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Abstract

In the era of 6G communication, the demand for efficient radio spectrum uti-

lization is rapidly increasing due to the proliferation of wireless devices like

sensors, connected vehicles, and smart infrastructure. Future 6G networks

will need to manage a highly congested spectrum, requiring novel strategies

that go beyond the advancements of 5G. Among the key developments in 6G

are integrated sensing and communication (ISAC) systems, which simultane-

ously enable data transmission and environmental sensing. This innovation

is critical for applications such as traffic monitoring, autonomous driving,

and urban safety. However, the complexity and intelligence of these systems

introduce security vulnerabilities, particularly in the form of radar-related

threats like deceptive jamming, which can compromise sensing functions.

Artificial intelligence (AI) will also be embedded into 6G networks, play-

ing a crucial role in network orchestration, spectrum management, and sys-

tem optimization. While AI offers great potential for enhancing efficiency,

it also opens the door to new threats, such as unauthorized spectrum use,

signal jamming, and denial-of-service attacks. These risks are amplified by

AI-enabled attackers who can adapt their strategies dynamically, making de-

tection more challenging. Hence, safeguarding 6G networks requires robust

monitoring mechanisms for spectrum usage to detect anomalies and prevent

improper use.

This thesis introduces a novel spectrum patrolling framework designed to

secure wireless networks by monitoring radio-frequency (RF) environments

through distributed sensors. The framework collects RF data and employs

advanced signal processing techniques to extract meaningful analytics. These

insights help in identifying and mitigating potential threats such as jammers
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and unauthorized spectrum users.

The framework’s key contributions include a blind source separation (BSS)

technique designed to separate malicious signals from legitimate traffic. In

addition, jamming attacks are identified through the application of causal

inference using the transfer entropy (TE). Jamming detection is further

addressed within an ISAC context, where a variational autoencoder (VAE)-

based approach harnesses the capabilities of deep latent variable models.

Moreover, the thesis investigates cooperative wideband spectrum sensing

(WSS) through the use of factor analysis and variational inference, allowing

for a detailed assessment of spectrum occupancy, aiding in user count esti-

mation and noise power measurement. In the domain of cooperative WSS, a

statistical meta-analysis approach is also introduced to improve the synthesis

of multiple independent tests.

The adoption of spectrum patrol for jamming detection was validated in

an ad hoc wireless network, considering key factors such as the medium ac-

cess protocol (MAC) protocol, packet collisions, sensor spatial density, and

channel impairments like path loss and shadowing. For identifying decep-

tive jammers in an ISAC context, a monostatic multiple-input multiple-

output (MIMO)-orthogonal frequency-division multiplexing (OFDM) system

was employed. Lastly, the cooperative WSS approach was developed with a

focus on the presence of multiple primary users (PUs), a network of secondary

user (SU) sensors, and the impact of shadowing and multipath propagation.

The numerical results obtained through extensive and exhaustive simulations

demonstrate that the proposed framework is consistent and can achieve the

required performance.
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Mathematical Notation

Throughout the thesis, capital boldface letters denote matrices, lowercase

bold letters denote vectors, (·)−1 indicates the inverse operator, || · ||p is the

lp-norm, | · | is the module operator, ⊙ stands for the element-wise product,

and ⊗ stands for Kronecker product. (·)T and (·)H denote, respectively, sim-

ple and Hermitian transposition, while (·)∗ denotes the conjugate operations.

With vi,j, vi,:, and v:,j, we represent, respectively, the element, the ith row,

and the jth column of the matrix V, and with vi,j:k we select the elements

between the jth and the kth entry of the ith row of V, extremes included.

IN indicates the N ×N identity matrix. 1{A} is the indicator function equal

to one when A is true and zero otherwise. det (V) and tr(V) stand, respec-

tively, for the determinant and the trace of the matrix V. diag(V) represents

the vector containing the diagonal elements of the matrix V, while diag(v)

denotes the diagonal matrix with the elements of the vector v on its diag-

onal. E[·] denotes the expectation operator, ⟨·⟩ indicates the sample mean

operator. We use N (µ, σ2) to denote a real Gaussian distribution with mean

µ and variance σ2, CN (0, σ2) to denote a zero-mean circularly symmetric

complex Gaussian distribution with variance σ2, χ2
m to denote a central chi

squared distribution with m degrees of freedom (d.o.f.), and U(a, b) to denote

a uniform distribution between a and b. To streamline the presentation and

in keeping with common convention, we extend the notation for statistical

distributions to denote their probability density functions (p.d.f.s) as well;

for instance, p(x) = N (µ, σ2) indicates that p(x) represents the p.d.f. of a

normal distribution with respect to the variable x, where µ and σ2 are the

mean and variance, respectively. We use Q(x) for the Q-function value in

x. Finally, we use the big O notation, O(·), to denote the computational

complexity of algorithms.

13
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Symbol Description

V Matrix (capital boldface letter)

v Vector (lowercase boldface letter)

vi,j Element at row i and column j of matrix V

vi,: ith row of matrix V

v:,j jth column of matrix V

vi,j:k Elements between jth and kth entry of ith row of V

(·)T Simple transposition

(·)H Hermitian transposition

(·)∗ Conjugate operator

(·)−1 Inverse operator

|| · ||p lp-norm

| · | Module operator

⊙ Element-wise product

⊗ Kronecker product

IN N ×N identity matrix

1{A} Indicator function (1 if A is true, 0 otherwise)

det (V) Determinant of matrix V

tr(V) Trace of matrix V

diag(V) Vector of diagonal elements of matrix V

diag(v) Diagonal matrix with elements of vector v on the diagonal

E[·] Expectation operator

⟨·⟩ Sample mean operator

N (µ, σ2) Real Gaussian distribution with mean µ and variance σ2

CN (0, σ2) Zero-mean circularly symmetric complex Gaussian distribution

χ2
m Central chi-squared distribution with m degrees of freedom

U(a, b) Uniform distribution between a and b

Q(x) Q-function value at x

O(·) Big O notation (computational complexity)

Table 1: List of symbols and their descriptions.



Chapter 1

Introduction

In the coming era of 6G communication systems, the demand for radio spec-

trum resources is expected to skyrocket, driven by billions of wireless devices

such as sensors, connected vehicles, and smart infrastructures. To accom-

modate this massive increase in connectivity, a fundamental shift in wire-

less technology will be required. While 6G will likely build upon the ad-

vancements made in 5G, entirely new strategies will be necessary to achieve

the next leap in network performance. Researchers are already pushing the

boundaries of technology to create denser networks, increase bandwidth, re-

duce latency, and improve reliability. To meet these ambitious goals, intel-

ligent devices with adaptive learning and decision-making capabilities will

play a central role. These future 6G devices will employ advanced spectrum

awareness tools, leveraging learning and inference techniques to optimize the

use of available resources [2].

One of the emerging innovations within 6G is the concept of integrated

sensing and communication (ISAC) systems, which promise to revolutionize

applications like traffic monitoring, autonomous driving, and urban safety.

ISAC systems enable the simultaneous use of wireless signals for both commu-

nication and environmental sensing, leading to enhanced situational aware-

ness and optimized resource use. However, despite these promising advance-

ments, the increasing complexity and intelligence of 6G networks introduce

significant vulnerabilities. Specifically, ISAC systems are vulnerable to radar-

15
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related security threats, such as deceptive jamming, which can impair their

sensing functions.

Furthermore, artificial intelligence (AI), widely recognized as a fundamen-

tal driver of autonomous decision-making, is expected to be fully embedded in

heterogeneous mobile radio systems, enhancing network orchestration, spec-

trum management, localization, and overall system optimization. While AI

will enhance efficiency and connectivity, it will also expose networks to new

risks, such as unauthorized spectrum use, signal jamming, and denial-of-

service attacks. For instance, AI-enabled attackers could dynamically adapt

their strategies in response to network conditions, making their activities

harder to detect and mitigate. These challenges highlight the urgent need to

ensure the resilience and security of future communication infrastructures.

In this context, real-time monitoring of radio spectrum usage becomes

paramount for regulatory compliance and the prevention of improper use.

As communication technology becomes more deeply integrated into society,

large-scale spectrum patrolling will be crucial in safeguarding wireless net-

works. Understanding how networks interact with the wireless medium will

be essential for developing effective strategies for spectrum monitoring and

maintaining the integrity of next-generation communication systems.

1.1 Spectrum Patrolling

A spectrum patrolling mechanism can be employed to enhance the security of

next-generation wireless networks. Fig. 1.1 illustrates a scenario where UAVs

serve as spectrum patrol units, collecting data on the radio-frequency (RF)

environment. This information is then transmitted to an authority, acting as

a fusion center, which extracts wireless network analytics. These analytics

are subsequently used to identify anomalies and detect malicious actors, such

as jammers, that may be interfering with the network.

The patrol system may consist of a dedicated device, a network provided

by the authority, or a crowdsourced platform. In the latter case, users peri-

odically sense the spectrum and relay refined data to operators or regulatory

bodies [3]. This information is analyzed to generate comprehensive network
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Wireless Network

Spectrum Patrol

Jammer

Intrusion Detection

time

Intruder Localization

Blind Source SeparationMonitor RF spectrum

frequency

Topology Inference

Figure 1.1: An illustration of wireless networks that has been disrupted by an intelligent
jamming device. Unmanned aerial vehicles (UAVs), which are monitoring the RF envi-
ronment as part of a spectrum patrol, apply advanced analytics extraction techniques to
gain valuable insights from the data. The aim is to obtain as much information as possible
about the situation and eventually identify the jammer. The extracted analytics are then
forwarded to the authority in charge so that it can secure the environment. Urban image
designed by vectorpocket in http://www.freepik.com.

analytics, providing the regulator with a detailed overview of the RF environ-

ment. Such insights enable the timely detection of anomalies or unauthorized

users, allowing for effective measures to secure the network.
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The ability to extract and analyze complex features of the wireless net-

work, from the physical layer to the application layer, will be essential for

identifying threats such as jammers and unauthorized spectrum users. More-

over, this capability will play a pivotal role in optimizing communication

processes and facilitating spectrum reuse [4, 5]. In this section, we propose

a set of key characteristics that can enable spectrum patrolling to effectively

orchestrate and protect next-generation wireless networks and their users.

Monitor the RF Spectrum. Although reliable communication is essen-

tial, the current method of spectrum monitoring still heavily relies on regula-

tors using expensive, power-hungry laboratory-grade spectrum analyzers [2].

This traditional approach is both inefficient and not scalable. In contrast,

future wireless networks require a continuous and thorough spectrum moni-

toring strategy to promptly address security issues, ensuring complete cover-

age across the temporal, frequency, and spatial domains [6]. Utilizing data-

driven spectrum sensing algorithms transforms spectrum monitoring into a

dynamic process, offering a real-time overview of the RF spectrum usage.

This technique enables the identification of active and inactive frequency

bands, supporting the detection of unauthorized activities within regulated

frequency ranges.

Topology Inference. The ability to reconstruct the network’s topology

from limited observations at certain nodes or edges, with minimal or no

prior information, would greatly enhance the effectiveness of spectrum pa-

trolling [2, 7]. While this task is already complex in wired networks, it be-

comes even more difficult in wireless environments due to interference, path

loss, shadowing, fading, and the hidden terminal problem. Although node

connectivity can sometimes be inferred from physical proximity, determin-

ing which nodes are actively communicating often requires analyzing their

activity patterns, as many nodes may be within range of one another.

Blind Source Separation. Being external to legitimate wireless networks,

a patrol system can leverage blind source separation (BSS) techniques to



19 Chapter 1 – Introduction

distinguish signals from different transmitters. These methods enable the

isolation of illegitimate signals from legitimate ones. For instance, as shown in

Fig. 1.1, the jammer’s red signal can be further analyzed to classify its type or

modulation. While BSS is commonly applied in scenarios where the number

of sensors exceeds the number of network nodes, in the context of wireless

security, the number of patrol sensors is typically lower than the number of

transmitters, making the underdetermined blind source separation (UBSS)

problem more challenging to address.

Intrusion Detection. Utilizing signal processing techniques such as UBSS

and spectrum sensing algorithms, one of the primary objectives of the patrol

is to detect intruders within a specified area. As illustrated in Fig. 1.1, UAVs,

functioning as patrol sensors, are tasked with identifying the presence of a

jammer interfering with legitimate communications of two wireless networks.

This task is particularly challenging due to the lack of prior knowledge re-

garding the transmitted signals in the RF medium, yet the system must still

be able to distinguish the illegitimate user.

Intruder Localization. Following the detection of an intrusion, a pa-

troller can ascertain the spatial position of the source. This information

allows the authority to identify potential sources of interference. By combin-

ing location data with other insights extracted from the data set, the author-

ity gains a comprehensive view that aids in effective interference mitigation

and network security. As the malicious user has an interest in remaining un-

detected, the patrol must manage both collaborative and non-collaborative

localisation techniques to form a comprehensive picture of the RF scene [8].

1.2 Aims of this Work

This thesis presents a novel framework for monitoring the RF spectrum and

detecting smart jammers by analyzing spectrum usage through RF sensors,

referred to as the spectrum patrol. The proposed methodology is blind, en-

abling the analysis of wireless networks with unknown characteristics, such



20 Chapter 1 – Introduction

as the number of nodes, physical layer signals, and medium access proto-

col (MAC) and routing protocols. Fig. 1.2 illustrates the complete logical

structure of the framework. Due to the wireless nature of the medium, the

over-the-air signals captured by the sensors are mixed. To address this, BSS

is employed to separate traffic patterns. The extracted traffic profiles are

then analyzed using a causal inference approach to identify the presence

of a jammer. Simultaneously, the patrol system monitors spectrum usage

through frequency-domain representations of the received signals, detecting

occupied portions of the band and counting the number of signals within

those sections.

The following section provides a brief overview of the key research stages

conducted during the Ph.D. period.

1.2.1 Blind Source Separation

Each RF sensor that constitutes the patrol collects a mixture of over-the-

air received powers from all nodes of the observed network, including the

jammer. The collected mixtures are then transmitted to a fusion centre (FC),

which may be either a component of the patrol or the authority responsible

for overseeing the area. The acquired mixtures are subsequently processed

to differentiate between the traffic profiles generated by each actors. The

research on BSS tackles the following research points:

• P1 - It is reasonable to consider a number of sensors that is lower than

the number of wireless nodes in a given area. Therefore, approaches

based on UBSS must be considered.

• P2 - The efficacy of UBSS methods is contingent upon the veracity of

the sparsity assumption; thus, it is necessary to evaluate this assump-

tion in a wireless scenario.

• P3 - In order to obtain a UBSS solution, it is necessary to adopt a two-

step approach. The first step involves estimating the mixing matrix,

while the second step is concerned with the reconstruction of the source

matrix.
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S1

S3

SNR

UBSS
Causal

Inference

VBFA

Meta
Analysis

FCPatrol
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Jamming Detection

®
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Cooperative WSS
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Figure 1.2: A logical block representation of the proposed framework. The spectrum
patrol collects the over-the-air traffic profiles generated by the wireless network nodes.
Subsequently, for jamming detection, a BSS is performed to unmix the received signals,
and a causal inference technique is used for the detection. For spectrum sensing, two
different solutions are proposed. The first is based on a factor analysis model, and the
second is based on a meta-analysis approach.

1.2.2 Jamming Detection

Jamming attacks to hinder communication capabilities are becoming a criti-

cal aspect of wireless networks. A challenging issue is the detection of reactive

jammers that perform spectrum sensing and attack the network only when

legitimate communication is in progress. In this scenario, we introduce a

novel framework for reactive jamming detection using a patrol of RF sen-

sors external to the network to be protected. The solution relies on the

UBSS method and a new jamming detection based on causal inference. The

jamming detection part tackles the following research points:

• P4 - The possibility to exploit the causal relationship between the jam-

mer and the legitimate nodes.

• P5 - The development of an algorithm capable of quantifying the causal
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strength between the received signals.

• P6 - A statistical test that determines the significance of a causal link.

The detection of a jammer in a ISAC system is approached from a different

point of view in Chapter 5. In such a scenario, the objective is to detect the

presence of a deceptive jammer that is capable of modifying the perceived

location of actual targets. Starting from the echo signals acquired by the

base station (BS) and leveraging the latent space identification capability of

variational autoencoders (VAEs), the BS is able to detect the presence of an

intruder in a multiple-input multiple-output (MIMO)-orthogonal frequency-

division multiplexing (OFDM) system. In this context, the following research

points are addresses:

• P7 - Detection must be carried out without prior knowledge of the jam-

mer. Therefore, the problem is reformulated as an anomaly detection

task, where only target observations are available during the training

phase.

• P8 - Leveraging the maximized evidence lower bound (ELBO), obtained

after the training, to detect the presence of a deceptive jammer.

While the primary focus of this thesis is spectrum patrol for jamming de-

tection, Chapter 5 explores a complementary yet related topic: jamming

detection in a monostatic ISAC system. This investigation, though not in-

volving spectrum patrol directly, aligns with the broader scope of detecting

jamming threats.

1.2.3 Cooperative Wideband Spectrum Sensing

Sensors observe the same frequency band and convey the frequency domain

representations of the received signals to a FC. The FC then estimates the

occupancy state of multiple portions of a large bandwidth, which are termed

frequency bins. In particular, we introduce a novel wideband spectrum sens-

ing (WSS) algorithm based on factor analysis solved by a variational infer-

ence (VI) method that provides deeper insights into the RF environment be-

ing analyzed. The cooperative WSS addresses the following research points:
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• P9 - It is possible to recast the WSS problem as a generative latent

model through the application of factor analysis.

• P10 - The selection of the metric that is capable of differentiating be-

tween an occupied frequency bin and a free frequency bin.

• P11 - An investigation of the latent model is required in order to obtain

further insights from the RF environment under analysis, specifically

in relation to noise power estimation and user counting.

The cooperative WSS is approached from a different point of view in

Chapter 7. In that case, a meta-analysis solution is developed to detect

the presence of a signal in a frequency components. The proposed method

markedly diminishes the overhead on the backhaul link between sensors and

the FC. However, it is constrained to a spectrum sensing objective, thereby

precluding a more comprehensive understanding of the RF environment. In

this context, the following research points are addresses:

• P12 - The rule of meta-analysis for sensor fusion in order to lighten

the transmissions towards the FC.

• P13 - An approximation of the test statistic in each sensor that is re-

quired for the computation of the mixture detector.

1.3 Document Organization

This document is organized as follows. Chapter 2 introduces the scenarios

and the system models. In particular, the propagation characteristics and

channel impairments of a realistic scenario are modeled. Chapter 3 provides

an overview of the underdetermined blind source separation problem and

describes the proposed solutions. In Chapter 4, the problem of reactive jam-

mer detection is addressed, introducing the key concept of causality as a basis

for the proposed approach. Chapter 5 details a deceptive jammer detection

method for MIMO-OFDM ISAC systems, leveraging the latent space iden-

tification capabilities of the VAE. The cooperative WSS is investigated in
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Table 1.1: Summary of chapters and their connections.

Topic
System Model

(Ch. 2)
Numerical Result

(Ch. 8)

Blind Source Separation (Ch. 3) Section 2.2 Section 8.1

Jammer Detection through
Spectrum Patrol (Ch. 4)

Section 2.2 Section 8.1

Jammer Detection through
Latent Model (Ch. 5)

Section 2.4 Section 8.2

Cooperative Wideband
Spectrum Sensing (Ch. 6)

Section 2.3 Section 8.3

Meta-Analysis for WSS (Ch. 7) Section 2.3 Section 8.3

Chapter 6 and Chapter 7, employing two distinct methodologies: variational

Bayes factor analysis (VBFA) and meta-analysis. Chapter 8 provides the

validation of the proposed framework through extensive numerical results.

Finally, conclusions are drawn in Chapter 9, followed by the list of papers

published and submitted during this Ph.D., and the references.

Given that Chapters 3 to 7 build upon the system models introduced

in Chapter 2 and the numerical results discussed in Chapter 8, a summary

outlining the structure and flow of the thesis is presented in Tab. 1.1.



Chapter 2

Scenarios of Interest and

System Model

This chapter explores three critical scenarios that underscore the significance

of spectrum awareness. Specifically, we outline how a profound understand-

ing of the spectrum can significantly enhance network security in each sce-

nario. Detailed system models for each case are also provided.

2.1 Received Signal and Channel Model

The foundation of each system model begins with the equivalent low-pass

representation of the signal received by the jth sensor, expressed as

rj(t) =

∫ +∞

−∞
x̃l(t− τ)h̃j,l(t, τ)dτ + νj(t) (2.1)

where x̃l(t) represents the signal transmitted by node l, h̃j,l(t, τ) denotes

the channel impulse response between node l and receiver j, and νj(t) is

the additive white Gaussian noise (AWGN) with independent, identically

distributed (i.i.d.) real and imaginary components.

25
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In this work, we assume a linear time-invariant (LTI) channel, such that

h̃j,l(t, τ) = h̃j,l(τ) =
L∑

i=1

ciδ(τ − τi) (2.2)

where L indicates the number of paths, while ci and τi represent the complex

amplitude and delay associated with the ith path, respectively. It is possible

to define the delay spread as

τrms =

√∑L
i=1(τi − τ̄)2|ci|2∑L

i=1 |ci|2
(2.3)

where τ̄ is the average delay that can be written as

τ̄ =

∑L
i=1 τi|ci|2∑L
i=1 |ci|2

. (2.4)

In this thesis, in some scenarios we consider flat fading, while in others

is more appropriate to consider frequency selective channel. For this reason,

the following two subsections present the structure of the received signals in

both cases.

2.1.1 Narrowband Signal Scenario

Consider a channel with coherence bandwidth Bch. When the signal band-

width W satisfies W ≪ Bch, all echoes arrive within the symbol duration

(τrms ≪ 1/W ). Consequently, the individual echoes can be treated as a

single composite echo and the channel can be written as

h̃j,l(τ) =
L∑

i=1

ciδ(τ − τ̄). (2.5)
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In this scenario, the channel exhibits flat fading since its transfer function

remains constant across the bandwidth W :1

Hj,l(f) = F{h̃j,l(τ)} =
L∑

i=1

ci (2.6)

with F{·} representing the Fourier transform.

