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Abstract

Variance partitioning priors have recently been proposed in the context of Bayesian

hierarchical models. They are defined as those priors that make use of a reparametri-

zation of the variance parameters into a total variance and a set of proportions. This

work proposes a standardization procedure to accommodate variance partitioning pri-

ors into a large class of models, namely latent Gaussian models. The standardization

procedure to be applied on the model effects guarantees an intuitive interpretation for

the new parameters. The procedure acknowledges how the interpretation of variance

contributions as intended by the user can differ between fixed and random effects.

Particular attention is given to the special class of intrinsic Gaussian Markov ran-

dom fields, which are popularly used to model spatial and temporal correlation. The

benefits of the proposal are validated through simulations, which have confirmed the

practical relevance of the standardization procedure. The importance of the contri-

bution lies in the possibility of fully exploiting prior information through variance

partitioning priors, which is particularly beneficial to those applications and fields

that require complex modelling structures. This advantage is exemplified in the con-

text of species distribution models used in ecology, which are usually composed by

different fixed and random effects.
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Chapter 1

Introduction

Bayesian hierarchical models are an extremely popular modelling approach, thanks

to their flexibility and the recent computational innovations. Popular subclasses

are Latent Gaussian Models (LGMs, see Rue, Martino, and Chopin 2009). These

models commonly include a mix of fixed and random effects, often in the form of

Intrinsic Gaussian Markov Random Fields (IGMRFs, see Rue and Held 2005), which

are for example used to model spatio-temporal correlation (Fahrmeir, Kneib, and

Lang 2004). The problem of prior specification for these complex models remains an

open question, especially with respect to variance parameters, whose estimation can

be quite sensitive to prior assumptions. Traditionally, priors on variance parameters

are often chosen to be weakly informative, to reflect the idea that limited prior

knowledge about their value is available.

Although it is true that there is usually little information about the variance

parameters, experts usually have at least some intuition about the relative impor-

tance of different effects. This is the idea behind the Hierarchical Decomposition

(HD) priors framework proposed by Fuglstad et al. 2020, which aims to leverage

this underlying knowledge through the design of an appropriate joint prior on the

variance parameters of a model. This goal is achieved through a reparametrization

of the original parameters into a total variance and a set of proportions. Propor-

tion parameters are more intuitive for users, as they directly indicate the relative

importance of effects on the total variance of the linear predictor on a (0-1) interval,

thereby facilitating prior specification. Other works have proposed the same repa-

rametrization for different purposes, namely variable selection (Zhang et al. 2022,

Aguilar and Bürkner 2023). We term this reparametrization Variance Partitioning

(VP) and define VP priors all those joint priors on the original variance parameters

built using this technique (Franco-Villoria, Ventrucci, and Rue 2022).

It is desirable to extend VP priors to a general LGM setting and be able to
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elicit priors on the variance contribution of fixed and random effects simultaneously.

However, this extension is challenging. VP parameters are only meaningful if the

original variance parameters can be interpreted as the variance contribution of the

corresponding effects (which we denote as intuitive interpretation that the user has

about the variance parameters). Variance parameters in an LGM do not always have

such an intuitive interpretation. For example, the variance of an IGMRF effect (e.g.

a conditional autoregressive model for spatial data) cannot be interpreted directly

as the contribution of the corresponding effect, since IGMRFs are improper models

(Sørbye and Rue 2014). The problem also arises for proper models, for which the

effects must be scaled such that the variance parameters match their intuitive in-

terpretation. This is not a trivial problem, as it requires a formal definition of what

we mean by variance contribution of an effect. Existing research has addressed the

issue of interpretability offering various definitions of variance contribution and mul-

tiple approaches for ensuring this requirement. Nevertheless, the problem has only

been investigated for specific subsets of effects within the broader context of LGMs.

This limitation is particularly significant as it precludes the broader applicability of

VP priors, which are otherwise both interpretable and competitive with respect to

state-of-the-art alternatives.

The goal of this thesis is to explore the challenges that need to be addressed

in order to correctly implement VP priors in LGMs. Chapter 2 is a preliminary

chapter that reviews the fundamental concepts, necessary for a full understanding

of the remainder of the thesis. In Chapter 3, we introduce a formal definition of

variance contribution and derive the conditions under which the variance of a given

effect (either fixed or random) fulfils the definition. This leads us to propose a

novel standardization procedure that must be applied to each effect of an LGM in

order to accommodate VP priors. Our procedure has been inspired by the work of

Sørbye and Rue 2014 on IGMRFs. Multiple examples are illustrated, with particular

emphasis on IGMRFs, and simulations are carried out to investigate whether the

theory proposed translates into tangible practical benefits. Chapter 4 showcases the

advantages of VP priors through an application in the field of ecology, specifically

in the context of species distribution models (SDMs, see Ovaskainen et al. 2017).

Chapter 5 concludes the thesis, summarizing the main contributions and possible

future research lines.
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Chapter 2

Preliminaries

In this chapter, we review the foundational concepts that are useful for a better

understanding of the rest of the thesis. We start by describing Latent Gaussian

models (LGMs), Gaussian Markov Random Fields (GMRFs), and Intrinsic Gaussian

Markov Random Fields (IGMRFs). Later on, we briefly introduce the class of

Penalized Complexity (PC) priors. Finally, we review the literature on variance

partitioning priors, made up by two main branches: Hierarchical Decomposition

(HD) priors and R2D2 priors. Readers who are already familiar with these concepts

may skip this preliminary chapter.

2.1 Latent Gaussian Models

Latent Gaussian models are a subclass of Bayesian Hierarchical models (BHMs).

The class of BHMs is a very popular statistical tool which allows the specification of

very complex and flexible models for a given response (Gelman et al. 2013, Wakefield

et al. 2013, Hrafnkelsson 2023). The specification of such models is carried out

using (at least) three hierarchical levels. First, there is a response level at which a

distribution is assumed on the n response observations y = [y1, ..., yn]
T , conditional

on some latent parameters α and hyperparameters γ. Secondly, there is the latent

level in which the distribution of the latent parameters is specified conditional on

the hyperparameters γ. Finally, the hyperparameters γ represent the last level and

must be assigned a prior distribution (hyperparameter level). A BHM can therefore

be fully specified by the joint distribution of its y,α,γ:

π(y,α,γ) = π(y|α,γ)π(α|γ)π(γ). (2.1)
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Due to their flexibility and the efficiency of their computational estimation, BHMs

have become extremely popular in many areas of study, e.g. disease mapping, (Law-

son 2018), environmental sciences (Banerjee, Carlin, and Gelfand 2003), engineering

(Hrafnkelsson 2023), social sciences (Gelman and Hill 2007).

The class of models adhering to Equation 2.1 is exceptionally broad, encom-

passing the vast majority of Bayesian models employed in practical applications.

Nevertheless, supplementary assumptions are frequently introduced to facilitate in-

ference and prediction. Latent Gaussian models (LGMs) constitute a particularly

prevalent subclass of BHMs, where the latent model π(α|γ) is constrained to follow

a Gaussian distribution. We here define LGMs under additional assumptions that

are virtually universally adopted in real-world applications. In particular, we focus

here on the subclass of LGMs in which the response is linked to the latent parame-

ters only through a generalized linear model (see Bayesian LGMs with a univariate

link function in Hrafnkelsson 2023).

We formally define here the class of Latent Gaussian model through the following

specification where γ = [ψ,σ].

� Response model. Response observations are assumed to be conditionally

independent given α and ψ:

π(y|α,ψ) =
n∏

i=1

π(yi|α,ψ).

In particular, g−1(ηi) = E[yi|ηi,ψ] where ηi is a linear predictor in the form:

ηi = µ+
P∑

p=1

xipβp +
R∑

r=1

fr(zir)

and x1, ..., xP and z1, ..., zR are covariates. The functions fr(·) are always

defined in practice using a basis Dr(·) and a set of latent random coefficients

ur:

fr(Zr) =D
T
r (Zr)ur (2.2)

where the basis Dr(·) = [Dr,1(·), ..., Dr,Kr(·)]T is a column vector of Kr known

basis functions, and the vector ur is of dimension Kr × 1. Hence, ηi can be

2.1. Latent Gaussian Models 8



rewritten as a linear combination of the latent parametersα = [µ,β,u1, ...,uR]:

ηi = µ+
P∑

p=1

xipβp +
R∑

r=1

DT
r (zir)ur. (2.3)

� Latent model. The latent parameters µ,β,u1, ...,uR are all assigned inde-

pendent Gaussian distributions conditional on hyperparameters, i.e. µ ⊥⊥ β ⊥
⊥ u1 ⊥⊥ ... ⊥⊥ uR|σ. As a whole, the latent parameter vector α will follow a

multivariate Gaussian distribution, i.e. a Gaussian Markov random field (see

Section 2.2). Both the mean parameter µα and the precision matrix P α of

the Gaussian distribution can depend on the hyperparameter vector σ so that

they are denoted as µα(σ) and P α(σ):

α|σ ∼ N(µα(σ),P
∗
α(σ))

where M ∗ represents the generalized inverse of the matrix M .

Thanks to the conditional independence assumption, the precision matrix

P α(σ) will be sparse, which is computationally convenient. Moreover, Gaus-

sianity ensures that η = [η1, ..., ηn]
T is also a Gaussian field, conditional on

σ.

� Hyperparameter model. The vector of hyperparameters γ = [ψ,σ] must

be assigned a prior. No restrictions are imposed on the π(γ) density.

The joint posterior distribution for the unknown parameters of an LGM is found

to be:

π(α,γ|y) ∝
n∏

i=1

π(yi|α,γ)|P α(γ)|1/2exp
{
−1

2
[α− µα(γ)]

T P α(γ) [α− µα(γ)]
}
π(γ).

(2.4)

In general, it is not possible to obtain a closed form solution for this posterior

and simulation-based algorithms or approximation methods are usually needed for

the computation of Equation 2.4. Along with MCMC methods, LGMs can be

nicely fitted using the increasingly popular methodology proposed by Rue, Martino,

and Chopin 2009, which introduced the Integrated Nested Laplace approximation

(INLA). A package for the implementation of INLA is available in R and will be

used for posterior inference for the rest of the thesis.

2.1. Latent Gaussian Models 9



2.2 Gaussian Markov Random Fields (GMRFs)

As described in the previous section, Gaussian Markov Random Fields (GMRFs) are

used as priors on the α, especially for the ur coefficient vectors of LGMs. GMRFs

have been thoroughly investigated by Rue and Held 2005, who defined them as

follows.

Definition 2.1 (GMRF). A random vector u = [u1, ..., un]
T ∈ Rn is called a Gaus-

sian Markov Random Field with respect to an undirected graph G = (V,E), where

V = {1, 2, ..., n} is the set of nodes and E is the set of edges, with mean µ and

precision matrix P , where P is a symmetric, positive definite matrix, if and only if

its density has the form:

π(u) = (2π)−n/2|P |1/2exp
(
−1

2
(u− µ)TP (u− µ)

)
and

Pij ̸= 0 =⇒ {i, j} ∈ E i ̸= j.

In other words, a GMRF is a random vector that follows a multivariate Gaussian

distribution with mean µ and precision matrix P . There is complete correspondence

between the precision matrix P and the undirected graph G.

Although technically the precision matrix could be dense, the properties of

a GMRF are nicer when P is sparse, so that Rue and Held 2005 focused on

this case. Among such properties, Gaussianity ensures that the conditional in-

dependence structure on the vector is fully summarized by P , or equivalently by

the graph G: for example, the conditional distribution of xi given the remaining

u−i = [u1, ..., ui−1, ui+1, ..., un]
T only depends on uj such that Pij ̸= 0, which corre-

spond to the first-order neighbours of ui on the graph G (local Markov property).

Thanks to this and other Markovian properties of a GMRF, we can conclude that

its joint probability distribution is uniquely defined by the collection of its full con-

ditionals (Lemma 2.3 of Rue and Held 2005):

π(u) =
n∏

i=1

π(ui|u−i).

Rue and Held 2005 exploited these properties to derive computationlly efficient

algorithms for sampling a GMRF, either unconditionally, conditionally or subject

to linear constraints. These algorithms make use of the Cholesky factorization of the

2.2. Gaussian Markov Random Fields (GMRFs) 10



precision matrix, which computes a lower triangle matrix L such that P = LLT .

This factorization also provides a fast computation of the density function.

2.3 Intrinsic Gaussian Markov Random Fields (IGM-

RFs)

Another important class of effects consists of intrinsic GMRFs (IGMRFs), which

are popularly used in application, mostly to capture spatial or temporal correlation

structures. IGMRFs are improper GMRFs, which are defined by Rue and Held 2005

as follows.

Definition 2.2 (Improper GMRF). A random vector u = [u1, ..., un]
T ∈ Rn is

called an improper GMRF of rank n − k with parameters µ and P , where P is a

symmetric, positive semi-definite matrix with rank n−k, if its density has the form:

π(u) = (2π)−(n−k)/2(|P |∗)1/2 exp
(
−1

2
(u− µ)TP (u− µ)

)
(2.5)

and

Pij ̸= 0 =⇒ {i, j} ∈ E i ̸= j.

Note that |M |∗ denotes the generalized determinant of matrixM . Equation 2.5

is a proper density for the GMRF u conditional on k linear constraints STu = e

where S is a matrix of dimension n × k, such that PS = 0, i.e. S is the null

space of P . Therefore, an improper GMRF can be viewed as a GMRF under linear

constraints where all vectors u ∈ Rn can be realizations and not only those u

respecting the constraints. Because P is singular, the density in Equation 2.5 is

invariant to the addition to u of any vector u(0) = Sv for any choice of v ∈ Rk.

Among the large class of improper GMRFs, there are some important cases that

are popularly used in practice. These include cases in which the null space of the

rank-deficient matrix P has a well known structure. Based on such requirement,

Rue and Held 2005 defined for example IGMRFs of first order.

Definition 2.3 (IGMRF of first order). An IGMRF of first order is an improper

GMRF of rank n− 1 where P1=0.

From the definition, the full conditional of an IGMRF has the following expec-

2.3. Intrinsic Gaussian Markov Random Fields (IGMRFs) 11



tation:

E[ui|u−i] =
∑
j:j∼i

Pij

Pii

uj i = 1, ..., n

which means that the conditional mean of an entry is the weighted average of its

neighbours’ values but does not involve an overall level µ. As such, an IGMRF of

first order describes the behaviour of deviations from the mean without the need to

directly specify it.

A first-order random walk can be proven to be an IGMRF of order 1 and can

be called in fact an IGMRF on regular locations on the line. A first-order random

walk is defined assuming independent increments:

ui+1 − ui
iid∼ N(0, σ2). (2.6)

Since the process is defined on differences, it requires a starting condition on the

value on u1, or alternatively on any other value.

This specification leads to the following full conditionals:

ui|u−i ∼ N

(
ui−1 + ui+1

2
,
σ2

2

)
i = 1, ..., n.

The joint distribution of u has the following precision matrix P =
Q

σ2
where:

Q =


1 −1

−1 2 −1

... ... ...

−1 2 −1

−1 1

 (2.7)

Since P1=0, the first-order random walk is clearly an IGMRF of order 1.

Another type of first-order IGMRF is the intrinsic conditional autoregressive

model (ICAR) on a lattice, either regular or irregular (Besag and Kooperberg 1995).

This model is usually specified on the basis of the adjacency matrixW based on the

lattice, whereW ij = 1 if the regions of the lattice i and j are first-order neighbours.

The precision matrix is then defined as P =
1

σ2
[G −W ], where G is a diagonal

matrix with Gii =
∑n

j=1Wij. This definition implies that Q1=0.

2.3. Intrinsic Gaussian Markov Random Fields (IGMRFs) 12



The full conditionals for the ICAR model are:

ui|u−i ∼ N

(
1

ni

∑
j:j∼i

uj,
σ2

ni

)
i = 1, ..., n

where j ∼ i denotes that region i and j are first-order neighbours and ni denotes

the total number of first-order neighbours of region i. A weighted version can be

created simply replacing W with any other symmetric matrix of positive weights.

IGMRFs of higher order are similarly defined, i.e. on the basis of the null space

of P . For example, we can define IGMRFs of dth-order on the line.

Definition 2.4 (IGMRF of dth-order on the line). An IGMRF of order d is an

improper IGMRF of rank n− d with PS(d−1) = 0, where S(d−1) is a Vandermonde

matrix (Hoffman and Kunze 1971) of degree d− 1.

An example of IGMRF of order 2 on the line is the second-order random walk,

which defines independent increments for the second-order differences:

ui+2 − 2ui+1 + ui
iid∼ N(0, σ2).

Again, the process requires a starting condition to be realized: specifically, an initial

value for u1 and u2 must be specified (or any other couple of neighbours).

The joint distribution of u has the following precision matrix P =
Q

σ2
where:

Q =



1 −2 1

−2 5 −4 1

1 −4 6 −4 1

1 −4 6 −4 1

... ... ... ... ...

1 −4 6 −4 1

1 −4 6 −4 1

1 −4 5 −2

1 −2 1


. (2.8)

One popular use of second-order random walks is in the definition of P-Spline effects

(Eilers and Marx 1996, Lang and Brezger 2004), which are commonly used for

smoothing. P-Splines are defined as functions f(x) = BT (x)u of a continuous

covariate x through a basis B(x) = [B1(x), ..., BK(x)]
T , made up by equidistant

cubic B-Splines (Figure 2.1).

2.3. Intrinsic Gaussian Markov Random Fields (IGMRFs) 13



Figure 2.1: 20 cubic equidistant B-Spline functions on the support x ∈ [0, 1]. Each
colored line represents a Bk(x) function of the basis B(x).

The set of coefficients u is specified as a second-order random walk process: this

choice corresponds to a penalization on the second-order differences between the

coefficients and regularizes the wiggliness in the realizations of f(x). More details

on P-Splines are contained in the following chapter.

2.4 Scaling issue for IGMRFs

As mentioned, IGMRFs are often used in LGMs to account for spatial or temporal

dependence. The scale of such effects is controlled by the variance parameter σ2,

which is usually considered random and assigned an hyperprior. The priors on the σ2

parameters control the degree of smoothness of the trends, so that posterior results

can be quite sensitive to prior specification.

Sørbye and Rue 2014 noted that the scale of an IGMRF is not directly controlled

by the variance parameter σ2, but rather that it changes for different models, as well

as for different dimensions n. Consider for example that a process on the line in

the [0, 1] interval is modelled using a first-order random walk for regular locations

as defined in the previous section. Consider now a design in which the number of

observations’ locations is n = 11, so that the process is defined on x1 = 0, x2 =

0.1, ..., x10 = 0.9, x11 = 1 as in Equation 2.6:

ui+1 − ui
iid∼ N(0, σ2) i = 1, ..., 10.

Then, by definition we know that:

V ar[ui+1 − ui] = σ2.

2.4. Scaling issue for IGMRFs 14



If we now consider a different design with n = 21, the random walk would be defined

on x′
1 = 0, x′

2 = 0.05, x′
3 = 0.1, ..., x′

19 = 0.9, x′
20 = 0.95, x′

21 = 1 where x′
2i−1 = xi:

u′
i+1 − u′

i
iid∼ N(0, σ2

new) i = 1, ..., 20.

If we now compute the variance between ui+1 and ui, we obtain that σ2 = 2σ2
new

since:

V ar[ui+1 − ui] = V ar[u′
i+2 − u′

i] = 2σ2
new.

We can note that different designs therefore imply different meanings of the variance

parameter for a first-order random walk. Similar conclusions can be derived for

second-order random walks and IGMRFs in general. Thus, we can understand how

the scale of the effects is not only controlled by the variance parameter σ2 but also

by the design, i.e. the number of locations on the support. Imposing the same

hyperprior on σ2 and σ2
new will induce two different assumptions a priori on the scale

of the effect or the degree of smoothness of the process. This phenomenon can be

called scaling issue and appears clearly when we consider the pattern of the marginal

variance of each entry of the process ui conditional on the scale parameter σ2. This

quantity is well-defined only after having imposed appropriate linear constraints

that transform the IGMRF into a proper GMRF. Since a first-order random walk

is an IGMRF of first-order, the constraint
∑n

i=1 ui = 0 is necessary. Under this

condition, we can find that the marginal variance of each ui is equal to:

V ar[ui|σ2] = σ2[Q∗]ii

where Q∗ is the generalized inverse of Q and Qij is the entry at row i and column

j. Figure 2.2 reports these quantities for n = 11 and n = 21, conditional on the

value σ2 = 1.

2.4. Scaling issue for IGMRFs 15



Figure 2.2: Marginal variance of ui for a first-order random walk subject to∑n
i=1 ui = 0 and σ2 = 1: (a) n = 11; (b) n = 21. The dashed black line is set

at 1 to represent the value of σ2.

First, we can note that the marginal variances do not have a constant value for

all xi in neither of the cases. Secondly, the two patterns are different for the two

designs, and the value σ2 = 1 is not a good summary of the patterns, especially

for the case n = 21. This phenomenon happens for the IGMRFs in general, as the

pattern changes for IGMRFs of different kinds and dimensions.

To solve the scaling issue, Sørbye and Rue 2014 first suggested that IGMRF

effects should be appropriately scaled for a consistent interpretation of the σ2 pa-

rameters over different models and, therefore, for a mindful specification of their

hyperpriors. Specifically, Sørbye and Rue 2014 proposed to compute reference stan-

dard deviations σref, defined as the geometric mean of the marginal variance given

σ2 = 1:

σref =

√√√√exp

[
1

n

n∑
i=1

log(V ar[ui|σ2 = 1])

]

=

√√√√exp

[
1

n

n∑
i=1

log([Q∗]ii)

]
.

The value of σref is different for each IGMRF model and reference standard devia-

tions for univariate and bivariate IGMRFs of first- and second-order with varying

dimension n have been reported in Spyropoulou and Bentham 2024. Sørbye and Rue

2014 then proposed to specify the hyperpriors on σ2 · σ2
ref to ensure that the inter-

pretation of the hyperprior does not change from model to model. This procedure

is equivalent to dividing the u effects by σref. After scaling, the same hyperprior on

σ2 reflects the same assumption about the scale of the deviation of the effect from
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its null space for all IGMRF models, regardless of the type and dimension.

Sørbye and Rue 2014 showed the practical impact of their proposal on posterior

estimation through real case studies in disease mapping and ecology.

2.5 Penalized Complexity priors

Simpson et al. 2017 presented a novel approach for the derivation of prior distribu-

tions, which is referred to as Penalized Complexity (PC) priors. PC priors do not

have a fixed functional form, but rather are built using a set of 4 principles or steps,

which can be potentially applied to any parameter. Note that the principled nature

of PC priors makes them invariant to reparametrization, which is a highly desirable

quality that puts them in the same category as the revolutionary class of Jeffreys’

priors.

Consider a model component with density π(x|θ) where θ is the unknown pa-

rameter for which a prior must be specified.

1. Occam’s razor. The principle that simpler models should be preferred until

there is enough evidence for more complex models is adopted. Following this

idea, a base model b, i.e. the value of θ that corresponds to the simplest model,

is specified. Desirably, the base model shall be the preferred value in the prior

distribution, while divergence from it should be penalized.

2. Measure of complexity. A measure of complexity intended as divergence

from the base model is defined using the KLD between π(x|θ) and π(x|θ = b).

The KLD as a function of θ is used to define the distance d(θ) from the base

model as:

d(θ) =
√

2 ·KLD[π(x|θ)||π(x|θ = b)].

This particular transformation of the KLD is chosen so that d(θ) behaves more

like a proper distance metric, since asymptotically it becomes equal to the true

Fisher information distance (Simpson et al. 2017).

3. Constant rate penalization. The goal of penalizing model complexity is

achieved specifying am Exponential distribution on d(θ):

d(θ) ∼ Exp(δ).
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The implied prior on θ is found applying the change-of-variable formula:

π(θ) = δ exp[−δ · d(θ)] ·
∣∣∣dd(θ)

dθ

∣∣∣.
The Exponential distribution is chosen as it has a constant decay rate, which

is the most reasonable assumption without additional knowledge. This choice

has the advantage of ensuring the memoryless property. However, it is not the

best option whenever sparse regression is desirable: in this case, heavier tails

are necessary (Simpson et al. 2017).

4. User-defined scaling. The Exponential distribution hyperparameter δ is

specified using a tail probability statement in terms of an upper bound U

and tail probability α on an interpretable transformation g(θ) of the original

parameter.

P (g(θ) > U) = α.

A PC prior distribution will be denoted here by PCb(δ), as in Hem, Fuglstad,

and Riebler 2024.

We can now focus on the construction of a PC prior for the variance parameter

σ2 of a GMRF or IGMRF. In this context, the model simplicity principle suggests

to set the base model to 0, which corresponds to the absence of the effect, i.e. the

simplest possible model. Simpson et al. 2017 derived the PC0 prior for σ
2 and found

the following functional form:

π(σ2) =
δ

2
√
σ2

exp
(
−δ

√
σ2
)

which corresponds to a Weibull distribution with scale hyperparameter 1/δ2 and

shape hyperparameter 1/2. Under different parametrizations, the distribution be-

comes an Exponential with hyperparameter δ on the standard deviation
√
σ2 or a

type-2 Gumbel distribution on the precision 1/σ2. Simpson et al. 2017 suggested to

set the hyperparameter using a tail probability statement on the standard deviation:

P (
√
σ2 > U) = α.

The Exponential hyperparameter is equal to δ = − log(α)
U

.

The use of the PC0 prior for variance parameters of random effects of LGMs has

become increasingly popular in recent years, due to its good theoretical properties,

and superior performance in comparison to more traditional choices (e.g. Inverse-
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Gamma), specifically in avoiding overfitting. Extensive simulation studies about the

performance of PC priors have been performed in Klein and Kneib 2016.

Along with variances, PC priors have been applied to many other types of param-

eters, including: tail dependence (Kereszturi, Tawn, and Jonathan 2016), degrees

of freedom for P-splines (Ventrucci and Rue 2016), Matérn parameters (Geir-Arne

Fuglstad and Rue 2019), autoregressive correlation (Sørbye and Rue 2017), skewness

(Ordonez et al. 2024).

2.6 Hierarchical Decomposition priors

Fuglstad et al. 2020 proposed a new method for the prior specification of the variance

parameters for the random effects of LGMs. Consider again the linear predictor of

an LGM as defined in Equation 2.3. In common practice, the Gaussian distribution

of α is specified as:

µ ∼ N(0, σ2
I )

β ∼ NP (0, σ
2
FIP )

ur|σ2
r ∼ NKr(0, σ

2
rQ

∗
r) r = 1, ..., R.

Traditionally, σ2
I and σ2

F are fixed to large values and the prior specification focuses

on the hyperparameters σ = [σ2
1, ..., σ

2
R], along with potential likelihood parameters

ψ. If the precision matrices are not actually fixed but depends on some correlation

parameters (e.g. spatial Matern processes or autoregressive temporal processes),

such parameters are considered fixed to a reasonable value during the prior specifi-

cation for σ and their priors are separately specified (Fuglstad et al. 2020).

The usual approach to define the prior on the variance parameters is to assume

independence such that:

π(σ2
1, ..., σ

2
R) =

R∏
r=1

π(σ2
r).

The independence assumption ignores potential prior knowledge regarding the rela-

tive importance of different effects. This limitation can be addressed by specifying a

joint prior distribution for the variance parameters. However, effectively capturing

prior information about the relationships between the individual σ2
j through a joint

distribution is challenging. Fuglstad et al. 2020 presented a framework in which an

intuitive joint prior can be specified on these parameters, in a user-friendly way.

This is achieved specifying the prior on a reparametrization of the original σ2
1, ..., σ

2
R
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parameters.

The reparametrization starts with the definition of the total latent variance:

W =
R∑

r=1

σ2
r (2.9)

where W is the total variance in the linear predictor after having accounted for the

fixed effects. If all random effects are homogeneous, i.e. V ar[DT
r (zir)ur|µ,β,σ] =

σ2
r for i = 1, ..., n, then W = V ar[ηi|µ,β,σ] thanks to additivity. If some effects are

heteregeneous, i.e. V ar[DT
r (zir)ur|µ,β,σ] ̸= σ2

r , as in the case of IGMRFs, then

W ≈ V ar[ηi|µ,β,σ] for i = 1, ..., n as long as the effects have been appropriately

scaled, as described in Section 2.4.

The remaining parameters are found building a hierarchical decomposition tree,

which decomposes the total latent variance W through successive splits. It is de-

sirable to design the splits such that the desired comparisons between effects (i.e.

for which there is relevant information a priori) are reflected into the child nodes

of a specific split. Fuglstad et al. 2020 formally described the design of a tree T.

The root node always contains W . The first split divides the root node in at least

two child nodes, each containing one or more random effects’ variance parameters

σ2
r . More splits are added until all the child nodes contain a single σ2

r . We denote

the total number of splits S, the number of branches at split s as Ks, the parent

node at split s as a set Ps containing the indices of the effects in the node, and the

child nodes as sets Cs,1, ..., Cs,Ks . The new parameters ϕ1, ...,ϕS are S vectors of

proportions defined dividing the variance parameters in the child nodes by the sum

of the variance parameters from the parent node at each split:

ϕs =
1∑

r∈Ps
σ2
r

 ∑
r∈Cs,1

σ2
r , ...,

∑
r∈Cs,Ks

σ2
r

 s = 1, ..., S. (2.10)

Note that 0 ≤ ϕsk ≤ 1, ∀k = 1, ..., Ks and
∑Ks

k=1 ϕsk = 1.

This hierarchical reparametrization offers a more intuitive way to specify a joint

prior on the original parameters, as users now need to choose priors on interpretable

proportion parameters that compare the relative importance of different groups of

random effects.

In order to exemplify the decomposition tree design, we can consider the simple

case of an LGM with only three random effects and respective variances σ2
1, σ

2
2, σ

2
3.

The total latent variance is then W = σ2
1 + σ2

2 + σ2
3. One potential design of the

decomposition tree is depicted in Figure 2.3: first, the first two effects are separated

2.6. Hierarchical Decomposition priors 20



by the third one (split s = 1); then, a second distinction (s = 2) is made between

the first two effects.

Figure 2.3: Example of Hierarchical Decomposition tree.

In this case, the tree has S = 2 total splits, both having two branches (K1 = K2 =

2), with parent nodes P1 = [1, 2, 3], P2 = [1, 2], and child nodes C1,1 = [1, 2], C1,2 =

[3], C2,1 = [1], C2,2 = [2]. In this example, the new vector parameters are actually

single proportions that can be written as ϕ1 = [ϕ1, 1 − ϕ1] and ϕ2 = [ϕ2, 1 − ϕ2]

where:

ϕ1 =
σ2
1 + σ2

2

σ2
1 + σ2

2 + σ2
3

ϕ2 =
σ2
1

σ2
1 + σ2

2

.

Fuglstad et al. 2020 defined a class of priors on the reparametrization from Equa-

tions 2.9-2.10, called Hierarchical Decomposition (HD) priors, under the reasonable

assumption that each parameter vector ϕs will only depend on vector ϕt if t is a

descendant split of s (bottom-up approach).

Definition 2.5 (HD priors for LGMs). A hierarchical decomposition prior on the

variance parameters σ2
1, ..., σ

2
R of a latent Gaussian model is defined as:

π(σ2
1, ..., σ

2
R) = π(W |{ϕs}Ss=1)

S∏
s=1

π(ϕs|{ϕt}t∈Ds) (2.11)

where Ds denotes the set containing the indices of descendant splits of split s.
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For the example presented above, Equation 2.11 becomes:

π(σ2
1, ..., σ

2
3) = π(W |ϕ1, ϕ2)π(ϕ1|ϕ2)π(ϕ2).

While the conditioning on descendant splits’ parameters is a sensible assumption, it

is practically inconvenient in terms of computation. In practice, Fuglstad et al. 2020

therefore resorted to the use of simplified conditioning : the prior distributions on

W and ϕs are specified not as a function of the descendant parameters ϕt but only

considering a baseline value of them denoted by ϕ0
t . An HD prior under simplified

conditioning is technically made up by independent priors on the new parameters:

π(σ2
1, ..., σ

2
R) = π(W )

S∏
s=1

π(ϕs).

For the example above, the prior simplifies to:

π(σ2
1, ..., σ

2
3) = π(W )π(ϕ1)π(ϕ2).

The first step of the specification of an HD prior requires choosing a distribution

for the total latent variance W . Following the work of Gelman, Simpson, and

Betancourt 2017, Fuglstad et al. 2020 suggested to specify π(W ) taking into account

the likelihood of the model. In the case of a Gaussian likelihood, it is recommended

to add the additional Gaussian noise to the decomposition tree and assign a scale-

invariant Jeffreys distribution to W =
∑R

r=1 σ
2
r + σ2

ϵ . Under different likelihood

models, the use of a PC prior with base model W = 0 is suggested, in order to

shrink towards a model with no random effects unless there is evidence in the data

for their importance.

The second step of an HD prior consists in the specification of prior distributions

for the ϕs vectors. The choice of the prior depends on the type of information the

user has about the corresponding split. The user may or may not have prior beliefs

about the relative importance of the child nodes of a given split. Fuglstad et al.

2020 identified two distinct categories of splits according to the type of information

available to the users and proposed two corresponding approaches for the prior

specification of the corresponding proportion vectors.

� Indifference between branches. If the user wants to express ignorance

between the partition of the variance among the child nodes of a given split,

an exchangeable prior can be chosen for ϕs, such as for example a symmetric

Dirichlet distribution Dir(q, .., q). If the user wants to reflect complete igno-
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rance about the partition between the branches, the hyperparameter q can be

set to 1 to obtain a Uniform distribution on the simplex space.

� Preference towards a branch. If instead the user wants to express a pref-

erence towards a branch, PC priors allow for a penalization of deviations from

a preferred value of the partition. Fuglstad et al. 2020 derived the explicit

form of the PC prior for proportion parameters for a relevant class of models.

Franco-Villoria, Ventrucci, and Rue 2022 did the same for a subclass of models

using Kronecker product IGMRFs.

Fuglstad et al. 2020 provided details for an intuitive specification of the hyperpa-

rameters of HD priors.

The simulation study performed by Fuglstad et al. 2020 showed that HD priors

are competitive with respect to independent PC0 priors on the σ2
r parameters, which

represent a state-of-the-art alternative for LGMs and have been popularized by the

R-INLA package. HD priors have been so far applied in various fields: demography

(Fuglstad et al. 2020), genomics (Hem et al. 2021), disease mapping (Franco-Villoria,

Ventrucci, and Rue 2022), forestry (Marques, Wiemann, and Kneib 2023).

The application of HD priors has been made easier by the work of Hem, Fuglstad,

and Riebler 2024, who developed the user-friendly makemyprior package for the

design of the decomposition tree and the prior specification on the consequent set

of new parameters through the use of intuitive probability statements.

A more realistic tree design and HD prior specification are discussed in Chapter

4, for the treatment of species’ distribution models from ecology.

2.7 R2D2 priors literature review

Fuglstad et al. 2020 cited as a reference the Dirichlet-Laplace prior introduced by

Bhattacharya et al. 2015, which is a global-local shrinkage prior derived in the con-

text of Bayesian variable selection. This is the first out of many works from a branch

of literature that uses the same reparametrization idea of the HD prior with a differ-

ent purpose, namely to induce a shrinkage prior on the linear coefficients and thus

perform sparse regression. In addition to the purpose, the main difference between

this separate class of priors and the HD class lies in the fact that the latter aims at

fully exploiting prior knowledge through an application-specific decomposition tree,

while the specification of this class of global-local shrinkage priors makes use of a

single split with as many branches as the number of variance parameters.

