = 50− 5

12
lnV , (3.86)

where we have focused on typical values of the tensor-to-scalar ra-
tio for blow-up inflation around r ∼ 10−10. Thus, due to the long
epoch of inflaton domination before reheating, the total number of
required efoldings can be considerably reduced, resulting in a po-
tential tension with the observed value of the spectral index, as we
will point out in the next section. Note that the inflaton decay into
bulk axions can lead to an overproduction of dark radiation which
is however avoided by the large inflaton decay width into Standard
Model gauge bosons, resulting in ∆Neff ' 0.13 [228].

• D7s wrapped around the inflaton: The inflaton is wrapped by a
D7 stack which can be either the Standard Model or a hidden sec-
tor. These different cases have been analysed in [229–231]. The
localization of gauge degrees of freedom on the inflaton divisor in-
creases the inflaton decay width, so that the last modulus to decay
is the volume mode. However the naive estimate of the number of
efoldings of the matter epoch dominated by the oscillation of V is
reduced due to the enhanced Higgs coupling (3.83). The early uni-
verse history is then given by a first matter dominated epoch driven
by the inflaton which features now an enhanced decay rate:

Γτ2 ' V
m3
τ2

M2
p

' Mp

V2
. (3.87)

Hence the number of efoldings of inflaton domination is given by:

Nτ2 =
2

3
ln

(
Hinf

Γτ2

)
=

1

3
lnV . (3.88)

The volume mode starts oscillating during the inflaton dominated
epoch. Redshifting both as matter, the ratio of the energy densities
of the inflaton and the volume mode remains constant from the start
of the volume oscillations to the inflaton decay:

θ2 ≡ ρτb
ρτ2

∣∣∣∣
osc

=
ρτb
ρτ2

∣∣∣∣
dec,τ2

� 1 , (3.89)
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since the energy density after inflation is dominated by the inflaton.
Assuming that the inflaton dumps all its energy into radiation when
it decays, we can estimate:

ρτb
ργ

∣∣∣∣
dec

= θ2 . (3.90)

The radiation dominated era after the inflaton decay ends when ργ
becomes comparable to ρτb , which occurs when:

ργ

∣∣∣∣
dec,τ2

(
adec,τ2

aeq

)4

= ρτb

∣∣∣∣
dec,τ2

(
adec,τ2

aeq

)3

⇒ adec,τ2 = aeq θ
2 ,

(3.91)
giving the dilution at equality:

ρeq = ργ

∣∣∣∣
dec
θ8 . (3.92)

Moreover, the Hubble scale at the inflaton decay is given by:

Hdec,τ2 = Hinf e
− 3

2
Nτ2 , (3.93)

allowing us to calculate the Hubble scale at radiation-volume equal-
ity:

Heq = Hdec,τ2 θ
4 = Hinf e

− 3
2
Nτ2 θ4 . (3.94)

Using the fact that the decay rate of the volume mode is:

Γτb ' c2loop

(
m3/2

mτb

)4 m3
τb

M2
p

' c2loop
Mp

V5/2
, (3.95)

we can now estimate the number of efoldings of the matter epoch
dominated by volume mode as:

Nτb = ln

(
adec,τb

aeq

)
' 2

3
ln

(
Heq

Γτb

)
' 2

3
lnV −Nτ2 , (3.96)

where we considered θ4c−2
loop ∼ O(1). Therefore, the total number of

efoldings of inflation becomes:

Ne = 57+
1

4
ln r−1

4
Nτ2−

1

4
Nτb ' 50−1

4
Nτ2−

1

4
Nτb ' 50−1

6
lnV . (3.97)

Note that this estimate gives a longer period of inflation with re-
spect to the scenario where the inflaton is not wrapped by any D7
stack, even if there are two epochs of modulus domination. The rea-
son is that both epochs, when summed together, last less that the
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single epoch of inflaton domination of the case with no D7-branes
wrapped around the inflaton. As we shall see, this results in a bet-
ter agreement with the observed value of the scalar spectral index.
Lastly, we stress that the loop-enhanced volume mode coupling to
the Higgs sector suppresses the production of axionic dark radiation.
As stressed above, this coupling is however effective only when the
Standard Model lives on D7-branes since it becomes negligible in
sequestered scenarios where the visible sectors is localized on D3-
branes at dP singularities. In this case the volume would decay into
Higgs degrees of freedom via a Giudice-Masiero coupling [58, 232,
233] and a smaller decay width Γτb ∼Mp/V9/2 that would make the
number of efoldings of inflation much shorter.

3.3.5 Numerical examples

No D7s wrapped around the inflaton

To quantitatively study the effect of higher derivative corrections, let us
consider an explicit example characterized by the following choice of pa-
rameters:

W0 gs ξ a1 a2 A1 A2 β1 β2

0.1 0.13 0.1357 2π 2π 0.2 3.4× 10−7 0.4725 0.01

For simplicity, we fix Π1 = Πb = 0 and the model is studied by varying Π2

and λ. Let us stress that this assumption does not affect the main result
since the leading F 4 correction is the one proportional to Π2. Fig. 3.1
shows the plot of the uncorrected inflationary potential (gray line) which
is compared with the corrected potential obtained by setting Π2 = −1 and
choosing λ ∼ O(10−4 − 10−3).

Knowing the explicit expression of the potential, we determine the
spectral index (shown in Fig. 3.2 as function of φ) and, by integration,
the number of efoldings. In this scenario the inflaton is the longest-living
particle and the number of efoldings to consider for inflation isNe = 45.34.
Given the relations (3.86) and (3.81), we find the value of the field at
horizon exit φexit, and then the value of the spectral index ns(φexit) which
is reported in Tab. 3.7 for each value of λ.

In order for ns(φexit) to be compatible with Planck measurements [234]:

ns = 0.9649± 0.0042 (68% CL) , (3.98)

we need to require |λ| . 1.1 × 10−3 for compatibility within 2σ. This
bound might be satisfied by actual multi-field models since, as can be
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Figure 3.1. Potential of blow-up inflation with Π2 = −1 and different values of λ. The
difference between the corrections is visible in the zoomed region with φ ∈ [0.004; 0.005]

seen from (3.16), the single-field case features |λ| = 3.5 · 10−4 and, as
already explained, we expect a similar suppression to persist also in the
case with several moduli.

|λ| φexit ns As

0 4.494899× 10−3 0.956386 2.11146× 10−9

1.0× 10−4 4.95668× 10−3 0.958164 1.94664× 10−9

4.0× 10−4 4.98039× 10−3 0.963219 1.53505× 10−9

8.0× 10−4 5.01349× 10−3 0.969316 1.13485× 10−9

1.2× 10−3 5.04829× 10−3 0.974691 8.53024× 10−10

Table 3.7. Values of the inflaton at horizon exit φexit, the spectral index ns and the amplitude
of the scalar perturbations As for different choices of λ.

By comparing in Tab. 3.7 the λ = 0 case with the cases with non-zero
λ, it is clear that F 4 corrections are a welcome effect, if |λ| is not too
large, since they can increase the spectral index improving the matching
with CMB data. This is indeed the case when Π2 is negative, as we have
chosen. On the other hand, when Π2 is positive, higher derivative α′3

corrections would induce negative corrections to ns that would make the
comparison with actual data worse. Such analysis therefore suggests that
geometries with negative Π2 would be preferred in the context of blow-up
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Figure 3.2. Spectral index for different values of λ. The field at horizon exit is given in Tab.
3.7.

inflation.

D7s wrapped around the inflaton

Let us now consider the scenario where the inflaton is wrapped by a stack
of N D7-branes supporting a gauge theory that undergoes gaugino con-
densation. As illustrative examples, we choose the following parameters:

W0 gs ξ a1 a2 A1 A2 β1 β2

0.1 0.13 0.1357 2π 2π/N 0.19 3.4× 10−7 ' 0.5 0.01

Considering N = 2, 3, 5, the total number of efoldings is now given by
Ne = 47.90 for N = 2, Ne = 47.93 for N = 3, and Ne = 48.02 for N = 5.
Repeating the same procedure as before for Π2 = −1, we find the results
shown in Tab. 3.8.

Due to a larger number of efoldings with respect to the case where
the inflaton is not wrapped by any D7-stack, now the prediction for the
spectral index falls within 2σ of the observed value also for λ = 0. Non-
zero values of λ can improve the agreement with observations if |λ| <
|λ|max where:

N = 2 N = 3 N = 5

|λ|max 3.48× 10−3 7.15× 10−3 1.82× 10−2
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N |λ| φexit ns As

N = 2

0 8.55743× 10−3 0.957692 2.20009× 10−9

1.0× 10−3 8.59968× 10−3 0.962656 1.73612× 10−9

2.0× 10−3 8.64364× 10−3 0.967233 1.38248× 10−9

3.0× 10−3 8.68932× 10−3 0.971425 1.11088× 10−9

4.0× 10−3 8.73669× 10−3 0.975239 9.00672× 10−10

N = 3

0 1.22049× 10−2 0.957679 2.28554× 10−9

2.0× 10−3 1.22649× 10−2 0.96252 1.81483× 10−9

4.0× 10−3 1.23273× 10−2 0.966995 1.45345× 10−9

6.0× 10−2 1.23921× 10−2 0.971106 1.174× 10−9

8.0× 10−3 1.24593× 10−2 0.97486 9.56344× 10−10

N = 5

0 1.78617× 10−2 0.957678 2.14345× 10−9

5.0× 10−3 1.7953× 10−2 0.962446 1.70842× 10−9

1.0× 10−2 1.80479× 10−2 0.966862 1.37293× 10−9

1.5× 10−2 1.81464× 10−3 0.970927 1.11241× 10−9

2.0× 10−2 1.82484× 10−2 0.974647 9.08706× 10−10

Table 3.8. Values of the inflaton at horizon exit φexit, the spectral index ns and the amplitude
of the scalar perturbations As for different choices of λ and N = 2, 3, 5.

In this case, given the larger number of efoldings, geometries with
positive Π2 can also be viable even if the corrections to the spectral index
would be negative. Imposing again accordance with (3.98) at 2σ level for
Π2 = 1, we would obtain for example |λ|max = 2.29× 10−4 for N = 2.

3.3.6 Fibre inflation

Similarly to blow-up inflation, the minimal version of fibre inflation [51–
58] involves also three Kähler moduli: two of them are stabilized via the
standard LVS procedure and the remaining one can serve as an inflaton
candidate in the presence of perturbative corrections to the Kähler poten-
tial. However, fiber inflation requires a different geometry from the one
of blow-up inflation since one needs CY threefolds which are K3 fibrations
over a P1 base. The simplest model requires the addition of a blow-up
mode such that the volume can be expressed as:

V =
1

6

(
k111(t

1)3 + 3k233t
2(t3)2

)
= α

(√
τ2τ3 − τ

3/2
1

)
. (3.99)

The requirement of having a K3 fibred CY threefold with at least a ddPn
divisor for LVS moduli stabilisation is quite restrictive. The corresponding
scanning results for the number of CY geometries suitable for realizing
fibre inflation are presented in Tab. 3.9.
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h1,1 Poly∗ Geom∗ nLVS K3 fibred nLVS with K3 fib. nLVS with
(nCY) CY (fibre inflation) K3 fib. & DΠ

1 5 5 0 0 0 0
2 36 39 22 10 0 0
3 243 305 132 136 43 0
4 1185 2000 750 865 171 28
5 4897 13494 4104 5970 951 179

Table 3.9. Number of LVS CY geometries suitable for fibre inflation.

It is worth mentioning that the scanning results presented in Tab. 3.9
are consistent with the previous scans performed in [52, 145]. To be more
specific, the number of distinct K3 fibred CY geometries supporting LVS
was found in [52] to be 43 for h1,1 = 3, and ref. [145] claimed that the
number of polytopes giving K3 fibred CY threefolds with h1,1 = 4 and at
least one diagonal del Pezzo ddPn divisor is 158.

3.3.7 Inflationary potential

The leading order scalar potential of fibre inflation turns out to be:

V (V, τ1) = a21|A1|2
√
τ1
V

e−2a1τ1 − a1 |A1| |W0|
τ1
V
e−a1τ1 +

ξ |W0|2

g
3/2
s V3

, (3.100)

with a flat direction in the (τ2, τ3) plane which plays the role of the inflaton
(the proper canonically normalized inflationary direction orthogonal to
the volume mode is given by the ratio between τ2 and τ3). The inflaton
potential is generated by subdominant string loop corrections:

δVO(V−10/3)(τ2) =

(
g2s
A

τ21
− B

V√τ2
+ g2s

Cτ2
V2

)
|W0|2

V2
, (3.101)

where A,B,C are flux-dependent coefficients that are expected to be of
O(1). The minimum of this potential is approximately located at:

〈τ2|τ2〉 ' g4/3s

(
4A

B

)2/3

〈V|V〉2/3 . (3.102)

Writing the canonically normalised inflaton field φ as:

τ2 = 〈τ2|τ2〉 e
2φ̂√
3 ' g4/3s

(
4A

B

)2/3

〈V|V〉2/3 e
2φ̂√
3 , (3.103)

where φ̂ is the shift with respect to the minimum, i.e. φ = 〈φ|φ〉 + φ̂, the
potential (3.101) becomes:

Vinf(φ̂) = V0

[
3− 4e−φ̂/

√
3 + e−4φ̂/

√
3 +R

(
e2φ̂/

√
3 − 1

)]
, (3.104)
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where (introducing a proper normalization factor gs/(8π) from dimen-
sional reduction):

V0 ≡
g
1/3
s |W0|2A

8π 〈V|V〉10/3

(
B

4A

)4/3

and R ≡ 16g4s
AC

B2
� 1 . (3.105)

Note that we added in (3.104) an uplifting term to obtain a Minkowski
vacuum. The slow-roll parameters derived from the inflationary potential
look like:

ε(φ̂) =
2

3

(
2e−φ̂/

√
3 − 2e−4φ̂/

√
3 +Re2φ̂/

√
3
)2

(
3−R+ e−4φ̂/

√
3 − 4e−φ̂/

√
3 +Re2φ̂/

√
3
)2 , (3.106)

η(φ̂) =
4

3

4e−4φ̂/
√
3 − e−φ̂/

√
3 +Re2φ̂/

√
3(

3−R+ e−4φ̂/
√
3 − 4e−φ̂/

√
3 +Re2φ̂/

√
3
) , (3.107)

and the number of efoldings is:

Ne(φ̂exit) =

∫ φ̂exit

φ̂end

1√
2ε(φ̂)

'
∫ φ̂exit

φ̂end

(
3− 4e−φ̂/

√
3 +Re2φ̂/

√
3
)

(
2e−φ̂/

√
3 +Re2φ̂/

√
3
) , (3.108)

where φ̂end and φ̂exit are respectively the values of the inflaton at the end
of inflation and at horizon exit.

3.3.8 F 4 corrections

Explicit CY examples of fibre inflation with chiral matter have been pre-
sented in [54] that has already stressed the importance to control F 4

corrections to the inflationary potential since they could spoil its flatness.
This is in particular true for K3 fibred CY geometries since Π(K3) = 24,
and so the coefficient of F 4 effects is non-zero. On the other hand, the
theorem of [223, 224] allows in principle also for CY threefolds that are T4

fibrations over a P1 base. This case would be more promising to tame F 4

corrections since their coefficient would vanish due to Π(T4) = 0. How-
ever, in our scan for CY threefolds in the KS database we did not find
any example with a T4 divisor. Thus, in what follows we shall perform a
numerical analysis of fibre inflation with non-zero F 4 terms to study in
detail the effect of these corrections on the inflationary dynamics.

Case 1: a single K3 fibre

The minimal fibre inflation case is a three field model based on a CY three-
fold that features a K3-fibration structure with a diagonal del Pezzo divisor.
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Considering an appropriate basis of divisors, the intersection polynomial
can be brought to the following form:

I3 = k111D
3
1 + k233D2D

2
3 . (3.109)

As the D2 divisor appears linearly, from the theorem of [223, 224], this
CY threefold is guaranteed to be a K3 or T4 fibration over a P1 base.
Furthermore, the triple-intersection number k111 is related to the degree
of the del Pezzo divisor D1 = dPn as k111 = 9 − n, while k233 counts the
intersections of the K3 surface D2 with D3. This leads to the following
volume form:

V =
k111
6

(t1)3 +
k233
2

t2 (t3)2 = β2
√
τ2 τ3 − β1 τ

3/2
1 , (3.110)

where β1 = 1
3

√
2

k111
and β2 =

1√
2 k233

, and the 2-cycle moduli ti are related
to the 4-cycle moduli τi as follows:

t1 = −
√

2 τ1
k111

, t2 =
τ3√

2 k233 τ2
, t3 =

√
2 τ2
k233

. (3.111)

The higher derivative α′3 corrections can be written as:

VF 4 =
γ

V4

(
Π1 t

1 + Π2 t
2 +Π3 t

3
)

=
γ

V4

[
Π3

√
2 τ2
k233

+ Π2

(
V
τ2

+
1

3

√
2

k111

τ
3/2
1

τ2

)
−Π1

√
2 τ1
k111

]
. (3.112)

In the inflationary regime, V is kept constant at its minimum while τ2 is
at large values away from its minimum, as can be seen from (3.103) for
φ̂ > 0. Thus, the leading order term in (3.112) is the one proportional
to Π3. Therefore, a leading order protection of the fibre inflation model
can be guaranteed by demanding a geometry with Π3 = 0. However, the
subleading contribution proportional to Π2 would still induce an inflaton-
dependent correction that might be dangerous. The ideal situation to
completely remove higher derivative F 4 corrections to fibre inflaton is
therefore characterized by:

Π2 = Π3 = 0 , (3.113)

where, as pointed out above, Π2 would vanish for T4 fibred CY threefolds.
Interestingly, such CY examples with T4 divisors have been found in the
CICY database, without however any ddP for LVS [208]. It is also true that
all K3 fibred CY threefolds do not satisfy Π2 = 0.
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Case 2: multiple K3 fibres

More generically, fibre inflation could be realized also in CY threefolds
which admit multiple K3 or T4 fibrations together with at least a diagonal
del Pezzo divisor. The corresponding intersection polynomial would look
like (see [54] for explicit CY examples):

I3 = k111D
3
1 + k234D2D3D4 . (3.114)

As the divisorsD2,D3 andD4 all appear linearly, from the theorem of [223,
224], this CY threefold is guaranteed to have three K3 or T4 fibrations over
a P1 base. As before, D1 is a diagonal dPn divisor with k111 = 9 − n > 0.
The volume form becomes:

V =
k111
6

(t1)3 + k234 t
2 t3 t4 = β2

√
τ2 τ3 τ4 − β1 τ

3/2
1 , (3.115)

where β1 = 1
3

√
2

k111
and β2 = 1√

k234
, and the 2-cycle moduli ti are related

to the 4-cycle moduli τi as:

t1 = −
√

2 τ1
k111

, t2 =

√
τ3 τ4√
k234 τ2

, t3 =

√
τ2 τ4√
k234 τ3

, t4 =

√
τ2 τ3√
k234 τ4

.

(3.116)
This case features two flat directions which can be parametrised by τ2 and
τ2. Moreover, the higher derivative F 4 corrections take the form:

VF 4 =
γ

V4

(
Π1 t

1 + Π2 t
2 +Π3 t

3 +Π4 t
4
)

=
γ

V4
(V + β1 τ

3/2
1 )

(
Π2

τ2
+

Π3

τ3
+

Π4 τ2 τ3

β2 (V + β1 τ
3/2
1 )2

)
−Π1

γ

V4

√
2 τ1
k111

.

(3.117)

In the explicit model of [54], non-zero gauge fluxes generate chiral matter
and a moduli-dependent Fayet-Iliopoulos term which lifts one flat direc-
tion, stabilizing τ3 ∝ τ2. After performing this substitution in (3.117), this
potential scales as the one in the single field case given by (3.112). In-
terestingly, ref. [54] noticed that, in the absence of winding string loop
corrections, F 4 effects can also help to generate a post-inflationary min-
imum. Note finally that if all the divisors corresponding to the CY multi-
fibre structure are T4, the F 4 terms would be absent. However, incorpo-
rating a diagonal del Pezzo within a T4-fibred CY is yet to be constructed
(e.g. see [208]).
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3.3.9 Constraints on inflation

Let us focus on the simplest realization of fibre inflation, and add the dom-
inant F 4 corrections (3.112) to the leading inflationary potential (3.104).
The total inflaton-dependent potential takes therefore the form:

Vinf(φ̂) = V0

[
e−4φ̂/

√
3 − 4e−φ̂/

√
3 + 3 +R(e2φ̂/

√
3 − 1)−R2 e

−2φ̂/
√
3 −R3 e

φ̂/
√
3
]
,

(3.118)
where R is given by (3.105) while R2 and R3 are defined as:

R2 ≡
|W0|2

(4π)2Ag
3/2
s

λΠ2

V
� 1 and R3 ≡

4 |W0|2
√
gs

B

λΠ3

V
� 1 . (3.119)

Note that the most dangerous term that could potentially spoil the flatness
of the inflationary plateau is the one proportional to R3 since it multiplies
a positive exponential. The term proportional to R2 is instead harmless
since it multiplies a negative exponential.

As we have seen for blow-up inflation, the study of reheating after the
end of inflation is crucial to determine the number of efoldings of inflation
which are needed to make robust predictions for the main cosmological
observables. Reheating for fibre inflation with the Standard Model on
D7-branes has been studied in [55], while ref. [58] analysed the case
where the visible sector is realized on D3-branes. In both cases, a radiation
dominated universe is realized from the perturbative decay of the inflaton
after the end of inflation. In what follows we shall focus on the D7-brane
case and include the loop-induced coupling between the inflaton and the
Standard Model Higgs, similarly to volume-Higgs coupling found in [228].
The relevant term in the low-energy Lagrangian is the Higgs mass term
which can be expanded as:

m2
hh

2 = m2
3/2

[
c0 + cloop ln

(
MKK

m3/2

)]
h2 , (3.120)

where ln
(
MKK/m3/2

)
∝ lnV . Using the fact that [235]:

V = 〈V|V〉 (1 + κφ̂) , (3.121)

with κ ∼ 〈V〉−1/3, the Higgs mass term (3.120) generates a coupling be-
tween φ̂ and h that leads to the following decay rate:

Γφ→hh '
c2loop

V2/3

m4
3/2

M2
pminf

'
c2loop

V2/3

(
m3/2

minf

)4

Γφ→γγ . (3.122)
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It is then easy to realise that the inflaton decay width into Higgses is larger
than the one into gauge bosons for V � 1 since:

Γφ→hh

Γφ→γγ
' (cloopV)2 � 1 . (3.123)

The number of efoldings of inflation is then determined as:

Ne ' 56− 1

3
ln

(
minf

Trh

)
, (3.124)

where the reheating temperature Trh scales as:

Trh '
√

Γφ→hhMp . (3.125)

Substituting this expression in (3.124), and using (3.122), we finally find:

Ne ' 53 +
1

6
ln

[
1 +

c2loop

V2/3

(
m3/2

minf

)4
]
. (3.126)

This is the number of efoldings of inflation used in the next section for
the analysis of the inflationary dynamics in some illustrative numerical
examples.

3.3.10 Numerical examples

Let us now perform a quantitative study of the effect of higher derivative
α′3 corrections to fibre inflation for reasonable choices of the underlying
parameters. In order to match observations, we follow the best-fit analysis
of [57] and set R = 4.8× 10−6, which can be obtained by choosing:

A = 1 , B = 8 , C = 0.19 . (3.127)

Moreover, given that D2 is a K3 divisor, we fix Π2 = 24, while we leave Π3

and λ as free parameters that we constrain from phenomenological data.
Fig. 3.3 shows the potential of fibre inflation with F 4 corrections cor-

responding to Π3 = 1 and different negative values of λ.
As for blow-up inflation, we find numerically the range of values of λ

which are compatible with observations. In Tab. 3.10 we show the values
for the spectral index evaluated at horizon exit, with Ne = 53.81 fixed from
(3.126), for Π3 = 1 and different values of λ. In order to reproduce the
best-fit value of the scalar spectral index [57, 234]:

ns = 0.9696+0.0010
−0.0026 (3.128)

the numerical coefficient λ has to respect the bound |λ| . 6.1 × 10−4,
which seems again compatible with the single-field result (3.16) that gives
|λ| = 3.5 · 10−4.
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Figure 3.3. Potential of fibre inflation with F 4 corrections with Π3 = 1 and different values
of λ.

Figure 3.4. Spectral index for different values of λ in fibre inflation. The value of the inflaton
at horizon exit is given in Tab. 3.10.

