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Abstract

Lorenzo Lazzarini 2024, Experimental analysis of turbulent flows at high Reynolds

numbers in the CICLoPE "Long Pipe", Università degli Studi di Bologna, Doctoral

Course in Aerospace Science and Technology (DAST), Cycle XXXVII

This thesis aims to investigate wall shear stress uncertainties and asymptotic scaling laws

in turbulent pipe flows, with a focus on their implications for active flow control strategies.

The experiments were conducted mainly at the Long Pipe facility of the CICLoPE labora-

tory at the University of Bologna, a state-of-the-art facility designed to reproduce canonical

turbulent pipe flow across a wide range of Reynolds numbers while minimizing measure-

ment uncertainties related to spatial resolution. This research include the development and

refinement of the Oil Film Interferometry (OFI) as a direct local measurement technique for

wall shear stress in the Long Pipe and a comprehensive uncertainty analysis comparing OFI

with static pressure drop methods, classical methodology to obtain global wall shear stress

in pipe flows. These findings enabled the reduction of overall uncertainties in determining

asymptotic scaling laws. Additionally, OFI was applied to active flow control scenarios,

demonstrating its versatility. Further investigations into wall-pressure fluctuations revealed

their scaling behavior and coherence with near-wall velocity fluctuations both streamwise

and wall-normal. A consistent linear correlation in the logarithmic region of the flow high-

lights the potential for scalable, real-time flow control applications. These results affirm

the CICLoPE facility’s significant role in advancing the understanding of wall-bounded

turbulence and its application to active drag reduction strategies.

Key-words: Wall turbulence, Pipe flow, high Reynolds number, wall shear stress, OFI,

Hot-wire, X-wire, POD, hPOD, CSA, spectra, statistics, Wall-pressure–velocity coherence,

active flow control
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Chapter 1

Introduction

1.1 Background

"When I meet God, I am going to ask him two questions: why relativity? And why turbulence?

I really believe he will have an answer for the first." This quote, often attributed to physicist

Werner Heisenberg, encapsulates the mystery and complexity that turbulence presents to

scientists even today. Turbulence is a phenomenon everyone has encountered: the wake

trailing behind a boat, the swirling smoke rising from a chimney, or the ever-shifting clouds

driven by the wind. It also plays a crucial role in our daily lives: whether in the fuel efficiency

of cars and airplanes or in natural processes like atmospheric dynamics and ocean currents,

which affect everything from weather patterns to the distribution of pollutants.

The study of turbulence has a rich history. Leonardo da Vinci was one of the first to

observe and sketch turbulent flows, capturing the swirling motion of water in his notebooks

with remarkable accuracy. However, the first systematic study came much later, in 1883,

when Osborne Reynolds conducted groundbreaking experiments on the transition from

laminar to turbulent flow in a glass pipe filled with water. His work laid the foundation

for modern turbulence research, introducing the Reynolds number. He discovered that the

process of transition is dominated by a specific dimensionless parameter:

'4 =
*!

a
(1.1)

where * is the flow velocity, ! the characteristic length of the considered object (e.g.:

Diameter in a pipe, half-width on a channel) and a the kinematic viscosity of the flow

considered.

Despite being the subject of extensive research over the past 140 years, and its wide-

ranging applications in both industry and everyday life, many aspects of turbulence and the
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theory behind it remain complex and not fully understood. Turbulence still lacks a precise and

universally accepted definition. It often manifests as a highly irregular, three-dimensional

system of eddies of varying sizes that continuously grow, interact, and dissipate. In the

case of high Reynolds number wall-bounded turbulence, the complexity intensifies due to

the wide range of scales involved. The larger eddies are primarily influenced by inertial

forces and their size is constrained by the external geometry, while the smallest eddies are

controlled by viscous forces, resulting in an intricate and multi-scale flow structure.

Unlike the largest scales, the smallest turbulent scales, known as Kolmogorov scales

(named after the scientist who first theorized them in 1941), do not have a size that is deter-

mined by geometry. In fact, the range of turbulent scales and their dimensions are directly

influenced by the Reynolds number. As the Reynolds number increases, the dissipation

scales become progressively smaller in comparison to the larger ones, leading to what is

known as scale separation—a hallmark of high Reynolds number regimes. This separation of

scales is key to the self-sustaining nature of turbulence, as described by classical turbulence

theory. Energy is supplied to the largest scales from the mean flow, and it is then transferred

down to progressively smaller eddies through a mechanism known as the energy cascade.

This process continues until viscous forces dominate over inertia at the smallest scales, where

turbulent kinetic energy dissipates into heat, marking the endpoint of the energy cascade.

Further challenges arise from the inherent complexity of turbulence dynamics. The

behavior of turbulent flows is so rich and multifaceted that a detailed understanding or pre-

diction of their behavior remains achievable only for highly simplified cases, often based

on unrealistic assumptions. This difficulty stems from the so-called closure problem of

turbulence. The behavior of all fluid flows is governed by the Navier-Stokes equations, a set

of nonlinear partial differential equations that are notoriously difficult to solve, with only a

few exact solutions available for simplified scenarios. When the governing equations are sub-

jected to Reynolds averaging, a traditional method used to separate the mean and fluctuating

components of the flow, The non-linear terms generate new terms, which include quantities

like Reynolds stresses, in addition to the mean velocity and pressure fields. However, this

approach leads to an unclosed system of equations, where the number of unknowns exceeds

the number of available equations. Essentially, for every new equation formulated to describe

these additional unknowns, more variables are introduced, perpetuating the imbalance. In

simple terms, a complete statistical description of turbulence would theoretically require

an infinite number of equations to resolve all the interacting scales, thus making a direct

solution practically impossible.

Direct Numerical Simulations (DNS) offer the only current method to fully solve the

Navier-Stokes equations without relying on any simplifications or modeling assumptions.
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DNS resolves all the scales of turbulence, from the largest eddies down to the smallest dissi-

pative scales, by directly computing the entire spectrum of turbulent fluctuations. However,

this approach is computationally expensive and requires immense processing power and

memory, which limits its applicability to low Reynolds number flows. Although DNS has

made significant advances in recent years, allowing simulations to reach Reynolds numbers

comparable to the lower range observed in actual wind tunnel experiments, it still remains

impractical for simulating high Reynolds number flows. The computational cost increases

dramatically with Reynolds number due to the growing disparity between the largest and

smallest scales of turbulence. As a result, DNS remains a powerful research tool for studying

fundamental turbulence physics in controlled environments, but is not yet feasible for the

high Reynolds number flows typical of industrial or environmental applications. Gaining a

deeper understanding of the physics underlying high Reynolds number flows offers a twofold

benefit. Firstly, it provides general insight into the behavior, nature, and dynamics of turbu-

lent flows, contributing to our fundamental knowledge of turbulence. Secondly, it supports

the development of more accurate models and predictions, which can have far-reaching

applications. For example, improved understanding can aid in friction control strategies,

potentially leading to enhanced efficiency in engineering systems such as pipelines, vehicles,

and aircraft, where minimizing friction plays a critical role.

Friction becomes particularly significant when fluid flow interacts with surfaces, espe-

cially in wall-bounded turbulent flows. In such flows, turbulence originates in a thin region

near the surface known as the boundary layer, a concept first introduced by Prandtl in 1904.

Within this boundary layer, viscous forces dominate, causing the fluid’s velocity to rapidly

drop to zero as it approaches the wall. Despite its thinness, the boundary layer is crucial

because it is where friction between the wall and the fluid begins to develop. This friction

is not only a major contributor to energy loss in many practical situations, but it is also

the driving mechanism of wall-bounded turbulence. As a result, friction is a key factor in

scaling wall-bounded flows, and understanding it is essential for advancements in areas such

as drag reduction.

In aerospace applications, where Reynolds numbers are high and the boundary layer

developing on a surface becomes turbulent, the theme of drag reduction becomes partic-

ularly relevant. For example, at subsonic cruising speeds, around 50% of the total drag

experienced by an aircraft during landing or take-off is due to friction, which can increase

to 70% during cruise. Friction not only impacts fuel consumption but also affects emissions

released into the atmosphere.For instance, reducing friction by just 1% could save a typical

long-range aircraft around 4 million liters of fuel annually, significantly lowering operational

costs and reducing environmental impact. Such savings would also cut down�$2 emissions
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by approximately 5,000 kg annually (IATA, 2020; ICAO, 2019). Given the global push to

reduce �$2 emissions by 40% by 2030, in line with initiatives like the Paris Agreement,

understanding the underlying physics of friction becomes critical (Clean Sky 2 Initiative,

2021; World Economic Forum, 2021). A deeper exploration of these mechanisms will not

only accelerate the development of technologies for drag reduction but also improve the accu-

racy of predictive models, benefiting both the aerospace industry and broader environmental

efforts.

Measurement of wall shear stress poses several challenges, especially in high Reynolds

number flows. One of the key difficulties is represented by the spatial resolution. To address

these challenges and provide high-quality, high-Reynolds-number data, the CICLoPE (Center

for International Cooperation in Long Pipe Experiments) laboratory was established. Central

to this project is the construction of a new large-scale wind tunnel, known as the Long Pipe

facility. The laboratory takes a unique approach: rather than achieving high Reynolds

numbers through increased flow speed * or fluid density d, it leverages a large-scale setup

by increasing ! in Equation 1.1. This allows for both high Reynolds numbers and enhanced

spatial resolution. The facility’s specifications were determined by an international team

of turbulence researchers, with the objective of reaching Reynolds numbers high enough

to observe scale separation while maintaining compatibility with established measurement

techniques and avoiding spatial resolution limitations.

In the Long Pipe, wall shear stress can be measured using the static pressure drop

across the last 30–40 meters, though this yields a "global" measurement of wall shear

stress. To minimize the uncertainty associated with wall shear stress and thus friction

velocity, a parameter essential for scaling and comparing with other canonical flows, the Oil

Film technique can be applied, offering a more localized approach to reduce uncertainties

associated with friction effectively.

1.2 State-of-the-art

This section provides a brief overview of the key studies that form the basis of current

research. The most relevant topics and unresolved questions are highlighted to contextualize

the present work.

1.2.1 Friction measurements

The accurate measurement of wall-shear stress and skin friction is essential in the study of

wall-bounded turbulent flows. These measurements provide critical insights into the behavior
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of turbulent boundary layers and their influence on drag. Over the years, experimental

techniques have evolved to meet the challenge of accurately capturing frictional forces at the

wall in various turbulent flow regimes, particularly at high Reynolds numbers. The following

are the key techniques used for friction measurements and their respective contributions to

the field. One of the most widely used methods for measuring wall-shear stress is Oil-Film

Interferometry (OFI), a technique that utilizes a thin layer of oil applied to the surface.

The oil’s thinning rate is monitored, as it correlates with the local wall-shear stress. OFI

has been particularly valuable in high-resolution experiments in boundary layers and pipe

flows due to its ability to capture small-scale variations of wall-shear stress. Segalini et al.

(2015) discussed the precision of OFI in turbulent boundary layer measurements, though

challenges such as calibration, surface contamination, and temperature variation remain

important considerations.

Earlier, Tanner and Blows (1976) used oil-film techniques to measure skin friction in

turbulent flows, helping to establish the method’s reliability. Another historically significant

direct measurement technique is the floating element method, which involves measuring

the force exerted on a floating sensor element flush with the wall. Tanner and Blows

(1976) provided early experimental results using this technique to capture wall-shear stress

in turbulent boundary layers. This method offers high accuracy in controlled environments,

but its sensitivity to external vibrations and noise limits its application in complex, high-speed

flows . Wall shear stress transducers offer another direct method of measuring time-resolved

wall-shear stress in turbulent flows. These transducers are typically embedded into the

surface and can capture both the mean and fluctuating components of the shear stress at

the wall. Ruedi et al. (2003) employed shear stress transducers to measure wall-shear stress

in high-Reynolds-number turbulent boundary layers, demonstrating the method’s utility in

capturing unsteady flow features. (Naughton and Sheplak, 2002)

One of the most basic yet effective approaches for estimating wall-shear stress is the

pressure drop method. This method relies on measuring the pressure loss over a defined

length of a channel or pipe and using that to calculate the mean wall-shear stress. Squire

(1961) used the pressure drop method extensively in turbulent boundary layers, providing

foundational insights into friction in such flows . More recently, Ruedi et al. (2003) applied

this technique in large experimental facilities, emphasizing the importance of long measure-

ment sections to minimize uncertainties. However, the pressure drop method is inherently

limited by its inability to provide spatially resolved wall shear stress measurements and by

the influence of additional pressure losses, such as those due to flow separation or secondary

flow structures, which can complicate the interpretation of results.
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Another indirect method for estimating wall-shear stress involves measuring the velocity

gradient near the wall. The velocity gradient is related to the wall-shear stress through the

Newtonian assumption that relates shear stress to the velocity gradient in the viscous sublayer.

Techniques such as hot-wire anemometry (HWA) and laser Doppler velocimetry (LDV) have

been extensively used to acquire near-wall velocity profiles. From these measurements, wall-

shear stress can be inferred. This method, however, requires extremely high spatial resolution

near the wall, where velocity gradients are steep, and any slight errors in probe positioning

can lead to significant measurement uncertainty. Ruedi et al. (2003) conducted extensive

velocity gradient measurements using hot-wire anemometry to infer wall-shear stress in

turbulent boundary layers, and their work remains a key reference for researchers working

on high-Reynolds-number flows . Similarly, Naughton and Sheplak (2002) reviewed this

method, noting the difficulties in applying it to high-speed flows where probe interference

can introduce additional errors.

The Preston tube method is another classic technique where a cylindrical tube is posi-

tioned near the wall, and the pressure difference across it is used to infer wall-shear stress.

Squire, Tanner, and Blows (1962) were among the first to develop empirical calibration

curves for the Preston tube method, allowing it to be widely adopted in turbulent flow ex-

periments . While relatively simple to use, this technique relies heavily on calibration and

is limited to certain flow conditions where empirical relationships remain valid. Naughton

and Sheplak (2002) also explored the limitations of this method, pointing out that it is gener-

ally reliable for low-to-moderate Reynolds numbers but becomes less accurate at very high

Reynolds numbers.

One of the major challenges in friction measurements at high Reynolds numbers is the

increasing difficulty in resolving the very fine scales near the wall where the shear stress is

determined. Wall-shear stress can fluctuate rapidly in time and space, especially in turbu-

lent boundary layers. As a result, uncertainty quantification has become an essential part

of modern experimental studies, with methods such as Monte Carlo simulations used to

estimate errors and improve the reliability of the data. For example, OFI measurements can

be influenced by uncertainties in film thickness, surface contamination, and temperature,

which must all be carefully controlled or modeled. Similarly, Ruedi et al. (2003) highlighted

the limitations of hot-wire anemometry in near-wall measurements, noting the importance

of precise calibration and sensor positioning to reduce uncertainty. Monkewitz and Nagib

(2015) emphasized the scaling challenges at very high Reynolds numbers, showing how

different methods can yield slightly different friction values due to scaling laws and probe

interactions. Their work underscored the importance of consistent calibration and methodol-
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ogy in friction measurements to ensure accurate comparisons across different facilities and

flow regimes.

1.2.2 Turbulent structures

Despite the intrinsic chaos of wall-bounded turbulent flows, these flows exhibit a structured

internal organization. Investigating the arrangement and interactions of these organized mo-

tions is essential for a better understanding of turbulence, its dynamics, and for improving

control strategies. Although there is no universally accepted definition of organized motion,

they are generally described as regions in space and time that involve mass and momentum

transport. According to the traditional classification (Smits et al., 2011b), four main struc-

tures are identified: near-wall streaks, hairpin vortices, large-scale motions (LSMs), and

very-large-scale motions (VLSMs). The basic units of these turbulent motions are the near-

wall streaks, first observed by Kline et al. (1967) within the viscous sublayer (for H+ < 70).

These streaks develop in the streamwise direction, with a spanwise spacing of approximately

100a/Dg, and are characterized by high or low momentum regions, independent of Reynolds

number or flow geometry. Alternatively, hairpin or horseshoe vortices, as suggested by

Adrian (2007), are considered the fundamental building blocks of coherent structures. Perry

et al. (1986) also described turbulent flows as resembling a "forest" of hairpin vortices, first

theorized by Theodorsen (1952) to extend across a wide range of scales, with a minimum

height of about 100a/Dg, originating at the wall.

Despite ongoing debates regarding the exact role of coherent structures in turbulence

dynamics (Cantwell, 1981; Schoppa and Hussain, 1998), their significance and widespread

presence in boundary layers were first strongly evidenced by the experimental observations of

Head and Bandyopadhyay (1981) and later confirmed by the numerical work of Wu and Moin

(2009). With recent advancements in computational power and measurement technologies,

studies at higher Reynolds numbers have revealed the organization of these structures into

larger formations known as large-scale motions (LSMs). Although many questions remain

about their origin and dynamics, the prevailing theory (Ganapathisubramani et al., 2005;

Guala et al., 2006; Kim and Adrian, 1999; Tomkins and Adrian, 2003) suggests that LSMs

are formed by packets of hairpin vortices traveling at the same convection velocity.

Large-scale motions (LSMs) extend approximately 2-3 X in the streamwise direction,

with the heads of their hairpin vortices inclined at around 20° to the wall, a feature critical to

their dynamics (Adrian et al., 2000). These structures contribute to turbulent bulges in the

near-wall region by inducing low streamwise momentum between the vortex legs (Adrian

et al., 2000; Ganapathisubramani et al., 2003). In 1999, Kim and Adrian (1999) identified

even longer meandering structures characterized by low streamwise momentum flanked by
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faster-moving fluid: the very-large-scale motions (VLSMs), also known as superstructures in

boundary layers. Though their origin remains uncertain, they are thought to result from the

alignment of LSM packets (Fig.1.1), which are centered in the logarithmic region and extend

into the outer region in internal flows, but tend to break down in turbulent boundary layers

(Bailey et al., 2010). Their meandering nature makes it difficult to accurately measure their

true length using single-point statistics like spectra or correlations. Experimental studies

using hot-wire rakes have captured structures in boundary layers extending up to 10-20 X

(Hutchins and Marusic, 2007a), while similar techniques in pipe and channel flows revealed

structures stretching 20-30 radii or channel half-heights (Monty et al., 2007). Spectral

analyses underscore the energetic and dynamic significance of LSMs and VLSMs. Feature

detection algorithms and PIV data showed that these structures contribute about 50% of the

Reynolds shear stress (Ganapathisubramani et al., 2005, 2003), with Balakumar and Adrian

(2007) noting that modes with _G/X > 3 contribute up to 65% of the total turbulent kinetic

energy.

Fig. 1.1 Schematic of the alignment of the hairpin packets forminf in the large and very-
large-scale motions. Reprinted from (Kim and Adrian, 1999)

The large wall-normal extension of LSMs and VLSMs suggests a potential correlation

with the near-wall region. Studies by Mathis et al. (2009) and Hutchins and Marusic

(2007b) demonstrated how these larger scales interact with the near-wall region through a

combined effect of energy superposition and modulation of small-scale velocity fluctuations.

Understanding the nature of this interaction could help resolve some of the controversies

surrounding turbulence scaling in wall-bounded flows. For example, the interaction between

small- and large-scale motions, observed in data from CICLoPE (Örlü et al., 2017) and

by Klewicki and Falco (1990), as well as Hutchins et al. (2009), challenges the classical

inner-scaling of streamwise turbulence intensity, which does not account for this dynamic.
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However, this scaling has been validated by experiments conducted at the SuperPipe. More

recently Discetti et al. (2019) had investigated VLSMs in the CICLoPE Long pipe combining

classical anemometry with PIV acquisition along with an extended-POD-based dynamic

estimation. Such approach enables the identification of "global" ejections and sweep events.

Key findings indicate that low-momentum ejections are more frequent and persist longer than

high-momentum sweeps, which tend to form closer to the wall and with more consistent

radial thickness at H/' ≈ 0.25−0.30.

1.2.3 The attached eddy hypothesis

This section provides a brief overview of the attached eddy model, focusing on its key

hypotheses and the predictions derived from it. Originally formulated by Townsend (1976)

and later expanded and refined in works by Perry and Chong (1982) and Perry et al. (1986),

the attached eddy model is one of the few models developed for wall turbulence. Over the

years, it has generally received strong support from experimental data.

The Attached Eddy Hypothesis (AEH) conceptualizes wall-bounded flow as an ensemble

of inertia-driven, self-similar coherent structures that are randomly distributed along the wall

plane. According to the AEH, these coherent structures, or eddies, scale with the distance

from the wall, with their heights following a geometric progression Perry and Chong (1982).

To evaluate the self-similarity of coherent structures in wall-bounded flow, Del Alamo et al.

(2006)) analyzed their sizes by examining the dimensions of vortex cores identified through

thresholding the discriminant of the velocity gradient tensor, utilizing direct numerical

simulation (DNS) datasets.

Their findings reveal that tall vortex clusters, which extend from the near-wall region

(below 20 viscous units) to the logarithmic region, scale with the distance from the wall.

Additionally, Hwang (2015) suggests that these self-similar structures can sustain themselves,

playing a crucial role in driving wall-bounded turbulence. Experimentally, resolving the

full velocity gradient tensor is challenging, so the streamwise velocity is often used as a

substitute. For instance, Hellström et al. (2016) applied proper orthogonal decomposition

(POD) to instantaneous snapshots of streamwise velocity in a radial–azimuthal plane of pipe

flow. They observed that the POD mode shapes of radial–azimuthal structures in pipe flow

follow a self-similar scaling progression, showing a direct relationship between azimuthal

mode number and characteristic wall-normal extent. Marusic and Monty (2019) provides

an excellent overview of key assumptions and limitations associated with the AEH.

Recently Baidya et al. (2019) uses a correlation-based metric to analyze wall-attached

structures in wall-bounded turbulence. Unlike single-height correlation assessments relying

on Taylor’s hypothesis, synchronized measurements at two wall-normal positions are used.
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Wall skin friction is measured with hot-film sensors, and velocity is recorded at multiple

heights. This approach assesses coherence between turbulent scales and the wall-reference

signal. The goal is to characterize the coherent part of the velocity signal linked to wall-

attached structures in terms of wavelength (_G = 2c/:G), transverse offset (ΔB), and wall-

normal offset (I), expanding previous observations to include ΔB trends.

Fig. 1.2 The schematic illustrates a hierarchy of attached eddies employed to model wall-
bounded flows. It displays four levels of hierarchy, with each level’s volume of influence
represented by differently colored cuboids, while the symbols indicate the probe locations.
Part (b) shows the contributions or signals at four locations (as indicated by the corresponding
symbols in part a) over a streamwise distance; the symbols denote the streamwise, spanwise,
and wall-normal extents of the eddies at the =th hierarchy level. Reprinted from Baidya et al.
(2019)

Figure1.2 presents a sketch that illustrates the relative scales in the Attached Eddy

Hypothesis (AEH), where a hierarchy of self-similar structures is used to represent the

logarithmic region of a wall-bounded flow. Each hierarchy level is depicted in a different

color, and the sizes follow a geometric progression with a common ratio of 2, extending up

to a height equal to the outer length scale. In this schematic, the population density decreases

by half in both the x and y dimensions with each increment in hierarchy level. Consequently,

Figure1.2 displays a total of four hierarchy levels, with eddies at each level characterized

by their extents in the x, y, and z directions, denoted as !8, ,8, and �8, respectively.

Now, consider probes positioned at � (measuring Dg) and ◦ (measuring D), as illustrated in

Figure1.2(a). The recorded signals from these probes are shown in Figure1.2(b). It is clear

that the signal from the ◦ sensor lacks contributions from the smallest eddies compared to

the signal from the � sensor.

