
DOTTORATO DI RICERCA IN
DATA SCIENCE AND COMPUTATION

Ciclo XXXVI

Settore Concorsuale: 09/H1 – Sistemi di elaborazione delle informazioni

Settore Scientifico Disciplinare: IINF-05/A – Sistemi di elaborazione delle informazioni

Graph neural network methods for representation
and generation in drug discovery

Presentata da: Carlo Abate

Coordinatore Dottorato
Prof. Daniele Bonacorsi

Supervisore
Prof. Andrea Cavalli

Co-supervisore
Dr. Sergio Decherchi

Esame Finale Anno 2025

Contents

Abstract 5

1 Introduction 6

1.1 The landscape of drug discovery . 6

1.2 Classical approaches in hit discovery 7

1.2.1 High-throughput screening 7

1.2.2 Virtual screening . 8

1.3 The emergence of deep learning in drug discovery 9

1.3.1 Graph neural networks in drug discovery 10

1.4 Thesis structure . 11

2 Graph neural networks for molecular design: a literature review 14

2.1 Introduction . 14

2.2 Foundations of molecular graph learning 16

2.2.1 Graph fundamentals and graph generation problem 16

2.2.2 Graphs vs SMILES representations 18

2.3 Graph neural networks: an overview 21

2.3.1 Message-passing neural networks 22

2.3.2 Recurrent approaches . 23

2.3.3 Convolutional approaches 24

2.3.4 Graph pooling . 25

2.4 Learning frameworks . 28

2.4.1 Variational autoencoders . 28

2.4.2 Generative adversarial networks 29

2

2.4.3 Normalizing flows . 31

2.4.4 Score-based models . 32

2.4.5 Reinforcement learning . 33

2.5 Guided generation of molecular graphs 34

2.5.1 Generation process . 37

2.5.2 Granularity level . 42

2.5.3 Validity constraints enforcement 43

2.5.4 Conditioning . 46

2.6 Datasets and benchmarks . 50

3 AMCG: a graph dual Atomic-Molecular Conditional Generator 54

3.1 Introduction . 54

3.2 Model architecture . 56

3.2.1 Overview of AMCG . 56

3.2.2 Encoder . 57

3.2.3 Combiner . 58

3.2.4 Molecular decoder . 59

3.2.5 Shared decoder . 60

3.3 Training and loss functions . 62

3.4 Molecular generation and sampling strategies 63

3.4.1 Unconditional generation . 63

3.4.2 Conditional generation . 64

3.5 Experimental results . 65

3.5.1 Datasets and preprocessing 65

3.5.2 Unconditional generation results 66

3.5.3 Conditional generation results 71

3.5.4 Results on ZINC Dataset . 75

3.6 Conclusions . 78

4 MaxCutPool: differentiable feature-aware MAXCUT for pooling in

graph neural networks 82

4.1 Introduction . 82

4.2 Background . 83

4.2.1 The MAXCUT problem and its continuous relaxations 83

4.2.2 Heterophilic message-passing 85

4.3 MaxCutPool overview . 86

4.3.1 SELECT operation . 87

4.3.2 REDUCE operation . 90

4.3.3 CONNECT operation . 91

4.3.4 Auxiliary loss . 91

4.3.5 Hyperparameters and optimization 92

4.4 Experimental evaluation . 93

4.4.1 Computation of the MAXCUT partition 93

4.4.2 Multipartite dataset . 95

4.4.3 Graph classification . 98

4.4.4 Node classification . 103

4.4.5 Node classification with skip connections 105

4.4.6 Memory usage and scalability 107

4.5 Conclusions . 107

5 Other Works 109

5.1 Ligandability and druggability assessment via machine learning . . 109

5.1.1 Machine learning tasks and architectures 110

5.1.2 Feature engineering and representation 110

5.1.3 Incorporation of molecular dynamics 111

5.1.4 Current challenges and future directions 112

5.2 Development of a web server for molecular surface analysis 112

6 Conclusions and future perspectives 115

Publications 118

Bibliography 119

Abstract

Drug discovery is a time-consuming and expensive process, often spanning over a

decade and costing billions of dollars. This thesis advances graph-based machine

learning approaches to accelerate this process, making three main contributions.

First, we provide a comprehensive review of graph neural networks for conditional

molecular generation, establishing a framework for understanding and compar-

ing different methods. Building on these insights, we introduce AMCG (Atomic-

Molecular Conditional Generator), a novel generative framework that achieves

state-of-the-art performance while offering one-shot generation capability and ef-

fective property optimization via gradient ascent. Motivated by the heterophilic

nature of molecular graphs — where connected atoms often have dissimilar features

— we then develop MaxCutPool, a differentiable graph pooling technique based on

the MAXCUT problem. By combining graph-theoretical principles with deep learn-

ing, MaxCutPool demonstrates superior performance on heterophilic graphs while

remaining competitive on standard benchmarks and maintaining computational

efficiency. Together, these contributions advance both the theoretical foundations

of graph representation learning and provide practical tools for accelerating drug

discovery.

5

Chapter 1

Introduction

1.1 The landscape of drug discovery

Drug discovery is a complex, multidisciplinary task aimed at identifying and de-

veloping new therapeutic compounds. This process is characterized by its resource

requirements in terms of time and money, often spanning over a decade and costing

billions of dollars from initial concept to market approval [1, 2]. One of the key

challenges the pharmaceutical industry faces is to reduce such costs. The difficulty

of this operation is to be found in the inherent complexity of disease mechanisms,

the necessity to meet regulatory requirements, and the need to develop drugs for in-

creasingly specific patient populations [3]. The traditional drug discovery pipeline

consists of several key stages [4]: the initial step consists of identifying a biological

target that is believed to play a central role in a disease when modulated by a drug.

This target can be a protein, a gene, RNA, or any biological molecule. Once a target

is validated, the following step is to find initial hits, i.e. compounds that interact

with the target in a desirable way. This process traditionally involves screening

techniques – in vitro (see Section 1.2.1) or in silico (see Section 1.2.2) – of large

chemical libraries. Following hit discovery, the identified compounds are optimized

to improve their efficacy, selectivity, and pharmacokinetic properties. This phase is

called lead optimization and involves cycles of synthesis and testing. Once a lead

compound has been optimized, it enters preclinical development, where its safety,

6

efficacy, and pharmacokinetics are tested in vitro (in cell cultures) and in vivo (in

animal models). The resulting compounds undergo a clinical trials stage, which is

one of the most critical phases of drug development since it involves testing the

drug on humans and where, often, potential drugs fail for lack of efficacy and/or

side effects. Upon successful clinical trials, an NDA is submitted to regulatory

bodies such as the FDA (U.S. Food and Drug Administration) or EMA (European

Medicines Agency). This application includes all data from preclinical and clinical

studies, as well as information on manufacturing, labeling, and proposed marketing

strategies.

During this long and complex development process a significant amount of infor-

mation is produced, additionally there are many stages at which the pipeline can

fail. Due to the complexity of the process and the wealth of produced information

[5], computational methods, including deep learning based ones, can support the

discovery process.

1.2 Classical approaches in hit discovery

Over the years, several approaches have been developed to reduce the costs of the

initial phases of the drug discovery pipeline.

1.2.1 High-throughput screening

High-throughput screening (HTS) has been a cornerstone of drug discovery for

decades [6]. It typically utilizes automated equipment to perform testing on thou-

sands or even millions of compounds in a relatively short time. The advantages

of HTS include the ability to quickly test a large number of compounds and to

identify good potential drug candidates. Furthermore, as a by-product, it gener-

ates extensive structure-activity relationship (SAR) data that can be of relevant

interest. The disadvantages, on the other hand, include the high costs associated

with the necessary equipment and compound libraries, often induced by low hit

rates – typically less than 0.1% [7]. Another problem is given by the limited ability

that this technique has in exploring the full chemical space. Despite these chal-

7

lenges, HTS has led to the discovery of numerous drugs and continues to be an

important tool in many drug discovery programs [8, 9]. Recent advancements in

miniaturization, robotics, and data analysis have further improved the efficiency

and effectiveness of HTS [10].

1.2.2 Virtual screening

Virtual screening (VS) emerged as a computational alternative to HTS, allow-

ing researchers to evaluate large libraries of compounds in silico [11]. This ap-

proach leverages computational power to predict the likelihood of compounds bind-

ing to a target or exhibiting desired properties, thereby prioritizing specific com-

pounds for experimental testing. VS can be broadly categorized into two main

approaches: structure-based and ligand-based. Structure-based VS utilizes the

three-dimensional structure of the target protein to dock and score potential lig-

ands [12, 13], and has been particularly successful in identifying hits for targets

with well-characterized binding sites, such as enzymes and receptors [14]. Ligand-

based VS relies on the principle that molecules with similar structures or properties

are likely to have similar biological activities [15]. This approach is particularly

useful when the three-dimensional structure of the target is unknown. Common

ligand-based VS techniques include:

• pharmacophore modeling [16];

• quantitative structure-activity relationship (QSAR) analysis [17, 18];

• shape-based similarity searching [19, 20];

• machine learning (ML) models trained on known active compounds [21].

VS has proven to be a cost-effective method for identifying promising lead com-

pounds, often complementing and enhancing traditional HTS approaches [22].

8

1.3 The emergence of deep learning in drug dis-

covery

In recent years, the field of drug discovery has experienced a transformative shift

with the emergence of deep learning (DL) techniques [23]. Such techniques can

be utilized to accelerate many stages of the drug discovery process, ranging from

target identification and hit discovery to lead optimization and preclinical test-

ing [24], by leveraging vast amounts of data and increasingly complex algorithms.

DL offers several key advantages in drug discovery: the ability to learn complex,

non-linear relationships from large datasets [25, 26], automated feature extraction,

reducing the need for manual feature engineering [23, 27], potential for end-to-end

learning, integrating multiple steps of the drug discovery process [5, 24], capability

to generate novel molecular structures [28, 29], and improved predictive power for

molecular properties and activities [30, 31]. These capabilities have led to applica-

tions across the drug discovery pipeline. For instance, deep learning models have

been used to analyze large-scale genomic and proteomic data to identify potential

drug targets [32], and DL-based VS methods have shown improved performance in

identifying active compounds compared to traditional approaches [33].

Another important aspect of molecular modeling in drug discovery is the accurate

representation of potential energy. The potential energy of a molecular system

describes the energy landscape that governs molecular interactions and conforma-

tions. DL approaches have shown promise in predicting and modeling potential

energy surfaces more accurately and efficiently than traditional methods [34, 35].

For instance, neural network potentials can capture complex many-body interac-

tions that are challenging for classical force fields [36]. These potentials can be

trained on high-level quantum mechanical calculations and then used to predict en-

ergies and forces for larger systems or longer timescales, bridging the gap between

quantum accuracy and classical efficiency [37]. This capability is particularly valu-

able in drug discovery for tasks such as protein-ligand binding affinity prediction,

conformational analysis, and molecular dynamics (MD) simulations [38].

9

1.3.1 Graph neural networks in drug discovery

Graph neural networks (GNNs) are a class of neural networks that operate directly

on graph-structured data. Their peculiar mechanism of action, message-passing,

makes them particularly well-suited for representing and analyzing molecules. The

use of GNNs in drug discovery offers several key advantages over traditional meth-

ods and other DL approaches: first and foremost, molecules are inherently graph-

based entities, where atoms are nodes and bonds are edges. GNNs naturally align

with this representation, allowing the model to directly learn from the structural

and relational information encoded in molecular graphs. Unlike traditional vector-

based methods, which may lose some of this relational context, GNNs preserve the

molecular topology, capturing both the connectivity and the nature of the inter-

actions between different parts of a molecule [39]. Unlike fixed-dimensional input

methods, GNNs can adapt to varying graph sizes and can process molecules with

different numbers of atoms and bonds without the need of extensive preprocessing

[40]. Furthermore, the features learnt by GNNs can often be directly interpreted

in terms of molecular substructures or motifs, such as functional groups or spe-

cific bonding patterns. This interpretability is a significant advantage, as it allows

researchers to gain insights into which parts of a molecule contribute most to its

predicted properties or activities [41]. Another promising aspect of GNNs is their

potential for transfer learning. In drug discovery, the ability to transfer knowledge

from one task to another – such as from predicting molecular properties to predict-

ing biological activity – can save significant time and resources. GNNs, trained on

large datasets to learn generalizable chemical features, can be fine-tuned for spe-

cific tasks, enhancing performance on related problems and enabling more efficient

drug discovery processes [42, 43].

The versatility of GNNs has led to their application across a wide range of tasks in

drug discovery: they have been successfully employed to predict various molecular

properties, such as solubility, toxicity, and bioavailability [44], becoming the de

facto standard architecture utilized for such task. Another significant application

of GNNs is in predicting the binding affinity between proteins and potential lig-

ands [45]. Accurately predicting binding affinity is crucial for identifying promising

10

drug candidates, and GNNs have shown promise in this area by effectively modeling

the interactions between molecules and target proteins. In addition to molecular

property and activity prediction, GNNs have been applied to predict chemical re-

actions and assist in retrosynthetic analysis [46]. These applications help chemists

understand how to synthesize target molecules, further accelerating the drug devel-

opment process. GNNs are also being used to generate new molecular structures

from scratch, a process known as de novo molecular design [47]. By learning the

principles of chemical bonding and molecular stability, GNNs can suggest novel

compounds that are likely to exhibit desired behaviours, thus expanding the chem-

ical space available for drug discovery. A graph-based AI model [48] demonstrated

its effectiveness in de novo drug design by creating a JAK1 inhibitor that was

later independently patented (WO2020182159A1), underscoring the model’s abil-

ity to generate novel and biologically active molecules. Lastly, GNN approaches

have been successfully applied to drug repurposing efforts, leveraging large-scale

biomedical data to identify new indications for existing drugs [49, 50]. These models

can integrate diverse data types, including drug structures, gene expression profiles,

and clinical data, to find novel therapeutic applications for known compounds.

Despite these advances, several key challenges remain in the application of GNNs

to drug discovery. First, many existing generative models lack explicit control

over molecular properties and atomic composition, limiting their practical utility

in targeted drug design. Second, current approaches often struggle with the inher-

ent heterophilic nature of molecular graphs, where connected atoms typically have

different properties. Third, the interpretability of these models remains a signif-

icant challenge, particularly in understanding how structural modifications affect

molecular properties.

1.4 Thesis structure

This thesis contributes to both the theoretical foundations of GNNs and their

practical applications in de novo molecular design. The content of this work is

largely based on the works [P1, P4, P2, P3] and is organized as follows:

11

Table 1.1: Works that form the basis of this thesis

Chapter Publication Description Status

2 [P1] Comprehensive review of GNNs for
conditional molecular design

Published

3 [P2] AMCG: A novel GNN-based generative
model for molecular graphs

Published

4 [P3] MaxCutPool: A new graph pooling
technique for heterophilic graphs

Accepted

5 [P4] Review of ligandability and druggabil-
ity assessment methods

Published

• Chapter 2 presents a comprehensive literature review of GNNs for conditional

molecular design. It provides an overview of the current state-of-the-art in

graph-based approaches to address this task. The chapter also sets the math-

ematical foundation for the subsequent technical contributions. This chapter

is based on our comprehensive review of GNNs for conditional molecular

design [P1].

• Chapter 3 introduces AMCG (Atomic-Molecular Conditional Generator), a

novel GNN-based generative model for molecular graphs. Here, we detail

the theoretical foundations of the model, its architectural features and train-

ing process, and present comprehensive experimental results demonstrating

its effectiveness in both unconditional and conditional molecular generation

tasks. The model presented in this chapter was originally introduced in our

publication [P2].

• Chapter 4 introduces MaxCutPool, a new graph pooling technique. This

chapter is more theoretical, addressing the need for specialized pooling meth-

ods when dealing with heterophilic graphs. It covers the mathematical foun-

dations of the MAXCUT problem at the basis of our method, describes the Max-

CutPool pooling layer in detail, and provides extensive experimental evalua-

tions. MaxCutPool technique discussed in this chapter was first proposed in

our work [P3].

• Chapter 5 explores complementary projects in drug discovery. This chapter

begins with a review of ligandability and druggability assessment methods,

12

covering various machine learning approaches, datasets, and benchmarks used

in this field [P4]. It also describes the ongoing development of a web server

for protein pocket detection.

• Chapter 6 synthesizes the thesis contributions and discusses future directions

for integrating these components into a comprehensive de novo drug design

pipeline. It explores the potential integration of MaxCutPool into the AMCG

framework and outlines a vision for a more holistic approach to drug discovery.

13

Chapter 2

Graph neural networks for

molecular design: a literature

review

2.1 Introduction

The field of machine learning has witnessed a significant advancement since the

advent of GNNs. These powerful models have shown great capability for handling

structured data, making them a valuable tool in drug discovery and molecular

design [47]. GNNs extend the concept of traditional, feed-forward neural networks

to graph domains, allowing for the processing of data that can be represented as

nodes connected by edges.

Introduced in 2005 [51] and further developed in 2009 [52], the original Graph

Neural Network (GNN) model laid the foundation for processing graph-structured

data using neural networks. However, it wasn’t until the mid-2010s that GNNs be-

came well established in the machine learning community. This surge in popularity

coincided with the increasing availability of graph-structured datasets and compu-

tational resources, marking a new era in the analysis of complex, interconnected

data.

14

Being the main focus of this thesis on generative models for molecular graphs,

we will direct our attention specifically to the development and application of

this family of methodologies. As the field has evolved, in fact, a diverse set of

approaches has emerged, each with its own strengths and challenges. To provide

a comprehensive overview of this landscape, we present a taxonomical forest of

generative models for drug design (Figure 2.1).

Figure 2.1: Taxonomy of generative models for de novo drug design, from general
choices such as the employed learning framework, the conditioning technique and the
generation process modeling to domain-specific ones, such as the validity enforcement
techniques and the granularity level.

In this chapter we provide a comprehensive review of GNNs for molecular design,

structured as follows:

• we begin Section 2.2 by discussing the fundamentals of graphs and the graph

generation problem, establishing the mathematical foundation for molecular

representation using GNNs. Here, we compare graph-based approaches to

traditional SMILES-based methods, highlighting the advantages and chal-

lenges of each representation;

15

• we then provide an overview of GNN architectures in Section 2.3, describing

the structure and role of their main components – i.e. propagation modules

(Section 2.3.1) and pooling modules (Section 2.3.4);

• in Section 2.4 we describe the most utilized learning frameworks, which form

the foundational architecture of generative models. Choosing the learning

framework is common to every deep learning application design. This oper-

ation is interconnected with the other task-specific modeling decisions, each

influencing the other;

• in Section 2.5 we deeply investigate such choices. In particular, in Section

2.5.1 we focus on the various ways to model the generation process. This can

range from one-shot approaches that produce entire molecules simultaneously

to sequential methods that build molecules step-by-step. The generation can

be carried out at different granularity levels, which depend on the utilized

molecular dictionary. This aspect is discussed in Section 2.5.2. Another crit-

ical aspect of molecular generation is ensuring that the produced structures

adhere to chemical rules. We describe them in Section 2.5.3. In conclusion,

in Section 2.5.4 we discuss conditioning techniques allowing for targeted gen-

eration of molecules with specific properties;

• finally, in Section 2.6 we review key datasets and benchmarks used in the field,

discussing evaluation metrics and challenges in assessing model performance.

2.2 Foundations of molecular graph learning

2.2.1 Graph fundamentals and graph generation problem

A graph is a mathematical structure defined as a pair G = (V , E), where V =

{v1, ..., vN} is a set of N nodes and E = {ε1, ..., εM} is a set of M edges. Each

edge ε = (vi, vj) connects two nodes vi and vj. The connectivity of a graph is

represented by its adjacency matrix A ∈ {0, 1}N×N , where its element aij is 1

if nodes vi and vj are adjacent (connected by an edge), and 0 otherwise. If the

adjacency matrix is symmetric, the graph is said to be undirected, otherwise it

16

is said to be directed. In this context, we primarily focus on undirected graphs.

The neighborhood of a node vi, denoted as N (vi), is the set of all nodes adjacent

to it, and the degree of vi is |N (vi)|. The Laplacian matrix is another important

matrix representation of a graph. For an undirected graph, the Laplacian matrix

L ∈ RN×N is defined as L = D − A, where D is the degree matrix (a diagonal

matrix with dii = |N (vi)|) and A is the adjacency matrix. The Laplacian matrix

plays a crucial role in various graph-theoretic analyses and algorithms, including

spectral clustering, graph partitioning, and the study of graph dynamics [53].

Graphs have proven to be versatile structures for describing complex data in various

fields, including chemistry, software engineering, and image processing [54, 55].

Their ability to represent relational information makes them particularly valuable

in domains such as drug design and network science [56, 57].

The graph generation problem has attracted significant attention as well due to its

wide-ranging applications [58]. Historically, several algorithms have been developed

to generate graphs with specific properties:

• the Erdős–Rényi model [59] for random graphs with a constant probability

of edge connection;

• the Watts–Strogatz model [60] for random social networks with high edge

density;

• the Barabási–Albert model [61] for scale-free graphs with power law degree

distribution.

These models primarily focus on generating adjacency matrices based on structural

properties, treating nodes and edges as indistinguishable. However, to represent

molecules and other complex structures, richer graph representations are needed.

Annotated graphs extend the basic graph structure by associating additional in-

formation with nodes and edges. They are the main data structure used in this

thesis. Let us consider a graph (V , E) with N nodes and M edges. The corre-

sponding annotated graph is a 5-ple (V , E ,X,A,E) where: X ∈ RN×c is the node

feature matrix having c as the node feature dimension; A ∈ RN×N is the adjacency

17

matrix, now allowing for continuous edge weights; E ∈ RM×d is the edge feature

matrix having d as the edge feature dimensions. In this notation, xi represents

the feature vector of node vi, while aij and eij represent the scalar weight and

the feature vector of edge (vi, vj), respectively. In the following, we will refer to

annotated graphs as G = (X,A,E). We will refer to annotated graphs with no

edge features as G = (X,A), and we will refer to annotated graphs with a binary

adjacency matrix as G = (X,E).

Using this enhanced structure, a molecule can be fully represented as an annotated

graph where nodes correspond to atoms, edges to bonds, and the feature matrices

contain relevant information such as atom types, bond types, Cartesian coordinates,

and chemical properties.

2.2.2 Graphs vs SMILES representations

In the field of drug discovery and molecular design, the choice of molecular repre-

sentation plays a crucial role in the effectiveness of ML models. Two prominent

approaches have emerged: SMILES strings and graph-based representations. Each

has its strengths and limitations, which have significant implications for model

design and performance.

SMILES-based Approaches

SMILES (Simplified Molecular-Input Line-Entry System) strings [62] are a linear

textual representation of molecular structures, encoding the connectivity and atom

types of a molecule as a sequence of characters. This representation allowed the first

wave of deep learning approaches in drug discovery to leverage powerful existing

sequence learning architectures from natural language processing. These models,

primarily including recurrent neural networkss (RNNs) (such as LSTM networks

[63]) and attention-based networks (like Transformers [64]), were quickly adapted

to the domain of drug discovery [65, 66, 67, 68, 69, 70, 71, 72, 73, 74].

While SMILES-based models have demonstrated the ability to generate realistic

molecules, they face several limitations: these models, in fact, must learn both

18

chemistry and SMILES grammar, potentially wasting representational power on

rules that are not the true target of the learning process. Moreover, SMILES

strings have both canonical and non-canonical representations, which may lead

to imprecise learning [75]. Additionally, there’s a lack of continuity in SMILES

representation: small perturbations in a SMILES string can result in significant

changes to the corresponding molecular entity and, conversely, similar chemical

entities can have vastly different SMILES representations.

Efforts have been made to address some limitations of SMILES-based approaches,

such as the SELFIES (SELF-referencing Embedded Strings) representation [76]

which ensures that every grammatically correct string corresponds to a chemically

valid molecule. However, these approaches still require the model to learn a gram-

mar.

Advanced techniques: LLMs. Despite the above mentioned inherent limita-

tions of SMILES representations, recent breakthroughs in Large Language Models

(LLMs) [77] have revitalized interest in sequence-based approaches to molecular

design. The remarkable ability of transformer architectures to capture long-range

dependencies and complex patterns has enabled new possibilities in molecular gen-

eration and property prediction. Recent work has shown that LLMs can serve as

foundation models for Chemical Language Models (CLMs) that perform at or above

the level of models trained solely on chemical SMILES string data [78]. Building on

this foundation, approaches like ChemBERTa-2 [79] have demonstrated the poten-

tial of chemical foundation models by leveraging self-supervised learning on massive

datasets of up to 77M compounds from PubChem. These models can effectively

learn salient molecular representations that transfer well to downstream tasks.

Nevertheless, these approaches still face some of the fundamental challenges inher-

ent to sequence-based representations, leading researchers to explore alternative

approaches that might better capture the inherent structure of molecular data.

19

Graph-based Approaches

Graph-based representations address many of the limitations of SMILES strings,

offering several key advantages in molecular modeling. Unlike SMILES-based ap-

proaches, graph-based models focus entirely on chemical properties and structures,

eliminating the need to learn grammar rules. This allows the network to concen-

trate its representational power on the underlying chemistry. Furthermore, graph

representations are naturally invariant to node ordering, a critical feature in molec-

ular modeling that ensures consistent representation of a molecule regardless of how

its atoms are numbered, thus simplifying the learning process.

The interpretability of graph-based approaches is another significant advantage.

Sub-graphs can be directly interpreted as molecular fragments, providing more

intuitive representations. Additionally, chemical structural constraints, such as

molecular validity, can be more easily enforced on both full molecules and frag-

ments in graph representations compared to SMILES representations. Graph rep-

resentations also provide a more robust space of molecular structures, where similar

graphs generally correspond to similar molecules. This stability is particularly ben-

eficial for tasks like molecular optimization and property prediction, as it allows

for smoother navigation of the chemical space.

Advanced techniques: Geometric and equivariant models. While molec-

ular graphs effectively capture the topological structure, they can be naturally

extended to include spatial information by equipping nodes with 3D coordinates.

This geometric representation becomes crucial when dealing with tasks that depend

on the spatial arrangement of atoms, such as protein-ligand binding free energy or

conformer generation. Similarly, molecules can be represented as point clouds,

where each atom is a point in 3D space with associated features.

These spatial representations introduce new challenges in model design, as predic-

tions should remain consistent regardless of the molecule’s orientation or position in

space. Recent developments in geometric deep learning have addressed this aspect

through equivariant architectures. While traditional GNNs already ensure equiv-

ariance to node permutations - meaning predictions remain unchanged when atoms

20

are reordered - modern architectures extend this to include spatial transformations.

The E(n)-equivariant GNNs [80] pioneered this approach by designing neural net-

works that respect both permutation and Euclidean space symmetries. This ensures

that molecular predictions remain consistent regardless of the molecule’s orienta-

tion or position.

The key insight of these approaches lies in their ability to maintain both permu-

tational and geometric equivariance, eliminating the need for extensive data aug-

mentation and at the same time ensuring more robust predictions across different

molecular conformations. This has proven particularly valuable in tasks involving

protein-ligand interactions, conformer generation, and molecular dynamics, where

both topological and spatial relationships play crucial roles.

These advantages have led to a growing interest in using GNN models for molec-

ular representation and generation. However, the task of generating a molecular

graph remains challenging, as it requires generating both the adjacency matrix and

the feature matrices. This complexity is further amplified by the vast size of the

drug-like chemical space, estimated at 1033 [81]. Nonetheless, the ability of graph

representations to naturally capture molecular structures continues to drive new

developments in the field, motivating researchers to address these challenges.

2.3 Graph neural networks: an overview

A typical GNN architecture consists of a sequence of graph processing modules

[57], which can be categorized into three main types:

• propagation modules : they maintain the graph structure while propagating

information between nodes following the graph topology. Most of the prop-

agation modules can be ascribed to the Message-Passing Neural Networks

framework (see Section 2.3.1);

• pooling modules : they modify the graph structure, usually generating a coars-

ened version, trying to keep the relevant information. Most of the pooling

layers can be ascribed to the Select-Reduce-Connect framework (see Section

21

2.3.4);

• sampling modules : less common, they determine a subset of nodes from which

to collect information when dealing with large graphs.

2.3.1 Message-passing neural networks

Figure 2.2: A visual representation of message-passing step to a generic node (in red)
from its neighbor nodes.

A peculiarity of graph data structures is that they do not possess a specific node

ordering for each neighbourhood. This means that the functions implemented by

graph processing modules need to be invariant with respect to permutations of the

nodes belonging to the same neighbourhood. The Message-Passing Neural Network

(MPNN) [40] is a general GNN framework that gives an abstract structure to most

standard permutation-invariant graph propagation modules.

Let us consider a graph G = (X,A,E) and let us equip each node vi with an

additional, hidden representation hi. What the MPNN module does is to collect

information from the node’s neighborhood to update its hidden representation.

This is generally defined as a Message-Passing (MP) step, an iterative process that

enables the network to learn representations of nodes, edges, and entire graphs.

22

Through this mechanism, GNNs can capture both local and global structural in-

formation. For each MP step l, depicted in Figure 2.2, a MPNN module updates

the hidden representation hl
i as follows:

ml
ji = Ml(xi,xj, aij, eij,h

l
i,h

l
j)

ml
i = Al(m

l
ji, vj ∈ N (vi))

hl+1
i = Ul(xi,h

l
i,m

l
i)

(2.1)

Here, Ml is a message function, Al is a permutation-invariant aggregator function,

and Ul is an update function. A readout function R can be used to compute a

graph-level feature vector.

Propagation modules can be categorized into two main approaches: recurrent and

convolutional.

2.3.2 Recurrent approaches

Recurrent approaches view message propagation as a dynamical system. The origi-

nal GNN and Gated Graph Neural Networks (GG-NNs) [82] fall into this category.

In these models, the symbol l represents the current time step of the state dynam-

ical system.

The GNN message-passing scheme is the following:

ml
ji = MLP(xi,xj, aij, eij,h

l
j) (2.2)

ml
i =

∑
vj∈N (vi)

ml
ji (2.3)

hl+1
i = ml

i (2.4)

Here, Ml is implemented as a multilayer perceptron (MLP) with shared weights

across all iterations. GNNs are based on an iterative process that must converge

to a fixed point. GG-NNs address this by stopping iterations after a set number of

steps, without guaranteeing convergence.

23

2.3.3 Convolutional approaches

Convolutional approaches, here represented by Graph Convolutional Networks (GCNs)

[83] and Graph Attention Networks (GATs) [84], extend the concept of convolution

to the graph domain. Unlike recurrent approaches, each convolutional module cor-

responds to a single message-passing step, with consecutive steps using independent

sets of weights.

The GCN message-passing scheme is:

ml
ji =

1√
didj

W lhl
j (2.5)

ml
i =

∑
vj∈N (vi)∪{vi}

ml
ji (2.6)

hl+1
i = σ(ml

i) (2.7)

where di and dj are the degrees of nodes vi and vj, σ is an activation function, and

W l is the learnt weight matrix.

GAT generalizes this further by introducing learnt attention weights. The GAT

message-passing scheme thus becomes:

ml
ji = αijW

lhl
j (2.8)

ml
i =

∑
vj∈N (vi)∪{vi}

ml
ji (2.9)

hl+1
i = σ(ml

i) (2.10)

where αij = α(xi,xj) with α any node features-dependent function.

