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Introduction

The main objective of this thesis is to investigate the characteristics and performance of elec-

trical machines that are specifically designed for industrial applications that need high power

density and reliability, such as in the automotive sector.

The PhD thesis covers three independent topics.

A substantial part concentrates on developing methodologies for modeling malfunctioning

electrical machines and employing Artificial Intelligence (AI) techniques to accurately identify

and distinguish between different types of failures.

The studied failures comprised Manufacturing Defects (MDs), High-Resistance Connections

(HRCs), and inter-turn Short Circuits (SCs). The methods presented in this research possess

extensive applicability for surface-mounted Permanent Magnet Synchronous Motors (PMSM)

but can be extended to a variety of motor typologies.

A further part of the doctoral program focuses on the control of two-level multiphase Voltage

Source Inverters (VSIs).

Establishing appropriate and adaptable control strategies for VSIs is crucial for successfully

exploiting the strengths of N -phase electric drives. In the context of this activity, a control

technique was developed with the objective of minimizing the Root Mean Square (RMS) value

of the output current ripple produced from multiphase inverters with odd number of phases.
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Furthermore, the proposed approach optimizes the number of commutations of the power elec-

tronic switches. As a consequence, the current provided to the motor exhibits enhanced quality,

leading to reduced deterioration of power electronic switching components and a reduction in

motor overheating.

A significant contribution to the outcomes in condition monitoring resulted from the col-

laboration with the Polytechnic University of Valencia, where the research took place for six

months. During this period, the research focused on the distinguishing properties of eccentric

PMSM machines, which have a rotor axis of symmetry that differs from that of the stator.

The study resulted in the development of a diagnostic strategy based on radial stray flux mea-

surement. The method enables the differentiation of various kinds of eccentricity affecting the

machine, including static, dynamic, and mixed eccentricity.

All the investigations have been assessed through simulations and experimental tests em-

ploying prototypes of three-phase and multiphase motors and converters.

The content of each chapter is detailed below.

Chapter 1 presents an in-depth review of current advances in the field of electrical drives

suitable for automotive applications.

Chapter 2 provides a comprehensive introduction to multiphase electric drives with a par-

ticular focus on the Dual-Three-Phase (DTP) architecture.

Chapter 3 discusses in detail the principal failures that can impact the stator windings of a

DTP drive. An analytical model is created for each of the faults mentioned, underscoring the

potential of integrating the models into the control system and using fault-tolerant and fault-

identification strategies.

Chapter 4 covers the application of Machine Learning (ML) for fault diagnostics. Two fault

diagnosis methodologies that effectively diagnose the failures analytically outlined in Chapter 2

are presented.

Chapter 5 provides an in-depth description of a control technique for odd-phase inverters

that aims to minimize the RMS of the ripple of the phase current as well as to reduce the number

of commutations of the power electronics switches.
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Chapter 6 provides a diagnostic method for identifying eccentricity in PMSM by measuring

the magnetic flux surrounding the stator yoke, which is referred to as stray flux.

In conclusion, the achievements of the three-year doctoral research have been summarized,

highlighting prospective future developments for the undertaken activities..
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Chapter 1

The Automotive Sector and the

Importance of Permanent Magnets

This chapter offers a comprehensive analysis of the electrification process within the automobile

sector, focusing on its worldwide proliferation and its impact on Europe and Italy. The magnetic

characteristics of Permanent Magnets (PMs) are delineated, emphasizing their significance in

vehicle electrification.

1.1 Clean Energy and Electrification

1.1.1 World Trend

Despite facing challenges, there are strong indicators of a significant increase in the move

towards renewable energy. Figs. 1.1 and 1.2 demonstrate the positive trends in the adoption

of renewable energy sources, which contribute to reducing emissions and improving energy effi-

ciency. The rise in investment is mostly focused on industrialized countries. In order to achieve

the sustainable development goals, it is crucial to promote the widespread adoption of renewable

energy projects. This should be done through strong domestic policies and international finan-

cial support. These goals include ensuring access to energy, addressing global climate issues,

and enhancing energy security.

In this scenario, there has been a gradual transition within the automotive industry to-

wards the manufacturing of Electric Vehicles (EVs). Despite they comprise a mere 2.1% of the
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Figure 1.1: Investment flows [1].
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Figure 1.2: Investment in clean energy and fossil fuels [1].

worldwide vehicle inventory, available data indicates a substantial acceleration in the electrifi-

cation process [2]. Different studies forecast that in ten years, 20% of all newly sold cars will

be electric cars and in twenty years, around 25% [3]. This transition process exerts significant

control over contemporary supply chains pertaining to automobile parts, as well as their design

and manufacture procedures. Automobile manufacturers are allocating substantial financial re-

sources towards research and development (R&D) endeavors, along with the establishment of

new manufacturing facilities, in order to effectively anticipate and adapt to future trends.
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Figure 1.3: Global electric car stock [1].

Recent investment trends have begun to transition the global energy system toward one that

is more electrified and renewables-rich [1]. Increasing sales pushed the total number of electric

cars on the world’s roads to 26 million in 2022, up 60% relative to 2021 with Battery Electric

Vehicles (BEV) accounting for over 70% of total annual growth as depicted in Fig 1.3. The

annual growth rate for electric car sales in 2022 was similar to the average rate over 2015-2018,

and the annual growth rate for the global stock of electric cars in 2022 was similar to that

of 2021 and over the 2015-2018 period, showing a robust recovery of EV market expansion to

pre-pandemic pace.

As illustrated in Fig. 1.4, China has generated the highest revenue from EVs, followed by

the United States with a four-fold lower profit. The revenues of the United Kingdom and France

were approximately 50% of those of Germany.

1.1.2 European Trend

The European Union market is experiencing a gradual integration of EVs, encompassing

both BEVs and Plug-in Hybrid Electric Vehicles (PHEVs). The number of new electric car

registrations has consistently risen from 600 in 2010 to approximately 1.74 million in 2021,

representing 18% of all new registrations . In 2022, the percentage of newly registered passenger

automobiles that were electric increased to over 22%. In 2022, BEVs constituted 12.2% of all

new automobile registrations, and PHEVs accounted for 9.4% (see Fig. 1.5)[5].

Compared to 2021, the proportion of newly registered EVs increased in nearly all nations

(EU-27, Iceland, Norway) in 2022 (see Fig. 1.6). Norway accounted for the largest proportions

(89%), followed by Sweden (58%), and Iceland (56%). Germany, France, and Norway constituted
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Figure 1.5: Volume and share of electric cars sales in Europe [4].

approximately 64% of the total number of newly registered BEVs among the EU-27 and non-EU

EEA nations. The greatest percentages of PHEV sales were recorded in Finland (20%), Iceland

(23%), and Sweden (23%). The proportion of EVs registered in the total fleet of four European

countries (Cyprus, Poland, Czechia, and Slovakia) remained below 5%.

1.1.3 Italian Trend

Italian consumers are becoming increasingly attracted to EVs because of their environmental

benefits. Due to the rising awareness of climate change and air pollution, more and more people

are looking for eco-friendly alternatives to traditional gasoline-powered automobiles. The data

depicted in Fig. 1.7 suggests that the mean quantity of EVs in circulation remained reasonably

stable at 125 million from 2021 to 2023. This statistic is over eight times greater than the value
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recorded in 2019 and three times higher than the value recorded in 2020. Further projections

indicate that the upward trajectory continues, with the number of vehicles on the highways

expected to reach a maximum of 203,800 by 2028.

By 2024, it is anticipated that the EVs market in Italy will generate revenue of 7.5 billion

euros. With a Compound Annual Growth Rate (CAGR) of 10.13% from 2024 to 2028, the

market is expected to reach 11.0 billion euros in volume by that year. Following this trend,

the sales of EVs are projected to hit 203,800 units by the year 2028. Additionally, the volume-

weighted average price of a BEVs in the Italian market is expected to reach 54.1k euros by 2024

[4].
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Figure 1.8: Number of charging stations in Italy [4].
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One factor contributing to the expansion of the electric vehicle market in Italy is the govern-

ment’s initiative to strategically increase the number of charging stations (see Fig. 1.8). This

development has enabled the alleviation of concerns related to range anxiety and has motivated

a wider range of individuals to consider purchasing EVs. According to projections, the number

of charging stations in Italy will reach 52.41 million by 2028, which is approximately 60% more

than the current count and four times greater than what was recorded in 2020.

1.2 Permanent Magnet Motors Market Share

The International Renewable Energy Agency (IRENA) has documented a consistent increase

in the utilization of PM1 motors in recent years. Fig. 1.10 depicts a twofold increase in the

quantity of EVs incorporating PM motors from 2020 to 2023. By 2030, the projected number of
1A thorough description of magnetic circuits is provided in Appendix A.
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Figure 1.10: Projection for rare-earth permanent magnet motors use in electric vehicles.

units is expected to reach 28 million. Forecasts indicate that by 2030, the quantity of vehicles

equipped with PM motors will be approximately four times greater than the quantity of vehicles

equipped with motors that do not utilize magnets.

The primary factors that contribute to the diffusion of PMSMs are mostly due to their high

power density and reliability [6]. Moreover, the need for PM motors is propelled by benefits,

such as the ability to operate at elevated temperatures with low losses. In addition, PMSMs

exhibit a substantial improvement in torque generation, when compared to induction motors,

along with a faster rate of acceleration and deceleration.

Due to their outstanding efficiency, PMSMs find wide use in power steering, regenerative

braking generators, drive motors, and stop-start motors. Furthermore, they are frequently

employed to enhance the performance of electric drives across a range of industrial contexts

such as forklifts, robots, blower motors, switchers installed on railroads, tracks, crossing gates,

marine pumps, and amusement systems.

1.2.1 Current and Prospective Trend

The primary driver of the global PM motor market is industrial demand. The market has

observed an increase in the need for energy-efficient motors and an expanding mandate for the

application of PM motors across various sectors, including the automotive industry.

The global PM market is expected to grow at a CAGR of 9.5% from 2021 to 2026, resulting

in an increase from 34.5 billion USD to 54.1 billion USD [7]. The factors fueling this expansion

encompass a surge in demand from various industrial applications and the automotive industry,

with the Asia Pacific area being one of the most significant contributors [8]. The U.S. Department
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Figure 1.12: Annual REE production by country.

of Energy (DOE) provides data on the end-use sectors that shown the highest demand for PMs

in the year 2020, as depicted in Fig. 1.11.

PMSMs employ PMs to generate the rotating magnetic field required for the generation of

torque. The composition of PMs consists of alloys with Rare-Earth Elements (REEs), which have

unique optical and magnetic properties. Magnets accounted for 34% of the demand for REEs

in 2019, according to IHS Markit. By 2030, magnets are predicted to constitute approximately

40% of total demand [9]. If that forecast proves accurate, demand for key magnetic REEs may

far exceed supply by the end of this decade. Batteries and catalysts accounted for 8% and 20%,

respectively, of REE demand in 2020 (see Fig. 1.11).

Fig. 1.12 presents a summary of REE production data covering from 2016 to 2022, as

published by the U.S. Geological Survey. China is becoming an increasingly dominant force in

the annual production of REEs.
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The North American region represents the second-largest market share globally due to the

influence of countries such as the United States, Canada, and Mexico, which stimulate market

interest in this area.

1.2.2 Neodymium-iron-boron

As previously anticipated, PMs are composed by REEs, with neodymium-iron-boron (NdFeB)

and samarium cobalt (SmCo) playing a significant role. The decision to select these types of

materials is driven by their significant maximum energy product, which serves as a reliable

measure of their efficiency and ability to resist demagnetization [10].

Among PMSMs, those including NdFeB magnets (also known as NIB or Neo magnet) have

emerged as the favored option, since their introduction on the market in 1984, for numerous

applications, such as the automotive one, due to their ability to produce an high magnetic field

[11]. Moreover, NdFeB PMs are widely regarded as the most optimal magnets now accessible,

owing to their exceptional energy product. This characteristic makes them highly effective and

well-suited for lightweight mobile applications. As a result, they find extensive application in

wind turbines, BEVs and PHEVs, household electrical appliances, computer hard disk drives,

and various small consumer electronic gadgets [12].

In 2019, the global production of NdFeB magnets amounted to around 130,000 metric tons,

which corresponds to a market volume of 6.5 billion USD. Notably, China accounted for nearly

93% of the total sourcing and production of these magnets [13].

1.3 Conclusions

This chapter provided a comprehensive analysis of the global, European, and Italian markets

for electric cars and electric motors. Moreover, it has been emphasized how permanent magnet

motors are the preferred choice due to their superior performance and reliability in comparison

to induction motors.
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Chapter 2

Multiphase Electric Drives

This chapter delineates the main advantages of multiphase machines compared to their three-

phase equivalents. The benefits of an increased number of phases in an electric drive system

are emphasized, especially regarding performance and reliability. In addition, the Vector Space

Decomposition (VSD) is illustrated since it facilitates the control of multiphase drives.

2.1 Introduction to Multiphase Electric Drives

Multiphase drives are an intriguing technology that distributes power throughout more than

three phases (see Fig. 2.1), making them well-suited for high-power applications. Multiphase

motor drives offer various advantages over typical three-phase drives with same power, including

improved torque quality and reduced stator current per phase [1; 2]. An increased number of

phases correlates to a greater number of degrees of freedom [3], which can be efficiently employed

to enhance the drive’s tolerance to electrical faults or to increase the torque density [4; 5].

2.1.1 State of The Art

Three-phase motors are very suitable for use as traction motors in electric vehicles. In

conventional applications, their maximum output power can reach 400 kW , while their rotational

motor speed can reach up to 25, 000 Revolutions Per Minute (RPM).

Despite their outstanding performance, three-phase motor drives are subject to certain lim-

itations. For example, they are weak in terms of torque and power production for some electric

propulsion applications, such as aircraft and heavy machinery. In fact, as the torque requirement
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Figure 2.1: Multiphase drive.

increases, the magnitude of the currents flowing into the power converter increases, resulting in

a significant stress for the power electronic components. In a multiphase converter, the power

is divided among multiple phases, thereby reducing the risk of overheating and extending the

lifespan of the components.

Finally, three-phase electrical drives possess a restricted capacity for handling faults; in the

event that any of the three phases fails, the motor experiences a loss of torque and ceases

operation. On the other hand, a multiphase drive may continue to operate even if one of the

phases fails, albeit with reduced performance [6–9]. Therefore, in applications requiring a high

degree of reliability, multiphase Alternating Current (AC) electrical machines may progressively

supplant three-phase machines as a result of developments in power electronics [10–13] and data

processing.

Based on their characteristics, the main current and future uses of multiphase drives are in

aerospace applications, hybrid an battery electric vehicles, ship propulsion, locomotive traction,

wind turbine generation (primarily for remote offshore applications with high-voltage direct

current connection to the shore), and high-power industrial applications in general [14].

A five-phase motor has been developed (see Fig. 2.2) by Daniel Vicario and Siavash Sadeghi,

who founded Optiphase Drive Systems (ODS), with the aim to overcome the constraints of three-

phase motors and broaden the application of electric vehicles beyond just small and light vehicles

[15].

According to the researchers of the Power Electronics Innovation Center (PEIC),Polytechnic

University of Turin, multi three-phase drives are increasingly being used in practical applications

due to their ability to be fed by standard three-phase inverters in a modular manner [16].
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Figure 2.2: A sneak peek at the integrated system in development at ODS that combines the
company’s five-phase motor and controller in one compact design.

Figure 2.3: TM4 SUMO MD nine-phase motor proposed by Dana TM4.

Dana TM4, a collaboration between Dana Incorporated and Hydro-Québec, states that

"multi-phase topology systems offers multiple benefits both technically and economically with

the added bonus of facilitating vehicle integration due to the reduction in component size and

bulk" [17]. The company offers a variety of multiphase motor options, including the one shown

in Fig. 2.3.

As anticipated, multiphase drives are suitable for applications that necessitate high torque

densities and high reliability. In this context, the Hyundai’s nine-phase ultrahigh-speed elevator

(see Fig. 2.4)[18] can be mentioned as an outstanding application of a multiphase drive.

The EVs market is progressing toward the adoption of multiphase design. Here are some

examples:
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Figure 2.4: Nine-phase permanent magnet synchronous machine with three isolated neutral points.

• BMW iX M60: "...the iX M60’s rear motor can now take 1,200 amps. It does this by

adding a second full set of three-phase windings around an extended stator in the rear

motor..." [19].

• Mercedes-Benz EQS:"...the motor on the rear axle is particularly powerful due to six-

phase operation: two windings with three phases each..." [20].

• Mercedes-Benz EQE: “... the six-phase electric motor has an output of 215 kW, and

Mercedes gives the maximum torque as 565 Nm..." [21].

• KIA Motors EV6 GT: “...the rear-mounted electric motor uses two inverters. Each (...)

delivers its three-phase current to only half of the hairpin windings...” [22].

• NASCAR: “...three six-phase electric motors, with one mounted up front and the other

two in the rear...” [23].

• AUDI AG e-tron FE07: “...a six-phase, motor-based, single-speed drivetrain...”[24].

• Ford & STARD SuperVan 4.2: “...three high-power, six-phase electric motors...” [25].

• Škoda Auto: “...the design of the five-phase IPMSM (...) to achieve maximum perfor-

mance, reduce weight, and increase efficiency, all within the limited space in the vehicle

chassis...” [26].

• Motiv Electric Trucks & Nidec Motor Corporation: “...a six-phase motor and motor

controller featuring torque that surpasses counterparts” [27].
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2.1.2 Multiphase Drives Classification

The classification of multiphase drives is based on two key characteristics: the number of

phases N and how the phases are are connected (single neutral point or multiple neutral points).

A first type, also known as multi three-phase, is characterized by a number of phases multiple

of three. The multiphase drives belonging to this group can be configured in either a symmetrical

multi-three-phase arrangement, where a single neutral point is used, or in an asymmetrical

configuration, where each three-phase subset of windings is connected to its own neutral point.

The term "asymmetrical" derives from the fact that each subset of windings is shifted by a

specific angle from the preceding one. Conversely, for drives with an odd number of phases, the

sole feasible phase connection is a single neutral point, as there are no subsets of windings that

form an independent three-phase layout.

Regardless of the drive’s architecture, the complexity of the system grows as the number of

phases increases. As a result, the most commonly used multiphase drives, with the exception

of particular applications, typically do not have more than nine phases. Fig. 2.5 illustrates the

potential configurations of a multiphase electric drive.

Induction motor and PM solutions have been the focus of most research on multiphase drives.

Motors using PMs are commonly used in the automotive sector because of their higher torque

density compared to induction motors. Moreover, the weight and size of an induction motor

is significantly larger than those of a PM synchronous motor with the same power. Lastly, in

comparison to synchronous machines, induction motors often have increased rotor joule losses,

leading to reduced efficiency [28].

Conversely, the ability to directly link the motor to the grid makes multiphase induction

motor drives ideal for applications such wind turbines. In this context, it is worth to mention

the use of the open-end winding layout [29].

PM multi-three-phase drives are a compelling solution for industry because they may be

viewed as a set of three-phase units working in parallel and feeding the same machine. As a

result, the power converter may be designed as a set of multiple three-phase power modules,

leading to considerable savings in size, cost, and design time [30–32].

Multi-three-phase drives can be categorized in asymmetrical [33] and symmetrical [34]. Sev-

eral studies have been conducted to determine which architecture provides the most benefits.

Research on asymmetrical topology indicates that this drive configuration results in reduced

torque oscillations. On the other hand, the symmetrical form seems to exhibit a reduction in

the total current harmonic distortion [35].

Undoubtedly, the study of multi three-phase drives is currently exerting a significant influence

in both academic research and industrial applications, emerging as one of the most promising
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Figure 2.5: Typologies of multiphase drives.

choices for the future.

2.2 Vector Space Decomposition Approach

As previously stated, the complexity of a multiphase drive rises as the number of phases in-

creases. This issue has prompted the research community to consider an alternative methodology

for handling them.

The VSD approach is a general-purpose solution, which can be applied to multiphase electric

drives, that becomes increasingly valuable as the number of variables describing the system
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Figure 2.6: Asymmetrical multi three-phase drive scheme with distinct neutral points. a) Multi
three-phase converter. b) Multi three-phase motor.

increases [36].

Fortescue in 1918 was the first to establish the basis for VSD in his key publication [37]. In

this work, he demonstrated that it was feasible to transform a single system with a generic num-

ber of variables into multiple symmetrical sub-systems without losing the information content.

The VSD relies on the concept of "space vectors". They can be visualized as vectors lyingon

distinct planes.

2.2.1 Odd Number of Real Variables

Assuming N is an odd number, by using the VSD, for a given set of N -odd real variables

(x1, ..., xk, ..., xN ), a new set of complex variables ȳ0, ..., ȳρ, ..., ȳN−1 can be obtained by means

of the following symmetrical linear transformations known as extended Clarke’s transformation:

ȳρ = 2
N

N∑
k=1

xkᾱ
ρ(k−1) ρ = 0, 1, 2, ..., N − 1 (2.1)

where ᾱ is a complex number with unit magnitude and phase that is contingent upon the number

N of real variables considered, ᾱ = ej
2π
N .
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It is often advantageous to rotate the variables described in equation (2.1) by a specific angle

θ. The transition from the αρ−βρ plane of yρ to the new plane, commonly known as the dρ− qρ

plane, is called the Park transformation and is defined as follows:

ȳ′
ρ = ȳρe

−jθ ρ = 0, 1, 2, ..., N − 1. (2.2)

Thus, by performing the Park transformation, the two components of ȳρ, namely yρα and

yρβ , can be transformed into yρd and yρq .

The relationship (2.1) results in a real variable ȳ0 = y0, known as zero-sequence component

(or homopolar component), and N − 1 complex variables ȳ1, ..., ȳρ, ..., ȳN−1 (multiple space

vectors). The VSD is a bidirectional transformation process. Specifically, given the multiple

space vectors and the zero-sequence component, it is always feasible to obtain the values of xk
by using the following inverse-transformation:

xk =
N−1∑
ρ=0

ȳρᾱ
ρ(k−1) k = 1, 2, ..., N. (2.3)

According to (2.3), the transition from the set of real variables xk to the set of complex

variables ȳρ introduces redundancy because multiple space vectors have both real and imaginary

components. As a result, it has significance to determine the minimum number of multiple space

vectors required to eliminate the aforementioned redundancy. This task can be accomplished

by exploiting the Hermetian function property of the space vector that allows to assert the

following:

yN−ρ = y∗
ρ. (2.4)

As a consequence of (2.4), (2.1) can be rewritten as:

ȳρ = 2
N

N∑
k=1

xkᾱ
ρ(k−1) ρ = 0, 1, 3, 5, ..., N − 2. (2.5)

The anti-transformation becomes:

xk = 1
2y0 +

N−2∑
ρodd

ȳρ · ᾱρ(k−1) k = 1, 2, ..., N. (2.6)

Expression (2.6) shows the interpretation of the variables xk as a result of two contributions:

the first originating from the zero-sequence component and the second from the multiple space

vectors. The latter are referred to as null-sum components and represent the projection of the

space vector onto N straight lines passing through the origin, rotated by 2π
N with respect to the

real axis. Based on that, (2.6) is often rewritten as follows:
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xk = 1
2y0 +

N−2∑
ρodd

ℜe{ȳρᾱρ(k−1)} k = 1, 2, ..., N. (2.7)

Resuming, through the VSD a system consisting of N -odd real variables (x1, ...xk, ...xN ) can

be fully described by N − 2 space vectors, whose trajectory lies on the corresponding ρ-th plane

(or ρ-th space), and a zero-sequence component (see Fig. 2.7a).