The received signal can thus be expressed as

rj(t) =
L∑

i=1

cix̃l(t) + νj(t) (2.7)

where, for simplicity, the transmission delay τ̄ is omitted. After sampling,

the nth sample of the received signal, between transmitter l and sensor j, is

described as a flat fading channel model as follows

rj,n = h̃j,lx̃l,n + νj,n (2.8)

where h̃j,l =
∑L

i=1 ci is the resulting complex channel gain. Given a large L,

for the central limit theorem, the channel gain follows a Gaussian distribution

which leads to the Rayleigh and Ricean channel model.

2.1.2 Wideband Signal Scenario

In cases where the band W is not significantly smaller than Bch, the chan-

nel exhibits frequency selective, given that the channel transfer function is

subject to change within W . An illustrative example of this scenario can

be found in the context of WSS, in which the presence of frequency-selective

multipath channels between the primary users (PUs) and sensors necessitates

such consideration. In this thesis, three International Telecommunication

Union (ITU) channel models proposed in [9] are considered:

• extended pedestrian A (EPA), useful for planning indoor or pedestrian

environments, such as shopping malls, airports, or train stations;

1Given f ∈ [0,W ], if Wτrms ≪ 1, then it is possible to approximate e−j2πfτi ≃ 1 for
each i = 1, . . . , L.
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Table 2.1: ITU channel models.

Channel Model path delays [ns]

EPA 0 30 70 80 110 190 410

EVA 0 30 150 310 370 710 1090 1730 2510

ETU 0 50 120 200 230 500 1600 2300 5000

Channel Model average power gains [dB]

EPA 0 -1 -2 -3 -8 -17.2 -20.8

EVA 0 -1.5 -1.4 -3.6 -0.6 -9.1 -7 -12 -16.9

ETU -1 -1 -1 0 0 0 -3 -5 -7

• extended vehicular A (EVA), which describes vehicular scenarios, such

as highways or urban roads;

• extended typical urban (ETU), which represents dense urban areas

with high-rise buildings.

The path delays and average power gains of each model are shown in Tab. 2.1.

In this context, we adopt a frequency-domain representation, assuming

that users transmit an OFDM signal. After applying the discrete Fourier

transform (DFT) at the receiver, the received signal can be described as

y
(i)
:,k = H

(i)
k x

(i)
:,k + n

(i)
:,k (2.9)

where H
(i)
k denotes the channel matrix, x

(i)
:,k represents the transmitted data at

the kth subcarrier for the ith observation, and n
(i)
:,k is the AWGN component.

Within this formulation, two distinct scenarios are analyzed.

MIMO system

In this case, we examine a MIMO link between a transmitter and a receiver

equipped with antenna arrays comprising NA elements. Therefore x
(i)
:,k =

w
(i)
T x

(i)
k is the discrete-time signal transmitted in the kth subcarrier of at
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time i, where w
(i)
T ∈ CNA×1 is the sensing beamforming vector used to map

each modulation symbol, x
(i)
k , to the transmitting antennas. y

(i)
:,k ∈ CNA×1

is the received modulation symbols at each antenna after the DFT block

and H
(i)
k ∈ CNA×NA is the channel matrix between two devices for the kth

subcarrier in the ith observation.

Distributed system

In this context, we analyse a network comprising NT single-antenna trans-

mitters and a set NR of single-antenna sensors deployed within a specified

area. Thus, x
(i)
:,k ∈ CNT,k×1 is the vector of frequency samples transmitted by

the users in the kth frequency bin at the ith observation, NT,k is the number

of transmitters in the kth frequency bin, y
(i)
:,k ∈ CNR×1 is the received mod-

ulation symbols at each sensor after the DFT block and H
(i)
k ∈ CNR×NT,k is

the matrix of channel coefficients in frequency domain.

2.1.3 ISAC Channel Model

In this work, an ISAC system under a jamming attack is also analyzed,

necessitating the characterization of the wireless channel for the sensing link

between the BS and the target (i.e., BS-target-BS). Specifically, a line-of-

sight (LOS) channel without Doppler effect is assumed. The channel matrix

H
(i)
k ∈ CNA×NA is given by

H
(i)
k = α

(i)
t e

jϕ
(i)
t e−j2πk∆fτ

(i)
t aR(θ

(i)
t )aT

T(θ
(i)
t ) (2.10)

where α
(i)
t , ϕ

(i)
t , τ

(i)
t , θ

(i)
t are the attenuation, phase, delay, and angle of

arrival (AoA)/angle of departure (AoD) of the target for the ith observation,

respectively, and ∆f is the subcarrier spacing.

The gain α
(i)
t includes the attenuation along the BS-target-BS path, that

is calculated as

α
(i)
t =

Ã
c2σ

(i)
RCS

(4π)3f 2
c

Ä
r
(i)
t

ä4 (2.11)

where r
(i)
t is the distance between the target and the BS in the ith observation,
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and σ
(i)
RCS is its radar cross-section (RCS).

The jammer-BS channel matrix H̃
(i)
k ∈ CNA×NJ , instead, can be written

as

H̃
(i)
k = α

(i)
J e

jϕ
(i)
J e−j2πk∆fτ

(i)
J aR(θ

(i)
BS,J)a

T
J (θ

(i)
J,BS) (2.12)

where NJ is the number of jammer antenna elements, α
(i)
J is the channel

attenuation given by the path-loss equation, ϕ
(i)
J is the phase shift, and τ

(i)
J

is the delay of the direct path. Furthermore, θ
(i)
BS,J and θ

(i)
J,BS are the AoA and

AoD of the LOS path.

2.2 Wireless Network Security

Private information and sensitive data rely heavily on the network infras-

tructure’s security [10]. This aspect is becoming of paramount importance

in several applications such as industrial internet of things (IoT), remote

e-health, and V2X communications, where the wireless medium conveys crit-

ical data. To further exacerbate the problem, the upcoming AI revolution,

while making intelligent and efficient devices on one side, may lead to a much

more vulnerable technology on the other [7, 11,12].

Considering the different security threats of wireless networks, we dis-

tinguish between passive (i.e., eavesdropping [13]) and active attacks [14].

Among the latter, the most common threat is denial-of-service (DoS), in

which a malicious transmitter (i.e., jammer) generates interference attempt-

ing to prevent legitimate users from accessing the network. A wide variety

of jammers have been investigated in the last two decades: the continuous

jammer that emits a persistent radio signal, the random jammer that mimics

a random behavior, and the reactive (smart) jammer capable of detecting on-

going communications via spectrum sensing and opportunistically interfere

them [15, 16]. However, this last type of jammer can hide by inactivating

the interference when the legitimate user is not communicating, thus making

its detection remarkably hard. Moreover, considering that building a reac-

tive jammer is becoming more accessible thanks to technological advances in
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Figure 2.1: A wireless network under attack by a jammer. A patrol composed of RF
sensors monitors the spectrum by sharing information with a fusion centre (FC) that
performs jamming detection. Hypothesis H1 is the detection of a jammer, while H0 is the
null hypothesis.

software-defined radio, developing new techniques to counteract such attack-

ers is now of paramount importance [17,18].

In this scenario, a solution that recently has been proposed makes use of

a spectrum patrol to enforce security of a wireless network [3, 7, 19, 20]. The

patrol can be composed by one or many devices that cooperate to monitor a

region, sensing the RF spectrum and detecting the presence of anomalies (i.e.,

malicious users). An illustration of the aforementioned scenario is shown in

Fig. 2.1. The patrollers can pair the information received by the legitimate

users and e.g., the access points (APs) or the BSs when available, with the

ones extracted from the spectrum analysis to detect the presence of a jammer.

2.2.1 System Model

Let us consider a scenario with a packet-based wireless network, a reactive

jammer, and a patrol. In particular, the wireless network is composed by

a set T of nodes (or users) and the patrol is formed by a set S of radio-

frequency sensors, with cardinalities NT and NR, respectively. All the actors,

namely the nodes, the sensors and the jammer are randomly deployed on a

two-dimensional area.
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Each RF sensor performs energy detection, collect the received energy

samples for a period Tob and forward the data to a FC. Information as

number of transmitting nodes, their positions, and physical and MAC layer

configurations of the legitimate network are unknown to the FC. In the

presence of frequency flat channel, the nth sample of the equivalent low-pass

signal received by the jth sensor is

rj,n =

NT+1∑

l=1

h̃j,lx̃l,n + νj,n (2.13)

where x̃l,n for l = 1, . . . , NT is the nth sample of the signal transmitted by

node l, x̃NT+1,n is the signal emitted by the jammer, h̃j,l for l = 1, . . . , NT is

the channel gain between node l and sensor j, while h̃j,NT+1 is the jammer-

sensor channel gain. The term νj,n ∼ CN (0, σ̃2
j ) is the AWGN at the jth

sensor with i.i.d. real and imaginary parts, noise power σ̃2
j = 2NS

0W where

W is the bandwidth and NS
0 is the two-sided power spectral density.

To reduce the number of collected samples and, consequently, the com-

putational burden for jammer detection, each sensor extracts the energy of

the received signal calculated over short time bins of duration Te such that

Tob = NeTe, where Ne is the number of energy samples. Thus, we obtain the

matrix Y ∈ RNR×Ne , whose entries yj,i are the energy samples

yj,i =
1

W

Nd∑

d=1

|rj,(i−1)Nd+d|2 (2.14)

where Nd = TeW is the number of signal samples used to compute the en-

ergy. This form of subsampling, while removing details (modulation, phase,

etc.) of the signals emitted by the jammer and the nodes, it retains all the

necessary information about the traffic profiles of the actors necessary to

perform jamming detection.

Under the assumptions of signals emitted by the nodes mutually uncor-



33 Chapter 2 – Scenarios of Interest and System Model

related and uncorrelated with the noise, we can express Y as2

Y = HX + Ω (2.15)

where the lth row of X ∈ R(NT+1)×Ne is the corresponding transmitter’s

energy profile and the last row contains the energy profile of the jammer.

The entries ωj,i = 1
W

∑Nd

d=1 |νj,(i−1)Nd+d|2 of Ω ∈ RNR×Ne are the noise en-

ergy samples and H ∈ RNR×(NT+1) is the matrix of the channel power gains

hj,l = |h̃j,l|2. The energy profiles are sent to a FC that performs the jammer

detection.

2.3 Dynamic Spectrum Sharing

In recent years, the ever-increasing demand for higher data rates has pushed

wireless technologies to their limits. The congestion observed in the sub-6

GHz spectrum has led researchers to explore millimeter-wave solutions [21],

underscoring the finite nature of the radio spectrum and highlighting the

need for its careful management and utilization. In response to the esca-

lating demand for wireless connectivity and the scarcity of RF spectrum

resources, spectrum sharing has emerged as a pivotal strategy to enhance

spectrum efficiency in next-generation wireless systems [22]. Interestingly,

despite the recognized scarcity of the spectrum, both unlicensed and licensed

bands are typically only partially utilized, exhibiting gaps of significantly

varying sizes [23]. Despite its potential, the widespread adoption of dynamic

spectrum sharing faces numerous technical challenges [24]. These challenges

include intelligent sensing and RF spectrum awareness, ensuring the protec-

tion of incumbent users, equitable distribution of spectrum resources, and

managing the coexistence of active and passive RF systems [7,25]. A critical

aspect of spectrum sharing is the ability to identify unused spectrum bands,

often encapsulated within the spectrum sensing framework [6,26]. Wideband

sensing typically relies on adopting a frequency domain representation of the

received signal and computing metrics to assess the occupancy state of each

2Equation (2.15) holds for sufficiently large sample size Nd = TeW .
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Figure 2.2: Wideband spectrum sensing scheme: an illustration of the data gathering
process and decision-making. The blue PU transmits in the blue bandwidth, while the
red PU transmits in the red bandwidth. Either both could be legitimate users, or one
could be an intruder exploiting unused portions of the bandwidth. Spectrum holes are
represented by yellow bars. The NR sensors could be SUs or wireless patrols that monitor
the spectrum in a specific area.

sub-band [27,28]. The core objectives of WSS can be summarized in two key

scenarios. First, maximizing spectrum utilization while minimizing interfer-

ence between PUs and secondary users (SUs). In this scenario, SUs utilize

WSS to detect available spectrum holes for communication purposes. Alter-

natively, WSS algorithms can be employed by a spectrum patrol to detect

unauthorized use of the spectrum. The wireless sensor patrol can schedule

periodic sensing phases to monitor the RF medium. Then, the occupancy

state of the spectrum can be forwarded to the authority that verifies the

presence of intruders. In this context, the capability to count the number

of transmissions within a bandwidth together with spectrum sensing can

enhance the available information.

2.3.1 System Model

The WSS performance can be significantly improved through the implemen-

tation of cooperative strategies where NR sensors observe the same frequency

band and share the frequency domain representations of the received signals
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to a FC [29–33]. The FC performs the WSS algorithm with the goal to

understand which frequency band segments are currently occupied and to

identify those that can be classified as spectrum holes.

To perform a spectrum sensing, sensors collect NS independent frequency

domain vectors by repeated measurements;3 we will call them observations or

snapshots, each with NB frequency components, y
(i)
j,: = (y

(i)
j,1, . . . , y

(i)
j,NB

)
T

with

i = 1, . . . , NS and j = 1, . . . , NR. The WSS strategy can be applied using

any frequency representation of data. Note that the vector y
(i)
j,: can be any

kind of frequency domain representation obtained with a Nyquist sampling

rate, such as a power spectral density estimate, the output of a filter bank

or, as assumed here, the output of a NB-points DFT [34]. We generally refer

to the elements of y
(i)
j,: as frequency bins.

The received signal at the ith observation in the jth sensor is denoted as

the NB length vector

r
(i)
j,: = ξ

(i)
j,: + ν

(i)
j,: (2.16)

where ξ
(i)
j,: and ν

(i)
j,: are the aggregation of unknown PUs signals and AWGN

with power σ̃2
j , collected by the jth sensor in the ith measurement, in time-

domain, respectively. The output of the DFT at the ith observation in the

jth sensor is denoted as the NB length vector

y
(i)
j,: = s

(i)
j,: + n

(i)
j,: (2.17)

where s
(i)
j,: = DFT[ξ

(i)
j,: ] and n

(i)
j,: = DFT[ν

(i)
j,: ]. The signal-to-noise ratio (SNR),

at the jth sensor, is defined as

SNRj =
E
[
ξ
(i)
j,:

Ä
ξ
(i)
j,:

äH]

E
[
ν
(i)
j,:

Ä
ν
(i)
j,:

äH] =
E
[
s
(i)
j,:

Ä
s
(i)
j,:

äH]

σ2
j

(2.18)

where the second term is derived by the Parseval’s identity applied to DFT

and express the SNR in the frequency domain with σ2
j = NB σ̃

2
j denoting the

3We assume that frequency occupancy does not change during the NS observations.
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noise power per frequency bin.

An overview of the data-gathering process and decision making, per-

formed by the FC, is presented in Fig. 2.2, where PU signals (red and blue

bars) occupy k∗ bins overall, while the remaining NB− k∗ contain only noise

(yellow bars). The goal of cooperative WSS is to identify the k∗ occupied

bins.

2.4 Integrated Sensing and Communication

As detailed in the previous Section 2.2, jamming attacks can jeopardize wire-

less communication networks. However, jamming poses a significant threat

to sensing infrastructures as well, particularly those aimed at locating pas-

sive targets through wireless signals. The vulnerability of backscatter sig-

nals received by radar in sensing applications represents a significant risk.

These signals are typically weak, rendering them susceptible to disruption

by jamming. This issue is especially concerning in the context of 6G, where

the emerging paradigm of ISAC systems is expected to revolutionize appli-

cations such as traffic monitoring and autonomous driving. ISAC systems

are sensitive to a range of traditional radar security threats (e.g., advanced

radar electronic countermeasure (ECM)), which are designed to deceive the

sensing systems [35]. Among those attacks, the deceptive jamming technique

known as digital radio frequency memory (DRFM) is particularly significant,

as it enables precise scaling and delaying of intercepted radar waveforms by

the jammer. Moreover, the global DRFM market is projected to experience

substantial growth due to the widespread adoption of AI. A deceptive jam-

mer can exploit information about signals transmitted by the BS to mimic

the behavior of a typical network user equipment (UE). For example, com-

mon pilot/reference signals proposed for integrating sensing capabilities into

communication networks [36–38] might already be known to intruders, po-

tentially jeopardizing network security. An illustration of the aforementioned

scenario is shown in Fig. 2.3. The deceptive jammer is able to falsify the BS’s

estimation of the target position. In this case we do not consider a patrol,

the BS itself is responsible to detect the presence of a jammer analyzing the

backscatter signal.
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Figure 2.3: The monostatic OFDM ISAC scheme in presence of a deceptive jammer.
Hypothesis H1 is the detection of a jammer, while H0 is the null hypothesis.

2.4.1 System Model

Transmitted Signal at the BS

Let us consider the monostatic MIMO OFDM system depicted in Fig. 2.3,

which consists of transmitter and receiver antenna arrays with both NA ele-

ments, used for communication and sensing. We assume that uniform linear

arrays (ULAs) with half-wavelength separation, i.e., d = λ/2, where λ = c/fc,

c is the speed of light, and fc is the carrier frequency, are employed for both

transmission and reception. According to [39], we assume that sensing is

performed using repeated time-frequency slots composed of NB subcarriers

and M OFDM symbols each. Within such slots, a sensing beam is acti-

vated beside a communication beam (for downlink communication towards a

user) [40]. However, for jamming detection, we pick one “observation” within

each slot, which refers to a vector containing the received OFDM symbols

(right after the fast Fourier transform (FFT) processing at the sensing re-

ceiver) across the NB subcarriers at time i.

With such a multibeam ISAC approach only a fraction of total power
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of the OFDM signal is designated to sensing purposes. The discrete-time

transmitted signal in the kth subcarrier of at time i, can be written as [40]

x
(i)
:,k = w

(i)
T x

(i)
k (2.19)

where k = 1, . . . , NB, i = 1, . . . , NS with NS the number of observations, and

w
(i)
T ∈ CNA×1 is the sensing beamforming vector used to map each modu-

lation symbol, x
(i)
k , to the transmitting antennas. By considering a beam

steering approach and performing a normalization with respect to the ef-

fective isotropic radiated power (EIRP) PTGT, we express the beamforming

vector as

w
(i)
T =

√
ρPTGT

NA

a∗
T(θ

(i)
T ) (2.20)

where ρ ∈ [0, 1] is the parameter used to control the fraction of the total power

apportioned to the sensing direction, PT is the transmit power, GT is the

transmit array gain along the beam steering direction, and aT(θ
(i)
T ) ∈ CNA×1

is the steering vector along the sensing directions θ
(i)
T . In particular, the

steering vector for the considered ULA can be expressed as

aT(θ
(i)
T ) =

[
1, ejπ sin(θ

(i)
T ), . . . , ejπ(NA−1) sin(θ

(i)
T )
]T
. (2.21)

For generality and to facilitate jamming detection in an unknown environ-

ment, we assume the interval between two consecutive observations exceeds

the channel’s coherence time. This results in different channel realizations for

the sensing receiver with each observation. Additionally, the characteristics

of both the target and jammer may vary across observations; for instance,

their positions relative to the BS may change.

Received Signal at the BS

Let us assume the presence of a point-like target within the sensing beam.

The received signal is processed by a typical OFDM receiver [40], such that

the vector y
(i)
:,k ∈ CNA×1 of the received modulation symbols at each antenna
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after the FFT block is

y
(i)
:,k = H

(i)
k x

(i)
:,k + H̃

(i)
k x̃

(i)
:,k + ζ

(i)
:,k + n

(i)
:,k (2.22)

where H
(i)
k ∈ CNA×NA is the channel matrix between the target and the BS

for the kth subcarrier in the ith observation, H̃
(i)
k ∈ CNA×NJ is the channel

matrix between the BS and the jammer, x̃
(i)
:,k ∈ CNJ×1 is the jammer signal, NJ

is the number of jammer antenna elements, ζ
(i)
:,k ∈ CNA×1 is the vector whose

elements represent the self-interference due to imperfect Tx–Rx isolation at

each receiving antenna, and n
(i)
:,k ∼ CN (0, σ2INA

) is the noise power at the

sensing receiver. Let us remark that, in absence of the jammer, the second

term in (2.22) is zero.

Regarding the self-interference term in (2.22), each element of vector ζ
(i)
:,k

can be interpreted as the signal scattered by a static target located very close

to the receiver [40]. Hence,

ζ
(i)
:,k = α

(i)
SI x

(i)
k [ejϕ

(i)
SI,1 , . . . , e

jϕ
(i)
SI,NA ]T (2.23)

where α
(i)
SI is the self-interference attenuation and is the same for all receiving

antennas, and [ϕ
(i)
SI,1, . . . , ϕ

(i)
SI,NA

] are the phase shifts at the antennas.

2.5 Jammer Model

A significant portion of this thesis is dedicated to the analysis of jamming

detection techniques. In this section, the various jammer models that have

been employed in this study are presented. In particular, two distinct mod-

els are considered: one designed to disrupt communication networks, and

another aimed at deceiving radar systems.

2.5.1 Reactive Jammer

A reactive jammer is an advanced ECM device designed to disrupt commu-

nication signals. Unlike traditional jammers that continuously emit interfer-

ence, reactive jammers detect and target specific transmissions only when
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they are active, making them more efficient and harder to detect.

The jammer is modeled by the 4-states machine shown in Fig. 2.4(a),

where two sensing states, S1 and S2, alternate with idle and jamming states,

I and J, respectively. In the idle state, the jammer remains silent for a time

TI and then it jumps into state S1. In state S1, the jammer senses the channel

for a time T1 to detect the transmission of a user; if no transmission is de-

tected (hypothesis H0), the jammer returns to the idle state. When a signal

is detected (hypothesis H1) the attacker goes into state J and interferes the

communication for a time TJ. During TJ, the jamming signal with power PJ

is transmitted. This jamming signal can assume several forms, e.g., white

noise, a sinusoid or a signal with the same modulation of the victim commu-

nications. Then, the attacker alternates between states J and S2, in which it

performs detection with sensing time T2.
4 Fig. 2.4(b) shows an example of a

jammer attack.

