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Abstract

This work is divided into two parts. The first part focuses on Quantum Fisher Information (QFI),

exploring its properties and its crucial role in the geometry of quantum mechanics, phase estimation

theory, and its connection to multipartite entanglement. Specifically, we study ground state QFI in

one-dimensional spin-1 models, using it as a tool to witness multipartite entanglement. The models

examined include the Bilinear-Biquadratic model and the XXZ spin-1 chain, all with nearest-

neighbor interactions and open boundary conditions. We demonstrate that the scaling of QFI

with strictly non-local observables can characterize phase diagrams, particularly in the study of

topological phases, where it exhibits maximal scaling.

To conclude this part, we demonstrate how QFI can be effectively utilized as a hybrid quantum-

classical optimizer within variational algorithms in the NISQ era. Specifically, we evaluate the

performance of the Quantum Approximate Optimization Algorithm (QAOA) by leveraging the

Quantum Natural Gradient as the optimizer, showing that even with the noise, typically present in

quantum devices, the QFI-based Natural Gradient allows the algorithm to converge more efficiently,

reaching the cost function’s minimum in fewer iterations compared to its classical counterpart.

In the second part, we introduce the concept of Quantum Cellular Automata (QCA) as an al-

ternative paradigm to quantum computation, highlighting their versatility and applications across

various fields of theoretical physics. Finally, we discuss how non-unitary QCA can solve the density

classification task, which maps global density information to local density. Two approaches are

considered: one that preserves number density and one that performs majority voting. For the

number-preserving case, two QCAs are proposed that reach a fixed-point solution with a time com-

plexity that scales almost quadratically with system size, both of which can be generated through

continuous-time Lindblad dynamics. Additionally, a third QCA, a hybrid rule combining discrete-

time and continuous-time three-body interactions, is introduced to solve the majority voting problem

in a time that scales linearly with system size.
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Introduction

This thesis explores the intricate realms of entanglement, quantum computing and quantum cellular

automata. To understand the connections and motivations behind these topics, it is essential to

consider the revolutionary impact of quantum mechanics on modern physics.

Quantum mechanics has revolutionized modern physics. Its inherently probabilistic nature, the

principle of superposition, and its properties of entanglement make it one of the most fascinating

and complex theories in science. Entanglement, in particular, stands out as one of the most in-

triguing aspects of quantum mechanics. This phenomenon occurs when pairs or groups of particles

become interconnected in such a way that the state of one particle is dependent on the state of the

other(s), no matter the distance separating them. Einstein famously referred to this phenomenon as

“spooky action at a distance”, expressing his skepticism about the non-locality implied by quantum

mechanics. In his 1935 paper with Podolsky and Rosen, Einstein challenged the completeness of

quantum mechanics, proposing that there must be hidden variables that govern the behavior of

entangled particles [1]. Later, John Bell introduced inequalities to test the validity of such hidden

variable theories, and Alain Aspect’s experiments subsequently demonstrated the violation of these

inequalities, confirming the predictions of quantum mechanics [2].

However, the implications of entanglement extend beyond theoretical debates. Its practical

applications in quantum computing and quantum cryptography make the exploration of this phe-

nomenon, particularly its role within quantum many-body systems, not only a quest for under-

standing but also a frontier for technological advancement [3, 4]. Effectively addressing and solving

the many-body quantum problem would be invaluable, with impacts extending both directly and

indirectly across virtually every field of natural science. It would pave the way for technological

innovations that could profoundly affect everyday life.

The complexity of the many-body quantum problem becomes evident when considering that the

dimension of the space of possible configurations for a system with N primary constituents (such as

quantum particles) increases exponentially with N . If each constituent is characterized by d possible

states (e.g. spin configurations or electronic orbitals), the total number of possible configurations for

the entire system is dN . Typically, the goal is to find the eigenvector corresponding to the ground

state of the system. To date, only a few exactly solvable models have been identified, and exact

diagonalization techniques are limited to systems with very few constituents. Thus, the large-N

limit, which is often the most interesting case, remains out of reach for many systems.

To tackle these challenges, researchers have developed a variety of theoretical and numerical

methods, drawing from different disciplines to gain new insights into quantum many-body systems.

Chief among them are numerical simulations based on Tensor Network (TN) techniques [5, 6].
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These techniques originated from the density matrix renormalization group (DMRG) algorithm

introduced by S. White more than three decades ago [7]. For a long time, the DMRG method

was primarily applied to condensed matter physics. However, since the early 2000s, TN methods

have been extended to a growing range of research areas, including quantum information, quantum

chemistry, and lattice gauge theory. The TN approach leverages the tensor structure of the Hilbert

space, enabling a more efficient representation of the wave function, significantly reducing the

computational resources required for simulations [5, 6].

While classical computational methods have provided valuable tools, a revolutionary shift came

with the idea of using quantum systems to simulate other quantum systems. Over forty years

ago, Richard Feynman proposed a groundbreaking approach to solving the many-body problem

in his seminal paper [8]. He suggested developing a dedicated quantum computer to address the

quantum many-body problem, exploiting the fact that the exponential growth of the Hilbert space

could naturally be mirrored by another many-body quantum system. However, it is only in the last

decade that advancements in quantum information science and experimental techniques have allowed

platforms (such as cold atoms, trapped ions, and superconducting qubits) to perform quantum

simulations of various simple many-body phenomena with unprecedented control. Today, we are

experiencing what is often referred to as the second quantum revolution [9]. Many algorithms

developed over the years for quantum computers are now becoming practically realizable on quantum

devices. These advancements hold the potential to revolutionize our understanding of complex

systems and unlock new applications across a variety of fields, ranging from materials science to

cryptography.

Quantum computing can be traced back to the need for a quantum version of the Turing ma-

chine, transitioning from classical bits and gates to quantum bits and quantum gates. However,

beginning in the 1940s, an alternative computational paradigm emerged: cellular automata (CAs)

[10]. Cellular automata are discrete models consisting of a grid of cells, each of which can exist

in a finite number of states. The state of each cell is updated simultaneously according to a set

of rules determined by the states of neighboring cells. Interest in this simple framework expanded

beyond academia in the late 1970s, largely due to John Conway’s Game of Life, a two-dimensional

cellular automaton [11]. This model proved to be highly effective in exploring complex systems and

phenomena, such as patterns and emergent behaviors in computational settings [12]. In the 1980s,

Stephen Wolfram systematically classified elementary cellular automata [13], and Matthew Cook

was able to prove that they can be Turing complete [14]. Cellular automata have since found nu-

merous practical applications, including traffic modeling [15], fluid dynamics [16], biological pattern

formation [17], and reaction-diffusion systems [16].

This natural evolution of computational paradigms has inspired the development of quantum

analogs to classical models, leading to the concept of Quantum Cellular Automata (QCAs) which

are the quantum counterpart of classical CAs. Specific models for QCAs were introduced in several

works, such as [18–20], where they were proposed as an alternative paradigm for quantum compu-

tation and were shown to be universal, meaning they could efficiently simulate a quantum Turing

machine. The transition from classical CAs to QCAs, however, was not straightforward. Various

challenges arose, and naive approaches – such as extending classical evolution linearly to create a

quantum version – proved inadequate. Only later was an axiomatic definition of QCAs established,
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which captured the essence of classical CAs while ensuring that the evolution followed quantum

principles [21]. One ambitious application of QCAs is in modeling discrete physics. QCAs have

been considered as discretized quantum field theories, providing an alternative regularization of

quantum field theory [22]. More recently, in condensed matter physics, QCAs have been proposed

as models for quantum lattice systems evolving under time-dependent periodic Hamiltonians (i.e.

Floquet systems) [23]. QCAs also offer intriguing applications in the study and classification of

topological phases of matter [24, 25].

To provide a clear roadmap for the reader, the structure of this thesis is organized as follows.

We begin by introducing Quantum Fisher Information (QFI), along with its properties and ap-

plications in various areas of quantum mechanics (Chapter 1). In particular, we demonstrate its

utility as a witness of multipartite entanglement (ME) in spin-1 chains (Chapter 2, based on [26]),

utilizing Tensor Network (TN) techniques and the Density Matrix Renormalization Group (DMRG)

algorithm for this analysis. A key challenge in this context is the detection of ME in topological

quantum phases, where standard methods fail. In this chapter, we focus on two paradigmatic spin-1

models with local interactions: the Bilinear-Biquadratic (BLBQ) model and the XXZ model. The

BLBQ model, in particular, represents the most general SU(2)-invariant spin-1 model and exhibits

a rich phase diagram, including the topological Haldane phase. Our contribution involves extending

QFI to non-local observables, allowing us to successfully classify quantum phases, including topo-

logical ones, and calculate critical exponents at phase transitions. This represents an advancement

over previous approaches that only consider local observables (and for other spin models) and is part

of a broader line of research emphasizing the importance of non-local observables in the detection

of ME in such systems [27, 28].

In Chapter 3, we explore how this same quantity (QFI) can be used within variational algo-

rithms, particularly the Quantum Approximate Optimization Algorithm (QAOA), to define a new

type of optimizer known as the Quantum Natural Gradient (QNG) that outperforms its classical

counterpart even in noisy devices. Here, a major challenge lies in dealing with noise and barren

plateaus, which hinder optimization in noisy intermediate-scale quantum (NISQ) devices. Our con-

tribution consists in implementing the QNG on a real quantum platform – Rydberg atoms – and

demonstrating its robustness to noise in this quantum platform. We also employ an approximate

version of QFI for mixed states, showing that this method remains effective. We find that the

diagonal approximation of the QFI offers a favorable trade-off between computational cost and

optimization performance, nearly matching the effectiveness of the full Quantum Natural Gradient

method. Notably, our simulations show that while additional QAOA layers can improve the algo-

rithm’s performance in idealized settings, they also increase susceptibility to noise, indicating that

an optimal depth should be carefully chosen based on the specific hardware and noise conditions.

In the second part of this thesis, we provide a brief overview of Cellular Automata and Quantum

Cellular Automata (Chapter 4), introducing a well-studied problem in this context known as the

density classification task. In Chapter 5, following [29], we present our proposal for solving the

quantum version of this problem, along with potential applications and realizations. The main

challenge addressed is the design of a Quantum Cellular Automaton (QCA) capable of solving the

density classification problem with efficiency comparable to or better than classical probabilistic
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CAs. Our original contribution includes developing a non-unitary QCA that leverages two-body

interactions, improving convergence times over existing classical and quantum models. Furthermore,

we introduce a QCA-based solution to the majority voting problem, with potential applications in

measurement-free quantum error correction (MFQEC). A quantum solution to the majority problem

is advantageous as it eliminates the need for measurements on the ancillae, a process that is both

slow and prone to noise. Additionally, using QCA solutions instead of circuit-based approaches

offers the benefit of avoiding single-qubit addressability, a requirement that is often difficult to

achieve in practical implementations.
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Chapter 1

Quantum Fisher Information

The Quantum Fisher Information matrix (QFIm) plays a central role in theoretical quantum metrol-

ogy, particularly due to its connection with the quantum Cramér-Rao bound in quantum parameter

estimation. However, recent studies have revealed deep ties between QFIm and other key areas of

quantum mechanics, including quantum thermodynamics, quantum phase transitions, entanglement

detection, quantum speed limits, and non-Markovian dynamics [30]. These discoveries indicate that

QFIm is not merely a tool for quantum metrology, but rather a fundamental quantity in the broader

framework of quantum mechanics.

In this chapter, we present an overview of the properties of QFIm and the methods available

for its calculation across various contexts. We also trace the its role in the geometry of quantum

mechanics and in the theory of phase estimation. Finally, we investigate its relationship with

multipartite entanglement, formulating a criterion for its detection. This chapter is based on two of

the major reviews on this topic, namely [30] and [31].

1.1 Definition and properties

Consider a parameter vector θ = (θ0, θ1, . . . , θa, . . . )
T , where θa denotes the a-th parameter encoded

in the density matrix ρ = ρ(θ). In this chapter, we refer to the Quantum Fisher Information matrix

(QFIm) as F , with its elements defined as follows [32, 33]:

Fab :=
1

2
Tr (ρ{La, Lb}) , (1.1)

where {·, ·} represents the anti-commutator, and La (Lb) is the Symmetric Logarithmic Derivative

(SLD) corresponding to the parameter xa (xb). The SLD satisfies the equation:

∂aρ =
1

2
(ρLa + Laρ), (1.2)

and is a Hermitian operator, with its expected value given by Tr(ρLa) = 0. Using this property,

the matrix element Fab can also be expressed as [34]:

Fab = Tr (Lb∂aρ) = −Tr (ρ∂aLb) . (1.3)

17



From equation (1.1), the diagonal element of the QFIm is:

Faa = Tr
(
ρL2

a

)
, (1.4)

which corresponds to the Quantum Fisher Information (QFI) for the parameter θa.

The classical concept of the Fisher Information matrix (CFIm) originates from statistics. Given a

probability distributions {p(µ|θ)}, where p(µ|θ) is the conditional probability of obtaining outcome

µ, the elements of the CFIm are defined as:

Iab :=
∑

µ

[∂ap(µ|θ)][∂bp(µ|θ)]
p(µ|θ) . (1.5)

As quantum metrology has developed, the (CFIm) has been distinguished from its quantum

counterpart. In quantum mechanics, the choice of measurement affects the resulting probability

distribution, leading to variations in the CFIm. Thus, the CFIm depends on the specific measure-

ment performed. As will be explained further in the chapter, the QFI is obtained by optimizing

over all possible measurements [35], such that Faa = max{µ} Iaa(ρ, {µ}), where {µ} represents a

Positive-Operator Valued Measure (POVM). In many cases, no single measurement can fully real-

ize the QFIm.

The QFIm derived from SLD is not the only quantum generalization of the CFIm. Another

commonly used version is based on right and left logarithmic derivatives [33, 36], defined by ∂aρ =

ρRa and ∂aρ = R†
aρ, which leads to:

Fab = Tr(ρRaR
†
b). (1.6)

Unlike the SLD-based QFIm, which is real and symmetric, the QFIm based on right and left log-

arithmic derivatives is complex and Hermitian. These various forms of the QFIm fit within the

broader framework of Riemannian monotone metrics introduced by Petz in 1996 [37, 38]. Each

variation offers a quantum generalization of the Cramér-Rao bound with differing levels of attain-

ability. For pure quantum states, Fujiwara and Nagaoka [39] extended the SLD to a broader class

of derivatives, defined by ∂aρ = 1
2(ρLa + L†

aρ), where La need not be Hermitian. When La is

Hermitian, this reduces to the standard SLD. One notable case is the anti-symmetric logarithmic

derivative, where L†
a = −La. In this chapter, we primarily focus on the SLD-based QFIm, unless

otherwise noted.

While the properties of QFI have been thoroughly explored by G. Tóth et al. [40], the QFIm

itself possesses several powerful properties, widely applicable in practice. These properties are

summarized below:

• F is real and symmetric, i.e., Fab = Fba ∈ R.

• F is positive semi-definite, i.e., F ≥ 0. If F > 0, then [F−1]aa ≥ 1
Faa

for any a.

• F (ρ(θ)) = F (Uρ(θ)U †) for any unitary operation U that does not depend on θ.

• If ρ =
⊗

i ρi(θ), then F (ρ) =
∑

i F (ρi).

• If ρ =
⊕

i λiρi(θ), where λi are weights independent of θ, then F (ρ) =
∑

i λiF (ρi).
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• F (pρ1 + (1− p)ρ2) ≤ pF (ρ1) + (1− p)F (ρ2) for any p ∈ [0, 1] (convexity).

• F is monotonic under completely positive and trace-preserving maps Φ, i.e., F (Φ(ρ)) ≤ F (ρ).

• If y is a function of θ, the QFIm with respect to y and θ are related by F (ρ(θ)) = JTF (ρ(y))J ,

where J is the Jacobian matrix with elements Jij =
∂yi
∂θj

.

1.2 Methods for computing the QFIm

In this section, we review the methods for calculating the QFIm and present analytical results for

specific cases. Traditional approaches to deriving the QFIm often assume that the density matrix

is full-rank, meaning all its eigenvalues are strictly positive. Specifically, the density matrix can

be expressed as ρ =
∑dim(ρ)−1

i=0 λi|ψi⟩⟨ψi|, where λi and |ψi⟩ represent the eigenvalues and their

corresponding eigenstates. Under the assumption that λi > 0 for all i, the QFIm is computed as

follows.

For a full-rank density matrix ρ =
∑d−1

i=0 λi|ψi⟩⟨ψi|, where d is the dimension of ρ, the QFIm is

given by:

Fab =
d−1∑

i,j=0

2Re (⟨ψi|∂aρ|ψj⟩⟨ψj |∂bρ|ψi⟩)
λi + λj

. (1.7)

However, if the density matrix is not full-rank, this formula may lead to divergent terms. To

handle these cases, it is possible to modify this expression to exclude such terms by summing over

λi + λj ̸= 0. By substituting the spectral decomposition of ρ into this formula, we obtain:

Fab =
d−1∑

i=0

(∂aλi)(∂bλi)

λi
+

∑

i ̸=j
λi+λj ̸=0

2(λi − λj)
2

λi + λj
Re (⟨ψi|∂aψj⟩⟨∂bψj |ψi⟩) . (1.8)

Recent studies have rigorously demonstrated that the QFIm for a finite-dimensional density

matrix can be expressed in terms of the support of the density matrix. The support, denoted by S,

is the set of non-zero eigenvalues: S := {λi ̸= 0 | λi ∈ eigenvalues of ρ}. The spectral decomposition

then becomes ρ =
∑

λi∈S λi|ψi⟩⟨ψi|, and the QFIm can be written as:

Fab =
∑

λi∈S

(∂aλi)(∂bλi)

λi
+
∑

λi∈S
4λiRe (⟨∂aψi|∂bψi⟩)−

∑

λi,λj∈S

8λiλj
λi + λj

Re (⟨∂aψi|ψj⟩⟨ψj |∂bψi⟩) . (1.9)

A detailed derivation of this equation can be found in [30]. This expression is the most general

form of the QFIm for a finite-dimensional density matrix of arbitrary rank.

Since the QFIm is closely related to the QFI, the following corollary holds: given the spectral

decomposition ρ =
∑

λi∈S λi|ψi⟩⟨ψi|, the QFI for a parameter θa is given by

Faa =
∑

λi∈S

(∂aλi)
2

λi
+
∑

λi∈S
4λi⟨∂aψi|∂aψi⟩ −

∑

λi,λj∈S

8λiλj
λi + λj

|⟨∂aψi|ψj⟩|2. (1.10)

The first term corresponds to the classical Fisher Information, as it depends solely on the eigen-

value derivatives. The other terms, involving the derivatives of the eigenstates, capture quantum

effects and describe the local geometry of the eigenspace with respect to the parameter θ.
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SLD operator plays a central role not only in calculating the QFIm but also in determining

optimal measurements and assessing the attainability of the quantum Cramér-Rao bound. For the

eigenspace of ρ, the elements of the SLD operator are given by:

⟨ψi|La|ψj⟩ = δij
∂aλi
λi

+
2(λj − λi)

λi + λj
⟨ψi|∂aψj⟩. (1.11)

For λi, λj /∈ S, the matrix elements ⟨ψi|La|ψj⟩ may assume arbitrary values. Nevertheless, Fujiwara

and Nagaoka [39, 41] demonstrated that such uncertainties in the SLD do not influence the Quan-

tum Fisher Information (QFI), thus these values are often set to zero for simplicity in practical

calculations.

The Bloch representation is a widely used tool in quantum information theory. For a d-

dimensional density matrix, it can be expressed as:

ρ =
1

d

(
Id +

d(d− 1)

2
r · κ

)
, (1.12)

where r = (r1, r2, . . . , rm, . . . )
T is the Bloch vector, satisfying |r|2 ≤ 1, and κ is a (d2−1)-dimensional

vector of su(d) generators, with Tr(κi) = 0. The anti-commutation relation for these generators

is {κi, κj} = 4
dδijId +

∑d2−1
m=1 µijmκm, while the commutation relation is [κi, κj ] = i

∑d2−1
m=1 εijmκm,

where µijm and εijm are the symmetric and antisymmetric structure constants, respectively. Re-

cently, Watanabe et al. [42–44] derived the formula for the QFIm for a general Bloch vector by

treating the Bloch vector itself as the parameter to be estimated. In the Bloch representation of a

d-dimensional density matrix, the QFIM can be written as:

Fab = (∂br)
T

[
d

2(d− 1)
G− r · rT

]−1

∂ar, (1.13)

where G is a real symmetric matrix with entries:

Gij =
1

2
Tr(ρ{κi, κj}) =

2

d
δij +

r

d− 1

∑

m

µijmrm. (1.14)

The most common application of this result is in single-qubit systems, where ρ = 1
2(I2 + r · σ),

with σ = (σx, σy, σz) being the vector of Pauli matrices. For a single-qubit mixed state, the QFIm

in the Bloch representation can be written as:

Fab = (∂ar) · (∂br) +
(r · ∂ar)(r · ∂br)

1− |r|2 , (1.15)

where |r| is the norm of the Bloch vector. For a single-qubit pure state [45], this simplifies to:

Fab = (∂ar) · (∂br). (1.16)

For a pure state |ψ⟩, the support of the density matrix has dimension 1, meaning there is only one

non-zero eigenvalue (equal to 1), with the corresponding eigenstate being |ψ⟩. The QFIm elements

for a pure parameterized state |ψ(θ)⟩ are given by:

Fab = 4Re (⟨∂aψ|∂bψ⟩ − ⟨∂aψ|ψ⟩⟨ψ|∂bψ⟩) . (1.17)
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The QFI for the parameter θa is simply the diagonal component of the QFIm:

Faa = 4
(
⟨∂aψ|∂aψ⟩ − |⟨∂aψ|ψ⟩|2

)
. (1.18)

and the SLD operator for θa in a pure state is given by La = 2 (|ψ⟩⟨∂aψ|+ |∂aψ⟩⟨ψ|).
An important example involves the parameterized pure state |ψ⟩ = e−it

∑
j Hjθj |ψ0⟩, where

[Ha, Hb] = 0, and |ψ0⟩ is the initial probe state. In this case, the QFIm becomes:

Fab = 4t2∆(Ha, Hb)
2
|ψ0⟩, (1.19)

where ∆(Ha, Hb)
2
|ψ0⟩ is the covariance of the Hamiltonians Ha and Hb in the state |ψ0⟩ defined as

∆(Ha, Hb)
2
|ψ0⟩ :=

1
2⟨φ|{Ha, Hb}|φ⟩ − ⟨φ|Ha|φ⟩⟨φ|Hb|φ⟩.

1.3 QFI and geometry of quantum mechanics

In the context of quantum mechanics, the states of quantum systems are described by wave functions

or density matrices. While wave functions represent state vectors in Hilbert space, density matrices

describe statistical mixtures of quantum states. The difference between quantum states can be

expressed as a distance between these vectors or matrices. To define such a distance, it is necessary

to introduce a metric in the space of states. An important extension of this concept arises from

classical information theory, where the Fisher information metric is used to characterize distances

between probability distributions. In quantum information theory, there is a quantum generalization

of this metric, known as the Quantum Fisher Information metric. This metric provides a powerful

geometric tool for studying the state space of quantum systems, allowing a deeper analysis of the

structure and dynamics of quantum systems.

1.3.1 Fubini-Study metric

In quantum mechanics, pure states are represented as normalized vectors, adhering to the funda-

mental principle that the square of the vector’s norm reflects the probability. These pure states

can be represented as rays in projective Hilbert space, where the Fubini-Study metric is a Kähler

metric [46–48]. The squared infinitesimal distance in this space is typically given by:

ds2 = ⟨dψ|dψ⟩ − |⟨dψ|ψ⟩|2
⟨ψ|ψ⟩2 . (1.20)

For the case where ⟨ψ|ψ⟩ = 1 and dψ =
∑

j ∂jψdθ
j , this can be simplified to:

ds2 =
1

4

∑

j,k

Fjkdθ
jdθk, (1.21)

where Fjk is the jk-th element of the QFIm. This indicates that the Fubini-Study metric is a

quarter of the QFI for pure states. This relationship is intrinsic to why the QFIm can determine

the precision limit. Intuitively, the precision limit relates to the maximum distinguishability between

states, which is naturally associated with the distance between them. For mixed states, the Fubini-

Study metric’s counterpart is the Bures metric, which is well-known in quantum information theory

and closely related to quantum fidelity, as discussed below.
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1.3.2 Fidelity and Bures metric

In quantum information theory, the fidelity f(ρ1, ρ2) quantifies the similarity between two quantum

states ρ1 and ρ2, defined as:

f(ρ1, ρ2) := Tr

(√√
ρ1ρ2

√
ρ1

)
. (1.22)

Fidelity ranges from 0 to 1, where f = 1 if and only if ρ1 = ρ2. While fidelity itself is not a distance

measure, it can be used to construct the Bures distance DB, defined as:

D2
B(ρ1, ρ2) = 2 (1− f(ρ1, ρ2)) . (1.23)

The relationship between fidelity and the QFIm is well-established in the literature. When the rank

of ρ(θ) remains constant as θ varies, the QFIm is related to the infinitesimal Bures distance in a

manner analogous to how it relates to the Fubini-Study metric:

D2
B(ρ(θ), ρ(θ + dθ)) =

1

4

∑

jk

Fjkdθ
jdθk. (1.24)

Recently, it has been discovered that fidelity susceptibility, which captures the second-order variation

of fidelity, can serve as an indicator of quantum phase transitions [49]. Due to the deep connection

between the Bures metric and the QFIm, it is not surprising that the QFIm can be used similarly.

Moreover, an increase in the QFIm at the critical point suggests that the precision limit of parameter

estimation improves near a phase transition [50, 51]. However, if the rank of ρ(θ) differs from that

of ρ(θ + dθ), Safranek recently [52] demonstrated that the QFIm does not precisely equal fidelity

susceptibility. Seveso et al. [53] further proposed that the quantum Cramér-Rao bound might also

fail in such cases.

In addition to the Fubini-Study and Bures metrics, the QFIm is closely related to the Riemannian

metric because the state space of a quantum system forms a Riemannian manifold. Specifically,

the QFIm belongs to a family of contractive Riemannian metrics [34, 37, 54]. In this context, the

infinitesimal distance in state space is given by:

ds2 =
∑

jk

gjkdθ
jdθk, (1.25)

where gjk represents the contractive Riemannian metric. In the eigenbasis of the density matrix ρ,

gjk is expressed as:

gµν =
1

4

∑

i

⟨λi|dρ|λi⟩2
λi

+
1

2

∑

i<j

|⟨λi|dρ|λj⟩|2
λjh(λi/λj)

, (1.26)

where h(x) is the Morozova-Cencov function, which is operator monotone, self-inverse, and normal-

ized. For h(x) = 1+x
2 , this metric reduces to the QFIm based on the SLD.

1.3.3 Quantum Geometric Tensor

The Quantum Geometric Tensor (QGT) emerges from a complex metric in projective Hilbert space

and is a crucial tool in quantum information science, unifying the QFIm and the Berry connection.

For a pure state |ψ(θ)⟩, the QGT is defined as:

Qjk = ⟨∂jψ|∂kψ⟩ − ⟨∂jψ|ψ⟩⟨ψ|∂kψ⟩. (1.27)
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The real part of Qjk (i.e. the Fubini-Studi metric) corresponds to the QFIm up to a constant factor:

Re(Qjk) =
1

4
Fjk. (1.28)

Meanwhile, the imaginary part of Qjk is related to the Berry connection Aj = i⟨ψ|∂jψ⟩ and Berry

curvature Ωjk = ∂jAk − ∂kAj :

Im(Qjk) = −1

2
(∂jAk − ∂kAj). (1.29)

The geometric phase can be computed as:

γ =

∮
Ajdθ

j , (1.30)

where the integral is taken over a closed path in parameter space. Guo et al. [55] have connected

the QFIm and Berry curvature via the Robertson uncertainty relation. Indeed, for a unitary process

with two parameters, the determinant of the QFIm and Berry curvature should satisfy:

det(F ) + 4 det(Ω) ≥ 0. (1.31)

1.4 QFI and phase estimation

What is the extent of precision achievable in statistical estimation? Is there an inherent limit to

this precision? These inquiries lie at the core of statistical inference theory. Initial insights into

these questions emerged in the 1940s, thanks to the contributions of Rao [56], Cramér [57], and

Fréchet [58], who independently discovered a lower bound on the variance of any estimator. This

limit, widely referred to as the Cramér-Rao lower bound, is closely associated with the Fisher

information, a concept introduced by Fisher in the 1920s [59]. The Fisher information plays a

pivotal role in the theory of phase estimation. By optimizing the Fisher information across all

possible quantum measurements, we derive the quantum Fisher information [35], which establishes

a quantum-specific lower limit to the Cramér-Rao bound [32, 60].

In this section, we will outline and clarify the Cramér-Rao lower bound and its significance for

various estimation techniques. We begin with an input (probe) state denoted as ρ. An interferome-

ter, in our framework, refers to any transformation applied to the probe that can be parameterized

by an unknown real number θ. The process of estimating θ involves examining the outcomes of

measurements conducted on the output state ρ(θ). These measurement results can be discrete, such

as the particle counts at the output modes of a Mach-Zehnder interferometer, or continuous, like

the spatial intensity distribution observed in a double-slit experiment [61, 62].

1.4.1 QFI and the Cramér-Rao lower bound

The most general form of measurement in quantum theory is described by a positive-operator val-

ued measure (POVM), which consists of a set of Hermitian operators Ê(µ) that are non-negative to

ensure non-negative probabilities and sum to the identity operator to ensure normalization. A stan-

dard projective measurement is a specific type of POVM where the operators Ê(µ) are orthogonal
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projectors. For correlated subsystems described by ρ and performing m correlated measurements

described by Ê(µ), where µ = {µ1, µ2, . . . , µm}, the conditional probability of observing the result

µ for a given θ, also referred to as the likelihood, is given by

P (µ|θ) = Tr
[
Ê(µ)ρ(θ)

]
. (1.32)

If the probe state consists of m independent, uncorrelated subsystems,

ρ = ρ(1) ⊗ ρ(2) ⊗ · · · ⊗ ρ(m), (1.33)

and we perform local operations and statistically independent measurements, then the likelihood

function simplifies to the product of individual measurement probabilities:

P (µ|θ) =
m∏

i=1

Pi(µi|θ), (1.34)

where Pi(µi|θ) = Tr
[
Ê(i)(µi)ρ

(i)(θ)
]
. For analytical purposes, the log-likelihood function is often

used:

L(µ|θ) := lnP (µ|θ) =
m∑

i=1

lnPi(µi|θ). (1.35)

An estimator, denoted as Θ(µ), functions as a mapping from the outcomes µ to the parameter

space. Essentially, it links each set of measurement results to an estimate Θ of the parameter θ. A

well-known example of an estimator is the maximum likelihood estimator. The goal in selecting an

estimator is to minimize the discrepancy between Θ and the true value of θ. Since the estimator

is derived from random outcomes, it itself is a random variable, characterized by its mean value,

which depends on θ, represented as

⟨Θ⟩θ =
∑

µ

P (µ|θ)Θ(µ), (1.36)

and its variance, given by

(∆Θ)2θ =
∑

µ

P (µ|θ) [Θ(µ)− ⟨Θ⟩θ]2 . (1.37)

A good estimator is characterized by being unbiased, meaning its statistical average equals the

true parameter value, and providing minimal uncertainty, often measured by the square root of the

variance. An estimator is deemed unbiased if its expected value aligns with the true parameter

value for all θ:

⟨Θ(µ)⟩θ = θ, ∀θ. (1.38)

On the other hand, an estimator Θ(µ) is consistent if, as the number of measurements m increases,

the sequence of estimates converges in probability to θ:

lim
m→∞

Pr [|Θ(µ)− θ| > ε] = 0, ∀θ, (1.39)

where ε is an arbitrarily small number. A consistent estimator is also asymptotically unbiased,

expressed as

lim
m→∞

⟨Θ(µ)⟩θ = θ, ∀θ. (1.40)
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Turning to classical Fisher information (CFI) and the Cramér-Rao lower bound, the Cramér-

Rao bound is a fundamental theorem in phase estimation, providing a lower limit on the variance

of any estimator:

(∆Θ)2θ ≥ ∆Θ2
CR ≡

(
∂⟨Θ⟩θ
∂θ

)2

I(θ)
, (1.41)

where I(θ) denotes the CFI, defined as

I(θ) ≡
(
∂L(µ|θ)
∂θ

)2

θ

=
∑

ε

1

P (µ|θ)

(
∂P (µ|θ)
∂θ

)2

. (1.42)

The Eq. (1.41) represents the most general form of the Cramér-Rao lower bound, but it becomes

especially useful for unbiased estimators where ∂⟨Θ⟩θ
∂θ = 1: in this case, the bound simplifies to

the inverse of the Fisher information. An estimator that reaches this bound is referred to as

efficient. Although efficient estimators don’t always exist in every scenario, when the number of

measurements is large enough, at least one efficient estimator, such as the maximum likelihood

estimator, is typically available.