2.2.2 Even Number of Real Variables

The most widespread machines characterized by an even number of phases are multi-three-

phase machines such as six-phase and twelve-phase machines. As depicted in Fig. 2.5, the multi-

three-phase design may be symmetrical or asymmetrical; hence, a single equation analogous to

(2.1) for the VSD transformation is missing. Consequently, each machine type must be treated

individually according to the stator winding arrangement.

2.2.3 Vector Space Decomposition for Dual-Three-Phase Electrical Machines

The majority of electric vehicles (EVs) that employ a multiphase drive prefer PM dual-three-

phase architectures, according to Sec. 2.1.1. These multiphase machines typologies are highly

attractive solutions for industry due to the following main reasons:

• They incorporate the advantages of PM motors with those of multiphase motors.

• They can be considered as two three-phase units connected in parallel; consequently, the

knowledge learned regarding conventional three-phase machines can be used for their de-

sign.

• If one of the three-phase units malfunctions, it is feasible to sustain motor operation by

disconnecting the faulty unit if each unit is connected to a separate neutral point.
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Figure 2.8: Asymmetrical dual three-phase permanent magnet electrical drive.

• The control of the motor can be regarded as an extension of the three-phase case.

In an asymmetrical dual-three-phase Permanent Magnet Synchronous Motors (PMSMs),

such as the one shown in Fig. 2.8, there are two sets of three-phase windings (A and B) that

are positioned with a spatial displacement of 30 electrical degrees. Furthermore, the phases

belonging to the same three-phase set of windings are displaced by 120 electrical degrees.

The study of dual-three-phase PMSMs can be approached in two distinctive manners. The

first method, known as the vector approach, involves evaluating the whole system, which com-

prises six distinct phases. The second way entails considering the drive as two sets of three-phase

windings, known as a modular approach because the drive is divided into three-phase "modules".

For a dual-three-phase electric drive, equation (2.1) is frequently written in terms of the

angle β̄ = ej
π
6 , rather than ᾱ, which corresponds to the spatial displacement between the two

sets of three-phase windings. Using β leads to:

ȳρ = 1
3(xA1 + xB1 β̄

ρ + xA2 β̄
4ρ + xB2 β̄

5ρ + xA3 β̄
8ρ + xB3 β̄

9ρ) ρ = 0, 1, 2, ..., N − 1. (2.8)

In addition, the following symmetry properties are valid for any integer k:

ȳ12k+ρ = ȳρ

ȳ12k−ρ = ȳ∗
ρ

(2.9)
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Figure 2.9: Asymmetrical multi-three-phase drive scheme with distinct neutral points. a) Multi-
three-phase converter. b) Multi-three-phase motor.

where "∗" is the complex conjugate operator. Equations (2.9) show that the space vectors

with ρ = 1, 3, 5 are independent and sufficient to unequivocally represent the six quantities

xA1 , xA2 , xA3 , xB1 , xB2 , and xB3 . As a result, the following transformations con be used:

y0 = 1
3(xA1 + xB1 + xA2 + xB2 + xA3 + xB3)

ȳ1 = 1
3(xA1 + xB1 β̄ + xA2 β̄

4 + xB2 β̄
5 + xA3 β̄

8 + xB3 β̄
9)

ȳ3 = 1
3(xA1 + jxB1 + xA2 + jxB2 + xA3 + jxB3)

ȳ5 = 1
3(xA1 + xB1 β̄

5 + xA2 β̄
8 + xB2 β̄ + xA3 β̄

4 + xB3 β̄
9).

(2.10)

The physical interpretation of the real variable ȳ3, derived for ρ = N
2 , can be deduced from

equation (2.10). It represents the sum of quantities associated with the first set of three-phase

windings and the second rotated by 90 degrees.

Using the modular approach, according to (2.1), the generic quantities xAk and xBk (k =

1, 2, 3) of the dual-three-phase drive can be represented as space vectors in two-dimensional

spaces αρ − βρ, as follows:

ȳρ = 1
2 ȳAρ + 1

2 ȳBρ β̄
ρ ρ = 0, 1, 2, ..., N − 1. (2.11)
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where
ȳAρ = 2

3(xA1 + xA2 β̄
4ρ + xA3 β̄

8ρ)

ȳBρ = 2
3(xB1 + xB2 β̄

4ρ + xB3 β̄
8ρ).

(2.12)

When ρ is 0, (2.12) provides the zero-sequence components:

yA0 = 2
3(xA1 + xA2 + xA3)

yB0 = 2
3(xB1 + xB2 + xB3).

(2.13)

Given (2.12) and (2.13), considering (2.9), the following transformations con be used:

y0 = 1
2yA0 + 1

2yB0

ȳ1 = 1
2 ȳA1 + 1

2 ȳB1 β̄

ȳ3 = 1
2yA0 + j

1
2yB0

ȳ5 = 1
2 ȳ

∗
A1 + 1

2 ȳ
∗
B1 β̄

5.

(2.14)

It should be noted that the findings in (2.14) are the same as in (2.10), which emphasizes

that a dual-three-phase drive may be regarded as a combination of two three-phase units.

The real quantities associated with each set of three-phase windings are obtained from (2.14)

by considering (2.12) and (2.13) as follows:

xA1 = ℜe(ȳ3) + ȳ1 · 1 + ȳ∗
5 · 1

xB1 = ℑm(ȳ3) + ȳ1 · ᾱ+ ȳ∗
5 · ᾱ7

xA2 = ℜe(ȳ3) + ȳ1 · ᾱ4 + ȳ∗
5 · ᾱ4

xB2 = ℑm(ȳ3) + ȳ1 · ᾱ5 + ȳ∗
5 · ᾱ11

xA3 = ℜe(ȳ3) + ȳ1 · ᾱ8 + ȳ∗
5 · ᾱ8

xB3 = ℑm(ȳ3) + ȳ1 · ᾱ9 + ȳ∗
5 · ᾱ3

(2.15)

Equation (2.15) is applicable to both vector and modular approaches. Consequently, through-

out the rest of the investigation, both methodologies are used interchangeably to represent the

dual-three-phase drive, with the aim of making the notation and algebraic operations as straight-

forward as possible.

2.3 Conclusions

This chapter covered multiphase electrical drives, emphasizing their advantages compared to

common three-phase configuration.
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The main architectures of multi-phase electric drive systems have been outlined, emphasizing

the multi-tree-phase design as the most attractive option.

The VSD approach has been introduced, which becomes important when the number of

phases increases. This approach enables the use of a reduced amount of variables to describe

the system, while maintaining the degree of freedom and information content unchanged.
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Chapter 3

Stator Faults in Asymmetrical

Dual-Three-Phase Electrical

Machines

This chapter provides a comprehensive analysis of some electrical faults that can occur in a

dual-three-phase electric motor. The proposed methodologies can be seamlessly integrated into

the control system and have the capability to identify the presence of an electrical failure without

the need for any measuring equipment. Thus, the methodologies given provide a solid basis for

the online implementation of fault-tolerance control strategies.

3.1 Faults in Electric Motors

An electric drive can experience different forms of failures, including Short Circuits (SCs)

[1–5], High-Resistance Connections (HRCs) [6], Manufacturing Defects (MDs), magnet demag-

netization [7; 8], eccentricity [9–11], gearbox damages [12], broken bars in squirrel cage induction

machines [13]. Among failures, electrical faults play a significant role in the field of fault diagno-

sis since they are more difficult to identify than mechanical faults. Indeed, mechanical failures

produce vibrations and noises that might serve as an early warning sign of the machine’s poor

health. In contrast, electrical failures frequently produce relatively little noise and often are not

visible from the outside of the machine, under a certain level of severity, since they have an

effect just on the drive’s electrical control variables.
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HRCs, MDs, and SCs exhibit comparable behavior by causing distortions in voltages and

currents. Furthermore, measuring instruments that have a full scale that is at least equivalent

to the rated current or voltage of the machine are not precise enough to measure quantities with

small amplitudes. In fact, according to the CEI standards, measuring equipments are categorized

into various accuracy classes. The classifications extend from C005 (maximum accuracy) to C5

(minimum accuracy). The classes denote the percentage error value shown by the measuring

instrument in relation to the full-scale measurement. Equipment for electrical measurements

typically ranges from class C02 to C1. For instance, a current probe with a maximum range

of 200 A, denoted by a C02, indicates that while measuring a current of 200 A, it may incur

a maximum percentage error of 0.2%. Conversely, if the same probe monitors a current of 50

A, the accuracy decreases. In addition, sensors not only increase the complexity, cost, and

size of the whole system, but they can also be obtrusive and their incorrect placement could

compromise the results. Some of the failures that the stator winding of a dual-three-phase

PMSM may experience are illustrated in 3.1.

It is worth noticing that the models used in Sections 3.1.1, 3.1.2 and 3.1.3 assume that the

magnetic saturation of the iron core is negligible, and the linearity principle is satisfied. This

assumption is necessary because the iron saturation interferes with the independents of the

vector spaces in multiphase machines.
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Figure 3.1: Stator imbalances in asymmetrical dual-three-phase PMSM.

3.1.1 Equations for High-resistance Connections

The phase equations for a dual-three-phase PMSM are as follows:

vk = Rkik + dφk
dt

k = A1, B1, A2, B2, A3, B3 (3.1)

where Rk indicate the phase resistances of the k-th phase, whereas ik and φk define the stator

current and the flux linkage, respectively.
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According to (2.14), the phase voltages are fully described by the following space vectors:

v̄1 = 1
2 v̄A1 + 1

2 v̄B1 β̄

v̄5 = 1
2 v̄

∗
A1 + 1

2 v̄
∗
B1 β̄

5

v3 = 1
2vA0 − 1

2vB0

v0 = 1
2vA0 + 1

2vB0 .

(3.2)

In the same manner the stator phase currents are as follows:

ī1 = 1
2 īA1 + 1

2 īB1 β̄

ī5 = 1
2 ī

∗
A1 + 1

2 ī
∗
B1 β̄

5

i3 = 1
2 iA0 − 1

2 iB0

i0 = 1
2 iA0 + 1

2 iB0 .

(3.3)

In (3.3), the currents iA0 and iB0 are both zero because of the star-connection arrangement of

the three-phase windings constituting the dual-three-phase motor. Therefore, based on (2.15),

the inverse transformation of (3.3) is given:

iA1 = ī1 · 1 + ī∗5 · 1

iB1 = ī1 · β̄ + ī∗5 · β̄7

iA2 = ī1 · β̄4 + ī∗5 · β̄4

iB2 = ī1 · β̄5 + ī∗5 · β̄11

iA3 = ī1 · β̄8 + ī∗5 · β̄8

iB3 = ī1 · β̄9 + ī∗5 · β̄3.

(3.4)

The stator flux vectors φ̄1 and φ̄5 can be used to express the stator fluxes φAk and φBk , as

follows:
φ̄1 = L1ī1 + φ̄e1

φ̄5 = L5ī5

(3.5)

where φ̄e1 is the fundamental excitation flux vector, which is considered sinusoidal, and L1 and

L5 are the equivalent inductances in subspaces α1 − β1 and α5 − β5, respectively.
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The VSD applied to the phase resistances gives:

RA1 = RA0

2 + R̄1 · 1 + R̄∗
5 · 1

RB1 = RB0

2 + R̄1 · β̄ + R̄∗
5 · β̄7

RA2 = RA0

2 + R̄1 · β̄4 + R̄∗
5 · β̄4

RB2 = RB0

2 + R̄1 · β̄5 + R̄∗
5 · β̄11

RA3 = RA0

2 + R̄1 · β̄8 + R̄∗
5 · β̄8

RB3 = RB0

2 + R̄1 · β̄9 + R̄∗
5 · β̄3.

(3.6)

where R̄1 and R̄5 are complex numbers defined according to (2.12) and (2.14), while RA0 and

RB0 are the zero-sequence components resulting from (2.13).

Considering the voltage equations (3.1), multiplying (3.6) with (3.4) and considering the

fluxes (3.5), gives:

v̄1 = 1
4[(RA0 +RB0 )̄i1 +

√
2(ψ̄R̄∗

1 + ψ̄∗R̄5)̄i∗1] + dφ̄1
dt

v̄5 = 1
4[(RA0 −RB0 )̄i∗1 +

√
2(ψ̄R̄1 + ψ̄∗R̄∗

5)̄i1].
(3.7)

where ψ̄ is equal to ej π4 and v̄3 = 0 since ī3 = 0. In addition, the control system is expected to

keep the current vector ī5 at zero under all operating conditions, including in the case of a fault.

By applying the Park transformation, as defined in (2.2), and assuming that the motor

operates in the maximum torque-per-ampere condition (id1 = 0) [14; 15], the steady state

voltage harmonic components are expressed as follows:

v̄1+
1R = 1

4j(RA0 +RB0)iq1 − ωL1iq1 + jωφ̄e1

v̄1−
1R = −

√
2

4 j(ψ̄R̄∗
1 + ψ̄∗R̄5)iq1

v̄1+
5R =

√
2

4 j(ψ̄R̄1 + ψ̄∗R̄∗
5)iq1

v̄1−
5R = −1

4j(RA0 −RB0)iq1

(3.8)

where the positive-sequence harmonics are indicated by the superscript + and the negative-

sequence harmonics are denoted by the superscript −, both preceded by the harmonic order.

Simultaneously, the subscripted number specifies the specific subspace to which the space vector

belongs, while the letter "R" identifies the fault type, specifically a high-resistance connection.

For instance, v̄1−
5R represents the first negative-sequence harmonic (superscript 1−) in the fifth

subspace (subscript 5) caused by a resistance imbalance (subscript R).
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When no HRC occurs, R̄1 = R̄5 = 0 and RA0 = RB0 in (3.8). Thus, only the fundamental

harmonic component v̄1+
1R exists.

The set of equations in (3.8) can be solved as a function of R̄1 and R̄5, resulting in the

following:

R̄1 =
√

2(ψ̄∗v̄∗1−
1R − ψ̄v̄1+

5R )
iq1

R̄5 =
√

2(ψ̄v̄∗1+
5R − ψ̄∗v̄1−

1R )
iq1

RA0 = 2j
v̄1−

5R
iq1

+ 2Ravg

RB0 = −2j
v̄1−

5R
iq1

+ 2Ravg

(3.9)

where Ravg is the average value of the six resistances RAk and RBk(k = 1, 2, 3).

It is worth noting that, according to (3.8), v̄1−
5R is an imaginary number, so the values of

RA0 and RB0 are real numbers. Quantities RA0 and RB0 have different amplitudes due to the

variation caused by the HRC in one of the two three-phase windings, while R̄1 and R̄5 are

complex conjugate when the imbalance affects only one phase.

The phase resistances can be obtained by applying the inverse transformation (3.6) to R̄1

and R̄5 given in (3.9):

RA1 = j
2
√

2
iq1

ℜe

[
ψ̄∗ℑm(v̄∗1−

1R ) + ψ̄ℑm(v̄∗1+
5R )

]
+ j

v̄1−
5R
iq1

+Ravg

RB1 = 2
√

2
iq1

ℜe

[
ψ̄∗ℜe(v̄1−

1R β̄) + ψ̄ℜe(v̄1+
5R β̄

5)
]

− j
v̄1−

5R
iq1

+Ravg

RA2 = j
2
√

2
iq1

ℜe

[
ψ̄∗ℑm(v̄∗1−

1R β̄8) + ψ̄ℑm(v̄∗1+
5R β̄4)

]
+ j

v̄1−
5R
iq1

+Ravg

RB2 = 2
√

2
iq1

ℜe

[
ψ̄∗ℜe(v̄1−

1R β̄
5) + ψ̄ℜe(v̄1+

5R β̄)
]

− j
v̄1−

5R
iq1

+Ravg

RA3 = j
2
√

2
iq1

ℜe

[
ψ̄∗ℑm(v̄∗1−

1R β̄4) + ψ̄ℑm(v̄∗1+
5R β̄8)

]
+ j

v̄1−
5R
iq1

+Ravg

RB3 = 2
√

2
iq1

ℜe

[
ψ̄∗ℜe(v̄1−

1R β̄
9) + ψ̄ℜe(v̄1+

5R β̄
9)
]

− j
v̄1−

5R
iq1

+Ravg.

(3.10)

The control system is capable of determining the voltage harmonic components in (3.10)

utilizing resonant PI regulators. However, the equations for the phase resistances still rely on

the unknown quantity Ravg. Hence, (3.10) can be utilized to calculate the deviation of each

resistance from the mean value. If a variation δR occurs in phase f of winding A, the expected
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resistance deviations from Ravg are as follows:

∆RAk = RAk −Ravg =


5
6δR, if k = f

−1
6δR otherwise

∆RBk = RBk −Ravg = −1
6δR.

(3.11)

Therefore, (3.10) and (3.11) can be used to identify a resistance imbalance due to high-

resistance connections.

3.1.2 Variation in the Number of Turns Equations

Incorrect manufacture can result in variations in the number of turns, leading to imbalances

in the stator phases, changes in resistance, self- and mutual inductances, and fluctuations in flux

linkage. Therefore, it is essential to comprehend the difference in machine parameters between

an unbalanced machine and a healthy machine.

In this chapter, in order to simplify the notation and eliminate superfluous subscripts or su-

perscripts, the variables representing the quantities of the healthy machine are indicated in

bold.

Defining ε as the ratio of the variation ∆Nt in the number of turns to the total number of

turns Nt in a healthy phase, the inductance Lkh between the k-th and h-th phases of the faulty

machine is given by the following values:

Lkh =


Lkh, if k ̸= f ∨ h ̸= f

(1 + ε)Lkf , if k ̸= f ∨ h = f

(1 + ε)2Lff , if k = f ∨ h = f.

(3.12)

The subscripts h and k assume the values A1, A2, A3, B1, B2, B3 and indicate a general

stator phase. On the other hand, the subscript f denotes the specific phase in which the MD

occurs. Furthermore, the variables associated to the healthy machine are in bold. For instance,

LA1B1 represents the mutual- inductance between the phases A1 and B1 under healthy operating

conditions (bold letter).

The stator air-gap fluxes for the k-th healthy phase and faulty f phase can be written as

follows:

φk =
N∑
h=1
h̸=f

Lkhih + (1 + ε)Lkf if (k ̸= f)

φf =
N∑
h=1
h̸=f

(1 + ε)Lfhih + (1 + ε)2Lff if .

(3.13)
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Substituting the definitions (3.12) in (3.13), yields:

φk = φk + εLkf if (k ̸= f)

φf = (1 + ε)(φf + εLff if ).
(3.14)

It’s worth noting that if if = 0, the only term in (3.34) is φk = φk, which is the stator flux

in healthy operating conditions.

Magnet flux contributions are:

φe,k = φe,k (k ̸= f)

φe,f = (1 + ε)φe,f .
(3.15)

The stator voltage equations can be written as follows:

vk = Rsik + d

dt
φk + d

dt
φe,k (k ̸= f)

vf = (1 + ε)Rsif + d

dt
φf + d

dt
φe,f .

(3.16)

where Rs is the resistance of the stator winding in healthy conditions. Substituting (3.14) and

(3.15) in (3.16), gives:

• if k ̸= f (healthy phase):
vk = vk + ∆vk

∆vk = εLkf
d

dt
if

(3.17)

• if k = f (faulty phase):
vf = vf + ∆vf

∆vf = ε
[
(1 + ε)Lff

d

dt
if + vf

] (3.18)

where the equation of the generic k-th healthy phase is give by:

vk = Rsik +
N∑
h=1

Lkh
dih
dt

+ d

dt
φek . (3.19)

According to (2.10), considering a star connection layout of the stator phases, the phase

voltages can be fully represented by two space vectors:

v̄1 = v̄1 + ∆v̄1

v̄5 = v̄5 + ∆v̄5

(3.20)
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where v̄1 and v̄5 are the voltage space vectors in healthy conditions, whereas ∆v̄1 and ∆v̄5 are

the voltage variations resulting from the a variation in the number of turns. They assumes the

following forms:

∆v̄1 = 1
3(∆vA1 + ∆vB1 β̄ + ∆vA2 β̄

4 + ∆vB2 β̄
5 + ∆vA3 β̄

8 + ∆vB3 β̄
9)

∆v̄5 = 1
3(∆vA1 + ∆vB1 β̄

5 + ∆vA2 β̄
8 + ∆vB2 β̄ + ∆vA3 β̄

4 + ∆vB3 β̄
9).

(3.21)

Substituting the definition 3.17 and 3.18 in 3.21 leads to the following expressions:

∆v̄1 = 1
3εe

jϑf
[
Rsif + (2L1 + εLff ) d

dt
if + d

dt
φef

]
∆v̄5 = 1

3εe
−jϑf [Rsif + (L1 + L5 + εLff ) d

dt
if + d

dt
φef

] (3.22)

Assuming that the machine rotates at a constant electrical speed ω and the MTPA control

is implemented, if the control system keeps the current vector ī5 at zero under all operating

conditions, the stator currents exhibit sinusoidal behavior and are solely determined by the

torque-producing component iq1 of the current vector ī1.

The quantities if and φef appearing in (3.22) can be written in the following manner:

if = ℜe
{
jiq1e

j(ωt−ϑf )}
φef = ℜe

{
ϕee

j(ωt−ϑf )} (3.23)

where ϕe is the magnitude of the maximum excitation flux linkage with a generic healthy phase.

Substituting (3.23) in (3.22) and separating the positive and negative sequences of the volt-

age harmonics, one finds the following result:

v̄1−
1N = −1

6jεe
j2ϑf{[Rs − jω(2L1 + εMff )]iq1 + ωϕe

}
v̄1+

5N = 1
6jεe

−j2ϑf{[Rs + jω(L1 + L5 + εMff )]iq1 + ωϕe
}

v̄1−
5N = −1

6jε
{
[Rs − jω(L1 + L5 + εMF )]iq1 + ωϕe

} (3.24)

where subscript N means that the voltage harmonics are due to a variation in the number of

turns. The back electromotive force dominates in (3.24) while operating at high speeds and

low currents. Therefore, under these specific operating conditions, (3.24) can be simplified by

considering solely the back electromotive force term.