During S1 and S2, the jammer senses the channel in a bandwidth W

with sampling time 1/W . In the presence of frequency flat channel, the nth

sample of the equivalent low-pass signal received by the jammer is5

rJn =

NT∑

l=1

h̃Jl x̃l,n + νJn (2.24)

where x̃l,n for l = 1, . . . , NT is the nth sample of the signal transmitted by

node l, h̃Jl for l = 1, . . . , NT is the channel gain between node l and the jam-

mer, and νJn ∼ CN (0, σ2
J) is the AWGN with i.i.d. real and imaginary parts,

with noise power σ2
J = 2NJ

0W , where NJ
0 is the two-sided power spectral

density.6

The detection of a transmission is performed with an energy detector

4Note that the sensing time T2 is usually shorter than T1 to allow a more effective
sensing [41], [42].

5We also consider that the coherence time of the channel is larger than the sensing
times, T1 and T2.

6We consider x̃l,n = 0 if node t is not transmitting at time instant n.
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Figure 2.4: (a) Finite-state machine model for the reactive jammer. Hypothesis H1 is
the detection of a transmission, while H0 is the null hypothesis; S1 and S2 are the sensing
states; I and J are the idle and jamming states, respectively; τ is the sojourn time in a
given state. (b) An example of reactive jamming. The jammer senses the spectrum for a
period T1 and detects the transmission of a user (in blue). Then, it alternates jamming
(in red) and short sensing phases to make the jamming operation more effective.

(ED) [41] represented by

2

σ2
J

Np∑

n=1

|rJn|2
H1

≷
H0

ξ (2.25)

where ξ is the detection threshold obtained fixing the false alarm probability

to 0.01. The time-bandwidth product of the ED is thus Np ∈ {WT1,WT2}
depending on the current jammer state.

2.5.2 Deceptive Jammer

A deceptive jammer in radar systems is a sophisticated ECM designed to

mislead radar operators by transmitting false signals. These jammers create

fake targets or alter the perceived location and speed of real targets, confusing

the radar’s tracking and detection capabilities. The most efficient way to

implement a deceptive jammer consists to use a DRFM. It is a high speed,

analog-to-digital converter and storage system which provides the capability

to sample, process, and play back RF signals with minimum loss of fidelity.

In the event that the jammer is integrated into the cellular network, it

is able to rapidly obtain pertinent data and formulate an effective strat-

egy. For instance, in a hypothetical 5G NR network where ISAC is per-
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formed using the physical downlink shared channel-demodulation reference

signal (PDSCH-DMRS), also designated as the pilot, the jammer may be

able to access the primary and secondary synchronization signals in order

to obtain the physical cell identity. The cell ID comprises data regarding

the initialization of the PDSCH-DMRS. Consequently, the jammer is aware

of the resource elements (REs) where the PDSCH-DMRS is transmitted and

what symbols it is composed of, thus facilitating the transmission of a delayed

version of the pilot towards the BS.

Let us consider a deceptive jammer capable of mimicking the signal trans-

mitted by the BS and injecting a false delay into the received signal with the

aim of falsifying the BS’s estimated location of the target. Specifically, this

study assumes that the jamming attack occurs in the ith observation and

kth subcarrier, using the same symbols x
(i)
k transmitted by the BS. This rep-

resents a worst-case scenario where the radar receiver is completely misled.

The jammer comprises a transmitter antenna array with NJ elements

arranged in an ULA with half-wavelength separation and adopts OFDM

modulation with K subcarriers. Therefore, its signal can be written as

x̃
(i)
:,k = w

(i)
J x

(i)
k e

−j2πk∆fτ
(i)
f (2.26)

where w
(i)
J ∈ CNJ×1 is the jammer beamforming vector and τ

(i)
f is the false

delay introduced by the jammer. The beamforming vector can be expressed

as

w
(i)
J =

√
PJGJ

NJ

a∗
J(θ

(i)
J ) (2.27)

where PJ is the jammer signal power, GJ is the array gain along the beam

steering direction, and aJ(θ
(i)
J ) ∈ CNJ×1 is the steering vector.
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Blind Source Separation

The spectrum patrol captures mixtures of signals transmitted by network

nodes and extracts the energy profiles shown in (2.14). These profiles retain

information on the nodes’ temporal behavior without the need for demod-

ulation. To detect the presence of a jammer through causal inference, the

first step is to characterize the temporal transmission patterns of each node

in the wireless network. This necessitates reconstructing the temporal traffic

profiles, X, as if they were directly measured at each node. However, due to

the wireless medium, the sensors capture a mixture of signals from the nodes,

as shown in (2.15), necessitating an unmixing process to isolate X [43, 44].

In literature, the solutions put forth to accomplish this unmixing process are

collectively referred to as BSS.

3.1 Existing Works

The BSS aims at recovering the source matrix X starting from the obser-

vations, Y, without any prior knowledge of the channel matrix H. This

technique has wide applications in areas such as telecommunications, audio

processing, and medical signal analysis. The fundamental goal of BSS is to

recover the original source signals from observed mixtures, relying on the

assumption that the sources are statistically independent or uncorrelated. In

the field of audio processing, the source separation problem is analogous to

43
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the cocktail party scenario, wherein multiple individuals engage in simulta-

neous discourse within a confined space, and the listener attempts to discern

one particular conversation. [45]. There are two main approaches to BSS:

determined blind source separation (DBSS) and UBSS.

In the DBSS approach, the number of observed mixed signals NT + 1

is equal to or greater than the number of source signals NR. In literature,

various methods for DBSS have been proposed, e.g., matrix factorization [46]

and tensor decomposition [47,48], to name a few. However, the most popular

technique is the independent component analysis (ICA). It exploits the sta-

tistical independence of the source signals to separate them. By maximizing

the non-Gaussianity of the signals or minimizing mutual information, ICA

effectively unmixes the observed signals [7].

In the UBSS approach, the number of observed mixed signals is less than

the number of source signals. This scenario is more challenging because the

system of equations is underdetermined, leading to an infinite number of pos-

sible solutions. Techniques for UBSS often involve additional assumptions or

constraints, such as sparsity of the source signals [1]. They presumes that the

source signals exhibit sparsity in a specific domain, such as time or frequency,

implying that only a few sources are active at any given moment in these

domains. To achieve sparsity, UBSS is typically applied following a linear

transformation into the time-frequency domain. Rickard et al. introduced

a method known as Degenerate Unmixing Estimation Technique (DUET)

in [49], employing a windowed Fourier transform. A comparable approach is

discussed in [50], where the short-time Fourier transform is utilized.

3.2 Problem Statement

We consider the worst-case scenario in which the number of RF sensors is

less than the number of transmitters, i.e., we solve an underdetermined blind

source separation (UBSS) problem. This implies that the mixing matrix H is

not invertible, making the classical overdetermined BSS techniques inappro-

priate. Therefore, as in [1], we tackle the UBSS problem by first estimating

the mixing matrix and then the source matrix, leveraging on its sparse na-
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ture, i.e., assuming that each column of X has few non-zero entries. This

assumption means that few nodes are transmitting simultaneously. If the

MAC layer is based on scheduled access protocol, then at most two actors

will transmit simultaneously: a network node and the jammer. Instead, if

the network adopts a random access protocol, multiple nodes might concur

in the transmission and collide. However, in a well-designed random access

protocol the network is not overloaded and the source matrix, X, is likely to

be highly sparse. In the following, we propose a novel UBSS algorithm based

on [1] that exploits such sparsity. Unlike most of the literature regarding

UBSS, in which the sources that have to be separated are audio signals, we

tailor our solution to deal with energy profiles transmitted by wireless nodes.

In this sense, we did not use operations such as transformations to the time-

frequency domain, that are common in the UBSS methods to increase the

sparsity. For this reason, we propose a modified version of the algorithm

in [1].

3.3 Estimate of the Mixing Matrix

We now aim to estimate H starting from the observations, Y, relying on

the sparsity of X. For the sake of clarity, we first introduce the general

estimation methodology and then remark two different situations: with or

without jammer.

3.3.1 Transmission detection

Given the matrix of energy profiles, Y, to reduce the number of samples

and lighten the channel matrix estimation, the FC performs transmission

detection. In particular, it aims to identify the samples corresponding to

the occurrence of a transmission. The transmission detection algorithm is

detailed in Algorithm 1 where, given Y as input, we analyze one column at

a time. When a detection arises (line 5 of the algorithm) we start saving the

columns until positive detection continues to occur. The output is a set of

matrices Yk, with k = 1, . . . , K, such that Yk = Y:,ik:ik+Nk
is a sub-matrix of
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Algorithm 1: Transmission detection

Input : Y ∈ RNR×Ne , ϵ†

Output: Y1, . . . ,YK

1 k ← 1
2 Initialize Yk ← 0
3 for i from 1 to Ne do
4 TXi = false
5 vs ← 2

σ2
S
ys,i>ϵ, ∀s=1, . . . , NR

6 if at least one vs is true then
7 Yk =

[
Yk y:,i

]

8 TXi = true

9 else
10 if TXi−1 = true and 2≤ i<Ne then
11 k ← k+1
12 Initialize Yk ← 0

13 end

14 end

15 end

† ϵ is the detection threshold obtained fixing the false alarm probability to 0.01.

Y composed by its Nk consecutive columns in which the kth transmission has

been detected. The transmission starting index is denoted as ik. Each matrix

Yk can contain the superposition of the energy profiles transmitted by the

nodes, the jammer, and the thermal noise. Fig. 3.1 depicts an example of the

jth row of Yk. If the transmission detection is successful, the remaining rows

of Yk should have the same structure as the jth. However, since each row

of Yk corresponds to the measurement carried out by a different RF sensor,

the signals of the transmitters will be mixed in different ways depending on

the propagation scenario. Let us now reformulate eq. (2.15) as

Yk = HXk + Ωk (3.1)

where Xk = X:,ik:ik+Nk
and Ωk = Ω:,ik:ik+Nk

.
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3.3.2 Pseudo channel matrix estimation

In this phase we estimate a raw oversized version of the channel matrix, called

pseudo channel matrix. We now feed matrix Yk as input to the algorithm

in [1], that is further described in the following. Initially, we divide element-

wise each row of Yk by its qth row, to obtain the ratio matrix

R = Yk/yk
q,:. (3.2)

Fig. 3.1 depicts an example of the jth row of R in which the transmission

of a smart jammer is partially overlapped with the one of a legitimate user.

This row is the result of the division between the jth and the qth rows of Yk

with j ̸= q.

Then, R is divided into the sub-matrices Ri, i = 1, . . . , I using the

quantization-based clustering algorithm proposed in [1]. Fig. 3.1 offers a

graphical illustration of this operation: looking at the jth row of R, rj,:, it

is possible to observe Ij = 3 clusters of samples. Each cluster is the set of

samples whose energy values are all similar and are depicted in blue, red,

and purple, respectively. As an example, let us imagine that the blue cluster

is labeled as cluster 1. If we select all the columns of R identified by the

same column indexes of cluster 1, we obtain the sub-matrix R1. The same

operation can be repeated for all the clusters identified by each row of R,

overall generating I =
∑NR

j=1 Ij sub-matrices. For more details about the

clustering algorithm please refer to [1, Section II].

Considering the generic sub-matrix Ri, we now estimate the correspond-

ing column of the pseudo channel matrix as [1]

ĥ:,i =
[⟨ri1,:⟩, . . . , ⟨riNR,:⟩]

T

∥[⟨ri1,:⟩, . . . , ⟨riNR,:⟩]
T∥2

i = 1, . . . , I (3.3)

As detailed in Algorithm 2, which summarizes the complete mixing matrix

estimation procedure, the steps between lines 4 and 8 are repeated for q =

1, . . . , NR to estimate a pseudo channel matrix Ĥk ∈ RNR×Nh . Note that due

to the concatenation procedure on step 8 of Algorithm 2 the final number of
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Figure 3.1: Above, example of the jth row of Yk in a scenario with a transmitter and
the jammer. Below, the corresponding jth row of R where we note the presence of three
clusters. R1, R2, and R3 are the sub-matrices obtained after the clustering operation and
corresponding to the samples associated to the user transmission, the jammer, and the
overlap of the two, respectively.

columns of Ĥk is now indicated with Nh.

3.3.3 Dimensionality reduction

Due to the estimation procedure, the pseudo channel matrices are likely

to have a larger number of columns than H. For this reason, we reduce the

dimensionality of Ĥk as follows. By performing singular value decomposition

(SVD) of Ĥk = UΛVT, the matrices of the singular vectors U, V, and the

diagonal matrix of the singular values Λ are obtained. The singular values

Λn, with n = 1, 2, . . . , Nh, are thus sorted in descending order along with the
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Algorithm 2: Estimate of the mixing matrix

Input : Yk ∈ RNR×Nk , k = 1, . . . ,K
Output: W

1 for k from 1 to K do

2 Ĥk ← [ ]
3 for q from 1 to NR do

4 R← Yk/yk
q,:

5 R1, . . . ,RI ← FindSubMatrices(R)
6 for i from 1 to I do

7 ĥ:,i ←
[⟨ri1,:⟩,...,⟨riNR,:⟩]

T

||[⟨ri1,:⟩,...,⟨riNR,:⟩]
T||2

8 Ĥk ←
î
Ĥk ĥ:,1 . . . ĥ:,I

ó

9 end

10 end
11

12 Wk ← Step 3: DimensionalityReduction(Ĥk)

13 end
14 W← Step 4: DuplicateElimination(W1, . . . ,WK)

Step 2:
Pseudo
Channel
Matrix

Estimation

corresponding singular vectors. The number of independent columns Nw of

Ĥk is given by the number of significant singular values, i.e.,

Nw =

Nh∑

n=1

1{Λn>Λ1Λ̄} (3.4)

where Λ̄ is the singular value selection parameter chosen, e.g., according to

the scree plot approach [51]. The decision on the singular value Λn is taken

comparing the ratio Λn/Λ1 with the threshold Λ̄ = 0.01. Such value means

that Λn is two orders of magnitude smaller than the maximum singular value

Λ1. To accomplish the dimensionality reduction, a linear transformation is

performed using a projection matrix Ṽ ∈ RNh×Nw obtained retaining only

the Nw singular vectors of V corresponding to the most significant singular

values. Therefore, Ĥk can be projected onto a subspace whose dimensionality
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is reduced from Nh to Nw by

Wk = ĤkṼ (3.5)

where Wk ∈ RNR×Nw is the kth reduced pseudo channel matrix.1 Iterat-

ing the procedure for each pseudo channel matrix Ĥk, we estimate a set of

reduced pseudo channel matrices Wk, with k = 1, . . . , K and concatenate

them such that W̃ = [W1,W2, . . . ,WK ].

3.3.4 Duplicate elimination

After the complex procedure described above, it is possible that W̃ contains

multiple estimations of the same column of H. In this case, an additional

operation is performed to remove the duplicates from W̃. Given a column

w̃:,i, we recognise that w̃:,j is a duplicate if

∥w̃:,j − w̃:,i∥2 < β (3.6)

where β is the elimination threshold. In the end, we obtain the estimated

channel matrix W ∈ RNR×NW , whereNW is the number of estimated columns.

In the numerical results section, a conservative threshold can reasonably be

chosen, i.e., β = 0.05.

3.3.5 UBSS without Jammer

Note that considering the absence of the jammer, collisions, and thermal noise

a graphical illustration of the matrix Xk is shown in Fig. 3.2, where pk =

[xk,ik . . . xk,ik+Nk
] is the vector of Nk energy samples of the packet transmitted

by node k, and ik is the index that identifies the packet transmission starting

time.2 Here we have K = NT matrices, and Yk corresponds to the packet

transmitted by the kth node, pk. Therefore, (3.1) becomes Yk = h:,k ⊗ pk

1It is important to note that, as a consequence of the dimensionality reduction, the
entries of Wk may not be equal to the channel gains, and they can also be negative.

2To simplify the algorithm explanation, without loss of generality, the example in
Fig. 3.2 considers one transmitted packet per node.
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Figure 3.2: An illustration of the rows of X. Row XNT+1 contains the energy profile of
the signal emitted by the jammer. If the jammer is absent it is a row of zeros.

and the entries of R are ri,j = hi,k/hq,k. Hence, the estimator (3.3) reduces

to

ĥ:,k =
h:,k

∥h:,k∥2
(3.7)

providing a perfect estimation of the channel matrix coefficient except for a

normalization factor. Such normalization does not affect the reconstruction

of the temporal profiles of the activities of the nodes. In this ideal scenario,

the clustering operation in R returns the same whole matrix, from which it

is possible to estimate the kth column of H.

3.3.6 UBSS with Jammer

The problem becomes more challenging in the presence of a jammer because

each transmitted packet could experience at least one collision with the jam-

ming signal.3 In this case, a graphical illustration of the matrix Xk is shown

3In the case of random access protocol, collisions can also occur between the packets
transmitted by legitimate users. However, the algorithm does not need to distinguish
between different types of collisions.
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in Fig. 3.2, where the jamming packets in row NT + 1 are highlighted in red.

Here, due to the presence of the jammer packets, Yk is the superposition of

the transmissions of the jammer and the kth legitimate node. Evaluating the

corresponding matrix R and performing the clustering operation, we obtain

the three submatrices whose jth rows are depicted in Fig. 3.1. The first, in

blue, is composed of the columns of R corresponding only to the transmission

of the kth node, the second, in red, is obtained by the columns correspond-

ing only to the transmission of the jammer, while the third, in purple, is

composed by the columns corresponding to the superposition of the trans-

missions of the node and the jammer. The estimation in (3.3) is performed

for the three sub-matrices, obtaining three estimated pseudo channel matrix

columns. Considering the sub-matrix R3, the corresponding estimated col-

umn ĥ:,3 is wrong because of the superposition of the two signals. However,

it is dependent of ĥ:,1 and ĥ:,2, and, thus, deleted through dimensionality

reduction.

3.4 Unmixing by OMP

Once the mixing matrix W is estimated, the reconstruction of the trans-

mitted energy profiles is performed. More precisely, we aim to estimate X

starting from the observations Y and the estimated mixing matrix W. There

are three possible approaches:

• Determined, i.e., NR = NW, if W has full rank, then X = W−1Y.

• Overdetermined, i.e., NR > NW, it is possible to find an approximate

solution X = W†Y, where W† is the pseudo-inverse of W.

• Underdetermined, i.e., NR < NW, where we generally have an infinite

number of solutions and the problem is solved through an optimiza-

tion algorithm. Hence the objective here is to maximize/minimize an

objective function under a set of constraints.
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As previously outlined, our analysis is based on an underdetermined scenario

with a sparsity constraint. The problem is thus formulated as follows

min
x:,i

∥x:,i∥0 (3.8)

s.t. Wx:,i = y:,i

for i = 1, . . . , Ne. This problem is recognized as NP-hard and can be ad-

dressed using two primary methods. The first method is basis pursuit, a

sophisticated numerical technique that, in some instances, achieves an ex-

act solution by substituting the l0 norm with the l1 norm [52]. The sec-

ond approach, which we employ in our solution, is matching pursuit. This

method seeks a sequential, sub-optimal representation through a greedy al-

gorithm [53]. Specifically, in this study, we reformulate equation (3.8) to be

solved using the orthogonal matching pursuit (OMP) algorithm [54], i.e.,

min
x:,i

∥y:,i −Wx:,i∥2 (3.9)

s.t. ∥x:,i∥0 ≤ γ

where γ is the sparsity constraint.

The output of the OMP is a matrix X̂ ∈ RNW×Ne where, due to the

dimensionality reduction adopted, some entries could get a sign flip; hence,

the absolute value of the elements of X̂ is taken. Given that the number of

columns of the estimated mixing matrix W might be different from the real

one, even after OMP, the matrix X̂ might have a different number NW of

rows than X. Usually, in these cases, part of the estimated sources contains

only residual crosstalk due to the separation. For this reason, we perform

a skimming operation that deletes all the negligible rows. This operation is

performed deleting all the rows x̂i,: that satisfy

max x̂i,:

max X̂
< Γ (3.10)

where max X̂ is the maximum value in X̂, and Γ ∈ [0, 1] is the skimming
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Figure 3.3: Above are the true energy profiles of a single transmitter and the jammer.
In the middle, the energy profiles recovered with the algorithm proposed in this chapter.
Below is the result with the algorithm in [1]. For both algorithms, NR = 5, and OMP
is used in the second step. Notice that three sources are reconstructed instead of two in
the image below. The phantom source is represented in purple and corresponds to the
overlap between transmitter and jammer packets. On the contrary, the proposed solution
correctly recovers only two sources with appreciable fidelity of the jammer profile.

threshold. A threshold Γ = 0.001 is reasonable, because the residual crosstalk

is notably smaller than the correctly estimated sources. In conclusion, at the

end of the UBSS we obtain a matrix Z ∈ RL×Ne where L is the final number

of estimated sources.

3.4.1 Sparsity

Given the fixed sparsity in (3.9), how do we determine the appropriate value

for γ? In other words, under what conditions can we assert the uniqueness

of the sparsest solution? The answer to these questions lies in the concept
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of the spark. The spark of a matrix W ∈ RNR×NW is defined as the smallest

number of columns of W that are linearly dependent. According to the

uniqueness theorem, if the equation Wx:,i = y:,i has a solution x:,i such that

∥x:,i∥0 < spark(W)/2, then this solution is guaranteed to be the sparsest

possible.

