

DOTTORATO DI RICERCA IN

INGEGNERIA BIOMEDICA, ELETTRICA E DEI SISTEMI

Ciclo 37

Settore Concorsuale: 09/G1 - AUTOMATICA

Settore Scientifico Disciplinare: ING-INF/04 - AUTOMATICA

DESIGN AND CONTROL OF A ROBOTIC MANIPULATOR FOR KIWI
HARVESTING

Presentata da: Simone Rossi

Supervisore

Lorenzo Marconi

Esame finale anno 2025

Coordinatore Dottorato

Michele Monaci

This page intentionally left blank.

ABSTRACT

This thesis presents the design and control of a robotic manipulator intended for kiwi
harvesting, addressing the increasing need for automation in agriculture due to labour
shortages and the pursuit of precision farming. The research introduces a novel, low-
cost robotic solution integrated with a mobile platform to automate the harvesting
process in kiwi orchards. The system involves the design of a custom anthropomor-
phic manipulator, including actuator selection, gripper design, and mobile platform
integration, specifically adapted for the kiwi harvesting task.

The control architecture incorporates a combination of low-level motion control on
anArduino-based platform andhigh-level trajectory planning usingROS 2 andMoveIt
2, allowing for efficient navigation and adaptability in an orchard environment. The
perception system combines depth and RGB cameras to detect and localize fruits with
high precision, enhancing the robot’s ability to autonomously identify, approach, and
pick kiwi fruits.

The effectiveness of the system is evaluated through simulations and field experi-
ments, demonstrating its capability to harvest kiwis effectivelywhilemaintaining fruit
quality. Future work aims to address challenges related to system robustness in di-
verse environmental conditions and further improve the adaptability of the harvesting
mechanism.

i

This page intentionally left blank.

SOMMARIO

Questa tesi presenta la progettazione e il controllo di un manipolatore robotico desti-
nato alla raccolta di kiwi, affrontando la crescente necessità di automazione nell’agricoltura
a causa della carenza di manodopera e della ricerca di soluzioni per l’agricoltura di
precisione. La ricerca introduce una soluzione robotica innovativa e a basso costo inte-
grata con una piattaforma mobile per automatizzare il processo di raccolta nei frutteti
di kiwi. Il sistema comprende la progettazione di un manipolatore antropomorfo su
misura, inclusa la selezione degli attuatori, il design del gripper e l’integrazione con
la piattaforma mobile, adattato specificamente al compito di raccolta del kiwi.

L’architettura di controllo combina il controllo del movimento a basso livello su
una piattaforma basata su Arduino con una pianificazione delle traiettorie ad alto liv-
ello tramite ROS 2 e MoveIt 2, consentendo una navigazione efficiente e un’elevata
adattabilità all’ambiente del frutteto. Il sistema di percezione combina telecamere di
profondità e RGB per rilevare e localizzare i frutti con alta precisione, migliorando la
capacità del robot di identificare, avvicinarsi e raccogliere autonomamente i kiwi.

L’efficacia del sistema è stata valutata attraverso simulazioni ed esperimenti sul
campo, dimostrando la capacità delmanipolatore di raccogliere i kiwi inmodo efficace
preservando la qualità del frutto. I risultati indicano che il manipolatore proposto
può migliorare l’efficienza della raccolta dei kiwi, rappresentando una promettente
via verso soluzioni agricole completamente automatizzate. Il lavoro futuro mira ad
affrontare le sfide legate alla robustezza del sistema in diverse condizioni ambientali
e a migliorare ulteriormente l’adattabilità del meccanismo di raccolta.

iv

This page intentionally left blank.

CONTENTS

Contents vii

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 Robotics in agriculture . 1

1.1.1 History . 1
1.1.2 Motivations . 2
1.1.3 Applications . 2

1.2 State of the art in robotic fruit harvesting 2
1.3 The Hammerhead rover . 5
1.4 Overview of this work . 6

2 Design concepts 8
2.1 Preliminary tests . 8
2.2 Mechanical design . 10

2.2.1 Kiwi plant structure . 10
2.2.2 Workspace analysis . 11

2.3 Kinematic parameters . 12
2.4 Gripper . 14

2.4.1 Initial design . 14
2.4.2 Final design . 15

2.5 Mobile platform integration . 16

3 Hardware 19
3.1 Actuators selection . 19

3.1.1 Layout and manufacturer selection 19
3.1.2 Task definition . 21
3.1.3 Motor sizing . 21

3.2 Electrical architecture . 23
3.3 Sensors . 25

vii

4 Control architecture 27
4.1 General description . 27
4.2 Low-level: motion control . 28
4.3 High-level: trajectory planning . 30

4.3.1 Hybrid planning manager plugin 32
4.3.2 Global planner plugin . 33
4.3.3 Local planner . 33

4.4 Changes to the Moveit Hybrid Planning source code 34

5 Software structure and simulation 37
5.1 Modules architecture . 37

5.1.1 Arduino firmware . 40
5.2 Application details . 41
5.3 Simulation environment . 44

5.3.1 Application: mixed reality for orchards 45

6 Perception 48
6.1 Fruit detection and tracking . 48

6.1.1 Object detection . 50
6.1.2 Object tracking . 51

6.2 Application: apple counting . 52
6.3 Training dataset . 54

6.3.1 Synthetic images . 54
6.3.2 Enhanced exposure images . 55

7 Results 57
7.1 Simulation . 57
7.2 Real robot . 59

7.2.1 Friction . 60
7.2.2 Basler camera calibration . 61
7.2.3 Kinematic calibration . 64
7.2.4 Mechanical performances . 65

8 Conclusions 68

Appendices

A Appendix A 80
A.1 Computation of the gravitational term . 80
A.2 Computation of the inertial term . 82

B Appendix B 86

viii

This page intentionally left blank.

LIST OF FIGURES

1.1 Sweeper robot . 3
1.2 Examples of fruit picking robots . 4
1.3 Hammerhead rover . 6

2.1 Igus RL-DP-5 robotic arm with the customized gripper 9
2.2 Laboratory setup for the preliminary kiwi grasping test 10
2.3 (A) T-bar System; (B) Pergola System (Mcaneney et al., 1984) 10
2.4 Selected area for the harvesting activity 11
2.5 Workspace geometry of robotic arms (Au et al., 2020) 12
2.6 The anthropomorphic design potentially allows to work on both rows

and is more compact in idle state . 12
2.7 Robot layout . 13
2.8 Robot workspace considering the joints limits 14
2.9 Possible gripper design . 15
2.10 Grasp and detach sequence . 16
2.11 Design concept of the rover-manipulator system 17
2.12 Tube discharge experiment . 18

3.1 Proposed layouts . 20
3.2 Reference task . 21
3.3 Reference trajectory . 21
3.4 Torque required to execute the reference trajectory, without the motors

mass . 22
3.5 Electrical scheme . 24
3.6 Cameras on the robot . 25

4.1 Motion control scheme: the𝑇𝑓 𝑓 term is computed on theArduino board,
the 𝑇𝑓 𝑏 stabilisation term is computed directly on the motor drives. . . . 29

4.2 Classical Inverse Dynamics scheme without the Coriolis term. 29
4.3 Simulink scheme for control tuning . 30
4.4 Trapezoidal trajectory tracking . 31
4.5 Hybrid planning policy . 32

xi

4.6 Goal position estimation based on the end-effector camera, implemented
in the Local Constraint Solver plug-in . 35

5.1 Workspace architecture . 40
5.2 State machine and interaction with other nodes of the hybrid_planner

node. 43
5.3 Simulated orchard in Unity . 44
5.4 Mesh of the mapped orchard . 45
5.5 Database structure of the digital twin . 46
5.6 Example datapanel in the mixed reality app 47

6.1 Perception pipelines for the two cameras 49
6.2 Kiwi detection in real environment . 50
6.3 Frame sequence from the approach manoeuvrer: the selected ID (10)

stays always in the frame and never changes. 52
6.4 Apples counting application in twodifferent orchard types: spindle(left)

and planar (right) . 54
6.5 Images captured from the Unity simulator for data augmentation with

the highlighted auto-labelled objects . 55
6.6 Same pictured taken at different exposure time, added to the training

dataset . 56

7.1 Solid red: actual state of the robot. Transparent red: target state. Green
balls: position of the detected fruits. Green line: planned trajectories.
Gray box: workspace of the robot. 58

7.2 Output of the simulated base camera in Unity 58
7.3 The real robot in a kiwi orchard . 60
7.4 Viscous friction combinedwithCoulomb friction and static friction (Marchi,

n.d.) . 62
7.5 Example image taken from the Basler camerawith the calibration chess-

board . 63
7.6 ChAruco marker used for the kinematic calibration 64
7.7 Setup for mechanical performance measurement 66

xii

This page intentionally left blank.

LIST OF TABLES

2.1 Performance comparison between the Cartesian and an articulated de-
sign (Au et al., 2020) . 12

2.2 DH parameters of the robot . 13
2.3 Joint limits . 14

3.1 Dynamic parameters. The inertia tensor is expressed as [𝐼𝑥𝑥 , 𝐼𝑦𝑦 , 𝐼𝑧𝑧 , 𝐼𝑦𝑧 , 𝐼𝑥𝑧 , 𝐼𝑥𝑦] 22
3.2 Torque required to execute the reference trajectorywith the selectedmo-

tors . 23

6.1 Comparison of differentmethods for Spindle and Planar types (D.Men-
goli et al., 2023) . 53

7.1 Results of the simulated harvesting experiments: number of fruits present
in the image frame captured by the base camera, fruits detected by the
computer vision pipeline, fruits present in the reachable workspace, ac-
tually reached fruits using the tracking algorithm and the duration of
the experiment . 59

7.2 Results of the real harvesting experiment 60
7.3 Basler estimated parameters after calibration 63
7.4 Repeatability measured starting from the home position and reaching

a defined goal position (in the joint space) multiple times 67
7.5 Positional accuracy measured along predefined movement directions . 67

xv

This page intentionally left blank.

1
INTRODUCTION

In this chapter, we explore the current landscape of agricultural robotics, with a spe-
cific focus on the advancements in robotics for fruit harvesting. The agricultural sector
has increasingly turned to automation to address labour shortages, efficiency chal-
lenges, and the need for precision farming solutions. Within this context, robotics
has emerged as a promising avenue to enhance productivity, especially in the com-
plex task of fruit harvesting. This chapter provides a comprehensive review of the
state of the art, highlighting key technologies, challenges, and solutions currently be-
ing employed in the field. Furthermore, an overview of the contributions made in this
research is presented, outlining the goals, methodologies, and anticipated impact of
the work carried out.

1.1 Robotics in agriculture

1.1.1 History

The journey of robotics in agriculture began in the late 20th century, driven largely
by advancements in mechanical engineering, control systems, and computing power.
Early attempts at automation involved mechanized tools that enhanced productivity,
such as tractor-mounted implements that reducedmanual labour in plowing and sow-
ing (Blackmore, 2000). By the 1990s, the agricultural industry started witnessing the
first wave of actual robotic systems in the form of semi-autonomous harvesters and
mobile robots for repetitive tasks, often drawing on technologies borrowed from in-
dustrial robotics (Giles, 1998).

Since then, agricultural robotics has evolved rapidly, incorporating increasingly
sophisticated sensors, artificial intelligence, andmachine learning to achieve precision
and autonomy. The adoption of GPS guidance systems and advanced imaging in the
early 2000s laid the foundation for fully autonomous machines, such as self-driving
tractors and drones used to monitor crop health (Gebbers et al., 2010). Today, modern
agricultural robots leverage cutting-edge AI technologies, enabling them to perform
highly complex functions, from soil preparation to harvesting, with minimal human
intervention.

1

2 1. Introduction

1.1.2 Motivations

The primarymotivations behind the development of robotics in agriculture stem from
the need to increase efficiency, enhance productivity, and address labour shortages.
Agriculture has long been a labour-intensive industry, where large areas need timely
cultivation, and there is a constant need to manage pests, diseases, and the fluctuating
weather conditions that impact yield (Bechar et al., 2016). In many regions, an ageing
farming population and an insufficient workforce have put additional pressure on the
agricultural sector to automate.

The integration of robotics promises to significantly reduce the reliance on manual
labour and mitigate the effects of labour scarcity. Additionally, the drive towards sus-
tainability has fuelled innovation in agricultural robotics. By enabling precise appli-
cations of water, fertilizers, and pesticides, robots help reduce environmental impact
and contribute to more sustainable farming practices (Pedersen et al., 2006). Thus, the
use of robotics not only addresses workforce constraints but also contributes to more
environmentally friendly and efficient farming systems.

1.1.3 Applications

Robotics is now widely applied across various facets of agriculture, ranging from soil
analysis and cropmonitoring to precision weeding and harvesting. Autonomous trac-
tors are perhaps one of the most notable examples, where advanced GPS and sen-
sor technologies allow them to till fields with high precision, reducing fuel consump-
tion and improving yields. Another important application is in crop health monitor-
ing, where drones equipped with multispectral cameras are deployed to assess plant
health, detect diseases, and guide targeted interventions (C. Zhang et al., 2012).

Harvesting robots have also become highly specialized. For example, strawberry-
picking robots use cameras and sensors to determine ripeness and selectively harvest
fruits without damaging the plants (E. Van Henten et al., 2002). Similarly, robotic sys-
tems designed for pruning, weeding, and even pollination are becoming more com-
mon, especially in high-value crops such as vineyards and orchards (Lehnert et al.,
2017). Livestock farming has also benefited, with autonomous feeding systems and
robotic milking machines that enhance productivity while improving animal welfare.

The future of agricultural robotics is likely to see even greater collaboration be-
tween AI and autonomous systems, creating farms where robots work seamlessly
alongside humans to optimize every aspect of production. This evolution aims to not
only improve productivity and sustainability but also to make farming more resilient
to the challenges of climate change and an expanding global population.

1.2 State of the art in robotic fruit harvesting

In recent years, robotic systems for agricultural harvesting have advanced significantly,
driven by the need for labour efficiency and increased productivity. Robotic fruit har-

1.2. State of the art in robotic fruit harvesting 3

Figure 1.1: Sweeper robot

vesters offer a promising solution to the growing challenges in agriculture, including
labour shortages, rising costs, and the increasing global demand for food. Today, sev-
eral real-world examples showcase the capabilities and limitations of robotic fruit har-
vesting technologies, highlighting ongoing developments in machine learning, sensor
technology, and robotics.

One notable example is the SWEEPER robot (Figure 1.1), developed for sweet
pepper harvesting. The SWEEPER system was designed as a collaboration between
universities and research institutions across Europe. It utilizes a combination of RGB
cameras and laser sensors to identify ripe peppers and a robotic arm equipped with
a specialized end-effector to cut and collect them. The SWEEPER robot demonstrated
significant progress in terms of accuracy and efficiency, achieving a harvest rate of ap-
proximately 60% of ripe fruit under laboratory conditions (Bac et al., 2017). Although
effective in controlled environments, its limitations became evident in practical field
conditions due to challenges related to foliage occlusion, lighting variability, and the
precision needed to distinguish ripe from unripe fruits.

Another advanced robotic harvesting system is the Octinion strawberry harvester
(Figure 1.2a), which utilizes soft robotic technology to gently pick strawberries with-
out causing damage. The Octinion robot, called ”Rubion,” integrates machine vision
to locate ripe strawberries and uses a soft, rotating gripper to detach the fruit. Unlike
traditional clamping mechanisms, the soft gripper minimizes bruising, a crucial fac-
tor for strawberries, which are highly perishable. The Octinion system is capable of
picking a strawberry every four to five seconds, which translates to an efficiency that
is comparable to a human picker, with the added benefit of 24/7 operation under the
right conditions (E. J. Van Henten et al., 2019).

Apple harvesting presents a more complex challenge due to the size, weight, and
height variability of apple trees. FFRobotics is one company making strides in this

4 1. Introduction

(a) Octinion robot (b) Tevel’s Robot
Figure 1.2: Examples of fruit picking robots

area with a multi-arm robotic harvester capable of picking up to ten apples simul-
taneously. Their robotic system employs a combination of computer vision for fruit
detection and multiple articulated arms that mimic human movements. This design
ensures a balance between speed and delicacy, avoiding bruising or damaging the
fruit. FFRobotics aims for a harvest rate that can rival human pickers in commercial
orchards, andwhile initial results are promising, the system requires highly controlled
environments to achieve optimum results (Shamshiri et al., 2018).

In addition, Abundant Robotics, a U.S.-based startup, has developed an apple-
picking robot that uses a vacuum-based approach to gently suck apples from the trees.
Unlike other mechanical pickers, the vacuum system reduces the risk of fruit damage
while also simplifying the process of detachment. Field trials conducted in partner-
shipwith commercial apple growers have demonstrated the potential of this approach
to achieve high throughput while maintaining the quality of harvested apples. The
system uses advanced computer vision and AI algorithms to determine ripeness and
ideal picking paths, allowing for more autonomous operation in commercial orchards
(Kootstra et al., 2020).

Tevel Aerobotics (Tevel Aerobotics, n.d.) has introduced an innovative approach
to fruit harvesting through the use of autonomous flying robots (AFRs) (Figure 1.2b).
These small drone-like harvesters are equipped with computer vision, AI-powered
decision-making, and robotic arms capable of picking fruits such as apples, peaches,
and plums. The system is designed to operate collaboratively, with multiple AFRs
working together to identify, assess ripeness, and harvest fruit in real-time. By lever-
aging aerial mobility, Tevel Aerobotics’ technology effectively addresses challenges
related to tree canopy occlusion and terrain variability, making it a promising solu-
tion for large-scale orchards.

Another significant development in agricultural robotics is the SlopeHelper Har-
vester (PeK Automotive, n.d.), a fully autonomous robotic system designed specifi-
cally for fruit and vineyard harvesting in sloped and uneven terrains. Unlike conven-

1.3. The Hammerhead rover 5

tional harvesters, the SlopeHelper Harvester is equipped with a continuous operation
system that enables it to carry out harvesting tasks without human intervention. The
system integrates AI-driven navigation, LiDAR sensors, and an advanced gripping
mechanism that ensures precise fruit picking while minimizing damage. Its ability
to operate in challenging landscapes makes it a valuable solution for vineyards and
orchards located on hilly terrains, where traditional machinery struggles. The Slope-
Helper Harvester also features modular functionality, allowing it to be adapted for
additional agricultural tasks such as pruning and spraying, further enhancing its ver-
satility and cost-effectiveness.

Despite these advancements, current robotic fruit harvesting technologies still face
significant challenges. Foliage occlusion, fruit clustering, environmental variability,
and the need for quick adaptability to different crop types are major hurdles. Sensor
fusion, where data from multiple sources such as RGB cameras, LiDAR, and hyper-
spectral sensors are combined, has emerged as an approach to address some of these
challenges (Santos et al., 2021). Moreover, machine learning and AI continue to en-
hance the robots’ abilities to identify and pick fruit more effectively by improving their
recognition of various stages of ripeness and adapting to new crop conditions in real
time.

The state of the art in robotic fruit harvesting shows a landscape of rapid tech-
nological evolution, but also highlights the limitations that must be addressed before
full-scale commercial adoption becomes a reality. Researchers continue to work on
improving the robustness of these systems under field conditions, increasing the pre-
cision and efficiency of fruit detection, and minimizing damage to the harvested pro-
duce. Moving forward, it is expected that the integration of AI, robotics, and sensor
technologies will bring about smarter, more adaptable harvesting solutions that will
transform agricultural practices in the near future.