To illustrate the Cramér-Rao lower bound, we start with the relation:

∂⟨Θ⟩θ
∂θ

=
∑

µ

P (µ|θ)Θ(µ)
∂L(µ|θ)
∂θ

=

〈
Θ
∂L(µ|θ)
∂θ

〉

θ

, (1.43)

and
∂

∂θ

∑

µ

P (µ|θ) =
∑

µ

P (µ|θ)∂L(µ|θ)
∂θ

=

〈
∂L(µ|θ
∂θ

〉

θ

= 0. (1.44)

By applying the Cauchy-Schwarz inequality,

⟨A2⟩θ⟨B2⟩θ ≥ ⟨AB⟩2θ, (1.45)

with A = Θ− ⟨Θ⟩θ and B = ∂L(µ|θ)
∂θ , we find:

〈
(Θ− ⟨Θ⟩θ)2

〉
θ

〈(
∂L(µ|θ)
∂θ

)2
〉

θ

≥
〈
(Θ− ⟨Θ⟩θ)

(
∂L(µ|θ)
∂θ

)〉2

θ

. (1.46)

Notably, 〈
(Θ− ⟨Θ⟩θ)

∂L(µ|θ)
∂θ

〉

θ

=
∂⟨Θ⟩θ
∂θ

, (1.47)

leading to the conclusion that

(∆Θ)2θ ≥

(
∂⟨Θ⟩θ
∂θ

)2
〈(

∂L(µ|θ)
∂θ

)2〉

θ

=
1

I(θ)
, (1.48)

which is the Cramér-Rao lower bound for an unbiased estimator.
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When we switch to quantum, it is possilbe to derive an upper bound for CFI. This is achieved

by maximizing it over all possible POVMs,

F (ρ(θ)) := max
{Ê}

I(ρ(θ), {Ê(µ)}), (1.49)

which is equivalently used as an alternative definition of the QFI. Indeed, in [31], it is possible to

find the proof that this definition coincides with the one introduced in the previous section (1.4),

specifically:

F (ρ(θ)) = Tr[ρ(θ)L̂2
θ], (1.50)

where the Hermitian operator L̂θ, is the symmetric logarithmic derivative, defined as usual. From

eqs. (1.48) and (1.49), we obtain the following chain of inequalities:

∆Θ2
θ ≥ ∆Θ2

CR,θ ≥ ∆Θ2
QCR,θ, (1.51)

where

(∆ΘQCR)
2
θ ≡

(
∂⟨Θ⟩
∂θ

)2

F (ρ(θ))
. (1.52)

Since the probe state consists of m independent, uncorrelated subsystems, and due to the additivity

of the QFI, F (ρ(θ)) = mF (ρ(m)(θ)). From now on, we will omit the index (m) to simplify the

notation. In principle, this bound can be saturated through optimal measurements, such as those

based on the symmetric logarithmic derivative. In practice, the Fisher information depends on the

specific measurement chosen, and various strategies can be applied to maximize the information

extracted. Since quantum systems can encode intricate information within their quantum states,

the quantum Fisher information becomes essential in determining the ultimate precision limits in

tasks like phase estimation.

1.5 QFI and multipartite entanglement

Let us examine two distinct, non-interacting systems, A and B, each associated with its own Hilbert

space: HA for system A and HB for system B. The total state space of the combined system is

described by the tensor product HAB = HA⊗HB. If system A is in the pure state |ψA⟩ and system

B is in the pure state |ψB⟩, the state of the composite system is represented as:

|ψsep⟩ = |ψA⟩ ⊗ |ψB⟩. (1.53)

States that can be written in this form are referred to as product or separable states. In such cases,

any local operation applied to system A does not affect system B, and vice versa. Consequently,

the expectation value of any joint measurement M̂AB = M̂A ⊗ M̂B on the composite system HAB

equals the product of the individual expectation values for each subsystem:

⟨ψAB|M̂AB|ψAB⟩ = ⟨ψA|M̂A|ψA⟩ × ⟨ψB|M̂B|ψB⟩. (1.54)

Although systems A and B are independent, they can still exhibit classical correlations via com-

munication. In such a scenario, the composite system might be found in a state like |ψ(k)
A ⟩ ⊗ |ψ(k)

B ⟩
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with a probability pk, where pk > 0 and
∑

k pk = 1. A mixed state of a composite quantum system

is referred to as classically correlated (or separable) if it can be expressed as a weighted sum of

density matrices corresponding to separable pure states [63, 64]:

ρsep =
∑

k

pk

(
|ψ(k)
A ⟩⟨ψ(k)

A | ⊗ |ψ(k)
B ⟩⟨ψ(k)

B |
)
. (1.55)

States that cannot be described in this manner are classified as entangled. It is crucial to empha-

size that local operations and classical communication are incapable of generating or eliminating

entanglement which means this non-local property is preserved.

The notions of separability and entanglement can be extended to systems involving more than

two subsystems. For a composite system consisting of N parts, with the total Hilbert space repre-

sented by H1 ⊗H2 ⊗ · · · ⊗ HN , the system is separable if its state can be expressed as:

ρsep =
∑

k

pk

(
|ψ(k)

1 ⟩⟨ψ(k)
1 | ⊗ |ψ(k)

2 ⟩⟨ψ(k)
2 | ⊗ · · · ⊗ |ψ(k)

N ⟩⟨ψ(k)
N |
)
. (1.56)

Any state that cannot be written in the form of Eq. (1.56) is classified as entangled.

1.5.1 From Shot Noise to the Heisenberg Limit

Let us now considering a particularly relevant case of N subsystems. For each subsystem, we apply

a local and unitary phase shift operation, represented as e−iθĥi , where ĥi serves as the generator

of the phase shift for the ith subsystem. It is essential to note that the same phase shift, θ, is

applied uniformly across all N subsystems. Consequently, the overall transformation affecting these

N particles can be expressed as
N⊗

i=1

e−iĥiθ = e−iĤθ, (1.57)

To simplify our analysis, we will assume that all N subsystems share the same dimension of

Hilbert space and that each generator ĥi is identical across subsystems, denoted as ĥ. We define

hmax and hmin as the maximum and minimum eigenvalues of ĥ, respectively, with corresponding

eigenvectors represented as |hmax⟩ and |hmin⟩.
In this section, we demonstrate that for the separable, QFI is strictly bounded [65]. The following

chain of inequalities can be established:

F (ρsep) ≤
∑

k

pkF (|ψ(k)
sep⟩) =

∑

i,k

pkF (|ψ(k)
i ⟩) ≤ N

(hmax − hmin)
2

4
. (1.58)

The first inequality arises from the convexity of the QFI, while the equality follows from the additive

property of the QFI. The final inequality is based on the result F (|ψ(k)
i ⟩) = 4(∆ĥi)

2, (see Eq. (1.19)

for t = 1 and Ha = Hb) and that 4(∆ĥi)
2 ≤ (hmax−hmin)

2. This leads us to a significant conclusion:

the optimal phase sensitivity, i.e. the quantum Cramér-Rao bound (see Eq. (1.52)), for separable

states involving N particles and m independent measurements, is given by

∆θSN =
1√

Nm|hmax − hmin|
, (1.59)
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which holds true regardless of the specific measurement or estimator employed. This expression is

commonly referred to as the Shot Noise (SN) limit, or standard quantum limit. In this context,

the number of particles acts as a statistical enhancement, akin to the effect of conducting multiple

independent measurements. Furthermore, as we transition from qubits (where hmax − hmin = 1)

to more complex multimode systems, the shot noise limit improves by a factor that is directly

proportional to the number of modes involved.

From the results discussed, we can conclude that the condition

F (ρ) >
N(hmax − hmin)

2

4
(1.60)

is a sufficient criterion for establishing entanglement. This indicates that if the state ρ is separable,

the inequality cannot hold. More specifically, this inequality represents the requirement for useful

entanglement: it is both necessary and sufficient for a state to effectively estimate a phase shift θ

with a sensitivity that surpasses the limitations defined for separable states.

A key point to emphasize is that not every entangled state is practically useful; those that are

can be identified through their QFI [66]. We then delve into the optimal sensitivity achievable

with an entangled probe state [65]. By employing the convexity of the QFI, we can express the

relationship as follows:

F (ρ) ≤ max
|ψ⟩

F (|ψ⟩) ≤ N2(hmax − hmin)
2. (1.61)

The final part of this inequality arises from the observation that

max
|ψ⟩

F (|ψ⟩) = 4max
|ψ⟩

(∆Ĥ)2|ψ⟩, (1.62)

where the maximum variance is dictated by the difference between the largest eigenvalue, Hmax, and

the smallest eigenvalue, Hmin, of the collective Hamiltonian Ĥ, satisfying the condition (∆Ĥ)2 ≤
(Hmax−Hmin)

2

4 . Since the Hamiltonian Ĥ is linear, we can express Hmax = Nhmax and Hmin = Nhmin.

This brings us to another significant conclusion: the maximum phase sensitivity allowed by quantum

mechanics, referred to as the Heisenberg Limit (HL), is given by

∆θHL =
1

N
√
m|hmax − hmin|

. (1.63)

The primary distinction between the equations (1.59) and (1.63) lies in the enhanced scaling of

phase sensitivity with the number of particles, a capability unattainable through classical means.

The Heisenberg limit can be achieved using the state

|ψGHZ⟩ =
1√
2

(
|hmax⟩⊗N + |hmin⟩⊗N

)
, (1.64)

which represents a maximally entangled state in the eigenstate basis of ĥ.

1.5.2 k-particle entangled states

In the previous sections, we explored two extreme scenarios: the fully separable state and the

maximally entangled state, which correspond to the shot noise limit and the Heisenberg limit,
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respectively. When examining many-particle systems, it is fascinating to investigate intermediate

cases where only a subset of the N subsystems shows entanglement.

To clarify this concept, we introduce the definition of a k-producible state. A pure state involving

N ≥ 2 particles is classified as k-producible if it can be represented as a tensor product in the

following manner:

|ψk−prod⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ . . .⊗ |ψM ⟩, (1.65)

where |ψl⟩ denotes a state comprising Nl ≤ k particles, and the total particle count satisfies∑M
l=1Nl = N . This definition extends to mixed states: a mixed state is termed k-producible if

it can be represented as a mixture of kl-producible pure states:

ρk−prod =
∑

l

pl|ψkl−prod⟩⟨ψkl−prod|, with kl ≤ k, (1.66)

where pl > 0 and
∑

l pl = 1. A state, either pure or mixed, is considered k-particle entangled if it

is k-producible but not (k − 1)-producible. This means a pure k-particle (or k-partite) entangled

state can be expressed as:

|ψk−ent⟩ =
M⊗

l=1

|ψl⟩, (1.67)

where the product contains at least one state |ψl⟩ involvingNl = k particles that cannot be factorized

[67]. Alternatively, we can state that a k-particle entangled state possesses an entanglement depth

greater than k − 1 [68].

In this section, we aim to establish the criteria for identifying useful multiparticle (or multipar-

tite) entanglement [69, 70]. By utilizing the convexity of the quantum Fisher information (QFI),

we derive the following result:

F (ρk−prod) ≤
∑

l

plF (|ψkl−prod⟩) ≤
∑

l

pl4(∆Ĥ)2|ψkl−prod⟩. (1.68)

Given that the operator Ĥ is linear and that |ψkl−prod⟩ can be expressed in the product form shown

in Eq. (1.65), we can derive the following relationship:

4∆Ĥ2
|ψkl−prod⟩ =

M∑

l=1

4∆Ĥ2|ψl⟩ ≤
M∑

l=1

(
H(l)

max −H
(l)
min

)2
, (1.69)

where H
(l)
max and H

(l)
min denote the maximum and minimum eigenvalues of Ĥ(l) = ⊗Nl

i ĥi. This leads

us to find:

max
ρk−prod

Fρk−prod
≤ (hmax − hmin)

2max
{Nl}

[ M∑

l=1

N2
l

]
, (1.70)

where the maximum on the right side of this equation is calculated over all possible partitions {Nl}
of the system according to

∑M
l=1Nl = N . Notably, since (N1 + 1)2 + (N2 − 1)2 ≥ N2

1 + N2
2 when

N1 ≥ N2, the right-hand side of the equation above increases by maximizing the Nl values.

For a k-producible state, with Nl ≤ k, we find:

max
{Nl}

[ M∑

l=1

N2
l

]
= sk2 + r2, (1.71)
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Figure 1.1: Quantum Fisher Information Criterion for multipartite entanglement: The

solid line represents the bound given by F
(hmax−hmin)2

= (sk2+ r2). This line effectively distinguishes

k-producible states, which lie below it, from states that exhibit (k+1)-particle entanglement, found

above the line. The dashed line illustrates the linear relationship F
(hmax−hmin)2

= Nk, with N set to

100.

where s =
⌊
N
k

⌋
is the largest integer less than or equal to N

k , and r = N − sk. The maximum QFI

is thus achieved by the product of s GHZ states of k particles and a GHZ state with the remaining

r particles:

|ψ⟩ =
s⊗

i=1

( |hmax⟩⊗k + |hmin⟩⊗k√
2

)
⊗
( |hmax⟩⊗r + |hmin⟩⊗r√

2

)
. (1.72)

Consequently, for k-producible states, we establish the bound:

Fρk−prod
≤ (hmax − hmin)

2(sk2 + r2). (1.73)

Considering the linear operator Ĥ and the generic probe state ρ̂, this criterion has a clear opera-

tional significance. If the bound is exceeded, then the probe state possesses useful (k + 1)-particle

entanglement: when used as the input state for the interferometer defined by the transformation

e−iθĤ , ρ̂ enables phase sensitivity that surpasses any k-producible state. A plot of the bound is

illustrated in Fig. 1.1 as a function of k. Since the bound increases monotonically with k, the

maximum achievable phase sensitivity also increases with the number of entangled particles. For

k = 1, we recover the bound applicable to separable states. For k = N − 1, the bound is given by:

F [ρ(N−1)−prod]/(hmax − hmin)
2 ≤ (N − 1)2 + 1, (1.74)

where a QFI exceeding this value indicates that the state is fully N -particle entangled. The maxi-

mum value of the bound occurs for k = N (hence s = 1 and r = 0), yielding:

F [ρN−ent]/(hmax − hmin)
2 = N2, (1.75)

thus recovering equation (1.61).
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Chapter 2

QFI and multipartite entanglement in

spin-1 chains

In addition to be a crucial resource for quantum-enhanced metrology [31] and quantum computation

[71], entanglement has been used to characterize quantum phases and quantum phase transitions

(QPTs) in many-body models, particularly for low-dimensional systems, and has been important

also to uncover exotic states of matter like topological spin liquids [72] or to describe many-body

localization [73].

Bipartite entanglement has been the primary focus in the literature [74], with the area law

[75] serving as a benchmark for relating the amount of entanglement between two partitions of a

quantum many-body system to the surface area between the blocks [76, 77]. It has been proved

[67] that the ground state of some spin chains should exhibit Multipartite Entanglement (ME), but

somehow this topic has received less attention [67], despite the fact that many-body quantum states

are far more complex than what can be captured with bipartite entanglement only.

A possible estimator of multipartite entanglement is Quantum Fisher Information (QFI), a

quantity which is introduced in the context of the problem of phase estimation in metrology [65]

and is of use in the study of the sensitivity of atomic interferometers beyond the shot-noise limit [78].

The QFI associated to local operators has recently been used to observe ME in models exhibiting

Ginzburg-Landau-type quantum phase transitions [79] and in spin systems such as the Ising, XY,

and Heisenberg models [79–81] also at finite temperature [82], where ME is expected to diverge at

criticality. It has been pointed out, however, that the use of local operators in this method fails

to detect ME at topological quantum phases and transitions. To address this issue, QFI-based

methods need to be extended to include also non-local operators, as first outlined in [27, 28].

In this Chapter, we are going to study the ME in two paradigmatic spin-1 systems with nearest-

neighbor interactions: the Bilinear-Biquadratic (BLBQ) model and the XXZ model, two models

with a rich phase diagram which exhibit a topological Haldane phase. More specifically, we will

show that QFI of non-local order parameters (such as string-order parameters [83]) gives indeed

information about the ME of the ground state in the different phases of the models. Then, taking

also in consideration QFI of local spin observables, we are able to classify all phases of the model

as well as to calculate universal critical exponents at phase transitions.
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Dimer
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θ = arctan(β)

Figure 2.1: Phase diagram of BLBQ model on a circle, parametrized by θ, with some remarkable

points: the AF Heisenberg model the AKLT point, and the critical points (Takhtajan-Babujian and

Lai-Sutherland). In terms of β and J , the right half corresponds to a positive J and the left half to

a negative J , while β = tan θ.

2.1 Bilinear-Biquadratic model

In this section we consider the Bilinear-Biquadratic (BLBQ) model on a chain of N sites:

H = J
N∑

i=1

[
Si · Si+1 − β(Si · Si+1)

2
]
, (2.1)

where Si = (Sxi , S
y
i , S

z
i ) is the spin-1 operator for site i, J is the nearest-neighbor coupling and β

is a real parameter expressing the ratio between the bilinear and biquadratic terms. This is the

most general SU(2)-invariant isotropic spin-1 Hamiltonian with nearest-neighbor interactions only.

Often in literature the Hamiltonian (2.1) is written as

H = J ′
N∑

i=1

[
cos(θ)Si · Si+1 − sin(θ)(Si · Si+1)

2
]
, (2.2)

which can be obtained by setting J = J ′ cos(θ) and β = tan(θ), with the angular parameter

θ ∈ [−π, π]. By fixing J ′ = 1, the phase diagram can be drawn by varying the angular parameter

θ, as shown in Fig. 2.1.

In the following we will describe the phases of the BLBQ model and some remarkable points.

2.1.1 Phase diagram

The Haldane phase corresponds to the region −1 < β < 1 and J > 0: here the system is massive,

with a unique ground state and exponentially decaying correlation functions [84]. We recognize the

antiferromagnetic Heisenberg model for β = 0 [85–87]. For β = −1/3 we recover the AKLT model,

whose ground state is a Valence-Bond State (VBS), in which each spin-1 is thought of as made

of two 1/2-spins that couple with the spins of neighboring sites in a singlet (entangled) state. A

pictorial image of the AKLT state for a four sites chain is given in the upper panel of Fig. 2.2.
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spin–1
spin– 1

2
entangled
single pair

AKLT state

Dimer state

Figure 2.2: Example of states of the BLBQ model: every site (light blue oval) contains two spin-1/2

particles (blue dots) and each singlet state of spin-1/2 particles is represented with a thick black

line. Upper panel. Entangled pair structure of the AKLT’s ground state in the VBS representation.

Lower panel. An example of spin-1 dimer state in the VBS representation with six sites.

The ground state has an exact description as a Matrix Product State, which is very useful for

performing exact calculations. In particular, it can be shown that the local correlation functions

have an exponential decay (see Appendix A).

The Dimer phase corresponds to β > 1 and J > 0, or β < −1 and J < 0: the system has a two-

fold degenerate ground state and a small excitation gap [88]. The degeneracy is due to the broken

translation symmetry, since neighboring spins tend to be coupled in pairs. A good approximation

of the ground state in the whole phase is given by the dimer state [83]:

|d⟩± =

L/2⊗

i=1

1√
3

(
|+⟩2i |−⟩2i±1 + |−⟩2i |+⟩2i±1 − |0⟩2i |0⟩2i±1

)
(2.3)

which is shown in the lower panel of Fig. 2.2. Haldane and Dimer phases are separated by the so-

called Takhtajan-Babujian critical point, for β = 1 and J > 0. Here the Hamiltonian is integrable

by means of Bethe Ansatz technique [89, 90] and its universality class is that of a SU(2)k Wess-

Zummino-Witten conformal field theory with k = 2 and therefore with central charge c = 3/2

[91].

In the region β < −1 and J > 0 there is another antiferromagnetic phase, called the Trimer

Phase, since the ground state tends to be invariant under translations of three sites. This is a gapless

phase [92]. At β = −1, it is separated from the Haldane phase by a continuous phase transition.

This point corresponds to the so-called Lai-Sutherland model, which has an enhanced symmetry to

SU(3), the Hamiltonian being equivalent to

N−1∑

i=1

Si · Si+1 + (Si · Si+1)
2 =

N

3
+

1

2

N−1∑

i=1

8∑

a=1

λai (2.4)

where λa are the Gell-Mann matrices, the eight generators of SU(3) algebra. It is in the universality

class of the SU(3)k Wess-Zummino-Witten conformal field theory with k = 1 [91, 93]. Here we will

not consider the last phase present in Fig. 2.1, namely the ferromagnetic phase, which corresponds

to an ordered and separable ground state.

33



0 50 100
0

10

20

30

40

50

N

fQ

β = −1/3

β = 0

β = 1/3

β = 2/3

(a) Haldane phase.

0 50 100
1

2

3

4

5

N

β = 2 β = −2

β = 4 β = −4

β = 8 β = −8

β = ∞ exact

(b) Dimer and trimer phase.

−2 0 2
0

5

10

15 Trimer Haldane Dimer

β

Õz
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Figure 2.3: Scaling behaviors of the QFI density fQ at different points of phase diagram using Õz

in (2.6): (a) in the Haldane phase fQ grows linearly, with the highest slope in correspondence of

the AKLT point β = −1/3; (b) in the dimer and trimer phase fQ grows logarithmically; (c) values

of fQ as a function of β with system size N = 30; the blue circle is the AKLT point where fQ is

maximal, while the two blue squares correspond to the phase-transition points.

The BLBQ model has a hidden symmetry (see Appendix A), that forces to introduce non-local

order parameters (NLOPs) [83] to classify all phases. NLOPs, which are also called String Order

Parameters, are defined as follows:

C̃α = lim
r→∞

〈
Sα1

( r−1∏

k=2

eiπS
α
k

)
Sαr

〉
(2.5)

where α = x, y, z. The NLOPs C̃α have a non-zero expectation value only in the Haldane phase.

In the following, we will examine both the expectation value and the QFI of the non-local

operator:

Õz ≡
N∑

j=1

S̃zj , S̃zj ≡
(
eiπ

∑
l<j S

z
l Szj

)
(2.6)

evaluated on the ground state |ψ⟩ in the different phases of the BLBQ model. With some algebra

one finds:

⟨Õz⟩ =
N∑

l=1

〈( l−1∏

j=2

Ω(j)

)
Szl

〉
(2.7)

and

⟨(Õz)2⟩ =
N∑

l=1

⟨(Szl )2⟩ − 2
∑

l<m

〈
Szl

( m−1∏

j=l+1

Ω(j)

)
Szm

〉
, (2.8)

where we have used

Ω(l) = eiπS
z
l , Ω2(l) = I and Szl Ω(l) = −Szl . (2.9)

These expressions are used to calculate the QFI

FQ
[
|ψ⟩ , Õz

]
=

[
⟨ψ| (Õz)2 |ψ⟩ − ⟨ψ| Õz |ψ⟩2

]
(2.10)
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which coincides with what was discussed in the previous Chapter 1, up to a factor of 4 that we have

neglected since we are dealing with a spin-1 operator with λmax = −λmin = 1.

2.1.2 Numerical results

To rewrite (2.8), it is useful to define the following N ×N matrix:

M =




⟨(Sz
1 )

2⟩ ⟨Sz
1S

z
2 ⟩ ⟨Sz

1Ω(2)Sz
3 ⟩ ··· ⟨Sz

1Ω(2)···Ω(N−1)Sz
N ⟩

0 ⟨(Sz
2 )

2⟩ ⟨Sz
2S

z
3 ⟩ ··· ⟨Sz

2Ω(3)···Ω(N−1)Sz
N ⟩

0 0 ⟨(Sz
3 )

2⟩ ··· ···
··· ··· ··· ··· ···
0 0 0 ··· ⟨Sz

N−1S
z
N ⟩

0 0 0 ··· ⟨(Sz
N )2⟩


 ,

where each matrix element Mij is given by

Mij =

{
⟨Szi Ω(i+ 1) · · ·Ω(j − 1)Szj ⟩ if i ≤ j

0 otherwise.
(2.11)

Similarly, for the term (2.7) we can define the N -dimensional vector:

V = ( ⟨Sz1⟩ , ⟨Ω(1)Sz2⟩ , . . . , ⟨Ω(1) · · ·Ω(N − 1))SzN ⟩) , (2.12)

such that ⟨Õz⟩ turns out to be the sum of all its elements.

In this way, the QFI can be written as

FQ

[
|ψ⟩ , Õz

]
=

N∑

i=1

Mii − 2
N−1∑

i=1

N∑

j>i

Mij −
(

N∑

i=1

Vi

)2

, (2.13)

Simulations to compute the elements ofM and V can be easily implemented numerically. The states

can be represented with Matrix Product States (MPSs) and the ground states can be obtained with

the Density Matrix Renormalization Group (DMRG) algorithm. MPSs are Tensor Network (TN)

techniques that are particularly effective in describing quantum states with short-range entangle-

ment, making them ideal for representing ground states of local Hamiltonians in one dimension.

These methods, although classical computation techniques, are considered quantum-inspired be-

cause they leverage the efficient representation of quantum states through matrices, significantly

reducing computational complexity compared to a full state description. The DMRG algorithm

is one of the most advanced methods for finding ground states, allowing for accurate solutions by

using MPSs. A key parameter in MPS is the bond dimension, which controls the amount of en-

tanglement the state can capture. While small bond dimensions are sufficient for systems with low

entanglement, larger bond dimensions are required to accurately represent more entangled states,

balancing between computational efficiency and accuracy. A comprehensive review on TNs and

DMRG can be found in [94]. The numerical simulations have been done using the ITensor library

[95, 96] and the DMRG computations have been performed with bond dimensions up to χ = 300

and truncation error cutoff set to 10−12, for a higher precision.

In order to investigate the scaling of the QFI density fQ = FQ/N , we have looked for a function

of the form q + bN δ (for the Haldane and critical points) or q + b lnN (for the dimer and trimer
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phases), for system sizes up to N = 120. However, when the data showed a particularly flat trend,

we have fitted fQ against a constant function, in order to minimize the standard error on the

parameters.

The results of the numerical calculations are summarized in Table 2.1 for the Haldane phase

and in Table 2.2 for the Dimer and Trimer phases. The fit and their errors are computed using

standard methods, like the one provided by Mathematica [97].

To analyze these results, let us start from the AKLT point, where the ground state is known

exactly. To calculate the QFI analytically, we can exploit Lemma 2.6 of [84], extended to a string

observable. Let O be an observable and N the system’s size; then for any l ≤ N such that the

support of O is contained in l, we have

lim
N→∞

⟨ΩNαβ|O|ΩNαβ⟩
⟨ΩNαβ|ΩNαβ⟩

=

∑
α,β ⟨Ωlαβ|O|Ωlαβ⟩∑
α,β ⟨Ωlαβ|Ωlαβ⟩

(2.14)

where |ΩNαβ⟩ is one of the four ground states of the AKLT model (see Appendix A). This gives us an

operational way to analytically calculate the terms of the QFI on the infinite volume ground state

from (2.13) for a finite chain. It turns out that each diagonal term is equal to 2/3 while each of the

N(N − 1)/2 off diagonal terms quickly approach to −4/9 (i.e. the value of NLOP (2.5) defined in

the asymptotic limit) when N becomes larger. As the last addend in (2.13) is negligible, the QFI

density for a system of N sites scales linearly as:

fQ(|ψAKLT⟩ , Õz) ≃
2

9
+

4

9
N (2.15)

as confirmed by numerical results in Table 2.1. The same argument holds for the Heisenberg point,

where the asymptotic value of its NLOP is known to be ≃ 0.36 [98]. Furthermore, we observe that

the QFI keeps a linear scaling in the whole Haldane phase, as shown in Fig. 2.3a. One can notice

that the slope of the curves progressively decreases as we move away from the AKLT point.

When moving outside the Haldane phase, the linear scaling in the dimer and trimer phase

becomes sublinear, as it can be seen in Fig. 2.3b. In the dimer phase, the numerical results can

be compared with the analytical calculations performed on the dimer state (2.3) which can be

considered a good approximation, as mentioned in Sec. 2.1. The resulting QFI density fQ(|d⟩ , Õz)
yields 4/3, corresponding to a 2-partite entanglement structure, which is expected from the state

(2.3) being a two-sites product state. Then, assuming that Õz is a good choice for the whole dimer

phase, we can appreciate how good this approximation is in the different points of this phase, by

comparing the various scaling with the exact value 4/3. As we show in Table 2.2 and Fig. 2.3b,

we get that a good function that fits the data is of the form q + b logN , with b that progressively

decreases when β goes to infinity.

We want to stress the crucial difference between the Haldane phase and the dimer and trimer

ones. From the point of view of QFI criterion, the multipartite entanglement structure, in other

words the k in (1.73), grows linearly with the system size in the Haldane phase while in the other

two phases the k grows sublinearly. This may suggest that the ground state in the Haldane phase

may not be factorizable in blocks of finite length in the thermodynamic limit, and this can be shown

using only non-local operators. However, we cannot have direct information on the exact value of
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Figure 2.4: Power-law decay of correlation functions by using both string (in blue) and local (in

green) operators in the Takhtajan-Babujian (upper panel) and Lai-Sutherland (lower panel) models.

The dots are the computed value, while the gray line is obtained fit.

k using only Õz, because we cannot be sure that this is the operator saturating the ground state

QFI.

Let us now analyze the scaling behavior at the transition points β = ±1. The spin-spin correla-

tions are asymptotically given by the fundamental WZW primary fields, leading to the prediction

that, in an infinite system, the dominant antiferromagnetic correlations decay as a power law:

⟨Sα0 Sαr ⟩ ∼
(−1)r

|r|η (2.16)

where η = 2∆ and the scaling dimension ∆ = h+ h̄ can be obtained from the primary field scaling

dimension for a general SU(n) level k WZW model [99]:

h = h̄ =
n2 − 1

2n(n+ k)
(2.17)

As we said in the previous sections, β = ±1 are described by SU(2)2 and SU(3)1 conformal theories

which means that their values of η are equal to 3/4 and 4/3 respectively. We recover this power-law

scaling of correlators both for string and local operators, as we show in Fig. 2.4.

For β = 1, the numerical data display small oscillations between N even and odd, due to the

double degeneracy that emerges in the dimer phase. To increase the accuracy of the fitting, we

have decided to consider only the odd-numbered sites, this however does not modify the value of

the exponents in the thermodynamic limit since these oscillations tend to zero as N increases.
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As shown in [79], the QFI density of one-dimensional models at the critical point is supposed

to scale as f(Oα) ∼ N δQ (up to a non-universal pre-factor and sub-leading corrections) with δQ =

1 − 2∆α, where ∆α the scaling dimension of the operator Oα. We can recover this result from

our approach and numerical data as well. Indeed, considering that the first sum in (2.13) goes as

∼ N (so it brings just a constant contribution in f) and neglecting V (because we are at the critical

point), the only relevant contribution is given by the sum of the off-diagonal terms in theM matrix.

Exploiting the (2.16) in the continuum limit, we get:

N−1∑

r′=1

N∑

r>r′

⟨Sαr′Sαr ⟩ −→
∫ N

1
dr′
∫ N

r′

dr

rη
∼ N2−η (2.18)

so that:

fQ(O
α) ∼ N1−2∆α

(2.19)

The same holds for string operators up to a non-universal pre-factor and sub-leading corrections.

It is evident now why we get the expected numerical value δ ≃ δQ = 1 − 2∆ = 1/4 for the string

magnetization, as reported in Table 2.1. A similar reasoning can be put forward for the calculation

of fQ(O
z
st) of the local staggered magnetization operator along z-axis, defined as

Ozst =
N∑

j=1

(−1)jSzj . (2.20)

Our numerical results for the calculation of the QFI density for Ozst yield: q = −3.770±0.002,

b = 3.201±0.001 and δ = 0.244±0.001. Thus, we are able to read the critical exponent of the

operator from its QFI.

At the Lai-Sutherland point β = −1, the numerical data display small oscillations with a

periodicity of three sites, due to the trimer configuration that merges for β < −1. Unfortunately,

from the data we observe what is mostly probable a flat trend, but we are not able to distinguish

a linear fit from a one that decreases exponentially or, like it should be in this case, as a power law

with a negative exponent. We believe that the pre-factors and sub-leading terms, that depend on

N , might contribute to mask the predicted behavior at criticality.

2.2 XXZ spin-1 model

2.2.1 Phase diagram

The XXZ spin-1 chain is a well-studied quantum system that exhibits an interesting phase diagram

as a function of the anisotropy parameter Jz. It has the following Hamiltonian:

H =
N−1∑

i=1

Jxy(S
x
i S

x
i+1 + Syi S

y
i+1) + Jz(S

z
i S

z
i+1) (2.21)

where we take Jxy = 1 and let Jz vary. It can also be considered as a particular case of the so-called

λ−D model [83], that includes also an isotropy term of the form
∑N

i=1D(Szi )
2.
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BLBQ model

fQ(|ψβ⟩ , Õz) = q + bNδ

Haldane phase

β q b δ

−1/3 0.225±0.003 0.4441±0.0001 1.0002±0.0001

0 0.35 ±0.05 0.355 ±0.002 1.002 ±0.003

1/3 1.122±0.009 0.197 ±0.004 0.9999±0.0005

2/3 1.55 ±0.04 0.111 ±0.020 0.997 ±0.001

1 −3.632±0.004 3.132 ±0.002 0.252 ±0.001

Table 2.1: Numerical values of the fitting param-

eters in the Haldane phase.

BLBQ model

f(|ψβ⟩ , Õz) = q + b lnN

Dimer phase Trimer phase

β q b β q b

2 0.81 ±0.04 0.58±0.01 −2 0.98±0.06 0.19±0.01

4 1.03 ±0.01 0.40±0.03 −4 1.08±0.06 0.12±0.01

8 1.34 ±0.05 0.24±0.01 −8 1.11±0.05 0.09±0.01

∞ 1.39 ±0.04 0.18±0.01

Table 2.2: Numerical values in the dimer and

trimer phases.
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Figure 2.5: Trend of QFI densities in the phase diagram of the XXZ model of size N = 30, with the

string magnetizations Õz, Õx, and the local magnetization Oxst. From left to right: ferromagnetic

(FM) phase, XY gapless phase, Haldane phase and antiferromagnetic (AFM) phase. The critical

points are located at Jz = −1, J
(BKT)
z = 0 and J

(IS)
z = 1.186.