However, the spark of a matrix is NP-hard to compute [55]. Therefore, to

avoid this problem, a possible solution is based on the definition of the mutual

coherence. The value of γ is chosen according to the mutual coherence, the

largest normalized inner product between distinct columns of W, i.e.,

µ(W) = max
1≤i,j≤NW,i ̸=j

|wT
:,iw:,j|

∥w:,i∥2∥w:,j∥2
. (3.11)

A large µ(W) means that the columns of W are highly correlated and, thus,

the signal reconstruction is hard. It has been proved that [56]

spark(W) ≥ 1 +
1

µ(W)
. (3.12)

Thus, a stricter version of the uniqueness theorem can be applied: if the

problem (3.9) admits a solution x:,i with ∥x:,i∥0 < 1
2

(
1 + 1

µ(W)

)
, then it is the

sparsest possible. Hence, the sparsity constraint is set to

γ =
1

2

Å
1 +

1

µ(W)

ã
. (3.13)

Since the estimated channel matrix, W, might have duplicated columns,

then µ(W) ≃ 1 and γ = 1. Setting the sparsity constraint to 1 has a direct

consequence in the estimation of the sources, clearly portrayed in Fig. 3.3, in

which a scenario with NR = 5 sensors, a single transmitter, and the jammer is

considered. In fig. 3.3, the image above shows the transmitted signals, while

in the middle and below the reconstructed sources with and without the

dimensionality reduction procedure are depicted, respectively. It is possible

to notice how in both cases, the reconstructed signal in blue is fragmented

because of the sparsity constraint that imposes that in each column x:,i only

one entry has to be nonzero. Hence, in case of a collision, only one of the
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colliding signals will be correctly estimated in each energy sample. This

approach leads to a non-perfect signal reconstruction when collisions arise,

but it is tolerable since its impact on the jamming detection is low, as shown

in the simulations in Chapter 8. Moreover, Fig. 3.3 shows how dimensionality

reduction allows a more accurate reconstruction of the sources.



Chapter 4

Jammer Detection through

Spectrum Patrol

A reactive jammer poses a significant threat to the physical layer security

of communication networks. Unlike other types of jammers, its behavior

is uniquely dependent on the actions of legitimate users, initiating an at-

tack only when the user transmits. This creates a causal relationship where

the user’s transmission triggers the jammer’s interference. In this chapter,

we leverage this characteristic to develop a method for detecting reactive

jamming. Specifically, we consider a spectrum patrol that is presumed to

lack prior awareness of legitimate networks and is tasked with discerning the

presence of a reactive jammer.

4.1 Existing Works

Historically, jamming has been primarily studied within the context of spread

spectrum communications for military applications. However, over the past

decade, its scope has expanded to civilian domains, prompting numerous

studies on its impact on wireless networks [57,58]. In [59], the authors study

the detection of reactive jamming in direct sequence spread spectrum (DSSS)

wireless communications systems. The detection is carried out using two met-

rics based on the packet delivery ratio (PDR), namely, an observed PDRo and

57
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an estimated PDRe. The first is the ratio of correctly received packets over

the total number of transmitted ones, while the second PDR is predicted

through the chip error rate of the packet preamble. The rationale behind

this detection strategy is that the jammer cannot interfere the first preamble

symbols of a packet because of the non-negligible sensing time. In [60], a

scheme for detecting a jammer exploiting the received signal strength (RSS)

and the errors of the received bits sequence is proposed. If a bit is received

with an error and the corresponding RSS value is high, then there should be

an external interferer (i.e., the jammer); instead, if the corresponding RSS

is low, errors are likely caused by the weak signal, e.g., due to multipath

or shadowing. Since jamming can severely affect the performance of Global

Navigation Satellite Systems (GNSSs), characterized by remarkably low re-

ceived powers, several works tackle this problem. For example, in [61], the

authors exploit the carrier-to-noise density power ratio to detect the attacker.

The rationale behind this is that the victim perceives a significant increase

in the noise power in the presence of jamming. In [62], the authors study

the physical layer security of a pilot-based massive MIMO system proposing

a generalized likelihood ratio test (GLRT). In [63], the authors present an

algorithm for jammer detection in wide-band cognitive radio networks based

on compressed sensing (CS) and ED. They first sample the wide-band signal

through CS and identify a set of sub-bands occupied by legitimate users and

the jammer. Then, the power spectral density is used to detect the jammer

based on the information about licit transmitters and the jammer stored on a

database. The proposed method is computationally inexpensive but exhibits

a high missed detection rate and relies on a database that contains informa-

tion about all the legitimate users and the jammer, which might not always

be feasible. In [64], the authors propose three classifiers, namely K-nearest

neighbors, random forest, and Bayesian classifier to detect a proactive jam-

mer. In [65], a framework to guide the receiver in selecting the most suitable

between many conventional anti-jamming schemes is proposed.

Recently, the introduction of AI techniques in the field of wireless commu-

nications gave impetus to developing machine learning (ML)-based jamming

detectors. In [66], two neural networks (NNs) are proposed to detect and
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classify a jammer in OFDM transmissions. The authors suggest the intro-

duction of a pre-processing stage in which a time-frequency transform is

performed to improve the NNs performance. A similar method is applied

in [67] to an OFDM-based satellite communication system. Both detection

and classification are also performed in [68] where the authors propose an

ML-based approach that exploits only the PDR and the RSS, retrievable at

the GW side without demodulating the signals received from the network

nodes. In [69], a large dataset with signal features that identify jamming

signals is generated. Then, random forest, support vector machine and a

NN are tested in a wireless communication network using this dataset for

training. In [70], a multi-layer perceptron NN is used to classify and detect

a jammer attempting to interfere DVB-S2 signals. In [71], the authors sug-

gest combining cyclic spectral analysis and NNs for jamming detection in

wide-band cognitive radios. All the proposed ML-based jamming detectors

have the same general operating scheme, composed of features extraction and

selection followed by training and testing of a specific algorithm.

The detection schemes mentioned above need to be performed on the re-

ceiver side, i.e., within the network, as they require almost complete knowl-

edge of the details of the communication protocols and the transmitted sig-

nals. For example, in [59], the prior knowledge of the first few jamming-free

bits in the preamble is assumed, while in [60] the capability of detecting bit

errors is mandatory for the detection, thus requiring the demodulation of the

received packets. Instead, the AI-based solutions are sensitive to generaliza-

tion errors because if the training is performed using specific signal formats

(e.g., OFDM in [66, 67]), then a change in the format will require a brand

new training procedure.

The main problem of the listed approaches is that all the computational

burden is carried by only one device, which is usually part of the network

infrastructure, and this limits the overall performance of both the network

and the jamming detection. From this perspective, the idea of adopting a

set of crowdsourced spectrum sensors (or patrollers) that cooperate to detect

violations of the spectrum usage policies appears attractive [3,19]. In [3], the

authors address a collaborative signal detection problem in which they aim
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Figure 4.1: Block diagram of the patrol system with NR sensors. In the FC, after a
transmission detection, UBSS is performed, then separated energy profiles are transformed
into binary series analyzed by transfer entropy (TE) to detect the presence of a jamming
attack.

to identify the optimal subset of sensors and their configurations to maximize

the detection performance given certain resource limitations. In [19], mobile

users cooperate through a crowdsourced enforcement architecture to detect

and localize an infraction effectively. Both the presented methods rely on

the spectrum patrollers receiving only the signal emitted by the intruder

(i.e., a jammer). However, in a more general scenario, the transmission of

the jammer concurs with the ones of the legitimate users, causing the sensors

to receive a mixture of superposed signals.

4.2 Problem Statement

We propose a novel framework for detecting reactive jammers that exploit the

mixed signals received by the spectrum patrollers and an original methodol-

ogy based on causal inference. The detection strategy is quite general, includ-

ing situations where legitimate users belong to different networks sharing the

same spectrum. For this reason, the spectrum patrollers observe mixtures

of signals transmitted over the air by the network nodes and extract energy

profiles collected in the matrix Y in (2.15). Such profiles retain informa-

tion on the temporal behavior of the nodes without requiring demodulation.
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Following this pre-processing stage, the solution applies the UBSS algorithm

presented in Chapter 3, resulting in the matrix Z, which provides an es-

timation of the energy profiles transmitted by each network node and the

jammer.

After signal separation, we analyze the temporal relationship between

the signals emitted by the nodes to detect the presence of an intruder. If

the jammer is reactive, it only transmits after sensing a legitimate user’s

transmission. This behavior can be modeled as a causal relationship, where

the legitimate user’s transmission is the cause, and the jammer’s attack is

the effect. Therefore, our objective is to detect the presence of the jammer

by identifying this causal relationship using causal inference tools [72]. To

achieve this, we propose a novel jamming detection methodology based on

directed information, a metric that quantifies causal relationships between

time series, originally introduced in [73] and later reinterpreted in [74] under

the name transfer entropy (TE). The complete processing chain is depicted

in Fig. 4.1. The green blocks correspond to the UBSS step, while the excision

filter and blue blocks are discussed in detail in this chapter.

4.3 Excision Filter

The jamming detection algorithm presented in Section 4.5 is based on the

temporal dynamics of the packet flows generated by the nodes and the jam-

mer. To lighten the causality inference procedure, we process the time series

in Z to obtain sequences of 0s and 1s; this is performed by an excision filter

which zeroes out the energy samples due to crosstalk [75]. The output is

matrix A ∈ RL×Ne with entries

al,n =

{
1 if zl,n ≥ λl

0 otherwise
(4.1)
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where the threshold λl is set as a fraction q ∈ [0, 1] of the maximum of zl,:,

i.e.,

λl = q ·max
n

zl,n, l = 1, . . . , L. (4.2)

In the numerical results section, the threshold q is set to 0.01.

4.4 Causality

In statistics, given two random variables B and C, the focus is often on

prediction. For instance, one might be interested in determining the likely

value of B given that C = c, or in calculating the probability that B = b

conditioned on C = c. Causality, however, introduces a different inquiry,

aiming to understand the consequences of directly intervening in the system

[76]. Specifically, one might ask: What effect does an intervention on C have

on B? 1

Answering this question requires knowledge of the system’s causal struc-

ture. In the context of time series analysis, a widely accepted definition of

causality is provided by Granger Causality, which asserts that: a time series

ai is said to Granger-cause another time series aj if past values of ai contain

information that helps predict aj beyond what is contained in past values of

aj alone [77].

There are two primary approaches to evaluating Granger Causality:

• Model-based: this approach involves the use of a specific model, with

the most common being the autoregressive model, where the current

sample is expressed as a linear combination of past samples.

• Model-free: this approach is employed when selecting an appropri-

ate model is challenging, such as in cases of non-linearity between the

1It is important to distinguish between the concepts of intervention and observation.
If we observe that C = c, it can be concluded that the condition of the system has caused
C to be worth c. However, if we intervene and set C = c, we are effectively removing
all causal links that may exist between C and other variables. For further investigation,
please refer to [76].
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present and past. A commonly used tool in this context is TE.

4.4.1 Transfer Entropy

The smart jammer transmits solely after the detection of the transmission of

a legitimate user. Hence, we expect to find an underlying causal relationship

between the energy profiles transmitted by the users and the jammer, in

which the latter is the effect and the others are the causes. A state-of-

the-art tool for causal inference in time series is TE [74], [73]. Considering

two rows ai,: and aj,: of A, the TE from ai,: to aj,: is a conditional mutual

information defined as

TEi→j(k, r) = I (aj,n; ai,n−1:n−r|aj,n−1:n−k)

=
∑

aj,n−1:n−k,
ai,n−1:n−r,

aj,n

p (aj,n, ai,n−1:n−r, aj,n−1:n−k) log2

p (aj,n|ai,n−1:n−r, aj,n−1:n−k)

p (aj,n|aj,n−1:n−k)

= E
ï
log2

p (aj,n|ai,n−1:n−r, aj,n−1:n−k)

p (aj,n|aj,n−1:n−k)

ò
(4.3)

where p(·|·) is a conditional probability mass function, I(·) indicates the

mutual information, and k and r are time lags. As in [72], histogram based

estimates are computed for the probability mass functions p(·|·), for each pos-

sible configurations of aj,n, aj,n−1:n−k, and ai,n−1:n−r. TE can be interpreted

as the amount of information in the current values of aj,: that is contained in

the past values of ai,:, given the past values of aj,:. If ai,: has no influence on

aj,:, then the two probabilities in the fraction are equal and TEi→j(k, r) = 0.

Otherwise, if some information flows from ai,: to aj,:, then TEi→j(k, r) > 0.

TE, unlike mutual information and cross-correlation, is asymmetrical and,

thus, it allows identifying the direction of the information flow between the

time series.
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Algorithm 3: All-versus-one transfer entropy (AvOTE) for jammer
attack detection
Input : A ∈ RL×Ne , kmax, rmax, θ
Output: Decision H ∈ {H0,H1}

1 v← 0
2 for j from 1 to L do

3 b←∑L
i=1,i ̸=j ai,:

4 Perform grid search to set k and r:

5 ksel ← 0
6 rsel ← 0
7 for k from 1 to kmax do

8 for r from 1 to rmax do

9 if TEb→j(k, r) > TEb→j(ksel, rsel) then
10 ksel ← k
11 rsel ← r

12 end

13 end

14 end

15 vj ← TEb→j(ksel, rsel)

16 end
17 TEmax ← maxj{vj}
18 H ← TEmax

H1

≷
H0

θ

4.5 Jammer Detection via Causal Inference

Let us consider a wireless network with a star topology, in which the nodes

communicate with the gateway or AP so that the energy profiles transmitted

are not causally related. We now seek to detect the information flow from

the signals emitted by the legitimate nodes toward the jammer. Hence, we

evaluate TEi→j(k, r) for each possible pair of transmitters (i, j), expecting

that the measure of causality will be more significant when the ith trans-

mitter is a legitimate node and the jth is the jammer. On the contrary, TE

will be negligible when both transmitters are legitimate. This procedure im-

plies calculating L(L− 1) values of TE, where L is the number of estimated
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transmitters. To reduce the number of TE computations, we propose a novel

approach named all-versus-one transfer entropy (AvOTE). Considering that

during its sensing phase, the jammer collects energy samples corresponding

to the superposition of the signals emitted by all the legitimate nodes, we

expect to find a causal relationship in which the sum of the signals emitted

by the nodes is the cause and the jamming signal is the effect. Therefore, let

us introduce the sum vector b ∈ R1×Ne , defined as b =
∑L

i=1 ai,: with i ̸= j.

Hence, we evaluate TEb→j(k, r) for each transmitter j = 1, . . . , L, namely the

TE from the sum of all the other signals towards the jth signal. We expect

that only when the jth transmitter is the jammer the corresponding TE will

be significant and the highest among all. This procedure is computationally

lighter than the previous one because it only requires the computation of L

TEs. Then, given that we aim to detect the presence of one jammer, we find

the maximum of the TEs evaluated, TEmax.

A high TEmax value indicates that a jammer is likely to be present, while

a small value denotes its absence. Thus, TEmax can be interpreted as a test

statistic, hence

TEmax

H1

≷
H0

θ. (4.4)

The null hypothesis, H0, stands for the case when no jamming is present,

while the alternate hypothesis, H1, corresponds to its presence. The thresh-

old θ is given by setting the false alarm probability pFA = P(TEmax > θ |H0),

where the null distribution, is calculated via histogram based probability

density function estimation.2 The correct time lags for calculating TE are

set by performing a grid search and finding the combination that outputs the

highest value of TE. The complete AvOTE method is detailed in Algorithm

3. In the numerical results section, the maximum time lags for TE are set to

kmax = rmax = 8 samples.

2We collect a large number of TEmax values while ensuring that no jammer is present
(i.e., under H0). These values are then used to construct a histogram, which serves as an
empirical approximation of the null distribution of TEmax. By analyzing this histogram,
we can determine the threshold θ such that the probability P(TEmax > θ |H0) matches the
desired false alarm probability pFA. This approach allows us to accurately set θ, ensuring
that the test maintains the specified level of false alarms.
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Algorithm 4: All-versus-one cross correlation (AvOCC) for jammer
attack detection
Input : A ∈ RL×Ne , θ
Output: Decision H ∈ {H0,H1}

1 v← 0
2 for j from 1 to L do

3 b←∑L
i=1,i ̸=j ai,:

4 vj ← maxm |cb↔j(m)|
5 end
6 CCmax ← maxj{vj}
7 CCmax

H1

≷
H0

θ

4.6 Cross Correlation

Despite cross-correlation cannot determine causality, we include a compari-

son between our causality-based solution, AvOTE, and a cross-correlation-

based method, AvOCC, in the numerical results section to further validate

our approach. Given two reconstructed energy profiles ai,: and aj,:, the cross-

correlation is

ci↔j(m) =
Ne−m∑

n=1

ai,naj,n+m (4.5)

where n indicates the time samples and m is the time lag. The AvOCC

algorithm is detailed in Algorithm 4. Since, in this case, the grid search is

not necessary, and the computation of cross-correlation is much easier than

TE, AvOCC is computationally lighter than AvOTE.



Chapter 5

Jammer Detection through

Latent Model

In radar applications, deceptive jammers pose a significant threat by obscur-

ing the true target position and misleading the receiver with false location

information. Consequently, developing effective strategies for intruder detec-

tion within sensing networks is crucial, particularly for the next generation

of wireless systems, where dual-functional networks will be deployed [78].

The integration of AI techniques into wireless communications has accel-

erated the development of neural network-based jamming detectors. In this

chapter, we focus on the application of VAEs for deceptive jamming detec-

tion, as these generative latent variable models excel at learning latent data

representations, making them well-suited for this task.

5.1 Existing Works

With the rapid proliferation of ISAC techniques as a cornerstone of the up-

coming 6G wireless generations, a new threat emerges for wireless networks.

If jamming attacks are feasible in communication, they become even easier

for sensing due to the significantly weaker echo signals at the BS receiver.

Furthermore, the threat is heightened by the presence of increasingly intelli-

gent jammers that not only disrupt communications but also aim to deceive

67
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legitimate users. For example, in [79,80] they propose an illegitimate use of a

intelligent reflecting surface (IRS) with the goal to degrade sensing and com-

munication performance. The idea is to quickly change the wireless channel

within the coherence time, as ISAC performance depends on maintaining a

consistent coherence time. In [81], instead, the IRS is used to flexibly con-

figure the propagation environment of ISAC in order to mitigate jamming

attack.

Further exploring ISAC’s physical layer security, in [82] they investigate

the possibility that a malicious target exploits the sensing signal capturing

information reserved for the UE. At the first stage, through a omnidirectional

waveform, assuming to know the position of the UE, they obtain an angle

estimation of Eve. However, they do not consider the possibility that Eve

cooperates with a deceptive jamming which is able to falsify his position.

To the best of our knowledge, the presence of a deceptive jammer in an

ISAC scenario has not been addressed in the existing literature. However,

in comparison to a traditional radar application, the likelihood of a jammer

being able to deceive the BS is significantly higher in an ISAC network.

In Section 4.1, a comprehensive review of the literature on jammer detec-

tion techniques in communication networks was provided. Accordingly, this

section shifts focus to a detailed examination of jammer detection schemes

within radar systems. Classic methods exploit likelihood-based algorithms

that model the echo signals and adopting the GLRT, as in [83, 84]. They

employee a two-block approach to resolve a multiple hypothesis test. Ini-

tially, the presence of a target and only noise is distinguished. Subsequently,

a second test is conducted to differentiate between a radar target and a false

target. While these likelihood-based methods rely on some prior information

as the statistical distribution of the channel and the clutter, in [85], they

perform jamming recognition and classification basing on feature extraction.

In particular, two classifiers, decision tree and support vector machine, are

fed with featured extracted by the received signals. In [86], the authors pro-

pose electronic counter-countermeasures (ECCM) schemes for OFDM radar

that improve local signal-to-interference plus noise ratio (SINR), optimize

initial phases to resist deception jamming, and develop waveform optimiza-
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tion methods to minimize jamming energy. In [87], the authors propose a

power optimization strategy for multiple radar systems to counteract de-

ception jamming in multi-target tracking tasks. They derive the posterior

Cramer-Rao lower bound for deception range, which is crucial for distinguish-

ing between physical and false targets. Using this metric, they introduce a

method for false target discrimination and formulate a power optimization

problem aimed at optimizing both tracking accuracy and discrimination per-

formance.

5.2 Problem Statement

We propose a jamming detection framework that, starting from the echo sig-

nals acquired by the BS and leveraging the latent space identification capa-

bility of VAEs is able to detect the presence of an intruder in a MIMO-OFDM

system. The detector is trained on a dataset consisting of received echoes

from a real target in the absence of jamming, allowing the VAE to learn the

optimal latent representation of the data. During testing, when the jammer

is present, the detector identifies the anomalous signal by its incompatibility

with the learned latent space. To evaluate the performance of the proposed

solution, we investigate a case study consisting of a 5G wireless network em-

ploying an ISAC system in presence of a deceptive jammer, already detailed

in Section 2.4.

In Fig. 5.1, the decision-making process is illustrated. Initially, the BS

performs pre-processing, after which the processed backscatter vector g:,i is

fed into the VAE. The output of the VAE is the ELBO, which serves as the

test statistic for detecting the presence of the jammer. The following sections

will examine each block of the scheme in turn.

5.3 Pre-Processing at the Base Station

Let us consider the vector of received symbols obtained from (2.22), y
(i)
:,k ,

and let us assume a specific sensing direction such that θ
(i)
R = θ

(i)
T . Spatial
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g:,i L ®
H1

H0

VAE

y
(i)
:,k

Pre
Processing

Figure 5.1: Jamming detection scheme with VAE: an illustration of the decision-making.

combining is then performed using the receiving beamforming vector as

w
(i)
R = aH

R(θ
(i)
R ) =

[
1, e−jπ sin(θ

(i)
R ), . . . , e−jπ(NR−1) sin(θ

(i)
R )
]
.

This results in the formation of a grid of received symbols, where each element

y
(i)
k is obtained by taking the inner product between the receiving beamform-

ing vector w
(i)
R and the vector of the symbols received at each antenna y

(i)
:,k ,

i.e., y
(i)
k = w

(i)
R y

(i)
:,k . Then, reciprocal filtering is performed, which consists of

an element-wise division between the received and the transmitted grids to

remove the dependence on the transmitted symbols, yielding g
(i)
k = y

(i)
k /x

(i)
k .

