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Abstract

State-of-the-art General Circulation Models (GCMs) typically operate at a coarse spatial
resolution, posing challenges in accurately assessing regional climate changes and their
impacts. This limitation is particularly evident in representing regional-scale topography and
meteorological processes, including extreme weather events. Traditional dynamical
downscaling methods address these issues but are computationally intensive, while statistical
approaches, though efficient, often compromise spatial consistency. This study introduces an
innovative application of Conditional Generative Adversarial Networks (cGANs) for climate
data downscaling to address these challenges. GANSs consist of two interconnected components:
a generative and discriminative models. The generative model is based on ERAS5 climate
reanalysis data (Hersbach et al., 2020, ~31 km resolution) and learns to produce high-resolution
data. The discriminator uses the VHR-REA _IT dataset (Raffa et al., 2021, ~2.2 km resolution)
to distinguish between real and generated data by the GAN, known as ERAS5-DownGAN.
VHR REA-IT is a convection-permitting reanalysis (horizontal grid spacing 0.02°, =2.2 km)
generated with COSMO in Climate Mode (COSMO-CLM) over a domain covering the Italian
Peninsula. The generative model refines its output through an iterative adversarial process to
achieve enhanced spatial coherence. This study pioneers the use of cGANs to downscale ERAS
reanalysis data to high horizontal resolution (~2.2 km) for both temperature and precipitation
fields. Specifically, the model uses 2-meter temperature (T _2M) data to downscale T 2M and
precipitation data (TOT PREC) to downscale precipitation. The training phase (1990-2000)
allows the cGAN to learn the high-resolution data patterns, while the testing phase (2001-2005)
evaluates its performance against VHR-REA IT. The cGAN accurately reproduces patterns and
value ranges for temperature and total precipitation fields, exhibiting a slight tendency toward
cooler values. Furthermore, the cGAN downscaling model maintains strong consistency across
all percentile classes (from the 1st to the 99th) for temperature, and in nearly all classes for total
precipitation, with a tendency to generate outliers in the precipitation fields for the extreme

classes (98th and 99th percentiles). Additionally, the GAN model developed was validated in



collaboration with the National Center for Atmospheric Research (NCAR) through an added

case study centered on the United States territory.

This extension assessed the model's versatility across different datasets and geographical
domains, confirming its effectiveness and potential as a robust tool for high-resolution climate
data generation and regional climate analysis. This research demonstrates the significant
potential of GANs to address the spatial limitations of traditional climate models, offering a
powerful method for high-resolution climate data generation and contributing valuable insights

into regional climate dynamics.
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I | Aim of the Work

This study explores the application of a new Conditional Generative Adversarial Neural
Networks (cGAN) architecture for statistical downscaling, discussing its methodology,
advantages, and contributions to refining climate predictions at a finer scale. Inspired by GAN
architectures used for image super-resolution, this work introduces a novel approach to enhance
the resolution and quality of climatological data visualization. By leveraging a generator-
discriminator architecture, these GANs generate high-resolution climate datasets that are
indistinguishable from real high-resolution data, offering an efficient means to increase the
spatial resolution of climatological datasets. Through adversarial training, the generator
network learns intricate spatial features and patterns intrinsic to climate data, producing more
detailed representations. The application of GANs for super-resolution in climatology
represents a cutting-edge advancement, particularly for understanding complex climatic
processes. This study evaluates the robustness and versatility of a newly developed cGAN-
based statistical downscaling model across varied applications. The initial implementation
focuses on downscaling the 2-meter temperature field for a test period (01/2001-12/2005),
starting from low-resolution data (ERAS, ~31 km) to obtain a new high-resolution dataset (~2.2
km) consistent with the high-resolution training dataset (VHR REA-IT). The computational
domain for this application includes the Italian Peninsula, parts of Northern and Central Europe,
and Northern Africa. In a second application, the model’s performance was evaluated by
downscaling a more complex variable, cumulative total precipitation, over the same geographic
region. To further assess the model’s flexibility for other geographical domains, it was applied
for the downscaling of 2m-temperature centered on the United States territory. This
investigation was born during an internship with NCAR (National Center for Atmospheric
Research). This implicated downscaling from ERAS5’s low resolution (~31 km) to 4 km,
achieving a resolution aligned with the high-resolution WRF-NCAR dataset used in training.
Additionally, the portability of this downscaling architecture was confirmed across different
high-performance computing systems at CMCC (Euro-Mediterranean Center on Climate

Change), and NCAR.



These applications collectively underscore the effectiveness of the developed methodology and
lay a foundation for future studies aimed at scaling to additional atmospheric variables and
extended simulation periods, enhancing precision in climate prediction across diverse scales

and regions.
The thesis is organized as follows:

Chapter I introduces the fundamentals of Generative Adversarial Networks (GANSs),
encompassing the evolution of artificial intelligence, neural networks, and the various types of

GAN architectures, with a particular emphasis on Conditional GANs (cGANSs).

Chapter 2 details the design and implementation of the ERA5-DownGAN for super-resolution
in atmospheric fields, covering dataset preparation, ¢cGAN architecture, and training

procedures.

Chapter 3 applies the developed cGAN to downscale 2-meter temperature and total
precipitation data for the Italian Peninsula, comparing results with traditional dynamical

downscaling methods

Chapter 4 demonstrates the flexibility of the developed cGAN for applications in other
domains and with different datasets, specifically extending the cGAN application to the United
States in collaboration with NCAR, and evaluating its performance in downscaling using the

ERAS5 and WREF dataset

Chapter 5 provides final considerations and discussion, highlights open questions, and

indicates directions for future research.



I.I | Introduction

Statistical downscaling techniques represent alternative or complementary methods to
the use of dynamic downscaling models to increase the spatial-temporal resolution of global
climate models. Climate change impacts and adaptation applications often require increasing
spatial resolution, making it a priority to close the existing gap between climate data produced
by General Circulation Models (GCMs), which typically operate at resolutions that are too
coarse (often 100-200 km), and climate information at local levels. The outcomes derived from
downscaling techniques, whether dynamic or statistical, play a crucial role in developing a
comprehensive understanding of the localized impacts of climate variability and change,
particularly in the context of extreme climate events. Local climate data is indispensable for
enhancing risk assessments and formulating adaptation strategies across various sectors
(Kondrup C., et al., 2022). The application of downscaled climate data is crucial for multiple
sectors. In agriculture, downscaled precipitation and temperature projections can inform crop
management strategies and irrigation planning under future climate scenarios (Xiao D. et al.,
2021). In hydrology, accurate downscaling of precipitation data is essential for assessing water
resource availability and flood risks, as coarse-resolution models often misrepresent
precipitation extremes (Sun Q., et al., 2020). Furthermore, downscaled climate projections are
increasingly used in ecological modeling to evaluate the potential impacts of climate change on
biodiversity and habitat suitability (Tabor K. and Williams J.W., 2010; Zhang F. & Georgakakos
A.P.,2012).

Statistical downscaling is more cost-effective and flexible compared to dynamic downscaling,
allowing for faster implementation in new areas or regions. A review of current statistical
downscaling techniques includes Empirical Statistical Downscaling (ESD), which maps
empirical statistical relationships between large-scale climate drivers and local meteorological
variables based on historical observational records (Benestad, R., et al., 2008). Various
mathematical approaches, including linear regression, principal component analysis (PCA), and
multiple linear regression, are applied in ESD. Weather generators (Yin, S., and Chen, D., 2020)
also contribute to the field by generating synthetic meteorological data informed by statistical
attributes from historical climate observations. Quantile mapping (Panofsky, H.-W., and Brier
G.W., 1968) adjusts the probability distributions of coarse climate model outputs using

empirical observations. Additionally, Bayesian statistical downscaling techniques (Liu, J.,



Yuan, et al., 2015) combine statistical methodologies with Bayesian principles to estimate

uncertainties due to the downscaling process.

Generative Adversarial Networks (GANSs) offer a promising alternative by addressing many
limitations of traditional methods. GANs learn directly from training data without making
specific assumptions about the form of relationships or the stationarity of climatic relationships.
This flexibility enables GANs to generate synthetic data that preserves the statistical
characteristics of the training data (Leinonen, J. et al., 2021), adapting to complex and non-
linear time variations. By avoiding rigid assumptions, GANs are well-suited to handle scenarios
of climate change, capturing the complexity of meteorological phenomena, especially extreme
weather conditions or non-linear climate changes. GANs represent an innovative method in the
statistical downscaling landscape. Unlike Bayesian approaches, which require substantial data
and specific assumptions, GANs operate in an unsupervised learning context, making them
more adaptable to situations with limited labeled data. GANs do not rely on assumptions of
linearity or stationarity, offering a more flexible downscaling process compared to quantile
mapping, which applies fixed statistical rules and may struggle with changes in distribution
shapes or extreme events. GANs address these limitations by capturing complex relationships
and mitigating challenges associated with fixed-statistics methods. Beyond traditional
statistical downscaling methods, Generative Adversarial Networks (GANs), particularly Super-
resolution GANs (SR-GANs), have demonstrated superior performance in different
applications compared to other deep learning-based approaches such as DeepSD, ConvLSTM,
and U-NET. As highlighted by Kumar B., et al. 2023, SR-GANSs exhibited higher correlation
scores and more effectively captured fine-scale precipitation structures. According to the
authors, among the techniques analysed, SR-GANs emerged as the most data-driven approach
for precipitation downscaling. Despite their advantages, GANs face challenges such as training
instability and computational complexity. These issues present opportunities to enhance the
robustness and practical application of GANs. As a result, GANs are emerging as promising

tools in the climatic context, playing a significant role in the machine learning landscape.

I.2 The Role of Artificial Intelligence in Weather and
Climate
Atmospheric sciences, like many other disciplines that rely on computational methods,

have been swept up in one of the greatest revolutions of our era: the development of a new set

of sophisticated algorithms collectively known as Artificial Intelligence. While the origins of



such algorithms can be traced back to the mid-20th century, notably with the 1956 summer
conference at Dartmouth College in Hanover, New Hampshire, as recounted by Mamalakis A.
et al. (2022), their use became increasingly established from the 2000s onward, driven by the
rise in computational power and the advancement of techniques such as machine learning and

deep neural networks (deep learning).

Artificial intelligence (Al) classification has evolved significantly since its inception, reflecting
advancements in both theoretical and practical dimensions. Initially, Russell and Norvig (1995)
provided a framework for categorizing Al based on two axes: one distinguishing between
thinking and acting, and the other contrasting human imitation with ideal rationality. This
classification system highlights fundamental approaches to Al, including the explicit and
implicit categories. The concept of explicit Al, or symbolic Al is rooted in early work by Allen
Newell and Herbert A. Simon, particularly their influential publication “Human Problem
Solving”, (1972). This approach, characterized by rule-based systems and logical structures,
laid the groundwork for what became known as expert systems. On the other hand, implicit A,
which encompasses modern machine learning techniques, emerged from the pioneering
research of Geoffrey Hinton and Yoshua Bengio. Their seminal paper “Learning
Representations by Back-Propagating Errors” (1986) marked a significant advancement in
neural network approaches, underscoring the shift towards data-driven methodologies that

abstract complex patterns from large datasets.

It is precisely from machine learning systems that the fields of climatology and meteorology
have sought to mitigate the computational costs associated with the increasing need to improve
the representation of sub-grid atmospheric and oceanic processes and to enhance model
resolution. The application of machine learning in weather and climate science is remarkably
versatile, encompassing everything from substituting specific sub-components of conventional
models to improve their accuracy and reduce computational requirements to the complete
replacement of the entire numerical modeling framework (de Burgh-Day and Leeuwenburg
2023). The versatility of machine learning algorithms allows for their application across various
domains, including forecasting, data assimilation, downscaling, post-processing of model
outputs, and decision support tools. For instance, in weather forecasting, machine learning
algorithms have been employed to enhance precipitation predictions. A notable example is the
use of convolutional neural networks (CNNs) to analyze historical weather data and improve
short-term precipitation forecasts, as demonstrated by Wang J et al. (2024). This approach

allows for the extraction of spatial patterns from large datasets, leading to more accurate
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predictions compared to traditional methods. Similarly, Al techniques have been utilized in the
post-processing of numerical weather prediction outputs to correct biases and improve forecast
reliability, as highlighted by Haupt S. E. et al. (2021). In the realm of climate modeling, Al has
shown promise in downscaling coarse-resolution climate model outputs to finer spatial
resolutions. For example, Bafio-Medina J. et al. (2020) explored various deep learning
configurations for statistical downscaling, demonstrating that machine learning can effectively
capture local climate variations that are often missed by traditional models. Moreover, Al has
been applied to enhance the understanding of complex climate phenomena, such as the
interactions between the Antarctic Ice Sheet and global sea-level rise. Sadai S. et al. (2020)
utilized machine learning to analyze the future responses of the Antarctic Ice Sheet to

anthropogenic warming, providing insights into potential climate feedback mechanisms.

Reichstein M. et al. (2019) utilized deep learning techniques to classify extreme weather
patterns from climate simulation data, demonstrating how Al can effectively identify and
categorize complex atmospheric phenomena. This clustering capability is essential for
understanding the frequency and intensity of extreme weather events, which are increasingly
relevant in the context of climate change. Furthermore, machine learning has shown promise
in enhancing the representation of cloud processes in climate models. Barnes E.A. et al. (2019)
discussed how Al can autonomously detect complex patterns in cloud formation and behavior,
which are critical for accurate climate modeling. In conclusion, the integration of artificial
intelligence in weather and climate science represents a transformative shift in how atmospheric
research i1s conducted. By leveraging machine learning and deep learning techniques,
researchers can improve predictive accuracy, address biases in traditional models, and enhance
the understanding of complex atmospheric processes. As Al continues to evolve, its role in
advancing weather and climate science is likely to expand, offering new opportunities for
addressing the challenges posed by climate change and extreme weather events. These
applications underscore the ability of Al to process vast amounts of data and identify critical
patterns that inform climate science and the potential of Al to improve the fidelity of climate

models, particularly in representing processes that are often poorly understood.

To fully grasp the application of artificial intelligence for downscaling in this study, a detailed
overview of the use of machine learning techniques in climate and meteorology, specifically

related to this topic, will be presented.



1.3 Machine Learning and Deep Learning for Statistical
Downscaling

Computational efficiency, versatility, and the ability to learn complex relationships from
data make the statistical approach a valuable downscaling method, especially when
implemented through machine learning algorithms. Before providing a precise classification of
the different statistical downscaling approaches, it is important to understand that, regardless of
the specific application, most methods establish an empirical link between a set of predictors x

and the predictands y through a statistical model F(.),

y ~ F (x).

The predictands commonly describe local or regional-scale surface weather or climate, whereas
the predictors are generally of larger scale (Maraun D. and Widmann M., 2018).

From this formulation, it is evident that the choice of the downscaling function F(x), the
predictors x, and the predictands y results in different downscaling methods. There are various
categorizations of downscaling methods (Klein W. and Glahn H. 1974; Wilby R.L. and Wigley
T.M.L. 1997; Maraun D. and Widmann M. 2018), but two main subsets are common to divide
the empirical downscaling strategies: observational downscaling (or empirical statistical
downscaling) and RCM emulation (Fig. I.I). Observational downscaling (or empirical statistical
downscaling) involves the development of a model trained on real-world observational data. In
contrast, an RCM emulator aims to replicate the functionality of a physics-based RCM and can
be trained on simulations of both historical and future climates. Although these two strategies
produce downscaling outputs with different characteristics, recent years have seen an increasing
use of modern machine learning algorithms (including deep learning) in both approaches, often

replacing traditional statistical methods.
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Fig. L.I: (a) Comparison of PP (left) and SR (right) approaches for climate downscaling in New Zealand: PP
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maps large-scale fields to high resolution, while SR maps coarsened fields to high resolution. (b) Comparison
between perfect and imperfect RCM training frameworks, with perfect using coarsened RCM fields and

imperfect using GCM fields. Adapted from Rampal N. et al. (2024).

According to Rampal N. et al. (2024), one of the most recent reviews on the statistical
downscaling topic, empirical downscaling approaches can be classified into four main
categories: Perfect Prognosis (PP), Super-Resolution (SR), Weather Generators (WGs), and
Model Output Statistics (MOS). The PP (Perfect Prognosis) statistical downscaling methods
are so named because the model is trained entirely using real-world data, with both predictors
and predictands sourced from observations (or observational proxies such as reanalysis data).
This approach allows the model to be grounded in data that closely represents physical reality.
Once trained, the model is applied to predictors generated by a GCM (Global Circulation
Model) to simulate high-resolution predictands. While this methodology has been widely
adopted, its performance depends heavily on the choice of the GCM that provides the
predictors. PP methods are inherently unable to correct for biases present in the GCM, which
may lead to distorted downscaling results. A specific application of Perfect Prognosis (PP) is
Super-Resolution (SR), where a low-resolution surface field is used on its own to predict a high-

resolution counterpart.

Model Output Statistics (MOS) gets its name from the way it uses statistical linking functions,
identified during the calibration phase, to directly adjust the output fields of GCMs already at
that stage. This approach allows biases in climate models to be structurally considered and
corrected as early as the calibration process. A substantial difference between MOS and other

techniques such as Perfect Prognosis (PP) concerns the applicability of the corrections: in the



case of MOS, adjustments are made on a GCM-specific basis, making them non-transferable
between different models. As a result, PP is more flexible and generalisable, and more in line
with the dynamic Regional Climate Models (RCMs) approach (Rampal N. et al, 2024). Another
distinctive aspect is that while in the PP the predictors and predictors, both derived from
observations, are temporally synchronised during the calibration phase, in the MOS this
calibration does not occur in a coupled manner. This is because climate simulations are not
synchronised with real observations. Consequently, the calibration in the MOS is usually based
on long-term distributions (distributional calibration), which is only meaningful when
predictors and predictors share the same physical dimension, a limitation not found in PP that
allows for heterogeneous predictor/predictor pairs. In the climate context, therefore, the MOS
almost always takes the form of a simple correction of model biases (e.g. empirical quantile
mapping), rather than a calibration based on a precise temporal correspondence between

simulations and observations.