Consider the case in which the linear predictor of Equation 2.3 only contains

2.7. R2D2 priors literature review 23



linear effects:

ηi = µ+
P∑

p=1

xipβp.

Assume now that the Gaussian distribution of LGMs is replaced with a Double-

Exponential (or Laplace) on the linear coefficients βp|σ2
p ∼ DE(0, σ2

p) where V ar[βp] =

σ2
p for all p = 1, ..., P . Note that the Double-Exponential is a typical choice in a

sparse regression context for its shrinkage properties.

The Dirichlet-Laplace (DL) prior uses the same reparametrization idea of HD

priors to specify a joint prior distribution on the σ2
1, ..., σ

2
P parameters of this model.

Let W =
∑P

p=1 σ
2
p and ϕ = [ϕ1, ..., ϕP ] where ϕp = σ2

p/W . Assuming that the

covariates have all been standardized so that V arni=1[xip] = 1, p = 1, ..., P , then:

V ar[xipβp|µ, σ2
1, ..., σ

2
p] ≈ σ2

p i = 1, ..., n.

Hence, W can be interpreted as the total latent variance and ϕp as the individual

contribution of the p linear effect. From the point of view of global-local shrinkage

priors, W is the global scale parameter, while ϕp are the local scale parameters.

The DL prior refers to a prior induced on the linear coefficients βp obtained

through the following specification:

βp|ϕ,W ∼ DE(0,Wϕp) p = 1, ..., P

ϕ ∼ Dir(q, ..., q)

W ∼ Gamma(P · q, 1/2).

(2.12)

The symmetric Dirichlet hyperparameter q regulates the sparsity level on the vector

ϕ and consequently the amount of shrinkage towards 0 on the implied distributions

of β (the smaller q, the stronger the shrinkage).

The DL prior has been proven to have better tail and concentration properties

on the marginal prior π(βp) than alternative global-local shrinkage priors. More-

over, it has an optimal posterior contraction rate and provides efficient estimation

(Bhattacharya et al. 2015). The DL has been extensively studied for linear variable

selection (Zhang and Bondell 2018), and also extended to the more complicated

setting of non-linear regression (Wei et al. 2020).

The R2D2 prior builds upon the DL proposal. The idea behind this alternative

is to implicitly induce a desirable prior on the linear coefficients by directly eliciting

a prior on a more intuitive measure of goodness-of-fit of the model, namely the R2

as defined in Zhang et al. 2022. A posteriori, the R2 is an intuitive measure of model
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fit, while a priori, it can be interpreted as the proportion of variance explained by the

model for future data. To define the R2D2 prior, we first assume that the response

has a Gaussian likelihood: yi|ηi, σ2
ϵ ∼ N(ηi, σ

2
ϵ ). Secondly, the Gamma distribution

on W from Equation 2.12 is replaced by a Beta(a, b) distribution on the marginal

version of the R2 as defined by Zhang et al. 2022:

R2 =
1
n

∑n
i=1 V ar[ηi|µ, σ2

1, ..., σ
2
P ]

1
n

∑n
i=1 V ar[yi|µ, σ2

1, ..., σ
2
P , σ

2
ϵ ]

=
W

W + σ2
ϵ

.

The R2D2 prior is defined as the induced prior on βp when the Beta parameter a

is set to a = P · q. Note that the Beta distribution choice on R2 corresponds to a

generalized Beta prime distribution on W |σ2
ϵ ∼ GBP(a, b, 1, σ2

ϵ ), which has already

been studied as a potential prior for variance parameters, for instance by Bai and

Ghosh 2021. The marginal distribution π(βp) induced by the R2D2 prior has been

found to have excellent shrinkage properties, since it simultaneously displays heavier

tails and higher concentration at 0 than other popular global-local shrinkage priors,

including the DL.

In more recent works, the use of R2D2 priors has been studied in the more pop-

ular context of LGMs, which offers both theoretical and computational advantages

over the use of Double-Exponential distributions.

Aguilar and Bürkner 2023 extended the application of the R2D2 prior to linear

multilevel models, i.e. both random intercepts and random slopes are included. The

proposed R2D2M2 prior retains similar properties despite the extension to a multi-

level structure and the shift from the Double-Exponential to the Gaussian distribu-

tion for the coefficients. Additionally, the authors highlighted the interpretability

advantage offered by the R2D2 perspective, by acknowledging the intuitiveness of its

hyperparameters and setting them according to interpretable quantities measuring

model complexity. The R2D2M2 has recently been further extended to encompass

more flexible choices than the symmetric Dirichlet for the prior of ϕ, namely a

logistic Normal distribution (Aguilar and Bürkner 2024).

More recently, Yanchenko, Bondell, and Reich 2024b applied R2D2 priors to the

broader class of generalized linear models under the LGM framework. This work

mainly focuses on the derivation of exact or approximate induced prior on W for

different likelihood choices but overlooks potential challenges due to the inclusion

of complex effects or IGMRFs. Finally, the context of spatial models is discussed

in Yanchenko, Bondell, and Reich 2024a, which concludes the existing literature on
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R2D2 priors at the time of writing to the best of our knowledge.
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Chapter 3

Standardization procedure for the

use of Variance Partitioning priors

in Latent Gaussian Models

3.1 Introduction

Bayesian hierarchical mixed models have become very popular in many fields of

application, such as epidemiology, environmental studies, ecology, etc (Lawson 2018,

Clark and Gelfand 2006, Ovaskainen et al. 2017). The traditional approach to

prior specification of variance parameters in this class of models consists of choosing

independent and often identical priors on the scale parameters. The problem of the

selection of appropriate prior distributions for such parameters has long been studied

in the Bayesian literature. The Inverse-Gamma, widely popular for its conjugacy

property, has been found to perform poorly in practice as it leads to overfitting

(Gelman 2006, Frühwirth-Schnatter and Wagner 2010, Lunn et al. 2009). Recently,

new proposals have been presented to deal with these parameters. Among them,

the prior derived according to the Penalized Complexity (PC) approach has been

found to perform better than traditional competitors (Simpson et al. 2017).

However, the poor performance of traditional choices is not the only issue re-

lated to the usual approach to prior specification of variance parameters. Another

limiting factor is the strong assumption of mutual independence between variance

parameters, which is always adopted in practice even when prior information may

suggest otherwise. In recent years, this has been challenged and the independence

assumption has been relaxed.

Fuglstad et al. 2020 presented a new framework based on the design of a hierar-

chical decomposition of the variance in the linear predictor with the aim of deriving
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more intuitive parameters. Specifically, a total variance is considered along with

multiple sets of proportions defined on a case-by-case basis, according to a decom-

position tree. Specifying independent priors on these new parameters is equivalent

to assuming a joint prior distribution on the original variances. This “Hierarchical

Decomposition (HD) reparametrization” offers two main benefits over the tradi-

tional independence assumption: first, the freedom in the tree design allows the

definition of new parameters, coherent with the structure of the model and relevant

to the available prior information; second, it is easier to carry out the prior specifi-

cation on proportions due to their bounded nature. Intuitive ways to set priors on

these proportions are suggested in Fuglstad et al. 2020, e.g. through the use of PC

priors (Simpson et al. 2017). This approach is however so far limited to a subset

of random effects, e.g. it has not been applied to effects for continuous covariates.

One of the issues causing this limitation consists in the intuitive interpretation of

the new parameters, which is only guaranteed if all the original variance parameters

can be correctly interpreted as the contribution to the total variance due to their

corresponding effects. The marginal variance of many popular effects is not constant

and equal to the corresponding variance parameter, but is instead a function of the

covariate that varies over its support, i.e. “non-stationary” variance: some examples

include polynomial effects, ICAR models, P-Spline smoothing models, etc. Fuglstad

et al. 2020 use the geometric mean scaling method presented in Sørbye and Rue

2014 to deal with this problem, limited to the context of discrete IGMRF cases.

Moreover, linear effects are treated as fixed and not considered as part of the total

variance.

Another stream of research considers joint priors on the scale parameters be-

cause of the desirable properties obtained on the implied marginal prior of linear

effects. Bhattacharya et al. 2015 first exploited this idea for the definition of a novel

global-local shrinkage prior. More recently, Zhang et al. 2022 introduced the R2D2

prior, again to obtain a desirable shrinkage prior: the model fit is controlled globally

through a Beta distribution on the R2 and a symmetric Dirichlet is imposed on the

proportions of total variance. The R2D2 prior has shown to have better theoretical

properties than its main competitors under the use of a Laplace kernel on the linear

effects. Similar properties have also been found under the assumption of a Gaussian

kernel by Aguilar and Bürkner 2023. Although this approach was originally devel-

oped for high-dimensional settings, this method can be applied more generally and

has been recently extended to the GLMM class of models (Yanchenko, Bondell, and

Reich 2024b,Yanchenko, Bondell, and Reich 2024a). Since this approach has been

developed with a different objective than Fuglstad et al. 2020, there is no particular
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attention to the interpretability of the proportion parameters. The case of effects

with a non-constant variance over the support of the covariate only appears in the

context of linear effects and is dealt with classical standardization.

Both lines of research make use of a reparametrization of the original scale pa-

rameters, which can be generally defined as Variance Partitioning (VP) reparametri-

zation (Franco-Villoria, Ventrucci, and Rue 2022). However, none of the proposals

considers all types of potential random effects that a user might wish to introduce

in the linear predictor. In particular, the problem of “non-stationary” variance pro-

cesses has not yet been addressed generally but only for specific cases. Hence, the

VP reparametrization still has a limited scope of application in practice.

In this chapter, we argue that the two lines of research can be unified under a

more general framework, whose scope of application can be much wider than the one

so far delimited in the literature. To make this claim, it is necessary to extend the

class of models to which the VP reparametrization can be correctly applied. This is

achieved by the development of a general procedure to guarantee an intuitive inter-

pretation of the variance parameters of non-stationary effects, extending the work

of Sørbye and Rue 2014. Our proposal maintains the traditional difference between

fixed and random effects, even when they are both assigned a random variance pa-

rameter, where the novel distinction is based on which quantities are of interest in

terms of inference (Gelman et al. 2013,Hodges 2013). Finally, the paper discusses

the case of effects with Intrinsic Gaussian Markov Random Fields (IGMRF) priors

in this extended framework (Rue and Held 2005). We believe that the proposed ap-

proach will allow the exploitation of the advantages of variance partitioning priors

in a wider scope of applications and fields. This will be particularly beneficial in

applications where it is desirable to introduce expert knowledge in the prior spec-

ification, since this becomes much easier under the VP framework, following the

guidelines of Fuglstad et al. 2020.

The remainder of the chapter is structured as follows. Section 3.2 defines in

detail the class of models under consideration, namely Latent Gaussian Models, and

carefully reviews the literature about the VP reparametrization and the issue re-

garding non-stationary effects; finally, IGMRFs are presented as a particular class

of non-stationary effects that present additional challenges. A general standardiza-

tion procedure that guarantees the correct implementation of variance partitioning

priors is presented in Section 3.3. Section 3.4 presents a plethora of popular exam-

ples, often employed in applications. Section 3.5 reports simulation studies and an

application to real data to assess the practical implications of the theoretical claims

made in Section 3.3. Finally, Section 3.6 summarizes the main contributions of the
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work and outlines potential future lines of research.

For a user-friendly practical implementation of standardization, the scaleGMRF

R package has been developed and made publicly available at https://github.

com/LFerrariIt/scaleGMRF.

3.2 Background

3.2.1 Traditional prior approach in LGMs

Consider the general framework of Latent Gaussian Models presented in Section

2.1, which covers a wide range of common model classes, such as GLMM, GAM,

GAMMS, VCM models. The definition of the linear predictor of Equation 2.2 in

terms of the basis/coefficients notation is helpful in showing the similarity between

the fixed and random components, as both are expressed using a known design

matrix and a set of unknown coefficients to be estimated.

In LGMs, all components of the latent additive model for the linear predictor

are assumed to be Gaussian conditional on variance hyperparameters. In particular,

here we assume that µ, β1, ..., βP ,u1, ...,uR from Equation 2.2:

µ ∼ N(0, σ2
I )

β ∼ N(0, σ2
F,p) p = 1, ..., P

ur ∼ N(0, σ2
rQ

∗
r) r = 1, ..., R

where Qr is a known, symmetric, positive semi-definite matrix ∀r = 1, ...R and Q∗
r

denotes its the generalized inverse. When Qr is positive definite, then Q∗
r = Σr is

the corresponding covariance matrix. If instead Qr is rank-deficient (e.g. IGMRF

effects), the covariance matrix does not formally exist.

The variance parameters σ2
I and σ2

F,p for p = 1, ...P are fixed to large values

to ensure flat priors on the fixed effects, while an actual prior is specified on σ2
r

parameters of the random effects:

σ2
I , σ

2
F,1, ..., σ

2
F,P = 1000 (3.1)

σ2
1, ..., σ

2
R ∼ π(σ2

1, ..., σ
2
R). (3.2)

Moreover, the inferential focus is usually on the P fixed effects β = [β1, ..., βP ] and

the R variance parameters for each set of random effects σ = [σ2
1, ..., σ

2
R], along with

µ and ψ. Traditionally, the elements of σ are assumed independent between each
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other such that:

π(β,σ) =

[
P∏

p=1

π(βp)

][
R∏

r=1

π(σ2
r)

]
. (3.3)

The following section discusses an alternative approach for the prior specification

of LGMs that challenges the set of assumptions summarized in Equation 3.3. The

aim is to obtain an easier, more intuitive way to include prior beliefs into the model

about the relative importance of the effects, intended here as their contributions to

the linear predictor variability.

3.2.2 Variance partitioning priors

Consider the model presented in Equation 2.3 and following. The variance parti-

tioning approach to prior specification consists of adopting a reparametrization of

J different variance parameters of a model into a single variance V and a set of

proportions ω.

Definition 3.1 (VP priors). Consider a set of variance parameters σ2
1, ..., σ

2
J . We

define the VP parameters as:

V =
J∑

j=1

σ2
j ,

ω =

[
ω1 =

σ2
1

V
, . . . , ωJ−1 =

σ2
J−1

V
, ωJ = 1−

J−1∑
j=1

ωj

]
.

(3.4)

We call VP those priors implied on the original variance parameters by the specifi-

cation of independent priors on the VP parameters, i.e.:

π(σ2
1, . . . , σ

2
J) = π(V )π(ω)|J |;

where J represents the Jacobian associated with the transformation σ → V,ω:

J =


dV

dσ2
1

...
dV

dσ2
J

... ... ...
dωJ−1

dσ2
1

...
dωJ−1

dσ2
J

.


The VP reparametrization is the common denominator of all the works presented

in Section 3.1, which have made use of this approach in different ways. While the
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strategy to set the prior on the VP parameters varies with the goal and perspective

adopted in each paper, the main benefit of this method is always an improvement in

the user-friendliness of the prior specification procedure. This advantage is achieved

through the definition of new parameters for which prior specification becomes more

intuitive for the user, i.e. their beliefs can be more immediately translated into

distributions for such parameters. This intuitive advantage is first achieved by

simplifying the difficult problem of specifying a joint prior for a set of variance

parameters through the separation between when the concept of magnitude of the

overall variability (i.e. V ) and that of relative importance of the different sources

(i.e. ω) are divided and independently specified. However, this is usually only the

first step and VP priors achieve their goal through further separate transformations

of V and ω.

After obtaining the VP parameters, the prior for V can be chosen in order to

include information about the scale of the variability in the response, for example

when compared to the residual variability due to the likelihood. This is what is

proposed by the R2D2 literature that considers the coefficient of determination R2,

defined as a function of V and ψ, to include beliefs about the goodness-of-fit of

the model. On the other hand, a prior for ω can capture prior beliefs about the

relative importance of each effect with respect to the others. In order to obtain the

desirable comparisons between the effects, Fuglstad et al. 2020 suggests a further

reparametrization of ω based on the design of a case-specific decomposition tree to

partition the variance contributions in branches. The design can often be guided

not only by actual prior knowledge but also by the structure of the model and

Occam’s razor principle (e.g. splitting main and interaction effects and preferring

the former). According to the chosen tree, a set of simplices is derived from ω and

independently specified. The shift from a variance scale to the simplex one greatly

simplifies the task of specifying both marginal and joint priors since the parameters

are now immediately interpretable for a user as proportional contributions to the

variance in a simple 0-1 scale. See Fuglstad et al. 2020 for details about specific

prior choices for different prior assumptions.

In summary, the appeal of VP prior methods lies in the possibility of obtaining

parameters that are more easily interpretable for the user when compared to the

original ones. However, it is crucial to understand that this interpetability is not

guaranteed: V and ω do not always equate to their intuitive interpretation, i.e.

respectively as the total variance due to the J effects and the set of proportional

contributions of the individual effects to this total variance. This holds only if each

σ2
j actually matches its own intuitive interpretation, being the variance contribution
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of its corresponding effect as intended by the user. However, this is not true in

general.

The necessity for the interpretability advantage of VP priors has led so far the

literature to define the concept of intuitive interpretation for σ2
r in different ways and

restrict the field of applications only to those specific effects for which this intuitive

interpretation requirement is respected, either by design or after adjustments. Here,

we review the two main lines of research exploiting the VP reparametrization in

general, specifically focusing on how they dealt with the interpretability issue (either

implicitly or directly).

In the following, we shall refer for convenience to V aru[f(Z)|σ2, Z = z] as

the conditional variance of a generic effect f(Z), while to V aru,Z [f(Z)|σ2] as the

marginal variance of the effect.

Hierarchical Decomposition approach

Fuglstad et al. 2020 presented the hierarchical decomposition (HD) framework con-

sidering the model class of Equation 2.3 and applying the VP reparametrization to

the variance parameters of the random effects σ2
1, ..., σ

2
R. Dropping the indices for

convenience, the intuitive interpretation for each σ2 has been defined in this con-

text as the conditional variance of effect f(Z) = DT (Z)u, given the value of the

covariate. Hence, the intuitive interpretation requirement can be defined as:

V aru[f(Z)|σ2, Z = z] = σ2 ∀z ∈ Z.

The requirement does not hold for all possible random effects, as the conditional

variance for a generic effect is:

V aru[f(Z)|σ2, Z = z] = σ2 · [DT (z)Q∗D(z)]. (3.5)

Defining g(z) = DT (z)Q∗D(z), it is clear that g(z) is not always a constant func-

tion at 1: therefore, not all effects are going to respect the intuitive interpretation

requirement. According to whether or not this is true, effects have been labelled as

homogeneous or heterogeneous (lexicon used in Fuglstad et al. 2020).

� Homogeneous effect: g(z) = 1, ∀z ∈ Z.

� Heterogeneous effect: ∃z ∈ Z such that g(z) ̸= 1.

All stationary processes have a constant marginal variance by definition so that

they are always homogeneous as long as Q∗ is scaled to be a correlation matrix.
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Examples of popular effects that fall in this category include i.i.d. group effects,

Matern-based spatial effects, and stationary autoregressive models for temporal cor-

relation.

In the presence of heterogeneous effects instead, V and ω do not have their in-

tuitive interpretation, as V ar(η|µ, β1, ..., βP , σ
2
1, ..., σ

2
R,X = x,Z = z) ̸=

∑R
j=1 σ

2
j .

This is a relevant problem as many common models fall in the heterogeneous cate-

gory, including polynomial effects and non-stationary spatial and temporal models,

e.g. random walks, ICAR model, etc.

Fuglstad et al. 2020 discussed the inclusion of a particularly important class

of heterogeneous effects, i.e. IGMRFs (see Section 3.2.3), through the proposal

of Sørbye and Rue 2014. First, a reference variance σ2
ref is defined for each effect

as being a location summary of the conditional variance over the support Z of Z

having cardinality NZ . In particular, Sørbye and Rue 2014 proposed the use of the

geometric mean such that:

σ2
ref = exp

(
1

NZ

∑
z∈Z

log{V aru[f(Z)|σ2 = 1, Z = z]}

)
.

Then, the effect can be scaled according to this reference quantity such that σ2 be-

comes, in fact, equal to the geometric mean of the marginal variance; this is achieved

in practice either by dividing the covariance matrix by σ2
ref (i.e. multiplying the pre-

cision matrix by σ2
ref) or the basis matrix by σref. This solution provides that the

intuitive interpretation requirement does not hold exactly but it does approximately:

V aru[f(Z)|σ2, Z = z] ≈ σ2 ∀z ∈ Z. (3.6)

In terms of application, the HD approach has only considered cases in which the

covariates Zr are categorical or discrete, while the case of a continuous covariate is

not discussed. The extension towards fixed effects is deemed as a desirable objec-

tive and the authors suggest considering the concept of explained variance for the

derivation of a quantity comparable to the σ2
r parameters of the random effects.

R2D2 approach

The founding work in the R2D2 literature was developed as a new proposal in

the field of global-local shrinkage priors and, thus, it focuses specifically on linear

effects Zhang et al. 2022. Further works have extended the scope of application

to the inclusion of i.i.d. group effects (Aguilar and Bürkner 2023), general i.i.d.

random effects Yanchenko, Bondell, and Reich 2024b, and more recently to spatially
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dependent data modelled using a Matern covariance function (Yanchenko, Bondell,

and Reich 2024a). We shall consider here the work of Yanchenko, Bondell, and Reich

2024b as the main reference for the comparison to the HD approach of Fuglstad et

al. 2020.

In line with the global-local shrinkage prior literature, the traditional assumption

of a fixed σ2
F,p for all fixed effects (Equation 3.1) is discarded and the model parame-

ters become σ = σ2
F,1, ..., σ

2
F,P , σ

2
1, ..., σ

2
R, i.e. a prior is also specified for σ2

F,1, ..., σ
2
F,P .

At this point, the R2D2 prior is a method based on a VP reparametrization on all

the P + R variance parameters. An alternative way to view this approach consists

of considering a model with no fixed effects (P = 0) and viewing the linear effects

as specific instances of the R random effects, where the basis matrix simplifies to a

single (linear) function of the covariate.

For this subclass of models, the R2D2 literature adopts a different perspective

than the one of Fuglstad et al. 2020 in the application of the VP reparametrization:

Z1, .., ZR are marginalized out such that the variance of each effect is no longer

a function of the covariates’ values. From this perspective, we can assume that

the intuitive interpretation criterion for each σ2 has been implicitly defined as the

conditional variance, i.e.:

V arZ,u[f(Z)|σ2] = σ2. (3.7)

However, again, this requirement does not hold for general random effects from the

LGM class defined in Section 3.2.1, as the marginal variance for a generic effect can

be found using the law of total variance:

V arZ,u[f(Z)|σ2] = EZ{V aru[f(Z)|σ2, Z]}+ V arZ{Eu[f(Z)|σ2, Z]}

= EZ{V aru[f(Z)|σ2, Z]}

= EZ [σ
2DT (Z)Q∗D(Z)]

= σ2 · EZ [D
T (Z)Q∗D(Z)]

. (3.8)

Based on whether or not the desired intuitive interpretation requirement is respected,

the distinction between homogeneous and heterogeneous effects can be redefined here

as follows:

� Homogeneous effect: EZ [D
T (Z)Q∗D(Z)] = 1.

� Heterogeneous effect: EZ [D
T (Z)Q∗D(Z)] ̸= 1.

The problem of heterogeneous effects has not been discussed so far in the R2D2

literature, as the proposal of Yanchenko, Bondell, and Reich 2024b limits its scope of
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application to effects with a certain structure in the basis and covariance matrices.

In particular, Q∗
r = I and Dr(Zr) = [I(Zr = 1), ..., I(Zr = Kr)]

T for r = 1, ..., R. It

is easy to prove that all effects are homogeneous under these restrictions, regardless

of the distribution of the covariate (i.e. EZr [D
T
r (Zr)Q

∗
rDr(Zr)] = 1, r = 1, ..., R).

Moreover, the problem of including IGMRF effects in the model has also not yet

been addressed in this context. Finally, the historical distinction between fixed and

random effects is ignored in the definition of the intuitive interpretation for the

variance parameters, as effects are treated indiscriminately.

3.2.3 Intrinsic Gaussian Markov Random Fields (IGMRFs)

IGMRFs are a peculiar category of effects, which are very popular in modelling spa-

tial (i.e. ICAR model), temporal (i.e. random walks), and non-linear effects of con-

tinuous covariates (i.e. P-Splines). Consider an IGMRF effect u|σ2 ∼ NK(0, σ
2Q∗),

where the precision matrix Q has rank-deficiency d > 0 and therefore a non-empty

null space S with d columns S, i.e. QS = 0. IGMRFs are a particular type of

improper GMRFs where the null space has a specific form. For example, IGMRFs

of order d on the line are defined by a null space matrix S(d−1):

S(d−1)(k) =
[
k0 k1 ... k(d−1)

]
(3.9)

where k is a column vector of locations on the line. Note that S(d−1) corresponds to

a Vandermonde matrix (Hoffman and Kunze 1971) of degree d− 1 on locations k.

Being improper Gaussian models, the parameters µ and Q of an IGMRF no

longer represent the mean and precision as they do not formally exist. Moreover, σ2

no longer controls the deviation from the mean of u, and thus, it loses its intuitive

interpretation necessary for a sensible prior specification. To understand the true

meaning of σ2, we make use of the decomposition of an IGMRF discussed in Rue

and Held 2005, Section 3.4.1:

u =H(d−1)u+ (I −H(d−1))u. (3.10)

Equation 3.10 shows how u can be decomposed into a polynomial trend of degree d−
1 and a residual term, using the hat matrix H(d−1) = S(d−1)[S

T
(d−1)S(d−1)]

−1ST
(d−1),

which can project a generic u to the corresponding polynomial trend. Noting that

QH(d−1) = 0, the probability density of u can be rewritten as:

π(u) ∝ exp

[
− 1

2σ2
(u−H(d−1)u)

TQ(u−H(d−1)u)

]
. (3.11)
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Equation 3.11 clearly shows how σ2 does not measure the dispersion around the

mean of the process but rather the dispersion around the polynomial trend of order

d− 1 in u, such that σ2 → 0 only shrinks the model to the polynomial trend rather

than towards u = 0. As a consequence, the σ2 of a generic effect DT (Z)u cannot

be interpreted in relation to the variability in η caused by covariate Z.

The only solution for an interpretation of the σ2 parameter is introducing linear

constraints on the coefficients in the form ST
(d−1)u = 0, which can be called null

space constraints. Under these constraints, the vector u is now a proper GMRF

with a well-defined mean and covariance matrix:

E[u|σ2] = 0 subject to ST
(d−1)u = 0

Cov[u|σ2] = σ2Q∗ subject to ST
(d−1)u = 0.

3.3 Standardization procedure

We present a unifying framework that builds upon and fills the gap in the current

joint scope of application of the HD and the R2D2 lines of research. The goal

is achieved extending the scope of application of VP priors to the general class

of LGMs and to both their fixed and random branches. To so so, we obtain a

procedure that guarantees that the VP parameters from Equation 3.4 match the

intuitive interpretation the user has about them (i.e. total variance and proportional

contributions to this variance), regardless of the type of effects present in a model,

including the popular IGMRFs. The importance of this goal lies in the possibility of

extending the benefits of VP prior specification to a broader class of LGMs, hence

to more applications and fields.

To fully exploit the advantages of VP priors, we start by considering as random

the variance parameters σ2
j of all effects in the model, including for those effects tra-

ditionally treated as fixed. We shall call this class of models as fully random LGM.

This choice is inspired by R2D2 priors, and more generally global-local shrinkage

priors, which use priors on the variance parameters of linear effects to easily in-

troduce a specific type of prior information, namely sparsity. We generalize this

principle with the fully random LGM as this specification allows to reflect any type

of prior assumption about the contributions of the effects through the use of VP

priors.

We then adopt the approach of recent works that have highlighted how the

distinction between fixed and random effects should possibly be reframed in terms

of user’s inferential interest. Under this perspective, we are able to restore the
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fixed/random categorization for the effects of fully random LGMs.

The most crucial point of the proposal consists in a formal definition of intuitive

interpretation of the σ2
j parameters as variance contributions of the corresponding

effects. The final definition combines aspects from both the HD and the R2D2

approaches and addresses the concern of Fuglstad et al. 2020 about the need for a

different treatment of fixed effects.

We then present solutions to ensure that the σ2
j parameters match their intuitive

interpretation for both fixed and random effects. Namely, we introduce a scaling

procedure and a 0-mean constraint necessary to this purpose.

The issue of sensibly introducing the particular class of IGMRFs is separately

discussed in Section 3.3.6. The main problem is that the variance parameter of

an IGMRF does not control fully the variance of the effect, but only partially.

As a solution, we propose to re-express IGMRFs through two separate effects, a

polynomial and a residual one, so that the 2 corresponding variance parameters are

able together to represent the overall variability of the process.

Once the intuitive interpretation conditions are satisfied by all effects, we are

finally able to derive exact expressions for the interpretation of the VP parameters

that we believe best reflect the intuition the user has about them. This result ensures

that VP priors correctly reflect prior beliefs about the total variance in the linear

predictor and the relative contributions of each effect to this variance.

The next section will present how the procedure can be implemented in practice

to some of the most popular effects used in LGMs: random intercept effects, effects,

linear effects, random slopes effects, discrete IGMRFs, P-Splines.

3.3.1 Fully random Latent Gaussian Models

We define a new class of Latent Gaussian Models in which the P covariatesX1, .., XP

and the R covariates Z1, ..., ZR from Section 3.2.1 are now collected in a single vector

X = [X1, ..., XJ ] where J = P + R and all their corresponding effects are assigned

a random variance parameter.

Model 1 (Fully random Latent Gaussian model).

Let X = [X1, ..., XJ ] be a set of covariates with X ∼ π(x), and possible realizations

x ∈ Xj, ∀j = 1, ..., J . Let a response Y ∼ Dist(η,ψ). The parameter η is defined

as an additive model including an overall intercept µ and J random effects fj(Xj).

Each effect fj(Xj) is defined through a known basis matrix Dj(Xj) with Kj basis

functions and a set of Normally distributed coefficients uj, with null mean, known
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precision matrix Qj, and scalar parameter σ2
j :

η = µ+
J∑

j=1

fj(Xj)

= µ+
J∑

j=1

DT
j (Xj)uj

uj|σ2
j ∼ NKj

(0, σ2
jQ

∗
j) j = 1, ..., J.

If any Qj has a non-empty null space Sj, then the null space constraints ST
j u = 0

are imposed.

The parameters of the model that need prior specification are σ = [σ2
1, ...σ

2
J ],

along with µ and ψ.

Note that the definition of Model 1 does not impose assumptions about X,

meaning that there can be more than one effect per covariate, e.g. a linear and a

non-linear one. Care must however be taken in the design of the effects to avoid

identifiability issues.

In Model 1, all the variance parameters σ2
1, ..., σ

2
J are treated as unknown quan-

tities for which a prior must be specified. All effects in the model can therefore be

considered random according to the criterion made explicit in Equations 3.1-3.2. In

practice, the shift to a random variance for fixed effects changes the implied prior

on the coefficients, which is no longer almost flat. This choice is necessary to extend

the advantages of VP priors to all effects of the model, even to those traditionally

treated as fixed. Under the VP framework, the novel prior induced on the fixed

effects coefficients will not be flat and not independent from the rest of the model

parameters. However, if it is desirable to preserve a flat prior on some fixed effects

or it is not desirable to include some of them in the VP reparametrization, these

effects can simply be viewed as part of the overall intercept µ from Model 1. In this

context, we simply attempt to solve the problem of the inclusion of fixed effects in

the VP framework whenever this is desirable, which may not always be the case for

all fixed effects in a model.

3.3.2 Redefinition of fixed and random effects

We propose a redefinition of the concepts of fixed and random effects based on a

more modern perspective. Different attempts have been made in the literature to

identify an intrinsic binary categorization between effects that would go beyond

prior specification. Particularly, we refer to the comment of by Gelman et al. 2013
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in Section 15.6:

“We believe that much of the statistical literature on fixed and random effects

can be fruitfully re-expressed in terms of finite-population and super-population in-

ferences [...] The difference between fixed and random effects is thus not a difference

in inference or computation but in the ways that these inferences will be used.”

On a similar note, Hodges 2013 introduced a categorization of (traditional) ran-

dom effects into new-style/old-style ones:

� old-style random effects: “The levels of a random effect [...] are draws

from a population, and the draws are not of interest in themselves but only as

samples from the larger population, which is of interest.”

� new-style random effects:“[...] a random effect may have levels that are

not draws from any population, or that are the entire population, or that may

be a sample but a new draw from the random effect could not conceivably be

drawn, and in all these cases the levels themselves are of interest”.

According to the finite-population/superpopulation inference distinction of Gelman

et al. 2013, new-style effects could be considered fixed and old-style ones could be

considered random, regardless of the fact that they would be traditionally classified

as random.

Here, we propose a concise classification criterion between for the effects in Model

1 based on the concept of parameter of interest, intended as the quantity, between

uj and σ2
j , that is the inferential target for a given effect.

Definition 3.2 (Fixed and random effects).

Consider Model 1. Assume that the effects of Model 1 has been ordered such that

the vector θ = [u1, ...,uL, σ
2
L+1, ..., σ

2
J ] contains the “parameters of interest” for the

user. The L effects for which the coefficients uj ∈ θ are called “fixed”, while the

J − L effects for which the variance parameter σ2
j ∈ θ are called “random”.

Definition 3.2 leaves the user free to classify each effect in an application-specific

manner, according to their subjective assumptions and specific research questions.

Nevertheless, general guidelines can be outlined to clarify which effects will typically

fall in these categories. For example, traditional fixed effects, e.g. linear effects,

polynomial effects of higher order) will still be treated as fixed in the vast majority

of applications. On the other hand, cluster effects will usually fall in the random

category, specifically when not all groups/levels present in the population have been

sampled; however, cluster effects with a small number of distinct levels, all present

in the sample, are more likely to be considered fixed (e.g. gender, ethnicity in
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epidemiological studies). Spatio-temporal effects are often introduced to model the

correlation in the residuals of a model and as such might be categorized as random;

however, there are specific applications in which the actual trends are of interest

(i.e. fixed), such as for example in disease mapping (Lawson 2018, Moraga 2019).

There is more ambiguity about complex non-linear effects of continuous covariates

modelled through splines, for which we suggest to make case-specific considerations.

A thorough discussion on this categorization can be found in Hodges 2013 using the

new-style/old-style taxonomy.

Given this novel distinction between fixed and random effects, adding a random

variance parameter layer for the fixed effects to the purpose of using VP priors can

be seen simply as an artificial step to conveniently induce a joint prior on θ by

specifying a joint prior on σ.

3.3.3 On the intuitive interpretation of the variance param-

eters

The novel VP parameters V and ω from Equation 3.4 can be interpreted as respec-

tively the total variance in the linear predictor and the proportional contributions to

this variance only if each σ2
j actually matches its own intuitive interpretation, being

defined as the variance contribution of its corresponding effect as intended by the

user. As reviewed in Section 3.2.2, the literature has proposed multiple definitions

of variance contribution. In what follows, we shall discuss and consider the most

sensible definition of this quantity.