Considering the ith observation, we have

g
(i)
k = w

(i)
R H

(i)
k w

(i)
T + w

(i)
R H̃

(i)
k w

(i)
J e

−j2πk∆fτ
(i)
f +

w
(i)
R ζ

(i)
:,k

x
(i)
k

+
w

(i)
R n

(i)
:,k

x
(i)
k

(5.1)

where the second term is the signal injected by the jammer into the BS

receiver to deceive sensing. Although the jammer is capable of reproducing

the BS sensing signal, there are notable differences between the first and

second term in (5.1). Firstly, distinct power levels are evident as the jammer

transmits signals with an EIRP PJGJ, which is absent in the echo signal

from the target. Additionally, the channel between the BS and the jammer

does not include a convolution of two channel impulse responses due to the

absence of backscatter. Finally, for the sake of jamming detection, the real

and imaginary parts of g
(i)
k are split and arranged in a matrix G ∈ C2NB×NS ,
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whose ith column is

g:,i =
î
ℜ{g(i)0 }, . . . ,ℜ{g(i)NB

},ℑ{g(i)0 }, . . . ,ℑ{g(i)NB
}
óT
.

5.4 Variational Autoencoder

5.4.1 VAE for Anomaly Detection

VAEs represent a class of generative latent variable models that encode input

data into a latent space and subsequently decode it back to the original space.

A key characteristic of VAEs is their imposition of a specific distribution,

typically Gaussian, on the latent space, as introduced in the foundational

work by Kingma and Welling [88]. VAEs fall within the domain of stochastic

VI methods, utilizing gradient-based optimization to maximize the ELBO.

The reparameterization trick proposed in [88] facilitates the integration of VI

into an autoencoder framework, enabling the ELBO maximization through

conventional back-propagation techniques.

VAEs have demonstrated particular efficacy in anomaly detection (AD)

due to their capacity to learn the underlying distribution of normal data.

During the AD process, VAEs are trained exclusively on normal data, de-

veloping a robust ability to accurately reconstruct these data points. When

presented with an anomalous data point, the VAE’s decoder produces an out-

put that diverges significantly from the expected, as the anomalous data fails

to align with the learned distribution. By defining an appropriate threshold,

VAEs can effectively identify and flag outliers, making them a powerful tool

for anomaly detection.

AD methods leveraging VAEs have been explored in various studies. For

instance, [89] introduces an AD approach based on the reconstruction proba-

bility derived from a VAE. It is crucial to distinguish between the reconstruc-

tion error in traditional autoencoder architectures and the reconstruction

probability in VAEs. As depicted in Fig. 5.2, the VAE decoder generates

a probability density function that represents the likelihood of the input

data, conditioned on the latent space under the trained generative model,
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g:,i qφ(z:,i|g:,i) pψ(g:,i|z:,i)

β[i]

ϑ[i]

z:,i

ε ∼ N (0, IL)

µ[i]

σ[i]

Figure 5.2: Schematic illustration of the VAE. The latent variable is obtained using the
reparameterization trick z:,i = β[i] + ϑ[i]⊙ ε.

contrasting with the deterministic mappings found in conventional autoen-

coders. The superiority of VAEs over autoencoder-based AD algorithms is

demonstrated in [89].

Further applications of VAEs in AD are seen in various contexts. In

[90], an unsupervised AD algorithm based on VAEs is employed to monitor

key performance indicators in web applications. A novel combination of

context encoders (a specialized form of denoising autoencoder) and VAEs

for anomaly detection in medical images is presented in [91]. Additionally,

[92] demonstrates the use of VAEs as feature extractors, capitalizing on the

latent space’s ability to encapsulate essential information from the input

dataset, which is then utilized by traditional algorithms to perform AD on

the extracted features.

5.4.2 Definition

We begin our analysis by observing that the system model in (5.1), in the

absence of a jammer (i.e., when the second term is zero), can be interpreted

as a latent model for the generation of g
(i)
k . Our initial objective is to learn

the latent space generated by the system under no-jammer conditions by

means of a variational autoencoder. The goal of VAE is to provide a good

approximation for the posterior distribution pψ(Z|G) of the latent variables

Z = {z:,i}NS
i=1 given the observed data G and with parameters ψ [93]. Let
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us define L as the dimension of the latent variable z:,i ∈ RL×1. Considering

the independence between the observations in G, such distribution can be

expressed as pψ(z:,i|g:,i). Since the posterior distribution cannot be directly

computed due to the intractability of the marginal likelihood

pψ(g:,i) =

∫

z:,i

pψ(g:,i, z:,i)dz:,i, (5.2)

VI provides an approximate distribution qφ(z:,i|g:,i) with parameters φ. In

particular, the best approximation can be computed by minimizing the fol-

lowing Kullback-Leibler divergence

DKL(qφ(z:,i|g:,i)||pψ(z:,i|g:,i)) = −Eqφ(z:,i|g:,i)

ï
ln
pψ(g:,i, z:,i)

qφ(z:,i|g:,i)

ò
+ ln pψ(g:,i)

(5.3)

or, equivalently, by maximizing the ELBO

L(ψ,φ,g:,i) = Eqφ(z:,i|g:,i)

ï
ln
pψ(g:,i, z:,i)

qφ(z:,i|g:,i)

ò
. (5.4)

Traditional mean-field VI methods factorize qφ(z:,i|g:,i) to derive a closed-

form solution for the ELBO [94]. However, these methods suffer from com-

putational inefficiency as they require iteration through the entire dataset at

each algorithmic step [95]. For this reason, VAE provides a stochastic VI so-

lution aiming to maximize the L(ψ,φ,g:,i) using gradient-based optimization

techniques.

Let us now assume the following prior distributions

pψ(g:,i|z:,i) = N (µ[i],σ2[i]I2K), (5.5)

p(z:,i) = N (0, IL), (5.6)

qφ(z:,i|g:,i) = N (β[i],ϑ2[i]IL). (5.7)

The choice of Gaussian priors for the latent space has many benefits: (i)

the Gaussian distribution is mathematically convenient due to its properties,

such as admitting a closed-form expression for the Kullback-Leibler diver-
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gence, which is essential for the VAE’s optimization process; (ii) thanks to

the central limit theorem, Gaussian priors are a natural and generalizable

choice for modeling the latent space of diverse datasets; (iii) empirically,

Gaussian priors have been shown to produce smooth and continuous latent

spaces, which are desirable for generative tasks [88]. After proper manipula-

tions, the ELBO can be written as

L(ψ,φ,g:,i) = −DKL (qφ(z:,i|g:,i)||p(z:,i)) + Eqφ(z:,i|g:,i) [ln pψ(g:,i|z:,i)] .
(5.8)

Adopting the reparameterization trick proposed in [88], considering the prior

distributions in (5.5), (5.6), and (5.7), it is possible to obtain a differentiable

formulation for the ELBO, i.e.,

L(ψ,φ,g:,i) =
1

2

L∑

l=1

(
1 + lnϑ2

l [i]− β2
l [i]− ϑ2

l [i]
)

− 1

2

2NB∑

k=1

Å
ln 2π + lnσ2

k[i] +
(gk,i − µk[i])2

σ2
k[i]

ã

︸ ︷︷ ︸
V

(5.9)

where V = −Eqφ(z:,i|g:,i) [ln pψ(g:,i|z:,i)] is the reconstruction probability that

will be used for jamming detection [89].

Fig. 5.2 encloses a schematic representation of a VAE. The function

qφ(z:,i|g:,i) serves as a probabilistic encoder that, given an input g:,i, gener-

ates a distribution over the possible values of z:,i from which g:,i could have

been produced. Similarly, pψ(g:,i|z:,i) functions as a probabilistic decoder,

producing a distribution over the possible values of g:,i given z:,i. Thus,

µ[i], σ[i], β[i], and ϑ[i] are the outputs of the encoder and decoder neural

networks, whose weights are denoted by ψ and φ, respectively.

5.4.3 Detector

The VAE, trained on echoes captured in absence of a jammer, seeks to learn

the latent variables that better represent the channel in presence of a target.



75 Chapter 5 – Jammer Detection through Latent Model

Thus, after the training, if the VAE is fed with a vector g:,i corresponding

to the manipulated received signal in presence of a jammer, it provides an

anomalous value for L(ψ,φ,g:,i). Specifically, when the jammer is present

results in significantly high values of the reconstruction probability V . There-

fore, based on such considerations, we propose an anomaly detector that

employs as metric the reconstruction probability, i.e.,

V
H1

≷
H0

ξ. (5.10)

Hypothesis H1 corresponds to the presence of a jammer, while the null hy-

pothesis, H0, corresponds to its absence. The thresholds ξ is obtained by set-

ting the false alarm probability pFA = (V > ξ|H0), where the null distribution

is calculated via histogram-based probability density function estimation.
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Chapter 6

Cooperative Wideband

Spectrum Sensing

Cooperative WSS represents a technique employed in cognitive radio net-

works for the purpose of detecting and identifying available frequency bands

across a wide range of the spectrum. In this approach, SUs, also referred to

as sensors in this thesis, collaborate to scan the spectrum, sharing their local

sensing information to enhance the accuracy and reliability of detecting un-

occupied bands. WSS serves as a facilitator for spectrum sharing, enabling

more efficient utilisation of the radio frequency spectrum by allowing SUs

to dynamically access underutilised bands without causing interference to

licensed users.

6.1 Existing Works

In the last decade, extensive research has been conducted on the problem of

spectrum sensing [96–98]. Early works, such as [99], proposed several classical

machine learning-based methods for cooperative narrowband spectrum sens-

ing, including K-means clustering and Gaussian mixture models (GMMs).

A significant development in cooperative strategies was presented in [100],

where a cooperative energy detection leveraging heterogeneous sensors was

proposed. The proposed method evaluates basic mass assignment (BMA)

77
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values for each SU based on the likelihood functions of the received signal’s

energy. Each SU sends its BMA values to the FC, which combines them

using the Dempster fusion rule. It is shown that the method reduces to the

optimal likelihood ratio fusion rule in the absence of noise. While the method

accounts for noise uncertainty in each sensor, it assumes knowledge of the

nominal SNR for each sensor to determine the discount rate. Furthermore,

numerical results reveal that even a small degree of noise uncertainty can

significantly degrade detection performance.

Subsequent studies introduced high-complexity sub-Nyquist techniques

for WSS, achieving satisfactory detection performance in high-SNR regimes,

as shown in [101–105]. These techniques employ sophisticated signal re-

construction and spectrum analysis algorithms, which are computationally

intensive and require advanced digital signal processing, leading to increased

system complexity and higher power consumption. Among these sub-Nyquist

approaches, compressive sensing stands out by leveraging signal sparsity to

accurately reconstruct signals from fewer samples. Here, signal sparsity is

intended as a wideband signal with only a few non-zero samples, whether

in frequency or time-frequency domain. For instance, compressive sensing

over MIMO channels, as explored in [106], used delay embeddings of re-

ceived signals sampled by a low-rate analog to digital converter (ADC) and

Candecomp/Parafac decomposition to extract carrier frequencies and power

spectra. However, this approach needed many samples and was only effective

in high-SNR conditions.

Recent advancements have leveraged AI techniques to enhance spectrum

sensing capabilities. In [107], a computationally lightweight detector based on

deep convolution separable methods was adopted, employing convolutional

neural network (CNN) to process spectrograms and merge outcomes using

non-maximum suppression fusion rules. Additionally, [108] introduced a fed-

erated learning (FL)-based centralized spectrum sensing algorithm, where

sensors update a local ML model and share model coefficients with a cen-

tral node for integration. Although federated learning reduces the amount

of raw data exchanged between sensors by sharing model parameters, the

overall communication overhead can still be substantial. This overhead is
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particularly significant in large-scale networks with many sensors. Parallel

processing techniques using CNNs were discussed in [109] and [110], where

received I/Q samples were processed concurrently, and spectrum sensing was

approached as a classification problem. Despite improvements, implement-

ing Parallel CNNs still involves considerable computational complexity due to

processing I/Q samples by two parallel networks. Similarly, [23] introduced

DeepSense, a deep neural network (DNN)-based solution implemented on

an field-programmable gate array (FPGA) to perform fast WSS using CNN

for multi-label classification tasks. In contrast, an unsupervised approach

utilizing deep clustering for cooperative narrowband spectrum sensing was

proposed in [111]. This method employed a sparse autoencoder to learn

hidden features from locally computed energy levels. However, it did not ac-

count for noise power variability among SUs and required prior identification

of clusters corresponding to noise and PU signals.

6.2 Problem Statement

We propose a cooperative WSS framework that utilizes a frequency domain

description of signals received by sensors to estimate the occupancy state of

multiple portions of a large bandwidth, termed frequency bins. This frame-

work operates independently of the sparsity of the received signals and does

not require prior knowledge of the sensors’ noise power. In particular, we

recast the cooperative WSS problem within a Bayesian factor analysis frame-

work and introduce a VI strategy to approximate its posterior distribution.

The occupancy state of each frequency bin is then estimated through binary

hypothesis testing, employing the ELBO from the variational Bayes factor

analysis (VBFA) as the test statistic.

The full processing pipeline of the VBFA is illustrated in Fig. 6.1. Ini-

tially, during the pre-processing stage, the vector of frequency bins y
(i)
j,: is

separated into its real and imaginary components. Subsequently, the coordi-

nate ascent variational inference (CAVI) algorithm is employed to identify the

optimal approximate posterior distribution by maximizing the ELBO. The

ELBO is then utilized as the test statistic for spectrum hole detection. The
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Figure 6.1: VBFA scheme for cooperative WSS.

subsequent sections will provide a detailed examination of each component

of this process.

6.3 Variational Bayes Factor Analysis

6.3.1 Pre-Processing

Let us define x
(i)
:,k ∈ CNT,k×1 as the vector of frequency samples transmitted

by the PUs in the kth frequency bin at the ith observation, NT,k is the

number of PUs transmitters in the kth frequency bin, and Hk ∈ CNR×NT,k

is the matrix of channel coefficients in frequency domain. The entries of Hk

take into account frequency-selective multipath fading, which we assume flat

within a single frequency bin and constant along the observations.1 We then

express s
(i)
:,k as

s
(i)
:,k = Hkx

(i)
:,k (6.1)

and the received signals at the ith observation in the k frequency bin as

y
(i)
:,k = s

(i)
:,k + n

(i)
:,k. (6.2)

1It is assumed that the time to collect all NS observations is less than the channel
coherence time.
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Let us now split real and imaginary parts of y
(i)
:,k as

g̃
(i)
:,k =

[
ℜ{y(i)

:,k}
ℑ{y(i)

:,k}

]
= Akz

(i)
:,k + w

(i)
:,k (6.3)

where g̃
(i)
:,k ∈ R2NR×1, z

(i)
:,k =

[
ℜ{x(i)

:,k},ℑ{x
(i)
:,k}
]T ∈ R2NT,k×1, w

(i)
:,k =

[
ℜ{n(i)

:,k},
ℑ{n(i)

:,k}
]T ∈ R2NR×1, Ak ∈ R2NR×2NT,k is the matrix consisting of the real

and imaginary parts of the entries of Hk, and w
(i)
:,k ∼ N (0,Σw) where Σw =

1
2
diag(σ2

1, . . . , σ
2
NR
, σ2

1, . . . , σ
2
NR

).

6.3.2 Bayesian Factor Analysis

Factor analysis is a statistical technique used to identify underlying relation-

ships or patterns among a set of observed data. By analyzing the correlations

between observed variables, it aims to reduce data dimensionality by group-

ing related variables into a smaller number of factors. These factors represent

latent constructs that explain the observed correlations [112].

The received signal structure (6.3) can be interpreted as a factor analysis

model where z
(i)
:,k is a 2NT,k-dimensional vector of latent variables, and g̃

(i)
:,k

are the observations.2 Let us define the observations matrix in the kth bin

as Gk = [g:,i]
NS

i=1, where g:,i = g̃
(i)
:,k . In light of this interpretation, we aim to

estimate the latent variable dimension in bin k, 2N̂T,k, which tells us if a PU

is transmitting, i.e., if N̂T,k = 0, no PU is transmitting in bin k, if N̂T,k > 0

then one or more PUs are occupying the frequency bin. We now introduce

the Bayesian factor analysis and derive a binary hypothesis test that can be

used to detect the presence of one or more PU signals in a frequency bin.

Prior Distributions

Bayesian factor analysis requires defining the prior distributions for all the

parameters of the model. Let us define the set of unknown parameters as

Θk = {Zk,Ψk,Ak,αk}, where Zk ∈ RNk×NS is the matrix of factors (i.e., the

2If all the sensors experience the same noise power, i.e., Σw = σ2I, then (6.3) is a
probabilistic principal component analysis (PCA) model [113].
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PU signals if present), Nk is the unknown latent dimension that is initialized

by the algorithm, Ψk = Σ−1
wk

is the noise precision matrix, and αk is the

vector of hyperparameters that control the inverse variance of the columns of

Ak [113]. Since factor analysis is applied independently to each frequency bin,

we drop the subscripts :, k and k from the observations and latent variable

matrices in the rest of the chapter. We now list the priors adopted for each

parameter according to [114,115].

The prior of Z is

p(Z) =

NS∏

i=1

p(z:,i) (6.4)

where p(z:,i) = N (0, IN). The prior of Ψ is

p(Ψ) =

2NR∏

j=1

p(ψj,j) (6.5)

where p(ψj,j) = G(v, ej), and G(v, ej) is the gamma distribution with shape

parameter v and inverse scale parameter ej.

Since we are interested in the effective dimensionality of the latent space,

we introduce a hierarchical prior p(A|α) over the matrix A, governed by

a N -dimensional vector of hyperparameters α = [α1, . . . , αN ]. The prior

p(A|α) is

p(A|α) =
N∏

d=1

p(a:,d|αd) (6.6)

where p(a:,d) = N (0, 1
αd
I2NR

). With the hierarchical prior, a:,d will tend to

be small if αd has a posterior distribution concentrated at large values, thus

that direction in latent space will be switched off. Finally, the prior for α is

p(α) =
N∏

d=1

p(αd) (6.7)

where p(αd) = G(a, bd) with a and bd representing the shape and inverse scale
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z:,i

g:,i

i = 1, . . . , NS

A

α

Ψ

a b

v e

Figure 6.2: Graphical representation for Bayesian factor analysis. The node with a gray
background represents sensors observations. The box is a compact notion to denote that
we have NS nodes for each variable inside it.

parameters, respectively. In Fig. 6.2, a representation of Bayesian factor

analysis as a probabilistic graphical model is shown. Here, the estimation of

the latent dimension is converted into a Bayesian inference problem, where

the objective is the evaluation of the posterior distribution

p(Θ|G) =
p(G,Θ)

p(G)
. (6.8)

Knowing p(Θ|G) means estimating the latent space dimension. However,

the posterior cannot be directly computed due to the intractability of the

marginal distribution

p(G) =

∫

Θ

p(G,Θ)dΘ (6.9)

where

p(G,Θ) = p(G|Z,Ψ,A,α)p(Z)p(Ψ)p(A|α)p(α). (6.10)

Based on the previous consideration, the following subsection approximates

the true posterior distribution using a variational Bayes approach.
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6.3.3 Mean-Field Variational Inference

In Chapter 5, a stochastic VI approach was employed to train a VAE with

the objective of maximizing the ELBO. However, in the present scenario,

the lack of a large dataset containing diverse channel realizations hinders

the effective training of a DNN architecture. Instead, our focus here is on

detecting spectrum holes given NS independent observations of the received

signals, assuming the channel Hk remains constant across these observations.

Consequently, a mean-field VI approach is adopted for this task. The key

idea of the mean-field approach is to simplify the problem by assuming that

the posterior distribution can be factorized into independent distributions

over subsets of the latent variables. This assumption reduces the complexity

of the distribution, allowing for a tractable approximation [94].3

Let us consider a family of distributions, q(Θ), from which we seek the one

that best approximates the posterior distribution p(Θ|G). We now restrict

the family of distributions by partitioning the elements of Θ into disjoint

groups and assuming that the q distribution factorizes with respect to these

groups as

q(Θ) =
M∏

m=1

qm(θm) = q(Z)q(Ψ)q(A)q(α) (6.11)

where qm(θm) is the approximate distribution for the generic latent variable

θm, and in our case M = 4.

Proposition 1. Considering the sets of observations G and latent variables

Θ, and a family of distributions q(Θ) that can be factorized as in (6.11), the

distribution that better approximates the posterior of θm, q
∗
m(θm), is

ln q∗m(θm) = El ̸=m [ln p(G,Θ)] + c1 (6.12)

where El ̸=m[·] denotes the expectation with respect to the distributions q over

all the variables θl for l ̸= m, c1 is a constant, and ln p(G,Θ) is the natural

logarithm of (6.10), which is written as

3This factorized form of variational inference corresponds to an approximation frame-
work developed in physics called mean field theory [116].
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ln p(G,Θ) =

NS∑

i=1

ln p(g:,i|z:,i,Ψ,A) +

NS∑

i=1

ln p(z:,i) +

2NR∑

j=1

p(ψj,j)

+
N∑

d=1

ln p(a:,d) +
N∑

d=1

ln p(αd)

=
NS

2
ln det (Ψ)− 1

2

NS∑

i=1

(g:,i −Az:,i)
TΨ(g:,i −Az:,i)−

1

2

NS∑

i=1

zT:,iz:,i

+

2NR∑

j=1

(v − 1) lnψj,j −
2NR∑

j=1

ejψj,j +NR

N∑

d=1

lnαd

− 1

2

N∑

d=1

αda
T
:,da:,d +

N∑

d=1

(a− 1) lnαd −
N∑

d=1

bdαd + c2. (6.13)

with c2 also being a constant.

Proof. It has been shown that the Kullback-Leibler divergence between q(Θ)

and p(Θ|G) can be expressed as

DKL(q(Θ)||p(Θ|G)) = −Eq

ï
ln
p(G,Θ)

q(Θ)

ò
+ ln p(G)

= −L(q) + ln p(G) (6.14)

where L(q) is the ELBO, and Eq[·] is the expectation over the distribution

q(Θ) [93, 95]. The optimal approximation for the posterior distribution is

found by seeking for the distribution q∗(Θ) that minimizes the Kullback-

Leibler divergence

q∗(Θ) = arg min
q

DKL(q(Θ)||p(Θ|G)). (6.15)

From (6.14), minimizing DKL(q(Θ)||q(Θ|G)) translates into maximizing the

ELBO, i.e.,

q∗(Θ) = arg max
q

L(q). (6.16)

According to the CAVI method proposed in [94], the distribution that max-
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imizes L(q) is given by (6.12).