Weather Generators (WG) rely on stochastic statistical algorithms, in contrast to PP, SR, and
MOS, which employ a deterministic approach. The WG are designed to replicate the
distribution and temporal dependence of meteorological variables, introducing variability and
randomness into the simulations, even when starting from the same input data. They create
synthetic meteorological scenarios based on the statistical properties of the data itself, aiming
for precise replication of spatiotemporal dynamics, natural variability of the variables of

interest, and correlation structures.

Despite their promising computational efficiency, Empirical Statistical Downscaling (ESD)
methods are not without limitations. Firstly, ESD methods are constrained by the availability
of long-term observational data, which limits their ability to produce high-resolution data only
for regions and variables with sufficient local observations. ESD methods are also constrained
in their selection of GCMs due to the requirement for specific variables at particular pressure

levels and with a specific temporal frequency for effective calibration.

Additionally, ESD methods rely on the assumption of stationarity in the relationship between
large-scale and local scales, implying that a statistical model calibrated on past and present
climate conditions remains reliable for future climate scenarios (Doury A. et al. 2022).
Numerous studies have demonstrated that this assumption can significantly impact results
(Wilby R.L. et al. 1998; Dayon G. et al. 2015; Erlandsen H. et al. 2020). To address the high

computational cost of Dynamic Downscaling (DD) and the limitations of ESD, hybrid models



have been introduced, combining the advantages of dynamic and statistical downscaling to
address their respective shortcomings, known as Regional Climate Model (RCM) emulators.
Initially defined by Maurun and Widmann (2018), these emulators use predictors from
simulations by a low-resolution RCM-GCM and predictands from simulations by a high-
resolution RCM. Thus, the final high-resolution output obtained from an RCM emulator is
constrained only by the resolution of the RCM output, and the performance can be at most

comparable to that of RCMs, as this methodology cannot overcome the biases inherent in

RCMs (Giorgi F. et al. 2009).

Emulators of Regional Climate Models (RCMs) operate without observational constraints,
allowing them to be trained on simulations from both historical and future periods. These
emulators can be categorized into two frameworks based on their training methodology:
"imperfect" and "perfect." In the "imperfect" framework, an emulator is trained to directly map
outputs from GCMs to those of RCMs. Conversely, in the "perfect" framework, the process
begins with an upscaling of the RCM resolution to match that of the GCM, followed by the
training of an algorithm to establish a mapping between the upscaled RCM and the original
RCM (Rampal N. et al., 2024). In the imperfect framework, the emulator learns a relationship
specific to each GCM-RCM pair, thus functioning as a Model Output Statistics (MOS)
technique. In contrast, the perfect model framework focuses on learning general relationships
between fields at different resolutions (Boé J. et al., 2023). This framework typically deals with
weak correlations and a degree of "independence" between RCM and/or GCM fields, aligning
it with the Perfect Prognosis (PP) approach. Training within the perfect framework is more
aligned with PP because it only learns general relationships between low and high-resolution
RCM pairs (Boé J. et al., 2023). The consistency between low and high-resolution RCM pairs
during training in the perfect framework simplifies the emulator training compared to the

imperfect framework (Rampal et al., 2024).

Empirical Statistical Downscaling (ESD) and RCM emulators share some of the most widely
used ML algorithms (including DL), such as: multiple linear regression (e.g., Sharifi E. et al.,
2019 for observational downscaling and Holden P.B. et al., 2015 for RCM emulators), random
forest (e.g., Limon G. and Jablonowski, C., 2023 for RCM emulators and Hutengs C. and
Vohland M., 2016 for use in ESD), generalized linear models (Bafio-Medina J. et al., 2020 for
ESD and Maraun D. et al., 2017 for RCM emulators), multilayer perceptron (e.g., Nishant N.
et al., 2023 for use in RCM emulators and Hobeichi S. et al., 2023 for PP), or short-term
memory (e.g., Bittner M. et al., 2023 for RCM emulators and Hobeichi S. et al., 2023 for ESD).
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The difference between the two strategies lies in how these techniques are employed, what
inputs are passed on, and what outputs are desired. For instance, traditional PP methods may
not be well-suited for downscaling nonlinear variables such as precipitation, as their site-
specific approach (i.e., extracting variables one '"site" at a time) does not incorporate
information from adjacent grid points. Furthermore, these methods can be computationally
inefficient, as the algorithm must be repeatedly applied, point by point, across large datasets.
RCM emulators, by receiving one or more fields as input over the entire spatial grid, generate
high-resolution output fields for the entire region covered by the RCM. Recent years have
demonstrated significant potential in applying computer vision algorithms to the fields of
meteorology and climatology, particularly in downscaling tasks. Notably, generative models
such as Generative Adversarial Networks (GANs) have been extensively studied, with
Leinonen J. et al. (2021) providing a comprehensive description of their application.
Additionally, diffusion models, as detailed by Mardani M. et al. (2023), have shown promising
results. These models utilize various architectures, including Convolutional Neural Networks
(CNNs), U-Net, and Fully Connected Networks (FCNs) or Multilayer Perceptrons (MLPs). The
complexity of these models involves compromises between the computational costs, the

horizontal resolution and, in some cases, the domain size (Doury A. et al. 2022).

I.4 Artificial Neural Networks (ANNs)

The architecture underlying the various Deep Learning (DL) algorithms employed for
downscaling in weather and climate modeling are rooted in the framework of artificial neural
networks (ANNs), commonly referred to as neural networks (NNs). These architectures are
particularly suited for representing sub-grid scale processes and are therefore discussed in detail
in this section. The development of neural networks was driven by the need to overcome the
limitations in capacity and processing speed of traditional digital computers compared to the
human brain, which, through its network of neurons, can perform highly complex and non-
linear tasks, such as pattern recognition and perception, within mere ms. Neural networks are
designed to emulate the functioning of the human brain, with several terminologies shared
between the two. In the human brain, learning occurs through experience, whereas in artificial
systems, this is achieved through a learning algorithm, which enables NNs to improve their
performance adaptively. The basic structural components of a neural network, known as
“neurons” or “processing units,” are extensively interconnected via synaptic weights. These
weights encode the acquired knowledge and are adjusted by the learning algorithm to enhance

the network’s performance. Neurons in NNs are organized into multiple interconnected layers
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that define relationships between different parameters (Fig. 1.2), thereby removing the need for
explicit parameterization or numerical models to encode such relationships. Consequently,

neural networks serve as universal function approximators (Lu L. et al., 2019).

Input layer Layer of Layer of
of source hidden output
nodes neurons neurons

Fig. 1.2: Example of a fully connected Neural Network. Reproduced by Simon Haykin (1999).

According to the definition provided by Simon Haykin (1999),

“a neural network is a massively parallel distributed processor consisting of simple processing
units, with an inherent ability to store experiential knowledge and make it available for

application.”

An important task for a neural network is to learn a model of the environment in which it
operates and to maintain the model in sufficient coherence with the real world to achieve the
specified objectives of the application. In real-world applications of "intelligent" machines, it
can be asserted that a good solution hinges on an effective representation of knowledge (Wood
J. and Shawe-Taylor, J., 1996). According to Fischler M. and Firschein O. (1987), this
representation pertains to the information or models stored and utilized, generally by either a

person or a machine, to interpret, predict, and respond appropriately to the external world.

The advantages associated with the use of neural networks are manifold, including their ability
to model nonlinear processes and generalize learned patterns to previously unseen data. The
capability to represent nonlinearity is crucial, particularly when the underlying physical

mechanism responsible for generating the input signals exhibits intrinsically nonlinear

12



characteristics. This is especially pertinent in the context of weather and climate, where the
phenomena involved are often highly complex and nonlinear. Another advantage of neural
networks is their ability to incorporate an evidential response, which provides a confidence
level along with the network's output. In a context where the difficulty of interpreting the
complex processes within machine learning models and the occasional lack of transparency can
undermine user trust, the evidential response allows for more informed and robust decision-
making. By managing ambiguity and enhancing the reliability of the results provided by the
algorithms, this feature addresses critical challenges in leveraging these advanced models

effectively.

1.4.1 Neurons and Activation Functions

The configuration of neurons within a neural network enables the formation of various
architectures. To fully appreciate these architectures, it is essential first to understand the
characteristics of a neuron, its constituent components, and its mathematical formulation. The
simplest instance of a neural network comprises a single input, a single neuron, and a basic
activation function. Mathematically, the operation of an individual neuron K, as illustrated in
Figure 1.3, can be characterized by examining the fundamental components that define its

model:

e Input: a neuron receives incoming signals from the preceding layer of neurons or directly
from raw data inputs. These signals are represented as a vector of numerical values
X1,X2, ...,Xm, Where each value x;j corresponds to a specific input data feature.

e Synaptic Weights: each input Xjis associated with a weight W, which signifies the relative
importance of that input to the neuron. The weights wyj are parameters learned during the
model training phase and can either amplify or attenuate the input signals.

e Bias: the bias b is a constant additive term that allows for the shifting of the activation
function, thereby enhancing the model's flexibility. Depending on the sign of the bias, the
relationship between the induced local field (or activation potential) vx of neuron k and the
output of the linear combiner Z;n: . Wi;x; is modified. The bias enables the neuron to produce
an output even when the inputs are zero.

e Activation Function: after processing the weighted inputs, the neuron applies an
activation function ¢(.) to the result. This function introduces non-linearity into the model,

enabling the network to learn more complex relationships between the inputs and the
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output. Examples of activation functions include the sigmoid, ReLU (Rectified Linear
Unit), and tanh.

e Output: The output of a neuron, denoted as y, represents the value predicted by the neural
network. This output can either be a continuous value in the context of regression problems
or a probability in classification tasks. The final value is obtained by applying the activation

function to the weighted input of the neuron.
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Fig. 1.3: Nonlinear model of a neuron, labeled k. Reproduced by Simon Haykin (1999).

Formally, the output y of a neuron is obtained through two main steps:

1. Weighted sum of inputs: Each input Xi is multiplied by its corresponding weight wki, and
the bias by is added to the total sum. This operation can be expressed as:

m
Uy = ZijX'j + bk
j=1

2. Application of the Activation Function: The result of the weighted sum z is then passed
through an activation function ¢(-), which transforms the neuron's output. This step is
crucial for introducing non-linearity into the system, enabling the network to solve real-

world problems. The final output of the neuron y is therefore given by:

m
Ve = @(y) =@ Z Wy jXj + by
=1
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Activation functions are integral components of neural network architectures, as they facilitate
the introduction of non-linearity into the model. This non-linearity enables the network to learn
and accurately represent intricate relationships within the data. Mathematically, an activation
function operates on the weighted sum of inputs directed toward a neuron, yielding an output
signal. This output signal is pivotal in determining the activation status of the neuron and the
degree of its response. In the absence of activation functions, a neural network would
fundamentally reduce to a linear regression model, thereby lacking the capacity to capture

complex patterns and non-linear relationships inherent in real-world datasets.

Beyond their primary function of introducing non-linearity, activation functions also serve the
critical role of normalizing the output of individual neurons. This normalization process ensures
that neuron outputs remain confined within a specified range, commonly between 0 and 1 or -
1 and 1. Such normalization is crucial for stabilizing the learning process and mitigating issues
related to the exploding or vanishing gradients, particularly in deeper network architectures.
Prominent activation functions employed for this purpose include the sigmoid function,

hyperbolic tangent (tanh), and softmax functions.

The distinctive characteristics of each activation function render them suitable for specific tasks

within neural network architectures. Commonly utilized activation functions include:

e Sigmoid Function: The sigmoid function is widely regarded as one of the most
fundamental activation functions in the architecture of neural networks. Characterized by
its strictly monotonic increasing nature, the sigmoid function elegantly balances linear and
nonlinear characteristics. A prominent example of this function is the logistic function,

mathematically represented as:

1
1+ exp(—av)

) =

where a denotes the slope parameter of the sigmoid function. By manipulating the value of a,
it is possible to generate sigmoid functions with varying degrees of steepness. As the slope
parameter a approaches infinity, the sigmoid function asymptotically behaves like a step
function. While a step function yields discrete outputs of either 0 or 1, the sigmoid function
provides a continuous range of outputs between 0 and 1. This property renders the sigmoid
function particularly advantageous for binary classification tasks, where the objective is to

assign inputs to one of two distinct categories. However, it is crucial to acknowledge that
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sigmoid functions are susceptible to the vanishing gradient problem, a limitation that can

significantly impede the training process in deep neural networks.

e Tanh: The hyperbolic tangent function, or tanh, maps the input to a value between -1 and
1. It is an improvement over the sigmoid function because it is zero-centered, which helps

the network learn more efficiently.

¢(v) = tanh(v)
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mathematically represented as:
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where a denotes the slope parameter of the sigmoid function. By manipulating the value of a,
it is possible to generate sigmoid functions with varying degrees of steepness. As the slope
parameter a approaches infinity, the sigmoid function asymptotically behaves like a step
function. While a step function yields discrete outputs of either 0 or 1, the sigmoid function
provides a continuous range of outputs between 0 and 1. This property renders the sigmoid
function particularly advantageous for binary classification tasks, where the objective is to
assign inputs to one of two distinct categories. However, it is crucial to acknowledge that
sigmoid functions are susceptible to the vanishing gradient problem, a limitation that can

significantly impede the training process in deep neural networks.

e Tanh: The hyperbolic tangent function, or tanh, maps the input to a value between -1 and
1. It is an improvement over the sigmoid function because it is zero-centered, which helps

the network learn more efficiently.

¢(v) = tanh(v)

e ReLU (Rectified Linear Unit): is a popular activation function that sets negative inputs
to zero while leaving positive inputs unchanged. It has been widely adopted due to its
simplicity and its ability to mitigate the vanishing gradient problem, which can occur in
deep networks during training. However, ReLU suffers from the "dying ReLU" problem,
where neurons can become inactive and stop learning, typically when their input values are

consistently negative.
o) = max(0,v)
o Leaky RelLU: Leaky ReLU is a variant of ReLU designed to address the "dying ReLU"
issue by allowing a small, non-zero gradient when the input is negative. This small slope a

for negative inputs prevents neurons from becoming inactive and allows learning to

continue, even for negative inputs.
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e Softmax: is commonly used in multi-class classification problems. It converts the raw
outputs (logits) of a neural network into a probability distribution over multiple classes,

ensuring that the sum of the probabilities for all classes equals 1.

o(v,) = Iixp(vi)

2., o)

Where, v; the raw output (logit) from the neural network for class i and K represents the total

number of classes.

Once the network's final output has been obtained from steps 1) and 2), which define the
forward step, we move on to step 3), known as the backward step. The combination of these
three steps defines what is commonly referred to as the backpropagation algorithm (Rumelhart
D., et al., 1986). After the output, during step 3, the error is measured against the expected
output (or “ground truth’) using a loss or cost function (for example, the mean squared error or
cross-entropy for classification). Specifically, backpropagation computes the gradient of the
loss function for each of the individual parameters of the neural network by utilizing the “chain
rule” (Child, J. M., 1916). An optimization function (gradient descent method or stochastic
gradient descent method) utilizes these gradients to find and update the corresponding weights

and biases of each neuron during backpropagation.

By descending along the gradient of the loss function, we minimize the loss function itself. The
direction in which we should adjust the weights and biases to reduce the loss is known, as the
gradient we calculated during backpropagation contains the partial derivatives for each model

parameter.

The weight update can be expressed as:

dLoss
ow

Whnew = Woig — 1

Similarly, the updated bias can be formulated as:
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Where 7 is the learning rate, which will be discussed in greater detail in section 2.4.4 (“Training

Strategies”).

Thus, the weights are updated in the direction opposite to the gradient to minimize the loss, and
the magnitude of the update is determined by the learning rate. The final goal of the process is
to minimize the error compared to the expected output and improve the overall prediction
accuracy of the network. In conclusion, backpropagation is fundamental to training neural
network models, from the most basic multilayer perceptrons to the complex deep neural

network architectures used for generative Al.

As previously mentioned, the configuration of neurons in a neural network defines several

network architectures (structures).

Following the classification proved by Simon Haykin (1999), there are three fundamentally

distinct classes of network architectures can be identified:

e Single-Layer Feedforward Networks: in a layered neural network, neurons are
organized into distinct levels (Fig. [.4a). In its simplest form, this network comprises an
input layer made up of source nodes that connect directly to an output layer containing
computation nodes (neurons), with no connections in the opposite direction
(feedforward network, FFNN). This architecture is referred to as a single-layer network
because only the layers containing computation neurons are counted; the input layer

does not perform any processing.

e Feedforward Multilayer: is characterized by the presence of one or more hidden
layers, where the computation nodes are known as hidden neurons or hidden units (Fig.
1.4b), so named because they are not directly visible from the network’s input or output.
Hidden neurons serve as intermediaries between the external input and the network’s
output, allowing the network to process more complex patterns and extract higher-level
features from the input data. In this way, even though the network has local connections,
it gains a broader, more global understanding of the problem thanks to the additional
synaptic connections and layers of neural interaction (Churchland P. S. and Sejnowski
T. J.,, 1992). The source nodes in the input layer provide the components of the
activation pattern (input vector), which are the signals passed to the neurons in the
second layer (the first hidden layer). The outputs from the second layer are then fed into
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the third layer, and this process continues through the rest of the network. The overall
response of the network to the input from the source nodes in the first layer is determined
by the signals produced by the neurons in the final layer. This iterative process, where
inputs are passed through multiple hidden layers, with each layer’s output becoming the
input for the next, can be formalized as follows:
m
v,gl) = Z w,g.)yj(l_l) + b,(cl)

j=1

Where, as previously defined: Wi represents the weight connecting neuron k from
layer /—1 to neuron j in layer |, y;"") is the output of neuron j from the previous layer

and bk is the bias of neuron k in layer I.