3.3.11 Poly-instanton inflation

Let us finally analyse higher derivative α′3 corrections to poly-instanton
inflation, focusing on its simplest realization based on a three-field LVS
model [59, 61]. This model involves exponentially suppressed correc-
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|λ| φexit ns As

0 5.91328 0.97049 2.13082× 10−9

0.1× 10−3 5.93005 0.970657 2.09702× 10−9

0.4× 10−3 5.98203 0.971207 1.99576× 10−9

0.7× 10−3 5.88793 0.97178 1.90293× 10−9

1.0× 10−3 5.93552 0.972399 1.81416× 10−9

Table 3.10. Values of the inflaton at horizon exit φexit, the spectral index ns and the ampli-
tude of the scalar perturbations As for different choices of λ in fibre inflation.

tions appearing on top of the usual non-perturbative superpotential ef-
fects arising from E3-instantons or gaugino condensation wrapping suit-
able rigid cycles of the CY threefold. In this three-field model, two Käh-
ler moduli correspond to the volumes of the ‘big’ and ‘small’ 4-cycles
(namely Db and Ds) of a typical Swiss-cheese CY threefold, while the
third modulus controls the volume of a Wilson divisor Dw which is a
P1 fibration over T2 [221]. Moreover, such a divisor has the following
Hodge numbers for a specific choice of involution: h2,0(Dw) = 0 and
h0,0(Dw) = h1,0(Dw) = h1,0+ (Dw) = 1. For this model one can consider the
following intersection polynomial:

I3 = ksssD
3
s + ksswD

2
s Dw + kswwDsD

2
w + kbbbD

3
b , (3.129)

where, as argued earlier, the self triple-intersection number of the Wilson
divisor is zero, i.e. kwww = 0. This is because Wilson divisors are of the
kind given in (3.42) for n = 0. We also have selected a basis of divisors
where the large four-cycle Db does not mix with the other two divisors
to keep a strong Swiss-cheese structure. This leads to the following form
of the CY volume:

V =
kbbb
6

(tb)3 +
ksss
6

(ts)3 +
kssw
2

(ts)2 tw +
ksww
2

ts (tw)2 , (3.130)

which subsequently gives to the following 4-cycle volumes:

τb =
1

2
kbbb (t

b)2, τs =
1

2
ksss

(
(ts)2 + 2

kssw
ksss

(ts)2 +
ksww
ksss

(tw)2
)
,

τw =
1

2

(
kssw (ts)2 + 2 ksww t

s tw
)
. (3.131)

Now it is clear that in order for the ‘small’ divisor to be diagonal, the above
intersection numbers have to satisfy the following relation:

ksss = ± kssw = ksww , (3.132)
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which is indeed the case when the divisor basis is appropriately chosen in
the way we have described above. This leads to the following expression
of the CY volume:

V = βb τ
3/2
b − βs τ

3/2
s − βs (τs ∓ τw)

3/2 , (3.133)

where βs =
1
3

√
2

ksss
and βb =

1
3

√
2
kbbb

, and the 4-cycle volumes τs, τw and
τb are given by:

τb =
1

2
kbbb (t

b)2, τs =
1

2
ksss (t

s ± tw)2, τw = ±1

2
ksss (t

s ± 2 tw) . (3.134)

The ± sign is decided by the Kähler cone conditions, like for example in
the case of Ds being a del Pezzo divisor where the corresponding two-
cycle in the Kähler form J satisfies ts < 0 in an appropriate diagonal
basis. Looking at explicit CY examples [221], the sign is fixed through
the Kähler cone conditions such that ksss = − kssw = ksww, leading to the
following peculiar structure of the volume form [221]:

V = βb τ
3/2
b − βs τ

3/2
s − βs (τs + τw)

3/2 , (3.135)

τb =
1

2
kbbb (t

b)2, τs =
1

2
ksss (t

s − tw)2, τw = − 1

2
ksss (t

s − 2 tw) .

3.3.12 Divisor topologies for poly-instanton inflation

In principle, one should be able to fit the requirements for poly-instanton
inflation on top of having LVS in a setup with three Kähler moduli. Indeed
we find that there are four CY threefold geometries with h1,1(X) = 3 in
the KS database which have exactly one Wilson divisors and a P2 divi-
sor. However, as mentioned in [221], in order to avoid all vector-like zero
modes to have poly-instanton effects, one should ensure that the rigid di-
visors wrapped by the ED3-instantons, should have some orientifold-odd
(1, 1)-cycles which are trivial in the CY threefold. Given that P2 has a single
(1, 1)-cycle, it would certainly not have such additional two-cycles which
could be orientifold-odd and then trivial in the CY threefold. Hence one
has to look for CY examples with h1,1(X) = 4 for a viable model of poly-
instanton inflation as presented in [61, 221]. In this regard, we present the
classification of all CY geometries relevant for LVS poly-instanton inflation
in Tab. 3.11.

Let us stress that in all our scans we have only focused on the minimal
requirements to realise explicit global constructions of LVS inflationary
models. However, every model has to be engineered in a specific way
on top of fulfilling the first order topological requirements, as we do.
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For example, merely having a K3-fibred CY threefold with a diagonal del
Pezzo for LVS does not guarantee a viable fibre inflation model until one
ensures that string loop corrections can appropriately generate the right
form of the scalar potential after choosing some concrete brane setups.

h1,1 Poly∗ Geom∗ Single Two Three nLVS nLVS & W nLVS & WΠ

(nCY) W W W (poly-inst.) (topol. tamed)
1 5 5 0 0 0 0 0 0
2 36 39 0 0 0 22 0 0
3 243 305 19 0 0 132 4 4
4 1185 2000 221 8 0 750 75 63
5 4897 13494 1874 217 43 4104 660 522

Table 3.11. Number of LVS CY geometries suitable for poly-instanton inflation. Here W
denotes a generic Wilson divisors, while WΠ a Wilson divisor with Π = 0.

As a side remark, let us recall that for having poly-instanton correc-
tions to the superpotential one needs to find a Wilson divisor W with
h2,0(W ) = 0 and h0,0(W ) = h1,0(W ) = h1,0+ (W ) = 1 for some specific
choice of involution, without any restriction on h1,1(W ) [221]. On these
lines, a different type of ‘Wilson’ divisor suitable for poly-instanton cor-
rections has been presented in [62], which has h1,1(W ) = 4 instead of
2, and so it has a non-vanishing Π. As we will discuss in a moment, this
means that any poly-instanton inflation model developed with such an ex-
ample would not have leading order protection against higher-derivative
F 4 corrections for the inflaton direction τw. Tab. 3.11 and 3.12 show the
existence of several Wilson divisors which fail to have vanishing Π since
they have h1,1(W ) 6= 2.

h1,1 Poly∗ Geom∗ at least single two three at least single two three
one W W W W one WΠ WΠ WΠ WΠ

1 5 5 0 0 0 0 0 0 0 0
2 36 39 0 0 0 0 0 0 0 0
3 243 305 19 19 0 0 19 19 0 0
4 1185 2000 229 221 8 0 210 202 8 0
5 4897 13494 2134 1874 217 43 1764 1599 154 11

Table 3.12. CY geometries with Wilson divisors W and vanishing Π Wilson divisors WΠ

without demanding a diagonal del Pezzo divisor.
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3.3.13 Comments on F 4 corrections

The higher-derivative F 4 corrections to the potential of poly-instanton in-
flation can be written as:

VF 4 =
γ

V4

(
Πb t

b +Πs t
s + Πw t

w
)

(3.136)

=
γ

V4

[
Πb

(
6

kbbb

)1/3 (
V + βs τ

3/2
s + βs (τs + τw)

3/2
)1/3

−Πs

√
2 τs
ksss

− Πw

√
2 (τs + τw)

ksss

]
,

where we have used:

tb =

√
2 τb
kbbb

, ts = −
√

2

ksss

(√
τs +

√
τs + τw

)
, tw = −

√
2

ksss

√
τs + τw .

(3.137)
Now we know that for our Wilson divisor case, Πw = 0, and so the last term
in (3.136) automatically vanishes. This gives at least a leading order pro-
tection for the potential of the inflaton modulus τw after stabilizing the V
and τs moduli through LVS. However the τw-dependent term proportional
to Πb would still induce a subleading inflaton-dependent correction that
scales as V−14/3. As compared to the LVS potential, this F 4 correction is
suppressed by a V−5/3 factor which for V � 1 should be small enough
to preserve the predictions of poly-instanton inflation studied in [61, 63,
236]. Interestingly, we have found that F 4 corrections to poly-instanton
inflation can be topologically tamed, unlike the case of blow-up inflation.
In fact, the topological taming of higher derivative corrections to blow-up
inflation would require the inflaton to be the volume of a diagonal dP3

divisor which, according to the conjecture formulated in [28], is however
very unlikely to exist in CY threefolds from the KS database.
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Chapter IV

Early Dark Energy in String Theory

In this chapter, we seek to identify and address the challenges to build-
ing a phenomenologically viable EDE model within the context of string
theory. The first steps have been already provided in [71], in the context
of KKLT compactifications, with the EDE field identified as a C2 axion. Its
potential is derived from non-perturbative corrections to the superpoten-
tial W generated by gaugino condensation on D5-branes. Besides the
need to tune the prefactors of these non-perturbative effects to repro-
duce the correct EDE scale, it remains unclear if gaugino condensation on
D5-branes can actually yield a non-zero contribution to the superpotential
for cycles in the geometric regime1 [170, 182].

Here we go beyond what achieved in [71] and perform a deeper anal-
ysis of EDE model building in type IIB string theory which is one of the
most promising corners of string theory for moduli stabilization. We pro-
pose string embeddings of EDE in the moduli stabilization frameworks
of KKLT [18] and the Large Volume Scenario (LVS) [27, 99]. Moreover,
we identify different choices of axion as the EDE candidate. In partic-
ular, we try to realize the EDE potential V = V0 [1− cos(ϕ/f)]3 with the
phenomenologically relevant parameters V0 ∼ eV4 and f ' 0.2MP , while
satisfying the following conditions:

1. Controlled de Sitter moduli stabilization: All string moduli should
be stabilized in a dS vacuum where the effective field theory is under
control. In particular the compactification volume should be large
enough to trust the α′ expansion, the string coupling should be small
enough to remain in the perturbative regime, and the instanton ex-
pansion should be well behaved. One of the main obstacles against
achieving moduli stabilization with full control is the fact that the
decay constant f of the EDE field has to be relatively close to the
Planck scale. This can intuitively be seen as follows. Explicit string

1See however [237] for cosmological applications.
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computations [166, 167, 169], as well as the weak gravity conjec-
ture applied to axions [238–241], give fS ' λMP where S is the
instanton action and λ an O(1) constant. Hence, f ' 0.2MP implies
S ∼ O(10). Given that in string compactifications S is set by the vol-
ume of the internal cycle wrapped by the instanton which generates
the EDE potential, f ' 0.2MP implies volumes of O(10) in string
units which might not be large enough to control the effective field
theory.

2. Decoupling of non-EDE modes: All moduli different from the EDE
field should be stabilized at an energy scale much larger than V0, so
that they become much heavier than the EDE field whose mass is
of order m ∼ 10−27 eV. This requirement is needed for two reasons:
(i) saxions with masses below about 1 meV would mediate unob-
served fifth-forces; (ii) the dynamics of ultra-light axions with masses
around m ∼ 10−27 eV could play a significant role around matter-
radiation equality, potentially modifying the cosmological evolution
of the EDE model2. The EDE scale V0 should also be decoupled from
the scale of supersymmetry breaking and the gravitino mass.

3. Absence of fine-tuning: The main phenomenological features of
the model, namely the desired EDE energy scale V0, the typical
[1 − cos(ϕ/f)]3 shape of the potential and the decoupling of the
non-EDE modes, should be realized without the need to fine-tune
the underlying microscopic parameters. If instead some parameters
need to take unnatural values, the UV completion should provide
enough tuning freedom.

4. Explicit Calabi-Yau realization: A full-fledged string model of EDE
should feature a globally consistent compactification with an ex-
plicit Calabi-Yau orientifold involution and brane setup which allow
for tadpole cancellation and the realization of all perturbative and
non-perturbative ingredients needed to fix the moduli and generate
the EDE potential.

These challenges are not independent, but instead exhibit a rich interplay.
For example, large volume can help achieve a convergent α′ and instanton
expansion and the desired EDE energy scale, but at the cost of lowering
both the decay constant and all mass scales. On the other hand, at mod-
erate volume, the EDE energy scale can be adjusted simply by lowering

2On the other hand, an ultra-light axion component of dark matter may in fact help
the model to be in agreement with Large Scale Structure data [93, 94].
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the prefactors of non-perturbative terms (this was the approach of [71]),
at the cost of introducing an exponential fine-tuning in the model.

We elucidate and address the first 3 challenges within the context
of various string theory realizations of EDE. We consider moduli stabi-
lization both in the context of KKLT and LVS (a concise summary of the
string theory background is provided in Sec. 1.3). These scenarios have
been studied in depth in the literature and are two of the most promising
frameworks for controlled moduli stabilization.

In order to ensure the decoupling of non-EDE modes, we consider both
C4 and C2 axions as potential EDE candidates. In fact, both of these fields
enjoy a continuous shift symmetry, which is exact at the perturbative level.
Hence, any perturbative correction would generate the required hierarchy
by fixing the corresponding saxions while leaving the C4 and C2 axions
flat. This is what happens typically for C2 axions and the bulk C4 axion
in LVS. The situation is somewhat different for C4 axions in KKLT where
moduli stabilization relies only on non-perturbative effects. In this case
the C4 axion cannot therefore play the role of the EDE field.

Regarding the task to reproduce the EDE scale, C2 axions seem more
promising than C4 axions. An intuitive explanation concerns the fact that
matching V0 ∼ eV4 without fine-tuning requires a violation of the weak
gravity conjecture applied to axions. In fact, writing again fS ' λMP , the
EDE scale can be written as

V0 = Ae−SM4
P ' Ae−λMP /f M4

P ' Ae−5λM4
P for f ' 0.2MP .

(4.1)
Demanding V0 ∼ eV4 ∼ 10−108M4

P corresponds to Ae−5λ ∼ 10−108, which
clearly requires A � 1 for λ ∼ O(1).3 On the other hand, cases with
λ � 1 (i.e. violation of the weak gravity conjecture) could reproduce
the correct EDE scale without the need to tune the prefactor A. Ref.
[183] found λ ∼ V1/3 � 1 (where V � 1 is the compactification vol-
ume in string units) for C2 axions with superpotential from fluxed ED3-
instantons/gaugino condensation on D7s, while λ ∼ O(1) for C2 axions
with ED1-instanton corrections to the Kähler potential, and C4 axions with
superpotential generated by ED3-instantons/gaugino condensation on D7-
branes. Therefore, we identify C2 axions, with a potential generated by
fluxed ED3-instantons or gaugino condensation on D7-branes with non-
zero world-volume fluxes [183], as in principle the most promising candi-
dates to match the EDE scale with minimal fine-tuning of the model.

3Here our logic is different from the one of [95], which set A ' 10−8 to get an overall
M4

GUT scale and fixed λ ∼ O(1) to infer the value of f needed to match the EDE scale.
This logic yields f ' 0.008MP , which is below the best fit value f ' 0.2MP .
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However, as we shall see, matching the required EDE scale without any
tuning of the prefactors of non-perturbative effects leads to a compactifi-
cation volume of order V ∼ O

(
104 − 105

)
. In turn, obtaining f ' 0.2MP re-

quires O(100) D7-branes supporting the gaugino condensates which gen-
erate the EDE potential. This number is relatively large but still achievable
in F-theory compactifications [155]. Moreover, ∼ O

(
104 − 105

)
can be

obtained easily in LVS models, while in KKLT it requires scenarios with
O(1000) D7-branes supporting the gaugino condensate that yields the
leading KKLT potential, otherwise the mass of the volume modulus would
be below the cosmological moduli problem bound, mV . 50 TeV. Such a
large number of D7-branes might be hard to achieve in a way compati-
ble with D7 tadpole cancellation and a controlled backreaction. Thus, our
analysis indicates that the most promising candidates to realize EDE from
type IIB string theory are C2 axions in LVS with a potential generated
by gaugino condensation on D7-branes with non-vanishing gauge fluxes.
Fluxed ED3-instantons would instead not be compatible with f ' 0.2MP

for V ∼ O
(
104 − 105

)
.

The main challenge left is to construct an explicit Calabi-Yau embed-
ding of these models where all the needed non-perturbative effects are
explicitly shown to arise with the exact coefficients needed to reproduce
the [1− cos(ϕ/f)]3 shape of the EDE potential.

Let us also point out that the KKLT and LVS implementations of EDE are
distinguished in part by the mass of the gravitino. The most natural LVS
models predict a gravitino mass far above the energy scale of any particle
physics experiment. In particular, typical Swiss-cheese Calabi-Yau mod-
els lead to m3/2 ∼ O(1013) GeV, while K3-fibred compactifications feature
m3/2 ∼ O(1010) GeV. On the other hand, KKLT models with the lowest
possible number of D7-branes correlate with a TeV-scale gravitino mass.
This suggests that experimental searches for the gravitino may be comple-
mentary to cosmological searches for EDE as it emerges from KKLT. An
additional complementary direction is to interface the LVS EDE models
with LVS inflation models [47–49, 51, 52, 54, 59], wherein the volume V
is fixed by matching to the amplitude of the CMB power spectrum, even
if in some models the volume can evolve from inflation to today [242,
243].

These analyses suggest that EDE can be a viable cosmological model
from the perspective of string theory. The more difficult model building
task is to realize multiple non-perturbative contributions toW with precise
coefficients that reproduce the EDE potential, even if other features of the
model (like moduli stabilization, the EDE scale and decay constant, and
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the decoupling of non-EDE modes) can be achieved in LVS without fine-
tuning. Hence we do not consider the theory challenges so different in
difficulty in comparison to those faced by other cosmological models,
such as dark energy [33, 34, 148, 244–246], or fuzzy dark matter [183,
247], and thus one expects an eventual plethora of model realizations, of
which we have only scratched the surface. By expanding the playground
of model-building frameworks for EDE, this work will enable future efforts
to target specific aspects of phenomenology that may be of observational
interest, such as the coupling to photons [169] and the associated particle
and gravitational wave production [248].

Notation: In this chapter MP = 2.435× 1018 GeV is the reduced Planck
mass.

4.1 The Hubble Tensions

The Hubble tension is sharpest between Planck 2018 CMB data and SH0ES
cosmic distance ladder measurement. Here we focus on these two ex-
periments, but re-emphasize that the tension exists between varied data
sets – see [68] for a recent review. What follows is intended to be a non-
technical review of the essential physics of the Hubble tension and the
EDE model (see [73] for a detailed review), with a particular focus on
the constraints from data that guide the model-building process. This is
complementary but distinct from the review given in [71].

Key to understanding the EDE approach to the Hubble tension is that
the CMB data, namely the distribution of CMB anisotropies on the sky,
is an intrinsically two-dimensional picture of the universe. Thus, while
one may directly measure the angular scale of features in the CMB, to
translate this into length scales one must assume a cosmological model.
The Hubble length, H−1

0 , is one such length scale that one may try to infer.
Indeed the most precise cosmological measurement to date is the

Planck 2018 measurement of the angular extent of the comoving sound
horizon at last scattering, 100 θs = 1.0411 ± 0.0003 [234]. This is defined
by a ratio of length scales, as

θs =
rs(z∗)

DA(z∗)
, (4.2)

where rs measures distances between points in the surface of last scat-
tering4, while DA corresponds to the distance from an observer to the

4Last scattering surface refers to the time of last scattering of photons and electrons

131



Early Dark Energy in String Theory

CMB last scattering surface. More precisely, rs(z∗) is the comoving sound
horizon at last scattering, defined as

rs(z∗) =

∫ zre

z∗

dz

H(z)
cs(z), (4.3)

with z∗ the redshift of last scattering, zre is the redshift of reheating after
cosmic inflation, and cs the sound speed of the photon-baryon plasma,
whereas DA(z∗) is the angular diameter distance to the surface of last
scattering,

DA(z∗) =

∫ z∗

0
dz

1

H(z)
, (4.4)

which is sensitive to H(z = 0), i.e. the Hubble constant H0. These expres-
sions suggest a path forward for resolving the Hubble tension: The 0.03%

measurement of the angle θs can accommodate the ≈ 10% increase in H0

if there is a commensurate increase in H(z ∼ z∗). This approach, which
acts to reduce the sound horizon at last scattering, has been extensively
studied (see [68] for a review). A popular model realization is Early Dark
Energy [72].

4.2 The Early Dark Energy solution

The reduction of the sound horizon can be easily achieved by an ultralight
scalar, satisfying the Klein-Gordon equation,

ϕ̈+ 3Hϕ̇+ V ′ = 0 . (4.5)

At early times, when the Hubble drag term dominates the dynamics, the
scalar is nearly frozen in place and contributes a dark energy-like compo-
nent to the universe. This phase eventually terminates, as the contents of
the universe redshift and the Hubble parameter decreases, releasing the
field from Hubble drag and triggering the decay of the EDE. This occurs
around the time at which H2 ∼ V ′′. The decay of the EDE is necessary to
avoid any unintended impact on post-CMB physics. On the other hand, in
order to have any sizeable effect on the sound horizon, the decay of the
EDE must happen within the decade of redshift preceding last scattering
[70]. This fixes the mass of the ultralight scalar to m ∼ 10−27 eV.

The sound horizon is not the only scale probed the CMB, and likewise
the dark energy -like phase of the EDE is not the only aspect of the dy-
namics that is constrained by data. The dissipation of CMB anisotropies

before the recombination of electrons and protons into hydrogen. For a review of CMB
physics and terminology, see [249].
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on small angular scales (high multipole moment `), known as ‘Silk Damp-
ing’, provides another characteristic scale – the damping scale rd. The
damping scale constrains the decay of the EDE via its impact on the rela-
tive size rs/rd. CMB data selects as the best EDE-like model the one that
maximizes the decrease in rs and minimizes the change in rs/rd [72].

Putting these puzzle pieces together, one may build a concrete model.
A well studied example is given by [72]

V (ϕ) = V0

[
1− cos

(
ϕ

f

)]3
(4.6)

= V0

[
5

2
− 15

4
cos

(
ϕ

f

)
+

3

2
cos

(
2ϕ

f

)
− 1

4
cos

(
3ϕ

f

)]
,

with V0 ≡ m2f2. The EDE potential (4.6) may be thought of as a gen-
eralization of the usual axion potential. The unconventional exponent is
selected by data, which can be understood as largely due to the ability
of the model to reduce the sound horizon while minimizing the impact
on the damping scale, as described above. The exponent determines the
shape of the potential near the minimum as locally V ∝ ϕ6, such that
the energy density redshifts as a−9/2 in the decaying phase. This can
be contrasted with the conventional axion potential, V ∼ 1 − cos(ϕ/f),
which has a quadratic minimum, leading to a dark matter-like evolution
in the decaying phase. An ultra-light axion component of dark matter is
tightly constrained by data [250, 251] and can not resolve the Hubble ten-
sion. This model can also be contrasted with a monomial EDE potential
V = V0 (ϕ/MP )

2n [78], which, due to the convexity of the potential and
the dynamics of perturbations, is strongly disfavoured by CMB data rela-
tive to a cosine-type potential [74]. We note that similar generalizations
of an axion potential have been studied as an inflation model in [252–
254].

The parameter values relevant to the Hubble tension in the EDE model,
eq. (4.6), follow from simple considerations. Electrons and protons recom-
bine when the temperature of the primordial plasma drops below T ∼ eV,
selecting V0 ∼ eV4 as the benchmark energy scale if the EDE is to play
a cosmologically relevant role around that time. The mass of the EDE
scalar field should be comparable to the Hubble parameter at that time,
H ∼ T 2/MP , to trigger the decay of the EDE, which fixes m ∼ 10−27 eV.
From (4.6), these determine the decay constant as f ∼ MP . These order
of magnitude estimates are born out in the fit to data, which selects out
a near- but sub-Planckian decay constant, f ' 0.2MP , as the preferred
value [89].
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The EDE model is a promising candidate to replace ΛCDM as the con-
cordance model of cosmology [255]. However, the model faces serious
challenges from both theory and data, as discussed in the introduction,
that bring this privileged status into question [76]. On the data side, chief
among these is the tension of EDE with large scale structure (LSS) data
[75, 76, 256–259] (see also [260–263]). As discussed in detail in [75,
76, 256–258] and reviewed in [71], the addition of an EDE-like compo-
nent necessitates a commensurate increase in the amount of dark matter,
to compensate the impact of the EDE on the redshifting of CMB pho-
tons, as encoded in the height of the first peak of the CMB temperature
anisotropy angular power spectrum. This increased dark matter is in ten-
sion with observations of weak gravitational lensing and galaxy clustering
[75, 76], such as data from the Dark Energy Survey [264], and from BOSS
[265]. The tension with LSS can be ameliorated by adding in additional
degrees of freedom, such as in [89, 92–94]. We also note the preference
for a non-zero EDE component from the Atacama Cosmology Telescope,
see Ref. [266, 267]. These results add to the motivation to study the EDE
in a UV complete framework, such as string theory.