1.3 The Hammerhead rover

A special mention deserves the UGV developed by the University of Bologna (Dario
Mengoli et al., 2020) and then industrialised and commercialized by FieldRobotics: it
is called Hammerhead and it is a multi-purpose, modular autonomous ground vehi-
cle, made to navigate in orchards and, more in general, in agricultural environments
(Figure 1.3). The platform was designed with adaptability in mind, enabling various
agricultural tasks such as mowing, spraying, and data collection, suitable for small to
medium-sized farms.

The core platform is based on a rubber track locomotion system, which provides
stability and flexibility, especially in rough terrains. The platform also includes amod-
ular mount to support various implements, allowing it to perform multiple farming
tasks with ease. The robotic system was built with considerations for scalability, fo-
cusing on replication of smaller units rather than developing a single larger machine.

The prototype incorporates a range of sensors, including a LiDAR, cameras, and

6 1. Introduction

Figure 1.3: Hammerhead rover

GPS, which allow for precise navigation and data collection. The vehicle’s computa-
tional architecture includes a low-level system to handle basic operations, using a ded-
icated industrial PC, and a high-level system thatmanages autonomous navigation us-
ing the Robot Operating System (ROS). Human-machine interaction is also supported
via onboard panels and a graphical interface on the remote control, allowing users to
control and monitor the platform’s status.

This rover deserves this mention because it is the mobile platform that was used
to carry the kiwi harvesting robotic manipulator developed in this thesis.

1.4 Overview of this work

This thesis focuses on the development of a robotic kiwi harvesting manipulator, an
automated system designed to precisely and effectively perform the harvesting pro-
cess, thereby contributing to enhanced efficiency and productivity in kiwi farming.
The research addresses both the mechanical and algorithmic aspects of this complex
problem, proposing a comprehensive solution that combines novel hardware design,
advanced control methods, and sophisticated perception capabilities.

To explore the multi-faceted challenges involved in creating an effective robotic
harvesting system, this thesis is structured into eight chapters, each dealing with dif-
ferent aspects of the development process. In Chapter 2, the design concept of the
manipulator is introduced and analysed, providing insight into the foundational con-
siderations that shaped the overall architecture. This chapter sets the stage for under-
standing the subsequent detailed work on the various components of the system.

Chapter 3 focuses specifically on the hardware design, with a particular emphasis
on the sizing and selection of actuators. Actuator selection plays a critical role in de-
termining the manipulator’s performance, as it directly impacts the reach, speed, and
delicacy required for effective kiwi harvesting.

1.4. Overview of this work 7

Moving forward, Chapter 4 delves into the control systems and algorithms devel-
oped to govern the manipulator’s movement. This includes motion control system,
trajectory planning and integration of the camera feedback for trajectory correction.

Chapter 5 presents a deep dive into the software developed to support the entire
system. This includes the architecture that integrates hardware components, facili-
tates communication between different subsystems, and ensures the smooth operation
of the manipulator. Software is the glue that binds the mechanical and perception as-
pects, and this chapter illustrates how different software modules have been designed
and implemented.

The perception capabilities of the manipulator are discussed in Chapter 6. To ef-
fectively locate and identify kiwis in a complex orchard environment, a perception
pipeline based on cameras and computer vision algorithms has been developed.

The effectiveness of the robotic system is demonstrated inChapter 7, which presents
both real-world experimental results and results obtained through simulations. This
chapter offers a comprehensive evaluation of the manipulator’s performance, high-
lighting both its strengths and areas for improvement, based on trials conducted in
controlled and practical environments.

Finally, Chapter 8 draws conclusions from the development and testing phases,
summarizing key findings, identifying lessons learned, and proposing future direc-
tions for enhancing the system. These insights aim to inform both the refinement of
this particular harvesting manipulator and the broader field of agricultural robotics.

2
DESIGN CONCEPTS

In this chapter, the requirements for the fruit harvesting task are thoroughly examined,
leading to the identification of key design objectives. These task requirements, includ-
ing environmental considerations, fruit characteristics, and operational constraints,
serve as the basis for developing effective robotic solutions. The chapter then details
the design choices made to address these requirements, covering aspects such as sys-
tem architecture, mechanical layout and integration with the mobile platform.

2.1 Preliminary tests

Preliminary tests have been conducted to achieve fully autonomous fruit picking and
harvesting in kiwifruit orchards. The concept involves navigating each orchard row
with an autonomous vehicle, like the one developed by our team and described in this
work (DarioMengoli et al., 2020), equippedwithmultiple robotic arms to replicate the
approach presented in a similar study (Williams et al., 2019). Kiwifruit is particularly
well-suited for this type of application since harvesting occurs before the fruit is fully
ripened, which makes it compact and durable enough for mechanical handling.

To initiate the investigation, a low-cost RL-DP-5 robotic arm from Igus, featuring
five Degrees of Freedom (DoF), was acquired for laboratory testing (Figure 2.1 - left).
This setup allowed for the development of initial trajectories for fruit grasping and
detachment. A custom-designed grasping hand was created using a commercial resin
3D printer (Figure 2.1 - right). For simplified initial field tests, an off-the-shelf Schunk
parallel gripper was installed on the robotic arm to achieve a linear clamping motion.
The grasping tool was tested bothwith andwithout soft padding to evaluate the fruit’s
response, potential damage, and slip prevention while optimizing the grasping posi-
tion.

Initial trials were performed in a controlled laboratory environment, where ki-
wifruit was suspended to explore various approach and detachment trajectories (Fig-
ure 2.2). To accelerate the development process, all trajectories were predetermined
and implemented relative to the manually acquired fruit position. The process was
configured as follows:

8

2.2. Mechanical design 9

Figure 2.1: Igus RL-DP-5 robotic arm with the customized gripper

• The position of the kiwifruitwasmanually retrieved and savedwithin the robotic
arm’s workspace.

• The approach position was set by manually moving downward from the fruit’s
location.

• The arm’s starting position was randomly set near the approach position.
• The robot followed a computed trajectory from the starting position to the ap-

proach position.
• Upon reaching the approach position, the arm moved upward to align with the

fruit’s location.
• The gripper then closed to secure the fruit.
• The detachment maneuver was initiated, involving tilting the end effector to ap-

proximately 70 degrees.
• The arm moved downward to complete the detachment of the fruit.
• Finally, the robot transported the fruit to a designated delivery position for ap-

propriate storage.

All trajectories were computed based on the kinematic capabilities of the robotic
arm, utilizing both the provided Igus Robot Control software and the ROS package
MoveIt motion planning framework (Coleman et al., 2014). This framework offers
essential tools such as inverse kinematics and joint position solvers to facilitate precise
motion planning.

10 2. Design concepts

Figure 2.2: Laboratory setup for the preliminary kiwi grasping test

2.2 Mechanical design

2.2.1 Kiwi plant structure

Kiwifruit training systems play a crucial role in optimizing the growth, productivity,
and quality of the fruit. Two common training systems used in kiwifruit production
are the Pergola (or Tatura trellis) system and the T-bar (or Horizontal Trellis) system.
These systems have distinct features that affect vine management, fruit yield, light
exposure, and labour requirements. Below, the key differences between the Pergola
and T-bar training systems are described:

• T-bar System (Figure 2.3A): the T-bar system involves a central post with cross-
arms at the top, which creates a structure shaped like a ”T.” Wires run hori-
zontally along these arms, allowing the vine to grow laterally in a more linear,
controlled manner. This keeps the vine growth at a lower height compared to
the Pergola system, allowing for a more open training structure.

• Pergola System (Figure 2.3B): the Pergola system is characterized by a horizontal
overhead trellis resembling a large ”roof” or ”canopy,” similar to a traditional
pergola. The vines grow up to a supporting wire and then spread out, forming

Figure 2.3: (A) T-bar System; (B) Pergola System (Mcaneney et al., 1984)

2.2. Mechanical design 11

a flat, ceiling-like structure over the planting area. This system creates a dense,
shaded area under which the fruit grows, allowing a large number of vines to be
trained in all directions.

Although the Pergola system ismuchmore friendly for robotic systems due to its over-
head canopy and structured fruit hanging, we have developed our harvesting robot
with the T-bar system in mind because this is the most commonly used system here in
Italy. Additionally, in order to avoid making the project overly complex, we decided
that our robot will only harvest kiwifruits from the top part of the plant, as indicated
in Figure 2.4.

2.2.2 Workspace analysis

In designing a harvesting robot for kiwifruits, a comparison between Cartesian and
articulated robotic configurations reveals distinct performance advantages and limita-
tions. According to Au et al., 2020, the Cartesian robot system was found to be more
efficient than an articulated design for harvesting kiwifruit trained on Pergola systems,
largely due to its regular workspace geometry that closely matches the canopy’s struc-
ture. In particular, it has been considered a robot mounted on a mobile platform that
makes a step forward after the previous area has been completed, as shown in Figure
2.5. In this study, two real robots were compared and the results are summed up in
Table 2.1: even if the workspace volume of the articulated robot is much larger than
the Cartesian one, it requires more steps and has an overall greater harvest cycle time,
due to the poor overlapping with the canopy (task space).

However, in our context of a T-bar training system, where the structure of the
canopy differs significantly from the pergola, we decided to opt for an anthropomor-
phic (articulated) robot. The articulated design offers better adaptability for the ir-
regular and more spatially complex layout of T-bar systems, where its ability to move
with rotational flexibility allows for better coverage and accessibility of the fruits, de-
spite the increased operational complexity compared to the Cartesian alternative. By

Figure 2.4: Selected area for the harvesting activity

12 2. Design concepts

(a) Cartesian robot (b) Articulated robot
Figure 2.5: Workspace geometry of robotic arms (Au et al., 2020)

Cartesian Articulated

No of steps 5 9
Workspace volume (𝑚3) 0.439 2.15
Harvestable volume (𝑚3) 0.293 0.348
Step advance volume (𝑚3) 0.293 0.148

Workspace efficiency 100% 42.529%
Estimated harvest cycle time (s) 4.48 8.88

Table 2.1: Performance comparison between the Cartesian and an articulated design (Au et al., 2020)

prioritizing flexibility and effective manoeuvrability over workspace regularity, the
articulated robot becomes a more practical solution for this specific orchard layout.
Moreover, it allows the possibility to work on both sides of a row (Figure 2.6) and
potentially can become more compact when the robot is not working. Additionally,
the anthropomorphic design is more convenient to parallelize, as the cycle time can be
reduced depending on the number ofmanipulators installed on themachine, allowing
for scalable efficiency.

2.3 Kinematic parameters

Asmentioned before, the Igus RL-DP-5 robotwas used for preliminary tests. However,
due to several limitations regarding joint speed and mobility, it was decided to build

Figure 2.6: The anthropomorphic design potentially allows to work on both rows and is more compact
in idle state

2.3. Kinematic parameters 13

Figure 2.7: Robot layout

a custom robot from scratch. Another significant factor in this decision was the high
cost of commercial robotic manipulators, which conflicted with the project’s goal of
maintaining low costs. The kinematic model of the newly designed robot is shown in
Figure 2.7 and consists of four revolute joints arranged in an anthropomorphic arm
configuration.

As seen in the figure, the robot is equipped with two cameras. One camera is
attached to the base link, and the other is mounted on the robot’s end-effector. The
camera on the base link is a stereo camera, capable of providing depth measurements,
while the one on the end-effector is a standard RGB camera. More details about the
cameras will be presented in the next chapters.

The robot’s kinematics are described using Denavit-Hartenberg (DH) parameters,
which are summarized in Table 2.2. Additionally, the physical joint limitations are
provided in Table 2.3, showing the constraints on each joint’s movement.

Table 2.2: DH parameters of the robot

Link 𝑎𝑖 𝛼𝑖 𝑑𝑖 𝜗𝑖

𝐿1 0.000 𝜋/2 0 𝑞1
𝐿2 0.547 0 0 𝑞2
𝐿3 0.733 0 0 𝑞3
𝐿4 0.155 0 0 𝑞4

14 2. Design concepts

(a) 𝑥𝑦 plane (b) 𝑥𝑧 plane (c) 𝑦𝑧 plane
Figure 2.8: Robot workspace considering the joints limits

In light of the joint limitations presented above, a simulation was conducted to
visualize the robot’s effectiveworkspace, which is shown in Figure 2.8. This simulation
helps to illustrate the reachability and mobility of the robot, taking into account the
constraints imposed by the joint limits.

It is important to note that the restrictions on Joint 1 are not due to mechanical
constraints but are instead a design choice aimed at ensuring safety during operation.
Limiting the range of Joint 1 helps to prevent excessive movements that could pose
risks during manipulation tasks, particularly in environments where the robot oper-
ates near humans or other sensitive equipment. This design consideration, coupled
with the remaining joint constraints, ensures that the robot can perform its tasks effi-
ciently while maintaining a safe operational boundary.

Joint Min(rad) Max(rad)

𝐽1 -1.1 1.1
𝐽2 0.6981 2.5540
𝐽3 0.5436 2.5435
𝐽4 -1.9199 2.3399

Table 2.3: Joint limits

2.4 Gripper

2.4.1 Initial design

The design of a gripper for robotic kiwifruit harvesting poses a unique challenge: the
fruitmust be handled gently to avoid anydamage both during detachment and release.
Unlikemany industrial applicationswhere precision and strength are paramount, fruit
harvesting requires a careful balance between delicacy and effective control to ensure
the fruit reaches marketable quality. The kiwifruit’s delicate skin, susceptibility to
bruising, and the complexity of its surrounding environmentwith branches and leaves
make this design task particularly demanding.

Initially, the proposed gripper design, as depicted in Figure 2.9, involved the use
of flexible fingers mounted on a small conveyor belt. This concept was inspired by the

2.4. Gripper 15

desire to achieve both fruit handling and release in a continuous, controlled motion,
thereby minimizing the risk of abrupt shocks that could lead to damage. The con-
veyor belt featured soft, flexible elements that could adjust to the contour of the fruit,
providing a gentle yet firm grip.

The envisioned mechanism included two flexible paddles that would open to gen-
tly encompass the kiwifruit, and thenmove it onto the conveyor belt where it would be
directed towards a collection bucket. This design aimed to minimize damage during
both detachment from the vine and the final release into the container. However, de-
spite these promising features, the design had several inherent limitations that made
it unsuitable for real-world harvesting.

The main issue with the conveyor belt-based gripper was its cumbersome nature.
In an orchard setting, where branches and leaves can be obstacles, the relatively large
footprint of this system posed a significant risk of collision, potentially damaging both
the plant and the equipment itself. Its bulkiness also restricted the gripper’s ability
to move in tight spaces, a key requirement when navigating through dense foliage.
As a result, while the flexible fingers were effective in maintaining a gentle grip, the
complexity of the conveyor mechanism and the potential for collisions necessitated a
reconsideration of the design.

2.4.2 Final design

Based on these observations, we decided to pivot towards a more compact and agile
design. Instead of developing a novel gripper entirely from scratch, we sought inspi-
ration from existing technologies and previous research on kiwifruit harvesting. This
led us to evaluate and eventually adapt the work presented in Scarfe, 2012, in which a
highly practical and efficient kiwifruit harvesting gripper was developed.

The original design by Scarfe utilized a soft, pneumatically actuated gripper that
successfully demonstrated a balance between robustness and delicacy. The gripper
employed soft, adaptive surfaces that conformed to the shape of the fruit, minimizing
pressure points and thereby reducing the risk of bruising. The actuated fingers pro-
vided sufficient force to detach the fruit without causing damage, addressing one of

Figure 2.9: Possible gripper design

16 2. Design concepts

(a) Open (b) Closed (c) Half tilted (d) Full tilted
Figure 2.10: Grasp and detach sequence

the key design challenges effectively.
Our adaptation of this design focused on reducing weight and making the gripper

more compact, allowing it to be more agile when interacting with different canopy
structures. Unlike Scarfe’s gripper, ours is actuated by only one electric motor with
a limit switch, significantly simplifying the mechanism while reducing weight. The
gripper also features a housing for an RGB camera that we introduced for precision
picking, enhancing its ability to target individual fruits with higher accuracy. The
compact design improves the ability to navigate around branches and selectively pick
individual fruits without unnecessary collisions.

The Figure 2.10 shows our gripper: the original structure of the four-bar linkage
with a fixed finger plus a moving thumb is preserved. The sequence depicted in the
figure includes four stages of the grasping process:

1. (a) Open: The gripper starts in an open position, with both the fixed finger and
the thumb apart, ready to approach the kiwifruit.

2. (b) Closed: The moving thumb closes towards the fixed finger, securely holding
the kiwifruit without applying excessive pressure, thanks to the limit switch that
stops the motor.

3. (c) Half Tilted: The gripper begins tilting to apply the correct shear force to the
stalk, ensuring that the fruit detaches from the branch while maintaining a firm
grip.

4. (d) Full Tilted: The gripper reaches a fully tilted position, completing the detach-
ment process and preparing the fruit for subsequent release into the collection
container.

Then, when the gripper comes back in the open position, the fruit is released into the
expelling tube.

2.5 Mobile platform integration

The integration of a kiwi-harvesting robotic armwith the autonomous rover, described
in Section 1.3, presents a set of unique design requirements. The objective is to seam-

2.5. Mobile platform integration 17

Figure 2.11: Design concept of the rover-manipulator system

lessly adapt themechanical harvesting system onto the rover while respecting the geo-
metric and operational constraints inherent in the orchard environment, as highlighted
in Figure 2.11. This section explores how the integration can be carried out efficiently
to meet these requirements.

The orchard architecture shown in Figure 2.11 delineates critical spatial constraints.
The kiwi canopies are supported at a height ranging between 1.5 and 1.8 meters, with
a 1-meter-wide overhanging structure. Given these dimensions, the robotic arm must
be capable of reaching up to at least 1.8 meters with sufficient horizontal flexibility
to access fruit located in the green square. The autonomous rover serves as the mo-
bility base, providing the necessary support and power supply for the robotic arm,
and must therefore be positioned and controlled to ensure complete coverage of each
canopy section while manoeuvring around the orchard.

To accomplish effective integration, several engineering considerationsweremade:

• Height and ReachOptimization: The robotic arm is designed to extend vertically
up to 1.8-2meters, ensuring that it can adequately access all kiwis hangingwithin
the target canopy height. The optimal reach of the arm accounts for both the
vertical clearance and the 1-meter horizontal extension required to harvest kiwis
located away from the main support poles.

• Rover Mobility and Stability: The rover, as depicted in the second image, uti-
lizes tracked propulsion for enhanced manoeuvrability in the orchard environ-
ment, which often presents uneven terrain. The integration must ensure that the
robotic arm is stable during harvesting operations. The arm is mounted on a
stabilizing platform that sits above the rover’s primary frame at a height of ap-
proximately 0.6meters, as indicated in the orchard layout. This elevation ensures
that the arm has the necessary leverage while maintaining the rover’s balance.
The compact design of the rover, featuring a width of 1.2 meters, allows it to nav-
igate between rows, which typically span 4.5 to 5.5 meters apart, without risking
damage to nearby plants.