Equations (3.24) can be inverted to determine in which phase the MD occurs and the corre-

sponding variation in the number of turns:

ϑf = −1
2Arg

(
v̄1+

5N v̄
1−
5N

)
+ kπ (k ∈ R) (3.25)
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∆Nt ≃ ℜe

[
6jv̄1−

1N e
−2jθf

Rsiq1 − 2jωL1iq1 + ωϕef
Nt

]
. (3.26)

Equations (3.25)-(3.26) can be used to identify a MD during the operation of the drive. This

can be done by estimating the harmonic components v̄1−
1N , v̄1−

5N and v̄1+
5N by means of a suitable

control system similar to that shown in Sec. 3.1.3.

3.1.3 Short Circuit Equations

A SC is one of the most dangerous faults that may affect the windings of an electric motor,

since it causes changes in resistance, an imbalance in inductance, and variations in flux linkage.

Furthermore, unlike MDs or HRCs, a SC generates the flow of an uncontrolled current that may

exceed the rated value by ten times or more [16], depending on variables such as the quantity

of shorted turns, rotational velocity, and motor characteristics.

A common method for diagnosing SC is the measurement of phase impedance. However,

due to the unpredictable resistance along the path of the SC current, performing an offline

measurement of the phase impedance may result in misclassifying a SC as an HRC or a MD,

hence neglecting the possible harm that the SC current could cause.

This section discusses the development of an analytical model that can be effortlessly included

into the control system for identifying and evaluate the presence of a SC through the analysis

of voltage harmonics components as done in Secs. 3.1.1 and 3.1.2.

In this Section, a simple model of an Intern-Turn Short Circuit (ITSC) fault is derived.

When an inter-turn short circuit occurs in phase f , the short-circuit current flows through a

low-impedance path, assumed to be purely resistive, as shown in Fig. 3.2. Without loss of

generality, the turns affected by the fault are assumed to be concentrated at the terminal end

of phase f . The following aspects can be noted:

• The healthy phase z is characterized by the resistance Rz, self- and mutual inductances

Lzh (z, h ̸= f), and current iz.

• The faulty portion of phase f , represented by the red section in Fig. 3.2, is characterized

by the resistance R′′
f , self-inductance L′′

ff , and current i′′f .

• The healthy portion of phase f , represented by the sky blue section in Fig. 3.2, is charac-

terized by the resistance R′
f , self-inductance L′

ff , and current i′f .

• The short-circuited branch, indicated in orange in Fig. 3.2, has a resistance Rsc through

which the current isc flows.
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In addition, L′′
zf indicates the mutual inductance between the healthy phase z and the faulty

portion of the faulty phase f , whereas L′
zf denotes the mutual inductance between an healthy

phase and the healthy portion of the faulty phase. Finally, Mff defines the mutual inductance

between the healthy and faulty portions of the faulty phase.

Faulty phase f

Healthy phase z
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Figure 3.2: Equivalent circuit of the stator phase afflicted by a short circuited fault.

First, the inductances must be determined in both healthy and defective operating conditions

in order to evaluate the impact of an ITSC fault on the DTP machine. The variables that belong

to the healthy machine are highlighted in bold.

The inductance L′
zf can be estimated by using the superposition principle. Its deviation

from Lzf is assumed to be caused by two contributions. The first one is the variation of the

flux linkage due to a small reduction ∆Nf in the number of turns, the second one is due to a

small displacement ∆θf of the magnetic axis.

L
′
zf = Lzf + ∂Lzf

∂Nf
∆Nf + ∂Lzf

∂θf
∆θf (3.27)

where Nf is the number of turns of the faulty phase. It can be demonstrated that Lzf can be

approximated as follows:

Lzf = 1
3NtNf

[
Lu1 cos (θz − θf ) + Lu5 cos (5θz − 5θf )

] (3.28)

where Nt indicates the number of turns of an healthy phase, θz is the electrical angle of the

magnetic axis of the z-th healthy phase, Lu1 and Lu5 are the inductances in subspaces α1 − β1

and α5 − β5, respectively, when just one turn is considered.

If λ is the ratio of ∆Nf to the number of turns Nt of an healthy phase, considering (3.28),

(3.27) becomes:

L
′
zf = Lzf

[
1 − λ+ Γzf ∆θf

] (3.29)

where:

Γzf = Lu1 sin(θz − θf ) + Lu5 sin(5θz − 5θf )
Lu1 cos(θz − θf ) + Lu5 cos(5θz − 5θf ) . (3.30)
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Since Lzf = L
′
zf + L

′′
zf , the following result can be obtained:

L
′′
zf = Lzf

[
λ− Γzf ∆θf

]
. (3.31)

After some tedious algebraic calculations, the self-inductances L′
ff and L

′′
ff of the faulty

phase and the mutual-inductance Mff , can be obtained. So, the machine inductances are

summarized as follows:
L

′
zf = L

′
fz = Lzf

[
1 − λ+ Γzf ∆θf

]
L

′′
zf = L

′′
fz = Lzf

[
λ− Γzf ∆θf

]
L

′
ff = Lzf (1 − λ)2

L
′′
ff = Lzfλ

2

M
′′
ff = Lzfλ(1 − λ).

(3.32)

It worthwhile to note that (3.32) applies for machines that have only one pole pairs. In fact,

under SC circuit operating conditions, Babak V. et al [17] have shown that the inductances

increase by a small percentage proportional to number of pole pairs. Therefore, as the machine

considered in this study has only two pole pairs, the variation of the inductances compared to

those estimated in (3.32) has been neglected.

Based on the equivalent circuit shown in Fig. 3.2, one can derive the expressions of the con-

tributions to the stator fluxes due to the sole stator currents (the contribution of the excitation

field is considered later):

φz =
N∑
h=1
h̸=f

Lzhih + L
′
zf i

′
f + L

′′
zf i

′′
f (z ̸= f)

φ
′
f =

N∑
h=1
h̸=f

L
′

hf ih + L
′
ff i

′
f +Mff i

′′
f

φ
′′
f =

N∑
h=1
h̸=f

L
′′

hf ih +Mff i
′
f + L

′′
ff i

′′
f .

(3.33)

Substituting (3.32) in (3.33) yields:

φz = φz + Lzf

[
λ− Γzf ∆θf

]
isc (z ̸= f)

φ
′
f = (1 − λ)(φf − Lzfλisc)

φ
′′
f = λ(φf + λLzfλisc).

(3.34)

The excitation field generates a flux linkage φe,z with the healthy phases, which remain

unaffected. and the faulty and healthy portion of faulty phase. Conversely, the flux linkage with
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the faulty phase due to the rotor magnets can be split into two terms, φ′
e,f and φ′′

e,f , respectively

for the healthy and faulty portion.

φe,z = φe,z (z ̸= f)

φ
′
e,f = (1 − λ)φe,f

φ
′′
e,f = λφe,f .

(3.35)

The stator voltage equations can be written as follows:

vz = Rsiz + d

dt
φz + d

dt
φe,z (z ̸= f)

v
′
f = R

′
f if + d

dt
φ

′
f + d

dt
φ

′
e,f

v
′′
f = (1 + λ)R′′

f if + d

dt
φ

′′
f + d

dt
φ

′′
e,f .

(3.36)

It is worth noting that the voltage drop on Rsc is never considered in the previous equations,

so the entire model does not rely on the knowledge of this unknown parameter.

Substituting (3.34) and (3.35) in (3.36), gives:

• if z ̸= f (healthy phase):
vz = vz + ∆vz

∆vz = Lzf

[
λ− Γzf ∆θf

]disc
dt

(3.37)

• if z = f (faulty phase):
vf = vf + ∆vf

∆vf = λ
(
Lff

disc
dt

+Rsisc
) (3.38)

If the stator phases are star connected, the phase voltages can be fully represented by two

space vectors, v̄1 and v̄5:
v̄1 = v̄1 + ∆v̄1

v̄5 = v̄5 + ∆v̄5

(3.39)

where v̄1 and v̄5 are the voltage space vectors in healthy conditions, whereas ∆v̄1 and ∆v̄5 are

the voltage variations resulting from the ITSC.

The expression of ∆v̄1 and ∆v̄1 can be found by applying the space vector transformations

(2.11) and (2.12) to ∆vz (z ̸= f) and ∆vf given by (3.37) and (3.38):

∆v̄1 = 1
3λRscisce

jθf + (λΛ̄1 − ∆θf ζ̄1) d
dt
isc

∆v̄5 = 1
3λRscisce

j5θf + (λΛ̄5 − ∆θf ζ̄5) d
dt
isc

(3.40)
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where Λ̄1 and Λ̄5 are two complex quantities defined as follows:

Λ̄1 =1
9

3∑
k=1

β̄4(k−1)
{
L1
[

cos(θAk − θf ) + β̄ cos(θBk − θf )
]
+

+ L5
[

cos(5θAk − 5θf ) + β̄ cos(5θBk − 5θf )
]} (3.41)

Λ̄5 =1
9

3∑
k=1

β̄8(k−1)
{
L1
[

cos(θAk − θf ) + β̄5 cos(θBk − θf )
]
+

+ L5
[

cos(5θAk − 5θf ) + β̄5 cos(5θBk − 5θf )
]} (3.42)

and the quantities ζ̄1 and ζ̄5 are equal to Λ̄1 and Λ̄5, respectively, but the cosine is replaced

by the sine. The parameters L1 and L5 are the machine inductances in subspaces α1 − β1 and

α5 −β5, respectively, and can be calculated by using a finite-element model of the machine [18].

After some calculations, it is possible to verify that (3.41) and (3.42) can be rewritten in a

simpler form:
Λ̄1 = 1

3L1e
jθf

Λ̄5 = 1
3L5e

j5θf .
(3.43)

Similarly, ζ̄1 and ζ̄5 become as follows:

ζ̄1 = 1
3jL1e

jθf

ζ̄5 = 1
3jL5e

j5θf .
(3.44)

Substituting (3.43) and (3.44) in (3.40) gives:

∆v̄1 = 1
3e

jθf
[
λRsisc + L1(λ− j∆θf ) d

dt
isc
]

∆v̄5 = 1
3e

j5θf
[
λRsisc + L5(λ− j∆θf ) d

dt
isc
]
.

(3.45)

For the sake of simplicity, the short circuit current is assumed sinusoidal with angular fre-

quency ω1:

isc = ℜe

{
Īsce

jω1t
}

= Īsce
jω1t + Ī∗

sce
−jω1t

2 . (3.46)

Substituting (3.46) in (3.45), the harmonic balance allows one to calculate the positive and

negative sequence harmonic components v̄1−
1 , v̄1−

5 and v̄1+
5 :

v̄1−
1 = −1

6λĪ
∗
sce

jϑf
{
Rs − jωeL1(1 − j

∆θf
λ

)}

v̄1−
5 = −1

6λĪ
∗
sce

j5ϑf{Rs − jωeL5(1 − j
∆θf
λ

)}

v̄1+
5 = 1

6λĪsce
j5ϑf{Rs + jωeL5(1 − j

∆θf
λ

)}.

(3.47)
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Figure 3.3: Arrangement of stator windings considering a pole pair.

The second and the third equations of (3.47) can be inverted to determine the angle θf of the

magnetic axis of the faulty phase and the quantity λIsc, which is related to the fault severity:

ϑf = −1
2

[
Arg(v̄1+

5 v̄1−
5 ) + ∆θf

λ

(L5ωe)2

R2
s + (L5ωe)2

]
+ kπ (k ∈ R) (3.48)

λIsc = 6

√√√√∣∣∣∣∣ v̄1−
5 (v̄1+

5 )∗

(Rs + jωeL5)2

∣∣∣∣∣. (3.49)

The value of ∆θf in (3.47) and (3.48) corresponds to the rotation of the magnetic axis of

the faulty phase and depends on the specific coil affected by the ITSC. Let us describe the steps

for obtaining its value for the dual-three-phase motor used the experimental tests whose main

parameters are listed in Tab. 4.4.

The magnetic flux density produced by the stator winding only under a pole pair, in a dual-

three-phase machine, can be written as the sum of the fundamental spatial component and the

fifth-order spatial harmonic component:

B(θ) = ℜe

{
B̄1e

jθ + B̄5e
j5θ
}

(3.50)

where B̄1 and B̄5 are two phasors representing the air-gap magnitude and phase of the flux

density in the subspaces α1-β1 and α5-β5, respectively.

Let us consider only a pole pair of a of a generic stator phase. With reference to the

coordinate system shown in Fig 3.3, the flux linkage with the first coil is as follows:

Φ = 1
π
NS

∫ +π
2

−π
2

Bdθ (3.51)

where N is the number of coil turns and S is the section of a turn.

Substituting (3.50) in (3.51) leads to the following explicit expression for Φ:

Φ = 2
π
NSℜe

{
B̄1 + B̄5

5
}
. (3.52)
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Using the same approach, considering the electrical slot pitch Ψ between two slots, the flux

linked with the second coil is as follows:

Φ′ = 2
π
NSℜe

{
B̄1e

jΨ + B̄5
5 ej5Ψ

}
. (3.53)

As can be seen in Fig. 3.3, the flux linkage Φ′′ of the third coil, placed in the lowest layer,

is equal to Φ′ . Finally, the flux linkage Φ′′′ of the fourth coil is as follows:

Φ′′′ = 2
π
NSℜe

{
B̄1e

j2Ψ + B̄5
5 ej10Ψ

}
. (3.54)

The total flux linkage with a stator phase under a pole pairs is the sum of the four contri-

butions:

ΦT = 2
π
NSℜe

{
B̄1(1 + 2ejψ + ej2ψ) + B̄5(1 + 2ej5ψ + ejψ)

}
. (3.55)

The following identity holds:

(1 + 2ejψ + ej2ψ) = (1 + ejψ)2 = 4ejψcos2
(ψ

2
)
. (3.56)

Substituting (3.56) in (3.55) yields:

ΦT = 2
π

4NSℜe

{
B̄1e

jψcos2
(ψ

2
)

+ B̄5e
j5ψcos2

(5
2ψ
)}
. (3.57)

Expression (3.57) defines the flux linked with a stator phase considering just one pole pair and

healthy operating conditions. Given a machine with p pole pairs, and assuming an ITSC affecting

a certain number of turns ∆N in a generic coil whose first active side in slot Q (Q = 0, 1, 2),

the total flux linkage (3.57) becomes as follows:

ΦT,sc = pΦT − ∆Φ = 2
π
NtSℜe

{
B̄1
[
cos2

(ψ
2
)
ejψ − λejQψ

]
+ B̄5

5
[
cos2

(5ψ
2
)
ej5ψ − λej5Qψ

]}
(3.58)

where Nt, the total number of turns of a stator phase, is equal to 4pN in this specific case.

When the machine operates in sinusoidal conditions, the magnetic field B5 is zero. In general,

in a dual-three-phase machine, the amplitude of the spatial harmonics of he air-gap flux density

is inversely proportional to harmonic order. This suggests that the contribution of B5 can be

neglected in comparison to that of B1, and (3.58) can rewritten as follows:

ΦT,sc = 2
π
NtSℜe

{
B̄1cos

2
(ψ

2
)
ejψ
[
1 − λej(Q−1)ψ

cos2(ψ2 )

]}
. (3.59)
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The quantity
[
1 − λej(Q−1)ψ

cos2(ψ2 )

]
in (3.59) is a complex number whose phase angle is the angular

variation ∆θf given in (3.60) for the magnetic axis of the faulty phase in case of an ITSC. It is

as follows:

∆θf ≈ − arctan
(

λsin([Q− 1]Ψ)
cos2(ψ2 ) − λcos([Q− 1]Ψ)

)
≈ −λsin([Q− 1]Ψ)

cos2(ψ2 )
(3.60)

where Ψ is the electrical slot pitch, and Q is a parameter that identifies the slot of the faulty

coil under a pole pair. For the DTP machine under consideration, Ψ is 15◦, and Q can take the

values 0, 1, and 2. Since each stator phase has two layers and is composed of four coils, which

span over three slots per pole, if Q = 0, the fault affects a coil whose first active side is in the

first slot; if Q = 1, the fault affects a coil whose first active side in the second slot; and if Q = 2,

the fault affects a coil whose first active side is in the third slot. The approximated expression

in (3.60) holds if both λ and ψ are small enough.

3.1.4 Finite Element Analysis

A numerical model of the dual-three-phase brushless motor (parameters in Tab. 4.4) based

on finite element analysis has been developed to simulate the machine behavior and validate the

results predicted by the analytical models presented in Secs. 3.1.1, 3.1.2 and 3.1.3.

Figure 3.4: Block diagram of the workflow for the calculation of the parameters of a healthy and
faulty machine.

The actions performed by the numerical model are illustrated in Fig. 3.4 and summarized

in the following steps:

• Finite element analysis -based calculation of the [Nt×Nt] turn-to-turn inductance matrix,

the Nt values of the flux linkage with each turn ϕe(ϑel) due to the rotor magnets for each

electrical position θel of the rotor, and the turn resistance rt (see Fig. 3.5).
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Figure 3.5: Flux density distribution by FEA used to extract the turn-to-turn motor parameters
and equivalent electric circuit. a) A single turn is fed to calculate the turn-to-turn inductance matrix
M[Nt×Nt]. b) Permanent magnet field is considered to calculate the flux linkage with the turns ϕe[Nt].

c) Equivalent circuit for two generic turns k and h.

Figure 3.6: Connection scheme of a phase, including high-resistance connection and an extra turn
in the 3rd coil.
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Figure 3.7: Zoomed view of a slot. The additional turn due to mismanufacturing is in red. a)
Simulated geometry. b) Mesh grid during the calculation of the turn-to-turn inductance matrix.

• Evaluation of the coil parameters, such as the [Nc×Nc] coil-to-coil inductance matrix, the

Nc values of the flux linkage with each coil, and the coil resistance rc.

• Evaluation of the phase parameters, such as the [6 × 6] phase-to-phase inductance matrix,

the flux linkage with each phase ϕZk(ϑel), and the phase resistances RZk (with Z = A,B

and k = 1, 2, 3).

The flux linkage of a coil due to the rotor magnets and the coil resistance are obtained

by summing the contributions of the single turns. Similarly, the coil-to-coil inductances are

calculated by summing all the elements of the turn-to-turn inductance matrix corresponding

to the considered pair of coils. The same approach is used to determine the phase-to-phase

parameters of the model, starting from the coil-to-coil ones. In the case of a defective coil, the

missing (extra) turns are not considered (included) in the sums.

The dual-three-phase motor used for the numerical simulations features 480 turns arranged in

a double-layer layout. In normal conditions, each coil comprises ten turns located respectively in

the top and bottom layers of two slots 165 electrical degrees apart. The windings are composed

of 48 coils. Finally, the coils are series connected in 6 groups of 8 coils each to form the six

phases of the machine.

Fig. 3.5 shows the position of the turns of the first coil (in red) and the first turn of the

second coil (in orange).

Fig. 3.6 depicts the connection scheme of a generic phase. Also, it includes the equivalent

schematic of an unbalanced phase, with an HRC at the input terminal and an ET due to a

manufacturing defect at the end of the third coil.

In conclusion, 528 turns (480 + 48) are simulated in the Finite-Element Model (FEM) to

consider the possibility of an extra turn in each coil. A detailed view of the geometry simulated to

calculate the turn-to-turn inductance matrix and the mesh used during the same FEA simulation

are shown in Fig. 3.7.

The turn-to-turn inductance matrix is obtained by supplying with 1 A the different turns

of a single coil, one by one, and extracting the flux linkage with all the 528 turns. Due to the

symmetry properties of the stator, these results are sufficient to calculate all elements of the
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inductance matrix without further simulations. The flux linkages through the turns due to the

permanent magnets are calculated for each rotor position. For symmetry reasons, it is sufficient

to evaluate the flux linkage as a function of the rotor position only for the turns of a single

coil (as in Fig. 3.5). The values for the remaining coils are obtained by shifting the resulting

function by the angle θslot,el between neighboring slots.

The proposed approach can generate a dataset with the outputs of about one million asym-

metries, faults, and operating scenarios in about 1.5 hours of numerical simulation in Matlab

software with an AMD Ryzen 9 5900X Desktop Processor (12 CPU Cores, 3.7 GHz base clock

frequency, 64 Gb RAM, NVIDIA QUADRO PNY P2000 Graphic Card). The methods can be

easily adapted to motors with a different number of phases and other winding layouts.

3.2 Simulation and Experimental Results

Fig. 3.8 compares the magnitude of the harmonic component v̄1−
1R predicted by (3.8) with

that estimated by the FEM as a function of the motor current iq1 when the resistance of phase

A3 is 30% higher than the rated value. As can be seen, the matching between the expected and

estimated values is excellent.

Fig. 3.9 shows the magnitude and phase of the complex vectors R̄1 and R̄5 when RA3 is 1.3

times the rated resistance and confirms that RA0 and RB0 are real numbers, as predicted by

(3.9).

Fig. 3.10 compares the magnitude of the voltage harmonic v̄1−
1N resulting from (3.24) with

that obtained with the FEM model as a function of the rotor speed for different values of iq1

when an extra turn is added to phase A3. In this case too, the numerical simulations perfectly

match the results of the theoretical analysis.

Figure 3.8: Magnitude of v̄1−
1R

estimated by FEA-based simulations and analytical calculations as
a function of iq1 when the resistance RA3 is 1.3 times the rated stator resistance.
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Figure 3.9: Magnitude and phase of the space vectors representing the HRC as a function of iq1

when the resistance RA3 is 1.3 times the rated stator resistance.

Figure 3.10: Magnitude of v̄1−
1N

estimated by FEA-based simulations and through analytical cal-
culations for different speeds and current values when an extra turn is added to phase A3.
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Figure 3.12: Ratio between λIsc obtained from the FEM and that one predicted analytically.

Fig. 3.11 compares the analytical and experimental waveforms of the phase currents and

voltages acquired experimentally with those predicted by the FEM under SC operating con-

ditions. The waveforms are almost identical, demonstrating the effectiveness of the FEM to

replicate the machine behavior, even under faulty operating conditions.

Once the validity of the FEM has been verified experimentally in case of a SC, it was employed

to evaluate the results provided by the analytical model in Sec. 3.1.3 . Fig. 3.12 depicts the

ratio of λIsc derived from the FEM to that calculated from (3.49). The ratio consistently

approximates one, irrespective of speed and the number of shorted turns considered, hence

validating the analytical model.

Experiments were performed to evaluate the analytical model described in Sec. 3.1.3. All

experiments incorporate (3.48) and (3.49) into the control system depicted in Fig. 3.13 for ITSC

fault diagnosis. The control system runs on a dSPACE platform (MicroLabBox, DS1104), which

controls the operation of the six-phase power converter via fiber-optic cables. A power supply

unit from Elektro-Automatik (EA-PS 9500 - 20) is used to provide the DC link voltage for the
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Figure 3.13: Block diagram of the control system used for the ITSC fault detection.

drive system. Additionally, a DC generator is used as a mechanical load. Fig. 3.14 shows the

overall setup.