4.3 EDE in KKLT

First, let us note that, in the present chapter, we will focus on type IIB
compactifications, where the tree-level Kähler potential reads

K = KKähler +Kcs +Kdilaton , (4.7)

and one has that the overall factor, both in the gravitino mass and in the
F-term potential, factorizes as eK = eKKähler eKcseKdilaton . Given that we will
focus exclusively on the Kähler moduli sector, we will henceforth omit
the eKcseKdilaton factors, though the reader should be aware that they are
implicit throughout. In our estimates of the energy scales relevant for
phenomenology, we will simply set eKcseKdilaton = 1.

As our first string theory realization of EDE, we consider the KKLT
scenario. In this case the EDE field has to be a C2 axion since C4 axions
would be too heavy given that in KKLT the moduli are stabilized by non-
perturbative effects, and so C4 axions are as heavy as the Kähler moduli.

We therefore focus on C2 axions and build our model following the
recipe given in [71] to ensure the correct shape of the EDE potential. The
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Kähler potential and superpotential are given by

K = − 3 ln
[
T + T̄ − γ(G+ Ḡ)2

]
+ 3

X̄X

T + T̄
, (4.8)

W =W0 +MX +Ae−aT (4.9)

+A1 e
−ã(T+kf1G) +A2 e

−ã(T+kf2G) +A3 e
−ã(T+kf3G) ,

with
a =

2π

N
< ã =

2π

M
⇔ M < N , (4.10)

to ensure that the EDE scale, ∼ eV, is naturally suppressed with respect
to the standard KKLT potential. This exponential suppression removes the
EDE fine-tuning to obtain the correct EDE scale previously argued in [71]
since the parameters A and Ai (i = 1, 2, 3) can take natural O(1) values in
Planck units. Moreover, in order to generate the desired periodicity of the
EDE potential, we have to impose

f1 = f , f2 = 2f , f3 = 3f . (4.11)

According to our discussion of non-perturbative effects in type IIB
compactifications presented in Sec. 1.5.3, this situation can be repro-
duced at the microscopic level in two different possible ways:

1. ED3-instantons onD+: the superpotential (4.9) can arise from fluxed
ED3-instantons wrapped around D+ if this divisor does not intersect
with a D7-stack supporting the Standard Model. For a = 2πn and
ã = 2πm, the condition (4.10) can be met if m > n. On the other
hand, the condition (4.11) can be satisfied if different terms in the
instanton expansion compete among each other. Clearly, the un-
derlying assumption is that all the other terms in the expansion are
either absent or suppressed.

2. Gaugino condensation on D7-branes: as we have seen, in the pres-
ence of gaugino condensation on D7-branes, ED3-instanton contri-
butions are subdominant and can be safely neglected. In this case,
the superpotential (4.9) can be reproduced by gaugino condensation
on 4 stacks of D7-branes wrapping the same cycle. This can arise,
for example, if there are 4 distinct representatives of the same ho-
mology class or if different branes of the same stack are differently
magnetized. 1 D7-stack is not fluxed and consists of N D7-branes
with a = 2π/N . On the other hand, the other 3 stacks have the same
number of D7-branes M < N , so that ã = 2π/M and the condition
(4.10) is met. Moreover, these 3 D7-stacks should carry different
world-volume fluxes to satisfy the periodicity condition (4.11).
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Note that, as explained in Sec. 1.5.3, each of the 3 fluxed non-
perturbative effects in ((4.9) should come along with extra dilaton-dependent
exponential suppressions of the form:

Ai = Ãi e
−ã f2i S̄/2 � 1 ∀ i = 1, 2, 3 . (4.12)

If present, these exponential suppression factors would require some fine
tuning to obtain the correct [1− cos (ϕ/f)]3 shape of the EDE potential.
In fact, the condition (4.11), when inserted in (4.12), implies that the 3
prefactors Ai are not all of the same order if all Ãi are O(1) coefficients,
implying the need to tune the Ãi appropriately.

We shall however exploit model building to avoid this tuning by notic-
ing that (1.181) and (1.182) allow for a cancellation of the S̄-dependent
part of the gauge kinetic function if even fluxes are turned on. This is al-
ways possible for gaugino condensation on D7-branes and ED3-instantons
with rank m > 1 [179], which is actually forced to be the case due to the
m > n ≥ 1 condition. When the ED3/D7-stack is wrapping D+, if k̃ = −p2k
with p ∈ N (where in particular p 6= 0), (1.181) reduces to

fD7 = T + kf−G+
k

2

(
f2− − p2f2+

)
S̄ = T + kf−G , (4.13)

if the fluxes are chosen such that f− = ±p f+. Similar considerations apply
to the case when the ED3/D7-stack is wrapping D1.

We shall therefore focus on the effective field theory defined by (4.8)
and (4.9). The resulting scalar potential can be separated into terms that
scale with e−aτ and a series of corrections suppressed by powers of e−ãτ .
We expand the scalar potential in small e−ãτ , to arrive at

V = VKKLT + VEDE , (4.14)

where VKKLT is the standard KKLT potential defined in (1.136) and5

VEDE = Ṽ0 [A1 cos(ã|k|f c) +A2 cos(2ã|k|f c) +A3 cos(3ã|k|f c) ] . (4.15)

The potential (4.15) can reproduce the [1− cos (ϕ/f)]3 EDE potential if
A1 = 15 Ã/4, A2 = −3 Ã/2 and A3 = Ã/4. The EDE scale is then given by

V0 ≡ −Ã Ṽ0 =
AÃ (2ã− 3a) e−(a+ã)τ

6τ2
. (4.16)

Let us point out that a cos(2ã|k|f c) term would also arise from the mixed
term between the 2 non-perturbative contributions in (4.9) proportional to

5Here and it what follows we will not include in VEDE the constant term in (4.6). This
contribution can be obtained by an appropriate tuning of the uplifting contribution.
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A1 and A3, suggesting that the potential (4.15) could also be generated
for A2 = 0. However, this is not the case since it can be proven that,
under the condition that the EDE field is hierarchically lighter than the
Kähler modulus τ , this mixed term has always to be negligible. Hence
A2 6= 0 is indeed needed to generate the cos(2a|k|f c) term in the EDE
potential (4.15) and keep the correct hierarchy of scales.

Notice that we are computing the EDE potential at the Minkowski min-
imum of KKLT, namely enforcing conditions (1.137), and that, at leading
order, we have the stabilization b = gsRe(G) = 0 (which implies c = Im(G))
and θ = Im(T ) = 0. As discussed in Sec. 1.5.4, when b is stabilized at zero,
the C2 axion is not eaten up by an anomalous U(1).

Furthermore, recalling the canonical normalization for the C2 axion
given in (1.171), we obtain a term in the potential of the form

cos [ã|k|f c] = cos

[
ã|k|f

√
τ

6γ
ϕ

]
≡ cos

[
ϕ

f

]
, (4.17)

giving the following decay constant

f ≡
√

6 γ

τ

1

ã|k|f
=

√
3gs
2|k| τ

1

ãf
. (4.18)

Upon switching to the canonically normalized EDE field ϕ, we may write

VEDE = V0

[
−15

4
cos

[
ϕ

f

]
+

3

2
cos

[
2ϕ

f

]
− 1

4
cos

[
3ϕ

f

]]
, (4.19)

where the overall scale V0 can be expressed in terms of the decay constant
f and the gravitino mass m3/2 as (reinstating powers of MP )

V0 =
N Ã√
2 τ3/2

(
2

M
− 3

N

)(
m3/2

MP

)
e
− 3

4π
gsM

|k|f2

(
MP
f

)2

M4
P . (4.20)

Note that, contrary to general expectations from the weak gravity con-
jecture, V0 is exponentially suppressed in terms of gsM (MP /f)

2, instead
of just (MP /f). For M � 1 and f < MP , this helps to suppress the EDE
scale and to reduce the required fine tuning on Ã, even if the presence of
the small factor gs � 1 does not allow to remove the tuning completely.
Setting f = 0.2MP and f = |k| = 1, the EDE scale V0 scales as

V0 ' Ã

(
m3/2

MP

)
e−

75
4π
gsM M4

P . (4.21)

This relation depends on the gravitino mass. In KKLT models this is related
to the mass of the Kähler modulus mτ ' m3/2 ln

(
MP /m3/2

)
which has to
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be above O(50) TeV in order to avoid any cosmological moduli problem.
This implies m3/2 & O(1) TeV. Imposing therefore a gravitino mass at the
TeV-scale to maximize the suppression in (4.21) (larger values of m3/2

would also require a larger value of N ), V0 ' 10−108M4
P gives the value of

M for a given string coupling. In turn, (4.18) yields the value of τ at the
minimum that, when substituted in (1.108), sets the value of N for natural
O(1) values of A.

gs Ã M N τ V0 10
108M−4

P m3/2 (TeV) mτ (TeV)

0.1 1 340 3200 10980.7 1.4 4.6 155.5
0.3 1 114 1000 3703.4 2.0 4.6 155.2
0.3 10−11 100 750 2849.7 1.6 3.8 129.6
0.3 10−27 80 470 1823.8 0.9 4.6 154.8
0.3 10−61 36 85 369.3 2.2 3.0 104.0

Table 4.1. Benchmark parameters that realize the EDE potential (4.6) with f = 0.2MP ,
|A| = 1 and mτ = m3/2 ln

(
MP /m3/2

)
. Recall that a = 2π/N , ã = 2π/M , with M < N .

We present in Tab. 4.1 some selected numerical examples for the
present model for various choices of gs, Ã, M and N , all of which give
rise to the correct EDE scale, decay constant and a gravitino mass at the
TeV-scale. If the string coupling is kept in the regime where perturba-
tion theory does not break down, i.e. gs . 0.3, natural O(1) values of
Ã correlate with N ∼ O(1000) � M ∼ O(100) � 1 and larger values of
τ . Such large values of the ranks of the condensing gauge groups are
very likely to be incompatible with D7 tadpole cancellation and to induce
an uncontrolled backreaction on the internal geometry (see [155] for a
study of the maximal rank of condensing gauge groups as a function
of h1,1 for F-theory compactifications). On the other hand, tuned values
of the overall prefactor of the EDE potential of order Ã ∼ O(10−50), can
allow for viable models with acceptably smaller numbers of D7-branes,
N ∼ O(100) � M ∼ O(10) � 1 and smaller values of τ . Note that, at
fixed gs, larger values of m3/2, as can be seen from (4.21), would require
larger values of M , and so from (4.18) larger values of τ , which imply even
larger values of N , as can be seen from (1.108). Hence, cases with m3/2

considerably above the TeV-scale are highly disfavoured. Let also point
out that in general ED3-instantons would not give the required EDE decay
constant since viable models with τ � 1 require large values of M .

Summarizing, our analysis shows that EDE can be realized in KKLT
with a C2 axion whose potential is generated by gaugino condensates on
D7-branes with world-volume fluxes. When the string coupling is small
enough to trust the string loop expansion and m3/2 & O(1) TeV, matching
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the EDE scale seems to require a substantial tuning of the prefactors of
these non-perturbative effects. If instead Ã takes natural O(1) numbers,
then the number of D7-branes becomes too large to be compatible with
a controlled effective field theory. The best scenarios correlate with a
TeV-scale gravitino mass.

4.4 EDE in the Large Volume Scenario

We will now turn our attention to another class of models, built using the
LVS. We will analyse the possibility of building the EDE potential from C2

axions, as in the previous KKLT construction, and the new option of using
C4 axions. This last option is possible in LVS but not in KKLT. In fact, in
LVS models the big cycle τb is much heavier than the corresponding axion
θb since τb is stabilized by perturbative α′ effects which do not lift θb.

4.4.1 EDE from C4 axions

Consider a ‘Swiss cheese’ manifold with a large 4-cycle with size τb and a
small 4-cycle with size τs. The low energy supergravity action is defined
by the following Kähler potential and superpotential:

K = −2 ln

[
τ
3/2
b − τ3/2s +

ξ̂

2

]
+
X̄X

V2/3
, (4.22)

W =W0 +MX +As e
−asTs +A1 e

−a1Tb +A2 e
−a2Tb +A3 e

−a3Tb . (4.23)

As explained in Sec. 1.5.3, the non-perturbative corrections to W could
arise from either gaugino condensation on D7-branes or ED3-instantons,
where in this case we are focusing on situations without orientifold-odd
moduli and vanishing world-volume fluxes (more precisely, in the case
of ED3-instantons, flux-dependent contributions would be exponentially
suppressed in the dilaton with respect to the leading fluxless term). More-
over, in order to engineer the desired EDE periodic potential, we proceed
similarly to (4.11) and require

a1 = ab a2 = 2ab , a3 = 3ab . (4.24)

The scalar potential turns out to be

V = VLVS + VEDE , (4.25)

with VLVS as in (1.140) and the EDE part given by

VEDE = V0

[
Ã1 cos [abθb] + Ã2 e

−abτb cos [2] abθb

]
+ Ã3 e

−2abτb cos [3abθb] ,

(4.26)
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where the EDE scale reads (for τb ' V2/3)

V0 =
4ab |W0|
V4/3

Ab e
−abτb , (4.27)

and we have redefined Ai ≡ AbÃi (i = 1, 2, 3) to factor out in V0 and overall
coefficient Ab. This example displays a crucial difference with respect to
the KKLT C2 example of Sec. 4.3: the moduli dependence, namely on τb,
cannot be included completely into the overall normalization V0. Instead,
the 3 periodic terms appear in VEDE with different powers of e−abτb , which
must be compensated with an exponential hierarchy in Ãi (i = 1, 2, 3) if one
is to recover (4.6) for the EDE potential.6 This situation is also different
from the model of [71], where each harmonic has the same modulus-
dependent suppression, which can in fact be reabsorbed into V0.

This model requires also an exponential tuning of the overall prefactor
Ab in order to match the EDE scale since C4 axions do not give rise to any
violation of the weak gravity conjecture (see Introduction). To see this
more in detail, let us compute the EDE decay constant. The kinetic terms
for the EDE field look like

kin = KTbT̄b
∂µTb∂

µT̄b ⊃ KTbT̄b
∂µθb∂

µθb =
3

4τ2b
[∂θb]

2 , (4.28)

and thus we canonically normalize the field as

ϕ =

√
3

2

θb
τb
. (4.29)

We then obtain in the potential the term

cos [abθb] = cos

[√
2

3
abτb ϕ

]
≡ cos

[
ϕ

f

]
, (4.30)

from which we can easily see that the decay constant of the EDE field ϕ

is

f =

√
3

2

1

abτb
' 0.2

Nb

τb
for ab =

2π

Nb
. (4.31)

Setting f ' 0.2MP , (4.31) clearly implies τb ' Nb. Given that the α′ ex-
pansion is controlled by V−1/3 = τ

−1/2
b � 1, the big modulus should be at

least τb & O(100) which requires a large number of D7-branesNb & O(100).

6The different scaling of each term with τb would also backreact on the vacuum ex-
pectation value of τb, even if this effect is tiny since VEDE is hierarchically smaller than
VLVS.
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Moreover, the EDE scale (4.27) can be rewritten down as (reinstating ap-
propriate powers of MP )

V0 =
64π3

3

(
|W0|Ab
N3
b

)(
f

MP

)2

M4
P e

−
√

3
2

MP
f , (4.32)

which for f ' 0.2MP reduces to

V0 ' 0.06

(
|W0|Ab
N3
b

)
M4
P . (4.33)

From this expression it is clear that V0 ∼ 10−108M4
P can be achieved only by

fine-tuning Ab to exponentially small values since the flux superpotential
|W0| cannot be taken too small, otherwise the volume modulus would
become lighter than O(50) TeV. In fact, the volume modulus mass scales
as

mV ' |W0|MP

τ
9/4
b

& 50 TeV ⇔ |W0| & 2× 10−14 τ
9/4
b . (4.34)

For τb & 100, this gives also a lower bound on the gravitino mass of order:

m3/2 =
|W0|
τ
3/2
b

MP & 2× 10−14 τ
3/4
b MP & 1.5× 106 GeV . (4.35)

In Tab. 4.2 we show two benchmark examples for Nb = 100 and Nb = 1000,
which give f ' 0.2MP and the right EDE scale for the smallest possible
value of |W0|. At fixed Nb and τb, larger values of |W0| would give larger
moduli masses and would require smaller Ab and larger Ns, as can be
seen from (1.120).

Nb Ns τb |W0| Ab As V0 10
108M−4

P

100 3 97.5 6.0× 10−10 5× 10−92 0.29 1.8
1000 4 974.6 1.1× 10−7 2× 10−91 0.28 1.3

Table 4.2. Benchmark parameters for LVS EDE with C4 axions. Each parameter set gives
f = 0.2MP and mV ' 50 TeV, and features as = 2π/Ns, τs = 10 for gs = 0.1 and ξ = 2.

The need to perform a double fine-tuning on the 3 prefactors of the
Tb-dependent non-perturbative effects, to get both the right EDE scale
and periodicity, suggests that the C4 axion associated with the volume
modulus in LVS is not an optimal candidate for building an EDE model in
string theory.

This conclusion continues to hold when we add more complication
to the geometry, e.g. by considering a Calabi-Yau manifold with a fibred
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structure, as we will do in the following. Consider a manifold with volume
given by

V =
√
τ1τ2 − τ3/2s , (4.36)

and focus on the case τs ' τ1 � τ2 such that the volume is predominantly
set by τ2. The scalar potential derived from

K = −2 ln

[
V +

ξ̂

2

]
+
X̄X

V2/3
(4.37)

W =W0 +MX +As e
−asTs +A1 e

−a1T1 +A2 e
−2a1T1 +A3 e

−3a1T1 , (4.38)

would take again the form V = VLVS + VEDE with

VEDE = V0
[
A1 cos [a1θ1] +A2 e

−a1τ1 cos [2] a1θ1
]
+A3 e

−2a1τ1 cos [3a1θ1] ,

(4.39)
where the EDE scale scales as (for Ai = A1Ãi)

V0 =
4a1τ1|W0|

V2
A1 e

−a1τ1 . (4.40)

Just like in the previous case, this scenario exhibits an explicit depen-
dence of VEDE on 4-cycle moduli, in this case τ1, requiring an exponential
hierarchy between Ã1, Ã2 and Ã3.

However, the fibred model provides one advantage, in the form of
increased flexibility in setting the EDE decay constant. Following the same
procedure as before, we compute the kinetic terms at leading order in 1/V

kin = KT1T̄1∂µT1∂
µT̄1 ⊃ KT1T̄1∂µθ1∂

µθ1 =
1

4τ21
[∂θ1]

2 . (4.41)

Thus, canonically normalizing as

ϕ =
1√
2τ1

θ1 , (4.42)

we have that the potential will contain terms like

cos [a1θ1] = cos
[√

2a1τ1ϕ
]
≡ cos

[
ϕ

f

]
, (4.43)

finding

f =
1√
2a1τ1

' 0.1
N1

τ1
for a1 =

2π

N1
, (4.44)

which depends only on τ1 and not τ2. Given that in anisotropic compact-
ifications with τ2 � τ1, the overall internal volume is controlled mainly
by τ2, an α′ expansion under control can be compatible with τ1 ∼ O(10)
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which removes, in turn, the need to go to a large number of D7-branes
N1 to reproduce f ' 0.2MP . Clearly, in this case, more natural values
N1 ' O(10) can be allowed. However, the system still needs a very large
tuning of the prefactor A1 in (4.40) since the EDE scale can be rewritten
as (showing explicit powers of MP )

V0 =
4√

2|W0|1/3
A1

(
mV
MP

)4/3(MP

f

)
M4
P e

− 1√
2

MP
f , (4.45)

which, setting f ' 0.2MP and taking in (4.34) mV ' 50 TeV, reduces to

V0 = 2.4× 10−19 A1

|W0|1/3
M4
P . (4.46)

For |W0| ∼ O(1), clearly V0 ∼ 10−108M4
P requires to tune A1 down to

A1 ∼ O(10−90).
The lesson to learn from these attempts of building EDE potentials

by means of non-perturbative effects in W is twofold: (i) models, where
the real part of the chiral superfield used for EDE is stabilized at zero,
require less tuning of the underlying parameters to reproduce the correct
periodicity of the EDE potential; (ii) matching the EDE scale without fine-
tuning any prefactor of the non-perturbative effects, which generate the
EDE potential, requires a violation of the weak gravity conjecture. This
singles out C2 axions since they can violate the weak gravity conjecture
and belong to the chiral superfield G = S̄b+ i c where the B2 axion is fixed
at b = 0. With this in mind let us explore C2 models in the framework of
LVS.

4.4.2 EDE from C2 axions

We now return to the C2 axion case, studied previously in the context
of KKLT in Sec. 4.3. We consider two possibilities for generating the
EDE potential, namely gaugino condensation on D7-branes (or fluxed
ED3-instantons) and gaugino condensation on D5-branes (or fluxed ED1-
instantons).

Gaugino condensation on D7-branes

We focus on a situation with h1,1+ = 2 and h1,1− = 1 where the orientifold
even moduli describe a typical Swiss-cheese Calabi-Yau, while the orien-
tifold odd modulus mixes just with the big modulus. The volume form
therefore looks like

V = τ
3/2
b − τ3/2s =

1

2
√
2

[(
Tb + T̄b − γ(G+ Ḡ)2

)3/2 − (Ts + T̄s
)3/2]

. (4.47)
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The low-energy effective action is determined by the following Kähler po-
tential and superpotential

K = −2 ln

[
V +

ξ̂

2

]
+
X̄X

V2/3
, (4.48)

W =WLVS +A1 e
−ã(Tb+kf1G) +A2 e

−ã(Tb+kf2G) +A3 e
−ã(Tb+kf3G) , (4.49)

with
WLVS =W0 +MX +As e

−asTs +Ab e
−abTb . (4.50)

Similarly to (4.11), we also impose

f1 = f , f2 = 2f , f3 = 3f , (4.51)

in order to match the periodicity of the EDE potential. WLVS is the standard
LVS superpotential with the inclusion of the Tb-dependent non-perturbative
effect which stabilizes the C4 axion θb. The last 3 terms in (4.49) are in-
stead responsible for the generation of the EDE potential. As explained in
Sec. 4.3, these can arise from branes wrapping the big divisor which can
be either fluxed ED3-instantons or D7-branes with non-zero world-volume
fluxes which support gaugino condensation. Similarly to Sec. 4.3, we will
see that ED3-instantons cannot reproduce the correct EDE decay constant
for V � 1, as well as the correct EDE scale without fine-tuning the prefac-
tors Ai (i = 1, 2, 3) to exponentially small values. Moreover, when both ef-
fects are present, ED3-instantons are always subdominant with respect to
gaugino condensation. In the following, we shall therefore focus mainly
on gaugino condensation on D7-branes, keeping in mind however that
the EDE potential could also be realized by ED3-instantons (at the price of
introducing fine-tuning and working at small internal volume) if gaugino
condensation effects are not generated.