On the one hand, the variance contribution of an effect could be simply defined

as the variance of the effect conditional on the model parameters σ. This would lead

to the same requirement used in the R2D2 literature (Equation 3.7). However, we

have also argued how the vector of model parameters σ is only artificially introduced

a priori for the purpose of obtaining an easier prior specification procedure, through

the use of VP priors. The quantities that are actually of interest for the user are

contained in the vector of parameters of interest θ. In fact, we argue that the

user has a different definition of variance contribution of an effect according to its

classification as a fixed or random one, in other words according to whether they

are interested in the finite-population inference or the super-population one. To see

this, we can consider how variance contributions are estimated a posteriori.

For example, consider a linear effect f1(X1) = X1 · u1 for covariate X1. A linear

effect is usually considered fixed, as the interest lies on the linear coefficient itself.

The variance contribution of such an effect is usually estimated conditioning on the

linear coefficient u1, i.e. using V arX1 [X1 · u1|u1]. This estimate for the variance
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contribution is used for example in the Bayesian R2 metric proposed by (Gelman

et al. 2019). On the other hand, consider an i.i.d. effect for a categorical covariate

X2 with K levels, i.e. f2(X2) =
∑K

k=1 I[X2 = k] ·u2,k, u2,k
iid∼ N(0, σ2

2). The estimates

for the single levels u2,k are in the majority of applications not of interest (e.g.

school effect on students’ performance, batch effect in production measurements)

so the effect can be categorized as random. The amount of variance imputable

to X2 is often estimated using V arX2,u2,1,...,u2,K
[f2(X2)|σ2

2], which is simply equal

to variance parameter σ2
2. We argue that this different quantification of variance

contributions between fixed and random effects holds in general. Specifically, we

can use the terminology of Gelman et al. 2013 to state that variance contributions

are estimated using the:

� finite-population variance for fixed effects (also called explained variance):

V arXj
[fj(Xj)|uj];

� super-population variance for random effects:

V arXj ,uj
[fj(Xj)|σ2

j ].

Note how the use of the marginal version of the variance with respect to the covariate

Xj (i.e. the R2D2 approach) is a requirement for the definition of finite-population

variances, as the conditional version would always be null. This result shows how

the variability observed in the response for such effects is to be attributed to the

to the spread of the corresponding covariate, since the trend is conditioned upon or

“fixed”.

The distinction in the definition of variance contribution for fixed and random

effects can actually be summarized using the concept of variance of interest, i.e. the

variance conditional on the parameters of interest:

V arXj ,uj
[fj(Xj)|θ].

The concept of variance of interest allows to summarize in a single, neat expression

how variance contributions are intended by the user on the basis of its inferential

interest. Hence, we believe that the variance of interest represents the most sensible

definition of intuitive interpretation for the σ2
j parameters. However, a problem

arises in the case of fixed effects, since the finite-population variance is not a function

of σ2
j . Hence, we propose to use instead the expected variance of interest, defined as
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the expectation of the variance of interest conditional on the model parameters σ:

Eθ{V arXj ,uj
[fj(Xj)|θ]|σ}. (3.12)

Deriving the expected variance of interest separately for fixed and random effects,

we can finally formally define the intuitive interpretation of the σ2
j parameters for

all effects of Model 1.

Definition 3.3 (Intuitive interpretation of σ2
j parameters).

Consider Model 1 with θ = [u1, ...,uL, σ
2
L+1, ..., σ

2
J ]. We say that σ2

1, ..., σ
2
J match

their intuitive interpretation if:

� for fixed effects (j = 1...., L)

σ2
j = Euj

{V arXj
[fj(Xj)|uj]|σ2

j}; (3.13)

� for random effects (j = L+ 1...., J)

σ2
j = V arXj ,uj

[fj(Xj)|σ2
j ]. (3.14)

Definition 3.3 uses the super-population variance to describe the intuitive in-

terpretation of the σ2 parameters of random effects, while it uses the expected

finite-population variance Euj
[s2j |σ2

j ] (from now on, simply denoted as E[s2j ]) for

fixed ones. Section A.1 of the Appendix proves that Equations 3.13-3.14 are the two

special cases of the expected variance of interest (Equation 3.12).

This proposal answers the concern raised in Fuglstad et al. 2020 about the intro-

duction of fixed effects and is consistent with the authors’ suggestion of considering

the concept of explained variance, since the condition of Equation 3.13 requires

that σ2
j must be equal to the expectation of the finite-population variance, i.e. the

expectation of the explained variance. On the other hand, the definition for ran-

dom effects is coherent with the R2D2 approach (Equation 3.7). In summary, the

new definition can be seen as a generalization of previous approaches in which the

inferential interest of the effects is taken into account.

If the conditions of Definition 3.3 are satisfied, we claim that the prior π(σ2
1, ..., σ

2
J)

correctly reflects the assumptions of the user about the variance contributions of the

effects. We can now discuss how all the effects of Model 1 can be adjusted so that

Definition 3.3 is respected.
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3.3.4 Scaling procedure

We propose a simple scaling procedure that ensures that the condition of Definition

3.3 on random effects is satisfied.

Proposition 1 (Scaling procedure).

Consider Model 1. Let Cj be defined as the variance of the process fj(Xj) given

σ2
j = 1:

Cj = V arXj ,uj
[fj(Xj)|σ2

j = 1]

= EXj

{
V aruj

[fj(Xj)|σ2
j = 1, Xj]

}
= EXj

[DT
j (Xj)Q

∗
jDj(Xj)].

(3.15)

If a new effect is defined as f̃j(Xj) = fj(Xj)/
√
Cj, then:

V arXj ,uj
[f̃j(Xj)|σ] = σ2

j

Proof. Using the derivation from Equation 3.8, it can be proved that:

V arXj ,uj

[
f̃j(Xj)|σ2

j

]
=

σ2
jEXj

[DT
j (Xj)Q

∗
jDj(Xj)]

Cj

=
Cj

Cj

σ2
j = σ2

j .

Proposition 1 proves that if each effect is scaled by the square root of the corre-

sponding scaling constant Cj, then their super-population variance becomes equal

to σ2
j . As such, the scaling procedure is a necessary and sufficient step to ensure that

the σ2
j parameters of random effects match their intuitive interpretation (Equation

3.14).

The scaling procedure can be implemented in practice either by dividing the ba-

sis matrix by
√

Cj or by multiplying the precision matrix by Cj. In the computation

of the scaling constants Cj, it is important to consider some technical aspects. First,

all linear constraints imposed on the process must be considered before the appli-

cation of the scaling procedure, so that the correct covariance matrix is used in the

computation of the scaling constant Cj. Secondly, note that there is no guarantee

that Cj will be non-null and finite for all potential models, as it is a function of

π(xj),D
T
j (Xj),Qj: hence, the couples fj(Xj) and πj(x) should always be formed to

ensure that 0 < Cj < ∞, ∀j. Finally, it might be easier in practice to approximate

the values of Cj using a Monte Carlo simulation, sampling N values x1, ..., xN from

3.3. Standardization procedure 44



Xj ∼ πj(x):

Ĉj =
1

N

N∑
i=1

DT
j (xi)Q

∗
jDj(xi).

The scaling procedure from Proposition 1 has been derived to satisfy Equation 3.14.

However, it is also coherent with the different approach taken by Fuglstad et al.

2020 and Sørbye and Rue 2014, which suggested the use of a location summary (i.e.

the geometric mean) of the conditional variance as a scaling constant for the effects.

With the notation of Model 1, we can redefine the reference variance as:

σ2
ref = GMXj

{
V aruj

[fj(Xj)|σ2
j = 1, Xj]

}
(3.16)

where GMX(·) = exp {EX [log(·)]}. Comparing Equation 3.15 and 3.16, Proposition

1 can be viewed as a variant of the proposal of Sørbye and Rue 2014, in which the

geometric mean is replaced by the arithmetic mean. This result emphasizes how the

marginal variance approach adopted in the R2D2 priors’ literature automatically

proposes a solution to the problem of choosing a location summary of the condi-

tional variance, as envisioned by Sørbye and Rue 2014. In conclusion, note how the

expectation-based scaling of Proposition 1 has advantages over the geometric mean

approach (see also Section 3.3.7). For example, the geometric mean approach would

return a null scaling constant for linear effects while the newly proposed scaling

would not. This result holds more generally for all effects for which ∃x ∈ X such

that π(x) > 0 and V aru[f(x)|σ2, X = x] = 0.

3.3.5 0-mean constraint for fixed effects

To understand how the intuitive interpretation requirement (Definition 3.3) can also

be satisfied for fixed effects, we rewrite Equation 3.13 as follows:

Euj
{V arXj

[fj(Xj)|uj]|σ2
j} = V arXj ,uj

[fj(Xj)|σ2
j ]− V aruj

{EXj
[fj(Xj)|uj]|σ2

j}.
(3.17)

See the proof in Section A.2 of the Appendix.

Equation 3.17 shows how the intuitive interpretation for fixed effects (Equation

3.13) is equal to the one of random ones (Equation 3.14) minus a certain quantity.

The last term of Equation 3.17 represents the variance with respect to all realizations

of u of the process mean over the Xj support. This result shows how Definition 3.3

requires σ2
j to only measures deviation of the process from its mean and ignore the
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additional variability in the process due to the uncertainty around its true mean.

As such, applying Proposition 1 is insufficient for fixed effects. In order to remove

the uncertainty around the mean, we can assume a fixed value of the mean, such

as 0 for convenience. This assumption would remove the last term of Equation 3.17

and ensures that the intuitive interpretation for fixed effects becomes equal to the

one for random ones. It is therefore clear that, whenever the mean of the process is

fixed at 0, the intuitive interpretation requirement from Definition 3.3 will always

hold regardless of the type of effect, as long as the effect has been correctly scaled

as described in Proposition 1.

Proposition 2 (0-mean constraint).

Consider Model 1 with θ = [u1, ...,uL, σ
2
L+1, ..., σ

2
J ]. Under a 0-mean constraint on

all fixed effects, i.e.

EXj
[fj(Xj)|uj] = 0 j = 1, .., L,

we obtain that

Euj
{V arXj

[fj(Xj)|uj]|σ2
j} = V arXj ,uj

[fj(Xj)|σ2
j ] j = 1, .., L.

Proof. If EXj
[fj(Xj)|uj] = 0, then Euj

{V arXj
[f(X)|uj]|σ2} = V arXj ,uj

[fj(Xj)|σ2
j ]

follows immediately from Equation 3.17.

Thanks to Proposition 2, we can conclude that the σ2
j parameter of a fixed effect

matches its intuitive interpretation (Equation 3.13) if:

1. the effect respects the 0-mean constraint EXj
[fj(Xj)|uj] = 0 for every realiza-

tion of the uj;

2. the effect has been scaled such that V arXj ,uj
[fj(Xj)|σ] = σ2

j (Proposition 1)

In order to investigate when the 0-mean constraint holds, we further derive Equa-

tion 3.17 (proof in Section A.3) dropping the index j for convenience:

E[s2] = σ2 · [1− tr(aaTQ∗)] (3.18)

a =

 EX [D1(X)]

...

EX [DK(X)].

 (3.19)

Whenever tr(aaTQ∗) = 0, the 0-mean constraint is respected since E[s2] = σ2. On

the one hand, a process can be designed such that this requirement is always met
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(e.g. a = 0). For instance, if the process has a single basis function D(X), it is

sufficient to subtract its expectation and redefine the basis asD(X)−EX [D(X)] (e.g.

linear effect). Alternatively, a general process with more than one basis function can

be constrained to respect the 0-mean constraint using linear constraints aTu = 0,

since aTu = EX [f(X)|u]. The conditional distribution of a general Gaussian vector

under linear constraints can be found according to the formulae in Rue and Held

2005 (Section 2.3.3). After conditioning, a will be in the null space of the new

precision matrix, such that the argument of the trace operator in Equation 3.18 will

be a null matrix.

Note that the scaling step should always be done after the imposition of the

0-mean constraint, as the correct scaling constant might be different for the new

constrained process.

3.3.6 IGMRF effects

We finally discuss the case of IGMRF effects. In this section, we propose a pro-

cedure for the sensible inclusion of these popular effects, such that the intuitive

interpretation of the variance parameters is guaranteed. The indices j are dropped

for convenience.

Consider an effect f(X) for unidimensional covariate X such that f(X) =

DT (X)u where u of dimension K is an IGMRF of order d on regular locations

k = [1, 2, ..., K − 1, K]:

u|σ2 ∼ N(0, σ2Q∗)

QS(d−1) = 0.

As pointed out in Section 3.2.3, IGMRFs cannot be straightforwardly introduced

in the VP approach, as their corresponding variance parameters do not measure

deviations of the process from its mean but rather only from its polynomial trend

H(d−1)u. In terms of f(X), σ2 then only measures deviations of the process from

DT (X)H(d−1)u and therefore does not control the overall variance of f(X) from

its null mean. Imposing the null space constraints ensures that σ2 rightly measures

the deviation of u from their null mean. However, the constraints are insufficient

to correctly introduce IGMRFs as the constrained process does not correspond to

the original f(X). The only way to control the overall variability and not only

the scale of the deviation from the null space consists in considering an alternative

representation of the process made up by two separate components. Let us define a
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new process f(X) as:

f(X) = ft(X) + fr(X)

� residual term fr(X)

fr(X) =DT (X)u

u|σ2
r ∼ N(0, σ2

rQ
∗) subject to ST

(d−1)u = 0

fr(X) is set equal to the original IGMRF effect conditional on ST
(d−1)u = 0.

Conditioning on these constraints does not modify the precision matrix Q

(Rue and Held 2005) but simplifies Equation 3.11, since now H(d−1)u = 0:

π(u) ∝ exp

[
− 1

2σ2
uTQdu

]
(3.20)

The null space constraints ensure that the realizations of u will always have

a null polynomial trend of degree d − 1. As a direct consequence, the trend

DT (X)H(d−1)u will also be null. Under the constraints, the process fr(X)

can now be considered proper such that its associated scale parameter, called

σ2
r , will now properly control the deviation of the process from the null space.

� trend term ft(X)

ft(X)|σ2
t ∼ N(0, σ2

tQ
∗
t )

ft(X) is introduced to account for the constraints imposed on fr(X) and en-

sures that f(X) is equivalent to the original process, which is retrieved by

setting σ2
t → ∞. ft(X) must be specified such that it models the trend that

the scale parameter σ2 fails to consider. If so, then the two parts of variability

of the original process are now respectively controlled by σ2
t and σ2

r : the for-

mer controls the deviation from the null mean to the trend, while the latter

measures the remaining variability around the trend.

In order to understand how ft(X) can be specified, we shall consider first the

simpler case where Dk(X) = I(X = k) ∀k, i.e. where each uk coefficient reflects one

of the values of the support of X ∼ Unif([1, K]) . In this case, imposing ST
(d−1)u = 0

ensures that the process fr(X) has a null polynomial trend, i.e.:∫
X

xmfr(x) · π(x) dx = 0 m = 0, ..., d− 1. (3.21)
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See the proof in Section A.4 of Appendix. Hence, the original process is restored

when ft(X) is designed as a polynomial effect of degree d− 1 on X.

In the case of d = 1, ft(X) is redundant as the polynomial trend is simply a

constant effect with respect to X, whose inclusion would clash with the intercept

parameter µ already included in the linear predictor. In this case, f(X) = fr(X) and

the variance contribution corresponds to σ2
r , after appropriate scaling (Proposition

1).

For d = 2, the process ft(X) should simply be specified as a linear effect on

X, after standardization of the covariate to respect the 0-mean constraint and the

scaling requirement:

f(X) =
X − E[X]√

V ar[X]
· β +

K∑
k=1

I(X = k)uk

β|σ2
t ∼ N(0, σ2

t )

u|σ2
r ∼ N(0, σ2

rQ
∗) subject to ST

(1)u = 0.

(3.22)

After applying the scaling procedure also to the second term, the variance of f(X)

becomes equal to σ2
t + σ2

r . The role of the two parameters is clear, as the former

controls the variance due to the linear effect, while the latter measures the additional

non-linear contribution.

For d > 2, ft(X) must represent a polynomial trend of degree d − 1. In order

to interpret the associated scale parameters, we propose to introduce d− 1 separate

effects ft1 , ..., ftm with polynomial basis functions h1(X), ..., hd−1(X), such that each

of them respectively represents the linear, quadratic, cubic, etc. contribution to the

effect of X. The new, overall, model for covariate X will then be equal to d terms:

f(X) =
d−1∑
m=1

hm(X)βm +
K∑
k=1

I(X = k)uk

whose coefficients are all regulated by a separate variance parameter:

βm ∼ N(0, σ2
m), m = 1, ..., d− 1

u|σ2 ∼ N(0, σ2
rQ

∗) subject to ST
(d−1)u = 0

such that each σ2
m will represent (after appropriate scaling) the mth-degree contri-

bution, and σ2
r will instead control all the residual deviation from the polynomial

trend of degree d− 1.

The intuitive interpretation of each of these new effects as exclusively the con-
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tribution of their corresponding polynomial degree is achieved by designing each

hm(X) as a polynomial fucntion of degree m:

hm(X) =
m∑
l=0

al · xl (3.23)

whose coefficients must be constrained such that any polynomial trend of degree

m− 1 is removed, i.e.:∫
X

xl · hm(x) · π(x) dx = 0 ∀ l = 0, ...,m− 1. (3.24)

Under these constraints, we can find for example h1(X) = X − E[X] and h2(X) =

X2 − E[X2]− Cov[X,X2](X − E[X])

V ar[X]
.

For a generic choice of D(X) instead, the roles of ft(X) and fr(X) are less intu-

itive. The constraints do not control the polynomial trend on fr(X) and therefore

setting up a basis for ft(X) is not an immediate task. Moreover, it is not guaranteed

that fr(X) now respects the 0-mean constraint, and if this had to be imposed to

satisfy Definition 3.3, this could possibly ruin the sparsity of the precision matrix on

the coefficients. Finally, the sum of the parameters σ2
t and σ2

r would still be equal

to the variance of the overall effect of X after scaling, but it would not be possible

to assign an intuitive interpretation to them individually.

It would be more convenient if instead the linear constraints imposed on fr(X)

equated to imposing a null polynomial trend of degree d−1, such that the impact of

this conditioning would be clear and easily adjustable through the specification of

ft(X), as detailed above. The polynomial trend of degree d can be removed from a

generic process DT (X)u through linear constraints on u building a specific matrix

S̃ of dimension K × d such that S̃
T
u = 0 where:

S̃
T
u =



∫
X
x0 ·DT (x)u · π(x) dx

∫
X
x1 ·DT (x)u · π(x) dx

...∫
X
xd−1 ·DT (x)u · π(x) dx

 . (3.25)

The appropriate constraint matrix S̃ can be defined as:

S̃ =

∫
X

D(x) · S(d−1)(x) · π(x) dx ∈ RK×d (3.26)
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where S(d−1)(x) is a function-valued row vector of dimension 1×(d) obtained evaluat-

ing the Vandermonde matrix at a generic x, and the integral is applied element-wise

to the matrix in its argument.

More explicitly, the same matrix can be defined as S̃ = [s̃0, ..., s̃d−1] where:

s̃m =



∫
X
xm ·D1(x) · π(x) dx

∫
X
xm ·D2(x) · π(x) dx

...∫
X
xm ·DK(x) · π(x) dx

 m = 0, ..., d− 1 (3.27)

Since in general the columns of S̃ will be not proportional to the ones of S(d−1),

ST
(d−1)u = 0 does not imply S̃

T
u = 0. Hence, we propose to replace the precision

matrix of u with a new one, denoted by Q̃, whose null space is in fact S̃. We shall

refer to this procedure as Q modification.

Replacing the original precision matrix with Q̃ ensures that the σ2 parameter

measures the deviation of fr(X) from its polynomial trend of degree d − 1. Thus,

conditioning fr(X) on the constraints S̃
T
u = 0 would ensure that σ2

r has the in-

tuitive interpretation of measuring the residual variability beyond the polynomial

trend.

As it is clear from Equation 3.25, S̃ is a function of bothD(X) and π(x), so that

the actual design of Q̃ will be specific to each model. Among the possible precision

matrices having a null space S̃, we propose a solution that preserves the sparsity

property of IGMRFs by designing the new precision matrix through the following

decomposition:

Q̃ = (ΛR̃
∗
Λ)∗ (3.28)

where Λ is a positive diagonal matrix of entries λ = [λ1, ...λK ] and R̃ is a square

matrix with the same sparsity and sign structure of the original Q. If sparsity is

not an issue, then Q̃ can be directly used in place of the original Q. If instead it is

desirable to preserve sparsity, the model can be equivalently represented as:

fr(X) =DT (X)Λu

u|σ2
r ∼ N(0, σ2

rR̃
∗
) subject to S̃

T
Λu = 0

where both the basis ΛDT (X) and the precision matrix R̃ have the same sparsity

structure as the ones of the original model.
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Finding a solution that guarantees Q̃S̃ = 0 is now equivalent to finding R̃ such

that R̃ΛS̃ = 0. The appropriate entries of R̃ returning the desired null space can be

found as a function of the known elements ofQ, S̃, and the unknown λ (see Example

5 and 6). Since R̃ can be written as a function of λ, the whole new precision matrix

Q̃ is known up to the choice of these entries. In order to obtain a model similar to

the original one, λ can be chosen such that the Kullback-Liebler divergence between

the reference Gaussian distribution with Q and the Gaussian with Q̃ is minimized:

λ̂ = arg min
λ>0

DKL ( NQ̃(λ) || NQ ). (3.29)

The use of the KLD minimization is inspired by Rue and Tjelmeland 2002 where it is

used to approximate Gaussian fields with GMRFs. Other alternative minimization

criteria could be used, such as the conditional-mean least-squares criterion proposed

by Cressie and Verzelen 2008. Examples 5-6 cover some popular models used in

application for which the construction of a valid Q̃ is thoroughly discussed.

Thanks to the Q modification, we are able to correctly represent a generic effect

f(X) with an IGMRF prior of order d through d separate effects:

f(X) =
d−1∑
m=1

ftm(X) + fr(X) (3.30)

where the d− 1 terms ftm(X) are polynomial trend effects of order m = 1, ..., d− 1:

ftm(X) = hm(X)βm m = 1, ..., d− 1

βm|σ2
m ∼ N(0, σ2

m) m = 1, ..., d− 1

and fr(X) is the residual term:

fr(X) =DT (X)u

u|σ2
r ∼ N(0, σ2

rQ̃
∗
) subject to S̃

T
u = 0

Note that imposing S̃
T
u = 0 ensures that the 0-mean constraint is always

guaranteed for fr(X). The design of each hm(X) also guarantees a 0-mean constraint

for the ftm(X) effects. With respect to scaling instead, it is worth highlighting that

all of the terms in f(X), i.e ft1(X), ..., ftd−1
(X), fr(X), must be scaled separately.
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After scaling, we obtain that:

V arX,β1,...,βd−1,u[f(X)|σ] =
d−1∑
m=1

σ2
m + σ2

r . (3.31)

See the proof in Section A.5 of the Appendix.

While here the proposal only considers unidimensional IGMRFs, an analogous

strategy could be employed for settings where X is multivariate.

3.3.7 Interpretation of the VP parameters

Consider again Model 1 with θ = [u1, ...,uL, σ
2
L+1, ..., σ

2
J ]. Using the results from the

previous sections, we can conclude that Definition 3.3 is satisfied under the following

conditions:
EXj

[fj(Xj)|uj] = 0 j = 1, ..., L

V arXj ,uj
[fj(Xj)|σ2

j ] = σ2
j j = 1, ..., J.

(3.32)

A generalization of the standardization procedure consisting of the application of

Propositions 2 and 1 (in order) returns Equation 3.32 and, therefore, guarantees

that Definition 3.3 is satisfied.

It must be noted that this result technically holds without any modifications

for IGMRFs as long as the null space constraints have been imposed. However,

we recommend following the steps detailed in Section 3.3.6 for the introduction of

IGMRF effects such that the original process is restored and identifiability issues

between the effects are avoided. For example, an effect with an IGMRF of second-

order should be included in the model through the introduction of a separate linear

effect and the IGMRF effect under null space constraints, after the modification its

precision matrix (if necessary).

A second important point worth discussing is the impact of the distributional

assumption on the covariates. The choice of π(x) is a crucial step, as it affects

the definition of the 0-mean constraints a for fixed effect, the C scaling constants,

as well as the potential S̃ matrices for IGMRF effects. In summary, this choice

determines the actual interpretation that is assigned to the various σ2 parameters.

Therefore, it is important to understand what the role of this choice is in this pro-

cedure: π(x) should be specified with the goal of obtaining the optimal case-specific

interpretation of each of the σ2, rather than with the aim of correctly reproduc-

ing the actual distribution of X. The empirical distribution observed in the data

may be considered a sensible choice, as for example it is the traditional choice a

posteriori for the estimation of variance contribution of fixed effects (Gelman et al.
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2019). However, it represents just a special case among all the choices that can be

made. For example, there might be applications in which the empirical distribution

may not be representative and there is instead prior information about a more likely

distribution assumption. If a covariate is not in fact considered random but rather

fixed, a Uniform distribution (either for a categorical, discrete or finite continuous

support) is arguably the most sensible choice, as it simply highlights the support of

interest for the determination of the variance contribution.

Once it has been proven that the σ2
j parameters match their intuitive intepreta-

tion, this result can be used to derive expressions for the VP parameters that are

interpretable for the user.

Remark 1 (Interpretation of the VP parameters).

Consider Model 1 with θ = [u1, ...,uL, σ
2
L+1, ..., σ

2
J ]. If the conditions from Definition

3.3 holds, then the VP parameters defined as in Equation 3.4 are equal to:

V = Eθ{V arX,u1,...,uJ
[η|µ,θ]|σ}

ωj =
Eθ{V arXj ,uj

[f(Xj)|θ]|σ}
V

j = 1, ..., J.

Proof. See Section A.6 of the Appendix.

Remark 1 proves how the parameter V can be correctly interpreted as the ex-

pected variance of interest of the linear predictor, while the entries of ω correctly

represent the proportional contributions of each effect to V . Note that the re-

sult from Remark 1 is achievable thanks to the use of an expectation-based scaling

method (Proposition 1), which can exploit the linearity property of the expectation.

The same result would not hold under the use of the geometric mean scaling method

of Sørbye and Rue 2014.

Furthermore, note that Model 1 has been used to illustrate how the VP repa-

rametrization can be correctly applied to all the latent components of a model,

regardless of the type of effects. It is likely that there will be many applications that

can benefit from this extension as now the prior knowledge about the relative impor-

tance of all effects can be easily introduced using VP priors. However, there might

also be instances in which there are effects for which the comparison to other effects

in terms of variance contribution does not make sense and for which traditional

prior choices, independent from the other effects, are desired instead. Consider for

example the case in which the first effect f1(X1) falls in this category. The variance

σ2
1 can be set fixed to a large value, e.g. u1 ∼ N(0, 1000 ·Q∗

1), such that the model
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parameters are now u1 and σ = [µ, σ2
2, ..., σ

2
J ]. The VP reparametrization can still

be applied to the remaining variance parameters σ2
2, ..., σ

2
J : The same steps must

be taken to ensure the interpretability of each σ2
j , j = 2, ..., J but now the inter-

pretation of the VP parameters does no longer refer to the whole linear predictor

variability but rather to the residual variance, remaining after having accounted for

the f1(X1) effect.

Finally, it may happen that an LGM does not strictly respect the assumption

of Model 1 about fixed precision matrices and that there are additional correlation

parameters (e.g. spatial Matern processes and autoregressive temporal ones). In

this case, VP priors can still be applied using the approach proposed by Fuglstad

et al. 2020: “ [such models] can be integrated into the [VP] prior framework by

first defining priors on the correlation parameters, and then constructing the joint

prior for the variance parameters with the correlation parameters fixed to reasonable

values”. Note that it must be checked that the standardization procedure does not

depend on the correlation parameters.

3.4 Examples

In order to illustrate how the proposed method would work in practice on a variety

of different effects, a range of popular models is reviewed and the application of the

theoretical results from Section 3.3 is illustrated for each of them.

Example 1. Random intercepts

Consider a categorical covariate X with K levels represented by 1, ..., K. The tra-

ditional model consists of using i.i.d. coefficients u1, ..., uK , where each of them is

linked to a level of the covariate through basis functions Dk(X) = I[X = k]. This

effect is usually called a random intercept model:

f(X) =
K∑
k=1

I(X = k) · uk (3.33)

u|σ2 ∼ N(0, σ2I). (3.34)

This model does not need scaling as its C constant (Equation 3.15) is equal to 1.

However, as mentioned in Section 3.3.5, there might be cases where group effects

are directly of interest, i.e. the effect should be treated as a fixed one.

Given π(X = k) = pk, the 0-mean constraint to be imposed if the effect is treated

as fixed is aTu = 0 where a = [p1, ..., pK ]
T . Under this constraint, the precision
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matrix of u changes to:

Q =

[
I − aaT

aTa

]∗
.

As a consequence, the scaling constant for the constrained model is found to be:

C = 1−
∑K

k=1 p
3
k∑K

k=1 p
2
k

. (3.35)

See the proof in Section A.7 of the Appendix.

If X is Uniformly distributed with pk = 1/K, ∀k, the constant C then becomes
K−1
K

and converges to 1 as the number of levels grows, i.e. as the variance in the

mean of the process goes to 0 and the the 0-mean constraint becomes less and less

relevant. Alternatively, the levels ofX might have unequal probabilities of appearing

in a certain population and it might be important to consider the actual distribution

in the estimation of the variance contribution of this effect. In this second scenario,

the distribution ofX can be estimated using the empirical distribution in the dataset

or set accordingly to some additional prior information about the distribution of X

in the population of interest.

Example 2. Linear effects

Consider a continuous covariate X. A linear effect for such a covariate is an inter-

esting special case with respect to the achievement of the correct interpretation for

its corresponding σ2 parameter:

f(X) = X · u (3.36)

u|σ2 ∼ N(0, σ2). (3.37)

Since the coefficient u is always the inferential focus, linear effects can be categorized

always as fixed effects. As such, a 0-mean constraint should be imposed to guarantee

that the condition in Definition 3.3 is met (Proposition 2). In the linear case,

the combination of Propositions 1 and 2 results in the traditional standardization

procedure:

f̃(X) =
X − EX [X]√

V arX [X]
· u (3.38)

since C = EX [(X − EX [X])2].

This result is coherent with the choice of standardizing all the covariates from

3.4. Examples 56



the R2D2 literature and proves that standardization is a special case of the more

general procedure presented here. Moreover, it can be noted that the linear effect

case greatly reduces the requirement to define a distribution on X, as it is sufficient

to specify a finite mean and variance E[X] < ∞, V ar[X] < ∞ for the covariate.

Contrary to the previous cases, several distributions are reasonable for a continuous

covariate and there is no evident default choice apart from using the empirical

distribution. Among potential sensible choices, a Uniform distribution could be

used if the variability in a certain range is of interest (e.g. controlled factors in

experiments).

Example 3. Random slopes

Consider now the interaction effect between a categorical covariate X1 with K ob-

served levels sampled from a larger population (random effect), and a continuous

covariate X2, for which a linear trend is a sensible model (fixed effect). This inter-

action corresponds to the random slope model:

f(X1, X2) =D
T (X1, X2)u (3.39)

=
K∑
k=1

I(X1 = k) ·X2 · uk (3.40)

u|σ2 ∼ NK(0, σ
2I). (3.41)

It can be proved that f(X1, X2) does not require the scaling procedure as long

as both effects have already been scaled individually and independence is assumed

between X1 and X2: in particular, it is only necessary to standardize X2 (since it

is treated as fixed), as discussed in Example 2. In fact, this result is not limited

to the random slope model but it extends to all interaction terms designed using

Kronecker products.

Proposition 3 (Interaction terms). Consider two independent random variables X1

and X2 and define the following two effects for them:

f̃1(X1) =D
T
1 (X1)u1

u1|σ2
1 ∼ N(0, σ2

1Q
∗
1)

f̃2(X2) =D
T
2 (X2)u2

u2|σ2
2 ∼ N(0, σ2

2Q
∗
2).

If these two effects have been scaled according to Proposition 1, the corresponding
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interaction f(X1, X2) term defined as:

f(X1, X2) =D
T (X1, X2)u

D(X1, X2) =D1(X1)⊗D2(X2)

u|σ2 ∼ N(0, σ2Q∗
1 ⊗Q∗

2)

does not need scaling as its variance is already equal to σ2.

Proof. See Section A.8 of the Appendix.

These types of interactions based on Kronecker products are very popular for

modelling for spatio-temporal effects (Knorr-Held 2000,Franco-Villoria, Ventrucci,

and Rue 2022).

Example 4. IGMRFs for discrete spatial/temporal effects

Consider X to be on a discrete, finite support taking values 1, ..., K. X can represent

for example either a discrete time or spatial areal data. In this setting, the basis is

usually simply defined to map from the X support to the u support, i.e. Dk(X) =

I[X = k], k = 1, ..., K, so that the coefficients u1, ..., uK then directly represents

the process on the original support of the covariate X.

Various models can be used to describe the presence of temporal/spatial cor-

relation, including stationary autoregressive ones. IGMRFs are a popular non-

stationary alternative to model u. In particular, first- and second-order random

walks for regular locations on the line are often used for temporal correlation and

corresponds respectively to IGMRF of order d = 1 and d = 2: as such, the null space

of these models is equal to S(0) and S(1) where k = [1, ..., K]T . On the other hand,

the popular ICAR model for areal data (Besag and Kooperberg 1995) corresponds

to an IGMRF of order d = 1 on a lattice, whose null space is equal to 1, i.e S0.

More details in Section 2.3 of Chapter 2). In all these three cases, the null space is

evaluated on regular locations k = [1, ..., K]T and they can be represented with the

following general notation:

f(X) =
K∑
k=1

I(X = k) · uk (3.42)

u|σ2 ∼ NK(0, σ
2Q∗) where QS(d−1) = 0. (3.43)

Q will change according to d and K for IGMRFs on the line, while its definition for

an ICAR model on the lattice will also depend on the specific geometry of the areal

data.
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Although space and time are never considered random variables in application,

Model 1 requires the specification of a distribution for X. In absence of contrasting

reasons, a discrete Uniform represents the most sensible choice, as each location is

given equal importance in the derivation of the variance contribution due to the

spatial/temporal effect. Under this assumption, this class of effects from Equation

3.42 is the special case discussed in Section 3.3.6, as it can be proved that the

columns of S̃ are proportional to the ones of S(d−1) (see Section A.4 of Appendix)

such that:

ST
(d−1)u = 0 =⇒ S̃

T
u = 0.

Hence, the modification of Q is not necessary in this case. These models can there-

fore be correctly introduced redefining f(X) = ft(X) + fr(X) where:

fr(X) =
K∑
k=1

I(X = k) · uk

u|σ2 ∼ NK(0, σ
2Q∗) subject to ST

(d−1)u = 0.

ft(X) will be absent for IGMRFs of first-order (i.e. first-order random walks and

ICAR models), while ft(X) shall contain a linear effect for X for second-order

random walks (see Section 3.3.6).

At this point, it is necessary to scale the fr(X) (as well as the potential ft(X)),

according to Proposition 1. Figure 3.1 compares the square root of scaling constants

C for a first-order random walk, second-order random walk, and a first-order IGMRF

on a regular grid for different values of K.