The dual-three-phase machine prototype allows one to shorten 5 or 10 turns in phases A3 or

B3. The rotating speed cannot be higher than 500 RPM during the experimental tests. This

speed value prevents the short circuit current from reaching levels that might demagnetize the

motor or permanently harm the drive. However, if the speed were higher, fault detection is

expected to be easier.

Fig. 3.15 illustrates the scenario in which a 10-turn ITSC occurs in phase B3. The fault

indicator λIsc resulting from (3.49) experiences an abrupt increase from zero to 6 A after the

introduction of the ITSC. Moreover, the angle θf , as predicted by (3.48), reaches 90◦, coinciding

with the magnetic axis of phase B3. To further validate the effectiveness of the analytical model,

an ITSC has been placed in A3, and the results are depicted in Fig. 3.16. The fault indicator

λIsc remains equal to 6 A, indicating that the fault’s intensity does not change compared to

that for the ITSC in B3, while the angle θf is 60◦, corresponding to the magnetic axis of phase

A3. During these tests, the parameter λ is 10/80, and the measured short circuit current is

about 37 A, which leads to a theoretical value of λIsc of 4.625 A, slightly lower than the actual

value. The discrepancy is likely attributable to the ambiguity regarding the machine parameters,

particularly the inductance L5.

Afterwards, five shorted turns have been introduced in A3. The findings depicted in Fig.

3.17 support the reliability of the analytical model in identifying the fault, even at reduced

numbers of shorted turns.

Finally, the proposed approach has been evaluated under transient conditions when the speed

raises from 200 to 500 RPM. Below 500 RPM, the measurement of the short circuit current is
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Figure 3.14: Test bench.

comparable to the rated current of the machine and does not lead to perceivable effects. Figure

3.18 illustrates that raising the speed results in an increase of λIsc, while the angle θf remains

constant at 60◦ proving that the analytical model is reliable in transient conditions when the

effects of the ITSC are not negligible.

To enhance the reliability of the fault detection technique, an additional resistance Rsc has

been included in the short circuit branch. In practical applications, this resistance cannot be

easily estimated and its value is unknown; therefore, a robust fault diagnosis strategy should be

valid regardless its value. In the proposed case of study, a resistance value of about 15% of the

stator resistance is considered to achieve a speed of 700 RPM while maintaining the short circuit

current at 37 A, which is the level attained at 500 RPM without any additional resistance. Fig.

3.19 presents the measurements obtained with the motor rotating at 700 RPM , whereas Fig.

3.20 depicts the transient scenario. As can be seen, the proposed strategy remains valid even

in the presence of an additional resistance within the short circuit branch. Further, comparing

Fig. 3.15 and Fig. 3.16 with Fig. 3.19, it is worth noting that the parameter λIsc, estimated

by means of (3.49), remains constant to 6 A regardless the short circuit resistance. This result

demonstrates that the proposed technique is independent of the short circuit resistance.

3.3 Conclusions

This chapter introduced three analytical models that can be used to calculate the voltage

harmonic contributions resulting from three specific faults (HRCs, MDs, SCs) that may occur

in the stator windings of a brushless dual-three-phase motor.
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Figure 3.15: Fault estimation and identification in case of 10 shorted turns in the phase B3 with
the motor rotating ad 500 RPM and 5 A current reference.

𝑆𝐶 in 𝐴!60°

6

37	𝐴#$%&

20	𝐴/𝑑𝑖𝑣

20	𝑑𝑒𝑔/𝑑𝑖𝑣

𝜆𝐼'(

𝚤'̅(

𝜃)

Figure 3.16: Fault estimation and identification in case of 10 shorted turns in the phase A3 with
the motor rotating ad 500 RPM and 5 A current reference.

The case study of HRC demonstrated how the voltage harmonic contributions can be used to

determine the deviation of each phase resistance from the average value of the phase resistances

and identify the phase in which the resistance imbalance occurs.

Regarding the presence of a variation in the number of turns in a stator phase, it was shown

how it is possible to identify both the magnetic axis of the phase in which said variation takes

place and to quantify the variations.
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Figure 3.18: Fault estimation and identification in case of 10 shorted turns in the phase A3 with
the motor speed varying from 200 to 500 RPM and 5 A current reference.

Finally, the SC analytical model provides the estimation of fault severity and the identifica-

tion of magnetic axis of the phase in which the SC occurs.

The presented analytical models can be included in the control system and, with the use

of opportunely tuned PI current controllers, enable the estimation and identification of faults

without the need to power-off the motor and utilize costly measuring devices.
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Figure 3.19: Fault estimation and identification in case of 5 shorted turns in the phase A3 with
the motor rotating ad 700 RPM and 5 A current reference.
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Chapter 4

Machine Learning for

Fault Diagnosis

Artificial Intelligence has had a significant increase in popularity in recent years, making it one

of the most attractive and promising technological developments of our time. This intriguing

field not only provides new prospects but also covers almost all aspects of industry and scientific

inquiry. This chapter presents two fault detection strategies that utilize Machine Learning (ML)

for detecting, identifying and distinguishing stator faults such SCs, HRCs and MDs.

4.1 Machine Learning Algorithms

ML algorithms are divided into three main families: supervised learning, unsupervised learn-

ing, and reinforcement learning.

Supervised learning involves a collection of training instances (samples), whereby the input

data comes along with pre-existing knowledge of the expected outputs, referred to as labels, tar-

gets or classes [1]. Regression and classification algorithms are part of this group. In regression,

labeled instances are passed to an algorithm to fit a predictive model that can make predictions

on new input data. In classification, the goal is to predict class category labels for new instances,

based on previous observations.

In unsupervised learning ML algorithms are used to analyze and cluster unlabeled data sets.

Techniques such as clustering and association belong to this family.
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Reinforcement learning pertains to the process of acquiring the best behavior within a given

environment with the objective of attaining the highest possible reward. The acquisition of

optimum behavior occurs via the process of interacting with the environment and observing its

responses. By virtue of its structure, it is widely used in the field of robotics.

The works presented in the following sections use classification methods to detect and esti-

mate stator faults such as SCs, MDs and HRCs in dual-three-phase electric drives.

4.2 Short Circuit and Manufacturing Defects Fault Diagnosis

Using Machine Learning

To meet the demands for reliability and performance, the use of advanced control and diag-

nostic methods is necessary due to the progress made in multiphase drives. AI approaches offer a

highly successful solution to these problems [2; 3]. Indeed, the conventional analytical approach

to defect identification sometimes requires making significant assumptions in order to establish

the physical relationship among various variables. ML overcomes this issue by employing al-

gorithms that have an inherent comprehension of how input and output data are correlated.

Therefore, ML is extensively utilized in the field of faults diagnostics for power electronic con-

verters [4] and electric motors [5–8]. Both domains utilize ML techniques in combination with

model- and signal-based approaches to improve the advancement of fault-tolerant controls [9].

As detailed extensively in Section 3.1.3, inter-turn SCs play a significant role in the danger-

ous failures of electrical machines. Indeed, SC faults generate large uncontrollable circulating

currents, resulting in torque fluctuations, vibrations, and rapid temperature rise. Therefore, it

becomes essential to diagnose intern-turn SC failures in order to avoid catastrophic breakdowns.

Fig. 4.1 depict an SC affecting a certain number of turns of the stator windings.

It is important to identify and distinguish SC from other faults that have less severity, such

as MDs, in order to promptly intervene and assist in repairing the machine once it has been

powered off. The fault localization is particularly helpful in multi-three-phase drives since, in

the event of a fault, the specific set of three phase windings where the fault occurs can be

disconnected to preserve the overall functionality of the drive, depending on the nature and

severity of the fauilure.

The next section present a machine learning-based technique that enables the identification

and differentiation of a short circuit fault.



4.2. Short Circuit and Manufacturing Defects Fault Diagnosis Using Machine Learning 65

Rotor core

Stator yoke

Stator

Air-gap

Rotor shaft

Inter-turn 
short circuit

Permanent magnets

Inter-turn 
short circuit

Coils
Slot

Figure 4.1: View of a short-circuit affecting 10 turns of the stator winding.

4.2.1 Vector Representation for Training Dataset

According to Sec. 2.2.3, through VSD approach, the six quantities of the dual-three-phase

motor can be fully represented in terms of space vectors, which can be calculated by applying

an extended Clarke transformation. Therefore, at steady-state operating conditions, when the

motor rotates at constant angular speed ω, an ideal cotrol system ensures that the current space

vectors are:
i1 = irefe

jωt

i5 = 0.
(4.1)

For a healthy motor, without asymmetries, thevoltage and flux vectors given for ρ = 1 and

ρ = 5 are enough to fully describe the whole dual-three-phase drive. They can be expressed as

complex Fourier series as follows:

vρ =
∞∑
h=1

vh+
ρ ejhωt +

∞∑
h=1

vh−
ρ e−jhωt

φρ =
∞∑
h=1

φh+
ρ ejhωt +

∞∑
h=1

φh−
ρ e−jhωt

(4.2)

where the notation h+ and h− is used to identify the h-th harmonic component of the positive

and negative sequences, respectively.

The stator voltage equation of the healthy machine can be written in terms of space vectors

as follows:

vρ = Rsiρ +
dφρ
dt

. (4.3)

If (4.1) and (4.2) are combined with (4.3), the balance of the fundamental harmonic (1+)

for ρ = 1 yields:

v 1+
1 = Rsiref + jωφ1+

1 (4.4)
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while the other harmonic components are as follows:

v h+
1 = jhωφh+

1

v h−
1 = −jhωφh−

1

v h+
5 = jhωφh+

5

v h−
5 = −jhωφh−

5 .

(4.5)

In contrast, additional voltage contributions are required to keep the current waveform si-

nusoidal if a fault occurs or an asymmetry is present. In the case of asymmetrical windings, the

main additional voltage contributions are expected to affect the positive and negative sequences

at the fundamental frequency (v 1+
1 , v 1−

1 , v 1+
5 , v 1−

5 ). Instead, in case of an Extra Turn (ET)

in a phase or a short-circuit fault, the unbalanced electromotive forces produced by the rotor

magnets cause time harmonics with an order higher than 1. The most important harmonic

components are often at three times the fundamental frequency (v 3+
1 , v 3−

1 , v 3+
5 , v 3−

5 ). Further-

more, since an SC current produces a pulsating airgap flux and, consequently, a torque ripple,

the speed regulator is expected to partially compensate for this torque disturbance by generating

distortion in both the current vector i1 and the voltage vector v1, while v5 is controlled to keep

the current i5 at zero.

A change in v5 is a necessary but not sufficient condition to detect the presence of a fault.

To diagnose the fault, v5 must include some specific harmonic components, i.e., those with order

-1, +1, -3, and +3. The other harmonics of v5 are not used as diagnostic indices due to their

lower magnitudes and because they are mainly caused by magnet-induced back-emf harmonics

and slotting effects.

Fig. 4.2 illustrates the harmonics that arise in v5 in case of a SC fault. In what follows,

a Diagnosis Strategy (DS) focused on the first and third time harmonic components of v5 is

presented:

v5,DS = v 1+
5 ejωt + v 1−

5 e−jωt + v 3+
5 ej3ωt + v 3−

5 e−j3ωt. (4.6)

The contributions to the diagnostic space vector v5,DS in (4.6) are zero in the case of a

healthy machine with sinusoidal back-emfs due to the rotor magnets, according to (4.5).

In contrast, the components v 1+
5 and v 1−

5 are expected to be present in case of asymmetries

in the phase inductances and resistances. Finally, v 3+
5 and v 3−

5 arise from a MD such an ET

in a stator winding , or a SC. These four complex vector contributions represent the diagnostic

variables used to train the ML algorithms.

A dataset of the selected outputs (v 1+
5 , v 1−

5 , v 3+
5 and v 3−

5 ) for various operating conditions,

including asymmetries and faults, for different values of id, iq, and speed can be quickly evaluated
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Figure 4.3: Control architecture.

by using the finite element model of the dual-three-phase motor presented in Sec. 3.1.4. The

control architecture adopted for obtaining the just mentioned voltage harmonic components is

illustrated in Fig. 4.3

4.2.2 Algorithms Used for Classification.

To test the effectiveness of the proposed diagnostic strategy, five ML models (see Fig. 4.4)

have been implemented:

1. The Support Vector Machine (SVM) model aims to find a hyperplane in an N-dimensional
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space (N is the number of features) able to separate data points so that they can be

correctly classified;

2. The K-Nearest Neighbors (KNN) model classifies each data point according to the simi-

larity with those previously stored;

3. The Multilayer Perceptron (MPL) model is a feedforward algorithm including input and

output layers, and one or more hidden layers with many neurons stacked together. There-

fore, it is a “deep method”, and its classification ability is based on the back-propagation

mechanism;

4. The eXtreme Gradient Boosting (XGBoost) model is a decision-tree-based algorithm,

which applies the principle of “boosting weak learners”, using the gradient descent ar-

chitecture to carry out the classification task;

5. The Gaussian Naive Bayes (GNB) model uses the Bayes theorem for the classification,

assuming that each class follows a Gaussian distribution and the independence of the

features.

Before starting the training task, the dataset was preprocessed to reduce its dimensionality.

This approach is common in ML as it allows a smaller dataset size to be used without losing the

information needed for classification. Since the data are not separable in a linear way, Kernel

Principal Component Analysis (KernelPCA) is used for dimensionality reduction. KernelPCA

employs a spectral decomposition to determine the directions (eigenvectors) of the maximum

variance, i.e., the directions where more information about the data frame is contained. This

decomposition allows obtaining a smaller set of “artificial” orthogonal variables, starting from

a set of correlated numerical variables, without losing information. Moreover, the variables are

normalized in advance to prevent their variability from affecting the results of the KernelPCA.

Normalization, which entails the reshaping of numerical columns so they conform to a standard

scale, is a critical process for data sets that have diverse units or magnitudes across various

features. The primary objective of normalization is to establish a shared scale for the data while

Figure 4.4: Employed machine learning models.



4.2. Short Circuit and Manufacturing Defects Fault Diagnosis Using Machine Learning 69

Principal Component Index

Ex
pl

ai
ne

d 
V

ar
ia

nc
e 

R
at

io

Figure 4.5: PCA results for the training data frame.

preserving the inherent variations in the range of values. This typically entails the rescaling of

features to a standard range, which is typically between 0 and 1. At the same time, features

may be modified to have a mean of 0 and a standard deviation of 1. The latter approach is

implemented in this investigation. The mean column value is subtracted from each sample, and

the resulting value is then divided by the standard deviation. Fig. 4.5 displays the variance

of the variables in the data frame along the new orthogonal directions. This result shows that

eight directions (eigenvectors) are sufficient to describe 100% of the total data frame variance.

Obviously, for a graphical representation, just three directions are needed. Fig. 4.6 shows the

samples of the training data frame in a space with lower dimensionality defined by the first

three principal components. Although these three directions account for just 60% of the total

variance, it is worth noting that some of the attributes are separable in the 3D space. For

example, samples reflecting ET in different phases are distinctly represented by separable lines.

This makes it easier for ML algorithms to perform the classification task. Once pre-processed,

the data frame is used for training (see Fig. 4.7).

Another essential aspect of an ML model concerns the hyperparameters, which directly control

the learning process and determine the values of the model parameters that a learning algorithm

ends up learning. The hyperparameters of each ML model are optimized with the Grid-Search

technique in order to customize the models for the training task. The data frame used for the

training task includes the following variables:

• Targets: labels for each class to be classified (Tab. 4.1);

• ωωω: mechanical speed of the rotor;

• ididid: d−axis current (directly correlated to the stator flux);

• iqiqiq: q−axis current (directly correlated to the torque);
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• v5,DSv5,DSv5,DS : harmonics contributions, in magnitude and phase, due to SC and ET.

Table 4.1: Targets explanation

Target Short circuit (SC) Extra turn (ET)
0 No No
1 In phase A1 No
2 In phase B1 No
3 In phase A2 No
... ... ...
7 No In phase A1
8 No In phase B1
... ... ...
13 In phase A1 Yes (phase not predicted)
14 In phase B1 No (phase not predicted)
... ... ...

4.2.3 Experimental Results

Considering the nomenclature for a general multi-class confusion matrix shown in Fig. 4.9,

the performance of the ML models is evaluated through the following metrics (Tab. 4.2):

• Training accuracy: accuracy of the model on actual data used for training (70% of the

data frame obtained with Matlab/FEMM simulations);
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Figure 4.8: Confusion matrix obtained from the test data frame with the SVM technique.
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Figure 4.10: ROC (OvR strategy) curves obtained from the KNN model considering the test data.

• Test accuracy: accuracy of the model on data never used for training (30% of the data

frame obtained with Matlab/FEMM simulations);
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• Test bench accuracy: accuracy of the model on data directly obtained from the test bench

acquisitions;

• k-fold accuracy: accuracy of the model on a limited set of data obtained by dividing the

overall Matlab/FEMM data frame into k non-overlapping folds. Each kth fold can be used

as a retained test set, while all other bends are collectively used as a training dataset;

• Precision (PRE): the number of instances that are relevant, out of the total instances the

model retrieved, calculated as PRE = TP
TP+FP ;

• Recall (REC): the number of instances that the model correctly identified as relevant out

of the total significant instances, calculated as REC = TP
TP+FN ;

• AUC: the area under the Receiver Operator Characteristic (ROC), which are probability

curves that plot the True Positive Rate (TPR) against the False Positive Rate (FPR),

which are respectively defined as TPR = TP
FN+TP and FPR = FP

FP+TN . AUC measures

the ability of an ML model to distinguish among classes and is usually adopted for binary

classification. AUC may be interpreted as the likelihood that a randomly chosen sample

would be properly classified for various thresholds of the decision boundary. A model

whose predictions are 100% wrong has an AUC equal to zero, whereas the AUC is one

when the predictions are 100% correct.

• F1-score: it combines the precision and recall of a classifier into a single metric by taking

their harmonic mean, calculated as F1 = 2PRE×REC
PRE+REC .

Since the problem involves 19 classes, the last four metrics (PRE, REC, AUC, and F1-score)

are determined using a "One vs Rest" (OvR) approach. It entails choosing one class and treating

it as positive while treating the remaining ("the rest") as negative. This approach allows each

class to be compared against all the others at the same time. For instance, Fig. 4.10 shows

the ROC curves obtained with the OvR strategy considering the K-Nearest Neighbors (KNN)

algorithm. OvR approach leads to consider the percentages in Tab. 4.2 as a macro average

value.

Fig. 4.8 shows the confusion matrix resulting from the classification that the SVM model

performs on the test data frame. As can be seen, almost all values are on the diagonal. This

implies a match between predicted and actual values.

Choosing the correct number of instances (rows of the data frame) for the training task is

always an important matter. In fact, a wrong choice could lead to problems such as overfitting

(too many parameters in the model and a high variability of the classification) and underfitting

(few parameters in the model and a high discrepancy in classification). In the first case, the
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Table 4.2: Metrics adopted for evaluating the ML models

Model Training
accuracy

Test
accuracy

Test bench
accuracy

...

SVM 99.5% 97.3% 96.2% ...

KNN 96.6% 93.5% 93% ...

MLP 99.9% 95% 66.6%
XGB 99.9% 95% 66%
GNB 90.5% 88.1% 38.5%

... k-fold
(k=5)

Precision Recall ...

... 97 ± 2% 92.8% 95.2% ...

... 93 ± 1% 80.9% 78.9% ...

... 94 ± 1% 81.3% 82%

... 94 ± 2% 90.9% 82.6%

... 89 ± 2% 72.9% 74.1%

... AUC F1-measure

... 99.9% 93.7%

... 78.9% 79.68%

... 82% 80.7%

... 82.6% 84.7%

... 74.1% 72%

model is too complex and sensitive to training data (high variance and low bias). In the second

case, the model can not accomplish a good classification since it has insufficient complexity

(high bias and low variance). Thereby, the suspicion of overfitting arises when training accuracy

and test accuracy curves are too far from each other. In contrast, when the models suffer from

underfitting, both the mentioned curves drop rapidly to very low levels of accuracy.

An effective ML model has to achieve a balance between variance and bias. Additionally,

the number of samples should not be excessively high to avoid needless computational work.

Fig. 4.11 shows the accuracy curves and the optimal point representing the chosen number

of instances of the training data frame for the Support Vector Machine (SVM) model. This

approach allows one to find the optimal number of instances for each ML model, avoiding

overfitting and underfitting.

The performance of the proposed AI-based fault detection strategies has been verified by

experimental tests on the dual-three-phase prototype shown in Fig. 3.14. The main motor

parameters are listed in Tab. 4.4.
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Figure 4.11: Accuracies obtained from SVM model by varying the training data frame number of
instances.

4.2.4 Experimental Setup and Data Collection

The control system is implemented by using a dSPACE platform (MicroLabBox, DS1104),

which manages the six-phase power converter through fiber-optic cables. The switching fre-

quency of the converter is nearly 8.8 kHz. An Elektro-Automatik power supply (EA-PS 9500−20)

provides the drive DC link voltage, and a DC generator is employed as a mechanical load.

Experimental tests are performed at reduced speed to avoid damaging the electric motor

under test (e.g., overheating and demagnetization). In particular, the maximum speed of the

tests is set to about 700 RPM to maintain the SC current below 60 A.

A SC of 10 turns coincides with a short circuit of a coil. This means shorting 1/8 of the

machine (12.5%). Conversely, 1 ET represents a variation of 1/81, that is 1.234%.

Fig. 4.12 shows a comparison between experimental and semi-analytical results when the

motor features an SC of 10 turns in phase B3 and an ET in phase A3, while rotating at 700 rpm

and controlled with a current id1 of −5 A and a current iq1 of 2 A. The results show that the

phase and short circuit currents have similar waveforms, whereas the diagnostic vectors (v 1+
5 ,

v 1−
5 , v 3+

5 and v 3−
5 ) match the predicted values less precisely but still represent the signature

of the motor asymmetrical behavior. The mismatch between the simulation and experimental

results is relatively small, and it is not simple to identify the primary cause. Some improvements

may be expected if a more accurate system model is used. Also, the motor control algorithm

cannot perfectly track the current references due to the PI regulators bandwidth and finite gains.

The SC resistance Rsc was updated to match the SC current(red) with the measured value

(blue).

Three significant operating conditions are considered: no SC, a SC of 10 series turns in phase

A3 and a SC of 10 series turns in phase B3. Furthermore, the motor has an ET in one coil (not
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Figure 4.12: Experimental results in the case of a short circuit in phase B3: currents
iA1 , iB1 , iA2 , iB2 , isc and diagnostic vectors v h+

5 (red) and v h−
5 (blue). The semi-analytical results

are in dashed lines.

affected by short circuit faults) of the phase A3.