• Fruit Evacuation System: To facilitate efficient collection of harvested kiwifruit,

18 2. Design concepts

Figure 2.12: Tube discharge experiment

a bin is mounted on the rover to collect all the picked fruits. The harvested ki-
wis are transferred from the gripper to the bin via a discharging tube. This tube
ensures a smooth conveyance of fruit from the robotic arm to the storage bin,
minimizing the risk of damageduring transfer. Experimental tests, as depicted in
Figure 2.12, were performed to validate this evacuation system. The tests focused
on ensuring the harvested fruits could travel through the flexible tube without
bruising, given its positioning at a height of 0.87 meters from the ground and the
required inclination to guide the fruit to the bin. The tube has been reinforced
with an elastic band to prevent it from being loose. Then, several falling tests
have been performed and, as it is shown in the figure, the green squared posi-
tions had a successful discharging, in the red ones the kiwi remained in the tube,
in the yellow ones it was uncertain.

The final built prototype is shown in Figure 7.3.

3
HARDWARE

This chapter deals with the hardware components of the prototype robotic arm, with a
particular focus on actuator sizing. The selection and sizing of actuators are critical to
ensure that the robotic arm can perform the required tasks efficiently. The chapter dis-
cusses the different hardware components, including motors, sensors, and structural
elements, and explains how they were chosen and integrated to meet the performance
requirements established in the previous chapter.

3.1 Actuators selection

3.1.1 Layout and manufacturer selection

The two solutions presented in Figure 3.1 highlight different design approaches for
actuator placement in robotic arms, each with distinct advantages and disadvantages.
In solution A, all actuators are attached to the base link of the robot. This design
significantly reduces the overallmass of themoving parts, making the structure lighter
and thus improving its dynamic efficiency. However, this advantage comeswith trade-
off inmechanical complexity. The use ofmechanical transmissions to connect the base-
mounted actuators to the joints introduces additional components that are prone to
failure, increase the risk of collision, and make the entire system more cumbersome
when operating in constrained environments, such as around trees.

Conversely, the solution Bmounts each actuator directly to its corresponding joint,
which offers a simpler mechanical setup. This arrangement reduces the need for com-
plex transmissions, minimizing mechanical wear and potential collision risks, result-
ing in a cleaner and more straightforward design. However, dynamically, this design
is less efficient, as the mass of the actuators contributes to the load carried by the arm,
increasing inertia and affecting overall motion control.

The final solution that we adopted is a compromise between these two solutions: it
has the motors of the first three joints on the base and the last motor mounted directly
on the wrist. In this way, the robot is not too ’heavy’ and the risk of collision between
mechanical parts and the plants is minimized, because there is no mechanical trans-

19

20 3. Hardware

(a) Solution A (b) Solution B
Figure 3.1: Proposed layouts

mission close to the tip of the robot, that is the part that works close to the kiwi plant.

When selecting a manufacturer for the robot actuators, several key characteristics
were prioritized to match the needs of the design. The actuators had to operate at
low voltage (48V) for safety, the motor electronics needed to be integrated internally
to minimize space requirements, and they also needed to be affordable. Based on
these criteria, two manufacturers were evaluated. The first option was Sumitomo,
specifically their Tuaka series. These actuators offer significant advantages, including
three different sizes, high mechanical performance, and integrated safety functions,
which make them appealing for demanding robotic applications. However, they also
come with notable drawbacks. The Tuaka actuators are relatively expensive, and their
size and weight are not ideal for the intended robot design. Additionally, as will be
further detailed in subsequent sections, even the smallest of the three available sizes
are somewhat larger than needed given the required torque, which could negatively
impact the overall efficiency and compactness of the system.

The second manufacturer considered was Cubemars, particularly their AK series.
TheCubemars actuators have several advantages, including a compact and lightweight
design, a wide range of available sizes, and affordability. They can also be easily in-
terfaced over CAN bus, which adds flexibility to the control system. However, there
are some drawbacks. The documentation provided by Cubemars is quite poor, which
could complicate integration and troubleshooting. Additionally, the mechanical per-
formance of theAK series is inferior compared to the Sumitomo Tuaka series, and their
customer support has been noted to be less responsive, which could lead to delays in
resolving technical issues.

These two actuator lines will be evaluated in the next paragraphs, determining the
right size for each joint based on a typical task trajectory.

3.1. Actuators selection 21

(a) Start position (b) Approach position (c) Goal position
Figure 3.2: Reference task

3.1.2 Task definition

The task trajectory for the robot is designed with a target duration of 6 seconds, split
across distinct phases that support efficient harvesting of kiwifruit. Initially, the robot
performs a fast transfer from the start position (Figure 3.2a) to an ’approach’ position
(3.2b) beneath the kiwifruit, using a minimum jerk trajectory to ensure smooth and
precise movement. This phase lasts 2.5 seconds and covers a distance of 0.5612 meters,
which is considered a challenging scenario for motor performance evaluation. Next, a
2.5-second quintic polynomial slow approach phase brings the end-effector into close
proximity for picking, emphasizing accuracy andminimizing sudden force impacts on
the fruit (Figure 3.2c). Finally, the robot remains stationary for 1.0 second, allowing for
the gripper to complete the fruit-picking process. This sequence forms the reference
trajectory (Figure 3.3) for repeated harvesting tasks and serves as a basis for motor
sizing and performance assessment.

3.1.3 Motor sizing

In order to compute the required torque to execute the reference trajectory, the dy-
namic parameters of the links, joints, and motors are reported in Table 3.1. It can be
noted that the moment of inertia of Link 1 has been neglected, while the joints and
the motors have been considered as a point mass. Using these parameters, the torque
required to execute the reference trajectory can be computed, and the resulting torque
profile is shown in Figure 3.4.

Figure 3.3: Reference trajectory

22 3. Hardware

Element Mass (𝐾𝑔) M. of inertia (𝐾𝑔𝑚2)

𝐿1 0.100 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
𝐿2 0.190 [1.56, 0.01, 1.57, 0.0, 0.0, 0.0] · 10−2

𝐿3 0.210 [1.14, 0.01, 1.14, 0.0, 0.0, 0.0] · 10−2

𝐿4 0.060 [1.35, 0.22, 1.36, 0.0, 0.0, 0.0] · 10−4

Joints 0.500 -
Gripper 2.000 -

CB_AK80-64 0.850 -
CB_AK70-10 0.521 -
CB_AK60-6 0.315 -

TUAKA107-80 3.500 -
TUAKA203-50 1.815 -

Table 3.1: Dynamic parameters. The inertia tensor is expressed as [𝐼𝑥𝑥 , 𝐼𝑦𝑦 , 𝐼𝑧𝑧 , 𝐼𝑦𝑧 , 𝐼𝑥𝑧 , 𝐼𝑥𝑦]

Figure 3.4: Torque required to execute the reference trajectory, without the motors mass

3.2. Electrical architecture 23

Considering the two actuator families (Sumitomo andCubemars), I added the con-
tribution to the masses and inertias of the actuators and iteratively simulated the exe-
cution of the reference trajectory, to measure the required torque. Therefore, I selected
a compatible motor sizes for both families in terms of nominal torque, peak torque and
nominal speed. For the Sumitomo family:

• Tuaka 107-80 on joint 2: 𝑇𝑛 = 63𝑁𝑚, 𝑇𝑝 = 167𝑁𝑚, 𝑉𝑝 = 35𝑟𝑝𝑚.
• Tuaka 203-50 on joint 1, 3 and 4: 𝑇𝑛 = 21𝑁𝑚, 𝑇𝑝 = 44𝑁𝑚, 𝑉𝑝 = 123𝑟𝑝𝑚.

For the Cubemars family:

• AK80-64 on joint 2: 𝑇𝑛 = 48𝑁𝑚, 𝑇𝑝 = 120𝑁𝑚, 𝑉𝑝 = 48𝑟𝑝𝑚.
• AK70-10 on joint 1 and 3: 𝑇𝑛 = 8.3𝑁𝑚, 𝑇𝑝 = 24.8𝑁𝑚, 𝑉𝑝 = 310𝑟𝑝𝑚.
• AK60-6 on joint 4: 𝑇𝑛 = 3𝑁𝑚, 𝑇𝑝 = 9𝑁𝑚, 𝑉𝑝 = 233𝑟𝑝𝑚.

Considering these configurations, the torque required to execute the reference trajec-
tory is summed up in Table 3.2.

Motors 𝑇𝑚𝑎𝑥(Nm) 𝑇𝑟𝑚𝑠(Nm)

No motors
[
7.1614 24.4498 7.9522 0.3121

] [
3.0149 19.5570 3.8797 0.1117

]
Sumitomo

[
12.3409 48.5423 13.5144 0.3121

] [
5.1894 40.0287 6.5828 0.1117

]
Cubemars

[
11.2121 29.5605 9.1372 0.3121

] [
4.7554 23.9843 4.3776 0.1117

]
Table 3.2: Torque required to execute the reference trajectory with the selected motors

For the reasons expressed before and in viewof this computation, the configuration
with the Cubemars has been chosen for the construction of the final prototype.

3.2 Electrical architecture

This electrical schematic in Figure 3.5 illustrates the layout and power connections
for a system controlled by the main PC and the Arduino Portenta H7. Below is a
detailed description of how each component is interconnected and functions in the
overall scheme:

1. Power Supply:

• The primary power source is a 48V rover battery.
• This 48V power is converted into 24V and 12V using DC-DC converters.

These lower voltages are likely used to supply various components that re-
quire lower voltage levels for operation.

• An Emergency Stop button is connected to the 48V power supply, which
cuts off power in case of an emergency. This switch is directly placed in the
power path, ensuring a complete shutdown of power to all components if
pressed.

2. Motors and CAN Bus Network:

24 3. Hardware

Figure 3.5: Electrical scheme

• There are four motors labeled AK80, AK80, AK70, and AK60 as well as a
gripper motor.

• All the motors are connected to a CAN Bus, which includes CAN1H (high)
and CAN1L (low) lines. This bus allows communication between the mo-
tors and a central controller.

• The motors receive control commands via the CAN Bus, and all are linked
in a shared bus architecture, enabling coordinated control.

3. Arduino Portenta H7:

• The Arduino Portenta H7 serves as the master controller for the CAN Bus.
It communicates with the motors via the CAN Bus (CAN1H and CAN1L).

• It also manages the Soft Stop button and a Limit Switch that is connected
to the gripper mechanism. The Soft Stop button is a safety feature to stop
the motors in a controlled manner. The Limit Switch of the gripper helps
determine the end positions of the gripper for safety and control purposes.

• The Arduino is connected to the main PC via USB, which provides data
communication and power supply.

4. Main PC:

• Themain PC is responsible formanaging high-level trajectory planning and
interfacing with the Arduino.

• The PC alsomanages external cameras for the system: the Realsense camera
and the Basler Camera are connected via USB and Ethernet respectively.

3.3. Sensors 25

3.3 Sensors

For our kiwi harvesting robot, visual perception is a critical component that ensures
precise detection, localization, and safe picking of the fruit. After careful evaluation,
we selected two cameras: the Intel RealSense D435i (Figure 3.6a) and the Basler Ace
(Figure 3.6b).

The Intel RealSense D435i is a depth camera that utilizes stereo vision technology
to generate real-time 3D data, which is essential for the precise spatial positioning
of kiwis in the environment. The D435i provides depth resolution of up to 1280x720
pixels and captures up to 90 frames per second, ensuring accurate depth perception
at high speeds. This capability is crucial for our robot, which needs to make rapid
decisions in a dynamic orchard setting.

Additionally, the RealSense D435i is highly portable and features a compact form
factor, making it easy to integrate into the physical design of our robot. Its affordable
cost also makes it an economical solution for scalability if multiple harvesting units
are deployed.

This camera is mounted on the base link of the robot and it is used to retrieve a
first guess of the kiwifruits positions in the workspace.

Complementing the depth perception capabilities of the Intel RealSense D435i is
the Basler Ace camera. The Basler Ace is a high-resolution RGB camera known for
its exceptional image quality and robust design. The Basler Ace provides crisp 2D im-
agerywith resolutions up to 5megapixels, allowing our system to distinguish between
ripe and unripe kiwis based on their colour and texture.

The Basler Ace also comeswith features that support low-light performance, which
is essential for early morning or late evening harvesting operations. With its fast frame
rates, the camera can capture quick movements of the robotic arm without motion
blur, ensuring the precision required in the picking process. Moreover, the Basler Ace
is compatible with a variety of lenses, which enables us to adjust the field of view
depending on the specific configuration of the orchard.

(a) Realsense D435i (b) Basler Ace
Figure 3.6: Cameras on the robot

26 3. Hardware

The choice of using both the Intel RealSense D435i and Basler Ace cameras comes
from the fact that the RealSense alone is not able to achieve the required precision of
kiwi position estimation, especially in an outdoor scenario with the sunlight distur-
bance. We chose to add a compact RGB camera like the Basler Ace rather than another
stereo camera, as it needed to be mounted on the robot’s end effector, requiring a
lightweight and compact solution.

4
CONTROL ARCHITECTURE

This chapter deals with the control architecture of the robot. The control system is es-
sentially split between two main components: a micro-controller and a main PC. The
micro-controller is responsible for implementing the motion control scheme, ensuring
precise actuator movements to achieve desired positions and velocities. Meanwhile,
the main PC runs ROS2 (Robot Operating System) along with MoveIt2 for trajectory
planning and camera management. This chapter explains how these components in-
teract to enable coordinated control of the robotic arm, from low-level actuator com-
mands to high-level path planning and vision-based decision-making. The integra-
tion of ROS2 and MoveIt2 provides a flexible and powerful framework for executing
complex motions, making it possible to navigate dynamic agricultural environments
effectively.

4.1 General description

The control architecture of the robot is centered around the Arduino Portenta H7
board, which serves as the primary controller for low-level motion control. This board
manages multiple critical subsystems, ensuring smooth coordination of all key robot
functions. Specifically, the Arduino Portenta H7 handles CAN communication with
the robot’smotors (CubemarsAK series), enabling precisemotor commands and feed-
back. Additionally, it oversees the gripper mechanism, including the gripper motor
and limit switch sensor (Figure 3.5). The board is also responsible for implementing
the soft stop function—a soft version of an emergency stop that, instead cutting off the
power supply and letting the robot fall, it stops the robot with a gravity compensation
that keeps it still.

TheArduino PortentaH7 board is connected to themain PC runningROS2 through
a USB connection, allowing communication to be managed on the serial bus by a ded-
icated ROS node (more details in Chapter 5). On the PC, the high-level trajectory
planning software is implemented. This software processes signals from the cameras
and generates the trajectories required tomove the robot in the analyzed environment.

We decided to split the computation between the Arduino and the main PC in

27

28 4. Control architecture

order to achieve better performances. The Arduino firmware runs at 1.25 kHz, en-
suring minimal delay in the control loop for motion control, while the ROS software
on the main PC publishes trajectory updates at a 50 Hz rate, managing updates from
the cameras and enabling fast replanning. This division of tasks allows for optimal
performance, balancing real-time control with high-level planning.

4.2 Low-level: motion control

The motion control scheme implemented on the Arduino board is presented in Figure
4.1, which has been specifically chosen over the traditional inverse dynamics approach
(Figure 4.2, Siciliano et al., 2009). Themain reason for this choice lies in the capabilities
of the Cubemars motors used in the project, which operate in ’MIT mode’. These
motors already internally close the linear feedback loop and also accept an additional
torque command that combines different components, as in the structure shown in
Figure 4.1:

𝑢 = 𝐾𝑃 𝑞̃ + 𝐾𝐷 ¤̃𝑞 + 𝑇𝑟𝑒 𝑓
By leveraging the internal linear control of the motors, we can close the linear loop
with minimal delay, thus avoiding the communication lag introduced by the CAN
bus and the processing time of the Arduino controller. This results in a more efficient
and responsive control implementation.

It should be noted, however, that the feedback torque (𝑇𝑓 𝑏) and the feedforward
torque (𝑇𝑓 𝑓) are updated at different frequencies, due to the separation between the
inner and outer control loops. This design choice allows us to maximize the respon-
siveness of the linear control while maintaining the advantages of nonlinear compen-
sation.

Furthermore, I decided to neglect the Coriolis term (𝐶(𝑞, ¤𝑞)) in the feedforward
term. Given the relatively low velocities of our trajectories, the Coriolis effect remains
limited, and its inclusionwould add significant complexity to the control without con-
siderable performance gain. Moreover, due to parametric model inaccuracies, the po-
tential benefit of including the Coriolis term would likely be overshadowed by mod-
eling errors. The modeling of the friction term (𝐷) is discussed in detail in Chapter
7, as it plays a critical role in the overall performance of the control system. For com-
pleteness, the detailed calculations for the terms 𝐵(𝑞) and 𝑔(𝑞) are provided in the
Appendix A.

To tune the control system, simulations were carried out using Simulink with the
Robotics Toolbox (Corke, 2017), directly importing the URDF file (Unified Robot De-
scription Format, provided in Appendix B) of the robot (Figure 4.3). In these simu-
lations, the friction term (𝐷) was not included, as it will be estimated and handled
directly on the physical robot, as explained later in the text. Trapezoidal velocity pro-
file trajectories were used as reference, as they provide greater excitation to the system
compared to fifth-order polynomial trajectories, which will be used in the final im-

4.2. Low-level: motion control 29

Figure 4.1: Motion control scheme: the𝑇𝑓 𝑓 term is computed on the Arduino board, the𝑇𝑓 𝑏 stabilisation
term is computed directly on the motor drives.

Figure 4.2: Classical Inverse Dynamics scheme without the Coriolis term.

30 4. Control architecture

plementation. Through this process, empirical tuning led to the selection of suitable
values for control gains:

𝐾𝑝 =


15 0 0 0
0 15 0 0
0 0 5 0
0 0 0 3


𝐾𝑑 =


5 0 0 0
0 1 0 0
0 0 15 0
0 0 0 5


These control gain values resulted in the trajectory tracking performance illustrated in
Figure 4.4.

4.3 High-level: trajectory planning

Robotics today is evolving towards increasingly sophisticated solutions that demand
flexibility, adaptability, and reliability. ROS2 (Macenski et al., 2022), has become a
prominent middleware framework in the development of such advanced robotic sys-
tems, offering enhanced communication and control capabilities for complex robotic
applications. Within ROS2, MoveIt2 (Coleman et al., 2014) stands out as a powerful
motion planning framework, providing a comprehensive suite of tools to tackle mo-
tion planning, manipulation, and control tasks.

Particularly notable is the MoveIt2 Hybrid Planning pipeline, a recent advance-
ment designed to seamlessly combine global and local motion planning techniques.
The Hybrid Planning architecture is composed of several integral components that
work in tandem to achieve adaptive and responsive motion planning: the Global Plan-
ner, the Local Planner, and the Hybrid Planning Manager. Together, these compo-

Figure 4.3: Simulink scheme for control tuning

4.3. High-level: trajectory planning 31

Figure 4.4: Trapezoidal trajectory tracking

nents enable a robust and flexible planning system that can handle dynamic and un-
predictable environments.

The Global Planner is responsible for generating a high-level plan that guides the
robot towards its goal. It operates on a more abstract level, taking into account the
overall environment and creating a trajectory that is globally optimal. This planner
ensures that the robot’s movements are feasible on a larger scale, providing a com-
plete path from the start to the goal while considering obstacles and environmental
constraints. The Global Planner’s output serves as the foundational guide for subse-
quent local adjustments.