GCNs have been extensively improved and adapted to various graph subdomains,

including molecular data. Notable variants include Relational Graph Convolu-

tional Networks (R-GCN) [85], Edge-Conditioned Graph Convolutional Networks

24

(EC-GCN) [86] and Spatial Graph Convolutional Networks (Spatial-GCN) [87].

R-GCN and EC-GCN learn separate message-passing functions for different edge

types, while Spatial-GCN equips each node with a vector of coordinates. These ad-

vancements have significantly enhanced our ability to model and generate complex

molecular structures.

It’s worth noting that the challenge of molecular representation learning con-

tributed to the early development of GCNs. Models like Molecular Graph Convolu-

tions [88] and Neural Fingerprints [39] were specifically designed for the molecular

domain.

2.3.4 Graph pooling

Graph pooling is a crucial operation in GNNs, allowing the network to hierarchi-

cally learn graph representations. Analogous to pooling operations in convolutional

neural networks (CNNs), graph pooling aims to reduce the size of the graph while

retaining important structural and feature information. This process is key to

building deep GNNs capable of capturing both local and global graph properties,

which is essential for tasks for graph classification [89], node classification [90, 91],

graph matching [92], and spatio-temporal forecasting [93, 94].

Designing effective pooling layers for GNNs presents several unique challenges.

Unlike grid-structured data where pooling operations are well-defined (e.g., max

pooling in CNNs), graphs lack a regular structure, making it difficult to deter-

mine which nodes should be grouped together. Additionally, the pooling operation

must preserve both local and global graph properties while being invariant to node

permutations. Another significant challenge is maintaining the balance between in-

formation preservation and dimensionality reduction - aggressive pooling can lead

to loss of critical structural information, while insufficient pooling may not effec-

tively capture hierarchical patterns. Furthermore, in molecular graphs specifically,

the pooling operation must respect chemical constraints and preserve important

substructures that determine molecular properties.

Most pooling methods can be expressed through the Select-Reduce-Connect (SRC)

25

framework [95]. In its original formulation, the SRC framework takes also into

account edge features. Here, we present a slightly simplified version that fits better

to the scope of this thesis.

This framework decomposes the pooling operation POOL : G = (X,A) 7→ G ′ =

(X ′,A′) into three key steps: SELECT, REDUCE and CONNECT.

• SEL (selection): G 7→ S ∈ RN×K , a selection operator that maps the N

original nodes to K pooled nodes, often referred to as supernodes. The entries

in S represent the assignment of original nodes to supernodes;

• RED (reduction): (G,S) 7→ X ′ ∈ RK×F , a reduction operator that computes

the features of the supernodes. A common way to implement RED is X ′ =

S⊤X. This operation computes the features of each supernode by summing

the features of all nodes assigned to it;

• CON (connection): (G,S) 7→ A′ ∈ RK×K , a connection operator that gen-

erates the new adjacency matrix for the pooled graph. Typically, CON is

implemented as A′ = S⊤AS. This operation creates the adjacency matrix

of the pooled graph, where a′ij represents the edge weight between supern-

odes i and j. This weight is the sum of all edge weights in the original graph

between nodes assigned to supernode i and nodes assigned to supernode j.

The design of SEL, RED, and CON operations leads to a classification of pooling

operators, categorized as trainable if all three operations are learnt end-to-end,

non-trainable otherwise.

Most pooling methods can be ascribed to three main families: soft-clustering meth-

ods, scoring-based methods, and one-every-K methods.

Soft-clustering methods, also known as dense pooling [95], allow nodes to belong

to multiple supernodes via soft memberships – i.e. each row in S can have multi-

ple non-zero values. Examples include DiffPool [96], MinCutPool [97], StructPool

[98], HoscPool [99], and Deep Modularity Networks (DMoN) [100]. These methods

typically use an MLP or MPNN to process node features, followed by a softmax

operation, resulting in a soft cluster assignment matrix. Each method incorpo-

26

rates unsupervised auxiliary loss functions to shape cluster formation. Trainable

soft-clustering methods offer flexibility and expressive power, preserving all infor-

mative content from the original graph [101]. However, they face challenges such

as memory constraints for large graphs, interpretability issues due to dense, less

interpretable pooled graphs, and potential generalization problems when mapping

each graph to a fixed number of supernodes.

Scoring-based methods select supernodes based on a scoring vector, choosing the

top K scoring nodes. Examples include Top-k Pooling (Top-k) [90, 102], ASAPool

[103], SAGPool [104], PanPool [91], TAPool [105], CGIPool [106], and IPool [107].

These methods differ in their scoring computation techniques and auxiliary tasks

used to enhance pooled graph quality. The value of K can be set as a propor-

tion of the original node count, allowing adaptability to graph size. However, the

scores are generally obtained by node features that become locally similar after

MP operations. This can lead to clustered selection, incomplete representation of

the graph, and reduced performance in downstream tasks due to diminished ex-

pressiveness [108]. Some attempts have been made to promote diversity in node

selection [109, 110], but challenges remain.

One-every-K methods employ graph-theoretical properties to uniformly subsam-

ple the graph for supernode selection. Examples include k-Maximal Independent

Sets Pooling (k-MIS) [111], Graclus [112, 113], SEP [114], and Node Decimation

Pooling (NDP) [115]. These methods use various approaches such as maximal K-

independent sets, merging connected node pairs, or partitioning based on graph

structural entropy. While these methods are adaptive and produce clear cluster as-

signments, they lack fine control over pooled graph size, are non-trainable as they

precompute the pooled graph based solely on topology, and have limited scope as

they don’t account for node features or downstream task requirements.

Recent research has focused on developing methods that combine the strengths of

these different approaches. For example, the MaxCutPool method [P3], which

will be introduced in Chapter 4, aims to leverage graph-theoretical principles

(inspired by one-every-K methods) while maintaining trainability and feature-

awareness (similar to scoring-based and soft-clustering methods).

27

2.4 Learning frameworks

While in the past single GNNs were mainly used alone to learn molecular represen-

tations – e.g. for property prediction [44], nowadays they act as core component of

complex learning frameworks. These frameworks form the foundational architec-

ture of generative models, defining how the model learns to represent and generate

molecular structures. Many of these approaches build upon the concept of hier-

archical neural networks [116], where the overall model can be split into subnets,

each focused on a specific task. In this section, we will explore the most prominent

learning frameworks used in molecular generation.

2.4.1 Variational autoencoders

Variational Autoencoders (VAEs) [117] have become one of the most popular gen-

erative architectures in molecular design. They are particularly attractive due to

their ability to learn a continuous latent space of molecules, which can be sampled

to generate new structures.

The VAE architecture consists of two main components: an encoder network that,

during training, compresses the input examples into the parameters of a latent

probability distribution; a decoder network whose goal is to reconstruct the original

input from samples drawn from the latent distribution [118]. The objective function

of a VAE is the variational lower bound of the log-likelihood of the data, also known

as the Evidence Lower BOund (ELBO):

LV AE = Eq(z|x)[log p(x|z)]−KL(q(z|x)||p(z)) (2.11)

where q(z|x) is the approximate posterior learnt by the encoder, p(x|z) is the

likelihood of the data given the latent representation (learnt by the decoder), and

p(z) is the prior distribution of the latent space (typically a standard Gaussian).

The first term in the ELBO is the reconstruction loss, which measures how well

the model can reconstruct the input data. The second term is the Kullback-Leibler

(KL) divergence, which encourages the learnt latent distribution to be close to

28

the prior distribution; this promotes a well-structured latent space that facilitates

meaningful interpolation and sampling.

The application of VAEs to molecular generation offers several advantages. Per-

haps most significantly, VAEs induce the encodings of the elements of the training

dataset to belong to a continuous, latent manifold. This representation allows for

smooth interpolation between different molecular structures, providing a power-

ful tool for exploring chemical space [119]. One can navigate this latent space to

discover new molecules with desired properties, effectively steering the generation

process towards specific objectives. By sampling from the learnt latent distribu-

tion, VAEs can generate diverse sets of molecules, potentially uncovering novel

structures that might be overlooked by more deterministic approaches. On the

other hand, when dealing with VAEs one can face several problems. One signifi-

cant issue is the phenomenon known as posterior collapse [120]. This occurs when

the model learns to ignore part of the latent space, effectively reducing the diver-

sity of molecules it can generate. The inherent trade-off between reconstruction

accuracy and latent space regularity in VAEs also presents challenges [121]. If the

model prioritizes reconstruction too heavily, it may learn a latent space that is

highly irregular and difficult to sample from meaningfully. Conversely, if the KL

divergence term is weighted too strongly, the model may learn an overly simplified

latent space that fails to capture the complexity of molecular structures. Finding

the right balance is often problem-dependent and can require significant tuning.

Despite these facts, researchers have made significant progress in adapting VAEs

to solve such problems [122, 123, 124]. As a result, VAEs remain one of the most

widely used generative models today.

2.4.2 Generative adversarial networks

Generative Adversarial Networks (GANs) [125], represent another powerful ap-

proach to molecular generation. GANs consist of two competing neural networks:

a generator and a discriminator. The generator produces artificial samples and has

to fool the discriminator. The discriminator is fed with real and generated data,

and must recognize if a given sample is original or artificial.

29

The two networks are trained simultaneously in a minimax game, formalized as:

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.12)

where G is the generator, D is the discriminator, pdata(x) is the true data distri-

bution, and pz(z) is a prior distribution on the input noise variables.

In molecular generation, GANs are well-known for producing high-quality sam-

ples, with the adversarial framework pushing the generator to create increasingly

realistic molecular structures. Unlike VAEs, GANs do not require explicit density

estimation of the data, which simplifies certain aspects of the generative process.

Nevertheless, GANs notably suffer from training instability, which can be particu-

larly problematic for discrete data such as molecular graphs [126]. GANs are also

susceptible to mode collapse [127], where the generator produces a limited variety

of molecules, failing to capture the full diversity of the underlying data distribu-

tion. Additionally, standard GANs do not offer an explicit latent space, which can

make tasks like property optimization more difficult.

CycleGAN

The CycleGAN [128] is an extension of the GAN framework designed for unpaired

image-to-image translation.

The CycleGAN architecture consists of two GANs trained jointly:

• generator G : X → Y and discriminator DY ;

• generator F : Y → X and discriminator DX ,

where X and Y are two different molecular domains.

The key innovation of CycleGAN is the introduction of a cycle consistency loss:

Lcyc(G,F) = Ex∼pdata(x)[||F(G(x))− x||1] + Ey∼pdata(y)[||G(F(y))− y||1]. (2.13)

This loss ensures that the transformations are reversible, i.e., F(G(x)) ≈ x and

G(F(y)) ≈ y.

30

In molecular generation, the CycleGAN is particularly advantageous for tasks such

as transforming molecules between different property regimes (e.g., low to high

solubility), generating analogs of existing drugs, and translating between molecular

representations. However, challenges again arise due to the discrete nature of

molecular graphs, difficulties in ensuring cycle consistency for graphs with different

node orderings, and the need to maintain the chemical validity of transformed

molecules.

2.4.3 Normalizing flows

Normalizing flows [129] are a powerful class of generative models that allow for

both efficient inference and sampling. At their core, they are maximum likelihood

methods that define a bijective mapping between z belonging to a latent space and

x belonging to the data space.

More specifically, we define:

x = f(z) (2.14)

where z is drawn from a simple prior distribution (typically a standard Gaus-

sian), and f is an invertible, differentiable function parameterized by some θ.

The function f is constructed as a composition of simpler bijective functions

f = f1 ◦ f2 ◦ · · · ◦ fK :

x
f1←−→ h1

f2←−→ h2 · · ·
fK←−→ z (2.15)

Under this change of variables, the log-density of the data can be expressed as:

log p(x) = log p(z) +
K∑
i=1

log

∣∣∣∣det

(
∂fi

∂hi−1

)∣∣∣∣ (2.16)

The clever design of the component functions fi allows for efficient computation

of this log-likelihood. Typically, these functions are constructed to have triangular

Jacobians, making the log-determinant term computationally tractable. This en-

ables the use of standard optimization techniques to train the model by minimizing

the negative log-likelihood of the observed data.

In the context of molecular generation, the invertibility of normalizing flows is a

31

particularly useful feature. The ability to move between data space (molecular

structures) and latent space in both directions allows for interesting applications,

such as molecular optimization through latent space manipulation or the analy-

sis of how changes in latent space correspond to structural changes in molecules

[130]. However, normalizing flows are designed for continuous data while molecules

are inherently discrete objects, with atoms and bonds forming a graph structure.

This mismatch requires careful considerations and often necessitates the develop-

ment of specialized techniques to bridge the gap between continuous and discrete

representations [131].

2.4.4 Score-based models

Score-based models, introduced in [132], offer a novel approach to generative mod-

eling. The essential idea, inspired by non-equilibrium statistical physics, is to

systematically and slowly destroy structure in a data distribution through an iter-

ative forward diffusion process. The model then learns a reverse diffusion process

that restores structure in data, yielding a highly flexible and tractable generative

model.

Let us consider a process that gradually transforms data into noise described by

the following stochastic differential equation (SDE):

dx = f(x, t)dt + g(t)dw (2.17)

where f(x, t) is the drift coefficient, g(t) is the diffusion coefficient, and w is a

standard Wiener process [133].

The reverse process is also described by a SDE:

dx = [f(x, t)− g(t)2∇x log pt(x)]dt + g(t)dw̄ (2.18)

where pt(x) is the probability density at time t, and w̄ is a standard Wiener process

running backwards in time.

The crucial term in this reverse SDE is the gradient of the log-density with respect

32

to the data ∇x log pt(x), that is called score function; incidentally in physics this

is just a force.

Once the score function is known, it is possible to use Langevin dynamics [134, 135]

sampling process, a Markov chain Monte Carlo (MCMC) method that solely relies

on the score function. Discretizing Langevin dynamics via a first integrator one

can obtain the associated sampling process. The resulting update rule is:

xt+1 = xt + ϵ∇x log p(xt) +
√

2ϵzt (2.19)

where ϵ is a small step size, and zt ∼ N (0, I) is standard Gaussian noise.

In the context of score-based models, the true, unknown, gradient ∇x log p(xt) is

replaced with a learnt score function sθ(x, t):

xt+1 = xt + ϵsθ(xt) +
√

2ϵzt. (2.20)

This process is iterated for a number of steps, gradually transforming random noise

into samples from the target distribution. The noise term
√

2ϵzt allows the sampler

to explore the distribution and avoid getting stuck in local modes.

A key strength of score-based models is their training stability compared to ad-

versarial approaches like GANs [136]. This stability has been leveraged in various

domains, including image generation [137] and molecular design [138] . However,

the computational cost associated with the reverse process and Langevin dynam-

ics sampling [134] can result problematic. This cost can be a limiting factor in

high-throughput virtual screening scenarios. Despite these challenges, score-based

models continue to advance, with recent work exploring their application in 3D

structure generation [139] and conditional generation tasks [140].

2.4.5 Reinforcement learning

Reinforcement learning (RL) provides a framework for learning to make decisions

in complex environments. In molecular generation, RL can be used to optimize

molecules for specific properties or objectives.

33

The RL framework typically consists of:

• an agent (the generative model);

• an environment (the chemical space);

• a state space (molecular representations);

• an action space (modifications to molecules);

• a reward function (based on desired molecular properties).

The goal is to learn a policy π(a|s) that maximizes the expected cumulative reward:

J(θ) = Eπθ

[
T∑
t=0

γtrt

]
(2.21)

where θ are the policy parameters, γ is a discount factor, and rt is the reward at

time step t [141].

RL offers significant advantages for molecular generation: the model can be trained

to directly optimize desired molecular properties (such as solubility or binding affin-

ity) and handle complex, non-differentiable reward functions, which are common in

molecular tasks [142]. Additionally, RL enables effective exploration of the chemi-

cal space, allowing the model to discover novel molecular structures by balancing

exploration (trying new structures) with exploitation (refining known structures).

The design of reward functions, however, can be a complex task [143]. Moreover,

learning in high-dimensional action spaces can be unstable, making it difficult to

converge to a solution [144, 145].

2.5 Guided generation of molecular graphs

Formally speaking, the most common approach to molecular generation and con-

ditioning involves creating a dataset of molecular graphs Dself = {G1,G2, ...,GM}
and devising a self-supervised model to learn from this data. Less frequently, the

task is framed as a supervised problem, where the input dataset comprises pairs

of molecules Dsup = {(G1, Ĝ1), ..., (GM , ĜM)}, and the model learns to map from a

34

known unoptimized molecule Gi to an optimized target molecule Ĝi [146, 147, 148,

149, 150].

Figure 2.3: Overview of a GNN-based molecular design framework. The process in-
tegrates structural information from input molecules, desired molecular properties, and
GNN-based deep learning to generate optimized compounds with potential biological ac-
tivity.

Beyond generating molecular structures that reasonably belong to the training

dataset, a crucial objective in practical applications is to guide the generation pro-

cess towards molecules with specific desired properties (Figure 2.3). This involves

skewing the distribution of generated molecules towards structures optimized for

a set of prescribed (numerical) properties. The methods used to achieve this con-

ditioning are varied and depend on both the underlying generation approach and

the specific deep learning models employed.

Table 2.1 provides a comprehensive overview of recent approaches in the literature,

highlighting their key characteristics. In the following subsections, we will explore

them in detail, examining how different approaches address the challenges of gener-

ating valid, diverse, and property-optimized molecular structures. We will discuss

how the molecular graph generation process is modeled (Section 2.5.1), its granu-

larity level (Section 2.5.2), the techniques for enforcing chemical validity (Section

35

Ref
Learning

Framework GNN Model Conditioning Validity Constraint Generation Process Granularity Level
Code

Availability

[151] VAE GGNN gradient ascent
action-based
constraints sequential atom-wise link

[152] VAE MPNN
gradient ascent

bayesian optimization learnt sequential fragment-based link

[153] VAE EC-GCN conditional vector learnt one-shot - link

[154] GAN R-GCN RL learnt one-shot - link

[155] Hierarchical R-GCN conditional vector learnt sequential atom-wise link

[156] GAN GCN RL rejection sampling sequential hybrid link

[157] Hierarchical GraphRNN RL rejection sampling sequential atom-wise -

[158] Normalizing Flow R-GCN RL rejection sampling sequential atom-wise link

[159] Normalizing Flow R-GCN RL
action-based
constraints sequential atom-wise -

[147] VAE + GAN MPNN conditional vector learnt sequential fragment-based -

[160] VAE + Attention MPNN conditional vector learnt sequential fragment-based link

[161] Hierarchical GGNN RL learnt sequential atom-wise link

[162] Hierarchical MPNN conditional vector learnt sequential atom-wise link

[163] GAN GCN RL rejection sampling sequential hybrid link

[164] VAE MPNN bayesian optimization
action-based
constraints sequential atom-wise link

[165] Hierarchical MPNN conditional vector learnt masked - link

[166] VAE MPNN conditional vector
action-based

learning one-shot - link

[167] Hierarchical GCN conditional vector learnt sequential atom-wise link

[168] Normalizing Flow R-GCN gradient ascent
post hoc

correction one-shot - link

[169] VAE + Normalizing Flow R-GCN gradient ascent
post hoc

correction one-shot - link

[130] Normalizing Flow R-GCN gradient ascent learnt one-shot - link

[170] VAE GAT conditional vector learnt one-shot - -

[171] Normalizing Flow GAT gradient ascent learnt sequential atom-wise -

[148] Normalizing Flow R-GCN supervised learnt one-shot - -

[149] CycleGAN JT-VAE supervised learnt one-shot - link

[172] Hierarchical GGNN gradient ascent learnt reaction-based - link

[48] Hierarchical MPNN supervised learnt
sequential
(SMILES) - -

[173] Hierarchical MPNN markov chain learnt sequential fragment-based link

[174] VAE GGNN structural embedding
action-based
constraints sequential atom-wise link

[175] VAE MPNN structural embedding learnt sequential atom-wise link

Table 2.1: Literature methods and their main features: core learning framework, GNN
model, the molecular properties conditioning technique, the validity constraint technique,
the generation process of new entities, the granularity level (e.g. atomic, fragment, motif)
and the code availability

36

https://github.com/Microsoft/constrained-graph-variational-autoencoder
https://github.com/wengong-jin/icml18-jtnn
https://github.com/JiaxuanYou/graph-generation/tree/master/baselines/graphvae
https://github.com/nicola-decao/MolGAN
https://github.com/kevinid/molecule_generator
https://github.com/bowenliu16/rl_graph_generation
https://github.com/DeepGraphLearning/GraphAF
https://github.com/wengong-jin/hgraph2graph/
https://github.com/olsson-group/RL-GraphINVENT
https://github.com/jaechanglim/GGM
https://github.com/dbkgroup/prop_gen
https://github.com/Networks-Learning/nevae
https://github.com/nyu-dl/dl4chem-mgm
https://github.com/seokhokang/graphvae_approx/
https://github.com/Laboratoire-de-Chemoinformatique/hyfactor
https://github.com/calvin-zcx/moflow
https://github.com/chshm/GF-VAE
https://github.com/hlzhang109/PyTorch-GraphNVP
https://github.com/ardigen/mol-cycle-gan
https://github.com/john-bradshaw/molecule-chef
https://github.com/yutxie/mars
https://github.com/oxpig/DeLinker
https://github.com/wengong-jin/multiobj-rationale

2.5.3) and the methods for conditioning the generation on desired molecular prop-

erties (Section 2.5.4). Through this analysis, we aim to provide a comprehensive

understanding of the current state of the art in guided molecular graph generation

and highlight promising directions for future research in this rapidly evolving field.

2.5.1 Generation process

In molecular graph generation, the primary goal is to learn the characteristics

of a given dataset Dself = {G1,G2, ...,GM}. The underlying assumption is that

this dataset is sampled from an unknown distribution p∗(G), which we aim to

model with an explicit distribution pθ(G). During training, the network learns the

parameters θ of a function fθ(G) that approximates pθ(G). After training, new

molecules are generated by sampling from fθ.

The generation process can be conducted in different ways, as illustrated in Figure

2.4. The main approaches are:

• one-shot models, where a molecule is produced in a single inference step;

• sequential models, where a molecule is built via several inference steps of the

same model;

• masked graph modeling, inspired by masked language models like BERT

[176].

One-shot generation

In one-shot generation, we typically assume that pθ(G) = pθ(G|z), where z =

z1, ..., zn is a vector of latent variables with a known prior distribution. The gen-

eration process involves sampling these latent variables and generating the entire

graph based on the sampled vectors.

Early models like MolGAN [154] and GraphVAE [153] employed this strategy. Mol-

GAN uses a GAN framework where the generator is an MLP that directly samples

the adjacency matrix of the molecular graph, while the discriminator is based on R-

GCN. GraphVAE, on the other hand, models molecules using a probabilistic graph

37

Figure 2.4: a. One-shot generation. b. (Fragment-based) Sequential generation.

where node/edge existence is represented by Bernoulli variables, and node/edge

attributes are multinomial variables. It uses an EC-GCN as the encoder and a

deterministic MLP as the decoder.

Another approach, MPGVAE [170], models the bond/atom joint latent distribution

as:

pθ(G|z) = pθ(X,E|z) =
∏
vi∈V

pθ(xi|z)
∏
εij∈E

pθ(eij|z) (2.22)

where xi and eij are categorical distributions over atom and bond types, respec-

tively. Here, the absence of a bond is seen as one of the edge categories. The

generation is a three-step process. First, an initial graph structure is generated

from latent variables in a one-shot fashion. Second, a MPNN iteratively refines

node and edge representations. Third, the final molecular graph is sampled from

the node/edge distributions xi and eij.

Alternative formulations introduce dependencies between bonds and atoms:

pθ(G|z) = pθ(X,E|z) = pθ(X|E, zX)pθ(E|zE) (2.23)

or:

pθ(G|z) = pθ(X,E|z) = pθ(E|X, zE)pθ(V |zV) (2.24)

38

where zV and zE are latent variables for vertices and edges, respectively. Here,

the models first focus on one of the two sets and then use that information to

complete the generation. In [177], for example, the VAE decoder’s first step is to

generate a molecular formula in a ”bag-of-atoms” representation. Then, a fully

connected graph with the generated set of atoms is fed into a GCN-based network

to properly learn the bond structure. In [168], the first step is to generate the

adjacency matrix, which is then fed into the atom feature generator together with

the latent variables of the nodes.

In the context of score-based models for graph generation [178], the diffusion process

is modeled as a system of two coupled SDEs:dXt =
[
f1,t(Xt)− g21,t∇Xt log pt(Xt,At)

]
dt̃ + g1,tdw̃1

dAt =
[
f2,t(At)− g22,t∇At log pt(Xt,At)

]
dt̃ + g2,tdw̃2

(2.25)

Here, two GNNs learn the gradients ∇Xt log pt(Xt,At) and ∇At log pt(Xt,At).

New samples are generated by using these learnt gradients in the SDEs and solving

them with standard SDE integrators.

Sequential generation

Sequential generation addresses the limitation of one-shot methods that require a

maximum size for the output molecule. In this approach, generation is modeled as

a sequence of graph transition actions. A typical action set includes vertex and edge

addition and removal [155, 179]. Although some sequential models still require an

upper bound on the number of nodes in the generated molecule [151], this approach

is generally more flexible than one-shot generation.

The most common way to model sequential generation is to decompose pθ(G) into

a product of conditional distributions:

pθ(G) =
∏
t

pθ(at|Gt, ...,G0) (2.26)

where at ∈ T (Gt, ...,G0), that is the action set available on graph Gt at step t.

39

In practice, each graph G is transformed into a sequence of operations SG, and the

learning framework must learn how to replicate these sequences in an autoregressive

fashion.

Since the number of sequences for each graph can increase rapidly, different strate-

gies are adopted to address this issue. To reduce the number of generative se-

quences, a graph node ordering must be defined a priori. Typical orderings are

based on breadth-first search (BFS) and depth-first search (DFS) graph visit algo-

rithms, although any custom ordering can be used. Finding a canonical ordering

for molecular graphs is an old problem [180]. For the generative task, there is cur-

rently no theoretically grounded preferred ordering. The most effective approach

is architecture-dependent and chiefly determined by empirical evidence.

Sequential generation methods can be categorized into non-Markovian and Marko-

vian approaches. For Markovian strategies, one restricts T to depend only on the

latest graph, namely T = T (Gt). These approaches will be detailed in the following

subsections.

Non-Markovian methods JT-VAE [152] was one of the first sequential ap-

proaches. In this method, each molecule is assembled by linking chemical frag-

ments from a predefined dictionary, which is derived in a chemically principled

way from the training set without a learning process. Specifically, a VAE-based

model generates a junction tree for each molecule. The junction tree is the basic

tree-structured scaffold representing connections among nodes, where each node

represents a set of candidate fragments. The action set for the junction tree is the

sequential addition of nodes while maintaining the tree topology. To assemble the

final molecule, a single fragment is chosen for each node.

Other methods, such as those presented in [155] and [157], can be ascribed to

hierarchical neural network frameworks. In [155], a stack of R-GCN blocks with

a BN-ReLU-Conv structure [181] is used to extract representations. An MLP then

estimates the probability distribution of all possible actions. A variant of this

architecture includes a recurrent unit, in which the molecule representation is stored

and updated during the generation. This approach employs a DFS graph visit,

40

enhanced by the additional move of going to a random node, thus generating several

building paths for the same molecule. Due to the non-uniqueness of the sequence,

a sampling strategy is also adopted. The GraphRNN framework [182] uses a BFS

ordering together with classical RNN networks to directly generate the adjacency

matrix. This approach was extended to molecular graphs in [157], where external

MLPs predict node and edge labels. Strictly speaking, this model is never directly

aware of a graph topology and does not use GNNs, but it remains relevant to the

field of molecular graph generation. Non-Markovian approaches offer flexibility

in capturing long-range dependencies in the graph generation process, potentially

leading to more coherent and diverse molecular structures. However, they may also

be more computationally intensive and challenging to train compared to Markovian

methods.

Markov-process-based methods These methods simplify the generation pro-

cess by assuming pθ(at|Gt, ...,G0) = pθ(at|Gt). This assumption is reasonable be-

cause the generation history that led to a specific graph should not influence sub-

sequent decisions. Examples include GCPN [156], MG2N2 [183], and GraphAF

[158].

MG2N2 is based on three GNNs arranged in a hierarchical fashion. Each network

focuses on a specific decision:

• the first network is a classifier that decides whether to add a new node to the

graph and whether this new node is bound to the node added in the previous

step;

• if the decision is positive, the second network determines the edge label;

• the third network determines the existence of other edges connecting the new

node to preexisting nodes.

GraphAF is based on normalizing flows [129]. It adapts to the graph domain a

variant called autoregressive flows [184], which scale linearly with respect to the

length of the sequence to be learnt. Within the GraphAF framework an R-GCN

calculates the embedding for the current graph at each step, while two separate

41

MLPs learn the parameters of the distributions from which the next node and

its edges are sampled. A recent addition to Markov-based methods is MolGrow

[171], which uses a graph normalizing flow for hierarchical molecular generation.

This model generates molecular graphs by progressively adding atoms and bonds,

allowing for the generation of larger and more complex molecules.

Markov-process-based methods offer a balance between computational efficiency

and the ability to capture local dependencies in the graph generation process.

Masked graph modeling

This approach, introduced in [165], uses graph masking for generation. Instead of

learning p(G), the model learns p(η|G\η), where η is a subset of G and G\η is G with

that subset masked out.

Generation starts from an initial graph. At each step, a part of the graph is masked

and resampled according to the learnt conditional distribution. This method of-

fers a unique approach to molecular graph generation, drawing inspiration from

successful masked language models in natural language processing [176].

Each of these generation processes offers distinct advantages and challenges in the

context of molecular design. One-shot methods can be faster but may struggle

with larger molecules, while sequential methods offer more control but can be

computationally intensive. Masked graph modeling provides a novel middle ground,

potentially offering benefits of both approaches.

2.5.2 Granularity level

The granularity level in molecular generation refers to the size of the building blocks

used in the generation process. This choice can impact the model’s flexibility,

validity, and exploration capabilities. Two main approaches dominate the field:

atom-based and fragment-based methods.

Atom-based methods In atom-based approaches, molecules are generated one

atom at a time. This fine-grained approach offers maximum flexibility, allowing

42

for the exploration of the entire chemical space. Models like GraphAF [158] and

MolDQN [185] exemplify this approach, generating molecules atom by atom and

bond by bond. The advantage of atom-based methods lies in their ability to poten-

tially create novel molecular structures that might not be easily accessible through

fragment-based approaches. However, atom-based methods can struggle with gen-

erating larger molecules efficiently and may require additional constraints to ensure

chemical validity. To address this, one might rely on fragment dictionaries.

Fragment-based methods These methods generate molecules by combining

predefined molecular fragments, typically consisting of up to six atoms. This ap-

proach, exemplified by JT-VAE [152], offers several advantages. Firstly, it inher-

ently ensures a higher degree of chemical validity, as the fragments themselves are

chemically valid structures. Secondly, it can lead to more efficient generation of

drug-like molecules, as many common molecular substructures are directly incor-

porated. JT-VAE learns its fragment dictionary from the training set, which allows

for adaptation to specific chemical spaces but may limit reconstruction accuracy

on unseen molecules. The authors extended this approach in [160], incorporating

larger subgraphs (structural motifs) to achieve higher reconstruction accuracy.