The quantum phase diagram of this Hamiltonian has been extensively studied [100]. It includes

the Haldane phase for 0 < Jz ∼ 1. A second-order phase transition occurs from the Haldane

phase to an antiferromagnetic (AFM) phase that belongs to the same universality class of the 2D

Ising model with central charge c = 1/2. Various numerical techniques, including Monte-Carlo

[101] and DMRG [102, 103], have determined the critical value: J
(IS)
z = 1.186. A Berezinskii-

Kosterlitz-Thouless (BKT) transition occurs at J
(BKT)
z = 0 between the Haldane phase and a

gapless disordered XY phase (−1 < Jz < 0). The value of J
(BKT)
z is theoretically predicted to be

exactly zero, using bosonization techniques [104]. Numerically, this has been verified via finite-size

scaling [105, 106] and DMRG [102]. The entire XY phase (including the BKT transition point) is

a critical phase, which has conformal symmetry with central charge c = 1. Finally, at Jz = −1,

a first-order phase transition from the XY phase to a ferromagnetic (FM) phase takes place [100,

103, 107]. We will not examine in detail such ferromagnetic phase in the following.
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(b) String operator Õx
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Figure 2.6: Scaling behaviors of the QFI density of different operators at some points of interest:

(a) staggered magnetization Oxst (shades of red); (b) x-string operator Õx (shades of green); (c)

z-string operator Õz (shades of blue). Notice the abrupt change in behavior for the string operators

Õx and Õz from J = 1 to J = 1.186, which can also be seen in Fig. 2.5.

2.2.2 Numerical results

Given the symmetries of the Hamiltonian, we consider the scaling behavior of the QFI density of

local and string operators along the x and z axes, including the staggered ones. The ones that show

an extensive scaling, at least in some phases of the model, are the following:

Õz =
N∑

i=1

S̃zi , Õx =
N∑

i=1

S̃xi , Oxst =
N∑

i=1

(−1)iSxi , (2.22)

where, as usual, the operators with the tilde symbol are string operators. Similarly to the previous

section, the numerically computed QFI density fQ is fitted against the function fQ = q + bN δ, or

with a constant if the data presents an extremely flat trend.

In Fig. 2.5 we plot the shapes of the QFI densities of the operators (2.22) in the different phases

of the model for a chain with N = 30 sites. The results of the fitting of the scaling with N are given

in Tables 2.3, 2.4 and 2.5 and some details of the scaling are reported in Fig. 2.5. Let’s analyze

each operator below.

The operator Oxst takes its maximal value close to the FM-XY transition point and then decreases

progressively moving toward the Haldane phase. In particular, analyzing its scaling with N (see

Fig. 2.6a and Table 2.3), fQ reveals a power-law behavior in the XY phase with the coefficient

δ = 0.8376 ± 0.0001 at Jz = −1/2 which gradually reduces (e.g. δ = 0.7574 ± 0.0002 at Jz = 0)

until it vanishes for Jz ≳ 1.

Regarding the string operators (see Tables 2.4 and 2.5), it is possible to observe that fQ(Õ
x)

has a power-law scaling in the whole XY phase (including Jz = 0) where the fQ(Õ
z) appears to be

almost flat, (δ = 0.138 ± 0.003). In the Haldane phase, the QFI for both these operators shows a

linear scaling (δ ≃ 1) with a slope that increases with Jz, reaching the maximal values at Jz = 0.8

and Jz = 1 respectively. For Jz = 1 we recover the Heisenberg model where both have the same

scaling coefficients as expected in an isotropic point.
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The data on QFI can be used to extract information about the critical exponents of relevant

operators at phase transition points and about correlation functions in general. At the critical point

J
(IS)
z , we predict that the scaling dimension of the order parameter is ∆ = 1/8, in accordance with

the universality of the 2D Ising model, since δ = 1 − 2∆ ≃ 3/4. This holds true for the string

order operator Õx, see Table 2.4, and the local staggered magnetization Ozst. The latter is defined

similarly to Oxst in (2.22), for which we obtained δ = 0.76± 0.01.

More generally, we can consider the asymptotic behavior of local staggered and string correlation

functions

Cαst(r) = (−1)r ⟨Sα1 Sαr ⟩ ,

C̃α(r) =

〈
Sα1

( r−1∏

k=2

eiπS
α
k

)
Sαr

〉
(2.23)

which are known to have the following behavior for large r in the (massive) Haldane phase [108]:

Cα = a0
e
− r

a1√
r
, C̃α = a2 + a0

e
− r

a1

r2
(2.24)

where a0, a1 and a2 are fitting parameters and α = x, z as usual, while at the transition point, they

scale algebraically:

Cz = C̃x =
a0

r1/4
, Cx = a0

e
− r

a1

r1/4
, C̃z = a2 +

a0
r2
. (2.25)

The data reported in the Tables 2.3, 2.4 and 2.5 and Fig. 2.6 of the fitting parameters of fQ are

in agreement with these theoretical predictions. In order to understand the results, two comments

are necessary.

The first one is that in the Haldane phase and at the critical points the only relevant contribution

to the QFI density is due to (2.8), i.e. the M matrix made by the spin-spin correlators. The second

one is that, as we said previously for the BLBQ, from our data it is not possible to distinguish

the flat scaling of fQ from an exponential or power-law decay with δ < 0. Then, considering the

correlations (2.24) and (2.25), we can understand that for string operators in the Haldane phase,

the elements Mij are going to approach a2. This leads to a fQ that scales linearly, with the slope

b ≃ a2. From our computations we get δ equal to 0.757± 0.001 and 0.727± 0.001 for Ozst and Õ
x,

respectively, which is comparable to 1− η as expected.

Finally, when −1 < Jz < 0, the system is in the XY phase. In this extended area of critically,

also called “critical fan”, the Hamiltonian can be replaced by the Hamiltonian of a Gaussian model

[109], which admits two primary operators with conformal dimensions:

∆1 =
1

8
, ∆2 =

1

4
χ(Jz), (2.26)

where χ is a function of the coupling Jz such that χ(0) = 1/2 and χ(−1) = 0. The explicit form of

the function χ depends on the details about how the lattice model can be mapped to the Gaussian

model at criticality. This means that there exists one operator for which the critical index δ of

QFI densities will be constantly 3/4 and one with varying between 3/4 and 1, respectively. We

identify such operators with Õx and Oxst, respectively, as it suggested by the data of Tables 2.3 and
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2.4: at Jz = 0 the values of their fitting parameters are extremely close to each other and close to

0.75; moving toward Jz = −1/2, fQ(Õ
x) remains fixed to a similar value (δ = 0.745± 0.002) while

fQ(O
x
st) has δ = 0.8376± 0.0001 and the latter continues to increase as suggested by Fig. 2.5.

XXZ model, staggered magnetization

f
(
|ψ(Jz)⟩ , O

x
st

)
= q + bNδ

Jz q b δ

−1/2 0.231±0.003 0.7041±0.0002 0.8376±0.0001

0 0.138±0.003 0.797 ±0.001 0.7574±0.0002

1/2 −3.5 ±0.5 2.800 ±0.004 0.43 ±0.01

1 3.77 ±0.06

1.186 2.199±0.009

Table 2.3: Numerical values of the fitting param-

eters of the QFI density for the staggered magne-

tization Oxst at different point of the XXZ model.

XXZ model, x-string operator

f(|ψ(Jz)⟩ , Õ
x) = q + bNδ

Jz q b δ

−1/2 0.11 ±0.04 0.829 ±0.009 0.745 ±0.002

0 0.131±0.001 0.7992±0.0002 0.7570±0.0001

1/2 7.2 ±0.3 1.26 ±0.03 0.996 ±0.002

1 0.16 ±0.05 0.356 ±0.004 1.008 ±0.002

1.186 2.74 ±0.05 1.65 ±0.01 0.727 ±0.001

Table 2.4: Numerical values of the fitting param-

eters of the QFI density for the x-string operator

Õx at different points of the XXZ model.

XXZ model, z-string operator

f(|ψ(Jz)⟩ , Õ
z) = q + bNδ

Jz q b δ

−1/2 0.989 ±0.003

0 −3.1 ±0.1 5.8 ±0.1 0.138 ±0.003

1/2 1.21 ±0.04 0.058 ±0.004 1.03 ±0.01

1 0.16 ±0.05 0.356 ±0.004 1.008 ±0.002

1.186 0.489 ±0.007

Table 2.5: Numerical values of the fitting param-

eters of the QFI density for the z-string operator

Õz at different points of the XXZ model.

2.3 Conclusions and outlooks

In this chapter, we have shown how QFI is able to detect multipartite entanglement (ME) in

spin-1 chains with short range interactions. A key aspect in these calculations is the use of string

operators whereas the QFI relative to local operators fails to detect ME, especially in the topological

phases of these models, i.e. the Haldane phase. For the BLBQ model, given the symmetries of the

Hamiltonian, we chose the string magnetization along z and obtained an extensive behavior in the

topological phase, signaling the divergence of ME with the system size. The same applies to the

Haldane phase of XXZ model as well.

In the dimer and trimer phases we found a sublinear behavior; in particular for the dimer phase,

we also propose to use QFI density to estimate how well the 2-sites product state is approximating
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the various ground states in this phase. Furthermore, we recover the expected power-law scaling of

the QFI density for these 1D models in the critical phases. In fact, by knowing the critical exponent

η of the correlators or the scaling dimension ∆ of the operator with which the QFI is calculated, it

is possible to predict how fQ will scale at these critical points: δ = 1− 2∆.

From numerical simulation we obtained δ ≃ 0.25 in the Takhtajan-Babujian point of BLBQ

model and δ ≃ 0.75 in the AFM-Haldane transition point of XXZ model as expected. Throughout

the “critical fan” (XY phase) of the XXZ model, we observe a power-law behavior of fQ with two

different trends of δ: one fixed at the constant value of 3/4 (string operator Õx), the other varying

between 3/4 and 1 (staggered magnetization Oxst) in analogy to what was done in [109].

We remark that QFI is useful for characterizing the different phases of a model, through its

entanglement content. On the other hand, it is not the most appropriate tool for localizing the

transition points, because it would require a tedious analysis of how the scaling of the QFI changes

close to a critical point, having to include constant terms that often complicate the fitting proce-

dures.

In the light of these promising results, it would be interesting to investigate whether it is feasible

to use it for systems with more complicated degrees of freedom, such as models with higher symmetry

groups [110] or with long range interactions [111].
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Chapter 3

QAOA and Natural Gradient in a

noisy Rydberg atoms device

Hybrid quantum-classical variational algorithms [112–114] are essential for exploring the potential

of noisy intermediate-scale quantum (NISQ) devices [115]. These algorithms combine classical com-

putation with quantum processing, where classical resources are used to optimize the parameters of

quantum states. By employing heuristic techniques, they tackle variational problems, particularly

combinatorial optimization tasks, which are both prevalent and critical in many real-world applica-

tions [116]. Consequently, these methods have garnered substantial interest from industries looking

to leverage quantum computing, as solving such problems remains notoriously difficult for classical

algorithms alone.

The Quantum Approximate Optimization Algorithm (QAOA) [117] stands out among hybrid

variational algorithms for its promise in achieving quantum speedups on NISQ devices, drawing con-

siderable interest [118]. QAOA has been successfully implemented across a variety of experimental

platforms, such as Rydberg atom arrays [119], superconducting processors [120], and trapped-ion

systems [121].

Similar to other hybrid algorithms, QAOA involves applying a series of parameterized quantum

gates to a quantum state with the goal of minimizing the expectation value of an observable, typically

the system’s Hamiltonian. The classical part of the algorithm optimizes the gate parameters to

achieve this minimization, requiring frequent evaluations of the Hamiltonian’s expectation value

[122]. The interplay between quantum execution and classical optimization demands repeated

runs of the quantum circuit, making the process resource-intensive. This implies that finding the

minimum of the cost function in just a few steps plays a crucial role.

A significant challenge in this approach is the occurrence of barren plateaus: large flat areas of

the parameters landscape with exponentially small gradients as the number of qubits and circuit

depth increase [123]. This problem can be exacerbated by noise [124] or by employing cost functions

dependent on global observables [125].

This study will focus on a paradigmatic problem: finding the ground state preparation of the

Transversal Field Ising Model (TFIM). In particular, we want to combine the QAOA algorithm

with a Quantum-Natural-Gradient-based optimizer and test his performance on simulations of real

noisy quantum devices. The initial exploration of applying the Quantum Natural Gradient (QNG)

45



to improve quantum variational algorithms was introduced by [126]. Several studies have since

demonstrated the potential advantages of using natural gradient techniques in these algorithms

[127, 128]. The main idea is to leverage information derived from the geometry of the Hilbert

space. In particular, this involves equipping gradient descent with the real part of the quantum

geometric tensor, i.e. the Fubini-Study metric, to accelerate the algorithm’s convergence toward

the solution. Building on this foundation, further research extended the natural gradient approach

to tackle challenges such as noise and non-unitary evolutions in quantum systems [129], using their

own noise models along with some procedure to compute the Fubini-Study metric.

In light of the existing work, our aim is to demonstrate the implementation of this protocol

on a real quantum machine, such as a Rydberg atom array device, and evaluate the algorithm’s

robustness against the specific noise characteristic of these platforms. A key challenge lies in effec-

tively applying QAOA evolutions by tuning laser parameters and leveraging the Rydberg blockade

mechanism. These devices offer both digital and analog quantum computing, with the latter using

global pulses to evolve the entire system. This avoids the need for local qubit addressing, which is

often difficult to achieve in practice and more susceptible to noise.

3.1 Quantum Approximate Optimization Algorithm and Natural

Gradient

The Quantum Approximate Optimization Algorithm (QAOA) is a hybrid quantum-classical algo-

rithm designed to solve combinatorial optimization problems. It was first proposed by Edward

Farhi and Jeffrey Goldstone in 2014 [117] and has since become one of the most promising quantum

algorithms for near-term quantum devices. The algorithm consists of two main components: a

classical optimizer and a quantum circuit that prepares a parameterized trial state on a quantum

computer. The key idea is to iteratively adjust the parameters to minimize the expectation value

of the cost Hamiltonian, thereby approaching the optimal solution.

3.1.1 QAOA Circuit

The QAOA circuit, as shown in Fig. 3.1, involves the following steps:

1. Initialization. The algorithm starts with an initial state, typically the uniform superposition

state |+⟩⊗N , where N is the number of qubits.

2. Parameterized evolution. The state is then evolved using two types of unitary operators:

• Cost Hamiltonian Unitary : Uc(γ) = e−iγHc

• Mixer Hamiltonian Unitary : Um(β) = e−iβHm

Here, Hc is the cost Hamiltonian and Hm is the mixer Hamiltonian, usually chosen as Hm =∑N
i=1 σ

x
i , where σ

x
i are Pauli-X operators acting on the i-th qubit.

3. Layered structure. The evolution is applied in layers, where each layer consists of a pair of

unitaries Uc(γ) and Um(β). The depth of the QAOA circuit is determined by the number of

layers P , leading to a trial state:
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Figure 3.1: QAOA scheme: starting from an initial state, Hadamard gates prepare a superposition.

Each layer alternates between the application of the Cost Hamiltonian e−iγHc and the Mixing

Hamiltonian e−iβHm . The parameters γ and β are iteratively optimized to minimize the cost

function ⟨Hc⟩ after the measurement phase.

|ψ(γ⃗, β⃗)⟩ = Um(βP )Uc(γP ) · · ·Um(β1)Uc(γ1)|+⟩⊗N

Here, γ⃗ = (γ1, γ2, . . . , γp) and β⃗ = (β1, β2, . . . , βp) are the parameters to be optimized.

4. Measurement and optimization. The expectation value of the problem Hamiltonian is

measured in the trial state:

Ec = ⟨ψ(γ⃗, β⃗)|Hc|ψ(γ⃗, β⃗)⟩ (3.1)

A classical optimizer adjusts the parameters γ⃗ and β⃗ to minimize this expectation value,

iterating the process until convergence.

The QAOA merges the advantages of both quantum and classical computing. It harnesses quantum

parallelism and entanglement to navigate the solution space, while relying on classical optimization

methods to adjust the parameters.

3.1.2 Application to the Transverse Field Ising Model

In our study, we apply QAOA to the TFIM, a well-known model in quantum mechanics and statis-

tical physics. The Hamiltonian for the 1D TFIM is given by:

Hc = −J
N∑

i=1

σzi σ
z
i+1 − h

N∑

i=1

σxi (3.2)

where σzi and σxi are Pauli-Z and Pauli-X operators acting on the i-th qubit, J is the interaction

strengths between neighboring spins, and h is the transverse field strength. By optimizing the

parameters of the QAOA circuit, we aim to find the ground state of this Hamiltonian, which

corresponds to the solution of the optimization problem.

As previously mentioned, the QAOA algorithm follows a sequence of well-defined steps, though

it permits flexibility in the choice of Hamiltonians used for evolving the system. The only constraint
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is that the two Hamiltonians –the cost Hamiltonian and the mixer– must not commute with each

other. Specifically, for the TFIM, it can be shown, by using exact diagonalization techniques

provided by the QuTiP library [130], that selecting the cost Hamiltonian unitary as Uzz(γ) = e−iγHzz

where Hzz =
∑

i σ
z
i σ

z
i+1, ensures that the ground state is reached at a depth of P =

⌊
N
2

⌋
. This

implies that circuits with such a depth are sufficiently expressive to capture the ground state while

maintaining the symmetries of the Hamiltonian. Hence, we adopt this parameterization for the

algorithm’s evolution, subject to validation during implementation on the selected platform, which

inevitably includes certain approximations, both with and without noise.

The energy value obtained at the end of the optimization procedure Ec can be compered with

the exact one E0, allowing us to compute the accuracy:

δE :=
Ec − E0

|E0|
. (3.3)

The exact value of the energy, coming from the analytical solution of the TFIM, can be computed:

E0 = −E1 − 2

r∑

q=1

1

1 + h2 + 2h cosαq
, (3.4)

where:

r =

⌊
N

2

⌋
, αq :=

{
(2q−1)π

N for N even
2qπ
N for N odd

and E1 :=

{
0 for N even

1 + h for N odd.
(3.5)

Our implementation of QAOA on a real quantum platform, i.e. such as Rydberg atoms, aims to

demonstrate the algorithm’s robustness and effectiveness even in the presence of different sources

of noise.

3.1.3 Quantum Natural Gradient

Gradient descent is an optimization algorithm used to minimize a function by iteratively moving

towards the steepest descent, as defined by the negative of the gradient. It is commonly used in

machine learning and statistics to optimize models by adjusting parameters [131].

Here’s a brief overview of the method: we start with an initial guess for the parameters, denoted

as θ = (θ1, θ2, . . . , θn). Next, we calculate the gradient of the loss function C(θ) parameter and

update the parameters by moving in the opposite direction of the gradient. The update rule for

each parameter θi is given by:

θ(t+1) = θ(t) − η∇C(θ(t)), (3.6)

where η is the learning rate, a small positive number that controls the step size. These steps are

repeated until convergence that is typically defined by a condition such as:

∥C(θt+1)− C(θt)∥ < ε, (3.7)

where ε is a small threshold indicating that the changes in the parameters are sufficiently small.

Classical natural gradient descent modifies the parameter update by multiplying the gradient

with the inverse of Fisher Information matrix I−1(θ), which captures the geometry of the statistical
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model. Specifically, natural gradient descent scales the gradient to account for the local curvature

of the space of probability distributions, making the update more efficient [132–135].

Classically, the Fisher information measures the sensitivity of a probability distribution to pa-

rameter changes. In quantum systems, the Quantum Fisher Information (QFI) extends this concept,

as we described in Chapter 1.

Thus, the update rule for parameters with QAOA ansatz becomes:

θ(t+1) = θ(t) − ηF (θ(t))−1∇E(θ(t)). (3.8)

where we denote θ = (γ1, β1, γ2, β2, · · · , γP , βP ), ρi = |ψ⟩⟨ψ| is the state obtained by evolving |+⟩
through all the unitary operators, up to the one parameterized by θi such that E(θ) := Tr[ρ2P (θ)Hc].

A simple yet highly illustrative example, encapsulating the core message of this method, can be

seen in Fig. 3.2.

Calculating F for arbitrary quantum states can be quite complex. For rank-r density matrices

given by ρ(θ) =
∑r

n=1 λn|ψn⟩⟨ψn|, the entries are defined by the formula (1.9), provided below:

Fab =
∑

λi∈S

(∂aλi)(∂bλi)

λi
+
∑

λi∈S
4λiRe (⟨∂aψi|∂bψi⟩)−

∑

λi,λj∈S

8λiλj
λi + λj

Re (⟨∂aψi|ψj⟩⟨ψj |∂bψi⟩) .

For pure states, this expression simplifies to the Fubini-Study metric tensor, up to a constant factor:

Fab = 4Re [⟨∂aψ|∂bψ⟩ − ⟨∂aψ|ψ⟩⟨ψ|∂bψ⟩] =

= 4

[
⟨ψa−1|Ha

(
b−1∏

k=a

eiθkHk

)
Hb|ψb−1⟩ − ⟨ψa−1|Ha|ψa−1⟩⟨ψb−1|Hb|ψb−1⟩

]
. (3.9)

The last equality arises because we are considering the unitary parameter embedding induced by

the QAOA, where Ha = Hzz if a is odd and Ha = Hm otherwise. For the diagonal elements, this

expression simplifies to:

Faa = 4
[
⟨ψa−1|H2

a |ψa−1⟩ − ⟨ψa−1|Ha|ψa−1⟩2
]

(3.10)

In this study, we will also address mixed states arising from noisy circuits, so we choose to

compute the Quantum Fisher Information matrix (QFIm) using the following approximation:

Fab = 4

[
Tr

(
ρa−1Ha

(
b−1∏

k=a

eiθkHk

)
Hbρb−1

)
− Tr (ρa−1Ha) · Tr (ρb−1Hb)

]
(3.11)

and, for the diagonal elements:

Faa = 4
[
Tr
(
ρa−1H

2
a

)
− (Tr (ρa−1Ha))

2
]
. (3.12)

Indeed, the resulting mixed state can be expressed in terms of its spectral decomposition as follows:

ρ = λ0|ψ⟩⟨ψ|+
d∑

m=1

λm|ψm⟩⟨ψm| (3.13)

It has been shown that quantum hardware is expected to generate mixed quantum states, where the

dominant eigenvector |ψ⟩ closely approximates the ideal computational quantum state. This occurs

due to the significant entropy of the error eigenvalues (probabilities) λm, which tends to increase

with the system size (see [129, 136, 137]). Thus, in the limit where all λm are small, indicating that

the noisy state is not far from a pure one, Eq. (3.11) provides a good approximation of the QFI.
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|0⟩
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Figure 3.2: Comparison of the optimization paths on the Bloch sphere for minimizing σz (i.e.,

reaching |1⟩) using vanilla gradient (blue) and Quantum Natural Gradient (QNG) (orange) descent.

The QNG method outperforms Vanilla QAOA by reaching the target state in fewer steps while

following the geodesic path on the Bloch sphere. This demonstrates the core advantage of the QNG

descent in efficiently navigating quantum state space.

3.2 Rydberg atoms implementation

A quantum computer based on Rydberg atoms represents an ideal platform for testing the efficiency

of our algorithm [138–140]. Analog quantum computing leverages the natural evolution of a quan-

tum system to solve specific problems. Instead of programming discrete quantum gates (digital

quantum computing), physical parameters, such as magnetic fields or laser intensities, are directly

manipulated to induce a continuous-time dynamic evolution.

In the our case, we work with a register of Rydberg atoms, which serve as the qubits. Analog

quantum computing is realized by evolving this atomic register according to a specific Hamiltonian,

while continuously adjusting parameters like detuning or laser intensity. Indeed, by acting on all

atoms with the same global pulse, one can evolve the entire system with the following Hamiltonian:

H(t) =
∑

i


Ω(t)

2
σxi − δ(t)ni +

∑

j<i

Uijninj


 (3.14)

where ni = 1
2(1 + σzi ). Here, Ω(t) is the Rabi frequency (which determines the strength of the

interaction and it is proportional to the amplitude of the laser field), δ(t) (which denotes the

discrepancy between the qubit resonance and the field frequencies) and Uij denotes the blockade

interaction parameter. This latter depends on the distance between qubits i and j: Uij = C6/R
6
ij ,

where C6 is a constant. By the continuously manipulating Ω(t) and δ(t), one can achieve a significant

level of control over the system’s dynamics.

As introduced in the previous section, QAOA involves the evolution with two non-commuting

Hamiltonians, namely:

Hzz =
∑

i

σzi σ
z
i+1 and Hm =

∑

i

σxi . (3.15)

The evolution operators of these two Hamiltonians can be easily implemented by fixing the qubit

register (thus fixing the distance between individual atoms Rij) and varying Ω(t) to enter and exit
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Figure 3.3: Effective implementation of the two time-evolution operators of the QAOA ansatz in a

Rydberg atom register. In this example with N = 12, we demonstrate how these unitaries can be

realized by transitioning in and out of the blockade regime, adjusting the value of Ω from 1 rad/sec

to 15 rad/sec.

the blockade regime. Inside the blockade regime only the interaction terms nini+1 will be relevant,

whereas outside σx will be the dominant factor. The blockade regime is determined by the Rydberg

radius:

Rb =

(
C6

Ω(t)

)1/6

. (3.16)

In both regimes, we set the detuning value δ(t) = Ui,i+1. In fact, expanding the interaction term

Ui,i+1nini+1 reveals that it contains both σzi σ
z
i+1 and σzi terms. The latter can be canceled by this

choice of detuning. An example of this implementation for N = 12 can be seen in Fig. 3.3.

This work focuses on the simulation of pulse sequences with noise and errors using the pasqal-pulse

library [141]. These factors are intrinsic to real-world quantum systems and must be accurately

replicated in simulations to ensure fidelity. A comprehensive explanation of these phenomena in

Rydberg platforms is provided in [116]. Here, we will briefly outline the aspects considered in this

study.

1. SPAM (State Preparation And Measurement) Errors.

• State Preparation Errors. Initial attempts to prepare the state may occasionally fail

to capture all atoms in the ground state. This is modeled using a probability, p, denoting

the likelihood of an atom not being in the intended state during preparation.

• Measurement Errors. Detection inaccuracies contribute to errors. These include

falsely identifying an atom in the ground state as excited (“false positives”) and vice

versa (“false negatives”).

2. Laser Noises. Laser properties such as frequency and amplitude fluctuations impact their

efficacy in addressing atomic level transitions.
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• Doppler Effect. Thermal motion of atoms causes Doppler shifts in the laser frequencies,

altering the detuning frequency.

• Laser Waist. The Gaussian profile of laser amplitude means atoms at the edges of the

beam experience slightly lower amplitudes compared to those at the focal point.

• Amplitude Fluctuations. Laser amplitude varies from pulse to pulse, influencing the

consistency of laser operations.

3.3 Numerical results

In this study, we assessed the performance of the QAOA with QNG and vanilla gradient descent by

analyzing their effectiveness in preparing the ground state of the TFIM. Our evaluation included

comparisons of success rates in reaching the true ground state from multiple random initial points,

both with and without noise, as well as the number of steps required to achieve this.

3.3.1 Ground state preparation accuracy

As explained in the previous sections, the QAOA algorithm adheres to a specific protocol, which in

our case involves initializing the state in |+⟩⊗N and evolving it using the Hamiltonians in Eq. (3.15).

By strictly following this procedure, it can be demonstrated that the ground state of is achieved with

a depth of P = ⌊N/2⌋. However, as previously mentioned, it is not feasible to evolve precisely using

those two Hamiltonians since the interaction term, even though it should be negligible outside the

Blockade regime, remains present and might affect the accuracy and the number of layers required

to reach the ground state. The same applies within the blockade regime, where Ω(t), although

small, remains present.

We aimed to explore this aspect by plotting how fidelity varies with the number of layers P

for different system sizes, both in the presence and absence of noise (see Fig. 3.4). We opted to

present the fidelity trends because, in some cases, final states with nearly identical energies may still

exhibit low fidelity values. As our primary goal is state preparation, our focus is on how closely the

achieved state overlaps with the true ground state. The fidelity between a mixed state and a pure

state is defined as F = ⟨ψg| ρ |ψg⟩, where ψg is the ground state vector determined through exact

diagonalization. According to the simulation results, it is clear that in the noiseless scenario, the

ground state is achieved with an accuracy of 10−8 when P = ⌊N/2⌋+1. This accuracy is calculated

as the difference between the energy value obtained by the algorithm at convergence and the true

value (see Eq. (3.3)).

When two different sources of noise are introduced, we find that the optimal fidelity is consis-

tently reached at P = ⌊N/2⌋+1, with accuracy ranging from [10−7, 10−4] as N changes. Addition-

ally, the graph includes fidelity values for two extra layers to evaluate whether this might help the

algorithm in achieving the desired ground state. However, the results indicate that adding layers

does not provide any advantage: in the case of laser noise, the fidelity value stabilizes at the next

layer after P = ⌊N/2⌋ + 1 (though with increased variance), followed by a subsequent decrease.

For spam errors, both the fidelity and its variance remain constant for P ≥ ⌊N/2⌋ + 1. This can

be easily understood as adding parameters does not increase noise, unlike the situation with laser

noise evolution.
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Figure 3.4: Growth of fidelity as a function of depth P for various system sizes (N = [6, 8, 10, 12])

and under three different scenarios: noiseless, laser noise, and SPAM errors. It is noteworthy that,

in each case, the highest value of F is achieved when P = ⌊N/2⌋+ 1.

3.3.2 Comparison of QNG vs. Vanilla gradient descent

We evaluated the performance of QNG and standard gradient descent in finding the true ground

state of 1D TFIM by testing both methods across various system sizes, specifically in the range

N = [2, 12]. The simulations were conducted under three different conditions: noiseless, with laser

noise, and with SPAM errors. The value of magnetic field h was set to 0.5, J = 1 and the learning

rate η was selected iteratively by conducting several trials with a fixed N , and choosing the best-

performing values for both methods. The results are presented in Fig. 3.5. Notably, we observed two

main comparison metrics: the average number of steps required to reach the ground state and the

convergence rate, which indicates the percentage of successful algorithm completions in finding the

ground state. A ground state is considered successfully reached when the accuracy is comparable to

those values discussed in the previous section, which represent the best attainable outcomes across

the three different scenarios. The average number of steps required to achieve the minimum was

calculated by running the algorithm multiple times from random initial points and selecting the

first 50 instances in which the ground state was successfully found. Conversely, the convergence

rate was calculated by averaging the results from the first 50 runs.

Furthermore, the QNG was computed using both the full Quantum Fisher Information (QFI)

and the diagonal approximation (which utilizes only the diagonal elements of the QFI matrix).

This comparison is crucial for understanding the scenarios in which it is feasible to approximate

the QNG while calculating fewer elements. This is significant because the QFI matrix must be

inverted during the parameter update process, which incurs additional computational overhead, yet

still offers potential advantages.

In all three scenarios, there is a clear advantage in employing QNG (both the full and diagonal

approximations) compared to standard gradient descent. This advantage becomes more pronounced

as the system size N increases. Furthermore, for the range of sizes we were able to simulate,

there appears to be no significant benefit to using the full QNG over the diagonal approximation,

as suggested in [126], with both methods displaying similar trends and occasionally overlapping

performance (see Fig. 3.5, upper panel). Additionally, in terms of variance, the QNG outperforms

the standard method, exhibiting lower variance, which indicates that the average number of steps

needed to reach the minimum of the cost function is less dependent on the choice of the initial state.
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Figure 3.5: On the upper panels, the average number of steps n needed to reach the ground state

as function of the systems size N = [2, 12] with and without the different sources of noise. On the

lower panels the convergence rate of QNG (full and with diagonal approximation) and vanilla with

and without the different source of noise as function of the system size N = [5, 12] .

Next, let us analyze the convergence rate across the three scenarios as a function of system size

(see Fig. 3.5, lower panel). Here, the range of N was chosen as [5, 12], where we could observe the

first significant discrepancies. It is evident that there continues to be a substantial and progressive

gap in performance between the QNG methods and standard gradient descent as N increases. The

former starts at a 100% convergence rate, tapering off to values greater than 86% at N = 12,

while the standard method progressively declines to just above 56% across the different scenarios.

Additionally, in this comparison, the difference between the two QNG approximations appears more

pronounced, suggesting further improvement for larger sizes of N . This leads us to conclude that the

advantages of using the full QNG over the diagonal approximation lie not so much in the “speed”

of reaching the minimum, but rather in providing more effective directions for achieving the true

one.

3.4 Conclusions and outlook

In this work, we have explored the implementation of the Quantum Approximate Optimization

Algorithm (QAOA) using Rydberg atoms, a promising platform for quantum computation due to

their highly tunable interactions and scalability. Our study focused on simulating pulse sequences

under various noise conditions using the pasqal-pulse library, which allowed us to closely replicate

real-world imperfections in quantum systems.

Our results demonstrate that the QAOA can effectively prepare the ground state of the trans-

verse field Ising model (TFIM), with the number of layers P = ⌊N/2⌋ + 1 being optimal in both
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noiseless and noisy scenarios. However, the presence of laser noise and SPAM errors impacts the

fidelity and convergence rates, particularly for larger system sizes. We observed that the addition

of extra layers does not yield significant improvements in performance and may even degrade the

results due to noise accumulation, particularly with laser fluctuations.

The comparison between Quantum Natural Gradient (QNG) methods and standard gradient

descent showed a clear advantage for the QNG approach, particularly as the system size increases.

The use of the diagonal approximation of the Quantum Fisher Information (QFI) was found to be

almost as effective as the full QNG, offering a balance between computational cost and accuracy.

In our work, we utilized QAOA to find the ground state of the Ising model, which represents a

“quantum” problem. However, QAOA can also be applied to solve classical computational problems

where traditional methods, such as simulated annealing or branch-and-bound algorithms, become

inefficient due to their poor scalability with increasing problem size.