The output of neuron j in layer | is obtained by applying the activation function:

yO = <p(v,£l))

This process is repeated for each neuron in every layer, propagating the information

through the network until it reaches the final output layer.

Input layer Output layer Input layer Layer of Layer of
of source of neurons of source hidden output
nodes nodes neurons neurons
a) b)

Fig. 1.4: Network architectures. (a)-(b) feedforward network with a single layer of neurons; fully connected
feedforward network with one hidden layer and one output layer, as described by Simon Haykin (1999).
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Convolutional Networks (CNNSs): are characterized by the presence of one or more
convolutional layers, which play a pivotal role in feature extraction from input data,
particularly images. These layers utilize filters, or kernels, that traverse the input image
to generate activation maps, thereby highlighting the presence of local features such as
edges and corners. The convolution operation involves the multiplication of pixel values
by the filter weights, enabling the network to learn meaningful representations of the
data (LeCun Y. et al., 1998). Following the convolutional operations (Fig. 1.5), the
resulting activation maps undergo pooling processes, which reduce their spatial
dimensions, thereby simplifying the data and enhancing computational efficiency.
Pooling can be performed using various technigues, such as max pooling or average
pooling, which select the most salient features while mitigating the risk of overfitting
by retaining only the essential information necessary for final classification. Ultimately,
the outputs from the convolutional and pooling layers are flattened and passed through
one or more fully connected layers. In these layers, the nodes connect the extracted
features, allowing the network to perform classification based on high-level
combinations of the learned information. The final output is produced via an activation
function, typically softmax, which generates probability distributions over the possible
classes. This hierarchical structure, transitioning from the extraction of simple features
to the identification of complex patterns, enables CNNs to achieve a deep and
comprehensive understanding of the data, rendering them particularly effective in

applications such as computer vision and object recognition.
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Fig. 1.5: Convolutional Neural Network (CNN).
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Recurrent Networks (RNNSs): Recurrent Neural Networks (RNNSs) are characterized
by their ability to "remember" information from previous inputs, allowing them to
influence both current inputs and outputs through one or more feedback loops (Fig. 1.6)
Unlike traditional deep neural networks, which assume independence between inputs
and outputs, the output of an RNN is dependent on preceding elements within a
sequence. Additionally, while feedforward networks assign distinct weight parameters
to each node, RNNs share the same weights across each layer. These weights are
adjusted through backpropagation and gradient descent, but RNNs utilize
Backpropagation Through Time (BPTT) specifically to compute gradients for
sequential data. BPTT follows the same principles as standard backpropagation, where
the model learns by calculating errors from the output layer back to the input; however,
it differs in that it sums the errors at each time step, a requirement that feedforward
networks do not have due to their lack of parameter sharing across layers. Information
from the output is delayed by one time step before being used as input for the subsequent
step, accomplished through the use of unit time-delay elements denoted by z. The
integration of non-linear units, such as activation functions like ReLU or tanh,
introduces complexity to the dynamic behavior of RNNs. As a result, the network's
response is not merely proportional to its inputs; rather, it can develop intricate patterns
based on past data. This dynamic capability enables RNNs to effectively capture and
model temporal dependencies and contextual relationships within sequential data,
making them particularly suitable for tasks involving time series or sequential
processing. However, this process introduces two potential challenges (IBM,
https://www.ibm.com/it-it/topics/recurrent-neural-networks): vanishing and exploding
gradients. In the case of vanishing gradients, the weight parameters approach zero,
leading to stagnation in the learning process. Conversely, exploding gradients result in

excessively large weight values, causing instability and yielding NaN values.
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Fig. 1.6: Recurrent Neural Networks. (a)-(b), by Simon Haykin (1999).

A common solution to mitigate these issues involves reducing the number of hidden layers
within the network, thereby simplifying the overall architecture and minimizing the risks

associated with gradient-related challenges.

This approach closely aligns with the well-established theory of linear adaptive filters, which
has been successfully applied across various fields (Widrow B. and Stearns S. D., 1985; Haykin
S., 2002). However, it is also possible for a neural network to modify its topology, a concept
inspired by the fact that neurons in the human brain can die and new synaptic connections can

form.

I.5 Generative Adversarial Neural Networks (GANS)

The ability of Generative Adversarial Networks (GANSs), particularly conditional GANs
(c-GAN ), to capture fine spatial details and extreme events (Mardani M. et al. 2023; Miralles
O. etal. 2022; J. Wang J. et al. 2021) has led us to focus this work on developing an innovative
c-GAN architecture for super-resolution. The pioneering goal is to achieve high-resolution
downscaling of atmospheric variables of interest. Therefore, this section will commence with a
brief overview of generative models, placing particular emphasis on Generative Adversarial
Networks (GANs). This will be succeeded by an in-depth examination of conditional GANS (c-
GAN:).

Generative models are algorithms designed to learn the underlying distribution of data and

generate new samples that resemble the originals. A generative model can be defined as a
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system capable of learning and representing the probability with which data is generated
(Goodfellow I. et al., 2016). These models differ from discriminative models, which focus on
class recognition, as they aim to capture the intrinsic structure of the data. Among the most
well-known generative models are Variational Autoencoders (VAEs), which utilize a
probabilistic approach to infer latent representations; however, they may produce blurrier
samples due to their approximation nature (Kingma D. P. and Welling M., 2014). Other models,
such as Normalizing Flows, offer greater flexibility and generative precision through invertible
transformations but require higher computational complexity and can be more challenging to
train (Rezende D. J. and Mohamed S., 2015). Autoregressive models, such as PixelCNN and
WaveNet, are recognized for their performance in sequential data generation, including images
and audio. However, they can be slow in inference and demand significant resources due to

their sequential nature (Oord, A. v. d. et al., 2016).

In this landscape of generative models, Goodfellow et al. laid the foundations for Generative
Adversarial Networks (GANs) in 2014 with their seminal paper titled "Generative Adversarial
Nets." The authors need to develop a new generative neural architecture because the most
significant advancements in deep learning have predominantly involved discriminative models,
employing backpropagation and dropout algorithms while utilizing piecewise linear units that
exhibit well-behaved gradients. In contrast, deep generative models have had a relatively
limited impact, primarily due to two factors: the complexities associated with approximating
intractable probabilistic computations that arise in maximum likelihood estimation and related
strategies, and the difficulty of leveraging the benefits of piecewise linear units within the
generative context. In response to these challenges, Goodfellow et al. propose a novel procedure
for estimating generative models that overcome these obstacles. In the framework of the
presented adversarial networks, the generative model G is confronted with an adversary, namely
a discriminative model D, which learns to distinguish whether a sample originates from the
generated distribution or the real distribution. The training procedure for the generative model
G is based on maximizing the probability that the discriminator D makes an error. This approach

is structured as a minimax game between two participants (Fig. 1.7).

24



Real Data
1 Update Model

Binary
Discriminator Classification
G Model (Real/Fake)
S Generator
Input Vector

Model

Update Model

Fig. 1.7: General structure of the GAN training process.

Within the space of arbitrary functions G and D, it is demonstrated that a unique solution exists,
wherein the generative model G is able to reproduce the training data distribution, while the
discriminator D takes on a constant value of 1/2 at all points. In other words, training concludes
when the models G and D reach an equilibrium in which G produces convincing data, and D is

no longer able to distinguish between real and generated data.

The following provides a general formulation of the minimax problem that forms the foundation
of Generative Adversarial Networks (GANSs). In this framework, the generator takes as input a
vector of random noise, denoted as z, and maps it to a data distribution that closely approximates
real-world data, such as images or audio signals. This transformation aims to produce synthetic

samples indistinguishable from authentic data by an associated discriminator model.

This transformation is represented as G (z ; 0g), where fg are the parameters of the generator
(i.e., the weights of the neural network). The discriminator receives an input, which can either
be real data or generated data and outputs a value that indicates the probability that the input is
real. This probability is denoted as D (x ; 0d), where x is the input data (which may originate
from either the generator or the real data), and 6d are the parameters of the discriminator. The
discriminator is trained to maximize its capacity to correctly distinguish real data from fake
data. Conversely, the generator seeks to minimize the probability that the discriminator
recognizes its outputs as fake. More precisely, it aims to minimize the expression (1 — D (G (2))

which represents the probability that the discriminator makes an error.

This process can be viewed as a game between two players, the generator and the discriminator,

each pursuing opposing objectives. This formulation can be expressed as:
I'I](gl’l IIlD&X V(D G) = ]Emwpdm(m) []'Og D(SB)] + ]}—ﬂjzmpZ (=) U‘Og(l - D(G(Z)))]

25



D (x) represents the probability that x is real, while G (z) denotes the data generated from the

noise z.

Generative Adversarial Networks (GANs) offer several distinct advantages over traditional
generative models such as Gaussian Mixture Models (GMMs), Hidden Markov Models
(HMMs), Autoregressive Models (AMs), and Variational Autoencoders (VAEs). One of the
primary advantages of GANSs lies in their departure from probabilistic models that explicitly
aim to estimate the underlying distribution of the data. Unlike such models, GANs do not
attempt to learn an explicit probability density function to describe the data. Instead, the
generator in a GAN framework learns to produce samples that exhibit characteristics similar to

the real data through iterative feedback from the discriminator.

Moreover, in many traditional learning models, the parameters (i.e., the variables used by the
model to make predictions) can retain information about the training data, which can lead to
the issue of overfitting. Overfitting occurs when a model becomes too finely tuned to the
specifics of the training data, resulting in poor generalization to unseen data. GANs mitigate
this issue through their adversarial training process. Specifically, the generator does not directly
copy or memorize the training data. Rather, it learns to synthesize new data instances by relying
solely on the feedback provided by the discriminator, which evaluates how realistic the
generated data appear. This indirect learning mechanism ensures that the generator’s parameters
do not encode a direct representation of the real data, but instead capture a more abstract
understanding of how to produce samples that fool the discriminator into recognizing them as
authentic. As a result, the generator is less prone to overfitting, as it avoids storing exact

representations of the training data and focuses instead on generating plausible new examples.

Another key advantage of GANS is their avoidance of complex mechanisms such as Markov
chains, which are often required in probabilistic models for data generation. Markov chains
typically involve sequential dependencies that can complicate both model design and
computational efficiency. In contrast, GANs rely entirely on backpropagation, a well-
established and efficient method in neural network training, to compute gradients and update
model parameters. This not only simplifies the training process but also enhances computational
tractability, as no inference or sampling mechanisms from a Markov chain are required during
learning. Additionally, GANs possess a high degree of versatility due to their ability to
incorporate a wide range of functions into their architecture. This adaptability allows GANSs to

generate highly detailed and precise outputs, often surpassing traditional models that may
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struggle with producing sharp or complex data samples. Models based on Markov chains or
probabilistic approximations, for example, are prone to generating “blurred” or “imprecise”
outputs due to their inherent need to maintain smooth transitions between modes in the data
distribution. In summary, GANSs offer substantial computational and statistical advantages over
traditional generative models. Their ability to generate data without relying on explicit
probabilistic modeling, coupled with their robust mechanism for avoiding overfitting and their
computational efficiency through backpropagation, make them a powerful and flexible tool for

generating highly detailed and realistic data.
I.5.1 Conditional Generative Adversarial Networks (cGANs)

Conditioning in neural networks is a fundamental concept that enables the directed
guidance of the learning process, enhancing both the accuracy and relevance of generated
outcomes. It facilitates the integration of auxiliary information, such as class labels or specific
characteristics of the dataset, enriching the representation and aiding in the generation of
outputs that are coherent with the desired context (Kingma D.P. and Welling M., 2014).
Conditioning has been shown to be crucial across a variety of applications, ranging from image
generation to speech recognition, allowing models to produce more relevant and informative

results (Salimans T. et al., 2016).

Conditional Generative Adversarial Networks (cGANSs), first introduced by Mirza M. and
Osindero S. (2014) in their seminal paper titled "Conditional Generative Adversarial Nets",
represent a significant extension of Generative Adversarial Networks (GANSs). This innovative
approach enables both the generator and the discriminator to be conditioned on auxiliary
information, thereby allowing for direct and precise control over the data generation modes. In
cGANs, conditioning occurs through the incorporation of auxiliary variables y, which may
include class labels, data from other modalities, or any relevant information about the

generation context.

In the generator, the initial noise p-(z) is combined with the conditioning variable y to create an
integrated hidden representation. This merging enables the model to leverage the adversarial
training framework, providing significant flexibility in both the construction and application of
this representation. Conversely, in the discriminator, both x (representing either real or
generated data) and y are presented as inputs to a discriminative function, typically implemented

through a multilayer perceptron (MLP). This configuration allows the discriminator to
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effectively assess the quality of the generated data concerning the specified conditions, thereby

enhancing the generator's ability to produce coherent and contextually relevant samples.

The introduction of conditional GANs (cGANs) has led to numerous advantages over
traditional GAN models. By allowing the generation process to be conditioned on auxiliary
variables, cGANs offer more control over the generated data, which can be particularly
beneficial when the goal is to create data that adheres to specific constraints or characteristics.
In climate modeling, this capacity is especially useful for downscaling, where the task involves
generating high-resolution climate data from coarser input. Traditional GANs, which generate
data based solely on random noise, often struggle to incorporate external information, leading
to less accurate or less relevant outputs for specific tasks. In contrast, cGANs can leverage high-
resolution observational data or other auxiliary variables to produce more accurate and

contextually relevant downscaled outputs (Vandal T. et al., 2017; Leinonen J. et al., 2020).

Furthermore, the ability of cGANSs to focus the generation process on specific attributes, such
as geographic or climatic features, has demonstrated clear advantages in terms of both fidelity
and precision in generated climate data. This makes them particularly suited for applications in
downscaling, where preserving spatial and temporal correlations is essential for producing
meaningful results. As such, cGANs have shown significant improvements in performance over
traditional GANSs in climate downscaling tasks, reducing the introduction of noise and artifacts,
while better preserving the physical consistency of the data (Stengel K. et al., 2020; Liu Y. et
al., 2020).

The demonstrated potential of Generative Adversarial Networks (GANSs), particularly
Conditional GANs (cGANSs), in capturing complex spatial and temporal structures remains
underutilized, with only a limited number of studies employing cGANs for downscaling
purposes. This study is driven by the pioneering objective of harnessing this potential to develop
a conditional generative adversarial network for high-resolution atmospheric variable
downscaling that is flexible and versatile, applicable across various geographical domains and
variables. This innovative approach aims to advance the field by addressing existing gaps in the
literature and showcasing the capabilities of ¢cGANs in generating more accurate and

contextually relevant climatic data.
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2 | Designing the Super-Resolution c-GAN

This chapter focuses on the development of the ERA5-DownGAN, a Conditional
Generative Adversarial Network (cGAN) for super-resolution, designed to enhance the spatial
resolution of atmospheric data. We start by defining the goals and importance of super-
resolution for atmospheric fields, followed by a description of the GAN architecture. The
chapter details the datasets used, including ERAS5 and VHR REA-IT, and explains the
preprocessing and normalization techniques applied. We also cover the specifics of the network
architecture, including the generator and discriminator components, as well as the training
process, loss function, and optimization strategies. This chapter provides a clear view of how

the new cGAN model was developed to improve high-resolution atmospheric data prediction.

2.1 Objectives and Necessity of Super-Resolution for
Atmospheric Fields

In many traditional statistical downscaling approaches, a single algorithm is trained for
each grid point, which results in significant time and computational resource expenditures. This
methodology presents several limitations, including the inability to capture spatial and temporal
interactions between points and the difficulty in generalizing learning to new data. Among
traditional methods, linear regression and multiple regression are among the most widely used,
allowing for the establishment of relationships between low- and high-resolution climatic
variables (Maraun D. et al., 2010; Wilby R. L. et al., 2002). Other approaches include statistical
transfer models, which utilize historical data from meteorological stations to create statistical
relationships (Hay L.E. et al., 2002), and principal component analysis (PCA) methodologies,
used to reduce data dimensionality (Eastman, J. R. and Fulk, M., 1993). Additionally, stochastic
weather generators (Wilks D. S., 1992) and cumulative distribution function (CDF) matching
methods (Piani C. et al., 2010) have been applied to generate more accurate estimates of
precipitation and temperature. While these approaches are effective, they have limitations in
their ability to model spatial complexities, paving the way for advanced techniques based on

computer vision, such
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as Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs),
which promise to further enhance the efficiency and accuracy of downscaling (Xie L. et al.,

2018).

The integration of CNNs and GANs into the downscaling process offers several advantages
over traditional approaches. Firstly, these methods allow for the simultaneous processing of
multiple grid points, leveraging the spatial and temporal correlations between them and
improving computational efficiency. For instance, GANs can be trained on multidimensional
datasets, reducing the necessity to train a model for each point (Wang Y. et al., 2018). Moreover,
these methods are capable of learning directly from the data, diminishing the need for explicit
models and increasing flexibility in handling variability in climatic data. The ability of GANs
to generate data that captures original statistical structures makes this approach particularly

promising for downscaling complex atmospheric variables, such as precipitation.
2.2 Statistical and Dynamical Downscaling

Downscaling aims to bridge the gap between the large spatial scales represented by

GCMs and the smaller scales required for assessing regional climate change and its impacts.

Two major types of downscaling exist: in dynamical downscaling, a high-resolution regional
climate model (RCM) is nested into the GCM over the domain of interest (Rummukainen M.,
2010). In statistical downscaling, empirical links between the large-scale and local-scale

climate are identified and applied to climate model output.