Our scaling method is then compared to the original proposal of Sørbye and Rue

2014, which first dealt with the problem of heterogeneous effects in the context of

IGMRFs through the concept of reference variance σ2
ref (Equation 3.16). As dis-

cussed in Section 3.3.4, the expectation-based approach offers some nice properties

shown in Remark 1. Figure 3.1 reports both
√
C and σref for a direct evaluation

of their difference for all scenarios and different values of K. We can see how the

trends of the two scaling constants diverge as K grows, suggesting that the impact

of a choice over the other will be more significant for a larger K; however, this is

likely to be counterbalanced by the fact that a larger K requires more data for the

computation of the posterior distribution on the variance parameters, hence a con-

sequent smaller role of the prior. The comparison is assessed in practice in Section

3.5.1.
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Figure 3.1: Comparison between the square root of the scaling constant
√
C and

the reference standard deviation σref for: (a) a first-order random walk on the line
for K regular locations; (b) a second-order random walk on the line for K regular
locations; (c) an ICAR model on a regular

√
K ×

√
K lattice

.

Example 5. P-Splines

Consider again a continuous variable X on a finite interval [m,M ], where m,M ∈ R.
P-Splines are a popular smoothing method (Fahrmeir, Kneib, and Lang 2004, Wood

2017) used to represent smooth non-linear effects of continuous covariates (Eilers and

Marx 1996, Lang and Brezger 2004). P-Splines are usually defined through a cubic

B-Spline basis on equidistant knots with a large number of basis functions (e.g.

K = 20, 30) denoted by B(X) = [B1(X), ..., BK(X)]T ; this high flexibility is then

regularized through the choice of a penalty function on the coefficients, usually a

second-order differences penalization which corresponds to a second-order random

walk on the coefficients. This type of P-Spline model can be expressed as:

f(X) = BT
K(X)u

u|σ2 ∼ N(0, σ2Q∗
RW2)

where the precision matrix QRW2 is defined as Equation 2.8 of Chapter 2. As

mentioned in Section 3.3.6, a second-order random walk is an IGMRF of order

d = 2, such that QRW2S(1) = 0. Hence, it is necessary again to verify whether the

model requires a Q modification procedure. To do so, it is first necessary to derive

S̃ as defined in Equation 3.26:

S̃
K×2

=
[∫M

m
B(x) · π(x) dx ,

∫M

m
x ·B(x) · π(x) dx

]
.
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We explicitly denote the elements of S̃ as:

S̃
K×2

=


S̃1,0 S̃1,1

S̃2,0 S̃2,1

... ...

S̃K,0 S̃K,1

 .

Considering the simplest case of X ∼ Unif(m,M), S̃ is available in closed form

(see Section A.9 in the Appendix for the exact derivation). Figure 3.2 compares S̃

for this case to the original polynomial design matrix S(1) when K = 20 and the

endpoints of the X support are m = 0,M = 1. While it is clear that the two sets

of vectors are not pairwise proportional, the divergence from proportionality only

occurs at the boundaries of the support, in particular in the first and last 3 locations,

and this is true regardless of the value of K. S̃ will be different for other choices of

π(x) and might not be available in closed form.

Figure 3.2: Comparison of (a) the columns of S(1) and (b) the columns of S̃ for
K = 20, assuming X ∼ Unif(0, 1)

Contrary to the previous example, the matrix S̃ will not have in general columns

proportional to the ones of S(1) and therefore the modification of the precision matrix

will be necessary. Once S̃ has been derived for the given π(x) (either analytically or

through numerical approximation), the next step consists in designing of a valid Q̃.

In this case, the solution for matrix R̃ can be found using the entries of W defined

as:

W = G−QRW2 (3.44)
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where G is a diagonal matrix with the same diagonal of QRW2; thereby,W contains

the negative of all the non-diagonal entries of QRW2. It can be shown that Q̃S̃ = 0,

where Q̃ = (ΛR̃
∗
Λ)∗, if R̃ is defined as:

R̃ = G̃− W̃ (3.45)

W̃k,l =


(l − k) ·Wk,l

λkS̃k,0 · λlS̃l,1 − λkS̃k,1 · λlS̃l,0

k ̸= l

0 k = l

(3.46)

G̃k,l =


0 k ̸= l

1

λkS̃k,0

·
[∑K

j=1 W̃k,j · λjS̃j,0

]
k = l

(3.47)

See the proof in Section A.10 for the proof. This design of R̃ has the advantage

of being easily implementable and general for a given S̃. Moreover, the precision

matrix Q would not be modified (up to a scaling constant) if the columns of S̃ were

proportional to the ones of S(1).

Finally, the matrix Q̃ that best approximates the original Q is found optimizing

Λ according to Equation 3.29. The optimal Λ is numerically found for the case of

X ∼ Unif(0, 1) using the R code reported in Section B.

Once Q̃ is also available, the P-Spline model can be redefined using Equation

3.30:
f(X) = ft(X) + fr(X)

ft(X) =
X − E[X]√

V ar[X]
· β

fr(X) = BT
K(X)u

β|σ2
t ∼ N(0, σ2

t )

u|σ2
r ∼ N(0, σ2

rQ̃) subject to S̃
T
u = 0

(3.48)

As usual, the last step consists in scaling the effects such that the variance param-

eters σ2
t and σ2

r match their intuitive interpretation. While the linear effect only

requires to be standardized as in Equation 3.48 (see Section 3.4), we define the

scaled version of fr(X) explicitly:

f̃r(X) =
fr(X)

C
.

The scaling constant C for the residual effect varies with K. Figure 3.3 displays

the conditional variance for different values of K, before scaling in panel (a), and

after scaling (c). Panel (b) compares the scaling constants C to the σ2
ref in smaller
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dots, under the assumption of X ∼ Unif(0, 1): the difference between the summary

metrics diverges as K grows, suggesting the use of C specifically for those cases in

which the number of nodes is large. The values of C for various K are reported in

Table 3.1 and have been numerically approximated, as discussed in Section 3.3.4.

Figure 3.3: (a) Conditional variance of fr(X) given X = x and σ2
r = 1 for different

numbers of basis functionsK = 10, 15, 20, 25, 30; (b) corresponding scaling constants
C (bigger dots and solid line) and σ2

ref (smaller dots and dashed line) assuming

X ∼ Unif(0, 1); (c) conditional variance of f̃r(X) after scaling with a dashed line
indicating the value of σ2

r = 1.

K C K C K C

6 0.045 11 1.308 20 13.328
7 0.123 12 1.924 25 28.438
8 0.266 13 2.686 30 51.693
9 0.496 14 3.603 40 129.476
10 0.835 15 4.695 50 259.966

Table 3.1: Scaling constants for fr(X) from Equation 3.48 for different values of K
and X ∼ Unif(0, 1).

In order to appreciate how f̃r(X) changes after the Q modification, its behaviour

is compared to the original model that simply uses QRW2 in Figure 3.4, after having

appropriately scaled the precision matrix.

First, it can be noted that the generalized inverse of Q̃ displays a similar pattern

to the originalQ∗. The conditional variance of the process as a function of x also has

a similar W-shape (or quartic) in both models. The big difference motivating the

use of the modified version of the model is illustrated in the bottom panel of Figure

3.4 where realizations of fr(x) under the constraints have been drawn. Considering

the linear trends of these realizations, the original model has non-null trends despite

the constraints, while the new model by design removes the linear trends.
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Figure 3.4: Properties of f̃r(X) using (a) QRW2 and (b) Q̃ for K = 20 and X ∼
Unif(0, 1). Top panel: generalized inverse of the precision matrix on the coefficients.

Middle panel: conditional variance of f̃r(X) given X = x, σ2
r = 1 and illustration

of the basis of B-Splines (grey). Bottom panel: realizations of f̃r(x) (grey) with
corresponding linear trends (blue) when σ2

r = 1.

As K grows, the difference between S(1) and S̃ becomes less and less relevant

and the Q modification has less impact. In fact, the conditional variance of the
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process after the Q modification tends to approximate the conditional variance of

the original model when K → ∞. Figure 3.5 shows how the conditional variances of

f̃r(X) for different values of K are extremely similar after the Q modification (Panel

(b)), which is not true when the Q modification procedure is not applied (Panel (a)).

Therefore, the Q modification has the additional advantage of neutralizing the effect

of K on the conditional variance function, which regulates the overall, global shape

of the realizations (K still controls the local flexibility of the model). This result is

desirable, as it further reduces the difference in the meaning of variance contributions

between different P-Spline designs.

Figure 3.5: Conditional variance of f̃r(X) given σ2
r = 1 for different values of K: (a)

before the Q modification, (b) after the Q modification.

Under different assumptions on π(x), the results will be different as both the

scaling and the Q modification procedures are affected by this choice. Alternatively,

the covariate X could be transformed using the probability integral transform to

guarantee that the Uniform distribution assumption is always met (Wei et al. 2020).

While the flexibility of a P-Spline model allows to well approximate the relationship

between X and Y even after the transformation, this approach has some drawbacks

such as different flexibility levels to different covariates, and loss of the interpretat-

ibility of σ2
t and σ2

r as the linear and non-linear contribution of the effect.
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Example 6. P-Splines with IGMRF of order 1

Let X1 and X2 be two spatial coordinates, delimited on the respective supports

[m1,M1] and [m2,M2]. In the case of a spatial effect, it is not reasonable to assume

that X1 and X2 are random, so that the only case of interest is the assumption of a

Uniform distribution over a closed surface of interest. We focus here on the simplest

case in which the support is the rectangle [m1,M1]× [m2,M2].

Geostatistical data is often modelled using a two-dimensional effect with a Matern

autocorrelation structure. However, this approach is computationally expensive as

the corresponding precision matrix is dense. Moreover, the range parameter is often

considered a random quantity to be estimated: in this case, this model would not fall

in the class described in Section 2. Bivariate smoothing can offer a non-parametric

alternative which can overcome this issue. In particular, two-dimensional P-Splines

have been used in Fahrmeir, Kneib, and Lang 2004 to model spatial heterogeneity:

this choice offers sparsity and does not rely on additional nuisance parameters as

the Matern does.

The basis for this bivariate P-Spline model B(X1, X2) of dimension K1 · K2 is

built as the Kronecker product between 2 one-dimensional cubic B-Splines B1(X1)

andB2(X2), respectively with support [m1,M1] and [m2,M2] and dimension K1 and

K2:

B(X1, X2) = B1(X1)⊗B2(X2). (3.49)

As in the case of univariate P-Splines, choosing a non-i.i.d. structure on the coef-

ficients can prevent overfitting by regularizing the wiggliness of the curve. In this

setting, the elements of u represent nodes in a regular grid of dimension K1 ×K2.

As such, it makes sense to assume an ICAR model on them (i.e. a two-dimensional

first-order IGMRF), which is the standard choice for areal spatial data. Under this

choice, we can define the effect as:

f(X1, X2) = B
T (X1, X2)u (3.50)

u|σ2 ∼ N(0, σ2Q∗
ICAR) (3.51)

The precision matrix QICAR is defined as:

QICAR = G−W (3.52)

whereW is the adjacency matrix of first-order neighbours on the regular grid K1×
K2 and G is a diagonal matrix with entries equal to the total number of neighbours
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per cell:

Gk,l = I[k = l] ·
K1×K2∑
j=1

Wk,j. (3.53)

In order to correctly include this model in the VP framework, it is first necessary to

compute S̃. In this example:

S̃
K×1

=
[∫M1

m1

∫M2

m2
B(x1, x2) · π(x1, x2) dx2 dx1

]
where its elements are denoted as:

S̃
K×1

=


S̃1

S̃2

...

S̃K1·K2 .


The result for a bivariate Uniform distribution on the covariates are proved to be

independent of the values of m1,M1,m2,M2 (see Section A.11 of the Appendix).

Again, this matrix is not proportional to S(0) = 1K1·K2×1, so that the precision

matrix must again be modified. For a general S̃, a valid Q̃ can be found using a

simplification of the procedure presented in Example 5, making use again of the

diagonal/non-diagonal entries decomposition from Equation 3.52. It can be shown

that Q̃S̃ = 0 if Q̃ = (ΛR̃
∗
Λ)∗ and:

R̃ = G̃− W̃ (3.54)

W̃k,l =
Wk,l

λk · S̃k · λlS̃l

(3.55)

G̃k,l =
Gk,l

λ2
k · S̃2

k

(3.56)

See the proof in Section A.12 of the Appendix.

Given Q̃ the final model can be redefined. No trend term is to be added in the

linear predictor since the IGMRF is of order 1:

f(X1, X2) = fr(X1, X2)

fr(X1, X2) = B
T (X1, X2)u

u|σ2 ∼ N(0, σ2
rQ̃

∗
) subject to S̃

T
u = 0.

(3.57)

Table 3.2 reports a numerical approximation of the scaling constants C for different
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Figure 3.6: Representation of the entries of (a) Q∗
ICAR and (b) Q̃

∗

values of K1 = K2 (see Section 3.3.4). Since S̃ does not depend on the bound-

aries of the rectangular support of [X1, X2], both Q̃ and C are also independent of

m1,M1,m2,M2:

K1 = K2 6 8 10 12 14 16
C 0.136 0.222 0.286 0.337 0.377 0.412

Table 3.2: Scaling constants for fr(X) from Equation 3.57 for different values of
K1 = K2.

Focusing on the Uniform distribution, Figure 3.6 shows the generalized inverses

of QICAR and Q̃ for K1 = K2 = 6 after scaling: again, the original covariance

pattern is maintained.

An interesting special case of this model is when K2 = 1 and B2(X2) is replaced

in Equation 3.49 with D(X2) = 1: the model becomes a univariate P-Spline model

with an IGMRF of order 1 structure on the coefficients, which can be then modified

following Equation 3.54. This model could be useful for smoothing in applications

where the separation between the linear and non-linear contributions are not of in-

terest or inconvenient. For a range of values of K2, Figure 3.7 shows the conditional

variance of fr(X1) and f̃r(X1) = fr(X1)/
√
C given σ2 = 1, as well as the corre-

sponding scaling constants C and σ2
ref. First, the conditional variance pattern is

different from the one of Figure 3.3. Secondly, it can also be noted that the two

scaling constants tend to diverge as K1 grows, which means that the impact of using

σ2
ref in place of C becomes less negligible if K1 is large. The values of C for different

values of K1 are also reported in Table 3.3.
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Figure 3.7: (a) Conditional variance of fr(X1) given X1 = x and σ2
r = 1 for dif-

ferent numbers of basis functions K1 = 10, 15, 20, 25, 30; (b) corresponding scaling
constants C (bigger dots and solid line) and σ2

ref (smaller dots and dashed line)

assuming X1 ∼ Unif(0, 1); (c) conditional variance of f̃r(X1) after scaling with a
dashed line indicating the value of σ2

r .

K1 C K1 C K1 C

6 0.289 11 1.080 20 2.566
7 0.440 12 1.244 25 3.397
8 0.596 13 1.408 30 4.229
9 0.756 14 1.573 40 5.895
10 0.917 15 1.738 50 7.562

Table 3.3: Scaling constants for fr(X) from Equation 3.57 for different values of K1

and K2 = 1.

3.5 Empirical results

The R-INLA software has been used to fit the models used in the following sections

(Rue, Martino, and Chopin 2009).

3.5.1 Impact of 0-mean constraint

The 0-mean constraint proposed in Section 3.3.5 has clear theoretical implications,

as it guarantees that the variance parameters of fixed effects can correctly be inter-

preted as the expected values of the finite-population variances. However, imposing

the constraint might have in practice a negligible impact on posterior inference. Un-

der a 0-mean constraint, specifying a prior on a given σ2 parameter implies the same

prior on the expected finite-population variance E[s2] since σ2 = E[s2]. Without

the constraint instead, E[s2] = σ2 · [1−tr(aaTQ∗)] (Equation 3.18 proved in Section
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A.3). and the implied prior on E[s2] becomes:

π(E[s2]) = πσ2

(
E[s2]

1− tr[aaTQ∗]

)
· 1

1− tr[aaTQ∗]
.

Hence, if the user represents its prior beliefs about the variance contribution speci-

fying a prior on σ2, the actual prior on the variance contribution as they intend it

(i.e. E[s2]) will be different from the prior on π(σ2). We shall call distortion this

difference between the desired and the actual prior of a certain quantity for which

the user is interested in introducing prior beliefs.

The practical implications of this distortion (which is caused by not using a

0-mean constraint) are here investigated on the simple Gaussian random intercept

model for a categorical covariate X, with a varying number of groups K and equally

likely outcomes, i.e. X ∼ Uniform([1, K]) (see Example 1). Under this model,

a = [K−1, ..., K−1]T such that E[s2] = σ2 ·K−1
K

. The impact of the 0-mean constraint

will be more relevant when the distortion in the implied prior is bigger, which is in

this case obtained with a small K. Even so, the impact of this “distorted” prior

may still become negligible if the data are informative enough: thus, it is obvious

to expect a larger impact of the 0-mean constraint imposition when the number

of observations is small. For this reason, the practical impact of the constraint on

posterior inference is checked through a simulation study on a small sample size

scenario. 200 datasets are simulated with a number of groups K = 4 and equal

number of observations per group Ng = 5 from the following model:

Yik|uk, σ
2
ϵ ∼ N(uk, σ

2
ϵ ) ∀i = 1, ..., Ng, k = 1, ..., K

where σ2
ϵ is set to 1 and u = [u1, u2, u3, u4] are i.i.d. samples from a Standard Nor-

mal, which have been standardized to have exactly mean 0 and s21 =
1
K

∑K
k=1 u

2
k = 1.

The datasets are then fitted using the random intercept model in the following two

ways:

� No constraint : u ∼ N(0, σ2
1I).

� Constraint : u ∼ N
(
0, σ2

1
K

K−1

[
I − 1

K

])
subject to K−1

∑K
k=1 uk = 0 (see Ex-

ample 1).

Note how the covariance matrix is multiplied by scaling constant in the No con-

straint.

Finally, the two models are fitted with three different priors:
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(a) Default Inverse-Gamma priors for variance parameters in the INLA software,

i.e. with shape hyperparameter set to 1 and rate hyperparameter set to 5e−5

(IG priors):

σ2
1, σ

2
ϵ

iid∼ IG(1, 5e− 5).

(b) Penalized complexity priors with null base model (PC priors):

σ2
1, σ

2
ϵ

iid∼ PC0

(
− log(0.05)

3

)
where the hyperparameter is set as in Fuglstad et al. 2020, such that P (σ >

3) = 0.05.

(c) VP prior as used in Fuglstad et al. 2020 (VP prior):

V = σ2
1 + σ2

ϵ ∼ Jeffreys

ω =
σ2
1

V
∼ Unif(0, 1).

The priors implied on s21 under the absence of a 0-mean constraint are analytically

derived in Section A.13 of Appendix.

By simulation, the value of s21 is fixed to 1. Results about the estimation of s21

are reported in Figure 3.8 in terms of posterior medians, along with the difference

between the two methods. Even in this small sample size context, the difference in

the estimates is very small for all three prior choices. In terms of performance, the

IG priors perform poorly regardless the constraint being applied or not. The other

two specifications return very similar results. However, despite the similarity in the

posterior results, the distribution of the differences between the No constraint and

Constraint is closer to 0 for prior (b) than for prior (c). This result suggests that

the application of the 0-mean constraint is more relevant when using VP priors than

independent PC ones, which seem to be more robust to the distortion caused by the

No constraint case.

Since for larger values of K and Ng the differences are expected to be even less

severe, we conclude that the 0-mean constraint is practically relevant for the random

intercept model only if both K and Ng are extremely small. Otherwise, we expect

that not imposing the constraint will return a negligible bias in the s21.
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Figure 3.8: (1) Posterior medians of s21 for 200 datasets using the No constraint
model (red) and the Constraint (blue) for three prior specifications: (a) IG priors,
(b) PC priors, (c) VP prior. (2) Difference in the posterior median estimates of
s21 between the No constraint and the Constraint models for the same three prior
choices.

3.5.2 Impact of scaling

Section 3.3.4 illustrates how scaling theoretically allows the variance parameters to

match their intuitive interpretation. The importance of this procedure resides in

the fact that it ensures that specifying a prior on each σ2
j implies the same prior

on its intuitive interpretation as in Definition 3.3. Otherwise, this is not the case

and the implied prior on the variance could be greatly distorted from what was the

intended prior. The same is obviously true if a prior specification is chosen on V

and ω, which implies the same prior on their interpretations as defined in Remark

1 only if the scaling procedure has been applied.

Although the benefits of expectation-based scaling are evident in theory, it might

be that the impact of not scaling (or scaling by another location summary) has

no practical implications in some scenarios. This could happen for the following

two reasons: the distortion on the implied prior on the variance contributions for

a particular prior specification choice is negligible; the information in the data is

overwhelming so that the impact of the prior on posterior inference is negligible,

despite the distortion in the prior.
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With regard to the former point, the distortion can be evaluated deriving the

implied priors on the quantities of interest. This analysis can be useful in comparing

the severity of the distortion caused by different prior choices and identifying those

that appear to be less robust to the scaling issue. Here, we study the phenomenon

using a simple model with only two effects:

� an effect for a discrete, Uniformly distributed, covariate X on [1, K], with

basis functions Dk(Xk) = I(X = xk) and an IGMRF of first-order on the

coefficients;

� an i.i.d effect ϵ for any observation.

The model can be written as:

ηi = µ+
∑K

k=1 I(Xi = k)uk + ϵi i = 1, ..., n

u|σ2
1 ∼ NK(0, σ

2
1Q

∗) subject to ST
(0)u = 0

ϵ|σ2
ϵ ∼ N(0, σ2

ϵI)

(3.58)

where the vector of parameters of interest is defined as θ = [µ, σ2
1, σ

2
ϵ ].

From the original parameters, we can derive the VP parameters V and ω (Equa-

tion 3.4), along with the total variance T and the proportion of variance φ due to

f(X) using the expressions from Remark 1:

V = σ2
1 + σ2

ϵ ω =
σ2
1

σ2
1 + σ2

ϵ

T = V ar[Y |θ] φ =
V ar[f(X)|θ]
V ar[η|θ]

.

To understand the distortion caused by not scaling, we shall focus on the prior

implied on φ for a given prior specification either on σ2
1, σ

2
ϵ or on V, ω.

If the effect f(X) is correctly scaled (i.e. the scaling constant from Proposition

1 is equal to C = 1, then we obtain thatV = T and ω = φ: the prior specified on ω

will therefore be equal to the one implied on φ. However, if the effect is not scaled,

then C = tr[Q∗] and we obtain that:

ω =
φT
C

φT
C

+ (1− φ)T
.

As a consequence, the implied prior on φ is:

π(φ) = πω

(
φ

φ+ C − φC

)
· C

[φ+ C − φC]2
. (3.59)
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Equation 3.59 highlights how the lack of scaling when it is necessary (i.e. C ̸= 1)

causes a distortion between the desired prior distribution on φ, i.e. π(ω), and the

actual prior on φ. While it is clear that the difference grows as C is further from 1,

the actual impact of C ̸= 1 depends on the choice πω(·).
Along with the case of scaling according to the procedure of Section 3.3.4 and

non-scaling, we shall investigate also what happens when the geometric mean method

by Sørbye and Rue 2014 is applied, i.e. the effect is scaled by σ2
ref as defined in Equa-

tion 3.16. Scaling by the constant σ2
ref would return a new value of C equal to C/σ2

ref.

Thus, the prior implied on φ would become:

π(φ) = πω

 φ

φ+ C
σ2
ref

− φ C
σ2
ref

 ·
C

σ2
ref[

φ+ C
σ2
ref

− φ C
σ2
ref

]2 .
Since the impact of scaling on posterior inference is greater when the role of the prior

is larger, the priors implied on φ are studied here for two models usually employed

in contexts of a single observation for any value of the X support (i.e. n = K).

� Local level model for time series (Durbin and Koopman 2012): Q is th

e precision matrix of a first-order random walk on K = 25 regular locations

(C = 4.16, σ2
ref = 3.77).

� BYM model for areal data (Besag, York, and Mollié 1991): Q is the

precision matrix for an ICAR model on the graph of the 366 Sardinia districts

used in Riebler et al. 2016 (C = 0.514, σ2
ref = 0.486).

The analytical form of π(φ) is derived for the 3 different prior choices (a)-(b)-(c)

detailed in the previous section, which all implies a symmetric prior on ω (see Section

A.14 of Appendix for exact derivation). Figures 3.9 and 3.10 report the resulting

priors, respectively for the local level model and the BYM model. The black lines in

the 2 figures represent the prior elicited on ω, i.e. the desired prior on φ, as well as

its actual prior in the case of expectation-based scaling; on the other hand, the blue

lines represent the implied priors under geometric mean scaling and red ones under

no scaling at all. Under no scaling, C > 1 favours large values of φ over smaller

ones more than the desired prior (Figure 3.9), and vice versa for C < 1 (Figure

3.10). Additionally, a very small difference appears between the expectation-based

and the geometric mean scaling methods for all priors in both examples. However,

by design, it can be said that the geometric mean method will always favour larger

values more than the desired prior, as the geometric mean is by construction always

equal or smaller than the arithmetic mean (i.e. C/σ2
ref > 1). Thirdly, some prior
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specifications appear to be more robust than others, namely the PC prior approach

implies very similar priors regardless of the chosen scaling strategy in both examples.

Figure 3.9: Implied prior on φ for the local level model for the different prior choices
from Section 3.5.1: (a) IG priors; (b) PC priors; (c) VP prior. The results for the
Inverse-Gamma (a) and the VP (c) prior choices are identical.

To understand how this prior distortion affects posterior inference, 200 datasets

are simulated and fitted for both models with T = 1 and 3 different values for φ:

0.2, 0.5, 0.8.

Local level model Yi is simply set equal to ηi from Equation 3.58 and a single

observation is simulated for each of the K = 25 locations on X.

Figure 3.11 reports the bias of the the posterior mean of φ. In this context,

we are interested in assessing the differences between the different scaling methods

rather than assessing the goodness of estimation. The results show evidence for

a non-negligible difference between the posterior estimates of φ of a scaled model

(either with geometric mean or expectation-based constants) and an unscaled one

(Figure 3.11). As expected, this difference is non-negligible in the case of the VP

prior (c), while the PC priors choice appears more robust, and even more so the

IG prior. In most scenarios, there is no relevant difference between the estimates

obtained using the geometric mean or the expectation-based scaling strategy.

If we then consider performance, the IG prior appears to be the worst choice as

it consistently underestimates φ, specifically when the true value is large. Better
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Figure 3.10: Implied prior on φ for the BYM model for the different prior choices
from Section 3.5.1: (a) IG priors; (b) PC priors; (c) VP prior. The results for the
Inverse-Gamma (a) and the VP (c) prior choices are identical.

results are obtained with PC priors, whose bias’ distributions are almost centered

at 0 but quite dispersed. Arguably the best among the three, the VP prior returns

instead estimates with less variance but a small systematic bias (positive when

φ < 0.5 and negative for φ > 0.5): this is due to the Uniform distribution on the

φ, which pushes the posterior estimates towards the center when the data is not

informative enough.

Similar conclusions are drawn looking at the posterior estimates for the total

variance parameter T (Figure 3.12). Not scaling returns smaller estimates for T

under the PC priors and the VP prior choices. Again, the VP prior after correct

scaling performs overall better than the competitors.

BYM model A Poisson likelihood is instead chosen for the BYM simulation since

this model is popularly used for epidemiological count data: Yi ∼ Poisson(Ei ·
exp(ηi)). Ei = 15 is fixed for all N = 366 locations. The prior for the total variance

is changed from Section 3.5.1 to V ∼ PC0

(
− log(0.05)

3

)
, as proposed by Fuglstad et al.

2020 for non-Gaussian likelihood models and also used in Riebler et al. 2016.

Posterior estimates are more precise in this second example because of the larger

sample size (Figure 3.13). Almost no differences appear in the results under the

first two choices, while the no scaling method consistently estimates smaller values
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Figure 3.11: Bias of the posterior mean of φ for the local level model with the
following prior choices: (a) IG priors; (b) PC priors; (c) VP prior.

Figure 3.12: Bias of the posterior mean of T in log scale for the local level model
with the following prior choices: (a) IG priors; (b) PC priors; (c) VP prior.
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of φ when the VP prior is used . Again, no relevant differences appear between the

geometric mean and the expectation-based scaling methods.

Figure 3.13: Bias of the posterior mean of φ for the BYM model with the following
prior choices: (a) IG priors; (b) PC priors; (c) VP prior with V ∼ PC0(U = 3, α =
0.05).

In terms of performance, the posterior estimates are less impacted by the prior

choice in this scenario, but the VP prior has an advantage in the φ = 0.8 scenario,

both for φ itself as well as for T (see Figure 3.14).

In conclusion, we particularly recommend implementing the scaling procedure

when working with spatio-temporal data with no repeated measurements for loca-

tion, as the bias caused by non-scaling is likely to be less negligible because of the

larger role played by the prior in these contexts. Moreover, the importance of scal-

ing has proven higher when a VP prior is used, while the state-of-the-art method

for a traditional i.i.d. prior specification (i.e. PC) is found to be more robust to

the presence of heterogeneous effects. This confirms that, although scaling is always

necessary in theory, VP priors suffer more severely from misinterpretation due to

non-scaling, since not only the individual marginal priors are distorted but also the

joint dependence structure. As such, we advise against the use of VP prior specifi-

cations without proper scaling of the effects. Finally, the VP priors provide the best

posterior estimates for both φ and T among the three prior choices.
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Figure 3.14: Bias of the posterior mean of T in log scale for the BYM model with
the following prior choices: (a) IG priors; (b) PC priors; (c) VP prior with V ∼
PC0(U = 3, α = 0.05).

3.5.3 Impact of Q modification

As discussed in Section 3.3.6, if the scale parameter of an IGMRF effect is to be

interpreted as its variance contribution (as in the VP framework), it is necessary to

separate into a polynomial and a residual component. Note that this procedure is

only necessary when the interpretation of the scale parameter is relevant, such as

for example for a more intuitive prior specification.

In order to correctly separate into a polynomial trend and a residual part, we have

proposed the Q modification procedure for generic basis choice. If the procedure is

not applied, this creates potentially an identifiability issue between the effect with an

IGMRF prior and the separate polynomial trend. This problem arises for example

in the case of a P-Spline (Equation 3.48).

Here, the importance of the Q modification in practice is tested through a simple

simulation study. 200 datasets are generated for a Gaussian response, whose linear

predictor includes a linear effect ft(X) and a non-linear effect fr(X) (with null linear
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trend). For i = 1, ..., 300, we generate Xi ∼ Unif(0, 1) and:

Yi ∼ N(ηi, σ
2
ϵ )

ηi = ft(Xi) + fr(Xi)

where:

ft(Xi) = (Xi − 0.5)
√
12 · β

fr(Xi) = cos(2πXi).

The proportional contribution of the non-linear effect to the variance in the linear

predictor is denoted by φ and defined as:

φ =
V arX [fr(X)]

V arX [ft(X)|β] + V arX [fr(X)]

The parameters are set to β =
√
0.5 and σ2

ϵ = 1, where the value of β is chosen so

that φ = 0.5.

The response is then fitted using a model containing a P-Spline effect from

Equation 3.48 with K = 10:

Y ∼ N(η, σ2
ϵ )

η = µ+ ft(X) + fr(X)

ft(X) =
X − E[X]√

V ar[X]
· β

fr(X) = BT
K(X)u

β|σ2
t ∼ N(0, σ2

t ).

Two different priors are compared on the coefficients u, i.e. the traditional second-

order random walk precision matrix versus its modified version:

� u ∼ N
(
0, σ

2
r

C
Q∗

RW2

)
subject to ST

(1)u = 0 .

� u ∼ N
(
0, σ

2
r

C
Q̃

∗)
subject to S̃

T
u = 0 with Q̃ and S̃ as in Example 5.

Note that the scaling procedure is applied to each model according to its corre-

sponding constant (C = 1.432 for QRW2 and C = 0.835 for Q̃).

Finally, three different prior specifications are used to fit the models:

(a) IG priors: σ2
t , σ

2
r , σ

2
ϵ ∼ IG(1, 5e− 5);
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(b) PC priors: σ2
t , σ

2
r , σ

2
ϵ ∼ PC0(U = 3, α = 0.05);

(c) VP prior: V = σ2
t +σ2

r ∼ Jeffreys, ω = σ2
t /V ∼ Unif(0, 1), σ2

ϵ ∼ IG(1, 5e−5).

The comparison is evaluated using the posterior mean of the linear coefficients

β̂ = E[β|y] and one of the possible estimates for φ defined as:

φ̂ =
V arX

[
BT (X) · û

]
V arX [(X − 0.5)

√
12 · β̂] + V arX

[
BT (X)û

]
where û = E[u|y]. From the simulation set-up, we expect β̂ =

√
0.5 and φ̂ = 0.5.

Results are reported in Figure 3.15. First, we can note how the results from

prior choice (a) highlight the identifiability issue created by the fact that the P-

Spline effect is not constrained to a null linear trend: without the Q modification,

the linear contribution is partially or totally absorbed by the P-Spline effect and

the quantities displayed in the plots are unable to inform about the role of linear

and non-linear components. For the prior choices (b) and (c), the impact of the Q

modification is reduced, but an improvement in the estimation of both β̂ and φ̂ is

still visible: the estimates are less biased and less dispersed after the Q modification.

Overall predictive performance is evaluated using a summary of the Conditional

Predictive Ordinates (Pettit 1990), which are readily reported by INLA:

CPO = −
300∑
i=1

π(yi|y−i).

CPO is reported in the bottom panels of Figure 3.15: the use of the modified

precision matrix does not cause any loss in performance as it returns equivalent

goodness-of-fit.

Further simulations with different linear/non-linear ratios in the trend show sim-

ilar results in terms of the improvements achieved by the Q modification. In the

scenario explored above, K has been set to a relative small value to highlight the

impact of the Q modification. However, as K grows, the issue that the Q mod-

ification addresses becomes less and less relevant and the difference in estimation

performance may be considered negligible, e.g. K > 25.

3.5.4 Case study: leukaemia in North West England

We consider the dataset analysed by Henderson, Shimakura, and Gorst 2002, already

studied in Kneib and Fahrmeir 2007 and Sørbye and Rue 2014. The dataset contains

survival times of N = 1043 patients, diagnosed with adult acute myeloid leukaemia
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Figure 3.15: Comparison between the use of the original precision matrix QRW2 and

the modified version Q̃. Distribution of β̂, φ̂ along with their true values (dashed
lines), and CPO. Each column represents a different prior choice: (a) IG priors; (b)
PC priors; (c) VP prior.
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between 1982 and 1998 in the North West England (UK). The following covariates

are reported for each patient: Age, Wbc (white blood cells count at diagnosis), Tpi

(Townsend social deprivation index), Sex, District (district of residence).Martino,

Akerkar, and Rue 2011 illustrated how a survival analysis can be carried out in INLA

(i.e. via an LGM) under the assumption of a piecewise log-constant proportional

hazard model (Breslow 1972). In this case, the linear predictor of the model (i.e.

the log-hazard function) is specified as:

η = µ+ f1(Age) + f2(Wbc) + f3(Tpi) + f4(Sex) + fT (Time) + fS(District)

where Time is a discretization of the survival time in KT = 27 intervals.