In contrast, the Local Plannerworks on a finer scale, focusing on the real-time adap-
tation of the global trajectory. It allows the robot to react to changes and unforeseen
obstacles that may arise during execution. By performing rapid, local adjustments, the
Local Planner ensures that the robot can safely navigate around unexpected objects or
handle minor deviations from the initial plan without compromising the overall goal.
This responsiveness is crucial for dynamic environments, where static planning alone
would be insufficient.

TheHybrid PlanningManager orchestrates the interaction between the Global and
Local Planners. It acts as a central coordinator, ensuring that the plans generated by
both the Global and Local Planners are consistent and complementary. The Planning
Manager continuouslymonitors the execution progress and facilitates communication
between the two planning modules. When discrepancies arise, the Hybrid Planning
Manager decides whether to update the global plan or adjust the local plan to keep the
robot on track. This coordination results in a harmonious balance between long-term
strategic planning and short-term reactivity, providing a level of adaptability that is
essential for real-world robotic applications.

Importantly, MoveIt2 treats the Global Planner, Local Planner, and Hybrid Plan-
ning Manager as plugins, allowing users to write and customize these components
based on their specific needs. This modularity provides significant flexibility in de-
signing planning strategies tailored to particular applications. As described before, I
leveraged this feature to create custom implementations for the Global Planner, Lo-

32 4. Control architecture

Figure 4.5: Hybrid planning policy

cal Planner, and Hybrid Planning Manager, enabling the use of cheap cameras that
increasingly improve accuracy of the goal position estimate, during the trajectory ex-
ecution.

4.3.1 Hybrid planning manager plugin

TheHybrid PlanningManager plugin I developed formy robot implements the control
policy depicted in Figure 4.5. Initially, the 3D position of the target is captured using
the base stereo camera. Based on this position, a trajectory is generated by the Global
Planner and the execution begins through the Local Planner. While the robot is mov-
ing, the end-effector camera continuously refines the estimation of the target position.
If the newly estimated position deviates significantly from the previous one (with a
threshold of 2 cm), the Local Planner triggers the Hybrid Planning Manager. In re-
sponse, theHybrid PlanningManager calls the Global Planner to re-plan the trajectory
towards the updated goal. This re-planning is performed online, without stopping the
robot, allowing for a smooth and responsive adaptation to the updated target location.

The Hybrid Planning Manager is inspired by the ’single_plan_execution’ plugin,
with the addition of the following method:

1 ReactionResult ContinousPlanner::react(const std::string& event);

This addition allows the Hybrid PlanningManager to handle string-based events trig-
gered by the Local Planner. The event of interest, marked as ’KIWI_POS_VALID,’
signals the Global Planner to wake up and re-plan a new trajectory from the current
position to the newly estimated target. This target position is read from a ROS topic
published by the Local Planner.

4.3. High-level: trajectory planning 33

4.3.2 Global planner plugin

The Global Planner plugin I developed is designed to support both the OMPL (Şu-
can et al., 2012) and the Pilz Industrial Motion Planner pipelines, which are two of the
main trajectory planning pipelines available in MoveIt. The plugin takes as input a
MotionSequenceRequest (Ioan Sucan, 2023) where multiple waypoints can be specified,
along with the velocity constraints for each waypoint. The starting point of the trajec-
tory is automatically determined from the current state of the robot, ensuring seamless
integration with the robot’s ongoing operations. In this way, the Global Planner can
dynamically adapt to the current positioning, making it efficient and responsive.

For the final implementation, the OMPL pipeline was chosen, specifically using
the RRTConnect algorithm (Kuffner et al., 2000) alongside motion adapters to im-
prove trajectory planning efficiency. RRTConnect is well-suited for quickly finding
valid paths in high-dimensional spaces, making it a strong choice for complex plan-
ning tasks. By combining OMPL with motion adapters, the plugin achieves a robust
and flexible planning solution that efficiently navigates through multiple waypoints
while respecting velocity constraints and the overall motion plan structure.

4.3.3 Local planner

As described in the MoveIt documentation, the Local Planner is composed by two
plugins:

• TrajectoryOperator plugin, that basically unfolds the global trajectory piecewise,
giving to the Local Contraint Solver a much smaller trajectory to work on. In this
project, this plugin has been implemented using the standard ’simple_sampler’
example given by MoveIt.

• Local Contraint Solver plugin, that actually produces the robot commands based
on the reference trajectory and the local constraints and integrates dynamic in-
puts coming from sensors. This plugin has been customized to dynamically inte-
grate the estimate of the kiwifruit position coming from the end-effector camera.

Considering that this plugin receives the bounding box of the tracked kiwi by the
Yolobot Node (more details in Chapter 5), it can compare the size of this bounding
box with the one obtained by the base camera. This comparison is expressed by this
ratios:

𝑅𝑥 = 𝑓 𝑅𝑥
𝑤𝑒𝑐
𝑤𝑏𝑐

𝑅𝑦 = 𝑓 𝑅𝑦
ℎ𝑒𝑐
ℎ𝑏𝑐

𝑅𝑧 = (𝑅𝑥 + 𝑅𝑦)/2

(4.1)

where 𝑤𝑒𝑐 , 𝑤𝑏𝑐 , ℎ𝑒𝑐 , ℎ𝑏𝑐 are the width and the height of the kiwi bounding box mea-
sured by the end-effector camera and the base camera respectively; 𝑓 𝑅𝑥 and 𝑓 𝑅𝑦 are

34 4. Control architecture

normalization terms, introduced to compare dimensions of different bounding boxes
coming from two different cameras. They are simply the ratio of the focal lengths:

𝑓 𝑅𝑥 =
𝑓 𝑒𝑐𝑥
𝑓 𝑏𝑐𝑥

𝑓 𝑅𝑦 =
𝑓 𝑒𝑐𝑦

𝑓 𝑏𝑐𝑦

Therefore, the 𝑅𝑧 term is used to estimate the 𝑧 position of the kiwi with respect to the
end-effector camera. Then, also the 𝑥 and 𝑦 in that frame can be estimated:

𝑧̂𝑒𝑒 = 𝑅𝑧𝑧𝑏𝑙

𝑥̂𝑒𝑒 = 𝑧̂𝑒𝑒
𝑖𝑏𝑏 − 𝑐𝑥
𝑓 𝑒𝑐𝑥

𝑦̂𝑒𝑒 = 𝑧̂𝑒𝑒
𝑗𝑏𝑏 − 𝑐𝑦
𝑓 𝑒𝑐𝑦

(4.2)

where 𝑧𝑏𝑙 is the z coordinate of the kiwi estimated by the base camera and expressed
in the base link frame, 𝑖𝑏𝑏 and 𝑗𝑏𝑏 are the end-effector camera image coordinates of
the centre of the kiwi bounding box, 𝑐𝑥 and 𝑐𝑦 are the coordinates of the end-effector
camera principal points.

The estimated coordinates are then transformed into the base link frame. The
entire procedure is summarized in Figure 4.6: the block 𝑅𝑧 implements equations
(4.1), while the Projection block implements equations (4.2). The remaining steps
involve transformations based on the kinematic model. The output consists of the
estimated coordinates of the goal, expressed in the base link frame. As mentioned,
if their distance from the previous valid estimate exceeds a certain threshold (for a
certain amount of time to filter misleading estimates), the ”KIWI_POS_VALID” mes-
sage is sent to the Planning Manager, which triggers the Global Planner to plan a new
trajectory toward the updated goal on-the-fly.

It should be noted that this procedure is activated only when the arm is positioned
under the kiwi, providing a valid position in message (Listing 4.1). This is done to
avoid corrections during other phases. When activated, the kiwi closest to the centre
of the frame is chosen for tracking.

All this procedure is repeated at a 50 Hz rate, even if the Yolobot Node runs at a
lower rate. The reason is that the Local Planner produces robot commands indepen-
dently from the camera corrections, therefore it is necessary that it runs at a higher
rate.

4.4 Changes to the Moveit Hybrid Planning source code

In addition to the development of the plugins I previously discussed, I also modified
the Hybrid Planning Manager component, which is part of the MoveIt source code.

4.4. Changes to the Moveit Hybrid Planning source code 35

Figure 4.6: Goal position estimation based on the end-effector camera, implemented in the Local Con-
straint Solver plug-in

The goal of these modifications was to enhance the ability to transmit more informa-
tion from my application to the Local Planner. Specifically, I made two key changes:

• I used the first two points of the ’reference_trajectories.cartesian_trajectory’ field
of the MotionPlanRequest to transmit the coordinates of the centre of the bound-
ing box along with its dimensions (width and height) from the application node
to the HP Manager.

• Using the message in the Listing 4.1, I enabled the transmission of not only the
position of the bounding box centre but also its width and height in pixels, using
the x and y of the size from the HP Manager to the Local Planner. This allows
the Local Planner to compare the estimated size of the bounding box with the
one obtained from the base camera and, consequently, adjust the position along
the z-axis as explained previously.

36 4. Control architecture

1 # The 3D position and orientation of the bounding box center geometry_msgs/Pose center
2 Point position
3 float64 x
4 float64 y
5 float64 z
6 Quaternion orientation
7 float64 x
8 float64 y
9 float64 z

10 float64 w
11

12 # The total size of the bounding box, in meters, surrounding the object's center pose.
13 geometry_msgs/Vector3 size
14 float64 x
15 float64 y
16 float64 z

Listing 4.1: BoundingBox3D message from the vision_msgs ROS2 package Allevato, 2022

5
SOFTWARE STRUCTURE AND SIMULATION

This chapter deals with the software structure of the robotic system, describing the
developed ROS packages and their interactions. The chapter provides an in-depth
explanation of each package, detailing their roles, functionalities, and how they work
together to achieve the overall system objectives. Additionally, a significant part of the
chapter is dedicated to the simulation environment, which has been heavily utilized
to develop and test the application.

5.1 Modules architecture

The following is a list of the developed packages with a brief description. They are
grouped by their functional role.

Moveit packages:

• custom_robot_cr_arm_ikfast_plugin: this package contains an inverse kinematics
(IK) plugin specifically designed for usewith theMoveItmotion planning pipeline.
It was generated using the IKFast tool from OpenRAVE, following the steps out-
lined in theMoveIt IKFast tutorial (https://moveit.picknik.ai/main/doc/examples/
ikfast/ikfast_tutorial.html). This plugin provides an efficient and fast so-
lution for computing the inverse kinematics of the robot, enabling precise move-
ment and positioning during robotic tasks. By leveraging IKFast, this plugin
ensures real-time performance suitable for complex manipulations.

• cr_moveit_config: this package provides the MoveIt configuration for the custom
robot, generated using the MoveIt Setup Assistant based on the URDF descrip-
tion of the robot. It includes essential configuration files for motion planning,
joint limitations, and other parameters necessary for seamless integration with
the MoveIt framework. Notable files include:

– joint_limits.yaml: defines the upper and lower bounds for each joint,
ensuring the robot operateswithin safe joint ranges (according to Table 2.3).

– ompl_planning.yaml: contains the configuration for the OMPL (Open Mo-
tion Planning Library), specifying the planners and planning settings to be
used for pathfinding.

37

https://moveit.picknik.ai/main/doc/examples/ikfast/ikfast_tutorial.html
https://moveit.picknik.ai/main/doc/examples/ikfast/ikfast_tutorial.html

38 5. Software structure and simulation

– pilz_cartesian_limits.yaml: holds configuration details for the Pilz In-
dustrial Motion Library, specifying parameters for safe Cartesian move-
ment.

• manipulator_description: this package contains the description files for the ma-
nipulator robot, primarily in the form of a URDF. The main URDF file has been
crafted using the Xacro scripting language, which enhances readability, reusabil-
ity, and maintainability by allowing the use of macros and parameterization.
This makes it easier to manage complex robot models, modify components, and
adjust parameters without significant rewrites. In the Appendix B, this descrip-
tion file is reported.

• moveit_hybrid_planning: this package is part of the native source code for the
MoveIt Hybrid Planning pipeline, which integrates both global and local plan-
ning strategies for effective robotic motion planning. It has been included in this
workspace to introduce modifications as described in Section 4.4, allowing for
custom enhancements and specific adjustments needed for the project.
Moreover, it contains also the Global Planner, Local Planner and Hybrid Plan-
ning Manager plugins described in Chapter 4.3.

Hardware management:

• pylon-ros-camera: official ROS2 driver for Basler cameras (Basler, 2022).
• rs_set_param: this package has been developed to assist in building the dataset

described in Section 6.3.2. Rather than containing any direct robot control code,
this node is responsible for automatically setting the exposure of two cameras
used in data acquisition to different values. It has been used to collect the ’en-
hanced exposure’ dataset that will be discussed in Section 6.3.2.

Communication:

• hp_interfaces: this package contains customROS interfaces developed specifically
for the hybrid planning application. While an effort was made to utilize only
standardized ROS messages and services, certain unique requirements neces-
sitated the introduction of custom interfaces: Move.srv (Listing 5.1) and Detec-
tion.action (Listing 5.2). These messages are used for communication from the
main application node and the hybrid planning and Yolobot node, as will be
discussed in the next section and in Figure 5.2.

• ROS-TCP-Endpoint: this package developed byUnity-Technologies (Unity-Technologies,
2022) has been included to communicate with the simulated environment devel-
oped in Unity. More details in Section 5.3.

• serial_comm: this node is responsible for managing communication with the Ar-
duino board that controls the robot’s motors. It serves as a key link between ROS
and the hardware, enabling both command and feedback functionalities:

– Joint Trajectory Transmission: the node receives the desired joint trajectory
commands fromROS and transmits them to the Arduino board over a serial

5.1. Modules architecture 39

1 bool move_auto
2 geometry_msgs/Point position
3 float64 shoulder1_pos
4 float64 shoulder2_pos
5 float64 elbow_pos
6 float64 wrist_pos
7 ---
8 bool success

Listing 5.1: Move.srv custom message

1 bool service
2 ---
3 vision_msgs/Detection3DArray detection
4 ---

Listing 5.2: Detection.action custom message

bus. This allows precise control over each motor to ensure the robot follows
the planned trajectory.

– Joint State Feedback: in the reverse direction, the node reads the current
joint states—position and velocity—from the Arduino, and publishes this
information to a ROS topic. This feedback is crucial for maintaining syn-
chronization between the robot’s physical movements and the rest of the
ROS nodes.

– Gripper Management: Additionally, the node, in coordination with the Ar-
duino, controls the gripper motor. It also manages the limit switch sensor,
ensuring safe operation by detecting and responding to the limits of the
gripper’s motion.

Main application:

• yolobot_strongsort: this package implements the computer vision pipeline respon-
sible for detecting and tracking kiwifruit in the environment. It combines object
detection using YOLO (Redmon et al., 2015) with object tracking via the Deep-
Sort (Wojke et al., 2017) algorithm to provide robust real-time visual data. The
pipeline interacts with both the Realsense and the Basler cameras to acquire the
necessary visual input, and outputs a list of bounding boxes that indicate the lo-
cations of the detected kiwifruit. These bounding boxes are then utilized by other
nodes to estimate the goal position for trajectory planning, as discussed in the
previous chapter. More detailed information regarding the perception pipeline
will be given in Chapter 6.

• hybrid_planner: this is themain application package and acts as the central super-
visor for the entire system. The hybrid_planner node orchestrates all services,
actions, and interactions between the different components in this workspace. It
oversees the flowof data and ensures smooth coordination betweenmotion plan-
ning, vision, hardware control, and other functionalities, making it the core of the

40 5. Software structure and simulation

Figure 5.1: Workspace architecture

overall robotic process. Given its pivotal role in managing the hybrid planning
approach, further in-depth details about the implementation and functionality
of this package are provided in the next section.

The diagram in Figure 5.1 sums up how the main nodes interact within the system,
depending on whether the real robot or a Unity simulation is being used. It can be no-
tices how the application noded (Hybrid PlannerNode and the YolobotNode) and the
MoveIt nodes are hardware agnostic, they interact with the actual hardware through
the hardware interface nodes: using the ROS-TCP-Endpoint node if the simulated
robot is running or with the Serial Com Node and the camera drivers if the real robot
is running.

5.1.1 Arduino firmware

The Arduino firmware implements the motion control, integrating CAN communica-
tion for motor control and serial communication for reference trajectory input from
the main PC. The system coordinates the movement of the four actuators (plus the
gripper), each with specific limits on position, velocity, and torque, as discussed in
Chapter 4. The setup function initializes the CAN bus communication to interact with
the motors, as well as sets up PWM for handling the gripper.

The control logic resides in the loop function, where the desired positions, veloci-

5.2. Application details 41

1 void gravity(float q2, float q3, float q4)
2 {
3 float t2 = G;
4 float t3 = sin(q2);
5 float t5 = -q3;
6 float t4 = len_l[1]*t3;
7 float t6 = q2+t5;
8 float t7 = cos(t6);
9 float t8 = q4+t6;

10 float t9 = sin(t6);
11 float t10 = cos(t8);
12 float t11 = sin(t8);
13 float t12 = a2*t7;
14 float t13 = cog_len[2]*t9;
15 float t14 = len_l[2]*t9;
16 float t15 = a3*t10;
17 float t16 = cog_len[3]*t11;
18 g = {0.0, 0.6*(mass_l[3]*t2*(t4+t14+t15+t16)+m_m*t2*(t4+t14)+mass_l[2]*t2*(t4+t12+t1 c

3)+cog_len[1]*mass_l[1]*t2*t3),
-mass_l[2]*t2*(t12+t13)-m_m*t2*t14-mass_l[3]*t2*(t14+t15+t16),
mass_l[3]*t2*(t15+t16)};

↩→
↩→
↩→

19 }

Listing 5.3: Computation of the gravity compensation term

ties, and torque values are updated in real-time based on feedback from the CAN bus,
which receives sensor data from the robot’s motors. Additionally, communication be-
tween the Arduino and amain PC through the serial interface allows the PC to provide
trajectory references and control gains.

The code also includes functions for sending CANmessages to enter motor mode,
exit motor mode, and set motor zeroing, ensuring robust communication with the
motor drivers.

The calculations of the feed-forward torque mentioned in Chapter 4 are imple-
mented exporting C code directly from the Matlab functions. In this way, all the cal-
culations about the dynamic model have been performed symbolically inMatlab (and
reported in the Appendix A) and exported directly in C code. In the Listing 5.3, the
obtained function for gravity compensation term computation is reported as an exam-
ple.

5.2 Application details

The diagram in Figure 5.2 shows the state machine of the Hybrid Planner Node, repre-
senting the implementation of the reference trajectory discussed inChapter 3. The pro-
cess is initiated through the /move service, using the customMove.srvmessage (Listing
5.1):

• If the field move_auto is True, the state machine starts and executes the full pick-

42 5. Software structure and simulation

ing trajectory.
• If False, the user can specify a particular position in the workspace or a specific

joint configuration as the goal, and a trajectory is generated towards that target.

It follows a detailed description of the internal states.

1. READY: a MotionPlanRequest is sent to the Hybrid Planning Manager to reach
the Home position. This position has been chosen to be such that it does not
obstruct the field of view of the base camera. Exploiting the action architecture
of ROS2, the subsequent state is reached only when the action is completed and
the robot has reached the desired position.

2. HOME: in this state, a call to the Yolobot Node using the Detection.action cus-
tom message is executed. As described in Listing 5.2, the returning values is a
Detection3DArray: this message is filled with 2D bounding boxes of the detected
kiwifruits (coordinates of the centres and dimensions) plus the z-coordinate of
the centre of the bounding boxmeasured by the stereo system. This is the reason
why the Detection3Dmessage has been used, instead of the simpler Detection2D
message. After receiving this list, aMotionPlanRequest is sent to move the end ef-
fector under the first kiwifruit in the list.