1.2.4 Wall-pressure–velocity correlations

Turbulence stresses in wall-bounded flows are closely tied to the generation of skin-friction

drag, driving interest in their relationship with wall-based quantities Renard and Deck (2016).
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A key focus is the correlation between velocity fluctuations away from the wall and wall-

pressure fluctuations (?F), particularly for their potential use as input in real-time flow

control systems aimed at reducing skin-friction drag. Achieving this requires developing

transfer functions Sasaki et al. (2019) that allow the temporal dynamics of velocity structures

to be inferred from minimally intrusive, wall-based measurements using sparse data inputs.

Research on wall-pressure fluctuations in turbulent wall-bounded flows has concentrated,

among other aspects, on the scaling of intensity and spectral characteristics. These scaling

trends depend on the friction Reynolds number, '4g ≡ X*g/a, where X represents the

boundary layer thickness (which, in our study, corresponds to the pipe radius '),*g ≡
√
gF/d

denotes the friction velocity (with gF as the wall-shear stress and d the fluid density), and

a is the kinematic viscosity. Notable experimental studies that have evaluated this scaling

include those by Farabee and Casarella (1991), Tsuji et al. (2007), and Klewicki et al. (2007).

These studies identified a distinct inner-spectral peak at a frequency of 5 +? ≈ 0.04. The

amplitude of this peak increases with rising '4g, along with the large-scale energy content.

Over the past decade, computational research has corroborated these findings (e.g., Jiménez

and Hoyas, 2008; Panton et al., 2017) and demonstrated that, when examining spatial spectra,

the inner-spectral peak is located at _+G,? ≈ 250. Consequently, 5 +? and _+G,? are related at the

peak scale through a convection velocity of *+
2 ≈ 10.

Investigations have also been conducted on the relationships between wall-pressure events

and velocity structures. For example, Thomas and Bull (1983) identified characteristic wall-

pressure signatures linked to near-wall burst-sweep events that are exclusively confined to

the near-wall region. Gibeau and Ghaemi (2021) examined the spatio-temporal correlation

between wall-pressure and velocity fluctuations across a boundary layer, reporting a low

but significant coherence at low frequencies for D and E fluctuations within the logarithmic

region (where lower-case symbols denote fluctuations and upper-case symbols represent

time-averaged quantities). They attributed this stochastic coupling to the presence of large-

scale motions (LSMs). Connecting the wall-pressure field with LSM dynamics is particularly

important for real-time flow control, as LSMs are a promising target for control strategies

in wall-turbulence applications (Abbassi et al., 2017; Dacome et al., 2024a). This is due

to their relatively long length and time scales, which result in intrinsically long formation

times. Moreover, at friction Reynolds numbers relevant to practical applications, LSMs

in the logarithmic region dominate energetically over the smaller scales (Hutchins and

Marusic, 2007a) and account for the majority of turbulence kinetic energy production (Smits

et al., 2011a). A recent study demonstrated a Reynolds-number-independent wall-scaling

of the linear coherence between wall-pressure and D fluctuations in the logarithmic region

of a turbulent boundary layer (TBL) at DNS-range Reynolds numbers (Baars et al., 2024).
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Furthermore, it was found that wall-pressure squared exhibits a higher coherence with large-

scale-filtered D fluctuations, indicating that the quadratic operator incorporates large-scale

content. These findings align with an earlier conclusion by Naguib et al. (2001), which

stated that the accuracy of stochastically estimating streamwise velocity fluctuations from

wall-pressure improves when the quadratic term is considered.

1.3 Objectives and outline of the thesis

This thesis is part of a larger project aimed at developing both active and passive drag

reduction strategies by investigating uncertainties in wall shear stress and asymptotic scaling

laws in turbulent pipe flows. A more detailed delineation of the objective of this thesis

can now be outlined. The primary objective of this research is to reduce friction drag

through precise and innovative measurement techniques, leveraging the unique capabilities

of the CICLoPE Laboratory and the Long Pipe facility. Due to the challenges inherent in

high Reynolds number flows, an experimental approach is essential. This study addresses

these challenges by first focusing on minimizing uncertainties in the measurement of wall

shear stress, particularly those affected by spatial resolution limitations in the near-wall

region. This goal is supported by the specialized design of the Long Pipe facility, which

enables more accurate wall-shear stress measurements—a crucial factor, as friction velocity

directly influences classical scaling laws (e.g.: the logarithmic law of the wall introduced by

Theodore Von Kármán and later refined by Ludwig Prandtl. This law provides a fundamental

framework for describing turbulent flow behavior near walls and has significant implications

in engineering, especially for predicting drag and heat transfer in wall-bounded flows).

Effective drag control strategies require precise wall-shear stress measurements, but they

also depend on accurate flow information, often obtained through velocity data. However, in

practical applications, capturing velocity information is challenging, whereas wall pressure

data are more accessible. Therefore, another key objective of this research is to explore the

correlations between velocity and wall pressure, with the aim of utilizing wall pressure as a

sensing element for open- or closed-loop drag reduction control strategies. This approach

holds promise for advancing both the fundamental understanding of wall-bounded turbulence

and its practical applications, such as friction control technologies. In support of these aims,

the following specific objectives were identified:

• Assess and minimize uncertainty on wall-shear stress measurements in the Long

Pipe facility Wall shear stress in the Long Pipe is commonly measured via static

pressure drop over the last 40< of the pipe. The ‘global’ wall shear stress is computed

combining two different experimental setups that handle the uncertainties differently.
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Oil Film Interferometry (OFI) is then introduced in the Long Pipe facility as ‘local’

skin friction information computed in different sections of the pipe. A careful eval-

uation of the measurement technique is carried out assessing uncertainty related to

the measurements itself, exploring effect of temperatures and different possible source

of errors. A comparison between an optimized version of the static pressure drop

technique and OFI is then addressed also comparing presents results with one coming

from literature.

• Scaling of wall-pressure fluctuations Wall-pressure fluctuations measured using a

sparse sensors setups of microphones are acquired. The acquired signals are then

post-processed (filtered) using three different techniques: POD, harmonic POD and

conditional spectral analysis aiming at the minimization of the noise sensed by the

instrumentation and retaining only hydrodynamic wall pressure fluctuations. Inner

and outer scaling laws in pressure fluctuations are addressed comparing data with

available simulations. Finally, inner scaled pressure intensities are also compared to

results proposed by Klewicki et al. (2007).

• Wall-pressure–velocity coherence Wall-pressure–velocity coherence is assessed by

combining microphone measurements with velocity acquisition by means of Hot-wire

spanning different relative position to understand the physics behind such correlations.

X-wire are also implemented to obtain information related to wall-pressure and wall-

normal component of the flow velocity, supposed to be the mostly coherent signal to

wall-pressure fluctuations. In conclusion, the primary objective of this experimental

activity is to validate the potential of using wall pressure information as a reliable

sensing tool for active flow control strategies aimed at minimizing friction drag. By

exploring correlations between wall pressure and flow dynamics, this research seeks

to establish wall pressure as a practical and accessible sensing quantity scalable up to

real life scenarios.

The thesis is structured as follows: Chapter 2 covers the mathematical tools and funda-

mental equations for fully developed turbulent pipe flow, including key concepts from the

Navier-Stokes equations and scaling laws. Chapter 3 describes the experimental setup at the

CICLoPE facility, detailing the instruments and methods used to measure wall shear stress

and pressure in high-Reynolds-number flows. Chapter 4 presents the uncertainty assessment

of wall shear stress measurements, focusing on Oil Film Interferometry and Monte Carlo

simulations to evaluate potential errors. This chapter also compares results from OFI and

static pressure drop measurements. Chapter 5 investigates wall-pressure–velocity correla-

tions to explore their use in drag reduction strategies. Chapter 6 summarizes the main
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findings, emphasizing uncertainties in wall shear stress measurements as well as scaling

laws contribution to practical application for active flow control.



Chapter 2

Theoretical background

This chapter will provide the mathematical tools and definitions used in the thesis, as well

as a theoretical basis on turbulent wall-bounded flows.

2.1 Pipe flow

To describe a pipe flow, we can start from the Navier-Stokes equations for an incompressible

fluid, written in Eulerian form and neglecting body forces:

m*

mC
+ (* · ∇)* = −1

d
∇? + a∇2*, (2.1)

∇ ·* = 0, (2.2)

Equation 2.1 represents the momentum balance, while 2.2 is the conservation of mass

(or continuity) equation. * = (*,+,,) is the velocity vector, ? is the pressure, d = const. is

the fluid density, and a = `/d is the kinematic viscosity.

Considering that we are dealing with a turbulent flow, and the velocity * (G, C) can be

treated as a random variable, we apply the Reynolds decomposition technique to divide the

random quantities into their mean and fluctuations about the mean:

* (G, C) = *̄ (G, C) +D(G, C), (2.3)

where the over-bar *̄ indicates averaged quantities, and the lower-case D letters represent

fluctuations. Applying the Reynolds decomposition to the Navier-Stokes equations yields

the Reynolds-averaged Navier-Stokes equations (RANS). These equations can be specialized

for the case of a circular pipe. Given the axial symmetry of the problem, it is convenient
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to define a cylindrical coordinate system (G,A, \). The axial coordinate is denoted by G,

the radial coordinate by A, originating from the pipe centerline and normal to the wall, and

the angular coordinate is \. The components of the velocity vector * in the coordinate

system are (*,+,,), representing the streamwise, wall-normal, and spanwise components,

respectively. In the Reynolds decomposition, the mean part is (*̄,+̄ ,,̄), and the fluctuating

part is (D, E,F). ' represents the pipe radius.

A turbulent pipe flow is statistically axial-symmetric, so that:

, = DF = EF =
m

m\
= 0. (2.4)

Considering equation 2.4 and substituting it into the RANS equations, the continuity

equation and momentum balance in the G and A directions become:

m*

mG
+ 1

A

m

mA
(A+) = 0; (2.5)

m*

mC
+*m*

mG
++ m*

mA
= −1

d

m ?̄

mG
− m

mG
D2 − 1

A

m

mA
(ADE) + a∇2*; (2.6)

m+

mC
+*m+

mG
++ m+

mA
= −1

d

m ?̄

mA
− m

mG
DE− 1

A

m

mA
(AE2) + F2

A
+ a

(
∇2+ − +

A2

)
. (2.7)

If we assume the flow is statistically stationary and fully developed (i.e., no dependence

on the axial coordinate G), we arrive at the following relations:

m

mC
= 0; (2.8)

m*

mG
=
mD2

mG
=
mE2

mG
= 0. (2.9)

For the no-slip condition and axial symmetry, + |A=' = + |A=0 = 0. Using the continuity

equation (1.42), we conclude that the mean wall-normal velocity must be zero across the

entire profile:

+ = 0. (2.10)

Substituting equations 2.8, 2.9, and 2.10 into the A component of the momentum equation,

we get:

1

d

m ?̄

mA
+ mE2

mA
=
F2

A
− E2

A
. (2.11)
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Integrating equation 2.11 between a generic radial coordinate A and ', we obtain:

1

d
(?F − ?̄) − E2

=

∫ A

'

(
F2

A
− E2

A

)
3A, (2.12)

where the subscript F indicates the wall, at A = '. Taking the G derivative of 2.12 and

using the assumption of fully developed flow 2.9, we obtain the result:

m ?̄

mG
=
m?F

mG
. (2.13)

This implies that the axial pressure gradient is uniform across the pipe radius. Substituting

2.8, 2.9, 2.10, and 2.13 into the G component of the momentum equation, we get:

1

d

3?F

3G
= −1

A

3

3A
(ADE) + a1

A

3

3A

(
A
3*

3A

)
. (2.14)

Introducing the total shear stress g(A) as:

g = `
3*

3A
− dDE. (2.15)

Equation 2.13 can be rewritten as:

3?F

3G
=

1

A

3 (Ag)
3A

, (2.16)

which can be integrated from 0 to ':

gF =
'

2

3?F

3G
. (2.17)

Equation 2.17 provides an analytical link between the axial pressure gradient and the

wall friction gF, a crucial relationship in experimental investigations of pipe flows. If we

integrate up to a generic A instead of ', and introduce the variable H = '−A (the wall-normal

distance), we get the general relation:

g(H) = gF

(
1− H

'

)
, (2.18)

which shows a linear relationship, decreasing from the wall where g = gF, to the centerline

where g = 0.
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2.1.1 Pressure fluctuation equation

Considering the divergence of the Navier-Stokes equations, we obtain the Poisson equation

for the instantaneous pressure ?̃:

1

d
∇2? = −m*

mG

m+

mH
, (2.19)

The Reynolds decomposition, ? = ? + ?′ of equation (2.19) leads to a Poisson equation

for ? with two differet source term:

1

d
∇2? = −2

m*

mH

mE

mG
− m2

mGmH
(DE−DE), (2.20)

where DE denotes time averaged quantities. On the basis of this equation, the fluctuating

pressure field ca be decomposed into three main contributions:

? = ? (A) + ? (B) + ? (ℎ) . (2.21)

The rapid pressure ? (A) can be expressed as:

1

d
∇2? = −2

m*

mH
, (2.22)

the slow pressure ? (B) satisfies

1

d
∇2? =

mE

mG
− m2

mGmH
(DE−DE), (2.23)

moreover, the harmonic pressure ? (ℎ) satisfies Laplace’s equation ∇2? (ℎ) = 0. The term

"rapid pressure" refers to its immediate response to changes in the mean velocity gradi-

ent, dominating over the slow component in the rapid-distortion limit. The harmonic (or

Stokes) component, in contrast, is generally negligible beyond the immediate vicinity of the

wall and is often disregarded. The second term in equation (2.20) can also be written as

(m*/mH)(m+/mG). This term closely resembles the form of the instantaneous dissipation-

rate term, leading to a strong correlation between regions of intense low pressure and thin

vortical structures with high dissipation rates (see, for example, Cadot et al. (1995)).



2.2 Wall bounded turbulence scaling 19

2.2 Wall bounded turbulence scaling

Turbulence is typically classified into two main categories: free-shear flows, such as jets

and wakes, and wall-bounded flows, including channel flow, boundary layers, and pipe flow.

In free-shear flows, turbulence emerges from differences in velocity within the flow. In

contrast, wall-bounded turbulence arises due to the influence of a solid surface, the viscosity

of the fluid, and the no-slip condition, where the fluid velocity at the wall is effectively

zero. This thesis concentrates on wall-bounded turbulence, with a specific focus on pipe

flow. The presence of the wall introduces unique features and turbulent scales that require

careful consideration. While the forthcoming analysis is broadly applicable to wall-bounded

turbulent flows, for a more detailed understanding, readers are encouraged to consult Pope

(2000).

According to classical analysis, wall-bounded turbulent flows can be divided into two

regions: an inner region near the wall and an outer region farther from it. In the inner

region, viscosity plays a major role, while the external geometry has little influence on the

flow behavior. This implies that the near-wall behavior is similar across different flows,

even under different external conditions. In the inner region, the dynamics of the flow are

dominated by viscosity. The mean velocity * is influenced by wall friction gF, the wall-

normal distance H, and the fluid’s kinematic viscosity a. The characteristic velocity scale in

this region is the friction velocity Dg, defined as:

Dg =

√
gF

d
, (2.24)

where d is the fluid density. The characteristic length scale is the viscous length ;∗, given

by:

;∗ =
a

Dg
. (2.25)

From this, a viscous time scale can also be defined as:

C∗ =
;∗

Dg
=

a

D2
g

. (2.26)

A characteristic Reynolds number for wall flows is the friction Reynolds number, which,

for pipe flow, is the pipe radius normalized using inner variables:

'4g =
'Dg

a
=
'

;∗
= '+. (2.27)

In the inner region, dimensional analysis gives:
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*

Dg
= 5

( HDg
a

)
= 5

( H
;∗

)
. (2.28)

By defining *+ and H+ as the mean velocity and wall-normal distance normalized using

the inner variables Dg and ;∗, equation (5) becomes:

*+
= 5 (H+). (2.29)

This is known as Prandtl’s law of the wall, attributed to Prandtl (1926). In contrast, in

the outer region of the flow (also called the core region for internal flows like pipe flow),

viscosity becomes less significant. The relevant length scale is now determined by the

external flow geometry, such as the channel half-height ℎ, the boundary layer thickness X, or

the pipe radius '. The friction velocity Dg remains the characteristic velocity scale, and the

centerline velocity *2; is introduced.

For the outer region of pipe flow, dimensional analysis yields:

*2; −*
Dg

= 6
( H
'

)
. (2.30)

This is known as von Kármán’s velocity defect law, derived by von Karman (1930). The

boundary between the inner and outer regions is not sharply defined; instead, there exists

an overlap region where both inner and outer laws hold. This occurs when ;∗ ≪ H ≪ ', or

equivalently, when Dg or the friction Reynolds number '4g is large. In this overlap region:

5
( HDg
a

)
= 6

( H
'

)
. (2.31)

Following Millikan’s (1938) derivation, differentiating equation (9) yields:

m

mH

(
*

Dg

)
=
Dg

a
5 ′

( HDg
a

)
= − 1

'
6′

( H
'

)
. (2.32)

The only solution to this is when 5 ′ and 6′ are inversely proportional to H+ and H/',

respectively. Integrating this leads to:

*+
=

1

^
ln(H+) +�; (2.33)

*2; −
*

Dg
= −1

^
ln

( H
'

)
+�. (2.34)

Here, ^ is the von Kármán constant, and � and � are additive constants. According to

classical theory, these constants are universal for all wall-bounded flows. Equation (12) is
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known as the logarithmic law of the wall or simply the log-law, originally derived by Prandtl

using the concept of mixing length, although he arrived at the same conclusion.

2.3 Turbulence scales

One of the key features of turbulent flows is the existence of a wide range of eddy scales.

The largest scales are typically associated with the macroscopic geometric characteristics

of the flow: for a boundary layer, it is the boundary layer thickness X; for a channel, it is

the half-height ℎ/2; and for pipe flow, it is the radius '. The concept of an energy cascade

was introduced by Richardson (1922). Essentially, it states that turbulent kinetic energy is

introduced into the flow at large scales via a production mechanism, then transferred in an

inviscid manner to progressively smaller scales, until it is dissipated into heat at small scales

by viscous forces. It follows that the dissipation rate n at small scales must equal the rate at

which energy is produced at large scales.

According to Richardson, eddies can be characterized by a length scale ;, a velocity D(;),
and a time scale g(;) = ;/D(;). Large eddies have a characteristic length ;0 comparable to !,

and a characteristic velocity D0 comparable to the root mean square of turbulence intensity,

which is comparable to *. Thus, the Reynolds number of the large eddies, ;0D0/a, is large,

making viscous effects negligible.

Kolmogorov (1941) later theorized the smaller dissipative scales, now known as Kol-

mogorov scales. He observed that as ; decreases, both D(;) and g(;) decrease. His theory

can be summarized in three hypotheses:

• At sufficiently high Reynolds number, small-scale turbulence (; ≪ ;0) becomes statis-

tically isotropic.

This hypothesis is known as local isotropy. In other words, while large eddies are

anisotropic (their statistics depend on the direction considered), small-scale turbulence “for-

gets” the information provided by the mean flow field and the boundary conditions. As a

result, these statistics become universal:

• At sufficiently high Reynolds number, small-scale statistics have a universal form

determined by a and n .

Here, n is the mean rate of energy dissipation, and a is the kinematic viscosity. Since dis-

sipation of energy transferred from larger scales occurs at small scales via viscous processes,

the characteristic length, velocity, and time scales of the dissipation range can be defined as:
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[ ≡
(
a3

n

)1/4
; (2.35)

D[ ≡ (na)1/4
; (2.36)

g[ ≡
( a
n

)1/2
. (2.37)

Here, [ is known as the Kolmogorov length scale. Kolmogorov also derived the ratio

between the size of the large eddies and the dissipative eddies (based on the relation n ≈ D3
0/;0):

;0

[
≈ '43/4. (2.38)

Fig. 2.1 Schematic of the energy cascade process

This shows that as the Reynolds number increases, the range of scales between ;0 and [

also increases. At very high Reynolds numbers, there exists a range of scales that are much

smaller than ;0 but still much larger than the Kolmogorov scale. This phenomenon, known

as scale separation, implies that with increasing Reynolds number, the difference in physical

dimensions between the large and dissipative scales increases nearly linearly. In practical

terms, for a fixed external geometry (as in laboratory experiments), this means that [ becomes

progressively smaller. Kolmogorov’s third and final hypothesis can be summarized as:

• At sufficiently high Reynolds number, the statistics for scales ; (with [ ≪ ; ≪ ;0) have

a universal form determined solely by n and independent of a.
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This range of scales, known as the inertial sub-range, is only marginally affected by

viscosity and depends almost exclusively on the energy transfer rate )4 ≈ n . Consequently,

its statistics are defined solely by the dissipation rate. Figure2.1 illustrates a schematic of

the different scales and the energy cascade process.

2.4 Statistical tools

To study a chaotic process like turbulence, a statistical approach is essential because of

the complexity of the phenomenon, which aligns more closely with the characteristics of a

random process. This section offers a concise overview of the statistical concepts applied

throughout the thesis.

2.4.1 Statistical moments

We can identify the mean as the first order statistical moment:

〈*〉 =
∫ +∞

−∞
* 5 (*)3*, (2.39)

from the mean, the fluctuation can be determined:

D ≡* − 〈*〉. (2.40)

Since the mean value of fluctuations is always null, to further describe statistics of the

process, higher-order moments need to be introduced. The second order moment is known

as the variance:

〈D2〉 =
∫ +∞

−∞
D2 5 (*)3*. (2.41)

The square root of the variance is typically known as the standard deviation or root mean

square, that gives a measure of the typical fluctuations’ magnitude:

fD =

√
〈D2〉. (2.42)

As defined above, other statistical moments can be now introduced, the n-th centered statis-

tical moment of a random variable D(C) is defined as:

〈D=〉 =
∫ +∞

−∞
D= 5 (*)3*, (2.43)
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we can identify of particular interest, related to the study of turbulence, the third- and

fourth-order moments, also known as skewness and flatness. Often, they are normalized

with the root mean square of appropriate order, giving the skewness and flatness factor:

(D =
〈D3〉
f3
D

; �D =
〈D4〉
f4
D

(2.44)

The skewness and flatness factors are used to characterize specific properties of the

probability density function (PDF). Skewness measures the asymmetry of the PDF, being

zero for a perfectly symmetrical distribution. Flatness, on the other hand, indicates the

relative peakedness or flatness of the distribution. For a Gaussian distribution, the skewness

((D) is zero, while the flatness (�D) is three.

2.4.2 Velocity averaging

In turbulence studies, the instantaneous velocity components, (*8), are typically divided into

their mean and fluctuating parts through a process known as Reynolds decomposition:

*8 = 〈*8〉 +D8 (2.45)

where (*8) represents the (8)-th component of the instantaneous velocity vector (U),

generally a function of time (C) and position (x = (G, H, I)). 〈*8〉 denotes the mean velocity

component, while (D8) is the fluctuating component. The mean value is most rigorously

obtained through ensemble averaging. In experimental fluid dynamics, it is often not feasible

to repeat the same experiment multiple times to calculate ensemble averages, especially for

complex turbulent flows. Instead, we rely on the assumption that the flows being studied are

statistically stationary and ergodic. The ensemble average, which is given by the equation:

〈*8〉(G, C) =
1

=

=∑

9=1

*8, 9 (G, C), (2.46)

is theoretically the average taken over multiple realizations of the experiment, where

*8, 9 (G, C) represents the 8-th velocity component in the 9-th realization. However, in practice,

ensemble averaging is difficult or impractical due to limitations in conducting numerous

identical experiments. For flows that are statistically stationary, their statistical properties

do not change over time. This assumption allows the mean values to be calculated as a

time average rather than an ensemble average. The temporal mean for a velocity component

8 (G, C) is then defined as:
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〈*8〉(G) =
1

)

∫ )

0
*8 (G, C) 3C (2.47)

where ) is the total time of observation. This relationship implies that the time-averaged

velocity at a point G will give the same statistical information as averaging over multiple

realizations, a condition known as ergodicity.