Hybrid and adaptive approaches Recent research has explored hybrid and

adaptive approaches that aim to combine the strengths of both atom-based and

fragment-based methods. For example, GCPN [156] provides a flexible framework

that can adapt to different granularity levels, from atoms to larger fragments,

depending on the task at hand. CORE [146] introduces an interesting compromise

by using a hierarchical approach. It first generates a molecular scaffold using larger

fragments and then refines the molecule at the atomic level, combining the efficiency

of fragment-based methods with the flexibility of atom-based approaches.

2.5.3 Validity constraints enforcement

Ensuring the validity of generated molecules is crucial in molecular graph gen-

eration. While some models can learn chemical validity implicitly from data

[155, 154, 153, 152, 147, 160, 165, 167, 149, 172, 48], many approaches incorporate

43

explicit strategies to enforce validity constraints. These strategies can be broadly

categorized into learnable and non-learnable methods.

Learnable methods

Learnable methods incorporate validity constraints into the model’s architecture

or learning process, allowing the model to improve its ability to generate valid

structures over time.

Action-based learning These methods enforce validity by penalizing incorrect

actions during training, and preventing them from being taken during generation.

CGVAE [151] learns to implement valency checks, preventing the addition of bonds

when an atom has reached its maximum valency. An extension in [186] adapts the

CGVAE decoder to learn to use valency histograms as additional inputs to guide the

generation process. RL based methods, such as those in [156], [157], and [158], learn

to incorporate validity checks as part of their reward structure. These methods use

valency checks as intermediate feedback signals during training and learn to employ

validity-constrained sampling during inference. The approach in [187] learns state

transition dynamics where each possible action leads to valid substructures. These

action-based methods allow full control of the model’s tolerance for invalid actions,

with the potential to produce 100% valid molecules. They can be configured to

allow intermediate invalid steps to increase exploration abilities or to strictly forbid

any invalid actions.

Penalty-based learning These techniques, differently from the action-based

ones, allow incorrect actions during generation while still learning to penalize them.

This trades the structural difficulty of enforcing correct moves for the relative ease

of optimization. The Regularized Graph VAE [188] employs a penalty technique

[189] to transform the constrained problem into an unconstrained one. The model

learns to minimize constraint violations through a tunable hyperparameter in the

cost function. A similar approach is used in [190]. In [166], validity is encouraged

through a reinforcement learning framework. The model learns a reward function

for valid samples, and the GraphVAE decoder acts as a learnt policy network.

44

While these approaches may not always generate 100% valid molecules, they are

often easier to implement and can approximate constraint enforcement as a learnt

restraint.

Non-learnable methods

Non-learnable methods enforce validity through fixed rules or post-processing steps

that do not adapt or improve over time.

Action-based constraints These methods use fixed rules to prevent invalid

actions during generation. Valency checks are used to avoid adding bonds when

an atom has reached its maximum valency. If atoms have missing bonds after

generation, a fixed number of hydrogen atoms is added [177].

Post-hoc correction These methods apply fixed corrections to the generated

molecules after the generation process. The generated graph is modified according

to predetermined valency rules, preserving a maximal valid subgraph from the orig-

inal output. This approach is used in flow-based models such as MoFlow [168] and

GF-VAE [169]. While these methods may lead to some undesirable modifications,

they are widely applicable across different generation approaches.

Validity rejection sampling This method involves generating molecules and

then discarding those that fail validity checks. It is particularly effective for mod-

els with fast inference times which can quickly generate and filter a large number of

candidates. The models that utilize this approach include MolGAN [154], Graph-

NVP [130], JTVAE [152], and MoFlow [168]. The main advantage of validity

rejection sampling is its simplicity and effectiveness, especially for models with fast

generation times. It allows the generative model to explore a wider range of struc-

tures without being constrained by explicit validity rules during the generation

process. This can potentially lead to more diverse and novel molecular structures.

However, this method has limitations in terms of efficiency for models with slower

generation times, potential bias if the model tends to produce certain types of

invalid structures, and scalability issues for very large or complex molecules.

45

2.5.4 Conditioning

Conditioning the graph generation is a powerful way to skew the learnt distribution

towards a desired bias. This approach is crucial for targeted molecular design,

allowing the creation of molecules with specific properties or characteristics. In this

section, we first introduce a novel framework for categorizing conditioning tasks,

then detail such tasks, and finally describe the associated conditioning techniques.

Conditioning tasks

We propose a comprehensive framework that encapsulates the various conditioning

tasks found in the literature. Any conditional task can be represented as one or a

subset of the following quadruplet:

(R
1)

, p ≷ p0

2)

, p = p0

3)

, min(p)

4)

) (2.27)

where:

1) R represents a set of additional entities given as input to the model, such as

drugs, proteins, or any relevant biological information;

2) p ≷ p0 denotes a set of constraints, where p is a set of numerical properties

and p0 is the corresponding vector of thresholds;

3) p = p0 encodes numerical equality between desired and actual properties;

4) min(p) represents a set of desired optimal values.

This framework provides a unified way to categorize and understand the various

conditioning tasks in molecular generation:

Property optimization This task involves generating new molecules to opti-

mize the value of one or more numerical properties. Typical properties include:

• Quantitative Estimate of Drug-likeness (QED, introduced in [191]) [164, 168,

169, 130, 151, 154, 156, 157, 158, 147, 160, 161];

46

• Synthetic Accessibility Score (SAS, introduced in [192]) [154, 155];

• penalized logP [164, 177, 169, 171, 152, 156, 157, 158, 160], defined as the

octanol-water partition coefficient minus the synthetic accessibility score and

the number of cycles of length bigger than 6. This metric balances lipophilic-

ity with synthetic feasibility and structural complexity;

• biological activity [162, 163, 147, 160, 161].

This task can be ascribed to component 4) in our framework.

Property targeting Instead of optimizing a given property, one can give the

model a target value for the output molecule. With property targeting, the gener-

ation is guided towards molecules with a specified set of attributes, which can be

numerical or categorical values for molecular properties. For example, [153] and

[170] provide the desired histogram of atom types of the output molecule, while

[162, 165, 166, 156] condition the generation towards molecules with a specific

weight. This task can be ascribed to component 3) in our framework.

Constrained property optimization This task involves perturbing a molecule

while optimizing one or more numerical properties. More formally, the generator

is fed with a molecule G, and the goal is to maintain the similarity sym(G, Ĝ) ≥
δ, where Ĝ is the generated molecule and δ is a predefined similarity threshold.

The most common choice for the property to be optimized is the penalized logP

[177, 168, 169, 167, 171, 152, 156, 157, 158, 160]. This task is a combination of

components 1) and 2).

Scaffold hopping In scaffold hopping, the goal is to minimize a chemical simi-

larity and maximize a physical (field effects) similarity with respect to a given drug

[193, 48, 174]. This task is a combination of components 1) and 3).

Conditioning methods

Conditioning techniques in molecular graph generation can be broadly categorized

into two main approaches: training time conditioning and ex post conditioning.

47

Training time conditioning Training time conditioning methods incorporate

property objectives directly into the model’s learning process, allowing the gen-

erative model to inherently understand and produce molecules with desired char-

acteristics. One of the most prevalent approaches in this category is the use of

conditional vectors [153, 155, 162, 165, 166, 167, 147, 160]. In this method, the

model learns to generate molecules conditioned on a vector of desired property

values, effectively learning a conditional distribution p(G|c), where c is a vector

containing the values of the properties of interest. For each molecular graph G in

the dataset, the ground-truth value for the vector c is calculated. During training,

the model is fed with input couples (G, c). During inference, the desired values

for c are given to the model to guide the generation. This approach allows for

fine-grained control over multiple molecular properties simultaneously.

Another powerful training time technique is substructure-based conditioning, em-

ployed by [174] and [175]. Here, the model learns to generate molecules that incor-

porate specific substructures, which is particularly useful for tasks like generating

molecular linkers or multi-objective optimization.

Gradient ascent in the latent space of VAEs is another effective strategy for property

optimization [151, 152, 177]. This method jointly trains an additional regressor to

predict property values from latent space points. As a consequence, the latent

space is modeled and regularized taking account of the additional information.

During inference, the latent representation and its property value are calculated,

optimized through gradient ascent with respect to the property predictor model,

and then decoded from the local optimum (see Figure 2.5).

RL approaches are interesting for conditional (and task-oriented) generation. RL

is particularly suitable for molecular generation because one can estimate molecu-

lar properties with external tools, transform these estimates into feedback for the

model, and combine this with RL algorithms to deal with discrete structures. One

of the first, prominent examples of RL approaches for molecular graph generation

is GCPN [156]. The authors modeled the generation as a Markov process (see

Section 2.5.1). At each step, a GCN extracts a representation of the partially

generated molecule, and then four MLP models decide the next action. By mod-

48

elling the generation as a sequence of decisions one can define short-term (based

on the single action) and long-term (based on the final result) rewards. In GCPN

the short-term rewards are a combination of validity rewards (see 2.5.3) and ad-

versarial rewards (in a GAN fashion). In contrast, long-term rewards are used to

condition the generation towards the desired property. A similar approach is used

in [157, 158, 161, 163].

Finally, some researchers have also explored supervised learning approaches, treat-

ing property optimization as a direct mapping problem from input molecules to

optimized output molecules [149, 193].

Figure 2.5: Properties of interest can modify the latent space at learning time (a.). Red
arrows represent the steering force of the properties predictors in optimizing the latent
space during training. Alternatively properties predictors can be used just to navigate
the latent space a posteriori via gradient ascent (b.); this time the distortion force is
absent.

Ex post conditioning Ex post conditioning methods, on the other hand, sep-

arate the generation and optimization processes. These techniques first train a

general molecular generation model and then navigate the learnt space to find

molecules with desired properties. A common approach in this category is to per-

49

form gradient ascent on a fixed latent space [169, 130, 168, 172]. This is done by

first training a VAE to learn a general latent space of molecules, then train a sepa-

rate regressor on this fixed space to predict properties of interest. During inference,

gradient ascent is used to navigate the latent space towards regions corresponding

to desired properties. This process provides flexibility, allowing for optimization

of properties not considered during the initial training phase, but the latent space

navigation might be more difficult.

For scenarios where property evaluation is computationally expensive, Bayesian

optimization (BO) [194] techniques have proven valuable [152, 164] used BO to

efficiently explore the latent space of their models, employing surrogate functions

(often sparse Gaussian processes [195]) to approximate complex property land-

scapes. The BO approach is particularly useful when dealing with properties that

are expensive to compute or require experimental validation, as it can efficiently

guide the search towards promising regions of the chemical space with fewer eval-

uations.

2.6 Datasets and benchmarks

The development and evaluation of GNN-based molecular generation models rely

heavily on appropriate datasets and benchmarks. These resources play a crucial

role in training models, assessing their performance, and enabling fair comparisons

between different approaches.

Several large-scale datasets have become standard resources for training and eval-

uating generative models:

• the QM9 dataset [196] contains approximately 134,000 small organic molecules

with up to nine heavy atoms (C, O, N, F), along with their associated quan-

tum mechanical properties calculated at the DFT level of theory. This dataset

is particularly useful for tasks involving quantum chemical properties and has

been instrumental in developing models that can generate molecules with spe-

cific quantum properties or predict these properties for novel structures;

50

Table 2.2: Details of the most common benchmark molecular datasets.

Dataset Size Molecule Types Typical Use Cases

ZINC Millions Drug-like
Molecular generation
Property prediction

QM9 ∼134,000 Small organics
Quantum property prediction
Molecular generation

ChEMBL ∼2 million Bioactive
Bioactivity prediction
Target-specific generation

DrugBank ∼14,000 Approved drugs
Experimental drugs

Drug repurposing
Drug-target interaction

PubChem >100 million Diverse
Large-scale molecular analysis
Data mining

• the ZINC database [197] is a free resource of commercially-available com-

pounds for virtual screening. ZINC contains millions of drug-like molecules,

making it an excellent resource for training generative models aimed at drug

discovery applications. A commonly used subset is ZINC250k, containing

about 250,000 molecules with atom types including C, O, N, F, P, S, Cl, I,

and Br;

• the ChEMBL database [198] contains manually curated bioactive molecules

with drug-like properties. ChEMBL is particularly useful for tasks involving

property prediction or generation of molecules with specific bioactivities, as

it includes detailed information about the biological activities of compounds

against various targets;

• DrugBank [199] is a comprehensive database containing detailed information

about approved drugs, experimental drugs, and drug targets. It includes

chemical, pharmacological, and pharmaceutical data, making it valuable for

tasks related to drug repurposing, drug-target interaction prediction, and

generating drug-like molecules.

When evaluating molecular generation models, several key metrics have become

standard in the field:

• validity, the proportion of generated molecules that are chemically valid;

51

• uniqueness, the proportion of unique molecules in a set of generated struc-

tures;

• novelty, the proportion of generated molecules not present in the training set;

• diversity, often defined as the average pairwise Tanimoto distance between

Morgan fingerprints [200].

The product of validity, uniqueness, and novelty, often referred to as VUN, serves

as a global aggregated metric for model performance. However, it’s crucial to

recognize that the VUN metric may not fully capture the genuine task objective

of reproducing the data distribution. Some trivial models can achieve near-perfect

VUN scores without truly capturing the complexity of molecular space [201].

One significant challenge in evaluating novelty is the copy problem where generated

molecules differ from original ones by only minor changes, such as a single bond

type, atom, or SMILES string symbol. This can artificially inflate novelty scores

[157]. Additionally, issues with molecular representation and processing can affect

these metrics. For instance, inconsistencies in handling aromaticity between the

training data and generated molecules can lead to artificially increased novelty

scores.

To address these limitations, researchers have developed more sophisticated eval-

uation approaches. The Fréchet ChemNet Distance (FCD) [202] provides a more

holistic assessment of the similarity between generated and reference molecular dis-

tributions. In general, in addition to VUN, an inspection of the molecular property

distribution can give a hint of the soundness of a model. Some researchers have

also proposed task-specific metrics, such as measures of synthetic accessibility or

drug-likeness, and benchmarking suites like GuacaMol [203] and MOSES [204] have

been developed.

In conclusion, while current datasets, benchmarks, and evaluation suites have been

instrumental in advancing the field of molecular generation, there is still room for

improvement. Future efforts should focus on developing more comprehensive and

unbiased datasets, more sophisticated evaluation metrics that capture practical

relevance, and benchmarks that can assess performance on increasingly complex

52

and realistic molecular design tasks.

Building upon these foundations and addressing the challenges identified in the

current state of molecular generation models, the next chapter introduces Atomic-

Molecular Conditional Generator (AMCG), a VAE-like graph-based conditional

generative model for molecular design. AMCG represents an initial step in address-

ing some of the key limitations of existing approaches, offering improved flexibility,

control, and performance in generating drug-like molecules.

53

Chapter 3

AMCG: a graph dual

Atomic-Molecular Conditional

Generator

3.1 Introduction

Building on the foundations of GNNs and generative models discussed in Chapter

2, this chapter introduces AMCG (Atomic-Molecular Conditional Generator), a

novel framework for molecular graph generation. AMCG addresses several key

challenges in the field of de novo drug design:

• it provides a flexible, one-shot generation process that allows for rapid sam-

pling of molecular structures;

• unlike many existing methods, it imposes no upper limit on the number of

atoms in generated molecules;

• it incorporates an explicit atomic type histogram assignation, enabling fine-

grained control over the generated molecules’ composition;

• it offers multiple sampling strategies to balance between diversity and adher-

ence to the training distribution;

54

Figure 3.1: The design choices made for AMCG.

• it allows for property optimization through gradient ascent in the latent space;

• it achieves state-of-the-art performance on benchmark datasets while main-

taining computational efficiency.

AMCG architecture employs a dual atomic-molecular representation, leveraging

a distillation strategy during training to enhance the model’s performance. This

chapter will detail the structure of AMCG framework, its implementation, and its

performance. The content of this chapter, the tables and most of the figures are

taken from [P2]. The code to reproduce the experiments presented in this chapter

is available at https://github.com/carloabate/amcg.

55

https://github.com/carloabate/amcg

3.2 Model architecture

3.2.1 Overview of AMCG

AMCG is designed as a VAE-like framework that supports both unconditional and

conditional generation of molecular graphs. While VAE-based approaches have

been quite applied to molecular generation, they face a fundamental challenge in

balancing reconstruction ability with latent space regularization. A model able

to reconstruct very well the input data often creates a sparse latent space where

empty regions may not correspond to meaningful molecular structures. On the

other hand, overweighting the regularization term can help compact the space [122]

but may also lead to an overly constrained mapping due to the shape of the prior

distribution. To address these limitations, various approaches have been proposed.

Score-based methods in the latent space [205, 206] offer a rigorous solution but can

be computationally expensive. At the other extreme, graphical tools for manual la-

tent space navigation [207] provide intuitive control but lack algorithmic rigor and

automation. AMCG proposes a reasonable middle ground: instead of sampling

from the standard normal prior, it samples from a modified Gaussian distribution

N (µ,σ), where µ is the mean of the latent embeddings and σ is empirically opti-

mized. Furthermore, AMCG refines this strategy by employing Gaussian Mixture

Models (GMMs) [208] to better capture the learnt prior distribution. By incor-

porating these sampling strategies, AMCG aims to overcome the limitations of

traditional VAE approaches while maintaining computational efficiency. In Figure

3.1 we highlighted the main design choices made for our model, in relationship to

the generative framework taxonomy introduced in Chapter 2.

AMCG comprises two main branches: an atomic branch and a molecular branch,

as illustrated in Figure 3.2. Its key components are:

• an encoder : it processes the input molecular graph to generate atomic and

molecular representations;

• a combiner : it merges the atomic and molecular representations;

• a molecular decoder : it generates a surrogate atom-wise representation from

56

Figure 3.2: High-level representation of the AMCG framework. White blocks represent
data objects, while blue blocks represent network components. The upper and lower
branches are the atomic and molecular branches, respectively.

the molecular embedding;

• a shared decoder : it reconstructs the original molecule from the atom-wise

representations, either coming from the atomic or the molecular branch.

During training, both branches aim to reconstruct the input molecular graph. How-

ever, during generation, only the molecular branch is used, sampling from the learnt

latent space to produce new molecules.

3.2.2 Encoder

The encoder consists of two parts: an atomic encoder and a molecular encoder.

Atomic encoder

The atomic encoder uses GAT layers [84] with HeteroLinear (HL) activation func-

tions, that is each atom type has its own linear activation. Formally, for an input

x and atom type t, a HL function is defined as:

HLt(x) = Wtx + bt (3.1)

where Wt and bt are learnable parameters specific to atom type t. This allows the

network to learn different transformations for different atom types, enhancing its

ability to capture type-specific chemical properties.

It generates two feature vectors per atom, µA and σA, which parameterize a mul-

57

tivariate Gaussian distribution N (µA, diag(σA)). The output is sampled as:

xA = µA + ε⊙ σA (3.2)

where ε ∼ N (0, I) and ⊙ denotes the Hadamard product.

This is done to increase the robustness of the downstream network (i.e. the decoder

part) [209] and to break the symmetry in reconstructing the original graph [210].

The atomic encoder has an input size of 54 plus the number of atom types of the

dataset. It then has embedding size of 512, with two GAT heads, a hidden size

and an output size of 1024.

Molecular encoder

The molecular encoder transforms the atomic features using an MLP and then ag-

gregates them using a global sum operator. The resulting molecular embedding is

used to parameterize another multivariate Gaussian distributionN (µM , diag(σM)).

The final molecular representation is sampled as:

xM = µM + ε⊙ σM (3.3)

A KL divergence term is added to the loss function to encourage the learnt distri-

bution to adhere to a standard Gaussian prior:

LKL(µM ,σM) =
1

2

[
−

m∑
i=1

(log(σM
i)2 + 1) +

m∑
i=1

(σM
i)2 +

m∑
i=1

(µM
i)2

]
. (3.4)

The molecular encoder has an input size and a first hidden channels number of

1024, while a second hidden channels number and an output size of 1536.

3.2.3 Combiner

The combiner merges the atomic and molecular representations by concatenating

the molecular representation xM after each atomic embedding vector xA. This

combined representation is then processed by a four-layer MLP with HL activation

58

Figure 3.3: Architectural details of the molecular decoder.

(HMLP):

xA
F = N(xA ∥ xM) (3.5)

where ∥ denotes the concatenation operation. This combination operator proved

to be more flexible than a sum or averaging operator, allowing also for different

atomic and molecular embedding size.

The combiner has an input size, a hidden size and an output size of 2560, 1024 and

1024 respectively.

Let us then denote with XF the resulting atomic feature matrix.

3.2.4 Molecular decoder

The molecular decoder, illustrated in Figure 3.3, is a crucial component of AMCG

that generates new atomic representations from the molecular embedding. It con-

sists of several key components:

1. Histogram predictor: this is an MLP regressor that predicts the histogram

H of atom types in the molecule. The loss function for this component is

the mean squared error (MSE), denoted as LH . This histogram prediction

allows for explicit control over the atomic composition of generated molecules,

providing a built-in conditioning mechanism. The histogram predictor has

an input size of 1536, a hidden size of 1024 and an output size that is equal

to the number of atom types present in the dataset;

2. Atom type-specific MLPs: for each atom type AT present in the dataset,

the molecular representation is passed through a separate 2-layer MLP. Every

MLP outputs the parameters of a normal distribution N (µAT , diag(σAT)).

59

The atom-type specific MLPs have an input size, a hidden size and an output

size of 1536, 2048 and 2048, respectively;

3. Sampling step: the atom type-specific distributions are sampled according

to the predicted histogram. To ensure diversity in the output, a positional

bias constant term (based on the sampling order) is added to each atom. This

step produces a matrix X where the number of rows equals the number of

atoms;

4. Post-processor: the atomic embeddings are refined through an HMLP, re-

sulting in a matrix X̂F . The post-processor has an input size, a hidden size

and an output size of 2048, 1024 and 1024, respectively.

During training, the atomic branch guides the alignment of X̂F with its counterpart

XF from the atomic branch. This alignment is necessary because the sampling

process in the molecular branch does not preserve the original atom ordering. The

alignment is achieved using the Hungarian algorithm [211], which matches atoms

of the same type between XF and X̂F . This process reduces the computational

complexity from O(n3) to O((maxk nk)3), where nk is the number of atoms of type

k. An alignment loss LAL is added to the global loss function, defined as the MSE

between the original atom-wise representation and the surrogate one. Importantly,

backpropagation through the Hungarian algorithm is not necessary, as the same

graph is obtained regardless of the atom order due to the design of the shared

decoder.

3.2.5 Shared decoder

The shared decoder, illustrated in Figure 3.4, is responsible for reconstructing the

molecular graph from either the atomic or molecular representations. It performs

the following steps:

1. First, the input X (either the atomic or surrogate embedding) is passed to

an MLP regressor that predicts the number of hydrogen atoms connected to

each heavy atom (i.e., each row of matrix X). A hydrogen prediction loss

LHY is added to the global loss function. The hydrogen atoms predictor has

60

Figure 3.4: Architectural details of the shared decoder.

an input size of 1024, followed by a pyramidal structure of sizes 1024-512-1;

2. Next, X is fed to an adjacency matrix decoder, originally introduced in [212],

that reconstructs the adjacency matrix of the molecular graph:

A = σ(αXXT + β) (3.6)

where α and β are learnable scalar parameters, and σ is the sigmoid activation

function. A reconstruction loss term is added to the global loss:

LA(A,A) =

∑
i,j l(aij, aij)

N2
(3.7)

where N is the number of atoms and l is defined as:

l(aij, aij) =

log(aij), if aij = 1

1− log(aij), if aij = 0.

3. The decoder then uses X and A to generate new atomic features via a com-

position of two linear transformations (XA embedder in Figure 3.4):

X ′ = ReLU(H0AZ + b0)

X ′′ = H1AZ ′ + b1
(3.8)

where H0,H1, b0, b1 are learnable parameters.

4. Finally, an MLP classifier C is used to predict the bond types. For each edge

εij predicted by the adjacency matrix decoder, with x′′
i and x′′

j being the i-th

61

and j-th rows of X ′′ respectively, the bond type is defined as:

B(i, j) = argmaxC(x′′
i ,x

′′
j) (3.9)

A bond reconstruction loss term LB, defined as the cross-entropy between the

predicted and target bond types, is added to the global loss. The bond type

classifier has an input size of 2048 for QM9 dataset, 4096 for ZINC dataset, a

hidden size of 2048 and an output size of 4. For the QM9 dataset, the bond

classifier takes as input x′′
i +x′′

j , while for the ZINC dataset, it takes as input

x′′
i ||x′′

j .

The output of the shared decoder consists of an adjacency matrix, bond types, atom

types, and hydrogen atom counts for each heavy atom. This information is used

to attempt the generation of a valid molecule. The process involves first adding

all bonds and hydrogen atoms, then validating the consistency of the resulting

structure. If inconsistencies are found, the model retains only the hydrogen atoms

associated with aromatic bonds and makes another attempt. If issues persist, the

hydrogen atoms are disregarded, and only bond information is used.

This process ultimately generates a reconstructed molecular graph G = (XG,AG,EG),

where XG represents the atom features, AG is the adjacency matrix, and EG con-

tains the edge (bond) features.

3.3 Training and loss functions

AMCG model is trained using a weighted sum of several loss components:

LUNC = wKLLKL + wALLAL + wHLH+

+ wA
HYLA

HY + wM
HYLM

HY + wA
ALA

A + wA
BLA

B + wM
A LM

A + wA
BLM

B (3.10)

where the superscripts A and M denote losses associated with the atomic and

molecular branches, respectively.

To manage the complexity of this multi-component loss, a curriculum learning

62

approach is employed. The training process focuses first on the atomic branch,

then shifts to the molecular branch, and finally promotes latent space compaction

by increasing the weight of the KL divergence term. The specific weight schedules

used for the QM9 and ZINC datasets are provided in Table 3.1.

Table 3.1: The weights schedule used to train AMCG. (a) was utilized to train the
model on QM9 dataset, while (b) was utilized to train the model on ZINC dataset.

(a)

Epoch wA
A wM

A wKL Other w

0 20 5 0 1
50 5 20 0 1

100 5 20 1/5 1
150 5 20 1 1
200 5 20 5 1

(b)

Epoch wA
A wM

A wKL Other w

0 20 5 0 1
50 5 20 0 1

150 5 20 1/5 1
200 5 20 1 1
250 5 20 2 1

3.4 Molecular generation and sampling strate-

gies

3.4.1 Unconditional generation

For unconditional generation, AMCG employs various sampling strategies from the

learnt latent space. These strategies aim to balance between generating diverse,

novel molecules and maintaining chemical validity. The following approaches were

investigated:

• VAE: sampling from a standard VAE Gaussian prior N (0, I);

• VAE-like: sampling from a Gaussian prior N (µ, diag(α · σ)), where µ and

σ are the mean and standard deviation of the latent representations of the

dataset, respectively. α is a scalar hyperparameter;

• GMM-F: training a full covariance matrix GMM in the latent space;

• GMM-D1/D2: training a GMM in the latent space with diagonal covariance

matrices scaled by a hyperparameter β.

63

Figure 3.5: Visual representation of the different prior distributions in the latent space.

Figure 3.5 illustrates the different prior distributions in a 2D projection of the latent

space. These sampling strategies offer different trade-offs between exploration of

the latent space and adherence to the training set distribution.

3.4.2 Conditional generation

AMCG supports two main approaches for conditional generation:

Structural conditioning

Our model allows for explicit control over the atom type histogram of the generated

molecules. This feature is particularly useful for targeted molecule design, where

specific atomic compositions are desired.

One significant application of this flexibility is in the realm of patent evasion and

chemical space exploration. For instance, the substitution of one atom with an

electronically similar atom (e.g., replacing an oxygen with a sulfur) can lead to

molecules with similar properties but distinct enough to escape existing patents

[213, 214, 215]. This capability allows for greater freedom in molecular design and

can be crucial in developing new drug candidates that don’t infringe on existing

intellectual property.

Furthermore, the ability to perturb the histogram brings to light the role of activity

cliffs in molecular design [216]. Activity cliffs refer to instances where relatively

small changes in the atomic composition of a molecule lead to significant changes

in its potency profile. By allowing controlled modifications to the atom type his-

togram, AMCG can potentially explore these activity cliffs, enabling the discov-

ery of molecules with dramatically improved properties through minor structural

64

changes.

Property-based conditioning

AMCG employs gradient ascent in the latent space to optimize for specific molecu-

lar properties (see Section 2.5.4). This is achieved by training an additional prop-

erty predictor alongside the main model. Upon training the predictor the property

optimization process described in Algorithm 1 takes place. This strategy allows for

the generation of molecules with optimized properties while maintaining chemical

validity through a rejection sampling approach (see Section 2.5.3).

Algorithm 1 Property optimization strategy

Input: N ≥ 0, V ≥ 0, S ≥ 0
Input: The molecule to optimize x.
Output: A molecular optimization path M .
M ← []
x0 ← x
for i← 1 to N do ▷ N steps of gradient ascent

xi ← ascend(xi−1)
if i mod S == 0 then ▷ Sampling each S steps

for j ← 1 to V do ▷ V validity rejection trials
y ← sample(xi)
if y is valid then

Add y to M and exit the loop.
end if

end for
end if

end for
return M

3.5 Experimental results

3.5.1 Datasets and preprocessing

AMCG was evaluated on QM9 and ZINC, two widely used benchmark datasets for

molecular generation (see Section 2.6).

The preprocessing of molecular data for AMCG is an extensive process that gen-

65

erates a rich set of chemical, topological, and physical descriptors for both atoms

and bonds, detailed in the following:

• chemical descriptors: generated using RDKit v.2023.03.3 [217]. These

include standard chemical features such as atom type, degree, formal charge,

and bond type;

• physical descriptors: generated using AmberTools suite (version 22.3) and

BiKi Life Sciences [218]. This process involves:

– converting .pdb files to .mol2 format using the antechamber tool to

obtain Generalized Amber Force Field (GAFF) atom types;

– for the ZINC dataset, where 3D coordinates are not available, SMILES

strings are first converted to 3D structures using the method of Riniker

and Landrum [219], followed by minimization using UFF force field pa-

rameters [220];

– matching atoms to GAFF atom types to recover equilibrium distance

and spring constant for each bond;

– when exact GAFF parameters are not available, the parmchk2 tool is

used to generate missing bond parameters by chemical analogy;

• topological descriptors: a graph positional embedding is computed to

capture the positional information of each node in the graph, as done in

[221]. This feature is extracted using a torch-geometric built-in function.

The full list of descriptors used is provided in Table 3.2, while the preprocessed

datasets are available at https://doi.org/10.5281/zenodo.11109939.

3.5.2 Unconditional generation results

As a first evaluation of our model, we sampled 10000 molecules and assessed their

validity, uniqueness, novelty, and VUN (see Section 2.6). We compared our frame-

work to other state-of-the-art latent variable generators. Results are presented in

Table 3.3, while molecular graphs sampled from our model can be seen in Figure

66

https://doi.org/10.5281/zenodo.11109939

Table 3.2: The descriptors used to train AMCG.