As explained in Sec. 4.3, the last 3 non-perturbative effects in (4.49)
receive also S̄-dependent contributions in the exponents, which might
destroy the required periodicity of the EDE potential if the correspond-
ing prefactors take natural O(1) numbers. However, we have seen that
these dilaton-dependent contributions can be cancelled by an appropriate
choice of even and odd fluxes. In the LVS case, there is another intrigu-
ing possibility if initially the number of odd moduli is h1,1− = 2. Note that
this is not possible in KKLT since in cases where the orientifold involution
exchanges two non-identical divisors [204, 206], 0 ≤ h1,1− ≤ r for h1,1 = 2r

or h1,1 = 2r + 1 with r ∈ N, implying that h1,1+ = 1 is incompatible with
h1,1− = 2. On the other hand, LVS models with h1,1+ = 2 can feature h1,1− = 2.
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In this case, if the initial divisors are Di (i = 1, 2, 3, 4) and the involution
exchanges D1 ↔ D2 and D3 ↔ D4, the even and odd divisors are

D
(b)
+ = D1 ∪D2 , D

(b̃)
− = D1 ∪ (−D2) , (4.52)

D
(s)
+ = D3 ∪D4 , D

(s̃)
− = D3 ∪ (−D4) , (4.53)

where we have assumed to have a big and a small orientifold-even mod-
ulus. For 2 orientifold-odd moduli the expression (1.182) for the gauge
kinetic function of a D7-stack wrapping D1 generalizes to [177] (focusing
for simplicity just on the case with odd world-volume fluxes)

fD7 = Tb +
(
kbb̃b̃fb̃ + kbb̃s̃fs̃

)
Gb̃ +

(
kbb̃s̃fb̃ + kbs̃s̃fs̃

)
Gs̃

+
1

2

[(
kbb̃b̃fb̃ + kbb̃s̃fs̃

)
fb̃ +

(
kbb̃s̃fb̃ + kbs̃s̃fs̃

)
fs̃
]
S̄ , (4.54)

where the indices with a tilde denote odd-moduli. If kbs̃s̃ = 0 and the flux
quantum fb̃ is set to zero, this expression simplifies to

fD7 = Tb + kbb̃s̃fs̃Gb̃ , (4.55)

implying that the superpotential would not depend on Gs̃. The B2-axion
bs̃ would however appear in the FI-term since (1.192) would generalize to

ξFI ∼
tb
V
[
kbb̃b̃bb̃ + kbb̃s̃ (bs̃ − fs̃)

]
. (4.56)

If kbb̃b̃ = 0, the FI-term would simply depend on bs̃ and, as explained in Sec.
1.5.4, D-term stabilization would fix bs̃ = fs̃ if the charged matter fields do
not acquire tachyonic masses from supersymmetry breaking. This implies
that the Gs̃ axion is eaten up and disappears from the effective field
theory. The B2 axion bb̃ could instead be fixed at zero by subleading
effects.

The total scalar potential can be written as

V = VLVS(V, τs, θs) + Vb(θb, b) + VEDE(c) , (4.57)

where in each term we have written down explicitly just the dependence
on the moduli which get frozen by each type of contribution. VLVS is the
uplifted LVS potential (1.140) which stabilizes V , τs and the axion θs, Vb
is the contribution included in (1.202) which fixes θb and b = 0, while the
EDE potential reads

VEDE = V0

{
−15

4
cos [ã (kfc+ θb)] +

3

2
cos [ã (2kfc+ θb)]−

1

4
cos [ã (3kfc+ θb)]

}
,

(4.58)
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with

V0 =
4|W0|ã
V4/3

Ã e−ãτb . (4.59)

where we have set A1 = −15Ã/4, A2 = 3Ã/2 and A3 = −Ã/4. In order
to obtain the correct EDE potential we require ab < ã, so that VEDE � Vb
and the stabilization of θb is completely determined by Vb for b = 0. The
overall sign of (1.114) plays an important role in this EDE realization: if
Ab > 0 the bulk C4 axion is stabilized at θb = π/ab, whereas if Ab < 0 the
minimum is at θb = 0. Given the θb dependence of (4.58) it is evident that
only Ab < 0 can lead to the desired EDE potential7

VEDE = V0

[
−15

4
cos(ã|k|f c) + 3

2
cos(2ã|k|f c)− 1

4
cos(3ã|k|f c)

]
. (4.60)

Let us now determine the EDE decay constant. Using the canonically
normalized field defined in (1.171), the cosine terms in the EDE potential
behave as

cos [ã|k|f c] = cos

[
ã|k|f

√
τb
6γ

ϕ

]
≡ cos

[
ϕ

f

]
, (4.61)

finding

f =
1

ã|k|f

√
6γ

τb
=

√
3gs

8π2|k|f2
M
√
τb

for ã =
2π

M
. (4.62)

The overall EDE scale (4.59) therefore becomes (reinstating powers of MP )

V0 =
16(2π)5|k|2f4

9g2sM
5

|W0| Ã
(

f

MP

)4

e
− 3

4π
gsM

|k|f2

(
MP
f

)2

M4
P . (4.63)

Note that the exponential suppression is the same as in (4.20) since we
are again using C2 axions whose potential is generated by gaugino con-
densation on D7-branes with non-zero fluxes. Contrary to the KKLT EDE
case discussed in Sec. 4.3, however this case can realize EDE without the
need to go to an excessively large number of D7-branes. The main reason
is that in LVS, as can be seen from the minimization relations (3.53), large
τb does not require a very large number of D7-branes to avoid ultralight
moduli that would induce cosmological problems. Let us see this crucial
point more in detail. For f = 0.2MP and f = |k| = 1, the EDE scale V0
reduces to

V0 '
27.85

g2sM
5
|W0| Ã e−

75
4π
gsM M4

P , (4.64)

where the lowest possible value of |W0| that maximizes the suppression
is given by (4.34) in terms of τb which is fixed by (4.31) for a given M and
gs.

7More in general, if θb = π/ab, the correct EDE potential could still be obtained if
ã = pab with p ∈ N.
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gs Ã Ns M |W0| V = τ
3/2
b τs V0 10

108M−4
P As ξ mV (TeV)

0.3 1 1 128 1 3.2× 105 2.37 2.6 1.70 1.2 3.2× 107

0.3 1 1/2 121 2.8× 10−6 2.7× 105 2.24 2.7 1.51 1.1 50
0.1 1 2 362 3.3× 10−5 1.4× 106 8.25 2.2 2.96 1.5 50

Table 4.3. Benchmark parameters that realize the EDE potential (4.60) with f = 0.2MP .
We have used the LVS minimization relations (1.120) with as = 2π/Ns and ã = 2π/M . The
case with Ns = 1/2 corresponds to a rank-2 ED3-instanton [179].

We present in Tab. 4.3 three numerical examples with a different value
of gs which reproduce the correct EDE scale without the need to tune the
prefactor Ã. Contrary to the KKLT case discussed in Sec. 4.3, there is no
need to have O(1000) D7-branes. If Ã is kept of order unity, the number
of D7-branes M has to be M ∼ O(100) which is however realizable in
F-theory compactifications [155]. Smaller values of M would require an
exponentially small Ã and would also reduce the value of τb due to the
need to reproduce f ' 0.2MP from (4.62). The first case in Tab. 4.3
is the most generic since the flux superpotential takes the natural value
|W0| = 1 which correlates with mV ∼ O(1010) GeV and m3/2 ∼ O(1013)

GeV. On the other hand, the last two cases in Tab. 4.3 are characterized
by lower moduli masses, mV ' 50 TeV and m3/2 ' 106 GeV, due to the
tuning of |W0| to small values. Let us stress that in all cases the CY volume
is large enough to trust the effective field theory.

To complete our analysis, let us consider also K3-fibred LVS compact-
ifications with volume V =

√
τ1τ2 − τ

3/2
s since, as we have already seen

in Sec. 4.4.1, they give more freedom in matching the EDE energy scale
and decay constant if V is anisotropic with τ2 � τ1 � 1. If the G-modulus
mixes only with T1, the superpotential would still be given by (4.49) but
with the substitution Tb → T1. The stabilization of θ1 would proceed as the
stabilization of θb above, while θ2 would in practice remain as a massless
spectator field. The EDE decay constant would still be given by (4.62) but
again with the substitution τb → τ1. The EDE potential would take the
same form as in (4.58) but the EDE scale would become (for f = 0.2MP

and f = |k| = 1)

V0 ' 23.9
|W0|
V2

gsM Ãe−
75
4π
gsM M4

P . (4.65)

The difference with the previous case is that in fibred CY models, the
lightest modulus is the direction u orthogonal to the volume mode which
is stabilized beyond leading LVS order. Imposing that its mass is above
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the bound from the cosmological moduli problem, we find [55]

mu ' |W0|
V3/2τ

1/4
1

MP & 50 TeV ⇔ V . 1.3×109 |W0|2/3 τ−1/6
1 . (4.66)

When τ1 is fixed around τ1 ∼ O(104) by the requirement to obtain f '
0.2MP , this condition can clearly be compatible with |W0| ∼ O(1) since
it would just require V . O(108). Setting V ∼ O(108) would indeed cor-
respond to an anisotropic extra-dimensional volume with τ2 ∼ O(106) �
τ1 ∼ O(104) � 1. We present in Tab. 4.4 two numerical examples with a
different value of gs which reproduce the correct EDE scale without the
need to tune the prefactors Ã and |W0|. Both examples feature mu ' 50

TeV, mV ∼ O(5× 105) GeV and m3/2 ∼ O(1010) GeV.

gs Ã Ns M |W0| τ1 V τs V0 10
108M−4

P As ξ

0.1 1 3 362 1 1.24× 104 2.74× 108 9.32 1.7 1.2 1.8
0.3 2 1 121 1 4.17× 103 3.29× 108 3.33 1.3 0.83 2

Table 4.4. Benchmark parameters that realize the EDE potential (4.60) with f = 0.2MP

and mu ' 50 TeV for K3 fibred CY models. We have used the LVS minimization relations
(1.120) with as = 2π/Ns and ã = 2π/M .

Summarizing, our analysis shows that EDE can be realized in LVS with
a C2 axion whose potential is generated by gaugino condensates on D7-
branes with non-vanishing world-volume fluxes. When the string coupling
is small enough to trust the string loop expansion, matching the EDE scale
requires O(100) D7-branes, if Ã takes natural O(1) numbers. Swiss-cheese
models with natural O(1) values of |W0| are characterized by V ∼ O(105)

and m3/2 ∼ O(1013) GeV, which can be lowered down at most to m3/2 ∼
O(106) GeV by tuning |W0| (otherwise the volume modulus would cause
cosmological problems). On the other hand, K3-fibred CY examples can
realize EDE for larger values of the internal volume, V ∼ O(108), improving
the control over the effective field theory. In turn, the resulting gravitino
mass for |W0| ∼ O(1) is lower, m3/2 ∼ O(1010) GeV.

Gaugino condensation on D5-branes

As explained in Sec. 1.5.3, C2 axions can develop a potential also due
to non-perturbative corrections to the Kähler potential arising from ED1-
instantons or gaugino condensation on D5-branes. However, similarly to
situation of the C4 axions, this case implies a severe tuning on the prefac-
tors of the non-perturbative effects to match the correct EDE scale. This
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fact is related to consistency of the model with the weak gravity conjec-
ture as explained in [183]. We shall therefore be brief in the description
of this case.

Focusing on the case where these non-perturbative effects correct the
big modulus τb, the Kähler potential and the superpotential would still be
given by the standard LVS expressions (1.138) and (1.139) but now with
the replacement:

τb → τb−γ(G+Ḡ)2+e−ãtb/
√
gs
[
A1 Re [e−ãkfG] +A2 Re [e−2ãkfG] +A3 Re e−3ãkfG

]
(4.67)

where ã = 2π/M and G = S̄b + c, as defined in Sec. 1.5. The scalar
potential admits 3 contributions of the form

V = VLVS(V, τs) + VEDE(c) + Vb(θb) , (4.68)

where VLVS and Vb are given by (1.140) and (1.114), while the EDE potential
is (for b = 0)

VEDE = V0

[
Ã1 cos(ã|k|f c) + Ã2 cos(2ã|k|f c) + Ã3 cos(3ã|k|f c)

]
, (4.69)

where we have set Ai = ÃÃi (i = 1, 2, 3) and

V0 =
3Ã |W0|2ã2

2g2sV2
e−ãtb/

√
gs ≡ Λ Ã e−ãtb/

√
gs . (4.70)

Note that the potential Vb for the axion θb is decoupled from the EDE
dynamics, and so θb can be safely set to zero, as in a standard LVS model.
Using the canonically normalized field defined in (1.171), we obtain in
the potential the term

cos (ã|k|f c) = cos

(
ã|k|f

√
τb
6γ

ϕ

)
≡ cos

(
ϕ

f

)
, (4.71)

from which we can obtain the decay constant of the EDE field ϕ

f =
1

ãf

√
3gs

2|k|τb
=

1

f

√
3gs

8π2|k|
M
√
τb
. (4.72)

Obtaining f = 0.2 in Planck units for gs ∼ O(0.1) and τb & O(100), clearly
requires M & O(30), suggesting that gaugino condensation on D5-branes
is better than ED1-instantons which would anyway be volume-suppressed
if both effects are present. Moreover, for f = |k| = k̃ = 1 and f = 0.2MP ,
the EDE scale becomes

V0 = Λ Ã e
− 1

f

√
3

k̃|k|

(
MP
f

)
M4
P ∼ 10−4 Λ ÃM4

P , (4.73)
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which shows that V0 ∼ 10−108M4
P can be obtained only by tuning Ã to

exponentially small values, in complete analogy with the C4 axion case
(see (4.32)).

We therefore conclude that realizing EDE with C2 axions and ED1/D5
non-perturbative effects requires always an exponential tuning of the pref-
actors. Given that we have shown instead that models with C2 axions and
ED3/D7 non-perturbative effects can realize EDE in a more natural way,
it is important to check that ED3/D7 contributions to the scalar potential
dominate over ED1/D5 effects. This is guaranteed if the non-perturbative
corrections to K are characterized by ã = 2π/M , with M ≤ 2, since in this
case (4.70) would give V0 � eV4 for the values of tb and gs found in Sec.
4.4.2 which reproduce the correct EDE scale for ED3/D7 effects.
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Chapter V

Joint Statistics of Cosmological
Constant and the scale of SUSY

breaking

The goal of this chapter is to study the joint distribution of the gravitino
mass (which sets the scale of supersymmetry breaking in the visible sec-
tor in these models) and the cosmological constant in the two most well
developed scenarios for Kähler moduli stabilization in type IIB: KKLT [18]
and LVS [27] models. In addition to the scenario for moduli stabilization,
the quantities of interest also depend on the uplift sector of the models.
This chapter will focus on models where the uplift sector is an anti-brane
at the tip of a warped throat1 (as in the construction of [18]) and a pre-
liminary analysis for small complex structure F-term uplift [40].

The key ingredients for our analysis will be moduli stabilization and a
systematic incorporation of the effect of the anti-brane via the nilpotent
goldstino formalism, while for the second method we will employ the
standard supergravity treatment. Let us describe them in detail.

• Incorporation of moduli stabilization (both complex structure and
Kähler): The values of the cosmological constant and the gravitino
mass (and other observables) in a vacuum are determined by the
expectation value of the moduli fields. Thus, in order to study the
distribution of observables, it is important to incorporate moduli sta-
bilization and compute the distributions sampling only over points
corresponding to the minima of the moduli potential. Early statisti-
cal analysis of observables incorporated the stabilization of complex
structure moduli; the importance of Kähler moduli stabilization was
instead emphasized recently in [129]. Here, the effect of Kähler

1There has been much discussion in the literature on the (meta)stability of anti-D3
branes in warped throats, see e.g. [268–284].
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moduli stabilization on the distribution of the gravitino mass was
studied. It was found that this has a significant effect on the statis-
tics. Following [129] we will sample only over points corresponding
to minima of the moduli potential.

• Incorporation of the uplift sector: In both KKLT and LVS, a crucial
contribution to the cosmological constant comes from the so-called
uplift sector. Before the incorporation of this sector into the effec-
tive action, the vacua obtained are necessarily AdS. Furthermore,
the cosmological constant and the gravitino mass are correlated in
these vacua. Before considering the uplift sector, KKLT vacua are
supersymmetric. Thus (setting MP = 1)

V̂KKLT = −3m̂2
3/2 , (5.1)

where the hat indicates a quantity computed in the effective field
theory before adding the uplift sector. Similarly for LVS vacua (before
uplifting)

V̂LVS ' −m̂3
3/2 , (5.2)

The relations (5.1) and (5.2) are broken solely due to introduction of
the uplift sector. Thus it is crucial to incorporate it while computing
the joint distribution of the cosmological constant and the gravitino
mass2.

Of course, there are various effects that can lead to an uplift. We
shall focus on an anti-D3 brane at the bottom of a warped throat in
the first section, and small complex structure F-term in the second.
The reasons for this are the following:

– The nilpotent superfield formalism: The nilpotent superfield
formalism allows for explicit computation of the effect of an
anti-D3 brane in a warped throat. The effects of the anti-brane
are captured by the introduction of a nilpotent chiral superfield
X such that X2 = 0 (see for instance [160, 285–289] and ref-
erences therein). X has a single propagating component, the
Volkov-Akulov goldstino [290], and supersymmetry is broken
by its F-term. The effective couplings of such a field X were
studied in [291–300] and the KKLT uplifting term was repro-
duced within the supergravity framework in [161–163]. Finally,

2Reference [129] focused on the gravitino mass distribution before the inclusion of
the uplift sector.
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in [163] explicit string constructions were presented in which
an anti-D3-brane at the bottom of a warped throat has only the
goldstino as its light degree of freedom, justifying the use of
the nilpotent field X to describe the anti-brane. Soft masses in
KKLT and LVS were computed using this framework in [164].

– Distribution of throat hierarchies: For uplift with anti-D3 branes
in warped throats, the magnitude of the uplift term is set by the
hierarchy associated with the warped throat. Thus an under-
standing of the distribution of throat hierarchies is needed to
understand the distribution of physical observables in this set-
ting. The distribution of throat hierarchies has been studied in
detail in [117]. We will make heavy use of these results.

Our main finding is that the distribution of the gravitino mass at zero
cosmological constant is tilted towards lower values. This is not the same
as the result of [124] (see also [123]) which carried out generic estimates
on supersymmetry breaking F- and D-terms and concluded that there is
a preference for high scale breaking. Note that this result is different
also from the one of [129] which found a logarithmic preference for high
scales of supersymmetry breaking after stabilizing the Kähler moduli but
before uplifting. The difference arises due to the presence of the rela-
tions (5.1) and (5.2) and the form of the distribution for throat hierarchies.
Our results should not be taken as giving the generic picture for string
vacua. In fact, in some class of models such as [158] high scale breaking
is essentially in-built. At the same time, we find it very interesting that
the best understood models have distributions favouring lower masses of
the gravitino.

It was argued in [117] that if one is dealing with a CY with a large
number of flux quanta, the joint distribution of 2 (or a small number of)
quantities which are not related through a functional relation is propor-
tional to the product of the 2 individual distributions. For example, if one
considers 2 conifold moduli |z1| and |z2|, then these are determined by
independent fluxes (hence are functionally independent), and so the joint
distribution is

N (|z1|, |z2|) d|z1|d|z2| ∝ N (|z1|)N (|z2|) d|z1|d|z2| . (5.3)

Similar considerations also apply when one is considering the joint distri-
bution of a conifold modulus and a quantity that is a function of a large
number of fluxes. The product structure in the joint distribution essen-
tially follows from the fact that when there is a large number of fluxes,

153



Joint Statistics of Cosmological Constant and the scale of SUSY breaking

fixing one quantity should not affect the distribution of another quantity
significantly unless there is a functional relation between them. See [117]
for a more detailed discussion.

5.1 Anti D3-brane uplift

In this section we will evaluate the joint distribution of the gravitino mass
and the cosmological constant for KKLT and LVS models with anti-brane
uplifting. As described earlier, we will make use of the distributions of
the axio-dilaton, W0 and y (the hierarchy) to evaluate these. We start by
writing the expression for the number of vacua in an infinitesimal volume
in these coordinates. Making use of the results discussed in details in
App. C, we have

dN =
η|W0|

y(ln y)2s2
d|W0| dS dy , (5.4)

where we have made use of the fact that the hierarchy is related to the
size of the shrinking conifold modulus by y = |z|4/3 (dS is the measure
for integration over the axio-dilaton: dS = ds dC0). We have also taken
the number of fluxes to be large, so justifying the factorized form of the
density. In both KKLT and LVS the cosmological constant and the gravitino
mass can be expressed in terms of |W0|, y and s. We will use these
expressions to carry out a change of variables in (5.4). This will provide
us with the required densities.

5.1.1 KKLT

With the complex structure moduli and the dilaton stabilized by fluxes,
we will take the low energy fields to be the Kähler moduli, chiral matter
and the nilpotent superfield. For simplicity, we will consider one Kähler
modulus T and matter fields living on D3-branes which we will collectively
denote as φ. Then

K = −2 lnV + K̃i φφ̄+ Z̃i XX̄ + H̃i φφ̄ XX̄ + ... , (5.5)

where K̃i and Z̃i are the Kähler metrics for the matter field on D3-branes
and the nilpotent goldstino. H̃i is the quartic interaction between the
matter field and the nilpotent goldstino. As per the discussion in Sec.
1.4.1, these are

K̃i =
α

τ
, Z̃i =

β

τ
, H̃i =

γ

τ2
, (5.6)
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where the scaling of K̃i with τ is due to the modular weight of the matter
field on D3-branes [301, 302]. The superpotential is

W = W0 + ρX +A e−aT , (5.7)

where we have included a non-perturbative contribution in T which is
needed to stabilize the Kähler modulus. The KKLT construction requires
|W0| � 1 (see e.g. [4, 12, 14, 20, 23] and references therein for recent
works on explicit construction of vacua with low values of |W0|). We will
study the statistical distributions for fixed values of a and A.

Recall that the supergravity scalar potential is determined in terms of
the Kähler potential and the superpotential as

V = eK
(
KIJ̄DIWDJ̄W̄ − 3|W |2

)
with DIW = ∂IW+KIW , (5.8)

where the indices I and J run over the chiral superfield T, φ,X . KIJ̄ is the
inverse of the matrix KIJ̄ ≡ ∂I∂J̄K and KI ≡ ∂IK. It is often convenient
to write (5.8) as

V = F IFI − 3m2
3/2 , (5.9)

where FI ≡ eK/2DIW and F I ≡ eK/2KIJ̄DJ̄W̄ are the F-terms. The grav-
itino mass is instead given by m3/2 ≡ eK/2|W |.

By making use of (5.5) and (5.7) in (5.8), one finds

V = (VKKLT + Vup) +
2

3

[
(VKKLT + Vup) +

1

2
Vup

(
1− 3γ

αβ

)]
|φ̂|2 , (5.10)

where the scalar component of the nilpotent field is set to zero (assuming
no condensation of fermions). VKKLT is the KKLT potential in the absence
of the uplifting term:

VKKLT =
2 e−2aτaA2

s V4/3
+

2 e−2aτa2A2

3s V2/3
− 2 e−aτaA W0

s V4/3
. (5.11)

To reduce clutter in the equations we have followed the standard practice
of writing both W0 and A real and positive. For general values of W0 and A
the expression for the potential can be obtained from the above by taking
W0 → |W0| and A → |A|. We have also neglected the overall contribution
from the Kähler potential for the complex structure moduli which is an
order one multiplicative factor. The imaginary part of T (the axion ψ) has
its minimum at ψ = π/a. This is responsible for the negative sign in the
third term in (5.11). The uplift term Vup arises from FXFX and is given by

Vup =
ρ2

2βsτ2
≡ y

2sτ2
with y =

ρ2

β
. (5.12)
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The third contribution in (5.10) is proportional to |φ̂|2 with φ̂ denoting
the canonically normalized matter scalar field φ. This contribution corre-
sponds to its soft mass. For non-tachyonic scalars, the vacuum expectation
value of φ̂ would vanish, and so we will proceed by setting φ̂ = 0. Soft
masses will be discussed in Chap. 6.3

Minimizing the scalar potential, one finds that the following holds at
the minimum

W0 = e−aτA

(
1 +

2

3
aτ +

y e2aτ

2a2A2τ

)
, (5.13)

where we have dropped subleading terms in the (aτ)−1 expansion mul-
tiplying the term proportional to y. In what follows, we shall drop such
subleading terms, but shall include their effect in the numerical results
that we will present later. Using (5.13) in the expression for the scalar
potential (5.10), its value at the minimum is found to be

Λ = −2e−2aτa2A2

3s τ
+

y

2sτ2
≡ V

(0)
KKLT + Vup. (5.14)

Note that the hierarchy y can be tuned to make the cosmological constant
zero or extremely small and positive. For a Minkowski vacuum one needs

y =
4

3
τ e−2aτa2A2 . (5.15)

The gravitino mass becomes

m3/2 = eK/2|W | = 1√
2s

1

τ3/2
(
W0 −Ae−aτ

)
. (5.16)

Next, we turn to evaluating the joint distribution for the gravitino and
cosmological constant. For this, we will perform the change of variables
(W0, y, S) → (m3/2,Λ, S) in (5.4). We need to compute the Jacobian of this
transformation. The expressions for the cosmological constant and the
gravitino mass ((5.14) and (5.16)) have explicit dependence on (W0, y, s)

and also implicit dependence via τ . To compute the partial derivatives of
the cosmological constant and the gravitino mass with respect to W0 and
y we need to compute the partial derivatives of τ with respect to these
variables. Making use of (5.13), we find

∂τ

∂y
= − eaτ

2Aa2τf(τ)
, (5.17)

3If the log hypothesis (1.133) holds, at leading order in the α′ expansion, the soft
masses for D3-brane matter vanish in KKLT. α′ corrections and anomaly mediation con-
tributions are relevant. α′ corrections always make a positive contribution to the square
masses.
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with

f(τ) = Ae−aτ
(
−2

3
a2τ

(
1 +

1

2aτ

)
+
y e2aτ

2aA2τ

(
1− 1

aτ

))
. (5.18)

Now let us turn to the entries of the Jacobian. These are

∂m3/2

∂W0
=

1√
2s

1

τ3/2
+

(
1√
2s

1

τ3/2
aAe−aτ − 3

2τ
m3/2

)
∂τ

∂W0
, (5.19)

∂m3/2

∂y
=

(
1√
2s

1

τ3/2
aAe−aτ − 3

2τ
m3/2

)
∂τ

∂y
. (5.20)

We also have

∂Λ

∂W0
=
∂Λ

∂τ

∂τ

∂W0
,

∂Λ

∂y
=
∂Λ

∂τ

∂τ

∂y
+

1

2sτ2
, (5.21)

with
∂Λ

∂τ
=

4e−2aτa3A2

3sτ

(
1 +

1

2aτ

)
− y

sτ3
, (5.22)

Analytical estimate

The expressions in (5.19), (5.20) and (5.21) are rather cumbersome. While
we will use them for our numerical analysis in Sec. 5.1.1, we continue
our analytic investigation in a regime that leads to considerable simplifi-
cations. For this, we define the quantity x as

x ≡ y e2aτ

2a2A2τ
, (5.23)

which allows to write (5.14) as

Λ = −2e−2aτa2A2

3s τ

(
1− 3

2
x

)
= −3m2

3/2

(
1− 3

2
x

)(
1 +

3

2aτ
x

)−2

. (5.24)

We shall now focus on the regime in which y is varied such that 0 < x .
O(1) � (aτ). Comparing with (5.24) we see that this allows for uplift to
zero and positive values of the cosmological constant. Hence, the regime
covers the region of most interest since x� 1 corresponds to an unstable
situation where the uplifting contribution would yield a runaway. Also
note that in this regime, the contribution of the term involving y in right
hand side of (5.13) becomes subdominant. We can therefore take the
approximation

W0 = e−aτA

(
1 +

2

3
aτ + x

)
' 2

3
A(aτ)e−aτ , (5.25)
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and so, to leading order in the (aτ)−1 expansion, we have

τ ' −1

a
ln

(
3

2A
W0

)
, (5.26)

and the gravitino mass looks like

m3/2 '
W0√
2sτ3/2

=
2

3

(aτ)A√
2sτ3/2

e−aτ . (5.27)

This allows us to write

τ ' −1

a
ln

(
3

√
s

2

m3/2

a3/2A

)
. (5.28)

In the regime we are considering, we can write (5.14) as

y ' 2sτ2
(
Λ + 3m2

3/2

)
. (5.29)

Combining this with (5.28) we can express y in terms of Λ, m3/2 and s.
Similarly, making use of (5.28) in (5.27) gives W0 in terms of the same
quantities.