The set of equations given by (6.12) for m = 1, ...,M represent a set of

consistency conditions for the maximum of the ELBO subject to the factor-

ization constraint. However, they do not represent an explicit solution be-

cause the expression on the right-hand side of (6.12) for the optimum q∗m(θm)

depends on expectations computed with respect to the other factors q∗l (θl)

for l ̸= m. We will therefore seek a consistent solution by first initializing all

of the factors q∗l (θl) appropriately and then cycling through the factors and

replacing each in turn with a revised estimate given by the right-hand side

of (6.12) evaluated using the current estimates for all of the other factors.

In particular the equations given by (6.12) for m = 1, . . . ,M are iterated

until convergence of the ELBO. Convergence is guaranteed because bound

is convex with respect to each of the factors [94].

The approximate distributions of the latent variables can be computed in

closed-form by substituting (6.13) in (6.12). For the columns of Z we obtain

q∗(z:,i) = N (µ(i)
z , Σ̃z) (6.17)

where

µ(i)
z = Σ̃zE[AT]E[Ψ]g:,i

Σ̃z =
(
IN + E[ATΨA]

)−1
.

Then, for the diagonal elements of Ψ we have

q∗(ψj,j) = G(ṽ, ẽj) (6.18)

where

ṽ = v +
NS

2
(6.19)

ẽj = ej +
1

2

NS∑

i=1

E
[
(gj,i − aj,:z:,i)

2
]
. (6.20)
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The distribution of the rows of A is

q∗(aj,:) = N (µ(j)
a , Σ̃(j)

a ) (6.21)

where

µ(j)
a = Σ̃(j)

a E[ψj,j]

NS∑

i=1

gj,iE[z:,i]

Σ̃(j)
a =

(
E[ψj,j]

NS∑

i=1

E[z:,iz
T
:,i] + E[diag(α)]

)−1

.

Finally, for the elements of α we have

q∗(αd) = G(ã, b̃d) (6.22)

where

ã = a+NR (6.23)

b̃d = bd +
E[aT

:,da:,d]

2
. (6.24)

In the previous expressions, i = 1, . . . , NS, j = 1, . . . , 2NR, and d = 1, . . . , N .

The iteration steps performed by the CAVI are shown in Algorithm 5.

6.3.4 ELBO

We now derive a closed-form expression for the maximum ELBO, L(q∗),

obtained using CAVI algorithm. The resulting expression is then used as a

metric to perform spectrum sensing via binary hypothesis testing.

Proposition 2. The maximum ELBO in (6.16), L(q∗), admits the closed-

form expression
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L(q∗) =
NS

2
ln det

Ä
Σ̃z

ä
+
NS

2
tr
Ä
IN − Σ̃z

ä
− 1

2

NS∑

i=1

tr
Ä
µ(i)

z (µ(i)
z )T
ä

︸ ︷︷ ︸
−DKL(q(Z)||p(Z))

+
1

2

2NR∑

j=1

ln det
Ä
Σ̃(j)

a

ä
− ã

N∑

d=1

ln b̃d − ṽ
2NR∑

j=1

ln ẽj + c3. (6.25)

where c3 is a constant.

Proof. Manipulating L(q) from (6.14) we obtain

L(q) = Eq(Z),q(Ψ),q(A),q(α) [ln p (G|Z,Ψ,A,α)] (6.26)

−DKL (q(Z)||p(Z))−DKL (q(Ψ)||p(Ψ))

− Eq(α) [DKL (q(A)||p(A|α))]−DKL (q(α)||p(α))

where the superscript .∗ in the distribution q(·) is omitted to lighten the

notation. We now compute all the terms in (6.26).

1. Compute Eq(Z),q(Ψ),q(A),q(α) [ln p (G|Z,Ψ,A,α)]

It is easy to see that p (G|Z,Ψ,A,α) = N (Az:,i,Ψ
−1). Considering that

(g:,i −Az:,i)
TΨ(g:,i −Az:,i) =

2NR∑

j=1

(gj,i − aj,:z:,i)
2ψj,j

we have

Eq(Z),q(Ψ),q(A),q(α) [ln p (G|Z,Ψ,A,α)] = (6.27)

NS

2

2NR∑

j=1

E[lnψj,j]−NSNR ln(2π)− 1

2

NS∑

i=1

2NR∑

j=1

E
[
(gj,i − aj,:z:,i)

2
]
E[ψj,j].

2. Compute −DKL (q(Z)||p(Z))

The negative Kullback-Leibler divergence can be expressed as Eq(Z)[ln p(Z)]−
Eq(Z)[ln q(Z)] where p(Z) is given in (6.4) and q(Z) in (6.17). Then, recalling



89 Chapter 6 – Cooperative Wideband Spectrum Sensing

that

E
[
z:,iz

T
:,i

]
= Σ̃z + µ(i)

z (µ(i)
z )T (6.28)

zT:,i
Ä
IN − (Σ̃z)

−1
ä
z:,i = tr

Ä
z:,iz

T
:,i

Ä
IN − (Σ̃z)

−1
ää

we finally obtain

−DKL (q(Z)||p(Z)) =

NS

2

Ä
ln det

Ä
Σ̃z

ä
+ tr
Ä
IN − Σ̃z

ää
− 1

2

NS∑

i=1

tr
Ä
µ(i)

z (µ(i)
z )T
ä
. (6.29)

3. Compute −DKL (q(Ψ)||p(Ψ))

The negative Kullback-Leibler divergence is equal to Eq(Ψ)[ln p(Ψ)]−Eq(Ψ)[ln q(Ψ)]

where p(Ψ) is given in (6.5) and q(Ψ) in (6.18). Substituting (6.19) and

(6.20) yields

−DKL (q(Ψ)||p(Ψ)) = −NS

2

2NR∑

j=1

E[lnψj,j] + v

2NR∑

j=1

ln(ej)

+
1

2

NS∑

i=1

2NR∑

j=1

E
[
(gj,i − aj,:z:,i)

2
]
E[ψj,j]− ṽ

2NR∑

j=1

ln(ẽj) + 2NR ln
Γ(ṽ)

Γ(v)
. (6.30)

4. Compute −DKL (q(α)||p(α))

The negative Kullback-Leibler divergence is equal to Eq(α)[ln p(α)]−Eq(α)[ln q(α)]

where p(α) is given in (6.7) and q(α) in (6.22). Substituting (6.23) and (6.24)

yields

−DKL (q(α)||p(α)) = −NR

N∑

d=1

E[lnαd] + a
N∑

d=1

ln(bd)

+
1

2

N∑

d=1

E[aT
:,da:,d]E[αd]− ã

N∑

d=1

ln(b̃d) +N ln
Γ(ã)

Γ(a)
. (6.31)

5. Compute −Eq(α) [DKL (q(A)||p(A|α))]
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We start from rewriting the Kullback-Leibler divergence as

−Eq(α) [DKL (q(A)||p(A|α))] = Eq(α),q(A) [ln p(A|α)]− Eq(α),q(A) [ln q(A)]

where p(A|α) is given in (6.6) and q(A) in (6.21). Using the properties in

(6.28) with aj,:, we obtain

− Eq(α) [DKL (q(A)||p(A|α))] = NR

N∑

d=1

E[lnαd] +NRN

− 1

2

N∑

d=1

E[aT
:,da:,d]E[αd] +

1

2

2NR∑

j=1

ln det
Ä
Σ̃j

a

ä
. (6.32)

Incorporating (6.27), (6.29), (6.30), (6.31), and (6.32) into (6.26) yields

(6.25), concluding the proof.

Detector

The value of L(q∗) obtained using CAVI algorithm depends on whether one or

more PUs are transmitting in the considered frequency bin. When z:,i = 0 for

each i = 1, . . . , NS, i.e., no PU is transmitting during the observation window,

then q∗(z:,i) = N (0, IN). In other words, since the algorithm is unable to

learn an approximate posterior distribution, it coincides with the chosen prior

p(z:,i), and the first three terms in (6.25) are zero. Conversely, when a PU

signal is observed these terms assume negative values. An example of the

values of L(q∗) in the presence and absence of PU signals is shown in Fig. 6.3.

Hence, we use L(q∗) as a test statistic to detect the presence of a PU in a

frequency bin as

L(q∗)
H0

≷
H1

φ. (6.33)

Hypothesis H1 corresponds to the presence of at least one PU signal, while

the null hypothesis, H0, corresponds to its absence. The threshold φ is

given by setting the false alarm probability pFA = P(L(q∗) < φ |H0), where

the null distribution is calculated via histogram based probability density

function estimation.
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Figure 6.3: An example of values of L(q∗) after the CAVI algorithm has reached con-
vergence, normalized between 0 and 1, for all the NB = 512 bins. The gray areas denote
the bins in which a PU signal is present.

The complete detection method is detailed in Algorithm 5, where the

latent dimension N is initialized to 2NR− 1, i.e., the dimension of g:,i minus

one [94]. We remark that the test (6.33) is executed independently for each

frequency bin.

6.3.5 Primary User Count Estimation

The primary purpose of a generative latent variable model is to determine the

appropriate dimension of the latent space. From the perspective of the WSS,

this ability is not essential since we only discriminate between dimension

zero (i.e. only noise) or dimension greater than zero (i.e. the presence of

at least one PU). However, in the broader context of spectrum awareness,

knowledge of the number of PUs transmitting in a frequency bin can provide

a complete understanding of spectrum usage, in addition to the discovery of

spectrum holes [117]. This capability can be exploit in security applications

where a deep knowledge of the spectrum is required to detect the presence
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of a possible intruder.

The number of PUs in the kth bin can be estimated as the size of the

latent space when the algorithm has reached convergence. In other words,

an estimation N̂T,k of the number of PUs NT,k is given by

N̂T,k =
||µ(i)

z ||0
2

(6.34)

where i ∈ {1, . . . , NS} and || · ||0 is the ℓ0-norm.4

6.4 Genie-aided Spectrum Sensing

In the numerical results Section 8.3, we validate the proposed VBFA-based

algorithm by comparing its performance against a likelihood ratio test (LRT)-

based genie-aided detector, which has complete knowledge of the covariance

of the signals from PUs, the channel coefficients linking each PU to SU, and

the noise covariance affecting each SU.

Let us formulate the per frequency bin spectrum sensing problem as a

binary hypothesis test, i.e.,




H0 : y

(i)
:,k = n

(i)
:,k

H1 : y
(i)
:,k = s

(i)
:,k + n

(i)
:,k

(6.35)

where i = 1, . . . , NS, n
(i)
:,k ∼ CN (0,Σn), and s

(i)
:,k ∼ CN (0,Σs). Let us

aggregate the observations of all the SUs in the kth bin in matrix Y =Ä
y
(1)
:,k ,y

(2)
:,k , . . . ,y

(NS)
:,k

ä
. The log-likelihoods of the observations in the two hy-

4The result is independent on the considered column because the dimensionality of

reduction is applied equally in all the NS observations. Thus, ||µ(1)
z ||0 = · · · = ||µ(NS)

z ||0.
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potheses are

ln fY|H0(Y|H0) = −1

2

NS∑

i=1

Ä
y
(i)
:,k

äH
Σ−1

n y
(i)
:,k (6.36)

lnfY|H1(Y|H1)= −1

2

NS∑

i=1

Ä
y
(i)
:,k

äH
(Σs + Σn)−1y

(i)
:,k (6.37)

where we omitted irrelevant constants. We now assume that the genie has

full knowledge of Σn and Σs, and performs spectrum sensing through the

LRT

Λ (Y)
H1

≷
H0

η (6.38)

with metric

Λ (Y) =

NS∑

i=1

Ä
y
(i)
:,k

äH
Σ−1

n y
(i)
:,k −

Ä
y
(i)
:,k

äH
(Σs + Σn)−1 y

(i)
:,k

obtained from (6.36) and (6.37) by some simple manipulation. We remark

that the received signal covariance matrix Σs can be expressed as a function

of the transmitted signals and the channel coefficients between the PUs and

the SUs.
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Algorithm 5: VBFA-based algorithm for WSS

Input : NS, NR, NB, v, e, a, b, g
(i)
:,k for k = 1, . . . , NB, i = 1, . . . , NS

Output: Decision Dk ∈ {H0,H1} for k = 1, . . . , NB

1 N ← 2NR − 1

2 ṽ ← v + NS

2

3 ã← a+NR

4 for k from 1 to NB do

5 Initialize b̃, ẽ, µ
(j)
a , Σ̃

(j)
a for j = 1, . . . , 2NR

6 G← {g(i)
:,k}NS

i=1

7 while L(q∗) does not converge (see (8.10)) do
8 Compute q∗(Z):

9 Σ̃z ←
(
IN + E[ATΨA]

)−1

10 for i from 1 to NS do

11 µ
(i)
z ← Σ̃zE[AT]E[Ψ]g:,i

12 end
13 Compute q∗(A):

14 for j from 1 to 2NR do

15 Σ̃
(j)
a ←

Ä
E[ψj,j]

∑NS

i=1 E[z:,iz
T
:,i] + E[diag(α)]

ä−1

16 µ
(j)
a ← Σ̃

(j)
a E[ψj,j]

∑NS

i=1 gj,iE[z:,i]

17 end
18 Compute q∗(α):

19 for d from 1 to N do

20 b̃d ← bd +
E[aT

:,da:,d]

2

21 end
22 Compute q∗(Ψ):

23 for j from 1 to 2NR do

24 ẽj ← ej + 1
2

∑NS

i=1 E [(gj,i − aj,:z:,i)
2]

25 end

26 Compute L(q∗) in (6.25)

27 end

28 Dk ← L(q∗)
H0

≷
H1

φ

29 end



Chapter 7

Meta-Analysis for WSS

This chapter introduces a novel method for cooperative WSS, which is based

on a very old but powerful framework called meta-analysis.

7.1 Problem Statement

Meta-analysis is a statistical approach that integrates and synthesizes the

findings of multiple independent “studies” addressing a common research

question. By aggregating data from various sources, it aims to provide a

more accurate and reliable estimate of the overall effect size, thus enhancing

the generalizability of the conclusions. This method is particularly valuable

in situations where individual studies yield inconsistent results or are limited

by small sample sizes [118].

In the context of cooperative WSS, a “study” is analogous to a sensor that

monitors the specific band. While each sensor can independently perform

spectrum sensing based on its own observations, variations in channel con-

ditions and geographical locations may lead to differing detection outcomes.

To address these discrepancies, a meta-analysis approach can be applied at

the FC, combining the detection results from all sensors to produce a more

accurate and reliable final outcome.

Fig. 7.1 illustrates the advantages of the meta-analysis approach com-

pared to the previously proposed solution in Chapter 6. In the VBFA

95
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VBFA
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Figure 7.1: (a) VBFA approach, where the jth sensor transmits the NB frequency

components y
(i)
j,: to the FC for i = 1, . . . , NS. (b) Meta-analysis approach, where the jth

sensor shares the vector pj,:, containing the p-values for each frequency bin.

method, for the kth frequency bin, sensors transmit the NS frequency do-

main representations of their received signals to the FC. In contrast, as will

be discussed in the following section, the meta-analysis approach requires

each sensor to share only a scalar value. This significantly reduces the over-

head on the backhaul link.

7.2 Meta-Analysis

Meta-analysis refers to the synthesis of data from multiple independent tests.

In this section, we combine the detection performed by each sensor in a mix-

ture detector by using meta-analysis. In this scenario, each sensor performs

a statistical hypothesis test based on the frequency domain observations of

a single frequency bin; then, the outcomes of NR binary hypotheses tests are

combined to determine the presence or absence of a signal in that bin. The

procedure is repeated for each frequency bin.

7.2.1 p-value

The meta-analysis relies on the evaluation of the p-values, which represents

the probability of obtaining a test statistic at least as extreme as the one
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observed, assuming that the null hypothesis H0 is true. It quantifies the

strength of evidence against the null hypothesis: smaller p-values indicate

stronger evidence, while larger p-values suggest weaker evidence. In mathe-

matical terms, let V represent the test statistic and v be the observed value,

then the p-value for test j at bin k is

pj,k = P(V ≥ v|H0). (7.1)

A p-value below a predetermined significance level (commonly denoted as

false alarm probability pFA) leads to the rejection of the null hypothesis,

suggesting that the observed result is statistically significant. Conversely, if

the p-value is greater than pFA, the null hypothesis cannot be rejected.

7.2.2 Ordering Phase

A single statistic test performed by the jth sensor necessitates the estimation

of noise power. To this end, a sorted version ỹ
(i)
j,: of the observed vector y

(i)
j,:

is considered. The sorting is executed according to the estimated power of

each bin, σ̂2
j,q = (1/NS)

∑NS

i=1

∣∣y(i)j,q

∣∣2, so that
(
σ̂2
j,1, σ̂

2
j,2, . . . , σ̂

2
j,NB

)
are arranged

in ascending order. The ordering phase is depicted in Fig. 7.2. After this

operation, it can be assumed that the first frequency bin ỹ
(i)
j,1 is comprised

solely of noise. Consequently, an estimated noise power can be derived from∑NS

i=1 |ỹ
(i)
j,1|2.

7.2.3 Single Test

From (2.17), a binary hypotheses model for the jth sensor and the kth bin

can be formulated 


H0 : y

(i)
j,k = n

(i)
j,k

H1 : y
(i)
j,k = s

(i)
j,k + n

(i)
j,k.

(7.2)

As already mentioned, for many communication signals (e.g., OFDM), the

received samples can be modeled as zero-mean complex Gaussian random

variables (r.v.s), such that y
(i)
j,k ∼ CN (0, σ2

j ) forH0 and y
(i)
j,k ∼ CN (0, σ2

j,k+σ2
j )

forH1. Let us assume that we are able to estimate the noise power, e.g., from
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Figure 7.2: Ordering phase for the noise power estimation. Ordering is based on the

average power of the elements of y
(i)
j,: (a), providing the vector ỹ

(i)
j,: (b).

the first frequency bin obtained after ordering as described in the previous

Subsection 7.2.2. Then, a test statistic is constructed

Vj,k =

∑NS

i=1 |y
(i)
j,k|2∑NS

i=1 |ỹ
(i)
j,1|2

(7.3)

and the p-value is computed by the cumulative distribution function (c.d.f.)

of Vj,k as pj,k = 1 − FVj,k
(v) for j = 1, . . . , NR and k = 1, . . . , NB. The

calculation of FVj,k
(v) is a challenging undertaking, and thus we provide an

approximation thereof.

Approximate c.d.f.

Let us define the r.v.s Y =
∑NS

i=1 |y
(i)
j,k|2 and Y(1) =

∑NS

i=1 |ỹ
(i)
j,1|2 takes after a

order operation where Y(1) < Y(2) < · · · < Y(NB). Although it is straightfor-

ward to demonstrate that Y ∼ X 2
2NS

, due to the ordering, it is not possible to

draw the same conclusion for Y(1). In particular, the right probability density
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function (p.d.f.) for Y(1) is given by [119]

fY(1)
(y) = NB(1− FY (y))NB−1fY (y) (7.4)

where FY (y) and fY (y) are the c.d.f. and p.d.f. of Y , respectively. They can

be written as

fY (y) =
1

Γ(NS)σ2NS
j

yNS−1e
− y

σ2
j

FY (y) =
1

Γ(NS)

∫ y/σ2
j

0

zNS−1e−zdz = Γinc

Ç
y

σ2
j

, NS

å
(7.5)

where Γ(·) is the gamma function and Γinc(·, ·) is the incomplete gamma

function.1

In order to compute the c.d.f. of Vj,k, we adopt the moments matching ap-

proach, whereby the parameters of a known distribution are set to match the

first three moments of the true distribution of Vj,k. It is therefore necessary

to have knowledge of the moments of the distribution of Vj,k. As evidenced

in [34, Appendix], the moments of Vj,k can be expressed as

E[V m
j,k] =

E[Y m]

E[Y m
(1)]

(7.6)

where

E[Y m] = σ2m
j

Γ(NS +m)

Γ(NS)
(7.7)

1It should be noted that the definition of the incomplete gamma function
Γinc

(
y/σ2

j , NS

)
includes the term 1

Γ(NS)
, in accordance with the Matlab notation.
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E[Y m
(1)] =

∫ +∞

−∞
ymfY(1)

(y)dy (7.8)

=

∫ +∞

−∞
ymNB(1− FY (y))NB−1fY (y)dy

= NB

∫ 1

0

(F−1(u))m(1− u)NB−1du

with u = FY (y) and F−1(u) = σ2
j Γ−1

inc(u,NS). Incorporating (7.7) and (7.8)

into (7.6) yields

E[V m
j,k] =

Γ(NS +m)

NB Γ(NS)
∫ 1

0
(F−1(u))m(1− u)NB−1du

(7.9)

where the integral is calculated using a numerical method on Matlab.

The distribution of Vj,k can be accurately approximated by a scaled and

shifted gamma distribution

Vj,k ≃ G− α (7.10)

where α is a constant and G ∼ G(β, θ) denotes a gamma r.v. with shape

parameter β and scale parameter θ. We set α, β, θ for matching the first

three moments of the distribution of Vj,k provided by (7.9) with m = 1, 2, 3.

To this aim we recall that for the gamma r.v. the mean is µg = βθ, the

variance is σ2
g = βθ2 and the skewness is Sg = 2/

√
β. If µv = E[Vj,k],

σ2
v = E[V 2

j,k]− µv, Sv =
E[V 3

j,k]−3µvσ2
v−µ3

v

σ3
v

are the mean, variance and skewness

of the distribution of Vj,k, then matching the first three moments gives:

β =
4

S2
v

(7.11)

θ =
σvSv

2
(7.12)

α = βθ − µv. (7.13)

Finally, from (7.11), (7.12), and (7.13) it is possible to compute the ap-
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proximate c.d.f. of Vj,k as

FVj,k
(v) ≃ Γinc

(v + α

θ
, β
)
. (7.14)

7.2.4 Mixture Detector

The single statistical tests are integrated through the application of two

distinct meta-analysis-based mixture detectors.