Feature Obtained from # descriptors Type

atom type Atom.GetSymbol()
4 (QM9)
9 (ZINC) one-hot

degree Atom.GetDegree() 6 one-hot
formal charge Atom.GetFormalCharge() 1 integer
radical electrons Atom.GetNumRadicalElectrons() 1 integer
hybridization Atom.GetHybridization() 6 one-hot
hydrogens Atom.GetTotalNumHs() 5 one-hot
aromaticity Atom.GetIsAromatic() 1 boolean

chirality type try: Atom.GetProp(’ CIPCode’) 2
one-hot [’R’,’S’]
else [0,0]

has property of chiral center Atom.HasProp(’ ChiralityPossible’) 1 boolean
possible chiral center Atom.GetProp(’ ChiralityPossible’) 1 boolean
graph positional encoding transforms.AddRandomWalkPE 30 real

Node descriptors

Feature Obtained from # descriptors Type

bond type Bond.Get.BondType() 4 one-hot
conjugation Bond.GetIsConjugated() 1 bool
wether bond is in ring Bond.IsInRing() 1 bool
stereochemistry Bond.GetStereo() 4 one-hot
equilibrium distance see Section 3.5.1 1 real
spring constant see Section 3.5.1 1 real
geometric distance see Section 3.5.1 1 real

Edge descriptors

67

3.6.

Table 3.3: Comparison of AMCG models with competing latent variable methodologies
on QM9 dataset. The size of the generated sample set was 104. The VAE model employs
a regular Gaussian prior N (0, 1) and collapses in terms of uniqueness. The VAE-like

uses a Gaussian prior N (µ, σ) and improves uniqueness significantly. GMM models employ
various flavors of mixture models and obtain the best results.

Model Validity Validity w/o check Uniqueness Novelty VUN

MPG-VAE [170] - 0.9100 0.6800 0.540 0.3340
GraphNVP [130] - 0.8310 0.9920 0.582 0.4797

GRF [222] - 0.8450 0.6600 0.586 0.3268
GraphAF [158] 1.000 0.6700 0.9451 0.8883 0.8395
MoFlow [168] 1.000 0.8896 0.9853 0.9604 0.9462
GraphDF [159] 1.000 0.8267 0.9762 0.9810 0.9576

Ours - VAE 1.000 0.4006 0.1293 0.8987 0.1162
Ours - VAE-like 1.000 0.5803 0.7756 0.8829 0.6848

Ours - GMM-F 1.000 0.4075 0.9428 0.8001 0.7543
Ours - GMM-D1 1.000 0.1653 0.9693 0.9640 0.9344
Ours - GMM-D2 1.000 0.0555 0.9982 0.9964 0.9946

The results show that AMCG achieves competitive or superior performance com-

pared to existing methods. Notably, the GMM-D2 variant achieves near-perfect VUN

scores, indicating its ability to generate valid, unique, and novel molecules.

Figure 3.6: Randomly generated molecules from the GMM-F prior.

To provide a more comprehensive evaluation of the model’s performance, we in-

troduced the concept of a UN persistence plot (Figure 3.7). This plot shows how

the product of uniqueness and novelty (UN) changes as more valid molecules are

generated. The UN persistence plot reveals that the GMM-based sampling strate-

gies (GMM-D1, GMM-D2, and GMM-F) maintain high UN values even as the number of

generated molecules K increases (up to K = 200000), indicating their ability to

produce diverse and novel molecules consistently.

68

Figure 3.7: UN persistence plot on QM9 dataset. The x-axis shows the number of valid
generated molecules, and the y-axis shows the product of uniqueness and novelty (UN).

To further assess the quality of the generated molecules, we compared the distribu-

tion of various molecular properties (logP, QED, Synthetic Accessibility Score, and

molecular weight) between the generated molecules and the original dataset (Fig-

ure 3.8). These results demonstrate that the GMM-F and GMM-D1 variants of AMCG

produce molecular property distributions that closely match those of the original

dataset, indicating the model’s ability to capture and reproduce the underlying

chemical space effectively.

Means and standard deviations of the properties of interest are summarized in Ta-

ble 3.4, together with the evaluation of internal diversity of the generated samples.

Again, the less explorative approach(es) better capture the behaviour of the prop-

erties of the dataset, whereas the others produce different results. Accordingly to

the nature of the chosen priors, the diversity value also increases when moving to

the less conservative ones.

69

Figure 3.8: Molecular property distributions for 10,000 valid, novel, and unique gen-
erated molecules trained on the QM9 dataset. The dashed line represents the original
dataset, and continuous lines represent the developed models.

Table 3.4: Mean values and standard deviations (in brackets) for molecular properties
of 10000 valid, novel and unique generated samples by training on the QM9 dataset.
The first line, named QM9, shows reference values. In terms of mimicking the original
manifold the GMM-F model is the best one.

Model logP QED SA Score Mol. weight Diversity

QM9 0.15 (1.16) 0.46 (0.08) 4.50 (1.21) 123.12 (7.60) 0.1038

Ours - VAE-like -0.23 (0.68) 0.45 (0.06) 5.04 (1.12) 119.41 (11.34) 0.1695
Ours - GMM-F -0.09 (0.83) 0.46 (0.07) 4.98 (1.13) 123.13 (12.25) 0.1511
Ours - GMM-D1 -0.14 (0.79) 0.47 (0.08) 5.41 (1.12) 141.43 (12.77) 0.2159
Ours - GMM-D2 -0.23 (0.82) 0.47 (0.08) 5.74 (1.13) 149.65 (13.81) 0.2561

70

3.5.3 Conditional generation results

Structural conditioning

To evaluate AMCG’s ability to perform structural conditioning and its robustness

to histogram modifications, we conducted an experiment with perturbed atom type

histograms.

We applied four different types of perturbations to the predicted histograms when

sampling from the most conservative priors (VAE-like and GMM-F):

• ±1: the predicted histogram was modified by randomly adding or subtracting

1 to each atom type count;

• ±2: the predicted histogram was modified by randomly adding or subtracting

2 to each atom type count;

• random-p: a new histogram was generated randomly according to the atom

type probabilities observed in the dataset;

• random-u: a new histogram was generated randomly with uniform probability

across atom types.

Table 3.5 presents the results of this experiment, showing the impact of these

perturbations on validity, uniqueness, novelty, and the combined VUN score. The

results demonstrate that AMCG can generate valid, unique, and novel molecules

even when the atom type histograms are significantly perturbed. As we move

from minor perturbations (±1) to more drastic changes (random-u), we observe a

trade-off between validity and novelty/uniqueness. The validity w/o check column

shows that the initial validity of the generated molecules decreases as perturbations

become more extreme, especially for the random uniform perturbation.

Interestingly, as we depart further from the original manifold through random

perturbations of the histogram, we see a general trend of decreasing validity (before

checks) but increasing uniqueness and novelty. This suggests that while more

extreme perturbations lead to a higher proportion of initially invalid molecules,

they also push the model to explore new regions of chemical space, resulting in

71

Table 3.5: VUN evaluation for histogram perturbation. Here we perturb the histogram
step of the method with several random techniques. The more we depart from the original
manifold through random perturbation of the histogram the more we lose in validity and
gain in uniqueness and novelty.

Perturbation Validity Validity w/o check Uniqueness Novelty VUN

None 1.000 0.5803 0.7756 0.8829 0.6848

±1 1.000 0.3811 0.7533 0.8877 0.6686
±2 1.000 0.2521 0.6528 0.8759 0.5717

random-p 1.000 0.3653 0.7794 0.8361 0.6514
random-u 1.000 0.0333 0.7047 0.9833 0.6929

VAE-like prior

Perturbation Validity Validity w/o check Uniqueness Novelty VUN

None 1.000 0.4075 0.9428 0.8001 0.7543

±1 1.000 0.2827 0.8733 0.8555 0.7471
±2 1.000 0.1932 0.7438 0.8546 0.6353

random-p 1.000 0.1973 0.9086 0.8243 0.7486
random-u 1.000 0.0279 0.8356 0.9844 0.8225

GMM-F prior

72

Figure 3.9: Property optimization path example. The optimization progresses from left
to right, leading to the opening of the ring system and an increase in the dipole moment.

more unique and novel structures.

These findings highlight the robustness and flexibility of AMCG in handling struc-

tural conditioning. The model’s ability to generate chemically sound molecules

even with significantly altered atom type distributions demonstrates its potential

for targeted molecular design and exploration of diverse chemical spaces.

Property-based conditioning

AMCG employs gradient ascent in the latent space to optimize for specific molec-

ular properties. We evaluated its performance in optimizing two commonly used

properties in literature: penalized logP and QED (see Section 2.5.4).

The experiment was conducted by attempting to maximize the value of the de-

sired property for 10000 random molecules from the training set. To determine

the optimal gradient ascent hyperparameters (learning rate, number of steps, and

decoding step size), we first optimized 1000 molecules from the training set and

recorded the maximum number of steps that could be taken without encountering

a failed decoding.

Using these optimized hyperparameters, we then generated the complete set of

molecules along the optimization path for each of the 10000 test molecules. The

final output for each molecule was determined to be the molecule along its path

with the best property value.

Figure 3.9 shows an example of an optimization path for penalized logP: in this

example, we can observe that the optimization process first opens the ring system

and then increases the dipole moment of the molecule, also rendering it more

73

Figure 3.10: Property optimization results on QM9 dataset. V: validity, O: optimiza-
tion rate, S: success rate, D: diversity. Blue: original distribution, Orange: optimized
distribution.

linear. This demonstrates AMCG’s ability to make significant structural changes

while optimizing for a specific property.

Figure 3.10 presents the overall results of property optimization for both penalized

logP and QED:

In this figure, we report several key metrics:

• V (validity): the percentage of decoded samples along the optimization path

that are chemically valid;

• O (optimization rate): the ratio of molecules for which we found a molecule

with an improved property value;

• S (success rate): the ratio of optimized molecules that are also novel (not

present in the training set);

• D (diversity): the Tanimoto distance between the initial molecule and the

optimized one, measuring the structural diversity introduced by the opti-

mization process.

The blue distributions represent the original property values in the dataset, while

the orange distributions show the values after optimization. We can observe a

clear shift towards higher values for both penalized logP and QED, demonstrating

74

AMCG’s ability to effectively optimize these properties. The high success rates and

diversity scores indicate that AMCG is not simply memorizing known molecules

but is able to explore novel chemical space guided by the property optimization

objective.

3.5.4 Results on ZINC Dataset

To assess AMCG’s performance on a more diverse and challenging dataset, we eval-

uated it on the ZINC250k dataset. This evaluation revealed interesting challenges,

particularly in compacting the latent space, which proved significantly more diffi-

cult than with QM9. Due to this issue, we were unable to fit the Gaussian mixture

of the GMM-F model during training. Consequently, in addition to the previously

described VAE, VAE-like, and GMM-D priors, we introduced a GMM-PW (pointwise)

prior, defined as a normalized sum of Gaussians centered on the embedding vec-

tors of the training data. Table 3.6 presents our evaluation results, comparing

AMCG with other state-of-the-art methods. Despite the overall latent space not

Table 3.6: Comparison of AMCG models with competing latent variable methodologies
on the ZINC dataset. The size of the generated sample set was 104. The more we depart
from the manifold the more we reduce validity. The GMM-PW model, as it samples in the
close vicinity of the training points, is the most conservative model.

Model Validity Validity w/o check Uniqueness Novelty VUN

GraphNVP - 0.426 0.948 1.000 0.4038
GRF - 0.734 0.537 1.000 0.3942

GraphAF 1.000 0.68 0.991 1.000 0.9910
MoFlow 1.000 0.5030 0.9999 1.000 0.9999
GraphDF 1.000 0.8903 0.9916 1.000 0.9916

Ours - VAE 1.000 0.2323 0.0437 0.8902 0.0389
Ours - VAE-like 1.000 0.0262 0.7054 1.000 0.7054

Ours - GMM-D 1.000 0.0144 0.9900 1.000 0.9900
Ours - GMM-PW 1.000 0.2630 0.9190 0.7636 0.7017

being well-structured, we found that sampling could occur safely in the vicinity

of the learnt embedded training molecules. Consistent with our QM9 findings,

the VAE-like prior showed clear benefits over the standard VAE approach. Inter-

estingly, the GMM-D prior exhibited poor validity without resampling but achieved

excellent results when validity rejection was applied. Figure 3.11 showcases ran-

75

Figure 3.11: Randomly generated molecules from the GMM-PW prior.

Figure 3.12: UN persistence plot on the ZINC dataset. The x-axis shows the number
of valid generated molecules, and the y-axis shows the product of uniqueness and novelty.
The GMM-PW and VAE-like lead to quick degradation, whereas GMM-D is able to sustain
generation more effectively.

domly generated samples from the GMM-PW model, demonstrating AMCG’s ability

to generate diverse and realistic molecular structures. To improve molecular qual-

ity, we applied a post-hoc algorithm to remove chords from our generated graphs.

To further validate our findings, we generated a UN persistence plot for the ZINC

dataset (Figure 3.12), evaluating uniqueness and novelty for 400000 valid samples.

We omitted results for the VAE prior due to its poor performance in the small-sized

sample set regime. The plot revealed that the GMM-D prior is remarkably robust,

showing no degradation even with extensive use of the validity rejection strategy.

Our comprehensive evaluation of the generated molecules’ properties (Table 3.7

and Figure 3.13) revealed several key insights. Sampling from the VAE-like prior

76

Figure 3.13: Molecular property distributions for 10,000 valid, novel, and unique gener-
ated molecules by training on the ZINC dataset. The dashed line represents the original
dataset, while continuous lines represent our models. GMM-PW is the most conservative
model, whereas GMM-D tends to produce smaller molecules.

77

resulted in overly concentrated property distributions, likely due to sampling from

a reduced portion of a hard-to-compact latent space. The GMM-PW model provided

the best performance in mimicking the original dataset’s behavior, confirming its

conservative nature. Conversely, molecules generated by the GMM-D model tended

to be slightly smaller than those in the training distribution, attributed to the

inherent difficulty in building larger molecules when departing from the embed-

ding. In conclusion, our experiments on the ZINC dataset demonstrate AMCG’s

Table 3.7: Mean values and standard deviations (in brackets) for molecular properties
of 10000 valid, novel and unique generated samples by training on the ZINC dataset.
GMM-PW confirms to be the most conservative model whereas GMM-D produces systemati-
cally smaller molecules.

Model logP QED SA Score Mol. weight Diversity

ZINC 2.47 (1.43) 0.73 (0.14) 3.04 (0.83) 331.97 (61.53) 0.2396

VAE-like 1.55 (0.62) 0.71 (0.11) 5.23 (0.96) 265.18 (21.12) 0.3705
GMM-D 1.33 (1.03) 0.69 (0.13) 5.04 (1.30) 245.51 (39.82) 0.2684

GMM-PW 2.20 (1.15) 0.77 (0.11) 4.59 (1.42) 313.11 (57.23) 0.3093

flexibility and effectiveness on complex and diverse molecular datasets. For appli-

cations requiring limited fantasy and tight adherence to the dataset, the GMM-PW

model performs best. However, for better fantasy and sustained UN persistence,

the GMM-D model is more suitable. It’s worth noting that to achieve converging

models, we used logP as a property to guide the training process. These results

highlight areas for potential future improvement, particularly in generating larger

molecules consistently.

3.6 Conclusions

The AMCG framework introduced in this chapter represents a significant advance-

ment in molecular graph generation, offering a flexible and powerful approach for

de novo drug design. By combining a dual atomic-molecular representation with

innovative sampling strategies, AMCG achieves state-of-the-art performance on

standard benchmarks while providing several key advantages over existing meth-

ods. AMCG’s primary strength lies in its one-shot generation capability, allowing

78

Figure 3.14: Training loss comparison for different global aggregators. The multi-
aggregator approach combines global sum, mean, and max operations. The loss curve
shape reflects the curriculum learning strategy used (see Table 3.1).

for rapid sampling and efficient exploration of chemical space. This approach, cou-

pled with flexible conditioning mechanisms - both structural and property-based -

provides a versatile tool for targeted molecular design. The explicit control over

atom type histograms and the gradient-based property optimization demonstrate

AMCG’s potential for fine-tuned molecular generation. Our comprehensive evalu-

ation, including the novel UN persistence plots, reveals that AMCG, particularly

with GMM-based sampling, can maintain high uniqueness and novelty over ex-

tended generation runs. This feature is crucial for practical applications in drug

discovery, where exploring a wide range of chemical possibilities is often necessary.

An important aspect of AMCG’s architecture that contributed to its performance

is the choice of global aggregator used to extract the molecular representation. Our

ablation study, comparing different aggregator types including global sum, global

mean, global max, and a multi-aggregator approach, demonstrated that the global

sum aggregator consistently outperformed other options. Figure 3.14 illustrates

the training loss for each aggregator type. The global sum aggregator exhibited

more stable behavior and achieved lower overall loss, supporting our architectural

choice and highlighting the importance of carefully selecting each component in the

79

model design. Its superior performance may be attributed to its ability to preserve

more information about the overall molecular structure, which is crucial for accu-

rate reconstruction and generation of molecules. However, our experiments also

revealed some limitations, particularly when dealing with more complex datasets

like ZINC. The latent space for ZINC molecules was not compact enough to allow

for consistent gradient ascent during property optimization, likely due to the model

keeping embeddings too well-distanced to ensure accurate reconstruction during

training. Additionally, generated ZINC molecules tended to be smaller than the

original ones, which can be attributed to our one-shot generation and decoding

strategy, which tends to produce hyperconnected (and thus often invalid) graphs

when attempting to generate larger molecules. These limitations, combined with

our ablation study results, point to several promising directions for future research.

These include exploring more expressive encoders that can compress information

from larger molecules into smaller latent spaces without losing critical structural

information, investigating different decoding approaches that can better handle the

generation of larger molecules without sacrificing validity, developing advanced ag-

gregation strategies that can better handle the complexity of larger molecules while

maintaining stability, and exploring more advanced optimization techniques or in-

corporating multi-objective optimization to balance different molecular properties

simultaneously during conditional generation.

The insights gained from working with molecular graphs, particularly their het-

erophilic nature, sparked a broader investigation into fundamental graph neural

network operations. Molecules are inherently heterophilic structures: connected

atoms are often of different types with varying properties, forming diverse bonds

that are crucial to the molecule’s overall characteristics and function. This het-

erophily poses unique challenges for traditional graph-based machine learning mod-

els, which often assume some degree of homophily in graph data. Our ablation

study on AMCG once again confirmed the importance of a powerful encoder, par-

ticularly in capturing and preserving this complex heterophilic information. These

observations led us to develop MaxCutPool, a novel graph pooling method based on

the MAXCUT problem. While initially motivated by the challenges posed by molecular

80

data, MaxCutPool is a general-purpose theoretical advancement in graph neural

networks. It aims to identify diverse subsets of nodes in any graph structure,

making it applicable far beyond just molecular graphs. The following chapter in-

troduces MaxCutPool in detail, presenting it as a significant contribution to the

fundamental theory of graph neural networks, with potential applications across

various domains where graph-structured data exhibits heterophilic properties.

81

Chapter 4

MaxCutPool: differentiable

feature-aware MAXCUT for pooling

in graph neural networks

4.1 Introduction

Building upon the foundations of graph pooling discussed in Chapter 2 and the

insights given from Chapter 3, we now introduce MaxCutPool, a novel graph pool-

ing technique that addresses key limitations of existing approaches. While previous

methods have focused on either trainable feature-based pooling or graph-theoretical

objectives, MaxCutPool uniquely combines these aspects to create a powerful and

flexible pooling solution.

Our contributions in this chapter are the following:

1. We present a robust, GNN-based method for computing MAXCUT partitions in

attributed graphs. This approach not only works with feature-rich graphs but

also demonstrates improved performance on non-attributed graphs compared

to traditional MAXCUT algorithms.

2. We present a new benchmark dataset specifically designed to test the perfor-

mance of graph neural networks on heterophilic graphs. This dataset fills a

82

gap in existing benchmarks and provides a valuable resource for evaluating

GNN performance on complex, heterophilic graph structures.

3. We apply this MAXCUT optimization to create a new graph pooling layer. Max-

CutPool represents the first pooling method which combines graph-theoretical

MAXCUT objectives with differentiable, feature-aware operations. This results

in a pooling layer that can adapt to both graph structure and node features,

leading to improved performance in downstream tasks.

In the following sections, we will expand on the theoretical background of Max-

CutPool, detail its architecture, and present comprehensive experimental results.

These experiments demonstrate MaxCutPool’s effectiveness across various graph

types and learning tasks, highlighting its potential to advance the state-of-the-art

in graph neural network architectures. The content of this chapter, its figures, and

its tables, are taken from [P3]. Our implementation of MaxCutPool layer can be

found at https://github.com/NGMLGroup/MaxCutPool.

4.2 Background

4.2.1 The MAXCUT problem and its continuous relaxations

The MAXCUT problem is a fundamental concept in graph theory and combinatorial

optimization. Given an undirected graph G = (V , E) with N nodes and non-

negative weights on the edges – i.e. the adjacency matrix A ∈ RN×N
≥0 , the objective

of MAXCUT is to find a cut – a partition of nodes (S,V \ S) where S ⊂ V – that

maximizes the total volume of edges connecting nodes in S with those in V \ S.

Mathematically, the MAXCUT problem can be expressed as an integer quadratic prob-

lem:

max
z

∑
i,j∈V

aij(1− zizj) s.t. zi ∈ {−1, 1} (4.1)

where z ∈ {−1, 1}N is an assignment vector indicating to which side of the partition

each node is assigned, and wij is the weight of the edge connecting nodes i and j.

The MAXCUT problem is known to be NP-hard, making it computationally intractable

83

https://github.com/NGMLGroup/MaxCutPool

for large graphs. To address this challenge, several continuous relaxations have been

proposed. One of the most notable is the Goemans-Williamson (GW) algorithm

[223], which provides a semidefinite relaxation of the integer quadratic problem:

max
X

∑
i,j∈V

aij(1− xi · xj) s.t. ∥xi∥ = 1 (4.2)

where X ∈ RN×d is a matrix whose rows xi are continuous embeddings of size d of

the nodes in G. The GW algorithm guarantees an expected cut size of .868 of the

maximum cut. Another effective continuous relaxation is the Largest Eigenvector

Vertex Selection (LEVS) method [224]. This approach uses the eigenvector umax

associated with the largest eigenvalue λmax of the graph Laplacian matrix L. A

cut in G can then be found based on the polarity of the components of umax, for

instance by letting S = {i : umax[i] ≥ 0}.

However, these continuous relaxations face significant challenges when applied to

complex graph structures. While a MAXCUT partition that cuts every edge exists

for bipartite graphs, in fully connected graphs no more than half of the edges can

be cut. As graph topologies depart from the bipartite case, algorithms relying on

continuous relaxations tend to become unstable and perform poorly [225]. Figure

(a) (b) (c) (d)

0.4 0.2 0.0 0.2 0.4
0

20

(e)

0.4 0.2 0.0 0.2 0.4
0

5

(f)

0.4 0.2 0.0 0.2 0.4
0.0

2.5

(g)

0.4 0.2 0.0 0.2 0.4
0

20

(h)

Figure 4.1: Top row: partitions induced by the sign of the elements in umax. The
nodes are colored based on the partition and the red edges are those not cut (the less,
the better). Bottom row: histograms of umax inducing the partitions above. While
in bipartite graphs the separation is sharp, the more a graph is irregular and dense the
more the values are clustered around zero, making it difficult to find the optimal MAXCUT.

84

4.1 illustrates this challenge, showing the performance of the LEVS method on

bipartite and non-bipartite graphs. As graphs become more dense and irregular,

the values in umax cluster around zero, making it increasingly difficult to identify

the optimal MAXCUT solution.

It’s worth noting that the MAXCUT problem is closely related to graph coloring, par-

ticularly the 2-color approximate coloring problem [226]. This problem aims to

identify subsets of nodes such that the connections within each subset are mini-

mized. The resulting coloring represents a high-frequency graph signal and induces

a partition that is orthogonal to spectral clustering [227].

4.2.2 Heterophilic message-passing

Message-passing (MP) is a fundamental operation in GNNs, allowing for the propa-

gation of information across the graph structure (see Section 2.3.1). Let us consider

a graph G = (X,A) with X ∈ RN×F and A ∈ RN×N its node feature matrix and

its adjacency matrix, respectively. A message-passing operator can be described in

a compact way as:

X ′ = σ(PXΘ) (4.3)

where σ is a non-linear activation function, Θ are the trainable parameters, and

P is a propagation operator matching the sparsity pattern of A. Different GNN

architectures employ various propagation operators. For instance, in GCNs the

propagation operator is defined as P = D̂− 1
2 ÂD̂− 1

2 , where Â = A + I and d̂ii =∑
j=0 âij.

A key challenge with traditional message-passing operators is the tendency towards

oversmoothing. With repeated application of the operator P , which is usually non-

negative, node features can become increasingly similar, compromising the ability

to learn and represent diverse graph structures [228, 229]. This is particularly

problematic when dealing with heterophilic graphs, where connected nodes often

have different properties.

In contrast, by using a sharpening propagation operator, any kind of graph signal

85

N
N

 A
gg

r.

Sc
or

eN
et Expres

sive?

Figure 4.2: Schematic representation of MaxCutPool layer highlighting the SELECT,
REDUCE, and CONNECT operations

can be learnt [230]. In this context, a sharpening operator is defined by an operator

P = I − δ
(
I −D

1
2AD

1
2

)
= I − δLsym (4.4)

where δ is a smoothness hyperparameter and Lsym is the symmetrically normalized

Laplacian of G. As observed by [231], when δ = 0 the MP behaves like an MLP.

Instead, when δ = 1 the behavior is close to that of a GCN. Finally, as noted by

[230], when δ > 1 the operator P favors the realization of non-smooth signals on

the graph. We refer to this variant as a Heterophilic Message Passing (HetMP)

operator. We note that this can be seen as a graph-equivalent of the Laplacian

sharpening kernels for images, mapping connected nodes to different values [232].

4.3 MaxCutPool overview

MaxCutPool can be described using the SRC framework (see Section 2.3.4), which

provides a unified way to understand and compare different pooling methods. Fig-

ure 4.2 provides a schematic overview of the MaxCutPool layer, illustrating how

these components work together to perform graph pooling.

86

Li
ne

ar

H
et
M
P

H
et
M
P

H
et
M
P

M
LP

Figure 4.3: Schematic representation of the ScoreNet

4.3.1 SELECT operation

The SEL operation in MaxCutPool is the core of its novelty, leveraging a MAXCUT-

inspired approach to choose supernodes. It consists of the following steps:

Node scoring

MaxCutPool can be ascribed to the family of scoring-based pooling methods (see

Section 2.3.4). In this approach, a scoring vector assigning a score to each node is

calculated, and the nodes with the highest scores are selected.

In our method, the scoring vector s ∈ [−1, 1]N is computed via a ScoreNet, illus-

trated in Figure 4.3, that is an auxiliary GNN consisting of:

• a linear layer that maps the input features to a desired hidden dimension;

• a stack of HetMP layers that gradually transform the node features;

• an MLP that produces the final score vector.

The use of HetMP layers is crucial in overcoming the tension between standard

message-passing (which tends to smooth features across adjacent nodes) and the

MAXCUT objective (which aims to make adjacent nodes as different as possible). By

setting δ > 1 in the HetMP operation, we effectively create a high-pass filter on

the graph, amplifying differences between adjacent nodes.

87

Supernode selection

The K nodes with the highest scores in s are selected as supernodes, forming one

side of the MAXCUT partition S. This is achieved through a top-K operation:

i = topK(s) (4.5)

where i are the indices of the selected supernodes.

Nearest neighbor aggregation

Once the K supernodes are selected, the remaining N −K nodes are assigned to

one of the supernodes via a nearest neighbor aggregation scheme. This process

creates an assignment matrix S, where [S]ij = 1 if and only if node i is assigned

to supernode j. Formally:

SEL : [S]ij = 1 ⇐⇒ j = ϕ(S,A, i) (4.6)

where ϕ(S,A, i) returns the nearest supernode of node i. Figure 4.4 illustrates

(a) (b) (c) (d) (e)

Figure 4.4: (a) The nodes with the K = 9 highest scores are selected. (b-c) Their ID
is propagated to the unselected nodes until all are covered or until a maximum number
of iterations (2 here) is reached. (d) The 4 remaining nodes are assigned randomly. (e)
The pooled graph is obtained by aggregating the nodes with the same ID and coalescing
the edges connecting nodes from different groups.

this process. The assignment is implemented through a breadth-first search of the

graph, starting from the selected supernodes. This aggregation scheme aims at

preserving local graph structure while achieving the desired graph coarsening.

The nearest neighbor association procedure is designed to be efficient and paral-

88

lelizable on GPUs and is described in Algorithm 2: the input consists of the graph

G (in particular, its topology described by the adjacency matrix A), the set of K

supernodes S identified by the SEL operation, and a maximum number of iterations

(MaxIter), which represent the maximum number of steps a node can traverse the

graph to reach its closest supernode before being assigned at random.

Algorithm 2 Pseudo-code for the assignment scheme to the supernodes

1: procedure AssignNodesToSupernodes(G,S,MaxIter)
2: E ← InitializeEncodings(G,S) ▷ One-hot encoding
3: m← InitializeMask(G,S)
4: Assignments← InitializeEmptyList()
5: for i = 1 to MaxIter do
6: if AllNodesAssigned(m) then
7: break
8: end if
9: E′ ← ParallelMessagePassing(G,E) ▷ E′ = AE
10: Assignments← ParallelAssignment(E′,S,m)
11: m← UpdateMask(m, Assignments)
12: E ← E′

13: end for
14: if not AllNodesAssigned(m) then
15: RndAssignmentss← ParallelRandomAssignment(UnassignedNodes,S)

16: end if
17: FinalAssignments← GetFinalAssignments(Assignments, RndAssignments)

18: return FinalAssignments
19: end procedure

In line 2, an encoding matrix E of size N ×K + 1 is initialized so that row i is a

one-hot vector with the non-zero entry in position k+1, if the node i of the original

graph is the k-th supernode. Otherwise, row i in a zero-vector of size K + 1. This

matrix will be gradually populated when supernodes are encountered during the

BFS. It’s important to note that the 0-th column in matrix E (and subsequently

in E′) serves a special purpose. This column represents a “fake” supernode, which

plays a crucial role in the assignment process.

A Boolean mask m ∈ {0, 1}N indicating whether a node already encountered the

closest supernode is initialized in line 3 with 1 in position i is nodes i is a supernode

89

and 0 otherwise. Finally, an empty list indicating to which supernode each node is

assigned is initialized (line 4).

Until the maximum number of iterations is reached or until all nodes are assigned

(line 6), the encoding matrix E is propagated with an efficient message-passing

operation (line 9) that can be parallelized on a GPU. As soon as a 1 appears

in position k within a line i of E previously full of zeros, node i is assigned to

supernode k and the assignments and mask m are updated accordingly (lines 10

and 11). The ParallelAssignment function (line 10), in particular, takes the rows of

the newly generated embeddings E′ that have not yet been assigned and performs

an argmax operation on the last dimension. If the argmax doesn’t find any valid

supernode for a node (i.e., all values in the row are zero), it returns 0, effectively

assigning the node to the “fake” supernode represented by the 0-th column. This

allows to filter out the unassigned nodes in line 11.