The Jacobian entries undergo significant simplifications in this regime
where the function f(τ) defined in (5.18) becomes f(τ) ' −2

3a
2Ae−aττ .

We then have

∂τ

∂W0
' − 3

2Aa2τ
eaτ ,

∂τ

∂y
' 3

4A2a4τ2
e2aτ . (5.30)

Let us turn to the partial derivatives of m3/2. First note that by making use
of (5.13) and (5.16) one can write

m3/2 =
Ae−aτ

τ3/2(2s)1/2

(
2

3
aτ +

y e2aτ

2a2A2τ

)
≡ Ae−aτ

τ3/2(2s)1/2

(
2

3
aτ + x

)
. (5.31)

Recall now that

∂m3/2

∂W0
=

1√
2s

1

τ3/2
+

(
1√
2s

1

τ3/2
aAe−aτ − 3

2τ
m3/2

)
∂τ

∂W0
. (5.32)

Making use of (5.31), we see that(
1√
2s

1

τ3/2
aAe−aτ − 3

2τ
m3/2

)
= −3

2

Ae−aτ

τ5/2(2s)1/2
x . (5.33)

Using (5.30) and (5.33) in (5.32), and the fact that in the above equation
0 < x . O(1), we see that the term proportional to ∂τ

∂W0
is always sublead-

ing in (5.32). Therefore we have

∂m3/2

∂W0
' 1√

2s

1

τ3/2
. (5.34)
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Similarly, using the above formulae, one finds

∂m3/2

∂y
' −9

√
a

8A

1√
2s

1

(aτ)9/2
eaτx . (5.35)

Now, let us come to the derivatives of Λ. Note that the ratio of the two
terms in (5.14) is −3

4x. Given this (and the fact that 0 < x . O(1)), com-
paring the various terms in (5.22) gives

∂Λ

∂τ
' 4e−2aτa3A2

3sτ
. (5.36)

Combining this with (5.21) and (5.30) one finds

∂Λ

∂W0
' −2Aa3

s

e−aτ

(aτ)2
and

∂Λ

∂y
' 1

2sτ2
. (5.37)

Combining (5.34), (5.35) and (5.37), the Jacobian is

J ' 1

(2s)3/2
1

τ7/2
. (5.38)

Finally, we have

dN =
ηW0

y(ln y)2s2
dW0 dy ds =

ηW0

y(ln y)2s2
|J |−1 dm3/2 dΛdS . (5.39)

Equations (5.27), (5.28) and (5.29) can be used to express this density in
terms of the desired quantities. We find

dN =
2τ3m3/2(

3m2
3/2 + Λ

) [
ln
(
2sτ2(3m2

3/2 + Λ)
)]2

s
dm3/2 dΛdS . (5.40)

To get the expression for the joint distribution of m3/2 and Λ, we need
to perform the integration over the axio-dilaton moduli space. However,
the important features can be extracted by analysing the above density at
fixed values of the axio-dilaton (s, C0). Note that in the |Λ| � m2

3/2 limit
(which is physically most interesting) the density scales as

ρKKLT(Λ ' 0) '
lnm3/2

m3/2
, (5.41)

implying that it is tilted favourably towards lower values of m3/2.
This result can be understood as follows. Let us think of uplifting

various AdS vacua obtained before the introduction of the uplift term.
These vacua are supersymmetric and Λ = −3m2

3/2. The introduction of
the uplift term has a very small effect on the value of m3/2. Thus, when
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we consider vacua with cosmological constant close to zero, a vacuum
with a low value of m3/2 also has a low value of the hierarchy y (as the
associated supersymmetric AdS vacuum before the introduction of the
uplift has a Λ of small magnitude). The distribution of throats is such that
it is tilted in favour of lower values of y, and this makes the distribution of
m3/2 favourable towards lower values of m3/2.

Numerical results

Let us now present the numerical results which we have obtained for
the joint distribution of the cosmological constant and the gravitino mass
without making any approximation. Fig. 5.1 shows the density of states
as a function of m3/2 for different fixed values of Λ corresponding to
AdS, Minkowski and dS vacua. In the physically interesting region with
|Λ| � m2

3/2, the 3 curves approach each other, reproducing the analytical
estimate (5.41) where ρKKLT becomes independent of Λ and is inversely
proportional to m3/2 (up to a logarithmic dependence). Note that the
green curve with positive Λ features a raising behaviour of ρKKLT form2

3/2 .
Λ. However this regime can be ignored for the following two reasons: (i)
it is valid only for a small window of values ofm3/2 close tom2

3/2 . Λ since,
as can be seen from (5.24), m2

3/2 � Λ would require x � 1 that yields a
runaway; (ii) the region characterized by m2

3/2 . Λ is phenomenologically
irrelevant since it would correspond to an essentially massless gravitino
with m3/2 below the Hubble parameter.

For completeness, in Fig. 5.2 we have also plotted the density of vacua
as a function of m3/2 and Λ. Note that the two blank regions corresponds
respectively to the runaway limit (for positive Λ) and to the violation of
the supergravity lower limit Λ ≥ −3m2

3/2 (for negative Λ).

5.1.2 LVS

We now turn to the LVS models. Using the same notation as in the previ-
ous subsection, the Kähler potential can be written as

K = −2 ln
(
V + ξ s3/2

)
+ K̃i φφ̄+ Z̃i XX̄ + H̃i φφ̄ XX̄ + ... . (5.42)

We will focus on the simplest LVS example, with two Kähler moduli Ts and
Tb with real parts τb and τs, with the CY volume having a Swiss cheese
structure: V = τ

3/2
b −τ3/2s . The coefficients K̃i, Z̃i and H̃i are matter metric

and quartic interaction coefficients. The superpotential is

W = W0 + ρX +A e−asTs (5.43)
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Figure 5.1. Density of KKLT flux vacua at fixed values of the cosmological constant Λ as a
function of the gravitino mass m3/2 in Planck units.
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Figure 5.2. Density of KKLT flux vacua as a function of the gravitino mass m3/2 and the
cosmological constant Λ in Planck units.
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where W0 ∼ O(1 − 10) in LVS. The supergravity scalar potential (after
setting the matter field expectation values to zero) takes the form:

V = VLVS + Vup , (5.44)

where VLVS is the LVS potential in the absence of the uplift sector

VLVS =
4

3

e−2asτs
√
τs a

2
sA

2

s V
− 2e−asτsτs asA W0

s V2
+

3
√
s ξ W 2

0

8 V3
. (5.45)

In LVS the minimum is non-supersymmetric before the introduction
of the uplifting term. Minimizing the LVS potential VLVS, one obtains the
conditions that the Kähler moduli have to satisfy in the minimum4:

e−asτs =
3 τ

1/2
s W0

4asAs V
, (5.46)

and

τ3/2s =
s3/2ξ

2
. (5.47)

The value of the potential at this minimum is

V
(0)
LVS = −3

√
s ξ W 2

0

16asτs V3
. (5.48)

Next, we consider the potential (5.44) that includes the X-contribution
responsible for uplifting the AdS minimum. The minimum condition (5.46)
is not modified, while (5.47) is changed to

τ3/2s =
s3/2ξ

2

(
1 +

16

27

V5/3y

W 2
0 s

3/2ξ

)
. (5.49)

For later use, we define

xLVS ≡ 16

27

y (asτs)V5/3

W 2
0 s

3/2ξ
. (5.50)

The value of the potential at the minimum now becomes

Λ = V
(0)
LVS +

5

9
Vup = − 3

√
sξW 2

0

16asτsV3
+

5

9

y

2sV4/3
= − 3

√
sξW 2

0

16asτsV3

(
1− 5

2
xLVS

)
,

(5.51)
which gives a Minkowski minimum for

y =
27

40

W 2
0 s

3/2ξ

V5/3asτs
⇔ xLVS =

2

5
. (5.52)

4We will work to leading order in the (asτs)
−1 expansion.
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Thus we realize that (5.51) can allow for uplift to zero and positive values
of the cosmological constant provided y is varied so that xLVS lies in the
0 < xLVS . O(1) � (asτs) regime, with xLVS � 1 corresponding to the
runaway limit. Hence from now on we shall focus just on the interesting
region where the potential is stable and the gravitino mass is given by

m3/2 =
W0√
2sV

. (5.53)

Let us now perform a variable change in (5.4) to obtain the joint distri-
bution of the gravitino mass and the cosmological constant: (W0, y, s, C0) →
(W0,Λ,m3/2, C0). Λ and m3/2, given in (5.51) and (5.53), have explicit de-
pendence on s and y and also implicitly depend on the dilaton and the
hierarchy via τs and V . Note that, at leading order in the (asτs)

−1 expan-
sion, we have ∂V

∂τs
= asV and

∂τs
∂s

=

(
ξ
2

)2/3
1− 10

9 xLVS
≡

(
ξ
2

)2/3
Ψ

,
∂τs
∂y

=
32

81

V5/3τs

W 2
0 s

3/2ξ

1

Ψ
=

2

3

xLVS

y asΨ
. (5.54)

Now we turn to the entries of the Jacobian (again, to leading order in the
(asτs)

−1 expansion). They read

∂m3/2

∂s
= −asm3/2

∂τs
∂s

,
∂m3/2

∂y
= −asm3/2

∂τs
∂y

, (5.55)

∂Λ

∂s
= −3V

(0)
LVSasΨ

∂τs
∂s

= −3V
(0)
LVSas

(
ξ

2

)2/3

,
∂Λ

∂y
=

1

2sV4/3
,(5.56)

where we have used (5.54). These give a Jacobian of the form

J = − 5

18

m3/2as

Ψ

(
ξ

2

)2/3 1

sV4/3
= − 5

21/3 9

(
ξ

2

)2/3 asm
7/3
3/2

Ψs1/3W
4/3
0

. (5.57)

From (5.51) we can write

y =
18

5
sV4/3

(
Λ +

3
√
sξW 2

0

16asτsV3

)
=

21/3 9

5

s1/3W
4/3
0

m
4/3
3/2

(
Λ +

3
√
2ξm3

3/2s
2

8asτsW0

)
.

(5.58)
In summary, we find

dN =
ηW0

y(ln y)2s2
|J |−1 dW0 dm3/2 dΛdC0 , (5.59)
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with J and y given in (5.57) and (5.58) and τs = s
(
ξ
2

)2/3
' − 1

as
lnm3/2. To

get the final form of the distribution, one should integrate over C0 and W0.
Even if this is not tractable, the interesting features of the joint distribution
can be obtained by considering fixed values of C0 and W0 (which is an
O(1 − 10) quantity in LVS). In the physically interesting regime where
|Λ| � m3

3/2, we can also make the following approximations

|J |−1 '
(lnm3/2)

1/3

m
7/3
3/2

, y−1 ' 1

(lnm3/2)4/3m
5/3
3/2

, (5.60)

which give

ρLVS(Λ ' 0) ' 1

(lnm3/2)3m
4
3/2

. (5.61)

Interestingly, we find that the distribution of flux vacua with cosmological
constant close to zero is highly tilted towards lower values of m3/2. We
have confirmed this analytical estimate with an exact numerical evaluation
of the density of LVS flux vacua as a function of m3/2 and Λ. Two plots
showing these results are presented in Fig. 5.3 and Fig. 5.4. As stressed
already in the KKLT case, the blank region in Fig. 5.4 for Λ > 0 would
lead to a runaway, while the blank region for Λ < 0 would correspond to
a violation of the supergravity lower limit Λ ≥ −3m2

3/2.
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Figure 5.3. Density of LVS flux vacua at fixed values of the cosmological constant Λ as a
function of the gravitino mass m3/2 in Planck units.
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Figure 5.4. Density of LVS flux vacua as a function of the gravitino mass m3/2 and the
cosmological constant Λ in Planck units.

5.2 Complex structure uplifting

Let us now provide the preliminary results of our statistical studies using
small complex structure F-term uplift.

As described earlier, we will make use of the distributions of the axio-
dilaton, W0 and |F |2 to evaluate these. We start by writing the expression
for the number of vacua in an infinitesimal volume in these coordinates.
Making use of the results discussed in details in App. C, we have

dN =
η|W0|2

s2
d|W0|dS d|F |2 . (5.62)

(dS is the measure for integration over the axio-dilaton: dS = ds dC0).
We have also taken the number of fluxes to be large, so justifying the
factorized form of the density. In both KKLT and LVS the cosmological
constant and the gravitino mass can be expressed in terms of |W0|, |F |2

and s. We will use these expressions to carry out a change of variables
in (5.62). This will provide us with the required densities.
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5.2.1 KKLT

Recalling the uplift potential discussed in Sec. 1.4

Vup =
|F |2

τ3
, (5.63)

we obtain the total potential

V =
4a2A2e−2aτ

3τ
+
aA2e−2aτ

τ2
− aA|W0|e−aτ

τ2
+

|F |2

τ3
. (5.64)

Minimizing it, one finds that the following holds at the minimum

W0 = Ae−aτ
(
1 +

2

3
aτ +

3|F |2e2aττ2

2a2A2

)
, (5.65)

where we have dropped subleading terms in the (aτ)−1 expansion multi-
plying the term proportional to |F |2. In what follows, we shall drop such
subleading terms. Using (5.65) in the expression for the scalar potential
(5.64), its value at the minimum is found to be

Λ = −2e−2aτa2A2

3 τ
+

|F |2

τ3
≡ V

(0)
KKLT + Vup. (5.66)

Note that the value of |F |2 can be tuned to make the cosmological con-
stant zero or extremely small and positive. For a Minkowski vacuum one
needs

|F |2 = 4

3
e−2aτa2A2τ2 . (5.67)

The gravitino mass becomes

m3/2 = eK/2|W | = W0 −Ae−aτ

τ3/2
. (5.68)

Next, we again turn to evaluating the joint distribution for the gravitino and
cosmological constant. For this, we will perform the change of variables
(W0, |F |2, S) → (m3/2,Λ, S) in (5.62). We need to compute the Jacobian
of this transformation. The procedure is completely analogous to the anti
D3-brane uplift. The expressions for the cosmological constant and the
gravitino mass ((5.66) and (5.68)) have explicit dependence on (W0, |F |2, s)
and also implicit dependence via τ . To compute the partial derivatives of
the cosmological constant and the gravitino mass with respect to W0 and
|F |2 we need to compute the partial derivatives of τ with respect to these
variables. Making use of (5.65), we find

∂τ

∂|W0|
=

1

f(τ)
,

∂τ

∂|F |2
= − 3eaτ

4Aa2τ2f(τ)
, (5.69)
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with

f(τ) = Ae−aτ
(
−2

3
a2τ

(
1 +

1

2aτ

)
+

3|F |2e2aτ

4aAτ2

(
1− 2

aτ

))
. (5.70)

Now let us turn to the entries of the Jacobian. These are

∂m3/2

∂W0
=

1

τ3/2
+

(
1

τ3/2
aAe−aτ − 3

2τ
m3/2

)
∂τ

∂W0
, (5.71)

∂m3/2

∂|F |2
=

(
1

τ3/2
aAe−aτ − 3

2τ
m3/2

)
∂τ

∂|F |2
. (5.72)

We also have

∂Λ

∂W0
=
∂Λ

∂τ

∂τ

∂W0
,

∂Λ

∂|F |2
=
∂Λ

∂τ

∂τ

∂|F |2
+

1

τ3
, (5.73)

with
∂Λ

∂τ
=

8e−2aτa3A2

3τ

(
1 +

1

2aτ

)
− 3|F |2

τ4
, (5.74)

Analytical estimate

The expressions in (5.71), (5.72) and (5.73) are rather cumbersome. Let
us now continue our analytic investigation in a regime that leads to con-
siderable simplifications. For this, we define the quantity x as

x ≡ 3|F |2e2aτ

4A2a2τ2
, (5.75)

which allows to write (5.66) as

Λ = −4e−2aτa2A2

3 τ
(1− x) = −3m2

3/2 (1− x)

(
1 +

3

2aτ
x

)−2

. (5.76)

We shall now focus on the regime in which |F |2 is varied such that 0 < x .
O(1) � (aτ). Comparing with (5.76) we see that this allows for uplift to
zero and positive values of the cosmological constant. Hence, the regime
covers the region of most interest since x� 1 corresponds to an unstable
situation where the uplifting contribution would yield a runaway. Also
note that in this regime, the contribution of the term involving |F |2 in
right hand side of (5.65) becomes subdominant. We can therefore take
the approximation

W0 = e−aτA

(
1 +

2

3
aτ + x

)
' 2

3
A(aτ)e−aτ , (5.77)
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and so, to leading order in the (aτ)−1 expansion, we have

τ ' −1

a
ln

(
3

2A
W0

)
, (5.78)

and the gravitino mass looks like

m3/2 '
W0

τ3/2
=

2

3

(aτ)A

τ3/2
e−aτ . (5.79)

This allows us to write

τ ' −1

a
ln

(
3m3/2

2a3/2A

)
. (5.80)

In the regime we are considering, we can write (5.66) as

|F |2 ' τ3
(
Λ + 3m2

3/2

)
. (5.81)

Combining this with (5.80) we can express |F |2 in terms of Λ and m3/2.
Similarly, making use of (5.80) in (5.79) gives W0 in terms of the same
quantities.

The Jacobian entries undergo significant simplifications in this regime
where the function f(τ) defined in (5.70) becomes f(τ) ' −2

3a
2Ae−aττ .

We then have

∂τ

∂W0
' − 3

2Aa2τ
eaτ ,

∂τ

∂|F |2
' 9

8A2a4τ3
e2aτ . (5.82)

Let us turn to the partial derivatives of m3/2. First note that by making use
of (5.13) and (5.68) one can write

m3/2 =
Ae−aτ

3τ3/2
(2aτ + 3x) . (5.83)

Recall now that

∂m3/2

∂W0
=

1

τ3/2
+

(
aAe−aτ

τ3/2
− 3

2τ
m3/2

)
∂τ

∂W0
. (5.84)

Making use of (5.83), we see that(
aAe−aτ

τ3/2
− 3

2τ
m3/2

)
= −3Ae−aτ

2τ5/2
x . (5.85)

Using (5.82) and (5.85) in (5.84), and the fact that in the above equation
0 < x . O(1), we see that the term proportional to ∂τ

∂W0
is always sublead-

ing in (5.84). Therefore we have

∂m3/2

∂W0
' 1

τ3/2
. (5.86)
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Similarly, using the above formulae, one finds

∂m3/2

∂|F |2
' − 27xeaτ

16a4Aτ11/2
. (5.87)

Now, let us come to the derivatives of Λ. Note that the ratio of the two
terms in (5.66) is −x. Given this (and the fact that 0 < x . O(1)), compar-
ing the various terms in (5.74) gives

∂Λ

∂τ
' 8e−2aτa3A2

3τ
. (5.88)

Combining this with (5.21) and (5.30) one finds

∂Λ

∂W0
' −4aAe−aτ

τ2
and

∂Λ

∂|F |2
' 1

τ3
. (5.89)

Combining (5.86), (5.87) and (5.89), the Jacobian is

|J | ' 1

τ9/2
. (5.90)

Finally, we have

dN =
ηW0

s2
dW0 d|F |2 ds =

ηW0

s2
|J |−1 dm3/2 dΛdS . (5.91)

Equations (5.79), (5.80) and (5.81) can be used to express this density in
terms of the desired quantities. We find

dN ' η
2
∣∣∣ln( 3m3/2

2a3/2A

)∣∣∣11/2
a6

m3/2 dm3/2 dΛdS . (5.92)

This implies that the distribution is tilted favourably towards higher values
of m3/2. Moreover it is at leading order independent on the value of the
cosmological constant.