The effects f1(Age), f2(Wbc), f3(Tpi) are modelled as P-spline effects with

K = 50 basis functions (Equations 3.48). We denote by σ2
t1, σ

2
t2, σ

2
t3 the variance

parameters of the trend terms, and by σ2
r1, σ

2
r2, σ

2
r3 the parameters of the residual

terms. f4(Sex) is set to a group effect (Example 3.4), while a Besag model (Besag

and Kooperberg 1995) based on the adjacency matrix of the districts is used for

fS(District), and a first-order random walk is chosen for fT (T ): these effects are

respectively associated with variance parameters σ2
4, σ

2
S, σ

2
T . All effects are treated

as fixed, a discrete Uniform distribution is assumed for Sex, T ime,District, and a

continuous one for Age,Wbc, Tpi, on their respective empirical ranges. On the basis

of this distributional choice, the necessary 0-mean and null space constraints are

imposed on the effects.

In terms of prior, the VP reparameterization from Definition 3.1 is applied to

all the 9 variance parameters and a simple HD prior is assumed for convenience:

V ∼ Jeffreys and ω ∼ Dir(1, . . . , 1). A more thoughtful prior design could entail,

for instance, the use of PC0 priors on the proportions σ2
rp(σ

2
tp + σ2

rp)
−1 for p = 1, 2, 3

to penalize non-linearity.

Figure 3.16 reports the posterior mean of the effects for Wbc, Tpi before and

after the application of the scaling step of the standardization procedure: lack of

appropriate scaling significantly affects the smoothness of the estimated functions,

making them more wiggly than necessary. The remaining effects are not significantly

affected by scaling. Overall, the scaled solution reports results that are coherent with

past analyses of the dataset, suggesting for example a linear trend for both Age and

Wbc (Kneib and Fahrmeir 2007). Very similar results are obtained if only the linear

effects are standardized (i.e. standardizing the covariates), which can be considered

the default approach usually adopted in practice. The geometric mean scaling could

not be applied to all the effects in the model due to the presence of the linear ones;

however, the results are also very similar when expectation scaling is applied to
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Figure 3.16: Posterior means of (a) f2(Wbc) and (b) f3(Tpi) before (red) and after
expectation scaling (black).

linear effects and the geometric mean one is used on the remaining effects. Finally,

the impact of scaling is greatly reduced if independent PC priors are used instead

of the VP prior, proving once more the robustness of the PC framework.

Additional results and R code scripts to replicate the analysis are available at

https://github.com/LFerrariIt/scaleGMRF/tree/master/Leuk_application.

3.6 Discussion

The motivation behind the work presented in this chapter was the unification into

a single framework of two prior specification approaches recently introduced in the

literature, namely HD priors (Fuglstad et al. 2020) and R2D2 priors (Zhang et al.

2022). The desire for a single framework comes from the fact that both approaches

find their foundation on a reparametrization of the variance parameters of the model,

which we have called variance partitioning (VP) reparametrization, but that neither

of them considers the generic class of LGMs. The VP reparametrization returns a

more intuitive set of parameters in a proportion scale (and a single total variance),

for which it is easier to specify prior distributions in a way that reflects prior infor-

mation. We have called VP priors all those priors that can be generated using the

VP reparametrization. With the aim of extending the advantages of VP priors to

the whole class of LGMs, we have investigated how we can obtain an intuitive in-

terpretation for the variance parameters of a model, such that the user can actually
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easily interpret the VP parameters as proportions of variance contributions of the

different effects.

In this chapter, a proposal has been made about a formal definition of intuitive

interpretation of the variance parameters of LGMs that considers both the individual

inferential focus of each effect and the impact of the distribution assumptions made

on the effects’ covariates. The proposal merges the different point of views present

in the VP priors’ literature and combines them into a unified, consistent framework

that works for all effects of an LGM, both fixed and random ones. Although this

contribution was developed in the context of VP priors, we argue that correctly

interpreting the variance parameters is fundamental to correctly specify any prior,

regardless of the chosen reparametrization.

In order to achieve the goal of obtaining a match between the variance param-

eters and the intuitive interpretation users have about them, we have proposed a

standardization procedure that requires a 0-mean constraint for fixed effects and a

scaling step for both fixed and random ones. Simulation results proved the prac-

tical importance of this standardization procedure, especially of its scaling step.

To the purpose of illustrating the procedure and future reference, scaling constants

have been either tabulated or analytically derived for a plethora of popular effects,

commonly introduced in LGMs. Note how the procedure has been referred to as a

generalization of standardization, as it simplifies to the traditional standardization

procedure when it is applied to linear effects (i.e. removal of the mean and scaling).

The scaling procedure has been inspired by the work of Sørbye and Rue 2014

but it has been differently derived. In particular, the expectation-based scaling

presented in the chapter derives straightforwardly from the formal definition of in-

tuitive interpretation, while the use of the geometric mean in Sørbye and Rue 2014

is justified as being an appropriate location summary for a variance. Moreover,

in its original formulation, the geometric mean scaling was used to scale effects of

covariates with discrete and finite support, in particular IGMRFs. Although this

method can be easily extended to a continuous approach, it would not return a

finite scaling constant if the conditional variance viewed as a function of X = x is

unbounded over its support, as well as if it is 0 in some points. Thus, the introduc-

tion of a probability distribution on the covariate and the shift from geometric mean

to expectation are necessary steps (not sufficient, though) to derive a finite scaling

constant for many popular continuous processes (e.g. polynomial trends including

linear ones). Additionally, thanks to the linearity property of expectation, we are

able to obtain clear interpretations for the VP parameters. In practice, however,

the difference between the two scaling methods is found to be negligible as in the
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instances studied through simulations. Further investigation might be required to

assess whether this is always the case.

Finally, it is worth mentioning that our simulations confirm the competitiveness

of VP priors against common alternatives, such as independent PC priors on the

variance parameters. However, PC priors have been found to be less sensitive to

the application of the standardization procedure than VP priors. This result fur-

ther highlights the benefits of using the increasingly popular PC priors for variance

parameters.

With respect to the topic of IGMRFS, we have proposed an alternative represen-

tation of these effects through a separation between the polynomial and the residual

components, with corresponding σ2
t and σ2

r . The separation is necessary to quan-

tify fully the variance contribution of an IGMRF, which can only be represented

using both σ2
t and σ2

r . Additionally, we have also introduced the idea of applying

a Q modification to the precision matrix of an IGMRF when it is used in combi-

nation with complex basis choices, e.g. P-Splines. The Q modification guarantees

an equivalent but more convenient way to specify such effects and the relevance of

this procedure has been confirmed in practice through simulations. In the specific

context of P-Splines, the use of the Q modification returns a useful neat separation

between the linear and non-linear contributions. In this context, the motivation for

this representation was intuitive prior specification, but other works have made sim-

ilar proposal in the literature for different reasons (Currie and Durban 2002, Bach

and Klein 2024). Hence, we argue that this innovative representation of P-Spline

processes has the potential to be relevant in smoothing theory, behind the context

of prior specification where it has been developed.

In practical terms, the work in this chapter made possible to correctly deploy the

VP approach beyond the original scope of HD and R2D2 priors. This is the main

novelty point of this work, which we believe can open the door to the application

of VP methods in yet unexplored contexts. In terms of future research, widening

the scope of this framework opens the possibility to further study the performance

of VP priors, which is particularly interesting in those fields where there is in fact

available expert knowledge to be exploited. Secondly, the treatment of the covariates

as random poses a new problem by itself and we aim to investigate the impact of

the distribution choice π(X) and the potential bias caused by its misspecification

on posterior inference. Finally, the introduction of smooth non-linear effects for

continuous regressors (e.g. P-Splines) can help extend the research on the use of VP

priors to tackle typical regression problems, such as variable selection, collinearity,

confounding, in a beyond-linear framework (see for instance the work of Wei et al.
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Chapter 4

Variance Partitioning priors for

Species Distribution Models

4.1 Introduction

Bayesian hierarchical modelling has gained prominence in various scientific domains

due to its flexibility in modelling complex relationships, as well as the comprehensive

insights derived from posterior inference, which enable robust parameter estimation

and uncertainty quantification. These advantages come at the cost of having to

specify a prior distribution on the model parameters. This is particularly challenging

for variance parameters (Lambert et al. 2005,Gelman 2006).

The VP prior approach presented in Chapter 3 represents an alternative to the

usual i.i.d. vague prior set up used for the specification of variance parameters. VP

priors allow for the inclusion of prior expert knowledge about the relative importance

of different effects in an intuitive manner. This outcome is achieved in two steps

using the Hierarchical Decomposition (HD) framework proposed by Fuglstad et al.

2020. First, a reparametrization into a set of more intuitive parameters must be

designed using an appropriate decomposition tree, coherent with the information

that is actually available to the user. Subsequently, prior distributions and their

hyperparameters are set in a way that reflects prior beliefs on these new quantities.

The outcome is a joint prior distribution on the original variance parameters that

effectively integrates expert knowledge.

The use of VP priors has been found to be competitive when compared to other

state-of-the-art alternatives in Hem et al. 2021 and Marques, Wiemann, and Kneib

2023. VP priors can be designed using the HD approach and the makemyprior R

package developed by Hem, Fuglstad, and Riebler 2024, which provides a graphical

user interface for the visualization of the decomposition tree, as well as user-friendly
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commands for the imputation of prior beliefs.

The innovative approach of VP priors is anticipated to be particularly valuable

in fields with specific characteristics. On the one hand, numerous research areas

involve data collected via relatively standard designs, such as multi-level or spatio-

temporal structures. In such contexts, VP priors can be readily constructed by

developing decomposition trees that acknowledge the model structure (see Section

4.4.1) and adopting a principle of either parsimony or ignorance in prior specification,

in lack of more pertinent information. Such applications of the HD approach are

found in disease mapping (Franco-Villoria, Ventrucci, and Rue 2022, Riebler et al.

2016), demography (neonatal mortality case study in Fuglstad et al. 2020), forestry

(Marques, Wiemann, and Kneib 2023). Other fields with similar characteristics in

which the HD approach has not yet been trialled include environmental sciences,

such as agriculture applications (latin square design simulation in Fuglstad et al.

2020).

Furthermore, VP priors can be particularly useful in those contexts in which

expert knowledge is directly available in the scale of proportions of variance, e.g.

disease mapping (Wakefield 2007), genomics (Holand et al. 2013), or ecology (Peres-

Neto et al. 2006). Using the direct contribution of expert knowledge, VP priors have

so far only been applied to plant breeding data by Hem et al. 2021.

Although the R2D2 literature (Yanchenko, Bondell, and Reich 2024b, Aguilar

and Bürkner 2023) has used VP priors in the presence of linear effects, no application

has so far exploited the advantages of the HD framework to jointly specify the

prior of both the fixed and random effects’ variance parameters. Building upon the

foundation laid in Chapter 3, we extend the Hierarchical Decomposition framework

to encompass the overall variance in the linear predictor, including the contribution

of fixed effects. This expansion offers substantial benefits. Primarily, it enables a

comprehensive utilization of prior knowledge regarding the relative importance of

all effects. Moreover, this approach facilitates the integration of prior beliefs and

modeling assumptions through a unified, homogeneous framework.

This chapter demonstrates the advantages of our extended Hierarchical Decom-

position approach in the specific context of species distribution models (SDMs), a

foundational tool of ecological research used to map species’ occurrence (Ovaskainen

et al. 2017, Sofaer et al. 2019). The ecological domain is an ideal testing ground

for our proposal due to the well-defined model structure of SDMs (Ovaskainen et

al. 2017), and the availability of expert knowledge on variance partitioning (Pettit

1990). Additionally, the typical structure of SDMs always entails both a fixed com-

ponent, accounting for environmental factors, as well as random effects to account
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for additional variability due to spatio-temporal correlation or other sampling con-

ditions. This setting allows us to discuss the three main stages necessary for the

specification of an HD prior and to come up with default solutions for each step

specifically tailored for the context of SDMs:

1. standardization procedure to obtain the correct interpretation of the variance

parameters;

2. design of the Hierarchical Decomposition tree;

3. prior specification on the HD reparametrization.

The remainder of the chapter is organized as follows. Section 4.2 is devoted

to a formal definition of single species distribution models as LGMs. Section 4.3

then focuses on the application of the standardization procedure to ensure that the

variance parameters of an SDM accurately reflect their intuitive interpretations. We

then extend the Hierarchical Decomposition (HD) approach to SDMs in Section 4.4,

providing recommendations for tree design and prior specification based on a review

of relevant applications of VP priors in the literature. Finally, Section 4.5 presents a

method to perform variance partitioning estimation a posteriori that aligns with the

prior framework established in the previous sections and highlights the advantages

of this proposal over a more traditional approach. Section 4.6 concludes the chapter

with a discussion.

The proposal is exemplified through a real-world case study on the dataset pro-

vided by Hui et al. 2023, which reports presence/absence data for 39 fish species

in the North Atlantic from the NOAA-NEFSC survey (NEFSC Fall Bottom Trawl

Survey 2024). The complex SDM required by the nature of this dataset gives us the

opportunity to highlight and discuss some of the critical challenges that may arise in

practice during the specification of a VP prior. The theoretical concepts presented

in each section are immediately followed by their practical application to the case

study.

4.2 Species Distribution Models (SDMs)

Ecology can be described as the scientific field that studies the abundance and the

distribution of species (Begon and Townsend 2020). Species are often not studied

individually, but rather within their community. A community is made up by the

living organisms that reside in a certain area (Ovaskainen et al. 2017). The main

research questions in the field of community ecology include the following:
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� “are species associated to habitat characteristics?”

� “does species’ occurrence show spatial or temporal pattern unexplained by changes

in the habitat?”

� “what are the drivers of the variability observed in the occurrence of a species?”

These questions show the interest of community ecology in estimating variance

contributions.

The type of data available to ecologists to answer these and other questions usu-

ally consists of a response Y , capturing occurrence of a species. Occurrence can be

recorded in terms of presence-absence, count of individuals or percentage estimate

of biomass (Ovaskainen et al. 2017). Along with the response, the location and time

of observation (Z, T ) are usually available, along with a set of environmental covari-

ates (X), collected because assumed to be associated with occurrence. Additional

information about species’ traits and phylogeny can be combined to the observa-

tional data to answer related research questions but this scenario is not discussed

here.

In order to neatly answer the research questions of interest, occurrence is often

formally modelled using a so-called species distribution model (SDM). This type of

models assumes that the distribution of species’ occurrence, over an area of interest

and a given period of time, is the result of the combination of 3 different factors:

� Abiotic factors. Environmetal covariates, such as habitat characteristics,

play an essential role in the determination of species’ occurrence (Elith and

Leathwick 2009).

� Biotic factors. This concept includes all within and between-species interac-

tions (e.g. predation, competition, and mutualism) that may cause additional

variability in the observed occurrence. These interactions are often taken into

account by modelling the residual spatio-temporal correlation, still present in

the data after having controlled for environmental covariates (Dormann et al.

2012, Araújo and Luoto 2007).

� Stochastic processes. Additional processes (e.g. such as ecological drift or

environmental stochasticity) can affect occurrence in a way that cannot be ex-

plained by any environmental covariate or spatio-temporal correlation. These

processes introduce variability that is often challenging to quantify but is crit-

ical for understanding the full range of factors influencing species distributions

(Elith and Leathwick 2009).
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SDMs can be used individually to map the distribution of single species. In

terms of fitting, the Bayesian implementation is often favoured in ecology due to the

immediate uncertainty quantification, which is particularly useful to accompany the

estimation of quantities such as contributions to the variation of different factors.

4.2.1 SDMs as Latent Gaussian Models

Consider Y being a random variable measuring occurrence of a single species, dis-

tributed according to an Exponential family distribution with location parameter η

and additional parameters ψ: the stochasticity component enters through the choice

of this distribution.

Y ∼ Dist(η,ψ).

Let X = [X1, ..., XP ] be a set of environmental covariates assumed to be associated

with Y and Z = [Z1, Z2], and T represent the spatio-temporal location of Y . The

supports of each of the variables is denoted by calligraphic letters, such that Xp ∈
Xp, p = 1, ..., P , T ∈ T,Z ∈ Z. Each support is assumed to be bounded.

In an SDM, the location parameter η is specified as a function of X,Z, T . A

generic SDM can be written as:

η = µ+
J∑

j=1

fj(X) +
L∑
l=1

fl(Z, T ). (4.1)

This model class is able to accommodate main effects for each of the covariates

X1, ..., XP (linear or smooth non-linear effects), as well as a spatial and temporal

effect, but also interactions between the different environmental variables, a spatio-

temporal interaction, additional unstructured noise, etc. For simplicity, we further

assume that each fj(X) can be at most a function of two of the P environmen-

tal covariates, e.g. f(X1, X2). This formulation does not account for potential

interactions between covariates and spatio-temporal locations, which significantly

complicates the model and are anyway rarely included in SDMs.

The fj(·) and the fl(·) functions can be conveniently approximated choosing to

adopt the LGM framework. We adopt here the same notation of Model 1 from

4.2. Species Distribution Models (SDMs) 92



Chapter 3:

η = µ+
J∑

j=1

DT
j (X)uj +

L∑
l=1

GT
l (Z, T )vl

uj|σ2
A,j ∼ N(0, σ2

A,jQ
∗
A,j) j = 1, ..., J

vl|σ2
B,l ∼ N(0, σ2

B,lQ
∗
B,l) l = 1, ..., L.

(4.2)

A stands for Abiotic factors and B for Biotic ones. Note that in the case of rank-

deficient precision matrices, the null space constraints must be imposed on the cor-

responding random coefficients (see Section 3.2.3 of Chapter 3).

Under the choice to adopt the LGM framework, the VP approach can then be

used to introduce prior knowledge or assumptions about the relative importance of

all these effects, through a joint prior on the scale parameters.

4.2.2 Case study: NOAA-NEFSC fall bottom trawl survey

data

In what follows, we use a community ecology dataset, which consists of a subset

of the NOAA-NEFSC fall bottom trawl survey (NEFSC Fall Bottom Trawl Survey

2024), processed and studied in Hui et al. 2023 and made publicly available online

at https://github.com/fhui28/CBFM (last access: October 2024). This particu-

lar case study was selected because of the relatively large number of species, i.e.

Nspecies = 39. The main research question consists in the quantification of the vari-

ance contributions of the different model components, i.e. environmental factors

and residual spatial and temporal contributions.

The dataset contains N = 5892 observations collected over the U.S. Northeast

continental shelf, collected during the fall season of each year from 2000 to 2019;

the spatial locations are unique. The occurrence of Nspecies = 39 different demersal

fish species is collected in the form of a presence/absence response Y . Figure 4.1

reports some exploratory plots for an overview of the data.

The following environmental covariates are also part of the dataset: Surface

temperature (X1), Bottom temperature (X2), Surface salinity (X3), Bottom salinity

(X4), Depth (X5). In order to control for sampling conditions, a binary covariate

is also reported to represent the type of Survey vessel (X6) that collected the data:

this variable is treated as an additional environmental condition, for a total of P = 6

covariates. The spatial location is reported using the UTM coordinate system (Z =

[Z1, Z2]). The time of the observation is precisely reported , but here we choose

to use the year as the T covariate, to acknowledge that the data is only collected

during the fall period of each year and not continuously.
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The dataset has been originally used to illustrate a new approach to Joint Species

Distribution Models (JSDMs) (Warton et al. 2015), i.e. all the data is modelled

jointly using a multivariate structure. In this setting, instead, each of the species’

occurrence will be treated marginally and fitted using an individual, although iden-

tical, SDM (stacked SDM approach, see Guisan and Rahbek 2011). The design

of the common SDM has been inspired by the joint model proposed in Hui et al.

2023: separability between the spatial and temporal effect and non-linear effects of

the continuous environmental covariates are assumed, based on exploratory analysis

from in Hui et al. 2023. Avoiding an index for species for convenience, each response

Y is assumed to follow a Bernoulli distribution with parameter g−1(η) where g(·) is
the logit link and the linear predictor η is defined as:

η = µ+
6∑

p=1

fp(Xp) + fS(Z) + fT (T ). (4.3)

The model is then specified as an LGM. In particular, fp(Xp) will be specified as a

P-Spline effect for the 5 continuous environmental covariates, i.e. p = 1, ..., 5 (see

Example 5 of Chapter 3); f6(X6) will be specified as a simple i.i.d. effect; fS(Z)

will be specified as a two-dimensional P-Spline effect with an IGMRF of order 1

prior on the coefficients (see Example 6 of Chapter 3); fT (T ) will be specified as a

first-order random walk. The model thus implicitly contains the following variance

parameters:

σ2
1, ..., σ

2
6, σ

2
S, σ

2
T .

Note that P-Splines were chosen over the use of random walks for irregular

locations, which represents a popular alternative commonly implemented in INLA

(Lindgren and Rue 2008). The reason for this choice lies in the fact that the design of

the latter model depends on the observed values of the covariates in the data: hence,

the standardization procedure will be different in each application. On the contrary,

low-rank smoothers such as P-Splines are more convenient, as the specification of

the basis and the precision matrix does not depend on the data (at most, only on

its range): as a consequence, we can precompute the appropriate modified precision

matrix and the scaling constants for all applications using these effects without the

need for the case-specific data.
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Figure 4.1: Overview of the case study dataset: (a) number of different species
detected in each location; (b) proportions of presence observations for each of the
39 species over time.

4.3 Interpretation of the σ2 parameters in SDMs

The correct application of a VP prior is guaranteed by the application of the stan-

dardization procedure presented in Chapter 3, which ensures that each of the scale

parameters matches its intuitive interpretation, defined as the variance contribution

of the corresponding effect as intended by the user. Definition 3.3 provides a differ-

ent definition of intuitive interpretation for fixed and random effects, as described

in Section 3.3.2.

In the context of SDMs, the first J effects from Equation 4.2 can be generally cat-

egorized as fixed, since environmental variables are usually expected to be directly

responsible for affecting occurrence and the estimated trends are interesting to ex-

perts, to study the correlation between species’ characteristics and their habitat.

The model then includes L effects included to capture the residual spatio-temporal

correlation, still present after having accounted for environmental conditions. In

this case, it is not immediate to categorize these effects as either fixed or random:

the categorization should be made based on the specific application at hand and

research questions. For convenience, we consider here the case in which the spatio-

temporal effects can be categorized as random ones, which is appropriate when the

actual realizations of such effects are not of direct interest. Thus, we can define the

vector of parameters of interest for SDMs as θ = [u1, ...,uJ , σ
2
B,1, ..., σ

2
B,L].

According to Definition 3.3, the intuitive interpretation associated to the σ2
A,j
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parameters is therefore the expected finite-population variance, i.e.:

σ2
A,j = Euj

{V arX [fj(X)|uj]|σ2
A,j} j = 1, ..., J

which is guaranteed under a 0-mean constraint on the corresponding effects, followed

by appropriate scaling. A 0-mean constraint can be guaranteed by imposing the

appropriate linear constraint EX [D
T
j (X)uj|uj] = 0 (Proposition 2). The scaling

step is then satisfied computing the scaling constant CA,j = V arX,uj
[fj(X)|σ2

A,j = 1]

(Proposition 1) and multiplying the precision matrix of the random coefficients by

this constant (alternatively, dividing the basis matrix by
√
CA,j):

uj|σ2
A,j ∼ N

(
0, σ2

A,j

Q∗
A,j

CA,j

)
.

On the other hand, the intuitive interpretation for the σ2
B,l parameters is the super-

population variance. To satisfy the intuitive interpretation requirement for these

random effects, scaling is sufficient to obtain:

σ2
B,l = V arZ,T,vl [fl(Z, T )|σ2

B,l] l = 1, ..., L.

The appropriate scaling constants are CB,l = V arZ,T,vl [fl(Z, T )|σ2
B,l = 1], l =

1, ..., L.

If the spatio-temporal effects are introduced with IGMRF priors on the coeffi-

cients (at it happens in the case study), the null space constraints that must be

imposed on the process imply a 0-mean constraint. Hence, the effects respect the

0-mean requirement even though it is not necessary for the interpretation of their

σ2 parameters if they are considered random.

4.3.1 Distribution assumption on the covariates

Since both the scaling procedure and the 0-mean constraints rely on the distribu-

tional choice on the covariates, the joint distribution π(x, z, t) plays a crucial role in

determining the actual interpretation of the scale parameters. A priori, this choice

is important to correctly define the meaning of variance contribution of an effect,

according to the experts’ interest. A posteriori, this distribution determines the esti-

mation of the variance contributions, and thus it influences subsequent conclusions.

For the standardization procedure from Chapter 3, it is sufficient to specify

only the joint distribution of the covariates that make up a single effect, while the

dependence structure between covariates that do not share an effect is irrelevant
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and independence can be assumed for simplicity. Thus, the choice of π(x, z, t) can

actually simplify to π(x)π(z, t) for the class of models from Equation 4.2, which can

be further simplified to
∏P

p=1 π(xp)π(z)π(t) when interaction terms are absent from

the model.

The simplest distributional assumption that can be made consists in using the

empirical distribution as it is, i.e. π(xi, zi, ti) = 1/N . This choice can be reasonable

when the data can come from survey studies, in which the sampling design has been

chosen by researchers (Hayward et al. 2015, Burgazzi et al. 2020). Under this choice,

the experts must be reminded at the prior specification stage to state their beliefs

only considering the sampling locations, or at most a broader population they think

is well represented by their sampling design. However, the use of the empirical

distribution is discouraged whenever the dataset is not generated from a predefined

sampling design (e.g. fish and wildfile national registries (U.S. Fish and Wildlife

Service Open Data n.d.) or citizen science projects (Sullivan et al. 2009,iNaturalist

2024): in this scenario, it is unlikely that the empirical distribution is representative

of the distribution the experts are interested in, because of sampling bias.

A safer choice might consist in the selection of a Uniform distribution over a

spatio-temporal support containing all the data points, and a Uniform distribution

for each π(xp) over reasonable ranges of values for each environmental covariate.

This choice is convenient for different reasons. First, a Uniform distribution pro-

vides a simple intuition to the user about the meaning of the concept of variance

contribution, as it simplifies this quantity to the variance of the trend within the

support of interest, and the user does not have to take into account the probability

distribution. Secondly, using a Uniform distribution also simplifies the computation

of the necessary 0-mean constraints, scaling constants, and of the Q modification

procedure, useful for example in the case of P-Splines effects.

Despite the advantages of choosing Uniform distributions, it is still necessary to

estimate their parameters, namely the range extremes [m,M ]. The choice of these

ranges is a challenging point, since they greatly affect the final quantification of

the variance contributions. In theory, experts can be questioned about what range

is most of interest for them, or simply what values can be reasonably selected as

extrema based on previous information. In practice, statistical tools can facilitate

this choice through a direct estimation from the available data. While the sample

range is the simplest and most intuitive estimator, there are more robust alternatives

that are less susceptible to extreme values, based for example on quantile ranges or

variance estimation. We argue in favour of the sample range, unless high leverage

points can be detected, as they can be particularly detrimental to the estimation of
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the variance contribution.

To understand the potential impact of high-leverage points, Panel (a) of Figure

4.2 shows a toy example in which N = 25 points have been generated for X ∼
Uniform(0, 1), but the last one has for some reason been reported as xN = 3. The

N th observation has of course a high leverage value (hN = 0.729), which is much

larger than the mean leverage at (h̄ = 0.04). While in this example, the value is

known not to come from the same distribution as the rest of the sample, in practice

we can choose to either remove or keep high-leverage points for the estimation of the

sample range. Panel (b) of Figure 4.2 reports the density of the Uniform distribution

over the two possible ranges: the blue area is obtained removing the high-leverage

point, while the red one results from keeping it. Not removing high-leverage points

can be detrimental in the definition of variance contributions a priori, and of course

for their posterior estimation.

This is true regardless of whether or not the point is also highly influential.

Figure 4.3 explores two scenarios in which the effect of x on y is modelled through a

linear effect, either with or without the high-leverage point. In the first scenario (a),

the point xN is also highly influential in the estimation of the linear regression, as

we can see that the estimation of the linear trend greatly changes when the point is

considered. As the estimate for the linear coefficient changes, this directly impacts

the estimation of the variance contribution of x. The second scenario (b) instead

displays the case of a point which is not highly influential, i.e. the estimation of

the linear coefficient and trend are almost invariant before and after the inclusion

of the point. However, Panel (b) represents how the estimation of the variance

contribution is nevertheless greatly affected by the inclusion of the point, as is the

linear trend: when the point is included, the linear trend goes on much higher and

thus the variance due to x is estimated at a much higher value.

This simple toy example illustrates how high-leverage points are dangerous when

the interest is in the quantification of variance contributions, regardless of their

influence. As such, we suggest removing them before the estimation of the Uniform

distribution extremes through the sample range. After the specification, points

falling outside the range must either be removed or treated as missing and their

value imputed with the closest possible values within the range, i.e. the minimum

or the maximum. This removal/imputation step is necessary to ensure that the

data are coherent with the chosen distributional assumption π(x, s, t), but more

importantly to avoid that these high leverage points influence the estimation of the

coefficients (which should only depend on the data in the range of interest), and

consequently affect the estimation of the corresponding variance contributions.
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Figure 4.2: Distribution of x points from the toy example: (a) histogram; (b)
representation of the density of the estimated Uniform distribution before (red) and
after (blue) having removed the high-leverage point xN = 3.

In conclusion, we recommend combining expert knowledge, external data sources,

and statistical tools (e.g. leverage), to come up with reasonable ranges for each of

the covariates individually.

4.3.2 Case study: interpretation of the σ2 parameters

Consider again Equation 4.3:

η = µ+
6∑

p=1

fp(Xp) + fS(Z) + fT (T ).

This model implicitly contains the following variance parameters: σ2
1, ..., σ

2
6, σ

2
S, σ

2
T .

In order to correctly specify their prior, regardless of the chosen reparametrization, it

is necessary to first obtain that each σ2 actually represents the variance contribution

of the corresponding effect, whose definition varies according to whether an effect

is treated as fixed or as random (see Chapter 3). In this case, we assume that the

effects of the environmental covariates are fixed, since the interest lies in the trends,

while the spatial and temporal effects can be treated as random, since the focus is

on the estimation of the variance rather than the realized trends. Thus, we want
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Figure 4.3: Linear regression with (red) and without (blue) the high-leverage point
at xN = 3, represented by the red dot. The bottom plots informally represent via
shaded areas the estimates of the variance contributions over the chosen π(x). (a)
The high-leverage point is highly influential. (b) The high-leverage point is not
highly influential.

.

that the following equations are true before moving on to prior specification:

σ2
p = Eup{V arXp [fp(Xp)|up]|σ2

p} p = 1, ..., 6 (4.4)

σ2
S = V arZ [fS(Z)|σ2

S] (4.5)

σ2
T = V arT [fT (T )|σ2

T ]. (4.6)
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In the following subsections, we detail and justify the specification of each effect,

as well as the choice of the marginal probability distributions of the associated

covariates, which influence the procedure necessary to guarantee Equations 4.4-4.6.

Environmental covariates’ effects

The effects of the 5 continuous environmental covariates are modelled using P-Splines

(Lang and Brezger 2004, Eilers and Marx 1996), in order to accommodate for pos-

sible smooth non-linear effects. In particular, we choose to use KX = 20 basis

functions and an IGMRF prior of order 2 on the coefficients. From the discussion of

Example 5 in Chapter 3, we know that the interpretability of the variance param-

eters for these effects require multiple steps, all relying on the chosen distribution

for the corresponding covariate. In this case, we choose to assume a Uniform dis-

tribution for all the covariates. This choice is motivated by both convenience and

interpretability. First, using the same distribution is an advantage, as the procedure

to correctly introduce the P-Spline effects (i.e. Q modification and scaling) becomes

the same for all covariates. Additionally, Uniformity guarantees an interpretational

advantage for the user: when a Uniform is chosen, the variance with respect to the

covariate is simply the variance of the trend measured in all location over the sup-

port, which is more intuitive for a user than to having to take into account different

probability densities at each point.

Thus, considering Xp ∼ Unif(mp,Mp), each fp(Xp) is defined as:

fp(Xp) = fLp(Xp) + fNp(Xp)

fLp(Xp) =
Xp − E[Xp]

SD[Xp]
βp

fLp(Xp) = B
T (Xp)up

where:

βp|σ2
Lp ∼ N(0, σ2

Lp)

up|σ2
Np ∼ N

(
0, σ2

Np

Q̃
∗
X

CX

)
subject to S̃

T

Xup = 0

andB(Xp) is the B-Spline basis defined on equidistant knots on the interval [mp,Mp],

Q̃X is the modified precision matrix from Example 5 of Chapter 3, and S̃X is its

null space of dimension KX × 2.
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Alternatively, the effects fp(·) can be expressed as:

fp(Xp) =
√

σ2
p[
√

1− ωNpf̃Lp(Xp) +
√
ωNpf̃Np(Xp)]

=
√

σ2
p[
√

1− ωNp ·
Xp − E[Xp]

SD[Xp]
β̃p +

√
ωNp ·BT (Xp)ũp]

where:

β̃p ∼ N(0, 1)

ũp ∼ N

(
0,
Q̃

∗
X

CX

)
subject to S̃

T

Xup = 0.

The effect is guaranteed to respect the 0-mean constraint since S̃
T

Xup = 0 =⇒
EXp [fp(Xp)|up] = 0. Finally, CX ≈ 13.33 guarantees that:

σ2
Lp + σ2

Np = Eup{V arXp [fp(Xp)|up]|σ2
p} p = 1, ..., 5.

See the proof in Section A.5 in the Appendix.

Hence, Equation 4.4 is satisfied if we define the overall contribution of the fp(Xp)

effect by σ2
p = σ2

Lp + σ2
Np.

The final point that must be discussed is the choice of [mp,Mp]. Figure 4.4 shows

how the empirical distribution of the covariates compares to a Uniformity assump-

tion over the chosen ranges. The empirical ranges are used for all the covariates,

after having excluded points deemed as of high leverage (3 in total): these extreme

values are replaced with the closest non-excluded point, i.e. either the maximum

or minimum of the corresponding range. The chosen ranges are coherent with the

knowledge available about the behaviour of these environmental covariates over the

U.S. Northeast continental shelf (NEFSC Fall Bottom Trawl Survey 2024).

Although it is not necessary to specify the joint distribution for the environmental

covariates, we report here some considerations about their dependence structure.

Figure 4.5 shows that the covariates are correlated with each other, as to be expected:

in particular, the surface/bottom couples are correlated, and the bottom covariates

are in turn correlated with the water depth. These correlations might affect posterior

estimates, so we shall consider this issue in the analysis of the results.

Survey vessel type effect

The covariate X6 that indicates the type of vessel used to collect the data is coded

such that its support is [−1, 1], with each of two outcomes assigned equal proba-

4.3. Interpretation of the σ2 parameters in SDMs 102



Figure 4.4: Histogram of the 5 continuous environmental covariates, along with the
corresponding Uniform distribution (grey shaded area) used as π(xp). The red dots
represent 3 observations found to have extreme leverage: 2 points present extremely
high values of Depth, while a single observation presents abnormally low values of
both Surface salinity and Bottom salinity.

bility 0.5. As such, E[X6] = 0, V ar[X6] = 1 so that the covariate is automatically
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Figure 4.5: Scatterplot and Pearson’s correlations between the 5 environmental
covariates.

standardized. We then assume a linear effect on X6:

f6(X6) = X6β6

β6|σ2
6 ∼ N(0, σ2

6)

which guarantees Equation 4.4 for p = 6.

Spatial effect

For the spatial effect, we start by considering what could be a reasonable distribu-

tional assumption for the Z coordinates. The locations in the sample all belong to
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a specific area of the North Atlantic ocean called U.S. Northeast continental shelf.