If there are still unassigned nodes at the end of the iterations, the remaining nodes

are randomly assigned to one of the K supernodes (line 15). Finally, all the as-

signments are merged (line 17).

4.3.2 REDUCE operation

MaxCutPool offers two variants for the RED operation:

1. MaxCutPool: [X ′]i : = si ⊙ [X]i :

2. MaxCutPool-E: X ′ = s⊙ STX

The first variant (standard MaxCutPool) only uses the features of the selected su-

pernodes, while the second variant (MaxCutPool-E) combines information from all

nodes assigned to each supernode. The ”-E” suffix indicates that this variant satis-

fies the sufficient conditions for expressiveness as defined in [101]. The Hadamard

product ⊙ with the score vector s plays a crucial role in the learning process, as

it ensures that gradients can flow back through the ScoreNet during backpropaga-

tion. This allows the model to learn an effective scoring function that is directly

influenced by the downstream task.

90

4.3.3 CONNECT operation

For both variants, the CON operation, which determines the adjacency matrix of

the pooled graph, is implemented as:

CON : A′ = STAS (4.7)

where S is the assignment matrix produced in the SEL operation (see Section 2.3.4).

4.3.4 Auxiliary loss

One of the central features of MaxCutPool is the presence of an auxiliary loss based

on the MAXCUT objective

Lcut =
sTAs

W
(4.8)

where W =
∑

ij aij is the total edge weight of the graph. This loss encourages the

selected nodes to belong to opposite sides of the MAXCUT partition. By minimizing

Lcut, we push the model to assign nodes to different partitions if and only if they

are connected, effectively maximizing the number of cut edges. The total loss for

a GNN model incorporating MaxCutPool layers is then defined as:

L = Ltask +
∑
l

βL
(l)
cut (4.9)

where Ltask is the task-specific loss (e.g., classification loss), and β is a scalar

weighting each auxiliary loss L
(l)
cut associated with the l-th MaxCutPool layer. The

auxiliary loss can be derived from the original MAXCUT objective as follows.

Let us consider the MAXCUT objective in Equation 4.1. It can be rewritten as

max
z

(∑
i,j∈V

aij −
∑
i,j∈V

zizjaij

)
= max

z

(
W −

∑
i,j∈V

zizjaij

)
,

91

which is equivalent to

max
z

(
1−

∑
i,j∈V

zizjaij
W

)
.

The solution z∗ for the original objective is thus the solution for

min
z

z⊤Az

W
,

leading to our auxiliary loss Lcut.

4.3.5 Hyperparameters and optimization

MaxCutPool and its ScoreNet component have several hyperparameters that can

be tuned to optimize performance for specific tasks and datasets. We use the

notation [a, b, c] to indicate a model with three layers with hidden sizes a, b, and

c, respectively. We also use the notation [a] × L to indicate L layers with a units

each. The main hyperparameters are:

• the structure of ScoreNet HetMP block: the default configuration is

[32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8];

• the activation function of the HetMP layers: By default, we use TanH;

• the structure of ScoreNet MLP block: the default configuration is [16, 16];

• the activation function of the MLP layers: by default, we use ReLU;

• the smoothness hyperparameter δ: this controls the degree of heterophilic

message-passing. The default value is 2;

• the auxiliary loss weight β: this balances the influence of the MAXCUT objective

against the task-specific loss. The default value is 1.

In our experiments, we employ different grid search strategies to find the optimal

hyperparameter configurations for each task and dataset. The specific hyperpa-

rameters optimized and their search ranges vary depending on the experiment and

the GNN architecture used, and are detailed in the next sections.

92

4.4 Experimental evaluation

To demonstrate the effectiveness of MaxCutPool, we conducted extensive exper-

iments on three main tasks: MAXCUT partition computation, graph classification,

and node classification. These experiments were designed to evaluate MaxCut-

Pool’s performance on a variety of graph types, including heterophilic graphs.

4.4.1 Computation of the MAXCUT partition

Our first experiment focused on computing a MAXCUT partition by training a simple

GNN consisting of an MP layer followed by the ScoreNet, which returns the score

vector s, as illustrated in Figure 4.5. We used a Graph Isomorphism Network

(GIN) layer [233] as the MP layer with 32 units and ELU activation function. The

model was trained by minimizing only the auxiliary loss Lcut defined in Equation

4.8, for 2000 epochs, using the Adam optimizer with an initial learning rate of 8e-4.

We used a learning rate scheduler that reduces the learning rate by 0.8 when the

auxiliary loss does not improve for 100 epochs. The MAXCUT partition is obtained

by rounding the values in the score vector as follows;

yi =

1 if si > 0,

−1 otherwise.

The best configuration was found via a grid search on the following set of hyper-

parameters:

• smoothness hyperparameter δ: {2, 3, 5};

• ScoreNet HetMP structure:

– [32]× 4,

– [4]× 32,

– [8]× 16,

– [16]× 8,

– [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8];

• HetMP layers activation: {ReLU, TanH}

93

Sc
or
eN

et

R
ou
nd
in
g

M
P

Figure 4.5: Schematic representation of the architecture used for MAXCUT evaluation.

In Table 4.1 we report the configurations of the ScoreNet used for the different

graphs in the MAXCUT experiment. The performance of MaxCutPool was compared

Table 4.1: Hyperparameters configurations of the ScoreNet for the MAXCUT task.

Dataset MP units MP Act δ

G14 [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8] ReLU 2.0
G15 [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8] ReLU 2.0
G22 [4]× 32 TanH 2.0
G49 [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8] TanH 2.0
G50 [8]× 16 ReLU 2.0
G55 [4]× 32 ReLU 2.0
G70 [8]× 16 ReLU 2.0
BarabasiAlbert [4]× 32 TanH 2.0
Community [4]× 32 TanH 2.0
ErdősRenyi [4]× 32 TanH 2.0
Grid2d (10×10) [4]× 32 TanH 2.0
Grid2d (60×40) [4]× 32 ReLU 2.0
Minnesota [4]× 32 TanH 2.0
RandRegular [4]× 32 TanH 2.0
Ring [4]× 32 ReLU 2.0
Sensor [4]× 32 TanH 2.0

against the LEVS approach based on umax and the GW algorithm, introduced

in Section 4.2.1, and a GNN with GCN propagation operator that minimizes a

MAXCUT loss, as proposed in [234]. To ensure a fair comparison, our MaxCutPool-

based model and the GCN-based model were designed with a comparable number

of learnable parameters.

94

We evaluated these methods on two sets of graphs:

• 9 graphs generated via the PyGSP library [235], including bipartite graphs

such as Grid2D and Ring, as well as more complex structures;

• 7 graphs from the GSet dataset [236], including random, planar, and toroidal

graphs, which are typically used as benchmarks for evaluating MAXCUT algo-

rithms.

Table 4.2: Size of the graph cuts obtained with MaxCutPool, a GNN with GCN layers,
and two common algorithms to compute the MAXCUT. GW results are absent for some
entries of the PyGSP datasets and for GSet because the solver failed to converge.

(a) PyGSP datasets

Dataset GW LEVS GCN MaxCutPool

BarabasiAlbert 0.6875 0.6589 0.7240 0.7292
Community 0.6767 0.6429 0.6805 0.6814
ErdősRenyi 0.6920 0.6858 0.6797 0.7105
Grid (10×10) 1.0000 1.0000 0.9222 1.0000
Grid (60×40) - 0.9787 0.1862 0.9815
Minnesota - 0.9104 0.8904 0.9130
RandRegular 0.4827 0.8760 0.8733 0.9040
Ring 1.0000 1.0000 0.4200 1.0000
Sensor 0.6000 0.5719 0.6281 0.6406

(b) GSet datasets

Dataset LEVS GCN MaxCutPool

G14 0.6155 0.6323 0.6412
G15 0.5945 0.6288 0.6424
G22 0.6441 0.6409 0.6577
G49 1.0000 0.9683 1.0000
G50 0.9800 0.9610 0.9750
G55 0.7568 0.7865 0.8068
G70 0.8803 0.8945 0.9086

Table 4.2 presents the results of this experiment. The performance is measured in

terms of the ratio of cut edges, with higher values indicating better performance. As

we can see, MaxCutPool consistently outperforms the baselines, finding the best

cut in almost all cases. The use of heterophilic message-passing, in fact, allows

the model to effectively capture and amplify differences between adjacent nodes,

which is crucial for finding good MAXCUT partitions. These results demonstrate the

effectiveness of our approach in solving the MAXCUT problem, even on complex and

heterogeneous graph structures.

4.4.2 Multipartite dataset

As part of our contributions, we introduce a novel dataset for graph classification

that specifically targets heterophilic graph structures. The Multipartite dataset is,

to our knowledge, the first benchmark dataset of this kind.

95

The Multipartite dataset consists complete C-partite graphs. Each graph in the

dataset is constructed such that its nodes can be partitioned into C groups, where

nodes within each group are disconnected, but are connected to all nodes in every

other group, as shown in Figure 4.6. This structure creates a highly heterophilic

environment, challenging traditional GNN approaches that often rely on the as-

sumption of homophily.

Algorithm 3 Multipartite graph dataset generation

Input: num clusters, max nodes per cluster, graphs per class
Output: dataset
1: cluster centers ← GeneratePolygonVertices(num clusters) ▷ Initial arrangement of

centers
2: dataset ← {}
3: for class label ← 0 to num clusters - 1 do
4: for 1 to graphs per class do
5: graph ← GenerateMultipartiteGraph(cluster centers, max nodes per cluster)
6: graph.label ← class label ▷ Label based on current rotation
7: Add graph to dataset
8: end for
9: cluster centers ← RotateClockwise(cluster centers) ▷ Rotate for next class

10: end for
11: return dataset

12: function GenerateMultipartiteGraph(cluster centers, max nodes per cluster)
13: for each center in cluster centers do
14: num nodes ← RandomInt(1, max nodes per cluster)
15: node positions ← GenerateNodesAroundCenter(center, num nodes)
16: node color ← GetColorForCluster(center) ▷ Each cluster has a unique color
17: AddNodesToGraph(node positions, node color)
18: end for
19: ConnectNodesAcrossClusters() ▷ Create complete multipartite graph
20: return graph
21: end function

22: function RotateClockwise(centers)
23: return [centers[-1]] + centers[:-1] ▷ Move last center to front
24: end function

The generation procedure is described in Algorithm 3 and is detailed in the follow-

ing:

1. A set of C cluster centers with 2D coordinates (x, y) is initially arranged in

96

Class 0 (red) Class 1 (blue) Class 2 (green)

Figure 4.6: Examples of multipartite graphs with 3 cluster centers. The graph class
corresponds to the color of the nodes from the group on the right.

a polygon shape. Each center is associated with a label, i.e., a color.

2. The graph class is determined by the position and the color of the cluster

centers. Specifically, the graph class is given by the color of the cluster whose

center is on the positive x-axis.

3. For each class, we generate multiple graphs using these cluster centers. A

graph is created by drawing at random the position of the nodes around each

cluster center. The number of nodes per cluster varies randomly up to a

maximum. Nodes within a cluster share the same color, which is determined

by the cluster center.

4. The topology of each graph is obtained by connecting nodes from one cluster

to the nodes of all the other clusters, but not to the nodes of the same cluster.

Therefore, a node is connected only to nodes with different colors, making

the graphs highly heterophilic.

5. After generating graphs for one class, the cluster centers are rotated, and this

rotated configuration is used for the next class. Indeed, each rotation brings

a different cluster to the positive x-axis.

6. The rotation process continues until the graphs for all the C different classes,

whose number is equal to the number of clusters, are generated.

Most interestingly, the Multipartite dataset is designed in a way that the graph

classification label does not depend on the graph topology and can, in principle, be

inferred by a standard MLP. This makes the dataset particularly valuable for eval-

97

Po
ol

M
P

M
P

G
lo

ba
l P

oo
l

M
LP

Figure 4.7: Schematic representation of the architecture used for graph classification.

uating GNNs because it challenges models to distinguish between relevant node

features (color and position) and potentially misleading topological information,

providing a controlled environment to assess how well GNNs can isolate and lever-

age relevant information in complex graph structures.

The specific instance of the Multipartite dataset used in our experiments, consisting

of 5000 graphs with 10 centers, 500 graphs per center, and a maximum of 20 nodes

per cluster, is available online at: https://zenodo.org/doi/10.5281/zenodo.

11616515.

4.4.3 Graph classification

Building upon the promising results in MAXCUT partition computation, we next

evaluated MaxCutPool’s performance on the more practical task of graph clas-

sification. This experiment aims to assess how well the MAXCUT-inspired pooling

operation translates to improved performance on downstream tasks.

For this experiment, we used a GNN classifier with the following architecture:

MP(32)-POOL-MP(32)-READOUT (Figure 4.7). Here, MP represents GIN layer, chosen

for its expressive power in capturing graph structures. The POOL operation is where

we apply MaxCutPool or one of the competing pooling methods for comparison.

In our experiments, we evaluated three variants of MaxCutPool:

• MaxCutPool and MaxCutPool-E, described in Section 4.3.2;

• MaxCutPool-NL: a version without the MAXCUT auxiliary loss, serving as an

98

https://zenodo.org/doi/10.5281/zenodo.11616515
https://zenodo.org/doi/10.5281/zenodo.11616515

ablation study to assess its importance.

We tested our model against a range of state-of-the-art pooling methods:

• DiffPool [96], DMoN [100], MinCutPool [97] from the soft-clustering pooling

family (see Section 2.3.4);

• Top-k [90] from the scoring-based family (see Section 2.3.4);

• Graclus [112] and k-MIS [111] from the one-every-k family (see Section 2.3.4);

• Edge-Contraction Pooling (ECPool) [237]: A pooling method that iteratively

contracts edges in the graph.

Table 4.3: Details of the graph classification datasets.

Dataset #Samples #Classes Avg. #vert. Avg. #edg. V. attr. V. lab. h̄(D)

EXPWL1 3,000 2 76.96 186.46 – yes 0.2740
NCI1 4,110 2 29.87 64.60 – yes 0.6245
PROTEINS 1,113 2 39.06 72.82 1 yes 0.6582
Mutagenicity 4,337 2 30.32 61.54 – yes 0.3679
COLLAB 5,000 3 74.49 4,914.43 – no 1
REDDIT-B 2,000 2 429.63 995.51 – no 1
GCB-H 1,800 3 148.32 572.32 – yes 0.8440
DD 1,178 2 284.32 1,431.32 – yes 0.0688
MUTAG 188 2 17.93 19.79 – yes 0.7082
ENZYMES 600 6 32.63 62.14 18 yes 0.6687
Multipartite 5000 10 99.79 4,477.43 3 yes 0.1101

We tested these methods on a diverse set of graph classification datasets:

• eight datasets from the TU Dataset collection [238]: COLLAB, DD, NCI1,

ENZYMES, MUTAG, Mutagenicity, PROTEINS, and REDDIT-BINARY;

• the Graph Classification Benchmark-Hard (GCB-H) [239], designed to be

particularly challenging for GNNs;

• EXPWL1 [101], a dataset specifically created to test the expressive power of

GNNs;

• the Multipartite dataset introduced in Section 4.4.2.

The statistics of the graph classification datasets are summarized in Table 4.3.

Typical homophily metrics are designed for node classification tasks or rely on node

labels, which are not always available in graph classification settings. To quantify

99

the degree of homophily in our datasets, we introduce a surrogate homophily score

h̄(D) based on node features, where D denotes the whole dataset. This score is

defined as the absolute value of the average cosine similarity between the node

features of connected nodes in each graph of the dataset:

h̄(D) =

∣∣∣∣∣ 1

|D|
∑
G∈D

1

|EG|
∑

(i,j)∈EG

xixj

|xi||xj|

∣∣∣∣∣
where |D| is the number of graphs in the dataset, EG is the set of edges of the graph

G and xi,xj are the feature vectors of the i-th and j-th node respectively. This

measure allows us to assess the degree of feature similarity between connected nodes

across the dataset, providing insight into the homophilic nature of the graphs.

For our experiments, whenever node features were not available, we used node

labels. If node labels were also unavailable, we used a constant as a surrogate

node feature. The datasets were split via a 10-fold cross-validation procedure. The

training dataset was further partitioned into a 90-10% train-validation random

split. This approach is similar to the procedure described by [240]. The models

were trained using a batch size of 32 for 1000 epochs, using the Adam optimizer

with an initial learning rate of 1e-4. We used early stopping with a patience of

300 epochs, monitoring the validation loss. The best configuration was found via

a grid search on the following set of hyperparameters:

• auxiliary loss weight β: {1, 2, 5};

• ScoreNet HetMP structure:

– [32]× 8,

– [32]× 4,

– [8]× 16

– [16]× 8,

– [32, 32, 16, 16, 8, 8],

– [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8].

In Table 4.4 we report the configurations of the ScoreNet used in the graph classi-

fication architecture for the different datasets in the expressive and non-expressive

variant of MaxCutPool.

100

Table 4.4: Hyperparameters configurations of the ScoreNet for the graph classification
task.

MaxCutPool MaxCutPool-E

Dataset MP units β MP units β

GCB-H [8]× 16 3.0 [32]× 8 5.0
COLLAB [32]× 8 1.0 [32]× 8 1.0
DD [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8] 1.0 [8]× 16 5.0
ENZYMES [8]× 16 3.0 [16]× 8 3.0
EXPWL1 [32, 32, 16, 16, 8, 8] 1.0 [16]× 8 1.0
MUTAG [8]× 16 1.0 [16]× 8 3.0
Multipartite [32]× 8 3.0 [32]× 8 1.0
Mutagenicity [32, 32, 16, 16, 8, 8] 1.0 [32]× 8 5.0
NCI1 [32, 32, 16, 16, 8, 8] 1.0 [8]× 16 3.0
PROTEINS [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8] 3.0 [32, 32, 16, 16, 8, 8] 5.0
REDDIT-B [32]× 8 1.0 [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8] 1.0

Table 4.5: Mean and standard deviations of the graph classification accuracy. For each
dataset the best performing method and those that are not significantly different from it
are colored in green. If a method is in the top-performing group is assigned with a score
of 1, 0 otherwise.

Pooler GCB-H COLLAB EXPWL1 Mult. Mutag. NCI1 REDDIT-B Score

No pool 74±4 74±2 87±2 14±12 79±2 78±3 90±2 -

DiffPool 51±8 70±2 69±3 9±1 78±2 75±2 90±2 1
DMoN 74±3 68±2 73±3 52±2 80±2 77±2 88±2 3
EdgePool 75±4 72±3 90±2 55±3 80±2 77±3 91±2 4
Graclus 75±3 72±3 90±2 25±18 80±2 77±2 90±3 4
k-MIS 75±4 71±2 99±1 58±2 79±2 75±3 90±2 4
MinCutPool 75±5 70±2 71±3 56±3 78±3 73±3 87±2 1
Top-k 56±5 72±2 73±2 43±3 75±3 73±2 77±2 0

MaxCutPool 73±3 77±2 100±0 90±2 77±2 75±2 89±3 5
MaxCutPool-E 74±3 77±2 100±0 87±5 79±1 76±2 89±2 7

MaxCutPool-NL 61±6 77±3 100±0 91±1 76±3 74±2 86±3 3

Table 4.5 presents the results of our graph classification experiments. For each

dataset, we report the mean and standard deviation of the classification accuracy

across 10-fold cross-validation. We also include the performance of the GNN model

without any pooling layers as a baseline (No pool). We conducted a preliminary

ANOVA test (p-value 0.05) for each dataset followed by a pairwise Tukey-HSD

test (p-value 0.05) to group models whose performance is not significantly dif-

ferent. Those belonging to the top-performing group are colored in green. The

ANOVA test failed on ENZYMES, PROTEINS, MUTAG, and DD, meaning that

the difference in the performance of the GNNs equipped with different poolers is

101

not significant. For this reason, the results on these datasets are omitted from

Table 4.5 and reported in Table 4.6.

Table 4.6: Graph classification accuracy values (subset)

Pooler DD MUTAG ENZYMES PROTEINS

No pool 73±5 78±13 33±6 71±4

Diffpool 77±4 81±11 36±7 75±3

DMoN 78±5 82±11 37±7 76±4

ECPool 73±5 84±12 35±8 74±5

Graclus 73±4 82±12 33±7 73±4

k-MIS 75±3 83±10 33±8 73±5

MinCutPool 78±5 81±12 34±9 77±5

Top-k 72±5 82±10 29±7 74±5

MaxCutPool 77±4 84±10 31±6 74±4

MaxCutPool-E 77±3 85±9 34±5 74±4

MaxCutPool-NL 74±4 83±11 31±4 70±4

The results reveal several key insights: first of all, MaxCutPool consistently ranks

among the top-performing methods across all evaluated datasets. This demon-

strates its versatility and effectiveness across a wide range of graph types and

classification tasks. Interestingly, on the EXPWL1 dataset, designed to test GNN

expressiveness, even the non-expressive variant of MaxCutPool achieves perfect

accuracy (100%), outperforming all competitors. This is a significant result, as it

represents the first known instance of a non-expressive pooler passing this chal-

lenging expressiveness test. As expected, MaxCutPool shows particularly strong

performance on the Multipartite dataset, significantly outperforming all other pool-

ing methods. This highlights MaxCutPool’s effectiveness in handling highly het-

erophilic graph structures, where traditional pooling methods often struggle.

When compared to the No pool baseline, MaxCutPool improves classification per-

formance on most datasets. This suggests that MaxCutPool is effectively increas-

ing the receptive field of the message-passing layers while retaining necessary in-

formation and enhancing the overall expressive power of the GNN model. The

MaxCutPool-E variant, which satisfies theoretical expressiveness conditions, gen-

erally exhibits similar or better performance compared to the standard MaxCut-

Pool across most datasets. This indicates that the added expressiveness can indeed

translate to improved practical performance. The performance decline observed in

102

Po
ol

M
P

M
P

U
np
oo
l

M
P

M
LP

Figure 4.8: Schematic representation of the architecture used for node classification.

the MaxCutPool-NL variant (without the auxiliary loss), on the other hand, demon-

strates the importance of the MAXCUT-based loss in guiding the pooling process. This

ablation result validates our design choice of incorporating graph-theoretical princi-

ples into the learning process. On datasets like COLLAB, however, all MaxCutPool

variants achieve top performance, showing a statistically significant improvement

over other methods. Interestingly, when learning this dataset, the auxiliary loss

term plateaued around 0, making the performance equivalent to the MaxCutPool-

NL variant. This suggests that our method remains robust even when the auxiliary

loss is not needed for the downstream task.

4.4.4 Node classification

To further evaluate the effectiveness of MaxCutPool, particularly on heterophilic

graphs, we conducted experiments on node classification tasks.

For this task, we employed a simple auto-encoder architecture for node classification

with the following structure: MP(32)-POOL-MP(32)-UNPOOL-MP(32)-READOUT (Figure

4.8). Here, MP is a GIN layer, POOL is implemented by MaxCutPool or one of

the baseline methods, and UNPOOL (also referred to as lifting) is implemented by

copying the value of each supernode to all the nodes that were assigned to it during

the pooling phase.

We compared MaxCutPool against Top-k [90], k-MIS [111] and NDP [115] meth-

ods. It’s worth noting that we did not include soft-clustering poolers (like Diff-

Pool or MinCutPool) or Graclus in this comparison due to their high VRAM and

RAM memory requirements for large graphs, respectively. In contrast, MaxCut-

103

Pool demonstrated excellent scalability, efficiently handling large graph structures

with minimal memory overhead (see Section 4.4.6).

For this experiment, we used five heterophilic datasets introduced in [241], whose

statistics are summarized in Table 4.7.

Table 4.7: Statistics of node classification datasets.

Dataset # Nodes # Edges # Classes h(G)

Roman-Empire 22,662 32,927 18 0.021
Amazon-Ratings 24,492 93,050 5 0.127
Minesweeper 10,000 39,402 2 0.009
Tolokers 11,758 519,000 2 0.180
Questions 48,921 153,540 2 0.079

These datasets represent a range of heterophilic graph structures, with varying

levels of homophily as measured by the class insensitive edge homophily ratio h(G)

[242]. The Roman-Empire dataset, in particular, has the lowest homophily ratio

among all datasets, making it an excellent test case for methods designed to handle

heterophilic graphs.

The node classifier was trained for 20000 epochs, using the Adam optimizer with

an initial learning rate of 5e-4. We used a learning rate scheduler that reduces

the learning rate by 0.5 when the validation loss does not improve for 500 epochs.

We used early stopping with a patience of 2000 epochs, monitoring the validation

loss. The best configuration was found via a grid search on the following set of

hyperparameters:

• ScoreNet HetMP structure:

– [32]× 4,

– [4]× 32,

– [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8];

• MLP layers activation: {ReLU, TanH}

The configuration of the ScoreNet for the MaxCutPool pooler used in the different

datasets is reported in Table 4.8.

Table 4.9 presents the results of our node classification experiments. For Roman-

104

Table 4.8: Hyperparameters configurations of the ScoreNet in the node classification
task.

Dataset MP units MLP Act.

Roman-Empire [32, 32, 32, 32] ReLU
Amazon-Ratings [32, 32, 32, 32] ReLU
Minesweeper [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8] ReLU
Tolokers [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8] ReLU
Questions [32, 32, 32, 32] ReLU

Table 4.9: Node classification accuracy (Roman-empire, Amazon-ratings) and AUROC
(Minesweeper, Tolokers, Questions). The best performing models in each dataset are in
green and get 1 score point, 0 otherwise.

Pooler Roman-e. Amazon-r. Minesw. Tolokers Questions Score

Top-k 26±7 46±4 94±1 89±5 64±3 1
k-MIS 23±3 48±2 75±2 84±2 83±1 1
NDP 22±5 53±2 98±0 88±6 68±4 3
MaxCutPool 56±3 53±1 96±1 87±3 82±4 4
MaxCutPool-E 60±4 53±2 97±1 91±2 85±5 5

empire and Amazon-ratings, we report the mean and standard deviation of the

classification accuracy. For Minesweeper, Tolokers, and Questions, we report the

ROC AUC, following the same evaluation protocol used in [241]. MaxCutPool,

particularly in its expressive variant (MaxCutPool-E), achieves superior perfor-

mance across these heterophilic datasets. This is especially evident on the Roman-

Empire dataset, where both MaxCutPool and MaxCutPool-E significantly outper-

form all other methods. Nonetheless, MaxCutPool-E consistently ranks in the top

tier across all datasets, showing robust performance across varying degrees of het-

erophily. This consistency is noteworthy, as other methods tend to excel only on a

subset of the datasets.

4.4.5 Node classification with skip connections

In addition to the basic node classification architecture, we also evaluated a different

model incorporating skip (residual) connections. This architecture, inspired by the

Graph U-Net [90], aims to preserve low-level features throughout the network,

potentially improving performance on heterophilic graphs.

105

Pool

M
P

M
P

Unpool

M
P

M
LP

Skip

Figure 4.9: Schematic representation of the architecture with skip connections used for
node classification.

The architecture with skip connections is depicted in Figure 4.9. In this architec-

ture, the node features obtained after the first MP layer are concatenated with

the node features yielded by the unpooling step. This allows the network to com-

bine high-level abstract features with low-level structural information. We used

the same datasets and evaluation protocol as in the previous node classification

experiment. The hyperparameters for the MaxCutPool layer in this architecture

are reported in Table 4.10. For the Minesweeper dataset, we used a GIN layer

Table 4.10: Hyperparameters configurations for the node classification task based on
the architecture with skip connections.

Dataset MP units MLP Act. Expressive

Roman-Empire [32, 32, 32, 32] ReLU ✗
Amazon-Ratings [32, 32, 32, 32] ReLU ✗
Minesweeper [32, 32, 32, 32] Tanh ✗
Tolokers [32, 32, 32, 32] ReLU ✗
Questions [32, 32, 32, 32] ReLU ✗

with 16 units as the MP layer, instead of the usual 32 units. This adjustment

was necessary because the architecture with skip connections consistently achieved

nearly 100% ROC AUC with 32 units, regardless of the pooling method applied.

The results for node classification using the architecture with skip connections

(Table 4.11) keep showing the effectiveness of our layer in handling heterophilic

graphs. MaxCutPool maintains strong performance across datasets, with particu-

106

Table 4.11: Node classification accuracy (Roman-empire, Amazon-ratings) and AU-
ROC (Minesweeper, Tolokers, Questions) obtained when using the architecture with
skip connections.

Pooler Roman-e. Amazon-r. Minesw.∗ Tolokers Questions Score

Top-k 20±11 49±7 91±1 96±0 70±3 1
k-MIS 19±2 53±3 90±0 91±2 82±4 2
NDP 19±4 56±5 94±0 90±8 69±7 2
MaxCutPool 67±2 53±1 92±1 96±1 82±2 3

larly significant improvements on the highly heterophilic Roman-Empire dataset.

However, the performance gap between MaxCutPool and other methods narrows

compared to the basic architecture, suggesting that skip connections benefit other

pooling methods in handling heterophilic graphs to some extent. These findings

highlight the importance of considering architectural choices when designing GNNs

for heterophilic graphs.

4.4.6 Memory usage and scalability

An important aspect of any pooling method is its memory usage and scalability to

large graphs. We conducted an experimental evaluation of the GPU VRAM usage

for different pooling methods, including MaxCutPool. The results, shown in Fig-

ure 4.10, demonstrate that MaxCutPool scales efficiently with graph size. The plot

reveals that soft-clustering methods exhibit exponential growth in GPU VRAM

usage as graph size increases. In contrast, scoring-based methods, including Max-

CutPool, show sublinear growth. This makes MaxCutPool particularly suitable for

working with large graphs, a common scenario in molecular and biological datasets.

4.5 Conclusions

MaxCutPool represents a significant advancement in graph pooling techniques.

By leveraging the MAXCUT loss and incorporating heterophilic message-passing, un-

like existing graph pooling and coarsening approaches that aim to preserve low-

frequencies, it performs exceptionally well on heterophilic datasets. Our proposed

pooling strategy combines advantages of different approaches while addressing their

107

Figure 4.10: The GPU VRAM usage of different poolers.

limitations. Like score-based methods, it allows for flexible pooling ratios adapt-

able to graph size. Its HetMP layers enable uniform supernode distribution similar

to one-every-K methods, while maintaining the flexibility to choose any set of

supernodes. Uniquely among scoring-based poolers, MaxCutPool incorporates a

graph-theoretical auxiliary regularization loss. Its strong performance across tasks

from MAXCUT partition computation to graph and node classification demonstrates

its versatility and effectiveness. This makes it a promising tool for molecular graph

analysis, with potential to improve property prediction and drug discovery tasks.

108

Chapter 5

Other Works

This chapter describes two complementary projects related to computational drug

discovery: a comprehensive review of machine learning approaches for ligandability

and druggability prediction, and the development of a web server interface for

molecular surface computation and pocket detection.