5.2.2 LVS

Let us consider again the simplest LVS example, with two Kähler moduli
Ts and Tb as in previous subsections. We again work at leading order in
asτs � 1, with uncorrected minimum conditions given by (5.46) and (5.47),
which gives the AdS minimum in (5.48). Next, we consider the potential
(5.44) that includes the |F |2-contribution responsible for uplifting the AdS
minimum

Vup =
|F |2

V2
, (5.93)
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leading to

V =
4a2sA

2
se

−2asτs
√
τs

3sV
− 2asAsτs|W0| e−asτs

sV2
+

3|W0|2ξ
√
s

8V3
+

|F |2

V2
. (5.94)

The minimum condition (5.46) is not modified, while (5.47) is changed to

τ3/2s =
ξ

2
s3/2

(
1 +

x

s

)(
1− 1

16asτs
− 9

16

1

1− asτs

)
. (5.95)

where we have defined

x ≡ 16|F |2
√
sV

9W 2
0 ξ

. (5.96)

Let us specify here the relation between the gravitino mass and the AdS
minimum as follows

V
(0)
LVS ≡ ΛAdS = − 3s

2
√
2asW0

(
ξ

2

)1/3

m3
3/2 , (5.97)

where

m3/2 =
W0√
2sV

. (5.98)

The value of the potential at the minimum now becomes

Λ = ΛAdS +
|F |2

3V2
= ΛAdS

(
1− asx

(
ξ

2

)2/3
)
, (5.99)

which gives a Minkowski minimum for

|F |2 = 9W 2
0

8asV
√
s

(
ξ

2

)1/3

⇔ x =
1

as

(
2

ξ

)2/3

. (5.100)

Thus we realize that (5.99) can allow for uplift to zero and positive values
of the cosmological constant provided |F |2 is varied so that x lies in the

0 < x . O( 1
as

(
2
ξ

)2/3
) � (asτs) regime, with x � 1 corresponding to the

runaway limit. Hence from now on we shall focus just on the interesting
region where the potential is stable. Let us now perform a variable change
in (5.62) to obtain the joint distribution of the gravitino mass and the
cosmological constant: (W0, |F |2, s, C0) → (W0,Λ,m3/2, C0). Λ and m3/2,
given in (5.99) and (5.98), have explicit dependence on s and |F |2 and
also implicitly depend on the dilaton and the F-term via τs and V . Note
that, at leading order in the (asτs)

−1 expansion, we have ∂V
∂τs

= asV and
we get

∂τs
∂s

=
2τs
3s

1 + x
2

1− 2
3x

asτs
s

,
∂τs
∂|F |2

=
2xτs
3|F |2s

1

1− 2
3x

asτs
s

. (5.101)
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Now we turn to the entries of the Jacobian (again, to leading order in
the (asτs)

−1 expansion). They read

∂m3/2

∂s
= −asm3/2

∂τs
∂s

,
∂m3/2

∂|F |2
= −asm3/2

∂τs
∂|F |2

, (5.102)

∂Λ

∂s
=

2Λ

m3/2

∂m3/2

∂s
+ ΛAdS

(
1

m3/2

∂m3/2

∂s
+

1

s

)
, (5.103)

∂Λ

∂|F |2
=

Λ

|F |2

(
1 +

2|F |2

m3/2

∂m3/2

∂|F |2

)
− Λ

|F |2

(
1− |F |2

m3/2

∂m3/2

∂|F |2

)
, (5.104)

where we have used (5.101). These give a Jacobian of the form, at the
leading order

|J | =
asm3/2

3|F |2

(
ξ

2

)2/3 x+ 2

1− 2
3asx

(
ξ
2

)2/3 (ΛAdS − Λ) . (5.105)

Knowing that

τs ' − 1

as
ln

3m3/2

2
√
2a2sA

2
s

(
ξ
2

)1/3 V ' W0

m3/2

√
2
as

ln
2
√
2a2sA

2
s

(
ξ
2

)1/3

3m3/2

(
ξ

2

)1/3

,

(5.106)
and from (5.99) we can write

|F |2 = 3V2(Λ− ΛAdS) ∼
Λ + 3m3

3/2 lnm3/2

m2
3/2 lnm3/2

Λ→0−−−→ 3m3/2 . (5.107)

In summary, we find

dN =
ηW0

s2
|J |−1 dW0 dm3/2 dΛdC0 , (5.108)

with J given in (5.105) and τs = s
(
ξ
2

)2/3
' − 1

as
lnm3/2. To get the final

form of the distribution, one should integrate over C0 and W0. Even if this
is not tractable, the interesting features of the joint distribution can be
obtained by considering fixed values of C0 and W0 (which is an O(1− 10)

quantity in LVS). In the physically interesting regime where |Λ| � m3
3/2,

we can also make the following approximation

|J | ∼
m3/2

|F |2
|ΛAdS| ∼ m3

3/2 lnm3/2 , (5.109)

which gives

ρLVS(Λ ' 0) ' 1

m3
3/2(lnm3/2)3

. (5.110)
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Interestingly, we find, as in the throat case, that the distribution of flux
vacua with a cosmological constant close to zero is highly tilted towards
lower values of m3/2.
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Chapter VI

Conclusions

In this work, we have thoroughly analysed various aspects of moduli sta-
bilization in flux compactification, uncovering several new results and in-
sights on the topic.

In Chap. 2 we have presented a novel method to obtain type IIB flux
vacua with flat directions at tree level. The key idea is to make choices
for flux quanta so that there are relations between the flux superpotential
and its derivatives. These relations ensure that the equations of motion
are satisfied. We implemented this method in toroidal and Calabi-Yau
compactifications in the large complex structure limit. Explicit solutions
were obtained and classified on the basis of duality equivalences. In
the toroidal setting we presented solutions with both N = 1 and N =

2 supersymmetry. For the CP[1,1,1,6,9][18] CY, on top of solutions which
were already known in the literature, we found 15 novel perturbatively
flat vacua with approximate flat directions where the superpotential is
not a homogeneous function of degree 2. We also presented solutions
with W 6= 0 which might lead to an explicit realization of winding dS
uplift. We also performed a preliminary analysis of flux vacua for the CY
considered in [134] finding supersymmetric solutions with 2 approximate
flat directions.

The flat directions studied in this chapter have interesting phenomeno-
logical implications. Before mentioning some of them, let us stress that
these flat directions are approximate since they are expected to be lifted
by subleading effects at either perturbative or non-perturbative level. In
the T 6/Z2 case, a non-zeroW should be generated by non-perturbative ef-
fects which depend on the Kähler moduli. A non-zero scalar potential for
the leading order flat directions is then generated by the U -dependence
of the prefactor of non-perturbative effects and the coefficients of α′ and
string loop corrections to the Kähler potential. Moreover one should care-
fully check potential modifications of the primitivity condition by quantum
corrections.
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For the CY cases, the flat direction of perturbative flat vacua with W =

0 should be lifted by instantons along the lines of [12]. On the other
hand, for solutions with W 6= 0, the imaginary part of the approximate
flat direction would be lifted already at perturbative level by including
U -dependent effects that arise from the supergravity contribution to the
Kähler covariant derivative WKU .

Let us now briefly discuss several potential applications to phenomenol-
ogy of approximate flat directions:

1. Kähler moduli stabilization: There are various mechanisms for sta-
bilizing the Kähler moduli in type IIB (see for example [18, 27, 40,
48, 97–102]). In particular, an exponentially low W0 is crucial for
KKLT constructions [18]. Flux vacua with W = 0 and flat directions
have been shown to be a promising starting point to realise these
scenarios [12–16, 23, 24].

Even if not strictly required, very low values of W0 might be needed
also in some dS LVS constructions where the visible sector lives on
D3-branes at singularities [28]. In these models consistency con-
ditions, like D7-tadpole and Freed-Witten anomaly cancellation, in
general induce a T-brane background which yields a positive contri-
bution to the scalar potential in the presence of background 3-form
fluxes [29]. In [28], this contribution has been shown to be able to
give a dS minimum for exponentially small values of W0. On the
other hand, [30] presented a different global model with D3-branes
at singularities where dS moduli stabilization with T-brane uplifting
can be achieved also for W0 ∼ O(1).

2. Winding uplift: Solutions with W 6= 0 could be a promising starting
point for explicit realizations of dS uplifting via exponentially small
F-terms of the complex structure moduli [38]. The idea is to have at
leading order supersymmetric solutions in the large complex struc-
ture limit with W 6= 0 and 1 axionic flat direction. In turn, this axion
is lifted by instantons which induce exponentially suppressed but
non-zero F-terms for the complex structure moduli, so leading to a
tunable (via flux choices) and positive uplifting contribution to the
scalar potential.

To be more explicit, the W 6= 0 solutions discussed in Sec. 2.3.2 for
the CP[1,1,1,6,9][18] case, feature ∂1W = λ2∂2W +λ3∂3W . Thus solving
the full supergravity F-term equations ∂aW +W∂aK = 0 ∀a = 1, 2, 3,
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is equivalent to solving:

∂1W = 0−W∂1K , (6.1)

∂2W = 0−W∂2K , (6.2)

∂1K = λ2∂2K + λ3∂3K . (6.3)

Eq. (6.1) and (6.2) are 2 complex equations, and so would fix the 2

complex moduli U1 and U2 in terms of U3. Moreover their solutions
would very well be approximated by the solutions to ∂1W = ∂2W = 0

already found in Sec. 2.3.2, if the minimum is such that the su-
pergravity corrections are infinitesimally small in the large complex
structure limit. Finally (6.3) is a real equation sinceK is just a function
of the imaginary parts of the complex structure moduli and the axio-
dilaton in the large complex structure limit (denoting Im (Ua) ≡ ua
∀a = 1, 2, 3):

K = − ln
[
4u1

(
3u21 + 3u1u2 + u22

)
− 4Im (ξ)

]
− ln (2u3) . (6.4)

Thus (6.3) should fix only Im (U3), leaving Re (U3) as the only axionic
flat direction that is expected to be lifted by instanton corrections
to the prepotential. In the large complex structure limit these con-
tributions would be exponentially suppressed by e−Im (U1) � 1 and
e−Im (U2) � 1.

3. Cosmology: Approximate flat directions have natural applications to
cosmology where inflaton fields are required to be lighter than the
Hubble scale during inflation to be in the slow-roll regime. In fact,
flat directions in the type IIB flux superpotential have already been
used in [31] to enlarge the inflaton field range, and more recently
in [32] to build models of sequestered inflation. Approximate flat
directions could be promising candidates also to drive the present
day accelerated expansion of our universe since quintessence fields
need to be very light to reproduce the observed cosmological con-
stant scale. Moreover, leading order flat directions can help to avoid
any destabilization problem coming from contributions to the dark
energy potential due to the large inflationary energy scale [33, 34].

4. Supersymmetry breaking: Leading order flat directions can also
play a relevant role in any model of supersymmetry breaking if
W = 0 at classical level. In fact, in this case the F-terms of the
Kähler moduli are vanishing at leading order and the effective field
theory after integrating out the heavy complex structure moduli has
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to include the Kähler moduli and all the complex structure mod-
uli, including the axio-dilaton, which are massless at leading order
[35]. The dynamics which stabilizes the Kähler moduli and the lead-
ing order flat directions is expected to break supersymmetry and to
develop non-zero F-terms for all these fields which will play an im-
portant role in generating soft supersymmetry breaking terms. The
F-term of the dilaton would be particularly important in D3-brane
models with sequestered supersymmetry breaking where it is the
main source for generating non-zero gaugino masses [36, 37].

5. Statistics in the landscape: The statistical approach to string phe-
nomenology has received a lot of attention during the last two
decades (see e.g. [103–107, 123–131, 303]). Trying to achieve a
complete classification of flux vacua with exponentially small W0 is
crucial to understand the statistical significance of these vacua. The
analysis of [129, 130] implies that if W0 is uniformly distributed at
very small values, then the scale of supersymmetry breaking has
a power-law distribution, while if W0 is exponentially small in the
dilaton, as in the models of [12], then the gravitino mass has a loga-
rithmic distribution. Preliminary steps in understanding the statisti-
cal significance of perturbatively flat vacua were taken in [23] which
found that they represent a small fraction of the full set of vacua at
low W0 as estimated in [105]. Our work goes in the direction to
explore novel classes of vacua at low W0 to enrich their knowledge.

6. CRG Conjecture: The solutions found should be interesting in the
context of studies on the consistency conditions of 4 graviton scat-
tering in the classical limit (see [304, 305]). The solutions obtained
are warped Minkowski compactifications in which the string cou-
pling can be tuned to arbitrarily small values. The solutions are in the
supergravity approximation. Developing a precise understanding of
the fate of the solutions beyond the supergravity approximations, i.e.
checking if there can be a solution where the flat direction survives
to all orders in α′,1 (with the solution remaining Minkowski) and the
study of 4 graviton scattering in these backgrounds is relevant in the
context of the classical Regge growth conjecture.

In Chap. 3 we presented a general discussion of the quantitative effect
of higher derivative F 4 corrections to the scalar potential of type IIB flux

1Warping dependent corrections would also have to be incorporated, see e.g. [306–
309].
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compactifications. In particular, we discussed the topological taming of
these corrections which a priori might appear to have an important impact
on well-established LVS models of inflation such as blow-up inflation, fibre
inflation and poly-instanton inflation.

These F 4 corrections are not captured by the two-derivative approach
where the scalar potential is computed from the Kähler potential and the
superpotential, since they directly arise from the dimensional reduction of
10D higher derivative terms. In addition, such a contribution to the effec-
tive 4D scalar potential turns out to be directly proportional to topolog-
ical quantities, Πi, which are defined in terms of the second Chern class
of the CY threefold and the (1,1)-form dual to a given divisor Di. The
fact that these higher derivative F 4 terms have topological coefficients
has allowed us to perform a detailed classification of all possible divisor
topologies with Π = 0 that would lead to a topological taming of these
corrections. In particular, we have found that the divisors with vanishing
Π satisfy χ(D) = 6χh(D) which is also equivalent to the following relation
among their Hodge numbers: h1,1(D) = 4h0,0(D)−2h1,0(D)+4h2,0(D). In
order to illustrate our classification, we presented some concrete topolo-
gies with Π = 0 which are already familiar in the literature. These are, for
example, the 4-torus T4, the del Pezzo surface of degree-6 dP3, and the
so-called ‘Wilson’ divisor with h1,1(W ) = 2.

In search of seeking for divisors of vanishing Π, we investigated all
(coordinate) divisor topologies of the CY geometries arising from the 4D
reflexive polytopes of the Kreuzer-Skarke database. This corresponds to
scanning the Hodge numbers of around 140000 divisors corresponding
to roughly 16000 distinct CY geometries with 1 ≤ h1,1(X) ≤ 5. In our
detailed analysis, we have found only two types of divisors of vanishing
Π: the dP3 surface and the ‘Wilson’ divisor with h1,1(W ) = 2.

In addition to presenting the scanning results for classifying the di-
visors of vanishing Π, we have also presented a classification of CY ge-
ometries suitable to realise LVS moduli stabilization and three different
inflationary models, namely blow-up inflation, fibre inflation and poly-
instanton inflation. Subsequently, we studied numerically the effect of
F 4 corrections on these inflation models in the generic case where the
inflaton is not a divisor with vanishing Π. In this regards, we performed a
detailed analysis of the post-inflationary evolution to determine the exact
number of efoldings of inflation to make contact with actual CMB data.
When the coefficients of the F 4 corrections are non-zero, we found that
they generically do not spoil the predictions for the main cosmological
observables. A crucial help comes from the (2π)−4 suppression factor
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present in (3.16) which gives the coefficient of higher derivative correc-
tions for the h1,1(X) = 1 case. However, we argued that this suppression
factor should be universally present in all F 4 corrections of the kind pre-
sented in this work, even for cases with h1,1(X) > 1.

Let us finally mention that our detailed numerical analysis shows that
all the three LVS inflationary models, namely blow-up inflation, fibre infla-
tion and poly-instanton inflation, turn out to be robust and stable against
higher derivative α′3 corrections, even for the cases when such effects
are not completely absent thanks to appropriate divisor topologies in the
underlying CY orientifold construction. In some cases, like in blow-up in-
flation, we have even found that such corrections can help to improve the
agreement with CMB data of the prediction of the scalar spectral index.

It is however important to stress that these are not the only corrections
which can spoil the flatness of LVS inflationary potentials. To make these
models more robust, one should study in detail the effect of additional
corrections, like for example string loop corrections to the potential of
blow-up and poly-instanton inflation. In this chapter, we have assumed
that these corrections can be made negligible by considering values of
the string coupling which are small enough, or tiny flux-dependent co-
efficients. However, this assumption definitely needs a deeper analysis
since in LVS the overall volume is exponentially dependent on the string
coupling, and V during inflation is fixed by the requirement of matching
the observed value of the amplitude of the primordial density perturba-
tions. Therefore taking very small values of gs to tame string loops might
lead to a volume which is too large to match As. We leave this interesting
analysis for future work.

In Chap. 4 we have performed a detailed analysis of the theoretical
and phenomenological requirements to realize a viable EDE model [72]
from string theory. We have focused on KKLT and LVS models in type IIB
flux compactifications which are the best developed scenarios for mod-
uli stabilization. Following the idea proposed in [71], we have tried to
reproduce the EDE potential by exploiting 3 non-perturbative corrections
to the effective action, considering both C4 and C2 axions. The outcome
of our investigation is a set of working models, amongst which the most
promising candidates to realize EDE in type IIB string theory are C2 ax-
ions with a potential generated by gaugino condensation on D7-branes
with non-zero world-volume fluxes. In this case the EDE scale and decay
constant can be matched without tuning any of the underlying parame-
ters and with the effective field theory approach under control. Let us
explain in simple terms how we got to this conclusion by discussing the
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challenges outlined in Chap. 4:

1. Controlled de Sitter moduli stabilization: As already pointed out,
KKLT and LVS are well-studied frameworks for moduli stabilization.
However, the main requirement, in both cases, to trust the low-
energy supergravity approximation is that the internal volume V is
stabilized at large values to keep control over α′ corrections. More
precisely, the dimensionful CY volume can be expressed as Vol =
V `6s (with `s = 2π

√
α′), implying that the parameter controlling the

α′ expansion is εα′ = α′ Vol−1/3 ' V−1/3. In the simplest compactifi-
cation with just a single Kähler modulus τ ' V2/3, we need therefore
to ensure that τ & O(100) so that εα′ . 0.1. Writing the EDE decay
constant f in terms of the instanton action S = 2πτ/M , with M the
number of branes, as f S ' λMP , as we did in Chap. , we easily see
that matching f ' 0.2MP implies

τ ' λM

2π

(
MP

f

)
' λM . (6.5)

As found in [183], C4 axions with potential generated by ED3/D7
effects and C2 axions with potential generated by fluxed ED1/D5
effects feature λ ∼ O(1), in agreement with expectations from the
weak gravity conjecture applied to axions [238–241]. In this case,
τ & O(100) can be achieved only by considering M & O(100). On
the other hand, C2 axions with potential generated by fluxed ED3/D7
effects can lead to a violation of the weak gravity conjecture since
they are characterized by λ ' √

gsτ [183]. In this case, (6.5) reduces
to τ ' gsM

2 which could give τ & O(100) for M & O(30) if the string
coupling is fixed (by an appropriate choice of background 3-form
fluxes) at gs . O(0.1) so that string perturbation theory does not
break down. Hence, in all cases we are forced to consider situations
with a relatively large number of branes.

2. Decoupling of non-EDE modes: This requirement is crucial to en-
sure that the EDE dynamics is not affected by any other field. The
cleanest situation is therefore the one where all the non-EDE modes
are stabilized at an energy scale which is higher than the EDE one.
This observation implies that C0 and B2 axions are not well-suited to
realize EDE since their shift symmetry is broken at perturbative level.
Best candidates are instead C2 and C4 axions whose shift symmetry
is broken only at non-perturbative level. More precisely, C2 axion
are in principle good EDE candidates in both KKLT and LVS models,
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while C4 axions can play the role of the EDE field only in LVS models
since in KKLT they would be as heavy as the corresponding saxions,
thus inducing a cosmological moduli problem.

3. Absence of fine-tuning: Two levels of fine-tuning can be necessary
to reproduce the EDE potential: a tuning to get the right period-
icity, and an additional tuning to match the EDE scale. We found
that C4 axions in LVS require both tunings, and so appear to be
the worst EDE candidates. C2 axions with potential generated by
ED1/D5 corrections to the Kähler potential can instead reproduce
the required periodicity naturally but need tuning to obtain the cor-
rect EDE scale, and so do not seem to be optimal EDE fields. The
best EDE candidates are instead C2 axions with potential generated
by fluxed ED3/D7 corrections to the superpotential since they can,
in principle, avoid both tunings.

These results can be intuitively understood as follows. As explained
in Sec. 4.4.1, the EDE periodicity can be naturally realized only when
the saxionic partner of the EDE axion is stabilized at zero. The saxion
associated to C4 controls the volume of a 4-cycle which cannot be
set to zero since it would cause a deviation from the supergravity
approximation. This implies that EDE models based on C4 axion
require tuning. On the other hand, the saxion associated to C2 is the
B2 axion which is naturally fixed at b = 0, implying that C2 axions
can realize the EDE periodicity in a more natural way. Regarding
instead the matching of the EDE scale V0 without any tuning of the
UV parameters, as already explained in the introduction, this requires
a violation of the weak gravity conjecture. In fact, (4.1) with f '
0.2MP , becomes

V0 ' Ae−λMP /f M4
P ' Ae−5λM4

P ' 10−108M4
P

for λ ' 50 if A ' 1 . (6.6)

As we have already seen, C4 axions with ED3/D7 effects and C2

axions with fluxed ED1/D5 effects have λ ∼ O(1), and so can match
V0 ∼ 10−108M4

P only by tuning A to exponentially small values. On
the contrary, C2 axions with fluxed ED3/D7 effects feature

λ ' √
gsτ '

(
gsMP

f

)
3M

4π
' 0.2M for gs ' 0.2 and f ' 0.2MP .

(6.7)
Hence, λ ' 50 can be achieved for A ' 1 and M ∼ O(100), implying
that V0 can be realized without tuning only for gaugino condensa-
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tion on D7-branes since ED3-instantons, if the corresponding action
is written as S = 2πτ/M , can allow only for M = 1/p with p ∈ N. In
turn, such a relatively large number of D7-branes ensures that the
effective field theory is fully under control since (6.5) combined with
(6.7) implies τ ' 0.2M2 ∼ O(5 × 103). Such a large value of τ can
be easily realized in LVS models, while it would imply a very low
gravitino mass in KKLT scenarios where m3/2 ∼ e−2πτ/NMP where
N is the number of D7-branes supporting the gaugino condensate
that lifts the volume modulus. Requiring m3/2 & O(1) TeV to ensure
mV & 50 TeV, implies N & O(1000) which is very difficult to achieve
in controlled CY orientifold compactifications with D7 tadpole can-
cellation. Thus, the only way-out in KKLT models to avoid such a
huge number of D7-branes seems to involve again an exponential
tuning of the prefactor A.

This problem is absent in LVS models. As explained in Sec. 4.4.2,
C2 axions with potential generated by 3 gaugino condensates on
D7-branes with non-zero gauge fluxes can realize EDE without any
tuning of the microscopic parameters. Two scenarios arise, depend-
ing on the topology of the underlying CY threefold. If the compact-
ification space has a Swiss-cheese structure, τ is identified with the
overall volume V ∼ τ3/2 ∼ O(105), leading to m3/2 ∼ O(1013) GeV
andmV ∼ O(1010) GeV. If instead the internal space is a K3-fibred CY,
the overall volume is controlled by 2 divisors V ' √

τ1τ2 and τ can be
identified with the fibre modulus τ1. Thus, matching f ' 0.2MP fixes
only τ1 ∼ O(5 × 103), but not V , which can therefore be larger than
in the Swiss-cheese case if moduli stabilization yields an anisotropic
CY with τ2 � τ1 � 1. In fact, we have obtained V ∼ O(108), which
improves the control over the effective field theory and leads to
lower moduli masses: m3/2 ∼ O(1010) GeV, mV ∼ O(106) GeV and
mu ∼ 50 TeV (where u is the direction in the (τ1-τ2)-plane orthogonal
to the volume mode V).

4. Explicit Calabi-Yau realization: Our analysis outlines the features
that a globally consistent compactification should have to realize
a viable EDE model. The next step, to build a full-fledged string
model, would be to provide a rigorous description of the underlying
Calabi-Yau threefold, orientifold involution and brane setup in a way
compatible with tadpole cancellation. The setup should also explic-
itly realize 3 gaugino condensates on fluxed D7-branes wrapping
different homologous representatives of the same divisor, or on a
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single stack of D7-branes where however some subsets of branes are
differently magnetized. Such a detailed construction is beyond the
scope of this study and we leave it for future work.

We conclude that our analysis establishes EDE as a viable model of
string cosmology. While the model-building presented here is to some
degree contrived, being designed to yield the [1− cos(ϕ/f)]3 EDE poten-
tial, it makes use of well-known and well-studied ingredients and does not
rely on any exponential tuning of UV parameters for C2 axions in LVS with
gaugino condensation on fluxed D7-branes. In this sense, realizing our
EDE models does not seem considerably harder than constructing other
scenarios in string cosmology such as quintessence and inflation.

This is an important step towards understanding and developing the
predictions of the model: with a concrete model realization in hand, one
may then investigate the interactions of the EDE field with other fields
which generate complementary indirect signals of the EDE dynamics, e.g.
gravitational waves from the coupling to gauge fields [248], and may iden-
tify other ingredients in the model that play a cosmological role, such as
an ultra-light axion component of dark matter. An additional interesting
future direction of investigation is to unify these EDE constructions with
other epochs of cosmic acceleration, namely with cosmic inflation or late-
time dark energy. In the context of LVS, EDE seems particularly well suited
to incorporating fibre inflation [47, 48, 51–54], and the use of a C2 axion to
generate an observable level of chiral primordial gravitational waves [310].
There is also a natural compatibility of EDE presented here with fuzzy dark
matter as presented in [183], wherein one C2 axion in the compactifica-
tion could play the role of fuzzy dark matter and another the EDE. It would
be interesting to revisit in this context some of the observables of fuzzy
dark matter, such as dark matter substructure [311]. Moreover, an or-
thogonal approach would be to consider other possible EDE candidates,
such as ultralight scalars that are composite states of fermions, following
related work on ultralight dark matter, e.g. [312–314]. We leave these
interesting avenues to future research.

In Chap. 5 we have studied the joint distribution of the gravitino mass
and cosmological constant in KKLT and LVS models with the uplift sector
arising from an anti-brane at the tip of a warped throat. We have found
that, at values of the cosmological constant close to zero, the gravitino
mass distribution is tilted favourably towards lower scales. This result is
different from that based on generic expectations for the size of F- and
D-terms [123, 124], including also moduli stabilization [129]. The form of
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the distribution of the throat hierarchies and the nature of the AdS vacua
before the introduction of the uplift sector2 leads to this difference. This
work gives strong motivation for similar studies in related setups so that a
better understanding of the joint statistics of the scale of supersymmetry
breaking and the cosmological constant in string vacua can be obtained.