As it can be seen from Figure 4.6 (a), the area has not been uniformly sampled,

with some regions more thoroughly sampled than others. As discussed in Section

4.3.1, it is convenient to replace the empirical distribution with a Uniform one, which

equally distributes importance all over an area of interest, and thus allows for a more

intuitive definition of variance contribution attributable to the spatial component.

In this application, we opt for this alternative and define the area of interest as a

polygon that includes all locations found in the sample. The polygon is designed

to cover all the observed spatial locations and found using a concave hull algorithm

(Gombin, Vaidyanathan, and Agafonkin 2020): the resulting shape is represented in

Figure 4.6 (a) as the shaded green area. To quickly approximate desired quantities

with respect to this distribution, a large sample of points equally distributed over

the polygon area is then generated.

Figure 4.6: (a) Representation of the sampling locations over the Z1, Z2 spatial co-
ordinates system with black dots, along with the chosen concave polygon containing
all data points, outlined and shaded in green. (b) 50x50 km grid with cell centroids
(black dots), along with the value of one B-Spline basis function centered in a grid
cell over the area of interest. (c) The red grid cells indicate that the corresponding
basis functions (centered in their centroids) have non-null values over the polygon
represented by the solid green line.

.

Once the distribution for Z has been well defined, the spatial effect can be then

specified and scaled accordingly. Here, we choose two-dimensional P-splines (Lang

and Brezger 2004, Fahrmeir, Kneib, and Lang 2004) to model the variability over the

continuous spatial coordinates. In the dataset, the distance between locations highly

varies so that multiple resolutions could be used to model the spatial trend. Here we
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choose to capture a fairly large-scale spatial pattern creating a grid of 50x50 km cells

and centering a 2D B-Spline in each cell. A two-dimensional B-Spline basis can be

simply created using the Kronecker product between two univariate B-Spline basis

(in this case both with 50 km distance between basis functions). Figure 4.6 (b) shows

the grid and the values of one of the basis functions over the polygon of interest.

With respect to the precision matrix, we could simply use an IGMRF of first-order

derived considering the overall rectangular grid. However, this method would be

appropriate only if we actually want to model the whole rectangular surface, as in

Example 6 of Chapter 3. In this case, however, the interesting area is only the

irregular polygon. Thus, we decide to remove all basis functions that have null

values all over the polygon area. The grid cells whose corresponding basis functions

have been retained (KS = 267) are colored in red in Figure 4.6 (c). From this red

grid or lattice, we can retrieve an adjacency matrix W that reports the neighbours

of each remaining basis function. W is used to create a precision matrix QS, which

corresponds to an IGMRF of first order over the irregular lattice highlighted in

Figure 4.6 (c):

QS = diag(W1)−W .

The model can therefore be defined as:

fS(Z) = BT (Z)vS

vS|σ2
S ∼ N

(
0, σ2

S

Q∗
S

CS

)
subject to ST

SvS = 0

where B(·, ·) is the bivariate B-Spline created as detailed above, and SS is the null

space of QS.

Similar to what happens in Example 6 of Chapter 3, however, the constraint

ST
SvS = 0 does not imply EZ [fS(Z)|vS] = 0 but only

∑KS

k=1 vS,k = 0. This means

that the effect is subject to a constraint that is not directly interpretable in the scale

of the spatial coordinates, which is inconvenient and creates an identifiability issue

with the intercept parameter µ. Following the discussion of Section 3.3.6 of Chapter

3, we would rather replace the precision matrix with a modified version Q̃S with

null space S̃S such that S̃
T

SvS = 0 =⇒ EZ [fS(Z)] = 0, which is more convenient

even though not strictly necessary to guarantee Equation 4.5.

The design of an appropriate Q̃S starts from finding explicitly the desired null

space, which in this case is S̃S = EZ [B(Z)]. From Equation 3.28 of Section 3.3.6,
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we know that Q̃S can be found as:

Q̃S = (ΛR̃
∗
Λ)∗

where Λ = diag(λ) > 0 and R̃ must be defined as in Equation 3.54 to be a function

of the entries of QS, S̃S,Λ (see the proof in Section A.12 of the Appendix). In

Chapter 3, it is recommended to set the vector λ equal to λ̂ such that:

λ̂ = arg min
λ>0

DKL ( NQ̃S(λ)
|| NQS

).

This optimization step is more costly in real-world applications than in the exam-

ples of Chapter 3. For instance, this case study requires the optimization of a vector

of relative large dimension, i.e. 267 parameters. Additionally, the distribution on

Z is not Uniform on a rectangular surface. This entails an additional challenge in

comparison to Example 6, where reasonable constraints can be imposed during the

optimization of λ such that they reflect the symmetrical structure of the desired

null space (whose entries can be derived analytically): such constraints can greatly

reduce the effective number of parameters to be optimized and thus cut the opti-

mization time. This is not possible in this case study, where the entries of S̃S have

been numerically approximated and do not display symmetrical patterns due to the

irregular support of π(z). As a consequence, the optimization remains more involved

and consuming, and it might be argued whether implementing the optimization is

actually useful or can be avoided. To highlight the importance of the optimization

step, we compare the solution under the optimal λ̂, which we call Q̃λ̂, with a so-

lution Q̃1 where the vector is arbitrarily set to λ = 1 and numerical optimization

is not deployed. Figure 4.7 compares the diagonal entries, i.e. the marginal vari-

ances, of three different covariance matrices: (a) the original Q∗
S; (b) the modified

version without optimization Q̃
∗
1; (c) the modified version after the optimization

Q̃
∗
λ̂. We can conclude that the cost of the optimization is worthwhile, since the

non-optimized version (b) is a completely inadequate approximation of the original

model (a), while the numerically optimized solution (c) effectively reconstructs the

original variance pattern.

Finally, the matrix Q̃S = Q̃λ̂ can be used to redefine the spatial effect:

fS(Z) = BT (Z)vS

vS|σ2
S ∼ N

(
0, σ2

S

Q̃
∗
S

CS

)
subject to S̃

T

SvS = 0
(4.7)

4.3. Interpretation of the σ2 parameters in SDMs 107



Figure 4.7: Each of the grid cells containing a basis function is colored by the value
of the marginal variance of its corresponding coefficient, found as the diagonal values

of the generalized inverse of the precision matrix: (a) Q∗
S; (b) Q̃

∗
1 ; (c)Q̃

∗
λ̂.

where the scaling constant necessary to guarantee Equation 4.5 is found to be CS ≈
0.582.

In the practical implementation, the basis matrix is redefined as ΛB(·, ·) and

the precision matrix as R̃, so that all the matrices involved preserve their sparsity

structure.

Temporal effect

A random walk effect is introduced for the T covariate, which takesKT = 20 different

values representing distinct years (2000-2019). Thus, the effect can be written as:

fT (T ) =
20∑

m=1

I(T = m)vTm

vT |σ2
T ∼ N

(
0, σ2

T

Q∗
T

CT

)
subject to ST

TvT = 0

where QT is the precision matrix of a first-order random walk on 20 equidistant

locations (Equation 2.7) and its null space ST = 1. A reasonable distribution for

T gives equal probability to each value, such that the variance contribution assigns

equal importance to each of the years in the sample. Under this assumption, the null

space constraint ST
TvT = 0, which is necessary for the interpretability of variance

parameters of IGMRF effects, corresponds to a 0-mean constraint ET [fT (T )] = 0.

Hence, a Q modification is not necessary in this case. Finally, specifying the scaling
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constant to CT = 3.325 guarantees Equation 4.6.

4.4 Hierarchical Decomposition approach for SDMs

Once each of the variance parameters match their intuitive interpretation, VP priors

can be used on LGM species distribution models to include a wide range of prior

assumptions in an intuitive manner.

In the VP approach, the prior distribution is specified on the following repara-

metrization of the original J + L parameters:

V =
J∑

j=1

σ2
A,j +

L∑
l=1

σ2
B,l

ω =

[
σ2
A,1

V
, ...,

σ2
A,J

V
,
σ2
B,1

V
, ...,

σ2
B,L

V

]
.

(4.8)

Further reparametrizations of the random vector ω (although, often conveniently

written also involving V ) can be used to introduce specific knowledge about the

relative importance of different effects. This is achieved using the Hierarchical De-

composition (HD) approach by Fuglstad et al. 2020, which consists of two steps:

design of the reparametrization through a variance decomposition tree; prior spec-

ification on the new parameters such that it reflects prior beliefs. Ideally, both

steps should be considered on a case-by-case basis such that prior information is

optimally exploited. However, it is often the case that expert knowledge is not as

precise or strictly pertinent to the case study as expected. It is more reasonable to

assume that many assumptions about the relative importance of effects come from

modelling principles, such as parsimony, or from general ecology theory.

In what follows, we discuss the two steps of the HD approach for a generic SDM

as defined in Equation 4.2. We propose a default decomposition tree that exploits

the relatively fixed structure of this class of models (as suggested by Fuglstad et al.

2020) and makes use of the tree design principles that can be derived from the HD

literature. We believe that the reparametrization provided by this default tree will

already represent an undoubtful improvement in terms of intuitiveness for ecologists

called to specify a prior for SDMs. Subsequently, we also discuss potential prior

choices for the parameters coming from each split of tree, again on the basis of

choices made in applications from other fields.
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4.4.1 Default HD tree

The reparametrization of ω from Equation 4.8 into proportions that have a direct

intuition for the experts is designed with the help of a tree in the HD approach.

The tree decomposes V (its root node) through successive splits, each with two

or more branches, until all leaf nodes contain a single σ2. The new parameters

are found dividing the elements in the child nodes of a split by the sum of the

elements in its parent node. By design, the parameters are therefore simplices and

sole reparametrizations of ω.

According to Fuglstad et al. 2020, the “tree structure must be selected so that

the desired comparisons can be made”: this means that the resulting proportion

parameters should measure the relative importance between groups of effects for

which the user has a direct intuition. The tree design should therefore be in theory

application-specific and expert-driven.

However, it is often the case that the available prior information is not directly

pertinent to the case study at hand, but rather comes from the combination of gen-

eral field knowledge and adoption of modelling principles (e.g. simplicity). For this

reason, we propose a default decomposition tree for the generic SDM of Equation

4.2, which can represent a baseline for users that wish to implement the HD ap-

proach with minimum effort. The aim of the design is to derive new parameters for

which ecologists have a broad intuition, regardless of the application at hand (e.g.

proportional contribution to the variance of environmental factors). The best tree

design for this goal is here created combining the theory behind SDMs, modelling

principles, and considerations from the HD literature so far. Such tree can then be

tweaked at will, whenever the user possesses more sophisticated information.

From the applications of the HD framework presented so far in the literature, we

retrieve a few principles about tree design that can guide us in building a reasonable

default choice for SDMs:

(a) The initial splits of a tree (i.e. the ones closer to the root node)

usually separate groups of similar effects, either in terms of co-

variates or structure, into separate branches. This is for example

found in the tree design for the latin square design application found in

Fuglstad et al. 2020, where the first split distinguishes between residual ef-

fect and all the other effects related to a covariate (also found in the neonatal

mortality application), while the second split distinguishes between the effect

of the treatment on the response versus the plot design effect. A further ex-

ample is found in Hem et al. 2021, where phenotypic values are modelled using

genomic information and the tree design starts with a split between genetic
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and environmental factors. Since the branches of the split have a clear distinct

interpretation, there might be more precise prior information about this type

of split than for others.

(b) Secondary splits are often used to divide a group of similar effects

(e.g. all linear effects) using multiple branches. This type of split is

found in the R2D2 literature, where all linear effects are divided into singletons

at the first split. Additional examples include the work of Marques, Wiemann,

and Kneib 2023 where the tree design for multiple spatio-temporal effects only

comprises of a single multi-branch split that treats all random effects equally.

Because of the similarity, it might be the case that exchangeable priors are

sufficient to expresse the user’s prior beliefs about these splits.

(c) Binary splits are often used to divide two effects, functions of the

same covariates, but with different levels of flexibility . Some obvi-

ous cases include separating an additive interaction versus a non-additive one

(Franco-Villoria, Ventrucci, and Rue 2022,Hem et al. 2021), an unstructured

versus a structured effect (Riebler et al. 2016, treatment effect split in the

latin square design case study of Fuglstad et al. 2020), higher-level cluster

effect versus a nested-level one (county versus cluster effect of the neonatal

mortality case study in Fuglstad et al. 2020). In this type of splits, the princi-

ple of model simplicity or parsimony would recommend a preference towards

the branch containing the effect providing less flexibility. If there are more

than two effects with different levels of flexibility, subsequent binary splits can

be used in place of the multiple-branch split. (Fuglstad et al. 2020)

On the basis of principles (a)-(c), we build a default decomposition tree for a

general SDM represented in Figure 4.8. The graph shall be read such that each

node corresponds to the sum of all the variance parameters σ2 corresponding to the

effects described in the label of the node.

Level 1

The first split is inspired by principle (a). The total variance in the linear predic-

tor can be partitioned into the two main sources of variability recognized by the

SDM theory: the contribution of abiotic/environmental effects; the contribution of

the additional variability, often still spatio-temporally structured. The first child

node contains all the σ2
A,j, while the second one contains all the σ2

B,l. The new

parameter coming from this binary split can be denoted by ωA =
∑J

j=1 ωj, which

represents the proportion of total variance explained by the effects related to the X
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Figure 4.8: Default decomposition tree for SDMs. Each node represents the sum of
all the variance parameters σ2 from the corresponding effects.

covariates. It is often the case that the environmental covariates present a spatio-

temporal structure, which may lead to confounding problems. This split allows to

include prior assumptions about this phenomenon or check potential confounding

problems a posteriori by looking at the posterior of ωA. In the future, we aim at

further investigating how the HD approach may help identify potential confounding

phenomena.

Level 2

At the second level, we envision two splits, one for each of the two child nodes

from the previous step. In both cases, the main effects (functions of individual

covariates) are separated from interaction terms (functions of two covariates); note

that Z is considered a single covariate. These splits are inspired by principle (c),

as the presence of interactions entails a more flexible model. If no interactions are

included in the model, this level can simply be pruned from the tree.
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Level 3

Following again principle (a), the third level involves potential multi-branch splits,

dividing effects on the basis of the covariates they are functions of. A first split

is used to divide the effects of the different environmental covariates into multiple

branches, while a second split separates the spatial effects from the temporal one.

Interaction terms from either branch of Level 2 might require additional splits at

Level 3: again, the effects should be organized into sub-branches based on the specific

covariates involved.

Level 4

The previous three split levels make up the structure of a default decomposition

tree that well adapts to most SDMs applications. If all the grey nodes in Figure 4.8

(including the omitted ones) are singletons, i.e. they contain a single σ2 parameter,

then the tree is complete as it is. However, the contribution of some covariates might

be introduced in the model through multiple effects: if this is the case, the scheme of

Figure 4.8 needs to be integrated with additional splits, until all the child nodes are

actually singletons. In doing so, we suggest to use a fourth-level split strategy based

on principle (c), in which effects with different degrees of flexibility are separated

with successive binary branches. An example of split at level 4 is depicted in Figure

4.9, where the effect of an environmental covariate is partitioned into two branches,

one for its linear component and the other for the non-linear one.

Figure 4.9: Example of split at level 4. The effect of covariate Xp is divided into its
linear and non-linear component.

If there are more than two different levels of flexibility, we suggest the use of

subsequent binary splits, rather than the use of multi-branch ones, since this choice

simplifies the prior specification step (see Section 4.4.3). Fuglstad et al. 2020 found
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that the use of successive binary splits in place of multi-brach ones has negligible

impact on posterior inference.

4.4.2 Case study: HD tree

The case study model has a total of 13 variance parameters that need prior spec-

ification: σ2
L1, σ

2
N1, ..., σ

2
L5, σ

2
N5, σ

2
6, σ

2
S, σ

2
T . The tree design for this application is

represented in Figure 4.10. Level 2 of the default tree is pruned, while, at Level 4,

a binary split between the linear and non-linear contribution is added for all the 5

environmental covariates that are continuous.

Figure 4.10: Decomposition tree for the case study based on the default proposal of
Section 4.4.1.

Along with V , we obtain the following new parameters dividing the child nodes
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by their parent node:

V =

(
5∑

p=1

σ2
Lp + σ2

Np

)
+ σ2

6 + σ2
S + σ2

T

ωA =
(
∑5

p=1 σ
2
Lp + σ2

Np) + σ2
6

V

ωX =

[
σ2
L1 + σ2

N1

ωA · V
, ...,

σ2
L5 + σ2

N5

ωA · V
,

σ2
6

ωA · V

]
ωS =

σ2
S

σ2
S + σ2

T

ωNp =
σ2
Np

σ2
Lp + σ2

Np

p = 1, ..., 5.

(4.9)

4.4.3 Guidelines for prior specification

Stsrting from the root node of the tree, we examine suitable prior distributions for

the new HD parameters that are tailored for the SDM context. The original HD

approach suggests building the joint prior in a bottom-up manner, where priors

for higher-level parameters (closer to the root) depend on lower-level parameters.

However, most applications of HD priors actually display in practice independent

In what follows, we recommend independent priors on the new parameters.

Total variance V

The V parameter from Equation 4.8 is the total variance in the linear predictor: all

priors proposed in the literature for variance parameters of Gaussian distributions

can be used (e.g. Inverse-Gamma, Half-Cauchy, Jeffreys, etc.).

Recently, the PC prior for variance parameters has been proven particularly

popular (Simpson et al. 2017, Klein and Kneib 2016). The PC0(δ) prior for the

parameter V is recommended by Fuglstad et al. 2020 when the chosen likelihood for

Y is not Gaussian. The hyperparameter δ regulates the level of shrinkage towards

the base model, in this case V = 0, and its tuning is done through tail probability

statements, i.e. P (
√
V > U) = α. When the likelihood is instead Gaussian, Fuglstad

et al. 2020 suggests the use of the scale-invariant Jeffreys prior. In the context of

SDMs, both choices have advantages, as the PC0 prior can help regularize very

complex models, while the popular Jeffreys prior does not require hyperparameter

tuning.
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Level 1

The split at this level generates a proportion parameter called ωA. Indifference can

be easily expressed through a Uniform distribution. If prior information is available,

this can be introduced using an appropriate Beta distribution, as done in the R2D2

literature to reflect beliefs about the R2 proportion (Yanchenko, Bondell, and Reich

2024b), or a PC prior with the desired base model and concentration parameter

reflecting the user’s uncertainty (Hem, Fuglstad, and Riebler 2024).

Level 3

Level 3 splits divide the effects into different branches according to the covari-

ates they represent. If the user has no information about the partition among

the branches, a Uniform on the simplex (i.e. Dir(1, ..., 1)), can be used to express

complete ignorance. On the other hand, if the split is binary and the user has

specific information about the relative importance of the covariates, an informa-

tive prior such as a Beta distribution can be used on the corresponding proportion

parameters. If the split has instead multiple branches, it becomes more difficult

to appropriately reflect available information about the partition through an ap-

propriate prior choice. Additionally, experts might be unable to fully express this

information in the first place. Nevertheless, they might still have an intuition about

the number of important covariates, i.e. about the sparsity of the partition.

Following Fuglstad et al. 2020, we suggest that priors for multi-branch splits

should be exchangeable, i.e. all branches are treated equally. Exchangeable priors

can be used to introduce prior information about the sparsity level in the partition

through the regulation of their hyperparameter. A symmetric Dirichlet Dir(q, ..., q)

is an example of an exchangeable prior on a simplex vector. If a vector ω is dis-

tributed as a symmetric Dirichlet with hyperparameter q, its density is:

π(ω) =
Γ(qP )

Γ(q)P

P∏
p=1

ωq−1
p

The hyperparameter q controls the sparsity level and can be regulated to reflect as-

sumptions about the partition of the variance among the branches. A value of q = 1

represents complete ignorance about the partition, i.e. a Uniform on all possible

values of the simplex. Setting q > 1 reflects the belief that all covariates are equally

important, while a value of q < 1 is set if only a few of them are assumed impor-

tant. Hem, Fuglstad, and Riebler 2024 recommended setting q using the marginal

prior on a single proportion ωp such that P (logit(1/4) < logit(ωp) − logit(1/P ) <
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logit(3/4)) = 0.5. On the other hand, the work of Zhang et al. 2022 derived good

theoretical properties on the induced prior on the coefficients of the R2D2 prior

under the choice of q < 1/2. The derivation of such properties is extremely useful

for variable selection contexts but it remains problematic to reflect specific assump-

tions about the sparsity level in other contexts. The concept of effective number

of non-zero coefficients presented by Piironen and Vehtari 2017 has been used by

Aguilar and Bürkner 2023 as an intuitive way to evaluate specific hyperparameters

choices. However, this quantity depends on all the hyperparameters of the prior and

not exclusively on q.

Here, we suggest to focus on a particular statistic based exclusively on the Dirich-

let distribution that can help the user set up the hyperparameters in a way that

reflects prior assumptions about the number of important covariates. Specifically,

we consider the quantity of the proportion of variance explained by the top k com-

ponents. For a given realization ωi of a random vector distributed according to

a symmetric Dirichlet with parameter q, we define this quantity as the sum of the

largest k entries of the vector. Figure 4.11 shows the distribution of 5000 realizations

of this statistic for P = 10, q = 0.5 and values of k = 1, 2, 5.

Figure 4.11: Distribution of the proportion of variance explained by the top k com-
ponents: (red) k = 1; (green) k = 2; (blue) k = 5.

Figure 4.11 can be interpreted as follows. The largest proportion from a realiza-
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tion of a symmetric Dirichlet distribution with P = 10, q = 0.5, usually has values

between 25% and 50% with an average around 40%; the sum of the largest two

proportions usually sum up to more than 50% with an average around 60%; finally,

the largest 5 proportions sum up almost always to more than 75% and on average

to around 90%.

In order to intuitively specify the hyperparameter q, the distribution of propor-

tion of variance explained by the top k components can be compared for different

values of q. Figure 4.12 reports on the x-axis the value of k, i.e. the number of

components, while the y-axis represents the proportion of explained variance. The

same distributions used in Figure 4.11 are here reported as vertical boxplots of dif-

ferent colors, where each color represents a different value of the q hyperparameter.

Obviously, the statistic increases for all values k < P for a smaller value of q. Figure

4.12 (b) reports more concisely only the mean of each of the distributions, along

with dashed lines representing a proportion of 90%, 95%,99%.

Plots like the one in Figure 4.12 can be used to find the value of q that best

reflects prior assumptions in the form: ”the k most important covariates explain

around α% of the total variance”. For example, if we believe that the 3 most

important covariates out of 10 will explain around 90% of the total variance, we

may choose a value of q = 0.2.

To summarize some guidelines about prior specification for Level 3 parameters,

Beta distributions are recommended for the binary splits, since they can be both

vague (Uniform distribution is a special case) but also flexible enough to exploit

potentially available prior information. For multi-branch splits, we suggest instead

the use of symmetric Dirichlet priors, whose hyperparameter can be intuitively cal-

ibrated following the intuitive procedure outlined above.

Levels 2 & 4

Levels 2 and 4 create similar binary splits that separate effects with different degrees

of flexibility. A reasonable choice is to define the proportion parameter as the

proportional contribution of the more flexible branch and specify a PC0 prior on it,

in accordance to the principle of model simplicity.

The derivation of the PC0 prior is however not as simple as for the V parameter.

For each split, the prior must be derived separately, as the resulting function often

depends on the choices of basis and precision matrices: this represents an incon-

venience for the user. More importantly, the PC0 can also depend on lower-level

proportion parameters, which is computationally inefficient and not coherent with

the recommendation of using only independent priors.
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Figure 4.12: (a) Distribution of the proportion of variance explained by the top
k components, grouped by the corresponding value of the hyperparameter q. (b)
Mean of the samples for different values of the hyperparameter. The three dashed
black lines represent the values of 90%, 95%, and 99%.

Nevertheless, the PC0 often ends up having a simple functional form, com-

pletely independent of both the effects’ matrices and potential lower-level parame-

ters, namely a Truncated Exponential on the square root of the proportion parame-
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ter. This result has been found by Fuglstad et al. 2020 and later by Franco-Villoria,

Ventrucci, and Rue 2022, under two different conditions. In the following section,

we prove that a simple condition, easy to check, can guarantee that the PC0 prior

actually reduces to this simplified version. We also show how this condition is re-

spected in many relevant cases in the context of SDMs. Therefore, we argue that

the the PC0 prior can be recommended as the standard choice for the splits at Level

2 and 4. The hyperparameter of the PC prior can then be regulated using median or

tail event statements according to the prior beliefs of the user. If in some cases the

PC0 does not simplify to a model-independent, we argue in favour of still using the

same convenient functional form, because of the computational advantages, despite

it no longer being the correct PC prior. The recommendation of Fuglstad et al. 2020

about using successive binary splits, in place of multi-branch ones, comes from the

fact that the derivation of the PC prior greatly complicates in the latter case. We

suggest to set up the tree such that the use of PC0 prior at each split is reasonable.

4.4.4 PC0 prior for proportions

In specific instances, the PC0 for proportions of variance ω for a Gaussian model is

found to have the following simplified form (Fuglstad et al. 2020, Franco-Villoria,

Ventrucci, and Rue 2022):

π(ω) =
δ exp(−δ

√
ω)

2
√
ω[1− exp(−δ)]

0 < ω < 1 (4.10)

which corresponds to an Exponential distribution on
√
ω, truncated at

√
ω = 1.

This solution is called “simplified” as it does not depend on the choice of basis or

precision matrices, nor on the parameters at lower splits of the decomposition tree.

Fuglstad et al. 2020 found this solution for the PC0 prior under non-singularity

conditions on the basis and precision matrices involved. Franco-Villoria, Ventrucci,

and Rue 2022 developed an alternative proof for a specific spatio-temporal applica-

tion using IGMRF effects, which returns the same result of Fuglstad et al. 2020, but

relies on different assumptions.

This section intends to extend the proof of Franco-Villoria, Ventrucci, and Rue

2022 to a general case, in order to understand how common the simplified form of

Equation 4.10 is in practice. First, notation for a general pair of effects is set up.

Secondly, the KLD-based distance needed for the PC prior is derived. Thirdly, a

simple condition that guarantees the simplified form, called sum-of-rank condition, is

discussed in details. Finally, it is explained how the condition is respected in many

important cases in which the use of a PC0 prior might be desirable (see Section
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4.4.3).

General set up

Let X0 and X1 be two generic covariates, which can also be multivariate. Note that

X0 and X1 can also represent spatio-temporal covariates. Let f(X0, X1;ω) be the

weighted sum of two effects with weight ω ∈ [0, 1]:

f(X0, X1;ω) =
√
1− ωf0(X0) +

√
ωf1(X1)

where:

f0(X0) =D
T
0 (X0)u0

f1(X1) =D
T
1 (X1)u1

u0
K0×1

∼ N(0,Q∗
0)

u1
K1×1

∼ N(0,Q∗
1).

D0(·) is a basis matrix made up by K0 functions and D1(·) is a basis matrix made

up by K1 functions. Let N0 be the cardinality of the set of values x ∈ X0 such that

πX0(x) > 0 and let N1 be the same for X1. If N0 or N1 are infinite, the probability

distributions are discretized such that these quantities are still large but finite: this

is convenient to avoid working with Gaussian vectors of infinite dimensions. Let

x0,x1 be row vectors of dimension N ≤ N0 ×N1 such that their ith elements form

a unique pair xi0 ∈ X0, xi1 ∈ X1, πX0,X1(xi0, xi1) > 0: the pairs xi0, xi1, i = 1, ..., N

are by design all possible realizations of the covariates that can be observed in the

data. The basis D0(x0) becomes a matrix of dimension K0×N and D1(x1) matrix

of dimension K1 ×N . We always assume that K0 ≤ N0 and K1 ≤ N1.

The vector f(x0,x1;ω) of dimension N is distributed as a multivariate Gaussian,

whose covariance matrix Σ(ω) is equal to:

Σ(ω) = (1− ω)Σ0 + ωΣ1

Σ0 =D
T
0 (x0)Q

∗
0D0(x0)

Σ1 =D
T
1 (x1)Q

∗
1D1(x1).

f(x0,x1;ω) will have a proper Gaussian distribution only if its covariance matrix is

full rank. Thanks to the properties of matrix rank, an upper bound can be found

for the rank of Σ(ω) (called R(ω) from now on) as rank(Σ0) + rank(Σ1). Noting

that R(0) = rank(Σ0) and R(1) = rank(Σ1) and that the upper bounds for these
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quantities are:

R(0) ≤ min[N0, K0] R(1) ≤ min[N1, K1] (4.11)

we can find that an upper bound for R(ω) is:

R(ω) ≤ min[N0, K0] + min[N1, K1]. (4.12)

Since it might be the case that this upper bound is less than N , the probability

density π(y;ω) of f(x0,x1;ω) can be written using the improper version (Rue and

Held 2005), which simplifies to the classical one when R(ω) = N :

π(y;ω) =
1√

(2π)R(ω) · |Σ(ω)|∗
exp

(
−1

2
yTΣ∗(ω)y

)
. (4.13)

Note that |·|∗ represents the generalized determinant (i.e. the product of non-null

eigenvalues).

PC prior derivation

The first step in deriving the PC prior for ω is computing the KLD between

f(x0,x1;ω) and f(x0,x1;ω0), where ω0 is the chosen base model. In this con-

text, we only consider the case ω0 = 0; note that the case ω0 = 1 is equivalent.

Once the KLD has been computed as a function of ω, the functional form of the

PC prior is found assuming a (truncated) Exponential distribution on the distance

d(ω;ω0) =
√
2 ·KLD[π(y;ω)||π(y;ω0)] and solving for ω.

Using the density function of Equation 4.13 for f(x0,x1;ω), the KLD-based

distance d(ω;ω0) simplifies to:

d(ω;ω0) =

√
tr [Σ∗(ω0)Σ(ω)]−R(ω)− log

|Σ(ω)|
|Σ(ω0)|

+ [R(ω0)−R(ω)] log(2π).

(4.14)

See the proof in Section C.1 of Appendix.

This is still a complicated formula that does not give a simple functional form for

the prior of ω, since it directly depends on the chosen basis and precision matrices

of the effects involved.
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Simplification under sum-of-ranks condition

The sum-of-ranks condition consists in checking whether the sum of the number of

non-null eigenvalues of Σ0 and Σ1, or equivalently the sum of their ranks, is less or

equal to the dimension N .

R(0) +R(1) ≤ N. (4.15)

This inequality has many consequences. First, it implies that both Σ0 and Σ1 are

singular, assuming that neither of them can be a zero matrix. Most importantly, it

guarantees that Σ(ω) can be rewritten in a more convenient form.

Let e0,1, ..., e0,R(0)be the R(0) eigenvectors of Σ0 associated with non-null eigen-

values λ0,1, ..., λ0,R(0). Let e1,1, ..., e1,R(1) be the R(1) eigenvectors of Σ1 associated

with non-null eigenvalues λ1,1, ..., λ1,R(1). If the sum-of-ranks condition (4.15) holds,

then Σ(ω) can be rewritten in terms of Λ0 = diag(λ0,1, ..., λ0,R(0), 0...., 0), Λ1 =

diag(0, ..., 0, λ1,1, ..., λ1,R(1)) and a common eigenbasis V = [e0,1, ..., e0,R(0),0, ...,0, e1, ..., eR(1)]:

Σ(ω) = V [(1− ω)Λ0 + ωΛ1]V
T .

Rewriting Σ(ω) ensures that the distance function (4.14) further simplifies (Sec-

tion C.2 of the Appendix). However, this distance is not finite for ω0 = 0 and must

be computed instead as a limit for ω0 = 0 (Franco-Villoria, Ventrucci, and Rue

2022). It can be proven that:

lim
ω0→0

d(ω;ω0) = R(1)
√
ω (4.16)

where R(1) is a constant with respect to ω. Specifying an Exponential distribution

on the distance (truncated at d(1) as the upper bound for ω is 1), the final form of

the PC prior is found using the change-of-variable formula:

π(ω) =
δ̃R(1) exp(−δ̃R(1)

√
ω)

2
√
ω[1− exp(−δ̃R(1))]

.

The dependence on the constant R(1), which contains parameters of the model is

removed, as it becomes not identifiable with the hyperparameter of the Exponential

distribution δ̃. Denoting δ = δ̃R(1), we obtain Equation 4.10, which proves that,

under the sum-of-ranks condition, the simplified form of the PC0 prior is guaranteed.

The δ hyperparameter can be chosen using probability statements such as P (ω <

U) = α. However, in order to obtain a valid probability distribution (i.e. δ > 0),

Franco-Villoria, Ventrucci, and Rue 2022 noted that the following condition must
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be respected:

α ≥
√
U. (4.17)

As a consequence, the median can be at most 0.25, which can be obtained with

δ → 0.

Because the sum-of-ranks condition guarantees a simpler solution for the PC

prior, it is convenient to start the derivation of the prior by checking this condition

first. If the condition is not found to be satisfied using the upper bounds of Equation

4.11, the next step should be to derive the actual R(0) and R(1) and check the

condition again.

Important cases

The sum-of-ranks assumption can be verified when R(0) and R(1) are available

analytically, but this is rarely the case in practice. Therefore, the assumption can

be checked instead using their upper bounds (Equation 4.11), which are usually

explicitly available to the user. We discuss here three cases in which PC0 priors on

ω are a sensible choice, according to the discussion of Section 4.4.3. These cases are

selected as they may result from the decomposition tree designed for SDMs (Figure

4.8).

� Linear effect versus non-linear effect.

Consider the case in which X is a univariate variable and X = X0 = X1. In

this case, N0 = N1 = N since the two covariates are completely dependent.

Consider now that f0(X) is a linear effect (after standardization of X) and

f1(X) is a non-linear function of X with a finite number of K1 coefficients,

constrained by design to have a null intercept and linear trend: f1(X) can be

for example the residual term of a P-Spline of second order (see Example 5 of

Chapter 3). With regard to ranks, upper bound for R(0) and R(1) are found

to be:

R(0) ≤ 1

R(1) ≤ K1.

As a consequence, their sum R(0) + R(1) ≤ K1 + 1 respects the condition of

Equation 4.15 as long as K1 < N . This is always true when X is a continuous

variable, since K1 is finite such that K1 << N .

This scenario can emerge from splits at Level 4 of the tree from Figure 4.8.
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� Linear main effects versus interaction effect.

Consider now the case in which X0 = [XA, XB] where XA, XB are two in-

dependent univariate covariates, and X1 = X0. Again, N0 = N1 = N and

N = NA · NB, where NA is the cardinality of the set of values x ∈ XA such

that πXA
(x) > 0 and NB is the same for XB.

Let f0(XA, XB) and f1(XA, XB) be defined as:

f0(XA, XB) =
√

1− ϕX̃AuA +
√

ϕX̃BuB

f1(XA, XB) = X̃AX̃Bu1

where X̃A, X̃B are the standardized versions of XA, XB.

In this scenario, it is easy to work out that R(1) ≤ 1. However, R(0) depends

on the value of ϕ. Nevertheless, an upper bound can still be found using the

same formula of Equation 4.12:

R(0) ≤ min[NA, 1] + min[NB, 1]

≤ 2.

Hence, the sum-of-ranks condition is respected as long as 3 ≤ NA · NB. This

is always true if XA, XB are both continuous covariates.

This case covers the splits at Level 3 in the left branch of the tree from Figure

4.8, where the main effects of the environmental covariates are separated by

the interaction terms.

� Finite-dimensional main effects versus Kronecker product interac-

tion effect.