Fisher’s Method

According to Fisher’s method, the p-values are combined as [118,120]

V FM
k = −2

NR∑

j=1

ln(pj,k) (7.15)

where V FM
k ∼ χ2

2NR
denotes the mixture detector test statistic for the kth

bin. It is possible to compute the mixture p-value via the c.d.f. as pFMk =

1 − FV FM
k

(vFMk ). Finally, for each frequency bin the following test is carried

out

pFMk
H0

≷
H1

pFA, ∀ k = 1, . . . , NB (7.16)

where pFA is the predefined false alarm probability set during system design.

Weighted Z-Transform

According to the z-transform method, each p-value, pj,k ∈ [0, 1], is mapped

into a z-value, zj,k ∈ [−∞,+∞], as zj,k = 1−F−1
Z (pj,k) = Q−1(pj,k) [97,121].2

Then, the z-values are combined to obtain the mixture detector test statistic

V ZT
k =

∑NR

j=1wjzj,k»∑NR

j=1w
2
j

∼ N (0, 1) (7.17)

2Could negative opinions from male soldiers affect women’s pride in wearing the U.S.
Army uniform? To answer this question, Stouffer proposed the z-transform method in
footnote 15 of [122, p. 45].
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where wj is the weight assigned to zj,k.3 Finally, the mixture p-value is

computed as pZTk = 1 − FV ZT
k

(vZTk ) = Q(vZTk ) and binary hypothesis test is

carried out as for Fisher’s method

pZTk
H0

≷
H1

pFA ∀ k = 1, . . . , NB. (7.18)

3The classical z-transform method can be obtained assigning equal weights to all the
z-values, such that V ZT

k = 1√
NR

∑NR

j=1 zj,k.



Chapter 8

Framework Validation

This chapter presents a series of tests that validate the proposed frame-

works for jammer detection and spectrum sensing. In particular, Section 8.1

provides a detailed account of the simulation performance for the jamming

detection algorithm presented in Chapters 4, including a comprehensive anal-

ysis of the performance of our UBSS algorithm in Chapters 3. Section 8.2,

on the other hand, demonstrates the efficacy of the VAE-based jamming

detection algorithm in a ISAC system. Finally, Section 8.3 offers a compre-

hensive evaluation of the performance of cooperative WSS methods presented

in Chapter 6 and Chapter 7.

8.1 Jamming Detection through

Spectrum Patrol

8.1.1 Simulation Setup

As a case study, we simulated a wireless network composed ofNT transmitters

and a gateway, a patrol of NR RF sensors, and a jammer, all randomly

deployed in a square area of side 100 m. The positions of all the actors

(nodes, sensors, and jammer) during the following simulations are shown in

Fig.8.1a. The network nodes adopt the Long Range (LoRa) modulation and

Long Range Wide Area Network (LoRaWAN) MAC protocol [123,124]. The

103
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operating frequency is set to f0 = 868.1 MHz and the channel bandwidth is

fixed to W = 125 kHz. According to the European regulation EU868, the

transmission duty cycle is set to 1% [125]. We then assume that during the

sensors observation time Tob, each wireless node transmits one LoRa packet.

Before sending the packet, each transmitter randomly selects a spreading

factor (SF) between the available ones, from 7 to 12. In general, Tob has

to be sufficiently large to include several transmissions in order to ensure

sufficient statistical significance of the estimated TE.

The collision event is defined as the overlap between the transmission of

two or more signals (including the jammer), as in a collision channel model.

The packets are structured according to [124] and [126], using the implicit

header mode and Hamming code with rate 4/7. The MAC payload size

for each packet is selected randomly in the interval between 1 byte and the

maximum payload size allowed by the EU868 regional parameters [125].

Regarding the wireless channel, a power-law path-loss model with expo-

nent α = 4 and log-normal shadowing with intensity σS,dB are considered.

The transmit power of the nodes is PTX = 14 dBm according to the EU868

regional parameters, while the jamming signal is a sine wave at 868.1 MHz

with power PJ = 27 dBm. The receive antenna gain of all the devices (RF

sensors and the jammer) is set to 0 dBi and the noise figure is F = 14 dB.

The sensing, attack, and idle times of the jammer are set to T1 = T2 =

TI = TJ = 50 ms, while sensors estimate the energy of the received signal

within a time bin Te = 1 ms.

8.1.2 Impact of Shadowing

In this section, the performance of the complete jammer detection algorithm

under different shadowing regimes is discussed, and a comparison between

TE and cross-correlation as a measure of causality is given. Fig. 8.2 shows the

receiver operating characteristic (ROC) curves of the proposed methodology

in case of different shadowing intensities using both TE and cross-correlation.

For this simulation, we deployed NT = 10 transmitters, NR = 5 sensors, and

a jammer in the area. The ROC curves are obtained across NMC = 104 Monte
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Figure 8.1: (a) Scenario with 10 transmitters, 5 patrol sensors and a jammer used for
the simulation. (b) Scenario with 20 transmitters, 5 patrol sensors and a jammer.

Carlo iterations in which the traffic profiles generated by the nodes change

and the position of all the actors is provided in the attachment. The patrol

observation time is Tob = 20 s, in which every node transmits one packet.

The packet transmission start times vary so that the number of collisions

ranges between 0 and 2 across the Monte Carlo iterations.

Although for low false alarm probabilities, the cross-correlation ROC is

above the TE’s, the latter quickly outperforms the former, reaching a prob-

ability of detection over 0.9 with a relatively small false alarm probability,

even in case of high shadowing regime.

Fig. 8.2 shows that, as expected, an increase in the shadowing inten-

sity degrades the overall performance of the methodology. This is due to a

non-correct reconstruction of the transmitted energy profiles by the UBSS.

However, note that TE exhibits robust performance even for σS,dB = 8.

The presented method is compared with a ML-based approach for jam-

ming detection proposed in [68], in which a gradient boosting algorithm is

trained using RSS and PDR as features and used to detect and classify the

jammer. Since, in our scenario, the PDR is not available at the patrol (it

should be part of the network to retrieve such information), we trained the

learning model using only RSS to ensure a fair comparison. Fig. 8.2 includes

the performance of both solutions. Since the sensor positions are fixed during
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Figure 8.2: ROC curves for TE and cross-correlation with different values of shadowing
intensity σS,dB. Comparison with the state-of-the-art method.

the Monte-Carlo iterations, the performance of the ML-based algorithm is

optimal when σS,dB = 0. In this case, RSS is sufficient to detect the presence

of the jammer transmitting at high power. However, when increasing shad-

owing intensity, our algorithm significantly outperforms the existing scheme.

8.1.3 Number of Patrol Sensors

In this section, we investigate the minimum number of RF sensors that guar-

antee a required jammer detection performance. Given NT = 10 transmit-

ters and a jammer with the same positions adopted for Subsection 8.1.2, in

Fig. 8.3 we compute the ROC curve for different number of patrol sensors

NR = {4, 5, . . . , 9}. For each of the NMC = 104 Monte-Carlo iterations the

sensors positions are decided in a random way keeping a minimum distance

among them, in particular we set at least 40 m of distance with NR = 4, 30 m

for NR = {5, 6, 7, 8}, and 25 m when NR = 9. A limit of at most two collisions

among transmitters in Tob = 20 s is considered as in the previous subsection.
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Figure 8.3: ROC curves as a function of the number of sensors NR.

We consider a shadowing with σS,dB = 3 both for transmitter/jammer-patrol

channel and for transmitter-jammer channel. It is possible to see that from

NR = 4 to NR = 7 the performance noticeably increases, while from NR = 7

to NR = 9 it remains constant. Since we tackled the underdetermined case,

the number of sensors does not exceed the number of transmitters, which is

10. If more sensors are available, classical overdetermined BSS schemes, e.g.,

ICA can be used [127].

Comparing the ROC curve for σS,dB = 3 and NR = 5 in Fig. 8.2 with the

corresponding curve in Fig. 8.3, a drop in performance can be notices. The

reason lies in the different setup for patrol sensors: in Fig. 8.2 sensors have

fixed positions chosen for good coverage of the area, while in Fig. 8.3 at every

iteration, their positions change in a random way respecting only a minimum

distance, so sometimes unfavorable placement occurs. For the same reason, a

complete degradation in performance is observed for the algorithm proposed

by [68]. Indeed, by changing the positions, there is a loss of information

contained in the RSS values used during training.
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Figure 8.4: Similarity degree among transmitters profiles and estimated sources (the
color scale is on the right). Each pixel of the images depicts, for a given NR in the y-axis,
the correlation coefficient of two time series: the true energy profile of the transmitter
indicated in the x-axis and the corresponding profile estimated via UBSS. Performance of
the proposed algorithm in Chapter 3 without, (a), and with the jammer,(b). Performance
of the algorithm in [1] without, (c), and with the jammer, (d).

The same simulation setup is employed to compare the UBSS algorithm

in Chapter 3 with the original algorithm in [1]. In both cases, the second step

of reconstruction of the transmitted energy profiles is performed with OMP,

so the difference resides in the estimate of the mixing matrix where in [1]

they do not use a transmission detection and dimensionality reduction steps.

To underline the different performance, given the matrix Z, we compute the

correlation among each row of Z and the original energy profiles in X. The

result is a matrix C ∈ RL×(NT+1) where the element cij is the correlation

between the ith estimated source and the jth row of X. From C, only the
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maximum value of each column is considered to obtain a vector m ∈ RNT+1

that becomes a matrix M ∈ RNMC×(NT+1), iterating the simulation for NMC =

1000. In Fig. 8.4, a pixel pi,j depicts the mean of M:,j for a given number

of sensors NR = i. This performance metric provides a measurement of

similarity among original and estimated energy profiles. pi,j with an high

value implies the original profile Xj,: is correctly estimated during the NMC

iterations for NR = i. In the absence of the jammer, the two methods have

comparable performance: the first eight transmitters are estimated with good

accuracy, while the reconstruction of the last two, which cause the collision,

is affected. In the presence of a jammer, the situation is more interesting

because the jamming attack is poorly estimated by the algorithm in [1],

while, on the contrary, with our methodology, it is the source estimated at

best.

8.1.4 Effect of Collisions

As we have seen, since collisions among nodes’ packets are a nuisance in the

reconstruction stage, it is necessary to investigate their impact on the per-

formance of the proposed methodology. In particular, there are two aspects

to analyze: the consequences of increased collisions and their total absence.

This last case summarizes the scheduled access protocols where, since a better

reconstruction performance of the UBSS should be expected, then a better

jammer detection will occur.

Let us consider NT = 10, NR = 5, a jammer, with fixed positions during

simulation equal to Subsection 8.1.2, Tob = 20 s, σS,dB = 3, and an unique

SF= 11. The jammer detection probability is computed for a false alarm

probability of 5%, number of collisions Ncol from 0 to 4, and NMC = 5000

Monte Carlo iterations. With no collisions, a time division multiple access

(TDMA) protocol is simulated, so each transmitter sends its packet in a

time slot equal to the packet duration, and a guard time of half the packet

duration is present among the slots. A collision only occurs between two

packets, e.g., Ncol = 4 and NT = 10 means that 8 packets are involved in the

collisions. The results are shown with a orange bar plot in Fig 8.5. As already
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Figure 8.5: Probability of detection as a function of the number of collisions for two
different values of the number of transmitting nodes NT.

mentioned, in a TDMA protocol without collisions, the performance exceeds

the other scenarios with a substantial gap. Increasing the collisions, the

UBSS performance decrease, however untilNcoll = 3 the detection probability

remains roughly constant and above the 90%.

The orange bar plot in Fig 8.5 is obtained with the same setting but

placing NT = 20 and Tob = 30 s. This scenario is depicted in Fig. 8.1b with

all actor positions.1 Since the collisions number is unchanged, the sparsity

level in Y is the same and the UBSS performance does not degrade. At the

same time, instead, the greater presence of packets permits to capture the

causal rapport more easily. Regarding Ncol = 4 and NT = 10 then 80% of

the packets are involved in the collisions; with NT = 20 the rate halves at

the 40%. Thus, assuming that the collision packets are badly estimated by

the UBSS, thanks to the most number of packets, the possibility to remain

more faithful to the original sources enhances.

1The observation time is increased here to ensure that each node transmits at least one
packet.
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8.1.5 Impact of SJR

This section studies the performance of AvOTE varying the signal-to-jammer

ratio (SJR), defined as the ratio between the nodes and the jammer transmit

powers. The scenario consists of NT = 10 transmitters, NR = 5 patrol sen-

sors, and a jammer, and for each of the NMC = 3000 Monte-Carlo iterations,

the positions of the sensors are randomly chosen within the area keeping a

minimum distance among them of 30 m, while the positions of network nodes

and the jammer are the same of Section 8.1.2. In Fig. 8.6, the probability

of detection for different values of SJR is reported, considering a false alarm

probability of 5%. As expected, the detection probability reduces when the

SJR grows. In fact, at high SJRs the power received from the jammer be-

comes comparable to or even less than the ones received from the legitimate

nodes. In this situation, the drop in the detection probability is presumably

due to the inability of UBSS to separate the jammer profile from the others.

However, notice that if the jamming power is low, the effectiveness of the

attack is also reduced.

8.1.6 Computational Complexity Analysis

This section discusses the computational complexity of the proposed jam-

ming detection scheme. The big O notation, O(·), is used to denote the

computational complexity of algorithms.

• Transmission detection. Based on (2.14), each sensor computes the

energy profile, so the overall complexity for Algorithm 1 isO(NRNeN
2
d).

• Estimate of the mixing matrix. Considering loops and operations

in Algorithm 2 we achieve a complexity

O
Å(

(2INR + INRNcol +NRNk)NR +NRN
2
h

)
K

ã
(8.1)

where Ncol is the number of columns of the largest sub-matrix Ri,

i = 1, . . . , I. Row 5 is a quantization-based clustering algorithm that
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Figure 8.6: Detection probability as a function of the SJR with different shadowing
intensities, σS,dB, and pFA = 5%.

does not contain any multiplications or sums, but comparisons, so its

complexity is neglected [1].

• Orthogonal matching pursuit. Based on [128], the complexity of

reconstructing the transmitted energy profiles is O(γNRNWNe).

• All-versus-one transfer entropy. The input vectors are sequences

of 0s and 1s of length Ne, hence, one computation of TE takes O(Ne)

[72], [129]. Since TE is calculated inside 3 loops in AvOTE algorithm,

the complexity for this step is O
(
LkmaxrmaxNe + L(L− 1)

)
, where the

term L(L− 1) is due to the sum in row 3 of Algorithm 3.

• Cross-correlation. Adopting FFT to compute the cross-correlation,

the complexity for this version of Algorithm 3 is O
(
LNe log2(Ne)

)
.

Considering Tob = 20 s and W = 125 kHz, we have NdNe ∼ 106. Hence,

the largest term of UBSS complexity is the one related to the computation
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of the energy. Therefore, the overall complexity of the UBSS can be reduced

to O(NRNeN
2
d).

8.2 Jamming Detection through

Latent Model

8.2.1 Simulation Setup

The performance of the VAE-based jamming detection solution are evaluated

and compared in this section with that of a conventional autoencoder (AE).

For all the simulations, 5G new radio (NR) signals compliant with 3GPP

Technical Specification in [130] are considered. According to the 5G NR

standard, we employed a carrier frequency of f0 = 28 GHz, an EIRP PTGT =

13 dBW, subcarrier spacing ∆f = 120 kHz, number of antennas NA = 50,

and the number of subcarriers used for the radar set to NB = 500. In

addition, a quadrature phase shift keying (QPSK) modulation alphabet is

used for the generation of the OFDM signal, and the parameter ρ is set to

0.5. As shown in Fig. 2.3, the system scans the environment in the range

[−θ0, θ0], with θ0 = 60◦ and a beamwidth ∆Θ = 5.3◦ at −10 dB gain relative

to the beam direction. Therefore, the number of step to cover the entire

range is Nstep = ⌈ 2θ0
∆Θ
⌉ = 23.

The self-interference attenuation αSI is computed using the signal-to-self

interference ratio (SSIR) defined as SSIR = (α
(i)
t /α

(i)
SI )2 = 20 dB. The target

RCS is assumed to adhere to the Swerling I model, i.e., σ
(i)
RCS ∼ exp(σ̄RCS)

where the mean is σ̄RCS = 1 m2. The noise power spectral density is N0 =

kBT0F , where kB = 1.38 · 10−23 JK−1 is the Boltzmann constant, T0 = 290 K

is the reference temperature, and FdB = 8 dB is the receiver noise figure.

8.2.2 Parameter Settings

The VAE’s encoder comprises a deep feed-forward neural network architec-

ture, with the input layer receiving the normalized vector g:,i ∈ R2NB×1,

which has unit modulus. Following this, the encoder employs 5 hidden layers
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with 728, 256, 64, 32, and L neurons each, respectively. The encoder out-

puts two vectors, β[i] and ϑ[i], each having a latent dimension of L = 10.

The decoder takes the latent variable z:,i = β[i] + ϑ[i] ⊙ ϵ as input, where

ϵ ∼ N (0, IL). The decoder’s architecture mirrors that of the encoder, pro-

ducing the vectors µ[i] ∈ R2NB×1 and σ[i] ∈ R2NB×1 as output. Each hidden

layer employs the rectified linear unit (ReLU) activation function, except for

the layers computing β[i] and ϑ[i], which employ a linear activation function.

Since the input is normalized with unit modulus, the output layer for µ[i]

adopts the hyperbolic tangent activation function. Training is conducted us-

ing the Adagrad optimizer with learning rate η = 0.005, for Nepoch = 4000

epochs, and batch size Nbs = 460. The training objective is to minimize the

negative ELBO, which is defined in (5.9).

To validate our VAE-based approach, we compare its performance with a

conventional AE. The AE’s encoder also employs a feed-forward deep neural

network architecture, comprising 7 hidden layers with 728, 512, 256, 128, 64, 32,

and 10 neurons each, respectively, where 10 denotes the bottleneck dimen-

sion. The decoder mirrors the encoder’s architecture, giving as output the

reconstructed vector ĝ:,i. Each hidden layer employs the ReLU activation

function, while the output layer uses the hyperbolic tangent activation func-

tion. The AE is trained using the Adagrad optimizer with learning rate

η = 0.001, over Nepoch = 2000 epochs, and a batch size of Nbs = 200. The

loss function used for the training is the mean-square error (MSE).

For both training and validation, we use a matrix G ∈ R2NB×N with

N = 57.5 · 103 observations. Specifically, 80% of the observations are used

for training, and the remaining 20% for validation. Both the VAE and AE

architectures were selected after extensive parameter searches to achieve their

optimal performance. To obtain a comprehensive training set that enables

the VAE to learn a general representation of the latent space, we assume that

independent observations are collected across various environments. Specif-

ically, we assume that for each observation, the target position and the pa-

rameters related to the channel realization between the target and the BS
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are generated according to the following distributions:

ϕ
(i)
t , ϕSI,1, . . . , ϕSI,NR

∼ U(0, 2π), (8.2)

r
(i)
t ∼ U(20, 85), (8.3)

θ
(i)
t , θ

(i)
BS,J ∼ U [θ

(i)
T −

∆Θ

2
, θ

(i)
T +

∆Θ

2
]. (8.4)

For the nth observation, the direction of the BS’ beam is set according to

θ
(i)
T = θ

(i)
R = −θ0 + mod(i− 1, Nstep)∆Θ (8.5)

where mod(a, b) is the modulo operator which returns the remainder of the

division between the two positive numbers a and b.

To evaluate the efficacy of the anomaly detector, the input for the test

is a matrix comprising 4600 observations. Of these, 2300 represent instances

where only the target is present, while the remaining observations include

both the target and the jammer. Also for the test dataset we assume that,

for each observation, the target position and the parameters related to the

channel realization between the target and the BS are generated according

to (8.2), (8.3), and (8.4), while the parameters related to the jammer are

generated according to NJ = 10, ϕ
(i)
J ∼ U(0, 2π), θ

(i)
J ∼ U(0, 2π), and θ

(i)
J,BS ∼

U [θ
(i)
J −

∆Θj

2
, θ

(i)
J +

∆Θj

2
], where ∆Θj = 14◦.

8.2.3 Impact of SJR

In this subsection, the performance of the proposed jamming detection method

varying the SJR, is studied. The SJR is defined as the ratio between the EIRP

of the legitimate signal and that of the jammer signal, i.e.,

SJR =
ρPTGT

PJGJ

. (8.6)

The test is performed assuming the jammer is in a fixed position, i.e., r
(i)
j =

rj = 90 m, implying that the jammer is attempting to deceive the BS by stay-

ing outside its coverage area. For each observation, the injected false delay is
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Figure 8.7: ROC curves of the proposed VAE and the conventional AE for different SJR
values.

set to τ
(i)
f = 0.17µs, corresponding to a false distance of 50 m. Fig. 8.7 shows

the ROC curves for different SJR values for both the proposed VAE and the

conventional AE. Considering a false alarm probability pFA = 0.05, the VAE

achieves a detection probability pD = 0.93 for SJR = 27 dB. However, when

the jammer’s transmit power is significantly lower than BS’s sensing power,

the detection performance deteriorates. Moreover, from Fig. 8.7 it is evident

that the VAE outperforms the conventional AE for each of the SJR values.

The best performance produced by the VAE with regard to AE are caused

by the difference between reconstruction probability and reconstruction er-

ror. The latent variables in a VAE are stochastic, whereas in autoencoders,

they are defined by deterministic mappings. As the VAE employs a proba-

bilistic encoder to model the distribution of latent variables rather than the

variables themselves, it is able to account for the variability of the latent

space through the sampling process. This increases the expressive power of

the VAE, as it is capable of capturing differences in variability even when
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Figure 8.8: Probability of detection pD for different latent space dimensions, L, and SJR
values, with a false alarm probability pFA = 0.05.

normal and anomalous data share the same mean value [89].