The QNG approach involves computing each matrix element of the Quantum Fisher Information,

requiring the evaluation of 4P 2 elements and the subsequent inversion of this matrix classically. In

principle, the evaluation of each element could be performed in parallel by replicating the system 4P 2

times, evolving it accordingly, and measuring the expected value of the required observables. Given

the effectiveness of the diagonal approximation, it may suffice to consider only the 2P diagonal

elements to achieve a speed-up. However, this approach requires the capability of the Rydberg

atom platform to replicate the initial register in different zones and evolve each independently

through partial addressing of the total register. Unfortunately, this is not currently feasible with

high efficiency on existing platforms but appears highly plausible and achievable in the near future.

Looking forward, several avenues of research could further improve the algorithm’s efficiency and

practical applicability. First, investigating advanced noise-mitigation techniques could help counter-

act the limitations posed by real-world imperfections. Second, optimizing pulse-shaping strategies

could offer enhanced control over system dynamics, minimizing noise effects while maximizing the

algorithm’s fidelity. Finally, exploring the use of more complex quantum architectures or hybrid

quantum-classical methods may provide further gains in both performance and scalability.

Overall, our work underscores the viability of Rydberg atom platforms for implementing QAOA

and provides insights into the challenges and opportunities presented by noise and error in practical

quantum computing systems.
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Chapter 4

From Classical to Quantum Cellular

Automata

In this chapter, we explore the transition from classical to quantum cellular automata (CAs and

QCAs), with a focus on their computational models and applications. CAs are discrete computa-

tional systems that evolve based on local rules, and have a wide range of applications across various

fields. We begin by examining classical CAs, highlighting key examples such as Conway’s Game of

Life and Rule 110. Following this, we introduce the density classification problem, an important

challenge within this domain.

Next, we turn our attention to probabilistic CAs, discussing stochastic rules and their effective-

ness in solving the density classification problem. Finally, we transition to QCAs, the quantum

counterpart to CAs, exploring their definitions, dynamic behaviors, and potential applications. In

particular, we discuss how QCAs can be used to model quantum systems and how they might be

implemented using Rydberg atom devices. This section is not intended to be a comprehensive re-

view of QCAs, but rather a brief introduction to the fundamental concepts and those essential for

understanding the following chapter. For thorough reviews on the subject, excellent resources can

be found in [142, 143].

4.1 Cellular Automata

A cellular automaton is a discrete computational model that has been extensively studied within

the realm of automata theory. Also referred to as cellular spaces, tessellation automata, or iterative

arrays, CAs are homogeneous systems that exhibit complex behavior through simple, local inter-

actions. These models have found applications across diverse disciplines, including physics [144],

theoretical biology [145], and the modeling of microstructures [146].

A cellular automaton consists of a grid of cells, each of which can be in one of a finite number

of states. This grid can be of any dimensionality, allowing for flexibility in its spatial configura-

tion. Each cell interacts with its neighboring cells, defined by a specific neighborhood structure

that varies based on the model in use. Beginning from an initial configuration (at time t = 0), the

system evolves over discrete time steps, where the state of each cell at the next step is determined

by a set of local rules. These rules dictate the new state of each cell based on its current state
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and the states of its neighboring cells. Typically, a radius is defined that limits the neighborhood

to a fixed distance from the cell under consideration. In most models, the rules are homogeneous

across the grid, applied synchronously at each time step, and remain unchanged over time. Variants

such as stochastic or asynchronous cellular automata introduce additional complexity, allowing for

probabilistic transitions or asynchronous updates.

The concept of cellular automata was first formulated in the 1940s by Stanislaw Ulam and John

von Neumann, both of whom were conducting research at the Los Alamos National Laboratory

[147]. Initially, the focus of their studies was on self-replicating systems. However, CA models

only gained significant attention in the 1970s, when John Conway introduced the Game of Life, a

two-dimensional cellular automaton that operates with binary states [148]. Popularized by Martin

Gardner in his influential Scientific American column, the Game of Life is defined by a simple set

of rules:

• any live cell with fewer than two live neighbors dies, as if by underpopulation;

• any live cell with two or three live neighbors survives to the next generation;

• any live cell with more than three live neighbors dies, as if by overpopulation;

• any dead cell with exactly three live neighbors becomes a live cell, as if by reproduction.

Despite the simplicity of these rules, the Game of Life exhibits a remarkable variety of behaviors,

ranging from stable structures to chaotic, dynamic patterns. One of the most notable phenomena

is the emergence of gliders, which are small configurations of cells that traverse the grid over time.

By arranging gliders in specific ways, it is even possible to perform logical operations, making the

Game of Life computationally equivalent to a universal Turing machine. This discovery underscored

the potential of cellular automata to simulate any computation.

In the 1980s, Stephen Wolfram reignited interest in cellular automata through his comprehensive

study of their behavior [149]. Driven by a curiosity to understand how complex patterns in nature

emerge, seemingly defying the second law of thermodynamics, Wolfram investigated a broad range of

CA models, most notably the one-dimensional Rule 30. His findings demonstrated that even simple

rules could give rise to complex, seemingly random behavior. Wolfram also introduced the concept

of computational irreducibility, arguing that the evolution of some systems cannot be simplified or

predicted without actually performing each step of the computation. His research culminated in

the identification of Rule 110 as a universal cellular automaton, a conjecture later proven by his

research assistant Matthew Cook in [14].

4.1.1 Rule 110: A Turing-Complete Cellular Automaton

In an elementary cellular automaton, a one-dimensional sequence of 0s and 1s evolves according to

a simple set of rules. The state of each cell in the next generation is determined by its current state

and the states of its two neighboring cells. Rule 110 is one of the most significant elementary CA

due to its computational power, including the ability to simulate a Turing machine.

The transition rules for Rule 110 are as follows:

60



Current pattern 111 110 101 100 011 010 001 000

New state for center cell 0 1 1 0 1 1 1 0

The sequence of current patterns is conventionally taken in the order shown above. The name

“Rule 110” originates from the fact that the rule can be encoded as the binary sequence 01101110

(representing the new states of the center cell), which corresponds to the decimal number 110 when

interpreted as a binary number. This naming convention applies to other elementary rules in the

same manner.

Matthew Cook proved that Rule 110 is universal (or Turing complete) by demonstrating its

ability to emulate a known universal computational model called the Cyclic Tag System (CTS) [14].

In his proof, Cook identified specific repeating structures, known as spaceships, which are localized

patterns that propagate across the automaton’s grid. He then showed how combinations of these

spaceships could interact in ways that perform computation, thus establishing the universality of

Rule 110.

The operation of this universal machine within Rule 110 relies on embedding a finite set of

localized patterns within an infinitely repeating background pattern. This background, which is 14

cells wide, repeats every seven iterations and follows the sequence 00010011011111.

Three critical localized patterns play a key role in the functioning of the Rule 110 universal

machine. These patterns, embedded in the repeating background, are illustrated in Fig 4.1: the

top row shows the initial state, while each subsequent row represents the system’s state at the next

time step.

• The first pattern, shown on the left, remains stationary and repeats every seven generations.

It is formed by the sequence 111, embedded within the repeating background.

• The second pattern, located in the center, shifts two cells to the right and repeats every three

generations. It consists of the sequence 0001110111, surrounded by the same background.

• The third pattern, on the right, shifts eight cells to the left and repeats every 30 generations.

This pattern is composed of the sequence 1001111, also embedded within the background.

These different patterns can interact in various ways when they encounter each other: they can

either pass through one another without any interaction, maintaining their form and continuing

their evolution as usual, or they can collide, producing a new pattern as a result of their interaction.

The CTS consists of three essential components:

1. a stationary data string ;

2. a set of production rules that move from right to left in a cyclic and infinite pattern in time;

3. a series of clock pulses that move from left to right, also repeating infinitely.

The correct initialization of these components is crucial for the CTS to function properly. The

cellular automaton must be set up so that the interactions between the localized structures occur

in an orderly fashion, enabling the CTS to execute its operations seamlessly.
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Figure 4.1: Three different types of patterns (from left to right, stationary, right-moving, and left-

moving) generated by Rule 110.

In this system, the data string is represented by stationary repeating structures (like those

discussed previously), with the spacing between these structures encoding the symbols 0 and 1.

These symbols form the “word” on which the CTS operates. At each step, the first symbol of the

string is removed. If the first symbol is a 1, new symbols are appended to the end of the string

according to the production rules; if the first symbol is a 0, no new symbols are added.

From the right, a series of left-moving structures (representing the production rules) enters

the system. These structures are arranged to encode the sequence of 0s and 1s that define the

CTS’s production rules. These rules are encoded as an infinitely repeating sequence, with each rule

separated by a structure known as a rule separator (or block separator), which also moves leftward

in sync with the production rules.

When a left-moving rule separator encounters the first symbol in the stationary data string,

that symbol is destroyed. What follows depends on whether the symbol was a 0 or a 1. If the

symbol was a 0, the rule separator transforms into a structure that blocks the incoming production

rule, causing it to be destroyed upon meeting the next separator. If the symbol was a 1, the

rule separator transforms into a different structure that allows the production rule to pass. This

structure is eventually destroyed, but not before it permits the rule to continue leftward, adding

new structures to the data string.

Finally, the right-moving clock pulses play a key role in the system by facilitating the transfer

of information. These clock pulses continuously repeat a specific pattern, converting the 1s and

0s of the left-moving production rules into stationary symbols that extend the data string. This

mechanism ensures the CTS continually updates its data string based on the applied production

rules, thereby completing its computation.

4.2 The density classification task

The density classification problem, also known as majority problem, has a remarkably simple for-

mulation: how can a dynamical system determine the majority state in its initial configuration?

While the problem is trivial in most classical computing paradigms (e.g., Turing machines), the
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challenge here lies in performing the task under the following constraints:

1. Simplicity : the cells’ states are binary, allowing for a straightforward computational structure.

2. Autonomy :the system operates independently, with no external operator directing the com-

putation. All changes occur internally, affecting only the states of its components, the cells.

3. Spatial and temporal uniformity : all cells follow the same rule, which remains fixed over time

and space, ensuring consistency in their behavior.

4. Locality : each cell has a limited view of the system, typically interacting only with cells within

a defined neighborhood.

5. Consensus: the computation is considered complete when the system reaches a stable con-

sensus, where all cells agree on a specific state.

It is indeed possible to extend the density classification problem to other systems, such as

higher-dimensional cellular automata (CA) [150] or networks [151, 152]. This inverse problem has

attracted considerable attention since its original formulation by Packard [153]. The core challenge in

solving this problem arises from the decentralized nature of information processing: unlike classical

approaches, the system cannot rely on central control or straightforward counting mechanisms.

Instead, the solution must emerge from local decisions, which may sometimes conflict with the

global behavior of the system. Additionally, due to the homogeneity of CA systems in space and

time, individual cells cannot be specialized for partial computations, further complicating the task.

Effectively solving this problem requires a delicate balance between making autonomous local

decisions and following the influence of neighboring cells to achieve global consensus. In 1995,

Land and Belew made an important discovery: they proved that no perfect (deterministic) density

classifier can exist when using only two states [154]. Despite this, the search for highly efficient CA

rules has continued, with genetic algorithms emerging as the primary tool for exploration (see, for

example, [155] and references therein). Researchers have sought to determine how close a rule can

come to a perfect solution.

In contrast, several modifications to the classical density classification problem have led to exact

solutions. For instance, Capcarrère et al. introduced a variation to the output requirements of the

problem, enabling perfect classification [156]. Similarly, Fukś showed that running two CA rules

sequentially (the “traffic” and “majority” rules) can yield a viable solution [157].

Additionally, Martins and Oliveira found that specific pairs and triples of CA rules can solve

the problem when applied sequentially for a predetermined number of steps, depending on the size

of the lattice [158]. Some researchers have suggested enhancing the capabilities of CA rules by

embedding memory into the cells themselves [150, 159].

However, all these approaches violate at least one of the initial problem constraints. Stochastic

(or probabilistic) CA present a promising alternative that adhere to the original constraints while

introducing an element of randomness. In such systems, the state transitions of individual cells are

determined probabilistically rather than deterministically. The use of randomness in solving the

density classification problem was first proposed by Fukś, who developed a rule where cells prob-

abilistically “copy” the states of their neighbors [160]. However, this method lacked the necessary
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driving force toward a unified system state. More recently, Schüle et al. proposed a stochastic rule

based on local majority voting, which improved convergence but remained subject to certain intrin-

sic limitations [161]. Building on these ideas, Fatès introduced a novel stochastic rule capable of

solving the density classification problem with arbitrarily high precision [162]. Specifically, for any

given lattice size, the probability of correctly classifying the majority state can be made arbitrarily

close to 1. In the next two sections, we will take a closer look at the solution proposed by Fukś and

the one put forward by Fatès .

4.2.1 Fukś density classifier

In the following, we deal with a probabilistic cellular automaton introduced by Fukś that solves

the density classification problem in a stochastic sense. Specifically, the probability that all sites

eventually become occupied corresponds to the initial density of occupied sites in the system’s

starting configuration. We consider a one-dimensional lattice with periodic boundary conditions.

Let si(t) be the state of lattice site i at time t, where i ∈ Z and t ∈ N. The spatial index

i is treated modulo L, where L is the lattice length. Each site can take a value from the set

si(t) ∈ {0, 1}, where si(t) = 1 indicates that site i is occupied at time t, and si(t) = 0 indicates

that it is empty. The system evolves based on local interactions: empty sites become occupied

with a probability proportional to the number of occupied neighbors, while occupied sites become

empty with a probability proportional to the number of empty neighbors. All sites are updated

simultaneously at each time step. More formally, let P (si(t + 1)|si−1(t), si(t), si+1(t)) denote the

probability that site i, with neighbors si−1(t) and si+1(t), changes to state si(t+1) in the next time

step. The transition probabilities for a central cell to change to state 1 (or remain in state 1 if it is

already there), denoted as P (1 | a, b, c) for all a, b, c ∈ {0, 1}, are provided in the table below:

Current pattern 111 110 101 100 011 010 001 000

Transition probability 1 1− p 2p p 1− p 1− 2p p 0

where p ∈ (0, 1/2]. The transition probabilities for a cell to change to or remain in state 0 can be

derived using the relation P (0 | a, b, c) = 1− P (1 | a, b, c) for all a, b, c ∈ {0, 1}.
To make the probabilistic CA defined by the rule above more explicit, we introduce a set of

independent and identically distributed random variables {Xi}Li=0 with the probability distribution

P (Xi = 1) = p and P (Xi = 0) = 1 − p, along with another set {Yi}Li=0 with the distribution

P (Yi = 1) = 2p and P (Yi = 0) = 1 − 2p. The dynamics of the rule can then be expressed by the

following equation:

si(t+ 1) = Xi(1− si−1)(1− si)si+1 + (1− Yi)(1− si−1)si(1− si+1)+

+ (1−Xi)(1− si−1)sisi+1 +Xisi−1(1− si)(1− si+1)+

+ Yisi−1(1− si)si+1 + (1−Xi)si−1si(1− si+1) + si−1sisi+1.

(4.1)

For clarity, we have omitted the time argument in the above formula, denoting si(t) simply by si.

After simplifying and rearranging the terms, the final expression becomes:

si(t+ 1) = si − siYi +Xisi−1 +Xisi+1 + (si−1si + sisi+1 − 2si−1sisi+1)(Yi − 2Xi). (4.2)
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At time t, the state of the system is determined by the states of all lattice sites and can be represented

as the Boolean random field s(t) = {si(t) : i = 0, . . . , L}. The sequence {s(t) : t = 0, 1, 2, . . . }
forms a Markov stochastic process. Let Es(0) denote the expected value of this Markov process

given the initial configuration s(0). The expected local density of occupied sites is defined as

ρi(t) = Es(0)[si(t)]. The expected global density is given by:

ρ(t) =
1

L

L∑

i=0

ρi(t). (4.3)

Although both ρi(t) and ρ(t) depend on the initial configuration s(0), we will omit this dependence

for simplicity. Assuming the initial configuration is known and deterministic, we define the initial

global density as:

ρ(0) =
1

L

L∑

i=0

si(0), (4.4)

which represents the fraction of initially occupied sites. Taking the expectation of both sides of

equation (4.2) and using the fact that Es(0)[Yi − 2Xi] = 0, we derive the following expression for

the expected local density:

ρi(t+ 1) = ρi(t) + p (ρi+1(t) + ρi−1(t)− 2ρi(t)) . (4.5)

By summing over all lattice sites and accounting for the periodic boundary conditions, this equation

becomes:

ρ(t+ 1) = ρ(t), (4.6)

which implies that the expected global density remains constant, independent of the parameter p

and the initial configuration s(0). Thus, we conclude that this probabilistic cellular automaton

preserves the number of occupied sites.

Let N(t) =
∑L

i=1 si(t) represent the number of occupied sites at time t. If the initial condition

is N(0) = 0, then N(t) = 0 for all t > 0. Similarly, if N(0) = L, then N(t) = L for all t > 0.

Therefore, the process has two absorbing states (i.e., states from which the system cannot escape

once reached): one where all sites are empty (denoted as state 0) and one where all sites are fully

occupied (denoted as state 1).

Now, define PN (t) as the probability that exactly N sites are occupied at time t. Since the

Markov process {s(t) : t = 0, 1, 2, . . . } is finite (meaning that only a limited number of configurations

are reachable at each time, given that L is finite) and absorbing, regardless of the initial state, the

probability that the process eventually reaches an absorbing state approaches 1 as t → ∞. This

leads to the following:

lim
t→∞

PN (t) = 0 for N ̸= 0, L, and lim
t→∞

(PL(t) + P0(t)) = 1. (4.7)

The expected global density, does not change with t. Thus, we have:

ρ(0) =
1

L
Es(0)[N(t)] =

1

L

L∑

N=1

NPN (t). (4.8)
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Taking the limit as t→ ∞ on both sides of the above equation, and using Eq. (4.7), we obtain:

lim
t→∞

PL(t) = ρ(0) and lim
t→∞

P0(t) = 1− ρ(0). (4.9)

Thus, the probability that the dynamics reaches the absorbing state 1 equals the initial fraction

of occupied sites, ρ(0). Conversely, the probability of reaching the absorbing state 0 is 1− ρ(0).

The result above can be interpreted as a probabilistic extension of the density classification

problem. In the deterministic version, the goal is to find a cellular automaton rule that converges

to state 1 (or 0) if the initial fraction of occupied sites is greater (or less) than 1/2.

In contrast to the deterministic case, where the outcome is strictly defined, this process yields

a probabilistic result. When the initial fraction of occupied sites exceeds 1/2, the system is more

likely to reach state 1 than state 0. Conversely, if the initial fraction is below 1/2, the system

is more likely to converge to state 0. Furthermore, this approach offers a method to estimate

the initial concentration of occupied sites. By running the process multiple times with the same

initial condition and observing the absorbing state, the frequency of reaching state 1 provides an

increasingly accurate approximation of N(0)/L as the number of runs increases.

This section has reviewed the key steps of the proof presented by FukśḞor further details and

numerical results, see the original reference [160].

4.2.2 Fatès density classifier

In this section, we examine a probabilistic CA introduced by Fatès [162], designed to solve the

density classification task with arbitrary precision. The automaton’s transition probabilities for a

central cell are given in the table below:

Current pattern 111 110 101 100 011 010 001 000

Transition probability 1 η 1 1− η 1 0 0 0

where η ∈ (0, 1). The rule works by applying rule 184 (also known as the “traffic” rule) with

probability 1− η, and rule 232 (the “majority” rule) with probability η, at each cell and time step.

This means that at every step, a random number in the range (0, 1) determines whether to apply

rule 184 or rule 232, and once a rule is selected, the entire chain evolves according to that rule. To

prove the success of this rule, we introduce key definitions and supporting lemmas.

Definition 1 For q ∈ {0, 1}, a configuration s(t) is called a q-archipelago if all cells in state q are

isolated. In other words, s(t) does not contain two adjacent cells in state q.

In a q-archipelago, each cell in state q is referred to as an “island.” These islands of cells in state

q are separated by at least one cell in the opposite state, ensuring no direct adjacency between cells

in state q. The notion of islands is crucial for analyzing the convergence behavior of the cellular

automaton, as the evolution of the system leads to the eventual disappearance of these states.

Lemma 1 An archipelago is well-classified with probability 1. Specifically, a configuration s(t) that

forms a q-archipelago with k cells in state q has an expected convergence time E{T (s(t))} ≤ k
η .
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Proof. The proof is straightforward and relies on two key observations. First, the successor of a

q-archipelago is also a q-archipelago. Assume, without loss of generality, that s(t) is a 1-archipelago.

By applying the transition rule, all isolated 1s will eventually turn into 0s. As for 0s that turn into

1s, they must be preceded by a 1 (which has turned into a 0) and followed by either another 1 (also

turning into a 0) or a 0 (remaining 0 because 000 → 0 and 001 → 0). This ensures that no two 1s

become adjacent in s(t+ 1). Second, the number of 1s in s(t) is a non-increasing function of time.

At each step, any isolated 1 has a non-zero probability η > 0 of disappearing. As a result, all 1s will

eventually vanish, leading the system to converge to the fixed point 0, which represents a correct

classification since the density ρ(0) < 1/2. Until the system reaches a fixed point, there is always

a probability greater than η that the number of islands decreases by 1. If the archipelago initially

contains k islands, the expected time for all islands to disappear is upper-bounded by k/η. □

Definition 2 For a given configuration s, we define an archipelago a as appropriate if it shares

the same majority state as s.

Specifically, this means that either ρs(0) <
1
2 and ρa(0) <

1
2 , or ρs(0) >

1
2 and ρa(0) >

1
2 .

Another key property of the rule is that any configuration is transformed into an appropriate

archipelago with a probability that approaches 1 as η → 0.

Lemma 2 For every p ∈ [0, 1), there exists a setting η such that every configuration s will evolve

to an appropriate archipelago with a probability greater than p.

Proof. First, we claim that starting from any configuration s, if the system evolves with the traffic

rule for T = ⌈L/2⌉ steps, the system reaches the appropriate archipelago corresponding to s. This

claim is based on two key facts: (1) the traffic rule is number-conserving, and (2) it always evolves

to an archipelago in at most T steps (see [156]). To prove the lemma, it is sufficient to choose η

such that the probability of a discrepancy between the two rules is less than p. By examining the

transition tables for the rule 184 and Fatès rule, we observe that differences occur only when tran-

sitions of the form 100 → 0 or 110 → 1 happen, which occur with probability η. Furthermore, the

number of such transitions can be upper-bounded by LT . Therefore, to ensure that the probability

of a difference is lower than p, we require η < p1/LT . □

Thus, our initial assertion regarding the attainment of the correct final state with arbitrary

precision is validated by combining the results from the two preceding lemmas: for sufficiently small

η, the system evolves into an appropriate archipelago (as stated in Lemma 2); it then gradually drifts

toward the suitable fixed point (as outlined in Lemma 1). Therefore, the probability of reaching

the correct final state approaches 1 as η → 0.

4.3 Quantum Cellular Automata

Quantum cellular automata (QCAs) are the quantum counterpart to classical cellular automata

(CAs). The early conceptual foundation of QCAs dates back to [163], where it was suggested

that quantum computers, rather than classical ones, would be more suited to simulate quantum

physics. In fact, it is widely believed that quantum simulations of physical systems will likely
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be among the first practical applications of quantum computers [164]. This is because quantum

systems are inherently difficult to simulate on classical computers, particularly when the complexity

of the system grows. Specific QCA models were introduced in works such as [20, 165, 166]. In [20],

QCAs were proposed as an alternative paradigm for quantum computation, demonstrating their

universality, meaning they could efficiently simulate a quantum Turing machine. The significance

of this result lies in the fact that universality is a key feature of any computation model that aims to

be fully generalizable. An earlier paper [166] presented a model of quantum computation described

as a classically controlled QCA, where a series of global, translationally invariant unitary operations

are applied over discrete timesteps.

One advantage of this type of quantum computation is its reliance on homogeneous global

operations on all qudits, unlike the circuit model that requires precise control over individual or

small groups of qubits, which can be challenging, especially in systems like trapped ions. This

advantage can potentially lead to simpler implementations of quantum algorithms, making QCAs

attractive for practical uses.

However, the development of QCAs from classical CAs was not without difficulties. Various

obstacles emerged, as näıve approaches, such as extending classical evolution linearly to create a

quantum version, often failed. A significant issue is that while CAs allow all cells to be updated

simultaneously, in QCAs, copying a cell’s state (to update its neighbors later) is impossible due to

the no-cloning theorem [167, 168]. This theorem is a fundamental principle in quantum mechanics

that prohibits the exact copying of arbitrary quantum states. To address these challenges, several

constructive methods were proposed, typically involving finite-depth circuit layers and shifting qu-

dits to neighboring sites. It wasn’t until later that an axiomatic definition of QCAs was formulated,

capturing the essence of CAs while ensuring the evolution remained quantum [21]. This axiomatic

approach not only resolved many of the initial issues but also provided a formal framework that

could be extended to more complex quantum systems.

The axiomatic definition we will use describes a QCA as a spatial lattice with quantum systems

at each site. The evolution occurs in discrete time steps, governed by an operator that preserves

locality. Locality preservation is the discrete analogue of relativistic causality, meaning that local

operators in the Heisenberg picture remain local over time. In other words, information cannot

propagate faster than a certain speed, preserving the causal structure of the system. We will

explore this in greater detail in Sec. 4.3.1.

A particularly ambitious application of QCAs is to model discrete physical systems. Once space-

time is considered discrete and a maximum speed of information propagation is assumed, the only

remaining assumption needed is unitarity, which naturally leads to a QCA framework. In contrast,

continuous-time dynamics on a lattice governed by a local Hamiltonian does not impose a strict

upper bound on information propagation. This difference makes QCAs an appealing framework

for exploring fundamental questions about the nature of spacetime and information transfer at the

quantum level.

4.3.1 Definition and dynamics

QCAs are defined on quantum lattice systems, which means we have a discrete spatial lattice with

quantum systems located at each lattice site (or cell). While some authors consider more general
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graphs [169], we will focus on lattices in this work. This simplification will allow us to highlight the

core aspects of QCA dynamics without getting into the complexities introduced by more general

graph structures. The lattices, in general, can be either infinite, such as Zd, or finite, potentially

with periodic boundary conditions. At each lattice site, we assume there are finite-dimensional

quantum systems, i.e. qudits. QCAs for continuous variable systems have also been explored in

[170], where a specific class of QCAs, known as Gaussian QCAs, was introduced. These evolve

through Gaussian operations, which transform Gaussian states into other Gaussian states.

For finite lattice systems, the total Hilbert space is the tensor product of the Hilbert spaces

corresponding to each lattice site. This structure allows us to consider localized observables and

their interactions, which will be central to our discussion on the dynamics of QCAs.

To describe the dynamics of QCAs, it is often convenient to work in the Heisenberg picture,

where the observables evolve over time. This approach simplifies understanding and defining a key

feature of the dynamics: locality preservation. However, in some cases, switching to the Schrödinger

picture is useful, as it provides a clearer connection to quantum computation. The choice between

these two pictures depends on the specific problem we aim to solve, but both are mathematically

equivalent and provide valuable insights into QCA behavior. In each discrete time step, the QCA

usually evolves through a unitary operator.

We represent the QCA dynamics by u : Ô → u(Ô), where Ô belongs to the algebra of observables

O acting on the system. Importantly, we require that the evolution preserves locality (see Fig. 4.2).

This means that local operators are mapped to operators localized in a nearby region. This property

is sometimes referred to as “causality” [169], drawing an analogy with relativistic causality. More

formally, we can define locality preservation as follows.

Definition 3 The dynamics of a QCA u is locality preserving if there exists a range l ≥ 0 such

that, for any site x⃗ and any operator Ô localized at x⃗, the operator u(Ô) is localized in a region

consisting only of sites y⃗ where |x⃗− y⃗| ≤ l.

This means that the action of u does not spread information arbitrarily far, ensuring that the

operator u(Ô) only affects a bounded region around the initial site x⃗.

We can further introduce the concept of the neighborhood of a point x⃗, denoted by J(x⃗), which

is the smallest region in which the algebra u(Ôx⃗) is localized after applying the QCA. This notion

can naturally be extended to a larger region R, with its neighborhood denoted by J(R), representing

the smallest set of sites that can be influenced by the QCA dynamics acting on the region R. These

neighborhood concepts are essential for understanding how information propagates in QCAs, as

they impose strict limits on how far and how quickly influences can spread across the lattice.

Combining all these aspects, we can encapsulate the definition of a QCA as follows:

Definition 4 A QCA consists of a discrete hypercubic lattice with a finite quantum system at each

site (qudits and/or fermion modes). The evolution proceeds in discrete time steps via a locality-

preserving unitary operator.

We do not always assume that QCAs are translationally invariant (i.e. their dynamics commute

with shifts along any lattice direction), although this assumption has been made in many works.

69



Figure 4.2: Locality-preserving property of QCA: at time t = 0, an operator Ô is localized

across four sites. After a single time step, the updated operator u(Ô) is found to be localized across

six nearby sites.

While it would be more in the spirit of classical CAs to always consider translationally invariant

dynamics, some of the most intriguing QCA structure theorems do not require any form of transla-

tional invariance. Thus, relaxing the translational invariance condition opens up the possibility of

discovering novel QCA behaviors and structures that might not be apparent otherwise.

Finally, it would also be interesting to explore irreversible (i.e. non-unitary) QCAs, as discussed

in [168, 171, 172], although relatively little research has been conducted in this direction. In these

cases, unitary operators would be replaced by completely positive trace-preserving maps (CPTP),

which represent the most general dynamics allowed by quantum theory [167]. These irreversible

dynamics may offer insights into how quantum systems behave under dissipation or noise, which

is important for practical applications like quantum error correction. An example of this is the

investigation of how to solve the majority vote problem in a quantum setting, which we explore in

Chapter 5.

4.3.2 Partitioning schemes

We consider partitioning the lattice into P distinct sets, with each set comprising supercells de-

noted by Cpn⃗, where n⃗ ∈ Zd and p ∈ {1, . . . , P}. Each site in the lattice belongs to exactly one

supercell within each partition (see Fig. 4.3). The dynamics of the QCA are then described by the

composition of unitary transformations:

u1 ◦ · · · ◦ uP (4.10)

In this context, each up represents a product of unitaries Upn⃗ that are localized on the supercells Cpn⃗.

Explicitly, this can be expressed as:

up(·) =
(∏

n⃗

Up†n⃗

)
·
(∏

n⃗

Upn⃗

)
, (4.11)

where the order of multiplication is inconsequential, as the unitaries operate on non-overlapping

regions and thus commute.
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Figure 4.3: Partition of the lattice into finite supercells Cpn⃗ of arbitrary shape. Unitary transfor-

mations, or more generally, CPTP transformations, are then applied to the systems within these

supercells.

An illustrative example of a QCA constructed using this partitioning approach is the block-

partitioned QCA discussed in [168], which employs layers of conditional unitaries. For the case of

nearest-neighbor interactions in a one-dimensional lattice of qubits, we define an operator that acts

non-trivially on sites n− 1 with |a⟩⟨a|, n with vab, and n+ 1 with |b⟩⟨b| as follows:

Dab
n = |a⟩⟨a|n−1 ⊗ vabn ⊗ |b⟩⟨b|n+1, a, b ∈ {0, 1}, (4.12)

where vabn is a unitary operator. The corresponding conditional unitary operator is defined as:

Vn =
∑

a,b∈{0,1}
Dab
n . (4.13)

When the qubits at sites n+1 and n− 1 are in the state |0⟩, the unitary v00n is applied to the qubit

at site n. The QCA dynamics are then modeled using a depth-three quantum circuit: first, apply

Vn to all sites where n mod 3 = 0, then to those where n mod 3 = 1, and finally to those where

n mod 3 = 2. This scheduling ensures that unitaries are never applied simultaneously to overlap-

ping supercells. The properties of such QCAs, including information transport and entanglement

generation, were explored in [168]. This partitioning method also facilitates the construction of

non-unitary QCAs, as demonstrated in the same reference, where local unitaries are replaced by

local CPTP maps.

To implement the discrete-time evolution of the system, we define a quantum channel using the

Kraus operator decomposition [167]:

Ŝ[ρ̂] =
∑

a,b∈{0,1}
K̂abρ̂

(
K̂ab

)†
(4.14)

where K̂ab =
∏
n D̂

ab
n , satisfying the trace-preserving condition:

∑

a,b

(
K̂ab

)†
K̂ab = 1̂. (4.15)

Alternatively, in the context of continuous-time dynamics, we can introduce the Lindbladian:

L̂[ρ̂] = −i
[
Ĥ, ρ̂

]
+

N∑

n=1

∑

a,b

(
L̂abn ρ̂(L̂

ab
n )† − 1

2

(
(L̂abn )†L̂abn ρ̂+ ρ̂(L̂abn )†L̂abn

))
(4.16)
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where Ĥ represents the Hamiltonian, and
{
L̂abn
}
denotes the set of jump operators acting on lattice

site n, which take the same form as in Eq. (4.12).

This framework leads to irreversible QCAs, such as the solutions to the quantum version of

the density classification task explored in Chapter 5, or the quantum analog of the classical Rule

110 cellular automaton discussed in Sec. 4.1.1. In the latter case, since Rule 110 is inherently

irreversible, a non-unitary QCA is necessary for its replication.