3. APPROACH: here, the tracking service of the Yolobot Node is activated so that
it receive the video signal from the Basler camera and process it accordingly. At
the same time, a specialMotionPlanRequest is sent to the HPManager: it contains
the coordinates of the goal plus the dimensions of the bounding box of the se-
lected kiwifruit; it will be used by the Local Planner to refine the estimate of the
goal, as discussed before. Therefore, the approach trajectory is executed with
the corrections triggered by the Local Planner.

4. CLOSE GRIPPER: once the goal has been reached, the tracking service of the
Yolobot Node is deactivate and ’close gripper’ command action is sent to the Se-
rial Com Node. It transmits in turn this command to the Arduino board that
manages the gripper motor. The feedback of actual closing is sent back and trig-
gers the next state.

5. DETACHMENT: even if it is not part of the reference task described in Chapter
3, it has been decided to add an additional downwards movement to ensure the
detachment and to make sure to not damage the plant or other kiwis during
the gripper reopening movement. This short movement is performed with a
MotionPlanRequest to the HP Manager, choosing simply a point 10 centimetres
below the picked kiwifruit as a goal.

6. OPEN GRIPPER: the same action as the CLOSE GRIPPER state is performed,
this time opening the gripper e letting the picked kiwi fall into the tube.

This procedure is repeated until the last detected fruit is harvested, so the mobile plat-
form can move forward to the next section.

5.2. Application details 43

Figure 5.2: State machine and interaction with other nodes of the hybrid_planner node.

44 5. Software structure and simulation

(a) Bottom view

(b) Top view
Figure 5.3: Simulated orchard in Unity

5.3 Simulation environment

Unity is a powerful cross-platform development environment, widely recognized for
its versatility in creating interactive 3D applications, ranging from video games to
simulations and virtual reality experiences. In the context of robotics, Unity offers
a unique and valuable toolkit for creating complex, immersive environments that can
be used to simulate robotic systems. By leveraging Unity’s capabilities, engineers and
researchers can develop, test, and refine robotic algorithms without needing access to
costly hardware or physical spaces, ultimately accelerating the process of prototyping
and deployment.

For my project, I chose Unity primarily due to its high configurability, its strong
integration capabilities with ROS, and its ability to produce photo-realistic environ-
ments. Unity’s flexibility allows users to create detailed virtual worlds with fine-tuned
control over various elements, from object physics to lighting conditions. Addition-
ally, interfacing Unity with ROS through the ROS-TCP-Endpoint and the Unity URDF
Importer makes it easy to integrate the simulation with existing robotic frameworks,
thereby creating a seamless bridge between virtual and physical robotics development.

An example of that can be seen in Figure 5.3, where a virtual kiwi orchard with
the robotic harvester model is shown. The real interaction happens under the plant

5.3. Simulation environment 45

Figure 5.4: Mesh of the mapped orchard

(Figure 5.3a), where there is the robot equippedwith cameras, interfacedwith the ROS
control software. The kiwifruits are spawned randomly, so that a different random
configuration can be tested. In Figure 5.3b, it is shown the tree line from above. This
model has been obtained by photogrammetry using a drone to shot the pictures. This
shows that Unity allows to easily use 3D models coming from different contexts.

Another key feature that I particularly took advantage of was Unity’s capability
to produce photo-realistic scenes. This, combined with the Unity Perception Pack-
age (Unity Technologies, 2020), made it an excellent platform for generating synthetic
datasets for computer vision tasks such as object detection. By using these tools, I was
able to create high-quality, diverse datasets for training machine learning models for
object detection, as described in the next chapter.

5.3.1 Application: mixed reality for orchards

Another application where I used Unity was the development of a mixed reality ap-
plication for HoloLens 2, in collaboration with the Microsoft Mixed Reality & AI Lab.
The project focused on creating an immersive experience that allowed users to interact
seamlessly with the digital twin of an orchard. By leveraging the HoloLens 2’s spatial
computing capabilities, I built an application that visualized real-time data and offered
intuitive interaction with the virtual representation of the orchard. The mapping and
localization aspects were managed by a Microsoft proprietary service: in Figure 5.4, a
mesh extracted by the reconstructed pointcloud collected by the HoloLens is shown. I
implemented the database to manage the relational data of holograms and developed
the mixed reality app to show and insert new data and interact with the databsae.
This enabled users to explore environmental conditions, monitor tree health, and un-
derstand the impact of different variables on the orchard ecosystem.

The database structure I implemented consists of five main tables (Figure 5.5):
FieldArea, Trees, FruitPos, Fruits, and TreeData. Each of these tables plays a crucial

46 5. Software structure and simulation

Figure 5.5: Database structure of the digital twin

role in organizing spatial and relational data about the orchard. The FieldArea table
holds spatial data about different areas of the orchard, containing coordinates (PosX,
PosY, PosZ) and a unique identifier (AreaId). The Trees table represents individual
trees, containing both spatial positioning and rotational data to precisely define their
location and orientation, and links each tree to a specific area using AreaId. The Fruit-
Pos table stores spatial positions and orientations of individual fruits, linking each
fruit to a specific tree using TreeId. The Fruits table provides information about in-
dividual fruits, such as Diameter and the timestamp (ReadTime) of when data was
collected. Lastly, the TreeData table contains time-series data for each tree, including
attributes like Foliage and GDD (Growing Degree Days), providing a dynamic view
of tree health over time.

This database structure allowed us to create a highly detailed and interconnected
model of the orchard, which was essential for delivering an accurate mixed reality ex-
perience. The spatial and temporal data provided by the database, filledwith informa-
tion from sensors or robots inspecting the real orchard, enabled real-time interaction
and visualization of various orchard conditions, making the digital twin a powerful
tool for understanding and managing the agricultural environment.

This is exemplified in Figure 5.6, showing a screenshot taken from the HoloLens
in the real orchard. The image shows important information about a selected tree,
directly downloaded from the database. The displayed data includes the number of
fruits, fruit size distribution, fruit size history, and detailed attributes like growth de-
gree days (GDD), foliage volume, trunk cross-sectional area, and crop load. This kind
of visualization helps users quickly assess the health and productivity of individual
trees in the orchard, highlighting the value of integrating mixed reality with precise,
sensor-driven data.

5.3. Simulation environment 47

Figure 5.6: Example datapanel in the mixed reality app

6
PERCEPTION

This chapter deals with the perception pipeline of the robotic system. It is shown how
the images from the two cameras are processed in order to extract useful information
about the position of kiwifruits. The chapter describes the steps involved in object
detection and object tracking, leading to accurate localization of the fruits within the
environment. The perception system plays a crucial role in enabling the robotic arm to
make informed decisions, facilitating effective and precise fruit harvesting. Detailed
explanations are provided on the algorithms and techniques used to interpret visual
data, ensuring reliable detection and positioning of the target fruits.

6.1 Fruit detection and tracking

The perception system is a critical component of the robotic kiwi harvester, enabling
it to accurately identify, localize, and interact with the fruit in a dynamic orchard en-
vironment. The perception architecture integrates two distinct types of cameras, each
serving complementary roles in providing visual and depth information to guide the
harvesting process. These cameras include an Intel RealSense D435i stereo camera and
a Basler Ace RGB camera, introduced to maximize perception accuracy and flexibility.

The Intel RealSense D435i is mounted rigidly to the base link of the robot, pro-
viding a stable reference frame for capturing depth information. This stereo camera
is capable of generating high-resolution depth maps by combining visual data from
its dual lenses with an infrared projector, making it well-suited for detecting depth in
an outdoor setting. By capturing a broader view of the environment, the RealSense
camera helps in constructing an overall spatial map of the kiwi fruits in the area. This
enables the robot to plan efficient paths to navigate and reach target fruits.

In contrast, the Basler Ace RGB camera is mounted on the end effector of the robot,
allowing it to gather detailed visual data close to the target fruit. This positioning en-
sures that the camera has an unobstructed, high-resolution view of each kiwi during
the final approach. The Basler Ace is employed for precise visual analysis, accurately
estimating the pose of the kiwifruit. This close-up visual information is vital for re-
fining the robot’s grasp strategy, ensuring that the fruit is harvested without causing

48

6.1. Fruit detection and tracking 49

(a) Base camera perception pipeline

(b) End-effector camera perception pipeline
Figure 6.1: Perception pipelines for the two cameras

damage to the delicate skin or stem.
The video signal coming from the cameras is processed by the Yolobot node, as

mentioned in the previous chapter. In this node, a YOLO (You Only Look Once)
(Redmon et al., 2015) model is used for object detection, and a DeepSort (Wojke et al.,
2017)model is employed for object tracking (more details in the next paragraphs). The
YOLOmodel enables the system to detect and classify kiwi fruits in real time, leverag-
ing its powerful convolutional neural network to distinguish fruits even in cluttered
or partially occluded environments. The DeepSort model, on the other hand, is re-
sponsible for tracking the detected kiwifruit across frames, providing robust temporal
consistency for each target as the robot moves.

The signal coming from the RealSense camera is processed at the beginning of
the harvesting action to identify all visible kiwi fruits, without requiring continuous
tracking. As illustrated in Figure 6.1a, the perception pipeline begins by capturing an
RGB image from the RealSense camera, which is then passed through a customized
fruit detection model using YOLO. The output of this process is a set of bounding
box coordinates that indicate the position of each detected kiwi. Once the bounding
boxes are identified, the corresponding depth image is segmented to derive the 3D
coordinates of the kiwifruit.

The signal from the Basler Ace camera, which is mounted on the end effector, is
processed differently. As shown in Figure 6.1b, the RGB image captured by the Basler
Ace is fed into the object detectionmodel to identify kiwifruit. In this case, however, an

50 6. Perception

Figure 6.2: Kiwi detection in real environment

additional object tracking step is included to ensure that the robot consistently follows
a single target kiwi at a time. The tracking process ismanaged bymodels such as SORT
or DeepSort, which assign unique IDs to each detected fruit and track their positions
across consecutive frames. This step is critical for maintaining focus on a specific kiwi
during the approach and grasp phase, ensuring that only one kiwi is targeted and
harvested at a time.

The output of this pipeline is the image coordinates of the bounding boxes for
each detected kiwi, which are subsequently passed to the Local Planner node. The
Local Planner selects the appropriate kiwi based on the assigned ID and uses these
coordinates to estimate the 3D position of the fruit, as described in Chapter 4. This
process allows the robotic arm to accurately plan and execute the harvesting motion,
achieving precise alignment with the target fruit.

Figure 6.2 illustrates the output of the Yolobot node processing the end-effector
camera, where kiwifruits are detected and highlighted with green bounding boxes.
This visual feedback showcases the integration of object detection and tracking, al-
lowing the robotic arm to keep track of multiple kiwifruits within its field of view

6.1.1 Object detection

Object detection in the scene was achieved using the YOLO (Redmon et al., 2015)
convolutional neural network, which is a leading, real-time detection system. YOLO
operates with a single-shot detection approach, effectively identifyingmultiple objects
within an image with high accuracy by leveraging a Convolutional Neural Network
(CNN) that directly processes images and outputs bounding box predictions. The
primary reasons for choosing YOLO were its speed, flexibility, available tools, and
open-source nature.

Before YOLO, conventional image classifier neural networks were limited to clas-
sifying a single image at a time. To detect multiple objects within a scene, the image

6.1. Fruit detection and tracking 51

needed to be fragmented into smaller pieces, and classifiers would be applied individ-
ually to each part. YOLO revolutionized this process by enabling simultaneous detec-
tion of multiple objects in a single pass through the neural network, which inspired
the name ”You Only Look Once.” Due to its effectiveness and rapid processing capa-
bilities, YOLO quickly gained popularity. Over the years, the original YOLO model
has been improved, resulting in numerous iterations that boast higher accuracy and
faster processing speeds. For this particular project, YOLOv5 was chosen due to its
speed and compatibility with Python code and the Torch framework at the time of
initial implementation.

For this project, the YOLOnetworkwas specifically retrained to perform fruit recog-
nition in-field and within tree rows. As YOLO is a supervised learning model, a sub-
stantial amount of labeled data was necessary to achieve satisfactory detection accu-
racy. To meet this requirement, an extensive labeling process was conducted.

Labeling is typically the most labor-intensive part of preparing for object detec-
tion, as it involves significant manual effort. Considering the labor-intensive nature
of labeling, it was decided to mix real images with synthetic ones produced in Unity,
whichwere automatically labeled by the software. More details will be provided in the
Section 6.3. To streamline this process, for the real images Label Studio (Tkachenko
et al., 2020-2022) was employed. Label Studio is an open-source, web-based tool that
supports multi-user setups and allows for the creation of various labeling projects,
whether for image detection or segmentation, as needed.

6.1.2 Object tracking

Fruit tracking across multiple frames is accomplished by employing existing state-of-
the-art Multiple Object Tracking (MOT) algorithms. For this purpose, twoMOT algo-
rithmswere chosen: SORT (Bewley et al., 2016) andDeepSort (Wojke et al., 2017), with
DeepSort being an enhanced, deep-learning-based version of the SORT algorithm. The
first technique, SORT, is purely algebraic and relies solely on bounding box parame-
ters and confidence scores, while DeepSort includes an image feature matching layer
that utilizes several pre-trained neural networks to improve accuracy in matching de-
tections across frames.

The deep learning association network ”osnet_x0_25_msmt17.pt”was selected for
experiments using the DeepSort method. This association network is a community-
provided, pre-trained model specifically designed for typical benchmarking scenarios
involving people tracking. The selection of the type and dimension of the deep associ-
ation metric network was influenced largely by the computational resources available
for processingmultiple fruit detections. Since speed is crucial in this context, a simpler
and faster network was preferred over more complex, slower alternatives.

To prevent tracking of the wrong kiwi in subsequent frames, the tracking data gen-
erated by the MOT algorithm is utilized for position estimation update in the Local
Planner. Each detected object is assigned a unique ID number, which allows it to be

52 6. Perception

Figure 6.3: Frame sequence from the approach manoeuvrer: the selected ID (10) stays always in the
frame and never changes.

tracked consistently across frames. Given that kiwis are very similar in appearance,
and considering that the selected kiwi is remaining in the image frame during the
approach, the selected ID number of the tracked kiwi is not changing during the ap-
proach and it is used by the Local Planner to filter the right bounding box (Figure 6.3).

6.2 Application: apple counting

The aforementioned MOT techniques have been employed also for an apple count-
ing application, specifically addressing the differences between planar and spindle
orchard types, as described in D. Mengoli et al., 2023. The planar type represents
a robotic-friendly orchard structure, allowing all fruits to be exposed without occlu-
sions, whereas the spindle type, being more traditional, often results in significant
occlusions caused by the canopy. Experiments were conducted using the robotic plat-
form prototype described in Section 1.3, which involved traversing orchard rows at a
speed of approximately 0.6 m/s. This speed was selected based on the performance
capabilities of the onboard computational hardware, consisting of a Cincoze DS-1301
automotive PC with an Nvidia RTX A2000 GPU. YOLO detection achieved a rate of
90 frames per second (fps), which decreased to 20 fps when incorporating the Deep-
Sort algorithm. The system’s computational resources had to be shared between the
left and right cameras, so the cruising speed was configured to ensure proper overlap
between consecutive frames at a rate of 10 fps.

Due to the differing cultivar types and expected levels of fruit occlusion, distinct
confidence thresholds were set for each type: 0.46 for spindle cultivars and 0.54 for
planar cultivars. Additionally, the Intersection over Union (IoU) threshold was set to
0.5. Each row of trees was scanned from both sides to obtain a comprehensive view.
For the planar type, where canopy occlusion is minimal, the counts from both sides
were averaged. In contrast, for the spindle type, where heavy occlusion is expected,
the counts from both sides were summed to derive the total count.

Depending on the actual number of fruits detected, a calibration coefficient may be
necessary to best align predictions with reality, particularly for the spindle architec-
ture, where occlusions are more prevalent, or when detecting apples on adjacent rows
in the planar type. The default parameters for the SORT algorithm were maintained,

6.2. Application: apple counting 53

Method Spindle type Planar type

Side 1 Side 2 Total (sum) Side 1 Side 2 Total (avg)

SORT 1375 1108 2483 2983 2790 2886
DeepSORT 730 686 1416 1778 1880 1829
Manual - - 2298 - - 1689

Table 6.1: Comparison of different methods for Spindle and Planar types (D. Mengoli et al., 2023)

while DeepSort parameters were adjusted to compensate for camera movement, re-
quiring a minimum of 2 frames to initiate tracking, a maximum age of 30 frames, and
a maximum distance of 0.8 for both matching and gating IoU thresholds.

The results of applying both SORT and DeepSort MOT algorithms in combination
with YOLO object detection are presented in Table 6.1. As the performance of the
MOT algorithms depends heavily on the detections from the YOLO network, identical
parameters were used for both approaches to ensure consistent bounding boxes. The
obtained results were subsequently compared with manual fruit counts, serving as a
ground truth.

Figure 6.4 illustrates two example images of the tracked apples, showing the dif-
ferent orchard architectures: the spindle type on the left and the planar type on the
right. In both images, a few blue bounding boxes are visible without an associated
ID number, indicating YOLO detections that have not yet been correctly tracked by
the MOT algorithm. It is important to note that during all field tests conducted, using
the aforementioned configuration, every object detectedwas eventually tracked by the
MOT algorithm as the video progressed. The MOT algorithms require a valid match
for a specific number of consecutive frames before confirming an ID association, and
due to the complexity of the scenario or motion blur caused by camera movement,
some time may be needed to stabilize apple tracking.

As anticipated, DeepSort outperformed SORT in handling occlusions and reassign-
ing IDs when apples were intermittently obscured by leaves or canopy, which caused
the SORT algorithm to overestimate the total count. The spindle type, with its dense
canopy, also tended to hide more apples, which resulted in the undercounting seen
withDeepSort. To align the automatic countswith the actual number of apples present
in the different orchard types, calibration coefficients were necessary in these cases.

The field tests demonstrated acceptable fruit counting performance, particularly
in the planar orchard type, which is more favourable for robotic systems. Although
some over-counting occurred, largely due to detection of apples in background rows,
the overall error remained below 10. The YOLO detection performance played a crit-
ical role in achieving these results, as the MOT’s accuracy depends on reliable initial
detections. In scenarios involving DeepSort, manual verification on a limited set of
apples indicated that the detection was highly accurate, with precision and recall ex-
ceeding 90, and that assigned IDs remained stable throughout each apple’s traversal
across the frame sequence.

54 6. Perception

Figure 6.4: Apples counting application in two different orchard types: spindle(left) and planar (right)

6.3 Training dataset

6.3.1 Synthetic images

To enrich the object detection dataset for the YOLO detector, I employed Unity with
the Unity Perception Package (Unity Technologies, 2020). The primary objective was
to generate a large volume of synthetic images, each containing automatically labelled
objects that are ready to be used for training the YOLO model (Figure 6.5). This ap-
proach significantly reduces the time and labour costs traditionally associated with
dataset annotation, as the entire labelling process is automated, avoiding the chal-
lenges of manual image labelling.