Consider the scenario above where now f0(XA, XB) is defined as the weighted

sum of two finite-dimensional effects for XA and XB with respectively KA and

KB coefficients with KA ≤ NA, KB ≤ NB:

f0(XA, XB) =
√

1− ϕDT
A(XA)uA +

√
ϕDT

B(XB)uB

uA
KA×1

∼ N(0,Q∗
A)

uB
KB×1

∼ N(0,Q∗
B).

Let f1(XA, XB) =D
T (XA, XB)u be an interaction effect built using the Kro-

necker product between the basis and precision matrices of the main effecwrit-
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ingts in f0(XA, XB), i.e. the IV type of interaction effect defined by Knorr-

Held 2000 for inseparable spatio-temporal effects.

D(XA, XB) =DA(XA)⊗DB(XB)

u
KA·KB×1

∼ N(0, [ QA
KA×KA

⊗ QB
KB×KB

]∗).

The upper bounds for R(0) and R(1) can be easily found:

R(0) ≤ KA +KB

R(1) ≤ KA ·KB.

Hence, the sum-of-ranks condition is satisfied as long as:

KA +KB +KA ·KB ≤ NA ·NB.

This is always true if XA and XB are continuous covariates. The condition

also holds in many other cases in which XA and XB are discrete, such as the

particular example derived in Franco-Villoria, Ventrucci, and Rue 2022.

This last case covers the possible split between the main spatial and temporal

effects and their non-additive interaction, which appears at Level 3 in the right

branch of the tree from Figure 4.8.

4.4.5 Case study: VP prior

The VP prior approach requires the specification of priors on the new parameters

V, ωA,ωXωS, ωN1, ..., ωN5 defined in Equation 4.9.

From Level 1 of the HD tree (Figure 4.10), we obtain ωA, which represents the

proportional contribution to the variance of the environmental effects. ωA must

be assigned a Uniform distribution, as no expert knowledge about the variance

partitioning was available to us.

At Level 3, there are two splits. The first split distinguishes between the con-

tributions of each of the 6 environmental covariates. The resulting simplex ωX is

assigned a symmetric Dirichlet. In order to specify a reasonable value for the hy-

perparameter, we need to state our prior assumptions about the partition between

the different covariates. A priori, we believe that the Depth covariate will play an

important role, but that the correlation between Surface temperature and Bottom

temperature, as well as between Surface salinity and Bottom salinity may cause only

one of the two covariates in each pair to be selected; finally, we do not have prior
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assumptions about the role of the Survey Vessel. We may reflect this assumption

by stating, for example, that half of the covariates (i.e. 3) might be sufficient to

explain at least 90% of the overall variability due to environmental factors, without

the need to specify which ones are believed to be important. According to Figure

4.13, this assumption is best reflected by selecting a value of q = 0.5.

Figure 4.13: Mean of the samples of the proportion of variance explained by the top
k components (k indicated in the x axis) using a symmetric Dirichlet of dimension
P = 6, obtained with different hyperparameter values. The three dashed black lines
represent the values of 90%, 95%, and 99%.

The second split from Level 3 separates the spatial contribution from the tem-

poral one. The absence of information mandates the use of a Uniform distribution

on ωS.

The 5 splits at Level 4 are identical and separates the linear and non-linear

contribution for all the 5 continuous environmental covariates. For each of the

p = 1, ..., 5 splits, we get a proportion parameter ωNp. For all the 5 parameters,

we choose a highly flat PC0 prior to induce little shrinkage. From the discussion of

Section 4.4.4, we know that the PC0 prior has its simplified functional form in this

case, i.e. Equation 4.10. Due to the bound of Equation 4.17, the highest the median

can be set is at 0.25 with δ → 0: we choose δ = 0.1, which guarantees the median

to be 0.238. Figure 4.14 shows that there is little difference between this choice and

an extremely small value such as δ = 0.001.

The prior specification is completed assuming a distribution for V . We compare

the choice of a Jeffreys (VP1) and of a relatively flat PC0 prior (VP2), i.e. δ =
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Figure 4.14: Comparison of multiple distributions for a generic proportion param-
eter ω. Along with the Uniform distribution, three PC0 priors with different δ
hyperparameter values are plotted.

0.1. Figure 4.15 compares the two chosen priors, after the choice of a convenient

normalizing constant for the improper Jeffreys distribution.

Figure 4.15: Comparison of the two different prior choices for the V parameter. The
hyperparameter for the PC0 prior is set to δ = 0.1.

The joint prior on the original parameters can be written applying the change-
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of-variable formula:

π(σ2
L1, σ

2
N1, ..., σ

2
L1, σ

2
N1, σ

2
6, σ

2
S, σ

2
T ) = π(V )π(ωA)π(ωX)π(ωS)

5∏
p=1

π(ωNp) · |J |

where V, ωA,ωXωS, ωN1, ..., ωN5 must be rewritten in terms of σ2
L1, σ

2
N1, ..., σ

2
L5, σ

2
N5, σ

2
6, σ

2
S, σ

2
T ,

and J is the Jacobian of the transformation from the original parameters to the new

ones.

Performance evaluation. The performance of the proposed VP priors is com-

pared to more traditional choices. In total, we consider 4 different prior specifica-

tions:

� IG prior: i.i.d. Inverse-Gamma(1,5e-5) on all the σ2 parameters, which is the

default specification in INLA;

� PC prior: i.i.d. PC0(δ) prior on all the σ2 parameters with hyperparameter

δ such that P (σ > 3) = 0.05 (Fuglstad et al. 2020);

� VP1 prior: V ∼ Jeffreys, ωA ∼ Unif(0, 1), ωX ∼ Dir(0.5), ωS ∼ Unif(0, 1),

ωNp ∼ PC0(0.1) for p = 1, ..., 5;

� VP2 prior: same as the VP1 prior but V ∼ PC0(0.1).

The model is fitted using the INLA software (Rue, Martino, and Chopin 2009),

which offers a joint posterior sample of all the model parameters, along with many

other useful outputs. The dataset is divided into y = [yT
train,y

T
test]

T where the

training set ytrain contains all observations up to 2015, while the test set ytest the

remaining ones up to 2020, for a total of 1028 observations or ≈ 17%. The models

are fitted on the training sets and the performance in terms of prediction over the

test set is evaluated using the same metrics used in Hui et al. 2023 (log likelihood,

Brier score, Tjur R2), along with the more interpretable accuracy metric. All metrics

are based on the point estimates p̂i = logistic(E[ηi|ytrain,xi, zi, ti, ]) for all instances

i in the test set. Accuracy is defined as the percentage of instances in the test set

accurately predicted using I[p̂i > 0.5]. The log-likelihood metric is measured on the

test set observations under a Bernoulli distribution with parameter p̂i. The Brier

score corresponds to the mean squared error between yi and p̂i. The Tjur R2 is the

difference between the mean of p̂i for all i such that yi = 1 and the mean of p̂i for

all i such that yi = 0. Figure 4.16 reports the values of these 4 metrics for each of

the 39 fish species in the dataset.
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Figure 4.16: Comparison of the performance of the 4 different prior specifications
on prediction on the test set: (a) accuracy; (b) log-likelihood; (c) Brier score; (d)
Tjur R2.

At first, we can note how the predictive performance is not largely impacted by

the prior specification, thanks to the large number of observations in the dataset.
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Nevertheless, there are still some differences in the results: both VP priors are com-

petitive with respect to the popular PC prior choice, and represent an improvement

with respect to the Inverse-Gamma choice, particularly noticeable in terms of accu-

racy and Brier score. Between the two VP options, the impact of the prior on V

appears to be negligible and no clear preference emerges based on the four metrics

examined.

Looking at the posterior means of the variance parameters for all the species

(Figure 4.17), it can be noted how the IG prior option tends to shrink many more

of the parameters to 0 than the other three alternatives, which might be the cause

for the slightly worse prediction ability. While the estimations for the other priors

exhibit greater consistency, the PC prior generally yields larger estimates for most

of the parameters, when compared to the VP priors.

Figure 4.17: Posterior mean of the σ2 parameters for the 39 species in the dataset
under different prior specifications.

4.5 Posterior variance partitioning

This section focuses on proposing an alternative to the traditional estimation of vari-

ance partition in SDMs, through a method that is coherent with the prior framework

presented so far.

Assume that the joint posterior distribution of the model parameters has been

derived, either analytically or through simulation. In quantifying the variance con-
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tributions of each effects, we shall not use functions of location estimators of the

model parameters, such as posterior means or medians. Instead, we adopt a fully

Bayesian approach as in Gelman et al. 2019 and define such quantities directly as

functions of the model parameters. The posterior distribution of such metrics can

then be approximated through simulation. First, a sample of joint realizations must

be simulated from the parameters’ posterior distribution:

π(µ,u1, ...,uJ ,v1, ...,vL, σ
2
A,1, ..., σ

2
A,J , σ

2
B,1, ..., σ

2
B,L|y).

Then, the function of interest must be applied to each realization to obtain a new

sample that is distributed as the target posterior. This method is more computa-

tionally expensive but offers full information about the estimators. Now that we

have selected an inferential approach, we can discuss the possible choices for the

estimation of the variance contributions.

Traditionally, variance contributions of the effects of an SDM are estimated using

sample variances of the trends, conditional on the coefficients (Ovaskainen et al.

2017, Hui et al. 2023):

WA,j = V arNi=1[D
T
j (xi)uj] j = 1, ..., J (4.18)

WB,l = V arNi=1[G
T
l (zi, ti)vl] l = 1, ..., L (4.19)

where xi, zi, ti represent the N realizations of X,Z, T from the data. This choice

corresponds to the use of finite-population variances (as defined in Section 3.3.3 of

Chapter 3).

The variance partition itself can then be estimated dividing each WA,j,WB,l by

their overall sum to obtain a proportions’ vector ωtrad:

ωtrad =
1∑J

j=1WA,j +
∑L

l=1WB,l

[WA,1, ...,WA,J ,WB,1, ...,WB,L]

where 0 ≤ ωtrad,m ≤ 1, m = 1, ..., J + L and
∑J+L

m=1 ωtrad,m = 1. The posterior

means of the entries of the ωtrad sum up to 1, as each of its realizations: due to this

property, the posterior mean of ωtrad represents the optimal location summary for

the variance partition.

In accordance to the interprability conditions on the σ2 parameters of an SDM

from Section 4.3, we propose an alternative approach based on the concept of the

variance of interest, i.e. the variance of the effects conditional on the parameters of

interest, which have been defined for an SDM as θ = [u1, ...,uJ , σ
2
B,1, ..., σ

2
B,L]. From

Chapter 3, we know that the variances of interest is the finite-population variance
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for fixed effects and the super-population for random ones. Following this logic, we

could estimate the variance contributions for the SDM effects as:

s2A,j = V arX [D
T
j (X)uj|uj] j = 1, ..., J (4.20)

σ2
B,l = V arZ,T [G

T
l (Z, T )vl|σ2

B,l] l = 1, ..., L. (4.21)

Note that the symbol chosen for the quantities of Equation 4.21 is not ambiguous,

as these equalities are actually true if the random effects have been appropriately

scaled. In contrast to WA,j,WB,l, the estimators from Equation 4.20-4.21 actually

respect the inferential focus of the effects and respect the assumptions made about

the phenomenon, i.e. that it is actually modelled by the parameters θ, while the

σ2
A,j, j = 1, ..., J are simply introduced as “hyperparameters” for a more convenient

prior specification.

It is important to note that, in Section 4.3, we have made the assumption that

spatio-temporal effects are random ones for illustrative purposes. However, this is

not always the case and if some or all spatio-temporal effects are to be considered

fixed, then the finite-population variances s2B,l should be used for these effects as

well.

In addition to a change in the estimator, note how Equations 4.20-4.21 differ

from the traditional approach as they do not make use of sample variance but

rather assume that X,Z, T are random variables. In particular, the same proba-

bility distribution π(x, z, t) assumed a priori to obtain the interpretability of the

σ2 parameters should be used. This distinction brings additional advantages to

the proposed method. First, the explicit specification of π(x, z, t) raises the user’s

awareness about the actual meaning of the variance contribution definition and the

impact that the covariate distributional choice has on it. Secondly, π(x, z, t) can

be defined in such a way that is portable between similar case studies so that the

variance partitioning results for different datasets become directly and immediately

compared. Moreover, in a context of sequential learning, the posterior distributions

of the quantities from Equation 4.20-4.21 can be used for an informed prior spec-

ification of the σ2 parameters for future studies. Furthermore, we reiterate how a

suitable selection of π(x, z, t), in contrast to the naive use of the empirical distri-

bution, can significantly enhance the interpretability of posterior results for domain

experts (e.g., straightforward Uniform distributions).

In order to compute the variance partition, we finally define ω as:

ω =
1∑J

j=1 s
2
A,j +

∑L
l=1 σ

2
B,l

[
s2A,1, ..., s

2
A,J , σ

2
B,1, ..., σ

2
B,L

]
(4.22)
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where 0 ≤ ωm ≤ 1, m = 1, ..., J +L and
∑J+L

m=1 ωm = 1. Again, the posterior means

can be used as an estimate for the variance partition.

4.5.1 Case study: results

In what follows, the Nspecies models are fitted again on the whole dataset using

the Jeffreys prior (VP1), chosen because of its scale-invariant property and the

advantage of not having to regulate hyperparameters. A posterior sample on the

model parameters is obtained using the inla.posterior.sample() function of the

R-INLA package (Rue, Martino, and Chopin 2009).

We first compute the variance contributions of each of the covariates according

to Equations 4.20-4.21:

s2p = V arXp [fp(Xp)|βp,up] p = 1, ..., 6

σ2
S = V arZ,vS [fS(Z)|σ2

S]

σ2
T = V arT,vT [fT (T )|σ2

T ].

Note that s2p = s2Lp + s2Np p = 1, ..., 5 where:

s2Lp = V arXp [fLp(Xp)|βp] p = 1, ..., 5

s2Np = V arXp [fNp(Xp)|up] p = 1, ..., 5.

See the proof in Section A.5 of the Appendix.

We then compute the variance partition for all the species using the entries of ω

defined as:

ω =
1∑6

p=1 s
2
p + σ2

S + σ2
T

[
s21, ..., s

2
6, σ

2
S, σ

2
T

]
.

Figure 4.18 (a) reports the posterior mean of the entries of ω for all the 39 species.

Our analysis indicates that the primary factors influencing occurrence variability

are the spatial effect, the Depth effect, and the Bottom temperature one. This aligns

with our expectations, as the selected species are all demersal and depth is a known

driver of habitat suitability. The temporal effect has a relative small contribution,

expect for a few species.

The type of plot as Figure 4.18 is often used in ecology to assess the contribution

of different covariates. However, it does not provide any information about the

uncertainty on the estimates for the variance partition. In the next subsection, we

focus on the analysis of the results for a single species so that we can showcase more
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Figure 4.18: Variance partition estimates for the 39 different species: (a) Posterior
means of the entries of ω; (b) posterior means of the entries of ωtrad.

outputs and summaries about the quantification of the variance contributions of the

effects.

The proposed method of variance partitioning estimation is compared to the
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more traditional approach, comparing ω to ωtrad:

ωtrad =
1∑6

p=1Wp +WS +WT

[W1, ...,W6,WS,WT ]

where:

Wp = V arNi=1[fp(xip)] p = 1, ..., 6

WS = V arNi=1[fS(zi)]

WT = V arNi=1[fT (ti)].

Figure 4.18 (b) reports the posterior means of ωtrad. The comparison shows that

the discrepancy between the two methods is large in some species and modest but

noticeable in others. This result suggests that the transition to the proposed ap-

proach has appreciable practical implications, along with the stronger theoretical

foundations detailed above.

Analysis of the results of a single species distribution model

We now analyse the results for a single species, namely the Summer flounder, which

has been chosen among the species with the largest overall occurrence level (28.3%).

From Figure 4.18 (a), it can be noted that the most importnant factors can

be identified (in decreasing order) as the Depth effect, the spatial effect, and the

Bottom temperature effect, similar to what happens for the majority of the species.

To assess the uncertainty around this conclusion, Figure 4.19 reports the marginal

distributions of both s21, ..., s
2
6, σ

2
S, σ

2
T and of the entries of ω. While there is quite a

large uncertainty around the variance contribution of the top 3 factors mentioned

above, the small role played by the remaining effects appears quite surely. Table 4.1

reports the posterior summaries of the entries of ω.

The Depth effect contribution has a larger mean estimate but also the widest

credible interval; conversely, the Bottom temperature effect and the spatial effect

contributions have both a slightly smaller mean and a smaller standard deviation.

From these results, we may conclude that we are fairly certain about the most rele-

vant drivers of occurrence variability for the Summer flounder (i.e. Depth, Bottom

temperature, spatial effect) but there is quite a large uncertainty about the partition

among these three factors.

Despite the use of smooth non-linear trends for the environmental covariates,

the novel specification of P-Splines allows for the conservation of the immediate

typical interpretation of the linear regression coefficients. Table 4.2 reports posterior
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Figure 4.19: (a) Posterior marginal distribution of s21, ..., s
2
6, σ

2
S, σ

2
T ; (b) posterior

marginal distribution of ω1, ..., ω8 for the Summer flounder species.

summaries for β1, ..., β5, along with β6 Survey vessel dummy covariate.

The largest values in posterior mean belong to β5 and β2, which align with the

result from the variance partitioning analysis. Moreover, the signs of the linear

effects for Depth and Bottom temperature are consistent with the known habitat

preferences of this species, which favours warmer, shallower waters (Packer et al.
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Covariate ω Mean (%) SD (%) 95% C.I. (%)

Surface temperature ω1 1.55 1.45 [0.05, 5.15]
Bottom temperature ω2 26.17 16.71 [4.29, 74.3]
Surface salinity ω3 0.49 0.59 [0.01, 2.17]
Bottom salinity ω4 1.85 2.69 [0.08, 8.56]
Depth ω5 36.41 25.65 [3.60,89.94]
Survey vessel ω6 2.04 1.76 [0.06, 6.63]
Spatial effect ω7 30.86 17.43 [3.43,61.05]
Temporal effect ω8 0.63 0.70 [0.02, 2.67]

Table 4.1: Posterior summaries of the entries of ω expressed as percentage for the
Summer flounder. The 95% credible interval is computed using the 2.5 and the 97.5
percentiles.

Covariate β Mean SD 95% C.I.

Surface temperature β1 -0.59 0.47 [-2.07, 0.03]
Bottom temperature β2 2.69 1.53 [1.46, 7.77]
Surface salinity β3 -0.18 0.24 [-0.69, 0.24]
Bottom salinity β4 -0.34 0.42 [-1.29, 0.36]
Depth β5 -3.47 3.45 [-12.96, 0.50]
Survey vessel β6 0.57 0.29 [0.11, 1.32]

Table 4.2: Posterior summaries of the linear coefficients of the environmental co-
variates and the Survey vessel covariate for the Summer flounder. The 95% credible
interval is computed using the 2.5 and the 97.5 percentiles.

1999). However, only β2 and β6 are significant if we consider the 95% credible

intervals. Looking at the linear coefficients gives only a partial representation of

the results, as the model allows for non-linearity in the effects of the environmental

covariates. The large standard deviations reported for some of the covariates might

be caused by the correlation between the environmental factors (Figure 4.5). The

impact of a potential collinearity issue should be further studied in this case study,

for example comparing the results with the ones from a simpler model with only

the identified relevant covariates. Since the aim in this context is to illustrate the

applicability of the HD priors, we do not consider further analysis on the subject

here.

Posterior summaries of the overall trends fp(Xp) of the top 2 relevant covariates

(i.e. Depth and Bottom temperature) are represented in Figure 4.20. Some non-

linearity appears in the trend for the Bottom temperature effect, whose credible

interval is quite tight in most of the support. Contrarily, the posterior mean of

the trend for Depth appears quasi-linear, while the credible interval is much wider
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Figure 4.20: Posterior means (solid line) and 95% credible interval for the effects of
the environmental covariates fp(Xp) for the Summer flounder : (a) Bottom temper-
ature; (b) Depth.

and does not exclude fully linear effects. The difference in uncertainty level for the

covariates is coherent with the mentioned results from Figure 4.19.

We further investigate the decomposition in linear and non-linear contribution

to assess which conclusions can be made a posteriori about the necessity for smooth

non-linear trends on the covariates. Figure 4.21 (a) reports separately the posterior

summaries of the linear and non-linear components of the two effects. Additionally,

we consider the posterior distribution of the non-linear proportion of these effects

defined as:

wNp =
s2Np

s2Lp + s2Np

.

Figure 4.21 (a) shows relatively strong evidence for non-linearity in the trend of

the Bottom temperature covariate, while there is more uncertainty around the role

played by the non-linear component in the Depth trend, whose mode is however close

to 0. These results might suggest that a linear effect for Depth might be sufficiently

flexible in this example.

Finally, the irreguality in the width of the credible bands in Figures 4.20-4.21

is likely due to the fact that the binary observations for the response are not uni-

formly present over the support of the covariates or that the presence and absence

observations are not well separated in some areas: as a consequence, some of the

P-Spline coefficients seem to better estimated than others due to their location on
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Figure 4.21: (a) Posterior means and 95% credible intervals of fLp(Xp) and fNp(Xp)
for p = 2, 5 for the Summer flounder ; (b) posterior distribution of wN2 and wN5.

the covariate support.

4.6 Discussion

The goal of this chapter was to showcase the benefits of the extension of VP priors

proposed in Chapter 3. To do so, we have chosen the context of species distribution

models and we have detailed a default way to set up a sensible VP prior on SDMs

using the HD approach. First, we have presented a default tree design that groups

effects according to their nature and can be used as a starting point for users. Sec-

ondly, we have outlined guidelines for the prior specification on the new parameters
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based on a literature review of previous applications of VP priors. In the future,

we aim at extending this default approach to fields with models that have a similar

structure, such as disease mapping and environmental quality.

On the topic of prior specification, we can mention two minor contributions.

First, we have presented a simple strategy for a more intuitive regulation of the

hyperparameter of a symmetric Dirichlet. Secondly, we have extended the proof of

Franco-Villoria, Ventrucci, and Rue 2022 on PC0 prior for proportions, and proposed

a simple condition to check whether the prior simplifies.

The application to the NOAA-NEFSC dataset gave us the opportunity to study

the application of VP priors in the context of a complex model. First, we illustrated

how to apply the theory from Chapter 3 on each effect of the model, so as to obtain

the correct interpretation of the variance parameters. Secondly, we showcased the

versatility of the default tree design explaining how users can prune and expand

it, according to the case study at hand, following sensible modelling principles.

Finally, in the prior specification step, we have proposed the use of PC0 priors for

the proportion of variance explained by the non-linear component of P-Spline effects.

This prior proposal could be further investigated in the future to assess whether it

can become a viable method to promote model simplicity whilst simultaneously still

allowing for flexibility.

It is important to mention that in the analysis of the 39 available species, we

chose to use a stacked models’ approach, which treats species as mutually indepen-

dent. This assumption is quite strict and it does not respect contemporary com-

munity ecology theory that recognizes the large role played by biotic interactions

on occurrence levels. For this reason, the modelling standard of community ecology

consists today in the use of joint species distribution models (JSDM) (Ovaskainen

et al. 2017), which acknowledge potential correlations between species’ occurrences.

Future research could focus on exploring whether VP priors can be useful in the con-

text of JSDMs, which do not fall in the category of LGMs as the precision matrices

are not fixed but need to be estimated. A possible implementation could consist of

a multi-step estimation procedure in which the correlation matrices and the other

model parameters are separately estimated, similar to the method proposed by Hui

et al. 2023 in a frequentist setting.

Finally, a new method to estimate variance partitioning a posteriori has been

presented, along with its multiple advantages. The application to the case study

suggested that the difference between the novel approach and the traditional one is

non-negligible. We intend to further investigate this method and its properties in

future applications.
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Chapter 5

Conclusions

This thesis aimed at extending the applicability of VP priors to both the fixed and

random branches of latent Gaussian models (Chapter 3), and at illustrating the

advantages of this extension in a field requiring complex models with many different

types of effects (Chapter 4).

The standardization procedure from Chapter 3 represents the main contribution

of the thesis. It guarantees an interpretation for the VP parameters that is intuitive

for the user and it is able to account for the different nature of fixed effects, as it

was hoped for in the seminal work of Fuglstad et al. 2020. The simulation study

confirmed the benefit of applying the standardization procedure, in particular of the

scaling step, when VP priors are adopted. Negligible difference was noted in the

simulated scenarios between our proposed scaling procedure and the one of Sørbye

and Rue 2014. Finally, the VP priors are found once more to be competitive with the

popular Penalized Complexity priors (PC, Simpson et al. 2017), although the latter

showed to be more robust to the misapplication of the standardization procedure.

In studying the concept of variance contribution of effects, we have thoroughly

discussed the class of IGMRF effects: we presented a novel representation of such

effects made up two separate components, namely a polynomial term and a residual

one. Moreover, we have proposed the idea of modifying the precision matrices of

IGMRF effects (Q modification), when necessary to remove identifiability issues and

guarantee a neat separation between the polynomial and residual contributions. The

modification is necessary in all cases where a basis of spline functions is required,

such as smooth (non linear) effects of covariates using penalized splines.

Chapter 4 focused on highlighting the practical benefits of the theory from Chap-

ter 3, through the specification of VP priors for species distribution models. In doing

so, we have developed a default strategy for the specification of VP priors for SDMs

using the HD approach, consisting of guidelines for the design of the decomposition
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tree and the prior specification step. The chosen case study also illustrates how the

special case of a spatial continuous effect modelled using P-Splines can be correctly

treated to accomodate the requirements of VP priors.

An additional contribution of this chapter is the derivation of a sufficient con-

dition under which the PC0 prior for proportions takes a simplified form, which

extends the work of Franco-Villoria, Ventrucci, and Rue 2022. Finally, we have also

proposed a new, more intuitive, method to perform variance partitioning estimation,

which takes into account the inferential interest of the user, as well as the distribu-

tional assumption made on the covariates. The application to the case study showed

that the new method can lead to substantially different conclusions in comparison

to the traditional approach.

In terms of future work, we aim to apply VP priors to more ecology case stud-

ies and investigate whether their benefits can be extended to the context of Joint

Species Distribution models, more commonly employed nowadays in community

ecology. Additionally, the workflow discussed in Chapter 4 could also be applied to

applications from other fields, such as disease mapping and environmental quality

assessment.

With regard to more theoretical aspects, various research lines have emerged

from the thesis. In particular, we argue that the P-Spline alternative representation

and the use of a PC prior for the penalization of its non-linear component is in itself

an interesting prior choice that might have the potential to be useful in different

contexts. The quality of this proposal could be possibly assessed in the future via

extensive simulation. In general, we believe that the Q modification is a relevant

contribution of our work. In the future, it would be interesting to study the impli-

cation of Q modification in other types of models, such as space-time smoothing via

penalized splines.

Other interesting points that may deserve further consideration include the im-

pact of misspecification of the distributional assumption on the covariates, which

might greatly affect conclusions about variance contributions, and more generally

the proposed variance partitioning estimation method.
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Appendix

A Proofs of Chapter 3

A.1 Equations 3.13-3.14 from Section 3.3.3

Consider Equation 3.12. For the fixed effects, i.e. j = 1, ..., L, we have that uj ∈ θ.
Hence, the expected variance of interest simplifies as follows:

Eθ{V arXj ,uj
[fj(Xj)|θ]|σ} = Euj

{V arXj
[fj(Xj)|uj]|σ2

j}

which is equal to the expected finite-population variance and equivalent to Equation

3.13.

On the other hand, σ2
j ∈ θ for random effects j = L + 1, ..., J . Hence, the

expected variance of interest is in this case equal to:

Eθ{V arXj ,uj
[fj(Xj)|θ]|σ} = Eσ2

j
{V arXj ,uj

[fj(Xj)|σ2
j ]|σ2

j}

= V arXj ,uj
[fj(Xj)|σ2

j ]

The expectation Eσ2
j
[·|σ2

j ] disappears as the expectation with respect to a random

variable conditional on the same random variable is just equal to its argument.

Therefore, we find that the expected variance of interest for random effects is simply

equal to the super-population variance (Equation 3.14).

A.2 Equation 3.17 from Section 3.3.5

Consider again the intuitive interpretation for the variance of a fixed effect and drop

the index j for convenience. This quantity can be expressed as a difference between

two terms if the variance is written in terms of difference of expectations:

Eu{V arX [f(X)|u]|σ2} = Eu{EX [f
2(X)|u]− E2

X [f(X)|u]|σ2}

= Eu{EX [f
2(X)|u]|σ2} − Eu{E2

X [f(X)|u]|σ2}
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At this stage, the order of integration in the first term can be changed as long as

Eu{EX [f
2(X)|u]|σ2} is finite (Fubini-Tonelli theorem). Inverting the expectations,

the first term becomes equal to the marginal variance given σ2. The second term

can also be rewritten as a variance, noting that Eu{EX [f(X)|u]|σ2} = 0:

Eu[V arX [f(X)|u]|σ2] = EX{Eu[f 2(X)|X]|σ2} − Eu{E2
X [f(X)|u]|σ2}

= V arX,u[f(X)|σ2]− V aru{EX [f(X)|u]|σ2}

A.3 Equation 3.18 from Section 3.3.5

The second term of Equation 3.17 can be simplified as a function of a vector con-

taining the expectations of the basis functions a = [EX [D1(X)], ..., EX [DK(X)]]T

with respect to X:

Eu{E2
X [f(X)|u]|σ2} = Eu{E2

X [D(X)Tu|u]|σ2}

= Eu


[

K∑
k=1

EX [Dk(X)] · uk

]2
|σ2


= Eu[(a

Tu)2|σ2]

The argument of the final expectation is now simply a quadratic form, which can

be neatly expressed in terms of a and Q:

Eu{E2
X [f(X)|u]|σ2} = Eu[u

TaaTu|σ2]

= σ2tr[aaTQ∗]

As a consequence, Equation 3.18 simplifies if effects have been scaled according to

Proposition 1:

Eu{V arX [f(X)|u]|σ2} = σ2 − σ2tr[aaTQ∗]
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A.4 Equation 3.21 from Section 3.3.6

Equation 3.21 can be proven verifying that:∫
X

x0 ·DT (x)u · π(x) dx = 0∫
X

x1 ·DT (x)u · π(x) dx = 0

...∫
X

xd−1 · ·DT (x)u · π(x) dx = 0

In the case of X ∼ Unif([1, K]) and Dk(X) = I(X = k), these constraints

simplify to:

K∑
k=1

k0 · uk = 0

K∑
k=1

k · uk = 0

...

K∑
k=1

kd−1 · uk = 0

Imposing S(d−1)u = 0 guarantees each of these constraints (see Equation 3.9)

and thus ensures that fr(X) has a null polynomial trend of degree d− 1.

S̃
T
u =

∫
X

ST
(d−1)(x)D

T (x)u · π(x) dx

=
K∑
k=1

ST
(d−1)(k)

[
K∑
j=1

I(k = j) · uj

]
1

K

=
K∑
k=1

ST
(d−1)(k) · uk ·

1

K

=
1

K
ST

(d−1)u

Hence, S̃ ∝ S(d−1).
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A.5 Equation 3.31 from Section 3.3.6

Consider f(X) = ft(X)+fr(X) as defined in Equation 3.30. First, we note that the

variance of f(X) with respect to both X and the coefficients β1, .., βd−1,u is equal

to:

V arX,β1,...,βd−1,u[f(X)] = V arX,β1,...,βd−1,u

[
d−1∑
m=1

ftm(X) + fr(X)

]

= EX

{
V arβ1,...,βd−1,u

[
d−1∑
m=1

ftm(X) + fr(X)

]}

=
d−1∑
m=1

EX{V arβm [ftm(X)]}

+ EX{V aru[fr(X)]}

+
d−2∑
l=1

d−1∑
m>l

EX{Covβl,βm [ftl(X), ftm(X)]}

+
d−1∑
m=1

EX{Covβm,u[ftm(X), fr(X)]}

If all the effects in f(X) have been appropriately scaled as suggested in Proposition

1, then the variance simplifies to:

V arX,β1,...,βd−1,u[f(X)] =
d−1∑
m=l

σ2
m + σ2

r

+
d−2∑
l=1

d−1∑
m>l

EX{Covβl,βm [ftl(X), ftm(X)]}

+
d−1∑
m=1

EX{Covβm,u[ftm(X), fr(X)]}

To show that all the covariance terms are null, we can use the properties of the distri-

butions chosen on the parameters, specifically null mean and mutual independence
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assumption between β1, ..., βd−1,u. For l = 1, ..., d− 2 and m > l, m = 2, ..., d− 1:

EX{Covβl,βm [ftl(X), ftm(X)]} = EX{Eβl,βm [ftl(X) · ftm(X)]}

− EX{Eβl
[ftl(X)] · Eβm [ftm(X)]}

= EX{Eβl,βm [hl(X)βl · hm(X)βm]}

− EX{Eβl
[hl(X)βl] · Eβm [hm(X)βm]}}

= 0

Additionally, for m = 1, ..., d− 1:

EX{Covβm,u[ftm(X), fr(X)]} = EX{Eβm,u[ftl(X) · fr(X)]}

− EX{Eβm [ftm(X)] · Eu[fr(X)]}

= EX{Eβm,u[hm(X)βm ·DT (X)u]}

− EX{Eβm [hm(X)βm] · Eu[DT (X)u]}

= 0

Hence, we can finally write the variance of f(X) as:

V arX,β1,...,βd−1,u[f(X)] =
d−1∑
m=l

σ2
m + σ2

r

which completes the proof.

However, we have an alternative method to prove that all the covariance terms

are null even in the absence of the mutual independence assumption, thanks to the

design constraints imposed on ftm(X) and fr(X). This method is particularly useful

a posteriori when the prior assumptions on the parameters do not hold anymore.

First, we change the order of expectation so that for l = 1, ..., d − 2, m > l m =

2, ..., d− 1:

EX{Covβl,βm [ftl(X), ftm(X)]} = EX{Eβl,βm [hl(X)βl · hm(X)βm]}

− EX{Eβl
[hl(X)βl] · Eβm [hm(X)βm]}}

= Eβl,βm{EX [hl(X)βl · hm(X)βm]}

− Eβl,βm{EX [hl(X)βl] · EX [hm(X)βm]}}

Then, we note from Equation 3.24 that EX [hm(X)βm] = 0, m = 1, ..., d− 1 so that
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we can simplify to:

EX{Covβl,βm [ftl(X), ftm(X)]} = Eβl,βm{EX [hl(X)βl · hm(X)βm]}

= Eβl,βm{βlβm · EX [hl(X) · hm(X)]}

From the definition of hm(X) functions from Equation 3.23, we can then note that

each hl(X) is a polynomial function of degree l. Knowing that by design hm(X)

must respect the constraints of Equation 3.24, we can find that

EX{Covβl,βm [ftl(X), ftm(X)]} = Eβl,βm

{
βlβm · EX

[
j∑

j=1

aj · xj · hm(X)

]}

= Eβl,βm

{
βlβm ·

j∑
j=1

ajEX

[
xj · hm(X)

]}
= 0

and this is true for all l = 1, ..., d−2, m > l, m = 2, ..., d−1. A similar logic can be

used for the other covariance terms EX{Covβm,u[ftm(X), fr(X)]}, m = 1, ..., d − 1,

using the constraints S̃
T
u = 0.

A.6 Remark 1

Remark 1 can be proven showing that Eθ{V arX,u1,...,uJ
[η|µ,θ]|σ} =

∑J
j=1 σ

2
j .