4.3.3 Rydberg atoms implementation

Unlike the quantum circuit model, where global unitary operations are built using single-qubit gates

or small sets of qubit interactions, QCAs achieve global unitary dynamics without the need for ad-

dressing individual qubits directly. This is often seen as an advantage, since controlling individual

sites can be challenging in practice [173]. A promising experimental proposal suggests using ultra-

cold atoms excited to Rydberg states to implement QCAs [174]. This approach demonstrates the

suitability of QCAs for tasks such as variational quantum optimization and quantum state engi-

neering, where the system can be tuned to reach highly entangled steady states.

We consider a physical setup consisting of an array of three-level systems with a ground state

|g⟩ ≡ |0⟩, a strongly interacting Rydberg state |r⟩ ≡ |1⟩, and a short-lived intermediate state |e⟩,
which mediates non-unitary interactions (see Fig. 4.4). This configuration can be realized using

various technologies, such as single atoms [175–179], trapped ions [180, 181], or Rydberg-blockaded

atomic ensembles [182–184]. For simplicity, we assume an equidistant 1D chain of trapped atoms

with nearest-neighbor interactions. Two fields, each with several discrete frequency components,

couple the |g⟩ ↔ |r⟩ and |r⟩ ↔ |e⟩ transitions.
Under the rotating wave approximation, the system’s dynamics are governed by a time-dependent

quantum master equation in Lindblad form (with ℏ = 1):

∂ρ̂

∂t
= L[ρ̂] = −i[Ĥ, ρ̂] +D[ρ̂], (4.17)

where the Hamiltonian Ĥ is given by:

Ĥ =
∑

j,k

(
θkj
2
eikV tσ̂rgj +

ϕkj
2
eikV tσ̂rej + h.c.

)
+ V σ̂rrj σ̂

rr
(j+1). (4.18)

Here, σ̂abj = |a⟩⟨b|j acts on site j, and V represents the nearest-neighbor interaction strength.

The time-dependent phase factors describe the discrete components of the multifrequency fields,

with detunings kV (k = 0, 1, 2), and coupling strengths θkj and ϕkj . These couplings may vary across

the system (e.g., between even and odd sites) or remain uniform. Dissipation is described by:

D[ρ̂] =
∑

j

L̂j ρ̂L̂
†
j −

1

2

(
L̂†
jL̂j ρ̂+ ρ̂L̂†

jL̂j

)
, (4.19)

where the jump operators L̂j =
√
Γσ̂gej describe spontaneous decay from the |e⟩ state. The decay

of the Rydberg state
√
γσ̂grj is assumed to be much slower and will be neglected.
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Figure 4.4: Implementation of QCA using Rydberg atoms. Left: A one-dimensional array of

atoms in optical microtraps, separated by a distance a, with interactions limited to nearest neighbors

with interaction strength V . Right: Transitions between states |g⟩ ↔ |r⟩ and |r⟩ ↔ |e⟩ are driven

by fields with detunings kV and coupling strengths θkj and ϕkj . The system can be simplified to an

effective two-state model, where the couplings θjk and ϕ̃
j
k enable unitary (reversible) and non-unitary

(dissipative) conditional interactions, dependent on the number of excited neighbors k. Image taken

from [174].

In the regime V ≫ Γ > θkj , ϕ
k
j , the full quantum master equation simplifies to an effective

two-level system with time-independent three-body conditional interactions [174]. To achieve this,

we first transform the Hamiltonian (4.18) into the interaction picture with respect to the nearest-

neighbor Rydberg-Rydberg interactions [185] and adiabatically eliminate the time-dependent phase

factors using a large-frequency expansion [186, 187]. Subsequently, we eliminate the rapidly decaying

|e⟩ states through the effective operator formalism [188], leading to a time-independent master

equation described by the effective Hamiltonian:

Ĥeff =
1

2

∑

j

∑

a,b

θkj P̂
a
j−1X̂jP̂

b
j+1, (4.20)

and the effective Lindblad operator:

L̂−
eff =

1

2

∑

j

∑

a,b

√
ϕ̃kjP

a
j−1

(
X̂j − iŶj

)
P b
j+1, (4.21)

where ϕ̃kj = ϕkj /
√
Γ, and we assume θkj ∈ R. The double sum over a and b runs from 0 to 1, with

k = a+ b, P a
j = |α⟩⟨α|j , and X̂j , Ŷj , Ẑj are Pauli matrices.

Although this model is framed in a 1D geometry with nearest-neighbor interactions, it can be

extended to higher dimensions or include additional neighbors by incorporating more frequency

components in the driving fields.

Equations (4.20) and (4.21) describe an effective PXP model, commonly used to model Rydberg

blockade and facilitation in atomic chains [185, 189–191]. This model generalizes the PXP approach

by introducing a broader range of unitary and dissipative conditional operators, arising from mul-

tifrequency driving fields. Fig. 4.4 (left panel) illustrates the unitary and non-unitary conditional

update rules for the central site j of a three-site neighborhood. Each field component θkj induces

transitions when there are exactly k Rydberg excitations in the neighborhood, controlled by the
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projection operators P a
j−1, P

b
j+1. For example, a = b = 1 means the state changes only if both

left and right neighbors are in the |1⟩ state. The special case θ0j ̸= 0, θk>0
j = 0 corresponds to

Rydberg blockade, while θk>0
j ̸= 0, θ0j = 0 corresponds to facilitated excitation when k neighbors

are already excited. Introducing strong dissipative couplings via the second multifrequency field ϕk

adds irreversible interactions, returning atoms to the |0⟩ state.
The missing jump operators,

L̂+
eff =

1

2

∑

j

∑

a,b

√
ϕ̃kjP

a
j−1

(
X̂j + iŶj

)
P b
j+1, (4.22)

are required to implement incoherent excitation across all sites j, conditioned on the states of neigh-

boring sites. The L+ operators can be derived by conjugating the system with spin-flip operators

and adjusting ϕ̃kj to match the desired jump rates. When the time intervals between spin-flip pulses

are sufficiently short, the actions of both L+ and L− operators can be considered simultaneous, as

suggested by the Trotterization argument.

While QCAs offer certain advantages, particularly due to their reliance on global operations,

most quantum computing research still focuses on other models, especially the circuit model. Conse-

quently, a well-developed theory of error correction for QCAs remains lacking, unlike for the circuit

model. Developing such a theory could be an exciting avenue of research, possibly avoiding the

need for few-qubit operations altogether.
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Chapter 5

Density Classification with

non-unitary Quantum Cellular

Automata

5.1 Introduction

In this chapter, three Quantum Cellular Automata (QCAs) are introduced to address the Density

Classification (DC) task and the Majority Voting (MV) problem, which, in a quantum setting,

are no longer completely equivalent. Two of these QCAs solve the DC task: one is inspired by

the classical CA model by Fukś (2002) [192], and the other is a novel quantum model showcasing

additional quantum characteristics, such as quantum coherences and correlations within the system,

and is limited to two-body interactions only.

A third QCA is designed specifically for the MV problem and is implemented as a hybrid

rule. Both discrete-time completely positive trace-preserving (CPTP) maps and corresponding

continuous-time Lindblad dynamics are considered. The efficiency of the first two QCAs in solving

the DC task is demonstrated by calculating the spectral gap of their respective Lindbladians, while

the convergence time for the third QCA is established in the discrete case.

The definitions for the DC algorithm are presented in Sec. 5.3, followed by descriptions of the

QCA models in Sec. 5.4. Their dynamics are then analyzed in Sec. 5.5, with conclusions provided

in Sec. 5.6.

5.2 State of the Art

Cellular automata (CAs) are dynamical systems characterized by a spatial lattice of multistate cells,

which are synchronously updated based on their own state and the states of neighboring cells within

a certain radius. The dynamics of CAs are invariant under translations in both space and time,

preserving locality and causality. A classic challenge for CAs is the DC task [193–195], which aims

to map the global density of 1s in an arbitrary initial configuration of two-state 0/1 lattice cells to

local density information.
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It has been proven [154] that no one-dimensional, two-state, radius r ≥ 1, deterministic CA

with periodic boundary conditions can classify the density of all initial configurations. This proof

has been extended to both deterministic and probabilistic CAs in any dimension [196]. However, by

relaxing certain assumptions—such as incorporating boundary conditions [197] or allowing broken

translational invariance in the output [156]—it is possible to design a two-state CA that performs

the DC task with a convergence time τconv scaling linearly with the system size N .

Furthermore, Fukś investigated a sequence of two elementary CA rules, first applying traffic

rule 184 for half the updates and then majority rule 232 for the remaining steps. This approach,

detailed in [157], successfully solves the DC task with a convergence time τconv = N . The traffic

rule 184 eliminates all 00 blocks if the density is greater than 1/2, or all 11 blocks if the density is

less than 1/2, while rule 232 then results in a homogeneous configuration of all 0s or all 1s. Later

work by Fukś [198] examined a subset of ternary (three-state) CA rules with additive invariants,

revealing that absolute DC is impossible using just a pair of ternary rules.

As outlined in the previous Chapter 4, introducing randomness can prove useful when updates

are restricted to a single rule. In this context, Fukś [192] proposed a probabilistic CA with a non-

deterministic local update rule that solves the DC task with a convergence time τconv = O(N2).

Additionally, Fatès [162] demonstrated how a stochastic combination of two deterministic rules,

traffic and majority rules, distinct from [157], achieves classification accuracy above 90%, with an

experimentally confirmed (quasi-)linear scaling of τconv = O(N).

Given these classical CA models for addressing the DC task, it naturally raises the question of

whether quantum versions of these CA models can be developed as efficient density classifiers. This

becomes particularly relevant when implementing CA-like dynamics on qubits, where the transition

rules must comply with the principles of quantum mechanics. Direct translation of CA update rules

to quantum cellular automata (QCAs) is often non-trivial, as classical CA rules typically involve

synchronous updates on all cells, whereas QCAs require partitioning of the rule due to the inability

to perform synchronous updates [199, 200]. In fact, directly applying local synchronous CA rules

to partitioned QCA rules can lead to significantly different dynamics [201].

Some progress on QCAs for DC has recently been made. Guedes et al. [202] proposed two

QCAs based on the classical elementary CA rule 232, each with density-classification capabilities.

These include the local majority voting and the two-line voting, the latter of which extends rule

232 by adding a temporal dimension. Although not a perfect classifier, their method has been

demonstrated to facilitate efficient measurement-free quantum error correction (MFQEC) in the

context of bit-flip channels. This construction can be implemented using local gates in a quasi-1D

lattice, while our work focuses on a single 1D lattice.

The majority voting problem, closely related to DC, involves mapping the majority to a binary-

valued local density, rather than translating a global density into a real-valued local density. It is a

widely studied problem in mathematics and computer science and has recently been explored using

quantum computing algorithms. For instance, recent work has proposed quantum-accelerated vot-

ing algorithms [203], quantum logical veto and nomination rules [204], quantum parliaments [205],

quantum voting protocols capable of selecting multiple winners [206], non-oracular quantum adap-

tive search methods [207], quantum majority votes that violate the quantum Arrow’s impossibility

theorem [208], and generalized quantum majority votes for determining the majority state from a
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sequence of quantum states [209].

5.3 Problem

The DC task sets the question of finding an efficient algorithm that can extract information about

the global density of the input state on a 1D lattice from a local measurement on any cell.

Definition 5 Let N be a natural number and b⃗ = (b1, . . . , bN ) an N -bit string. Then the majority

function maj : {0, 1}N → {−1,+1} is defined so that

maj (b1, . . . , bN ) =




+1 if

∑N
j=1 bj > N/2,

−1 if
∑N

j=1 bj ≤ N/2.
(5.1)

For the translation onto quantum systems, whose outcomes are probabilistic in nature, we propose

an evaluation criterion that correlates the probabilities of measurements with the number density

of the initial state. After mapping an N -bit string b⃗ = (b1, ..., bN ) to an N -qubit system |b1 · · · bN ⟩,
a lattice site j is chosen at which the measurement will be performed.

Definition 6 Let Ŝ be an N -cell QCA. We say that Ŝ is a density classifier at time t if for any

location j the following procedure computes a function that solves the density classification task.

1. Encode the N -bit input string into an N -qubit quantum register.

2. Apply Ŝ to the quantum register t times.

3. Measure the jth qubit of the quantum register in the computational basis.

The result of the three steps in Def. 6 is a quantum version of the guessing function gj,t : {0, 1}N →
{−1,+1}, in which the majority is defined within a certain error threshold δ:

gj,t

(
b⃗
)
=





+1 if Tr
[
|1⟩⟨1|j ⊗ Ŝt

(∣∣∣⃗b
〉〈
b⃗
∣∣∣
)]

≥ 1/2 + δ,

−1 if Tr
[
|1⟩⟨1|j ⊗ Ŝt

(∣∣∣⃗b
〉〈
b⃗
∣∣∣
)]

≤ 1/2− δ.
(5.2)

where the outcomes {+1,−1} match those of the function maj in Def. 5. A QCA can thus solve

the DC problem if it maps global densities to local densities, satisfying the aforementioned density

classifier definition. On the other hand, if all cells of the system are evolved to the state that the

initial majority of the cells were in, then the Majority Voting problem is solved as a sub-problem

of the DC task. Therefore, although the terms “Density Classification task” and “Majority Voting

problem” were previously used interchangeably in the classical version of the problem, we will

henceforth distinguish between them and refer to each appropriately.

77



5.4 Model

Three non-unitary QCAs are proposed, two of which are density classifiers that conserve the number

density of the system and one that outputs the string with all bits carrying the majority of the input

string. The first QCA is inspired by a CA that has been shown to solve the DC task, namely the

“Fukś CA” [192], that will be used as a framework to construct a corresponding quantum model,

see Sec. 5.4.1. The second is a novel QCA, called “Dephasing QCA”, that outperforms the Fukś

QCA by only including two-cell interactions, see Sec. 5.4.2. The third QCA is introduced for solving

the majority voting problem and is a hybrid rule defined by discrete-time three-body interactions,

see Sec. 5.4.3. All QCAs are defined on a one-dimensional lattice with N lattice sites and periodic

boundary conditions, see Fig. 5.1.

To establish the foundational mathematical framework on which this chapter is based, the

description of the quantum channels is outlined in the following prelude. To start, a quantum

channel Ŝ is in the Kraus decomposition given by

Ŝ[ρ̂] =
∑

µ

K̂µ ρ̂
(
K̂µ

)†
, (5.3)

where
{
K̂µ

}
labels the set of Kraus operators satisfying the trace-preserving condition

∑
µ

(
K̂µ

)†
K̂µ =

1̂, where 1̂ is the identity operator. The quantum density matrices are vectorized using the Choi-

isomorphism |a⟩⟨b| → |a⟩⊗ |b⟩, such that a density matrix ρ̂(t) =
∑

a,b ρ̂a,b(t) |a⟩⟨b| becomes a vector

in a doubled space
∑

a,b ρ̂a,b(t) |a⟩ ⊗ |b⟩, where the states at each individual site are vectorized first

before the tensor product over all sites is applied [210]. Under this mapping, the Kraus decompo-

sition (5.3) becomes,

Ŝ =
∑

µ

K̂µ ⊗
(
K̂µ

)∗
, (5.4)

which acts on the doubled Hilbert space H =
∏
j Hj⊗H∗

j , where H∗
j denotes the dual Hilbert space

on site j. Furthermore, for considering continuous-time dynamics, the Lindblad evolution

L̂[ρ̂] = −i
[
Ĥ, ρ̂

]
+

N∑

j=1

∑

k

(
L̂kj ρ̂L̂

†
kj

− 1

2

(
L̂†
kj
L̂kj ρ̂+ ρ̂L̂†

kj
L̂kj

))
(5.5)

is utilized, where i labels the imaginary unit, Ĥ represents the Hamiltonian, and
{
L̂kj
}
is the set of

jump operators acting on lattice site j (henceforth we set ℏ ≡ 1). In the vectorized form, Eq. (5.5)

becomes

L̂ = −i
(
Ĥ ⊗ 1̂− 1̂⊗ ĤT

)
+

N∑

j=1

∑

k

(
L̂kj ⊗ L̂∗

kj
− 1

2

(
L̂†
kj
L̂kj ⊗ 1̂+ 1̂⊗ L̂†

kj
L̂kj

))
. (5.6)

Given this framework, the theoretical description of the proposed QCA models is outlined next.
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5.4.1 Fukś QCA

The Fukś rule [192] is a radius-one probabilistic CA given by the transition probabilities presented

in Tab. 5.1. A cell in state one with two neighboring zero states becomes zero with probability 2p,

and, analogously, a cell in the zero state surrounded by two one states is becomes a one state with

the same probability 2p. If the neighboring sites are in two different states, then the state at the

center site is flipped with probability p. Zero(one) states are mapped to one (zero) states with a

probability proportional to the number of ones (zeroes) in the neighborhood. It was shown that the

dynamics of the local density can be approximated by the standard diffusion equation implying that

the convergence time scales quadratically with the system size N , τconv = O(N2). Deriving quantum

neighborhood transition probability Kraus operators

00
000 → 010 p000 = 0 amplitude damping

010 → 010 p010 = 1− 2p
{
P̂0 +

√
1− 2p P̂1,

√
2p σ̂−

}

01
001 → 011 p001 = p

011 → 011 p011 = 1− p stochastic bit-flip

10
100 → 110 p100 = p

{√
1− p 1̂,

√
p X̂
}

110 → 110 p110 = 1− p

11
101 → 111 p101 = 2p amplitude pumping

111 → 111 p111 = 1
{√

1− 2p P̂0 + P̂1,
√
2p σ̂+

}

Table 5.1: Fukś QCA. The transition probabilities pacb represent the likelihood of the state transition

|acb⟩ → |a1b⟩, with a, b, c ∈ {0, 1} ∀ p ∈
(
0, 12
]
. Note that the associate input/output states are

two-on-one with the output center site set to be in the one state; the transition from the same input

state to the corresponding output state with the center site in the zero state is, correspondingly,

one minus the associate transition probability (for example, the transition 110 → 100 occurs with

probability 1 − p110 = 1 − (1 − p) = p). Fourth column: set of Kraus operators of the associated

quantum channels acting on the center site j, where P̂0 = |0⟩⟨0|, P̂1 = |1⟩⟨1|, 1̂ = |0⟩⟨0| + |1⟩⟨1|,
σ̂− = |0⟩⟨1|, and σ̂+ = |1⟩⟨0|.

dynamics inspired by the non-partitioned Fukś CA faces the challenge that CAs are implemented

by making a copy of the whole state at each time step — because only then could all cells, at

both even and odd lattice sites, be updated simultaneously based on the neighboring states at the

previous time step. This copy operation, as a fundamental part of classical CAs, can however not

be performed on a quantum state due to the no-cloning theorem [211]. Only specifically partitioned

CAs that update all even and all odd sites one after the other in consecutive time steps and do

not involve the implementation of a copy process, can be directly translated into a corresponding

QCA. One example of a partitioned CA is the Domany-Kinzel CA model, as originally proposed in

[212], whose associate quantum version has been intensively investigated in [191, 213–216]. On the
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other hand, CAs that are not partitioned (and do include the copy process) could not be directly

translated into a quantum map. This is why the definitions of the quantum channel are in this work

merely inspired by the basic framework of the considered non-partitioned CAs. 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

deterministic deterministic

b) Dephasing QCA

p: rule 184

a) Fukś QCA c) Majority Voting QCA

d) partitioning schemes

(1-p): rule 232

Fatès CA

locally non-unitary 

Figure 5.1: Illustration of the dynamics of a) the Fukś QCA, b) the Dephasing QCA, c) the Majority

Voting QCA, and d) their partitioning schemes with periodic boundaries, where f represents the

respective local transition function. While the Fukś QCA is defined by three-body operations

where only the center site is updated, all cells of the two-body neighborhoods are updated for the

Dephasing QCA and likewise all three cells are updated for the Majority Voting QCA. d) For the

Fukś QCA, the three-body operations are applied subsequently onto all even and then all odd lattice

sites of the system, whereas in case of the Dephasing QCA and the Majority Voting QCA, only all

neighboring non-overlapping neighborhoods can be updated simultaneously.

A quantum version based on the Fukś CA is defined by

Ŝ(Fukś) =
∏

j

(
Ŝ(00)j + Ŝ(01)j + Ŝ(10)j + Ŝ(11)j

)
, (5.7)

where

Ŝ(ab)j = |aa⟩⟨aa|j−1 ⊗ K̂(ab) ⊗ |bb⟩⟨bb|j+1 , (5.8)

and

K̂(ab) =
∑

µ

K̂(ab)
µ ⊗

(
K̂(ab)
µ

)∗
∀ a, b ∈ {0, 1}. (5.9)

Note that each local operator of the superoperator (5.7) acts non-trivially only on the three-cell

neighborhood (j−1, j, j+1) of the lattice, thereby preserving locality as well as spatial and temporal

invariance by performing the same operation on all sites during each QCA update. The projectors

|aa⟩⟨aa| and |bb⟩⟨bb| that act on the left (j−1) and the right (j+1) sites determine the neighborhood

of the qubit at the center site j, on which the superoperator acts on. The definition of the four sets
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of Kraus operators
{
K̂

(ab)
µ

}
thus fully defines the quantum channel. For the Fukś QCA, these are

given by

K̂
(00)
0 = P̂0 +

√
1− 2p P̂1, K̂

(00)
1 =

√
2p σ̂−, (5.10a)

K̂
(01)
0 =

√
1− p 1̂, K̂

(01)
1 =

√
p X̂, (5.10b)

K̂
(10)
0 =

√
1− p 1̂, K̂

(10)
1 =

√
p X̂, (5.10c)

K̂
(11)
0 = P̂1 +

√
1− 2p P̂0, K̂

(11)
1 =

√
2p σ̂+, (5.10d)

which satisfy the trace-preserving condition
∑

µ=0,1

(
K̂

(ab)
µ

)†
K̂

(ab)
µ = 1̂, where p ∈

(
0, 12
]
, P̂0 = |0⟩⟨0|,

P̂1 = |1⟩⟨1| σ̂− = |0⟩⟨1|, σ̂+ = |1⟩⟨0| and X̂ is the Pauli-X operator. 1 Associate continuous-time

dynamics are described by the Lindbladian

L̂(Fukś) =

N∑

j=1

6∑

k=1

(
L̂kj ⊗ L̂∗

kj
− 1

2

(
L̂†
kj
L̂kj ⊗ 1̂+ 1̂⊗ L̂†

kj
L̂kj

))
, (5.12)

with the six jump operators

L̂1j =
√
γ |0⟩⟨0|j−1 ⊗ σ̂−j ⊗ |0⟩⟨0|j+1 , (5.13a)

L̂2j =

√
γ

2
|0⟩⟨0|j−1 ⊗ σ̂−j ⊗ |1⟩⟨1|j+1 , (5.13b)

L̂3j =

√
γ

2
|0⟩⟨0|j−1 ⊗ σ̂+j ⊗ |1⟩⟨1|j+1 , (5.13c)

L̂4j =

√
γ

2
|1⟩⟨1|j−1 ⊗ σ̂−j ⊗ |0⟩⟨0|j+1 , (5.13d)

L̂5j =

√
γ

2
|1⟩⟨1|j−1 ⊗ σ̂+j ⊗ |0⟩⟨0|j+1 , (5.13e)

L̂6j =
√
γ |1⟩⟨1|j−1 ⊗ σ̂+j ⊗ |1⟩⟨1|j+1 . (5.13f)

The jump operators L̂1j and L̂6j ensure the amplitude damping/pumping transitions 010 → 000

and 101 → 111 for long-time evolution τ ≫ 1/γ. The other jump operators L̂2j to L̂5j simulate the

bit-flip channel in case of the 01 and 10 neighborhoods, where the overall scaling factor 1√
2
ensures

that the bit-flip operation is implemented with half the probability compared to the amplitude

damping/pumping operations — this is analogous to the classical Fukś CA that implements the

bit-flip with probability p and the amplitude damping/pumping with probability 2p, see Tab. 5.1

and derivation in Appendix B. Note that by setting the decay rate γ ≡ 1 in all calculations, the

convergence time of the system can thus be determined as multiples of the time steps τ .

1Another way to describe the CA is by applying, for each cell j independently, the elementary CA rule 170 with

probability p, rule 240 with the same probability p, and the identity operation with probability 1− 2p; see p. 230 in

[162]:

Ŝ(Fukś) = p Ŝ(170) + p Ŝ(240) + (1− 2p) 1̂. (5.11)
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Furthermore, as illustrated on the left in Fig. 5.1d), the Fukś QCA is approximated by a par-

titioning scheme which is enhanced by repeatedly updating all even and then all odd lattice sites

with infinitesimal time updates τ :

eL̂
(even)τeL̂

(odd)τ ≈ e(L̂
(even)+L̂(even))τ , (5.14)

where L̂(even/odd) describes the Fukś Lindbladian (5.12) acting on all even/odd lattice sites simul-

taneously.

5.4.2 Dephasing QCA

While the Fukś QCA is inspired by a classical CA, the here introduced quantum model, dubbed

the Dephasing QCA, is more efficiently constructed since the local map requires only two-body

interactions. This rule preserves the number density of the input state and maps the system’s global

number density to the local density information. The Dephasing QCA is given by the Lindblad

evolution

L̂(Dephasing) =− i
(
Ĥ ⊗ 1̂− 1̂⊗ ĤT

)
+

+

N∑

j=1

4∑

k=1

(
L̂kj,j+1

⊗ L̂∗
kj,j+1

− 1

2

(
L̂†
kj,j+1

L̂kj,j+1
⊗ 1̂+ 1̂⊗ L̂†

kj,j+1
L̂kj,j+1

)) (5.15)

with Hamiltonian

Ĥ = Ω
N∑

j=1

(
X̂jX̂j+1 + Ŷj Ŷj+1

)
, (5.16)

where Ω ∈ R, X̂ and Ŷ represent the associated Pauli operators, and the jump operators L̂kj,j+1

act each on the two neighboring sites, j and j + 1, where j + 1 ≡ 1 if j = N considering periodic

boundary conditions. The latter are given by the four projectors

L̂1j,j+1 = |00⟩⟨00|j,j+1 , (5.17a)

L̂2j,j+1 =
∣∣ψ+

〉〈
ψ+
∣∣
j,j+1

, (5.17b)

L̂3j,j+1 =
∣∣ψ−〉〈ψ−∣∣

j,j+1
, (5.17c)

L̂4j,j+1 = |11⟩⟨11|j,j+1 , (5.17d)

with the Bell states |ψ±⟩ = 1√
2
(|01⟩ ± |10⟩). Note that the QCA acts in the same way on the left

and on the right site of each two-cell neighborhood and that the dissipator is parity-symmetric.

The projectors are eigenstates of the Hamiltonian and are designed to remove coherences between

different eigenspaces of Ŝz, but also within the same eigenspace of Ŝz.

The corresponding partitioning scheme of the QCA is illustrated and described in Fig. 5.1d),

where the two sets of two-body updates are, analogous to the Fukś QCA, approximated by infinites-

imal time updates generated by Lindbladians according to Eq. (5.14), where the even (odd) updates

are here defined to be those where the left cells of the two-body neighborhoods are located at the

even (odd) lattice sites, and the neighborhoods do not overlap in one partial time step.
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5.4.3 Majority Voting QCA

For the task of majority voting, analogously to what was done for the Fukś rule above, one might try

to use a quantum version of the Fatès CA [162] rule. However, a direct construction is ineffective,

as it fails to yield the desired steady states as described in Appendix F.

Therefore, a new solution is proposed. This solution requires relaxing the strict definition of CA

in which only the central cell is updated. Furthermore, since our goal is to classify the initial

state based on whether its initial density is greater or less than N/2, the idea is to structure what

differentiates these two sectors. Let n be the expectation value of n̂ =
∑

j |1⟩⟨1|j . It is easy to

observe that if n ≤ N/2, it will always be possible to distribute the ones along the chain in such a

way as to avoid them being neighboring. For n > N/2, this is no longer possible. The idea is to

define a transformation Â such that

• its repeated action on a state |ρ̂⟩ spreads the |1⟩ states out along the chain, so that the final

state obtained does not exhibit two neighboring |1⟩ states

• it satisfies
[
Ŝz, Â

]
= 0, where Ŝz = 1

2

∑
j Ẑj with Pauli operator Ẑj , which will preserve the

number density in the system.

Thus, we define this transformation as:

Â =
∏

j

∑

µ=0,1

(
K̂µj ⊗ K̂∗

µj

)
, (5.18)

where

K̂0j = |1⟩⟨1|j−1 ⊗ |0⟩⟨1|j ⊗ |1⟩⟨0|j+1 , (5.19a)

K̂1j = 1̂− |1⟩⟨1|j−1 ⊗ |1⟩⟨1|j ⊗ |0⟩⟨0|j+1 , (5.19b)

that satisfy the trace-preserving condition
∑

µ=0,1 K̂
†
µ K̂µ = 1̂.The proof for Â satisfying the two

aforementioned properties can be found in Appendix G.1. In Eq. (5.18), each factor in the product

does not commute with its nearest neighbors nor with its next-to-nearest neighbors, but rather

with every third site. This implies that different orders of these factors lead to different versions of

Â. However, each of them satisfies the aforementioned requirements, such that it is convenient to

choose the one that maximizes the number of operations in a single time step:

Â −→ Â(1)Â(2)Â(3) (5.20)

where Â(x) with x ∈ {1, 2, 3} describes the action on the associate sets of neighboring, non-

overlapping three-cell neighborhoods, see illustration in Fig. 5.1d).

Once transformation Â is applied, the resulting state must be brought to |0⟩⊗N if it doesn’t

contain any cluster of |1⟩s. Otherwise, such a cluster must be progressively expanded until it covers

the entire chain and reaches the state |1⟩⊗N . This can be obtained by applying repeatedly:

B̂ =
∏

j

∑

µ=0,1,2,3

(
K̂µj ⊗ K̂∗

µj

)
, (5.21)
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where

K̂0j = |0⟩⟨0|j−1 ⊗ |0⟩⟨1|j ⊗ |0⟩⟨0|j+1 , (5.22a)

K̂1j = |1⟩⟨1|j−1 ⊗ |1⟩⟨1|j ⊗ |1⟩⟨0|j+1 , (5.22b)

K̂2j = |1⟩⟨0|j−1 ⊗ |1⟩⟨1|j ⊗ |1⟩⟨1|j+1 , (5.22c)

K̂3j =1̂− (|0⟩⟨0|j−1 ⊗ |1⟩⟨1|j ⊗ |0⟩⟨0|j+1+

+ |1⟩⟨1|j−1 ⊗ |1⟩⟨1|j ⊗ |0⟩⟨0|j+1 + |0⟩⟨0|j−1 ⊗ |1⟩⟨1|j ⊗ |1⟩⟨1|j+1), (5.22d)

that satisfy the trace-preserving condition
∑

µ=0,1,2,3 K̂
†
µ K̂µ = 1̂. Similar to Â, we adopt a non-

overlapping three-cell partition pattern for B̂. The minimum number of times Â and B̂ need to be

applied (ma and mb) depends on the specific partition scheme chosen as well as the initial state. In

Appendix H, we derive the minimum number of layers with respect to our partition scheme capable

of classifying every initial state.

In summary, our proposal to solve the majority voting problem is:

B̂mbÂma |ρ̂⟩ = B̂(1)B̂(2)B̂(3)
︸ ︷︷ ︸

mb

B̂(1)B̂(2)B̂(3)
︸ ︷︷ ︸

mb−1

· · · B̂(1)B̂(2)B̂(3)
︸ ︷︷ ︸

2

B̂(1)B̂(2)B̂(3)
︸ ︷︷ ︸

1

(5.23a)

× Â(1)Â(2)Â(3)
︸ ︷︷ ︸

ma

Â(1)Â(2)Â(3)
︸ ︷︷ ︸

ma−1

· · · Â(1)Â(2)Â(3)
︸ ︷︷ ︸

2

Â(1)Â(2)Â(3)
︸ ︷︷ ︸

1

|ρ̂⟩ .

In addition, it is possible to define two Lindbladian operators LA and LB capable of implementing

the continuous-time evolution of transformations Â and B̂, which, in the vectorized form, are:

L̂A =
N∑

j=1

(
L̂a0j ⊗ L̂a0j −

1

2

(
L̂a†0j L̂

a
0j ⊗ 1̂+ 1̂⊗ L̂a†0j L̂

a
0j

))
, (5.24)

L̂B =
N∑

j=1

2∑

k=0

(
L̂bkj ⊗ L̂bkj −

1

2

(
L̂b†kj L̂

b
kj

⊗ 1̂+ 1̂⊗ L̂b†kj L̂
b
kj

))
(5.25)

where

L̂a0j = |1⟩⟨1|j−1 ⊗ |0⟩⟨1|j ⊗ |1⟩⟨0|j+1 (5.26a)

L̂b0j = |0⟩⟨0|j−1 ⊗ |0⟩⟨1|j ⊗ |0⟩⟨0|j+1 , (5.26b)

L̂b1j = |1⟩⟨1|j−1 ⊗ |1⟩⟨1|j ⊗ |1⟩⟨0|j+1 , (5.26c)

L̂b2j = |1⟩⟨0|j−1 ⊗ |1⟩⟨1|j ⊗ |1⟩⟨1|j+1 . (5.26d)

Then, our proposal to solve the majority voting problem, by using the continuous-time evolution,

is:

eL̂
BτBeL̂

AτA |ρ̂⟩ (5.27)

where τA represents the time needed to reach a state without two adjacent |1⟩s, and τB represents

the time to expand a cluster of |1⟩s along the entire chain, both in the worst-case scenario.

Note the jump operators in Eqs. 5.25 differ from corresponding jump operators in Eqs. 5.12 in

that they don’t restrict to projectors on the left and right cells, and hence have discrete evolution
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that is less parallelizable. An attempt was made to find jump operators like in the Fukś rule here by

using a supervised machine learning approach. However, this method yielded only a partial solution

with extremely long convergence times, and it was not further explored. Nevertheless, a detailed

description of this approach and its results can be found in Appendix G.2.