2.4.3 Correlations

When the random variable is a function of time, the phenomenon is called a random process

and will be indicated as * (C). Even if the probability density function (PDF) is known at a

certain location in the flow field, this does not provide information about existing statistical

relations between two different points in the flow; indeed, very different statistical processes

might have the same PDF. For this purpose, multi-time and multi-space statistical properties

are used. The auto-covariance at the point G is defined as:

'(G, g) ≡ 〈D(G, C)D(G, C + g)〉 (2.48)

where g is called the lag time. If the process is statistically stationary, the auto-covariance

does not depend on C but only on g. The auto-covariance gives an idea of the time that it

takes for the process (the turbulent flow, in our case) to “forget” its past history at a particular

point. From the auto-covariance, the correlation function can be defined as:

d(G, g) ≡ 〈D(G, C)D(G, C + g)〉
〈D(G, C)2〉

(2.49)

It has the following properties:

1. d(0) = 1;

2. |d(g) | ≤ 1.

In Figure XX, an example of the autocorrelation function for the streamwise velocity,

dDD (g), is plotted against the lag time C0D.

A time scale called the integral time scale can be defined as:

ΛC ≡
∫ ∞

0
d(g) 3g. (2.50)

Similar considerations on correlation can be made using space instead of time as the

parameter. Covariance can be defined using fluctuations from different points in space but at
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the same time, instead of the same point but different times. If this is the case, the covariance

becomes a multi-space and single-time statistical property:

'D (G,A) ≡ 〈D(G, C)D(G + A, C)〉. (2.51)

From this, in the same manner as before, the spatial correlation function is defined as:

dD ≡
〈D(G, C)D(G + A, C)〉

〈D(G, C)2〉
. (2.52)

Here, A is the distance vector between the point G and the other point where fluctuations

are measured. If the process is statistically stationary, both the covariance and the spatial

correlation function are independent of the time C. Spatial correlation functions can be

calculated in various ways, for example considering the spatial correlation of a velocity

component D8 with itself (called spatial autocorrelation) or two different velocity components,

referred to as cross-correlation. The autocorrelation can be longitudinal if A is parallel to D8

or transverse if it is perpendicular. Just like the temporal correlation, an integral scale can

be defined. The integral length scale is:

Λ; ≡
∫ ∞

0
dD (A) 3A. (2.53)

As can be seen in the integral for Λ; , integration should ideally be applied over an infinite

domain. That’s obviously not feasible, both in experimental and numerical studies. To

overcome this problem, the spatial correlation function is usually integrated up to its first

zero value or, if there is one, to its minimum negative value.

2.4.4 Taylor’s hypotesis

Although temporal and spatial correlations of a variable are theoretically and experimen-

tally distinct (the former can be assessed using single-point measurements, while the latter

necessitates multiple points), a question arises regarding any potential connection between

the two. Specifically, when we obtain one type of correlation, can we infer anything about

the other? Typically, it is more straightforward to conduct measurements at a single location

over time rather than simultaneously across several points.

Taylor (1938) proposed a straightforward hypothesis suggesting that the time and spatial

behaviors of a fluid-mechanics variable : along the mean flow direction are linked by the

convection velocity *2:

m:

mC
≈ −*2

m:

mG1
. (2.54)
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This equation implies that the diffusion of quantity : and its transport in directions

perpendicular to the mean flow are neglected. Although this may appear to be a simplistic

approximation, experimental evidence supports its effectiveness in many conditions, with

the convection velocity *2 being a critical factor. This hypothesis is commonly referred to

as frozen turbulence, as Taylor’s initial formulation assumes*2 =* for all scales, indicating

that the flow structures are "frozen" and are solely transported by the local mean velocity

field. When analyzing spectral functions, Taylor’s hypothesis permits the substitution of

frequency along the mean flow direction with wavenumber.

However, experiments have shown that this simplification does not always hold true. For

a more accurate application of the hypothesis, it is necessary to consider convection velocities

that differ from the mean velocity. Studies by Romano (1995) and Del Alamo and Jiménez

(2009) in wall turbulence indicated that a convection velocity lower than the local mean

should be applied when close to the wall. It is generally accepted that while larger scales

are conveyed by the mean flow velocity, smaller scales are transported at significantly lower

velocities, which are influenced by the Reynolds number and the specific characteristics of

the flow.

2.4.5 Power spectral density

The complete characterization of a random process cannot be derived solely from its probabil-

ity density function (PDF). While correlations provide additional insights into the temporal

and spatial evolution of the process, the spectral analysis describes how the energy of the

random process is distributed across different frequencies. By presenting turbulence in the

frequency domain, we can analyze how the energy of turbulent fluctuations is allocated

among various frequencies and, using Taylor’s hypothesis, associated scales.

To facilitate this analysis, the Fourier transform � can be utilized. The Fourier transform

converts a time-domain function 5 (C) into a new function, denoted � (l), where the argument

represents angular frequency (l = 2c 5 ). The functions 5 (C) and � (l) are known as the

time-domain and frequency-domain representations of the same event, respectively:

� (l) = 1

2c

∫ +∞

−∞
4−8lC 5 (C)3C. (2.55)

For continuous signals, such as those typically encountered in experimental measure-

ments, it is more practical to define a power spectral density (PSD), which indicates how the

power of a signal or time series is distributed across various frequencies. The power % of a

signal D(C) can be expressed as:
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% = lim
)→∞

1

)

∫ +∞

0
D(C)3C; (2.56)

however, for many signals of interest, the Fourier transform may not exist. Consequently,

it is advantageous to work with a truncated Fourier transform �) (l), in which the signal is

integrated only over a finite interval:

�) (l) =
1
√
)

∫ +∞

0
D(C)4−8lC3C. (2.57)

The power spectral density can then be defined as:

(DD (l) = lim
)→∞

〈�) (l)〉; (2.58)

a crucial property of the PSD is that for a statistically stationary process, it forms a

Fourier transform pair with the autocovariance function '(g) :

(DD (l) =
1

2c

∫ +∞

−∞
4−8lg'(g)3g, (2.59)

the inverse transform is given by:

'(g) =
∫ +∞

−∞
48lg(DD (l)3l; (2.60)

for g = 0, this becomes:

D2
=

∫ +∞

−∞
(DD (l)3l. (2.61)

Thus, (DD (l) can be interpreted as the variance (or turbulent energy) present within the

frequency band of width 3l centered at l . It is important to note that the power spectral

density is an even function, i.e., (DD (l) = (DD (−l). For our application, we will focus solely

on positive frequencies; hence, we can define:

%DD (l) =



2(DD (l) if l > 0

0 if l ≤ 0,
(2.62)

typically, the frequency 5 is used instead of the angular frequency l when representing

the PSD in the frequency domain.
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2.4.6 Spectral density estimation

When conducting spectral analysis on experimental data, we aim to estimate the spectral

density of a random signal D(C) from a finite set of time samples. The most straightforward

approach is to apply a discrete Fourier transform (DFT) to the entire dataset, commonly

known as the periodgram method. However, this approach introduces several issues. One

primary issue is spectral bias caused by the abrupt truncation of the data, as a finite dataset

can be viewed as a signal multiplied by a rectangular window function. Additionally, this

method often results in a scattered and noisy spectrum.

To mitigate these issues, a window function that provides a more gradual truncation of

the dataset is typically employed. The downside of using a window is that it introduces a loss

factor since part of the data is artificially attenuated. To reduce random errors and achieve a

more accurate spectral density estimate, the signal is divided into multiple segments, and the

DFT is computed separately for each segment, with the results then averaged. This method

yields a smoother and more accurate power spectral density (PSD) estimate, though at the

expense of a reduced frequency range. The lower frequency limit is determined by the length

of each individual segment.

For current measurements, the method proposed by Welch (1967) was used. Welch’s

method provides a smoother PSD estimate by calculating the DFT for different segments of

data and then averaging them. It also minimizes the loss of information due to windowing

by overlapping these segments. The method can be summarized as follows:

1. The sampled data D(C), consisting of = points, is divided into # segments, each of

length �, with each segment overlapping the next by �/2 points (50% overlap in this

case).

2. A window functionF(C), such as a simple Hanning window, is applied to each segment

in the time domain to reduce bias.

3. The DFT is computed for each windowed segment D(C)F(C), and the square magnitude

is calculated to obtain # spectral estimates.

4. These # spectral estimates are then averaged to produce the final PSD estimate.

Using this method, the PSD estimate %DD ( 5 ) is obtained. In some cases, the wavenumber

spectrum is preferred over the frequency spectrum. To convert from frequency to wavenum-

ber, Taylor’s hypothesis is applied:

: =
2c 5

*
, (2.63)
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where * is the local mean velocity. The wavenumber spectrum ΦDD (:) can be derived

from the PSD %DD ( 5 ) as follows:

ΦDD (:) =
%DD ( 5 ) ·*

2c
. (2.64)

Thus, by integrating the wavenumber spectrum over all wavenumbers, the variance of

the signal is obtained:

D2
=

∫ ∞

0
ΦDD (:)3:. (2.65)
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Fig. 2.2 Pre-multiplied power spectral density, %DD, of a single hot wire probe measurement.

2.5 Filtering procedures

Here, we will present the fundamentals of the conventional POD, the harmonic POD and

a spectral decomposition technique that offers a complementary framework for analyzing

complex systems by decomposing the data into its constituent frequency components. To

validate the effectiveness of these filtering procedures, we generate a synthetic signal com-

prising multiple sinusoidal components with added Gaussian noise, simulating the 6 different

microphones we employed in the actual experimental campaign (see Fig. 6.2). The signal

composition allows for a controlled analysis of each method’s ability to extract the under-

lying sinusoidal components and perform noise-removal. We will apply conventional and

harmonic POD following the terminology of Tinney et al. (2019), whereas the spectral sub-
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traction methodology is based on the work of Richardson et al. (2023). Upon application of

the algorithms to the proposed synthetic signal, we will compare the filtered results with the

original, noise-free data.

2.5.1 Synthetic signals setup

A synthetic signal generator was implemented to create artificial signals that can be employed

to test the filtering procedures before their applications on the actual sparse measurements of

wall-pressure fluctuations from the CICLoPE facility. As will later be explained in Chapter

5, four unsteady wall-pressure sensors were employed, together with a fifth sensor, mounted

on the centerline of the pipe, that monitored facility (acoustic) noise (see Fig. 6.2). Facility

noise, caused by operation of the fan and mechanical vibrations of the pipe, propagates

through the duct travelling at the speed of sound and maintaining high coherence at the

locations of all five sensors employed. Turbulence-induced hydrodynamic wall-pressure

fluctuations, instead, given the length scales of typical wall-pressure structures, retain very

low correlation when convecting with the mean shear.
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Fig. 2.3 Tonal peaks generated at 90�I and 190�I along with Power spectral density of the
synthetic time series generated.
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Fig. 2.4 Low SNR turbulence noise modeled as a broadband white noise. PSD of the noise.
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Fig. 2.5 Combined synthetic signal along with the power spectral density.

Given these characteristics, the synthetic signal simulates the acoustic noise by incor-

porating two arbitrary high-amplitude tones as can be seen from Fig.2.3 (at 5 = 90 Hz and

at 5 = 190 Hz). Turbulence, instead, is modeled as broadband white noise in the band

10Hz < 5 < 2500Hz (see Fig.2.4). The four wall-pressure sensors are fed a signal resulting

from the linear superposition of the two components (acoustic and turbulence-induced, see
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Fig.2.5), with the amplitude of the acoustic tones being ≈ 50× higher than the background

turbulence-induced noise. The centerline microphone, instead, by design, does not measure

wall-pressure fluctuations, but only records acoustic noise. By simulating such conditions,

one can evaluate the effectiveness of the filtering techniques, such as POD, harmonic POD,

or spectral analysis, to ensure that the final processed signal is free of undesired noise sources.

Successfully filtering out these components allows for a more accurate representation of the

desired flow information, ensuring more reliable data.

2.5.2 Proper Orthogonal Decomposition (POD)

Proper Orthogonal Decomposition (POD) calls for the definition of a kernel constructed by

Hilbert-Schmidt’s theory of integral equations with symmetric kernels. The general form

for this kernel is written as follows:

'(−→G ,−→G ′) = 〈?(−→G , C)?∗(−→G ′, C)〉. (2.66)

Here, brackets 〈 〉 denote ensemble averaging, −→G is a three-dimensional spatial vector,

and ∗ denote the complex conjugate. Whether we choose to apply scalar or vector form of

the technique will have a deep effect on both the size of the kernel and the number of times

it is constructed. The integral eigenvalue problem thus becomes:

∫ !

0
'(−→G ,−→G ′)q(=) (−→G ′)3−→G ′

= _(=)q(=) (−→G ′), (2.67)

from which eigenvalues (_) and eigenfunctions (q) are obtained. It is clear from the

formulation above that there is a unique kernel for each solution, thus implying that there

is a unique (q) for each mode. To generate a reduced order model, one must create the

expansion coefficients by projecting the raw data onto the ‘eigen modes’:

0 (=) (C) =
∫ !

0
?(−→G , C)q(=) (−→G )3−→G . (2.68)

They are both orthogonal and time varying. The model is then built as follows:

?< (−→G , C) =
<∑

0 (=) (C)q(=) (−→G ). (2.69)

The sum is performed over POD modes defined in the range < = =1 : ==, or any unique

combination of modes, for example < = [=1, =4, =5]. If all modes are retained in the

construction of the reduced-order model, the starting signal will be obtained.
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An application of classical spatial POD will be presented here using a synthetic signals to

prove the effectiveness of the algorithm. POD eigenmodes as function of mode number and

senor are depicted in Fig.2.6, where we can observe that modes 2,3, 4 and 5 contain significant

information related to the signal, while mode 1 seem to be constant ad ‘off’ throughout every

sensor. Figure 2.7 depicts the pre-multiplied power spectral densities of the denoised (blue)

and original (green) signals. Upon inspection of the plots, one can immediately perceive

how the tonal peaks of the synthetic signal are attenuated almost completely with respect to

the original signal, while the broadband noise appears unaltered.

Fig. 2.6 q(=) (G) plotted as function of modes and considered sensors

10
2

10
-3

Fig. 2.7 Pre-multiplied power spectral density of the original synthetic signal (green) and
the reconstructed synthetic signal using only POD modes 2, 3, 4, and 5 (blue line).
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2.5.3 Harmonic Proper Orthogonal Decomposition (hPOD)

Applying a spectral-based kernel to tackle the POD eigenvalue problem resembles solving

Eq.(2.67). In each scenario, the formulations condense any stationary, periodic, or homoge-

neous field direction (in space or time) into a collection of harmonic modes. The new kernel

will then be defined as follows:

'̌(−→G ,−→G ′; 5 ) = 1

2c

∫ +∞

−∞
〈?(−→G , C)?∗(−→G ′, C + g)〉4−82c 5 g3g. (2.70)

Such kernel can be used to solve the eigenvalue problem:

∫ !

0
'̌(−→G ,−→G ′; 5 )q̌(=) (−→G ′; 5 )3−→G ′

= _(=) ( 5 )q̌(=) (−→G ; 5 ). (2.71)

We will then obtain random orthogonal expansion coefficients:

0̌( 5 ) =
∫ !

0
?̌(−→G ; 5 )q̌(=)∗(−→G ; 5 )3−→G . (2.72)

Harmonic POD modes are arranged arbitrarily, and the system is then reconstructed at a

given frequency, following the same procedure as for classical POD:

?< (−→G ; 5 ) =
<∑

0̌ (=) ( 5 )q̌(=) (−→G ; 5 ). (2.73)

The application of Harmonic Proper Orthogonal Decomposition (hPOD) to a set of five

synthetic signals demonstrated effective signal decomposition and filtering. An analysis

was performed by examining the dominant mode as a function of sensor position and

frequency, revealing key insights into the behavior of the signals. To further validate the

effectiveness of hPOD, pre-multiplied power spectral densities were compared between the

original synthetic signals and the hPOD-filtered output (see Fig.2.8). This comparison

highlighted a successful attenuation of two significant tonal peaks by 98.1% and 94.9%,

respectively, indicating a reduction in unwanted frequency components. The parameter [

was used to assess the filtering performance, representing the capability of the filtered signal

to accurately reconstruct the original synthetic signal while effectively eliminating the tonal

peaks. Notably, only the first mode, which is highlighted in the figure 2.9, was discarded

during the reconstruction process to achieve a noise-free signal, highlighting the precision

of hPOD in targeting specific frequency contributions while preserving the integrity of the

signal.
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Fig. 2.8 Pre-multiplied power spectral densities of the raw synthetic data (highlighted in
green) and reconstructed data using the harmonic POD technique (light blue), retaining only
modes 2, 3, 4, and 5.
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Fig. 2.9 q(=)(G; 5 ) , = = 1 : 5, plotted as a function of frequency and sensors.

2.5.4 Conditional Spectral Analysis (CSA)

Conditional spectra analysis is helpful when dealing with several noise sources and sensors.

Richardson et al. (2023) proposed such a technique to remove facility noise adopting a

multiple-input, multiple-output approach. Here, we implement the same methodology, only

considering four contaminant signals.

Assume a linear relationship between a complex column vector of B measured partially

coherent input contamination signal � = F (2), where C is defined as the Fourier transform
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of the contamination signals 2 expressed as time series, and a corrupted column vector @

of output signals � = F (3). The input contamination signals are individually filtered using

an unknown complex matrix � ∈ C@×B and superimposed with the desired, yet unknown,

considered signals % = F (?). The values of � are assumed not to be correlated with � and

produce contaminated pressure signals �. The model is given by:

�
@×1

= �
@×B

�
B×1

+ %
@×1

(2.74)

Multiplying by the complex conjugate transpose �∗, computing the spectral densities

and considering that � and % are uncorrelated:

�23
@×B

= �
@×B

�2:2;
B×B

. (2.75)

The matrices �23 and �2:2; represent, respectively, the cross-spectral densities between

inputs and outputs and the auto-spectral densities of the inputs. We can solve the previous

equation by matrix inversion provided that �2:2; is not singular:

� = �23�
−1
2:2;

. (2.76)

Our final goal is to obtain the cross-spectral densities of the raw pressure signals, so we

isolate %:

%
@×B

= �
@×1

− �
@×B

�
B×1

(2.77)

� ?: ?; = �3:3; −�23�
′−��32 +�23�

−1
2:2;

�2:2;�
′ (2.78)

= �3:3; −��32 (2.79)

= �3:3; −�23�
−1
2:2;

�32 . (2.80)

The diagonal and off-diagonal terms of� ?: ?; provide the denoised auto-spectral densities

and cross-spectral densities, respectively. Figure 2.10 demonstrates the impact of the CSA

filter on five synthetic signals. One served as the unknown pressure signal, while the other

four acted as contamination sources. The pre-multiplied power spectral densities of the raw

(green line) and de-noised (orange line) signals are displayed. The two peaks are clearly

identified and attenuated: the second peak is fully filtered, while the first peak remains with

an almost negligible intensity, as highlighted in the inset.
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Fig. 2.10 Pre-multiplied power spectral density of the unfiltered synthetic signal (green) and
the filtered signal using CSA (orange).

The application of three different filtering techniques: POD, hPOD, and CSA, to retain

hydrodynamic fluctuations in synthetic signals with tonal peaks at 90 Hz and 190 Hz demon-

strated that all techniques effectively detected and filtered out the tonal peaks. However,

CSA partially retained the low-frequency peak (2.2%), while hPOD retained only 1.9%

and 6.1% of the two tonal peaks, respectively. The effectiveness of the filtering methods

was evaluated by the capacity to reconstruct the original signal, with reconstruction quality

quantified through the integral of the pre-multiplied power spectra. All techniques achieved

high-quality results, with reconstruction levels exceeding 90% of the original noise-free

signal.

Figure 2.11 illustrates the differences between the pre-multiplied power spectral densities

of the original synthetic signal (SS) and three filtering techniques, with each curve offset by

two units to improve clarity. Instead of evaluating the overall reconstruction accuracy using

integral differences between the SS and filtered signals, the focus here is on the normalized

results, emphasizing the frequency content of the filtered signal. This approach allows

us to identify local deviations or imperfections in the filtering process. The figure shows

that both POD and hPOD effectively capture the original behavior of the synthetic signal,

whereas CSA struggles to match the SS values, likely due to the low SNR of the synthetic

data. Although POD and hPOD deliver more accurate reconstructions, they require careful

mode selection to achieve optimal results. In contrast, CSA, despite its lower reconstruction

accuracy—potentially due to the sparse configuration used—offers a simpler approach, as

it does not require detailed consideration of mode shapes during processing. Additionally,
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Fig. 2.11 difference between pre-multiplied power spectral densities of the filtered signal and
original, noise-free, signal. light blue line refers to hPOD results, dark blue line highlight
POD data while orange line depicts CSA filtering operation. The results are offset by 2
unit to enhance the accessibility of the figure. Black dashed line reports the location of the
two tonal peaks respectively at 90�I and 190�I. The three solid black lines presents the
reference of the synthetic signal.

table 2.1 summarizes identification of tonal peaks, their effective attenuation, and each

method’s ability to reconstruct the original noise-free SS.

Filtering
technique

Tonal peak
90�I

Tonal peak
190�I

[ (%)

POD �/' �/' 97.5%

hPOD �/≈ ' �/≈ ' 95.6%

CSA �/≈ ' �/' 93.8%

Table 2.1 Results of different filtering techniques applied to the synthetic signal. ’D’ indicates
the detection of the tonal peak, while ’R’ denotes the successful removal of the peak. The
percentage, [, represents the effectiveness in reconstructing the original noise-free signal.



Chapter 3

Facility and experimental Methods

3.1 CICLoPE "Long Pipe"

3.1.1 The need for a high Re facility

The idea behind the construction of the CICLoPE laboratory, and in particular the design

of the Long Pipe, is to address critical research issues related to wall-bounded turbulence

at high Reynolds numbers, combining for the first time well-established sensors with high

accuracy. Despite the fact that high Reynolds number turbulence appears in numerous

practical industrial and environmental applications, its richness and complexity challenge

both numerical and experimental approaches. On one hand, current computational power is

insufficient to obtain good statistics, and on the other, spatial resolution becomes a severe

hindrance when opting for an experimental approach to investigate high Reynolds number

regimes. The Long Pipe at CICLoPE was designed to enable fully resolved measurements

using traditional instruments, something not possible in any other facility worldwide. The

first requirement is to define the operational Reynolds number range, which must account

for two fundamental features of high Reynolds number wall-bounded turbulence: a well-

developed overlap region of the mean flow and a well-developed :−5/3 region.