All the operating conditions mentioned above have been simulated to derive a wide experimental

dataset (504 instances). Each instance is labeled with a target index, depicting the operating

condition, according to the training data frame structure. Thus, the test bench data is employed

to assess the effectiveness of the proposed strategy in correctly classifying the type of fault and

its localization.

4.2.5 Models Assessment

Tab. 4.2 illustrates the results of the considered ML models. This comparative study clearly

shows that the best of the investigated ML techniques, in terms of metrics, is the SVM. It reaches

an accuracy of 96.2% on the experimental data, which means that the ML algorithm can almost

flawlessly predict the health state of the machine among all the 504 operating conditions. The

KNN model exhibits good performance, although the precision and recall metrics differ by about

10% from the SVM. The MLP and XGB models show very similar performance and are both

unable to reach high accuracy when assessed with the test bench data frame. Finally, GNB

exhibits the poorest performance among all the metrics. The difference in the outcomes is

attributable to the intrinsic characteristics of ML techniques. Each ML algorithm statistically

identifies the class to which each sample belongs. The SVM technique relies on identifying

hyperplanes that can distinguish samples according to their class membership. After identifying

the plane of separation between classes, the likelihood of a sample belonging to a specific class

is calculated. Conversely, the KNN algorithm assesses the similarity degree of each sample

in relation to its adjacent sample. The likelihood that the two samples belong to the same

class is then determined. In this investigation, the SVM technique turned out to be the most

effective. Consequently, it can be deduced that the algorithm effectively identifies the separating
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hyperplanes across classes. Hosseini et al. [10] provide a detailed explanation of how ML models

work.

The investigation that has been presented was enhanced with a more sophisticated control

system in the subsequent section. This enabled the achievement of better results.

4.3 Short Circuit and High-Resistance-Connection Diagnosis Us-

ing Machine Learning

The diagnostic method presented in Sec. 4.2 is focused on the detection of SCs and MDs,

such as variations in the number of turns, without estimating the failure entity. In addition, the

drive was supposed to have sinusoidal reference currents, as stated by (4.1), that are obtained by

implementing a complex control architecture including several resonant PI regulators. Under this

assumption, the estimated voltage harmonic components due to the faults were the only variable

including the signature of the faults. However, that control was highly demanding in terms of

computational efforts and most of the current regulators were not exploited during the healthy

motor operation, making the solution critical for drives in industrial applications. The solution

provided in this Section addresses those issues by utilizing only the minimum number of current

PI regulators, hence significantly reducing the complexity of the control system. Furthermore,

the inevitable ripple of the phase currents is taken into account.

The asymmetry in the phase impedances due to HRC is also considered and the phase in

which it occurs is accurately predicted. Hence, the dissertation can be seen as an extension of

the research reported in Sec. 4.2.

4.3.1 Control System

In Sec. 4.2, as anticipated, the phase currents have been supposed sinusoidal considering PI

regulators with an infinite bandwidth. Conversely, in the actual control algorithm (see Fig. 4.13)

the tuning of the control parameters Kp1, Ki1, Kp5, and Ki5 translates into transfer functions

that can be analyzed separately for each harmonic component as follows:

v̄dq1 = (Kp1 + Ki1
s )[(id1,ref + jiq1,ref ) − (id1 + jiq1)]

v̄dq5 = (Kp5 + Ki5
s )[(id5,ref + jiq5,ref ) − (id5 + jiq5)].

(4.7)

At steady-state operation, the synchronous PI regulators ensure zero tracking error of the

current sequences they are synchronized with. Because of the angles chosen for the synchro-

nization of the PI regulators and the zero reference current for space 5, the fundamental direct

sequence in space 1 and the inverse sequence in space 5 are perfectly tracked. Conversely, all
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Figure 4.13: Control architecture of the dual three-phase drive. the transfer functions for the pair
of PI regulators for the control of the d-q currents in the subspaces 1 and 5 are highlighted. The
eight coils of one of the motor phase A1 are drawn in the view of an FE simulation result. For one

of these coils, the geometry of the simulated slot conductors is also visible..

the other sequences have current values that are not null despite their zero reference values.

Therefore, the transfer functions of the PI regulators lead to the following set of equations:

ī 1+
1 = id1,ref + jiq1,ref

v̄ h±
1 = −(Kp1 + Ki1

jω(h∓1) )̄ih±
1 h± ≠ 1+

ī 1−
5 = 0

v̄ h±
5 = −(Kp5 + Ki5

jω(h±1) )̄ih±
5 h± ≠ 1−.

(4.8)

4.3.2 Equations of the Electric Motor

The phase voltage equation for a motor winding without faults is:

vk = Rkik +
6∑
z=1

Lz,k
diz
dt

+ ek (4.9)

where Rk is the phase resistance of phase k, Lz,k identifies the inductances of the six-phase

winding, and ek is the rotor back electromotive force induced in phase k. In steady-state, each

phase variable xk in (6.1) can be rewritten in terms of representative phasors:

xk =
∞∑
h=1

ℜ{Xkh e
jhωt} =

∞∑
h=1

1
2 [Xkh e

jhωt +X
∗
kh e

−jhωt] (4.10)
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and, for each harmonic, the 6-phase variables of the winding identify the representative vector

X6ph,h:

X6ph,h = [XA1hXA2hXA3hXB1hXB2hXB3h]′. (4.11)

For each harmonic h the phasor voltage equations derived from (6.1) must be simultaneously

solved. In matrix form, remembering that the current derivatives in the phasors domain can be

rewritten as dIkh
dt = jhωIkh, the problem is written as follows:

V6ph,h = ẐhI6ph,h + Eh. (4.12)

In case of a fault in the motor winding, the main difference in the solution of the problem is

in the values of the elements of the 6x6 matrix Ẑh and 6 element vector Eh. The methodology

to identify the elements of Ẑh and Eh from an accurate FE-based model was presented in Sec.

3.1.4.

Reminding that the common-mode variables for the two subwindings A and B are not used

in the monitoring algorithm, four space vector (i.e., eight equations) are identified by applying

the VSD transformation (2.8) for ρ = 1, 5 to (6.4). In particular, there are two space vector

equations for the direct sequences and two for the inverse sequences of each time harmonic h-th

in (6.4): XSV,h+

X∗
SV,h−

 =

 ĈVSD

ĈVSD∗

X6ph,h (4.13)

where ∗ is the cojugate operator.

The matrix ĈVSD determines the VSD transformation (2.8) rewritten in terms of matrix

form as:

xαβ = ĈVSD x6ph (4.14)

with xαβ = [xα1 xβ1 xα5 xβ5]′ and x6ph = [xA1 xA2 xA3 xB1 xB2 xB3]′.

The eight space vector equations, which must be solved together with the eight space vector

control transfer functions relationships in (4.8), are found by applying (4.13) to (6.4) as follows:

VSV,h+

V∗
SV,h−

 =

 ĈVSD

ĈVSD∗

(Ẑh

 ĈVSD

ĈVSD∗


−1 ISV,h+

I∗
SV,h−

+ Eh

)
(4.15)

for each h-th time harmonic, where XSV,h± = [ℜe{x̄h±
1 }, ℑm{x̄h±

1 }, ℜe{x̄h±
5 }, ℑm{x̄h±

5 }]′. The

sixteen equations included in (4.8) and (4.15) completely identify the solution for sixteen phase

variables (eight currents and eight voltages). This can be understood by reminding that for each
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Figure 4.14: Proposed tree-based schema for fault classification.

of the six phase currents (or voltages) there are four degrees of freedom due to the two common-

mode components which are not analyzed. These four degrees of freedom are represented in the

steady state solution by four phasors, which are complex numbers made of a magnitude and

a phase angle, resulting in a total of eight variables to be determined for the solution of the

problem.

4.3.3 Imbalanced Classes

The majority of ML models are specifically intended to optimize accuracy and minimize

errors. Therefore, ML algorithms tend to exhibit optimal performance when the number of

samples in each class is nearly balanced. In circumstances of an imbalanced class distribution

within the dataframe, the accuracy of the model is significantly affected. In such scenarios, a

high accuracy may be attained by only predicting the majority class, but this approach fails to

adequately capture the minority class. For instance, when the class distribution indicates that

the majority class accounts for 99% of the data, it becomes challenging to accurately identify

the minority class samples.

In order to address the issue of imbalanced classes, one potential approach involves using

oversampling techniques that include duplicating random samples from the minority class, or

undersampling techniques that involve deleting random samples from the majority class. In the

first scenario, there is a concern that the ML model may exhibit overfitting, which refers to the

acquisition of excessive information beyond what is required for effective learning. Conversely,
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in the second scenario, there is a danger of underfitting, where crucial information may be

overlooked, resulting in poor performance.

The suggested tree-based methodology (see Fig. 4.14) allows for independent optimization of

each ML algorithm, allowing for optimum selection of whether to oversample or undersample the

data in each branch of the tree architecture. The Synthetic Minority Oversampling Technique

(SMOT) and the NearMiss approach are employed for class balancing in this study [11; 12].

4.3.4 Feature Selection

When implementing ML techniques, it is important to ascertain the selection of features

(i.e., columns of the dataset) to be provided to the algorithms. This selection process aims to

reach a balance between underfitting and overfitting, which is sometimes referred to as the bias-

variance trade-off. Furthermore, the reduction in the number of features leads to a decrease in

the computing time required for the training phase. Several types of feature selection strategies

have been extensively documented in the academic literature [13], exhibiting varied degrees of

appropriateness for the specific characteristics of the dataset being analyzed.

As stated in Sec. 2.2.3, when the motor is operating in healthy conditions, the quantities

given in subspace α5-β5 are equal to zero and just the fundamental component rotating in the

subspace α1-β1 is present. On the other hand, in the event of a failure, the control system acts

by applying voltage harmonics at a certain frequency to address the existing imbalances caused

by the fault. Consequently, specific additional harmonics emerge in the subspace α5-β5. That

is why the variables defined in α5-β5 are appropriate for diagnosing and characterizing motor

faults.

In this study, two feature selection algorithms are utilized: ANOVA and Chi2. In order to

strengthen the outcome, the results in common between the two outcomes obtained from the

aforementioned algorithms was taken into account. The features that were visually emphasized

in yellow in Fig. 4.15 were subsequently chosen.

The importance of each selected feature is evident by using a partial dependence plot, which

shows the marginal effect that a feature have on the predicted outcome of the ML model. For

instance, the partial dependence analysis conducted on v̄5+
5 and v̄7−

5 is depicted in Figure 4.16.

By examining the points highlighted by red crosses, it can be observed that when v̄5+
5 is equal

to 0.5 V, there is an 80% probability of the machine being faulty and a 20% probability of it

being healthy. As expected, a higher amplitude of voltage harmonics v̄7−
5 is directly associated

with a higher probability of machine malfunctioning.

It is noteworthy to note that, as depicted in Fig. 4.14, each branch of the tree represents an

independent ML model. Consequently, the feature selection procedure could be implemented for
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Figure 4.15: Feature importance scores. a) Using Chi2 algorithm. b) Using ANOVA algorithm.
The yellow columns indicate where the two findings meet.
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Figure 4.16: Partial dependence results usig two featurs of the training data.

each single model. Notwithstanding this, the features emphasized in Fig. 4.15 have been found

to be the most relevant for accurate fault prediction in all ML models included in the tree-based

schema, except for those responsible to localize the faulty phase (model 4, model 5, model 6),

which utilized the phase in degrees rather than the magnitude of features selected. The parallel

coordinate plot in Fig. 4.17 shows how the selected features contribute to the specific outcomes

in model 6, which is responsible for localizing the phase in which a SC with a number of shorted

turns greater than 2 (Nsc > 2) occurs.

4.3.5 Training Procedure

The training procedure enables the generation of knowledge by ML models, allowing them

to discern patterns and relationships within data. The latter are organized in a tabular format,

with each row representing a certain class.

The FE approach described in Sec. 3.1.4, along with the equations of the dual-three-phase
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Figure 4.17: Parallel coordinates results for model 6 using training data.

machine, allows simulating various failure scenarios related to HRCs and SCs. It enables the

extraction of the voltage and current harmonics components in the α1-β1 and α5-β5 subspaces

that result from SC and HRC. Among all the harmonics components, just those selected by the

feature selection process have been used for training purpose. The simulation and the training

processes have been implemented using an Workstation with an Intel Core i9-13900K Processor,

128GB DDR5 RAM and NVIDIA Quadro RTX A4000 16GB GDDR6 Graphic Card.

The tree-based methodology shown in Fig. 4.14 enables the partitioning of the collected data

into several smaller datasets. Each of these sub-dataset is then used for classification inside its

respective branch of the tree. This enables the reduction of the number of samples (rows of the

dataset) preventing overfitting.

After training each model individually, they were evaluated using a test dataset that includes

samples obtained from the PMMTP prototype whose main parameters are listed in Tab. 4.4.

4.3.6 Test Operating Conditions

Data for creating the test dataset were gathered using the control system architecture shown

in Fig. 4.13. The control system is executed utilizing a dSPACE platform (MicroLabBox,

DS1104), which controls the operation of the six-phase power converter via fiber-optic cables.

A power supply unit from Elektro-Automatik (EA-PS 9500 - 20) is used to provide the DC link
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voltage for the drive system. Additionally, a DC generator is used as a mechanical load. Fig.

3.14 shows the overall setup.

Since no extra resistance was used for limiting the SC current, the data have been collected

at a speed that is half of the rated one. Indeed, at this speed, the magnitude of the SC current

is around five times the rated current of the motor, which is a value reachable without the risk

to demagnetize the motor. Furthermore, the objective of the work is to examine the fault at

its first phase, prior to it attaining catastrophic circumstances. Therefore, there is no need to

reach high speeds.

The dual-thee-phase motor prototype permits access to the stator windings, allowing the

possibility to shorten either 2 or 10 turns of phase B3 (or A3) via an external switch. These

two faulty circumstances are denoted as Nsc ≤ 2 and Nsc > 2, respectively. Furthermore, an

extra resistance may be incorporated into phase A2 to emulate an HRC that is about 60% of

the stator phase resistance.

Finally, some samples were randomly removed to create an unbalanced test dataset and asses

the ability of the ML models to predict even unbalanced classes.

4.3.7 Models Assessment

The resulting tree structure (see Fig. 4.14) enables the evaluation of many ML models for

each branch of the tree, then choosing the one that demonstrates superior performance. The

results obtained using the test data and the best algorithms are shown in Fig. 4.18. The use

of four distinct algorithms, namely Random Forest (RF), K-Nearest Neighbors, Feedforward

Neural Network (FNN), and Support Vector Machine (SVM), was crucial in achieving the best

possible results. The application of these models yielded the outcomes shown in Tab. 4.3.

The test data’s confusion matrix, obtained using the best model (SVM) without a tree

structure, is shown in Figure 4.19. The SVM achieves a global accuracy of 61.8%. As anticipated,

the accuracy of processing a large dataset containing several categories is relatively low. The

lack of accuracy is demonstrated by the inability to accurately characterize the type of a fault

that is occurring. On the other hand, the overall test accuracy of the three-based structure can

be determined by evaluating the decrease in accuracy for each branch of the tree. As an example,

model 1 achieves an accuracy of 93.7%, resulting in a loss of 6.3%. The overall accuracy achieved

by applying this method to all branches is 74.5%, which is 12.7% higher than that of a single

ML model. Furthermore, the hierarchical arrangement of the tree enables the extraction of key

information from each separate branch. If the sole interest lies in distinguishing between a SC

and HRC, this can be accomplished with a precision of 86%. Such a result cannot be achieved

using a single ML model that has an array of classes. Notably, using just a single ML model is
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inadequate in accurately categorizing HRC, as the model mistakenly identifies it as a SC with

2 or 10 turns shorted. This result is justified theoretically since a SC induces both a resistance

change and an inductance imbalance. Due to the uncertain nature of the resistance along the

path of the SC current, a basic measurement of the phase impedance conducted offline may

result in mistakenly classifying a SC as a HRC, therefore overlooking the potential damage that

the SC current could cause. However, the suggested technique successfully distinguishes SC and

HRC using a KNN algorithm with an accuracy of 86%, as anticipated.

Table 4.3: Metrics adopted for evaluating the ML models

Model Training
accuracy

Training
3-fold

Test
accuracy

...

RF 100% 98.6 ± 2% 93.7% ...

KNN 86.6% 85.2 ± 2% 92.2% ...

SVM3 100% 98.9 ± 2% 97.5% ...

FNN 99.9% 97 ± 2% 100% ...

SVM5 95.1% 93.7 ± 2% 92.6% ...

SVM6 97.7% 95.4 ± 2% 100% ...

... Test
precision

Test
recall

Test
AUC

Test
F1-score

... 100% 85.1% 95% 91.9%

... 91.8% 96.3% 93.3% 94%

... 100% 96.7% 95.65% 98.32%

... 100% 100% 100% 100%

... 92.6% 100% 100% 96.15%

... 100% 100% 100% 100%

4.4 Conclusions

In this chapter have been presented two ML strategies to diagnose different types of faults,

even occurring simultaneously, in a dual-three-phase elctric motor.

A semi-analytical model, based on a preliminary finite-element analysis to estimate the motor

inductances, is developed. This model allows to obtain a large amount of data in a brief amount

of time, corresponding to both healthy and faulty conditions for different operating points of

the electric motor.

The strategy proposed in Sec. 4.2 is a diagnostic method to detect and localize a SC fault

using five machine-learning models. Moreover, the proposed strategy distinguishes a SC fault

from an unbalance due to an ET.
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Sec. 4.3 presents a ML-based diagnostic method for the diagnostic of two types of stator

winding faults that may occur in a dual-three-phase electric motor, i.e., SCs and HRCs. A tree-

based structure has been suggested as a means to prevent overfitting and enhance the accuracy
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Table 4.4: Motor parameters

Motor data Values Units

Rated speed 1500 RPM
Rated torque 25 Nm
Rated current 15 A
Pole pairs, p 2 -

Fundamental harmonic of the magnets flux 0.393 Wb
Magnetic airgap thickness (including magnets) 7 mm

Magnet thickness 5 mm
Number of slots 48 -

Conductors per slot 20 -
Phase resistance, Rs 0.442 Ω

Inductance of the first Clark space, L1 0.0056 H
Inductance of the fifth Clark space, L5 0.00081 H

Axial active length 70 mm
Stator inner radius 75 mm

of fault class prediction.

The fault diagnosis often involves the use of measurement sensors, which are known for their

expensive cost and additional space requirements. Furthermore, measurement sensors have a

maximum measurement accuracy equal to their full scale, so, they might mistakenly confuse a

low severity fault with noise. Ultimately, the measurement sensors are unable to detect patterns

or correlations among the measured variables. On the contrary, the implementation of ML

techniques, such as the two proposed in this Chapter, does not necessitate the utilization of any

sensors or measurement device and may be integrated directly into the control system.
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Chapter 5

Current Ripple in Odd-Phase

Inverters

A reduction in the switching ripple of the phase currents has a visible impact on the electric drive.

The transition from a sinusoidal AC supply to a PWM supply may increase the losses within the

magnetic circuit of electric machines by more than 15% because the current and voltage waveform

can be significantly distorted in comparison to the sinusoidal form. This chapter focuses on the

modulation strategy with the minimum RMS value of the output current switching ripple for

multiphase inverters with an odd number of phases. In addition, the strategy proposed allows

to minimize the number of commutations of the power electronic components, hence, decreasing

the switching losses.

5.1 Analysis of the Output Current Ripple

Establishing appropriate and adaptable control strategies for N -phase Voltage Source In-

verters (VSIs) is crucial to exploit the strengths of N -phase motor drives. Two modulation

techniques, Space-Vector Modulation (SVM)[1; 2] and carrier-based Pulse-Width Modulation

(PWM) [3–5], have been developed, but they have been demonstrated to be inherently equiva-

lent [6; 7]. Currently, PWM is often preferred owing to its simplicity. Over the years, various

efforts have been made to enhance the performance of multiphase drives in terms of efficiency,

quality of output voltages and input currents, common-mode disturbances, operating range, and
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flexibility [8–12]. A frequent subject concerning power converters is the quality of the output

current, as it affects motor behavior.

5.1.1 Fundamentals of Carrier-Based PWM for Multiphase Inverters

A schematic of a multiphase inverter is shown in Fig. 5.1.

According to the VSD described deeply in Sec. 2.2, given an odd set of N real quantities

x1, x2, . . . , xN , the following linear transformations define a new set of variables:

x0 = 1
N

N∑
k=1

xk

x̄ρ = 2
N

N∑
k=1

xkᾱ
ρ
k ρ = 1, 3, ..., N − 2

(5.1)

where

ᾱk = ej
2π
N

(k−1). (5.2)

The real quantity x0 is the zero-sequence component, whereas x̄1, x̄3, ..., x̄N−2 are complex

quantities called “space vectors.” If m1,m2, ...,mN are the command signals of the inverter legs,

with values of 0 or 1, and Edc is the dc-link voltage, the instantaneous output voltage vectors

are as follows:

v̄ρ = 2
N
Edc

N∑
k=1

mkᾱ
ρ
k ρ = 1, 3, ..., N − 2. (5.3)

Given the desired average voltage vectors v̄1,ref , v̄3,ref , ..., v̄N−2,ref over a switching period,

solving the modulation problem of a multiphase inverter requires finding the N command signals

of the inverter legs. Cosidering the principles of PWM, the command signals can be generated
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motor
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Figure 5.1: Multiphase inverter supplying a multiphase machine.
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by comparing N modulating signals m1,ref ,m2,ref , ...,mN,ref with a triangular carrier. The k-th

modulating signal mk,ref can be calculated by inverting (5.1):

mk,ref = m0,ref + nk,ref

nk,ref = 1
Edc

N−2∑
k=1

v̄ρ,ref · ᾱρk k = 1, 2, ..., N
(5.4)

where "·" is the dot operator, defined as the real part of the product of the first operand multiplied

by the complex conjugate of the second operand, and m0,ref is the zero-sequence component of

the modulating signals.

The zero-sequence component m0,ref is a degree of freedom that can be chosen to improve

the PWM performance. To prevent overmodulation, the modulating signals must remain within

the following range:

mk,ref ∈ [0, 1] k = 1, 2, ..., N. (5.5)

Tab. 5.1 lists some noteworthy values of m0,ref , which correspond to well-known modulation

strategies for multiphase inverters. In Tab. 5.1, the quantity m̄ρ,ref is defined as the ratio of

v̄ρ,ref and Edc.

Constraints (5.5) result in lower and upper limits for the magnitude of the modulating signals,

which define the output voltage range of the converter [13; 14].

As can be seen in (5.4), the modulation process for multiphase inverters is similar to that

for three-phase inverters, i.e., the modulating signals are compared with the carrier signal to

generate the gate control signals over the switching period Tsw, as shown in Fig. 5.2. However,

the calculation of the modulating signals may be more complex, as it depends on the reference

voltage vectors in all subspaces according to the VSD. If the reference voltage vectors in the

harmonic subspaces are zero, the control system complexity does not change significantly. On

the other hand, if the control system aims to manage the extra spatial harmonic components

Table 5.1: Value of m0,ref for different PWM modulation strategies.