5.5 Results

Next, the research results on the three QCA models are presented: the Fukś QCA in Sec. 5.5.1, the

Dephasing QCA in Sec. 5.5.2, and the Majority Voting QCA in Sec. 5.5.3.

5.5.1 Fukś QCA

The dynamics of the Fukś QCA are elaborated in the following, see definition in Sec. 5.4.1. It is

shown that L̂(Fukś)[ρ̂] conserves the number density of the initial state ρ̂ in analogy to the associate

classical CA rule. The number density can be quantified by the operator Ŝz = 1
2

∑
j Ẑj , whose

expectation value is conserved as

d

dt

〈
Ŝz(t)

〉
= 0, (5.28)

see proof in Appendix. C. Furthermore, the Fukś Lindbladian in Eq. (5.12) exhibits four zero

eigenvalues that correspond to the set of steady states

ρ̂(Fukś)ss = (1− α) |0...0⟩⟨0...0|+ β |0...0⟩⟨1...1|+ β∗ |1...1⟩⟨0...0|+ α |1...1⟩⟨1...1| , (5.29)

where α ∈ [0, 1] represents the global (and local) number density of the state, and β, β∗ ∈ C are the

amplitudes of the off-diagonal coherence terms; see proof in Appendix D. Note that the pure states

|0...0⟩ and |1...1⟩, as well as the GHZ state are included in this set corresponding to the parameter

sets {α = 0, β = 0}, {α = 1, β = 0}, and {α = 1
2 , β = 1

2}, respectively. All off-diagonal elements

unequal to |0...0⟩⟨1...1| or |1...1⟩⟨0...0| are shown to decohere under the action of this map as derived

in Appendix D.0.2. As an example for the dynamics of this QCA, the initial states |001⟩ and |011⟩
are considered that would in the long-time limit t≫ 1 evolve to the following steady states:

|001⟩⟨001| → 2

3
|000⟩⟨000|+ 1

3
|111⟩⟨111| , (5.30a)

|011⟩⟨011| → 1

3
|000⟩⟨000|+ 2

3
|111⟩⟨111| , (5.30b)

where the global number densities of 1
3 and 2

3 , respectively, are conserved.

For quantifying the convergence time τconv, i.e. the maximum time to reach the steady state

of the system, the spectral gap ∆λ is determined. The latter is the energy difference between the

ground state and the first excited state, and is given by the smallest non-zero absolute value of

the eigenvalues of the Lindbladian. Note that all non-zero eigenvalues are negative, such that the

spectral gap corresponds to the negative of largest non-zero eigenvalue. A logarithmic plot of the

spectral gap versus the system size is shown in Fig. 5.2.
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Figure 5.2: Logarithmic plot of the spectral gap ∆λ versus the system size N for the Lindbladians

L̂(Fukś) and L̂(Dephasing), see Eqs. (5.12) and (5.15), respectively. For the Dephasing QCA the

Hamiltonian is turned off (Ω = 0). Using the DMRG algorithm [217], the spectral gap was computed

for system sizesN ∈ [3, 30] for the Fukś QCA, andN ∈ [4, 50] for the Dephasing QCA. The subjacent

blue and cyan lines represent the corresponding linear regression fits log(|∆λ|) = c · log(N)+d with

parameters c = −1.937±5·10−3 and d = 0.931±6·10−3 for the Fukś QCA, and c = −1.972±3·10−3

and d = 1.252± 4 · 10−3 for the Dephasing QCA. For the latter, the first two points of the spectral

gap corresponding to N = 4, 5 are excluded from the calculation of the linear regression, which has

halved the associate standard deviation of the slope.

An almost quadratic inverse scaling of the spectral gap with the system size is observed, ∆λ ∝
N−1.942±0.005, such that the convergence time scales almost quadratically with the system size:

τconv ∝ O
(

1

∆λ

)
≈ O

(
N2
)
. (5.31)

5.5.2 Dephasing QCA

Next, the results of the Dephasing QCA are outlined, see definition in Sec. 5.4.2. It is derived that

the number density of the system is conserved with

d

dt

〈
Ŝz(t)

〉
= 0, (5.32)

and that the Dephasing QCA indeed solves the DC task, see proof in Appendix E. To exemplify the

dynamics of this QCA, the initial states |001⟩ and |011⟩ are considered that would in the long-time

limit t≫ 1 evolve to the following mixed steady states:

|001⟩⟨001| → 1

3
(|001⟩⟨001|+ |010⟩⟨010|+ |100⟩⟨100|), (5.33a)

|011⟩⟨011| → 1

3
(|011⟩⟨011|+ |101⟩⟨101|+ |110⟩⟨110|). (5.33b)

For determining the convergence time τconv, the spectral gap ∆λ is computed, mirroring the

approach taken for the Fukś QCA in the previous subsection. The result is presented in Fig. 5.2,

where the slope of the linear regression fit shows that ∆λ ∝ N−1.972±0.003, such that the convergence
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time τconv scales almost quadratically with the system sizeN similar to the Fukś QCA, see Eq. (5.31).

However, the spectral gap is by a constant factor of 0.321 ± 9 · 10−3 larger than the spectral gap

of the Fukś QCA, which implies that τconv is reduced (i.e. improved) by this factor in comparison

to the Fukś QCA. When including the Hamiltonian (5.16), numerical simulations indicate that the

scaling of the convergence time τconv with N remains unaltered.

5.5.3 Majority Voting QCA

In the following, the dynamics of the Majority Voting QCA are discussed, see Sec. 5.4.3. Our

discrete-time-evolution proposal consists of a repeated application of Â and, subsequently, B̂ (see

Eq. (5.23)) with a non-overlapping three-cell partition pattern as shown in Fig. 5.1d), allowing for

the correct classification of every initial state. We consider the application of a single layer per unit

time, so the time required to reach the final state, in the worst-case scenario and with Nmod(3) = 0,

scales in the following way with the system size:

τ = τA + τB = 4

⌊
N

2

⌋
+

2

3
N − 5. (5.34)

The proof of this equation can be found in Appendix H.

If Nmod(3) = 1 (or 2), the partition scheme will have 1 (or 2) non-updated cell(s) at each layer.

To prevent the same cells from remaining non-updated each time, one could periodically shift the

partition scheme so that these cells change over time, traversing through the chain. However, in

these cases, it is challenging to establish the worst-case scenario to provide a sufficient value of τ

valid for all initial states. Additionally, we have observed that starting from certain initial states,

delays due to the lack of updating some cells scale linearly with N . This is sufficient to propose a

more efficient solution: if Nmod(3) = 1, one can simply add two extra qubits (one in |0⟩ and the

other in |1⟩) and evolve the entire system; if Nmod(3) = 2, one can add four extra qubits (two in

|0⟩ and two in |1⟩) and evolve the entire system. This approach enables us to achieve systems with

Nmod(3) = 0 without altering the initial majority of |0⟩s or |1⟩s.

As outlined in Sec. 5.4.3, a continuous-time evolution proposal is possible (see Eq. (5.27)). To

showcase different scenarios, two initial states, belonging to two different sectors of n (with n the

expectation value of n̂ =
∑

j P1j), were chosen in Fig. 5.3. These states having a size N = 30

and containing 15 and 16 |1⟩s respectively are evolved by using both discrete-time and continuous-

time evolutions. These numerical simulations of the continuous-time evolutions have been obtained

by exploiting the Time-Dependent Variational Principle (TDVP) [218, 219], implemented in the

ITensor library [96] in C++. It is noticeable in Fig. 5.3 how the action of Â separates and disperses

the |1⟩s along the chain, resulting in a state where there are no neighboring |1⟩s (the same can

be appreciated in the continuous case under the action of LA). When n/N ≤ 1/2, Â successfully

achieves its goal, and the subsequent action of B̂ enables the attainment of the state |0⟩⊗N . However,
when n/N > 1/2, at least one small cluster of |1⟩s survives, providing B̂ with the opportunity to

propagate it along the entire chain. This dual action of B̂ is evident in in Fig. 5.3 (bottom panel, left

plot), where it is thus responsible for the momentary decrease in n/N . Such evidence is no longer

clearly observable in the corresponding continuous case because, after applying LA, LB evolves
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Figure 5.3: Two examples of how our proposed solution successfully solves the majority voting

problem both with discrete (left plots) and continuous (right plots) time evolution, starting from

an initial states with N = 30 and consisting of 15 |1⟩s (top panel) and 16 |1⟩s (bottom panel),

respectively. In each plot, the variation of n/N as a function of τ and the QCA evolution are

shown.

a state that is no longer classical. If it was, then we could observe its dual action even in the

continuous case (as shown in a simple example in Fig. 5.4) and one can appreciate how the two

evolutions are truly similar.

Lastly, we present a comparison of how τ = τA + τB scales with system size N in the discrete

and continuous cases (see Fig. 5.5). In the former, we simply plotted Eq. (5.34). Similarly, in

the continuous case, we computed τA and τB in the worst-case scenario: for τA, we considered the

desired state achieved when n/N (whose sum, in this case, is only over odd sites) exceeds 0.99/2;

for τB, when n/N exceeds 0.99.

5.6 Conclusion

The DC task has been studied using one-dimensional non-unitary QCAs which perform a com-

putation that maps global information to local information. Two approaches are considered: one

that preserves the number density and one that performs majority voting. For the DC, two QCAs

have been introduced that have been shown to solve the task by reaching the fixed point with
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Figure 5.4: Comparison between B̂ and L̂B evolution of the state

|101010101010101110101010101010⟩ without applying Â and L̂A first, respectively. It is pos-

sible to notice how, in both evolutions, the only cluster present in the chain is enlarged until

recover the whole chain while the other parts of the chain are brought to zero. It is due to the

latter action the momentary decrease in n/N .

Figure 5.5: Comparison between the time required to reach the final state of Majority Voting

(MV) with discrete-time (τd) and continuous-time (τc) evolutions, as a function of the system size

N ∈ [6, 30]. The τc data were computed using the Time-Dependent Variational Principle (TDVP)

[218, 219] implemented in the ITensor library [96] in C++, whereas the τd data represent the plot of

the function (5.34) by selecting Nmod(3) = 0. The linear regression fit corresponds to the τc data,

yielding τc(N) = b ·N + q with parameters b = 2.40± 0.02 and q = −3.0± 0.4.

an approximately quadratical time scaling with the system size. One of them is inspired by the

Fukś CA [192] and the other one is a new quantum model which is restricted to only two-body

interactions and has been shown to solve the DC task faster than the Fukś QCA. A third QCA

model is introduced which has been shown to solve the majority voting problem within a time that

scales linearly with the system size N . Both, discrete-time CPTP maps as well as corresponding
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continuous-time Lindblad dynamics have been considered.

A potential application of our majority voting QCA is for MFQEC mentioned in the Sec. 5.2

for more general noise channels. MFQEC is an alternative to measurement-based QEC suited to

architectures where measurements are particularly noisy and slow. The basic approach to MFQEC

with stabilizer codes is to map stabilizer outcomes to freshly prepared ancillae using transversal

gates, and then to coherently apply correction operations on the data register based on the infor-

mation contained in the ancillae. For Shor-type MFQEC [220], in order to make it fault tolerant

several repetitions are made of the mapping of stabilizer outcomes to d ancillae, where d is the

code distance, and then a majority vote is made on the ancillary register followed by a coherent

correction on the data register. Since the ancilla register is in fact quantum, classically processing

by a majority voting circuit using boolean logic is not possible without first translating it into

classical data via measurement, which was to be avoided in the first place. The Majority Voting

QCA would obviate this by efficiently computing the majority voting in place on the ancilla. Note

other approaches to MFQEC have been proposed including unitary Steane type stabilizer mappings

[221] and unitary majority voting gadgets [222] but using this QCA approach could simplify some

implementations as it does not require addressability of the ancillary register.

In [202], a method is also developed to perform the density classification task in the context of

error correction, and the algorithm appears to scale linearly with the system size. However, the

implementation of decoherence may require the addition of extra qubits, and the approach remains

based on local qubit addressing.

Conversely, the QCA-based solutions proposed here are designed for implementation on plat-

forms that enable the global evolution of the system according to a specific Lindbladian, such as

Rydberg atom devices, as discussed at the end of Chapter 4. When considering different types of

platforms, it is necessary to take into account the possible qubit topologies that can be implemented,

which means assessing whether all required local operations can be efficiently performed. Further-

more, single-atom addressing could result in an increased quantum circuit depth, as individual gates

in each layer would need to be decomposed into the fundamental ones executable by the machine.
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Conclusions

This thesis has investigated several pivotal aspects of quantum information theory and quantum

computation, with a particular focus on quantum entanglement, quantum variational algorithms,

and quantum cellular automata.

We began by exploring Quantum Fisher Information (QFI) as a powerful tool to detect and quan-

tify multipartite entanglement in complex quantum systems, such as spin-1 chains. In Chapter 2,

we demonstrated that QFI, when computed using non-local string operators, is highly effective at

distinguishing various quantum phases, including the symmetry-protected topological (STP) phase.

This approach was particularly successful in detecting extensive entanglement in the Haldane phase,

while traditional methods relying on local operators struggled.

Our analysis focused on two specific spin-1 models: the Bilinear Biquadratic (BLBQ) model and

the XXZ model. In both cases, we observed that QFI was a robust indicator of quantum phase

transitions and entanglement properties. The BLBQ model, known for exhibiting rich quantum

phase diagrams, revealed that QFI could effectively identify the Haldane phase as well as critical

points associated with quantum phase transitions. Similarly, in the XXZ model, QFI captured the

intricate interplay between topological and critical phases.

We also observed critical behavior in certain phases, where the QFI followed a power-law scaling

characterized by specific critical exponents [109]. However, the QFI was found to be less effective

at precisely locating phase transition points, where a detailed analysis of its scaling behavior near

criticality would be required. These results provide strong evidence of the versatility of QFI as

an entanglement witness, with potential for application in a broad range of quantum systems,

particularly those with topological order and long-range interactions.

In the second part of this thesis, Chapter 3 focused on quantum optimization algorithms, specif-

ically the Quantum Approximate Optimization Algorithm (QAOA). We introduced the Quantum

Natural Gradient (QNG), which uses the structure of the QFI to optimize the variational parame-

ters of QAOA more efficiently than classical gradient-based methods. Through detailed simulations

of QAOA implemented on a system of Rydberg atoms [111], we demonstrated that QNG consis-

tently outperformed classical gradient descent, particularly in systems of increasing size, even in the

presence of realistic noise sources such as SPAM errors and laser fluctuations. We found that the

diagonal approximation of the QFI offered a favorable trade-off between computational cost and

optimization performance, nearly matching the effectiveness of the full QNG method. Notably, our

simulations showed that while additional QAOA layers can improve the algorithm’s performance in

idealized settings, they also increase susceptibility to noise, indicating that an optimal depth should

be carefully chosen based on the specific hardware and noise conditions. These findings emphasize
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the practical utility of QAOA and QNG for near-term quantum devices, offering a pathway for

achieving more efficient quantum optimization even on noisy intermediate-scale quantum (NISQ)

devices.

In the final part of this thesis, Chapters 4 and 5 expanded the discussion to Quantum Cellular

Automata (QCA) and their application to the Density Classification (DC) task, a well-known chal-

lenge in classical cellular automata. We proposed and analyzed novel QCA models designed to solve

the DC. One model is inspired by Fukś classical CA [160], while the other is a quantum model lim-

ited to two-body interactions, demonstrating an improvement in solving the DC task compared to

Fukś QCA. Furthermore, we introduced a new QCA model restricted to two-body interactions that

solved the DC task with quadratic time scaling in system size, providing a significant improvement

in efficiency. Finally, we explored a third QCA model that was tailored for majority voting, solving

this task with a linear time scaling. These results illustrate the power of QCA in performing com-

plex computational tasks with significant speedups over classical cellular automata. Moreover, our

majority voting QCA model offers potential applications in fault-tolerant quantum computation,

particularly in Measurement Free Quantum Error Correction (MFQEC) protocols. In this context,

our model provides a practical solution to the challenge of coherently processing ancilla information

without requiring noisy and slow measurements, a key limitation in many quantum error correction

schemes [220–222].

The results presented here not only advance our understanding of these topics but also introduce

practical tools and models for real-world quantum computing applications. The QFI has proven

to be an insightful tool for detecting and quantifying entanglement, especially in STP phases,

while the introduction of QNG paves the way for more efficient optimization algorithms in noisy

quantum environments. Moreover, our work on QCA opens new ways and possibilities for using

QCA in computational tasks, with immediate implications for quantum error correction protocols.

Future research could explore the application of these techniques to higher-dimensional systems,

more complex quantum architectures, and further refinements of noise mitigation strategies in

variational algorithms. Together, these contributions underscore the potential of quantum systems

and algorithms to revolutionize the field of computation, as we move closer to practical, large-scale

quantum computing.
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Appendix A

The AKLT model

The AKLT model is the projection point at β = −1/3, where the Hamiltonian can be expressed as

a sum over the projection operators Pj(i, i+ 1). Each projector acts on a pair of interacting spins

for a given value of the total spin j = 0, 1, 2. Thus, it can be written as:

HAKLT = −2

3
NJ + 2J

N∑

i=1

P2(i, i+ 1) (A.1)

where

P2(i, i+ 1) =
1

3
+

1

2

(
Si · Si+1 +

1

3
(Si · Si+1)

2

)
. (A.2)

As shown in [84], the system can be thought of as made up of two spin-1/2 variables for each

site. By introducing the valence bond basis, it is possible to build the ground state, called a valence

bond solid (VBS), so that in the chain there is always a bond between two neighboring spins (see

upper panel of Fig. 2.2).

The VBS state |VBS⟩ satisfies

P2(i, i+ 1) |VBS⟩ = 0 ∀i. (A.3)

In the spin-1/2’s computational basis ψ1 = |0⟩, ψ2 = |1⟩, we can construct an orthogonal basis for

the s = 1 state space, by taking the symmetrized tensor products:

ψαβ =
1√
2
(ψα ⊗ ψβ + ψβ ⊗ ψα) (A.4)

Then, in order to contract a pair of spin-1/2’s to form a singlet, we use the Levi-Civita tensor of

rank two:

Ωαβ = εγδψαγ ⊗ ψδβ, (A.5)

where the indices α and β refer to the outer spin-1/2’s. It is now easy to generalize the construction

for a chain of length N :

Ωαβ = εβ1α2 · · · εβN−1αNψαβ1 ⊗ ψα2β2 ⊗ · · · ⊗ ψαNβ. (A.6)

111



The AKLT model has exponentially decaying correlations, and this applies to the whole Haldane

phase. In fact, this can be shown by computing the two-point correlation function in the limit

N → ∞, which yields:

lim
N→∞

⟨Ω|Sa1Sbr |Ω⟩ = δab(−1)r
4

3
3−r. (A.7)

showing, as anticipated, an exponentially decaying correlation function with correlation length

ξ = ln(3)−1. Therefore, one may conclude that there is no order in this phase but, as we will see, a

different kind of hidden order is actually there. We are going to show this fact on the valence bond

state.

As it can be easily understood from Fig. 2.2, in a finite chain the ground state of AKLT model is

four-fold degenerate due to the effective free spin-1/2’s at the boundaries. Let us write the ground

state of AKLT as Φσ, where σ is a string of +’s, −’s and 0’s so that Φσ can be expressed as a tensor

product of a single site states |+⟩, |−⟩ and |0⟩. If the first spin-1/2 of the chain is in the |↑⟩ state,
then for the first site we cannot have a |−⟩ state but only |+⟩ or |0⟩. In the latter case, we still must

have the first non-zero character to be a + in σ in order to satisfy the construction of the valence

bond state. It can be verified that there has to be the same number of +’s and −’s alternating all

along the σ string, with no further restrictions on the number of 0’s between them.

Therefore, a typical allowed state Φσ in the AKLT model could look like this:

Φσ = |000 +−0 +−+ 0−+0−+− 0⟩ (A.8)

A look at (A.8) reveals that is a sort of Néel order (antiferromagnetic order) if we ignore the 0’s.

Still, we cannot predict what two spins in two distant sites will be, as we have no control on the

number of the 0’s. Indeed, there is no local order parameter that can be found to be non-zero in

the Haldane phase and that can be used to distinguish this phase from the others. But, there is

actually a non-local order parameter, the string order parameter, that is able to reveal the hidden

order of the Haldane phase.

In order to see how we can arrive at its definition, let us introduce the non-local unitary trans-

formation

U =

N∏

k=1

k−1∏

j=2

exp

(
iπSzjS

x
k

)
, (A.9)

where N is the number of sites, such that Consider a typical AKLT state Φσ, for example (A.8).

On this state, the operator U acts as

UΦσ = (−1)z(σ)Φσ̄, (A.10)

where z(σ) is the number of 0 characters in odd sites and σ̄ is the new transformed string. It is

defined as follows:

• if σi = + (or −) and the number of non-zero characters to the left of the site i is odd, then

σ̄i = − (or +).

• otherwise, σi = σ̄i
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where σi is the i-th character of the string σ. In particular, if we apply this transformation on the

allowed state (A.8), it becomes:

UΦσ = |000 + +0 + ++ 0 + +0 + ++ 0⟩ . (A.11)

Then this unitary transformation aligns all the non-zero spins i.e. if the first non-zero character is

+ (or −) all the other non-zero characters become + (or −). It is also evident that U−1 = U .

Under the action of U , the spin operators transform as follows:

S̃xj = USxj U
† = Sxj

(
eiπ

∑
l>j S

x
l

)
,

S̃yj = USyjU
† =

(
eiπ

∑
l<j S

z
l

)
Syj

(
eiπ

∑
l>j S

x
l

)
,

S̃zj = USzjU
† =

(
eiπ

∑
l<j S

z
l Szj

)
.

(A.12)

Notice that the local operators have been mapped onto non-local operators, as they contain a sum

of spin operators acting on different sites. This is not surprising, given that U itself is a non-local

unitary transformation.

It is reasonable to expect that also the local Hamiltonian H is mapped onto a non-local one

H̃ = UHU−1, but it turns out that H̃ is still, in fact, local:

H̃ = J
∑

j

[
hj + β(hj)

2
]
, (A.13)

where

hj = −Sxj Sxj+1 + Syj e
iπ(Sz

j+S
x
j+1)Syj+1 − SzjS

z
j+1 (A.14)

The transformed Hamiltonian H̃ still has the same symmetries of H, but they may not be local

anymore. Actually, the only local symmetry of H is related to its invariance under rotations of π

about each coordinate axis. This symmetry group is equivalent to Z2 × Z2: indeed, the product of

two π-rotations about two different axes produce a π- rotation about the third one.

It is possible to prove [84] that at the AKLT point the transformed Hamiltonian has four ground

states, which are product states and break such symmetry. These four degenerate ground states of

HAKLT converge to a single ground state in the infinite volume limit. The same is not true for the

ground states of H̃AKLT, as they converge to four distinct states in the infinite volume limit, even

though the two Hamiltonians are related by a unitary transformation. In a sense, the non-locality

of the transformation U does not guarantee a one-to-one correspondence between the ground states

in the infinite volume limit.

Finally, we can understand the role of the string order parameter (A.12). In fact, it is straight-

forward to verify that

Sα1

( r−1∏

k=2

eiπS
α
k

)
Sαr = −U−1Sα1 S

α
r U. (A.15)

This shows that the NLOPs in (2.5) reveal the ferromagnetic order in the language of the non-local

spins (A.12) or, equivalently, the breaking of the hidden symmetry in the original system. Such a

symmetry breaking holds in the whole Haldane phase, not just the AKLT model. Indeed, in the

dimer phase the symmetry is completely unbroken and the string order parameter (2.5) will vanish

for every α.
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Appendix B

Derivation of the Lindbladian

describing the Fukś QCA

In this section, it is shown that the relative weightings of the jump operators describing the Fukś

QCA are correct, see Eqs. (5.13), by establishing a relationship between the probabilities p and the

product of the decay rate γ and the time duration τ of each QCA update. The derivation is based

on the idea that the (continuous-time) Lindblad dynamics mimic the (discrete-time) superoperator

in Eq. (5.8) with the Kraus operators in Eq. (5.10) — i.e. the Lindbladian is determined in such a

way that it results in the same dynamics as the superoperator for a given time step τ . Hereby, γ is

found to have an explicit relation to the probability p of the probabilistic QCA; or in other words,

γ is found to be tuned in such a way that it implements the QCA for different values of p ∈ (0, 1/2].

The relationship between γ and p can be derived by setting the state undergoing the time

evolution according to the Lindblad dynamics in Eq. (5.12) equal to the state that is being updated

by the discrete-time transfer matrix in Eq. (5.7):

eL̂
(Fukś)τ [ρ̂] = Ŝ(Fukś)[ρ̂]. (B.1)

B.0.1 |00⟩ neighborhood

For the scope of this proof, it is sufficient to take the evolution of only one qubit into account by

fixing the nearest-neighboring qubits to, say at first, the |0⟩⟨0|j−1 ⊗ |0⟩⟨0|j+1 state. In such a way,

only the first jump operator L̂1j =
√
γ |0⟩⟨0|j−1 ⊗ σ̂−j ⊗ |0⟩⟨0|j+1, see Eq. (5.13a), acts non-trivially

on the qubit at site j, and the neighboring sites can be traced out for simplicity. Analogously, only

the Kraus operators K̂
(00)
0 =

(
1 0

0
√
1− 2p

)
, and K̂

(00)
1 =

(
0

√
2p

0 0

)
, see Eq. (5.10a), must be

taken into account, because Ŝ(00) in Eq. (5.8) is the only transfer operator that acts on the state at

the center site j given the |0⟩⟨0|j−1 ⊗ |0⟩⟨0|j+1 neighborhood.

The corresponding continuous-time evolution (5.12) of the quantum state ρ̂ =

(
ρ00 ρ01
ρ10 ρ11

)
at
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site j is then given by

L̂(00)[ρ̂] = γ

[
σ̂−ρ̂ σ̂+ − 1

2

(
σ̂+σ̂−ρ̂+ ρ̂ σ̂+σ̂−

)]

= γ

[(
0 1

0 0

)(
ρ00 ρ01
ρ10 ρ11

)(
0 0

1 0

)
−

−1

2

((
0 0

1 0

)(
0 1

0 0

)(
ρ00 ρ01
ρ10 ρ11

)
+

(
ρ00 ρ01
ρ10 ρ11

)(
0 0

1 0

)(
0 1

0 0

))]

= −γ
(
−(1− ρ00) ρ01/2

ρ10/2 ρ11

)
. (B.2)

which leads with ρ00 = 1− ρ11 to the output state

eL̂
(00)τ [ρ̂] =

(
1− e−γτ (1− ρ00) e−γτ/2ρ01

e−γτ/2ρ10 e−γτρ11

)
. (B.3)

On the other side, the discrete-time evolution (5.8) results in the state

∑

µ=0,1

K̂(00)
µ ρ̂

(
K̂(00)
µ

)†
=

(
1 0

0
√
1− 2p

)(
ρ00 ρ01
ρ10 ρ11

)(
1 0

0
√
1− 2p

)

+

(
0

√
2p

0 0

)(
ρ00 ρ01
ρ10 ρ11

)(
0 0√
2p 0

)

=

(
(1− 2p)ρ00 + 2p

√
1− 2p ρ01

√
1− 2p ρ10 (1− 2p)ρ11

)
. (B.4)

Setting the time-evolved density matrices in Eqs. (B.3) and (B.4) equal to each other according

to Eq. (B.1), one can find the relationship between γ and p by equating the individual density

operator components. For example, taking ρ01(τ) into account:

e−γτ/2 =
√
1− 2p, (B.5)

which is equivalent to equating the ρ11(τ) components and leads to the same result:

e−γτ = 1− 2p

⇒ γτ = − ln (1− 2p). (B.6)

Note that the other two density matrix elements exhibit the same information as ρ00(τ) = 1−ρ11(τ)
and ρ10(τ) = (ρ01(τ))

∗.
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B.0.2 |01⟩ neighborhood

Next, fixing the nearest-neighboring qubits to the |0⟩⟨0|j−1 ⊗ |1⟩⟨1|j+1 state, only the two jump

operators L̂2j =
√
γ |0⟩⟨0|j−1⊗ σ̂−j ⊗|1⟩⟨1|j+1 and L̂3j =

√
γ |0⟩⟨0|j−1⊗ σ̂+j ⊗|1⟩⟨1|j+1 in Eqs. (5.13b)

and (5.13c) as well as the Kraus operators K̂
(01)
0 =

√
1− p 1̂ and K̂

(01)
1 =

√
p X̂ from Eq. (5.10b),

have to be taken into account. The corresponding Lindblad evolution (5.12) of the quantum state

ρ̂ at site j is then given by

L̂(01)[ρ̂] =
γ

2

[
σ̂−ρ̂ σ̂+ + σ̂+ρ̂ σ̂− − 1

2
(σ̂+σ̂−ρ̂+ ρ̂ σ̂+σ̂−)− 1

2
(σ̂−σ̂+ρ̂+ ρ̂ σ̂−σ̂+)

]

=
γ

2

[(
0 1

0 0

)(
ρ00 ρ01
ρ10 ρ11

)(
0 0

1 0

)
+

(
0 0

1 0

)(
ρ00 ρ01
ρ10 ρ11

)(
0 1

0 0

)

− 1

2

((
0 0

1 0

)(
0 1

0 0

)(
ρ00 ρ01
ρ10 ρ11

)
+

(
ρ00 ρ01
ρ10 ρ11

)(
0 0

1 0

)(
0 1

0 0

))

− 1

2

((
0 1

0 0

)(
0 0

1 0

)(
ρ00 ρ01
ρ10 ρ11

)
+

(
ρ00 ρ01
ρ10 ρ11

)(
0 1

0 0

)(
0 0

1 0

))]

=
γ

2

[(
ρ11 0

0 0

)
+

(
0 0

0 ρ00

)
− 1

2

((
0 0

ρ10 ρ11

)
+

(
0 ρ01
0 ρ11

)
+

(
ρ00 ρ01
0 0

)
+

(
ρ00 0

ρ10 0

))]

= −γ
(
ρ00 − 1

2 ρ01/2

ρ10/2 ρ11 − 1
2

)
, (B.7)

where the index j is dropped for clarity, and ρ00 = 1− ρ11 is used in the last step. This result leads

to the output state

eL̂
(01)τ [ρ̂] =

(
e−γτρ00 + 1

2(1− e−γτ ) e−γτ/2ρ01

e−γτ/2ρ10 e−γτρ11 + 1
2(1− e−γτ )

)
. (B.8)

On the other side, the discrete-time evolution (5.8) results in the state

∑

µ=0,1

K̂(01)
µ ρ̂

(
K̂(01)
µ

)†
= (1− p) 1̂

(
ρ00 ρ01
ρ10 ρ11

)
1̂+ p

(
0 1

1 0

)(
ρ00 ρ01
ρ10 ρ11

)(
0 1

1 0

)

= (1− p)

(
ρ00 ρ01
ρ10 ρ11

)
+ p

(
ρ11 ρ10
ρ01 ρ00

)

=

(
(1− 2p)ρ00 + p (1− p) ρ01 + pρ10

(1− p) ρ10 + pρ01 (1− 2p)ρ11 + p

)
, (B.9)

with (again) ρ00 = 1 − ρ11 applied in the last step. Setting the time-evolved density operators in

Eqs. (B.8) and (B.9) equal to each other according to Eq. (B.1), one can analogously to the previous

subsection in Appendix B.0.1 find the relationship between γ and p by equating the individual

density operator components. Taking ρ01(t) into account, one can find that

e−γτ/2ρ01 = (1− p) ρ01 + p ρ10 (B.10)
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does not lead to a unique solution; however, equating the ρ11(t) components leads to the same result

(B.6) derived using the 00 neighborhood in the previous subsection:

e−γτρ00 +
1

2
(1− e−γτ ) = (1− 2p)ρ00 + p

⇒ e−γτ = 1− 2p

⇒ γτ = − ln (1− 2p). (B.11)

Equivalent expressions hold for the density matrix components ρ00(t) = 1−ρ11(t) and (ρ10(t) = ρ01(t))
∗,

respectively. Furthermore, the same relationship between p and γ follows from an analogous inspec-

tion of the 10 and 11 neighborhoods.
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Appendix C

Proof of the conservation of the

number density in the Fukś QCA

In the following, it is derived that the global number density of the Fukś QCA is conserved. The

proof arises from the conservation of the expectation value of Ŝz =
1
2

∑
i Ẑi, considering the corre-

sponding Lindblad dynamics in Eq. (5.12). The time derivative of Ŝz(t), expressed as the trace of

the product of Ŝz and the Lindbladian acting on the density matrix ρ̂(t), can be shown to be equal

to the trace of the product of ρ̂(t) and the adjoint Lindbladian L̂† acting on Ŝz:

d

dt

〈
Ŝz(t)

〉
= Tr

[
L̂[ρ̂(t)] · Ŝz

]
= Tr

[
L̂†
[
Ŝz

]
· ρ̂(t)

]
. (C.1)

Thus, the problem reduces to the calculation of

L̂†
[
Ŝz

]
= L̂†

[
1

2

∑

i

Ẑi

]
=

1

2

∑

i

L̂†
[
Ẑi

]
=

1

2

∑

i,j

L̂†
j

[
Ẑi

]
, (C.2)

where L̂†
j represents the local adjoint Lindbladian that acts non-trivially on the neighborhood at

sites j − 1, j, and j + 1 only, see definition of the associate jump operators in Eq. (5.13). This

means, that

L̂†
j

[
Ẑi

]
=

6∑

k=1

(
L̂†
kj
ẐiL̂kj −

1

2

(
ẐiL̂

†
kj
L̂kj + L̂†

kj
L̂kj Ẑi

))
(C.3)

is only non-zero iff i ∈ {j − 1, j, j + 1}, because for all other i L̂†
j acts merely trivially on Ẑi(

as all jump operators are the identity operator in this case, L̂ki = 1̂i ∀ k ∈ [1, 6], such that

L̂†
j

[
Ẑi ̸={j−1,j,j+1}

]
only includes terms like 1̂

†
i Ẑi1̂i = Ẑi

)
, and, additionally, its action onto the

identity operators at sites {j − 1, j, j + 1} returns zero, L̂†
j

[
1̂j−1 ⊗ 1̂j ⊗ 1̂j+1

]
= 0, according to

Eq. (C.3). (Another (potentially more intuitive) way to think about this derivation is to notice that

the identity channel possesses a constant expectation value,

d

dt

〈
Ô(t)

〉
=

d

dt
Tr
[
Ô ρ̂(t)

]
= 0 if Ô = 1̂, (C.4)
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and does therefore not change the total time derivative of the expectation value of Ŝz.)