In wall-bounded turbulent flows, it is well-known that there is an overlap region where

the mean flow is described by a logarithmic law (eq.2.33). The extent of this region is

commonly accepted to be 200 < H+ < 0.15', and to ensure sufficient spatial resolution, this

region must extend for at least a decade, i.e., up to H+ ≈ 2000. Defining H+ = 2000;∗, the

constraint on the upper bound becomes:

2000;∗ < 0.15'. (3.1)
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This leads to a lower bound on the operational Reynolds number ('4g = 'Dg/a = '/;∗),
giving:

'4g > 1.33×104. (3.2)

To draw conclusions on the scaling behavior of turbulent flows, a factor of 3 is applied,

leading to a minimum highest Reynolds number of 4× 104. For the appearance of the

:−5/3 region in the spectra, according to Kolmogorov theory (confirmed by numerical and

experimental results), sufficient separation between the Kolmogorov scale [ and the energy-

containing scales ;0 must be guaranteed. In pipe flow, the energy-containing scale is the pipe

diameter '. Physically, this means that the :−5/3 region should end at around a tenth of the

wavenumber corresponding to the Kolmogorov scale, stretching for one order of magnitude

in the wavenumber space, extending down to wavenumbers an order of magnitude smaller

than the energy-containing scales �. Using a numerical dataset, for '4g = 14000, the

Kolmogorov scale at the centerline is [�! ≈ 10.6;∗. For the constraints mentioned, the :−5/3

region starts at approximately 106;∗ and extends for a decade until 106;∗, according to:

1060;∗ < 0.1�. (3.3)

In terms of '4g, this implies:

'4g > 5.3×103. (3.4)

This condition is satisfied by the fully developed overlap region constraint, setting the

operational range to 1.3× 104 < '4g < 4× 104. The next step is designing the facility to

reach these high Reynolds numbers. Starting from the Reynolds number definition:

'4 =
d*!

`
. (3.5)

Several options exist to increase the Reynolds number. The most direct approach is

to increase the velocity *, but this has two main drawbacks: it increases power demand

significantly, and the velocity increment is limited by the onset of compressibility effects.

Another approach is to decrease the viscosity `, as done in cryogenic facilities. Alternatively,

one could pressurize the facility to increase density, as is done in the SuperPipe at Princeton,

where the pressure at the test section can reach up to 187 atm, achieving a maximum

'4g ≈ 105. The strategy adopted in the large-scale CICLoPE facility is to increase the

characteristic length !, which, in the case of pipe flow, corresponds to the radius '. This

method preserves spatial resolution, unlike the previous methods. Considering the definition
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of friction Reynolds number '4g, the size of the small scales can be linked to the characteristic

size of the facility, ':

;∗ =
'

'4g
. (3.6)

For a fixed outer dimension, increasing the Reynolds number inevitably decreases the

size of small scales, leading to poor spatial resolution. This trend can be counterbalanced

by increasing the size of the facility to ensure a minimum ;∗ that can still be measured by

traditional methods. Standard single hot-wire probes can be manufactured with a sensing

length as short as 120`<, up to a maximum of 10;∗ to avoid spatial averaging. This sets a

lower limit to the viscous length scale ;∗ at 12`<. Using eq.3.6 and recalling that the facility

needs to reach '4g ≈ 4×104, we find that the radius of the Long Pipe should be 0.48<.

Fig. 3.1 Range of Reynolds numbers vs. viscous length scales for different pipe flow
experiments. The vertical dashed line marks the lower bound of the high-Reynolds number
region ('4g ≈ 13,300). The horizontal dashed line represents the ;∗ > 10`< limit for
sufficient spatial resolution. CICLoPE operates within this region. The vertical dotted
line indicates the highest DNS of pipe flow ('4g = 6000, Pirozzoli et al. (2021)), and the
horizontal dotted line marks the fully resolved measurements using NSTAP sensors (30`<,
Bailey et al. (2010)).

The pipe’s radius is also subject to another constraint: the length-to-diameter ratio (!/�),
a key feature in pipe flow experiments. According to Zagarola et al. (1996), this parameter

depends on two conditions: the length the boundary layer needs to grow to reach the center
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of the pipe and the length required for turbulence to fully develop. Both lengths increase

with Reynolds number. Zagarola et al. (1996) determined that a length of 100� (about 100

meters) is necessary to satisfy both conditions in the investigated regimes. Fig. 3.1 illustrates

the need for a large-scale experiment like CICLoPE to reach high Reynolds numbers without

lowering fluid viscosity.

3.1.2 Wind tunnel layout

The requirements discussed in the previous section led to the design of the Long Pipe. This

facility consists of a closed-loop wind tunnel, with a test section that is a 111.5 m-long

circular pipe. The facility is housed within one of the two 130 m underground tunnels at the

former Industrie Caproni, one of Italy’s leading aircraft manufacturers from 1930 to 1943,

located in Predappio. These tunnels were excavated beneath the mountains before World

War II to allow aircraft assembly during bombing raids. The closed-loop design ensures

stable flow conditions with low turbulence levels. It includes a heat exchanger to maintain

temperature control within a range of ±0.1◦� and a flow-conditioning system comprising

honeycomb structures, four screens, a settling chamber and a convergence with a contraction

ratio of �' = 4 the maximum achievable within the dimensional constraints of the site.

Figures 3.3 and 3.4 provide a schematic of the wind tunnel, outlining its key components.

The primary component of the flow loop, responsible for 60% of the total pressure

losses, is a round pipe of constant cross-section. Figure 3.2 illustrates key details of this

pipe. It measures 111.5 m in length with an inner diameter of 900 mm, resulting in a !/�
ratio of approximately 123. The pipe is constructed from twenty-two 5 m long carbon-fiber

sections, plus a final 1.5 m long section, all produced using filament-winding technology.

This method achieves a surface roughness of :A<B < 0.2 `m (:+ < 0.02) and a diameter

tolerance of 900±0.2 mm. Each pipe section is fitted with four axially spaced static pressure

taps and four radially distributed access ports of 150 mm in diameter, providing access to

the pipe. The aluminum access ports are machined to sit flush with the inner surface of the

pipe, as shown in Fig.3.2d.

The test section connects to the return circuit located one floor below through a removable

shape converter and a series of diffusers and corners. Uniquely, this wind tunnel features

six corners (instead of the typical four) to allow the return duct to run beneath the main

laboratory floor, providing access for vehicles, before rising above the main tunnel floor

via two expanding corners placed before the heat exchanger. The circuit comprises four

rectangular expanding corners and two non-expanding circular corners, all equipped with

turning vanes. The fan system is designed to provide a pressure rise of 6500 Pa at a volume

flow rate of 38 m3/s, corresponding to a velocity of 60 m/s in the test section. It consists
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Fig. 3.2 Elements of the Long pipe facility: a) Heat exchanger and return circuit of the Long
Pipe. (b) Settling chamber, Honeycomb, screens and contraction at the inlet on the Long
Pipe c) View of the pipe. c) Opening at the final pipe section of 1.5< along with the diffuser
and shape converter placed downstream the Long Pipe.

of two, two-stage counter-rotating axial fans mounted in series. Each axial fan has two

propellers on a shared motor, powered by a dedicated inverter. The fan diameter is 1.8 m,

with a total length of 4.2 m, and the system’s maximum power consumption is 340 kW. For

noise reduction, straight cylindrical sections 20 m upstream and downstream of the fans are

lined with sound-absorbing material. Temperature and humidity are controlled separately

for the main tunnel and the laboratory housing the smaller 1.5 m section, using two external

air conditioning systems. Both the wind tunnel airflow and the fan motors are liquid-cooled

via a refrigerating circuit connected to an evaporative tower outside the facility.
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Fig. 3.3 Schematic view of the "Long Pipe".
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Fig. 3.4 Schematic view of the "Long Pipe".
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3.2 Hot wire anemometry

Hot-wire anemometry (HWA) remains one of the most widely used techniques for velocity

measurements in turbulence research, even many years after its initial introduction by King

(1914). The enduring popularity of HWA is largely due to its exceptional performance in

terms of spatial and temporal resolution, while being significantly less expensive than optical

measurement techniques. However, its disadvantages include the intrusive nature of the

measurement and the fact that a single wire sensor can only measure one velocity component

at a point. The fundamental principle behind HWA is that a heated wire experiences a cooling

effect due to the flow. This cooling is mainly driven by forced convection, which is highly

dependent on the flow velocity. If this heat loss can be accurately quantified, it is possible

to determine the flow velocity through calibration, based on the cooling rate of the wire.

Unlike pressure-based systems such as Pitot or Prandtl tubes, the cooling effect in HWA

occurs rapidly due to the small size of the sensing element, providing a very high frequency

response.

Modern hot-wire systems typically operate in constant temperature mode (CTA), where

the anemometer maintains the wire at a constant temperature and measures the electrical

current required to do so. This section will provide a general overview of HWA and its main

features. For more detailed information, readers are directed to the extensive literature on

the subject, including works by Bruun (1996) and Tropea et al. (2007). An analysis of heat

generation and transfer in a hot-wire follows. In the most general case of an unsteady wire

temperature )F, the heat balance can be written as:

<F2F
3)F

3C
=, −&. (3.7)

The left-hand side represents the rate of change in the thermal energy stored in the wire,

where )F is the wire’s temperature, <F is its mass, and 2F is the specific heat of the wire’s

material. On the right-hand side, , is the thermal power supplied to the wire, and &

represents the heat lost from the wire. In hot-wire anemometry, the heating is provided by

the Joule effect: a current �F is passed through a wire with resistance 'F:

, = �2
F'F . (3.8)

Neglecting other forms of heat loss, the heat loss per second due to forced convection (the

dominant mechanism in most flow conditions) is given by:

& = ()F −)0)�ℎ(*), (3.9)
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where )0 is the fluid temperature in contact with the wire, � is the surface area of the

wire, and ℎ(*) is the heat transfer coefficient, which depends on the flow velocity *. For

steady-state conditions ()F ≈ const), as is the case in CTA operation, equation 3.7 becomes:

�2
F'F = ()F −)0)�ℎ(*). (3.10)

For metals, 'F can be expressed as a function of )F using a linear approximation around a

reference temperature )0:

'F = '0 [1+U0()F −)0)], (3.11)

where '0 is the resistance at )0, and U0 is the resistivity coefficient of the wire material. For

metals, U0 is positive, meaning resistance increases with temperature. If we take the ambient

temperature )0 as the reference, we can derive:

)F −)0 =
'F −'0

U0'0

. (3.12)

For a cylindrical body, the forced convection coefficient ℎ can be expressed as:

ℎ =
Nu: 5

3F
, (3.13)

where : 5 is the thermal conductivity of the fluid, 3F is the diameter of the wire, and Nu is

the Nusselt number. In subsonic flow, neglecting natural convection:

Nu = Nu('4F ,
)F −)0
)0

), (3.14)

where '4F is the Reynolds number based on wire diameter 3F. Typically, 2 < '4F < 40 in

hot-wire measurements, which is before vortex shedding occurs. A common correlation for

the Nusselt number is:

Nu = �1 +�1'4
=
F, (3.15)

where �1, �1, and = (often taken as 0.5) are constants. For a given wire diameter, '4F
depends only on velocity *, and we can rewrite:

Nu = �2 +�2*
=. (3.16)

Combining equations 3.10, 3.12, and 3.16, we obtain King’s law:

�2
F'F

'F −'0

= �+�*=. (3.17)
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Introducing the voltage across the hot-wire �F = �F'F, and using relation 3.12, equation

3.17 becomes:
�2
F

'F

= (�+�*=)()F −)0). (3.18)

In CTA mode, where )F and )0 are constant, both 'F and )F −)0 are constants and can be

absorbed into � and �, yielding:

�2
F = �+�*=. (3.19)

This expression 3.19 can be fitted to calibration data to determine the values of �, �, and =.

3.2.1 Hot-wire limitations

Although hot-wires offer excellent spatial resolution, in wall-bounded flows at higher

Reynolds numbers, the smallest turbulent structures can be smaller than the size of the

sensing element. This limits the sensor’s ability to capture all velocity fluctuations, as

illustrated in Fig.3.5, where the wire is unable to resolve the smaller velocity variations.

Fig. 3.5 A hot-wire sensor with a non-uniform istantaneous incident velocity* (G, C)

Assuming that the cooling is caused exclusively by forced convection due to the normal

velocity component *, and neglecting contributions from tangential and bi-normal velocity

components, the effective cooling velocity sensed by the wire is approximately the normal

component, i.e., *eff ≈ *. If the normal velocity distribution along the wire varies, the

instantaneous velocity reading will represent a form of spatial averaging over the wire’s
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length. However, this is not a true spatial average because the heat transfer is not linearly

dependent on the effective velocity. Using King’s law as an example:

¤& ∝ �+�*=. (3.20)

The "filtered" instantaneous velocity reading then becomes:

D< (C) =
(

1

!

∫ !/2

−!/2
*= (B, C)3B

)1/=
, (3.21)

where ! is the wire’s length, and B is the position along the wire, with the origin at the

midpoint. The term = accounts for the non-linear relationship between the heat transfer and

velocity. The primary impact on the measured quantities is an attenuation of the observed

velocity variance. Wyngaard (1968) explored how incomplete spatial resolution affects

velocity spectra using the local isotropy assumption. Many experimental studies focus on

wall-bounded flows, where spatial resolution limitations are most prominent. Ligrani and

Bradshaw (1987) studied the impact of wire length on velocity statistics in the near-wall

region of a boundary layer, identifying the wire’s length in viscous units, !+
= !/;∗, as a key

parameter in spatial filtering. More recent studies, such as those by Hutchins et al. (2009),

have also examined this issue. Segalini et al. (2011),Monkewitz et al. (2010), and Smits et al.

(2011a) proposed different correction methods for addressing spatial resolution errors.

From previous considerations on spatial resolution, one might assume that using a

shorter wire would improve measurements. However, this is not always the case, as there are

limitations on the minimum allowable wire length. Not all the heat is transferred from the

wire by forced convection. While radiation heat transfer is typically negligible, and natural

convection becomes significant only at very low velocities, a portion of the heat is transferred

from the wire to its support via conduction. This is an undesirable side effect that should be

minimized. The heat transfer due to forced convection is proportional to the surface area of

the wire exposed to the flow, i.e.,

& 5 2 ∝ cA2
F!, (3.22)

where AF is the radius of the wire and ! its length. On the other hand, the conduction

heat transfer is proportional to the cross-sectional area of the wire:

&2 ∝ cA2
F . (3.23)
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Thus, the ratio between forced convection and conduction scales as !/3F, where 3F is

the wire diameter. Ligrani and Bradshaw (1987) also examined the effect of the wire’s aspect

ratio on measured turbulence intensity. Their findings indicated that an aspect ratio of

!

3
> 200; (3.24)

is required to avoid attenuation effects.

3.2.2 Hot-wire calibration

Hot-wire velocity calibration is conducted ex-situ in a planar jet facility, covering a velocity

range of 0.5−50m/s. During the calibration process, the hot-wire voltage � , flow velocity*,

and flow temperature) are recorded for each calibration point. The flow velocity is measured

using a Pitot tube placed in the jet core near the hot-wire sensor, while the jet temperature

is obtained via a PT100 thermistor. A reference calibration temperature, )ref, is calculated

as the average temperature of all calibration points. The voltage for each calibration point

is then corrected with respect to its mean temperature )8, using the expression from Bruun

(1996):

� ()ref) = � ()8)
(
1− )8 −)ref

0F/Uel

)− 1
2

(3.25)
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Fig. 3.6 Calibration curve for a single wire probe, blue square refers to HW data points while
dashed red curve highlights the interpolation curve using a 4Cℎ-order polynomial
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For single-wire probes, the calibration procedure involves acquiring around 15 calibration

points across the velocity range of the wind tunnel. A calibration curve is fitted to the data

points using a fourth-order polynomial:

* = �0 +�1� +�2�
2 +�3�

3 +�4�
4 (3.26)

Here, �0 to �4 are coefficients obtained via least squares fitting. An example calibration

curve for a single-wire sensor is shown in Fig.3.6 where dashed red line highlights the

polynomial interpolation curve while blue square depicts the HW acquired throughout the

calibration procedure.

3.2.3 X-wire calibration

Typically, two-wire probe are calibrated ex-situ in a planar jet wind tunnel (PAT) that allows

multiple x-wire calibration at a time. The probe is subjected to a series of controlled airflow

condition varying both flow speed and angle relative to the wire orientation (Burattini and

Antonia, 2004). Fig.3.7 shows a typical calibration map of an X-wire where blue empty

square refers to the data acquired during the calibration procedure. In addition to the voltage

of the two wires (�1, �2), obtained as a mean quantity over an acquisition time, velocity is

measured by means of a pitot probe. Temperature is also monitored to account for voltage

drift during the procedures using PT100 thermistor. The probe is then shifted at different

angles using a stepper motor.

1.4 1.6 1.8 2 2.2 2.4 2.6

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

U = 2 m/s

U = 46 m/s

U = 22 m/s

Fig. 3.7 Calibration curve for a two-wire probe, blue square refers to XW-data points at
different velocity values
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The look-up-table calibration was conducted by systematically exposing the x-wire probe

to a range of precisely controlled flow conditions. Specifically, eight different flow velocities

were tested to cover the entire operational range expected in the experiment, ensuring that

the calibration captures the probe’s response across various flow intensities. Alongside each

velocity setting, the probe was also subjected to 13 distinct flow angles, varying incrementally

up to ±27◦, to account for any directional dependence in the probe’s voltage response.

For each combination of velocity and angle, the voltages from both wires in the x-wire

probe were recorded. These voltages were then associated with their respective flow ve-

locities and angles, forming a comprehensive two-dimensional look-up table. This table

effectively maps the relationship between the probe’s voltage signals and the actual flow

conditions. This meticulous calibration setup allows for interpolation during actual measure-

ments, enabling accurate calculation of streamwise and wall-normal velocity components

based on the measured voltages. The inclusion of multiple velocities and angles up to ±27◦

ensures that the look-up table is robust and capable of handling complex flow dynamics. Fig.

3.8 shows the two calibration maps created to convert voltages combinations of wire 1 and

2 into velocity components, in our case, D and E.

(a) (b)

Fig. 3.8 Contour plots of the velocity components for the X-wire calibration procedure. (a)
D component; (b) E component.

To evaluate the effectiveness of the x-wire calibration, power spectral density (PSD) mea-

surements of the streamwise velocity were compared against those obtained from a calibrated

hot-wire probe placed at the same location in the flow. The PSD serves as a diagnostic tool

to assess the accuracy and reliability of the x-wire in capturing velocity fluctuations across

various frequencies. By comparing the spectral content from both probes, it was possible

to determine if the x-wire accurately reproduced the turbulent energy distribution and flow

characteristics at that point. Agreement between the PSD profiles of the x-wire and hot-wire
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would confirm that the x-wire’s look-up table calibration effectively captured the true velocity

components, validating the probe’s calibration over a broad range of frequencies relevant to

turbulent flow studies as can be seen in Fig.3.9 where PSD of the X-wire is reported showing

D component of the velocity in orange and E component of the flow velocity in blue. Yellow

curve reports data obtained from single wire measurements at the same wall-normal distance

in the Long Pipe.

100 101 102 103 104
0

0.5

1

1.5

2

Fig. 3.9 Pre-multiplied power spectral densities of X-wire data, Orange line refers to D

component of the velocity, blu line refers to E component of the velocity. Yellow line depicts
the single wire data obtained in the same location of the 2-wire probe.

3.3 Pressure measurements

Measuring steady pressure in fluid flow can be essential for determining thermodynamic

properties, calculating forces on a body from the pressure distribution, or determining

dynamic head and flow velocity. Pressure represents molecular activity and reflects the

non-directional motions of molecules, meaning it must, by definition, be measured by a

device stationary relative to the flow. Although it is customary in fluid mechanics to denote

this as ‘static’ pressure, this terminology is inherently redundant. In practical applications,

pressure is commonly measured both at wall surfaces and in the free-stream using the

types of measurement devices shown in Fig.3.10 which are connected to a transducer with

appropriate sensitivity and range. A small wall tapping orifice provides a straightforward

method to capture the pressure exerted on the wall by the external flow. Similarly, ‘static
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Fig. 3.10 Schematic view of the wall tapping technique.

pressure’ tubes can approximate the local pressure in the free-stream, provided that any

disturbance they introduce to the flow can either be corrected for or remains minimal.

3.3.1 Measurement of pressure with Wall Tappings

A wall tapping, or piezometer, provides a straightforward method for measuring the wall

pressure, ?F, in a wall-bounded flow. However, it requires careful consideration in many

flows. The finite size of tappings that can be manufactured with smoothness and reliability

may be large enough to introduce an error, resulting in a measured pressure ?F< = ?F +Δ?F.

Dimensional analysis shows that for a pressure tapping of a given geometry in a zero-pressure-

gradient flow (or where the tapping diameter is small relative to the pressure variation scale),

the non-dimensionalized pressure error, Π =
Δ?

gF
, depends on the following parameters:

Π = 5

(
3BDg

a
,
3B

�
,",

;B

3B
,
32

3B

)
, (3.27)

where each variable corresponds to flow and geometry characteristics. Additionally, the

wall-bounded flow condition (whether laminar or turbulent) affects the pressure measurement.

Here, 3B is the tapping (orifice) diameter, Dg =
√
gF/d is the friction velocity, � is the

characteristic flow length scale, " is the Mach number (the ratio of local velocity to the

speed of sound), ;B is the orifice depth, 32 is the diameter of the cavity behind the orifice, [ is

the root-mean-square height of burrs on the tapping orifice edge, d is the fluid density, and

a is the kinematic viscosity (Fig. 3.10). The actual wall pressure, ?F, can be found using

?F = ?<F −ΠgF . (3.28)
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The complex flow near the tapping makes it challenging to obtain analytical or numerical

solutions for the pressure error, which are currently available only for very low Reynolds

numbers and/or two-dimensional geometries. Most experimental data pertains to turbulent

flow over the orifice, and comparisons of experiments show considerable scatter in results.

This variation likely arises from the inherent difficulty of these experiments (with pressure

errors close to the experimental uncertainty) and the challenges in accurately extrapolating

the true pressure to quantify the error.

Researchers have explored various orifice shapes beyond the traditional straight-edged,

circular cylinder, which is drilled perpendicularly to the wall. Alternatives include slot-

type, angled, and radiused or chamfered-edge circular tappings, with varying connector

geometries between the tapping and transducer to accommodate experimental constraints

or manufacturing techniques. Although these designs aim to reduce pressure error, find-

ings—such as those by Allen and Hooper, who examined geometries like recessed and

countersunk orifices—indicate trends but remain inconclusive on a universal standard for

minimizing errors. Differences between cylindrical and slot-type tappings at supersonic

speeds, as reported by Chue (1975), demonstrate about ±1% variation in measured pressure,

highlighting correction needs for out-of-round tappings.

Tapping alignment and shape also play significant roles in measurement accuracy. For

example, Rayle (1949) studies show minimal error when the tapping centerline is angled

30° downstream relative to the outward wall normal, with deviations as the angle shifts

upstream or downstream. Surface curvature around the tapping, especially when the ratio

of orifice diameter to curvature radius approaches unity, influences results and suggests that

flat and curved surfaces may require different scaling laws. Additionally, below-surface

geometry, such as the ratio of orifice diameter to cavity diameter, affects results, as shown in

comparisons between Livesey et al. (1962) and Shaw (1960) experimental designs. Given the

variability associated with non-standard geometries, in situ calibration across the expected

flow conditions is recommended to ensure reliable wall pressure measurements.