8.2.4 Latent space dimension

Finally, we assess the impact of the latent space dimension hyperparameter,

L, on the VAE’s detection performance. Fig. 8.8 shows the probability of

detection pD, for different SJR values and latent space dimensions 5, 10,

15 and 20, with a false alarm probability pFA = 0.05. Tipically, setting a

low latent space dimension prevents the VAE from capturing all the trends

and variations in the training observations. Conversely, high values of L

tend to keep the regularization term DKL (qφ(z:,i|g:,i)||p(z:,i)) low during the

training [131]. From Fig. 8.8, it is evident that setting L = 10 provides

the best performance, even considering different SJR values. When L = 5,

the VAE is unable to correctly learn the latent space, resulting in degraded

detection probability. Similarly, for L = 15 and L = 20, the impact on the

regularization term prevents the algorithm from fully exploiting its learning

potential, leading to suboptimal performance. Therefore, both lower and

higher values of L negatively affect the detection probability.
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8.2.5 Computational Complexity Analysis

As the training phase can be performed offline, the computational complexity

of the NNs is evaluated based solely on the forward propagation. The number

of operations is determined by the architecture’s neuron count and layer

configuration, and is expressed as a function of both the input and latent

space dimensions.

• VAE. For the architecture detailed in Subsection 8.2.2, the network’s

complexity is given by O(2((2NB)728 + 32L) + 32L + L2). Assuming

L≪ NB, this simplifies to O((4NB)728).

• AE. Under the same assumption, the complexity also simplifies to

O((4NB)728).

8.3 Cooperative WSS

8.3.1 Simulation Setup

In this Subsection, we evaluate the performance of the proposed coopera-

tive WSS techniques in a realistic scenario, accounting for multiple PUs and

channel impairments such as path-loss, multipath propagation (frequency-

selectivity), shadowing, and unequal noise power at the sensors.

Without loss of generality, we consider equivalent low-pass signals and

all frequencies are normalized with respect to the sampling frequency at the

receivers. The scenario consists of two PUs which emit independent band-

limited Gaussian processes mimicking the OFDM signals, with normalized

center frequencies f1 = 0.3 and f2 = 0.8, respectively, and normalized band-

widths B1 = B2 = 0.3 [132].

The NR sensors experience AWGN with different noise powers. This is

accounted by the noise power spread among the NR sensors, ∆σ2
N,dB, which

represents the difference among the noise power of sensor S1 and sensor SNR
;

such spread is then equally distributed among the remaining sensors. For

example, if ∆σ2
N,dB = 2 and NR = 5 then the noise power at the receivers
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Figure 8.9: An illustration of the received signals in frequency domain for NR = 5
sensors, setting NB = 512 and SNR = 0dB.

in ascending order is σ2
N,dB + {1, 0.5, 0,−0.5,−1} where σ2

N,dB is the nominal

noise power.

Because of the wideband nature of the signals and receivers involved,

we consider frequency-selective multipath channels between the PUs and

the sensors. In particular, we consider the ITU EPA channel model, which

consists of seven independent Rayleigh distributed paths as detailed in Sub-

section 2.1.2. Each PU-sensor link is also subject to log-normal shadowing

with intensity σS,dB. Moreover, to account for different path-loss experienced

by PU-sensor links we define a nominal SNR, SNR, and the SNR spread,

∆SNRdB, i.e., the maximum difference among the SNR at receivers. For the

sake of clarity, if ∆SNRdB = 10 and NR = 5 then the SNRs at the sensors

are SNRdB + {5, 2.5, 0,−2.5,−5}. An illustration of the frequency represen-

tation of the received signals when NR = 5 is reported in Fig. 8.9. Note

the different frequency-selective fading experienced by the receivers. If not

otherwise specified, in the following results we consider NS = 100, NB = 512

bins, NR = 5 sensors, ∆SNRdB = 10, ∆σ2
N,dB = 4, and σS,dB = 3.
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8.3.2 Figure of Merit

For each parameter setup, NMC = 103 Monte Carlo trials are carried out over

the channel realizations (noise, multipath, shadowing) to obtain averaged

performance. Let us define the ground truth matrix B ∈ {0, 1}NB×NMC ,

whose entry bj,i can be either 0 or 1. If bj,i = 1, then the jth frequency bin is

occupied (i.e., at least one PU is transmitting in that bin) at the ith Monte

Carlo iteration. Then, we also define matrix B̂ ∈ {0, 1}NB×NMC , with entries

b̂j,i, such that b̂j,i = 1 means that the jth bin is declared occupied by the

VBFA (or Meta Analysis) algorithm at the ith Monte Carlo iteration. Given

k∗ occupied frequency bins among the total number NB of bins available,

the performance of the proposed cooperative WSS techniques are assessed

considering the following metrics:

Pd =

∑NMC

i=1

∑NB

j=1 bj,ib̂j,i

k∗NMC

(8.7)

Pfa =

∑NMC

i=1

∑NB

j=1(1− bj,i)b̂j,i
(NB − k∗)NMC

(8.8)

P all
d =

∑NMC

i=1 1{∑NB
j=1(bj,ib̂j,i)=k∗}

NMC

(8.9)

where 1{x=y} is the indicator function equal to one when x = y and zero oth-

erwise. Pd is the probability of detection at a given bin under the hypothesis

that a PU signal is present in that bin, Pfa is the probability of false alarm

at a given bin under the hypothesis that only noise is present in that bin,

and P all
d is the probability to detect all the bins that contain the PU signals.

To compute the statistical test in (6.33), (6.38), (7.18), and (7.16), the

probability of false alarm is set to Pfa = 0.05.

8.3.3 Parameter Settings for VBFA Algorithm

Table 8.1 summarizes the parameter settings adopted when executing Al-

gorithm 5. The prior parameters are set to a = v = bd = ej = 10−4 for

d = 1, . . . , N and j = 1, . . . , 2NR; E[αd] = ã/b̃d and E[ψj] = ṽ/ẽj are ini-
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Table 8.1: VBFA simulation parameters for cooperative WSS.

Parameter a, v, bd, ej E[αd] E[ψj] µ
(j)
a Σ̃

(j)
a λ g

Value 10−4 10−2 10−2 ∼ U(0, 1) 1
2NR

UUT 10−5 100

tialized to 10−2 for all d and j; µ
(j)
a , j = 1, . . . , 2NR, is initialized as a

vector of values drawn from a uniform distribution between 0 and 1. Called

U = [µ
(1)
a , . . . ,µ

(2NR)
a ], we set Σ̃

(j)
a = 1

2NR
UUT for all j.

The CAVI algorithm stops when L(q∗) converges, i.e., the exit condition

is satisfied when
|L(q∗)n − L(q∗)n−t|

|L(q∗)n−t|
< λ (8.10)

where λ = 10−5, t = 100, and L(q∗)n is the ELBO evaluated at the nth

iteration.

8.3.4 State of the Art

We compared our WSS algorithms with three state-of-the-art algorithms,

namely the GMM and K-means-based solutions proposed in [99] and the cas-

cade of a sparse autoencoder (SAE) and a GMM proposed in [111]. These

are data-driven unsupervised clustering algorithms aimed at assigning each

of the processed frequency bins to one of two clusters: one corresponding

to noise-only signal and the other to the presence of at least one PU signal.

Therefore, such algorithms are required to detect which of the clusters corre-

sponds to the noise-only case, e.g., by estimating the noise power. Since there

can be at most 2 PU signals in the considered bandwidth, we set the number

of clusters to 3, assuming prior knowledge of the noise cluster. Contrar-

ily, our proposed VBFA-based algorithm does not require prior noise power

estimation.

In the following results, the clustering algorithms proposed in [99] are

fed as input with the matrix of received power samples R ∈ RNB×NR , where

rk,j = 1
NS

∑NS

i=1 |x
(i)
j,k|2. The SAE introduced in [111] is based on a deep feed-

forward neural network architecture. The network’s input layer processes

the power matrix R̃ ∈ RLNB×NR , which has been normalized by the noise
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power. We set L = 110 to expand the input matrix R̃ where the 90% of

the observations are used for training, and the remaining 10% for validation.

The architecture consists of four hidden layers with neuron configurations of

15, 20, 15, and NR, respectively. A Sigmoid activation function is applied to

each hidden layer, while the output layer utilizes a linear activation function.

The model is trained using the Adam optimizer with a learning rate set to

0.0001, over 2000 epochs with a batch size of 400. The training process

minimizes the MSE loss, augmented by a sparsity penalty on the bottleneck,

as detailed in eq. (13) of [111].

8.3.5 Impact of SNR

In this section, we compare the performance of our spectrum sensing methods

with that of the genie-aided detector presented in Section 6.4 and the three

solutions exposed in the previous subsection. In particular, for the SAE, the

network is trained from scratch each time for each SNR value.

In Fig. 8.10a and Fig. 8.10b, Pd and P all
d for all the detectors are shown

for different SNR values. For the Z-transform, three variants are considered:

equal weights for all the sensors, w1 = [0.05, 0.1, 0.2, 0.25, 0.4], and w2 =

[0.1, 0.1, 0.2, 0.3, 0.3]. The weights are assigned sequentially, such that the

sensor with the highest noise power has the lowest weight. The Fisher’s

method yields higher detection probability compared to the Z-transform,

which exhibits a slight performance increase when using weights. In the case

of low SNR values, the performance of VBFA is observed to be slightly inferior

to that of Fisher. However, as the SNR increases, the curves for Pd converge.

Our solutions outperform the state-of-the-art algorithms, approaching the

genie-aided detector in high-SNR regimes.

8.3.6 Number of Sensors

The performance of cooperative WSS strongly depends on the number of

SUs performing joint detection. In Fig. 8.10c, P all
d and Pd varying the num-

ber of sensors NR from 2 to 10 with SNR = −7 dB are shown. We kept

∆SNRdB and ∆σ2
N,dB constant, such that while the number of SUs increases,
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Figure 8.10: Pd and P all
d varying different simulation parameters: (a)-(b) performance

is shown for different SNR values; (c) simulations are carried out for different number of
sensors deployed in the area, NR; (c) detection probabilities as a function of the number
of independent observations, NS.

the maximum difference among the SNRs at receivers remains constant.2 As

expected, performance improve as the number of SUs increases. VBFA and

Fisher’s method achieve Pd = 0.9 for NR = 3 and approaches the genie-aided

benchmark for NR = 6. In terms of P all
d , Fisher’s method gives the highest

detection probability.

2Given that the Fisher’s method yields a higher detection probability than the Z-
transform, for the purposes of illustrating the impact of varying NR and NS on perfor-
mance, we will focus on the results obtained using the Fisher’s method.
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8.3.7 Number of Observations

In Fig. 8.10d, P all
d and Pd are shown for NS ∈ [50, 103], SNR = −10 dB, and

NR = 5. Again, VBFA approaches the performance of the Fisher’s method

for Pd, but remains lower for P all
d . Moreover, the state-of-the-art algorithms

are not able to match our solution performance.

Increasing the number of collected observations, NS, enhances detection

probability by capturing more signal and channel realizations into the input

matrix Gk, helping the VBFA algorithm to approximate better the poste-

rior distribution q(Θ), thus maximizing the ELBO. However, a larger NS

increases computational cost, as detailed in Algorithm 5, due to its effect on

the loop operations. Additionally, a high NS value extends the observation

time, potentially causing significant time lags, which undermines the assump-

tion that PUs’ occupancy remains constant during the NS observations.

8.3.8 Impact of Channel Model

The simulations in the previous numerical results’ subsections are performed

using the EPA channel model. However, in [9], other two channel models are

proposed as reported in Tab. 2.1.

In Fig. 8.11, the values of Pd and P all
d are presented for various SNR levels

across all three channel models. While the individual bin detection probabil-

ity Pd remains relatively stable, we observe that P all
d varies depending on the

channel model. The ETU model is the one yielding the worst performance;

this is probably due to the stronger multipath effect and significant path

delays, leading to higher frequency selectivity.

8.3.9 Performance of KL Divergence Metric

We will now focus on the VBFA algorithm proposed in Chapter 6. In prin-

ciple, the first three terms in (6.25), derived from −DKL(q(Z)||p(Z)), can be

used as a metric to perform spectrum sensing via binary hypothesis testing

in line 28 of Algorithm 5, after the convergence of the ELBO. In absence of

a signal we obtain DKL(q(Z)||p(Z)) = 0, while with an occupied frequency
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Figure 8.11: Pd and P all
d are shown for different SNR values using three channel models

proposed in Tab. 2.1. Pfa is set to 0.05.

bin, the Kullback-Leibler divergence is small but greater than zero.

In order to verify this assertion, two ROC curves are shown in Fig. 8.12 for

SNR = −2 dB. The blue curve was obtained using a statistical test with the

ELBO as metric, while the red curve corresponds to a statistical test with

−DKL(q(Z)||p(Z)). It is evident that ELBO provides better performance,

and this is probably due to the fact that the remaining terms in (6.25), which

are not derived from the Kullback-Leibler divergence, assume different values

depending on whether the PU is present or not, enhancing the ability of the

detector in distinguishing between the two hypotheses. For example, if the

bin contains only noise, the algorithm will tend to turn off all directions in

the latent space, i.e. it will set high values for αd with d = 1, ..., N . However,

to have large entries in α, the algorithm sets low values for b̃d, namely the

terms−ã∑N
d=1 ln b̃d has the same behavior of−DKL(q(Z)||p(Z)) increasing in

presence of only noise. Thus, the highest probability of detection is obtained

using the statistical test in (6.33).
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8.3.10 Noise Estimation Performance

The jth sensor noise power can be estimated from the approximate posterior

distribution by recalling that 1/E[ψj,j] = ẽj/ṽ in (6.18), and this leads to

σ̂2
j =

ẽj
ṽ

+
ẽj+NR

ṽ
(8.11)

for j = 1, . . . , NR.

This section investigates the performance of noise power estimation car-

ried out using (8.11). Fig. 8.13 shows the normalized root mean square

error (NRMSE) between σ̂2
j and σ2

j in three different conditions, namely,

when no PU is present, and when a PU is present with SNR = −12 dB

and SNR = 2 dB, respectively. The simulations parameters are NS = 500,
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NR = 5, and NMC = 2× 104. The NRMSEj for the jth sensor is defined as

NRMSEj =
1

σ2
j

Ã
1

NMC

NMC∑

i=1

(
σ̂2
j − σ2

j

)2
.

Remarkably, Fig. 8.13 illustrates that in the absence of the PU signal, the

NRMSE is minimal, resulting in a high-quality estimation of the noise power

of all sensors. However, as expected, the presence of the PU signal increases

the NRMSE, leading to a degradation in noise power estimation performance.

This is particularly evident in this specific scenario where the sensor subject

to the highest noise power, σ2
5, also experiences the highest SNR, given by

SNRdB+∆SNRdB/2, which leads to a deterioration in noise power estimation.
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8.3.11 PU Counting Performance

To conclude the analysis, we assess the performance of the estimation of the

number of PUs through VBFA. For this test, we added a third PU with

a normalized center frequency of f3 = 0.4 and bandwidth of B3 = 0.3 to

the scenario. The third PU signal bandwidth overlaps by 66% with that

of the first one. Hence, in the occupied frequency bins, two situations are

possible: NT,k = 1 or NT,k = 2. All the three PU signals emit independent

band-limited Gaussian processes mimicking the OFDM signals. They are

subjected to the same nominal SNR value SNR and SNR spread ∆SNRdB =

10. In a security-related context, the occurrence of two PUs within the same

frequency band may be indicative of the presence of an intentional interferer,

such as a jammer, which has the potential to disrupt the primary legitimate

communication.

To estimate the latent space dimension accurately, we set the stopping

parameters for VBFA to λ = 10−8 and g = 1000. The simulation is performed

with NS = 1000, NR = 5, and each sensor receives the same power from each

PU. Since the estimated size of the latent space might be a non-integer

value, we provide the PU counting performance under two different rounding

rules obtained by ceiling and floor operations, respectively. Fig. 8.14 displays

the confusion matrices obtained by estimating the number of active PUs in

each frequency bin. The rows represent the actual number of PUs while the

columns are the estimated ones. Fig. 8.14a is obtained by applying the ceiling

operation to the estimated latent space dimension, while Fig. 8.14b results

from applying the floor operation. In the low SNR regime, the algorithm

exhibits a bias towards the scenario where NT,k = 1. This occurs because,

despite maintaining good detection performance at low SNR values (e.g.,

at SNR = −4, Pd = 1 as shown in Fig. 8.10a), the VBFA algorithm fails

to distinguish between the contributions of multiple PUs. Consequently,

while the algorithm successfully detects an occupied frequency bin, it cannot

accurately infer the correct dimensionality of the latent variables. In such

cases, the estimated number of PUs defaults to N̂T,k = 1.
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Figure 8.14: Confusion matrices for the PU counting algorithm for different SNR and
rounding rules: (a) a ceiling operation is performed, i.e., N̂T,k = ⌈||y:,i||0/2⌉; (b) a floor

operation is performed, i.e., N̂T,k = ⌊||y:,i||0/2⌋.

8.3.12 Computational Complexity Analysis

Both Z-transform and Fisher methods have a computational complexity of

O(3NSNB), which is mostly determined by the computation of Vj,k in (7.3).

The complexity of the VBFA algorithm is more challenging to determine.

Referring to Algorithm 5, the key complexity components are as follows:

• The computation of Σ̃z has a complexity of O(8N3
R).3

• The update of µ
(i)
z , for i = 1, . . . , NS, requires O(8N3

RNS).

• The computation of Σ̃
(j)
a , for j = 1, . . . , 2NR, has a complexity of

O(8N3
RNS + 16N4

R).

3For a matrix A ∈ RN×N , the matrix inversion operation has a complexity of O(N3).
For matrices A ∈ RN×M and B ∈ RM×L, the complexity of the multiplication AB is
O(NML).
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• The update of µ
(j)
a , for j = 1, . . . , 2NR, requires O(4N2

RNS + 8N3
R).

• The calculation of b̃ has a complexity of O(8N3
R).

• The computation of ẽ dominates with a complexity of O(16N4
RNS).

Thus, the overall complexity for each iteration is primarily dictated by the

calculation of ẽ. These operations must be repeated until the ELBO con-

verges, and this process applies across all frequency components. Therefore,

the total complexity of the VBFA method is O(16N4
RNSNBNiter), where Niter

represents the number of iterations required for the convergence of the ELBO,

as defined by the stopping criterion in (8.10).



Chapter 9

Conclusions

The objective of this thesis was the development of a novel framework for

monitoring the RF spectrum and, when present, detecting smart jammers.

The framework relies only on over-the-air signals captured by RF sensors.

Through the use of UBSS, the system effectively separated mixed over-

the-air signals captured by the RF sensors, isolating traffic patterns for fur-

ther analysis. The extracted traffic profiles were subjected to a causal infer-

ence methodology, enabling the accurate identification of jammers. Addition-

ally, the patrol monitored spectrum usage by processing frequency-domain

representations of received signals, detecting occupied portions of the band

and estimating the number of signals present.

Lastly, a novel jamming detection algorithm is introduced for an ISAC

application, where a deceptive jammer attempts to manipulate target range

estimation. By leveraging the capabilities of a latent variables model, an

anomaly detector is employed to distinguish between the presence of a jam-

mer (anomalous condition) and its absence (normal condition).

Jamming Detection through Spectrum Patrol

This work demonstrated that combining an UBSS approach with a causal

inference tool can be effectively utilized to detect reactive jammers.

The proposed UBSS methodology demonstrated its ability to effectively

reconstruct the transmitted energy profile, even in underdetermined scenar-
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ios. By accounting for the occurrence of collisions, the sparsity assumption

was validated, showing that the jammer’s energy profile can be accurately

recovered. Moreover, numerical results confirmed that our UBSS approach

surpasses the performance of existing method in the literature.

From the causal inference perspective, TE was employed. Specifically, we

introduced a novel algorithm, AvOTE, which identifies the causal relation-

ship where the combined signals from the network nodes act as the cause,

and the jamming signal represents the effect. A subsequent statistical test

confirms the presence of the jammer.

The overall methodology achieves excellent performance, with detection

probabilities reaching up to 99% in scenarios without user packet collisions,

surpassing the results of a state-of-the-art approach. A comprehensive analy-

sis further revealed that performance degradation is primarily caused by poor

source reconstruction by UBSS, which occurs in conditions of high shadow-

ing, insufficient sensor numbers, or frequent collisions.

Jammer Detection in ISAC system

A novel framework for deceptive jamming detection in monostatic ISAC-

OFDM systems was introduced. This framework leverages the received sig-

nal at the BS to detect the presence of a jammer capable of falsifying target

localization. The proposed framework employs a VAE to learn a latent space

representation of the echoes received from a target. Specifically, the recon-

struction probability is utilized as a test statistic to detect the presence of

a jammer. Our approach demonstrated significant detection performance,

achieving a detection probability Pd of 93% for an SJR of 27 dB, and notably

outperforming a properly trained conventional AE.

Cooperative WSS

Two distinct methodologies were proposed for cooperative WSS to estimate

the occupancy state of multiple narrow spectrum bands within a broad band-

width, utilizing signals collected by a network of RF sensors. The first ap-

proach applied VBFA to develop a spectrum sensing metric, which was used
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in binary hypothesis testing, where the test statistic, the ELBO, was ana-

lytically derived in Chapter 6. The second approach employed a statistical

technique called meta-analysis to combine detection results from all sensors,

yielding a more accurate and reliable final decision.

Extensive numerical evaluations showed that both approaches substan-

tially outperformed several state-of-the-art algorithms, achieving a detection

probability Pd of 0.9 at a SNR of −10,dB. The performance of these methods

was also tested under varying key system parameters, including the number

of sensors and the number of independent observations.

Among the two, the Fisher meta-analysis approach demonstrated the

highest overall performance. However, while VBFA exhibited slightly lower

detection capability, it provided deeper insight into the spectrum, as it lever-

aged a latent variable model through factor analysis. This allowed VBFA to

estimate both the noise power at each sensor and the number of PUs within

each frequency bin.
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