Unity’s capabilities as a 3D development environment provided several advan-
tages for creating the object detection dataset. The Unity Editor allows users to con-
struct virtual environments that simulate real-world settings, complete with custom
lighting, textures, and backgrounds. Using these simulated environments, I was able
to generate images featuring target objects from different angles, lighting conditions,
and contexts, ensuring a high level of diversity in the dataset. The synthetic nature
of this method also allows for precise control over object placement, movement, and
visibility, which helps in capturing edge cases that would be difficult to gather in real-
world scenarios.

The Unity Perception Package further amplified the value of this synthetic data
creation process. The Perception Package, an open-source extension from Unity, is
specifically designed to facilitate the collection of computer vision datasets. With fea-
tures such as randomization and built-in labelling tools, I was able to generate diverse
scenes where parameters such as object position, scale, and background light could
be varied automatically. The package also comes equipped with a Labeller compo-
nent that assigns annotation tags to all specified objects in a given scene, generating

6.3. Training dataset 55

Figure 6.5: Images captured from the Unity simulator for data augmentation with the highlighted auto-
labelled objects

metadata in a COCO-compatible JSON format. This automated labelling ensured that
every frame generated through Unity came with high-quality, consistent annotations.

The advantage of using Unity and the Perception Package lies primarily in the re-
duction of human labour traditionally required for dataset labelling. Manual labelling
is not only time-consuming but also prone to human error, particularly when dealing
with large datasets involving numerous classes and images. By generating images
within Unity, the labelling of object bounding boxes is done automatically, achiev-
ing pixel-perfect accuracy. Moreover, this automation makes it feasible to generate an
enormous dataset in a fraction of the time it would take using manual methods. The
resulting dataset is rich with variability, which helps prevent over-fitting and encour-
ages the YOLO model to learn generalizable features.

6.3.2 Enhanced exposure images

The enhancement of the training dataset for the YOLO object detection model was
critical to address issues arising from our specific imaging environment. The primary
camera used for image acquisition was the Intel RealSense, which is optimized for in-
door applications, while our initial dataset was gathered in outdoor conditions. This
mismatch led to significant challenges in detection performance due to varying light-
ing conditions. Evenminor fluctuations inweather or time of day caused drastic drops
inmodel accuracy. Tomitigate these issues, we expanded the dataset to include images
captured at different exposure levels and across different times of the day. Specifically,
images were collected with the following exposure times [𝜇𝑠]: 20, 30, 50, 100, 200, 300,
400, 600, 800, 1200, 1600, and with autoexposure enabled. However, it is important to
note that not all the collected images were added to the dataset: some of them were
too bright or too dark (as shown in Figure 6.6). Only the images where the kiwi were

56 6. Perception

(a) 20𝜇𝑠 (b) 30𝜇𝑠 (c) 50𝜇𝑠

(d) 100𝜇𝑠 (e) 200𝜇𝑠 (f) 300𝜇𝑠

(g) 400𝜇𝑠 (h) 600𝜇𝑠 (i) 800𝜇𝑠

(j) 1200𝜇𝑠 (k) 1600𝜇𝑠 (l) Autoexposure
Figure 6.6: Same pictured taken at different exposure time, added to the training dataset

distinguishable were included. This enhancement aimed to diversify the lighting sce-
narios and provide more robust training data for YOLO. An example can be observed
in Figure 6.6l, where we demonstrate the inadequacy of the Realsense auto-exposure
algorithm in this situation; the images tend to be underexposed as the brighter back-
ground overwhelms the dimmer foreground, since the camera is always pointing up-
wards and the kiwi tree covers the sky. By carefully augmenting the dataset in this
way, we aimed to make the YOLO model more resilient to the dynamic lighting con-
ditions typically encountered in our environment.

A very important future development is to write a custom autoexposure algorithm
that works better for this situation. One possible approach for a custom autoexposure
algorithm could be based on the values from the depth image. For instance, we could
filter the RGB image by selecting only the pixels that fall within a certain depth range,
effectively performing RGB segmentation based on depth. This filtered foreground
could then be used to regulate the image exposure. In this way, even if the background
becomes overexposed, the foreground containing the kiwis would remain properly
exposed, improving detection performance.

7

RESULTS

In this chapter, the results of the harvesting experiments are presented, including both
simulations and real-world tests conducted in an actual orchard. The performance of
the system is analysed, highlighting the successes and identifying areas of improve-
ment. Additionally, the non-ideal characteristics of the built prototype are critically
evaluated, such as limitations in accuracy, presence of non linear friction and cameras
calibration process. This chapter provides valuable insights into the practical chal-
lenges encountered during implementation, and discusses the lessons learned that
could inform future improvements.

7.1 Simulation

As introduced before, the robot and the environment are simulated in Unity while the
results are shown in RViz (Figure 7.1). The simulation environment provides the state
of the robot, the feedback from the cameras (Figure 7.2) and actuates the robot joints.
In each test, a random number of fruits is spawned in random positions on the foliage
of the tree to test the perception and planning algorithms in different situations. The
results are summarized in Table 7.1: it shows the number of actual fruits present in
the image frame captured by the base camera, the number of fruits detected, the ones
that are in the reachable workspace, the number of the actually reached fruits using
the tracking algorithm and the duration of the experiment.

Considering that the aim of these simulations is to validate the developed percep-
tion pipeline, the physics of the grasping and the detachment forces are not considered:
a 10 seconds pause is introduced to take into account the opening and closing time of
the real gripper.

From Table 7.1, the result is that the 80% of the fruits detected in the workspace
are successfully reached with a 25.8s average time. This result can be easily improved
considering that the robot is stationary during the gripper opening phase and the
harvesting order of the fruit is not optimised to reduce the travelling time.

57

58 7. Results

Figure 7.1: Solid red: actual state of the robot. Transparent red: target state. Green balls: position of
the detected fruits. Green line: planned trajectories. Gray box: workspace of the robot.

(a) RGB image (b) Depth image
Figure 7.2: Output of the simulated base camera in Unity

7.2. Real robot 59

In frame Detected In workspace Reached Time [s]

1 13 12 5 5 112
2 13 11 4 3 83
3 10 9 3 2 53
4 12 11 6 5 121
5 13 11 6 4 107
6 9 6 4 3 83
7 10 8 1 1 27
8 12 10 3 3 83
9 9 9 3 2 53

Table 7.1: Results of the simulated harvesting experiments: number of fruits present in the image
frame captured by the base camera, fruits detected by the computer vision pipeline, fruits present in
the reachable workspace, actually reached fruits using the tracking algorithm and the duration of the
experiment

7.2 Real robot

The robot shown in Figure 7.3 represents the finalized prototype designed for au-
tonomous harvesting tasks, which was tested during a field campaign between late
October and early November 2023. In Figure 7.3a, the robotic arm is shown in a typical
working configuration inside the kiwi orchard. Figure 7.3b depicts the whole system
(Hammerhead plus the robotic arm and the electrical box).

Despite our best efforts, numerous delays occurred during the mechanical con-
struction phase, significantly affecting the overall schedule. As a result, we had ap-
proximately threeweeks to develop and test the software component of the system, fol-
lowed by a rushed one-week period for calibration and integration. These constraints
left us with little time for thorough testing and refinement of the complete system in
the field.

The field tests faced several practical challenges that limited the collection ofmean-
ingful data. One significant issue arose with the depth-sensing camera; the infrared-
based RealSense sensor struggled under direct sunlight, leading to unreliable distance
measurements and difficulty in the detection and localization of kiwifruit within the
canopy.

Consequently, we gathered limited results. Themost successfulmeasurement recorded,
involved a full sequence of operations:

1. the robot moved to the home position to avoid obstructing the field of view of
the base camera;

2. the robot detected the kiwis in the area (using the base camera);
3. it started harvesting the detected kiwis one by one;
4. upon completing the list, it returned to the home position;
5. finally, the rover moved a step forward to a new harvesting area.

Since there was no connection between the rover navigation PC and the manipulator
PC, the rover was manually activated once the manipulator emptied his workspace.

60 7. Results

(a) Harvesting manipulator (b) Entire robot
Figure 7.3: The real robot in a kiwi orchard

The results of this sequence is summed up in Table 7.2. The average time has been
measured not counting the rover activation and movement time because, as said be-
fore, it was manually activated.

7.2.1 Friction

During the development of our robotic prototype, we encountered significant chal-
lenges relating to non-linear friction, particularly in the first two joints of the robot.
Unlike the standard viscous friction model, which typically assumes that friction is
linearly proportional to velocity, our observations revealed substantial discrepancies
between this classical model and the actual behaviour exhibited by these joints. This
inconsistency led to considerable inaccuracies in motion control and precision, ulti-
mately requiring an alternative approach for amore realistic representation of friction.

The friction present in the first two jointswas especially problematic due to its com-
plex nature, which was not adequately captured by a simple viscous friction model.
Instead, a more nuanced approach was needed—one that combined viscous friction
with both Coulomb friction and static friction to more accurately depict the observed
dynamics. The non-linear characteristics were found to be especially pronounced dur-
ing low-velocity motion or at the point where the joint transitioned from rest to move-
ment, where static friction effects dominated.

No of harvested fruits 6
Total No of fruits 9
Not detected 3
Failed grasps 0

Avarage time per fruit 25.2 s

Table 7.2: Results of the real harvesting experiment

7.2. Real robot 61

To address this, we adopted a friction model that integrated multiple components
of friction: viscous, Coulomb, and static friction. This model, illustrated in Figure 7.4,
provides a more comprehensive depiction of the friction forces acting on the joints.
The model acknowledges the discontinuity at zero velocity, which represents the sud-
den change from static friction to kinetic friction as the velocity moves away from zero.
This characteristic allowed us to better approximate the behaviour of the joints in var-
ious operating conditions.

The contribution of the viscous friction is represented by the matrix 𝐷 used in
control scheme in Figure 4.1, and this is its estimated value:

𝐷 =


0.2 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.1 0.0
0.0 0.0 0.0 0.0


The term incorporating the static and Coulomb friction is estimated to be as follows:

𝐹𝑠 =


𝜙1

𝜙1

0
0


(7.1)

where

𝜙1 =


4 sign(𝜔) if |𝜔 | < 0.01,
2 sign(𝜔) otherwise

As said before, this term contributes only to the joint 1 and 2, as expressed by the (7.1).
The combination of these frictional forces, particularly the role of static friction at

low velocities and the switch to kinetic friction as velocity increased, was crucial in
accurately modelling the non-linear effects observed in our prototype’s joints. With
this refined friction model in place, we were able to implement control strategies that
compensated for the non-linearities more effectively, leading to improved precision
and stability in the movement of the first two joints

7.2.2 Basler camera calibration

It was crucial to note that the Basler camera, in its default state, was not calibrated.
Without proper calibration, the measurements obtained from the camera would have
been inherently inaccurate due to distortions and incorrect mapping between the 2D
camera image and real-world 3D coordinates. Therefore, to ensure the reliability of the
fruit position measurements, a thorough camera calibration process was conducted.

Camera calibration is essential to correct lens distortions and determine the intrin-
sic and extrinsic parameters of the camera. Intrinsic parameters account for the inter-
nal characteristics of the camera, such as focal length, optical centre, and lens distortion

62 7. Results

Figure 7.4: Viscous friction combined with Coulomb friction and static friction (Marchi, n.d.)

coefficients. Extrinsic parameters relate to the position and orientation of the camera in
the physical space, allowing conversion between world and image coordinates (more
details in the next subsection). The combination of these parameters enables precise
mapping between the camera’s 2D images and the 3D spatial environment, which is
critical for accurately determining the position of objects within the camera’s field of
view.

The calibration process was performed using the OpenCV library (Bradski, 2000),
a popular open-source computer vision toolkit. We employed a traditional method
using a chessboard pattern as a calibration target. This approach involved capturing
multiple images of the chessboard from different orientations, ensuring the calibra-
tion target was positioned at various angles and distances within the camera’s field of
view. The chessboard provides a set of known points that can be consistently iden-
tified across all captured images, which allows for the accurate calculation of camera
parameters.

The OpenCV calibration process is based on Z. Zhang, 2000 and can be summa-
rized as follows:

1. Image Acquisition: first, several images of the chessboard were captured using
the Basler camera (Figure 7.5). These images were taken at different angles and
distances to ensure that the entire field of view was well represented.

2. Feature Detection: the next step involved detecting the corners of the chessboard
squares in each captured image. TheOpenCV function findChessboardCorners()
was used for this purpose, which identified the precise positions of the chess-
board corners.

3. Corner Refinement: the initial corner detectionswere refinedusing the cornerSubPix()
function in OpenCV to increase the accuracy of the detected points. This step
ensures that the detected points are as precise as possible, which is critical for a

7.2. Real robot 63

Figure 7.5: Example image taken from the Basler camera with the calibration chessboard

successful calibration.
4. Calibration Calculation: once all corner points were detected across the multiple

images, the OpenCV function calibrateCamera() was used to compute the in-
trinsic and extrinsic parameters. This function applies optimization techniques
to minimize the re-projection error, which represents the difference between the
projected image points and the observed image points.

5. Undistortion: finally, the camera distortion coefficients obtained from the cali-
bration were used to correct the images. Using the undistort() function, we
were able to obtain distortion-free images, which were subsequently used to ac-
curately determine the position of the fruits.

Through this calibration process, we successfully obtained reliable and accurate in-
trinsic parameters for the Basler camera, allowing us to mitigate the effects of lens
distortion and ensure that the positions of fruits in the camera’s field of view could be
measured with a high degree of accuracy. The resulting parameters are summarized
in Table 7.3.

Parameter Value

𝑓𝑥 1.416643262225107947e+03
𝑓𝑦 1.423185284844755415e+03
𝑐𝑥 9.738269421470386078e+02
𝑐𝑦 5.960388940211554427e+02
𝐾1 -7.501987522029342215e-02
𝐾2 4.950160935461863504e-02
𝐾3 -6.346295618547725037e-04
𝐾4 -2.410154366788519280e-04
𝐾5 3.182615011319356868e-01

Table 7.3: Basler estimated parameters after calibration

64 7. Results

Figure 7.6: ChAruco marker used for the kinematic calibration

7.2.3 Kinematic calibration

Eye-in-hand refers to a specific camera configuration where the camera is attached to
the end-effector of the robot. In this setup, the camera moves with the robotic arm,
giving it a changing viewpoint as the arm moves. This is distinct from the ”eye-to-
hand” setup, where the camera is fixed in a position overlooking the workspace, while
the robot arm moves independently.

The calibration aspect involves finding the transformationmatrix between the cam-
era’s coordinate system and the end-effector’s coordinate system. This transformation
describes how the camera is positioned relative to the robot arm, including the rota-
tional and translational components. The transformation is usually represented as a
4x4 homogeneous matrix that contains information about both the orientation and the
location of the camera with respect to the robot.

The calibration process generally requires:

• Pose Data Acquisition: Gathering multiple images of a known calibration object
(like the chAruco depicted in Figure 7.6) from different perspectives as the robot
arm moves.

• Mathematical Solving: Using optimization and computer vision techniques to
determine the geometric relationship between the camera and the end-effector.
This is typically done by applying algorithms like Tsai et al., 1989, which involves
using the camera’s and robot’s poses to estimate the transformation.

The resulting transformation between the end-effector camera frame and the end-

7.2. Real robot 65

effector using this procedure is the following:

𝑒𝑒𝑇𝑒𝑐 =


0.9596230 0.0055689 −0.2812344 0.15761462
−0.0081342 0.9999353 −0.0079551 0.00137721
0.2811718 0.0099215 0.9596062 0.19915025

0 0 0 1


Eye-to-hand calibration instead involves calibrating a vision systemwhere the cam-

era is fixed in position relative to the robotic workspace rather than being attached to
the robot arm itself. In this setup, the camera (”eye”) is usually mounted at a fixed
location, such as above or to the side of the robot’s workspace, while the robotic ma-
nipulator (”hand”) moves within the field of view of the camera.

The goal of eye-to-hand calibration is to determine the relationship between the
camera’s coordinate system and the robot’s coordinate system so that the robot can use
visual information to accurately locate and interact with objects in the environment.
This type of calibration involves finding the transformation that relates the camera’s
view to the coordinate system of the robot base, allowing the camera to observe the
position of objects and convey that information to guide the robot’s actions.

In this case, using the Shah, 2013 algorithm on collected corresponding robot con-
figurations and pose data of the calibration object, the transformation between the base
link of the robot and the base camera is the following.

𝑏𝑙𝑇𝑏𝑐 =


0.9998381 0.0022618 0.0178503 −0.02572462
−0.0103003 0.8853767 0.4647601 0.01588668
−0.0147531 −0.4648688 0.8852567 0.30584433

0 0 0 1


7.2.4 Mechanical performances

To evaluate the repeatability and positioning accuracy of the developed prototype
robot, a series of experiments were designed and conducted, as depicted in Figure
7.7. The experimental setup included mounting rigid bars in close proximity to the
robot’s working envelope. These rigid bars provided a fixed reference against which
the actual displacement of the robot could be measured. The key objective was to
investigate how accurately and consistently the robot could move along predefined
paths, allowing us to quantify both systematic and random errors in the positioning
system.

For these experiments, the robot was programmed to move along the path defined
by the rigid bars. Several target positions were selected along the bars, and the robot’s
end-effector was commanded to move to these positions. After each commanded
movement, manual measurements were taken using calibrated tools to compare the
actual position of the robot’s end-effector against the desired position. The differences
between the desired and actual positions were recorded as the positioning errors.

66 7. Results

Figure 7.7: Setup for mechanical performance measurement

Repeatabilitywas determined by analysing the deviation of the robot’s end-effector
from the same target position over successive trials. The consistency of the results al-
lowed us to understand the level of variability present in the robot’s actuation system,
highlighting potentialmechanical or control issues that could influence the robot’s pre-
cision. The results of this experiment are reported in Table 7.4: we let the robot move
to that particular configuration and measured the error between the actual position
and the theoretical position given by the forward kinematics function.

In the same way, we measured positioning accuracy starting from some know po-
sition and letting the end-effector move along a predefined axis. Then, we measured
the positioning error tacking advantage of the metal bars. The results are reported in
Table 7.5.

The resulting repeatability mean error is 15.85mm and the positioning accuracy
mean error is 7.0mm. Of course, these experiments are not complete and should be
repeated in the entire workspace to obtain a valid measure, but the goal was just to
have an idea of the robot mechanical performances.

7.2. Real robot 67

Joint configuration Test number Error [mm]

(-0.27443, 2.10868, 2.26933, 1.00903)

1 9
2 10
3 10
4 15
5 8

(-0.34653, 2.20634, 2.49402, 0.79617)

1 16
2 22
3 13
4 17
5 18

(-0.18593, 2.20939, 1.82529, -0.85028)

1 -18
2 -11
3 -5
4 -4
5 -8

(-0.13519, 2.03964, 1.73489, 0.45399)

1 -26
2 -25
3 -20
4 -30
5 -22

Table 7.4: Repeatability measured starting from the home position and reaching a defined goal position
(in the joint space) multiple times

Starting position Test Movement [m] Error [mm]

(0.019, 0.556, 0.993) Cartesian z-axis movement

(0, 0, 0.10) 9
(0, 0, -0.10) 0
(0, 0, -0.05) 8
(0, 0, 0.15) 9
(0, 0, 0.20) 8
(0, 0, -0.50) 3

(0.132, 0.542, 1.241) Cartesian x-axis movement

(0.10, 0, 0) 5
(-0.10, 0, 0) 14
(-0.50, 0, 0) 10
(0.15, 0, 0) 6
(0.05, 0, 0) 5

Table 7.5: Positional accuracy measured along predefined movement directions

8
CONCLUSIONS

In this thesis, we explored the development of a robot for automatic kiwi harvesting,
starting from scratch. The goal was ambitious: to create an autonomous system ca-
pable of operating in a complex agricultural environment like a kiwi orchard. The
research began with defining the task requirements and proceeded to the design of
the robot’s layout and the sizing of the actuators. The control system was developed
by dividing it between a microcontroller for motion control (low-level) and a PC with
ROS for trajectory generation. We also addressed the perception component, illustrat-
ing the processing pipelines for the cameras dedicated to fruit detection and tracking.
Finally, we presented the results obtained both in simulation and with the real proto-
type, which was tested in a kiwi orchard.