5.1 Ligandability and druggability assessment via

machine learning

A critical step in early-stage drug discovery is the identification and characteri-

zation of ligand binding sites on target proteins. The concepts of ligandability

and druggability aim to quantify the likelihood that a given binding site or target

protein can bind small molecules with high affinity and be modulated by a drug-

like compound, respectively. In recent years, machine learning approaches have

emerged as powerful tools for predicting ligandability and druggability.

We conducted a comprehensive review of machine learning methods for ligandabil-

ity and druggability assessment [P4]. This review provides a thorough analysis of

the current state-of-the-art in ML-based ligandability and druggability prediction,

serving as a valuable resource for researchers in the field of computer-aided drug

discovery.

109

5.1.1 Machine learning tasks and architectures

Our review categorizes ML approaches for ligandability and druggability prediction

into two main groups:

• two-step approaches: these methods first detect pockets using geometric

or energetic algorithms, then apply ML models to score the identified pockets.

• direct approaches: these methods use ML to simultaneously detect and

score potential binding sites.

For each category, we discuss representative algorithms, their strengths, and limi-

tations.

Two-step methods like DoGSiteScorer [243] and PockDrug [244] showed advantages

in interpretability since they separate the geometric detection and scoring steps.

The scoring step in this methods is typically implemented via classical shallow

learners such as support vector machines and random forests. For this reason, they

offer advantages in terms of interpretability.

Direct approaches like DeepSite [245], DeepSurf [246] and PointSite [247] show

promise in their ability to learn complex features directly from structural data.

These methods typically make use deep learning models such as 3D convolutional

neural networks and graph neural networks, requiring significant computational

resources and large training datasets.

5.1.2 Feature engineering and representation

A significant portion of the review is dedicated to examining different ways of

representing protein structures and pockets for ML models. We discuss several key

representation approaches:

• voxel-based representations: these methods discretize the 3D space around

a protein into a grid, encoding physicochemical properties in each voxel. This

approach is particularly suited for 3D convolutional neural networks;

• graph-based representations: these methods represent proteins as graphs,

110

with atoms or residues as nodes and chemical bonds or spatial proximity as

edges. Graph neural networks can effectively process these representations;

• point cloud representations: these methods represent proteins as sets of

points in 3D space, often used with specialized architectures like PointNet

[248];

• surface-based representations: these methods focus on the molecular sur-

face, using techniques like ray-casting to capture surface properties.

Our analysis reveals distinct trade-offs between these representation approaches.

While voxel-based methods provide a natural way to apply powerful deep learning

architectures, they can be computationally intensive for large proteins. Graph-

based approaches offer a more compact representation and can naturally capture

chemical connectivity, but may require more sophisticated architectures to process

spatial information effectively. Point cloud representations provide an interest-

ing middle ground, offering both spatial accuracy and computational efficiency.

Surface-based methods are particularly effective for analyzing protein-protein in-

terfaces and shallow binding sites, though they may miss information about deep

pockets.

5.1.3 Incorporation of molecular dynamics

An important aspect covered in our review is the integration of MD simulations into

ligandability prediction methods. MD-based methods offer significant advantages

in identifying transient and cryptic binding sites that may not be visible in static

structures. Tools like TRAPP [249] effectively leverage MD trajectories to esti-

mate average pocket distributions and detect transient pockets, while methods like

CryptoSite [250] achieve comparable results to full MD simulations with reduced

computational cost. The JEDI [251] method stands out by providing an analyt-

ically derivable ligandability potential that can be directly used in MD through

enhanced sampling methods, offering a unique approach to pocket optimization.

111

5.1.4 Current challenges and future directions

Our review identifies several key areas for improvement in the field of ML-based

ligandability and druggability prediction. One of the most pressing needs is the

development of more rigorous labeling strategies. Current methods often rely on

simple binary classifications, which fail to capture the nuanced nature of ligand

binding. We argue for the adoption of labeling approaches based on thermody-

namic or kinetic observables, which would provide a more accurate representation

of a pocket’s ligandability. Another significant challenge lies in handling protein

flexibility. While some methods have begun to incorporate molecular dynamics

simulations, there is still considerable room for improvement in efficiently captur-

ing and representing protein dynamics. This is crucial for accurately predicting

ligandability, as proteins are not static entities but constantly fluctuate between

different conformations. Finally, the growing interest in RNA as a drug target

necessitates the extension of ligandability prediction methods to RNA structures.

This presents unique challenges due to the distinct structural and chemical prop-

erties of RNA compared to proteins, requiring the development of new algorithms

and feature representations tailored to nucleic acid structures.

Looking ahead, we see great potential in the integration of ligandability prediction

with other drug discovery tasks. End-to-end learning systems that combine ligand-

ability prediction with de novo drug design, ADMET prediction, and other related

tasks could significantly streamline the drug discovery process. Such integrated

approaches could leverage the interrelationships between these different aspects of

drug discovery to improve overall predictive power and efficiency.

5.2 Development of a web server for molecular

surface analysis

NanoShaper [252] is a powerful tool for computing and analyzing molecular sur-

faces, offering various surface definitions and functionalities relevant to computa-

tional drug discovery. It provides a comprehensive suite of tools for molecular sur-

112

face analysis, including the computation of Solvent Excluded Surface (SES), Skin

surface, and Gaussian surface. Beyond surface computation, NanoShaper offers so-

phisticated cavity detection algorithms, allowing researchers to identify potential

binding sites within protein structures.

One of NanoShaper’s key strengths is its ability to generate grid-consistent triangu-

lations of molecular surfaces. This feature is particularly useful for applications in

computational physics, such as solving the Poisson-Boltzmann equation for electro-

statics calculations. NanoShaper can also color grid points based on their location

relative to the molecular surface, facilitating the setup of volumetric calculations.

As an ongoing project, we are developing a user-friendly web interface for NanoShaper.

This web server aims to make these powerful capabilities more accessible to re-

searchers without extensive computational expertise. The interface allows users

to upload protein structures in PDB format and easily specify the type of surface

they want to compute and analyze. Users can select from various surface types,

adjust parameters like probe radius for SES or blobbyness for Gaussian surfaces,

and specify additional analysis options such as cavity detection thresholds.

Once the calculations are complete, the web server provides interactive visualization

of the results. Users can explore the computed molecular surface, view detected

cavities, and examine surface properties. The interface will also allow for easy

download of the computed surfaces and associated data, enabling further analysis or

integration with other computational workflows. In Figure 5.1 we show a snapshot

of the preliminary home page of the web server.

The availability of this web server will facilitate the usage of NanoShaper, enabling

a broader range of researchers to benefit from its capabilities in analyzing protein

surfaces and potential binding sites. It will be particularly useful for structural

biologists and medicinal chemists as this approach won’t require to run NanoShaper

locally.

We envision several future potential enhancements for the NanoShaper web server.

One promising direction is extending support to RNA structures, addressing the

growing interest in RNA as a drug target. This would involve adapting the un-

113

Figure 5.1: A snapshot of the NanoShaper web server interface.

derlying algorithms to handle the unique structural features of RNA molecules.

Additionally, we could incorporate RNA-specific scoring functions for pocket anal-

ysis, taking into account factors like the presence of potential metal ion binding

sites or the accessibility of the major and minor grooves.

Another potential area for improvement is the integration of the web server with

other computational tools in the drug discovery pipeline. For example, we could

provide direct links to docking software or electrostatics calculations, allowing users

to seamlessly move from surface analysis to more detailed binding site characteri-

zation or virtual screening.

In conclusion, the development of the NanoShaper web server represents an impor-

tant step in making advanced molecular surface analysis tools more accessible to the

broader scientific community. By providing an intuitive interface to NanoShaper

capabilities, we hope to accelerate research in structure-based drug design and

related fields.

114

Chapter 6

Conclusions and future

perspectives

This thesis has explored graph-based machine learning approaches for drug dis-

covery, focusing on de novo molecular design and advanced graph representation

techniques. Our work spans theoretical developments, practical applications of

graph neural networks, and the creation of tools to support researchers in the drug

discovery pipeline. We began with a comprehensive review of conditional genera-

tive models for de novo drug discovery, synthesizing recent advances and identifying

key challenges in the field. This review provided the foundation for our subsequent

research. Subsequently, we developed the Atomic-Molecular Conditional Generator

(AMCG), a novel graph-based generative model for molecular design. AMCG offers

several key advantages, including a dual atomic-molecular representation, one-shot

generation capabilities, explicit control over atom type histograms, and property

optimization through gradient ascent in the latent space. AMCG demonstrated

state-of-the-art performance on standard benchmarks, showcasing its potential to

generate valid, diverse, and property-optimized molecules efficiently. Our work on

AMCG led us to recognize the inherently heterophilic nature of molecular graphs,

where connected nodes (atoms) often have dissimilar features. This realization

prompted us to explore more fundamental aspects of graph representation learning,

resulting in the development of MaxCutPool. This novel graph pooling technique,

115

based on the MAXCUT problem, proved particularly effective for heterophilic graphs.

MaxCutPool’s superior performance on heterophilic graph classification and node

classification tasks demonstrated how advances in graph theory could translate into

improved performance on real-world tasks in drug discovery.

A natural consequence of the work conducted in this thesis is to integrate these com-

ponents into a more comprehensive de novo drug design framework. A straightfor-

ward extension of our work would be to incorporate the MaxCutPool pooling layer

into the AMCG framework, potentially enhancing its ability to efficiently encode

molecular graphs into a compact latent space. However, to truly advance the field

of de novo drug design, we must move beyond optimizing individual components

and work towards more integrated, context-aware systems. Figure 6.1 illustrates

our vision for an ideal drug design model that leverages all available in silico and ex-

perimental information. This comprehensive framework would integrate molecular

Figure 6.1: An ideal model for designing drug candidates should incorporate all avail-
able in silico information (including simulations and machine learning predictors) as well
as experimental data. This can be achieved through conditioning and context awareness.

generation, target binding prediction, ADMET property prediction, synthetic ac-

cessibility assessment, ligandability prediction, experimental feedback mechanisms,

and multi-objective optimization. Such an integrated approach could significantly

116

accelerate the identification of promising drug candidates by simultaneously opti-

mizing for multiple, often conflicting objectives while maintaining chemical validity

and synthetic feasibility. Realizing this vision presents several challenges, includ-

ing balancing model complexity and interpretability, efficiently integrating exper-

imental validation, ensuring data quality and quantity, optimizing computational

efficiency, and effectively incorporating domain knowledge.

In conclusion, the work presented in this thesis contributes to the current trans-

formation of drug discovery via artificial intelligence and machine learning. By

combining theoretical advancements in graph representation learning with practi-

cal tools for molecular generation and analysis, we aim to pave the way for more

efficient and effective drug discovery processes. The path towards comprehensive,

target-aware de novo drug design systems is challenging, but the potential impact

on drug discovery and human health is profound.

117

Publications

[P1] Abate C, Decherchi S, Cavalli A. Graph neural networks for condi-

tional de novo drug design. WIREs Computational Molecular Science.

2023;13(4):e1651. Available from: https://wires.onlinelibrary.wiley.

com/doi/abs/10.1002/wcms.1651.

[P2] Abate C, Decherchi S, Cavalli A. AMCG: a graph dual atomic-molecular con-

ditional molecular generator. Machine Learning: Science and Technology. 2024

jul;5(3):035004. Available from: https://dx.doi.org/10.1088/2632-2153/

ad5bbf.

[P3] Abate C, Bianchi FM. MaxCutPool: differentiable feature-aware Maxcut for

pooling in graph neural networks. In: The Thirteenth International Conference

on Learning Representations; 2025. Available from: https://openreview.

net/forum?id=xlbXRJ2XCP.

[P4] Di Palma F, Abate C, Decherchi S, Cavalli A. Ligandability and drug-

gability assessment via machine learning. WIREs Computational Molecular

Science. 2023;13(5):e1676. Available from: https://wires.onlinelibrary.

wiley.com/doi/abs/10.1002/wcms.1676.

118

https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1651
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1651
https://dx.doi.org/10.1088/2632-2153/ad5bbf
https://dx.doi.org/10.1088/2632-2153/ad5bbf
https://openreview.net/forum?id=xlbXRJ2XCP
https://openreview.net/forum?id=xlbXRJ2XCP
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1676
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1676

Bibliography

[1] DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical

industry: New estimates of R&D costs. J Health Econ. 2016 Feb;47:20-33.

[2] Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg

SR, et al. How to improve R&D productivity: the pharmaceutical indus-

try’s grand challenge. Nature Reviews Drug Discovery. 2010 Mar;9(3):203-14.

Available from: https://doi.org/10.1038/nrd3078.

[3] Jameson JL, Longo DL. Precision medicine–personalized, problematic, and

promising. N Engl J Med. 2015 May;372(23):2229-34.

[4] Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug

discovery. Br J Pharmacol. 2011 Mar;162(6):1239-49.

[5] Schneider P, Walters WP, Plowright AT, Sieroka N, Listgarten J, Goodnow

RA, et al. Rethinking drug design in the artificial intelligence era. Nature

Reviews Drug Discovery. 2020 May;19(5):353-64. Available from: https:

//doi.org/10.1038/s41573-019-0050-3.

[6] Macarron R, Banks MN, Bojanic D, Burns DJ, Cirovic DA, Garyantes T,

et al. Impact of high-throughput screening in biomedical research. Nat Rev

Drug Discov. 2011 Mar;10(3):188-95.

[7] Inglese J, Auld DS, Jadhav A, Johnson RL, Simeonov A, Yasgar A, et al.

Quantitative high-throughput screening: a titration-based approach that ef-

ficiently identifies biological activities in large chemical libraries. Proc Natl

Acad Sci U S A. 2006 Jul;103(31):11473-8.

119

https://doi.org/10.1038/nrd3078
https://doi.org/10.1038/s41573-019-0050-3
https://doi.org/10.1038/s41573-019-0050-3

[8] Roy R, Singh SK, Ahmad N, Misra S. Challenges and advancements in high-

throughput screening strategies for cancer therapeutics. Global Translarional

Medicine. 2024;3(1):2448.

[9] Longwell CK, Labanieh L, Cochran JR. High-throughput screening tech-

nologies for enzyme engineering. Current Opinion in Biotechnology.

2017;48:196-202. Chemical biotechnology • Pharmaceutical biotechnology.

Available from: https://www.sciencedirect.com/science/article/pii/

S0958166917300708.

[10] Wildey MJ, Haunso A, Tudor M, Webb M, Connick JH. Chapter Five -

High-Throughput Screening. In: Goodnow RA, editor. Platform Technologies

in Drug Discovery and Validation. vol. 50 of Annual Reports in Medicinal

Chemistry. Academic Press; 2017. p. 149-95. Available from: https://www.

sciencedirect.com/science/article/pii/S0065774317300076.

[11] Lyne PD. Structure-based virtual screening: an overview. Drug Discov

Today. 2002 Oct;7(20):1047-55.

[12] Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in

virtual screening for drug discovery: methods and applications. Nat Rev

Drug Discov. 2004 Nov;3(11):935-49.

[13] Fan J, Fu A, Zhang L. Progress in molecular docking. Quantitative Bi-

ology. 2019 Jun;7(2):83-9. Available from: https://doi.org/10.1007/

s40484-019-0172-y.

[14] Kroemer RT. Structure-based drug design: docking and scoring. Curr Protein

Pept Sci. 2007 Aug;8(4):312-28.

[15] Ripphausen P, Nisius B, Bajorath J. State-of-the-art in ligand-based virtual

screening. Drug Discovery Today. 2011;16(9):372-6. Available from: https:

//www.sciencedirect.com/science/article/pii/S1359644611000626.

[16] Schaller D, Šribar D, Noonan T, Deng L, Nguyen TN, Pach S, et al. Next

generation 3D pharmacophore modeling. WIREs Computational Molecular

120

https://www.sciencedirect.com/science/article/pii/S0958166917300708
https://www.sciencedirect.com/science/article/pii/S0958166917300708
https://www.sciencedirect.com/science/article/pii/S0065774317300076
https://www.sciencedirect.com/science/article/pii/S0065774317300076
https://doi.org/10.1007/s40484-019-0172-y
https://doi.org/10.1007/s40484-019-0172-y
https://www.sciencedirect.com/science/article/pii/S1359644611000626
https://www.sciencedirect.com/science/article/pii/S1359644611000626

Science. 2020;10(4):e1468. Available from: https://wires.onlinelibrary.

wiley.com/doi/abs/10.1002/wcms.1468.

[17] Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M,

et al. QSAR Modeling: Where Have You Been? Where Are You Going To?

Journal of Medicinal Chemistry. 2014 Jun;57(12):4977-5010. Available from:

https://doi.org/10.1021/jm4004285.

[18] Gramatica P. Principles of QSAR models validation: internal and external.

QSAR & Combinatorial Science. 2007;26(5):694-701. Available from: https:

//onlinelibrary.wiley.com/doi/abs/10.1002/qsar.200610151.

[19] Nicholls A, McGaughey GB, Sheridan RP, Good AC, Warren G, Mathieu M,

et al. Molecular Shape and Medicinal Chemistry: A Perspective. Journal

of Medicinal Chemistry. 2010 May;53(10):3862-86. Available from: https:

//doi.org/10.1021/jm900818s.

[20] Ballester PJ, Richards WG. Ultrafast shape recognition to search com-

pound databases for similar molecular shapes. J Comput Chem. 2007

Jul;28(10):1711-23.

[21] Gorgulla C. Recent Developments in Ultralarge and Structure-Based Virtual

Screening Approaches. Annu Rev Biomed Data Sci. 2023 May;6:229-58.

[22] Schneider G. Virtual screening: an endless staircase? Nature Reviews

Drug Discovery. 2010 Apr;9(4):273-6. Available from: https://doi.org/

10.1038/nrd3139.

[23] Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T. The rise of

deep learning in drug discovery. Drug Discovery Today. 2018;23(6):1241-

50. Available from: https://www.sciencedirect.com/science/article/

pii/S1359644617303598.

[24] Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, et al.

Applications of machine learning in drug discovery and development. Nature

Reviews Drug Discovery. 2019 Jun;18(6):463-77. Available from: https:

//doi.org/10.1038/s41573-019-0024-5.

121

https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1468
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1468
https://doi.org/10.1021/jm4004285
https://onlinelibrary.wiley.com/doi/abs/10.1002/qsar.200610151
https://onlinelibrary.wiley.com/doi/abs/10.1002/qsar.200610151
https://doi.org/10.1021/jm900818s
https://doi.org/10.1021/jm900818s
https://doi.org/10.1038/nrd3139
https://doi.org/10.1038/nrd3139
https://www.sciencedirect.com/science/article/pii/S1359644617303598
https://www.sciencedirect.com/science/article/pii/S1359644617303598
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1038/s41573-019-0024-5

[25] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015

May;521(7553):436-44. Available from: https://doi.org/10.1038/

nature14539.

[26] Gawehn E, Hiss JA, Schneider G. Deep Learning in Drug Discovery. Molecu-

lar Informatics. 2016;35(1):3-14. Available from: https://onlinelibrary.

wiley.com/doi/abs/10.1002/minf.201501008.

[27] Bengio Y, Courville A, Vincent P. Representation learning: a re-

view and new perspectives. IEEE transactions on pattern analy-

sis and machine intelligence. 2013 August;35(8):1798—1828. Avail-

able from: http://www.cs.princeton.edu/courses/archive/spring13/

cos598C/RepresentationLearning-AReviewandNewPerspectives.pdf.

[28] Meyers J, Fabian B, Brown N. De novo molecular design and generative

models. Drug Discovery Today. 2021;26(11):2707-15. Available from: https:

//www.sciencedirect.com/science/article/pii/S1359644621002531.

[29] Zeng X, Wang F, Luo Y, gu Kang S, Tang J, Lightstone FC, et al. Deep gen-

erative molecular design reshapes drug discovery. Cell Reports Medicine.

2022;3(12):100794. Available from: https://www.sciencedirect.com/

science/article/pii/S2666379122003494.

[30] Deng J, Yang Z, Wang H, Ojima I, Samaras D, Wang F. A systematic study

of key elements underlying molecular property prediction. Nature Communi-

cations. 2023 Oct;14(1):6395. Available from: https://doi.org/10.1038/

s41467-023-41948-6.

[31] Li Z, Jiang M, Wang S, Zhang S. Deep learning methods for molec-

ular representation and property prediction. Drug Discovery Today.

2022;27(12):103373. Available from: https://www.sciencedirect.com/

science/article/pii/S135964462200366X.

[32] Mamoshina P, Vieira A, Putin E, Zhavoronkov A. Applications of Deep

Learning in Biomedicine. Mol Pharm. 2016 Mar;13(5):1445-54.

122

https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://onlinelibrary.wiley.com/doi/abs/10.1002/minf.201501008
https://onlinelibrary.wiley.com/doi/abs/10.1002/minf.201501008
http://www.cs.princeton.edu/courses/archive/spring13/cos598C/Representation Learning - A Review and New Perspectives.pdf
http://www.cs.princeton.edu/courses/archive/spring13/cos598C/Representation Learning - A Review and New Perspectives.pdf
https://www.sciencedirect.com/science/article/pii/S1359644621002531
https://www.sciencedirect.com/science/article/pii/S1359644621002531
https://www.sciencedirect.com/science/article/pii/S2666379122003494
https://www.sciencedirect.com/science/article/pii/S2666379122003494
https://doi.org/10.1038/s41467-023-41948-6
https://doi.org/10.1038/s41467-023-41948-6
https://www.sciencedirect.com/science/article/pii/S135964462200366X
https://www.sciencedirect.com/science/article/pii/S135964462200366X

[33] Lenselink EB, ten Dijke N, Bongers B, Papadatos G, van Vlijmen HWT,

Kowalczyk W, et al. Beyond the hype: deep neural networks outperform

established methods using a ChEMBL bioactivity benchmark set. Journal of

Cheminformatics. 2017 Aug;9(1):45. Available from: https://doi.org/10.

1186/s13321-017-0232-0.

[34] Smith JS, Isayev O, Roitberg AE. ANI-1: an extensible neural network

potential with DFT accuracy at force field computational cost. Chem Sci.

2017 Feb;8(4):3192-203.

[35] Martire S, Decherchi S, Cavalli A. OBIWAN: An Element-Wise Scalable

Feed-Forward Neural Network Potential. J Chem Theory Comput. 2024

Jul;20(14):6287-302.

[36] Behler J, Parrinello M. Generalized Neural-Network Representation of High-

Dimensional Potential-Energy Surfaces. Phys Rev Lett. 2007 Apr;98:146401.

Available from: https://link.aps.org/doi/10.1103/PhysRevLett.98.

146401.

[37] Unke OT, Chmiela S, Sauceda HE, Gastegger M, Poltavsky I, Schütt

KT, et al. Machine Learning Force Fields. Chemical Reviews. 2021

Aug;121(16):10142-86. Available from: https://doi.org/10.1021/acs.

chemrev.0c01111.

[38] Noé F, Tkatchenko A, Müller KR, Clementi C. Machine Learn-

ing for Molecular Simulation [Journal Article]. Annual Review

of Physical Chemistry. 2020;71(Volume 71, 2020):361-90. Avail-

able from: https://www.annualreviews.org/content/journals/10.

1146/annurev-physchem-042018-052331.

[39] Duvenaud D, Maclaurin D, Aguilera-Iparraguirre J, Gómez-Bombarelli R,

Hirzel T, Aspuru-Guzik A, et al. Convolutional networks on graphs for

learning molecular fingerprints. In: Proceedings of the 28th International

Conference on Neural Information Processing Systems - Volume 2. NIPS’15.

Cambridge, MA, USA: MIT Press; 2015. p. 2224–2232.

123

https://doi.org/10.1186/s13321-017-0232-0
https://doi.org/10.1186/s13321-017-0232-0
https://link.aps.org/doi/10.1103/PhysRevLett.98.146401
https://link.aps.org/doi/10.1103/PhysRevLett.98.146401
https://doi.org/10.1021/acs.chemrev.0c01111
https://doi.org/10.1021/acs.chemrev.0c01111
https://www.annualreviews.org/content/journals/10.1146/annurev-physchem-042018-052331
https://www.annualreviews.org/content/journals/10.1146/annurev-physchem-042018-052331

[40] Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE. Neural message

passing for Quantum chemistry. In: Proceedings of the 34th International

Conference on Machine Learning - Volume 70. ICML’17. JMLR.org; 2017. p.

1263–1272.

[41] Ying R, Bourgeois D, You J, Zitnik M, Leskovec J. GNNExplainer: Generat-

ing Explanations for Graph Neural Networks. Adv Neural Inf Process Syst.

2019 Dec;32:9240-51.

[42] Hu W, Liu B, Gomes J, Zitnik M, Liang P, Pande V, et al. Strategies for

Pre-training Graph Neural Networks. International Conference on Learning

Representations. 2020. Available from: https://openreview.net/forum?

id=HJlWWJSFDH.

[43] Batatia I, Benner P, Chiang Y, Elena AM, Kovács DP, Riebesell J, et al..

A foundation model for atomistic materials chemistry; 2024. Available from:

https://arxiv.org/abs/2401.00096.

[44] Wieder O, Kohlbacher S, Kuenemann M, Garon A, Ducrot P, Seidel T,

et al. A compact review of molecular property prediction with graph

neural networks. Drug Discovery Today: Technologies. 2020;37:1-12.

Available from: https://www.sciencedirect.com/science/article/pii/

S1740674920300305.

[45] Lim J, Ryu S, Park K, Choe YJ, Ham J, Kim WY. Predicting Drug–

Target Interaction Using a Novel Graph Neural Network with 3D Structure-

Embedded Graph Representation. Journal of Chemical Information and

Modeling. 2019 Sep;59(9):3981-8. Available from: https://doi.org/10.

1021/acs.jcim.9b00387.

[46] Coley C, Jin W, Rogers L, Jamison TF, Jaakkola TS, Green WH, et al.

A graph-convolutional neural network model for the prediction of chemical

reactivity. Chem Sci. 2019;10:370-7. Available from: http://dx.doi.org/

10.1039/C8SC04228D.

[47] Xiong J, Xiong Z, Chen K, Jiang H, Zheng M. Graph neural networks for

124

https://openreview.net/forum?id=HJlWWJSFDH
https://openreview.net/forum?id=HJlWWJSFDH
https://arxiv.org/abs/2401.00096
https://www.sciencedirect.com/science/article/pii/S1740674920300305
https://www.sciencedirect.com/science/article/pii/S1740674920300305
https://doi.org/10.1021/acs.jcim.9b00387
https://doi.org/10.1021/acs.jcim.9b00387
http://dx.doi.org/10.1039/C8SC04228D
http://dx.doi.org/10.1039/C8SC04228D

automated de novo drug design. Drug Discovery Today. 2021;26(6):1382-93.

Available from: https://www.sciencedirect.com/science/article/pii/

S1359644621000787.

[48] Yu Y, Xu T, Li J, Qiu Y, Rong Y, Gong Z, et al. A Novel Scalarized

Scaffold Hopping Algorithm with Graph-Based Variational Autoencoder for

Discovery of JAK1 Inhibitors. ACS Omega. 2021 9;6(35):22945-54. Available

from: https://doi.org/10.1021/acsomega.1c03613.

[49] Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, Zhavoronkov A. Deep

Learning Applications for Predicting Pharmacological Properties of Drugs

and Drug Repurposing Using Transcriptomic Data. Molecular Pharmaceu-

tics. 2016 Jul;13(7):2524-30. Available from: https://doi.org/10.1021/

acs.molpharmaceut.6b00248.

[50] Menestrina L. Network analysis and machine learning assist drug repurposing

and safety assessment in neurological diseases [PhD Thesis]. Bologna, Italy:

Alma Mater Studiorum - Università di Bologna; 2024. Keywords: Drug

Research, Graph Theory, Knowledge Graph, Knowledge Graph Embedding

Model, Machine Learning, Neurological Diseases. Available from: http:

//amsdottorato.unibo.it/11318/.

[51] Gori M, Monfardini G, Scarselli F. A new model for learning in graph do-

mains. In: Proceedings. 2005 IEEE International Joint Conference on Neural

Networks, 2005.. vol. 2; 2005. p. 729-34 vol. 2.

[52] Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. The

Graph Neural Network Model. IEEE Transactions on Neural Networks.

2009;20(1):61-80.

[53] Spielman DA. Spectral Graph Theory and its Applications. In: 48th Annual

IEEE Symposium on Foundations of Computer Science (FOCS’07); 2007. p.

29-38.

[54] Zhang Z, Cui P, Zhu W. Deep Learning on Graphs: A Survey. IEEE Trans-

actions on Knowledge and Data Engineering. 2020;14(8):1-1.

125

https://www.sciencedirect.com/science/article/pii/S1359644621000787
https://www.sciencedirect.com/science/article/pii/S1359644621000787
https://doi.org/10.1021/acsomega.1c03613
https://doi.org/10.1021/acs.molpharmaceut.6b00248
https://doi.org/10.1021/acs.molpharmaceut.6b00248
http://amsdottorato.unibo.it/11318/
http://amsdottorato.unibo.it/11318/

[55] Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS. A Comprehensive Survey

on Graph Neural Networks. IEEE Transactions on Neural Networks and

Learning Systems. 2021;32(1):4-24.

[56] Frasconi P, Gori M, Sperduti A. A general framework for adaptive processing

of data structures. IEEE Transactions on Neural Networks. 1998;9(5):768-86.

[57] Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, et al. Graph neural net-

works: A review of methods and applications. AI Open. 2020;1:57-81.

Available from: https://www.sciencedirect.com/science/article/pii/

S2666651021000012.

[58] Chakrabarti D, Faloutsos C. Graph mining: Laws, generators, and algo-

rithms. ACM Comput Surv. 2006 Jun;38(1):2–es. Available from: https:

//doi.org/10.1145/1132952.1132954.

[59] Erdös P, Rényi A. On Random Graphs I. Publicationes Mathematicae De-

brecen. 1959;6:290.

[60] Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Na-

ture. 1998 6;393(6684):440-2. Available from: https://doi.org/10.1038/

30918.

[61] Albert R, Barabási AL. Statistical mechanics of complex networks. Reviews

of Modern Physics. 2002;74(1):47-97.

[62] Weininger D. SMILES, a chemical language and information system. 1.

Introduction to methodology and encoding rules. Journal of Chemical In-

formation and Computer Sciences. 1988 Feb;28(1):31-6. Available from:

https://doi.org/10.1021/ci00057a005.

[63] Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Com-

put. 1997 Nov;9(8):1735–1780. Available from: https://doi.org/10.1162/

neco.1997.9.8.1735.

[64] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al.

Attention is All you Need. In: Guyon I, Luxburg UV, Bengio S, Wallach

H, Fergus R, Vishwanathan S, et al., editors. Advances in Neural Infor-

126

https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://doi.org/10.1145/1132952.1132954
https://doi.org/10.1145/1132952.1132954
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

mation Processing Systems. vol. 30. Curran Associates, Inc.; 2017. Avail-

able from: https://proceedings.neurips.cc/paper_files/paper/2017/

file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[65] Gupta A, Müller AT, Huisman BJH, Fuchs JA, Schneider P, Schneider G.

Generative Recurrent Networks for De Novo Drug Design. Molecular In-

formatics. 2018;37(1-2):1700111. Available from: https://onlinelibrary.

wiley.com/doi/abs/10.1002/minf.201700111.