3.3.2 Effect of cavity dimension

For deep tappings with smooth edges, the finite diameter induces local curvature of stream-

lines and vortex formation within the cavity, which affects the measured static pressure. The

error in pressure measurement, Π, depends on both the ratios 3+B = 3BDg/a (tapping diameter

to viscous scale) and 3B/� (tapping diameter to flow lengthscale), expressed as

Π = 5 (3+B , 3B/�) (3.29)
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(see Eq.(3.29)). However, accurately measuring Π is challenging due to small pressure differ-

ences, sensitivity to manufacturing variations, and the need to isolate individual parameters

like 3+B and 3B/�. Studies by Ray (1956), Franklin and Wallace (1970), and others have

examined the static hole error in boundary layers and channels, but variations in tapping ge-

ometries lead to scattered results. Shaw’s experiments in pipes, often considered a standard

for deep hole tappings, demonstrated that for small 3B/� and 3+B in the range of 25–800,

pressure error varies with diameter. McKeon and Smits (2002) extended Shaw (1960) work

across higher Reynolds numbers, finding that pressure error depends on tapping Reynolds

number alone at low 3+B , while 3B/� becomes increasingly influential as 3+B rises. Livesey

et al. (1962) model, based on streamline deflection, yielded curves similar to McKeon and

Smits’ data, shown in Fig. 4.2 (reprinted). For larger tappings and high tapping Reynolds

numbers, pressure error is better represented by the pressure coefficient

�?B =
Δ?

1
2d*

2
(3.30)

as a function of 3B/�. This is especially relevant in compressible, high-Reynolds-number

flows, where smooth, small tappings are challenging to manufacture.

In summary, pressure measurement error for tappings in turbulent flow increases with

3+B for a given 3B/� and decreases as 3B/� grows for a given 3+B . This error averages out

in steady internal flows but may impact boundary layer pressure gradients significantly. For

large tappings in laminar flow, as Rainbird (1967) noted, the error does not asymptote at

high Reynolds numbers and can reach $ (50). Additionally, large tappings in regions of

rapid pressure variation may introduce spatial averaging errors, especially if the tapping is

larger than the characteristic pressure variation length-scale. For more details about pressure

measurements, the reader is redirected to Tropea et al. (2007).

3.4 Static pressure drop

In the Long Pipe facility, the wall shear stress gF is measured indirectly via static pressure

drop along the pipe. For a pipe flow, the equilibrium forces acting on a volume of fluid

contained ina pipe section of length 3G is:

3?c'2
= gF2c'3G, (3.31)

which leads to:

gF =
3?

3G

'

2
. (3.32)
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Fig. 3.11 Variation of non-dimensional pressure error, Π, for different pipe Reynolds number
'4� , reprinted from McKeon and Smits (2002)

The pressure gradient directly links to the wall friction, allowing the calculation of the

friction velocity Dg =
√
gF/d, which, according to classical wall-turbulence theory, serves

as the relevant velocity scale in both the inner and outer regions of the flow. Accurately

estimating the pressure drop is crucial for obtaining precise normalized flow statistics, as

shown by Örlü et al. (2010), where an error in Dg significantly impacts the inner-scaled mean

velocity profile.

Static pressure measurements are taken along the pipe, spanning approximately 70 meters

upstream from the test section, using 1 mm diameter wall pressure taps. These measurements

are performed across different flow regimes by adjusting the rotational speed of the two axial

fans. Meanwhile, the centerline velocity *2; , ambient pressure ?0<1, and temperature are

monitored within the test section.

3.5 Oil Film Interferometry (OFI)

Wall shear stress, as expressed before, represents a key quantity that needs to be carefully

measured in wall bounded turbulent flows. Although the pressure drop represents a solid

solution for every flow condition, it suffers at low '4g due to small differences between

ambient pressure and static pressure inside the pipe and gives us a "global" quantity related

to the entire pipe section considered. Within this, Oil Film Interferometry (OFI) represents
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a robust alternative to wall shear stress measurements. To make measurements using OFI

techniques, oil is applied to the body. As fluid passes over the model or the considered

surface, the oil thins as shown in Fig.3.12. To quantify the thinning rate of the oil, the

oil thickness ℎ is measured, normally via interferometry. With a measurement of the oil

thickness at one or more instants in time, the local skin friction may be computed using a

form of the thin-oil-film equation.

Squire (1961) and Tanner and Blows (1976) where among the first to investigate the

possibility of using OFI in turbulence research aiming at measuring skin friction. Although

the oil moves under the effects of many parameters, the dominant contribution is caused by

tangential stress at the wall. Under this hypothesis, it is possible to link the evolution of oil

thickness, ℎ>8; , to wall shear stress, gF, taking advantage of the thin oil film equation:

mℎ>8;

mC
+ m

mG

(
gFℎ

2
>8;

2`>8;

)
= 0, (3.33)

Being that the flow develops mainly in one direction, we can neglect the E 0=3 F compo-

nent of the flow velocity and so consider that the oil film is mono-dimensional and aligned

with the direction of the flow. oil drop deformation will be a function of time and of only

one space component. we can integrate (3.33) through ℎ>8; obtaining:

ℎ>8; =
`>8;

gF

G

C
⇒ mℎ>8;

mG
=

`>8;

C · gF
(3.34)

As indicated above, the oil-film thickness ℎ is required to determine the surface shear-

stress. Fig.3.12 shows how amplitude slitting, or Fizeau, interferometry works in this

application. The light of wavelength _ emitted from a source strikes the film at an angle \8

and a part is reflected from the oil/air surface. Another part of that light will be refracted into

the film, and as it reaches the solid surface it will be reflected away travelling back through

the oil film. When focused by a lens, these two beams are combined together and interfere

constructively or destructively with each other depending on the phase difference q between

them as they reached the oil surface.

Figure3.13 helps us to calculate the optical path difference (OPD) between two different

reflected waves. It corresponds to segment �� in Fig.3.13. From the geometry, we can

observe:

�� = �� =
ℎ>8;

cosΩ2
; (3.35)

while �� = 2 · ℎ>8; · tanΩ2 we will have:

�� = 2 · ℎ>8; · tanΩ2 · sinΩ1. (3.36)
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Fig. 3.12 interference fringes produced by Fizeau Interferometry: first light source produces
constructive interference resulting in bright bands, whereas second light source produces
destructive interference and dark bands.

Being:

$%� =

(
��+��

)
· =>8; − �� · =08A , (3.37)

then:

$%� = =oil

(
2 · ℎoil

cos(Ω2)

)
−2 · ℎoil · tan(Ω2) · sin(Ω1) · =air. (3.38)

From Snell law (Hecht, 2002) (=08A · sinΩ1) = (=>8; · sinΩ2) we will have:

$%� = =oil

(
2 · ℎoil

cos(Ω2)

)
−2 · ℎoil · tan(Ω2) · ℎoil · sin(Ω2) · =oil. (3.39)

which will get us to:

$%� = 2 · =oil · ℎoil ·
(
1− sin2(Ω2)

cos(Ω2)

)
. (3.40)

In conclusion:

$%� = 2 · =>8; · ℎ>8; · cosΩ2. (3.41)

It is evident that interference is constructive if and only if OPD is a multiple of the wavelength

(_!) of the light source, hence:

$%� = < ·_! < ∈ N. (3.42)
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Fig. 3.13 wave reflection in OFI application

The difference in thickness between two successive fringes (Δℎoil = ℎoil2 − ℎoil1) can be

derived from the difference in OPD between two successive fringes:

Δ$%� = 2 · =oil · (Δℎoil) · cos(Ω2) = < ·_! − (<−1) ·_!; (3.43)

finally:

Δℎoil =
_!

2 · =oil · cos(Ω2)
. (3.44)

Reformulating, taking into account Snell’s law and fundamental trigonometric relationships,

we obtain:

Δℎoil =
_!

2 ·
√
=2

oil −=2
air · sin

2(Ω1)
. (3.45)

Formulation 3.45 allows us to calculate the variation in the thickness of the oil film corre-

sponding to two successive white fringes (constructive interference); since (Δℎoil) between

them is constant over time but (ΔG) is not, the drop deforms over time; specifically, as

(ΔG) increases over time, the film becomes progressively thinner. Having determined the

difference in thickness between two successive fringes, we now aim to relate this result to

the slope of the oil film, in order to uniquely describe its deformation.

In Fig.3.14, it can be observed that the distance between two successive fringes at a given

time (C) is:

ΔG = Δℎoil · tan−1 q; (3.46)
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Fig. 3.14 wave reflection in OFI application

it is possible to note that the slope tanq =
mℎoil
mG

, therefore:

ΔG = Δℎoil ·
(
mℎoil

mG

)−1

. (3.47)

By combining the various described equations, in particular equation (3.34) with (3.47), we

obtain:

ΔG = Δℎoil ·
gFC

`oil
, (3.48)

and thus:

gF =
`oilΔG

ΔℎoilC
. (3.49)

Taking the limit as (C → 0), we obtain the local (gF):

gF =
`oil

Δℎoil

mG

mC
. (3.50)

In summary, the described method allows us to determine the wall shear stress from the

study of oil drop deformation; specifically, it is possible to calculate the aerodynamic friction

by measuring the fringe evolution speed ( mG
mC
) and observing how quickly the distance between

them increases. In fact, since the other parameters (`oil and Δℎoil) are known beforehand

and remain constant, the wall shear stress is uniquely determined by equation 3.50. To

calculate the term ( mG
mC
), it is sufficient to take (=) photographs at equal time intervals and

extract from each one the mean or median distance between successive fringes; an example

of photographs taken at different times is shown in Fig. 3.15.
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Fig. 3.15 snapshots of the OFI with Fizeau fringes at different instant of time.

3.5.1 OFI processing

Here we briefly present the procedure used while processing the OFI data acquired using a

canonical setup that comprises: a Camera, a monochromatic light source and a glass surface

with a black background to enhance the reflection of the light into the camera. The process is

commonly divided into three main parts: calibration of the experimental setup, acquisition

and correction of every acquired image, calculation of gF from the set of OFI images.

Calibration of the setup

Accurate calibration is a critical component of the oil film interferometry (OFI) process,

as it ensures precise measurements of wall shear stress. The calibration procedure begins

with placing a reference grid inside the test section, which is photographed at the start of

each measurement. This grid, shown in Figure 3.16, provides a geometric reference with a

regular pattern, allowing for the determination of the pixel-to-millimeter conversion factor.

The conversion factor is essential for accurately scaling pixel measurements into real-world

units, which is crucial for analyzing the dimensions of the fringes generated during oil film

experiments.

Once the grid is photographed, the next step involves processing the image to correct any

camera inclination or misalignment. Even slight deviations from a perfectly perpendicular

view can introduce distortions into the measurement. In Figure 3.17, the left image shows

the identification of four key corner points on the grid. These points are used to correct
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Fig. 3.16 Calibration grid used as a reference, photographed before each measurement to
establish a pixel-to-millimeter scale.

the inclination, ensuring that the grid is properly aligned. After this correction, a pixel-to-

millimeter conversion factor is calculated, as shown in the right image. This factor is applied

in subsequent steps to determine the precise size of the fringes observed in the oil film during

experiments.

Fig. 3.17 Correction for inclination using four grid points (left), followed by the pixel-to-
millimeter factor calculation (right) for accurate fringe size measurement.

The calculated pixel-to-millimeter factor is crucial for determining the exact dimensions

of the interferometric fringes. These fringes are directly related to the local wall shear

stress, making accurate fringe measurement essential to obtain reliable data from OFI exper-

iments. By establishing a precise calibration setup, the overall accuracy of the shear stress

measurements is enhanced, ensuring that the experimental results are valid and reproducible.
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Acquisition and correction

It is quite important from now on to keep the setup as fixed as possible, in fact every

movement will result in an error caused by the mispositioning of the camera with respect

to the oil while converting pixel to metres the acquired images. Every acquired picture

will then be re-oriented as it is taken completely orthogonal to the camera. After such a

correction, a calibration factor (<4C4AB
?8G4;B

) and a transformation matrix will be obtained. Such

packed images will represents the entire dataset for each acquisition.

Fig. 3.18 Sample Oil Film snapshot

Since every acquisition corresponds to three different oil drops placed at the bottom of

the test section, the data sets will be split into three different parts. Within every images an

interrogation area will be selected as Fig.3.19 depicts where (a) highlights the selection of

the interrogation area with the red rectangle and (b) shows the cropped image. Figure3.19(b)

clearly shows that the interferometry pattern will vary mainly along the longitudinal direction

G. Thanks to this it is possible the extraction of a mono-dimensional signal representing the

light intensity along G for each acquired image as can be seen in Fig. 3.20.

Once the = signals are obtained, corresponding to the number of frames extrapolated

in phase 1, the procedure to calculate the wavelength ΔG in meters for each of them is

described. It should be recalled that the ultimate goal for estimating aerodynamic friction is

to determine the evolution speed of the interferometric fringes mG/mC, i.e., to calculate the

temporal variation of ΔG between successive fringes. Thus, for each signal, ΔG is estimated,

and since each signal is associated with a frame at a specific time instant, and given that the

time interval ΔC between two successive frames is known, it is possible to determine ΔG/ΔC,
which represents the speed of the fringes.
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Fig. 3.19 interrogation area selection.
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Fig. 3.20 Extrapolated signal after the selection of the interrogation area on the considered
oil drop. on the left, the signal extrapolated at C = 10 B; on the right the signal extrapolated
at C = 400 B

To calculate the wavelength of a discrete signal, a methodology used by Medici was

adapted to our case. This technique allows for identifying the signal peaks (which correspond

to the white fringes) and extracting the corresponding maxima, whose difference corresponds

to the wavelength. To do this, a threshold is defined as ( + 20% · (H<0G − H<8=), where (

represents the average value of the signal. If the signal exceeds the threshold while rising

and then crosses it again while descending, a peak of the signal, and hence a white fringe, is

identified.

To implement this, it is necessary to detect the points of intersection between the signal

and the threshold. This is achieved by defining a logical vector that contains a value of 1

at positions G where the signal intensity is greater than the threshold, and 0 elsewhere. By

computing the difference between successive elements of the logical vector, a new vector is
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obtained. The positions of value 1 in the new vector correspond to the G positions where

the signal exceeds the threshold while rising, whereas those with a value of −1 correspond

to the G positions where the signal exceeds the threshold while descending. By extracting

the indices from this new vector that fall within the interval [−1,1], the G coordinates

corresponding to the various peaks are identified. For better visualization, refer to Fig. 3.20.

As shown in the Fig. 3.20, the first and last crossing points of the threshold define two

incomplete fringes. To avoid detecting them, a check is added to the code that excludes

these points if they are present. The technique used to do this consists of eliminating the first

point if it corresponds to a descending threshold crossing and eliminating the last point if it

corresponds to a rising threshold crossing. Since, as shown in the figure, the signal intensity

values are sampled at not excessively dense intervals, the described procedure provides

intersection points (red points in the figure) that are not exactly centered on the threshold

but located around it. This issue can be addressed either by lowering the threshold further

(e.g. to 10%−15%) or by considering the G values of the first points below the threshold as

the intersection points.

0 20 40 60 80 100 120
0.2

0.3

0.4

0.5

0.6

Fig. 3.21 White fringes detection in a generic signal

Once the intervals of the G coordinates corresponding to the white fringes (signal peaks)

are detected, the next step is to interpolate the signal values corresponding to each identified

peak using a second-degree polynomial. Therefore, for each fringe, a parabola is obtained

that interpolates the signal intensity at each crest, as depicted in Fig. 3.22. Since MATLAB

returns the coefficients 0, 1, and 2 of the second-degree interpolating polynomial, it is
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possible to calculate the maximum value corresponding to each parabola by setting the first

derivative of the function to zero. This yields:

Gmax = − 1

20
(3.51)

By saving the Gmax values of each parabola in a vector and evaluating either the median or

the average of their differences, the wavelength of the signal in pixels can be obtained. This

value can then be easily converted to meters using the calibration factor calculated earlier.
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Fig. 3.22 Wavelength calculation on a single snapshot signal, extrapolated from the interro-
gation area of the considered oil drop.

Wall shear stress calculation

By iterating over each image as described in the previous step, a series of wavelengths ΔG

is obtained, corresponding to each snapshot in the dataset. With each snapshot linked to a

specific, known time, these wavelengths ΔG can be plotted as a function of time and their

trend linearly interpolated, as illustrated in Fig.3.23. By extracting the slope of the regression

line, the term mG
mC

is derived, which in turn allows the calculation of aerodynamic friction.

In fact, knowing the oil viscosity `oil from the oil calibration and Δℎoil calculated from

Equation 3.45 based on the setup data, the wall shear stress can ultimately be calculated

using Equation 3.50.
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Fig. 3.23 Sample OFI regression



Chapter 4

Wall shear stress measurements

Introduction

Accurate measurement of wall shear stress, gF, in pipe flows or in wind tunnels, is crucial

to understand the dynamics of turbulent boundary layer and the general behavior of fluid

over surfaces. Wall shear stress, which represents the friction force exerted by the fluid

on the wall, plays a central role in characterizing the drag forces that affect the efficiency

of vehicles, aircraft, and industrial systems. A precise measure of gF is essential also

for the validation of the computational models, improvements for drag reduction strategies

and ensure the reliability of flow control techniques. In this chapter, we aim to address

the uncertainty associated with two specific methods: static pressure drop measurements

and local measurements using Oil Film Interferometry (OFI). The goal is to highlight how

these uncertainties affect the accuracy of wall shear stress estimation and, subsequently,

how these uncertainties propagate into normalized flow statistics. This analysis is crucial for

interpreting experimental results in high-Reynolds-number turbulent flow studies. Moreover,

an analysis of the OFI technique applied to validate an active flow control algorithm can be

found in Appendix A.

4.1 Experimental setup

Measurements of wall shear stress in the Long Pipe are carried out using two distinct method-

ologies: static pressure drop measurements along the pipe and the Oil Film Interferometry

(OFI) technique, which computes the evolution of interference fringes to directly determine

wall shear stress. Each method offers unique insights into the flow characteristics, with the

static pressure drop method providing an averaged, global measurement over a considerable
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length of the pipe, and the OFI technique allowing for localized high-resolution assessments.

The Long Pipe at the CICLoPE laboratory is equipped with 22 sections, each containing

seven pressure taps designed to capture the static pressure at multiple locations (see Fig.4.1).

The taps, with an internal diameter of 3 = 2<<, are strategically placed to ensure com-

prehensive pressure measurements. Four of these taps are mounted on the top of the pipe

section and are spaced 1< apart, allowing for an accurate gradient to be measured along the

pipe’s length. Additionally, four wall taps are distributed around the circumference of the

pipe, positioned 90◦ apart from each other.

Fig. 4.1 Schematic view of the wall shear stress measurements setup in the Long Pipe

Static pressure measurements are acquired using a differential pressure multi-scanner

(DTC Tnitium), which enables simultaneous readings from multiple taps. Alternatively, a

mechanical scanivalve is used to connect the taps to a single differential pressure transducer

for sequential measurements. The choice between these acquisition systems depends on the

specific requirements of the experimental campaign, with the multi-scanner offering faster

data acquisition at the expense of potentially higher uncertainty due to multiple transducers

being used, each with its own calibration characteristics. In contrast, the single transducer

setup provides more consistent measurements, though it introduces systematic bias errors

that need to be carefully corrected. Together, these techniques ensure that the static pressure

drop can be measured with precision, providing a critical data point to calculate the wall

shear stress via the pressure gradient along the pipe.
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• Pressure Multi-Scanner System: All 21 wall taps were connected to a pressure multi-

scanner. In this setup, each pressure transducer has its own associated uncertainty,

which can be treated as a random error.

• Single Pressure Transducer System: The wall taps were connected, by means of a

mechanical Scanivalve, one at a time, to a single pressure transducer. This introduces

a systematic bias error into the measurement campaign. However, if this systematic

error is known, it can be easily filtered out.

Fig. 4.2 Schematic view of the wall shear stress measurements setup in the Long Pipe

To compare global measurements from the static pressure drop and local measurements

from Oil Film Interferometry (OFI), it is important to highlight the key differences in scope

and methodology between the two approaches. The static pressure drop method evaluates

wall shear stress over the last 60 meters of the Long Pipe, which is 111.5< in length. This

method provides a more global measurement, as it integrates the effects of the entire flow

over a large section of the pipe. By measuring the pressure variations along this distance,

the wall shear stress is derived as an average value over the pipe’s length. While robust, this

method can be influenced by imperfections in pressure taps, and residual flow development

effects.

In contrast, OFI offers a localized measurement of wall shear stress. This technique

directly measures wall shear stress at a specific point on the pipe surface by capturing the

evolution of the fringes formed by the oil film applied to the wall. As discussed in Chapter 2,

OFI is highly suitable for capturing local flow phenomena, which is especially important in

the vicinity of the test section. OFI’s ability to provide localized data offers a more detailed

view of the small-scale turbulent structures that contribute to the overall wall shear stress.

The OFI setup, as shown in Fig. 4.3, is placed in the test section of the Long Pipe. The

measurement setup consists of the following components:

• An oil drop is applied on the wall surface of the pipe in the test section.
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• A sodium lamp is used as the light source, positioned at a 45-degree angle to the pipe

surface to illuminate the oil film and enhance reflection effects on the camera.

• A reflex camera is placed at a corresponding 45-degree angle to capture the evolution

of the oil film fringes.

Fig. 4.3 Schematic of the OFI setup in the test section of the Long Pipe, illustrating the
placement of the sodium lamp, reflex camera, and black background. The oil drop is applied
on the pipe wall, and fringes are captured as the flow develops.

Figure 4.4 shows an actual photograph of the experimental setup, with the sodium lamp

and reflex camera in place, illustrating the practical implementation of the configuration. By

combining the global static pressure drop method and the local OFI method, we obtain a

comprehensive understanding of the wall shear stress distribution in the Long Pipe. Table

4.1 highlights the range of '4g, Fan speed setup and reference quantity for gF, bulk ve-

locity and characteristic length of the vortices assessed during the experimental activities.

During the experiments, the centerline velocity will be measured using a Prandtl type pitot

probe, ambient pressure ?0<1 and temperatures ) were monitored in the test section using

respectively an absolute pressure transducer and two different %)100 thermistor placed at

the centerline of the pipe and at the wall.
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Fig. 4.4 Photograph of the OFI experimental setup, showing the sodium lamp and reflex
camera arrangement in the test section of the Long Pipe.

gF (%0) Dg '4g ;★(<) *1 (</B) Fan (RPM)

0.022 0.13 4130 1.08e-4 3.17 100
0.054 0.21 6366 7.06e-5 5.10 150
0.099 0.29 8611 5.22e-5 7.06 200
0.157 0.36 10858 4.14e-5 9.12 250
0.228 0.44 13059 3.44e-5 11.17 300
0.311 0.51 15275 2.94e-5 13.27 350
0.407 0.58 17413 2.58e-5 15.31 400
0.514 0.66 19652 2.28e-5 17.48 450
0.635 0.73 21829 2.06e-5 19.61 500
0.763 0.80 23961 1.87e-5 21.71 550
0.910 0.88 26111 1.72e-5 23.87 600
1.065 0.95 28166 1.59e-5 25.91 650
1.230 1.02 30460 1.47e-5 28.19 700
1.435 1.10 32676 1.37e-5 30.41 750
1.631 1.17 34843 1.29e-5 32.60 800
1.843 1.25 37120 1.21e-5 34.88 850
2.067 1.32 39189 1.14e-5 36.98 900

Table 4.1 Experimental parameters for the characterization of the wall shear stress in the
Long Pipe Facility.