Despite the limited time available for field testing, the tests allowed us to highlight
the weaknesses of the system and outline a path for future improvements. Currently,
the data collected during the harvesting experiment with the real robot is insufficient
to draw definitive conclusions about the system’s effectiveness. However, several field
trials revealed significant critical issues: the robot’s mechanical construction requires
substantial improvements, particularly regarding the joints, which showed non-linear
friction, and the dynamic parameters, which did not perfectly match the CAD design.
Additionally, sensor-related problems were identified, particularly the interference of
sunlight with the Realsense infrared cameras and the inefficacy of the auto-exposure
algorithms of the cameras used, which proved inadequate for a complex outdoor en-
vironment like a kiwi orchard.

Another aspect that deserves attention is the implementation of online correction
for the Local Planner, which was tested only in simulation, as the real robot’s move-
ment was too imprecise to properly follow trajectory changes in real time. This rep-
resents a crucial point on which future work will focus, with the aim of making the
robot’s behaviour in the field smoother and more efficient.

Despite the challenges encountered and the areas needing improvement, the project
has laid the foundation for a future, more advanced version of the robot, which can be
further tested in the field once the identified issues are resolved. In the meantime, de-
velopment in simulation can continue, contributing to reducing risks and improving

68

8. Conclusions 69

the performance of the next version of the prototype.
Finally, I would like to thank the FieldRobotics team for their support and contri-

bution to the success of this project. Without their commitment and collaboration, the
development of this robot would not have been possible.

This page intentionally left blank.

BIBLIOGRAPHY

Allevato, Adam (2022). vision_msgs. URL: https://github.com/ros- perception/vision_
msgs/tree/ros2.

Au, ChiKit et al. (2020). “Workspace analysis of Cartesian robot system for kiwifruit harvest-
ing”. English. In: The Industrial Robot 47.4. Copyright - © Emerald Publishing Limited 2020; Ul-
timo aggiornamento - 2023-11-25, pp. 503–510. URL: https://www.proquest.com/scholarly-
journals/workspace-analysis-cartesian-robot-system/docview/2533911818/se-2.

Bac, C. W. et al. (2017). “Harvesting Robots for High-value Crops: State-of-the-art Review and
Challenges Ahead”. In: Journal of Field Robotics 34.6, pp. 1199–1220.

Basler (2022). ROS2-Driver for Basler Cameras. URL: https://github.com/basler/pylon-ros-
camera.

Bechar, Avital and Claude Vigneault (2016). “Agricultural robots for field operations: Con-
cepts and components”. In: Biosystems Engineering 149, pp. 94–111.

Bewley, Alex et al. (Sept. 2016). “Simple online and realtime tracking”. In: pp. 3464–3468. DOI:
10.1109/ICIP.2016.7533003.

Blackmore, Simon (2000). “Robotics and automation in agriculture”. In: IFAC Proceedings Vol-
umes. Vol. 33. 26. Elsevier, pp. 13–17.

Bradski, G. (2000). “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools.

Coleman, David et al. (May 2014). “Reducing the Barrier to Entry of Complex Robotic Soft-
ware: a MoveIt! Case Study”. In: Journal of Sofware Engineering for Robotics 5.1. http://moveit.
ros.org, pp. 3–16.

Corke, Peter I. (2017). Robotics, Vision & Control: Fundamental Algorithms in MATLAB. Second.
ISBN 978-3-319-54413-7. Springer.

Gebbers, Robin and Viacheslav I Adamchuk (2010). “Precision agriculture and food security”.
In: Science 327.5967, pp. 828–831.

Giles, R (1998). “Agricultural robotics: the state of the art and future perspectives”. In: Com-
puters and Electronics in Agriculture 18.2-3, pp. 71–84.

Ioan Sucan, Sachin Chitta (2023). moveit_msgs. URL: https://github.com/moveit/moveit_
msgs/tree/ros2.

Kootstra, G. et al. (2020). “Selective Harvesting of Fruits: Recent Advances in Robotic Harvest-
ing Systems and Challenges for Future Developments”. In: Biosystems Engineering 193, pp. 39–
54.

72

https://github.com/ros-perception/vision_msgs/tree/ros2
https://github.com/ros-perception/vision_msgs/tree/ros2
https://www.proquest.com/scholarly-journals/workspace-analysis-cartesian-robot-system/docview/2533911818/se-2
https://www.proquest.com/scholarly-journals/workspace-analysis-cartesian-robot-system/docview/2533911818/se-2
https://github.com/basler/pylon-ros-camera
https://github.com/basler/pylon-ros-camera
https://doi.org/10.1109/ICIP.2016.7533003
http://moveit.ros.org
http://moveit.ros.org
https://github.com/moveit/moveit_msgs/tree/ros2
https://github.com/moveit/moveit_msgs/tree/ros2

BIBLIOGRAPHY 73

Kuffner, J.J. and S.M. LaValle (2000). “RRT-connect: An efficient approach to single-query path
planning”. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on
Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065). Vol. 2, 995–1001 vol.2. DOI:
10.1109/ROBOT.2000.844730.

Lehnert, Christopher et al. (2017). “Autonomous sweet pepper harvesting for protected crop-
ping systems”. In: IEEE Robotics and Automation Letters 2.2, pp. 872–879.

Macenski, Steven et al. (2022). “Robot Operating System 2: Design, architecture, and uses in
thewild”. In: Science Robotics 7.66, eabm6074. DOI: 10.1126/scirobotics.abm6074. URL: https:
//www.science.org/doi/abs/10.1126/scirobotics.abm6074.

Marchi, Julian de (n.d.). “MODELINGOF DYNAMIC FRICTION, IMPACT BACKLASHAND
ELASTIC COMPLIANCE NONLINEARITIES INMACHINE TOOLS, WITH APPLICATIONS
TO ASYMMETRIC VISCOUS AND KINETIC FRICTION IDENTIFICATION”. In: ().

Mcaneney, John, Joshua Judd, andMike Trought (May 1984). “Wind damage to kiwifruit (Ac-
tinidia chinensis Planch.) in relation to windbreak performance”. In: New Zealand Journal of
Agricultural Research - N Z J AGR RES 27, pp. 255–263. DOI: 10.1080/00288233.1984.10430427.

Mengoli, D. et al. (2023). “An online fruit counting application in apple orchards”. In: Leiden,
TheNetherlands:WageningenAcademic, pp. 459–465. ISBN: 9789086869473. DOI: 10.3920/978-
90-8686-947-3_57. URL: https://brill.com/view/book/9789086869473/BP000058.xml.

Mengoli, Dario, Roberto Tazzari, and Lorenzo Marconi (Nov. 2020). “Autonomous Robotic
Platform for PrecisionOrchardManagement: Architecture and Software Perspective”. In: pp. 303–
308. DOI: 10.1109/MetroAgriFor50201.2020.9277555.

Pedersen, Søren Marcus et al. (2006). “Agricultural robots—system analysis and economic
feasibility”. In: Precision Agriculture 7.4, pp. 295–308.

PeK Automotive (n.d.). Slope Helper Robot. https://slopehelper.com/it/home-it/.

Redmon, Joseph et al. (June 2015). “You Only Look Once: Unified, Real-Time Object Detec-
tion”. In: DOI: 10.48550/arXiv.1506.02640.

Santos, T. T. et al. (2021). “Sensor Fusion for Agricultural Robotics: An Overview and a New
Approach”. In: Sensors 21.10, p. 3366.

Scarfe, Alistair John (2012). “Development of an Autonomous Kiwifruit Harvester”. PhD the-
sis. Massey University, Manawatu.

Shah, Mili (Aug. 2013). “Solving the Robot-World/Hand-Eye Calibration Problem Using the
Kronecker Product”. In: Journal of Mechanisms and Robotics 5, p. 031007. DOI: 10 . 1115 / 1 .
4024473.

Shamshiri, R. R. et al. (2018). “Research andDevelopment in Agricultural Robotics: A Perspec-
tive of Digital Farming”. In: International Journal of Agricultural and Biological Engineering 11.4,
pp. 1–14.

Siciliano, Bruno et al. (Jan. 2009). “Robotics: Modelling, planning and control”. In: pp. 1–623.

Şucan, Ioan A., Mark Moll, and Lydia E. Kavraki (Dec. 2012). “The Open Motion Planning Li-
brary”. In: IEEE Robotics & Automation Magazine 19.4. https://ompl.kavrakilab.org, pp. 72–
82. DOI: 10.1109/MRA.2012.2205651.

https://doi.org/10.1109/ROBOT.2000.844730
https://doi.org/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://doi.org/10.1080/00288233.1984.10430427
https://doi.org/10.3920/978-90-8686-947-3_57
https://doi.org/10.3920/978-90-8686-947-3_57
https://brill.com/view/book/9789086869473/BP000058.xml
https://doi.org/10.1109/MetroAgriFor50201.2020.9277555
https://slopehelper.com/it/home-it/
https://doi.org/10.48550/arXiv.1506.02640
https://doi.org/10.1115/1.4024473
https://doi.org/10.1115/1.4024473
https://ompl.kavrakilab.org
https://doi.org/10.1109/MRA.2012.2205651

74 BIBLIOGRAPHY

Tevel Aerobotics (n.d.). Tevel Flying Robot. https://www.tevel-tech.com/press-release-
tevel-partners-with-unifrutti-expands-to-south-america/.

Tkachenko, Maxim et al. (2020-2022). Label Studio: Data labeling software. Open source soft-
ware available from https://github.com/heartexlabs/label-studio. URL: https://github.com/
heartexlabs/label-studio.

Tsai, R.Y. and R.K. Lenz (1989). “A new technique for fully autonomous and efficient 3D
robotics hand/eye calibration”. In: IEEE Transactions on Robotics and Automation 5.3, pp. 345–
358. DOI: 10.1109/70.34770.

Unity Technologies (2020).Unity Perception Package. https://github.com/Unity-Technologies/
com.unity.perception.

Unity-Technologies (2022).ROSTCPEndpoint. URL: https://github.com/Unity-Technologies/
ROS-TCP-Endpoint.

Van Henten, E. J. et al. (2019). “The Evolution of Robotic Harvesters: From Vision to Field
Deployment”. In: Robotics and Autonomous Systems 114, pp. 1–16.

VanHenten, EJ et al. (2002). “An autonomous robot for harvesting cucumbers in greenhouses”.
In: Autonomous Robots 13.3, pp. 241–258.

Williams, Henry et al. (May 2019). “Robotic kiwifruit harvesting using machine vision, convo-
lutional neural networks, and robotic arms”. In: Biosystems Engineering 181, pp. 140–156. DOI:
10.1016/j.biosystemseng.2019.03.007.

Wojke, Nicolai, Alex Bewley, and Dietrich Paulus (2017). Simple Online and Realtime Tracking
with a Deep Association Metric. arXiv: 1703.07402 [cs.CV]. URL: https://arxiv.org/abs/
1703.07402.

Zhang, Chenghai and John M Kovacs (2012). “The application of small unmanned aerial sys-
tems for precision agriculture: a review”. In: Precision Agriculture 13.6, pp. 693–712.

Zhang, Z. (2000). “A flexible new technique for camera calibration”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 22.11, pp. 1330–1334. DOI: 10.1109/34.888718.

https://www.tevel-tech.com/press-release-tevel-partners-with-unifrutti-expands-to-south-america/
https://www.tevel-tech.com/press-release-tevel-partners-with-unifrutti-expands-to-south-america/
https://github.com/heartexlabs/label-studio
https://github.com/heartexlabs/label-studio
https://doi.org/10.1109/70.34770
https://github.com/Unity-Technologies/com.unity.perception
https://github.com/Unity-Technologies/com.unity.perception
https://github.com/Unity-Technologies/ROS-TCP-Endpoint
https://github.com/Unity-Technologies/ROS-TCP-Endpoint
https://doi.org/10.1016/j.biosystemseng.2019.03.007
https://arxiv.org/abs/1703.07402
https://arxiv.org/abs/1703.07402
https://arxiv.org/abs/1703.07402
https://doi.org/10.1109/34.888718

This page intentionally left blank.

APPENDICES

This page intentionally left blank.

A

APPENDIX A

Computation of the B(q) and g(q) terms of the dynamic model of the robot. All the
computation is made using the Matlab Symbolic Toolbox.

A.1 Computation of the gravitational term

Let’s start from the position of the centre of gravity of the link 1, link 2, link 3 and
the wrist motor with respect to the base link, because these are the only elements that
contribute to the gravitational term:

pl1 =
©­­«

0
−𝑐1 sin (𝑞1)
𝑐1 cos (𝑞1)

ª®®¬ (A.1)

pl2 =
©­­«

0
−𝑙1 sin (𝑞1) − 𝑎2 cos (𝑞1 − 𝑞2) − 𝑐2 sin (𝑞1 − 𝑞2)
𝑙1 cos (𝑞1) + 𝑐2 cos (𝑞1 − 𝑞2) − 𝑎2 sin (𝑞1 − 𝑞2)

ª®®¬ (A.2)

pl3 =
©­­«

0
𝑎3 cos (𝑞1 − 𝑞2 + 𝑞3) − 𝑐3 sin (𝑞1 − 𝑞2 + 𝑞3) − 𝑙1 sin (𝑞1) − 𝑙2 sin (𝑞1 − 𝑞2)
𝑐3 cos (𝑞1 − 𝑞2 + 𝑞3) − 𝑎3 sin (𝑞1 − 𝑞2 + 𝑞3) + 𝑙1 cos (𝑞1) + 𝑙2 cos (𝑞1 − 𝑞2)

ª®®¬
(A.3)

pm =
©­­«

0
−𝑙1 sin (𝑞1) − 𝑙2 sin (𝑞1 − 𝑞2)
𝑙1 cos (𝑞1) + 𝑙2 cos (𝑞1 − 𝑞2)

ª®®¬ (A.4)

where 𝑝𝑙1, 𝑝𝑙2, 𝑝𝑙3 and 𝑝𝑚 are the positions of the centre of gravity of link 1, link 2, link
3 and the wrist motor; 𝑐1, 𝑐2, 𝑐3 are the component of distances of the centre of gravity
of a link with respect to its extremity projected on its greatest principal axis of inertia;
𝑙1, 𝑙2, 𝑙3 are the link lengths; 𝑎2 and 𝑎3 are the component of the distances of the centre
of gravity of a link with respect to its extremity projected on the other principal axis
of inertia.

80

A.1. Computation of the gravitational term 81

The corresponding positional Jacobians (taken wrt to 𝑞1, 𝑞2 and 𝑞3 only, because
𝑞0 is not involved in the gravitational term) are the following:

J (ℓ1)
𝑃 =

©­­«
0 0 0

−𝑐1 cos (𝑞1) 0 0
−𝑐1 sin (𝑞1) 0 0

ª®®¬
J (ℓ2)
𝑃 =

©­­«
0 0 0

𝜎4 − 𝜎1 − 𝑙1 cos (𝑞1) 𝜎1 − 𝜎4 0
−𝑙1 sin (𝑞1) − 𝜎2 − 𝜎3 𝜎2 + 𝜎3 0

ª®®¬
where

𝜎1 = 𝑐2 cos (𝑞1 − 𝑞2)
𝜎2 = 𝑎2 cos (𝑞1 − 𝑞2)
𝜎3 = 𝑐2 sin (𝑞1 − 𝑞2)
𝜎4 = 𝑎2 sin (𝑞1 − 𝑞2)

J (ℓ3)
𝑃 =

©­­«
0 0 0

−𝜎3 − 𝜎2 − 𝑙1 cos (𝑞1) − 𝑙2 cos (𝑞1 − 𝑞2) 𝜎3 + 𝜎2 + 𝑙2 cos (𝑞1 − 𝑞2) −𝜎3 − 𝜎2

−𝜎4 − 𝜎1 − 𝑙1 sin (𝑞1) − 𝑙2 sin (𝑞1 − 𝑞2) 𝜎4 + 𝜎1 + 𝑙2 sin (𝑞1 − 𝑞2) −𝜎4 − 𝜎1

ª®®¬
where

𝜎1 = 𝑐3 sin (𝑞1 − 𝑞2 + 𝑞3)
𝜎2 = 𝑎3 sin (𝑞1 − 𝑞2 + 𝑞3)
𝜎3 = 𝑐3 cos (𝑞1 − 𝑞2 + 𝑞3)
𝜎4 = 𝑎3 cos (𝑞1 − 𝑞2 + 𝑞3)

J (𝑚)
𝑃 =

©­­«
0 0 0

−𝑙1 cos (𝑞1) − 𝑙2 cos (𝑞1 − 𝑞2) 𝑙2 cos (𝑞1 − 𝑞2) 0
−𝑙1 sin (𝑞1) − 𝑙2 sin (𝑞1 − 𝑞2) 𝑙2 sin (𝑞1 − 𝑞2) 0

ª®®¬

Considering that the gravity term can be computed as (Siciliano et al., 2009):

−
𝑛∑
𝑗=1

(
𝑚ℓ 𝑗g𝑇0 J (ℓ 𝑗)

𝑃𝑖
(q) + 𝑚𝑚𝑗g𝑇0 J (𝑚𝑗)

𝑃𝑖
(q)

)
= 𝑔𝑖(q)

where 𝑚𝑙𝑗 is the mass of the link 𝑗, J (ℓ 𝑗)
𝑃𝑖

(q) is the positional Jacobian of the of the
centre of gravity of link 𝑗, 𝑚𝑚𝑗 is the mass of the motor 𝑗, J (𝑚𝑗)

𝑃𝑖
(q) is the Jacobian of

the position of the motor 𝑗, and g0 = [0, 0, 𝑔]𝑇 with 𝑔 being the gravity acceleration.