[66] Yang L, Yang G, Bing Z, Tian Y, Niu Y, Huang L, et al. Transformer-Based

Generative Model Accelerating the Development of Novel BRAF Inhibitors.

ACS Omega. 2021;6(49):33864-73. Available from: https://doi.org/10.

1021/acsomega.1c05145.

[67] Yu L, Zhang W, Wang J, Yu Y. SeqGAN: Sequence Generative Adversarial

Nets with Policy Gradient. In: Proceedings of the Thirty-First AAAI Con-

ference on Artificial Intelligence. AAAI’17. AAAI Press; 2017. p. 2852–2858.

[68] Ertl P, Lewis R, Martin E, Polyakov V. In silico generation of novel,

drug-like chemical matter using the LSTM neural network. arXiv preprint

arXiv:171207449. 2017.

[69] Blaschke T, Olivecrona M, Engkvist O, Bajorath J, Chen H. Application of

Generative Autoencoder in De Novo Molecular Design. Molecular Informat-

ics. 2018;37(1-2):1700123. Available from: https://onlinelibrary.wiley.

com/doi/abs/10.1002/minf.201700123.

[70] Olivecrona M, Blaschke T, Engkvist O, Chen H. Molecular de-novo

design through deep reinforcement learning. Journal of Cheminfor-

matics. 2017 9;9(1):48. Available from: https://doi.org/10.1186/

s13321-017-0235-x.

[71] Segler MHS, Kogej T, Tyrchan C, Waller MP. Generating Focused Molecule

Libraries for Drug Discovery with Recurrent Neural Networks. ACS Central

Science. 2018 1;4(1):120-31. Available from: https://doi.org/10.1021/

acscentsci.7b00512.

127

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/minf.201700111
https://onlinelibrary.wiley.com/doi/abs/10.1002/minf.201700111
https://doi.org/10.1021/acsomega.1c05145
https://doi.org/10.1021/acsomega.1c05145
https://onlinelibrary.wiley.com/doi/abs/10.1002/minf.201700123
https://onlinelibrary.wiley.com/doi/abs/10.1002/minf.201700123
https://doi.org/10.1186/s13321-017-0235-x
https://doi.org/10.1186/s13321-017-0235-x
https://doi.org/10.1021/acscentsci.7b00512
https://doi.org/10.1021/acscentsci.7b00512

[72] Dai H, Tian Y, Dai B, Skiena S, Song L. Syntax-Directed Variational Au-

toencoder for Structured Data. CoRR. 2018;abs/1802.08786. Available from:

http://arxiv.org/abs/1802.08786.

[73] Alperstein Z, Cherkasov A, Rolfe JT. All smiles variational autoencoder.

arXiv preprint arXiv:190513343. 2019.

[74] Arús-Pous J, Johansson SV, Prykhodko O, Bjerrum EJ, Tyrchan C, Rey-

mond JL, et al. Randomized SMILES strings improve the quality of molecular

generative models. Journal of Cheminformatics. 2019 11;11(1):71. Available

from: https://doi.org/10.1186/s13321-019-0393-0.

[75] Bjerrum EJ, Sattarov B. Improving chemical autoencoder latent space and

molecular de novo generation diversity with heteroencoders. Biomolecules.

2018;8(4):131.

[76] Krenn M, Häse F, Nigam A, Friederich P, Aspuru-Guzik A. Self-referencing

embedded strings (SELFIES): A 100% robust molecular string representa-

tion. Machine Learning: Science and Technology. 2020;1(4):045024.

[77] Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, et al.

Language Models are Few-Shot Learners. In: Larochelle H, Ranzato M,

Hadsell R, Balcan MF, Lin H, editors. Advances in Neural Information Pro-

cessing Systems. vol. 33. Curran Associates, Inc.; 2020. p. 1877-901. Avail-

able from: https://proceedings.neurips.cc/paper_files/paper/2020/

file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

[78] Cavanagh JM, Sun K, Gritsevskiy A, Bagni D, Bannister TD, Head-Gordon

T. SmileyLlama: Modifying Large Language Models for Directed Chemical

Space Exploration; 2024. Available from: https://arxiv.org/abs/2409.

02231.

[79] Ahmad W, Simon E, Chithrananda S, Grand G, Ramsundar B. ChemBERTa-

2: Towards Chemical Foundation Models; 2022. Available from: https:

//arxiv.org/abs/2209.01712.

128

http://arxiv.org/abs/1802.08786
https://doi.org/10.1186/s13321-019-0393-0
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2409.02231
https://arxiv.org/abs/2409.02231
https://arxiv.org/abs/2209.01712
https://arxiv.org/abs/2209.01712

[80] Satorras VG, Hoogeboom E, Welling M. E(n) Equivariant Graph Neu-

ral Networks. In: Meila M, Zhang T, editors. Proceedings of the 38th

International Conference on Machine Learning. vol. 139 of Proceedings of

Machine Learning Research. PMLR; 2021. p. 9323-32. Available from:

https://proceedings.mlr.press/v139/satorras21a.html.

[81] Polishchuk PG, Madzhidov TI, Varnek A. Estimation of the size of drug-like

chemical space based on GDB-17 data. Journal of Computer-Aided Molecular

Design. 2013;27(8):675-9.

[82] Li Y, Tarlow D, Brockschmidt M, Zemel R. Gated Graph Sequence Neural

Networks. In: Proceedings of the 4th International Conference on Learning

Representations. ICLR ’16; 2016. Available from: http://arxiv.org/abs/

1511.05493.

[83] Kipf TN, Welling M. Semi-Supervised Classification with Graph Convo-

lutional Networks. In: Proceedings of the 5th International Conference

on Learning Representations. ICLR ’17; 2017. Available from: https:

//openreview.net/forum?id=SJU4ayYgl.

[84] Veličković P, Casanova A, Liò P, Cucurull G, Romero A, Bengio Y. Graph

attention networks. In: 6th International Conference on Learning Represen-

tations, ICLR 2018 - Conference Track Proceedings; 2018. Available from:

https://openreview.net/forum?id=rJXMpikCZ.

[85] Schlichtkrull M, Kipf TN, Bloem P, Berg Rvd, Titov I, Welling M. Modeling

relational data with graph convolutional networks. In: European Semantic

Web Conference. Springer; 2018. p. 593-607. Available from: https://doi.

org/10.1007/978-3-319-93417-4_38.

[86] Simonovsky M, Komodakis N. Dynamic edge-conditioned filters in convolu-

tional neural networks on graphs. In: Proceedings of the IEEE conference on

computer vision and pattern recognition; 2017. p. 3693-702. Available from:

https://doi.org/10.48550/arXiv.1704.02901.

129

https://proceedings.mlr.press/v139/satorras21a.html
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1511.05493
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.48550/arXiv.1704.02901

[87] Danel T, Spurek P, Tabor J, Smieja M, Struski L, Slowik A, et al. Spa-

tial Graph Convolutional Networks. In: 5th International Conference on

Neural Information Processing. vol. 1333 of Communications in Computer

and Information Science. Springer; 2020. p. 668-75. Available from: https:

//doi.org/10.1007/978-3-030-63823-8_76.

[88] Kearnes S, McCloskey K, Berndl M, Pande V, Riley P. Molecular graph con-

volutions: moving beyond fingerprints. Journal of Computer-Aided Molecular

Design. 2016;30(8):595-608. Available from: http://dx.doi.org/10.1007/

s10822-016-9938-8.

[89] Khasahmadi AH, Hassani K, Moradi P, Lee L, Morris Q. Memory-Based

Graph Networks. In: International Conference on Learning Representations;

2020. .

[90] Gao H, Ji S. Graph u-nets. In: international conference on machine learning.

PMLR; 2019. p. 2083-92.

[91] Ma Z, Xuan J, Wang YG, Li M, Liò P. Path integral based convolution

and pooling for graph neural networks. Advances in Neural Information

Processing Systems. 2020;33:16421-33.

[92] Liu N, Jian S, Li D, Zhang Y, Lai Z, Xu H. Hierarchical adaptive pooling

by capturing high-order dependency for graph representation learning. IEEE

Transactions on Knowledge and Data Engineering. 2021;35(4):3952-65.

[93] Cini A, Mandic D, Alippi C. Graph-based Time Series Clustering for End-to-

End Hierarchical Forecasting. International Conference on Machine Learning.

2024.

[94] Marisca I, Alippi C, Bianchi FM. Graph-based Forecasting with Missing

Data through Spatiotemporal Downsampling. In: Proceedings of the 41st

International Conference on Machine Learning. vol. 235 of Proceedings of

Machine Learning Research. PMLR; 2024. p. 34846-65.

[95] Grattarola D, Zambon D, Bianchi FM, Alippi C. Understanding pooling in

graph neural networks. IEEE Transactions on Neural Networks and Learning

130

https://doi.org/10.1007/978-3-030-63823-8_76
https://doi.org/10.1007/978-3-030-63823-8_76
http://dx.doi.org/10.1007/s10822-016-9938-8
http://dx.doi.org/10.1007/s10822-016-9938-8

Systems. 2022.

[96] Ying Z, You J, Morris C, Ren X, Hamilton W, Leskovec J. Hierarchical

graph representation learning with differentiable pooling. Advances in neural

information processing systems. 2018;31.

[97] Bianchi FM, Grattarola D, Alippi C. Spectral clustering with graph neural

networks for graph pooling. In: International conference on machine learning.

PMLR; 2020. p. 874-83.

[98] Yuan H, Ji S. Structpool: Structured graph pooling via conditional ran-

dom fields. In: Proceedings of the 8th International Conference on Learning

Representations; 2020. .

[99] Duval A, Malliaros F. Higher-order clustering and pooling for graph neu-

ral networks. In: Proceedings of the 31st ACM international conference on

information & knowledge management; 2022. p. 426-35.

[100] Tsitsulin A, Palowitch J, Perozzi B, Müller E. Graph Clustering with Graph

Neural Networks. J Mach Learn Res. 2023;24:127:1-127:21.

[101] Bianchi FM, Lachi V. The expressive power of pooling in Graph Neural

Networks. In: Advances in Neural Information Processing Systems. vol. 36;

2023. p. 71603-18.

[102] Knyazev B, Taylor GW, Amer M. Understanding attention and generaliza-

tion in graph neural networks. Advances in neural information processing

systems. 2019;32.

[103] Ranjan E, Sanyal S, Talukdar P. Asap: Adaptive structure aware pooling

for learning hierarchical graph representations. In: Proceedings of the AAAI

Conference on Artificial Intelligence. vol. 34; 2020. p. 5470-7.

[104] Lee J, Lee I, Kang J. Self-attention graph pooling. In: International confer-

ence on machine learning. PMLR; 2019. p. 3734-43.

[105] Gao H, Liu Y, Ji S. Topology-Aware Graph Pooling Networks. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence. 2021 dec;43(12):4512-8.

131

[106] Pang Y, Zhao Y, Li D. Graph pooling via coarsened graph infomax. In:

Proceedings of the 44th International ACM SIGIR Conference on Research

and Development in Information Retrieval; 2021. p. 2177-81.

[107] Gao X, Dai W, Li C, Xiong H, Frossard P. iPool—Information-Based Pool-

ing in Hierarchical Graph Neural Networks. IEEE Transactions on Neural

Networks and Learning Systems. 2022;33(9):5032-44.

[108] Wang P, Luo J, Shen Y, Heng S, Luo X. A Comprehensive Graph Pooling

Benchmark: Effectiveness, Robustness and Generalizability. arXiv preprint

arXiv:240609031. 2024.

[109] Zhang Z, Bu J, Ester M, Zhang J, Yao C, Yu Z, et al. Hierarchical graph

pooling with structure learning. arXiv preprint arXiv:191105954. 2019.

[110] Noutahi E, Beaini D, Horwood J, Giguère S, Tossou P. Towards interpretable

sparse graph representation learning with laplacian pooling. arXiv preprint

arXiv:190511577. 2019.

[111] Bacciu D, Conte A, Landolfi F. Graph Pooling with Maximum-Weight k-

Independent Sets. In: Thirty-Seventh AAAI Conference on Artificial Intelli-

gence; 2023. .

[112] Dhillon IS, Guan Y, Kulis B. Weighted graph cuts without eigenvectors a

multilevel approach. IEEE transactions on pattern analysis and machine

intelligence. 2007;29(11):1944-57.

[113] Defferrard M, Bresson X, Vandergheynst P. Convolutional neural networks on

graphs with fast localized spectral filtering. Advances in neural information

processing systems. 2016;29.

[114] Wu J, Chen X, Xu K, Li S. Structural entropy guided graph hierarchical

pooling. In: International conference on machine learning. PMLR; 2022. p.

24017-30.

[115] Bianchi FM, Grattarola D, Livi L, Alippi C. Hierarchical representation

learning in graph neural networks with node decimation pooling. IEEE Trans-

actions on Neural Networks and Learning Systems. 2020;33(5):2195-207.

132

[116] Mavrovouniotis ML, Chang S. Hierarchical neural networks. Computers

& Chemical Engineering. 1992;16(4):347-69. Available from: https://doi.

org/10.1016/0098-1354(92)80053-C.

[117] Kingma DP, Welling M. Auto-Encoding Variational Bayes. In: 2nd In-

ternational Conference on Learning Representations; 2014. Available from:

http://arxiv.org/abs/1312.6114v10.

[118] Doersch C. Tutorial on Variational Autoencoders; 2016.

[119] Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM, Sánchez-

Lengeling B, Sheberla D, et al. Automatic Chemical Design Using a Data-

Driven Continuous Representation of Molecules. ACS Central Science. 2018

Feb;4(2):268-76. Available from: https://doi.org/10.1021/acscentsci.

7b00572.

[120] Lucas J, Tucker G, Grosse R, Norouzi M. Understanding Posterior Collapse in

Generative Latent Variable Models. DeepGenStruct workshop, ICLR. 2019.

Available from: https://openreview.net/forum?id=r1xaVLUYuE.

[121] Asperti A, Trentin M. Balancing Reconstruction Error and Kullback-Leibler

Divergence in Variational Autoencoders. IEEE Access. 2020;8:199440-8.

[122] Higgins I, Matthey L, Pal A, Burgess C, Glorot X, Botvinick M, et al. beta-

VAE: Learning Basic Visual Concepts with a Constrained Variational Frame-

work. In: International Conference on Learning Representations; 2017. Avail-

able from: https://openreview.net/forum?id=Sy2fzU9gl.

[123] Kim Y, Wiseman S, Miller A, Sontag D, Rush A. Semi-Amortized Vari-

ational Autoencoders. In: Dy J, Krause A, editors. Proceedings of the

35th International Conference on Machine Learning. vol. 80 of Proceedings

of Machine Learning Research. PMLR; 2018. p. 2678-87. Available from:

https://proceedings.mlr.press/v80/kim18e.html.

[124] Zhao S, Song J, Ermon S. InfoVAE: balancing learning and inference in vari-

ational autoencoders. In: Proceedings of the Thirty-Third AAAI Conference

on Artificial Intelligence and Thirty-First Innovative Applications of Arti-

133

https://doi.org/10.1016/0098-1354(92)80053-C
https://doi.org/10.1016/0098-1354(92)80053-C
http://arxiv.org/abs/1312.6114v10
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1021/acscentsci.7b00572
https://openreview.net/forum?id=r1xaVLUYuE
https://openreview.net/forum?id=Sy2fzU9gl
https://proceedings.mlr.press/v80/kim18e.html

ficial Intelligence Conference and Ninth AAAI Symposium on Educational

Advances in Artificial Intelligence. AAAI’19/IAAI’19/EAAI’19. AAAI Press;

2019. Available from: https://doi.org/10.1609/aaai.v33i01.33015885.

[125] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S,

et al. Generative adversarial nets. Advances in neural information process-

ing systems. 2014;27. Available from: https://doi.org/10.48550/arXiv.

1406.2661.

[126] Wiatrak M, Albrecht S. Stabilizing Generative Adversarial Network Training:

A Survey; 2019.

[127] Kossale Y, Airaj M, Darouichi A. Mode Collapse in Generative Adversarial

Networks: An Overview. In: 2022 8th International Conference on Optimiza-

tion and Applications (ICOA); 2022. p. 1-6.

[128] Zhu JY, Park T, Isola P, Efros AA. Unpaired Image-to-Image Translation

Using Cycle-Consistent Adversarial Networks. In: 2017 IEEE International

Conference on Computer Vision; 2017. p. 2242-51. Available from: https:

//doi.org/10.1109/ICCV.2017.244.

[129] Kobyzev I, Prince SJD, Brubaker MA. Normalizing Flows: An Introduction

and Review of Current Methods. IEEE Transactions on Pattern Analysis

and Machine Intelligence. 2021;43(11):3964-79. Available from: https://

doi.org/10.1109/TPAMI.2020.2992934.

[130] Madhawa K, Ishiguro K, Nakago K, Abe M. GraphNVP: An Invertible Flow

Model for Generating Molecular Graphs. arXiv; 2019. Available from: https:

//arxiv.org/abs/1905.11600.

[131] Ho J, Chen X, Srinivas A, Duan Y, Abbeel P. Flow++: Improving Flow-

Based Generative Models with Variational Dequantization and Architecture

Design. In: Chaudhuri K, Salakhutdinov R, editors. Proceedings of the

36th International Conference on Machine Learning. vol. 97 of Proceedings

of Machine Learning Research. PMLR; 2019. p. 2722-30. Available from:

https://proceedings.mlr.press/v97/ho19a.html.

134

https://doi.org/10.1609/aaai.v33i01.33015885
https://doi.org/10.48550/arXiv.1406.2661
https://doi.org/10.48550/arXiv.1406.2661
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1109/TPAMI.2020.2992934
https://doi.org/10.1109/TPAMI.2020.2992934
https://arxiv.org/abs/1905.11600
https://arxiv.org/abs/1905.11600
https://proceedings.mlr.press/v97/ho19a.html

[132] Song Y, Ermon S. Generative Modeling by Estimating Gradients of the

Data Distribution. In: Proceedings of the 33rd International Conference

on Neural Information Processing Systems. Red Hook, NY, USA: Curran

Associates Inc.; 2019. Available from: https://dl.acm.org/doi/abs/10.

5555/3454287.3455354.

[133] Karatzas I, Shreve S. Brownian Motion and Stochastic Calculus. Graduate

Texts in Mathematics (113) (Book 113). Springer New York; 1991. Available

from: https://books.google.it/books?id=ATNy_Zg3PSsC.

[134] Welling M, Teh YW. Bayesian Learning via Stochastic Gradient Langevin

Dynamics. In: Proceedings of the 28th International Conference on Interna-

tional Conference on Machine Learning. ICML’11. Madison, WI, USA; 2011.

p. 681–688. Available from: https://dl.acm.org/doi/10.5555/3104482.

3104568.

[135] Leimkuhler B, Matthews C. Molecular Dynamics: With Deterministic

and Stochastic Numerical Methods. Interdisciplinary Applied Mathematics.

Springer International Publishing; 2015. Available from: https://books.

google.it/books?id=-5oxrgEACAAJ.

[136] Dhariwal P, Nichol A. Diffusion models beat GANs on image synthesis.

In: Proceedings of the 35th International Conference on Neural Information

Processing Systems. NIPS ’21. Red Hook, NY, USA: Curran Associates Inc.;

2021. .

[137] Ho J, Jain A, Abbeel P. Denoising Diffusion Probabilistic Models. In: Pro-

ceedings of the 34th International Conference on Neural Information Pro-

cessing Systems. NIPS’20. Red Hook, NY, USA: Curran Associates Inc.;

2020. Available from: https://dl.acm.org/doi/abs/10.5555/3495724.

3496298.

[138] Alakhdar A, Poczos B, Washburn N. Diffusion Models in De Novo Drug

Design. Journal of Chemical Information and Modeling. 2024 Sep. Available

from: https://doi.org/10.1021/acs.jcim.4c01107.

135

https://dl.acm.org/doi/abs/10.5555/3454287.3455354
https://dl.acm.org/doi/abs/10.5555/3454287.3455354
https://books.google.it/books?id=ATNy_Zg3PSsC
https://dl.acm.org/doi/10.5555/3104482.3104568
https://dl.acm.org/doi/10.5555/3104482.3104568
https://books.google.it/books?id=-5oxrgEACAAJ
https://books.google.it/books?id=-5oxrgEACAAJ
https://dl.acm.org/doi/abs/10.5555/3495724.3496298
https://dl.acm.org/doi/abs/10.5555/3495724.3496298
https://doi.org/10.1021/acs.jcim.4c01107

[139] Xu M, Yu L, Song Y, Shi C, Ermon S, Tang J. GeoDiff: A Geometric

Diffusion Model for Molecular Conformation Generation. In: International

Conference on Learning Representations; 2022. Available from: https://

openreview.net/forum?id=PzcvxEMzvQC.

[140] Igashov I, Stärk H, Vignac C, Schneuing A, Satorras VG, Frossard P,

et al. Equivariant 3D-conditional diffusion model for molecular linker de-

sign. Nature Machine Intelligence. 2024 Apr;6(4):417-27. Available from:

https://doi.org/10.1038/s42256-024-00815-9.

[141] Sutton RS, Barto AG. Reinforcement learning: An introduction. MIT press;

2018.

[142] Wang Q, Wei Z, Hu X, Wang Z, Dong Y, Liu H. Molecular generation

strategy and optimization based on A2C reinforcement learning in de novo

drug design. Bioinformatics. 2023 11;39(11):btad693. Available from: https:

//doi.org/10.1093/bioinformatics/btad693.

[143] Devidze R, Radanovic G, Kamalaruban P, Singla A. Explicable Reward De-

sign for Reinforcement Learning Agents. In: Ranzato M, Beygelzimer A,

Dauphin Y, Liang PS, Vaughan JW, editors. Advances in Neural Informa-

tion Processing Systems. vol. 34. Curran Associates, Inc.; 2021. p. 20118-31.

Available from: https://proceedings.neurips.cc/paper_files/paper/

2021/file/a7f0d2b95c60161b3f3c82f764b1d1c9-Paper.pdf.

[144] Müller N, Glasmachers T. Challenges in High-Dimensional Reinforcement

Learning with Evolution Strategies. In: Auger A, Fonseca CM, Lourenço N,

Machado P, Paquete L, Whitley D, editors. Parallel Problem Solving from

Nature – PPSN XV. Cham: Springer International Publishing; 2018. p. 411-

23.

[145] Schulman J, Moritz P, Levine S, Jordan M, Abbeel P. High-Dimensional

Continuous Control Using Generalized Advantage Estimation. In: Proceed-

ings of the International Conference on Learning Representations (ICLR);

2016. .

136

https://openreview.net/forum?id=PzcvxEMzvQC
https://openreview.net/forum?id=PzcvxEMzvQC
https://doi.org/10.1038/s42256-024-00815-9
https://doi.org/10.1093/bioinformatics/btad693
https://doi.org/10.1093/bioinformatics/btad693
https://proceedings.neurips.cc/paper_files/paper/2021/file/a7f0d2b95c60161b3f3c82f764b1d1c9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/a7f0d2b95c60161b3f3c82f764b1d1c9-Paper.pdf

[146] Fu T, Xiao C, Sun J. CORE: Automatic Molecule Optimization Using Copy

& Refine Strategy. Proceedings of the AAAI Conference on Artificial Intel-

ligence. 2020 Apr;34(01):638-45. Available from: https://ojs.aaai.org/

index.php/AAAI/article/view/5404.

[147] Jin W, Yang K, Barzilay R, Jaakkola T. Learning Multimodal Graph-

to-Graph Translation for Molecule Optimization. In: 7th International

Conference on Learning Representations; 2019. Available from: https:

//openreview.net/forum?id=B1xJAsA5F7.

[148] Tan C, Gao Z, Li SZ. Target-aware Molecular Graph Generation. arXiv; 2022.

Available from: https://arxiv.org/abs/2202.04829.

[149] Maziarka L, Pocha A, Kaczmarczyk J, Rataj K, Danel T, Warcho l M. Mol-

CycleGAN: A generative model for molecular optimization. Journal of Chem-

informatics. 2020;12(1):1-18. Available from: https://doi.org/10.1186/

s13321-019-0404-1.

[150] Fu T, Xiao C, Glass LM, Sun J. MOLER: Incorporate Molecule-Level Re-

ward to Enhance Deep Generative Model for Molecule Optimization. IEEE

Transactions on Knowledge and Data Engineering. 2022;34(11):5459-71.

[151] Liu Q, Allamanis M, Brockschmidt M, Gaunt AL. Constrained Graph Vari-

ational Autoencoders for Molecule Design. In: Proceedings of the 32nd In-

ternational Conference on Neural Information Processing Systems. NIPS’18.

Red Hook, NY, USA: Curran Associates Inc.; 2018. p. 7806–7815. Available

from: https://dl.acm.org/doi/10.5555/3327757.3327877.

[152] Jin W, Barzilay R, Jaakkola T. Junction tree variational autoencoder for

molecular graph generation. In: International conference on machine learn-

ing. PMLR; 2018. p. 2323-32.

[153] Simonovsky M, Komodakis N. GraphVAE: Towards generation of small

graphs using variational autoencoders. Lecture Notes in Computer Sci-

ence (including subseries Lecture Notes in Artificial Intelligence and Lec-

137

https://ojs.aaai.org/index.php/AAAI/article/view/5404
https://ojs.aaai.org/index.php/AAAI/article/view/5404
https://openreview.net/forum?id=B1xJAsA5F7
https://openreview.net/forum?id=B1xJAsA5F7
https://arxiv.org/abs/2202.04829
https://doi.org/10.1186/s13321-019-0404-1
https://doi.org/10.1186/s13321-019-0404-1
https://dl.acm.org/doi/10.5555/3327757.3327877

ture Notes in Bioinformatics). 2018;11139 LNCS:412-22. Available from:

https://doi.org/10.1007/978-3-030-01418-6_41.

[154] De Cao N, Kipf T. MolGAN: An implicit generative model for small molecular

graphs. ICML 2018 workshop on Theoretical Foundations and Applications

of Deep Generative Models. 2018. Available from: https://arxiv.org/abs/

1805.11973.

[155] Li Y, Zhang L, Liu Z. Multi-objective de novo drug design with conditional

graph generative model. Journal of Cheminformatics. 2018;10(1):1-24. Avail-

able from: https://doi.org/10.1186/s13321-018-0287-6.

[156] You J, Liu B, Ying R, Pande V, Leskovec J. Graph Convolutional Policy Net-

work for Goal-Directed Molecular Graph Generation. In: Proceedings of the

32nd International Conference on Neural Information Processing Systems.

NIPS’18. Red Hook, NY, USA: Curran Associates Inc.; 2018. p. 6412–6422.

Available from: https://dl.acm.org/doi/10.5555/3327345.3327537.

[157] Popova M, Shvets M, Oliva J, Isayev O. MolecularRNN: Generating realistic

molecular graphs with optimized properties; 2019. Available from: https:

//arxiv.org/abs/1905.13372.

[158] Shi C, Xu M, Zhu Z, Zhang W, Zhang M, Tang J. GraphAF: a Flow-based

Autoregressive Model for Molecular Graph Generation. In: 8th International

Conference on Learning Representations; 2020. Available from: https://

openreview.net/forum?id=S1esMkHYPr.

[159] Luo Y, Yan K, Ji S. GraphDF: A Discrete Flow Model for Molecular

Graph Generation. In: Meila M, Zhang T, editors. Proceedings of the

38th International Conference on Machine Learning. vol. 139 of Proceedings

of Machine Learning Research. PMLR; 2021. p. 7192-203. Available from:

https://proceedings.mlr.press/v139/luo21a.html.

[160] Jin W, Barzilay R, Jaakkola T. Hierarchical Generation of Molecular Graphs

Using Structural Motifs. In: Proceedings of the 37th International Conference

138

https://doi.org/10.1007/978-3-030-01418-6_41
https://arxiv.org/abs/1805.11973
https://arxiv.org/abs/1805.11973
https://doi.org/10.1186/s13321-018-0287-6
https://dl.acm.org/doi/10.5555/3327345.3327537
https://arxiv.org/abs/1905.13372
https://arxiv.org/abs/1905.13372
https://openreview.net/forum?id=S1esMkHYPr
https://openreview.net/forum?id=S1esMkHYPr
https://proceedings.mlr.press/v139/luo21a.html

on Machine Learning. ICML’20. JMLR.org; 2020. Available from: https:

//dl.acm.org/doi/abs/10.5555/3524938.3525387.

[161] Atance SR, Diez JV, Engkvist O, Olsson S, Mercado R. De Novo Drug

Design Using Reinforcement Learning with Graph-Based Deep Generative

Models. Journal of Chemical Information and Modeling. 2022 10;62(20):4863-

72. Available from: https://doi.org/10.1021/acs.jcim.2c00838.

[162] Lim J, Hwang SY, Moon S, Kim S, Kim WY. Scaffold-based molecular design

with a graph generative model. Chemical Science. 2020;11:1153-64. Available

from: http://dx.doi.org/10.1039/C9SC04503A.

[163] Khemchandani Y, O’Hagan S, Samanta S, Swainston N, Roberts TJ, Bolle-

gala D, et al. DeepGraphMolGen, a multi-objective, computational strategy

for generating molecules with desirable properties: A graph convolution and

reinforcement learning approach. Journal of Cheminformatics. 2020;12(1):1-

17. Available from: https://doi.org/10.1186/s13321-020-00454-3.

[164] Samanta B, De A, Jana G, Gomez V, Chattaraj PK, Ganguly N, et al.

NEVAE: A Deep Generative Model for Molecular Graphs. Journal of Machine

Learning Research. 2022 06;21(1). Available from: https://doi.org/10.

1609/aaai.v33i01.33011110.

[165] Mahmood O, Mansimov E, Bonneau R, Cho K. Masked graph modeling for

molecule generation. Nature Communications. 2021;12(1). Available from:

http://dx.doi.org/10.1038/s41467-021-23415-2.

[166] Kwon Y, Yoo J, Choi YS, Son WJ, Lee D, Kang S. Efficient learning

of non-autoregressive graph variational autoencoders for molecular graph

generation. Journal of Cheminformatics. 2019;11(1):1-10. Available from:

https://doi.org/10.1186/s13321-019-0396-x.

[167] Assouel R, Ahmed M, Segler MH, Saffari A, Bengio Y. DEFactor: Differen-

tiable Edge Factorization-based Probabilistic Graph Generation; 2018. Avail-

able from: https://arxiv.org/abs/1811.09766.

139

https://dl.acm.org/doi/abs/10.5555/3524938.3525387
https://dl.acm.org/doi/abs/10.5555/3524938.3525387
https://doi.org/10.1021/acs.jcim.2c00838
http://dx.doi.org/10.1039/C9SC04503A
https://doi.org/10.1186/s13321-020-00454-3
https://doi.org/10.1609/aaai.v33i01.33011110
https://doi.org/10.1609/aaai.v33i01.33011110
http://dx.doi.org/10.1038/s41467-021-23415-2
https://doi.org/10.1186/s13321-019-0396-x
https://arxiv.org/abs/1811.09766

[168] Zang C, Wang F. MoFlow: An Invertible Flow Model for Generating Molec-

ular Graphs. In: Proceedings of the 26th ACM SIGKDD International Con-

ference on Knowledge Discovery & Data Mining. KDD ’20. New York, NY,

USA: Association for Computing Machinery; 2020. p. 617–626. Available

from: https://doi.org/10.1145/3394486.3403104.