The first downscaling methods were invented as early as the late 1940s (Klein 1948) and
became operational during the early days of numerical weather prediction in the late 1950s.
Klein in 1959 utilized the extensive network of meteorological time series to infer statistical
relationships between the observed large-scale circulation, described by the limited variables
simulated at the time by models, and the local meteorological variables of interest. This
statistical approach was then applied to downscale the actual numerical forecast of large-scale
circulation, assuming the predictor was perfectly predicted by the model, into a local weather
forecast. However, as a significant database of past forecasts was accumulated and analyzed, it
became evident that large-scale weather forecasts were not perfect and exhibited systematic
deviations from observations. Consequently, the "perfect prognosis" (PP) method was not
without errors. In 1972, Glahn and Lowry developed a novel approach (Model Output Statistics

(MOS) to address systematic errors (biases) inherent in large-scale models. Rather than relying
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on observed data as predictors, as employed in the Perfect Prognosis (PP) method, they
calibrated the statistical model using archived numerical forecasts. This methodology enabled
the statistical model to adjust future predictions based on historical model performance. For
each new weather forecast, the derived statistical relationships are applied to the corresponding
numerical forecast, facilitating systematic bias correction during the post-processing stage.
Simultaneously, numerical approaches were developed to enhance the resolution and accuracy
of forecasts for a specific target region. The first limited-area model was created at the National
Meteorological Center in the United States (Maraun D. and Widmann M., 2018) and became
operational in 1971. This model encompassed the United States, Canada, and the Arctic Ocean,
with a horizontal resolution of 190.5 km at 60°N. It was driven at the lateral boundaries by input

from a numerical weather prediction model for the Northern Hemisphere.

Dynamical downscaling relies on the application of physical laws governing atmospheric
processes to offer a more detailed and accurate representation of climate dynamics. This
approach is particularly effective in regions with complex terrain, as it captures intricate
physical interactions. However, it requires significant computational power and may still inherit
biases from the General Circulation Models (GCMs) that provide the initial conditions. In
contrast, statistical downscaling establishes empirical links between large-scale climate data
from GCMs and localized climate records, allowing for the creation of higher-resolution
climate projections with relatively lower computational demands (Vandal T. et al., 2017). Due
to its efficiency and ease of application, statistical downscaling is often favored over dynamical
methods, which use regional climate models (RCMs) to simulate smaller-scale climate
processes (Tiwari P. et al., 2018). Research indicates that while dynamical downscaling can
enhance the depiction of extreme weather patterns, it can also introduce uncertainties,
particularly related to model parameters and boundary conditions (Maraun D. et al., 2010).
Consequently, the selection between statistical and dynamical approaches depends largely on
the study’s objectives, including the required resolution, the climate variables of interest, and

available computational resources (Xiao D. et al., 2021; Tiwari P. et al., 2018).

Since the mid-1990s, both dynamic and statistical downscaling approaches have seen
significant advancements and broadening of scope. Numerous studies and reviews, notably
Hewitson B. C. and Crane R. G. (1996) and Giorgi F. and Mearns L. O. (1999), have evaluated
these methods. The heightened focus on model errors has spurred model intercomparison
projects, such as PIRCS and PRUDENCE in Europe and NARCCAP in North America, aimed

at assessing and addressing biases in climate models. The launch of the Coordinated
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Downscaling Experiment (CORDEX) in 2009 marked a key milestone toward the
operationalization of climate downscaling. Furthermore, in 2012, the Global Framework for
Climate Services (GFCS) provided added momentum for the development of regional climate
products. Initiatives such as ENSEMBLES have generated extensive databases of regional
climate simulations, establishing multi-model ensembles to address model uncertainty.
CORDEX-ESD, introduced in 2013, has further enhanced the coordination of statistical
downscaling methodologies. Ultimately, downscaling is a vital tool in climate research,
transforming GCM outputs into actionable data at regional and local scales, and supporting
more effective decision-making regarding climate adaptation and mitigation across diverse

sectors.
2.3 Datasets and Pre-processing

This section provides a detailed overview of the two datasets with distinct resolutions
required for the Super-Resolution GAN developed in this work: 1) the low-resolution dataset,
which serves as the starting point for the statistical downscaling process; 2) the high-resolution
dataset, which is only required during the training step and represents the final resolution to
achieve. In our preliminary assessment of the novel algorithm developed for statistical
downscaling, we have chosen to focus on two crucial atmospheric fields: the daily 2-meter
temperature and daily precipitation for investigation. This allows us to evaluate the algorithm's

performance and its ability to downscale temperature and precipitation data effectively.

Additionally, this section describes the data preprocessing procedures which are crucial for
training GANs. Given that GANs rely on the comparison during the training phase between
real and generated data, normalizing distributions and ensuring a coherent representation of the
studied phenomena directly impacts the GANs' ability to learn underlying patterns in the data
and generate more plausible and meaningful results. Therefore, a careful preprocessing phase

1s essential to optimize the performance and quality of GANS.
2.3.1 Domain Definition

The domain was chosen based on that defined in Raffa et al., 2021 for VHR REA-IT.
For the high-resolution dataset (VHR _RE-IT), its original domain was taken, and for the low-
resolution dataset (ERAS), a domain was selected as close as possible to the boundaries defined
by the high-resolution one, covering the Italian Peninsula (Tab. 2.I). The computational domain

extends in longitude from ~3.90W to ~19.93 E and in latitude from ~34.80N to ~48.59N. The
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selection of a domain with similar longitudinal and latitudinal extents in both high-resolution
and low-resolution real datasets is crucial, as it facilitates the downscaling process during the
transition from low to high resolution. This ensures a geographical correspondence between the
datasets and, consequently, a consistent generation of the new artificial high-resolution dataset.
A consistent geographical correspondence between the two datasets implies that similar points
in the two datasets occupy similar positions in geographical space. This enables the model to
learn spatial relationships between corresponding points, contributing to the coherent
generation of high-resolution geographical details. Furthermore, consistency in geographical
space aids the GAN in capturing relevant topographic information, and correctly positioning,

for example, mountain ranges in the new artificial high-resolution dataset.

horizontal = n° grid

Data longitude and latitude
resolution points
0.28°
ERAS (Lon =4° W-23.75° E; Lat = 34.25° N-48.50° N) 58x80
(=31 km)
0.02°
VHR_REA-IT (Lon =3.90° W-19.93° E; Lat = 34.80° N—-48.59° N) (=2.2 km) 680x535

Tab. 2.I: Domain details for LW and HR dataset: geographical boundaries, horizontal resolution, number of grid

points.

This consideration holds particular significance in geographically complex contexts such as the
Italian Peninsula (Fig. 8), characterized by diverse topography and a pronounced transition
between areas with markedly different morphologies. This contributes to defining distinctive
climatic features for each region, underscoring the importance of accurate domain selection to
preserve geographical and climatic coherence in the results obtained through the downscaling

process.
2.3.2 Low-Resolution Dataset: ERAS

In this approach, we deviated from the conventional practice of employing random
sequences for the low-resolution dataset, as often seen in prior GAN-based studies. Instead, we

opted to utilize a real dataset, specifically the ERAS reanalysis data (Fig. 2.1a) at a horizontal
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resolution of 0.25 degrees (=~ 31 km), which can be accessed online at

(https://doi.org/10.24381/cds.adbb2d47).

ERAS5 VHR-REA_IT
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Fig. 2.I: Topography. (a)-(b) ERAS; VHR _REA-IT.

The selected dataset spans a total of fifteen years, divided into two distinct periods: a training

period (01/1990-12/2000) and a test period (01/2001-12/2005).
2.3.3 High-Resolution Dataset: VHR_REA-IT

The very High-Resolution Dynamical Downscaling of ERAS Reanalysis (VHR REA-
IT) is chosen as the high-resolution dataset (Fig. 2.Ib). This reanalysis is at the convection-
permitting scale (horizontal grid spacing 0.02°, =2.2 km) by COSMO in CLimate Mode
(COSMO-CLM) on a domain covering the Italian Peninsula, described by Raffa, M. et al.
(2021) available for download at https://doi.org/10.25424/cmcc/era5-2km_italy. The high-
resolution dataset covers the same periods selected for the low-resolution dataset. During the
training period (1990-2000) we used both the low-resolution and the high-resolution dataset,
while during the test period (2001-2005) we used only the high-resolution dataset in the GAN
algorithm. The high-resolution dataset is subsequently taken into account to validate the results
obtained during the test period by the GAN to judge the goodness of these at the same horizontal

resolution.
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Fig. 2.2: Spatial distribution of daily mean temperature. (a)-(¢) SCIA-ISPRA; E-OBS; UERRA; ERAS and
VHR-REA_IT over 1989-2020 (except for UERRA covering the period 1989-2019). Reproduced by Adinolfi
M., etal., 2023.

The selection of the VHR_REA-IT dataset as the counterpart in the high-resolution model is
based on several key considerations. First and foremost, VHR REA-IT provides climate data
for the examined territory with high spatial (2.2 km) over an extended period of 30 years (1989—
2020), thereby overcoming the limitations of traditional approaches that rely on shorter
simulation periods. Additionally, as highlighted in the study by Adinolfi et al. (2023), the model
has demonstrated generally strong performance in simulating the downscaled variables using

artificial intelligence techniques.
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Fig. 2.3: Spatial distribution of daily total precipitation. (a)-(e) SCIA-ISPRA; E-OBS; UERRA; ERAS5 and
VHR-REA _IT over 1989-2020 (except for UERRA covering the period 1989-2019). Reproduced by Adinolfi
M., et al., 2023.

Specifically, VHR _REA-IT has shown significant capabilities in reproducing spatial patterns
of mean temperatures (Fig. 2.2) and precipitation, although a warm temperature bias has been
observed in flat areas. Furthermore, the model accurately represented precipitation patterns
(Fig. 2.3), except in alpine regions, while effectively capturing the intensity and frequency of

heavy precipitation events, particularly in mountainous areas.

The data used for both high-resolution and low-resolution are available in hourly aggregations,
but for the sake of simplifying the computational complexity of the problem, we decided to

employ daily aggregations,
2.3.4 Transformations and Data Normalization

Input normalization in a neural network, such as a Generative Adversarial Network
(GAN), is a process aimed at ensuring that the input data is in a standardized and consistent
form. This aids the model in converging faster during the training process and enhancing overall

performance.
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There exist several normalization techniques: standardization (Z-score normalization), which
transforms variables to have a mean of zero and a standard deviation of one, thus facilitating
model convergence; min-max normalization, which constrains the data range between 0 and 1,
contributing to greater stability during training; Batch Normalization and Layer Normalization,
which maintain a consistent distribution of inputs across each layer and promote faster
convergence. This array of normalization techniques played a crucial role in shaping the
behavior of our GAN network, optimizing data representation, and enabling the generation of
consistent, high-quality outputs. Within our modeling framework, a targeted normalization
approach was adopted to handle temperature data. Before utilizing the data as input for the
GAN generator, the data were standardized to range between -1 and 1. This transformation was
designed considering the natural distribution of temperatures and the expected range of

variation.

The normalization stabilized and balanced the data consistently, rendering them suitable for the
generation process and enhancing model convergence. Subsequently, the hyperbolic tangent
function was employed as the activation function in the generator's final layer, ensuring that the
model's output remained consistent with the range of temperatures in degrees Celsius. The high-
resolution artificial dataset generated by the GAN (ERA5-DownGAN) was also scaled back
using the same scaling. This normalization strategy proved crucial in ensuring that the generator

produced coherent and meaningful data in response to a normalized input.

It has been decided not to standardize the data initially, as this approach can be useful if one
aims to ensure that the data is balanced concerning the mean and standard deviation. The
objective is to normalize the input data, particularly both the real high-resolution dataset
(VHR_REA-IT) and the low-resolution real dataset (ERAS) for both the training and testing
periods. This can be achieved by selecting a target dataset for both the training and testing
periods, from which the minimum and maximum values are calculated to properly rescale the

input data.

The sensitivity for the normalization choice has been explored, and we have applied various
normalization and denormalization target datasets to optimize training and enhance the
performance of our GAN network: Rescaling all input data concerning the minimum and
maximum values of a dataset obtained through simple bilinear interpolation of the ERAS
dataset onto the VHR-REA-IT grid (ERAS interp-VHR). The calculation of minimum and

maximum values is performed for temperature distributions corresponding to both the training
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and testing periods. The ERA5-DownGAN is denormalized for the dataset ERAS_interp-VHR
from the testing period. Using the high-resolution dataset training period for both the training
and testing periods, utilizing it on both the VHR-REA-IT and ERAS5 datasets. In this second
case, the ERAS5-DownGAN is denormalized concerning the dataset VHR REA-IT of the

training period. Application of a different target for the training and test phases.
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Fig. 2.4: Normalization (a) and denormalization (b) approaches with different target datasets.

Specifically, we normalize both datasets with respect to themselves during the training phase.
However, during the testing phase, we normalized ERAS with respect to itself and denormalized
the output of the GAN, considering the dataset VHR REA-IT from the training phase as the
target. The calculation of minimum and maximum values is consequently performed on the
VHR-REA-IT dataset for the training period. This is imperative as, for the testing period, we
may only have access to the low-resolution dataset, from which we aim to obtain a high-

resolution counterpart through the GAN.



Despite testing and evaluating all normalization and denormalization approaches (Fig. 2.4), we
have opted to exclusively showcase the outcomes of normalization/denormalization 3). This
specific approach is deemed the most rigorous within the climate change context and
demonstrates highly promising results when scrutinizing error metrics and statistical analyses.
This decision is underpinned by the primary aim of normalization, which is to preserve the
physical consistency between low-resolution and high-resolution data, a pivotal factor for

accurately representing future climatic variations.
2.4 Proposed cGAN Architecture: ERAS-DownGAN

The approach developed in this study for constructing a new method based on neural
networks is grounded in the general principles of Generative Adversarial Networks (GANs) and
draws inspiration from the structure of Conditional GANs (Mirza, M., and Osindero, S., 2014).
However, it is important to emphasize that the construction of this method is original, featuring
substantial modifications compared to existing approaches. This innovation allows us to address
specific scientific and practical challenges while ensuring the autonomy of our work. The core
idea of the algorithm is to establish the empirical link between low-resolution and high-
resolution datasets during the training period and apply this relationship to the low-resolution
dataset in the test period to generate a new artificial high-resolution dataset. Generative
Adversarial Networks (GANs) consist of two key components: a generative model (the
generator) and a discriminative model (the discriminator), both implemented as neural
networks. In the context of super-resolution with GANSs, the generative model's goal is to
produce synthetic data samples that closely resemble high-resolution real data, while the
discriminative model is trained to distinguish between real high-resolution data from the
training set and synthetic high-resolution data produced by the generator, conditioned on the

corresponding low-resolution data.

By continuously training these two networks against each other in a feedback loop, GANs have
demonstrated their ability to generate highly realistic climatic data, significantly advancing the

field of climatic downscaling.

Specifically, the use of new conditional Generative Adversarial Networks (cGANs) enables the
generation of high-resolution fields that retain the fundamental characteristics of the original
data, utilizing low-resolution data as conditioning input for the generator (Fig. 2.5). This
approach effectively mitigates the introduction of noise or undesirable artifacts, ensuring that

authentic information serves as the foundation for the generation process. The objective of the
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cGAN is for the generator to produce synthetic data that challenges the discriminator to
distinguish between real high-resolution data and the generated output. The discriminator learns
to differentiate between actual high-resolution data and the artificial high-resolution data
generated by the cGAN. Concurrently, the generator seeks to refine its output to deceive the

discriminator into classifying the generated data as real.

Creation of NetCDF
class to read input

data Real Data
High
Resolution
I
Update Model
Binary
Randon-veetor Discriminator Classification
Real Data G Model (Real/Fake)
Low. Generator
Resolution
(HR) Model

Fig. 2.5: Structure of the developed cGAN, adapted from the general architecture of the Generative Adversarial
Network (GAN) for the training process in Figure 1.7.

In summary, this particular cGAN employs a specific architecture with LeakyReLU and tanh
activation functions for the generator, alongside LeakyReLU, dropout, and sigmoid activations
for the discriminator. The training process focuses on generating high-resolution climate data
that closely resembles the VHR REA-IT dataset, to achieve convergence where the generated

data is indistinguishable from the actual VHR REA-IT data.
To implement the planned GAN, several steps were undertaken:

o Data Pre-processing: This phase includes quality checks of the data, domain selection,
partitioning the dataset into training and testing intervals, and normalizing the data to ensure
consistent input conditions.

o Tensor Conversion from NetCDF Files: The data is transformed into tensor format using
the Pytorch library, making it suitable for processing within the GAN architecture.

o Architectural Development: The generator and discriminator networks are carefully
designed. The generator produces synthetic data, while the discriminator learns to
differentiate between real and generated data.

o Loss Function Definition: An appropriate loss function is chosen to guide the training

process, quantifying how well the generated data matches the real data.
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o Parameter Optimization: Hyperparameters such as learning rate and batch size are
systematically adjusted to optimize the GAN's performance, ensuring effective learning and

COIlVCI'gGIlCG.
2.4.1 Overall Architecture

Generative Adversarial Networks (GANs), like other deep learning architectures, are
structured with a directed graph that allows data to pass through multiple transformational
layers until it reaches the output. The evaluation of the loss function is crucial as it measures
the discrepancy between the network's predicted output and the expected result. Optimization
algorithms, such as the refined Adam algorithm, use gradients from this loss function to update
the weights and biases of the neural networks. This framework is characterized by weight
assignments to connections between neurons across different layers, which affects how data is

transformed within the network.