Our results have several interesting implications which we now briefly
discuss:

• Distribution of soft terms: Supersymmetry breaking in a hidden
sector leads to the generation of soft terms in the visible sector. The
strength of supersymmetry breaking in the visible sector is charac-
terized by the size of the scalar masses m2

0, gaugino masses M1/2

and trilinear couplings Aijk. In both KKLT and LVS, these depend
on how the Standard Model is realise on either D3- or D7-branes.
Soft terms for both realizations were analysed in [164] (see also [35,
37, 163, 315–318]). In the case of D7-branes, all soft terms tend
to be of order the gravitino mass. On the other hand, in the case
of D3-branes, the models can exhibit sequestering at tree level with
non-zero soft masses generated by α′ and quantum corrections. One
can find interesting patterns in the structure of soft masses, allowing
for the realization of MSSM-like spectra or (mini) split supersymme-
try. All the soft parameters are of the form m1+p

3/2 with p ≥ 0 or

m3/2

/
(ln
(
m3/2

)
)q with q > 0. This implies that the tilt in the distribu-

tion favouring lower values of m3/2 also corresponds to the same for
the scale of supersymmetry breaking in the visible sector.

• Comparison with data: Statistical distributions of vacua have been
used to confront classes of string vacua with data (see e.g. [319–
326]) by examining the implications of the distributions of UV pa-
rameters for low energy observables. These studies have focused
on power-law and logarithmic distributions with a preference for
high scale supersymmetry. It will be interesting to carry out sim-
ilar analysis with our results given that the tilt in favour of low scale
supersymmetry is likely to help to make contact with observations
or even to generate some tension with data. Of course, this line
of study assumes that the distributions computed by studying the
distribution of vacua should be translated to distributions for predic-

2This is one of the factors that contributes to the difference in the result for KKLT and
LVS models.
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tions for experiments3.

• Multiple throats: The simplest generalization of our setup is to con-
sider multiple throats (this was studied in the context of supersym-
metry breaking in [123]). We examine it to understand the effect of
multiple supersymmetry breaking sectors.

Let us consider n throats, each with a single anti-brane. Taking n to
be small, so that the distribution in the throat sector factorizes,4 we
have

dNth ∝
n∏
i=1

1

yi(ln yi)2

n∏
i=1

dyi . (6.8)

The uplift term is given by

Vup =
1

2sτ2

n∑
i=1

yi . (6.9)

It is useful to make a series of variable changes: yi = w2
i , then to

spherical coordinates in wi (with r2 =
∑n

i=1(wi)
2) and angular vari-

ables (θj , j = 1, ..., (n−1)) and finally r̃ = r2. With this, the distribution
(6.10) takes the form

dNth ∝ 1

2r̃g(θi)
∏n
i=1(lnwi)

2
dΩn−1 dr̃ , (6.10)

where g(θi) is a function of the angular variable. In these coordi-
nates, the uplift term is given by

Vup =
r̃

2sτ2
, (6.11)

it is independent of the angular coordinates and has exactly the same
form as the single variable case. To obtain the joint distribution of
the gravitino mass and the cosmological constant, consider the full
distribution function

dN =
η′W0

s2
dS dW0 dNth , (6.12)

and make the variable change (W0, r̃, s, C0, θi) → (W0,Λ,m3/2, C0, θi)

for LVS and (W0, r̃, S, θi) → (m3/2,Λ, S, θi) for KKLT. Since the uplift

3Emergence of selection principle(s) in the space of vacua (which can arise from early
universe cosmology) can invalidate this assumption.

4Factorization will break down if there are many throats. At present, we do not have
the tools to compute the distributions in such cases.
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term has the same functional form as in the single variable case,
also the functional form of the Jacobian is the same as in the single
variable case. As a result, the r̃ dependence of the density is similar
to the y dependence in the single variable case. Thus in the Λ →
0 limit, the functional dependence on m3/2 is the same as in the
single throat case (up to logarithmic terms). We conclude that the
distribution function of throats is such that adding multiple sectors
(but small in number) preserves the tilt in the distribution function
in favour of lower values of m3/2.

• Sensitivity to uplift: The tilt in the distribution for m3/2 towards
lower values is tied to the distribution for throat hierarchies. In par-
ticular, the y−1 factor in the distribution for hierarchies plays a crucial
role. Thus our result should not be taken as providing the general
picture for the distribution of m3/2 and the cosmological constant.
In order to gain a general understanding, the distribution has to be
studied for various uplift mechanisms (see e.g. [29, 40, 98, 100, 101,
152]). To gain a general understanding of the joint distribution of
the supersymmetry breaking and the cosmological constant scales
in the whole flux landscape, one should then be able to determine
the relative abundance of vacua characterized by different uplifting
mechanisms. Our work represents just the first step forward in this
direction. We have thus provided preliminary results involving a
second uplift scheme, the small F -term uplift, which confirms this
insight. We leave this important direction for future work.

• Quantum corrections: The distributions that we have derived make
use of the Wilsonian effective field theory obtained at the high
compactification scale after integrating out stringy and Kaluza-Klein
states. Physical quantities will be however affected by low energy
quantum loops. These corrections can be large for the cosmological
constant, i.e. O(m4

3/2), but the conditions used to obtain the small
Λ limit of the distributions, i.e. Λ � m2

3/2 in KKLT and Λ � m3
3/2

in LVS, are stable against such corrections. Hence the form of the
distribution functions obtained, is expected to be stable against the
incorporation of quantum effects.
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Appendix A

Duality transformations in type IIB

In this Appendix we briefly summarize the dualities relevant for our dis-
cussion and record our conventions for Chap 2.

SL(2,Z) symmetry: The type IIB theory enjoys an SL(2,Z) symmetry.
Under this, the 3-form flux and the axio-dilaton transform as:(

H3

F3

)
→

(
d c

b a

)(
H3

F3

)
, φ→ φ′ =

aφ+ b

cφ+ d
, (A.1)

where: (
a b

c d

)
∈ SL(2,Z) . (A.2)

Note that
∫
F3∧H3 is invariant under this transformation, implying that the

D3-charge of a flux configuration is invariant. However, the superpotential
transforms as:

W [Ua, φ] → W ′[Ua, φ′] =
W [Ua, φ(φ′)]

cφ(φ′) + d
, (A.3)

where Ua are the complex structure moduli and φ(φ′) is obtained inverting
(A.1).

SL(6,Z) symmetry for T 6: T 6 is obtained as the quotient of R6 by a 6D
lattice, and SL(6,Z) matrices relate the different choices of basis of the
same lattice. An SL(6,Z) action transforms the fluxes as well as the period
matrix. 2 flux configurations are equivalent (or dual) if the fluxes and
the solution for the complex structure moduli are related by an SL(6,Z)
transformation. In our solutions the T 6 is factorized into T 2×T 2×T 2. The
relevant SL(6,Z) transformations are the ones that permute the 3 2-tori
and the SL(2,Z) × SL(2,Z) × SL(2,Z) subgroup that acts on each of the
3 tori. The action of each of these SL(2,Z) on their respective tori is as
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follows. The coordinates on the 2-torus transform as:1(
x

y

)
=

(
a b

c d

)(
x′

y′

)
,

(
a b

c d

)
∈ SL(2,Z) , (A.4)

where we can think of the primed coordinates as the new coordinates
and the unprimed ones as the old ones. For the complex structure of the
2-torus we have:2

U ′ =
dU + b

cU + a
. (A.5)

An SL(2,Z) transformation can be generated by the successive action of
T - and S-transformations given by:

T =

(
1 1

0 1

)
, T : U → U + 1 , (A.6)

S =

(
0 1

−1 0

)
, S : U → − 1

U
. (A.7)

In what follows we often use a product of n T -transformations given by:

T n =

(
1 n

0 1

)
, T n : U → U + n . (A.8)

Note that configurations {ai, bi, ci, di} and {−ai,−bi,−ci,−di} are dual by
an action of S2×S2×S2 on T 2×T 2×T 2, which helps to classify inequivalent
solutions. This action preserves Nflux and the solution to W = ∂aW = 0

∀a = 1, . . . , 4, since Nflux and W are respectively quadratic and linear in
{ai, bi, ci, di}.

Sp(2h2,1− + 2,Z) symmetry for Calabi-Yaus: The perturbative Kähler poten-
tial (2.113) for CY compactifications is independent of the axions Re(Ua),
a = 1, . . . , h2,1− . Due to this, the discrete gauge symmetries of the theory
are the integer shifts of the complex structure moduli:

Ua → Ua + na , na ∈ Z, a = 1, . . . , h2,1− , (A.9)

causing the period and flux vectors to undergo a monodromy transfor-
mation:

{Π,H, F} →M{na}{Π,H, F} , M{na} ∈ Sp(2h2,1− + 2,Z) . (A.10)
1The transformation of the fluxes follows from this via the usual transformation rule

of 3-forms. One can check that under the action of SL(6,Z) the transformed flux quanta
are even integers as long as the original ones are.

2To be consistent with our notations, here we denote the τ parameter of a 2-torus by
U .
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Furthermore, the monodromy matrix is required to be unipotent:(
M{na} − I

)p 6= 0,
(
M{na} − I

)p+1
= 0, 1 ≤ p ≤ 3 . (A.11)

We can compute the monodromy matrix M{na} as follows. Notice that

Πi(Ua + na) =
∑

j

(
M{na}

)i
j
Πj(Ua), i = 1, . . . , 2h2,1− + 2 , (A.12)

are a set of functional relations. Using the definition of the period vector
(2.110), the above relations can be evaluated at multiple values Ûa to
generate independent linear equations in the elements of the monodromy
matrix. Inverting the latter we obtain the matrix elements uniquely. For
example, in the CP[1,1,1,6,9][18] case (discussed in Sec. 2.3.2) we get:

M{n1,n2} =



1 −n1 −n2 3n2 +
1
2n1

(
3n21 + 3n2n1 + n22 + 17

)
1
2 (3n1 + n2) (3n1 + n2 + 3) 3

2n1 (n1 + 1) + n1n2
0 1 0 −1

2 (3n1 + n2 − 3) (3n1 + n2) −3 (3n1 + n2) −3n1 − n2
0 0 1 −1

2n1 (3n1 + 2n2 − 3) −3n1 − n2 −n1
0 0 0 1 0 0

0 0 0 n1 1 0

0 0 0 n2 0 1


.

(A.13)
It is easy to see that the above matrix belongs to Sp(6,Z), i.e. with Σ

as given in (2.112) we obtain: MT
{n1,n2} · Σ · M{n1,n2} = Σ. Also, it is

unipotent as per requirement. Moreover note that the shift (A.9) keeps
Nflux = −1

2 H
t · Σ · F invariant.

A.1 Duality in toroidal solutions

In this appendix we discuss the duality relations among the solutions with
flat directions of the toroidal compactification case.

A.1.1 Solutions with 1 flat direction

Let us now discuss in detail the duality among the solutions (2.39) with
1 flat direction. They are parametrised by an integer p, and Nflux = 24

irrespective of p. Below we show that the p = 0 case is dual to any p 6= 0

case via an SL(6,Z) transformation.
Let us use unprimed and primed coordinates for p = 0 and p 6= 0

respectively. We act with an SL(6,Z) matrix M on the coordinates of
T 2 × T 2 × T 2 in accordance with (A.4), where M is given by:

M =

M1 0 0

0 M2 0

0 0 M2

 , M1 =

(
1 2p

0 1

)
, M2 =

(
1 p

0 1

)
. (A.14)
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This transforms the period matrix as:

M : diag{U1, U2, U3} → diag{U1 + 2p, U2 + p, U3 + p} . (A.15)

Under this, the solution (2.39) with p = 0 is clearly mapped to a solution
with p 6= 0. Now we need to show that the fluxes (2.36) map between
the p = 0 and p 6= 0 cases. Indeed, using (1.95) and (A.4), we have:3

F3 = 4α11 − 2α22 − 2α33 → 4α′
11 − 2α′

22 − 2α′
33 + 4pβ′11 − 4p2β′0 = F ′

3 ,

H3 = −4β11 + 2β22 + 2β33 → −4β′11 + 2β′22 + 2β′33 + 4pβ′0 = H ′
3 .

(A.16)

A.1.2 Solutions with 2 flat directions

Dualities of familyA

First we show that A1, A2 and A3 are dual via permutations of the 3 2-tori.
Then the question to classify the inequivalent solutions in family A essen-
tially boils down to that of subfamily A1, which we address subsequently.
Duality between A1, A2 and A3: The fluxes in subfamilies A1 and A2, given
respectively by (2.41) and (2.47), depend on the 6 parameters

λ1, λ2, λ3, b3, d0, d3 ,

while those of A3, given in (2.53), depend on the 6 parameters

λ1, λ2, λ3, b2, d0, d2 .

Under the permutation between the first and the second tori of T 2×T 2×
T 2, the fluxes of A1 map to those of A2 when we identify {λ1, λ2, λ3, b3, d0, d3}
of A1 with {λ2, λ1, λ3, b3, d0, d3} of A2. Moreover the respective transfor-
mation of the period matrix, diag{U1, U2, U3} → diag{U2, U1, U3}, along
with the above identification, relate their solutions. Similarly, under the
permutation between the second and the third tori of T 2 × T 2 × T 2, the
fluxes of A1 map to those of A3 when we identify {λ1, λ2, λ3, b3, d0, d3} of
A1 with {λ1, λ3, λ2, b2, d0, d2} of A3. The respective transformation of the
period matrix, diag{U1, U2, U3} → diag{U1, U3, U2}, along with the above
identification, relate their solutions as well.
Inequivalent solutions in A1: The requirement that a1, b2 and b3 in (2.41)
be even integers results in the parametrization shown below:

b3 = 2p , d0 = 2qλ2 , d3 = 2rλ2 , r 6= 0, p, q, r ∈ Z ,

Nflux

(
r, λ2,

λ3
λ1

)
=

8r2λ2λ3
λ1

. (A.17)

3α′ and β′ denote the basis of 3-forms (1.95) with respect to the primed coordinates
(x′i, y′i).
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The dependence of the fluxes (2.41) on λ1 and λ3 are only through the
ratio λ3/λ1. For the present analysis we confine to integer values of λ2
and λ3/λ1. It can be shown that whenever it is possible to find a triple
(r, λ2, λ3/λ1) with 8r2λ2λ3

λ1
, λ3rλ1 ,

λ2λ3r
λ1

∈ Z4 and 0 < Nflux ≤ 32, there exist
infinitely many pairs (p, q) so that all the fluxes (2.41) are even integers. For
example q = r and any p ∈ Z always work. Therefore we first need to find
all possible integer triples (r, λ2, λ3/λ1). This will provide all allowed values
of Nflux. Then, among the different flux configurations corresponding to
each of those triples (i.e. given an Nflux) we need to find the distinct
equivalence classes (using duality).

Denoting the integer λ3/λ1 by s ( 6= 0), we have Nflux = 8r2sλ2. Clearly
Nflux takes values in {8, 16, 24, 32}. The possible values of r are ±1,±2.
The requirement that all the fluxes (2.41) be even integers results in:

when r = ±1 , p, q ∈ Z ;

when r = ±2 , {p ∈ 2Z, q ∈ Z} or {p ∈ Z, q ∈ 2Z} . (A.18)

Replacing (r, p, q) by (−r,−p,−q) maps the fluxes to minus themselves.
Hence, in order to obtain the inequivalent solutions, it would be suffi-
cient to consider r > 0. Now there are only 4 classes whose respective
parametrizations, Nflux and the solutions are as follows.
Class 1:

λ3
λ1

= s , b3 = 2p , d0 = 2qλ2 , d3 = 2λ2 ,

s = 1, . . . , 4 , λ2 = 1, . . . ,

[
4

s

]
, p, q ∈ Z ,

Nflux = 8sλ2 , (U1, U2, U3, U4) =

(
q

s
+
U3

s
, λ2U4 − p, U3, U4

)
, (A.19)

where [n] denotes the greatest integer ≤ n and Nflux takes values in
{8, 16, 24, 32}.
Class 2:

λ3
λ1

= 1 , λ2 = 1 , b3 = 2p , d0 = 2q , d3 = 4 ,

{p ∈ 2Z, q ∈ Z} or {p ∈ Z, q ∈ 2Z} ,

Nflux = 32 , (U1, U2, U3, U4) =
(q
2
+ U3, U4 −

p

2
, U3, U4

)
. (A.20)

4These respectively ensure that Nflux takes integer values and a3, d1 are even integers.

190



Duality transformations in type IIB

Class 3:

λ3
λ1

= s , b3 = 2p , d0 = 2qλ2 , d3 = 2λ2, s, λ2 < 0 ,

|s| = 1, . . . , 4 , |λ2| = 1, . . . ,

[
4

|s|

]
, p, q ∈ Z ,

Nflux = 8sλ2 , (U1, U2, U3, U4) =

(
q

s
+
U3

s
, λ2U4 − p, U3, U4

)
, (A.21)

where Nflux takes values in {8, 16, 24, 32}.
Class 4:

λ3
λ1

= −1 , λ2 = −1 , b3 = 2p , d0 = −2q , d3 = −4 ,

{p ∈ 2Z, q ∈ Z} or {p ∈ Z, q ∈ 2Z} ,

Nflux = 32 , (U1, U2, U3, U4) =
(
−q
2
− U3,−

p

2
− U4, U3, U4

)
. (A.22)

A duality may exist between 2 flux configurations with the same Nflux.
After incorporating such dualities, we find that each of the 4 classes has
only a finite number of physically distinct flux configurations. To check
aforesaid dualities, the solution space for the moduli in all the 4 classes
suggests that only SL(2, Z)-actions on the first and the second tori of
T 2×T 2×T 2 may help. Thus the SL(6,Z) matrix in our considerations will
be:

M =

M1 0 0

0 M2 0

0 0 I

 , M1 =

(
1 k

0 1

)
, M2 =

(
1 l

0 1

)
, k, l ∈ Z .

(A.23)
For all 4 classes the action of M transforms the fluxes keeping Nflux unal-
tered. The following details depend on the class in consideration.
For the case of Class 1, the new solution with the transformed fluxes is:

(U1, U2, U3, U4) =

(
k +

q

s
+
U3

s
, , λ2U4 − p+ l, U3, U4

)
. (A.24)

When q = m modulo s (i.e. m− q is a multiple of s) with the choices:

k =
m− q

s
, l = p , (A.25)

the transformed fluxes as well as the new solution respectively coincide
with the fluxes and solution of the case with p = 0 and q = m for each
λ2 = 1, . . . , [4/s]. In the later case Nflux and the solution are given by:

Nflux = 8sλ2 , (U1, U2, U3, U4) =

(
m

s
+
U3

s
, λ2U4, U3, U4

)
, m = 0, . . . , s−1 .

(A.26)
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For the case of Class 2, the new solution with the transformed fluxes is:

(U1, U2, U3, U4) =
(
k +

q

2
+ U3, U4 −

p

2
+ l, U3, U4

)
. (A.27)

When p = m, q = n modulo 2 (i.e. m− p and n− q are multiples of 2) with
the choices:

k =
n− q

2
, l =

p−m

2
, (A.28)

the transformed fluxes as well as the new solution respectively coincide
with the fluxes and solution of the case with p = m and q = n. In the later
case Nflux and the solution are given by:

Nflux = 32 , (U1, U2, U3, U4) =
(n
2
+ U3, U4 −

m

2
, U3, U4

)
,

{m = 0, n = 0, 1} or {m = 0, 1, n = 0} . (A.29)

For Classes 3 and 4, the analysis is similar to that for classes 1 and 2
respectively.

Dualities of family B

First we show that B1 is dual to B2 via an SL(6,Z) transformation. Then
the question to classify the inequivalent solutions in family B essentially
boils down to that of subfamily B1, which we address subsequently.
Duality between B1 and B2: To prove the duality between B1 and B2, we
act with an S-transformation only on the first 2-torus of T 2 × T 2 × T 2,
transforming the period matrix as:

M : diag{U1, U2, U3} → diag{− 1

U 1
, U2, U3} ,

M =

M1 0 0

0 I 0

0 0 I

 , M1 =

(
0 1

−1 0

)
, I =

(
1 0

0 1

)
. (A.30)

This transforms the fluxes (2.4) as:

{a0, a1, a2, a3} → {−a1, a0, b3, b2} , {b0, b1, b2, b3} → {−b1, b0,−a3,−a2} ,
{c0, c1, c2, c3} → {−c1, c0, d3, d2} , {d0, d1, d2, d3} → {−d1, d0,−c3,−c2} .

(A.31)

It is straightforward to check that, under the above action, the fluxes of
B1, given by (2.60), map to those of B2, given by (2.66), when we identify
{b2, d2, d1, d0, c3} of B1 with {a3, c3,−d0, d1,−d2} of B2. Such identification
relates the crucial condition d2 6= 0 of (2.60) to the condition c3 6= 0 of
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(2.66), and leaves Nflux = 2
λ3

(c3d0 − d1d2) invariant. With this identification
now (A.30) maps the solution (2.62) to (2.68), establishing the duality.
Inequivalent solutions in B1: The fluxes (2.60) depend on λ3, b2, c3, d0, d1, d2.
For the present analysis we confine to integer values of λ3. There are only
4 classes consistent with even integer fluxes and 0 < Nflux ≤ 32. Their re-
spective parametrizations, Nflux and the solutions are as follows.
Class 1:

b2 = 2ks , c3 = 2pλ3 , d0 = 2qλ3 , d1 = 2rλ3 , d2 = 2sλ3 ,

pq − rs = 1, . . . , 4 , λ3 = 1, . . . ,

[
4

pq − rs

]
, k, p, q, r, s ∈ Z , (A.32)

Nflux = 8(pq − rs)λ3 , (U1, U2, U3, U4) =

(
−sU2 + q

pU2 + r
, U2,−k + λ3U4, U4

)
,

where Nflux takes values in {8, 16, 24, 32}.
Class 2:

λ3 = 1 , b2 = 2ks , c3 = 4p , d0 = 4q , d1 = 4r , d2 = 4s ,

pq − rs = 1 , k ∈ 2Z+ 1 , p, q, r, s ∈ Z ,

Nflux = 32 , (U1, U2, U3, U4) =

(
−sU2 + q

pU2 + r
, U2,−

k

2
+ U4, U4

)
. (A.33)

Class 3:

b2 = 2ks , c3 = 2pλ3 , d0 = 2qλ3 , d1 = 2rλ3 , d2 = 2sλ3 , pq − rs, λ3 < 0 ,

|pq − rs| = 1, . . . , 4 , |λ3| = 1, . . . ,

[
4

|pq − rs|

]
, k, p, q, r, s ∈ Z ,

Nflux = 8(pq − rs)λ3 , (U1, U2, U3, U4) =

(
−sU2 + q

pU2 + r
, U2,−k + λ3U4, U4

)
.

(A.34)

Class 4:

λ3 = −1 , b2 = 2ks , c3 = −4p , d0 = −4q , d1 = −4r , d2 = −4s ,

pq − rs = −1 , k ∈ 2Z+ 1 , p, q, r, s ∈ Z ,

Nflux = 32 , (U1, U2, U3, U4) =

(
−sU2 + q

pU2 + r
, U2,−

k

2
− U4, U4

)
. (A.35)

A duality may exist between 2 flux configurations with the same Nflux.
After incorporating such dualities, we find that each of the 4 classes has
only a finite number of physically distinct flux configurations. To check
aforesaid dualities, the solution space for the moduli in all the 4 classes
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suggests that only SL(2, Z)-actions on the first and the third tori of T 2 ×
T 2 × T 2 may help. Thus the SL(6,Z) matrix in our considerations will be:

M =

M1 0 0

0 I 0

0 0 M3

 , M1 =

(
g h

i j

)
, M3 =

(
1 l

0 1

)
,

gj − hi = 1 , g, h, i, j, l ∈ Z . (A.36)

For all 4 classes the action of M transforms the fluxes keeping Nflux unal-
tered. The following details depend on the class in consideration.
For the case of Class 1, the new solution with the transformed fluxes is:

(U1, U2, U3, U4) =

(
(hp− js)U2 + (hr − jq)

(gp− is)U2 + (gr − iq)
, U2,−k + l + λ3U4, U4

)
.