[169] Ma C, Zhang X. GF-VAE: A Flow-Based Variational Autoencoder for

Molecule Generation. In: Proceedings of the 30th ACM International Confer-

ence on Information & Knowledge Management. CIKM ’21. New York, NY,

USA: Association for Computing Machinery; 2021. p. 1181–1190. Available

from: https://doi.org/10.1145/3459637.3482260.

[170] Flam-Shepherd D, Wu TC, Aspuru-Guzik A. MPGVAE: improved genera-

tion of small organic molecules using message passing neural nets. Machine

Learning: Science and Technology. 2021 07;2(4):045010. Available from:

https://doi.org/10.1088/2632-2153/abf5b7.

[171] Kuznetsov M, Polykovskiy D. MolGrow: A Graph Normalizing Flow for

Hierarchical Molecular Generation. In: Proceedings of the Thirty-Fifth

Conference on Association for the Advancement of Artificial Intelligence

(AAAI); 2021. p. 8226-34. Available from: https://doi.org/10.48550/

arXiv.2106.05856.

[172] Bradshaw J, Paige B, Kusner MJ, Segler M, Hernández-Lobato JM. A

Model to Search for Synthesizable Molecules. In: Wallach H, Larochelle

H, Beygelzimer A, d'Alché-Buc F, Fox E, Garnett R, editors. Advances in

Neural Information Processing Systems. vol. 32. Curran Associates, Inc.;

2019. Available from: https://proceedings.neurips.cc/paper/2019/

file/46d0671dd4117ea366031f87f3aa0093-Paper.pdf.

[173] Xie Y, Shi C, Zhou H, Yang Y, Zhang W, Yu Y, et al. MARS: Markov

Molecular Sampling for Multi-objective Drug Discovery. In: International

Conference on Learning Representations; 2021. Available from: https://

openreview.net/forum?id=kHSu4ebxFXY.

140

https://doi.org/10.1145/3394486.3403104
https://doi.org/10.1145/3459637.3482260
https://doi.org/10.1088/2632-2153/abf5b7
https://doi.org/10.48550/arXiv.2106.05856
https://doi.org/10.48550/arXiv.2106.05856
https://proceedings.neurips.cc/paper/2019/file/46d0671dd4117ea366031f87f3aa0093-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/46d0671dd4117ea366031f87f3aa0093-Paper.pdf
https://openreview.net/forum?id=kHSu4ebxFXY
https://openreview.net/forum?id=kHSu4ebxFXY

[174] Imrie F, Bradley AR, van der Schaar M, Deane CM. Deep Generative Mod-

els for 3D Linker Design. Journal of Chemical Information and Modeling.

2020;60(4):1983-95. Available from: https://doi.org/10.1021/acs.jcim.

9b01120.

[175] Jin W, Barzilay R, Jaakkola T. Multi-Objective Molecule Generation Us-

ing Interpretable Substructures. In: Proceedings of the 37th International

Conference on Machine Learning. ICML’20. JMLR.org; 2020. Available from:

https://dl.acm.org/doi/abs/10.5555/3524938.3525388.

[176] Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. In: Proceedings

of the 2019 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies. Minneapo-

lis, Minnesota: Association for Computational Linguistics; 2019. p. 4171-86.

Available from: https://aclanthology.org/N19-1423.

[177] Bresson X, Laurent T. A Two-Step Graph Convolutional Decoder for

Molecule Generation; 2019. Available from: https://arxiv.org/abs/1906.

03412.

[178] Jo J, Lee S, Hwang SJ. Score-based Generative Modeling of Graphs via the

System of Stochastic Differential Equations. In: Thirty-ninth International

Conference on Machine Learning; 2022. Available from: https://doi.org/

10.48550/arXiv.2202.02514.

[179] Mercado R, Rastemo T, Lindelöf E, Klambauer G, Engkvist O, Chen H,

et al. Graph Networks for Molecular Design. Machine Learning: Science and

Technology. 2020. Available from: https://doi.org/10.1088/2632-2153/

abcf91.

[180] Randić M. On Canonical Numbering of Atoms in a Molecule and Graph

Isomorphism. Journal of Chemical Information and Computer Sciences. 1977

08;17(3):171-80. Available from: https://doi.org/10.1021/ci60011a013.

[181] He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual

141

https://doi.org/10.1021/acs.jcim.9b01120
https://doi.org/10.1021/acs.jcim.9b01120
https://dl.acm.org/doi/abs/10.5555/3524938.3525388
https://aclanthology.org/N19-1423
https://arxiv.org/abs/1906.03412
https://arxiv.org/abs/1906.03412
https://doi.org/10.48550/arXiv.2202.02514
https://doi.org/10.48550/arXiv.2202.02514
https://doi.org/10.1088/2632-2153/abcf91
https://doi.org/10.1088/2632-2153/abcf91
https://doi.org/10.1021/ci60011a013

networks. Lecture Notes in Computer Science (including subseries Lec-

ture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-

ics). 2016;9908 LNCS:630-45. Available from: https://doi.org/10.1007/

978-3-319-46493-0_38.

[182] You J, Ying R, Ren X, Hamilton W, Leskovec J. GraphRNN: Generating

Realistic Graphs with Deep Auto-regressive Models. In: Dy J, Krause A, edi-

tors. Proceedings of the 35th International Conference on Machine Learning.

vol. 80 of Proceedings of Machine Learning Research. PMLR; 2018. p. 5708-

17. Available from: https://proceedings.mlr.press/v80/you18a.html.

[183] Bongini P, Bianchini M, Scarselli F. Molecular generative Graph Neural

Networks for Drug Discovery. Neurocomputing. 2021;450:242-52. Available

from: https://doi.org/10.1016/j.neucom.2021.04.039.

[184] Papamakarios G, Pavlakou T, Murray I. Masked Autoregressive Flow for

Density Estimation. In: Proceedings of the 31st International Conference

on Neural Information Processing Systems. NIPS’17. Red Hook, NY, USA:

Curran Associates Inc.; 2017. p. 2335–2344. Available from: https://dl.

acm.org/doi/10.5555/3294771.3294994.

[185] Zhou Z, Kearnes S, Li L, Zare RN, Riley P. Optimization of Molecules

via Deep Reinforcement Learning. Scientific Reports. 2019 Jul;9(1):10752.

Available from: https://doi.org/10.1038/s41598-019-47148-x.

[186] Rigoni D, Navarin N, Sperduti A. Conditional Constrained Graph Vari-

ational Autoencoders for Molecule Design. In: IEEE Symposium Series

on Computational Intelligence (SSCI); 2020. p. 729-36. Available from:

https://doi.org/10.1109/SSCI47803.2020.9308554.

[187] Kearnes S, Li L, Riley P. Decoding Molecular Graph Embeddings with Rein-

forcement Learning. arXiv; 2019. Available from: https://arxiv.org/abs/

1904.08915.

[188] Ma T, Chen J, Xiao C. Constrained Generation of Semantically Valid Graphs

via Regularizing Variational Autoencoders. In: Proceedings of the 32nd In-

142

https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.1007/978-3-319-46493-0_38
https://proceedings.mlr.press/v80/you18a.html
https://doi.org/10.1016/j.neucom.2021.04.039
https://dl.acm.org/doi/10.5555/3294771.3294994
https://dl.acm.org/doi/10.5555/3294771.3294994
https://doi.org/10.1038/s41598-019-47148-x
https://doi.org/10.1109/SSCI47803.2020.9308554
https://arxiv.org/abs/1904.08915
https://arxiv.org/abs/1904.08915

ternational Conference on Neural Information Processing Systems. NIPS’18.

Red Hook, NY, USA: Curran Associates Inc.; 2018. p. 7113–7124. Available

from: https://dl.acm.org/doi/10.5555/3327757.3327814.

[189] Courant R. Variational methods for the solution of problems of equi-

librium and vibrations. Bulletin of the American Mathematical So-

ciety. 1943;49(1):1 23. Available from: https://doi.org/10.1090/

S0002-9904-1943-07818-4.

[190] Pölsterl S, Wachinger C. Adversarial Learned Molecular Graph Inference and

Generation. In: Machine Learning and Knowledge Discovery in Databases:

European Conference, Proceedings, Part II. Berlin, Heidelberg: Springer-

Verlag; 2020. p. 173–189. Available from: https://doi.org/10.1007/

978-3-030-67661-2_11.

[191] Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL. Quantifying

the chemical beauty of drugs. Nature Chemistry. 2012 1;4(2):90-8. Available

from: https://doi.org/10.1038/nchem.1243.

[192] Ertl P, Schuffenhauer A. Estimation of synthetic accessibility score of drug-

like molecules based on molecular complexity and fragment contributions.

Journal of Cheminformatics. 2009 6;1(1):8. Available from: https://doi.

org/10.1186/1758-2946-1-8.

[193] Zheng S, Lei Z, Ai H, Chen H, Deng D, Yang Y. Deep scaffold hop-

ping with multimodal transformer neural networks. Journal of Chemin-

formatics. 2021;13(1):1-15. Available from: https://doi.org/10.1186/

s13321-021-00565-5.

[194] Snoek J, Larochelle H, Adams RP. Practical Bayesian Optimization of Ma-

chine Learning Algorithms. In: Proceedings of the 25th International Con-

ference on Neural Information Processing Systems - Volume 2. NIPS’12. Red

Hook, NY, USA: Curran Associates Inc.; 2012. p. 2951–2959. Available from:

https://dl.acm.org/doi/10.5555/2999325.2999464.

[195] Snelson E, Ghahramani Z. Sparse Gaussian Processes Using Pseudo-Inputs.

143

https://dl.acm.org/doi/10.5555/3327757.3327814
https://doi.org/10.1090/S0002-9904-1943-07818-4
https://doi.org/10.1090/S0002-9904-1943-07818-4
https://doi.org/10.1007/978-3-030-67661-2_11
https://doi.org/10.1007/978-3-030-67661-2_11
https://doi.org/10.1038/nchem.1243
https://doi.org/10.1186/1758-2946-1-8
https://doi.org/10.1186/1758-2946-1-8
https://doi.org/10.1186/s13321-021-00565-5
https://doi.org/10.1186/s13321-021-00565-5
https://dl.acm.org/doi/10.5555/2999325.2999464

In: Proceedings of the 18th International Conference on Neural Information

Processing Systems. NIPS’05. Cambridge, MA, USA: MIT Press; 2005. p.

1257–1264. Available from: https://dl.acm.org/doi/10.5555/2976248.

2976406.

[196] Ramakrishnan R, Dral PO, Rupp M, von Lilienfeld OA. Quantum chem-

istry structures and properties of 134 kilo molecules. Scientific Data. 2014

Aug;1(1):140022. Available from: https://doi.org/10.1038/sdata.2014.

22.

[197] Irwin JJ, Shoichet BK. ZINC - A Free Database of Commercially Available

Compounds for Virtual Screening. Journal of Chemical Information and

Modeling. 2005 Jan;45(1):177-82. Available from: https://doi.org/10.

1021/ci049714+.

[198] Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, et al.

ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids

Research. 2011 09;40(D1):D1100-7. Available from: https://doi.org/10.

1093/nar/gkr777.

[199] Knox C, Wilson M, Klinger CM, Franklin M, Oler E, Wilson A, et al. Drug-

Bank 6.0: the DrugBank Knowledgebase for 2024. Nucleic Acids Res. 2024

Jan;52(D1):D1265-75.

[200] Bajusz D, Rácz A, Héberger K. Why is Tanimoto index an appropriate

choice for fingerprint-based similarity calculations? Journal of Chemin-

formatics. 2015 May;7(1):20. Available from: https://doi.org/10.1186/

s13321-015-0069-3.

[201] Renz P, Van Rompaey D, Wegner JK, Hochreiter S, Klambauer G.

On failure modes in molecule generation and optimization. Drug Dis-

covery Today: Technologies. 2019;32-33:55-63. Artificial Intelligence.

Available from: https://www.sciencedirect.com/science/article/pii/

S1740674920300159.

144

https://dl.acm.org/doi/10.5555/2976248.2976406
https://dl.acm.org/doi/10.5555/2976248.2976406
https://doi.org/10.1038/sdata.2014.22
https://doi.org/10.1038/sdata.2014.22
https://doi.org/10.1021/ci049714+
https://doi.org/10.1021/ci049714+
https://doi.org/10.1093/nar/gkr777
https://doi.org/10.1093/nar/gkr777
https://doi.org/10.1186/s13321-015-0069-3
https://doi.org/10.1186/s13321-015-0069-3
https://www.sciencedirect.com/science/article/pii/S1740674920300159
https://www.sciencedirect.com/science/article/pii/S1740674920300159

[202] Preuer K, Renz P, Unterthiner T, Hochreiter S, Klambauer G. Fréchet Chem-

Net Distance: A Metric for Generative Models for Molecules in Drug Discov-

ery. Journal of Chemical Information and Modeling. 2018 Sep;58(9):1736-41.

Available from: https://doi.org/10.1021/acs.jcim.8b00234.

[203] Brown N, Fiscato M, Segler MHS, Vaucher AC. GuacaMol: Benchmarking

Models for de Novo Molecular Design. Journal of Chemical Information and

Modeling. 2019 Mar;59(3):1096-108. Available from: https://doi.org/10.

1021/acs.jcim.8b00839.

[204] Polykovskiy D, Zhebrak A, Sanchez-Lengeling B, Golovanov S, Tatanov

O, Belyaev S, et al. Molecular Sets (MOSES): A Benchmarking Plat-

form for Molecular Generation Models. Frontiers in Pharmacology. 2020;11.

Available from: https://www.frontiersin.org/journals/pharmacology/

articles/10.3389/fphar.2020.565644.

[205] Vahdat A, Kreis K, Kautz J. Score-based Generative Modeling in Latent

Space. In: Beygelzimer A, Dauphin Y, Liang P, Vaughan JW, editors.

Advances in Neural Information Processing Systems; 2021. Available from:

https://openreview.net/forum?id=P9TYG0j-wtG.

[206] Rombach R, Blattmann A, Lorenz D, Esser P, Ommer B. High-Resolution

Image Synthesis with Latent Diffusion Models; 2021.

[207] Zhang Y, Li J, Xu C. Graph-Based Latent Space Traversal for New Molecules

Discovery. In: Proceedings of the 16th International Symposium on Visual

Information Communication and Interaction. VINCI ’23. New York, NY,

USA: Association for Computing Machinery; 2023. Available from: https:

//doi.org/10.1145/3615522.3615548.

[208] Ghosh P, Sajjadi MSM, Vergari A, Black M, Scholkopf B. From Variational

to Deterministic Autoencoders. In: International Conference on Learning

Representations; 2020. Available from: https://openreview.net/forum?

id=S1g7tpEYDS.

[209] Godwin J, Schaarschmidt M, Gaunt AL, Sanchez-Gonzalez A, Rubanova

145

https://doi.org/10.1021/acs.jcim.8b00234
https://doi.org/10.1021/acs.jcim.8b00839
https://doi.org/10.1021/acs.jcim.8b00839
https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2020.565644
https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2020.565644
https://openreview.net/forum?id=P9TYG0j-wtG
https://doi.org/10.1145/3615522.3615548
https://doi.org/10.1145/3615522.3615548
https://openreview.net/forum?id=S1g7tpEYDS
https://openreview.net/forum?id=S1g7tpEYDS

Y, Veličković P, et al. Simple GNN Regularisation for 3D Molecular Prop-

erty Prediction and Beyond. In: International Conference on Learning Rep-

resentations; 2022. Available from: https://openreview.net/forum?id=

1wVvweK3oIb.

[210] Satorras VG, Hoogeboom E, Welling M. E(n) Equivariant Graph Neural

Networks; 2021.

[211] Kuhn HW. The Hungarian method for the assignment problem. Naval

Research Logistics Quarterly. 1955;2(1-2):83-97. Available from: https:

//onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109.

[212] Kipf TN, Welling M. Variational Graph Auto-Encoders; 2016.

[213] Saito–Tarashima N, Kinoshita M, Igata Y, Kashiwabara Y, Minakawa N.

Replacement of oxygen with sulfur on the furanose ring of cyclic dinu-

cleotides enhances the immunostimulatory effect via STING activation. RSC

Med Chem. 2021;12:1519-24. Available from: http://dx.doi.org/10.1039/

D1MD00114K.

[214] Nagy PI. Replacement of Oxygen by Sulfur in Small Organic Molecules.

3. Theoretical Studies on the Tautomeric Equilibria of the 2OH and 4OH-

Substituted Oxazole and Thiazole and the 3OH and 4OH-Substituted Isoxa-

zole and Isothiazole in the Isolated State and in Solution. Int J Mol Sci. 2016

Jul;17(7).

[215] Ficarra F, Silvi M. Atom-swap chemistry could aid drug dis-

covery. Nature. 2023 November;623(7985):36-7. Available from:

https://ideas.repec.org/a/nat/nature/v623y2023i7985d10.1038_

d41586-023-03297-8.html.

[216] Stumpfe D, Hu H, Bajorath J. Evolving Concept of Activity Cliffs. ACS

Omega. 2019 Aug;4(11):14360-8.

[217] RDKit contributors. RDKit: Open-source cheminformatics; 2023. Version

2023.03.3. Available from: https://www.rdkit.org.

146

https://openreview.net/forum?id=1wVvweK3oIb
https://openreview.net/forum?id=1wVvweK3oIb
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109
http://dx.doi.org/10.1039/D1MD00114K
http://dx.doi.org/10.1039/D1MD00114K
https://ideas.repec.org/a/nat/nature/v623y2023i7985d10.1038_d41586-023-03297-8.html
https://ideas.repec.org/a/nat/nature/v623y2023i7985d10.1038_d41586-023-03297-8.html
https://www.rdkit.org

[218] Decherchi S, Bottegoni G, Spitaleri A, Rocchia W, Cavalli A. BiKi Life

Sciences: A New Suite for Molecular Dynamics and Related Methods in

Drug Discovery. Journal of Chemical Information and Modeling. 2018

Feb;58(2):219-24. Available from: https://doi.org/10.1021/acs.jcim.

7b00680.

[219] Riniker S, Landrum GA. Better Informed Distance Geometry: Using

What We Know To Improve Conformation Generation. Journal of Chem-

ical Information and Modeling. 2015 Dec;55(12):2562-74. Available from:

https://doi.org/10.1021/acs.jcim.5b00654.

[220] Rappe AK, Casewit CJ, Colwell KS, Goddard III WA, Skiff WM. UFF,

a full periodic table force field for molecular mechanics and molecu-

lar dynamics simulations. Journal of the American Chemical Society.

1992 Dec;114(25):10024-35. Available from: https://doi.org/10.1021/

ja00051a040.

[221] Dwivedi VP, Luu AT, Laurent T, Bengio Y, Bresson X. Graph Neural Net-

works with Learnable Structural and Positional Representations. In: In-

ternational Conference on Learning Representations; 2022. Available from:

https://openreview.net/forum?id=wTTjnvGphYj.

[222] Honda S, Akita H, Ishiguro K, Nakanishi T, Oono K. Graph Residual Flow

for Molecular Graph Generation; 2019.

[223] Goemans MX, Williamson DP. Improved approximation algorithms for max-

imum cut and satisfiability problems using semidefinite programming. J

ACM. 1995 Nov;42(6):1115–1145. Available from: https://doi.org/10.

1145/227683.227684.

[224] Shuman DI, Faraji MJ, Vandergheynst P. A multiscale pyramid transform for

graph signals. IEEE Transactions on Signal Processing. 2015;64(8):2119-34.

[225] Trevisan L. Max cut and the smallest eigenvalue. In: Proceedings of the

forty-first annual ACM symposium on Theory of computing; 2009. p. 263-72.

147

https://doi.org/10.1021/acs.jcim.7b00680
https://doi.org/10.1021/acs.jcim.7b00680
https://doi.org/10.1021/acs.jcim.5b00654
https://doi.org/10.1021/ja00051a040
https://doi.org/10.1021/ja00051a040
https://openreview.net/forum?id=wTTjnvGphYj
https://doi.org/10.1145/227683.227684
https://doi.org/10.1145/227683.227684

[226] Aspvall B, Gilbert JR. Graph Coloring Using Eigenvalue Decomposition.

SIAM Journal on Algebraic Discrete Methods. 1984;5(4):526–538.

[227] von Luxburg U. A Tutorial on Spectral Clustering; 2007.

[228] Wu F, Souza A, Zhang T, Fifty C, Yu T, Weinberger K. Simplifying Graph

Convolutional Networks. In: Chaudhuri K, Salakhutdinov R, editors. Pro-

ceedings of the 36th International Conference on Machine Learning. vol. 97

of Proceedings of Machine Learning Research. PMLR; 2019. p. 6861-71.

[229] Wang G, Ying R, Huang J, Leskovec J. Improving Graph Attention Networks

with Large Margin-based Constraints; 2019.

[230] Eliasof M, Ruthotto L, Treister E. Improving graph neural networks with

learnable propagation operators. In: International Conference on Machine

Learning. PMLR; 2023. p. 9224-45.

[231] Bianchi FM. Simplifying clustering with graph neural networks. arXiv

preprint arXiv:220708779. 2022.

[232] Mather PM, Koch M. Computer processing of remotely-sensed images. John

Wiley & Sons; 2022.

[233] Xu K, Hu W, Leskovec J, Jegelka S. How Powerful are Graph Neural Net-

works? In: International Conference on Learning Representations; 2019.

.

[234] Schuetz MJ, Brubaker JK, Katzgraber HG. Combinatorial optimization

with physics-inspired graph neural networks. Nature Machine Intelligence.

2022;4(4):367-77.

[235] Defferrard M, Martin L, Pena R, Perraudin N. PyGSP: Graph Signal Pro-

cessing in Python. Zenodo; 2017. Available from: https://doi.org/10.

5281/zenodo.1003158.

[236] Ye Y. The gset dataset. Stanford; 2003.

[237] Diehl F. Edge contraction pooling for graph neural networks. arXiv preprint

arXiv:190510990. 2019.

148

https://doi.org/10.5281/zenodo.1003158
https://doi.org/10.5281/zenodo.1003158

[238] Morris C, Kriege NM, Bause F, Kersting K, Mutzel P, Neumann M. TU-

Dataset: A collection of benchmark datasets for learning with graphs.

In: ICML 2020 Workshop on Graph Representation Learning and Beyond

(GRL+ 2020); 2020. .

[239] Bianchi FM, Gallicchio C, Micheli A. Pyramidal Reservoir Graph Neural

Network. Neurocomputing. 2022;470:389-404.

[240] Errica F, Podda M, Bacciu D, Micheli A. A Fair Comparison of Graph Neural

Networks for Graph Classification. In: International Conference on Learning

Representations; 2020. .

[241] Platonov O, Kuznedelev D, Diskin M, Babenko A, Prokhorenkova L. A

critical look at the evaluation of GNNs under heterophily: Are we really

making progress? In: The Eleventh International Conference on Learning

Representations; 2023. .

[242] Lim D, Hohne F, Li X, Huang SL, Gupta V, Bhalerao O, et al. Large

scale learning on non-homophilous graphs: New benchmarks and strong

simple methods. Advances in Neural Information Processing Systems.

2021;34:20887-902.

[243] Volkamer A, Kuhn D, Rippmann F, Rarey M. DoGSiteScorer: a web server

for automatic binding site prediction, analysis and druggability assessment.

Bioinformatics. 2012 May;28(15):2074-5.

[244] Borrel A, Regad L, Xhaard H, Petitjean M, Camproux AC. PockDrug: A

Model for Predicting Pocket Druggability That Overcomes Pocket Estima-

tion Uncertainties. Journal of Chemical Information and Modeling. 2015

Apr;55(4):882-95. Available from: https://doi.org/10.1021/ci5006004.

[245] Jiménez J, Doerr S, Mart́ınez-Rosell G, Rose AS, De Fabritiis G. Deep-

Site: protein-binding site predictor using 3D-convolutional neural networks.

Bioinformatics. 2017 05;33(19):3036-42. Available from: https://doi.org/

10.1093/bioinformatics/btx350.

149

https://doi.org/10.1021/ci5006004
https://doi.org/10.1093/bioinformatics/btx350
https://doi.org/10.1093/bioinformatics/btx350

[246] Mylonas SK, Axenopoulos A, Daras P. DeepSurf: a surface-based deep learn-

ing approach for the prediction of ligand binding sites on proteins. Bioin-

formatics. 2021 01;37(12):1681-90. Available from: https://doi.org/10.

1093/bioinformatics/btab009.

[247] Yan X, Lu Y, Li Z, Wei Q, Gao X, Wang S, et al. PointSite: A Point

Cloud Segmentation Tool for Identification of Protein Ligand Binding Atoms.

Journal of Chemical Information and Modeling. 2022 Jun;62(11):2835-45.

Available from: https://doi.org/10.1021/acs.jcim.1c01512.

[248] Charles RQ, Su H, Kaichun M, Guibas LJ. PointNet: Deep Learning on Point

Sets for 3D Classification and Segmentation. In: 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR); 2017. p. 77-85.

[249] Kokh DB, Richter S, Henrich S, Czodrowski P, Rippmann F, Wade RC.

TRAPP: A Tool for Analysis of Transient Binding Pockets in Proteins. Jour-

nal of Chemical Information and Modeling. 2013 May;53(5):1235-52. Avail-

able from: https://doi.org/10.1021/ci4000294.

[250] Cimermancic P, Weinkam P, Rettenmaier TJ, Bichmann L, Keedy DA, Wold-

eyes RA, et al. CryptoSite: Expanding the Druggable Proteome by Char-

acterization and Prediction of Cryptic Binding Sites. J Mol Biol. 2016

Feb;428(4):709-19.

[251] Cuchillo R, Pinto-Gil K, Michel J. A Collective Variable for the Rapid Ex-

ploration of Protein Druggability. Journal of Chemical Theory and Com-

putation. 2015 Mar;11(3):1292-307. Available from: https://doi.org/10.

1021/ct501072t.

[252] Decherchi S, Rocchia W. A general and robust ray-casting-based algorithm

for triangulating surfaces at the nanoscale. PLoS One. 2013 Apr;8(4):e59744.

https://doi.org/10.1093/bioinformatics/btab009
https://doi.org/10.1093/bioinformatics/btab009
https://doi.org/10.1021/acs.jcim.1c01512
https://doi.org/10.1021/ci4000294
https://doi.org/10.1021/ct501072t
https://doi.org/10.1021/ct501072t

Ringraziamenti

Ringrazio il Prof. Andrea Cavalli e il Dott. Sergio Decherchi per avermi accolto nel

loro gruppo di ricerca, per avermi guidato e supervisionato durante questi lunghi

anni. Ringrazio anche il Prof. Filippo Maria Bianchi per avermi accolto all’UiT e

per avermi dato la possibilità di lavorare in un ambiente stimolante e produttivo.

Sergio, al di là della supervisione e del lavoro, hai osservato tutto il percorso

dall’inizio alla fine e sai quanto sia stato difficile e provante per me. Quando

ho visto solo nero hai capito i miei bisogni e hai empatizzato con le mie difficoltà,

dandomi spazio e tempo per riprendermi. Il mondo accademico è un mondo diffi-

cile, e sono sicuro che non sarei arrivato in fondo senza questa libertà. Per questo,

ti sono profondamente grato.

Filippo, hai reso il freddo norvegese molto meno freddo, e lavorare con te mi ha

dato la possibilità di capire il mio valore e fare pace con la ricerca. Grazie per aver

creduto in me quando io ho smesso di farlo.

Ele, questi anni non sarebbero stati gli stessi senza di te. Mentirei se dicessi che

sono pronto a lavorare in un ufficio in cui non ci sei. Sei riuscita a starmi vicino

anche quando ero lontano e non so nemmeno da dove partire per ringraziarti. Mi

sento fortunato di poterti chiamare amica.

Stefano, per sempre mio brother-in-science, e tutti i ”colleghi” di rn.ai, non cam-

biate mai. Le persone come voi sono una boccata d’aria fresca.

Sami, grazie per avermi insegnato l’assertività :P

151

Spostandoci fuori dall’accademia, un grazie sentito va a tutti i compagni di bevute,

di tennis, di ping pong, di chiacchiere e risate conosciuti a Genova in questi anni. In

particolare Eleonora, che anche se ormai a 10 fusi orari di distanza è sempre vicina

come il primo giorno. Mi avete alleggerito le giornate anche quando sembrava

impossibile.

Ale, mi hai conosciuto forse nel momento peggiore di tutti. Nonostante questo, per

qualche strano allineamento di pianeti hai deciso di camminare con me. Assieme è

tutto più colorato.

Mamma, papà, zia, zio, Rò, Giorgio, Alessio, Fabio, Chiara, Ilaria, Teresa, Salva-

tore. Mi avete visto perdere pezzi, mi avete visto rimetterli insieme, mi avete visto

cadere e rialzarmi cambiato, mi avete visto allontanarmi quasi al punto di sparire,

eppure siete sempre stati là per me.

A voi tutti, grazie.

Infine, non l’ho mai fatto ma penso che stavolta sia necessario e importante.

Grazie a me stesso.

152

:wq

	Abstract
	Introduction
	The landscape of drug discovery
	Classical approaches in hit discovery
	High-throughput screening
	Virtual screening

	The emergence of deep learning in drug discovery
	Graph neural networks in drug discovery

	Thesis structure

	Graph neural networks for molecular design: a literature review
	Introduction
	Foundations of molecular graph learning
	Graph fundamentals and graph generation problem
	Graphs vs SMILES representations

	Graph neural networks: an overview
	Message-passing neural networks
	Recurrent approaches
	Convolutional approaches
	Graph pooling

	Learning frameworks
	Variational autoencoders
	Generative adversarial networks
	Normalizing flows
	Score-based models
	Reinforcement learning

	Guided generation of molecular graphs
	Generation process
	Granularity level
	Validity constraints enforcement
	Conditioning

	Datasets and benchmarks

	AMCG: a graph dual Atomic-Molecular Conditional Generator
	Introduction
	Model architecture
	Overview of AMCG
	Encoder
	Combiner
	Molecular decoder
	Shared decoder

	Training and loss functions
	Molecular generation and sampling strategies
	Unconditional generation
	Conditional generation

	Experimental results
	Datasets and preprocessing
	Unconditional generation results
	Conditional generation results
	Results on ZINC Dataset

	Conclusions

	MaxCutPool: differentiable feature-aware MAXCUT for pooling in graph neural networks
	Introduction
	Background
	The MAXCUT problem and its continuous relaxations
	Heterophilic message-passing

	MaxCutPool overview
	SELECT operation
	REDUCE operation
	CONNECT operation
	Auxiliary loss
	Hyperparameters and optimization

	Experimental evaluation
	Computation of the MAXCUT partition
	Multipartite dataset
	Graph classification
	Node classification
	Node classification with skip connections
	Memory usage and scalability

	Conclusions

	Other Works
	Ligandability and druggability assessment via machine learning
	Machine learning tasks and architectures
	Feature engineering and representation
	Incorporation of molecular dynamics
	Current challenges and future directions

	Development of a web server for molecular surface analysis

	Conclusions and future perspectives
	Publications
	Bibliography