In this study's GAN, specific activation functions were chosen for various segments of the
architecture, and distinct loss functions were used for the generator and discriminator. These
design choices, along with the optimizer employed, are essential for the GAN's capacity to learn

complex representations and produce high-quality outputs.
2.4.2 Details of the Generator and Discriminator Architectures

The generator in GAN discussed in this work uses four linear layers with LeakyReLU
activation functions (Dubey, A. K., Jain, V., 2019), except for the last layer which uses a
hyperbolic tangent activation function. The LeakyReLU helps prevent the vanishing gradient
problem, introducing a small slope for negative inputs as described in Cap. I. This contributes
to enhanced stability and overall learning performance of the neural network. The final tanh
activation scales the output to a range between -1 and 1. The generator's input data consists of
matrices with dimensions of 58x80, corresponding to a horizontal resolution of 31 km. The
architecture we developed for the two neural networks, Generator (G) and Discriminator (D),

in this new cGAN is illustrated in Fig. 2.6.
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Fig. 2.6: Architectures of (a) generator and (b) discriminator. Size input generator 58 x 80, size input
discriminator 680x535, the number of frames per sequence 100 (batch size = 100) for both data sets considered

here. After training, the best generator is used for the test period.

The primary objective of the generator is to downscale this input to matrices of data with
dimensions of 680x535, equivalent to a substantially higher horizontal resolution of 2.2 km.
This enhancement facilitates a finer level of detail and precision in the generated data. In
particular, the choice to use 1160 neurons in the first layer of the discriminator, as well as the
decision to utilize 290 neurons in the first layer of the generator, is based on a combination of
theoretical considerations and empirical results from previous experiments. This number is
particularly reasonable given the context of the input matrices and their complexity. By
employing 1160 neurons, the model can capture a significant amount of spatial features from
the high-dimensional data while maintaining a balance between learning capacity and the risk
of overfitting. As suggested by He K. et al. (2015), the number of neurons in a layer should
reflect the complexity of the problem being addressed; in the case of matrices with dimensions
of 680x535, this configuration is justified by the necessity to learn detailed representations.
Furthermore, experiments conducted in previous studies have demonstrated that an appropriate
number of neurons in the initial layers of a discriminator improves performance in image
classification, enhancing the model's ability to generalize to new data (Zhang H. et al., 2019).
Therefore, the specific choices regarding the number of neurons utilized are not only supported
by the literature but also result from an empirical optimization process. The discriminator also
employs linear layers with LeakyReL U activation functions, and dropout layers to introduce
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regularization. The dropout rate is set at 0.3 in both the generator and discriminator networks.
This value is chosen to strike a balance between preventing overfitting and maintaining
sufficient capacity for learning. A dropout rate of 0.3 allows the model to learn more robust
features by randomly dropping 30% of the neurons during training (Hinton G. E. et al., 2012),
thus promoting better generalization to unseen data. Dropout helps prevent overfitting during
training. The final layer of the discriminator utilizes a sigmoid activation function that

constrains the final output between 0 and 1.

2.4.3 Configuration of Hyperparameters and Optimization
Technique Adopted

The choice of the optimization strategy plays a pivotal role in shaping the efficacy of
our Generative Adversarial Network (GAN). To this end, we have harnessed the power of the

Adam optimizer, an algorithm renowned for its adaptability and efficiency.

Adam, short for Adaptive Moment Estimation (Kingma, D. P., and Ba, J., 2015), unites the
virtues of both momentum-based optimization and root mean square propagation. Particularly,
it combines AdaGrad, which adapts the learning rate based on the historical gradient
information for each parameter, and RMSProp, which uses an exponentially decaying average
of squared gradients to maintain a stable training process. This amalgamation empowers the
optimizer to dynamically calibrate learning rates for each network parameter during the training

Pprocess.

Mathematically, Adam operates by maintaining two-moment vectors, m, and v, which represent

the first and second moments of the gradients at time step .

1. Parameter Initialization:

2. Gradient Calculation. At each time step ¢, compute the gradient of the loss function L

with respect to the parameters 6:

e = VoL (9)

3. Update Moments. Update the first and second moment estimates:
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where B1 and B2 are decay rates typically set to 0.9 and 0.999, respectively.

4. Bias Correction. To counteract the bias introduced during initialization, Adam applies

bias correction:
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5. Parameter Update. Finally, the parameters are updated as follows:
a
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where « is the learning rate and € is a small constant added for numerical stability.
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Adam’s ability to adaptively adjust the learning rates for different parameters has shown
significant benefits in the context of GAN training. Evidence from several studies suggests that
it effectively stabilizes the training process and mitigates issues such as mode collapse, where
the generator fails to capture the diversity of the target distribution (Kingma, D. P. & Ba, J.
2015; Radford A. et al., 2015). Additionally, Adam’s performance with sparse gradients
enhances its utility in GAN applications, which often experience varying training dynamics
between the generator and discriminator (Alzubaidi L. et al., 2021; Yu X. et al., 2018).
Empirical evaluations confirm that Adam not only yields lower loss values but also produces
higher-quality generated samples compared to alternative optimizers, establishing its reputation
as a robust choice for GAN training due to fast convergence and reliable performance (Karras

T. et al., 2019; Salimans T. et al., 2016).

In the architecture employed in this study, several critical hyperparameters were set to optimize

performance and ensure an effective model training phase.

The batch size represents the number of training samples processed before the internal
parameters of the model are updated. This hyperparameter is critical as it directly impacts the

training dynamics and the stability of gradient estimates. In this study, a batch size of 100 was
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selected after the sensitivity test. This choice balances computational efficiency with effective
model training. In fact, using a batch size that is too small presents several disadvantages,
including increased variability in gradient estimates, which can make convergence unstable
(Bottou L. and Boucheron O., 2007). Additionally, this may lead to a longer total training time,
as more iterations are required to complete one epoch. Models with small batch sizes are also
more susceptible to overfitting, increasing the risk of poor generalization on unseen data
(Bejani, M., and Ghatee, M., 2021). Moreover, optimizing with smaller batches may involve
greater computational complexity and resource demands. On the other hand, a batch size that
is too large presents its own set of disadvantages, such as reducing the model's ability to
generalize to new data, as the gradient estimates become more deterministic and less variable
(Hoffer E. et al., 2017; Keskar N. et al., 2016). Additionally, the computational resources
required increase significantly, limiting training flexibility and making fine-tuning of
parameters difficult (Kornblith S. et al., 2019). Another drawback is that larger batch sizes can
lead to increased convergence times, as the model may not effectively learn the complexities of
the data (Smith L. N. et al., 2018). Finally, excessively large batch sizes can cause memory
issues, limiting the size of models that can be trained on hardware with reduced capacity
(Hestness J. et al., 2017). The learning rate (Ir) is a critical hyperparameter that governs the step
size taken during the optimization process to update the model's weights. An appropriately
selected learning rate can significantly enhance both convergence speed and the overall
performance of the model. In this study, a learning rate of 0.0001 was employed, which is
relatively low, and was chosen in consideration of using the Adam optimizer. Adam
dynamically adapts the learning rates for each parameter, which promotes more stable
convergence and mitigates the risks of oscillation or divergence during training. Higher learning
rates can lead to overshooting minima, while lower rates can impede training progress and result
in getting stuck in local minima (Kingma D.P. and Ba J., 2015). The learning rate directly
influences the trade-off between convergence speed and stability, rendering it a critical factor

in the training of deep neural networks (Loshchilov 1. and Hutter F., 2016).

Finally, the “number of epochs” parameter is set to indicate the total number of complete passes
through the training dataset during the training process. This hyperparameter is essential to
ensure that the model has adequate opportunities to learn from the data. In this study, 100 epochs
were utilized, allowing the model to effectively learn from the dataset without risking
overfitting. The choice of the number of epochs is critical: an insufficient number may lead to

underfitting, where the model fails to learn the underlying patterns, while an excessive number
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can result in overfitting, where the model learns the noise and fails to generalize to unseen data
(Goodfellow I. et al., 2016). This choice was made by monitoring the trends in the errors
produced by the generator (“g_err”) and the discriminator (“d_err”). Through this configuration
of hyperparameters, our GAN successfully converges to a solution that optimally balances the
interaction between the generator and discriminator networks. This meticulous configuration
culminates in the generation of high-fidelity and high-resolution climate predictions, thereby

demonstrating the robustness and effectiveness of our methodological framework.
2.4.4 Training Strategies

During the training process of the cGAN model, several critical steps were implemented
to ensure stable learning for both the generator and discriminator. Shuffling of the data was
deliberately set to "False" to maintain the alignment between the low-resolution (LR) input data
and the corresponding high-resolution (HR) target data. This alignment is crucial in a
downscaling task, where each LR sample corresponds directly to a specific HR sample. If the
data were shuffled, this correspondence would be disrupted, leading to mismatches between

inputs and targets and, consequently, poor model performance.

The parameter “d_steps” refers to the number of updates applied to the discriminator during the
training process of a GAN. In this case, setting “d_steps” = 1 means that for each update of the
generator, the discriminator is updated once. This approach follows the recommendations by
Goodfellow I. et al. (2014), which helps to stabilize the training dynamics between the generator
and discriminator. The training of the discriminator occurs in two stages: first on real data and
then on fake data generated by the generator. For the real data, the discriminator predicts its
authenticity, and the loss is calculated using BCEWithLogitsLoss, where the target corresponds
to the real data label. The discriminator is subsequently trained on the generated fake data, with

the loss computed using the same function but employing the target for fake data.

Once the predictions for both real and fake data have been backpropagated and the gradients
accumulated, the weights of the discriminator are updated. Following this, the generator is
trained to minimize a weighted combination of pixel-wise loss (using MSELoss) and
adversarial loss (using BCEWithLogitsLoss). The objective of the generator is to produce
synthetic data that can effectively deceive the discriminator into classifying it as real. The
generator's error is thus the weighted sum of these two losses, which is backpropagated,
followed by an update of the generator's weights using the optimizer. To determine the optimal

stopping point for the training, we plotted the performance metrics at regular intervals against
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a test sample of 16 days. This sample included comparisons between the low-resolution data,
the high-resolution targets, and the high-resolution outputs generated by the cGAN. The error
metrics derived from these comparisons were instrumental in assessing the quality of the
generated high-resolution data against the climatic downscaling reference. Additionally, we
monitored the trends of the errors associated with both the generator and discriminator, which
provided insights into their respective learning processes and overall model performance. This
comprehensive evaluation strategy not only enhanced the reliability of our results but also

ensured that the training was effectively converging toward high-fidelity outputs.
2.4.5 Custom Loss Functions

Within the intricate architecture (Fig. 2.6) of our dedicated Conditional Generative
Adversarial Networks (cGANSs) tailored to the challenging task of climate downscaling, the
careful selection of loss functions stands as a pivotal facet. These loss functions play a decisive
role in shaping the training process for both the discriminator and generator networks, ensuring
the acquisition of refined, high-resolution climate predictions that closely emulate real climate
observations. For the discriminator, tasked with the critical role of distinguishing between
authentic climate data (VHR REA-IT) and the generated synthetic counterpart (ERAS-
DownGAN), we have opted for the nn.BCEWithLogitsLoss() (Binary Cross-Entropy with
Logits) loss function (PyTorch, 2023). This choice is underpinned by its well-recognized
effectiveness within the GAN framework, serving as a robust measure of dissimilarity between
the discriminator's predictions and the actual ground truth labels. Notably, the application of
this loss function involves the sigmoid activation of the discriminator's output, which, in turn,
facilitates the calibration of the discriminator's acumen. Consequently, the discriminator attains
an elevated proficiency in discriminating real climate data from the synthetic data generated by
the GAN, a pivotal element influencing the overall authenticity of the generated climate data.
Conversely, for the generator network, which forms the core of the downscaling process, a
combination of loss functions is employed. Two instances of nn.MSELoss() (Mean Squared
Error) have been chosen (PyTorch, 2023). The first nn.MSELoss() instance takes the forefront
by quantifying the mean squared error between the high-resolution climate data produced by
the generator and their real-world counterparts. This primary loss function serves as the driver
in the training process, compelling the generator to minimize the disparities between its
synthetic outputs (ERAS5-DownGAN) and the authentic climate observations (VHR REA-IT).
This approach promotes the faithful replication of statistical attributes embodied by real climate
data. The second application of nn.MSELoss plays an equally significant role. It acts as a

47



mechanism to ensure the alignment of the higher-resolution climate images synthesized by the
GAN with the lower-resolution inputs, often constituting the initial data. This usage of the
second instance of nn.MSELoss safeguards the preservation of essential climatic attributes,
spatial patterns, and structural integrity during the downscaling procedure. In parallel to these
fundamental loss functions, the generator network is subjected to nn.BCEWithLogitsLoss() as
part of the adversarial training process. This special loss function quantifies the differences
between the discriminator's predictions on the generated climate data and the specified target
labels. The process compels the generator to craft synthetic climate data that, in practical terms,
becomes almost indistinguishable from authentic climate observations. This adversarial loss is
a cornerstone of the GAN architecture, underpinning the generator's multifaceted mission: to
emulate not only statistical attributes but also the detailed spatial and temporal patterns inherent
in climatic data. The coordinated use of these loss functions collectively delineates the training
regimen of our climate downscaling GAN, culminating in the proficient generation of high-
resolution climate inferences that mirror the characteristics of real climate data. This interplay
of loss functions is the keystone of the convergence process during training, ultimately resulting
in climate predictions that boast augmented spatial resolution and a remarkable level of
authenticity, an imperative achievement for the evolving domain of climate downscaling. Each
loss function was assigned specific weights to reflect the different roles they play in optimizing
the overall performance of the network. The "pixel weight" was set to 0.5, giving it a more
substantial influence in the optimization process due to its critical role in ensuring accurate
reconstruction of the spatial features of the field. This higher weight emphasizes the importance
of aligning the pixel-level details of the output with the target high-resolution data, which is

essential for maintaining spatial fidelity.

In contrast, the "adversarial weight" was assigned a lower value of 0.2. This reduced weight
was chosen to limit the influence of the adversarial component, as it may be more prone to
instability when the adversarial loss dominates the training process (Arjovsky M. et al., 2017;
Gulrajani L. et al., 2017). By assigning a lower weight to the adversarial term, we aimed to avoid
overemphasizing the generation of visually plausible outputs at the expense of numerical
accuracy, thereby balancing the need for realistic outputs with the requirement for spatial and
temporal consistency in the reconstructed fields. This strategy enables the GAN to effectively
model complex dynamics while mitigating the risks of overfitting and instability associated

with adversarial training (Mescheder L. et al., 2018).
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3 | Application of cGAN for the Italian Peninsula

In this chapter, after providing a clear explanation of dynamic and statistical
downscaling methods, detailing their respective advantages and limitations, we present the
main results of applying the Super-resolution GAN developed centered on the Italian domain.
The configuration parameters for GAN-based downscaling, including batch size, number of
epochs, and initial values for the loss function, were carefully optimized through sensitivity
analysis to identify the most effective settings for this geographical area and the specific
variable under investigation. The daily 2-meter temperature field was initially used to evaluate
the performance of our Super-resolution GAN. Subsequently, we further assessed its
capabilities by applying it to the daily total precipitation field, introducing a higher level of
complexity to the evaluation. The chapter will also describe the preprocessing techniques
employed for each variable and provide a comprehensive analysis of the results. This analysis
will focus on general error metrics, as well as spatial correlation and the assessment of extreme
values. This detailed examination aims to offer an in-depth understanding of the Super-

resolution GAN's performance and its effectiveness in downscaling applications.
3.1 Downscaling of 2-meter Temperature

In this section, the GAN's performance in the downscaling process of the 2m-
temperature field over the Italian Peninsula is evaluated by putting side by side the synthetic
high-resolution dataset (ERAS5-DownGAN) generated by the GAN against the real high-
resolution dataset (VHR REA-IT) produced through dynamic downscaling over the specified
test interval (01/2001-12/2005). The assessment of the GAN's effectiveness is conducted during
the test period, wherein exclusively the low-resolution dataset is available. The primary aim is
to derive a novel high-resolution dataset utilizing the optimized generator from the antecedent
training phase. The high-resolution dataset does not enter any calculation during the testing
phase, exclusively employed for validation to assess the similarity between the statistically

downscaled results data by GAN compared to the dynamically downscaled counterparts.
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A suite of conventional error metrics (BIAS, MAE, RMSE, and CORR), combined with
graphical representations, are analyzed to assess the performance of the GAN for this specific
geographic domain and meteorological field. Within this comparison, the 2-meter temperature
field of the low resolution (ERASY) is further examined to assess its deviation from the high
resolution and to evaluate the GAN's ability to transition from the distribution characterizing
the low resolution to that typical of the high-resolution counterpart. This analysis aims to
provide an in-depth understanding of the GAN's behavior in handling differences between the
2-meter temperature distributions across the two resolution levels, thus contributing to the

overall assessment of the model's performance in the context of climatic downscaling.

3.LI Results and Analysis: Comparison with Dynamical
Downscaling

The temporal trend of the 2-meter temperature field (T _2M) is illustrated in Fig. 3.1 over
the test period (2001-2005) for both high-resolution datasets, real (VHR REA-IT) and
synthetic (ERAS5-DownGAN) and the real low-resolution dataset (ERAS) across the entire

considered domain.
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Fig. 3.1: Temporal evolution of the daily moving average of the 2m-temperature during the test period,
calculated with a 30-day window. Mean daily spatial average of the real low-resolution data (ERAS), the real
high-resolution data (VHR REA-IT) and the downscaled artificially data (ERAS5-DownGAN), created by the

cGAN.