4.2 Static pressure drop measurements

As described earlier, measurements were conducted across various flow regimes. Figure

4.5 presents the distribution of the pressure coefficient, �? , for different '4g values as a
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function of the axial coordinate G of the pipe, where G = 0m corresponds to the exit of the

convergent, and the test section is located at G = 110m. The �? values were calculated using

the centerline velocity measured approximately 4.5 diameters upstream from the test section.
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Fig. 4.5 Differential pressure measured in the Long Pipe, considering ambient pressure as a
reference.

From Fig.4.5 a linear trend can be observed for all '4g cases, without any evident

deviation. Even though �? seems to reach negatives for the highest '4g linearity of the

pressure drop seems preserved. Since the pressure drop in turbulent pipe flow follows a

linear trend, the most straightforward method to compute it is by fitting a straight line to the

experimental data points. A key consideration is determining the optimal number of data

points to use, i.e., the length over which the linear fit should be applied. Ideally, the pressure

gradient (3?/3G) should be measured at the exact location where the wall shear stress (Dg)

is being evaluated, as the pressure drop becomes constant only in fully developed pipe flow

(Nikuradse et al., 1950; Schlichting and Gersten, 2016). Some residual flow development

may still be present far from the test section. However, using a greater number of data points

for the linear fit reduces the sensitivity of 3?/3G to bias errors caused by individual pressure

taps. Such deviations could arise from small imperfections in the wall pressure taps. To

decide the number of pressure taps to be used in the fit, different linear fits were computed

from the pressure data set of Fig.4.5, starting from the test section and progressively using

an increasing number of upstream pressure taps. To assess the quality of the different fits,

the error can be calculated as the difference between the pressure data and the value of the

linear fit at the same axial location:

?4 (G) = ?data(G) − ?fit(G). (4.1)
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Then, the standard deviation of the error f?4 can be computed over the data points used for

the fit. In Fig.4.6, f?4 is plotted against the number of pressure taps used for the fit, while in

Fig. 4.7 the same quantity is normalized by a reference value for gF, which is taken as the

friction velocity resulting from fitting all the points.
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Fig. 4.6 Standard deviationf?4 of the pressure error as defined in the equation (4.1), displayed
as function of the number of taps used to compute the linear fit, with the first one being
always as close as possible to the test-section.
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Fig. 4.7 Standard deviation f?4 of the pressure error as defined in the equation (4.1) nor-
malized by the corresponding value of the wall shear stress gF, displayed as function of the
number of taps used to compute the linear fit, with the first one being always as close as
possible to the test-section.
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As can be seen from Fig.4.6 and Fig.4.7, the absolute value of f?4 increases as more

points are added to the fit (starting from 2 taps, where it has to be mathematically zero),

and is higher for high '4g cases. Although, as seen in Fig.4.7, when normalized by a

reference value of the friction velocity (the one resulting from using all the points in the fit),

it becomes far more relevant for low '4g. It can also be noted that there is a discontinuity and

a sharp increase in f?4 in correspondence with the fourth and ninth taps, possibly indicating

a systematic deviation from the fit in those positions. From the standard deviation of the

error of the fit, the 95% confidence interval for the slope 0 of the linear regression H = 0G +1
can be calculated. For a distribution of = points with coordinates (G8, H8):

95% CI0 =

√∑(H8 − 0G8 − 1)2

=−2
×

√
=

=
∑
G2
8
− (∑G8)2

(4.2)

The 95% confidence interval for the slope of the fitted line is reported in Fig.4.8. It should

be noted that the uncertainty computed here is just the uncertainty of the fit, and not the

total uncertainty on the determination of 3?/3G. Despite the slight increase in f?4 , the

uncertainty in the pressure gradient decreases as more points are added to the fit, with a

notable exception when 3 taps are used. Additionally, adding more taps beyond the 8th does

not seem to significantly improve the uncertainty for most Reynolds number cases. Based

on these observations, it was decided to use the last 8 pressure taps for the computation of

the pressure gradient, corresponding to a length of 40 meters.
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Fig. 4.8 The 95% confidence intervals for 3?/3G (expressed as a percentage) are derived
from the pressure errors in the linear fits. These intervals are shown as a function of the
number of taps included in the fit, with the first tap consistently being the one nearest to the
test section.
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The procedure outlined was conducted using both acquisition systems mentioned earlier:

Consequently, the uncertainty associated with the measurements will differ depending on

the system used. The multi-scanner system is affected by random errors from each individual

transducer, while the single transducer system introduces a consistent systematic bias that

can be accounted for and corrected if identified. Based on the computational steps described

earlier, deviations from the fit were calculated for each wall tap and across all considered

'4g values. This allowed us to identify potential imperfections in specific taps. Figure 4.9

illustrates the normalized mean standard deviation of the pressure difference from the fit,

scaled by the wall shear stress gF. The plot shows how this deviation varies with the position

of the wall taps along the Long Pipe, with G = 110< marking the location of the test section.

Highlighting potential issues in the instrumentation used to assess static pressure drop on

each wall tap for the entire experimental campaign (i.e., if there is some clear discrepancy

in one port).
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Fig. 4.9 Analysis of deviations from the fit across wall taps. (a) Normalized mean standard
deviation of the pressure difference from the fit, scaled by the wall shear stress gF, as a
function of wall tap position along the Long Pipe.

Figure 4.10 shows the mean values derived from the two measurement systems used,

effectively eliminating any transducer or measurement effects. The dashed lines indicate the

±f?4 values computed across all considered taps. This visualization aids in selecting the 8

taps for the fit calculation, helping to exclude any potential imperfections that could impact

the static pressure drop calculation and, in turn, directly affect the uncertainty in gF. As

can be seen from the plot, starting from farthest point on the left, 8 taps need to be picked,

eliminating those who exceed the f?4 values.
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Fig. 4.10 Analysis of deviations from the fit across wall taps.

The static pressure drop can now be computed following the previously outlined steps,

excluding any potential issues related to the experimental or instrumental apparatus. Figure

4.11 shows the static pressure drop as a function of '4g, comparing the current results with

those from a past experimental campaign by Fiorini (2017) and literature data from McKeon

et al. (2005). The trend is consistent across all pressure drop measurements, whether using

single or multiple transducers. This confirms that a multi-pressure transducer setup can be

effectively employed, with the added advantage of selecting wall taps during each acquisition.

The selection of the multi-transducer is also based on the short acquisition time required,

making it an efficient option. From this point forward, all gF values based on pressure drop

will be computed using the described method.
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Fig. 4.11 static pressure drop computed as described in the section, data from multi-scanner,
single scanner and Fiorini (2017) data
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4.3 Oil Film Interferometry measurements

While the static pressure drop method provides an indirect approach to evaluating wall shear

stress, Oil Film Interferometry (OFI) presents a more precise and localized alternative. As

discussed in Chapter 3, OFI allows for the direct measurement of wall shear stress and offers

significant advantages in terms of spatial resolution. Due to its relative small size, OFI

captures wall shear stress as a local quantity, making it highly suitable for detailed flow

analysis in comparison to the static pressure drop method, where wall shear stress is derived

from an average value over a large portion of the pipe’s length. In the case of the Long

Pipe facility, static pressure drop measurements span approximately the last 40<, which may

obscure finer details of the flow. On the other hand, OFI enables the evaluation of shear stress

at specific locations along the wall, providing crucial insights into localized flow dynamics,

and enhancing the accuracy of turbulence characterization. This makes OFI particularly

useful in complex experimental setups where precise measurement of wall shear stress is

critical. In this section, we focus on assessing the measurement uncertainty associated with

the Oil Film Interferometry (OFI) technique for wall shear stress estimation. Several factors

contribute to the uncertainty, and a careful evaluation is critical to ensure the reliability

of the results. The main steps taken to quantify these uncertainties include an analysis of

the time required to acquire the wall shear stress, determining the precise dimension of

the interrogation area, and performing a Monte Carlo simulation to incorporate potential

sources of error such as variations in temperature and angle of view. The OFI technique

relies on capturing the evolution of interference fringes formed on an oil film applied to

the test surface as can be seen from Fig.4.12. Initially, we waited for the Fizeau fringes

to become clearly visible before beginning the acquisition process. This waiting period

ensured that the fringes were fully developed, enhancing the accuracy of the wall shear

stress measurement. The time required to observe the full evolution of the fringes directly

impacts measurement accuracy. If the acquisition time is too short, the fringes may not

fully develop, leading to an underestimation of the wall shear stress. Conversely, longer

acquisition times could introduce additional uncertainties due to environmental factors such

as temperature drift or unsteady flow conditions. For this reason, the optimal acquisition

time was carefully evaluated based on the flow conditions within the Long Pipe. Figure 4.13

shows the evolution of fringes dimensions 3G as function of time.
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Fig. 4.12 Example of Fizeau fringes evolution in the test-section of the Long Pipe at three
different instant of time, the image on the left is the first acquired while the one on the right
highlights one of the last snapshot
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Fig. 4.13 fringes dimension evolution (3G) as function of the acquisition time expressed in
seconds; every blue circles corresponds to a snapshot while the black dashed line represents
the final regression computed using every snapshots

Figure 4.12 shows the fit error (compared to the one computed using the entire dataset

available) as function of time, In the plot is quite clear how the error stabilize below ±1%

after ≈ 150B, thus suggesting that the acquisition time should be longer than that value. A

slight overshoot of the error can be seen around 300 B while remaining under the error margin.
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This can be caused by imperfection on the fringes due to dust particles that can be trapped

in the oil film. Another key parameter is represented by the dimension of the interrogation

area (see 4.15), which defines the spatial resolution of the measurement. The minimum

interrogation area was set at 60 ?G, ensuring a sufficient number of pixels to accurately

capture the fringe evolution. Measurements taken with a smaller interrogation area may

result in an underestimation of the wall shear stress due to insufficient data resolution.

Figure 4.15 shows the evolution of gF as we increase the length of the interrogation area,

while keeping the width fixed. The interrogation area dimension effects stabilizes after

125?G, showing less than 1% variation once it reaches 200?G. This stability is crucial to

maintain the reliability of the measurement.
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Fig. 4.14 Fit error of the wall shear stress, with respect to the one computed with the entire
datasets, as function of acquisition time.
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Fig. 4.15 Wall shear stress evolution as function of interrogation area dimension, expressed
in ?G, red line highlights the gF mean value; balck dashed line depicts wall shear stress
computed using static pressure drop.

To further ensure the accuracy of the wall shear stress measurements, the oil used in the

experiments was carefully calibrated using a thermal bath and a capillary viscometer. A

calibration curve was extrapolated from these measurements and used to compensate for any

temperature drift during the experiments. This meticulous calibration process helps mitigate

the influence of temperature variations on oil viscosity, thus enhancing the reliability of

shear stress estimations. To quantify the overall uncertainty, a Monte Carlo simulation was

conducted. This simulation included key variables such as temperature and the angle of view

of the camera capturing the interference fringes. Those two parameters directly enter the

computation of Δℎ as described in (3.34) thus, impacting directly gF values. The simulation

was conducted on the entire available datasets considering the worst scenario of a random

bias error in both temperature acquisition and angle of view.

• Temperature Effects: Since oil viscosity is temperature-dependent, any variation in

the ambient temperature during the experiment can influence the shear stress estima-

tion. The Monte Carlo simulation accounted for potential fluctuations in temperature,

ensuring that the final results reflect a range of realistic conditions.

• Angle of View: The angle at which the camera views the oil film plays a significant

role in the accuracy of the fringe measurement. Deviations from the optimal angle can

distort the observed fringes, leading to errors in the wall shear stress calculation. By
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incorporating this variable into the simulation, we evaluated how sensitive the results

are to misalignment in the experimental setup.

The Monte Carlo simulation estimated the overall uncertainty for the wall shear stress

measurements. Considering a 95% confidence interval, the analysis showed a potential error

of ±0.62% in the wall shear stress measurement due to the combined effects of temperature

fluctuations and camera angle misalignment.

The combination of a stable acquisition time (after 150 seconds), an adequately sized

interrogation area (between 150?G and 250?G), and careful consideration of temperature

and viewing angle effects demonstrates that the OFI technique is a reliable tool for localized

wall shear stress measurements. This small-scale, high-resolution measurement technique

complements the global measurements obtained from static pressure drop, which integrates

data over the last 40< of the 111.5<-long Long Pipe.
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Fig. 4.16 Wall shear stress distribution as results of a montecarlo simulation considering bias
errors in the temperature and in the viewing angle

These findings will be used to inform future experiments, particularly in optimizing the

setup to further minimize uncertainty, ensuring more precise wall shear stress measurements

across a wide range of flow conditions.

4.4 Uncertainty on wall shear stress in the Long Pipe

Wall shear stress measurements in the Long Pipe were obtained then using two distinct tech-

niques: static pressure drop and Oil Film Interferometry (OFI). These parallel measurements
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were conducted to evaluate and compare the uncertainties associated with each method, pro-

viding a comprehensive assessment of wall shear stress in high Reynolds number turbulent

flows.

The static pressure drop method offers a global measurement of wall shear stress by

integrating data over the last 40< of the Long Pipe. This technique assumes fully developed

flow and relies on the linear relationship between pressure gradient and wall shear stress.

However, it is susceptible to potential systematic errors due to imperfections in pressure taps

and bias errors in the pressure transducers as described in the previous sections. Conversely,

the OFI technique provides local measurements of wall shear stress. It captures the evolution

of interference fringes formed by a thin oil film, offering high spatial resolution within the test

section of the pipe. Although more sensitive to environmental factors such as temperature

fluctuations and camera alignment, OFI enables the precise estimation of shear stress in a

localized region, complementing the global perspective obtained from static pressure drop.

Parallel measurements were performed using both methods to assess and minimize the

uncertainty in wall shear stress estimation. The comparison between the global and local

approaches is critical for developing a more accurate and robust measurement system for

turbulent flow experiments in the Long Pipe.
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Fig. 4.17 Wall shear stress computed by means of OFI as function of gF computed using
static pressure drop, black dashed line represents the expected trend

Figure 4.17 shows the comparison between the wall shear stress measurements obtained

from both techniques, along with their expected trends. It can be seen that both methods

closely follow the expected trend, although some deviations occur at higher '4g values.
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While Fig. 4.17 captures the general agreement between the measurements, Fig. 4.18

highlights the deviation of the OFI results, using the static pressure drop as a reference

quantity.

Based on the uncertainty analysis presented earlier A 2% error margin is considered in this

comparison. OFI measurements are associated with a ±0.62% uncertainty, while the static

pressure drop method carries a ±1% uncertainty due to fitting errors and transducer accuracy.

Under these assumptions, we observe that the measurements fall well within the error band for

'4g values ranging from 7,000 to 35,000. However, at very low '4g, the results deviate more

noticeably, likely due to higher uncertainties in the pressure measurements, where very small

pressure differences approach the transducer’s resolution limits. Conversely, at higher '4g
values, the OFI measurements become more prone to environmental factors—particularly

dust particles accumulating on the oil film in the test section of the Long Pipe—which can

distort the measurements done with oil film.
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Fig. 4.18 Percentage deviation between wall shear stress computed using OFI and static
pressure drop, black dashed line refers to an uncertainty of ±2%

The figure illustrates the relationship between the bulk Reynolds number ('4bulk) and

the friction coefficient (� 5 ) in turbulent pipe flow. Comparison of � 5 values obtained using

two methods: Oil Film Interferometry (OFI) (represented by red triangles) and pressure drop

measurements (DPDX) (depicted by blue squares). Both methods exhibit the expected trend

of decreasing � 5 with increasing '4bulk, consistent with the turbulent flow behavior in the

pipes. For reference, a dashed black curve based on the empirical correlation from McKeon

et al. (2005) is included.
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Although the experimental data generally align well with the reference curve, a noticeable

scatter is present at lower Reynolds numbers, particularly in the range of '4bulk below

2×105. This deviation likely stems from inaccuracies in bulk velocity measurements, which

are derived from pressure differences at the contraction located at the beginning of the

Long Pipe. These discrepancies could influence the accuracy of � 5 at lower flow rates,

suggesting that potential refinements in the acquisition process may be necessary to improve

data consistency in this regime.
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Fig. 4.19 Friction coefficients computed using both OFI and static pressure drop as function
of '41D;: which represents the Reynolds number computed by means of the bulk velocity of
the pipe; black dashed line represents relationship by McKeon et al. (2005)
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Chapter 5

Wall-pressure–velocity correlation

5.1 Introduction

The goal of the present work is to assess the scaling of the statistical correlation between

wall-pressure and various components of the turbulent velocity in the logarithmic region of

a fully-developed turbulent pipe flow. We present results based on a unique experimental

dataset comprising synchronised time series of wall-pressure and velocity, at '4g values

ranging from ones that are typical of high-fidelity DNS, up to ultra-high Reynolds numbers

reaching close to '4g = 50k. With similar experiments performed on a boundary layer flow

up to a Reynolds number of '4g ≈ 2000 (Baars et al., 2024), a direct comparison between

different canonical flows can be drawn, while exploring an unprecedented range of Reynolds

numbers. We will address how the wall-pressure–velocity coherence displays Reynolds-

number-independence, and how this appears to be universal across several wall-bounded

flow configurations. To this end, § 5.2 describes the experimental facility and measurement

approach along with the post-processing of the signals acquired. § 5.3 presents wall-pressure

fluctuations. Subsequently, § 5.4.1 presents the coherence between wall-pressure (and wall-

pressure–squared) and streamwise velocity; this includes a data-driven explanation of the

mechanism involved in the larger coherence associated with the square of the wall-pressure

signal. In § 5.4.2, a similar analysis considers the coherence between wall-pressure and the

wall-normal velocity component.

5.1.1 Sparse sensors and definitions

In wind tunnel testing, time-resolved sensor acquisition focuses on capturing dynamic data at

high temporal resolutions, often from sensors such as pressure transducers or microphones

that monitor unsteady phenomena. These sensors ((1 ... (=) are often sparsely placed at
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location (-1 ... -=) to balance data resolution and cost or physical limitations. Sparse sensor

placement is particularly important in large wind tunnels, where covering the entire test

section with sensors is impractical. Instead, key regions such as areas of high turbulence or

surface pressure gradients are targeted to ensure meaningful and high-quality data acquisition.

The ability to combine and process the signals from these sparsely located, time-resolved

sensors is crucial to obtaining clean, usable data (%8). Using techniques like POD or spectral

analysis allows researchers to differentiate between real aerodynamic effects and the noise

introduced by the wind tunnel environment.

Fig. 5.1 Generic Sparse sensors definition, -1 ... -= represents the location of the = sensors,
(1 ... (= indicates the sensors, 5 correspond to the filter applied, %8 represents the filtered
signal

5.2 Experimental setup

An experimental campaign was carried out in the Long Pipe (see Figs. 5.2(a,b)). The

facility is realised inside a mountain to minimise background noise and to keep stable

environmental conditions, while sound-absorbing material near the two fans ensures minimal

acoustic interference in the test section. The closed-loop facility comprises a 111.15 m-

long circular pipe with a radius of ' = �/2 = 0.4505 m. The flow in the test section

(nominally at G′ = 105.9 m = 117.5D downstream of the pipe inlet) can be considered

fully developed. Further details relating to the design of the facility are described by

Bellani and Talamelli (2016). For the experiments reported in this work, friction Reynolds

numbers were in the range 4794 ® '4g ® 47015 (with corresponding centreline velocities

of 3.837m/s ≤ *CL ≤ 44.60m/s). All testing conditions are reported in Table 5.1.

5.2.1 Measurement instrumentation

Time-resolved pressure sensors were integrated in the wall of the pipe, each within its

own cavity communicating with the flow through a pinhole orifice with a diameter of

3? = 0.3 mm (see Fig. 5.2(d)). The resonance frequency of the cavity was identified by
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Fig. 5.2 (a) Photograph of the CICLoPE laboratory, with in (b) the test section at the
downstream end of the long-pipe facility. (c) Schematic of the sensor placement (M1 to
M5) in the pipe. (d) Schematic displaying the design of the pinhole cavity where pressure
microphones were integrated. (e) Illustration of the points in the area of interest where
acquisitions with single-wire and x-wire probes were performed.

means of an acoustic characterization experiment. Here, inlet and cavity pressures were

measured simultaneously in quiescent flow in an anechoic facility. Then, a second-order

model was fit to the gain of the linear transfer function, |�? ( 5 ) |, relating cavity to inlet

pressure in the frequency domain (Tsuji et al., 2007). With this procedure, the resonance of

the pinhole-cavity was identified at 5A = 4350 Hz. This frequency lies beyond the frequency-

range that was found to be relevant for the wall-pressure–velocity coherence, even at the

highest '4g case tested.

The pressure sensors used in this study were GRAS 46BE ¼-inch CCP free-field micro-

phones, chosen for their suitable dynamic range (35 to 160 dB, with a reference pressure of

?ref = 20 `Pa) and accuracy of ±1 dB over the frequency range of 10 Hz to 40 kHz. Data

acquisition was performed at a sampling rate of 5B = 51.2 kHz for a continuous duration

of )0 = 480 s. The data were collected using two NI9234 analog-input boards with 24-bit

A/D resolution. Five microphones were deployed (labeled M1 to M5 in Fig. 5.2(c)). Four

microphones (M1 to M4) were flush-mounted in the pipe wall to measure wall-pressure

fluctuations, while the fifth microphone (M5) was positioned on a streamlined holder along

the pipe’s centerline to monitor the facility’s acoustic noise. To reduce turbulence-induced

pressure fluctuations caused by stagnation effects, microphone M5 was equipped with a

GRAS RA0020 nosecone. The wall-mounted microphones were arranged in two stream-

wise pairs, with a separation distance of 4.22 m (ΔG = 9.37'). Each pair was installed in

azimuthally opposite positions to help mitigate acoustic noise. For the purposes of the
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Case 1 2 3 4 5 6 7

Label

P
h
y
si

ca
l
fl
o
w

p
a
ra

m
et

er
s '4g 4794 7148 14004 22877 31614 38271 47015

*g (m/s) 0.162 0.242 0.473 0.773 1.068 1.293 1.588
gF (Pa) 0.032 0.070 0.269 0.718 1.368 2.008 3.001
;∗ (`m) 94.0 63.0 32.2 19.7 14.3 11.8 9.58

*CL (m/s) 3.837 5.833 12.11 20.71 29.50 34.13 44.60

In
st

ru
m

en
ta

ti
o
n

ch
a
ra

ct
er

is
ti

cs

3+? 4.257 6.347 12.43 20.31 28.07 33.98 41.75
;+HW 13.30 19.84 38.86 63.48 87.72 106.2 130.5
5 +s 29.71 13.36 3.482 1.305 0.683 0.466 0.301

)0*CL/' 4088 6214 12902 22066 31431 36364 47520

H+
�

117.1 174.6 342.0 558.6 771.9 934.5 1148
H+
�

649.2 968.0 1896 3097 4281 5182 6366

Table 5.1 Flow parameters of the seven conditions tested in the CICLoPE long-pipe facility,
with alongside nondimensional parameters of the instrumentation’s geometry and acquisition
details.

analysis, a Cartesian coordinate system was adopted, with the origin placed at the center of

the pinhole of the pressure microphone as shown in Fig. 5.2(c). The G-axis corresponds to

the streamwise direction (positive downstream), while the H-axis points in the wall-normal

direction (positive towards the pipe centerline).