As a result, Eq. (C.2) simplifies to

L̂†
[
Ŝz

]
=

1

2

∑

j

(
L̂†
j

[
Ẑj−1

]
+ L̂†

j

[
Ẑj

]
+ L̂†

j

[
Ẑj+1

])
, (C.5)

where each summand is going to be inspected separately in the following.

To start, L̂†
j

[
Ẑj−1

]
includes the terms

∑6
k=1 L̂

†
kj
Ẑj−1L̂kj ,

∑6
k=1 Ẑj−1L̂

†
kj
L̂kj and

∑6
k=1 L̂

†
kj
L̂kj Ẑj−1,

see Eq. (C.3). The first sum comprises the terms according to the jump operators in Eq. (5.13),

where γ ≡ 1 for clarity:

L̂†
1j
Ẑj−1L̂1j = |0⟩⟨0| Ẑ |0⟩⟨0| ⊗ |1⟩⟨1| ⊗ |0⟩⟨0| = |0⟩⟨0| ⊗ |1⟩⟨1| ⊗ |0⟩⟨0|

L̂†
2j
Ẑj−1L̂2j =

1

2
|0⟩⟨0| Ẑ |0⟩⟨0| ⊗ |1⟩⟨1| ⊗ |1⟩⟨1| =

1

2
|0⟩⟨0| ⊗ |1⟩⟨1| ⊗ |1⟩⟨1|

L̂†
3j
Ẑj−1L̂3j =

1

2
|0⟩⟨0| Ẑ |0⟩⟨0| ⊗ |0⟩⟨0| ⊗ |1⟩⟨1| =

1

2
|0⟩⟨0| ⊗ |0⟩⟨0| ⊗ |1⟩⟨1|

L̂†
4j
Ẑj−1L̂4j =

1

2
|1⟩⟨1| Ẑ |1⟩⟨1| ⊗ |1⟩⟨1| ⊗ |0⟩⟨0| = −1

2
|1⟩⟨1| ⊗ |1⟩⟨1| ⊗ |0⟩⟨0|

L̂†
5j
Ẑj−1L̂5j =

1

2
|1⟩⟨1| Ẑ |1⟩⟨1| ⊗ |0⟩⟨0| ⊗ |0⟩⟨0| = −1

2
|1⟩⟨1| ⊗ |0⟩⟨0| ⊗ |0⟩⟨0|

L̂†
6j
Ẑj−1L̂6j = |1⟩⟨1| Ẑ |1⟩⟨1| ⊗ |0⟩⟨0| ⊗ |1⟩⟨1| = − |1⟩⟨1| ⊗ |0⟩⟨0| ⊗ |1⟩⟨1| , (C.6)

which are the same as the terms in the second sum,

Ẑj−1L̂
†
1j
L̂1j = Ẑ |0⟩⟨0| |0⟩⟨0| ⊗ |1⟩⟨1| ⊗ |0⟩⟨0| = |0⟩⟨0| ⊗ |1⟩⟨1| ⊗ |0⟩⟨0|

Ẑj−1L̂
†
2j
L̂2j =

1

2
Ẑ |0⟩⟨0| |0⟩⟨0| ⊗ |1⟩⟨1| ⊗ |1⟩⟨1| =

1

2
|0⟩⟨0| ⊗ |1⟩⟨1| ⊗ |1⟩⟨1|

Ẑj−1L̂
†
3j
L̂3j =

1

2
Ẑ |0⟩⟨0| |0⟩⟨0| ⊗ |0⟩⟨0| ⊗ |1⟩⟨1| =

1

2
|0⟩⟨0| ⊗ |0⟩⟨0| ⊗ |1⟩⟨1|

Ẑj−1L̂
†
4j
L̂4j =

1

2
Ẑ |1⟩⟨1| |1⟩⟨1| ⊗ |1⟩⟨1| ⊗ |0⟩⟨0| = −1

2
|1⟩⟨1| ⊗ |1⟩⟨1| ⊗ |0⟩⟨0|

Ẑj−1L̂
†
5j
L̂5j =

1

2
Ẑ |1⟩⟨1| |1⟩⟨1| ⊗ |0⟩⟨0| ⊗ |0⟩⟨0| = −1

2
|1⟩⟨1| ⊗ |0⟩⟨0| ⊗ |0⟩⟨0|

Ẑj−1L̂
†
6j
L̂6j = Ẑ |1⟩⟨1| |1⟩⟨1| ⊗ |0⟩⟨0| ⊗ |1⟩⟨1| = − |1⟩⟨1| ⊗ |0⟩⟨0| ⊗ |1⟩⟨1| , (C.7)

and analogously the same as the third due to the symmetric action of the hermitian Pauli op-

erator Ẑ = Ẑ† onto the binary basis elements. In total, one can find that
∑6

k=1 L̂kj Ẑj−1L̂
†
kj

=
∑6

k=1 Ẑj−1L̂
†
kj
L̂kj =

∑6
k=1 L̂

†
kj
L̂kj Ẑj−1, such that L̂†

j

[
Ẑj−1

]
is vanishing according to Eq. (C.3). In

the same way, one can show that L̂†
j

[
Ẑj+1

]
= 0 by reflection symmetry around the center site j.

Hence, Eq. (C.5) becomes

L̂†
[
Ŝz

]
=

1

2

∑

j

L̂†
j

[
Ẑj

]
, (C.8)
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where L̂†
j

[
Ẑj

]
includes the summands

L̂†
1j
ẐjL̂1j = |0⟩⟨0| ⊗ |1⟩⟨0|Z |0⟩⟨1| ⊗ |0⟩⟨0| = |0⟩⟨0| ⊗ |1⟩⟨1| ⊗ |0⟩⟨0|

L̂†
2j
ẐjL̂2j =

1

2
|0⟩⟨0| ⊗ |1⟩⟨0|Z |0⟩⟨1| ⊗ |1⟩⟨1| =

1

2
|0⟩⟨0| ⊗ |1⟩⟨1| ⊗ |1⟩⟨1|

L̂†
3j
ẐjL̂3j =

1

2
|0⟩⟨0| ⊗ |0⟩⟨1| Ẑ |1⟩⟨0| ⊗ |1⟩⟨1| = −1

2
|0⟩⟨0| ⊗ |0⟩⟨0| ⊗ |1⟩⟨1|

L̂†
4j
ẐjL̂4j =

1

2
|1⟩⟨1| ⊗ |1⟩⟨0|Z |0⟩⟨1| ⊗ |0⟩⟨0| =

1

2
|1⟩⟨1| ⊗ |1⟩⟨1| ⊗ |0⟩⟨0|

L̂†
5j
ẐjL̂5j =

1

2
|1⟩⟨1| ⊗ |0⟩⟨1| Ẑ |1⟩⟨0| ⊗ |0⟩⟨0| = −1

2
|1⟩⟨1| ⊗ |0⟩⟨0| ⊗ |0⟩⟨0|

L̂†
6j
ẐjL̂6j = |1⟩⟨1| ⊗ |0⟩⟨1| Ẑ |1⟩⟨0| ⊗ |1⟩⟨1| = − |1⟩⟨1| ⊗ |0⟩⟨0| ⊗ |1⟩⟨1| (C.9)

and

ẐjL̂
†
1j
L̂1j = L̂†

1j
L̂1j Ẑj = |0⟩⟨0| ⊗ Z |1⟩⟨1| ⊗ |0⟩⟨0| = − |0⟩⟨0| ⊗ |1⟩⟨1| ⊗ |0⟩⟨0|

ẐjL̂
†
2j
L̂2j = L̂†

2j
L̂2j Ẑj =

1

2
|0⟩⟨0| ⊗ Z |1⟩⟨1| ⊗ |1⟩⟨1| = −1

2
|0⟩⟨0| ⊗ |1⟩⟨1| ⊗ |1⟩⟨1|

ẐjL̂
†
3j
L̂3j = L̂†

3j
L̂3j Ẑj =

1

2
|0⟩⟨0| ⊗ Z |0⟩⟨0| ⊗ |1⟩⟨1| =

1

2
|0⟩⟨0| ⊗ |0⟩⟨0| ⊗ |1⟩⟨1|

ẐjL̂
†
4j
L̂4j = L̂†

4j
L̂4j Ẑj =

1

2
|1⟩⟨1| ⊗ Z |1⟩⟨1| ⊗ |0⟩⟨0| = −1

2
|1⟩⟨1| ⊗ |1⟩⟨1| ⊗ |0⟩⟨0|

ẐjL̂
†
5j
L̂5j = L̂†

5j
L̂5j Ẑj =

1

2
|1⟩⟨1| ⊗ Z |0⟩⟨0| ⊗ |0⟩⟨0| =

1

2
|1⟩⟨1| ⊗ |0⟩⟨0| ⊗ |0⟩⟨0|

ẐjL̂
†
6j
L̂6j = L̂†

6j
L̂6j Ẑj = |1⟩⟨1| ⊗ Z |0⟩⟨0| ⊗ |1⟩⟨1| = |1⟩⟨1| ⊗ |0⟩⟨0| ⊗ |1⟩⟨1| . (C.10)

One can see that
∑6

k=1 L̂kj ẐjL̂
†
kj

= −∑6
k=1 ẐjL̂

†
kj
L̂kj and

∑6
k=1 ẐjL̂

†
kj
L̂kj =

∑6
k=1 L̂

†
kj
L̂kj Ẑj , such

that L̂†
j

[
Ẑj

]
= 2

∑6
k=1 L̂kj ẐjL̂

†
kj

according to the definition of the adjoint Lindbladian, see Eq. (C.3).
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Summarizing, this leads with Eqs. (C.3) and (C.8) to

L̂†
[
Ŝz

]
=

1

2

∑

j

(
2 |0⟩⟨0|j−1 ⊗ |1⟩⟨1|j ⊗ |0⟩⟨0|j+1 + |0⟩⟨0|j−1 ⊗ |1⟩⟨1|j ⊗ |1⟩⟨1|j+1+

+ |1⟩⟨1|j−1 ⊗ |1⟩⟨1|j ⊗ |0⟩⟨0|j+1 − |0⟩⟨0|j−1 ⊗ |0⟩⟨0|j ⊗ |1⟩⟨1|j+1−

− |1⟩⟨1|j−1 ⊗ |0⟩⟨0|j ⊗ |0⟩⟨0|j+1 − 2 |1⟩⟨1|j−1 ⊗ |0⟩⟨0|j ⊗ |1⟩⟨1|j+1

)

=
1

2

∑

j

(
|0⟩⟨0|j−1 ⊗ |1⟩⟨1|j ⊗ |0⟩⟨0|j+1 + |0⟩⟨0|j−1 ⊗ |1⟩⟨1|j ⊗ |1⟩⟨1|j+1+

+ |1⟩⟨1|j−1 ⊗ |1⟩⟨1|j ⊗ |0⟩⟨0|j+1 − |0⟩⟨0|j−1 ⊗ |0⟩⟨0|j ⊗ |1⟩⟨1|j+1−

− |1⟩⟨1|j−1 ⊗ |0⟩⟨0|j ⊗ |0⟩⟨0|j+1 − |1⟩⟨1|j−1 ⊗ |0⟩⟨0|j ⊗ |1⟩⟨1|j+1

)

=
1

2

∑

j

(
|0⟩⟨0|j−1 ⊗ |1⟩⟨1|j ⊗ 1̂j+1 + 1̂j−1 ⊗ |1⟩⟨1|j ⊗ |0⟩⟨0|j+1−

− 1̂j−1 ⊗ |0⟩⟨0|j ⊗ |1⟩⟨1|j+1 − |1⟩⟨1|j−1 ⊗ |0⟩⟨0|j ⊗ 1̂j+1

)

=
1

2

∑

j

(
|0⟩⟨0|j ⊗ |1⟩⟨1|j+1 + |1⟩⟨1|j ⊗ |0⟩⟨0|j+1−

− |0⟩⟨0|j ⊗ |1⟩⟨1|j+1 − |1⟩⟨1|j ⊗ |0⟩⟨0|j+1

)

= 0, (C.11)

where, in the first step, the first and the last projectors are each split into a sum of two identical

summands; writing 2 |0⟩⟨0|j−1⊗|1⟩⟨1|j⊗|0⟩⟨0|j+1 = |0⟩⟨0|j−1⊗|1⟩⟨1|j⊗|0⟩⟨0|j+1+ |0⟩⟨0|j−1⊗|1⟩⟨1|j⊗
|0⟩⟨0|j+1, and analogously for −2 |1⟩⟨1|j−1 ⊗ |0⟩⟨0|j ⊗ |1⟩⟨1|j+1. In the second step, all summands

that are written next to each other are combined by identifying two identical projectors acting

on the same site, while the sum of orthogonal projectors acting on the third site simplifies to

|0⟩⟨0|+ |1⟩⟨1| = 1̂. Because of the space-invariance of lattice sites j, one can then in the fourth step

shift the first and the last terms by one lattice site to the right, j → j+1, and choose by convention

to not write down the identity channels explicitly. The projectors thus cancel each other out in the

last trivial step.

Plugging this result into the right-hand site of the initial Eq. (C.1), one can see that

d

dt

〈
Ŝz(t)

〉
= 0. (C.12)

The conservation of Ŝz for the Lindbladian describing the Fukś QCA has thus been proved.
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Appendix D

Steady states of the Lindbladian

describing the Fukś QCA

This section presents a derivation of the steady states of the continuous-time quantum dynamics

describing the Fukś QCA. The corresponding Lindbladian is defined by Eqs. (5.12) and (5.13) in

the main text. The steady states of this system are by definition invariant in time, i.e. they satisfy

the equation

L̂(Fukś)[ρ̂ss] =
d

dt
ρ̂ss = 0, (D.1)

whose solutions will be presented in the following Sec. D.0.1. Non-steady states that do not satisfy

this equation are discussed in Sec. D.0.2.

D.0.1 The set of steady states

First, the trivial solutions, the pure states |0...0⟩⟨0...0| and |1...1⟩⟨1...1|, are derived to be steady

states by showing that they fulfill Eq. (D.1), i.e.

L̂(Fukś)[|0...0⟩⟨0...0|] = 0, (D.2a)

L̂(Fukś)[|1...1⟩⟨1...1|] = 0. (D.2b)

Inspecting the form of the Lindbladian in Eqs. (5.12) and (5.13), note that it only exhibits one jump

operator that acts on the |0⟩⟨0|j−1 ⊗ |0⟩⟨0|j+1 (|1⟩⟨1|j−1 ⊗ |1⟩⟨1|j+1) neighborhood, L̂1 in Eq. (5.13a)

(L̂6 in Eq. (5.13f)), that includes the amplitude damping (amplitude pumping) channel acting on

the center site, |0⟩⟨1|j (|1⟩⟨0|j). This annihilation (rising) operator destroys the state if, as in the

case of the |0...0⟩⟨0...0| (|1...1⟩⟨1...1|) state, the center qubit is in the same state as its neighboring

qubits, writing σ− |0⟩ = |0⟩⟨1| |0⟩ = 0 (σ+ |1⟩ = |1⟩⟨0| |1⟩ = 0), which is the basic argument on which

the following complete derivation of Eq. (D.2) is based on.

Dividing the Lindbladian into a sum of superoperators acting on a subset of a three qubit
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neighborhood, L̂ =
∑

j L̂j , its action on the state |0⟩⟨0|j−1 ⊗ |0⟩⟨0|j ⊗ |0⟩⟨0|j+1 =: |000⟩⟨000|j yields:

L̂(Fukś)
j [|000⟩⟨000|j ] =

6∑

k=1

(
L̂kj |000⟩⟨000|j L

†
kj

− 1

2

(
|000⟩⟨000|j L

†
kj
L̂kj + L̂†

kj
L̂kj |000⟩⟨000|j

))

= L̂1j |000⟩⟨000|j L̂
†
1j

− 1

2

(
|000⟩⟨000|j L̂

†
1j
L̂1j + L̂†

1j
L̂1j |000⟩⟨000|j

)

= γ (|0⟩⟨0| |0⟩⟨0| |0⟩⟨0| ⊗ |0⟩⟨1| |0⟩⟨0| |1⟩⟨0| ⊗ |0⟩⟨0| |0⟩⟨0| |0⟩⟨0|

− 1

2
(|0⟩⟨0| |0⟩⟨0| |0⟩⟨0| ⊗ (|0⟩⟨0| |1⟩⟨0| |0⟩⟨1|+ |1⟩⟨0| |0⟩⟨1| |0⟩⟨0|)⊗ |0⟩⟨0| |0⟩⟨0| |0⟩⟨0|))j

= 0, (D.3)

and thus: L̂[|0...0⟩⟨0...0|] = ∑
j L̂j [|000⟩⟨000|j ] = 0. Analogously, L̂[|1...1⟩⟨1...1|] = 0 can be shown

by replacing L̂1 with L̂6 in the second step, and swapping the annihilation and creation operators

|0⟩⟨1| and |1⟩⟨0| in the third step. As linear combinations of steady states are also steady states, all

mixed states of the |0...0⟩⟨0...0| and |1...1⟩⟨1...1| states are steady states of the system as well.

Furthermore, it can be shown that the associate coherence terms remain invariant in this system,

L̂(Fukś)[|0...0⟩⟨1...1|] = 0, (D.4a)

L̂(Fukś)[|1...1⟩⟨0...0|] = 0, (D.4b)

because the projectors included in the jump operators that determine the states of the neighboring

sites j−1 and j+1, see Eq. (5.13), annihilate all off-diagonal density matrix elements. For example,

the action of the first and second jump operators onto the state |0⟩⟨1|j−1 ⊗ |0⟩⟨1|j ⊗ |0⟩⟨1|j+1 =:

|000⟩⟨111|j lead to:

(
L̂1j |000⟩⟨111|j L̂

†
1j

− 1

2

(
|000⟩⟨111|j L̂

†
1j
L̂1j + L̂†

1j
L̂1j |000⟩⟨111|j

))

= γ (|0⟩⟨0| |0⟩⟨1| |0⟩⟨0| ⊗ |0⟩⟨1| |0⟩⟨1| |1⟩⟨0| ⊗ |0⟩⟨0| |0⟩⟨1| |0⟩⟨0| −

− 1

2
(|0⟩⟨1| |0⟩⟨0| ⊗ |0⟩⟨1| |1⟩⟨0| |0⟩⟨1| ⊗ |0⟩⟨1| |0⟩⟨0|+

+ |0⟩⟨0| |0⟩⟨1| ⊗ |1⟩⟨0| |0⟩⟨1| |0⟩⟨1| ⊗ |0⟩⟨0| |0⟩⟨1|)))j = 0, (D.5a)

(
L̂2j |000⟩⟨111|j L̂

†
2j

− 1

2

(
|000⟩⟨111|j L̂

†
2j
L̂2j + L̂†

2j
L̂2j |000⟩⟨111|j

))

= γ (|0⟩⟨0| |0⟩⟨1| |0⟩⟨0| ⊗ |0⟩⟨1| |0⟩⟨1| |1⟩⟨0| ⊗ |1⟩⟨1| |0⟩⟨1| |1⟩⟨1| −

− 1

2
(|0⟩⟨1| |0⟩⟨0| ⊗ |0⟩⟨1| |1⟩⟨0| |0⟩⟨1| ⊗ |0⟩⟨1| |1⟩⟨1|+

+ |0⟩⟨0| |0⟩⟨1| ⊗ |1⟩⟨0| |0⟩⟨1| |0⟩⟨1| ⊗ |1⟩⟨1| |0⟩⟨1|)))j = 0. (D.5b)

Hence,

ρ̂(Fukś)ss = α |0...0⟩⟨0...0|+ β |0...0⟩⟨1...1|+ β∗ |1...1⟩⟨0...0|+ (1− α) |1...1⟩⟨1...1| (D.6)
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has been shown to be a set of steady states. The set includes the GHZ state 1
2(|0...0⟩⟨0...0| +

|0...0⟩⟨1...1|+ |1...1⟩⟨0...0|+ |1...1⟩⟨1...1|) with α = β = 1
2 , as well as the pure states |0...0⟩⟨0...0| and

|1...1⟩⟨1...1| with α = 1 or α = 0, respectively, and the mixed state α |0...0⟩⟨0...0|+(1−α) |1...1⟩⟨1...1|)
with β = 0 and α ∈ (0, 1); according to Eqs. (D.2) and (D.4).

Note that all steady states are translationally invariant, which means that the state exhibits the

same local number density at every lattice site which is (thus) equal to the global number density

of the whole state. This number density is the same as the global density of the input state ρ̂ as

shown in Appendix C.

Explicitly, the amplitude α that defines the number density of the steady state (D.6) is deter-

mined by the input state ρ̂ as follows:

α = Tr
[
P̂0 ρ̂

]
, (D.7a)

1− α = Tr
[
P̂1 ρ̂

]
, (D.7b)

where P̂0 =
∑

j
1̂j+Ẑj

2 and P̂1 =
∑

j
1̂j−Ẑj

2 . As a simple example, the map evolves the input

state ρ̂ = |0001⟩⟨0001| to the steady state 3
4 |0000⟩⟨0000| + 1

4 |1111⟩⟨1111|, where α = 3
4 defines the

normalized number of zero states and 1− α = 1
4 the normalized number of one states of the input

state. The amplitudes β and β∗ of the off-diagonal coherence terms in (D.6) are given by

β = Tr [|0...0⟩⟨1...1| ρ̂ ], (D.8a)

β∗ = Tr [|1...1⟩⟨0...0| ρ̂ ], (D.8b)

with upper bound |β| ≤
√
α(1− α).

For the proof of Eq. (D.8b), we are going to investigate whether a state ρ̂ that does not exhibit

the density matrix element |0...0⟩⟨1...1| (or its complex-conjugate) would evolve into a state that

does include the density matrix element |0...0⟩⟨1...1| state (or its complex-conjugate) under long-time

evolution; i.e. if that would be the case, then

Tr
[
eL̂

(Fukś)t[ρ̂] |1...1⟩⟨0...0|
]
= 0 (D.9)

would be satisfied, which is going to be checked in the following. To start, it is sufficient to consider

short-time evolution by taking into account that if the state decays in the long-term limit, it does

so in the short-term limit too. The Lindblad evolution can then for t≪ 1 be approximated by

eL̂
(Fukś)t[ρ̂] ≈ ρ̂+ t L̂(Fukś)[ρ̂], (D.10)

where only the last term L̂[ρ̂] has the potential to include the |0...0⟩⟨1...1| matrix element as ρ̂ does

not by definition. Considering the evolution of the density matrix element |0...0⟩⟨1...1j−10j1j+1...1|,
where as the |0...0⟩⟨0...0| and the |1...1⟩⟨1...1| states have already been shown to vanish under the

action the Lindbladian, see Eq. (D.2), only the remaining density matrix elements need to be

inspected. Only those terms of the Lindbladian that act on the qubit at site j (i.e. the state that

is not equal to the states of the surrounding qubits in the lattice) can be non-zero; writing with

|x⟩⟨x̃|j−1 ⊗ |y⟩⟨ỹ|j ⊗ |z⟩⟨z̃|j+1 =: |xyz⟩⟨x̃ỹz̃|j ∀x, x̃, y, ỹ, z, z̃ ∈ {0, 1}:
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L̂(Fukś)[|0...0⟩⟨1...1j−10j1j+1...1|] = L̂(Fukś)
j−1 [|000⟩⟨110|j−1] + L̂(Fukś)

j [|000⟩⟨101|j ]+ (D.11)

+ L̂(Fukś)
j+1 [|000⟩⟨011|j+1]. (D.12)

As the local Lindbladians acting on the three-cell neighborhood are

L̂j−1

[
|000⟩⟨110|j−1

]
=

6∑

k=1

(
L̂kj−1

|000⟩⟨110|j−1 L̂
†
kj−1︸ ︷︷ ︸

=0 ∀k

−

− 1

2

(
|000⟩⟨110|j−1 L̂

†
4j−1

L̂4j−1 + L†
1j−1

L̂1j−1 |000⟩⟨110|j−1︸ ︷︷ ︸
=0

))

= −γ
4
|000⟩⟨110|j−1 , (D.13)

L̂j
[
|000⟩⟨101|j

]
=

6∑

k=1

(
L̂kj |000⟩⟨101|j L̂

†
kj︸ ︷︷ ︸

=0 ∀k

−1

2

(
|000⟩⟨101|j L̂

†
6j
L̂6j + L†

1j
L̂1j |000⟩⟨101|j︸ ︷︷ ︸

=0

))

= −γ
4
|000⟩⟨101|j , (D.14)

L̂j+1

[
|000⟩⟨011|j+1

]
=

6∑

k=1

(
L̂kj+1

|000⟩⟨011|j+1 L̂
†
kj+1︸ ︷︷ ︸

=0 ∀k

−

− 1

2

(
|000⟩⟨011|j+1 L̂

†
2j+1

L̂2j+1 + L†
1j+1

L̂1j+1 |000⟩⟨011|j+1︸ ︷︷ ︸
=0

))

= −γ
4
|000⟩⟨011|j+1 . (D.15)

one can find that

L̂(Fukś)[|0...0⟩⟨1...1j−10j1j+1...1|] = −γ
4
(|000⟩⟨110|j−1 + |000⟩⟨101|j + |000⟩⟨101|j+1). (D.16)

Thus, the Lindbladian does not map the state |0...0⟩⟨1...1j−10j1j+1...1| to the |0...0⟩⟨1...1| state,
where analogous derivations hold for all other off-diagonal elements of the initial state that do not

equal the |0...0⟩⟨1...1| state. It has hence been shown that β in Eq. (D.8b) does indeed represent the

amplitude of the density matrix element |0...0⟩⟨1...1| of the initial state, because there is no other

density matrix element that evolves to this state.

D.0.2 States that are not steady states

How about density matrices that include neighboring sites exhibiting different quantum states —

could those be also steady states of the explored system? For gleaning this, a superposition state

is considered consisting of an arbitrary convex sum of projectors with all qubits except one (at an
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arbitrary site j) occupying the same state:

ρ̂ = a |0...0⟩⟨0...0|+ b |0...0j−11j0j+1...0⟩⟨0...0j−11j0j+1...0|

+ c |1...1j−10j1j+1...1⟩⟨1...1j−10j1j+1...1|+ d |1...1⟩⟨1...1|

+ e |0...0⟩⟨0...0j−11j0j+1...0|+ e∗ |0...0j−11j0j+1...0⟩⟨0...0|

+ f |1...1⟩⟨1...1j−10j1j+1...1|+ f∗ |1...1j−10j1j+1...1⟩⟨1...1| , (D.17)

where d = 1− a− b− c due to trace-preserving condition of quantum states.

As the |0...0⟩⟨0...0| and the |1...1⟩⟨1...1| states have already been shown to vanish under the action

the Lindbladian, see Eq. (D.2), only the remaining density matrix elements need to be inspected in

the following:

L̂(Fukś)[ρ̂] = b L̂(Fukś)[|0...0j−11j0j+1...0⟩⟨0...0j−11j0j+1...0|]+
+ c L̂(Fukś)[|1...1j−10j1j+1...1⟩⟨1...1j−10j1j+1...1|]
+ e L̂(Fukś)[|0...0⟩⟨0...0j−11j0j+1...0|] + e∗ L̂(Fukś)[|0...0j−11j0j+1...0⟩⟨0...0|]
+ f L̂(Fukś)[|1...1⟩⟨1...1j−10j1j+1...1|] + f∗ L̂(Fukś)[|1...1j−10j1j+1...1⟩⟨1...1|], (D.18)

where, by the similar argument that L̂j [|000⟩⟨000|j ] = 0, see Eq. (D.3), only those terms of the

Lindbladian that act on the qubit at site j (i.e. the state that is not equal to the states of the

surrounding qubits in the lattice) are non-zero — for example, for the first term in Eq. (D.18) this

means:

L̂[|0...0j−11j0j+1...0⟩⟨0...0j−11j0j+1...0|] = L̂j−1[|001⟩⟨001|j−1] + L̂j [|010⟩⟨010|j ]+
+ L̂j+1[|100⟩⟨100|j+1]. (D.19)

For the derivation of these three terms, it is convenient to notice that only one of the six jump
operators in Eq. (5.13) act on a given state: In the second term, |010⟩⟨010|j , only the jump operator

L̂1j acts on the state as the neighborhood is in the state |0⟩⟨0|j−1⊗|0⟩⟨0|j+1, see Eq. (5.13a); whereas

jump operators L̂3 and L̂5 each act on the states of the first and the third term, |001⟩⟨001|j−1 and
|100⟩⟨100|j+1, due to the respective |0⟩⟨0|j−2 ⊗ |1⟩⟨1|j and |1⟩⟨1|j ⊗ |0⟩⟨0|j+2 neighborhoods, and the
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center site being in the |0⟩⟨0| state. In such a way, the summands in Eq. (D.19) yield:

L̂(Fukś)
j−1

[
|001⟩⟨001|j−1

]
= L̂3j−1

|001⟩⟨001|j−1 L̂
†
3j−1

− 1

2

(
|001⟩⟨001|j−1 L̂

†
3j−1

L̂3j−1
+ L̂†

3j−1
L̂3j−1

|001⟩⟨001|j−1

)

=
γ

2
|0⟩⟨0|j−2 ⊗

(
|1⟩⟨0| |0⟩⟨0| |0⟩⟨1| − 1

2
(|0⟩⟨0| |0⟩⟨1| |1⟩⟨0|+ |0⟩⟨1| |1⟩⟨0| |0⟩⟨0|)

)

j−1

⊗ |1⟩⟨1|j

= −γ
2
|0⟩⟨0|j−2 ⊗ (|0⟩⟨0| − |1⟩⟨1|)j−1 ⊗ |1⟩⟨1|j , (D.20a)

L̂(Fukś)
j

[
|010⟩⟨010|j

]
= L̂1j |010⟩⟨010|j L̂

†
1j

− 1

2

(
|010⟩⟨010|j L̂

†
1j
L̂1j + L̂†

1j
L̂1j |010⟩⟨010|j

)

= γ |0⟩⟨0|j−1 ⊗
(
|0⟩⟨1| |1⟩⟨1| |1⟩⟨0| − 1

2
(|1⟩⟨1| |1⟩⟨0| |0⟩⟨1|+ |1⟩⟨0| |0⟩⟨1| |1⟩⟨1|)

)

j

⊗ |0⟩⟨0|j+1

= γ |0⟩⟨0|j−1 ⊗ (|0⟩⟨0| − |1⟩⟨1|)j ⊗ |0⟩⟨0|j+1 , (D.20b)

L̂(Fukś)
j+1

[
|100⟩⟨100|j+1

]
= L̂5j+1 |100⟩⟨100|j+1 L̂

†
5j+1

− 1

2

(
|100⟩⟨100|j+1 L̂

†
5j+1

L̂5j+1 + L̂†
5j+1

L̂5j+1 |100⟩⟨100|j+1

)

=
γ

2
|1⟩⟨1|j ⊗

(
|1⟩⟨0| |0⟩⟨0| |0⟩⟨1| − 1

2
(|0⟩⟨0| |0⟩⟨1| |1⟩⟨0|+ |0⟩⟨1| |1⟩⟨0| |0⟩⟨0|)

)

j+1

⊗ |0⟩⟨0|j+2

= −γ
2
|1⟩⟨1|j ⊗ (|0⟩⟨0| − |1⟩⟨1|)j+1 ⊗ |0⟩⟨0|j+2 , (D.20c)

so that the overall sum of L̂j−1

[
|001⟩⟨001|j−1

]
, L̂j

[
|010⟩⟨010|j

]
and L̂j+1

[
|100⟩⟨100|j+1

]
is non-zero,

L̂(Fukś)[|0...0j−11j0j+1...0⟩⟨0...0j−11j0j+1...0|] =
= −γ

2
|0⟩⟨0|1 ⊗ ...⊗ |0⟩⟨0|j−2 ⊗

(
(|0⟩⟨0| − |1⟩⟨1|)j−1 ⊗ |1⟩⟨1|j ⊗ |0⟩⟨0|j+1−

− 2 |0⟩⟨0|j−1 ⊗ (|0⟩⟨0| − |1⟩⟨1|)j ⊗ |0⟩⟨0|j+1+

+ |0⟩⟨0|j−1 ⊗ |1⟩⟨1|j ⊗ (|0⟩⟨0| − |1⟩⟨1|)j+1

)
⊗ |0⟩⟨0|j+2 ⊗ ...⊗ |0⟩⟨0|N

= −γ
2
|0⟩⟨0|1 ⊗ ...⊗ |0⟩⟨0|j−2 ⊗

(
− 2 |000⟩⟨000|j + 4 |010⟩⟨010|j −

− |011⟩⟨011|j − |110⟩⟨110|j
)
⊗ |0⟩⟨0|j+2 ⊗ ...⊗ |0⟩⟨0|N =

= γ |0⟩⟨0|1 ⊗ ...⊗ |0⟩⟨0|j−2 ⊗
(
|000⟩⟨000|j − 2 |010⟩⟨010|j +

+
1

2
(|011⟩⟨011|j + |110⟩⟨110|j)

)
⊗ |0⟩⟨0|j+2 ⊗ ...⊗ |0⟩⟨0|N ̸= 0.