The time series of the daily moving average of the 2m-temperature exhibit a considerable
correlation among themselves, with a slight discrepancy in terms of value ranges. The real low-

resolution dataset ERAS generally records higher temperatures, especially during the colder
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months compared to VHR, with values oscillating in a range from ~6 °C to about 28 °C. On the
other hand, the high-resolution dataset generated by GAN (ERA5-DownGAN) not only mirrors
the trend of the reference high-resolution real dataset (VHR REA-IT), but also records values
falling within the same range, showing greater proximity to the VHR REA-IT dataset than to
ERAS, especially during the colder months, ranging from ~4 °C to ~28 °C. This highlights the
capability of GAN to generate not only a temporally correlated dataset but also to maintain

spatial mean values that deviate very little from the reference dataset.
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Fig. 3.2: Temporal evolution of daily differences between the dataset generated by the Conditional Generative

Adpversarial Network (cGAN), the ERA5-DownGAN dataset, and the real VHR REA-IT dataset.

The analysis of the time series (Fig. 3.2) of daily differences between the dataset generated by
the Conditional Generative Adversarial Network (cGAN), the ERA5-DownGAN dataset, and
the real VHR REA-IT dataset revealed an overall average difference of -0.07 °C across the
entire domain. A maximum positive difference of 1.91 °C was recorded on March 24, 2001,
alongside a maximum negative difference of -1.70 °C on March 2, 2004. These values, being
significantly outside the mean range of -1.2 °C to 1.2 °C, prompted an in-depth analysis of these
specific days. The objective is to understand the potential causes of this marked deviation from
the VHR REA-IT dataset and to assess whether there has been a deterioration in the GAN's
ability to perform statistical downscaling in line with dynamic downscaling under particular
meteorological conditions. Therefore, it was decided to examine the synoptic conditions

associated with these anomalies in order to identify the factors influencing temperature
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variations during these periods. A detailed discussion of these specific events is provided in
Appendix A to avoid disrupting the main discussion of the statistical downscaling model
application to the 2m-temperature, ensuring that proper attention is given to a very interesting
case study in understanding the performance of the developed cGAN, particularly in anomalous

contexts.

According to the time plot of the correlation between the 2-meter temperature (T 2M) fields
from dynamic downscaling (VHR REA-IT) and those generated by the GAN during the testing
period (Fig. 3.3), a robust correlation between the datasets emerges, consistently exceeding
0.94. This suggests a substantial agreement between the predictions of the statistical model and
the data from the dynamical model. Nevertheless, a more in-depth analysis reveals temporal
variations. These fluctuations, exhibiting lower correlation values (as low as 0.87), may suggest
the model's sensitivity in generating reliable downscaling during specific meteorological
events, such as changes in atmospheric circulation or the spatial distribution of local
phenomena. A future challenge will be to meticulously examine these variations to identify
underlying causes, including factors such as the sensitivity to the choice of certain parameters
in the GAN for specific atmospheric conditions, ultimately leading to the optimization of the

architecture.
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Fig. 3.3: Correlation evolution of the daily spatial average of the 2m-temperature during the test period. (a)—(c)
Real low-resolution data (ERAY), the real high-resolution data (VHR _REA-IT) and the downscaled artificially
data (ERAS5-DownGAN), created by the cGAN.
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3.1.2 Error Metrics Evaluation

We assessed the performance of our Generative Adversarial Network (GAN) using key
error metrics: Bias, Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE). These
metrics provided valuable insights into the accuracy and consistency of the generated data

compared to the high-resolution dataset during the testing period.
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Fig. 3.4: Maps of time average. (a)-(d) Mean bias (BIAS), mean absolute errors (MAEs), root-mean-square
errors (RMSEs), and correlation coefficients (CORRs), comparing downscaled daily 2m-temperatures (ERAS-
DownGAN) with the high-resolution dataset (VHR_REA IT) for the test period (2001-2005).

Bias: The bias, a measure of systematic error, was calculated to determine the average
difference between the generated data and the high-resolution reanalysis. A lower bias indicates

a more accurate representation of the target data.

BIAS =x_gen —x real
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,where x_real is the average value of the real dataset obtained from mean calculation in time,

x_gen is the corresponding mean value of the generated dataset.

b. Mean Absolute Error (MAE): The MAE, a measure of absolute error, allowed us to quantify
the average magnitude of errors between the generated data and the high-resolution dataset.

Lower MAE values suggest closer resemblance and precision.
MAE = |x_gen — x_real|

c. Root Mean Squared Error (RMSE): The RMSE, a measure of square-rooted error variance,
provided insights into the overall discrepancy between the generated data and the high-
resolution dataset. Lower RMSE values reflect improved accuracy and fidelity of the generated

data.
RMSE = (x_gen — x_real)?

d. Pearson Correlation: The Pearson correlation quantifies the degree of similarity, ranging from
-1 to +1, with 0 indicating no linear correlation. This metric succinctly captures the GAN's

ability to replicate patterns observed in the high-resolution dataset (VHR REA-IT).

The evaluation metrics, including mean bias (BIAS), root-mean-square errors (RMSEs), mean
absolute errors (MAEs), and correlation coefficients (CORRs), comparing downscaled daily
2m-temperatures (ERA5-DownGAN) with the high-resolution dataset (VHR _REA _IT) for the
test period (01/2001-12/2005), are shown in Fig. 3.4. Specifically, major differences are
observed in regions characterized by complex orography. Regarding BIAS, the range spans
from -0.5° to +0.5°, with a distinct negative peak centered over Central Europe within our
investigation domain. Meanwhile, MAE and RMSE exhibit values ranging from 0.5°C to 1.5°C
and 0.5°C to 2°C, respectively. Throughout the test period, the mean correlation consistently
approaches 1, with lower values observed near the African, Calabrian, and Sicilian coasts, as

well as in proximity to the Alps and Etna volcano.
3.1.3 Spatial and Temporal Consistency

The comparison among real low-resolution (58x80 grid points), real high-resolution
(680x535 grid points), and downscaled ERA5-DownGAN (680x535 grid points) high-
resolution test datasets are illustrated in Fig. 3.5. This depicts maps of 2m-temperature field

over the entire computational domain for one random day of the test period. ERA5-DownGAN

54



was generated utilizing the generator saved after 100 training epochs. The decision to select the
generator after this specific number of epochs is based on the observed decrease in the
generator's error beyond this designated epoch count. Simultaneously, the artificially high-
resolution data (ERAS5-DownGAN) captures the 2m-temperature pattern observed in real high-
resolution data (VHR REA-IT), especially the intricate structures along the Alps and
Apennines, achieving a remarkable level of resolution with all topographical details

prominently visible.

b) c)

a)

T_2m[°C]
Fig. 3.5: Examples of one day from the test data set. (a)—(c) Real low-resolution data (ERAS), the real high-

resolution data (VHR _REA-IT) and the downscaled artificial data (ERA5-DownGAN), created by the cGAN.

Furthermore, the GAN output (ERA5-DownGAN) effectively mitigates ERAS's tendency to
generate a field colder than VHR REA-IT, maintaining values very close to real high-resolution

data with slight underestimation, resulting in an overall slightly cooler field.
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Fig. 3.6: Scatter diagram for evaluating the correlation between ERAS, VHR-REA IT and ERAS-DownGAN.
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According to Fig. 3.6, this suggests a higher correlation between the new high-resolution dataset
and the real high-resolution dataset compared to the low-resolution dataset. The results clearly
show that both the spatial distributions and magnitudes of the downscaled 2m-temperature
(ERA5-DownGAN) are statistically like those of the real high-resolution dataset
(VHR_REA_IT).
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Fig. 3.7: Comparison of seasonal 2m-temperature (T_2M) for real low-resolution data (ERAS), the real high-
resolution data (VHR REA-IT), and the downscaled artificial data (ERAS5-DownGAN), created by the cGAN.

In Fig. 3.7, the seasonal 2m-temperature (T 2M) maps show that the dataset generated by the
GAN, ERA5-DownGAN, accurately reproduces the spatial patterns and values observed in the
high-resolution VHR REA-IT dataset. The results indicate a strong ability of the generative
model to capture both spatial structures and seasonal variations, with minimal discrepancies
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from the real data. However, a slight general underestimation of values generated by the GAN
is evident, particularly in regions of Central Europe, such as between Austria and Hungary, and

in some areas of northwestern Italy.
3.1.4 cGAN's Ability to Capture Extreme Values

The assessment of percentiles ranging from the 1st to the 99th in Fig. 3.8 facilitates an
understanding of the extent to which the generated data aligns with the distribution
characteristics of the high-resolution dataset. The comparison of percentile values proved
valuable in evaluating the GAN's ability to accurately capture extreme events and the overall
distribution of the data. For the creation of the boxplots in Fig. 3.8, a rigorous and detailed
methodology was implemented to capture the spatiotemporal variability complexity of the 2m-
temperature. Specifically, the boxplots were derived by considering all values obtained from
calculating a single value for each specific percentile (from Ist to 99th) across the entire

geographical domain.
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Fig. 3.8: Comparison of the 2m-temperature (T_2M) distribution for real low-resolution data (ERAS) with the
gray rectangle, the real high-resolution data (VHR REA-IT) with the blue rectangle, and the downscaled
artificial data (ERA5-DownGAN), created by the GAN with a white rectangle for each percentile from the 15 to
the 99

The detailed analysis of the boxplots in the results highlights significant differences in the
distribution of 2m temperature between the low-resolution real dataset (ERAS) and the two
high-resolution datasets, real (VHR REA-IT), and generated through GAN (ERAS5-
DownGAN). Overall, ERAS5 consistently tends to exhibit a median and distribution shifted
towards higher temperature values compared to the other two datasets for all analyzed
percentiles, even with notably higher positive extremes for lower percentiles (1st and 5th; from
95th to 99th) and notably lower negative extremes for percentiles from 1st to 25th. Furthermore,
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a wider dispersion is observed, clearly represented by the greater extension of the whiskers
compared to the other two datasets, especially with the upper whisker extending more than the
lower one for percentiles above the 95th; whereas a lesser extension of the whiskers is observed
for the 10th and 25th percentiles. This indicates a tendency of ERAS to predict higher
temperatures compared to the other datasets (for both upper and lower extremes). For the
medium percentiles, ERAS records a median and dispersion similar to those of the other
datasets. In the comparison between the results obtained from the GAN and VHR REA-IT,
significant similarities emerge in the overall distribution, with the GAN accurately replicating
the median and whisker extension of VHR REA-IT. However, a slight shift is observed in the
limits of the upper and lower whiskers towards lower values compared to VHR REA-IT. This
may suggest that the GAN has introduced a slight systematic discrepancy in the predicted values
relative to the high-resolution dataset, shifting the extreme values towards lower values (for
both upper and lower extremes). This analysis, comparing the GAN-generated data (ERAS-
DownGAN) with the real high-resolution dataset (VHR REA-IT) for the test period,
demonstrates promising results in terms of accuracy and consistency, reproducing a temperature

field characterized by the same distribution, median, and approximately equal extreme values.
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Fig. 3.9: Comparison of the probability density functions (PDF) of the 2m-temperature distribution for the
ERAS, VHR_REA-IT, and ERA5-DownGAN datasets.
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The analysis of the Probability Density Functions (PDFs) of the three 2m temperature datasets
(Fig. 3.9), ERAS, VHR REA-IT, and ERA5-DownGAN, reveals a similarity in the overall
shape of the curves, indicating consistency in the distribution of temperatures. However, an
interesting observation arises in the ERAS dataset, which displays a slight modulation in the
right tail of the curve, a phenomenon not observed in the other two datasets. This suggests a
specific characteristic in the distribution of temperatures for ERAS. Additionally, the persistent
tendency of ERAS to be shifted towards higher values is confirmed by this analysis, with a
range between 10°C and 25°C and a significantly lower variability, which is obviously due to
the different grid point numbers resulting from the different resolutions. On the other hand, the
distribution of the GAN mirrors a range similar to that of VHR REA-IT, ranging from -10°C
to 25°C. The overlapping curves of ERA5-DownGAN and VHR REA-IT at many points
highlight the GAN's ability to faithfully replicate the high-resolution temperature distribution.
However, it is important to note that the GAN's curve exhibits a slightly lower primary peak
compared to VHR, centered around 19°C, and a secondary peak around 13°C, which is slightly
lower and shifted to the left compared to VHR REA-IT, settling around 12°C. These details
unveil subtle differences in the reproduction of temperature peaks by the GAN compared to the

high-resolution dataset.
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Fig. 3.10: Scatter diagram for the test period comparing the correlation of all pairs of grid points of the real
dataset (VHR_REA-IT) with the correlation of all pairs of grid points of the synthetic dataset by GAN (ERAS-
DownGAN).
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Following Sperati et al. (2017), a quantitative assessment of spatial structure using a scatter plot
that illustrates the correlation between all pairs of grid points from both the real dataset
(VHR _REA-IT) and the dataset generated by GAN (ERA5-DownGAN) is conducted. This
diagram was computed for the entire test period, employing a color-encoded kernel density
estimation technique (Venables and Ripley, 2002) to enhance visualization, as depicted in
Figure 3.10. The y-axis in the figure represents the average correlation between all pairs of grid
points in the real dataset (VHR REA-IT). On the other hand, the x-axis is determined by
computing the average correlation between all pairs of grid points in the GAN dataset (ERAS-
DownGAN). The scatter plot reveals that the artificially generated high-resolution dataset by
the Generative Adversarial Network (GAN) closely mirrors the spatial correlation structure of
the reference real high-resolution dataset. The data points follow the 1:1 line, and there is a
larger dispersion around it, ranging from -0.25 to +0.25. The higher density is observed from
0.5 to 1, indicating a predominant positive correlation between grid points in both high-
resolution datasets. Focusing on specific areas of interest in the plot, excluding regions with
negligible correlation, more significant features can be identified. In the range from -0.75 to -
0.25 (Fig. 3.10, at the top left), corresponding to the anti-correlation area between grid points,
the GAN-produced dataset exhibits a stronger negative correlation compared to the dynamically
downscaled dataset (VHR_REA-IT), with a higher density around -0.3. Similarly, in Fig. 3.10
at the bottom right, which depicts spatial correlation values exceeding 0.8, a higher positive
correlation is evident in the statistically downscaled dataset compared to the dynamically
downscaled one. Finally, for values exceeding +0.95, there is a slight reversal of this pattern.
Specifically, two areas with higher density can be identified, around +0.83 and +0.95. The
observed spatial correlation trend in the GAN implies a higher level of correlation among grid
points, whether positively or negatively, compared to VHR REA-IT. In practical terms, this
suggests that the GAN generates a field with more coherent temperature variations, exhibiting
a more pronounced and structured pattern compared to the actual dataset, a characteristic often
described as a smoother field. Positive correlations result in more similar temperature variations
among neighboring points, contributing to a more homogeneous field. Conversely, negative
correlations lead to opposite temperature variations among nearby points, creating a field with
more distinct variations. In summary, our results suggest that the GAN introduces a heightened
level of coherence and structural organization in the generated data compared to dynamical
downscaling. Nevertheless, these distinctions are minor when contrasted with the overarching

pattern of the GAN-generated high-resolution dataset (ERAS5-DownGAN), which demonstrates
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a correlation between points closely mirroring that observed in the actual VHR REA-IT

dataset.
3.1.5 Computational Details

Computational results achieved through the implementation of the Generative
Adversarial Network (GAN) bear paramount significance in the landscape of climate
downscaling.  All  simulations  were  performed on  Zeus  supercomputer
(https://www.cmcc.it/research/super-computing-center), hosted at the CMCC, equipped with
Intel(R) Xeon(R) Gold 6130 CPU 2.10GHz, with 36 physical cores. This computational
resource facilitated the tackling of ambitious challenges concerning scalability and

computational complexity.

In the context of this research, it is crucial to highlight that the implementation of the Generative
Adversarial Network (GAN) was carried out sequentially following a serial approach. The
execution of the code was performed using 72 cores in the computational process. One salient
aspect of our computational findings lies in the remarkable efficiency of the GAN-based
downscaling approach. The run-time for the training phase was approximately 4 hours to
simulate 10 years (Tab. 3.1a), and about 2.5 minutes to simulate 5 years during the testing phase
(Tab. 3.Ib). This achievement assumes extraordinary importance when compared against the
substantially protracted timescales required by conventional dynamic downscaling
methodologies. This computational prowess enables fast generation of high-resolution climate
predictions, endowing us with a considerable advantage in terms of timeliness for climate
change analysis and response planning. The utilization of cutting-edge computational resources
and the optimization of the GAN-based downscaling framework signify a significant leap
forward within the scientific climate community. They underscore the fact that innovative
computational solutions can profoundly enhance our capacity to comprehend and proactively

manage the intricacies of climate change.

years Ir samples batch size epochs time/training
10 0.0001 4000 100 100 ~4h
years samples batch size time/test
5 2000 100 ~ 2.5 min

Tab. 3.1: Computational details for the training period (a) and test period (b) on Zeus Supercomputer.
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The training time, indicated in Tab. 3.Ia, doubles when considering the checks performed to
evaluate the training at regular intervals, which involve plotting the ERAS (LR), VHR REA-
IT (HR), and Era5-DownGAN (HR) maps, as well as the error metric maps.

3.2 Downscaling of Total Precipitation

This section analyzes the application of the previously developed Conditional
Generative Adversarial Network (cGAN), following the extremely promising results achieved
in downscaling the 2-meter temperature field. These results demonstrated not only the GAN’s
ability to capture the mean values of the distribution but also its capability to accurately model
extremes, as well as maintaining spatial and temporal consistency with the high-resolution field.
The precision and reliability of the GAN in reconstructing the 2-meter temperature fields at a
national scale, with very high levels of accuracy in both the training and test phases, laid the
foundation for a new phase of experimentation. Thus, it was deemed appropriate to extend the
application of the same GAN architecture to a more complex meteorological variable: total
cumulative precipitation. Precipitation represents one of the most challenging variables to
model, as it is affected by highly heterogeneous atmospheric phenomena and physical
processes, influenced by topographic factors, local dynamics, and large-scale climatic
conditions. Specifically, applying a statistical downscaling model like the GAN to the
precipitation field is a considerable challenge, given the high spatial-temporal variability
characterizing this variable, especially in a complex and diverse territory such as Italy. Indeed,
Italy presents extremely heterogeneous meteorological conditions, with mountainous regions,
plains, and coastal areas generating very different precipitation dynamics, making the problem
of downscaling precipitation even more demanding and pioneering. Due to the complexity of
the phenomenon, applying the cGAN to the precipitation field represents a crucial test of the
flexibility and versatility of this architecture. While the results obtained for T 2M have
undoubtedly been encouraging, it is necessary to demonstrate that the GAN can maintain
competitive performance even for variables whose modeling is intrinsically more challenging.
The ability of a GAN-based neural network used for downscaling to adapt to different contexts,

such as domains and variables, is a key indicator of the robustness of the model.