Name m0,ref

Sinusoidal (S) m0,S = 1
2

Discontinuous (DMIN) m0,DMIN = − min
k=1,...,N

(∑
ρ m̄ρ,ref · ᾱρk

)

Discontinuous (DMAX) m0,DMAX = 1 − max
k=1,...,N

(∑
ρ m̄ρ,ref · ᾱρk

)
Space Vector (SVPWM) m0,SV = 1

2(m0,DMIN +m0,DMAX)
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Figure 5.2: Generation of the switching signals in a N -phase inverter according to the carrier-based
PWM.

of the magnetic field, the calculation of the reference voltage vectors may become challenging,

depending on the specific feature that the control system is targeting, such as high-torque density,

fault-tolerant operation, and online parameter estimation.

5.1.2 Modulation Strategy with Minimum RMS Value of the Output Current

Ripple

The output current vectors ī1, ī3, ..., īN−2 deviate from their desired trajectories owing to

the discrepancy between the actual voltage vectors v̄1(t), v̄3(t), ..., v̄N−2(t) and the desired val-

ues v̄1,ref , v̄3,ref , ..., v̄N−2,ref . However, the switching pattern of the actual voltage vectors is

arranged to match the desired average values over the switching period.

The deviation ∆īρ of each current vector from its average value over a switching period Tsw
is governed by the following approximated differential equation, which neglects the effect of the

load resistance in high-frequency transients:

Lρ
d∆īρ
dt

= v̄ρ − v̄ρ,ref (5.6)

where v̄ρ and Lρ (ρ = 1, 3, ..., N − 2) are the actual voltage space vector and the high-frequency

equivalent load inductance in subspace ρ. The average deviations of the currents and voltages

from their desired values can be assumed zero over Tsw, so the following constraints are satisfied:

∫ Tsw

0
∆īρ dt = 0 (5.7)
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∫ Tsw

0
(v̄ρ − v̄ref,ρ) dt = 0. (5.8)

It is assumed that the modulation strategy generates a symmetric switching pattern with

respect to the midpoint of the switching period. This property implies that the sequence of

transitions from one inverter configuration to the next in the first half period is repeated back-

ward in the second half. Fig. 5.3 shows an example of the trajectory of the current ripple over

a switching period for a five-phase inverter. The deviation ∆īρ is zero at t = 0, t = Tsw/2, and

t = Tsw. Each color vector corresponds to a specific inverter configuration. The trajectory of

∆īρ is symmetric with respect to the origin of the reference frame, so the analysis of the current

ripple can be limited to half of the switching period, T (i.e., T = Tsw
2 ).

Furthermore, the current ripple ∆īρ can be expressed as the sum of its average value ī0rip,0
over the half period T and the zero-mean deviation īrip, as stated below:

∆īρ = ī0rip,ρ + īrip,ρ (5.9)

ī0rip,ρ = 1
T

∫ T

0
∆īρdt. (5.10)

The total RMS value of the current ripple, extended to all phases and over a switching period

Tsw, is as follows:

Tsw∆I2
RMS =

N∑
k=1

∫ Tsw

0
∆i2kdt = N

2

N−2∑
ρ=1,3,...

∫ Tsw

0
|∆īρ|2dt (5.11)

where ∆ik is the deviation in the k-th load current. Due to the symmetric trajectory of the

current ripple, the integrals in (5.11) can be rewritten as integrals over a half period. In addition,

by combining (5.9) and (5.11), the following result can be obtained:

Tsw∆I2
RMS = N

N−2∑
ρ=1,3,...

(
T |̄i0rip,ρ|

2 +
∫ T

0
|̄irip,ρ|2dt

)
. (5.12)
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Figure 5.3: Deviation of the current space vectors of a five-phase inverter from their ideal trajec-
tories in subspaces 1 and 3 over a switching period for different values of m0,ref .
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It can be demonstrated that the quantity
∫ T

0 |̄irip,ρ|2dt, which appears in (5.12), is constant

and independent of m0,ref , similar to the calculation of the center of mass of a plane curve. This

result can be readily understood by examining Fig. 5.3, which shows the trajectories of ∆ī1
and ∆ī3 over a switching period for three increasing values of m0,ref in a five-phase inverter.

As can be seen, each curve is composed of two parts, symmetrically disposed with respect to

the origin, which rigidly translate without changing their shape as long as m0,ref increases.

Consequently, to reduce the RMS value of the current ripple, it is necessary to minimize the

quantity ∑N−2
ρ=1,3,... |̄i0rip,ρ|2, the only one sensitive to m0,ref in (5.12).

The derivative of (5.12) with respect to m0,ref is expressed as follows:

d(Tsw∆I2
RMS)

dm0,ref
= NT

N−2∑
ρ=1,3,...

2̄i0rip,ρ ·
dī0rip,ρ
dm0,ref

. (5.13)

To evaluate (5.13) and find the expression of ī0rip,ρ, two steps are necessary. The initial step

is to determine ∆īρ by integrating (5.6).

∆īρ(t) = 1
Lρ

∫ t

0

(
v̄ρ(τ) − v̄ρ,ref

)
dτ. (5.14)

Then, combining (5.14), (5.10) and (5.3) yields the following expression for ī0rip,ρ:

ī0rip,ρ = 1
T

2
N

Edc
Lρ

N∑
k=1

[ ∫ T

0

( ∫ t

0
mkᾱ

ρ
kdτ

)
dt

]
− T

2
v̄ρ,ref
Lρ

. (5.15)

Equation (5.15) can be simplified by noting from Fig. 5.2 that the following equality holds:

∫ t

0
mkdτ =


0 if t < tk

t− tk otherwise

(5.16)

where tk is the transition time of mk from 0 to 1.

Substituting (5.16) into (5.15) gives the following result:

ī0rip,ρ = T

2Lρ

[
2
N
Edc

N∑
k=1

(
1 − tk

T

)2
ᾱρk − v̄ρ,ref

]
. (5.17)

Fig. 5.2 shows that the quantity 1 − tk
T is equal to mk,ref , so (5.17) can be rewritten in a

more compact form:

ī0rip,ρ = T

2Lρ

[
2
N
Edc

N∑
k=1

m2
k,ref ᾱ

ρ
k − v̄ρ,ref

]
. (5.18)
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The leg modulating signals can be expressed as functions of the zero-sequence component

m0,ref through (5.4). Consequently, (5.18) becomes as follows:

ī0rip,ρ = T

2Lρ

[
2
N
Edc

N∑
k=1

n2
k,ref ᾱ

ρ
k + (2m0,ref − 1)v̄ref,ρ

]
. (5.19)

After some calculations, (5.13) turns out to be a linear function of m0,ref :

d(Tsw∆I2
RMS)

dm0,ref
= A(2m0,ref − 1) +B (5.20)

where

A = 2NT 2
N−2∑

ρ=1,3,...

|v̄ρ,ref |2

L2
ρ

B = 2NT 2
N−2∑

ρ=1,3,...

(
2
N

Edc
L2
ρ

N∑
k=1

n2
k,ref ᾱ

ρ
k · v̄ρ,ref

)
.

(5.21)

To find the value of m0,ref corresponding to the minimum ripple, the derivative must be set

equal to zero:

m0,OPT = 1
2

1 −

∑N−2
ρ=1,3,...

2
N

∑N
k=1 n

2
k,ref ᾱ

ρ
k · m̄ρ,ref

L2
ρ∑N−2

ρ=1,3,...
|m̄ρ,ref |2

L2
ρ

 . (5.22)

The value of m0,OPT resulting from (5.22) corresponds to a minimum of the current ripple

because the second derivative, obtained by deriving (5.20) once again, equals A, which is positive.

The value of m0,OPT in (5.22) is valid if the resulting modulating signals satisfy the con-

straints (5.5); otherwise, m0,OPT must be constrained between m0,DMIN and m0,DMAX .

Equation (5.22) is written in a mixed form, i.e., it combines the dimensionless reference

voltage vectors m̄1,ref , m̄3,ref , ..., m̄N−2,ref , sometimes called duty-cycle space vectors, and the

scalar signals n1,ref , n2,ref , ..., nN,ref . The expressions of (5.22) as functions of the signals

n1,ref , n2,ref , ..., nN,ref or the dimensionless voltage vectors m̄1,ref , m̄3,ref , ..., m̄N−2,ref are de-

rived in the next sections.

5.1.3 Expression of m0,opt as a Function of the Modulating Signals

Let us define the new variables l1, l2, ..., lN as follows:

lk =
N−2∑

ρ=1,3,...

m̄ρ,ref

L2
ρ

· ᾱρk. (5.23)

Then, (5.22) becomes:

m0,OPT = 1
2

(
1 −

∑N
k=1 n

2
k,ref lk∑N

k=1 nk,ref lk

)
. (5.24)
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In an electric machine, the subspace inductances are different from one another. However, if

the load is composed of magnetically independent phases, all inductances may be equal to the

same value L. Then lk is equal to nk,ref/L2 for any k, and (5.24) takes a simpler form:

m0,OPT = 1
2

(
1 −

∑N
k=1 n

3
k,ref∑N

k=1 n
2
k,ref

)
. (5.25)

In conclusion, m0,OPT is independent of the load parameters if N = 3 or if all the subspace

inductances are equal.

5.1.4 Expression of m0,opt as a Function of the Dimensionless Voltage Vectors

After tedious calculations, a new form for (5.22) can be found using (5.4):

m0,OPT = 1
2

1 −

∑N−2
ρ,σ,τ=1,3,...

1
L2
ρ
ℜe{f̄(ρ, σ, τ)}

2∑N−2
ρ=1,3,...

1
L2
ρ
|m̄ρ,ref |2

 . (5.26)

In (5.26), f̄ is a complex function defined as follows:

f̄(ρ, σ, τ) = m̄ρ,refm̄σ,refm̄τ,refδ(ρ+ σ + τ)

+m̄∗
ρ,refm̄σ,refm̄τ,refδ(−ρ+ σ + τ)

+m̄ρ,refm̄
∗
σ,refm̄τ,refδ(ρ− σ + τ)

+m̄ρ,refm̄σ,refm̄
∗
τ,refδ(ρ+ σ − τ)

(5.27)

where "∗" is the complex conjugate operator, and the binary operator δ is 1 only if its operand

is a multiple of N :

δ(n) =


1, if n mod N = 0,

0, otherwise.
(5.28)

The expression of m0,OPT resulting from (5.26) for three-phase inverters (N = 3) is inde-

pendent of the load inductance:

m
(3)
0,OPT = 1

2

(
1 −

ℜe{m̄3
1,ref}

2|m̄1,ref |2

)
. (5.29)

If m̄1,ref is written in polar form as M1e
jθ, (5.29) becomes as follows:

m
(3)
0,OPT = 1

2 − 1
4M1 cos 3θ. (5.30)
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This result was originally presented by S. R. Bowes in 1985 [15] and has been known for

approximately 40 years.

The expression of m0,OPT for the case N = 5 is as follows:

m
(5)
0,OPT = 1

2

1 − ℜe{f̄ (5)
1 + f̄

(5)
2 }

2( |m̄1,ref |2
L2

1
+ |m̄3,ref |2

L2
3

)

 (5.31)

where the functions f̄ (5)
1 and f̄

(5)
2 are defined below:

f̄
(5)
1 = m̄2

1,refm̄3,ref

( 2
L2

1
+ 1
L2

3

)
f̄

(5)
2 = m̄∗

1,refm̄
2
3,ref

( 1
L2

1
+ 2
L2

3

)
.

(5.32)

This result aligns with the findings presented in a paper by Casadei et al. in 2011 [16], where

m0,OPT was obtained through complex analytical calculations.

Finally, the expression of m0,OPT for the cases N = 7 is as follows:

m
(7)
0,OPT = 1

2

1 − ℜe{f̄ (7)
1 + f̄

(7)
2 + f̄

(7)
3 + f̄

(7)
4 }

2( |m̄1,ref |2
L2

1
+ |m̄3,ref |2

L2
3

+ |m̄5,ref |2
L2

5
)

 (5.33)

where the functions f̄ (7)
1 , f̄ (7)

2 , ... , f̄ (7)
4 are defined hereafter:

f̄
(7)
1 = m̄1,refm̄

2
3,ref

( 1
L2

1
+ 2
L2

3

)
f̄

(7)
2 = m̄2

1,refm̄5,ref

( 2
L2

1
+ 1
L2

5

)
f̄

(7)
3 = m̄∗

3,refm̄
2
5,ref

( 1
L2

3
+ 2
L2

5

)
f̄

(7)
4 = m̄∗

1,refm̄3,refm̄5,ref

( 2
L2

1
+ 2
L2

3
+ 2
L2

5

)
.

(5.34)

The previous results unequivocally demonstrate that sinusoidal PWM, which maintains

m0,ref equal to 1/2, provides the minimum ripple of the output currents in multiphase ma-

chines whenever only one harmonic sub-space is excited.

5.2 Simulation Results

5.2.1 General Results

A series of numerical simulations was conducted to assess the effectiveness of the developed

strategy in comparison with SPWM and SVPWM, which are commonly used when a low output

current ripple is desired. Two multi-phase induction machine models with five and seven phases,
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respectively, were developed in Matlab/Simulink to emulate the behavior of the prototypes

utilized in the experimental tests. The parameters of the five-phase machine are presented in

Tab. 5.2, while those of the seven-phase machine are reported in Tab. 5.3.

The inductance Lρ that limits the current ripple in subspace ρ is approximately equal to the

leakage inductance, which can be calculated as follows:

Lρ = LSρ −
L2
Mρ

LRρ
. (5.35)

The numerical simulations assume that both machines operate in a steady state. Each

dimensionless voltage space vector m̄ρ,ref rotates with a constant angular frequency ρω1 and

Table 5.2: Parameters of the five-phase wound-rotor induction machine.

Rated power 3.5 kW
Rated speed 1500 RPM
Pole number 6

Self inductances LS1 = 0.411 H, LR1 = 0.939 H
LS3 = 0.068 H, LR3 = 0.158 H

Mutual inductances LM1 = 0.555 H
LM3 = 0.053 H

Stator resistances RS1 = RS3 = 1.7 Ω
Rotor resistances RR1 = RR3 = 2.03 Ω

Table 5.3: Parameters of the seven-phase induction machine.

Rated power 3.5 kW
Rated speed 1450 RPM
Pole number 4

Self inductances
LS1, LR1 = 0.1798 H
LS3, LR3 = 0.0244 H
LS5, LR5 = 0.0120 H

Mutual inductances
LM1 = 0.1748 H
LM3 = 0.0194 H
LM5 = 0.070 H

Stator resistances RS1 = RS3 = RS5 = 1.1 Ω

Rotor resistances
RR1 = 1.01 Ω
RR3 = 0.8 Ω
RR5 = 0.6 Ω
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constant magnitude Mρ, as follows:

m̄ρ,ref = Mρe
jρω1t. (5.36)

where ω1 is the fundamental frequency of the output voltage.

The average RMS value of the current ripple is calculated over a fundamental period 2π
ω1

resulting from the contributions of all the switching periods.

∆I2
RMS,avg = ω1

2π

∫ 2π
ω1

0
∆I2

RMSdt (5.37)

Equation (5.37) is calculated for all points of the linear-modulation domain [13; 14].

The optimal modulation, SVPWM and SPWM have been compared for the five-phase and

seven-phase inverters for three different switching frequencies (3, 5 and 8 kHz) in a range of

operational scenarios. The simulation results are presented in tabular form. Tabs. 5.4 and 5.5

report the values of the modulation indexes, the RMS value squared of the current ripple for all

strategies, and the ratio squared of the RMS value of the current ripple for SVPWM or SPWM

over the RMS value of the current ripple for the optimal modulation. In all simulations, these

ratios are greater than or equal to 1, indicating that the optimal modulation generates the best

current quality.

Numerical simulations have been conducted to replicate the experimental results as closely

as possible.

• In some instances, the modulation index is nearly, but not precisely, equal to the maximum

value (e.g., 0.47 instead of 0.5). This discrepancy arises due to two factors. First, the

inverter dead times 1 preclude the theoretical limit from being reached without introducing

distortions in the voltage due to transient overmodulation conditions. The second reason

is related to potential fluctuations in the output voltage. As the control system assigns

the reference output voltage depending on the operating conditions and the input DC-link

voltage, the modulation index may exhibit slight fluctuations. A small margin ensures

that the inverter does not enter the overmodulation region, which would cause distortions

not considered in the presented theory, which focuses on the linear modulation region.

• Tabs. 5.4 and 5.5 demonstrate that, as the switching frequency increases, the optimal

strategy remains the most effective, yet the ripple tends to decrease in inverse proportion

to the switching frequency. In the experimental tests, the increase in switching frequency

may potentially introduce spurious phenomena, such as inverter dead times and core losses,
1Dead- time is used for PWM-controlled inverter control to avoid “short through” of high-side and low-side

power devices.
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Table 5.4: Simulation results for the five-phase induction motor for three different switching fre-
quencies.

Five-phase inverter
𝜟𝑰#𝑹𝑴𝑺,	𝒂𝒗𝒈,	𝑺𝑽𝑷𝑾𝑴𝟐

𝜟𝑰#𝑹𝑴𝑺,𝒂𝒗𝒈,𝑶𝑷𝑻𝟐  
𝜟𝑰#𝑹𝑴𝑺,	𝒂𝒗𝒈,	𝑺𝑷𝑾𝑴𝟐

𝜟𝑰#𝑹𝑴𝑺,𝒂𝒗𝒈,𝑶𝑷𝑻𝟐  
𝜟𝑰#𝑹𝑴𝑺,	𝒂𝒗𝒈,	𝑺𝑽𝑷𝑾𝑴𝟐𝜟𝑰#𝑹𝑴𝑺,	𝒂𝒗𝒈,	𝑺𝑷𝑾𝑴𝟐𝜟𝑰#𝑹𝑴𝑺,𝒂𝒗𝒈,𝑶𝑷𝑻𝟐

𝑴𝟑𝑴𝟏Test

𝟖	𝒌𝑯𝒛𝟓	𝒌𝑯𝒛𝟑	𝒌𝑯𝒛𝟖	𝒌𝑯𝒛𝟓	𝒌𝑯z𝟑	𝒌𝑯𝒛𝟖	𝒌𝑯𝒛𝟓	𝒌𝑯𝒛𝟑	𝒌𝑯z𝟖	𝒌𝑯z𝟓	𝒌𝑯𝒛𝟑	𝒌𝑯𝒛𝟖	𝒌𝑯𝒛𝟓	𝒌𝑯𝒛𝟑	𝒌𝑯𝒛

1.01671.01291.02271110.02700.03740.04490.02660.03600.04390.02660.03690.043900.47𝑃1

1.01621.01241.02351110.02720.03740.04560.02680.03700.04420.02680.03700.04420.470𝑃2

1.0571.01491.02881.18181.16151.14100.02390.03280.03840.02720.03750.04260.02320.03230.03740.170.32𝑃12

Table 5.5: Simulation results for the seven-phase induction motor for three different switching
frequencies.

Seven-phase inverter
𝜟𝑰#𝑹𝑴𝑺,	𝒂𝒗𝒈,	𝑺𝑽𝑷𝑾𝑴𝟐

𝜟𝑰#𝑹𝑴𝑺,𝒂𝒗𝒈,𝑶𝑷𝑻𝟐  
𝜟𝑰#𝑹𝑴𝑺,	𝒂𝒗𝒈,	𝑺𝑷𝑾𝑴𝟐

𝜟𝑰#𝑹𝑴𝑺,𝒂𝒗𝒈,𝑶𝑷𝑻𝟐  
𝜟𝑰#𝑹𝑴𝑺,	𝒂𝒗𝒈,	𝑺𝑽𝑷𝑾𝑴𝟐𝜟𝑰#𝑹𝑴𝑺,	𝒂𝒗𝒈,	𝑺𝑷𝑾𝑴𝟐𝜟𝑰#𝑹𝑴𝑺,𝒂𝒗𝒈,𝑶𝑷𝑻𝟐

𝑴𝟓𝑴𝟑𝑴𝟏Test

𝟖	𝒌𝑯𝒛𝟓	𝒌𝑯𝒛𝟑	𝒌𝑯z𝟖	𝒌𝑯𝒛𝟓	𝒌𝑯𝒛𝟑	𝒌𝑯𝒛𝟖	𝒌𝑯z𝟓	𝒌𝑯𝒛𝟑	𝒌𝑯𝒛𝟖	𝒌𝑯𝒛𝟓	𝒌𝑯𝒛𝟑	𝒌𝑯z𝟖	𝒌𝑯z𝟓	𝒌𝑯z𝟑	𝒌𝑯𝒛

1.00191.00361.00981110.016410.024100.03990.016300.02400.040010.01630.02400.04001000.3𝑃2

1.00311.00151.00191.03581.02631.00910.01560.022750.037630.016100.023410.037890.01550.022810.0375600.250.1𝑃23

1.00521.00291.00171.05021.06411.04520.016540.023470.038610.01730.024900.040290.016500.023410.038550.1200.27𝑃24

1.00621.00141.00121.21641.17241.16710.01410.023810.031460.01700.023790.036640.01400.020300.031430.120.150.15𝑃234

1.00081.00321.00311.02371.01911.00780.013190.019580.033420.013490.019890.033570.013180.019510.033320.150.150𝑃34

which could affect the measurement accuracy. To mitigate these issues, a frequency of 3

kHz is employed in the experimental tests.

Consequently, the analysis of the simulation results continues in Sections 5.2.2 and 5.2.3, respec-

tively, with reference only to the switching frequency of 3 kHz.

5.2.2 Five-Phase Inverter

Fig. 5.4(a) shows the ratio of the RMS values of the current ripple with SVPWM and

the optimal modulation resulting from Tab. 5.4 when the switching frequency is 3 kHz (blue

columns). This quantity is always greater than 1, meaning the current ripple generated by the

optimal strategy is lower. In particular, the proposed strategy performs better in two regions,

i.e., for values of M3 around 0.525, and when M1 is slightly greater than M3. In the latter

situation, SVPWM generates a higher current ripple than the optimal strategy by 4.5%. When

M1 is close to 0.525, the current ripple is the same for both strategies.
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Figure 5.4: Performance of the optimal modulation in a five-phase inverter. a) Ratio between the
RMS value of the current ripple with SVPWM and the optimal modulation. b) Ratio between the

RMS value of the current ripple with SPWM and the optimal modulation.

Fig. 5.4(b) compares the current ripples resulting from SPWM and the optimal modulation.

SPWM generates a current ripple that is 25% higher when M1 and M3 tend to coincide.