(D.21)

This result also implies that the associated bit-flipped state:

(X̂(N) |0...0j−11j0j+1...0⟩⟨0...0j−11j0j+1...0| X̂(N) = |1...1j−10j1j+1...1⟩⟨1...1j−10j1j+1...1| (D.22)

with X̂(N) := X̂1 ⊗ ...⊗ X̂N , where N is the number of qubits) is neither a steady state,

L̂(Fuks)[|1...1j−10j1j+1...1⟩⟨1...1j−10j1j+1...1|] = X̂(N)L̂(Fuks)[|0...0j−11j0j+1...0⟩⟨0...0j−11j0j+1...0|]X̂(N) ̸= 0

(D.23)

because of the symmetric definition of the jump operators with X̂(3)L̂1X̂
(3) = L̂6, X̂

(3)L̂2X̂
(3) = L̂3,

and X̂(3)L̂4X̂
(3) = L̂5, where X̂

(3) := (X̂ ⊗ X̂ ⊗ X̂), see Eq. (5.13).
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Next, the off-diagonal density matrix elements in Eq. (D.18) are taken into account. The first

one reads

L̂(Fukś)[|0...0⟩⟨0...0j−11j0j+1...0|] = L̂j−1[|000⟩⟨001|j−1] + L̂j [|000⟩⟨010|j ] + L̂j+1[|000⟩⟨100|j+1],

(D.24)

where, analogous to the derivation in Eq. (D.20):

L̂(Fukś)
j−1

[
|000⟩⟨001|j−1

]
= L̂3j−1

|000⟩⟨001|j−1 L̂
†
3j−1

− 1

2

(
|000⟩⟨001|j−1 L̂

†
3j−1

L̂3j−1
+ L̂†

3j−1
L̂3j−1

|000⟩⟨001|j−1

)

=
γ

2
|0⟩⟨0|j−2 ⊗

(
|1⟩⟨0| |0⟩⟨0| |0⟩⟨1|j−1 ⊗ |1⟩⟨1| |0⟩⟨1| |1⟩⟨1|j −

− 1

2
(|0⟩⟨0| |0⟩⟨1| |1⟩⟨0|j−1 ⊗ |0⟩⟨1| |1⟩⟨1|j + |0⟩⟨1| |1⟩⟨0| |0⟩⟨0|j−1 ⊗ |1⟩⟨1| |0⟩⟨1|j)

)
=

= −γ
4
|0⟩⟨0|j−2 ⊗ |0⟩⟨0|j−1 ⊗ |0⟩⟨1|j , (D.25a)

L̂(Fukś)
j

[
|000⟩⟨010|j

]
= L̂1j |000⟩⟨010|j L̂

†
1j

− 1

2

(
|000⟩⟨010|j L̂

†
1j
L̂1j + L̂†

1j
L̂1j |000⟩⟨010|j

)

= γ |0⟩⟨0|j−1 ⊗
(
|0⟩⟨1| |0⟩⟨1| |1⟩⟨0| − 1

2
(|0⟩⟨1| |1⟩⟨0| |0⟩⟨1|+ |1⟩⟨0| |0⟩⟨1| |0⟩⟨1|)

)

j

⊗ |0⟩⟨0|j+1

= −γ
2
|0⟩⟨0|j−1 ⊗ |0⟩⟨1|j ⊗ |0⟩⟨0|j+1 , (D.25b)

L̂(Fukś)
j+1

[
|000⟩⟨100|j+1

]
= L̂5j+1

|000⟩⟨100|j+1 L̂
†
5j+1

− 1

2

(
|000⟩⟨100|j+1 L̂

†
5j+1

L̂5j+1
+ L̂†

5j+1
L̂5j+1

|000⟩⟨100|j+1

)

=
γ

2

(
|1⟩⟨1| |0⟩⟨1| |1⟩⟨1|j ⊗ |1⟩⟨0| |0⟩⟨0| |0⟩⟨1|j+1 −

− 1

2
(|0⟩⟨1| |1⟩⟨1|j ⊗ |0⟩⟨0| |0⟩⟨1| |1⟩⟨0|j+1 + |1⟩⟨1| |0⟩⟨1|j ⊗ |0⟩⟨1| |1⟩⟨0| |0⟩⟨0|j+1)

)
⊗ |0⟩⟨0|j+2

= −γ
4
|0⟩⟨1|j ⊗ |0⟩⟨0|j+1 ⊗ |0⟩⟨0|j+2 , (D.25c)

such that

L̂(Fukś)[|0...0⟩⟨0...0j−11j0j+1...0|] = −γ |0...0⟩⟨0...0j−11j0j+1...0| ≠ 0. (D.26)

Analogously, due to the symmetry of the Lindbladian, the action of the Lindbladian on the associate

hermitian conjugate state as well as the corresponding bit-flipped states and its hermitian conjugate

are all non-zero — specifically,

L̂(Fuks)
[
|0...0j−11j0j+1...0⟩⟨0...0|

]
=
(
L̂(Fuks)

[
|0...0⟩⟨0...0j−11j0j+1...0|

])†
= |0...0j−11j0j+1...0⟩⟨0...0|,

L̂(Fuks)
[
|1...1⟩⟨1...1j−10j1j+1...1|

]
= X̂(N)L̂

[
|0...0⟩⟨0...0j−11j0j+1...0|

]
X̂(N) = |1...1⟩⟨1...1j−10j1j+1...1|,

L̂(Fuks)
[
|1...1j−10j1j+1...1⟩⟨1...1|

]
=
(
X̂(N)L̂

[
|0...0⟩⟨0...0j−11j0j+1...0|

]
X̂(N)

)†
= |1...1j−10j1j+1...1⟩⟨1...1|.

(D.27)

Overall, it has been shown that L̂(Fukś)[ρ̂] ̸= 0, see Eq. (D.18), such that the state ρ̂ in Eq. (D.17)

is not a steady state of the QCA — all steady states are of the form (D.6).
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Appendix E

Proof that Dephasing QCA solves the

DC task

The proof of the conservation of the number density in the Dephasing QCA (see Sec. 5.4.2) follows

in an analogous manner to the proof for the Fukś QCA (see Sec. 5.4.1), by showing the conversation

of the expectation value of Ŝz = 1
2

∑
i Ẑi as outlined in Appendix. C. In contrast, the Dephasing

Lindbladian acts on only two instead of three neighboring sides, j and j + 1, such that Eq. (C.2)

becomes

(
L̂(Dephasing)

)†[
Ŝz

]
=

1

2

∑

j

((
L̂(Dephasing)
j,j+1

)†[
Ẑj

]
+
(
L̂(Dephasing)
j,j+1

)†[
Ẑj+1

])
. (E.1)

Plugging in the definition of the Dephasing Lindbladian in Eqs. (5.15) and (5.16) leads to:

(
L̂(Dephasing)
j,j+1

)†[
Ẑj

]
+
(
L̂(Dephasing)
j,j+1

)†[
Ẑj+1

]
= −iΩ

[
X̂jX̂j+1 + Ŷj Ŷj+1, Ẑj + Ẑj+1

]
+

+
4∑

k=1

(
L†
kj,j+1

(Ẑj + Ẑj+1)L̂kj,j+1
− 1

2

(
(Ẑj + Ẑj+1)L̂

†
kj,j+1

L̂kj,j+1
+ L̂†

kj,j+1
L̂kj,j+1

(Ẑj + Ẑj+1)
))

.

(E.2)

The Hamiltonian term is vanishing ∀j as

[
X̂jX̂j+1 + Ŷj Ŷj+1 , Ẑj + Ẑj+1

]
=
[
X̂j , Ẑj

]
X̂j+1 +

[
Ŷj , Ẑj

]
Ŷj+1 + X̂j

[
X̂j+1, Ẑj+1

]
+ Ŷj

[
Ŷj+1, Ẑj+1

]

= −2iŶjX̂j+1 + 2iX̂j Ŷj+1 − 2iX̂j Ŷj+1 + 2iŶjX̂j+1

= −2i
(
ŶjX̂j+1 − X̂j Ŷj+1 + X̂j Ŷj+1 − ŶjX̂j+1

)

= 0, (E.3)

due to the commutation relations of the Pauli operators,
[
σ̂i, σ̂j

]
= 2iεijkσ̂k ∀ σ̂l ∈

{
X̂, Ŷ , Ẑ

}
with

l ∈ {i, j, k} where εijk the Levi-Civita symbol.

Next, the dissipator is vanishing too, because the summands for all four jump operators in
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Eq. (5.17) are zero ∀j. That is, the first jump operator L̂1j,j+1 = P̂0j P̂0j+1 yields:

L̂†
1j,j+1

(
Ẑj + Ẑj+1

)
L̂1j,j+1 −

1

2

((
Ẑj + Ẑj+1

)
L̂†
1j,j+1

L̂1j,j+1 + L̂†
1j,j+1

L̂1j,j+1

(
Ẑj + Ẑj+1

))

= P̂0j P̂0j+1

(
Ẑj + Ẑj+1

)
P̂0j P̂0j+1 −

1

2

((
Ẑj + Ẑj+1

)
P̂0j P̂0j+1 + P̂0j P̂0j+1

(
Ẑj + Ẑj+1

))

= P̂0j P̂0j+1 −
1

2

(
P̂0j P̂0j+1 + P̂0j P̂0j+1

)

= 0 (E.4)

with P̂0 = |0⟩⟨0| and P̂0Ẑ = ẐP̂0 = P̂0ẐP̂0 = P̂0; and analogously, the term of the fourth jump

operator L̂4j,j+1 = P̂1j P̂1j+1 leads to:

L̂†
4j,j+1

(Ẑj + Ẑj+1)L̂4j,j+1 −
1

2

(
(Ẑj + Ẑj+1)L̂

†
4j,j+1

L̂4j,j+1 + L̂†
4j,j+1

L̂4j,j+1(Ẑj + Ẑj+1)
)

= −P̂1j P̂1j+1 −
1

2

(
−P̂1j P̂1j+1 − P̂1j P̂1j+1

)

= 0 (E.5)

with P̂1 = |1⟩⟨1| and P̂1Ẑ = ẐP̂1 = P̂1ẐP̂1 = −P̂1. Last, the summands of the second and third

jump operators L̂2j,j+1 = |ψ+⟩⟨ψ+|j,j+1 and L̂3j,j+1 = |ψ−⟩⟨ψ−|j,j+1 are vanishing as

L̂†
2,3j,j+1

(Ẑj + Ẑj+1)L̂2,3j,j+1 −
1

2

(
(Ẑj + Ẑj+1)L̂

†
2,3j,j+1

L̂2,3j,j+1 + L̂†
2,3j,j+1

L̂2,3j,j+1(Ẑj + Ẑj+1)
)

= 0− 1

2
(0 + 0) = 0. (E.6)

All in all, it has thus been shown that
(
L̂(Dephasing)

)†[
Ŝz

]
= 0 according to Eq. (E.1), such that

the expectation value of Ŝz is conserved:

d

dt

〈
Ŝz(t)

〉
= 0. (E.7)

Next, it is shown that the Dephasing QCA is therefore a density classifier due to its translation

invariance. Let |ρ̂ss⟩ with L̂ |ρ̂ss⟩ = 0 be a vectorized steady state of a system defined by a trans-

lationally invariant Lindbladian L̂, then T̂ ρ̂ssT̂ † → T̂ ⊗ T̂ ∗ |ρ̂ss⟩, with translation operator T̂ , must

also be a steady state of the same system as

L̂
(
T̂ ⊗ T̂ ∗

)
|ρ̂ss⟩ =

(
T̂ ⊗ T̂ ∗

)(
T̂ ⊗ T̂ ∗

)†
L̂
(
T̂ ⊗ T̂ ∗

)

︸ ︷︷ ︸
=L̂

|ρ̂ss⟩

=
(
T̂ ⊗ T̂ ∗

)
L̂ |ρ̂ss⟩

= 0, (E.8)

such that any single site translation of a steady state is also a steady state.

Thus, given the Dephasing QCA conserves Ŝz and is translationally invariant, it is shown be a

density classifier and solve the DC task.
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Appendix F

Fatès QCA

Analogous to the Fukś CA, the Fatès rule is also a radius-one probabilistic CA. It is given by the

traffic-majority (TM) rule studied in [162] and consists of a linear combination of the traffic rule

184 with probability p ∈ [0, 1] and the majority rule 232 with probability 1− p:

Ŝ(Fatès) = p Ŝ(184)︸ ︷︷ ︸
traffic rule

+ (1− p) Ŝ(232)︸ ︷︷ ︸
majority rule

, (F.1)

That is, the same map, either Ŝ(184) or Ŝ(232) is applied to all cells in one time step, see Fig. F.1,

with the corresponding transition probabilities shown in Tab. F.1. The map’s fixed point is the all

CA 184 CA 232

neighborhood probability Kraus operators probability Kraus operators

00
p000 = 0 amp. damping p000 = 0 amp. damping

p010 = 0
{
P̂0, σ̂

−
}

p010 = 0
{
P̂0, σ̂

−
}

01
p001 = 0 identity channel p001 = 0 identity channel

p011 = 1
{
1̂
}

p011 = 1
{
1̂
}

10
p100 = 1 bit-flip p100 = 0 identity channel

p110 = 0
{
X̂
}

p110 = 1
{
1̂
}

11
p101 = 1 amp. pumping p101 = 1 amp. pumping

p111 = 1
{
P̂1, σ̂

+
}

p111 = 1
{
P̂1, σ̂

+
}

Table F.1: Fatès QCA. Second and fourth column: transition probabilities pacb representing the

likelihood of the state transition |acb⟩ → |a1b⟩, with a, b, c ∈ {0, 1} ∀ p ∈ [0, 1
]
. Third and fifth

column: set of Kraus operators of the associated quantum channels acting on the center site j.

zero state if the initial state exhibits a number density less than 1
2 , the all one state if the initial

number density is greater than 1
2 , or random for an equal initial number of zero and one states.

However, the desired fixed point is reached only within a certain error threshold depending on the

probability p and the structure of the input state, and does not solve the majority voting problem

with complete accuracy, see discussion in [162].
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b) Dephasing QCA

p: rule 184

a) Fukś QCA c) Majority Voting QCA

d) partitioning schemes

(1-p): rule 232

Fatès CA

locally non-unitary 

Figure F.1: Illustration of the dynamics of the Fatès QCA, which applies a stochastic combination

of the deterministic elementary CA rules 184 and 232 with probability p or 1− p, respectively.

Translating the CA rule in Tab. F.1 in the Kraus operator formalism, one would, analogous to the

Fukś QCA, implement a complete amplitude damping (pumping) channel for the |0⟩⟨0|j−1⊗|0⟩⟨0|j+1

(|1⟩⟨1|j−1 ⊗ |1⟩⟨1|j+1) neighborhood, apply the identity operation in case of the |0⟩⟨0|j−1 ⊗ |1⟩⟨1|j+1

state, and a stochastic bit-flip in case of the |1⟩⟨1|j−1 ⊗ |0⟩⟨0|j+1 neighborhood, as this is the only

neighborhood that differentiates between the CA rules 184 and 232. The corresponding sets of

Kraus operators are the same for both rules, except in case of the 10 neighborhood:

K̂
(00)
0 = |0⟩⟨0| , K̂

(00)
1 = σ̂−, (F.2a)

K̂
(01)
0 = 1̂, (F.2b)

K̂
(10)
0 =

{
X̂ for rule 184

1̂ for rule 232
, (F.2c)

K̂
(11)
0 = |1⟩⟨1| , K̂

(11)
1 = σ̂+, (F.2d)

These define the superoperator in Eq. (5.7) according to Eq. (5.3). However, this map does not

lead to the desired steady state |0...0⟩⟨0...0| (|1...1⟩⟨1...1|) for an initial number density less (greater)

than 1
2 , and is therefore not further inspected. Fig. F.2 shows an example in which the mapping

fails, using even-odd partitioning scheme for each rule with p = 1
2 . Changing the value of p does

not improve reaching the correct steady state; rather, it affects the speeding up or slowing down of

convergence.

Figure F.2: Application of the Fatès rule using an even-odd partitioning scheme with p = 1
2 . Starting

from the state |1111100⟩ with N = 7, the system does not evolve into the desired majority steady

state |1⟩⊗N . One time step corresponds to one update of the QCA, i.e. updating all even and all

odd lattice sites sequentially.
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Appendix G

Proof of the properties of Â and the

dynamics of the Majority Voting

Lindbladian

G.1 Proof of the properties of Â

In the following, the properties of Â are proved, see Sec. 5.4.3. The first property is easily demon-

strated by applying operator A to a state featuring a cluster of |1⟩s, observing that the action of

Âma spreads the |1⟩ states out along the chain, see below example:

|000011111110000⟩ Â−→ |000010111111000⟩
Â2

−→ |000010101111100⟩
Â3

−→ |000010101011110⟩
Â4

−→ |000010101010111⟩
Â5

−→ |010010101010101⟩.

Next,
[
Ŝz, Â

]
= 0 is derived, where Ŝz is the vectorized form of Ŝz =

1
2

∑
j Ẑj . Defining Â =

∏
j Âj

with Âj = K̂0j + K̂1j and K̂µj = K̂µj ⊗ K̂∗
µj ∀µ ∈ {0, 1} yields:

[
Ŝz, Âj

]
=

1

2

[
Ẑj−1 + Ẑj + Ẑj+1, K̂0j + K̂1j

]

=
[
Ẑj−1, K̂1j

]
+
[
Ẑj , K̂1j

]
+ [Zj+1, K̂1j ] +

[
Ẑj−1, K̂0j

]
+
[
Zj , K̂0j

]
+
[
Ẑj+1, K̂0j

]
= 0,

(G.1)

where, in the first step, we have exploited the commutativity of operators on different sites and the

property [A⊗B,C ⊗D] = (AC)⊗ (BD)− (CA)⊗ (DB) is used abandoning the vectorized form.
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In the second step, the first four summands are vanishing since
[
Ẑ, |0⟩⟨0|

]
= 0 =

[
Ẑ, |1⟩⟨1|

]
, and

the last two summands cancel each other out as
[
Ẑj , K̂0j

]
= −

[
Ẑj+1, K̂0j

]
= 2K̂0j . Thus, taking

the product over all lattice sites j into account, Â =
∏
j Âj :

[
Ŝz, Â

]
=
[
Ŝz, Â1

]

︸ ︷︷ ︸
=0

N∏

j=2

Âj +
N−2∑

i=1




i∏

j=1

Âj



[
Ŝz, Âi+1

]

︸ ︷︷ ︸
=0

(
N∏

l=i+2

Âl

)
+



N−1∏

j=1

Âj



[
Ŝz, ÂN

]

︸ ︷︷ ︸
=0

= 0 (G.2)

using the property [C,A ·B] = [C,A] ·B+A · [C,B], where each individual commutator is vanishing

due to Eq. (G.1).

G.2 Majority Voting Lindbladian L̂(ML) by using a Machine Learn-

ing approach

The supervised machine learning approach is used to find an appropriate Lindbladian evolution

exhibiting steady states |0⟩⊗N and |1⟩⊗N that represent the corresponding majority state of the

initial state. The ansatz for the set of jump operators is to take into account all four possible

neighboring state combinations |α⟩⟨α|j−1 ⊗ |β⟩⟨β|j+1, and both, the amplitude raising and lowering

operators, σ̂+j and σ̂−j acting on the center site. That is, given the Lindbladian in vectorized form

L̂(ML)(w⃗) =
N∑

j=1

8∑

k=1

(
L̂kj ⊗ L̂∗

kj
− 1

2

(
L̂†
kj
L̂kj ⊗ 1̂+ 1̂⊗ L̂†

kj
L̂kj

))
, (G.3)

where w⃗ = (w1, ..., w8) and the eight considered jump operators are:

L̂1j =
√
w1 |0⟩⟨0|j−1 ⊗ σ̂+j ⊗ |0⟩⟨0|j+1 , (G.4a)

L̂2j =
√
w2 |0⟩⟨0|j−1 ⊗ σ̂−j ⊗ |0⟩⟨0|j+1 , (G.4b)

L̂3j =
√
w3 |0⟩⟨0|j−1 ⊗ σ̂+j ⊗ |1⟩⟨1|j+1 , (G.4c)

L̂4j =
√
w4 |0⟩⟨0|j−1 ⊗ σ̂−j ⊗ |1⟩⟨1|j+1 , (G.4d)

L̂5j =
√
w5 |1⟩⟨1|j−1 ⊗ σ̂+j ⊗ |0⟩⟨0|j+1 , (G.4e)

L̂6j =
√
w6 |1⟩⟨1|j−1 ⊗ σ̂−j ⊗ |0⟩⟨0|j+1 , (G.4f)

L̂7j =
√
w7 |1⟩⟨1|j−1 ⊗ σ̂+j ⊗ |1⟩⟨1|j+1 , (G.4g)

L̂8j =
√
w8 |1⟩⟨1|j−1 ⊗ σ̂−j ⊗ |1⟩⟨1|j+1 . (G.4h)

Since the states |0⟩⊗N and |1⟩⊗N are the desired steady states, the weights w1 and w8 are set

to zero because their corresponding jump operators would transform the state |0j−10j0j+1⟩ into

the state |0j−11j0j+1⟩, and |1j−11j1j+1⟩ into |1j−10j1j+1⟩, respectively. The remaining decay rates
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(w2, ..., w7) are determined by the ML algorithm using the following training set:

x⃗1 = [0, 0, 0, 0] −→ y1 = 0, x⃗7 = [1, 1, 0, 1, 1] −→ y7 = 1,

x⃗2 = [1, 0, 0, 0] −→ y2 = 0, x⃗8 = [1, 1, 1, 0, 0] −→ y8 = 1,

x⃗3 = [1, 0, 1, 1] −→ y3 = 1, x⃗9 = [1, 0, 1, 1, 0] −→ y9 = 1,

x⃗4 = [1, 0, 0, 0, 0] −→ y4 = 0, x⃗10 = [1, 0, 1, 0, 1] −→ y10 = 1,

x⃗5 = [1, 1, 0, 0, 0] −→ y5 = 0, x⃗11 = [1, 1, 1, 1, 1] −→ y11 = 1,

x⃗6 = [1, 0, 1, 0, 0] −→ y6 = 0,

for system sizes N ∈ {4, 5}, where Xtrain = {x⃗1, ..., x⃗11}, Ytrain = {y1, ..., y11}, and yi is the density

classification output of the state described by x⃗i. The cost function is defined by

C(w⃗) =
11∑

i=0

(−1)1−yif0(w⃗, x⃗i) + (−1)yif1(w⃗, x⃗i), (G.5)

where

f0(w⃗, x⃗i) =
〈
0⃗
∣∣∣eL̂(w⃗)τ

∣∣∣ x⃗i
〉
, (G.6a)

f1(w⃗, x⃗i) =
〈
1⃗
∣∣∣eL̂(w⃗)τ

∣∣∣ x⃗i
〉
, (G.6b)

with |⃗0⟩ and |⃗1⟩ labeling the vectorized forms of the states |0⟩⊗N and |1⟩⊗N , respectively. Note

that each summand of the cost function in Eq. (G.5) equals −1 for every state well-classified, such

that C(w⃗) = −11 if the system solves the majority voting problem for every initial state. The

goal is to minimize the cost function C(w⃗) over w⃗ setting the parameter τ = 10N2 and letting

the weights vary in the range [0, 1]. For finding the global minimum, the basin-hopping algorithm

[223, 224] with the L-BFGS-B local minimizer is used as implemented in the Python library SciPy

[225]. Once a solution is found, it is possible to achieve an improvement in convergence time by

appropriately scaling the weights w⃗. However, none of the solutions w⃗ of the cost function reaches

the expected value of −11 if all the states present in the training set were well classified. This

numerical evidence seems to suggest that a global solution capable of classifying every initial state

and using a Lindbladian of the form (G.3) does not exist. Furthermore, for many of the found

solutions the cost function reaches a value close to −9 with only one state misclassified, namely x⃗5.

Therefore, testing the solution on the set of states Xtest randomly generated of size N ∈ {4, 5, 6, 7},
it is observed that the misclassified states belong to a specific set R. Given the system size N , R is

the set of states with a majority of |0⟩ states, where there exist at least two neighboring |1⟩ states.
A numerical solution for the non-zero weights is w2 = 1.000, w3 = 0.043, w5 = 0.040, and

w7 = 0.075, where the first three decimal digits are taken into account to ensure that the expectation

value of n̂/N exceeds 0.99 which corresponds to having an average value of δ = 0.99 − 0.5 = 0.49

for each site (see Def. 6). Analyzing how the Lindbladian evolves states not belonging to R enables

understanding its action and thus comprehending its effectiveness. As observable in illustrative

examples below (see Fig. G.2), the action of L̂(ML) can be summarized by two contributions:

i) it transforms every part of the string containing an alternation of zeros and ones into all zeros:

|...010101...⟩ → |...00000...⟩;
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ii) it transforms every cluster of ones into a larger cluster by progressively adding ones both

to the right and to the left across the entire chain: |...000111000...⟩ → |...001111100...⟩ →
|...011111110...⟩.

From this, we come to realize that what we have uncovered throug the ML approach is essentially

equivalent to the Lindbladian in Eq. (5.25) employing the conventional rule of updating the central

cell. However, evolving with this Lindbladian, the times needed to reach the final state in the

worst-case scenario, are extremely higher (as it is shown in Fig. G.1) so that this solution has not

been further explored. A usual, we considered the steady state reached when n/N exceeds 0.99

Figure G.1: Time τ needed to reach the steady state of the Majority Voting (MV) (in the worst-case

scenarios and in the sector n > N/2) as function of the system size N ∈ [5, 12], computed using the

QuTiP library in Python [226]. The linear regression fit corresponds to the data of τ associated

with the odd lattice site, yielding τ(N) = c · N + d with the parameters c = 34.992 ± 0.005 and

d = 11.03± 0.04.

which corresponds to having an average value of δ = 0.99− 0.5 = 0.49 for each site (see Def. 6).















































































 

a) b)

Figure G.2: Time evolution according to the Lindbladian (G.3) of the initial states a) |10101010100⟩
and b) |01111010101⟩ with N = 11. On the left of each image, the normalized density n/N is shown

as a function of time τ ; on the right one can see the time evolution of the state, reaching the state

a) |0⟩⊗11 and b) |1⟩⊗11, where each time step is equal to a) 0.025 τ and b) 20 τ . Note that in b) the

density is decreasing for small τ and then monotonically increasing as observed in the plot on the

right showing the time evolution of the state.
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Appendix H

Proof of the scaling of τ with system

size N in discrete-time evolution

As described in the body of the Chapter 5, the goal of transformation Â is to separate the clusters

of |1⟩s and spread them throughout the chain. When Â operates in the sector n > N/2 (where n

is the expectation value of n̂ =
∑

j P̂1j as usual), it will never manage to completely separate the

|1⟩s, and a cluster will always survive. It will be thanks to the survival of this cluster that B̂ will be

able to bring the resulting state to |1⟩⊗N (the action of Â in this sector would not be necessary).

Conversely, when Â acts on a state with n ≤ N/2, it will be able to completely separate the |1⟩s,
and B̂ will bring the state to |0⟩⊗N .

In this appendix, we aim to address the following questions: using the partition scheme depicted

in Fig. 5.1 for Â, what is the minimum number of time steps τ required to ensure that, beginning

from any initial state with n ≤ N/2, the resultant state does not contain any consecutive |1⟩s?
Using the partition scheme depicted in Fig. 5.1 for B̂, what is the minimum number of time steps

τ required to ensure that, after applying Â, the resultant state is correctly classified?

To address the first question, we must first identify the worst-case scenario, which is the one

requiring the greatest number of steps. Then, we need to understand how Â, using a partition

scheme, reaches the solution.

We will start by understanding how Â (without any partition scheme) acts on a state having a

cluster of d states |1⟩s:

| · · · 00
d︷ ︸︸ ︷

1j1j+11j+2 · · · 1j+d 00000 · · · ⟩

| . . . 001j0j+1

d−1︷ ︸︸ ︷
1j+2 · · · 1j+d+1 0000 · · · ⟩

| . . . 001j0j+11j+20j+3

d−2︷ ︸︸ ︷
1j+4 · · · 1j+d+2 000 · · · ⟩

. . .

| . . . 001j0j+11j+20j+31j+4 · · · 1j+2d−1 · · · ⟩
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So the first application of Â, splits the cluster by inserting a 0 after the leftmost 1 and shifting the

remaining 1s by one site. It is evident, therefore, that the number of times Â needs to be applied

is equal to the number of zeros required to completely split the cluster, which is d− 1.

We now demonstrate that the worst-case scenario is equivalent to splitting a single cluster with
N
2 ones. Indeed, let us consider two clusters, each having d1 and d2 ones respectively, with d1 to

the left of d2, separated by l zeros. If l > d1, then the two clusters will be divided independently

without ever interfering with each other and will be completely separated in a number of steps equal

to max(d1, d2)− 1.

| · · · 0
d1︷ ︸︸ ︷

1j1j+11j+2 · · · 1j+d1
l︷ ︸︸ ︷

0000 · · · 0
d2︷ ︸︸ ︷

1k1k+11k+2 · · · 1k+d2 00000 · · · ⟩

| · · · 01j0j+1

d1−1︷ ︸︸ ︷
1j+2 · · · 1j+d1+1

l−1︷ ︸︸ ︷
000 · · · 0 1k0k+1

d2−1︷ ︸︸ ︷
1k+2 · · · 1k+d2+1 0000 · · · ⟩

| · · · 01j0j+11j+20j+3

d1−2︷ ︸︸ ︷
· · · 1j+d1+2

l−2︷ ︸︸ ︷
0 · · · 0 1k0k+11k+20k+3

d2−2︷ ︸︸ ︷
· · · 1k+d2+2 0 · · · ⟩

. . .

| · · · 01j0j+11j+20j+3 · · · 1j+2d1−1

l−d1+1︷︸︸︷
· · · 0 1k0k+11k+20k+3 · · · 1k+2d2−1 · · · ⟩

with the index k = j + l.

If l < d1, then at some point the first cluster will encounter the second one after l steps, with a

number of remaining ones to divide equal to d1 − l, which will be added to d2. Therefore, overall,

the cluster will need a number of steps equal to l+ d1 − l+ d2 − 1 = d1 + d2 − 1, which is the same

number required if the initial state had been composed of a single cluster with d = d1 + d2 ones, as

you can see in the following example:

| · · · 0 0
d=6︷ ︸︸ ︷

1 1 1 1 1 1 0 0 0 0 0 0 · · · ⟩ | · · · 0 0
d1=3︷︸︸︷
1 1 1 0 0

d2=3︷︸︸︷
1 1 1 0 0 0 0 0 · · · ⟩

Â1 −→ | · · · 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 · · · ⟩ | · · · 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 · · · ⟩
Â2 −→ | · · · 0 0 1 0 1 0 1 1 1 1 0 0 0 0 0 · · · ⟩ | · · · 0 0 1 0 1 0 1 1 0 1 0 1 0 0 0 · · · ⟩
Â3 −→ | · · · 0 0 1 0 1 0 1 0 1 1 1 0 0 0 0 · · · ⟩ | · · · 0 0 1 0 1 0 1 0 1 1 0 1 0 0 0 · · · ⟩
Â4 −→ | · · · 0 0 1 0 1 0 1 0 1 0 1 1 0 0 0 · · · ⟩ | · · · 0 0 1 0 1 0 1 0 1 0 1 1 0 0 0 · · · ⟩
Â5 −→ | · · · 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 · · · ⟩ | · · · 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 · · · ⟩

Generalizing to multiple clusters di and knowing that we are in the sector n ≤
⌊
N
2

⌋
, we have

d =
∑

i di ≤
⌊
N
2

⌋
, with the worst-case scenario resulting from the saturation of the inequality.

It is important to stress that all these arguments remain valid when adopting the partition

scheme for Â: indeed, through direct examination, it is evident that what changes is the way in

which the cluster is divided, but not the number of |0⟩ to the right of the cluster required to complete

the spreading of the |1⟩s.
Having identified the worst-case scenario, we continue our analysis by determining how many

time steps Â, using our partition scheme, needs to reach the goal. Considering Figure H.1 showing

an example with N = 12 in the case Nmod3 = 0, it can be easily observed that, once the process
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of splitting begins, a zero separator is added every four layers so that the desired state is reached

after 4(
⌊
N
2

⌋
− 2)+1. Therefore, considering that this process can, at worst, start at the third layer,

we have

τA = 4

(⌊
N

2

⌋
− 2

)
+ 1 + 2 = 4

⌊
N

2

⌋
− 5. (H.1)
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Figure H.1: On the left, discrete evolution of the state |111111000000⟩ by using the partitioned

version of Â. On the right, discrete evolution of the state |000011000⟩ by using the partitioned

version of B̂.

Now, we can address the second question regarding B̂. It is evident that the worst-case scenario
occurs when the smallest possible cluster (which, for Nmod3 = 0 and N odd, consists of two

consecutive ones) needs to be expanded along the chain. In Figure H.1, it is illustrated how B̂,
when partitioned, enlarges a cluster of three ones: once the process starts, two zeros are converted

to ones every two time steps. Therefore, considering that this process can, at worst, begin at the

second layer, we have

τB = 2

(
N − 3

3

)
+ 1 + 1 =

2

3
N. (H.2)

Finally, we obtain

τ = τA + τB = 4

⌊
N

2

⌋
+

2

3
N − 5. (H.3)
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