Time series of the streamwise velocity were recorded at two wall-normal locations

within the logarithmic region (H� = 0.011 m = 0.025' and H� = 0.061 m = 0.135') and at

five streamwise positions (labeled � to � in Fig. 5.2(e)) using hot-wire anemometry (HWA),

synchronized with pressure signals acquired on the same hardware. The measurements

were carried out using a Dantec Streamline 90C10 CTA module and a standard Dantec

55P15 single-wire boundary layer probe. In addition, wall-normal velocity time series were

collected using a Dantec 55P61 miniature x-wire probe at two streamwise positions within the

logarithmic region (positions � and � in Fig. 6.2(e)). Both single-wire and x-wire probes

featured sensing lengths of ;HW = 1.25 mm with nominal wire diameters of 3HW = 5`m,

resulting in an aspect ratio of ;HW/3HW ≈ 250. Hot-wire probes were calibrated ex-situ

using a planar jet calibration method. For the single-wire probe, a 5th-order polynomial was

fitted to 11 velocity points to obtain the calibration curve * = 5 (�), where � represents

the measured voltage. The x-wire probe was calibrated using seven velocity settings and

thirteen angular orientations to generate a two-dimensional look-up table following the
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procedure outlined by Burattini and Antonia (2004). This table relates the two velocity

components, (*1,*2), to the voltages measured by the respective wires, (�1, �2). During

the experiments, the probe was aligned to measure the streamwise (D) and wall-normal (E)

velocity components simultaneously.

5.2.2 Noise-filtering of wall-pressure signals

Even though the facility has been designed to minimize noise in the test section, acoustic

contamination is present. Due to the spectral overlap of acoustic facility noise and hydro-

dynamic wall-pressure fluctuations, a filtering technique was implemented to remove the

former. This technique employs harmonic proper orthogonal decomposition (hPOD). For a

review of hPOD see the work by Tinney et al. (2020). First, POD kernels are constructed

from cross-spectral densities of, in this case, the various pressure signals. Then, the solution

of an eigenvalue problem yields the frequency-dependent mode shapes and eigenvalues. By

only retaining modes of the measured pressure time series, in which the spectral signature

of acoustic noise is absent, the hydrodynamic wall-pressure signal is isolated. Technicalities

of the noise-removal procedure can be found in § 2.5.

The presence of acoustic noise within the time series of wall-pressure has not only im-

plications for the wall-pressure spectra, but also for correlation analyses. By construction,

acoustic noise and velocity fluctuations are uncorrelated. Consequently, a normalized corre-

lation of the two is lower than the true value when such additive noise is present (Saccenti

et al., 2020). To assess the degree of acoustic contamination, a signal-to-noise ratio (SNR) is

defined as the intensity-ratio of turbulence-induced hydrodynamic wall-pressure fluctuations,

?F (C), relative to those induced by facility noise: SNR = ?F (C)
2/

(
?A (C) − ?F (C)

2
)
. Here,

?A (C) is the raw microphone pressure (with both acoustic and hydrodynamic content). SNRs

in our dataset increase monotonically with '4g in the interval 0.08 ≤ SNR ≤ 0.25. Thus

even though the noise-removal procedure is intended to retain hydrodynamic wall-pressure

only, imperfections in the method presumably yield a larger degree of uncorrelated noise in

the low Reynolds number datasets.

Wall-pressure measurements by means of microphones embedded in surface-flush pin-

holes results in signal contamination from two main sources: (1) acoustic noise from the

wind tunnel facility and (2) acoustic resonance of the pinhole cavity as can bee seen in the

gray line of Fig.5.3 that highlights raw power spectral densities of wall pressure fluctuations

measured by microphone M1. While a correction for the latter can directly be implemented

in the frequency domain and takes the form of a division of the spectrum by a correction ker-

nel (Tsuji et al., 2007), the former requires a more elaborate procedure. In particular, when

considering a raw microphone signal from one of the sensors in Fig. 6.2(c), it is necessary to
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Fig. 5.3 Power spectral densities of the hydrodynamic pressure fluctuation from microphone
M1 at '4g = 14004: raw signal (grey), filtered using classical POD (blue), filtered with
harmonic POD (light blue) and filtered using CSA (orange).

disambiguate hydrodynamic wall-pressure information from the pressure fluctuations merely

caused by acoustics. In the case of turbulence-induced fluctuations, especially wall-pressure,

they possess negligible streamwise and spanwise coherence when considering relatively

large sensor separations. Acoustic pressure fluctuations, however, convect from sensor to

sensor retaining high correlation between detection stations, both in the streamwise and the

spanwise directions.

With the experimental setup illustrated in § 5.2, the acoustic waves produced by the oper-

ation of the CICLoPE facility will be detected by both the pinhole-embedded microphones,

M1 to M4, and the centreline microphone, M5. However, the signal measured by M5 will

not contain hydrodynamic wall-pressure fluctuations, given its mounting position. Removing

acoustic noise requires the identification of spatial modes that are correlated among sensors

and whose signatures can be detected at the centreline microphone. To do so, we resort

to three different methodology: proper orthogonal decomposition (POD), harmonic proper

orthogonal decomposition (hPOD) and spectral subtraction method. Figure 5.3 reports the

effect of the three filtering procedures for one Reynolds number, namely '4g = 14004. As

per the figure, all proposed techniques successfully attenuate facility noise. Only a negligible

amount of acoustic energy survives at low frequencies in the case of the spectral subtraction

method at low Reynolds number. Since POD and hPOD rely on manual mode selection,

one must carefully select the modes to retain, since the nominal modes can change from one

Reynolds number case to another. This considerably increases the complexity and scalabil-
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ity of the method. On the other hand, spectral subtraction method automatically acts upon

correlated signals. However, this approach may see a decrease in effectiveness when dealing

with partially correlated signals. Inspecting the final filtered result in Fig. 5.3, there is no

clear advantage in selecting one of the methods described. Harmonic POD will be used from

now on to filter out noise. This method differs from conventional POD, in that the spatial

decomposition is now made frequency-dependent (see Tinney et al., 2020). Using Tinney’s

notation, hPOD allows to compute a set of eigenvalues and eigenmodes of the harmonic

complex-valued kernel '̌:

'̌(x,x′; 5 ) = 1

2c

∫ +∞

−∞
〈?F,8 (x, C)?F, 9 (x′, C + g)〉4−82c 5 g3g, (5.1)

Here, ?F,8 and ?F, 9 represent different pressure signals, while x denotes the vector

containing the sensor coordinates (for example, xM1 represents the spatial coordinates

of microphone M1). Essentially, '̌ quantifies the spectral cross-correlation between the

two input signals. Unlike conventional POD, where the signal is decomposed into real

eigenvalues and eigenmodes, hPOD decomposes the signal into complex-valued, frequency-

dependent eigenvalues and eigenmodes. The spectral eigenvalues Λ(=) (x, 5 ) form a matrix

with dimensions #B×# 5 , where #B is the number of sensors (#B = 5 in this study), and # 5 is

the temporal FFT ensemble size (set to # 5 = 215 in this work, giving a frequency resolution

of Δ 5 = 1.56Hz). The harmonic eigenmodes q(=) are complex-valued and have dimensions

#B ×#< ×# 5 , where #< = #B is the number of modes.
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Fig. 5.4 Spectra of the eigenvalues of the complex-valued '̌ kernel at '4g = 14004.
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Fig. 5.5 Normalised magnitude of the complex modes q(=) , integrated in the range 0 < 5 ®

70 Hz at '4g = 14004. Each curve is offset by one unit vertically for graphical readability.

Upon applying hPOD to the microphone signals from the CICLoPE facility, the spectral

distribution of the five eigenvalues is presented in Fig. 5.4 for '4g = 14004. The first two

eigenvalues show the most contamination by facility acoustic noise, especially at the low

frequencies. The spectral distribution of the first four eigenvalues assumes the typical power-

law decay trend in the mid-to-high frequency band. The fifth eigenvalue only contributes

significantly to the total energy of the wall-pressure pressure in the low-frequency band of

the plot, with negligible energy found beyond 5 ¦ 60 Hz. To determine which mode set to

retain for filtering the wall-pressure signals, the spatial distribution of eigenmodes should

be examined. In particular, by construction of the experiment, the ideal set of modes to

retain consists of the ones that exhibit no activity at the centreline microphone, M5. To

aid in the selection of modes, it is convenient to only consider eigenmodes in the range of

0 < 5 < 5� , with 5� = 70 Hz, as the facility-induced acoustic noise is concentrated in this

band. The magnitude of the eigenmodes, integrated in the aforementioned frequency range,

is displayed in Fig. 5.5. Upon inspection of the five curves, it is clear that modes 3 and 4

are the ones showing the least (negligible) activity at the centreline microphone M5. Based

on this, it was decided reconstruct the wall-pressure signal purely based on these two modes

and to discard modes q(1) , q(2) and q(5) . The energy content of all individual eigenvalues

was also inspected and reported in Fig. 5.6, where the energy content per mode (relative

eigenvalue contribution) is plotted in the bar chart as a function of the number of modes.

The cumulative sum of of the energy is also calculated in order to check that total energy is

preserved by the selected algorithm as can be seen in the solid black line in Fig. 5.6.
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Fig. 5.6 Relative energy content per mode (grey bar plot), cumulative sum of the energy
contained in each harmonic mode (solid black curve);

For the other friction Reynolds numbers considered in this study (see Tab. 5.1), a similar

procedure was applied. Similar conclusions could be drawn in regards to the selection of

modes to retain for filtering, with the only minor difference lying in the selection of the

upper frequency bound for acoustic contamination, 5� . For increasing Reynolds numbers,

5� increases, following a greater fan angular velocity.

5.3 Wall-pressure fluctuations

The wall-pressure signals, after noise correction, are reconstructed by retaining only the

two most significant modes, and the corresponding power spectral densities (PSDs) are

presented in Figs. 5.7 and 5.8. The spectra show a clear alignment of the inner spectral peak

at a streamwise wavelength of _+G ≈ 250, which is consistent across the different Reynolds

numbers. Additionally, with increasing '4g, a significant rise in the large-scale energy

content is observed, in agreement with well-established trends in wall-bounded turbulence

literature. This highlights the growing contribution of large-scale motions at higher Reynolds

numbers, further emphasizing the importance of accurate noise filtering. Moreover, the large-

scale tails of the spectra collapse when the streamwise wavelength is scaled in outer units, as

shown in Fig. 5.8. This collapse suggests a form of Reynolds number similarity in the large-

scale structures of the flow, reinforcing the universality of wall-pressure spectra in high-'4g
turbulent flows. The corrected spectra are displayed in Fig. 5.7, where the raw wall-pressure



100 Wall-pressure–velocity correlation

PSDs are plotted as a function of the inner-scaled streamwise wavelength, _+G =*
+
2 / 5 +. Here,

*+
2 = 10 is taken as the convection velocity, and 5 + represents the inner-scaled frequency.

Notably, for the three highest Reynolds number datasets (denoted as sets 5 to 7), a distinct

‘wiggle’ appears in the spectrum around the location of the inner spectral peak at _+G ≈ 250.

This irregularity is attributed to an imperfect correction for the resonance effect within the

pinhole cavity, which is slightly modified in the presence of flow compared to the acoustic

calibration conditions. It is important to note that at lower Reynolds numbers, the resonance

frequency of the pinhole cavity lies far beyond the range of energetic frequencies relevant

to the wall-pressure spectrum. Consequently, the resonance effect becomes negligible at

lower '4g. However, as '4g increases, this resonance frequency approaches the range of the

turbulent fluctuations, potentially influencing the observed spectra, particularly in the inner

spectral region. These results highlight the importance of accurately accounting for facility-

induced effects, such as cavity resonance, to ensure reliable wall-pressure measurements in

high-Reynolds-number turbulent flows.
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Fig. 5.7 Inner-scaled pre-multiplied power spectral densities of wall-pressure fluctuations
acquired from microphone 1, filtered by means of hPOD, DNS data from(Lee and Moser,
2015)
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Fig. 5.8 Inner-scaled pre-multiplied power spectral densities of wall-pressure fluctuations
acquired from microphone 1, filtered by means of hPOD.

Finally, the effectiveness of the noise removal approach is validated by comparing the wall-

pressure intensity filtered using the three different techniques—POD, hPOD, and CSA—with

empirical relations provided in Klewicki et al. (2007). As illustrated in Fig. 5.9, the filtered

wall-pressure intensities show a good level of agreement with the established empirical

findings. This comparison demonstrates the robustness of the filtering methods in capturing

the relevant physical characteristics of the wall-pressure field. At lower Reynolds numbers

('4g), it is observed that the results from the CSA filtering method slightly deviate from

those obtained using POD and hPOD. This discrepancy can likely be attributed to the

lower effectiveness of CSA in filtering out noise at very low velocities, where the signal-

to-noise ratio (SNR) is insufficient. In these conditions, the weaker signal may not be

properly differentiated from noise, leading to a minor underestimation of the wall-pressure

intensity. However, for moderate to high '4g, all three filtering techniques converge, showing

excellent agreement, with the variation in pressure intensity being less than 5% across the

different methods. This convergence suggests that the proposed filtering procedures are

robust and reliable for higher Reynolds numbers, where the SNR is more favorable, and

the flow’s large-scale structures dominate the wall-pressure signal. Interestingly, deviations

between the filtered intensities and the empirical laws are only noticeable when the inherent

uncertainties of the experimental data are disregarded. This indicates that, within the bounds

of uncertainty, the filtering techniques provide a faithful reconstruction of the wall-pressure

intensities, further supporting their validity. Thus, the application of these noise-filtering

algorithms proves to be effective in minimizing facility-induced noise while retaining the
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essential flow physics, particularly at high Reynolds numbers where accuracy is critical for

drag-reduction studies and other flow-control applications.
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Fig. 5.9 Wall-pressure intensity inferred from integrating the wall-pressure spectra. Current
results are compared to several datasets available from the literature. Data are taken from
the DNS studies of Panton et al. (2017) (P17-DNS, •, ZPG-TBL), Choi and Moin (1990)
(CM90-DNS, È, TCF) and Yu et al. (2022) (YU-DNS, �, pipe flow). Furthermore, data are
collected from experimental studies of ZPG-TBL flows: Blake (1970) (B70, △), Bull and
Thomas (1976) (BT76, ⊳), Farabee and Casarella (1991) (FC91, ⊲), Horne (1989) (H89, �),
Klewicki et al. (2007) (K08, ), McGrath and Simpson (1987) (MS87, ), Schewe (1983)
(S83, ) and Tsuji et al. (2007) (T07, ◦), and of experimental studies of pipe flows: Lauchle
and Daniels (1987) (LD87, ⋆) and Morrison (2007) (M07, �). Solid and dashed lines
are the formulations presented by Klewicki et al. (2007), in which the pressure variance
increases logarithmically with increasing '4g.

5.4 Wall-pressure–velocity coherence

5.4.1 Coherence between streamwise velocity and wall-pressure fluctu-

ations

To analyse the statistical spectral coupling between wall-pressure and streamwise velocity

fluctuations, the LCS is employed. For two time series, of streamwise velocity fluctuations,

D(H, C), and wall-pressure fluctuations, ?F (C), the LCS is defined as the ratio of the square

of the magnitude of their cross-spectrum to the product of their auto-spectra:

W2
D?F

(H,_G) ≡
|〈*̃ (H,_G)%̃F (_G)〉|2

〈|*̃ (H,_G) |2〉〈|%̃F (_G) |2〉
, (5.2)
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where the angled brackets 〈...〉 indicate ensemble averaging, and capitalised variables with

a tilde indicate the application of the Fourier transform, e.g. %̃F (_G) = F [?F (C)]. The use

of the LCS to describe spectral stochastic coupling in turbulence is well documented in the

literature and describes the degree of phase-consistency.

_G,lim/H ≈ 250

_G,lim/H ≈ 1 500

(a) (b)

Fig. 5.10 (a) Coherence between streamwise velocity and wall-pressure and (b) wall-pressure–
squared fluctuations at points � (blue colour scale) and � (red-based colour scale, with
increasing saturation indicating increasing '4g) for 4794 < '4g < 47015.

Figures 5.10(a,b) report the LCS between ?F (C) and D(C) at positions � and � (see

Fig. 6.2(e) for increasing Reynolds numbers. We hereby resort to wall-scaling to normalise

the abscissa as _G/H, where H = {H�, H�} for this graph. Wall-scaling reasonably collapses all

curves (even with DNS data at '4g = 5200). This therefore provides evidence that turbulent

structures adhering to a self-similar scaling—according to the attached-eddy hypothesis

(their flow topology scales with wall-normal distance H)—are the only structures that have a

direct, linear imprint on the wall-pressure.

With minimal coherence observed at small wavelengths, a steady increase in the large-

scale coherence structure (LCS) is seen in Fig. 5.10(a) as_G/H rises, peaking at (_G/H, W2
D?F

) ≈
(14,0.1). As _G/H increases further, a slight decrease in coherence is noticed, followed by

a rise for _G/H ¦ 102. This rise remains in a spectral range where velocity fluctuations are

still energetically relevant. Specifically, considering the amplitude threshold :+G q
+
DD = 0.2 at

the large-scale limits of pre-multiplied streamwise energy spectra, the energy drops below

this threshold only for outer-scaled wavelengths of _G/' ¦ 35. This limit is included in

Fig. 5.10(a), corresponding to _G,lim/H ≈ {250,1500} for H = {H�, H�}, respectively. Further-

more, the apparent increase in peak coherence as '4g rises is due to the incomplete removal

of acoustic noise from the facility. Despite this, the coherence spectra collapse across the

full range of '4g for both wall-normal positions, H = {H�, H�}. Additionally, an agreement

between the experimental curves and DNS data of a turbulent channel flow (Lee and Moser,
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(a) (b)

Fig. 5.11 (a) Light grey shaded area illustrates a comparison to DNS data from Lee and
Moser (2015) on the left. Coherence between streamwise velocity and wall-pressure and (b)
wall-pressure–squared fluctuations for '4g = 14004 at −0.07 < G/' < 0.67 on the right.

2015) is clear. The DNS data, depicted by the grey shaded areas in Figs. 5.10(a,b), rep-

resent the range of LCS across different wall-normal positions in the logarithmic region

(80 ® H+ ® 0.15'4g, with '4g = 5200, see Fig. 6 of Baars et al., 2024). Though not shown

for clarity, lower Reynolds number TBL flow data also align with the grey shaded region

(Baars et al., 2024; Gibeau and Ghaemi, 2021).

When proceeding with the coherence involving the nonlinear term of the wall-pressure,

we define the wall-pressure–squared as ?2
F (C) = ?2

F (C) − ?2
F (C). In contrast to the behavior

displayed by the linear term of wall-pressure, the LCS between wall-pressure–squared and

streamwise velocity fluctuations rises sharply starting from _G/H ≈ 3 (see Fig. 5.10(b)).

Collapse is also observed for all Reynolds numbers tested in the long-pipe facility (apart

from the lowest, due to imperfect noise filtering), suggesting Reynolds-number-independent

wall scaling in this range of Reynolds numbers. The comparison with DNS results by Lee

and Moser (2015) at '4g = 5200, further elaborated in the work of Baars et al. (2024), shows

collapse of the LCS even at a lower Reynolds number, indicating universality of this scaling

across both channel and pipe flows. The variation of the LCS as a function of streamwise

distance from the wall-pressure sensor (at the same azimuthal location in the pipe) for one

Reynolds number ('4g = 14004) is documented in Fig. 5.11(a). Similar conclusions can

be drawn for the streamwise variation of W2
D?2

F

(G,_G) in Fig. 5.11(b), as well as for all other

tested Reynolds numbers. In the context of real-time control, such an analysis defines what

streamwise separation between sensor(s) and actuator(s) is feasible.

The coherence between wall-pressure and streamwise velocity fluctuations reflects the

linear interactions that link these two quantities. Specifically, positive fluctuations in the

streamwise velocity are typically associated with positive wall-pressure fluctuations, albeit
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(a) (b)
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Fig. 5.12 (a) Normalised wall-pressure signal of microphone M1 at '4g = 14004, its Hilbert
transform and the de-meaned wall-pressure–squared signal. (b) LCS between the Hilbert
transform of the wall-pressure signal and streamwise velocity fluctuations (solid) at H = H�,
compared to the LCS between streamwise velocity and wall-pressure–squared (dashed, same
as in Fig. 5.10(b)).

with a certain phase delay (Gibeau and Ghaemi, 2021). However, the mechanism behind the

increase in large-scale coherence when considering the squared wall-pressure signal remains

less understood. Squaring the wall-pressure signal and observing a corresponding rise in

coherence suggests that a modulation effect may be at work. In this scenario, large-scale D

fluctuations superimpose onto the flow and nonlinearly alter the wall-pressure field. This

indicates a departure from linear dynamics and points towards more complex underlying

processes.

To probe this phenomenon more deeply, we employ the Hilbert transform to extract

an "envelope" of the wall-pressure signal. This envelope provides a representation of the

amplitude variation of the wall-pressure fluctuations over time, which can then be correlated

with the fluctuating streamwise velocity signal. Figure 5.12(a) illustrates the normalised wall-

pressure signal [?̃F (C) = ?F (C)/?F] at '4g = 14004, captured at microphoneM1 over a short

time window. Also shown is the magnitude of the Hilbert transform |� (?F)(C) |, alongside

the de-meaned wall-pressure–squared signal. Through visual inspection, it is evident that

both the Hilbert-transformed wall-pressure and the squared wall-pressure signal exhibit a

similar large-scale structure in their energy content, suggesting a relationship between these

quantities.

To quantify this observation, Fig. 5.12(b) presents the large-scale coherence spectra (LCS)

between |� (?F)(C) | and D(C), alongside the LCS between ?2
F (C) and D(C) (as previously

shown in Fig. 5.10(b)). A remarkable collapse is observed between the two LCS spectra

across all Reynolds numbers tested. This collapse suggests that large-scale variations in wall-
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pressure intensity, as captured by both the Hilbert-transformed and squared wall-pressure

signals, are closely related to the modulation effects induced by large-scale streamwise

velocity fluctuations. These findings offer compelling evidence of the nonlinear coupling

between wall-pressure and streamwise velocity fluctuations and demonstrate how large-scale

velocity structures modulate the near-wall pressure field, contributing to the overall energy

transfer in turbulent flows.

5.4.2 Coherence between wall-normal velocity and wall-pressure fluc-

tuations

To further characterize the dynamics between wall-pressure and velocity events, we extend

the analysis presented in the previous section by examining the relationship between wall-

pressure fluctuations and wall-normal velocity (E) fluctuations, instead of the streamwise

velocity (D) fluctuations. This analysis is important because the wall-normal velocity plays

a distinct role in near-wall turbulence dynamics, often linked to the transport of momentum

away from the wall. The coherence between E(C) and ?F (C), illustrated in Fig. 5.13(a),

reveals a peak at _G/H ≈ 10 and W2
E?F

≈ 0.15, which is approximately 50% higher than

the peak coherence observed between D(C) and ?F (C). This suggests that wall-normal

velocity fluctuations have a stronger influence on the wall-pressure than streamwise velocity

fluctuations do. Moreover, when the wall-pressure fluctuations are squared, the levels of

coherence, denoted by W2
E?2

F

, further increase (see Fig. 5.13(b)), with a notable rise starting at

_G/H ≈ 3. This behaviour remains consistent across all tested Reynolds numbers, indicating

a form of Reynolds-number-independence in the coupling between E and ?2
F.

The stronger coherence between wall-normal velocity and wall-pressure fluctuations

is consistent with findings in prior studies (e.g., Gibeau and Ghaemi, 2021), and can be

physically explained by considering the non-permeability boundary condition at the wall.