Fig. 5.5 shows that the optimal strategy is more efficient than SVPWM near the boundary of

the linear modulation region. Compared to the optimal modulation, SVPWM causes a number

of commutations (Nsw) that can be 25% greater when M1 and M3 are close to the domain

boundary. This result is due to a decrease in the number of commutations of the optimal

strategy when m0,OPT is saturated by the lower bound m0,DMIN or the upper bound m0,DMAX .

Fig. 5.6 illustrates this phenomenon. The waveform of m0,OPT is shown when M1 is 0.4, M3

is 0.2. It turns out that m0,OPT becomes alternately equal to m0,DMAX or m0,DMIN , so only

four legs of the inverter out of five do switch.

Conversely, SPWM and the optimal modulation exhibit the same number of commutations
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in the shared part of the linear modulation range. However, the achievable voltage range of the

optimal modulation is wider and is equal to that of SVPWM [13; 14].
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Figure 5.6: Waveform of m0,OP T clamped to m0,DMIN or m0,DMAX for M1 = 0.4 and M3 = 0.2.
The horizontal scale for ωt is 36°/div.

5.2.3 Seven-Phase Inverter

The 3D plots in Figs. 5.7a and 5.7b show the ratio of the RMS value of the current ripple

caused by SVPWM or SPWM and the optimal modulation for a seven-phase induction motor

drive resulting from Tab. 5.5 when the switching frequency is 3 kHz (blue columns). The repre-

sentation is semi-transparent and qualitatively depicts the behavior of the optimal modulation

strategy within the linear modulation domain. Fig. 5.7(a) shows that the RMS value of the

current ripple generated by SVPWM is up to 2% higher than that of the optimal strategy in the

center of the linear modulation region (M1 ≃ M3 ≃ M5) or when one of the three dimensionless

voltages is near zero.

Fig. 5.7(b) shows a similar behavior for SPWM. Compared to the optimal strategy, SPWM

generates a current ripple that is 25% higher when M1, M3, and M5 are in close proximity to

one another or when one of them is zero and the other ones tend to coincide.
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Finally, it is noteworthy that the proposed method reduces the number of commutations by

up to 14% compared to SVPWM when M1 ≃ M3 ≃ M5 and at some points on the boundary

close to the overmodulation region as shown in Fig. 5.8. Conversely, the optimal modulation

and SPWM have the same number of commutations in the shared part of the voltage range.

However, the SPWM voltage range is smaller.

5.3 Experimental Results

Some experimental tests were carried out to validate the theoretical analysis. Fig. 5.9 depicts

the entire experimental setup, including the five- and seven-phase induction machines. A DC

generator operates as a load mechanically coupled to the machines. The machine parameters are

the same as those used for the simulation results and reported in Tabs. 5.2 and 5.3. The control

system is developed through a dSPACE MicroLabBox platform, which controls a multiphase

inverter with a switching frequency of 3 kHz, configured to supply a multiphase motor with a

maximum of twelve phases. The inverter power stage consists of two Infineon F12-25R12KT4G

power modules, equipped with 1200 V – 25 A class IGBTs and diodes. An Elektro-Automatik

power supply (EA-PS 9500 - 20) keeps the DC-link voltage at about 200 V and 250 V respectively

for the five- and seven-phase configurations. Two different DC voltages are necessary due to the

different characteristics of the two machines.

The current ripple is approximately inversely proportional to the switching frequency and

machine high-frequency inductance. However, the machine parameters are contingent upon

the specific switching frequency, machine type, and rotor slots. Furthermore, as the frequency

varies, other phenomena may occur, which are caused by losses in the machine iron core due to

eddy currents and hysteresis (loss phenomena in machines with surface PMs can also occur as

a result of induced currents within the magnets). These problems are intricate and complex to

address. The use of a constant frequency of 3 kHz in experimental tests has been dictated by

these factors:

• The duration of the switching period should be sufficiently long to allow for accurate

measurement of the current ripple and to minimize the impact of the inverter dead times .

• Simultaneously, the switching period should not be too long since this would result in the

linearization approximation of the equations becoming invalid.

• The impact of high-frequency losses on parasitic phenomena should be negligible.

The use of induction machines for the experimental tests is not accidental. In PM machines,

permanent magnets generate high-order harmonic back-electromotive forces that result in the
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Figure 5.7: Performance of the optimal modulation in a seven-phase inverter. Ratio of the RMS
values of the current ripple due to SVPWM (a) or SPWM (b) and the optimal modulation.
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Figure 5.9: Experimental setup.

circulation of harmonic currents. These components typically operate at a frequency that is

much lower than the switching frequency and do not affect the high-frequency current ripple.

However, the control system must compensate for them in order to track the current reference.

This control action interferes with the experimental tests and the calculation of the modulation

index.

5.3.1 Five-Phase Inverter

The simulation results obtained in Section 5.2.2 have been validated through experimental

tests. The test conditions correspond to the values of M1 and M3 highlighted in Fig. 5.4. The

test results are listed in Tab. 5.6. At points P1 and P3, either M1 or M3 is zero. In accordance
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Table 5.6: Performance of the optimal modulation strategy for the five-phase induction machine.

Test M1 M3
∆I2

RMS,avg,SPWM

∆I2
RMS,avg,OPT

∆I2
RMS,avg,SV PWM

∆I2
RMS,avg,OPT

P1 0.47 0 1 1.0116

P3 0 0.47 1 1.0206

P13 0.32 0.17 1.1248 1.0265

with the theory developed in Section 5.1.4, m0,ref equals 1/2 in both cases, and the optimal

modulation coincides with the SPWM. As expected, the current ripple of SVPWM is slightly

higher. At point P13, the current ripple due to SPWM and SVPWM is greater than that of

the optimal modulation, although the expected difference is more significant. Finally, Fig. 5.10

shows the waveform of the current ripple generated by the optimal modulation when the motor

operates at a fundamental frequency of 10 Hz with and without injection of third harmonic

currents. Fig. 5.10(a) presents the operating conditions of point P1, while Fig. 5.10(b) refers to

the operating conditions of point P13.

Fig. 5.11 illustrates the spectrum of the phase current when the five-phase machine is

operating at point P13. The reference voltage vectors, which rotate at 10 Hz and 30 Hz, generate

harmonic components in the phase current at the same frequencies, as can be observed in the

detail window displaying the current spectrum up to 40 Hz. The amplitude of the fundamental

component is identical for all strategies. Similarly, the third harmonic component of the phase

current is independent of the strategy employed, thereby confirming that the reference voltage

vectors are identical for all strategies. As can be observed in the second detail window, the

spectrum around 3 kHz exhibits modulation sidebands situated at approximately the switching

frequency. The spectral density of the optimal modulation is demonstrably lower than that of

the other strategies.

5.3.2 Seven-Phase Inverter

Some experimental tests were performed to verify the results presented in Section 5.2.3. The

test points are highlighted in Fig. 5.7, and the experimental results are reported in Tab. 5.7. In

accordance with the theoretical predictions, the optimal strategy outperforms SVPWM at all

points. Similarly, the RMS value of the current ripple due to SPWM is greater than that of the

optimal modulation by up to 15%, except for points where the two strategies coincide, such as

P1 and P3. Finally, Fig. 5.12 shows the waveform of the current ripple generated by the optimal
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modulation when the motor operates at a fundamental frequency of 10 Hz with and without

injection of third harmonic currents. Fig. 5.12(a) shows the operating conditions at point P1,

while Fig. 5.12(b) shows the operating conditions at point P135.

Fig. 5.13 illustrates the spectrum of the phase current when the seven-phase machine op-

erates at point P135. The reference voltage vectors rotate at 10 Hz, 30 Hz, and 50 Hz, thereby

generating the corresponding current harmonic components, as can be observed in the detail

(a)

(b)

Figure 5.10: Waveform of the phase current of the five-phase induction machine when the funda-
mental frequency is 10 Hz. a) Operating point P1. b) Operating point P13. From top to bottom:

phase current (1.34 A/div), phase current ripple △i (0.13 A/div).
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Figure 5.11: Spectrum of the phase current in the operating point P13 for the five-phase inverter.

Table 5.7: Performance of the optimal modulation strategy for the seven-phase induction machine.

Test M1 M3 M5
∆I2

RMS,avg,SPWM

∆I2
RMS,avg,OPT

∆I2
RMS,avg,SV PWM

∆I2
RMS,avg,OPT

P1 0.3 0 0 1 1.001

P13 0.1 0.25 0 1.008 1.0013

P15 0.27 0 0.12 1.0359 1.0018

P135 0.15 0.15 0.12 1.1503 1.0146

P35 0 0.15 0.15 1.005 1.021

window displaying the current spectrum up to 70 Hz. All strategies result in the same ampli-

tude for the fundamental, third, and fifth harmonic components. Once more, the spectrum in

the vicinity of 3 kHz, as displayed in the second detail window, exhibits modulation sidebands

around the switching frequency. The lowest spectral density is that of the optimal modulation.

5.4 Conclusions

In this research chapter a theoretical analysis to minimize the RMS value of the load current

ripple in multiphase inverters with any odd number of phases has been presented. The developed

approach provides a closed-form solution for the optimal zero-sequence component of the mod-

ulating signals, which is a function of the reference voltages or desired voltage vectors and the

load high-frequency equivalent inductances. Therefore, this strategy is not limited to sinusoidal

signals or steady-state conditions. On average, the proposed approach may theoretically reduce
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(a)

(b)

Figure 5.12: Waveform of the phase current of the seven-phase induction machine when the fun-
damental frequency is 10 Hz. a) Operating point P1. b) Operating point P135. From top to bottom:

phase current (0.25 A/div), phase current ripple △i (0.035 A/div).
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Figure 5.13: Spectrum of the phase current in the operating point P135 for the seven-phase inverter.

the RMS value of the load current ripple by up to 4% for five-phase inverters and 2% for seven-

phase inverters compared to the SVPWM technique. When compared to SPWM, the reduction

can be up to 25%, depending on the operating conditions. Moreover, the proposed technique

reduces the number of switch commutations when high reference voltages are required, i.e., for

values of the modulating indices close to the overmodulation region. The reduction may be up to

25% for five-phase inverters and 15% for seven-phase inverters. Consequently, power electronic

switches experience a reduction in switching losses. The experimental results have confirmed the

trends expected by the theoretical analysis. Although some of these findings have already been

reported in the literature in special cases, this study provides a coherent theoretical motivation.

The theoretical results have been validated by numerical and experimental tests with five- and

seven-phase induction motors.
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Chapter 6

Eccentricity Fault Diagnosis Using

the Stray Flux

Recent years have witnessed significant advancements in the technological development of elec-

tric drives. The proliferation of electric vehicles necessitates high demands for reliability and

flexibility in power transmission. The utilization of measuring sensors to measure the variables

required for diagnosing potential faults in an electric motor can often be tedious and invasive.

Consequently, research is progressively concentrating on alternate methods to assess the state of

health of electrical machines. This chapter presents a methodology for diagnosing rotor eccen-

tricity with sensors placed on the stator yoke, rendering the approach less invasive as the sensors

are not included within the motor’s stator and/or rotor housing.

6.1 Stray Flux

In recent years, Permanent Magnet Synchronous Motors (PMSMs) have surpassed induction

motors in popularity across various industrial sectors, including electric transport vehicles [1],

robotics, and aerospace [2]. The superior torque density demonstrated by PMSMs, is a significant

factor contributing to their relative advantage over induction motors [3; 4]. Furthermore, the

weight and dimensions of a PMSM are considerably reduced in comparison to an induction

motor of equivalent power rating. Finally, induction motors typically exhibit more rotor joule

losses compared to synchronous machines, resulting in diminished efficiency [5].
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Nonetheless, irrespective of the motor type, unintentional malfunctions or failures may arise,

leading to expensive repairs or replacements, as well as complete system failure. Consequently,

in critical applications, constant health monitoring and early faults identification are essential

to maintain optimal performance of electrical machines over a prolonged duration.

Most electrical machines include a standardized stator design; hence, any failure affecting the

stator will show similar behavior irrespective of the motor’s nature. The primary distinguishing

characteristic among electrical machines lies in their rotor design. Therefore, a comprehensive

examination of rotor failures must be performed for the particular machine under examination.

Since their measurement is simple, the currents are often used as signals for defect diagnosis.

Moreover, the torque generated directly depends on the current and any distortion results in

torque oscillations. However, given the widespread application of PMSMs in industries requiring

high torque density, it is essential to possess an accurate and rapid torque regulation capability.

The issue can be addressed by implementing closed-loop control systems that employ one or

more PI regulators that keep the current waveform as sinusoidal as feasible, even in the event

of a fault, hence minimizing torque oscillations. Consequently, the use of a closed-loop control

system makes the measured currents a questionable diagnostic indicator. Conversely, the use

of stray flux as a fault detector in PMSMs demonstrates significant promise, as it can convey

information regarding the magnetic flux, including potential imbalances resulting from failures.

Multiple research have been performed to identify diverse faults in induction motors using

stray flux [6]. Some utilize statistical approaches to identify pertinent features related to faults

[7]. Alternative studies employ the frequency response of the stray flux signal [8–10] or the

orbital analysis of vibrations [11; 12].

There is a lack of research in the literature that utilizes stray flux as a fault indicator in

PMSMs. Few studies have been undertaken to assess stator faults such as short circuits [13; 14]

or rotor faults such as magnet asymmetry [15] or eccentricity [16; 17]. Nevertheless, most of

them rely on the utilization of an equivalent circuit for modeling the stray flux [18] surrounding

the stator yoke. This approach always involves an approximation, as the path of the stray

magnetic flux must be approximated using exact values for the rotor, air-gap, stator, and stray

reluctances.

The current study examines the various forms of eccentricity, including static, dynamic,

and mixed, that a PMSM may encounter. A static eccentricity failure occurs when the rotor’s

axial center misaligns with the stator’s axial center. If the rotor’s central axis deviates from

the stator’s central axis, it results in a dynamic eccentricity fault. Moreover, the simultaneous

occurrence of static and dynamic eccentricities produces a third type of eccentricity known as

mixed eccentricity. All the three types of eccentricity are depicted in Fig. 6.1.
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× ××

× Stator's axial center
Rotor's axial center
Axis of rotation

Static eccentricity Dynamic eccentricity Mixed eccentricity

Figure 6.1: Types of eccentricity.

The research investigates the stray magnetic field outside the stator yoke as a failure signal,

proving its superiority over the use of stator currents. The stray flux is described using the VSD,

which allows to fully represent the stray flux through a space vector and a zero-sequence compo-

nent. The utilization of space vector and zero sequence components facilitates the identification

of the particular type of eccentricity present.

6.2 Machine and Stray Flux Equations

6.2.1 Stator Phase Voltage Equations

The phase voltage equation for a healthy motor is as follows:

vk = Rkik +
3∑
z=1

Mk,z
diz
dt

+ ek k = 1, 2, 3 (6.1)

where Rk is the resistance of the k-th stator phase, Mk,z denotes the self and mutual inductances

of the three-phase winding, ek refers to the rotor BEMF induced in phase k, and ik is the current

flowing through the k-th stator winding.

In steady-state operating conditions, each phase variable xk in (6.1) can be defined through

its corresponding phasor as follows:

xk = 1
2

∞∑
h=1

ℜe{X̄(h)
k ejhωet} k = 1, 2, 3 (6.2)

where the symbol ℜe indicates the real part operator and ωe is the rotor electrical speed. For

each harmonic h, a representative vector is provided in the following manner:

X̄(h)
3ph = [X̄(h)

1 X̄
(h)
2 X̄

(h)
3 ]′

. (6.3)
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where ′ defines the transposition operation.

Based on (6.1) and considering (6.3), since the current derivatives in the phasors domain can

be rewritten as dĪ
(h)
k
dt = jhωeĪ

(h)
k (k = 1, 2, 3), the vector of the three-phase currents is written

as follows:

Ī(h)
3ph = V̄(h)

3ph−Ē(h)
3ph

Ẑ(h)
3ph

(6.4)

where Ẑ(h)
3ph is the impedance matrix defined in this manner:

Ẑ(h)
3ph =


R1 − jhωeM11 −jhωeM12 −jhωeM13

−jhωeM21 R2 − jhωeM22 −jhωeM23

−jhωeM31 −jhωeM32 R3 − jhωeM33.

 (6.5)

In healthy operating conditions, disregarding high-order harmonic components, the stator

currents are sinusoidal as a result of the sinusoidal voltages supplied to the motor’s stator

phases. Furthermore, the induced rotor Back Electromotive Force (BEMF) are symmetrical and

balanced. Conversely, if a rotor eccentricity is present, the matrix Ẑ(h)
3ph exhibits an alteration due

to the inconsistent air-gap, which affects the reluctance of the magnetic circuit. Additionally, an

irregular air-gap produces an asymmetrical flux generated by the magnets that links the stator

phases. Consequently, the eccentricity results in current harmonic components, identified for

h > 1 in (6.4). However, the control architecture employs one or several PI regulators to keep

the currents as sinusoidal as possible, hence achieving lower torque oscillations. Therefore, even

in the event of a failure, such as a rotor eccentricity, under an acceptable degree of fault severity,

the h-th current harmonic component due to the fault in (6.4) is compensated by an adequately

designed control system [15]. On the contrary, the influence of the fault is visible on the stray

flux due to the magnets, on which the control system has no effect.

It is clear that stator currents are not a reliable diagnostic signal, and stray flux becomes an

important fault indicator.

6.2.2 Stray Flux Equations

The magnetic flux in PMSM is produced by the rotor-mounted magnets and the electric

currents flowing through the stator winding. Owing to the materials’ permeability, not all flux

lines are confined within the air gap, and in ferromagnetic materials, a small fraction of the flux

surrounds the stator yoke. The latter defines the stray flux. Therefore, the radial component of

the stray flux can be measured by placing sensors external to the stator yoke. Considering the

k-th phase of a three-phase motor with p pole pairs, by positioning three sensors (A,B,C) at

(p − 1)2
3π(k − 1) mechanical degree intervals around the stator, the associated stray flux is as
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follows:

φsf,w = φe,w +
3∑
z=1

Mw,zdiz w = A,B,C (6.6)

where Mw,z indicates the mutual inductances between the w-th stray flux sensor and the z-th

stator phase, and φe,w denotes the flux generated by the magnets linked to the w-th stray flux

sensor.

According to (6.2) and (6.3),(6.6) can be written in terms of phasors, as follows:

Φ̄(h)
3sf = Φ̄(h)

e,3sf + Ẑ3sf Ī(h)
3ph

(6.7)

where

Ẑ3sf =


MA1 MA2 MA3

MB1 MB2 MB3

MC1 MC2 MC3

 . (6.8)

When positioning the stray flux sensors, it is necessary to take into account the motor fins.

The length of the fins vary according to the motor design but, typically, unless for specific

purposes, they are not shorter than 1 cm. Accordingly, it is not possible to put the stray flux

sensors directly on the surface of the stator since the presence of the fins introduces a significant

air-gap between the stator and the stray flux sensors. As a result, the matrix is close to zero

due to the vacuum permeability. Therefore, (6.6) becomes:

φsf,w ≃ φe,w w = A,B,C. (6.9)

In the phasors domain:

Φ̄(h)
3sf ≃ Φ̄(h)

e,3sf . (6.10)

Thus, the presence of fins surrounding the stator results in the primary cause of stray flux

generation being the magnetic flux produced by the magnets.

According to (6.9), applying the VSD (2.1), the space vector and the zero-sequence compo-

nent of the stray flux are:

φ̄sf1 ≃ 2
3(φe,A + φe,Bᾱ + φe,C ᾱ

2) (6.11)

φsf0 ≃ 2
3(φe,A + φe,B + φe,C). (6.12)
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The complex fast Fourier transform allows to rewrite (6.11) as sum of rotating and counter-

rotating harmonic components, as follows:

φ̄sf1 =
∞∑
h=1

φ̄
(h+)
sf1

ejhωet +
∞∑
h=1

φ̄
(h−)
sf1

e−jhωet. (6.13)

where the notation h+ and h− is used to identify the h-th harmonic component of the positive

and negative sequence, respectively.

6.2.3 Rotor Eccentricity Equations

Rotor eccentricity leads to a non-uniform air gap thickness δ, which deviates from its average

value δ0, as expressed hereafter:

δ = δ0 + ℜe{δ̄ϵ e−j θs} (6.14)

where δ̄ϵ is a complex quantity, which can be represented in polar form as δϵej θe . The magnitude

δϵ indicates the severity of the eccentricity, while the phase angle θe defines its electrical position.

Additionally, θs is an angular coordinate used to specify a position in the air gap.

The reciprocal of (6.14) can be expressed in accordance with the first-order truncated Fourier

transform in the following manner:

g = 1
δ

≃ g0 + ℜe{ḡ1e
−j θs}. (6.15)

where g0 is a constant, and ḡ1 depends on the eccentricity position θe.

Permanent magnets and currents induce Magnetomotive Forces (MMFs) in the air-gap, which

can be expressed as follows:

fm(θs) =
∞∑
ρ=1

ℜe{F̄ρe−j ρθs} (6.16)

where the component for ρ = 0 can be demonstrated to be zero because the divergence of the

flux density is zero.

Consequently, in case of an isotropic rotor and neglecting the stator slotting, the resulting

air-gap magnetic field can be evaluated as:

h ≃ gfm. (6.17)
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Substituting (6.15) and (6.16) in (6.17) leads to:

h ≃
∞∑
ρ=1

[ℜe{F̄ρe−j ρθs}][g0 + ℜe{ḡ1e
−j θs}] =

=
∞∑
ρ=1

ℜe{
g0F̄ρe

−j ρθs + F̄ρḡ1
∗e−j (ρ−1)θs + F̄ρḡ1e

−j (ρ+1)θs

2 } =

=
∞∑
ρ=1

ℜe{H̄ρe
−j ρθs + H̄ρ−1e

−j (ρ−1)θs + H̄ρ+1e
−j (ρ+1)θs}.

(6.18)

Expression (6.18) outlines how each spatial MMF harmonic ρ generates a spatial distribu-

tion of the magnetic field characterized by the sum of three harmonic components with space

periodicity of order ρ, ρ− 1 and ρ+ 1.

Based on (6.18), assuming that the k-th sensor is placed in a position θsk, in steady state

operating conditions, given a certain number of pole pairs p, the field distribution due to the

most significant harmonic of the MMF (ρ = p) is

hk(t) = ℜe{H̄p(t)e−j pθsk + H̄p−1(t)e−j (p−1)θsk + H̄p+1(t)e−j (p+1)θsk}. (6.19)

Considering an eccentricity that does not substantially modify in time the air-gap thickness,

i.e., g0(t) = g0, and a function ḡ1(t) = ḡ1s+ ḡ1de
j ωmt that encompasses both static and dynamic

eccentricity effects, the terms in (6.19) are as follows:

H̄p(t) ≃ g0F̄pe
j pωmt

2

H̄p−1(t) ≃ F̄pe
j pωmtḡ∗

1s
2 + F̄pe

j (p−1)ωmtḡ∗
1d

2

H̄p+1(t) ≃ F̄pe
j pωmtḡ1s

2 + F̄pe
j (p+1)ωmtḡ1d

2

(6.20)

where ωm is the mechanical speed of the motor.