The datasets used for training and testing the GAN in the precipitation field are consistent with
those employed for T2M: VHR_REA-IT (~2.2 km) for high resolution and ERAS for the low-

resolution counterpart (31 km). The training and testing periods are also consistent with the
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previously analyzed atmospheric field, 1990-2000 for training and 2001-2005 for testing. This
methodological continuity in transitioning from downscaling the 2-meter temperature field to
the precipitation field allows for a comparative evaluation of the results, highlighting how the
GAN performs in a variable and complex field like precipitation compared to a more regular
field such as temperature. Notably, the national-scale application of the GAN model to the
precipitation field has the potential to significantly improve the understanding of high-
resolution precipitation dynamics, particularly in orographically complex regions such as the
Alps, the Apennines, and Italian coastal zones. This provides a valuable and rapid tool for
various applications, including weather forecasting, water resource management, and
hydrogeological risk planning. The extension of the developed cGAN to the precipitation field
is not merely a technical challenge but a critical step in verifying the model's ability to adapt to
variables with complex dynamics, confirming it as a versatile and robust tool for statistical
downscaling in climatology. Although the results obtained for the 2-meter temperature field
(T_2M) were extremely promising, demonstrating the GAN’s capacity to capture the essential
characteristics of the variable with a high degree of accuracy, it is essential to proceed with
caution when applying the same architecture to the precipitation field. Given the intrinsic
complexity of the precipitation field, it is unrealistic to expect, from the initial experimental
phases, that the GAN will achieve performance entirely comparable to those observed for T2M
without an appropriate optimization process. In the case of precipitation, spatial and temporal
variability is much more pronounced and nonlinear, implying that the network’s sensitivity to
hyperparameters could be significantly different. Consequently, sensitivity tests are essential to
explore the hyperparameter space, including batch size, learning rate, loss function weights,

and the number of epochs.

Experiments Scaling Logarithmic Normalization d step Pixel loss Pixel adversarial
Transformation Scheme weight weight

EXPO | -1to1 | NO Scheme 3 1 0.5 0.2
(Fig. 1.2)

EXPIl | -1to1 | YES Scheme 3 1 0.5 0.2
(Fig. 1.2)

EXP2 | -1to1 | YES Scheme 3 1 0.7 0.3
(Fig. 1.2)

EXP3 | -1to1 | YES Scheme 3 5 0.5/ 0.2/
(Fig. 1.2) 0.7 0.3

EXP4 | -1tol1 | YES Scheme 1 5 0.5 0.2
(Fig. 1.2)

Tab. 3.2: Sensitivity experiments, including scaling methods, logarithmic transformation, normalization scheme,
and discriminator update steps.
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Additionally, given the more random and discontinuous nature of precipitation compared to
temperature, it may be necessary to implement advanced regularization techniques to avoid
overfitting, particularly in geographic areas characterized by irregular precipitation distribution.
Further tests may involve temporal resolution to examine how the network responds to different
temporal resolution configurations and to ensure that precipitation dynamics are captured with
adequate detail, especially in areas subject to extreme phenomena or orographically complex
regions. However, the primary goal of this study is to maintain the same innovative architecture
developed and tested for 2m-temperature across other fields, making only modifications that
do not alter the developed architecture, thereby demonstrating its versatility. Thus, this section
reports on several sensitivity experiments conducted (illustrated in Tab. 3.2), regarding dataset
normalization, loss function weights, and d_step to identify areas for improvement and guide
the development of future versions of the network. Only through this iterative approach,
combining sensitivity tests and hyperparameter optimization, will it be possible to achieve a
versatile architecture while maintaining high performance even for complex fields like

precipitation.

3.2.1 Logarithmic transformation

The preliminary application for the downscaling of daily total cumulative precipitation
(TOT_PREC) of the Conditional Generative Adversarial Network (cGAN) developed,
establishes the EXPO. In this preliminary assessment, the architecture and hyperparameters
were maintained in alignment with those utilized in the application for 2m-temperature. This
methodological choice allowed for the assessment of the model's performance in a different
data context while ensuring a consistent initial configuration. The same data normalization
scheme was adopted, as illustrated in Fig. 2.4, and a scaling process was applied to constrain
the values within the range of -1 to 1, ensuring the homogeneity and comparability of the input
variables. The analysis of the results obtained from the EXPO0, during testing phases, as reported
in Fig. 3.13 revealed significant limitations in the model's performance when applied to
precipitation data. Specifically, the GAN, using this scaling approach, is unable to adequately
reconstruct the precipitation field even after 300 training epochs. In response to these
observations, an additional step was integrated into the preprocessing process: the logarithmic
transformation. This approach proved essential for the treatment of precipitation data, as these
values frequently exhibit a highly skewed distribution characterized by extremely variable
values, often concentrated at relatively low levels (as shown in Fig. 3.1I). Unlike temperature

data, for which a simple normalization between -1 and 1 is generally adequate, precipitation
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data require a more sophisticated treatment. The logarithmic transformation helps to mitigate
the influence of outlier values and stabilize the variance, thereby enhancing the model's ability

to learn and generate meaningful patterns.

Numerous previous studies support this necessity (e.g. Obaid H.S. et al, 2019; Singh, D., and
Singh, B., 2019), demonstrating that the adoption of advanced normalization techniques,
including logarithmic transformation, can lead to a significant improvement in the performance
of precipitation forecasting models. To address the issue of applying a logarithmic
transformation to null values in the dataset, where no precipitation is recorded, this study
utilizes the function np.loglp. This function calculates the natural logarithm of / + x for each

element x in the array. Therefore, for a value of zero, the calculation becomes:
np.log 1p(0) =log(1+0) =log(1) =0

This function effectively manages zero values by transforming them into zero without the need
for an additional offset Unlike a previous study, Leinonen J. et al. (2020), where the authors
added a small offset & = 0.17 to their data, found that the choice of this parameter did not
significantly influence the results, our approach opts to directly use the np.loglp function,
which can be interpreted as applying an "offset" of 1. Furthermore, while both studies apply a
logarithmic transformation, this work normalizes the data between -1 and 1, in contrast to
Leinonen J. et al. (2020), who normalize their data between 0 and 1. This choice of
normalization allows for a better representation of the variability in precipitation data in

downscaling contexts.
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Fig. 3.11: Comparison of the total precipitation grouped for seasons (TOT PREC) distribution for real low-
resolution data (ERAS) with the gray rectangle, the real high-resolution data (VHR REA-IT) with the blue

rectangle.
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The original datasets reveal distributions ranging from 0 to 7, with outliers reaching up to12 for
the VHR REA-IT dataset, and from 0 to 8, with outliers extending to 13 for ERAS (see Fig.
3.II). While scaling the data to a range of -1 to 1, as applied to the 2-meter temperature variable,
effectively reduced the influence of outliers, it also resulted in significant compression of values
near -1, thereby limiting their variability (see Fig. 3.12). This issue became particularly apparent
when evaluating the model's ability to reconstruct precipitation fields in the experiment (EXPO,

Tab. 3.2), which utilized the same scaling configuration as for 2-meter temperature variable.
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Fig. 3.12: Comparison of the total precipitation scaled from -1 and 1 and grouped for seasons (TOT PREC)
distribution for real low-resolution data (ERAS) with the gray rectangle, the real high-resolution data

(VHR_REA-IT) with the blue rectangle.

In response to the results obtained from EXPO0 and the need to make the input provided to the
GAN more symmetrical, we implement a logarithmic transformation on both input datasets
(VHR_REA-IT and ERAS) before applying the scaling between -1 and 1. This logarithmic
transformation is particularly advantageous for addressing highly skewed distributions
commonly observed in precipitation data, resulting in a more balanced range of values between
-1 and -0.3. Not only does this approach mitigate the impact of outliers, but it also enhances the

normality of the data distribution, making it more closely resemble a Gaussian distribution.
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Fig. 3.13: Example of one day from the test data set, generated by cGAN in EXPO.

The boxplots presented in Fig. 3.14 clearly illustrate the marked improvement in value
distribution following the combined application of logarithmic transformation and scaling to
the range of -1 to 1. The boxplots in Fig 3.1, Fig. 3.12, and Fig. 3.14 illustrate the distribution
of total precipitation (TOT PREC) averaged spatially, obtained by aggregating daily

precipitation data for each season.
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Fig. 3.14: Comparison of the total precipitation with logarithmic transformation and scaling from -1 and 1; it is
grouped for seasons (TOT_ PREC) distribution for real low-resolution data (ERAS) with the gray rectangle, the
real high-resolution data (VHR REA-IT) with the blue rectangle.

The results of the EXP1, with new normalization (logarithmic transformation and scaling), are

illustrated in Figure 3.15. It shows a comparison between the low-resolution real dataset (58x80
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grid points), the high-resolution real dataset (680x535 grid points), and the downscaled high-
resolution dataset generated by the ERAS5-DownGAN model (680x535 grid points). The maps
show the total precipitation field across the entire computational domain for three randomly
selected days from the test period. The improvements relative to the baseline experiment
(EXPO) are substantial in this new experiment (EXP 1). The GAN model is now capable of
reconstructing precipitation patterns with a spatial distribution that closely mirrors the real high-
resolution counterpart (VHR REA-IT). Notably, the downscaled GAN dataset exhibits a clear
enhancement in detail compared to the low-resolution ERAS data (Fig. 3.15). Furthermore, the
values consistently fall within the range of the high-resolution real dataset, indicating a reliable

representation of precipitation patterns.
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Fig. 3.I5: Examples of three random days from the test data set, generated by cGAN in EXP1.

The temporal trend of the total precipitation field (TOT PREC) is illustrated in Fig. 3.16 over
the test period (2001-2005) for both high-resolution datasets, the real dataset (VHR REA-IT)
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and the synthetic dataset (ERA5-DownGAN), alongside the real low-resolution dataset (ERAS)

across the entire study domain.
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Fig. 3.16: Temporal evolution of the daily moving average of the total precipitation during the test period,
calculated with a 30-day window. Mean daily spatial average of the real low-resolution data (ERAS), the real
high-resolution data (VHR _REA-IT) and the downscaled artificially data (ERA5-DownGAN), created by the

c¢GAN in EXP1.

The time series of daily total precipitation demonstrates a generally strong correlation among
the datasets, albeit with some minor discrepancies in value ranges. Notably, ERAS tends to
deviate from VHR REA-IT, either significantly or overlaps with it, often positioning itself at
an intermediate level between the two datasets, with few exceptions. The displayed trends are
smoothed using a 30-day moving average, which is derived from spatially averaging the

precipitation data.
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Fig. 3.17: Scatter diagram for evaluating the correlation between ERAS, VHR-REA IT, and ERA5-DownGAN.
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According to Fig. 3.17, this suggests that the new high-resolution dataset exhibits a higher
spatial-temporal correlation with the real high-resolution dataset (VHR REA-IT) for lower
precipitation values compared to the correlation observed between the low-resolution dataset
(ERAS)and VHR REA-IT, while the correlation for higher precipitation values remains similar

between the two datasets.

The analysis of percentiles, from the 75th to the 99th, presented in Fig. 3.7, allows for
evaluating the extent to which the data generated by the GAN replicates the distributional
characteristics of the high-resolution real dataset for total precipitation. The decision to focus
on higher percentiles is justified by the inherently skewed nature of precipitation distributions,
where low or zero values are more frequent. As a result, the examination of higher percentiles
provides a more insightful evaluation of the GAN’s ability to capture extreme events, which,

while rare, are of significant meteorological importance.
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Fig. 3.18: Comparison of the total precipitation (TOT PREC) distribution for real low-resolution data (ERAS)
with the gray rectangle, the real high-resolution data (VHR REA-IT) with the blue rectangle, and the
downscaled artificial data (ERA5-DownGAN), created by the cGAN in EXP1 with a white rectangle for each
percentile from the 75 to the 99™.

The analysis reveals that the GAN-generated dataset, ERA5-DownGAN, exhibits a lower

median compared to the high-resolution real dataset (VHR REA-IT) across percentiles 95

through 99. The data generated by the Generative Adversarial Network (GAN) model reveal a

lower median in comparison to the high-resolution real dataset (VHR REA-IT) within the 95th
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to 99th percentile range. Nonetheless, the dispersion of central data, as represented by the
interquartile range (IQR), is comparable to that of the VHR REA-IT dataset. This observation
indicates an enhancement in the distribution when contrasted with the ERAS5 dataset, which
exhibits reduced dispersion of central data. Moreover, the upper whiskers of the boxplot for the
GAN-generated dataset align more closely with those of VHR REA-IT than with those
observed in ERAS. Importantly, the GAN model also demonstrates a greater prevalence of
outliers compared to VHR REA-IT, suggesting increased variability in the extreme values of
the generated dataset. Several factors may contribute to this behavior. Firstly, GANs are
engineered to learn the underlying distribution of real-world data; thus, if the model fails to
accurately capture the patterns associated with extreme precipitation or rare occurrences, it may
yield a lower median. Additionally, the presence of outliers exhibiting higher values than those
in the real dataset may stem from the GAN's proactive exploration of the generated data space,
resulting in the creation of rare and extreme samples. This phenomenon is particularly
pronounced if the training dataset underrepresents high-intensity precipitation events,

prompting the model to compensate by generating elevated values.

Finally, it is imperative to recognize the significance of hyperparameter selection, especially
the weights assigned to the loss functions, as they can greatly influence the performance and
outcomes of the GAN model. In light of these findings, a decision was made to further
investigate the weights associated with the loss functions during the training process.
Specifically, it was deemed appropriate to increase the weight of the pixel loss to encourage the
generator to produce values more consistent with the actual distribution, thereby improving the
median of the outputs. Concurrently, reducing the weight of the adversarial loss may contribute
to stabilizing the generator's outputs, limiting the generation of extreme values and outliers.
Therefore, the study proceeded with EXP2, aimed at optimizing the model's performance,
ensuring greater coherence with the real data, and achieving a more accurate representation of

the desired statistical characteristics.
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Fig. 3.19: Comparison of seasonal total precipitation (TOT_PREC) for real low-resolution data (ERAS), the real
high-resolution data (VHR REA-IT), and the downscaled artificial data (ERA5-DownGAN), created by the
cGAN.

The seasonal analysis is illustrated through maps (see Fig. 3.19) depicting the mean precipitation
values for each region across the three analyzed datasets. These maps highlight the GAN
model's capability to effectively reconstruct the intricate details of precipitation patterns
observed in the high-resolution dataset (VHR REA-IT). In contrast, the ERAS dataset, due to
its lower resolution, demonstrates a limited ability to capture these details. Notably, in certain
specific areas, the dataset generated by the GAN exhibits shapes that are more reminiscent of
those reproduced by ERAS, albeit with precipitation values that are closer to those of
VHR REA-IT. Also in this context, increasing the weight associated with pixel loss at the
expense of adversarial loss may further enhance the model's ability to accurately reproduce

precipitation structures.
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Sum [m] Median [mm] Min [mm] Max [mm] Q1 [mm] Q3 [mm]

VHR_REA-  ERAS- ERAS VHR_REA- ERAS- VHR_REA- ERA3- VHR_REA. ERAS- VHR_REA- ERAS- VHR_REA. ERAS-

ERAS ERAS ERAS ERAS

T DownGAN IT  DownGAN IT  DownGAN IT  DownGAN IT  DownGAN T DownGAN
Tamuary 17585 948523 946559 03 00 01 00 00 0.0 1120 30,1 2737 00 00 00 23 07 0.7
February 14244 80019.6 741085 02 00 01 00 00 0.0 1028 2881 3007 00 00 00 21 06 06
March 12586 799122 743780 0.1 00 00 00 00 0.0 919 260,1 4046 00 00 00 12 02 04
April 16289 1205783 107603.1 02 00 01 00 00 0.0 790 2702 4142 00 00 00 21 L1 09
May 12843 1073693 825268 00 00 01 00 00 0.0 1502 3411 3475 00 00 00 12 04 06
Tune 9996 86389,1 599250 00 00 00 00 00 0.0 1055 4251 2106 00 00 00 05 00 03
Tuly 10640 823381 592599 00 00 00 00 00 0.0 1662 336,1 3236 00 00 00 05 00 02
August 11554 929735 759984 00 00 00 00 00 0.0 1614 364.1 2683 00 00 00 07 00 03
September 15955 1078945 839583 01 0.0 01 00 00 0.0 1866 4676 3494 00 00 00 15 02 0.5
October 17015 1098087 10752838 01 0.0 00 00 00 0.0 1443 5207 3824 00 00 00 13 02 0.5
November 21701 1240434 1354206 04 0.0 01 00 00 0.0 1472 3305 5272 00 00 00 29 09 09
December 23137 1258866 1289072 05 00 01 00 00 0.0 1244 5504 5356 00 00 00 34 14 12

Tab. 3.3: Descriptive statistics for monthly totals, medians, maximum values, and interquartile ranges (Q1 and
Q3) across the ERAS, VHR REA-IT, and ERA5-DownGAN datasets.