82 A. Appendix A

Therefore, the complete gravity term is defined as follows:

𝑔1(𝑞) = 0

𝑔2(𝑞) = 𝑚3 𝑔 (𝜎2 + 𝜎1 + 𝑙1 sin (𝑞1) + 𝜎3) + 𝑚2 𝑔 (𝑙1 sin (𝑞1) + 𝜎4 + 𝜎5) + 𝑚𝑚 𝑔 (𝑙1 sin (𝑞1) + 𝜎3)+
+ 𝑐1 𝑚1 𝑔 sin (𝑞1)

𝑔3(𝑞) = −𝑚3 𝑔 (𝜎2 + 𝜎1 + 𝜎3) − 𝑚2 𝑔 (𝜎4 + 𝜎5) − 𝑙2 𝑚𝑚 sin (𝑞1 − 𝑞2) 𝑔
𝑔4(𝑞) = 𝑚3 𝑔 (𝜎2 + 𝜎1)

where:

𝜎1 = 𝑐3 sin (𝑞1 − 𝑞2 + 𝑞3)
𝜎2 = 𝑎3 cos (𝑞1 − 𝑞2 + 𝑞3)
𝜎3 = 𝑙2 sin (𝑞1 − 𝑞2)
𝜎4 = 𝑎2 cos (𝑞1 − 𝑞2)
𝜎5 = 𝑐2 sin (𝑞1 − 𝑞2)

A.2 Computation of the inertial term

Considering also the rotational Jacobians:

J (ℓ1)
𝑂 =

©­­«
−1 0 0
0 0 0
0 0 0

ª®®¬
J (ℓ2)
𝑂 =

©­­«
−1 1 0
0 0 0
0 0 0

ª®®¬
J (ℓ3)
𝑂 =

©­­«
−1 1 −1
0 0 0
0 0 0

ª®®¬
we can compute the the inertial matrix for the links 1, 2 and 3 as follows (Siciliano
et al., 2009), considering that they are coplanar:

B123(q) =
3∑
𝑖=1

(
(J (ℓ𝑖)

𝑂)𝑇IiJ (ℓ𝑖)
𝑂 + 𝑚𝑖(J (𝑚𝑖)

𝑃)𝑇J (𝑚𝑖)
𝑃

)
(A.5)

= B1(q) + B2(q) + B3(q) + Bm(q) (A.6)

being 𝐼𝑖 the moment of inertia of the link i.
The inertia of the robot seen by the joint 0 instead, can be computed as follows:

𝑏00 = 𝐼𝑧𝑧1 + 𝑚1 ∗ (𝑝𝑦𝑙1)2 + 𝐼𝑧𝑧2 + 𝑚2 ∗ (𝑝𝑦𝑙2)2 + 𝐼𝑧𝑧3 + 𝑚3 ∗ (𝑝𝑦𝑙3)2; (A.7)

A.2. Computation of the inertial term 83

Therefore the whole inertial matrix is the following:

B(q) =
©­­­­«
𝑏00 0 0 0
0
0
0

B123(q)
ª®®®®¬

The elements of this matrix are:

𝑏00 = 𝐼𝑧𝑧1 + 𝐼𝑧𝑧2 + 𝐼𝑧𝑧3 + 𝑚3 (𝑐3 𝜎34 − 𝑎3 𝜎35 + 𝑙1 sin (𝑞1) + 𝜎32)2 + 𝑚2 𝜎11
2 + 𝑐1

2 𝑚1 sin (𝑞1)2
𝑏11 = 𝐼𝑥𝑥1 + 𝐼𝑥𝑥2 + 𝐼𝑥𝑥3 + 𝑚3 𝜎10 (𝜎13 + 𝜎4 + 𝜎7 + 𝜎6) + 𝑚3 (𝜎12 + 𝜎3 + 𝜎8 + 𝜎5) 𝜎9+

+ 𝑚2 (𝜎15 − 𝜎18 + 𝜎4) 𝜎14 + 𝑚2 (𝜎17 + 𝜎16 + 𝜎3) 𝜎11 + 𝑚1 sin (𝑞1) |𝑐1 |2 sin (𝑞1) +

+ 𝑚1 cos (𝑞1) |𝑐1 |2 cos (𝑞1) +
𝑚𝑚

(
𝑙2 cos (𝑞1) |𝑙1 |2 + 𝑙1 𝜎30 |𝑙2 |2

)
𝜎19

𝑙1 𝑙2
+

+
𝑚𝑚

(
𝑙2 sin (𝑞1) |𝑙1 |2 + 𝑙1 𝜎31 |𝑙2 |2

)
𝜎20

𝑙1 𝑙2
𝑏12 = −𝐼𝑥𝑥2 − 𝐼𝑥𝑥3 − 𝑚3 𝜎22 (𝜎2 + 𝜎13 + 𝜎7 + 𝜎6) − 𝑚3 𝜎21 (𝜎1 + 𝜎12 + 𝜎8 + 𝜎5)+

− 𝑚2 (𝜎28 − 𝜎29) (𝜎2 + 𝜎15 − 𝜎18) − 𝑚2 (𝜎26 + 𝜎27) (𝜎1 + 𝜎17 + 𝜎16)+
− 𝑙2 𝑚𝑚 cos (𝑞1 − 𝑞2) (𝜎2 + 𝜎13) − 𝑙2 𝑚𝑚 sin (𝑞1 − 𝑞2) (𝜎1 + 𝜎12)

𝑏13 = 𝐼𝑥𝑥3 + 𝑚3 𝜎23 (𝜎2 + 𝜎30 𝑙2 + 𝜎7 + 𝜎6) + 𝑚3 𝜎24 (𝑙2 𝜎31 + 𝜎1 + 𝜎8 + 𝜎5)
𝑏21 = −𝐼𝑥𝑥2 − 𝐼𝑥𝑥3 − 𝑚2 (𝜎17 + 𝜎16) 𝜎11 − 𝑚3 (𝜎13 + 𝜎7 + 𝜎6) 𝜎10 − 𝑚3 (𝜎12 + 𝜎8 + 𝜎5) 𝜎9+

− 𝑚2 (𝜎15 − 𝜎18) 𝜎14 − 𝑚𝑚 𝜎30 |𝑙2 |2 𝜎19
𝑙2

− 𝑚𝑚 |𝑙2 |2 𝜎31 𝜎20
𝑙2

𝑏22 = 𝐼𝑥𝑥2 + 𝐼𝑥𝑥3 + 𝑚2 (𝜎17 + 𝜎16) (𝜎26 + 𝜎27) + 𝑚2 (𝜎15 − 𝜎18) (𝜎28 − 𝜎29)+
+ 𝑚3 (𝜎13 + 𝜎7 + 𝜎6) 𝜎22 + 𝑚3 (𝜎12 + 𝜎8 + 𝜎5) 𝜎21 + 𝑚𝑚 cos (𝑞1 − 𝑞2) 𝜎30 |𝑙2 |2+
+ 𝑚𝑚 sin (𝑞1 − 𝑞2) |𝑙2 |2 𝜎31

𝑏23 = −𝐼𝑥𝑥3 − 𝑚3 𝜎23 (𝜎30 𝑙2 + 𝜎7 + 𝜎6) − 𝑚3 𝜎24 (𝑙2 𝜎31 + 𝜎8 + 𝜎5)
𝑏31 = 𝐼𝑥𝑥3 + 𝑚3 (𝜎7 + 𝜎6) 𝜎10 + 𝑚3 (𝜎8 + 𝜎5) 𝜎9

𝑏32 = −𝐼𝑥𝑥3 − 𝑚3 (𝜎7 + 𝜎6) 𝜎22 − 𝑚3 (𝜎8 + 𝜎5) 𝜎21

𝑏33 = 𝐼𝑥𝑥3 + 𝑚3 (𝜎8 + 𝜎5) 𝜎24 + 𝑚3 (𝜎7 + 𝜎6) 𝜎23

84 A. Appendix A

where

𝜎1 = sin (𝑞1) 𝑙1
𝜎2 = cos (𝑞1) 𝑙1
𝜎3 =

sin (𝑞1) |𝑙1 |2
𝑙1

𝜎4 =
cos (𝑞1) |𝑙1 |2

𝑙1

𝜎5 =
sin (𝜎25) |𝑐3 |2

𝑐3

𝜎6 =
sin (𝜎25) |𝑎3 |2

𝑎3

𝜎7 =
cos (𝜎25) |𝑐3 |2

𝑐3

𝜎8 =
cos (𝜎25) |𝑎3 |2

𝑎3

𝜎9 = 𝑎3 𝜎35 + 𝑐3 𝜎34 + 𝑙1 sin (𝑞1) + 𝜎32

𝜎10 = 𝑐3 𝜎35 + 𝑎3 𝜎34 + 𝑙1 cos (𝑞1) + 𝜎33

𝜎11 = 𝑙1 sin (𝑞1) + 𝜎26 + 𝜎27

𝜎12 =
|𝑙2 |2 𝜎31
𝑙2

𝜎13 =
𝜎30 |𝑙2 |2
𝑙2

𝜎14 = 𝑙1 cos (𝑞1) + 𝜎28 − 𝜎29

𝜎15 =
|𝑐2 |2 𝜎30
𝑐2

𝜎16 =
|𝑐2 |2 𝜎31
𝑐2

𝜎17 =
|𝑎2 |2 𝜎30
𝑎2

𝜎18 =
|𝑎2 |2 𝜎31
𝑎2

𝜎19 = 𝑙1 cos (𝑞1) + 𝜎33

𝜎20 = 𝑙1 sin (𝑞1) + 𝜎32

𝜎21 = 𝑎3 𝜎35 + 𝑐3 𝜎34 + 𝜎32

𝜎22 = 𝑐3 𝜎35 + 𝑎3 𝜎34 + 𝜎33

𝜎23 = 𝑐3 𝜎35 + 𝑎3 𝜎34

𝜎24 = 𝑎3 𝜎35 + 𝑐3 𝜎34

𝜎25 = 𝑞1 − 𝑞2 + 𝑞3

𝜎26 = 𝑎2 cos (𝑞1 − 𝑞2)

A.2. Computation of the inertial term 85

𝜎27 = 𝑐2 sin (𝑞1 − 𝑞2)
𝜎28 = 𝑐2 cos (𝑞1 − 𝑞2)
𝜎29 = 𝑎2 sin (𝑞1 − 𝑞2)
𝜎30 = cos (𝑞1 − 𝑞2)
𝜎31 = sin (𝑞1 − 𝑞2)
𝜎32 = 𝑙2 sin (𝑞1 − 𝑞2)
𝜎33 = 𝑙2 cos (𝑞1 − 𝑞2)
𝜎34 = sin (𝑞1 − 𝑞2 + 𝑞3)
𝜎35 = cos (𝑞1 − 𝑞2 + 𝑞3)

B
APPENDIX B

URDF (Universal Robot Description Format) of the robot:

1 <?xml version="1.0"?>
2 <robot name="custom_robot" xmlns:xacro="http://www.ros.org/wiki/xacro">
3

4 <xacro:property name="base_l" value="0.120" />
5 <xacro:property name="base_w" value="0.120" />
6 <xacro:property name="base_t" value="0.100" />
7

8 <xacro:property name="rgb_to_depth" value="0.029" />
9 <xacro:property name="camera_x" value="-0.02572462" />

10 <xacro:property name="camera_y" value="0.01588668" />
11 <xacro:property name="camera_z" value="0.30584433" />
12 <xacro:property name="camera_slope_x" value="-0.48344732968236354" />
13 <xacro:property name="camera_slope_y" value="0.017851267248094986" />
14 <xacro:property name="camera_slope_z" value="-0.0022621326415571035" />
15

16 <xacro:property name="arm_l" value="0.547" />
17 <xacro:property name="arm_r" value="0.025" />
18

19 <xacro:property name="forearm_l" value="0.733" />
20 <xacro:property name="forearm_r" value="0.020" />
21

22 <xacro:property name="hand_l" value="0.155" />
23 <xacro:property name="hand_r" value="0.015" />
24

25 <xacro:property name="hand_to_ee_x" value="0.0925" />
26 <xacro:property name="hand_to_ee_z" value="0.358" />
27

28 <xacro:property name="ee_camera_x" value="0.15761462" />
29 <xacro:property name="ee_camera_y" value="0.00137721" />
30 <xacro:property name="ee_camera_z" value="0.19915025" />
31 <xacro:property name="ee_camera_r" value="0.008289796579141986" />
32 <xacro:property name="ee_camera_p" value="-0.285080125737788" />
33 <xacro:property name="ee_camera_y" value="-0.005803166768052965" />
34

35

86

B. Appendix B 87

36 <link name="base_link">
37 <visual>
38 <geometry>
39 <box size="${base_l} ${base_w} ${base_t}" />
40 </geometry>
41 <origin rpy="0 0 0" xyz="0 0 0"/>
42 </visual>
43 <collision>
44 <geometry>
45 <box size="${base_l} ${base_w} ${base_t}" />
46 </geometry>
47 <origin rpy="0 0 0" xyz="0 0 0" />
48 </collision>
49 </link>
50

51 <link name="camera_link"/>
52

53 <link name="base"/>
54

55 <joint name="joint_cam" type="fixed">
56 <origin rpy="${camera_slope_x} ${camera_slope_y} ${camera_slope_z}"

xyz="${camera_x - rgb_to_depth} ${camera_y} ${camera_z}"/>↩→
57 <parent link="base_link"/>
58 <child link="camera_link"/>
59 </joint>
60

61 <joint name="shoulder1" type="revolute">
62 <axis xyz="0 0 -1"/>
63 <limit effort="1000.0" lower="${-pi}" upper="${pi}" velocity="0.5"/>
64 <origin rpy="0 0 0" xyz="0 0 ${base_t/2}"/>
65 <parent link="base_link"/>
66 <child link="base"/>
67 </joint>
68

69 <link name="arm">
70 <visual>
71 <geometry>
72 <cylinder length="${arm_l}" radius="${arm_r}"/>
73 </geometry>
74 <origin rpy="0 0 0" xyz="0 0 ${arm_l/2}"/>
75 </visual>
76 <collision>
77 <geometry>
78 <cylinder length="${arm_l}" radius="${arm_r}" />
79 </geometry>
80 <origin rpy="0 0 0" xyz="0 0 ${arm_l/2}" />
81 </collision>
82 <inertial>
83 <mass value="1.3530714"/>
84 <inertia ixx="6.5081120e-2" ixy="0.0" ixz="0.0" iyy="6.7476140e-4"

iyz="8.0337007e-4" izz="6.5145616e-2"/>↩→

88 B. Appendix B

85 </inertial>
86 </link>
87

88 <joint name="shoulder2" type="revolute">
89 <axis xyz="-1 0 0"/>
90 <limit effort="1000.0" lower="${-pi}" upper="${pi}" velocity="0.5"/>
91 <origin rpy="0 0 0" xyz="0 0 0"/>
92 <parent link="base"/>
93 <child link="arm"/>
94 </joint>
95

96 <link name="forearm">
97 <visual>
98 <geometry>
99 <cylinder length="${forearm_l}" radius="${forearm_r}"/>

100 </geometry>
101 <origin rpy="0 0 0" xyz="0 0 ${forearm_l/2}"/>
102 </visual>
103 <collision>
104 <geometry>
105 <cylinder length="${forearm_l}" radius="${forearm_r}" />
106 </geometry>
107 <origin rpy="0 0 0" xyz="0 0 ${forearm_l/2}" />
108 </collision>
109 <inertial>
110 <mass value="1.711416"/>
111 <inertia ixx="1.5790694e-1" ixy="0.0" ixz="1.9228267e-3" iyy="1.5766998e-1"

iyz="-1.5672527e-5" izz="7.4154764e-4"/>↩→
112 </inertial>
113 </link>
114

115 <joint name="elbow" type="revolute">
116 <axis xyz="1 0 0"/>
117 <limit effort="1000.0" lower="${-pi}" upper="${pi}" velocity="0.5"/>
118 <origin rpy="0 0 0" xyz="0 0 ${arm_l}"/>
119 <parent link="arm"/>
120 <child link="forearm"/>
121 </joint>
122

123 <link name="hand">
124 <visual>
125 <geometry>
126 <cylinder length="${hand_l}" radius="${hand_r}"/>
127 </geometry>
128 <origin rpy="0 0 0" xyz="0 0 ${hand_l/2}"/>
129 </visual>
130 <collision>
131 <geometry>
132 <cylinder length="${hand_l}" radius="${hand_r}" />
133 </geometry>
134 <origin rpy="0 0 0" xyz="0 0 ${hand_l/2}" />

B. Appendix B 89

135 </collision>
136 <inertial>
137 <mass value="1.8"/>
138 <inertia ixx="3.0387029e-2" ixy="-2.7271686e-3" ixz="1.9228267e-3"

iyy="1.2955984e-2" iyz="5.4334105e-4" izz="2.6339242e-2"/>↩→
139 </inertial>
140 </link>
141

142 <joint name="wrist" type="revolute">
143 <axis xyz="-1 0 0"/>
144 <limit effort="1000.0" lower="${-pi}" upper="${pi}" velocity="0.5"/>
145 <origin rpy="0 0 0" xyz="0 0 ${forearm_l}"/>
146 <parent link="forearm"/>
147 <child link="hand"/>
148 </joint>
149

150 <link name="end_effector">
151 <visual>
152 <geometry>
153 <mesh filename="package://manipulator_description/meshes/custom_robot/assieme_ c

prototipo.stl" scale="0.001 0.001
0.001"/>

↩→
↩→

154 </geometry>
155 <origin rpy="0 ${pi} ${pi/2}" xyz="-0.04 0.05 -0.18"/>
156 </visual>
157 <collision>
158 <geometry>
159 <box size="0.05 0.05 0.150" />
160 </geometry>
161 <origin rpy="0 ${pi} ${pi/2}" xyz="0 0 -0.075" />
162 </collision>
163 </link>
164

165 <joint name="joint1" type="fixed">
166 <origin rpy="0 0 0" xyz="${hand_to_ee_x} 0 ${hand_to_ee_z}"/>
167 <parent link="hand"/>
168 <child link="end_effector"/>
169 </joint>
170

171 <link name="camera_ee_link"/>
172

173 <joint name="ee_camera_joint" type="fixed">
174 <origin rpy="${ee_camera_r} ${ee_camera_p} ${ee_camera_y}" xyz="${ee_camera_x}

${ee_camera_y} ${ee_camera_z}"/>↩→
175 <parent link="hand"/>
176 <child link="camera_ee_link"/>
177 </joint>
178

179 <link name="chess_link"/>
180

181 <joint name="chess_link_joint" type="fixed">

90 B. Appendix B

182 <origin rpy="0 ${pi/2-0.3665} ${-pi/2}" xyz="-0.166 0 0.064"/>
183 <parent link="hand"/>
184 <child link="chess_link"/>
185 </joint>
186

187 </robot>

Listing B.1: URDF file of the robot, scripted with Xacro

	Resumo
	Sommario
	Contents
	List of Figures
	List of Tables
	Introduction
	Robotics in agriculture
	History
	Motivations
	Applications

	State of the art in robotic fruit harvesting
	The Hammerhead rover
	Overview of this work

	Design concepts
	Preliminary tests
	Mechanical design
	Kiwi plant structure
	Workspace analysis

	Kinematic parameters
	Gripper
	Initial design
	Final design

	Mobile platform integration

	Hardware
	Actuators selection
	Layout and manufacturer selection
	Task definition
	Motor sizing

	Electrical architecture
	Sensors

	Control architecture
	General description
	Low-level: motion control
	High-level: trajectory planning
	Hybrid planning manager plugin
	Global planner plugin
	Local planner

	Changes to the Moveit Hybrid Planning source code

	Software structure and simulation
	Modules architecture
	Arduino firmware

	Application details
	Simulation environment
	Application: mixed reality for orchards

	Perception
	Fruit detection and tracking
	Object detection
	Object tracking

	Application: apple counting
	Training dataset
	Synthetic images
	Enhanced exposure images

	Results
	Simulation
	Real robot
	Friction
	Basler camera calibration
	Kinematic calibration
	Mechanical performances

	Conclusions
	Appendix A
	Computation of the gravitational term
	Computation of the inertial term

	Appendix B