To accurately measure the air-gap magnetic field, it is critical to determine the optimal

placement of the probes. In this research study, a generic machine with a number of pole pairs

greater than two is considered. As a result, three probes are positioned in mechanical positions

θsk = (p − 1)2π
3 (k − 1) each other. According to VSD, using the three probes allows to fully

describe the air-gap magnetic field with a space vector and a zero-sequence component defined

as follows:

h̄1 = 2
3

3∑
k=1

hk(t)ej
2π
3 (k−1) (6.21)

h0 = 2
3

3∑
k=1

hk(t). (6.22)
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Substituting (6.19) in (6.21) and (6.22) leads to:

h̄1 = 1
6

3∑
k=1

H̄p(t)e−j [p(p−1)−1] 2π
3 (k−1) + H̄∗

p (t)ej [p(p−1)+1] 2π
3 (k−1)+

+ H̄p−1(t)e−j [(p−1)2−1] 2π
3 (k−1) + H̄∗

p−1(t)ej [(p−1)2+1] 2π
3 (k−1)+

+ H̄p+1(t)e−j [(p2−2)] 2π
3 (k−1) + H̄∗

p+1(t)ej [p2] 2π
3 (k−1)

(6.23)

h0 = 2
3

3∑
k=1

ℜe{H̄p(t)e−j p(p−1) 2π
3 (k−1) + H̄p−1(t)e−j (p−1)2 2π

3 (k−1)+

+ H̄p+1(t)e−j (p2−1) 2π
3 (k−1)}.

(6.24)

For a two pole pairs machine (p = 2) the following are obtained:

h̄1 = H̄1(t) + H̄∗
2 (t) (6.25)

h0 = 2ℜ{H̄3(t)} (6.26)

Substituting (6.20) in (6.25) and (6.26) yields:

h̄1 = F̄2ḡ
∗
1s

2 ej 2ωmt + F̄2ḡ
∗
1d

2 ej ωmt + g0F̄2
∗
e−j 2ωmt (6.27)

h0 = ℜe{
F̄2ḡ1s

2 ej 2ωmt + F̄2ḡ1d
2 ej 3ωmt}. (6.28)

Equations (6.27) and (6.28) incorporate the effects of both static and dynamic eccentricity,

hence characterizing mixed eccentricity.

In case of healthy machine, with no eccentricity, (6.27) becomes:

h̄1 = g0F̄2
∗
e−j 2ωmt

h0 = 0.
(6.29)

A machine affected by a static eccentricity yields:

h̄1 = F̄2ḡ
∗
1s

2 ej 2ωmt + g0F̄2
∗
e−j 2ωmt

h0 = ℜe{
F̄2ḡ1s

2 ej 2ωmt}.
(6.30)

Finally, in case of dynamic eccentricity, it results:

h̄1 = F̄2ḡ
∗
1d

2 ej ωmt + g0F̄2
∗
e−j 2ωmt

h0 = ℜe{
F̄2ḡ1d

2 ej 3ωmt}.
(6.31)
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Table 6.1: Low-order harmonic content of the air-gap magnetic field based on the machine state
of health.

Mixed 
eccentricity 

Dynamic 
eccentricity 

Static 
eccentricityHealthy 

Space vector

−2𝜔!	, +𝜔!	, +2𝜔!−2𝜔!	, +𝜔!−2𝜔!	, +2𝜔!−2𝜔!

Zero-sequence component

2𝜔!	, 3𝜔!3𝜔!2𝜔!0

In summary, depending on its state of health, a machine with two pole pairs exhibits the

following harmonic components in the space vector and zero-sequence component of the air-gap

magnetic field:

• Healthy: the space vector only contains an harmonic component at the fundamental

frequency −2ωm, and the zero-sequence component is zero.

• Static eccentricity: alongside the counter-rotating fundamental harmonic component

present in healthy condition, a fundamental rotating +2ωm harmonic component arises in

both the spectrum of the space vector and the zero-sequence component.

• Dynamic eccentricity: in addition to the healthy state, the space vector has a com-

ponent at the mechanical frequency ωm, whereas the common mode component has a

contribution three times the mechanical frequency.

• Mixed eccentricity: all the effects of static and dynamic eccentricity are present.

Tab. 6.1 summarizes the previously discussed low-order harmonic content of the air-gap

magnetic field based on the machine state of healthy.

According to the equivalent magnetic circuit of a PMSM [18], it has been shown that the

stray flux surrounding the stator yoke differs from the air-gap flux solely by a factor given by

the stator and stray flux reluctances [13]. Consequently, the magnetic field measured outside

the stator yoke possesses the same informational content as that observed at the air-gap, albeit

with a lower magnitude. Such a result enables the placement of probes external to the stator

yoke for the measurement of stray flux, leading to a non-invasive solution. Furthermore, the

probes do not require pre-installation during the motor design phase, as they may be readily

attached to the stator at any moment.
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6.3 Simulation Results

Several machine parameters are required to evaluate the matrices (6.5) and (6.8) as well

as the flux generated by the magnets under healthy and faulty operating conditions. For this

purpose, in this study, a numerical approach based on finite-element analysis is used.

The considered three-phase PMSM has a power of 3.5 kW with a rated speed of 1500

RPM , a rated current of 10 A, and two pole pairs. The stator winding is arranged in a single

layer and there is not any magnet skew on the rotor. The motor numerical model has been

designed utilizing the Altair Flux Motor software. The latter refers to a powerful tool capable

of accurate and specific simulations, thereby gathering all the parameters associated with the

healthy machine. In order to replicate the faulty machine, the motor’s geometry from Altair

Flux Motor has been imported into Altair Flux. This software environment enables changing

the motor’s geometry to simulate different kinds of eccentricity. Additionally, it allows inserting

the stray flux coils around the stator yoke.

In order to consider the presence of the fins, the stray flux sensors are placed at 1 cm from

the stator surface. The overall structure of the motor is illustrated in Fig. 6.2.

Several simulations were carried out for the finite element analysis. The motor model is con-

ventional, with the rotor rotating and moving radially in a position x-y that varies in accordance

with the trajectory of the eccentricity considered. The currents flowing into the stator winding

are imposed and supposed sinusoidal. The control strategy adopted is the Field Oriented Con-

trol (FOC) with the flux produced by the magnets having just the d-axis component aligned

with the magnetic axis of the phase A.

The ferromagnetic non-linear material utilized is the alloy steel M80050, while the magnets

used consist of NdFeB11102500 with a radial magnetization. No-skew of the rotor is adopted.

The analysis of the flux values is conducted during the post-processing phase. In particular,

the fluxes associated with the three stray flux sensors are taken into account for the specific

eccentricity in question.

A preliminary simulation was conducted to evaluate the degree to which the flux generated

by the stator currents (armature flux) contributes to the stray flux. Fig. 6.3 illustrates the

amplitude spectrum of the stray flux space vector in a healthy machine. As expected, the

armature flux, despite the full motor load, leads to a negligible reduction of the harmonic

component at frequency −2ωm of the stray flux, suggesting that the influence of the armature

flux on the stray flux can be disregarded. To extensively verify the aforementioned claim, the

inductances between stray flux sensors and stator windings were computed. Even considering

eccentricity, Fig. 6.4 shows that the inductances have a very low value, thereby reaffirming the

correctness of (6.9) and (6.9).
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Figure 6.2: Layout of the motor considered for the finite element simulations.

Figure 6.3: Spectrum of the stray flux space vector in case of healthy machine at 1500 RPM under
no-load and full-load operating conditions.

The amplitude spectrum of the space vectors for two degrees of eccentricity severity are

presented in Fig. 6.5, while the space vector and zero-sequence component spectrum for an

eccentricity severity of 25% are illustrated in Fig. 6.6. It can be appreciated how the harmonics

components coincide with those predicted by the analytical model and reported in Tab. 6.1.

It is relevant to note that even in the presence of eccentricity, the second order counter-

rotating harmonic component observed in a healthy condition, remains unchanged in amplitude.

Furthermore, all components resulting from eccentricity exhibit approximately constant ampli-

tude regardless of the occurring eccentricity type . For example, the harmonic component at

angular frequency +ωm resulting from dynamic eccentricity exhibits an amplitude approximately

equivalent to that of the harmonic at angular frequency +2ωm arising from static eccentricity.

Consequently, the harmonic order, rather than the amplitude, is crucial for distinguishing the
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Figure 6.4: Inductances between the stray flux coil A and the stator windings measured in healthy
condition and in case of various types of eccentricity. The severity is 25% of the air-gap thickness.
a) The inductance between the stray flux coil A and phase 1. b) Inductance between the stray flux

coil A and phase 2. c) Inductance between the stray flux coil A and phase 3.

eccentricity type.

6.4 Conclusions

This chapter introduced a diagnostic method to recognize rotor eccentricity in permanent

magnet motors. The technique was implemented for a three-phase surface-mounted permanent

magnet motor but can be adapted to any motor with N -phases and any magnet configuration.

The proposed technique uses flux sensors positioned externally on the stator back iron to

measure the stray flux, which is characterized, utilizing VSD, through a space vector and a

homopolar component.

Finite element simulations have been used to validate the developed technique by demon-

strating that the information content of stray flux is appropriate to distinguish among several

forms of eccentricity, namely static, dynamic, and mixed eccentricity.
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Figure 6.5: Amplitude spectrum of the stray flux space vector for two different levels of eccentricity,
given as a percentage of the air-gap thickness, under full load operating conditions at a rotational

speed of 1500 RPM . a) Static eccentricity. b) Dynamic eccentricity. c) Mixed eccentricity.

Figure 6.6: Amplitude spectrum in case of healthy and faulty machine under full load operating
conditions at a rotational speed of 1500 RPM . a) Space vector φ̄sf1 . b) Zero-sequence component

φsf0 .
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Summary

The objective of the doctoral research program was to investigate innovative fault diagnosis

and control strategies for three-phase and multiphase machines. Specifically, fault diagnostic

algorithms designed to satisfy safety-critical requirements have been developed using analytical

modeling of the electrical machines along with artificial intelligence strategies.

The initial year of the PhD program focused on simulating failures in stator windings, en-

compassing high resistance connections, manufacturing defects, and inter-turn short circuits.

An thorough analytical model has been proposed for a dual-three-phase brushless motor drive,

providing real-time detection of the just mentioned faults without the need for measuring equip-

ment. A finite element model of the machine has been designed to assess the validity of the

analytical models. Consequently, the derived equations have been verified by finite element anal-

ysis and directly utilizing a prototype of a dual-three-phase motor in the LEMAD laboratory.

During the course of the second year, control algorithms for fault diagnosis using machine

learning have been developed. In particular, two algorithms have been presented in order to

identify failures while avoiding using complex equations that always require approximations due

to uncertainty motor design parameters. In contrast, machine learning algorithms discover them-

selves hidden correlations between variables and can identify failures just using data obtained

from the control system.

The third year focused on enhancing the models and control strategies developed in prior

years and validating theoretical outcomes. Furthermore, in the third year, the collaboration

with the research group at the Polytechnic University of Valencia, led by Professor Jose Alfonso

Antonino-Daviu (IEEE Senior Member), was noteworthy. A technique for diagnosing rotor

eccentricity by the measurement of stray flux around the stator yoke, utilizing a specific set of

sensors, was developed during this partnership. The detected stray flux provides insights about
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the machine’s health and facilitates the identification of the sort of eccentricity present.

A Appendix

A.1 Magnetic Circuits

A magnetic circuit refers to the region of material which holds the magnetic field lines pro-

duced by electric currents flowing through a set of conductors or by PMs. The relationships

among the variables that govern the physical behaviour of magnetic and electric fields are de-

termined by the equations of electromagnetism (Tab. A1).

The material medium in which the fields described by electromagnetism’s equations develop

may be magnetic, dielectric, or conducting and the scalar quantities associated with each of

these materials are determined based on the specific phenomenon they are involved in. Thus, any

material has properties characterized by scalar variables including conductivity (σ), permittivity

Table A1: Equations of electromagnetism.

Differential form Integral form -

∇ × Ē = −∂B̄
∂t

∮
l Ē · dl̄ = −

∮
S
∂B̄
∂t · n̂dS̄ = −dφ

dt Faraday’s law

∇ × H̄ = J̄ + ∂D̄
∂t

∮
l H̄ · dl̄ = i+

∮
S
∂D̄
∂t · n̂dS̄ Ampere’s law

∇ · J̄ = −∂ρc
∂t

∮
S J̄ · n̂dS̄ = dQ

dT Conservation of charge

∇ · D̄ = ρc
∮
S D̄ · n̂dS̄ = Q Gauss’ law

∇ · B̄ = 0
∮
S B̄ · n̂dS̄ = 0 Solenoidality of B̄

∇ · J̄ = 0
∮
S J̄ · n̂dS̄ = 0 Solenoidality of J̄

Table A2: Constitutive equations.

Field Equation

Current field Ē = ρcJ̄

Electric field D̄ = εpĒ

Magnetic field B̄ = µH̄
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(εp) and magnetic permeability (µ). These variables introduce the material constitutive laws

(Tab. A2).

When studying electromagnetic phenomena, it is common to assume that materials are

continuous, homogeneous, isotropic, and linear. Under those circumstances, σ and εp are fixed

values whereas µ varies in accordance with the magnetization of the material. The magnetic

permeability can be written as:

µ = µ0µr. (A1)

where µ0 is the vacuum permeability (constant value) and µr is the relative permeability, which

is an intrinsic magnetic characteristic of the material.

The equations in Tab. A1 have general validity, but within the field of magnetic circuits,

quasi-stationary magnetic fields are frequently investigated. These fields exhibit gradual fluc-

tuations in electromagnetic quantities over time, which permits neglecting the displacement

currents in comparison to conduction currents (∂D̄∂t = 0). This assumption persists in all the

subsequent chapters.

In Tab. A1, two key elements are emphasized, namely the solenoidality of the vectors B̄

and Ī. This property indicate that the field lines of a solenoidal vector remain unaltered as

they traverse a closed surface, irrespective of the surface they encounter. Hence, the subsequent

assumptions hold valid for the vector B̄ and any other vector that is solenoidal:

• All flux lines entering a surface must necessarily exit it.

• Each flux line either ends in a finite region or reaches infinity (there are no sources or black

holes).

• The flux of B̄ remains constant across all sections of a flux tube. In other words, the flux

linked from various surfaces sharing the same contour is identical.

By considering the aforementioned three properties of the solenoidal vector B̄, it is possible to

represent the magnetic flux through the use of a flux tube in which the flux lines are consistently

perpendicular to every surface of the tube (see Fig. A1a).

Let’s consider a solenoid with an infinitely small cross section, denoted as dS, and an infinitely

short length, denoted as dl. The solenoid is wound by Nt turns, and an infinitely small current,

denoted as di, flows through them (see Fig. A1b). The solenoid generates a uniform flux,

denoted as dφ, whose expression is:

dφ = B̄ · dS̄. (A2)
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Figure A1: Magnetic flux generation. a) Magnetic flux originated by a solenoid. b) Flux tube
through which magnetic flux lines flow.

The total magnetic flux linked with the Nt turns wounding the solenoid is determined by

integrating the contributions of the infinitesimal components dφ from all points on the closed

surface as follows:

φ = Nt

∮
S
dφ = Nt

∮
S
B̄ · n̂dS̄. (A3)

The Amperes’ law introduces the concept of magnetomotive force:

F =
∮
l
H̄ · dl̄ = Nti = φℜ (A4)

where ℜ is the total magnetic reluctance of the magnetic circuit defined as follows:

ℜ = 1
µ

l

S
. (A5)

Equation (A4) often referred to as Hopkinson’s law and bears a striking resemblance to

Ohm’s first law v = Ri. Indeed, by equating F with the electric voltage v, flux φ with current

i, and reluctance ℜ with resistance R, the electrical equivalent of Hopkinson’s equation, also

known as Ohm’s first law, is obtained (see Fig. A2).

It is noteworthy that the quantity of turns comprising the circuit does not have any influence

on the magnetic reluctance. Conversely, it comprises exclusively evidence pertaining to the

geometric properties of the flux tube through which the turns are wound. Therefore, in order

to account for the number of turns, inductance L is frequently favored over reluctance when

establishing equations for magnetic circuits:

L = N2
t

ℜ
. (A6)
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Figure A2: Equivalent circuits. a) Hopkinson’s law. b)Ohm’s first law.

A.2 Magnetic Materials Behavior

Magnetic materials, also referred to as ferromagnetic materials, find application in the design

of magnetic circuits and the manufacture of PMs for electric motors. The primary characteristics

of a material that is appropriate for the purpose of designing a magnetic circuit for an electric

motor include:

• Elevated magnetic permeability.

• Minimal losses when operating in Alternating Current (AC).

• Excellent physical and mechanical characteristics include robust mechanical strength, ease

of manufacturability by punching and laser cutting, and high thermal and chemical com-

patibility.

• Cost-effective.

Let us examine the closed circuit in Fig.A3a, where an electric current i is flowing. The

latter generates a magnetic flux and a magnetic dipole κ̄ orthogonal to the surface whose value

is:

κ̄ = iSn̂. (A7)

Considering all the magnetic dipoles per unit of volume dτ (see Fig. A3b), the magnetization

intensity vector M̄ is obtained as follows:

M̄ =
∑N
i κ̄i
dτ

. (A8)

By applying an external magnetic field H̄, the dipoles are oriented towards certain direction

inducing a magnetization as illustrated in Fig. A4. As a result, M̄ can be defined as the
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Figure A3: Magnetic dipole. a) Generation of a magnetic dipole resulting from the flow of an
electric current. b) Magnetic dipoles distributed in a volume dτ .
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Figure A4: Orientation of the magnetic dipoles due to the application of an external magnetic
field.

material’s response to a certain magnetic field application and the relationship between H̄ and

M̄ is expressed as follows:

H̄ = µ0χmM̄. (A9)

where χm is the magnetic susceptibility of the material.

The magnetic material may exhibit diamagnetic properties, denoted by a negative value

of χm, or paramagnetic properties, denoted by a positive value of χm. Conversely, materials

that exhibit a variable χm value in response to an applied magnetic field are known to as

ferromagnetic. The latter refers to materials used in the manufacture of electric motors, which

possess the characteristic of retaining their magnetization even after the removal of the applied

magnetic field, as long as the temperature remains below the a certain temperature (Curie

temperature). This characteristic of ferromagnetic materials is called magnetic hysteresis and it

is described by the B −H curve shown in Fig. A5a.
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In order to analyze the magnetization response of a ferromagnetic material its behaviour

when it is completely demagnetized, is considered. Initially, both the magnetic field H and the

magnetic flux density B have null values. When a rising magnetic fieldH is applied, progressively

the current i and consequently the applied magnetomotive force F increase. As H grows, there

is an initial narrow range where the response of the material is linear, characterized by a high

slope. Once the field magnitude beyond a specific threshold, the characteristic curve experiences

an inflection point, resulting in a distinct material behavior. This change is characterized by a

sharp bend, following which the curve returns to a linear pattern with a minimal slope. At this

point, the material has been saturated, meaning that any additional rise in the applied field will

not result in a significant increase in the value of induction. Once reached the saturation point,

even if the magnetic field is removed, contrary to expectations, the induction value does not

nullify and the material does not follow the same curve as the initial magnetization. Instead,

it exhibits a delay known as hysteresis. At H = 0, the induction value is different from zero

and equal to Br, which is referred to as remanence induction or residual magnetization. To

nullify the magnitude of Br, a field with an opposite polarity must be applied. The value of B

drops by reaching a value of H = −Hc, which is referred to as the coercive field. Continuing

to lower the applied field until the value of −Hs achieves a symmetrical negative saturation

point consequently gradually decreasing H, the curve ultimately reaches the value of −Br. By

reversing the field once more and gradually increasing it until the magnetic field strength reaches

positive Hc, the value of B becomes again zero.

Based on the value of Hc and Br the ferromagnetic materials can be classified as:

• Soft margin materials: exhibit a narrow hysteresis loop with a low coercive force (see

Fig. A5(b)) and show a high susceptibility to magnetization. Furthermore, they possess

a high level of permeability. They are employed in electrical devices such as transformers,

motors, and generators. The most frequently utilized materials include iron and its alloys

containing nickel, cobalt, and silicon, as well as low carbon steels and soft ferrites.

• Hard margin materials: are characterized by a high coercive force and a high residual

induction (see Fig. A5(c)). They are used to produce PMs since, once magnetized, are

challenging to demagnetize. Some Alnico alloys belong to this class. These are iron-based

alloys with additions of aluminum, nickel, cobalt, and copper.

A.3 Flux Production in Magnetic Circuits

Consider the magnetic anchor depicted in Fig. A6, which have a cross-sectional area denoted

as S, an average length denoted as lfe, and an air-gap with a length of δ0.
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Figure A6: Magnetic circuit.

A magnet of thickness lm is positioned on the right side of the anchor, while Nt turns

conducting a current i are wound around the left side column. The circuit depicted in Fig.

A6 demonstrates magnetic characteristics that have similarities to those of a PM motor, with

magnets mounted on the rotor and windings located in the stator slots. Therefore, by examining

the magnetic properties of thee aformetioned circuit, one may comprehend how air-gap flux is

generated in PM electric motors.

Typically, the magnetization characteristic of a magnet is approximated as linear (see Fig.

A7). Therefore, the magnet’s remanance induction is as follows:

Bm = Br + µHm. (A10)

Furthermore, where an electric current is provided to a coil, the load curve is given:

Bm = µ0lm
δ0

[Ni
lm

−Hm

]
. (A11)

Due to the solenoidal property, the magnetic field is constant in each section of the magnetic

circuit and the flux φ flowing through the flux tube represented by the anchor may be estimated
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Figure A7: Linearized magnetization curve.

using the Ampere’s law (A4), as follows:

Bm = Bδ0 = Bfe = φ

S
. (A12)

In addition the Ampere’s law allows to state:

Hmlm +H0δ0 +Hfelfe = Nti. (A13)

Therefore, the constitutive equation B̄ = µH̄ along with (A12) and (A13) gives:

φ =
Nti+ Br

µ lm
łm
µS + δ0

µ0S
+ łfe

µfeS

. (A14)

Expression (A14) can be rewritten in terms of reluctance and magnetomotive force as follows:

φ = Ft + Fm

ℜm + ℜδ0

. (A15)

where Ft is the magnetomotive force produced by the current flowing through the coil and Fm

is the magnetomotive force produced by the magnets. It is worth noting that, in (A15), ℜfe has

been neglected since µfe >> µ0.

Equation (A15) defines Hopkinson’s law for the circuit shown in Fig. A6. It states that

the generated flux is influenced by the geometry of the magnet and airgap, as well as the

magnetomotive force produced by the magnets and the coil supplied by the current.
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