(A.37)
When pq − rs = 1, with the choices:

g = −s , h = q , i = −p , j = r , l = k , (A.38)

the transformed fluxes as well as the new solution respectively coincide
with the fluxes and solution of the case with p = 0, q = 0, r = 1, s = −1

and k = 0 ∀λ3 = 1, 2, 3, 4. In the later case Nflux and the solution are given
by:

Nflux = 8λ3 , (U1, U2, U3, U4) = (U2, U2, λ3U4, U4) . (A.39)

When pq − rs = 2, depending on each of p, q, r, s even (e) or odd (o),
the transformed fluxes and solution coincide with those of some specific
configuration. In keeping with pq − rs = 2, p, q, r, s can only be:

eeeo, eeoe, eoee, eoeo, eooe, oeee, oeeo, oeoe, oooo . (A.40)

For p, q, r, s = eoeo, oeoe, oooo, with the choices:

g = q , h =
s− q

2
, i = r , j =

p− r

2
, l = k , (A.41)

the transformed fluxes as well as the new solution respectively coincide
with the fluxes and solution of the case with p = 2, q = 1, r = 0, s = 1 and
k = 0 for each λ3 = 1, 2. In the later case Nflux and the solution are given
by:

Nflux = 16λ3 , (U1, U2, U3, U4) =

(
−U2 − 1

2U2
, U2, λ3U4, U4

)
. (A.42)

For p, q, r, s = eeoe, eoee, eooe, with the choices:

g = q , h =
s

2
, i = r , j =

p

2
, l = k , (A.43)
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the transformed fluxes as well as the new solution respectively coincide
with the fluxes and solution of the case with p = 2, q = 1, r = 0, s = 1 and
k = 0 for each λ3 = 1, 2. In the later case Nflux and the solution are given
by:

Nflux = 16λ3 , (U1, U2, U3, U4) =

(
− 1

2U2
, U2, λ3U4, U4

)
. (A.44)

For p, q, r, s = eeeo, oeee, oeeo, with the choices:

g = −s , h =
q

2
, i = −p , j =

r

2
, l = k , (A.45)

the transformed fluxes as well as the new solution respectively coincide
with the fluxes and solution of the case with p = 0, q = 0, r = 2, s = −1

and k = 0 for each λ3 = 1, 2. In the later case Nflux and the solution are
given by:

Nflux = 16λ3 , (U1, U2, U3, U4) =

(
U2

2
, U2, λ3U4, U4

)
. (A.46)

When pq − rs = 3, we need to analyse cases where each of p, q, r, s =

0, 1, 2 modulo 3.5 Out of 34 possibilities, only 32 cases are consistent with
pq − rs = 3 where p, q, r, s can be:

0001, 0002, 0010, 0020, 0100, 0101, 0102, 0110 ,

0120, 0200, 0201, 0202, 0210, 0220, 1000, 1001 ,

1002, 1010, 1020, 1111, 1122, 1212, 1221, 2000 ,

2001, 2002, 2010, 2020, 2112, 2121, 2211, 2222 . (A.47)

For p, q, r, s = 0001, 0002, 1000, 1001, 1002, 2000, 2001, 2002, with the
choices:

g = −s , h =
q

3
, i = −p , j =

r

3
, l = k , (A.48)

the transformed fluxes as well as the new solution respectively coincide
with the fluxes and solution of the case with p = 0, q = 0, r = 3, s = −1,
k = 0 and λ3 = 1. In the later case Nflux and the solution are given by:

Nflux = 24 , (U1, U2, U3, U4) =

(
U2

3
, U2, U4, U4

)
. (A.49)

For p, q, r, s = 0010, 0020, 0100, 0110, 0120, 0200, 0210, 0220, with the
choices:

g = −s
3
, h = q , i = −p

3
, j = r , l = k , (A.50)

52 integers n1 and n2 are equal modulo 3 if there exists an integer n3 such that
n1 = 3n3 + n2. For example, note that −2 = 1 and −1 = 2 modulo 3.
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the transformed fluxes as well as the new solution respectively coincide
with the fluxes and solution of the case with p = 0, q = 0, r = 1, s = −3,
k = 0 and λ3 = 1. In the later case Nflux and the solution are given by:

Nflux = 24 , (U1, U2, U3, U4) = (3U2, U2, U4, U4) . (A.51)

For p, q, r, s = 0101, 0202, 1010, 1111, 1212, 2020, 2121, 2222, with the
choices:

g = q , h =
s− q

3
, i = r , j =

p− r

3
, l = k , (A.52)

the transformed fluxes as well as the new solution respectively coincide
with the fluxes and solution of the case with p = 3, q = 1, r = 0, s = 1,
k = 0 and λ3 = 1. In the later case Nflux and the solution are given by:

Nflux = 24 , (U1, U2, U3, U4) =

(
−U2 − 1

3U2
, U2, U4, U4

)
. (A.53)

For p, q, r, s = 0102, 0201, 1020, 1122, 1221, 2010, 2112, 2211, with the
choices:

g = q , h =
1

3
(s− 2q) , i = r , j =

1

3
(p− 2r) , l = k , (A.54)

the transformed fluxes as well as the new solution respectively coincide
with the fluxes and solution of the case with p = 3, q = 1, r = 0, s = 2,
k = 0 and λ3 = 1. In the later case Nflux and the solution are given by:

Nflux = 24 , (U1, U2, U3, U4) =

(
−2U2 − 1

3U2
, U2, U4, U4

)
. (A.55)

When pq − rs = 4, a similar analysis can be done.
For the case of Class 2, the new solution with the transformed fluxes is:

(U1, U2, U3, U4) =

(
(hp− js)U2 + (hr − jq)

(gp− is)U2 + (gr − iq)
, U2,−

k

2
+ l + U4, U4

)
. (A.56)

Now with the choices:

g = −s , h = q , i = −p , j = r , l =
k − 1

2
, (A.57)

the transformed fluxes as well as the new solution respectively coincide
with the fluxes and solution of the case p = 0, q = 0, r = 1, s = −1, k = 1.
In the later case Nflux and the solution are given by:

Nflux = 32 , (U1, U2, U3, U4) =

(
U2, U2, U4 −

1

2
, U4

)
. (A.58)

For Classes 3 and 4, the analysis is similar to that for classes 1 and 2
respectively.
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Dualities of family C

As per (2.73), (2.79) and (2.85), the fluxes of C1 and C2 have 5 independent
parameters, whereas it is 6 in case of C3. Despite this, we are able to
prove that SL(6,Z) transformations relate C3 to C2, while C1 to a subset
of C2. Below we provide the details. Then the question to classify the
inequivalent solutions in family C essentially boils down to that of C2, which
we address subsequently.
Duality between C2 and C3: The fluxes of C3, given by (2.85), depend on
the 6 parameters λ2, b2, b3, d0, d2 and d3 with λ2, d0, d2 6= 0 and b2d3 6= b3d2.
We divide C3 in 2 complementary subsets with d3 = 0 and d3 6= 0 respec-
tively. Each of these is shown to be dual to C2.

To prove the duality between the subset of C3 with d3 = 0 and C2, we
act with an S-transformation only on the third 2-torus of T 2 × T 2 × T 2

transforming the period matrix as:

M : diag{U1, U2, U3} → diag{U1, U2,−
1

U 3
} ,

M =

I 0 0

0 I 0

0 0 M3

 , I =

(
1 0

0 1

)
, M3 =

(
0 1

−1 0

)
. (A.59)

This transforms the fluxes (2.4) as:

{a0, a1, a2, a3} → {−a3, b2, b1, a0} , {b0, b1, b2, b3} → {−b3,−a2,−a1, b0} ,
{c0, c1, c2, c3} → {−c3, d2, d1, c0} , {d0, d1, d2, d3} → {−d3,−c2,−c1, d0} .

(A.60)

It is straightforward to check that, under the above action, the fluxes of
C3, given by (2.85) with d3 = 0, map to those of C2, given by (2.79),
when we identify {− b3d2

d0
, b2d0d2

, d2λ2, d0} of C3 with {b2, b3, c2, d3} of C2. Such
identification relates the crucial conditions b3, d0, d2 6= 0 of (2.85) (when
d3 = 0) to the conditions b2, c2, d3 6= 0 of (2.79). With this identification
now (A.59) maps the solution (2.87) with d3 = 0 to (2.81), establishing the
duality.

To prove the duality between the subset of C3 with d3 6= 0 and C2, we
act with an SL(2,Z)-transformation only on the third 2-torus of T 2×T 2×T 2
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transforming the period matrix as:

M : diag{U1, U2, U3} → diag{U1, U2,
jU3 + h

iU3 + g
} ,

M =

I 0 0

0 I 0

0 0 M3

 , I =

(
1 0

0 1

)
, M3 =

(
g h

i j

)
,

gj − hi = 1 , g, h, i, j ∈ Z . (A.61)

This transforms the fluxes (2.4) as:

{a0, a1, a2, a3} → {a0g + a3i, a1g − b2i, a2g − b1i, a0h+ a3j} ,
{b0, b1, b2, b3} → {−b3h+ b0j,−a2h+ b1j,−a1h+ b2j, b3g − b0i} ,

{c0, c1, c2, c3} → {c0g + c3i, c1g − d2i, c2g − d1i, c0h+ c3j} ,
{d0, d1, d2, d3} → {−d3h+ d0j,−c2h+ d1j,−c1h+ d2j, d3g − d0i} .

(A.62)

It is straightforward to check that, under the above action, the fluxes of
C3, given by (2.85) with d3 6= 0, map to those of C2, given by (2.79), when
we implement the following steps:

1. Given non-zero even integer fluxes d0 and d3 in C3 find 4 integers
g, h, i, j satisfying:

h =
d0j

d3
, i =

d3(gj − 1)

d0j
, j 6= 0 . (A.63)

This can be done if the following holds. Given 2 integers (p, q) 6=
(0, 0) (i.e., taking d0 = 2p and d3 = 2q) one can always find other 2

integers (g, j), j 6= 0 such that ( jpq ,
q(gj−1)
jp ) are integers. We have

verified this numerically for p, q = −1000, . . . , 1000.

2. Identify
{
j(b2 − b3d2

d3
), b2d3(1−gj)d2j

+ b3g,
d2d3λ2
d0j

, d3j

}
of C3 with {b2, b3, c2, d3}

of C2. As (2.85) are even integer fluxes and g, h, i, j are chosen
to be integers, clearly j(b2 − b3d2

d3
) = −a1h + b2j,

b2d3(1−gj)
d2j

+ b3g =

b3g−b0i, d2d3λ2
d0j

= c2g−d1i, d3
j = d3g−d0i are even integers. Alterna-

tively, in the transformed fluxes of C3 one can substitute b2, b3, d2, d3
in terms of b2, b3, c2, d3 of C2 and d0 of C3 (obtained by inverting the
above identification map) to get the fluxes of C2, i.e. the explicit
dependence on d0 of C3 goes away. The above identification also
relates the crucial conditions d0, d2 6= 0, b2d3 6= b3d2 of (2.85) (with
d3 6= 0) to the conditions b2, c2, d3 6= 0 of (2.79).
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Now (A.61) maps the solution (2.87) with d3 6= 0 to (2.81), establishing
the duality.
Duality between C1 and a subset of C2: Consider a T l- and an SL(2,Z)-
action respectively on the first and the third 2-tori of T 2×T 2×T 2, i.e. the
SL(6,Z) matrix is:

M =

M1 0 0

0 I 0

0 0 M3

 , M1 =

(
1 l

0 1

)
, M3 =

(
g h

i j

)
,

gj − hi = 1 , g, h, i, j, l ∈ Z . (A.64)

This action, together with an appropriate choice for g, h, i, j, transforms
the fluxes of C1, given by (2.73), to those of C2, given by (2.79), with
d3
c2

= −l (i.e. integer) only. The appropriate choices depend on the flux
quanta (2.73) as follows:

g = 1 , h = 0 , j = 1 , when d2 = 0 ,

h = 1 , i = −1 , j = 0 , when d2 6= 0 , c2 = 0 ,

j =
c2h

d2λ2
, g =

d2λ2(1 + hi)

c2h
, h 6= 0 , when d2 , c2 6= 0 .

(A.65)

For non-zero even integer fluxes c1 = c2
λ = 2p and d2 = 2q in C1, the

last choice can always be made (which we checked numerically when
p, q = −1000, . . . , 1000). The period matrix transforms in a way that in all
the above cases the solution for the moduli in C1 maps to that of the
corresponding subset of C2.

Clearly, there are flux configurations in C2 for which d3
c2

is non-integer.
For example b2 = 4, b3 = 2, c2 = 4, d3 = 2 with Nflux = 32 is not dual to any
flux configuration in C1.
Inequivalent solutions in C2: The fluxes (2.79) depend on λ2, b2, b3, c2, d3.
The requirement that b2, b3, c1, d3 be even integers results in the parametriza-
tion shown below:

b2 = 2p , b3 = 2q , c2 = 2rλ2 , d3 = 2s , p, r, s 6= 0 , p, q, r, s ∈ Z ,
Nflux = 8prλ2 . (A.66)

For the present analysis we confine to integer values of λ2. This allows
Nflux to take values in {8, 16, 24, 32} and one can show that, whenever
we find a triple (p, r, λ2) corresponding to a given Nflux value, there exist
infinitely many pairs (q, s) so that all the fluxes (2.79) are even integers.
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For example s = r and any q ∈ Z always work. Therefore, given an Nflux,
we first need to find all possible integer triples (p, r, λ2). Then, among the
different flux configurations corresponding to each of those triples, we
need to find the distinct equivalence classes (using duality). The number
of possible triples is 4 when Nflux = 8, 12 for both cases with Nflux = 16

and Nflux = 24, and 24 when Nflux = 32. To demonstrate the aforesaid
dualities, we consider below only the Nflux = 8 case with p = −1, r = 1

and λ2 = −1.
With (p, r, λ2) = (−1, 1,−1) more generally one can take q = ks, k ∈ Z

that leads to even integer fluxes (2.79). In this case the solution (2.81)
reads:

(U1, U2, U3, U4) =

(
s+ U2, U2,

1

k − U4
, U4

)
. (A.67)

Now the above fluxes and solution with (s, k) 6= (0, 1) can be mapped to
those with (s, k) = (0, 1) by acting with T 1−s and ST kS respectively on
the first and the third 2-tori of T 2 × T 2 × T 2.

Dualities between families

The linear relation that the derivatives of the superpotential satisfy differs
across the families A,B, C, see (2.40), (2.59) and (2.72). Despite this, below
we find certain dualities among them. In summary, we show that B1

contains A3. Also, we know from the previous subsection that C3 contains
2 copies of C2, one of which is shown here to be dual to B1.
Duality between A3 and a subset of B1: The fluxes of B1, given by (2.60),
with c3 = 0 map to those of A3, given by (2.53), when we identify
{λ3, b2, d0, d1, d2} of B1 with {λ3, b2, d0,−d2λ2

λ1
, d2} of A3.6 Such identifica-

tion relates the crucial conditions λ3, d1, d2 6= 0 of (2.60) (when c3 = 0) to
the conditions λ2

λ1
, λ3, d2 6= 0 of (2.53). Furthermore, with this identification,

the solution (2.62) with c3 = 0 is same as the solution (2.55), establishing
the duality.
Duality between B1 and a subset of C3: The fluxes of C3, given by (2.85),
depend on the parameters λ2, b2, b3, d0, d2 and d3 with λ2, d0, d2 6= 0 and
b2d3 6= b3d2. We take the subset of C3 for which d3 = 0 and show that it is
dual to B1. To prove this, we act with an SL(2,Z)-transformation only on

6Note that the fluxes of A3 depend on λ1, λ2 via the ratio λ2
λ1

.
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the first 2-torus of T 2 × T 2 × T 2 transforming the period matrix as:

M : diag{U1, U2, U3} → diag{jU1 + h

iU1 + g
, U2, U3} ,

M =

M1 0 0

0 I 0

0 0 I

 , M1 =

(
g h

i j

)
, I =

(
1 0

0 1

)
,

gj − hi = 1 , g, h, i, j ∈ Z . (A.68)

This action, together with an appropriate choice for g, h, i, j, transforms the
fluxes of C3, given by (2.85), with d3 = 0 to those of B1, given by (2.60).
The appropriate choices depend on the flux quanta (2.60) as follows:7

j =
d2λ2h

d0
, g =

d0(1 + hi)

d2λ2h
, h 6= 0 , when d′0 = 0 ,

g = j = 1 , h = i = 0 , when d′0 6= 0 , c′3 = 0 ,

g = i = j = 1 , h = 0 , when d′2 , c
′
3 6= 0 . (A.69)

For non-zero even integer fluxes d0 = 2p and d1 = d2λ2 = 2q in C3, the
last choice can always be made (which we checked numerically when
p, q = −1000, . . . , 1000). The period matrix transforms in a way that in all
the above cases the solution for the moduli in C3 (when d3 = 0) maps to
that of the corresponding subset of B1.

Thus, we conclude that B1 is the master family which contains all dis-
tinct solutions.

7To distinguish, here we use prime for the flux quanta (2.60).
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Appendix B

Warped throats in Type IIB
compactification

In this subsection we review some aspects of warped throats in flux com-
pactifications that will be useful for this work. Type IIB flux compactifi-
cations have 3-form fluxes (NSNS and RR) threading the 3-cycles of an
orientifolded Calabi-Yau (CY). The back-reaction of fluxes has the effect of
generating warping (as in [327]). The 10D metric takes the form [7, 10]

ds210 = e2A(y)ηµν dx
µ dxν + e−2A(y)gmn dy

m dyn , (B.1)

where e2A(y) ≡ h−1/2(y) is the warp factor and gmn the CY metric. The
warp factor satisfies a Poisson-like equation which is sourced by 3-form
fluxes and localized objects carrying D3-charge. For non-vanishing fluxes,
the warp factor varies over the compact directions. The warp factor acts
like a redshift factor for the objects localized in the compact directions.
In regions where e−2A is large, it can be used to generate hierarchies in
physical scales. Regions of large warping arise when fluxes thread the 3-
cycle associated with a conifold modulus and its dual cycle. The geometry
in this region is close to that of the Klebanov-Strassler (KS) throat [328].
Our primary interest will be in the regime in which the warp factor is
almost constant over the whole compact space, except for a single throat
where the geometry is highly warped.

As pointed out in [306], a constant shift of e4A maps solutions of the
Poisson equation to solutions, and this freedom is to be identified with
(a power of) the volume modulus. Furthermore, a pure scaling of the
CY metric ds2CY to a unit-volume fiducial metric ds2CY0 , given by ds2CY →
λds2CY , implies a rescaling of the warp factor e2A → λe2A, and hence has
no effect on the physical geometry. Given this, a useful parametrization
of the 10D geometry is

ds210 = V1/3
(
e−4A0 + V2/3

)−1/2
ds24 +

(
e−4A0 + V2/3

)1/2
ds2CY0 , (B.2)
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which is equivalent to:

ds210 =

(
1 +

e−4A0

V2/3

)−1/2

ds24+

(
1 +

e−4A0

V2/3

)1/2

ds2CY . (B.3)

The factor
(
1 + e−4A0

V2/3

)−1/4
≡ Ω is the redshift factor. In a highly warped

region, e−4A0 � V2/3 and Ω ∼ eA0V1/6 � 1. It is important to keep the
following in mind:

1. In highly warped regions generated where the local geometry of the
underlying CY is close to that of a conifold, the spacetime metric is
close to the KS geometry:

ds210 = e2A(r) ds24 + e−2A(r)
(
dr2 + r2 ds2T 1,1

)
, (B.4)

The presence of the fluxes resolves the conifold singularity, and one
has a minimal area 3-sphere at the bottom of the throat. The warp
factor takes its minimal value on this 3-sphere [10]

e4Amin ∼ e
− 8πK

3gsM ≡ y , (B.5)

where gs is the string coupling and K and M are the integral fluxes
that thread the 3-sphere and its dual cycle.

2. The hierarchy in (B.5) is related to the value at which the (shrinking)
conifold modulus |z| is stabilized [10]. They are related as follows:

y = |z|4/3.

Note that this relation implies that the statistical distribution of the
stabilized value of |z| determines the distribution of the hierarchy y.

3. The warped volume VW which relates the 10D and 4D Planck masses
is given by

VW =

∫
d6y

√
gCY e

−4A = V
∫

d6y
√
gCY0

(
1 +

e−4A0

V2/3

)
∼ V , (B.6)

where the last approximation is valid if the volume of the throat
region is small compared to the (large) CY volume. Note that the
warped volume remains finite even when regions of large warping
are present. This is related to the finiteness of the Kähler potential
in the complex structure moduli space.
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4. The 10D action of an anti-D3 brane can be used to compute its
contribution to the 4D scalar potential. This crucially depends on
the anti-D3 position ~rD3 in the internal dimensions, i.e. whether it is
in a warped or unwarped region:

VD3 = 2T3

∫
d4x

√
−g4 ∼

2M4
s V2/3

e−4A(rD3) + V2/3
(B.7)

∼
{

e4A(rD3)

V4/3 for e−4A(rD3) � V2/3

1
V2 for V2/3 � e−4A(rD3)

}
(B.8)

where T3 is the tension of the brane.

5. Note that in the absence of warping one has a string scale contri-
bution to the potential which typically will lead to a run away. Thus
warped throats are necessary to obtain stable vacua in the presence
of anti-D3 branes. On the other hand, a large volume is necessary to
keep the α′ expansion valid. In the presence of both large warping
and large volume it is important to understand the interplay between
these two large quantities and the regime of validity of the effective
field theory. This has been analysed in detail in [100, 306, 329].
One finds the requirement

e−A0 � V2/3 � e−4A0 . (B.9)

We emphasize that in the very large radius limit, i.e. V2/3 � e−4A0(y)

at all points in the compact directions, the metric becomes the stan-
dard unwarped CY metric ds210 = ds24 + V1/3 ds2CY0 = ds24 + ds2CY . In
this limit there are no throats, and hence this region of moduli space
is not appropriate if one wants to uplift KKLT and LVS AdS vacua.
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Appendix C

Statistical Distributions

As emphasized in the introduction and in Chap. 5, the properties of a
string vacuum are determined by the values at which moduli are stabi-
lized. Our focus will be on KKLT and LVS models. Here fluxes stabilize
the complex structure moduli. The Kähler moduli remain flat after the
introduction of fluxes. The stabilization of the Kähler moduli can be stud-
ied in a low energy effective theory where the complex structure moduli
are integrated out. Although the number of fluxes can be large, their
effect on the low energy effective field theory of the Kähler moduli is
encoded in terms of a small number of parameters. The observables that
interest us are: the expectation value of the Gukov-Vafa-Witten superpo-
tential W0, the dilaton gs, the hierarchy associated with the bottom of the
warped throat y and the small complex structure F-terms. The statistical
distributions of these quantities will serve as input for determining the
distributions of the observables. The distributions of W0, gs, y and |F |2

have been well studied. Below, we describe them.

C.1 Gukov-Vafa superpotential

The expectation value of the Gukov-Vafa-Witten superpotential W0 is uni-
formly distributed as a complex variable [105] and physical quantities will
be functions of |W0|. Given the flat distribution of W0, the distribution
for |W0| is proportional to |W0|. The distribution of W0 and its physical
implications were analysed in detail in [11].

C.2 Dilaton

The distribution of the dilaton is known to be uniform [104, 105]. In terms
of the axio-dilaton S = s− iC0 with s = 1/gs

dN =
dS

s2
, (C.1)
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where dS = ds dC0 is the integration measure over the axio-dilaton. This
has been confirmed by various numerical and analytical studies (see e.g.
[129, 330]).

C.3 Hierarchy of throats

We turn now, to the hierarchy y. As discussed in App. B, the hierarchy
is determined by the vacuum expectation value of the shrinking conifold
modulus |z|. The distribution for |z| (as determined by stabilization from
fluxes) was studied in [105]. The fraction of vacua in which the conifold
modulus takes value below |z| was found to be

f(|z|) = − C

ln |z|
, (C.2)

where C is a positive constant. The corresponding density is

N (|z|) d|z| = C d|z|
|z|(ln |z|)2

. (C.3)

It is important to keep in mind that the singularity in the density for small
|z| is benign. Arbitrarily small |z| corresponds to arbitrary large fluxes,
which would be in conflict with the D3-tadpole cancellation condition. The
statistical description is expected to break down before the singularity.
Related is the fact that the fraction of states as given in (C.2) vanishes in
the limit of |z| → 0. Although, note that there is a significant enhancement
of states in comparison with the expectation from the canonical metric of
C.

This distribution was used to study the distribution of throat hierarchies
and the expectations for the number of throats in [117]. It was found that
throats are ubiquitous.

C.4 Complex structure F-terms

Lastly, we address the distribution for small F-terms. This was described
in details in [107], where it was found that for a generic distribution of
superpotentials, described in previous section, one expects that |F |2 is
uniformly distributed.
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