First, we can note that:

Eθ{V arX,u1,...,uJ
[η|µ,θ]|σ} = Eθ{V arX,u1,...,uJ

[
J∑

j=1

fj(Xj)|θ]|σ}

Secondly, we rewrite Eθ{V arX,u1,...,uJ
[
∑J

j=1 fj(Xj)|θ]|σ} as:

Eu1,...,uL

{
V arX,uL+1,...,uJ

[
J∑

j=1

fj(Xj)|u1, ...,uL, σ
2
L+1, ..., σ

2
J

]
|σ2

1, ..., σ
2
L

}

This expression can be rewritten more concisely using the notationUF = [u1, ...,uL],

UR = [uL+1, ...,uJ ],σF = [σ2
1, ..., σ

2
L], σR = [σ2

L+1, ..., σ
2
J ] as:

EUF

{
V arX,UR

[
J∑

j=1

fj(Xj)|UF ,σR

]
|σF

}

Then, we can write the argument of the expectation using the law of total variance
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as:

V arX,UR

[
J∑

j=1

fj(Xj)|UF ,σR

]
= EX

{
V arUR

[
J∑

j=1

fj(Xj)|X,UF ,σR

]
|UF ,σR

}

+ V arX

{
EUR

[
J∑

j=1

fj(Xj)|X,UF ,σR

]
|UF ,σR

}

= EX

{
V arUR

[
J∑

j=L+1

fj(Xj)|X,σR

]
|σR

}

+ V arX

[
L∑

j=1

fj(Xj)|UF

]

=
J∑

j=L+1

EX {V arUR
[fj(Xj)|X,σR] |σR}

+ V arX

[
L∑

j=1

fj(Xj)|UF

]

=
J∑

j=L+1

EX
{
EUR

[
f 2
j (Xj)|X,σR

]}
+ V arX

[
L∑

j=1

fj(Xj)|UF

]

If a 0-mean constraint is imposed on the j = 1, ..., L effects, then:

V arX

[
L∑

j=1

fj(Xj)|UF

]
= EX


[

L∑
j=1

fj(Xj)

]2
|UF


so that:

V arX,UR

[
J∑

j=1

fj(Xj)|UF ,σR

]
=

J∑
j=L+1

EX
{
EUR

[
f 2
j (Xj)|X,σR

]}
+ EX


[

L∑
j=1

fj(Xj)

]2
|UF


If we consider again EUF

{
V arX,UR

[∑J
j=1 fj(Xj)|UF ,σR

]
|σF

}
, it can be written
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as:

EUF

{
V arX,UR

[
J∑

j=1

fj(Xj)|UF ,σR

]
|σF

}
=

J∑
j=L+1

EX
{
EUR

[
f 2
j (Xj)|X,σR

]}
+ EUF

EX


[

L∑
j=1

fj(Xj)

]2
|UF

 |σF

 .

Inverting the order of expectation, we get:

EUF

{
V arX,UR

[
J∑

j=1

fj(Xj)|UF ,σR

]
|σF

}
=

J∑
j=L+1

EX
{
EUR

[
f 2
j (Xj)|X,σR

]}
+ EX

EUF


[

L∑
j=1

fj(Xj)

]2
|σF




=
J∑

j=L+1

EX
{
EUR

[
f 2
j (Xj)|X,σR

]}
+

L∑
j=1

EX

{
EUF

[
L∑

j=1

f 2
j (Xj)

]
|σF

}

=
J∑

j=1

EX
{
EUF ,UR

[
f 2
j (Xj)|σF ,σR

]}
=

J∑
j=1

σ2
j · EXj

[
DT

j (Xj)Q
∗
jDj(Xj)

]
If scaling has been applied as in Proposition 1, then we know that:

J∑
j=1

σ2
jEXj

[
DT

j (Xj)Q
∗
jDj(Xj)

]
=

J∑
j=1

σ2
j

which completes the proof.
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A.7 Equation 3.35 from Example 1

Equation 2.29 of Rue and Held 2005 can be used to find the covariance matrix for

an originally i.i.d. effect under constraint aTu = 0:

Q∗ = I − Ia(aTIa)−1aTI

= I − a(aTa)−1aT

= I − aaT

aTa

a must be equal to [p1, ..., pK ]
T to obtain that EX [f(X)]:

aTu = 0 = EX [f(X)]

=
K∑
k=1

pkf(k)

=
K∑
k=1

pk

[
K∑
j=1

I(k = j) · uj

]

=
K∑
k=1

pk · uk

=
[
p1 p2 ... pK

]
u

Finally, C can be found applying Proposition 1, knowing Q∗ and a:

C =
K∑
k=1

pkD(k)

[
I − aaT

aTa

]
DT (k)

= 1−
K∑
k=1

pkD
T (k)

[
aaT

aTa

]
D(k)

= 1− 1

aTa

K∑
k=1

pkD
T (k)aaTD(k)

= 1− 1∑K
k=1 p

2
k

K∑
k=1

pk

[
K∑
j=1

I(j = k)pj

]2

= 1− 1∑K
k=1 p

2
k

K∑
k=1

p3k

= 1−
∑K

k=1 p
3
k∑K

k=1 p
2
k
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A.8 Proposition 3

Let X1 ⊥⊥ X2 so that EX1,X2 [g(X1)·h(X2)] = EX1 [g(X1)]·EX2 [h(X2)] for measurable

g(X1) and h(X2). Then, we can use the properties of the Kronecker product to show

that:

V arX1,X2,u1,u2 [f(X1, X2)|σ2] = σ2EX1,X2 [D
T (X1, X2)Q

∗D(X1, X2)]

= σ2EX1,X2 [D
T
1 (X1)Q

∗
1D1(X1) ·DT

2 (X2)Q
∗
2D2(X2)]

= σ2EX1,X2 [D
T
1 (X1)Q

∗
1D1(X1) ·DT

2 (X2)Q
∗
2D2(X2)]

= σ2 · V arX1,u1 [f̃1(X1)|σ2
1 = 1] · V arX2,u2 [f̃2(X2)|σ2

2 = 1].

Since f̃1(X1) and f̃2(X2) have been scaled, their marginal variances are both

equal to 1 and the variance of the interaction effect simplifies, proving that the

effect is already appropriately scaled by design:

V arX1,X2,u1,u2 [f(X1, X2)|σ2] = σ2

A.9 Derivarion of S̃ in Example 5

The columns of matrix S̃ = [s̃0 s̃1] are defined as:

s̃0 =

∫ M

m

B(x) · π(x) dx

s̃1 =

∫ M

m

x ·B(x) · π(x) dx

In order to explicitly derive S̃ is necessary to first derive explicit expressions for

B(x). In order to derive analytically the B-Spline basis, it is first necessary to make

explicit the degree d and the number of basis functions K so that a B-Spline can

be denoted by B
(d)
K (X). Hence, the cubic B-Spline is actually B(X) = B

(3)
K (X).

Eilers and Marx 1996 defines analytically B-Splines using the recursion formula from
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Equation 45:

B
(0)
k (X) = I

[
k − 1

K −D
<

X −m

M −m
<

k

K −D

]

B
(d)
k (X) =



1
d

[
d+ X−m

M−m
(K −D)− k + 1

]
B

(d−1)
k−1 (X)+

1
d

[
k − X−m

M−m
(K −D)

]
B

(d−1)
k (X) 1 ≤ k ≤ K −D + d

0 otherwise

(0.1)

From the recursive formula of Equation 0.1 and following, it can be found that the

elements of B(x) = [B1(x), ..., BK(x)] are:

Bk(x) =

[
I(k − 1 < x̂(K − 3) < k) · g1 (x̂(K − 3)− (k − 1))+

I(k − 2 < x̂(K − 3) < k − 1) · g2 (x̂(K − 3)− (k − 2))+

I(k − 3 < x̂(K − 3) < k − 2) · g3 (x̂(K − 3)− (k − 3))+

I(k − 4 < x̂(K − 3) < k − 3) · g4 (x̂(K − 3)− (k − 4))

]
I(0 < x̂ < 1)

where x̂ =
x−m

M −m
∈ [0, 1] and:

g1(y) =
1

2

[
−y3

3
+ y2 − y +

1

3

]
g2(y) =

y3

2
− y2 +

2

3

g3(y) =
1

2

[
−y3 + y2 + y +

1

3

]
g4(y) =

y3

6

Noting that B(x) is in fact only a function of the normalized version x̂:

s̃0 = (M −m)

∫ 1

0

B(x̂) · π((M −m)x̂+m) dx̂

s̃1 = (M −m) ·m · s̃0 + (M −m)2
∫ 1

0

x̂ ·B(x̂) · π((M −m)x̂+m) dx̂
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If X ∼ Unif(m,M) so that π(x) =
I(m < x < M)

M −m
:

s̃0 =

∫ 1

0

B(x̂) dx̂

=
1

K − 3

[
1

24
,
1

2
,
23

24
, 1, ...., 1,

23

24
,
1

2
,
1

24

]T
, K ≥ 7

s̃1 = m · s̃0 + (M −m)

[∫ 1

0

x̂B(x̂) dx̂

]
= m · s̃0 + (M −m) · v

where v = [v1, ..., vK ]
T for K ≥ 7:

v1 =
1

(K − 3)2
· 1

120

v2 =
1

(K − 3)2
· 7

30

v3 =
1

(K − 3)2
· 121
120

vk =
k − 2

(K − 3)2
k = 4, ..., K − 3

vK−2 =
1

K − 3
· 23
24

− 1

(K − 3)2
· 121
120

vK−1 =
1

K − 3
· 1
2
− 1

(K − 3)2
· 7

30

vK =
1

K − 3
· 1

24
− 1

(K − 3)2
· 1

120

For K = 6:

s̃0 =

[
1

72
,
1

6
,
23

72
,
23

72
,
1

6
,
1

72

]T
v =

[
1

1080
,

7

270
,
121

1080
,
28

135
,
19

135
,

7

540

]T
(0.2)

For K = 5:

s̃0 =

[
1

48
,
1

4
,
11

24
,
1

4
,
1

48

]T
v =

[
1

480
,

7

120
,
11

48
,
23

120
,

3

160

]T
(0.3)

For K = 4:

s̃0 =

[
1

24
,
11

24
,
11

24
,
1

24

]T
v =

[
1

120
,
11

60
,
11

40
,
1

30

]T
(0.4)
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A.10 Equation 3.45 from Example 5

Let R̃ = G̃−W̃ as in Equation 3.45 and Q̃ = (ΛR̃
∗
Λ)∗. Then Q̃S̃ = 0 if R̃ΛS̃ = 0,

i.e. G̃ΛS̃ − W̃ΛS̃ = 0 where:

G̃ΛS̃ − W̃ΛS̃ =


G̃1,1 · λ1 · S̃1,0 G̃1,1 · λ1 · S̃1,1

G̃2,2 · λ2 · S̃2,0 G̃2,2 · λ2 · S̃2,1

... ...

G̃K,K · λK · S̃K,0 G̃K,K · λK · S̃K,1



−


∑K

l=1 W̃1,l · λl · S̃l,0

∑K
l=1 W̃1,l · λl · S̃l,1∑K

l=1 W̃2,l · λl · S̃l,0

∑K
l=1 W̃2,l · λl · S̃l,1

... ...∑K
l=1 W̃K,l · λl · S̃l,0

∑K
l=1 W̃K,l · λl · S̃l,1


Then Q̃S̃ = 0 if ∀k = 1, ..., K:[
G̃k,k · λk · S̃k,0 G̃k,k · λk · S̃k,1

]
=
[∑K

l=1 W̃k,l · λl · S̃l,0

∑K
l=1 W̃k,l · λl · S̃l,1

]
Replacing the entries of G̃ with their definition from Equation 3.47:[∑K

l=1 W̃k,lλlS̃l,0
S̃k,1

S̃k,0

∑K
l=1 W̃k,lλlS̃l,0

]
=
[∑K

l=1 W̃k,lλlS̃l,0

∑K
l=1 W̃k,lλlS̃l,1

]
Hence, since the first elements of both vectors are equal, it is only necessary to

verify that ∀k = 1, ..., K:

S̃k,1

S̃k,0

K∑
l=1

W̃k,lλlS̃l,0 −
K∑
l=1

W̃k,lλlS̃l,1 = 0

⇓
K∑
l=1

W̃k,l · λl · (S̃l,0 · S̃k,1 − S̃l,1 · S̃k,0) = 0

Replacing the entries of W̃ with their definition from Equation 3.47, these K

conditions are transformed into:

λ−1
k

K∑
l=1

(k − l) ·Wk,l = 0 k = 1, ..., K

which is true for all k if W is defined as in Equation 3.44.

A. Proofs of Chapter 3 162



A.11 Derivarion of S̃ in Example 6

Let X1, X2
iid∼ Unif([m1,M1]× [m2,M2]).

S̃ =

∫ M1

m1

∫ M2

m2

BK1×K2(x1, x2)π(x1, x2) dx1 dx2

=
1

(M1 −m1)(M2 −m2)

∫ M1

m1

∫ M2

m2

BK1(x1)⊗BK2(x2) dx1 dx2

=
1

(M1 −m1)(M2 −m2)

[∫ M1

m1

BK1(x1) dx1

]
⊗
[∫ M2

m2

BK2(x2) dx2

]
=

[
1

M1 −m1

∫ M1

m1

BK1(x1) dx1

]
⊗
[

1

M2 −m2

∫ M2

m2

BK2(x2) dx2

]
Using the results from the previous section:

S̃ =
1

K1 − 3

[
1

24
,
1

2
,
23

24
, 1, ...., 1,

23

24
,
1

2
,
1

24

]T
⊗ 1

K2 − 3

[
1

24
,
1

2
,
23

24
, 1, ...., 1,

23

24
,
1

2
,
1

24

]T
K1 ≥ 7, K2 ≥ 7

In the case of 3 < K1 < 7 or 3 < K2 < 7, the correct entries are found considering

the Kronecker product for s̃0 for K1 and s̃0 for K2 as derived in the Section A.9 in

Equations 0.2 and following.

A.12 Equation 3.54 from Example 6

Let R̃ = G̃−W̃ as in Equation 3.54 and Q̃ = (ΛR̃
∗
Λ)∗. Then Q̃S̃ = 0 if R̃ΛS̃ = 0,

i.e. G̃ΛS̃ − W̃ΛS̃ = 0 where:

G̃ΛS̃ − W̃ΛS̃ =

 G̃1,1 · λ1 · S̃1

...

G̃K1×K2,K1×K2 · λK1×K2 · S̃K1×K2

−


∑K1×K2

l=1 W̃1,l · λl · S̃l

...∑K1×K2

l=1 W̃K1×K2,l · λl · S̃l


Replacing G̃ and W̃ with their definitions from Equations 3.55-3.56 and remem-
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bering Equation 3.53, it is found that:

G̃ΛS̃ − W̃ΛS̃ =


G1,1

λ1 · S̃1

...
GK1×K2,K1×K2

λK1×K2 · S̃K1×K2

−



∑K1×K2

l=1 W1,l

λ1 · S̃1

...∑K1×K2

l=1 WK1×K2,l

λK1×K2 · S̃K1×K2



=


G1,1

λ1 · S̃1

...
GK1×K2,K1×K2

λK1×K2 · S̃K1×K2

−


G1,1

λ1 · S̃1

...
GK1×K2,K1×K2

λK1×K2 · S̃K1×K2

 = 0

A.13 Implied prior on E[s2] from Section 3.5.1

Recalling that E[s2] = σ2[1− tr(aaTQ∗)] from Section 3.3.5, we find that:

π(E[s2]) = πσ2

(
E[s2]

1− tr[aaTQ∗]

)
· 1

1− tr[aaTQ∗]

This result translates to the following implied priors on E[s21] for specific choices of

π(σ2
1):

� IG priors: σ2
1 ∼ IG(α, β) → E[s21] ∼ IG(α, β[1− tr(aaTQ∗)])

� PC priors: σ2
1 ∼ PC0(U, α) → E[s21] ∼ PC

(
U ·
√

1− tr(aaTQ∗), α
)

For the VP prior case, we first need to compute the prior implied on σ2
1:

π(σ2
1) ∝

∫ ∞

0

πV (σ
2
1, σ

2
ϵ )πω(σ

2
1, σ

2
ϵ )

1

σ2
1 + σ2

ϵ

dσ2
ϵ

∝
∫ ∞

0

1

(σ2
1 + σ2

ϵ )
2
dσ2

ϵ

∝ 1

σ2
1

Hence, we find that:

π(E[s21]) ∝
1

E[s21]
· 1− tr[aaTQ∗]

1− tr[aaTQ∗]

∝ 1

E[s21]
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A.14 Implied prior on φ from Section 3.5.2

Recall the definitions of V, ω, T, φ from Section 3.5.2. For a given prior specification

on σ2
1, σ

2
ϵ , the implied prior on V and ω is:

π(V, ω) = πσ2
1
(V · ω) · πσ2

ϵ
(V − V · ω) ·

∣∣∣∣ det
[

dV ω
dω

dV ω
dV

dV (1−ω)
dω

dV (1−ω)
dV

] ∣∣∣∣∣
= πσ2

1
(V · ω) · πσ2

ϵ
(V − V · ω) · V

The marginal of φ implied by a prior specification on V, ω can be found in two

steps. First, the marginal of ω is found marginalizing out V :

π(ω) =

∫ ∞

0

π(V, ω) dV

Secondly, the marginal of φ is found through a change of variable formula using the

transformation ω =
φ

φ+ C − φC
:

π(φ) = πω

(
φ

φ+ C − φC

)
· C

[φ+ C − φC]2

For the 3 prior specifications from Section 3.5.1, we can derive the implied prior on

φ.

� IG priors: σ2
1, σ

2
ϵ

iid∼ IG(1, β) First, we derive the implied prior on V, ω.

π(V, ω) = β2V −4ω−2(1− ω)−2 exp

[
− β

V
·
(
1

ω
+

1

1− ω

)]
· V

= β2V −3ω−2(1− ω)−2 exp

[
− β

V
·
(
1

ω
+

1

1− ω

)]
Secondly, we marginalize out V .

π(ω) = β2ω−2(1− ω)−2

∫ ∞

0

exp

[
− β

V
·
(
1

ω
+

1

1− ω

)]
V −3 dV

=

[
β

ω(1− ω)

]2 [
β

ω(1− ω)

]−2

= 1

Finally, we find the implied prior on φ.

π(φ) =
C

[φ+ C − φC]2
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� PC priors: σ2
1, σ

2
ϵ

iid∼ PC0(δ)

π(V, ω) = δ2 exp(−δ
√
V ω) exp(−δ

√
V − V ω)

1

4V
√

ω(1− ω)
· V

=
δ2

4
√

ω(1− ω)
exp[−δ

√
V (

√
ω +

√
1− ω)]

Secondly, we marginalize out V .

π(ω) =
δ2

4
√

ω(1− ω)

∫ ∞

0

exp[−δ
√
V (

√
ω +

√
1− ω)] dV

=
δ2

4
√

ω(1− ω)

2

δ2(
√
ω +

√
1− ω)2

=
[
2
√

ω(1− ω)(
√
ω +

√
1− ω)2

]−1

Finally, we find the implied prior on φ.

π(φ) =

[
2 ·
√

Cφ(1− φ) ·
(√

φ

C
+
√

1− φ

)2
]−1

� VP priors: ω ∼Beta(α, β) (generalization of the Uniform case)

In this case, the prior is simply found through the change of variable formula.

π(φ) =
Γ(α + β)

Γ(α)Γ(β)
· C · (φ)α−1 · (C − φC)β−1

[φ+ C − φC]α+β

B Code for Chapter 3

Here, the code to obtain the precision matrices Q̃ for Example 5 and 6 is written

using the R language. Each of the 3 main functions takes as argument the number

of basis functions, either as K, or as K1 and K2 for the 2D case. For convenience,

the optimization of the λ vector is constrained such that λ has symmetric entries

for the univariates cases, and it is equal to the Kronecker product of vectors λ1 and

λ2, both having symmetric entries, for the 2D case.

The unconstrained optimization returns the same results but it is slower, espe-

cially for the 2D case.

###################### MODIFIED IGMRFs for P-SPLINE USE ######################

rm(list=ls())

# LIBRARIES --------------------------------------------------------------------

library(spam)
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# Function to get the generalized inverse of matrix M with given rank -deficiency

gen_inverse_func <- function(M,rank_def=1) {

# Eigendecomposition in U eigenvectors and V eigenvalues

M_eigen <- eigen(M,symmetric = T)

U <- M_eigen$vectors

V <- M_eigen$values

# Generalized inverse

gen_inverse <- U%*%diag(c(1/(V[1:( nrow(M)-rank_def)]),rep(0,rank_def)))%*%t(U)

return(gen_inverse)

}

# Modified version of IGMRF of order 1 -----------------------------------------

mod_IGMRF_1_prec_mat <- function(K) {

# Original Q, G, W matrices and generalized inverse of Q

Q <- as.matrix(precmat.RW1(n = K))

G <- diag(diag(Q))

W <- G-Q

Sigma <- gen_inverse_func(Q,rank_def = 1)

# Computation of the S tilde matrix for different values of K

if (K==4) {

S_tilde <- c(1/24,11/24,11/24,1/24)/(K-3)

} else if (K==5) {

S_tilde <- c(1/24,1/2,22/24,1/2,1/24)/(K-3)

} else if (K>5) {

S_tilde <- c(1/24,1/2,23/24,rep(1,K-6),23/24,1/2,1/24)/(K-3)

}

# Function computing the KLD for a given choice of lambdas

optim_function <- function(lambdas) {

lambdas <- abs(lambdas)

# Creation of the diagonal matrix Lambda

if (K%% 2==0) {

Lambda <- diag(c(lambdas ,rev(lambdas )))

} else {

Lambda <- diag(c(lambdas ,rev(lambdas )[ -1]))

}

# Null space for the R matrix

new_S <- Lambda %*% S_tilde

# New W, G, R matrix and generalized inverse of new Q

W_tilde <- W/(new_S%*%t(new_S))

G_tilde <- diag(as.vector(W_tilde%*%new_S/new_S))

R_tilde <- G_tilde -W_tilde

Sigma_tilde <- Lambda %*% gen_inverse_func(R_tilde ,rank_def = 1) %*% Lambda

# Computation of the KLD (only the non -constant part wrt to lambda)

kld <- sum(colSums(Q*Sigma_tilde))-

sum(log(eigen(Sigma_tilde)$values [1:(K -1)]))

return(kld)

}

# Optimization of the KLD function with symmetric entries for lambda

results <- nlm(optim_function ,rep(1,ceiling(K/2)),print.level = 2)

# Save the lambda values that minimize the KLD

lambdas <- abs(results$estimate)

# Lambda matrix

if (K%% 2==0) {

Lambda <- diag(c(lambdas ,rev(lambdas )))

} else {

Lambda <- diag(c(lambdas ,rev(lambdas )[ -1]))
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}

# Null space of R matrix

new_S <- Lambda %*% S_tilde

# New W,G,R,Q matrices

W_tilde <- W/(new_S%*%t(new_S))

G_tilde <- diag(as.vector(W_tilde%*%new_S/new_S))

R_tilde <- G_tilde -W_tilde

Q_tilde <- gen_inverse_func(

Lambda %*% gen_inverse_func(R_tilde ,rank_def =1) %*% Lambda ,rank_def = 1)

return(list("Q_tilde"=Q_tilde ,"R_tilde"=R_tilde ,"Lambda"=Lambda ))

}

# Modified version of IGMRF of order 2 -----------------------------------------

mod_IGMRF_2_prec_mat <- function(K) {

# Original Q, G, W matrices and generalized inverse of Q

Q <- as.matrix(precmat.RW2(n = K))

G <- diag(diag(Q))

W <- G-Q

Sigma <- gen_inverse_func(Q,rank_def = 2)

# Computation of the S tilde matrix for different values of K

Delta <- 1/(K-3)

if (K==4) {

S_tilde <- cbind(

c(1/24,11/24,11/24,1/24)*Delta ,

c(1/120,11/60,11/40,1/30))

} else if (K==5) {

S_tilde <- cbind(

c(1/24,1/2,22/24,1/2,1/24)*Delta ,

c(1/480,7/120,11/48,23/120,3/160))

} else if (K==6) {

S_tilde <- cbind(

c(1/24,1/2,23/24,rep(1,K-6),23/24,1/2,1/24)*Delta ,

c(Delta/120,

14*Delta/60,

121*Delta/120,

23/24 -121*Delta/120,

1/2-14*Delta/60,

1/24-Delta/120)*Delta)

} else if (K>=7) {

S_tilde <- cbind(

c(1/24,1/2,23/24,rep(1,K-6),23/24,1/2,1/24)*Delta ,

c(Delta/120,

14*Delta/60,

121*Delta/120,

c(2:(K-5))*Delta ,

23/24 -121*Delta/120,

1/2-14*Delta/60,

1/24-Delta/120)*Delta)

}

# Optimization of the KLD function with symmetric entries for lambdas

optim_function <- function(lambdas) {

lambdas <- abs(lambdas)

# Creation of the diagonal matrix Lambda

if (K%% 2==0) {

Lambda <- diag(c(lambdas ,rev(lambdas )))

} else {

Lambda <- diag(c(lambdas ,rev(lambdas )[ -1]))
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}

# Null space for the R matrix

new_S <- Lambda %*% S_tilde

# New W, G, R matrix and generalized inverse of new Q

W_tilde <- matrix(0,nrow = K,ncol = K)

G_tilde <- matrix(0,nrow = K,ncol = K)

for (k in 1:K) {

for (l in 1:K) {

W_tilde[k,l]<-(l-k)*W[k,l]/(new_S[k,1]*new_S[l,2]-new_S[k,2]*new_S[l,1])

}

W_tilde[k,k] <- 0

G_tilde[k,k] <- W_tilde[k,]%*%new_S[,1]/new_S[k,1]

}

R_tilde <- G_tilde -W_tilde

Sigma_tilde <- Lambda %*% gen_inverse_func(R_tilde ,rank_def = 2) %*% Lambda

# Computation of the KLD (only the non -constant part wrt to lambda)

kld <- sum(colSums(Q*Sigma_tilde))-

sum(log(eigen(Sigma_tilde)$values [1:(K -2)]))

return(kld)

}

# Optimization of the KLD function with symmetric entries for lambda

results <- nlm(optim_function ,rep(1,ceiling(K/2)),print.level = 2)

# Save the lambda values that minimize the KLD

lambdas <- abs(results$estimate)

# Lambda matrix

if (K%% 2==0) {

Lambda <- diag(c(lambdas ,rev(lambdas )))

} else {

Lambda <- diag(c(lambdas ,rev(lambdas )[ -1]))

}

# Null space for R

new_S <- Lambda %*% S_tilde

# New W,G,R,Q matrices

W_tilde <- matrix(0,nrow = K,ncol = K)

G_tilde <- matrix(0,nrow = K,ncol = K)

for (k in 1:K) {

for (l in 1:K) {

W_tilde[k,l] <- (l-k)*W[k,l]/(new_S[k,1]*new_S[l,2]-new_S[k,2]*new_S[l,1])

}

W_tilde[k,k] <- 0

G_tilde[k,k] <- W_tilde[k,]%*%new_S[,1]/new_S[k,1]

}

R_tilde <- G_tilde -W_tilde

Q_tilde <- gen_inverse_func(

Lambda %*% gen_inverse_func(R_tilde ,rank_def =2) %*% Lambda ,rank_def = 2)

return(list("Q_tilde"=Q_tilde ,"R_tilde"=R_tilde ,"Lambda"=Lambda ))

}

# Modified version of 2D IGMRF of order 1 --------------------------------------

mod_IGMRF_2D_prec_mat <- function(K1 ,K2) {

# Original Q, G, W matrices and generalized inverse of Q

Q <- as.matrix(precmat.IGMRFreglat(K1 ,K2,order = 1))

G <- diag(diag(Q))

W <- G-Q

Sigma <- gen_inverse_func(Q,rank_def = 1)

# Computation of the S tilde matrix

Delta1 <- 1/(K1 -3)
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if (K1==4) {

s1 <- c(1/24,11/24,11/24,1/24)*Delta1

} else if (K1==5) {

s1 <- c(1/24,1/2,22/24,1/2,1/24)*Delta1

} else if (K1 >5) {

s1 <- c(1/24,1/2,23/24,rep(1,K1 -6) ,23/24,1/2,1/24)*Delta1

}

Delta2 <- 1/(K2 -3)

if (K2==4) {

s2 <- c(1/24,11/24,11/24,1/24)*Delta2

} else if (K2==5) {

s2 <- c(1/24,1/2,22/24,1/2,1/24)*Delta2

} else if (K2 >5) {

s2 <- c(1/24,1/2,23/24,rep(1,K2 -6) ,23/24,1/2,1/24)*Delta2

}

S_tilde <- kronecker(s2 ,s1)

# Optimization of the KLD function with symmetric entries for lambda

optim_function <- function(lambdas) {

lambdas <- abs(lambdas)

# Creation of the diagonal matrix Lambda

lambdas1 <- lambdas [1: ceiling(K2/2)]

lambdas2 <- lambdas [( ceiling(K2/2)+1):( ceiling(K2/2)+ ceiling(K1/2))]

Lambda <- diag(kronecker(c(lambdas2 ,rev(lambdas2)),

c(lambdas1 ,rev(lambdas1 ))))

# Null space for the R matrix

new_S <- Lambda %*% S_tilde

# New W,G,R,Q matrices

W_tilde <- W/(new_S%*%t(new_S))

G_tilde <- diag(diag(G)/c(new_S^2))

R_tilde <- G_tilde -W_tilde

Sigma_tilde <- Lambda %*% gen_inverse_func(R_tilde ,rank_def = 1) %*% Lambda

# Computation of the KLD (only non -constant part)

kld <- sum(colSums(Q*Sigma_tilde))-

sum(log(eigen(Sigma_tilde ,only.values = T)$values [1:((K1*K2) -1)]))

return(kld)

}

# Optimization of the KLD function with symmetric entries for lambda

results <- nlm(optim_function ,

c(rep(1,ceiling(K2/2)),rep(1,ceiling(K1/2))), print.level = 2)

# Save the lambda values that minimize the KLD

lambdas <- abs(results$estimate)

# Lambda matrix

lambdas1 <- lambdas [1: ceiling(K2/2)]

lambdas2 <- lambdas [( ceiling(K2/2)+1):( ceiling(K2/2)+ ceiling(K1/2))]

Lambda <- diag(kronecker(c(lambdas2 ,rev(lambdas2)),

c(lambdas1 ,rev(lambdas1 ))))

# Null space for the R matrix

new_S <- Lambda %*% S_tilde

# New W,G,R,Q matrices

W_tilde <- W/(new_S%*%t(new_S))

G_tilde <- diag(diag(G)/c(new_S^2))

R_tilde <- D_tilde -W_tilde

Sigma_tilde <- Lambda %*% gen_inverse_func(R_tilde ,rank_def=1) %*% Lambda

Q <- gen_inverse_func(Sigma_tilde ,rank_def = 1)

return(list("Q_tilde"=Q_tilde ,"R_tilde"=R_tilde ,"Lambda"=Lambda ))

}
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C Proofs of Chapter 4

C.1 Equation 4.14

The KLD-based distance between two multivariate Gaussian distributions simplifies

to Equation 4.14 through the following steps:

d(ω;ω0) =
√
2 ·KLD[π(y;ω)||π(y;ω0)]

=

√√√√2

∫
log

[√
(2π)R(ω0) · |Σ(ω0)| exp

(
−1

2
yTΣ∗(ω)y

)√
(2π)R(ω) · |Σ(ω)| exp

(
−1

2
yTΣ∗(ω0)y

) ] π(y;ω) dy
=

√
[R(ω0)−R(ω)] log(2π) + log

|Σ(ω0)|
|Σ(ω)|

+

∫
yT [Σ∗(ω0)−Σ∗(ω)]y · π(y;ω) dy

=

√
[R(ω0)−R(ω)] log(2π) + log

|Σ(ω0)|
|Σ(ω)|

+ Eπ(y;ω) [yT [Σ∗(ω0)−Σ∗(ω)]y · π(y;ω)]

Recalling the formula for the expectation of a quadratic form from the proof in

Kendrick 1981, it is found that:

Eπ(y;ω)

[
yT [Σ∗(ω0)−Σ∗(ω)]y · π(y;ω)

]
= tr{[Σ∗(ω0)−Σ∗(ω)]Σ(ω)}

= tr[Σ∗(ω0)Σ(ω)]−R(ω)

C.2 Equation 4.16

Under the assumption of a common eigenbasis V between the covariance matrices

Σ0 and Σ1, it is possible to simplify the distance following the proof provided in

Franco-Villoria, Ventrucci, and Rue 2022. First, note that Σ(ω) and its generalized

inverse can be rewritten as:

Σ(ω) = V [(1− ω)Λ0 + ωΛ1]V
T

Σ∗(ω) = V [(1− ω)Λ0 + ωΛ1]
∗ V T

Then, it can be noticed that the first term of Equation 4.14 simplifies and be-
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comes only a function of the eigenvalues in Λ0 and Λ1:

tr [Σ∗(ω0)Σ(ω)] = tr[V [(1− ω0)Λ0 + ω0Λ1]
∗ V TV [(1− ω)Λ0 + ωΛ1]V

T ]

= tr[[(1− ω0)Λ0 + ω0Λ1]
∗ [(1− ω)Λ0 + ωΛ1]]

=
∑

n:λ0,n+λ1,n>0

(1− ω)λ0,n + ωλ1,n

(1− ω0)λ0,n + ω0λ1,n

Finally, also the second term of Equation 4.14 can be rewritten simly in terms of

eigenvalues under the common eigenbasis assumption:

log
|Σ(ω)|
|Σ(ω0)|

= log
|(1− ω)Λ0 + ωΛ1|
|(1− ω0)Λ0 + ω0Λ1|

=
∑

n:λ0,n+λ1,n>0

log
(1− ω)λ0,n + ωλ1,n

(1− ω0)λ0,n + ω0λ1,n

At this point, the distance function can be further simplified because under the

sum-of-ranks condition, for each n ∈ [1, N ], at least one eigenvalue between λ0,n and

λ1,n will be 0. This leads to the following simplification:

(1− ω)λ0,n + ωλ1,n

(1− ω0)λ0,n + ω0λ1,n

=

 1−ω
1−ω0

, λ0,n > 0, λ1,n = 0

ω
ω0
, λ0,n = 0, λ1,n > 0

The final form of the distance function is the following:

d(ω;ω0) =

√√√√√R(0)
1− ω

1− ω0

+R(1)
ω

ω0

−R(0) log
1− ω

1− ω0

−R(1) log
ω

ω0

−R(ω) + [R(ω0)−R(ω)] log(2π)

The function does not include the eigenvalues of Σ0 and Σ1 but it still depends

on R(ω), which is computationally inefficient. However, noting that the distance

is not finite for ω0 = 0, it is necessary to compute it as a limit. Consider first

d(ω;ω0)
2ω0:

d(ω;ω0)
2ω0 = ω0R(0)

1− ω

1− ω0

− ω0R(0) log
1− ω

1− ω0

+R(1)ω − ω0R(1) log
ω

ω0

− ω0R(ω) + ω0[R(ω0)−R(ω)] log(2π)

C. Proofs of Chapter 4 172



Computing the limit for ω0 → 0, it is found that:

lim
ω0→0

d(ω;ω0)
2ω0 = R(1)ω
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