Specifically, when downward-directed velocity events (those with a negative E component)

approach the wall, the fluid is decelerated and stagnates, generating a positive fluctuation in

wall pressure. Conversely, upward-directed velocity events (those with E > 0) tend to cause

a local reduction in pressure near the wall. This reciprocal relationship results in a strong

coupling between E(C) and ?F (C). Additionally, the observed peak in coherence occurs at

a shorter wavelength than the peak coherence between D(C) and ?F (C), which is consistent

with the fact that the most intense E fluctuations are typically concentrated at smaller scales

compared to D fluctuations. The distinct role of E fluctuations in redistributing momentum

and energy across the boundary layer likely contributes to their more pronounced effect on

wall-pressure fluctuations, particularly at shorter wavelengths.
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(a) (b)

Fig. 5.13 (a) Coherence between wall-normal velocity and wall-pressure and (b) wall-
pressure–squared fluctuations at point � for 4794 < '4g < 47015. Light grey shaded
area illustrates a comparison to DNS data from Lee and Moser (2015).





Chapter 6

Conclusions

This thesis is part of a larger project aimed at developing both active and passive drag reduc-

tion strategies while advancing the understanding of scaling laws in turbulent flows. Within

this framework, the research addresses critical challenges in high Reynolds number pipe

flows, focusing on reducing uncertainty in wall shear stress measurements, exploring scaling

laws, and investigating the coherence between wall-pressure and velocity fluctuations—key

elements for enabling advanced flow control strategies. To do so, an experimental study

was carried out mainly at the Long Pipe facility at the CICLoPE laboratory of the Univer-

sity of Bologna. The facility is exceptional, offering access to high Reynolds number wall

turbulence with a level of resolution that is unparalleled elsewhere. The thesis includes a

characterization of the uncertainty of wall shear stress combining two different techniques.

Oil film interferometry allows obtaining a ’localized’ value of skin friction while static pres-

sure drop gives a ’global’ information related to gF. Wall-pressure fluctuations measured

using a sparse sensors setups of microphones are then acquired. Inner and outer scaling laws

in pressure fluctuations are addressed after the implementation of a POD based filtering tech-

nique to the signal. Moreover, wall-pressure–velocity coherence is assessed in the range of

4794 ® '4g ® 47015, combining simultaneous measurements of five different microphones

with an Hot-wire and an X-wire acquisitions at different streamwise and wall-normal loca-

tions. The specific contributions of this research, which collectively address the overarching

goals of advancing drag reduction strategies and scaling law assessments in turbulent flows,

can be summarized as follows:

• Oil Film Interferometry In this phase of the study, the development and refinement of

Oil Film Interferometry (OFI) within the CICLoPE long-pipe facility have established

it as a precise local measurement tool for assessing wall shear stress in high Reynolds

number turbulent flows. The system’s overall uncertainty has been reduced to approx-



110 Conclusions

imately 0.62%, with an optimized interrogation area of 150 ?8G4;B and an acquisition

time of ≈ 200 B, making OFI a reliable option for detailed turbulence measurements

as a the local information. Additionally, OFI was employed to validate opposing

flow control techniques in turbulent boundary layers, demonstrating its effectiveness

in evaluating control strategies. These advancements highlight OFI’s potential in pro-

viding accurate, localized wall shear stress data, enhancing the CICLoPE facility’s

contributions to turbulence and flow control research.

• Wall shear stress uncertainty The uncertainty analysis reveals that a 2% error margin

is appropriate for comparing wall shear stress measurements obtained through OFI and

static pressure drop acquisition. The OFI technique carries a refined uncertainty which

is less than 1%, while the static pressure drop method shows an uncertainty of±1% due

to fitting errors and transducer limitations. Within these bounds, the measurements

align well across '4g values from 7000 to 35000, falling comfortably within the

error margin. However, at lower '4g values, measurement deviations become more

pronounced, likely due to the higher uncertainties in pressure measurements where

smaller pressure differences approach the resolution limits of the transducer, such

problematic maybe also be caused by the impressive dimension of the Long Pipe

facility. Conversely, at higher '4g, OFI measurements are increasingly susceptible

to environmental influences, such as dust particle buildup on the oil film in the Long

Pipe’s test-section, which can introduce measurement distortions mainly related to

data processing. These findings underscore both the accuracy and the limitations

of the OFI and static pressure drop methods. Wavelet analysis along with machine

learning algorithms may be a possible solution to overcome limitation at High Re

numbers especially for OFI acquisition.

• Wall-pressure fluctuations This study has demonstrated the effectiveness of applying

classical POD, harmonic POD (hPOD), and Conditional Spectral Analysis (CSA)—to

extract key physical insights from wall-pressure measurements in a high Reynolds num-

ber turbulent flow setting from a sparse sensor configuration, a common issue while

dealing with experimental approach where instruments positioning and accessibility

may become challenging. A key obstacle was effectively filtering out facility-related

noise while preserving the critical hydrodynamic information characteristic of turbu-

lent wall-bounded flows. The results confirmed that noise-corrected wall-pressure

signals successfully captured relevant flow structures, with the filtered energy spec-

tra aligning with the expected small-scale energy peak at _+G ≈ 250, consistent with

near-wall dynamics. A progressive increase in large-scale energy content with higher
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'4g values was also observed, as predicted in existing literature. When scaling the

streamwise wavelength in outer units, the spectra demonstrated good collapse, affirm-

ing the physical relevance of the extracted data. The robustness of the noise-filtering

approach was further validated by comparing wall-pressure intensities derived through

POD, hPOD, and CSA methods with empirical relationships (Klewicki et al., 2007).

At high Reynolds numbers, all three models exhibited less than a 5% deviation, indicat-

ing reliable filtering performance. Although some discrepancies were noted at lower

'4g, particularly in the CSA method, these were primarily attributed to limitations in

filtering very low-velocity signals where the SNR is minimal. Overall, this study con-

firms the validity of these models not only for effectively denoising complex turbulent

datasets but also for accurately extracting hydrodynamic pressure data; an essential

element for applications in flow control and drag reduction. These models provide a

solid framework for further turbulence research, ensuring that core flow features are

maintained even in noise-prone environments.

• Wall-pressure–velocity coherence This investigation offers a detailed experimental

campaign into the statistical correlation between hydrodynamic wall-pressure and ve-

locity fluctuations in the logarithmic region of a turbulent pipe flow. By examining

this correlation, we aimed to uncover fundamental physical insights as a precursor to

developing transfer functions suitable for real-time flow control algorithms. Utilizing

a distinctive dataset collected at high friction Reynolds numbers within CICLoPE’s

Long Pipe facility, our findings demonstrate a consistent linear coherence between wall-

pressure and velocity fluctuations in the logarithmic region of turbulent wall-bounded

flows. This coherence appears to exhibit both Reynolds-number-independence and

universality across various wall-bounded flow types. These findings reveal an inher-

ent, Reynolds-number-independent statistical coherence, providing robust evidence of

the potential for scalable, application-ready control strategies based on wall-pressure

inputs for real-time flow management.

This experimental work at the CICLoPE Long Pipe facility has advanced wall-turbulence

research through the development and application of the Oil Film Interferometry (OFI) tech-

nique. Significant progress has been made in minimizing uncertainties in wall shear stress

measurements, achieved through careful calibration of the OFI technique and its compari-

son with static pressure drop data along the Long Pipe. The refined OFI method has not

only enabled precise wall shear stress measurements but has also been employed to validate

real-time control algorithms in high Reynolds number flows. Additionally, an examination

of wall-pressure and velocity coherence in the turbulent flow has provided insights into the
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potential for a scalable approach in active drag reduction strategies. Together, these ad-

vancements reinforce CICLoPE’s role as a key facility for tackling fundamental challenges

in turbulence and flow control at high Reynolds numbers, with promising implications for

real-time, application-level flow control solutions.
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Appendix A: Application to active flow

control

In recent years, significant attention has been given to real-time control strategies in turbulent

boundary layer (TBL) flows, particularly for applications such as drag reduction and flow

manipulation. A crucial aspect of these control systems is the accurate and localized

measurement of wall shear stress, which directly influences the near-wall flow dynamics.

Oil Film Interferometry (OFI), as discussed in Chapter 3, is a powerful tool for measuring

wall shear stress with high spatial and temporal resolution, making it particularly suited for

integration into advanced flow control systems.

In this section, we present an application of the OFI technique within a real-time control

framework for TBL regulation. By leveraging the precise measurements obtained through

OFI, we can better estimate and respond to fluctuations in the near-wall velocity, improving

the overall performance of the control system. A schematic of the proposed real-time control

system is shown in Fig. 6.1a, illustrating how upstream sensing and downstream actuation

zones are linked through a multiple-input single-output (MISO) control strategy, where the

wall-based measurements serve as inputs for controlling flow dynamics.

A.1 Turbulent boundary layer facility

Experiments were carried out in an open-return wind tunnel facility (W-Tunnel) at Delft

University of Technology. The facility has a cross-sectional area of 0.6×0.6 m2 at the inlet

of the test section and the freestream velocity is set at *∞ = 15 m/s. A test section with a

length of 3.75 m is employed, comprising a flexible ceiling configured for a zero-pressure-

gradient streamwise development of the flow. At a distance of 2.90 m downstream of the trip

(P40-grit sandpaper), the TBL attains a thickness of X = 0.07 m and a friction velocity of

*g = 0.49 m/s, to yield '4g ≈ 2240. The canonical parameters of the TBL flow (including

the momentum thickness \ and the wake parameter Π) are reported in Tab. 6.1. Additional

details regarding the design and characterization of this TBL facility can be found in the
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TBL flow

Input sensors Actuators

P

LSMs

Controller

H!ℎ

B

Fig. 6.1 Schematic of the real-time control system implemented in this study, comprising an
upstream sensing and a downstream actuation zones.

work of Dacome et al. (2024b). A Cartesian right-handed coordinate system is employed

that is centered at G′ = 2.90 m downstream of the trip and at the spanwise centerline of the

test section. A schematic of the experimental setup is presented in Fig. 6.2a.

*∞ (m/s) X (mm) \ (mm) '4\ *g (m/s) '4g Π ;∗ (`m)

15 69.9 6.83 6 830 0.49 2 240 0.61 31.25

Table 6.1 Experimental parameters of the uncontrolled TBL flow in the W-Tunnel facility at
G′ = 2.90 m downstream of the sandpaper trip (G = 0).

A.2 Control hardware

For wall-pressure sensing, a spanwise array of seven microphones is used, positioned at

G = −2.4X. The total width of the array is 1 = 1.8X, with a spanwise spacing between

adjacent sensors of ΔI< = 0.29X = 0.171. This spacing was selected based on the average

spanwise separation of (V)LSMs in a turbulent boundary layer (TBL) (Hutchins et al., 2011).

The sensors are GRAS 46BE 1/4-in. free-field CCP microphones, with a nominal sensitivity

of 3.6 mV/Pa. These microphones have a suitable dynamic range for capturing the pressure

fluctuations of interest (35 to 160 dB, referenced to a pressure of ?ref = 20`Pa) and offer an

accuracy of ±1 dB in the 10 Hz to 40 kHz range. Each microphone is mounted within a

circular pinhole-cavity, connected to the boundary layer flow via a circular neck-orifice with

a diameter of 3+? = 12.8 (3? = 0.4 mm). Cavity resonance is not a concern, as the resonance

frequency, 5r = 2,725 Hz, lies well above the frequency range of interest for real-time flow

control (Baars et al., 2024).
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Fig. 6.2 (a) Schematic representation of the control hardware (i.e. sensors and actuators)
employed for control embedded in the TBL facility. (b) Schematic indicating the real-time
processing of the input data through the control logic within one time-step of the controller,
running at 5loop = 10 kHz. Lower insets displaying (c) the spectrum of the raw signal from
the central input sensor [?4(C)] and (d) the spectrum obtained after the application of the
noise-filtering procedure and the conditioning low-pass filter on ?4(C).

An additional microphone of the same type was mounted on a streamlined holder in

the freestream and fitted with a GRAS RA0020 nosecone to minimize turbulence pressure
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fluctuations caused by stagnation. This microphone monitors the acoustic noise generated

by the wind tunnel and helps implement noise-removal techniques. Seven unsteady blowing

jets with no net mass flux are used as actuators, arranged in a spanwise array and located

B = 2.4X downstream of the wall-embedded microphones (G = 0, see Fig. 6.2a). The spanwise

positioning and spacing between the actuators are identical to those of the input sensors.

Compressed, dry air is discharged into the TBL through streamwise-elongated rectangular

slits with dimensions 0.2X× 0.02X. These actuators are designed to counteract downward-

directed large-scale structures from the logarithmic region by inducing an upwash at and

downstream of the injection site. The jets operate in an on/off manner, with the exit velocity

either set to 0 (off) or Ejet = 0.4*∞ (on), ensuring the jet plume reaches the logarithmic

region without penetrating beyond H = X (Dacome et al., 2024b). Figure 6.2a shows the

arrangement of the control hardware within the TBL facility.

A.3 Direct skin-friction quantification

The primary goal of the real-time controller is to target large-scale velocity fluctuations in

the logarithmic region, as their interaction with smaller scales in the inner region can lead

to drag reduction. Suppressing turbulent velocity fluctuations can significantly influence

the main mechanisms responsible for generating skin friction (Deck et al., 2014; Renard

and Deck, 2016). Figure 6.3 shows the skin-friction values for both the uncontrolled flow

and the flow under opposing control. Specifically, Figs. 6.3a and 6.3b depict the absolute

wall-shear stress for the two cases, while Fig. 6.3c illustrates the relative change between

them, ΔgF = 100× (gF,opp − gF,unc)/gF,unc. The relative difference indicates a positive drag

reduction across most measurement points, with some deviations at G = 2X and G = 3X.

These deviations are likely due to post-processing or measurement errors rather than actual

physical inconsistencies in wall shear. Nonetheless, when considering the overall trend, the

skin-friction drag shows a spanwise uniformity in both the controlled and uncontrolled flows.

At these downstream locations, the wake of the jet-induced actuator flow near the wall is not

influenced by spanwise variations in the flow in the logarithmic region and above.
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(a) (b)

(c)

Fig. 6.3 Absolute wall-shear stress at several locations on the wall downstream of the jet
actuators obtained from OFI data for (a) the uncontrolled flow and (b) the flow subject to
opposing control. (c) Relative difference between the wall-shear stress of the opposing and
uncontrolled cases.
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Abstract

On May 16, 2023, the CICLoPE Laboratory in Predappio was significantly impacted by

severe weather events, resulting in landslides and extensive flooding. Several areas of the

facility suffered damage, including blocked emergency exits, flooded tunnels, and compro-

mised parts of the return circuit of the wind tunnel. Efforts to manage the emergency began

immediately, with subsequent actions aimed at draining water, clearing mud, and restoring

accessibility. During the following months, a series of recovery operations were performed,

including debris removal, structural reinforcements, and drainage improvements. Restora-

tion efforts continued into 2024, with the final steps focused on securing the laboratory

infrastructure and restoring safe access. This report documents the emergency response,

damage assessment, and comprehensive recovery operations required to rehabilitate the

CICLoPE facility for future research activities.
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B.1 Emergency management

The areas affected by the events are shown in the diagram in Fig.B.4. On Tuesday, 16 May,

several landslides affected the terrain in which the laboratory is located. From a survey

conducted some days later, the situation is described in detail in the survey shown in Fig.

B.5. The relief has 4 significant landslides indicated by A, B, C, D, and E. Around 3 PM

the relief near the emergency exit, C, with consequent flooding of the transverse tunnel of

escape (area 4). The entire emergency exit floods in a few hours. Also on Tuesday, two

smaller landslides are generated near the main entrance (B, E) that cause an influx of water

and land. In addition, two smaller landslides are generated near the main entrance (B, E)

that cause an influx of water and land, as can be seen in Fig.B.7.

Fig. B.4 Schematic of areas affected by flooding in CICLoPE Laboratory.

Fig. B.5 Relief of landslides affecting the CICLoPE Laboratory.
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Fig. B.6 Landslide on emergency exit (C).

Fig. B.7 Landslide near main entrance (B, E).
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On Wednesday 17 a survey of the tunnels shows that at the main entrance a large pool of

water mixed with mud has formed and arrives at the level of the parking lot in front

Fig. B.8 Flooding near the main entrance.

Fig. B.9 Mud removing operations using a water pump.

On Thursday 18, a pump is purchased to evacuate stagnant water at the main entrance.

After the evacuation of water, a significant amount of mud remains in the entrance door. The

quantity and compactness prevent manual removal. The Mayor of Predappio is alerted, who

puts us on a list for mechanical intervention.
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On the morning of Friday 19 it is noticed that the water has again filled the access area

(see Fig.B.10). This suggests the need to clear access from water and mud and at the same

time restore the water purging system before further rains occur.

Fig. B.10 Flooding near the main entrance.

The escape corridor adjacent to the mountain is completely blocked (see Fig.B.11).

Fig. B.11 Obstruction of the corridor leading to the emergency exit.

On Monday 22, taking advantage of the good weather, the entrance is cleared (see

Fig.B.12). We were then able to access the inside to make a quick check of the situation.

The lower floor has a widespread flooding, caused by the collapse of the border wall with

Matturro. The collapse is related to the filling of the underground room due to the D. There
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are debris (even large) up to the engine system. The depth of flooding varies from almost

zero near the ground floor in front of the baths to 15-20 cm at the end of the tunnel.

Fig. B.12 Caption

Fig. B.13 State of the laboratory at first entrance following the flood of 16 May.

The cavity is completely filled with water and the part of the return circuit in stainless

steel, fully submerged, has raised about 50 cm going to raise the floating floor (see Fig.B.14)

and damaging the wall of plasterboard. The rise of the stainless steel elements caused a

general rise of the tunnel up to the test chamber which was uprooted from the supports (see

Fig.B.16). The supports also failed in the carbon fiber elements before the "test section".

The whole part of the circuit, from the submerged elements to the carbon fiber element in

front of the laboratory will have to be dismantled and revised (see Fig.B.15). The structure

of the upper floor seems to have not been damaged. Likewise the second adjacent tunnel.
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Fig. B.14 Laboratory situation at first entrance after the flood of 16 May.

Fig. B.15 damage to plasterboard and flooding of the lower cavity housing part of the wind
tunnel return circuit.
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Fig. B.16 Lifting of the tunnel due to the floating of the wind tunnel.

On Tuesday, 23 May, a task of clearing the area in front of it was assigned to an enterprise

from Predappio that by means of small excavators and bobcats eliminated the soil present in

entry freeing the entire gate of access.

Fig. B.17 First clearance activities at the main entrance.

On Wednesday 24, an attempt was made to clear the access corridor from the deposited

mud. Unfortunately, the very liquid state of the mixture present within the corridor did not

allow the use of means for which it was necessary to proceed by hand.

Simultaneously, work was carried out to clear the water pumping and evacuation system.

First, drainage from manhole 2, located in front of the entrance to manhole 1 at the center

of the square, was restored. This process functions by gravity and does not have pumps.

Second, the inlet grate 3, which channels water into manhole 2, was cleaned, and the pump
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Fig. B.18 Flooding at the main entrance with mud-removal operations, showing two different
stages.

that transports water from the central grate 4 to manhole 1 was activated. Finally, pump 5

was reactivated to start evacuating water into the basin of the return circuit.

On the afternoon of Wednesday, May 24, Professor Berti, a geologist from the Alma

Mater, conducted an inspection. Professor Berti visually inspected the entire ridge of the

collapsed mountain, and, using a drone, was able to examine the conditions of the landslide

areas more closely. The type and shape of the landslide do not allow for a simple clearing

of the emergency exit; instead, consolidation work is needed first.

On Thursday, May 25, ventilation was restored, allowing for the evacuation of humidity

in the tunnels and helping to preserve the infrastructure. Additionally, the most important

equipment was transferred to the Visitor Center. Meanwhile, the pump was left operating to

continue emptying the water in the underground cavity.

On Monday, May 29, it was observed that the gradual removal of water had returned the

gallery to its original position. Any potential damage to parts of the return circuit and the

PIPE positioning system must be assessed and quantified.
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B.2 Recovery activities

August 2023

In August, the Brigadeci company set up the construction site to restore the laboratory . The

site was cleared, and mud was removed from areas 1, 2, and 3, which was appropriately

analyzed before disposal. All damaged drywall walls in area 2 were removed, and all debris

from the collapse of the wall in area 3 was cleared and disposed of (see Fig.B.19). The

flooring in area 2 was removed, and the drywall walls were restored. Additionally, the upper

part of area 4 was emptied (see Fig.B.20,B.22,B.23).

Fig. B.19 Removal of floating floor and mud in the main entrance.
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Fig. B.20 Removal of debris caused by the break-in of the separation wall.

Fig. B.21 Recovery of return circuit placed in the cavity under the floor.
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Fig. B.22 Area 3 recovery operations.

Fig. B.23 External deposit of mud and solid debris.
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September 2023

Reinforcement of the ceiling in area 3 (see Fig.B.24, B.25). Demolish all the walls. The

mud was removed and transported to the collection point in Predappio Alta. The debris

was loaded and delivered. An armed brickwork was laid to isolate the laboratory from the

landslide D which destroyed the Matturro shed. Clean up all areas of interest.

Fig. B.24 Restoration and closure of the landslide access in area 3.

Fig. B.25 Restoration and closure of the landslide access in area 3.
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Fig. B.26 Restoration of laboratory floor/walls and return circuit.

November 2023

Restoration of the return circuit. Repair of the carbon fiber duct and its positioning system,

which had been damaged by the lifting movement. Replacement of the flooring and drywall

walls.

Fig. B.27 Restoration of laboratory floor/walls and return circuit.
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Fig. B.28 Repair of the pipe supports damaged by the lifting movement.

March 2024

Removal of soil near the main entrance. Restoration of drainage areas. Repair of the

boundary fence with the neighboring property. Finally, the square in front of the tunnel

entrance was restored, along with the drainage systems. The fence near the road was also

repaired.
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Fig. B.29 Removal of the landslide near the main entrance. Installation of drainage material
and restoration of the fence.



151

Fig. B.30 Removal of the landslide near the main entrance. Installation of drainage material
and restoration of the fence.

Fig. B.31 Removal of the landslide near the main entrance. Installation of drainage material
and restoration of the fence.
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Fig. B.32 Repairing the drainage system



Appendix C: Centerline mean velocity

trends and normal stress in the long pipe

Abstract

The CICLoPE facility at the University of Bologna in Forli, Italy, is a unique facility

providing fully developed pipe flow up to Reynolds numbers near '4g of 50,000 with

exceptional spatial resolution and stable operating conditions as described by Fiorini (2017)

and Mascotelli (2020), and illustrated in Chapter 2. Measurements obtained over the last

two years, on the centerline of the pipe in the fully developed test section, with pitot probes

for streamwise mean velocity (±0.2% accuracy) and hot wires for the streamwise normal

stress (±5% accuracy) are reported here and compared to other data.

Fig. C.33 Centerline mean velocity from CICLoPE compared to other data
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Figure C.33 compares the measurements to earlier data from CICLoPE by Fiorini (2017)

and Mascotelli (2020), to the superpipe data of McKeon et al. (2005), and to the DNS

results of Pirozzoli et al. (2021). The large amount of data obtained with several pressure

transducers and repeated over one year provide a reliable correlation of the centerline velocity

to equal (1/0.44) Ln(Ret) + 7.9, providing a Kármán coefficient for pipe flow of 0.44.

Fig. C.34 centerline normal stress with comparison

Figures C.34 and C.35 reveal high Reynolds number trends of the streamwise normal

stress to be constant and equal to 0.85, the skewness to equal -0.5 and the kurtosis to equal

3.5, all with high degree of certainty.
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Fig. C.35 Skewness and kurtosis from CICLoPE
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