A detailed statistical analysis of the precipitation datasets (see Tab. 3.3) reveals the significant
impact of downscaling, revealing substantial differences between high-resolution datasets
(ERA5-DownGAN and VHR REA-IT) and the coarse-resolution ERAS. The results show that
ERAS consistently underestimates maximum values compared to VHR REA-IT across all
months, while recording a higher third quartile (Q3). This discrepancy can be attributed to
ERAS5’s lower spatial resolution, which fails to capture local variations during extreme
precipitation events. Consequently, maximum values are spread over larger areas, leading to an
overestimation of Q3 (see Tab. 3.3) and the median compared to high-resolution datasets
(particularly evident for the 90th and 95th percentiles in Fig. 3.18). Boxplots further support
this observation, showing that ERAS exhibits reduced spread around the median for extreme
percentiles (98th and 99th), in contrast to both ERA5-DownGAN and VHR REA-IT.
Conversely, ERA5-DownGAN better approximates VHR REA-IT’s maximum values,
particularly in January, February, May, July, and December. Median values across all months
for ERAS5-DownGAN are almost identical to those of VHR REA-IT, demonstrating greater

agreement compared to ERAS.

We report in Tab. 3.3 the sum for ERAS for informational purposes only, as the differing
resolution and, consequently, the varying number of grid points render the values incomparable
to those of the high-resolution datasets. Regarding cumulative precipitation sums, ERAS-
DownGAN aligns closely with VHR REA-IT, though with a slight underestimation,
particularly in June and July. This improvement indicates that the GAN-based architecture
successfully reconstructs precipitation fields that more accurately reflect the patterns observed
in the high-resolution dataset. Low-resolution models, such as ERAS, tend to overestimate
moderate or light precipitation events, contributing to an overall overestimation of total

precipitation. The frequency analysis (Fig. 3.21) further illustrates ERAS5’s overestimation of
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light and moderate precipitation events. A logarithmic y-axis is used to better visualize higher
precipitation classes, where frequency would otherwise appear small and compressed. This
overestimation diminishes for more intense events (>20 mm), where ERAS demonstrates more
realistic behavior, although it still underestimates higher-intensity events. This discrepancy, as
noted, is primarily due to the different resolutions of the datasets. ERAS, being a coarser-
resolution model, struggles to capture localized, intense precipitation events, which can lead to
overestimation of light and moderate events due to spatial averaging. In contrast, VHR REA-
IT shows greater accuracy for high-intensity precipitation events, likely due to its ability to
resolve local features such as orography, which significantly affects precipitation patterns in
mountainous or coastal regions. ERA5-DownGAN performs more similarly to VHR_REA-IT
across different frequency classes, with the notable exception of values >200 mm, where it still
exhibits some overestimation of very intense events. Not surprisingly, all three datasets show
similar behavior in the low-intensity precipitation range. Events with negligible precipitation

(0-1 mm) are frequent and are likely not significantly influenced by spatial resolution.

To assess the spatial distributions of the two high-resolution datasets, observed and those
generated through GAN downscaling, we conducted an analysis of the averaged error metrics
over the entire study period (Fig. 3.20). Our findings consistently demonstrate the tendency of
the GAN model to underestimate precipitation, particularly in mountainous regions where bias
and mean absolute error (MAE) can reach up to 10 mm. Specifically, the average bias is
approximately -1 mm, while the mean MAE is around 1.4 mm. In terms of root mean square
error (RMSE), the most pronounced values, reaching up to 15 mm, are observed in these
complex terrains, with an overall average of approximately 4.5 mm. Despite this
underestimation, the correlation map (Fig. 3.20) indicates a strong correlation over terrestrial
areas, with values approaching unity in regions characterized by significant underestimation.
This high correlation implies that, although the model consistently underestimates precipitation,
the identified patterns remain coherent with the observed data. Such consistency is a positive
indicator of the model's predictive capabilities, notwithstanding the negative bias. In contrast,
the lowest correlation values are observed in marine areas, which presents a remarkable
condition potentially attributable to the absence of sea assimilation in the COSMO-CLM model.
This model generates the VHR REA-IT data through dynamic downscaling, leading to
predictions of precipitation patterns that diverge from those produced by ERAS.
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Fig. 3.20: Maps of time average. (a)-(d) Mean bias (BIAS), root-mean-square errors (RMSEs), mean absolute
errors (MAESs), and correlation coefficients (CORRs), comparing downscaled daily total precipitation (ERAS-
DownGAN) with the high-resolution dataset (VHR REA IT) for the test period (2001-2005).

The correlation between model estimates and observed data ranges from 0.6 to 1, exhibiting
particularly high correlations in mountainous regions. This elevated correlation underscores the
model's ability to maintain alignment with observed data, even in the face of precipitation
underestimation. Such findings underscore the model's predictive capacity, suggesting that it

retains a degree of robustness despite the inherent negative bias.

In conclusion, the downscaling process, particularly for precipitation fields, proves crucial in
achieving a better correlation with high-resolution observational datasets compared to the

coarse ERAS field. However, the cGAN model in its current EXP1 configuration still shows
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room for improvement, primarily due to its tendency to overestimate values associated with

very intense events and its slight underestimation of median values relative to VHR REA-IT.
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Fig. 3.21: Frequency distribution of precipitation events across different intensity classes for datasets:
VHR_REA-IT (blue), ERA5-DownGAN (grey) and ERAS (coral). The use of a logarithmic y-axis highlights the
occurrence of higher-intensity precipitation events.

This has prompted further investigations, focusing specifically on the model's hyperparameters,
particularly the weights associated with the loss functions, which will be explored in the next
section and examined in EXP2. Overall, the results from EXP1 demonstrate that the developed
GAN is capable of reconstructing the complex patterns characteristic of the precipitation field,
and that the architecture designed for 2m-temperature proves valid even for more complex
variables like precipitation. Therefore, the EXP1 establishes a benchmark (EXPO) for

evaluating the performance of subsequent experiments and improvements.

3.2.2 Exploring the Influence of Loss Weights and d_step in
ERAS-DownGAN

Based on the results obtained from EXP1, we decided to explore different combinations of two
fundamental parameters in GANs: the weights associated with the loss functions and the d_step.
These combinations define three additional experiments, as detailed in the Tab. 3.5. In EXP2
and EXP3 1, both the pixel loss and adversarial loss weights are increased compared to EXP1
(from 0.5 to 0.7 and from 0.2 to 0.3), with the d_step set to 1 and 5, respectively. EXP3 2, on
the other hand, extends EXP1 by modifying the d_step from 1 to 5.
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The weights assigned to loss functions in a GAN play a crucial role in the optimization process,
balancing different objectives. In the case of a GAN developed for downscaling, such as our
cGAN, the two main loss functions are typically the pixel loss and the adversarial loss, which
need to be carefully balanced to ensure both accurate reconstruction and high realism in the
generated data. The pixel loss (often represented as L1 or L2) encourages the generator to
produce outputs that closely match real data at the pixel level, emphasizing detail precision. On
the other hand, the adversarial loss pushes the generator to produce outputs that the
discriminator cannot distinguish from real data, thus promoting realism in the generated images

or data samples.

Pixel _loss Adversarial_loss

Experiments weight weight d_step
EXP2 0.7 0.3 1
EXP3 1 0.7 0.3 5
EXP3 2 0.5 0.2 5

Tab. 3.4: Sensitivity experiments concerning loss weights and d_step parameters.

Increasing the weight of the pixel loss from 0.5 to 0.7, as done in experiments EXP2 and
EXP3 1, places greater emphasis on reconstruction quality. This adjustment ensures that the
generator focuses more on minimizing pixel-level differences between the generated images
and the real ones. As a result, the model tends to generate outputs that more closely resemble
high-resolution targets, a crucial aspect in applications like downscaling, where precision is
essential for reliable predictions. However, an excessive increase in the pixel loss weight may
result in overly smooth or blurry outputs, as the adversarial component is downplayed, reducing

the sharpness and natural variability in the generated data.

Similarly, increasing the adversarial loss weight from 0.2 to 0.3 shifts the balance toward
improving the realism of the generated images. With a higher adversarial weight, the generator
receives a stronger signal to deceive the discriminator, which leads to more realistic and higher-
frequency details in the results. However, challenges also arise in this case: if the adversarial
weight is too high relative to the pixel loss, the model might prioritize generating visually
convincing images, at the expense of accurately reconstructing the original data, thus reducing
overall prediction accuracy. This trade-off between realism and reconstruction fidelity is a well-
known challenge in GAN training. Properly balancing these two losses is critical and often
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requires domain-specific fine-tuning. In our context, where both accuracy and realism are
needed to produce a new high-resolution dataset through Al, comparable to that produced by
physically based models, increasing the adversarial loss weight should improve the model's

ability to capture complex patterns in high-resolution data.

Another parameter investigated in the experiments discussed here is d_step, which defines the
number of discriminator updates for each generator update. In traditional GAN training, the
discriminator and generator are updated alternately, generally with a 1:1 ratio, i.e., d step = 1.
However, by varying the d_step value, greater flexibility can be introduced into the training
process: increasing the number of discriminator updates allows it to more accurately capture
real details compared to generated data before the generator is updated. Setting d_step to 5, as
in experiments EXP3 1 and EXP3 2, allows the discriminator to learn more effectively before
the generator attempts to catch up. Increasing d_step to 5 means that the generator will face a
stronger discriminator, which could lead to more refined outputs, as the generator will be
pushed to produce data that is increasingly indistinguishable from real data. However, this
increased strength of the discriminator presents a significant challenge as it could also lead to
instability during training. The generator may struggle to converge if the discriminator becomes
too powerful, causing issues such as mode collapse, where the generator produces only a narrow
range of examples. Conversely, keeping d step at 1, as in EXP2 and EXPI, ensures that the
generator and discriminator remain more aligned, promoting a more balanced learning process.
However, this may slow down the improvement of high-quality details and realism in the

generated data.

The combination of these two parameter adjustments in the experiments listed in Tab. 3.4,
namely the weights assigned to the loss functions and the number of discriminator updates,
defines different learning dynamics for the developed conditional GAN. By increasing both the
pixel loss and adversarial loss weights, the model is pushed to produce outputs that are
simultaneously more accurate and realistic. Additionally, adjusting d_step from 1 to 5 enhances
the discriminator's learning capability, creating a more challenging learning environment for
the generator, potentially leading to more detailed and high-quality outputs. However, the
balance between these parameters is delicate, and the results space was cautiously investigated
through various experimental setups to avoid training instability or poor convergence. To enable
a meaningful comparison across the experiments, while balancing computational costs with the
errors associated with both the generator and discriminator, we determined that limiting the

training to 200 epochs was sufficient for an adequate evaluation.

78



To evaluate both the visual quality and the internal consistency of the generated dataset, we
analyzed the performance of various cGAN configurations (Table 3.2) in terms of the evolution
of the mean value, standard deviation, spatial and temporal correlation, and Fréchet Inception
Distance (FID) across different training epochs, ranging from 20 to 200 steps in increments of
20. The analysis of the mean value revealed that the distribution of synthetic data progressively
converges towards that of real data as training epochs increase, thereby reducing initial
discrepancies attributed to the model's incremental stability. Additionally, the values of the
standard deviation approach those of the real dataset, indicating an improvement in the GAN's
ability to capture the variability inherent in the real dataset. Measures of spatial correlation
suggest an enhancement in structural coherence, while temporal correlation assesses the
model's effectiveness in maintaining temporal consistency; this aspect is particularly critical for

sequential datasets, even though our model does not explicitly account for temporal elements.

Models EXP1 and EXP2, configured with d step = 1 and loss weights of 0.5 and 0.2 (EXP1)
and 0.7 and 0.3 (EXP2), exhibit (Fig. 3.22) similar values for mean, standard deviation, spatial
correlation, and FID, although they demonstrate distinct trajectories during training. This
observation suggests that, despite having analogous foundational configurations, the
differences in loss weights induce variations in the learning dynamics. Conversely, models
EXP3 1and EXP3 2, configured with d_step = 5 and utilizing the same loss configurations as
EXP2 and EXP1, respectively, exhibit mean values and standard deviations that deviate more
significantly from the real dataset, indicating reduced accuracy in the generated data.
Furthermore, the spatial correlation in EXP3 models is lower, implying a lack of structural
coherence in the synthetic data, potentially arising from the increased interval between

parameter updates for the discriminator.

When examining configurations with identical loss weights (EXP1 and EXP3 2, EXP2 and
EXP3 1), a notable similarity in learning trajectories emerges as epochs increase, with a slight
shift in results attributable to variations in the d step parameter. Notably, although nearly
overlapping, EXP1 and EXP3 2 display differences in mean and standard deviation values
around the 140th epoch, suggesting that the configuration with weights 0.5 and 0.2 is likely
more sensitive to the choice of d_step. This sensitivity may be due to the diminished influence
of the adversarial loss in configurations EXP1 and EXP3 2, characterized by pixel loss = 0.5
and adversarial loss = 0.2, which renders the model's balance more dependent on the frequency
of discriminator updates compared to configurations with pixel loss = 0.7 and adversarial loss

=0.3.
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Fig. 3.22: Comparative analysis of performance metrics (mean, standard deviation, FID, spatial and temporal
correlation) for experiments EXP1, EXP2, EXP3 1, and EXP3 2 as a function of epochs.

In Fig.3.23 we present the temporal evolution of the daily spatial average of total precipitation
during the test period, comparing the benchmark configuration (EXP1) with the real high-
resolution dataset (VHR REA-IT) across various cGAN configurations. The data shown have
been smoothed using a 30-day moving average. The results demonstrate that all cGAN
configurations effectively capture the overarching trend of the real dataset (represented by the
blue line), albeit with differing degrees of temporal shift. Notably, for the configurations with
d step = 1 (EXP1 and EXP2), the curves are nearly overlapping, indicating that the specific
selection of loss weights has a minimal impact on the spatial average value in this context.
However, both configurations utilizing d step = 1 exhibit a tendency to underestimate
precipitation when compared to the real dataset. Conversely, the experiments EXP3 1 and

EXP3 2, which utilize d_step = 5, demonstrate a reduction in this underestimation, with certain
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instances where the values produced by ERAS5-DownGAN exceed those of the real dataset. The
underestimation observed in the configurations with d step = 1 can be attributed to the more
frequent updates of the discriminator, which impose stricter constraints on the generator. This
results in precipitation estimates that may be overly conservative. Conversely, configurations
with d_step = 5 allow the generator to learn in a more flexible manner, thereby reducing the
impact of immediate corrections from the discriminator. In this context, the generator is
afforded the opportunity to explore a broader solution space, potentially leading to precipitation

that, in certain instances, exceed the values of the real dataset.
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Fig. 3.23: Temporal evolution of the daily moving average of the total precipitation during the test period,
calculated with a 30-day window. Comparison of the mean daily spatial average: benchmark (EXP1) and real
high resolution dataset (VHR REA-IT) with different cGAN configurations.
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The analysis of boxplots across various cGAN configurations (Fig. 3.24) further corroborates
the efficacy of the EXP3 1 and EXP3 2 experiments in generating mean values that are both
higher and more closely aligned with those of the real dataset. Specifically, within the 90th to
99th percentile range, the boxplots for the EXP2, EXP3 1, and EXP3 2 configurations
demonstrate a broader interquartile range (IQR), indicating enhanced dispersion in the central
values. This finding underscores a more robust representation of extreme precipitation events
in these configurations. Overall, the experiments employing a pixel loss of 0.7 and an
adversarial loss of 0.3 reveal a distribution characterized by slightly elevated values, thereby
achieving closer alignment with the real dataset compared to their counterparts utilizing a pixel
loss of 0.5 and an adversarial loss of 0.2. These results suggest that the selected weightings in
the loss functions significantly influence the model's capacity to effectively replicate extreme

precipitation events.
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Fig. 3.24: Comparison of the total precipitation (TOT_PREC) distribution for real high-resolution data
(VHR_REA-IT) with the white rectangle, and the downscaled artificial data (ERA5-DownGAN), created by the
cGAN in EXP1, EXP2, EXP3_1 and EXP3_2 for each percentile from the 75% to the 99",

To provide a comprehensive analysis of the performance of the various configurations
implemented, Figure 3.25 presents a comparison of bias maps, mean absolute error (MAE), and

root mean square error (RMSE) averaged over time, utilizing the VHR _REA-IT dataset as a
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reference. The analysis indicates that EXP2, which adopted a pixel loss of 0.7 alongside an
adversarial loss of 0.2, effectively reduced the general underestimation seen in EXP1, where
the pixel loss was set at 0.5 and the adversarial loss remained at 0.2. This improvement was
particularly evident in areas with complex orography. However, in regions where EXP1
exhibited a slight overestimation of precipitation values compared to the VHR REA-IT dataset,

EXP2 exacerbated this overestimation.
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Fig. 3.25: Maps of time average. Mean absolute errors (MAEs), Mean bias (BIAS) and root-mean-square errors
(RMSESs), comparing downscaled daily total precipitation for EXP1, EXP2, EXP3 1 and EXP3 2 (ERAS-
DownGAN) with the high-resolution dataset (VHR _REA IT) for the test period (2001-2005).

Despite these discrepancies, both MAE and RMSE values remained relatively stable between
EXP1 and EXP2. These differences can be attributed to the increased weight assigned to pixel
loss, which likely encouraged the model to prioritize the accurate reproduction of pixel values.
While this approach aimed to enhance overall accuracy in regions where underestimation was
prevalent, it may have inadvertently led to a “forcing” effect, elevating values in other areas.
Notably, the bias values remain relatively low, ranging from -3 mm to +3 mm, while the MAE
ranges from 0 to 5 mm. RMSE values, on the other hand, show a broader distribution, generally
falling between 0 and 8 mm but peaking at 14 mm in specific locations, such as near

Montenegro's Coastal Region.
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Furthermore, in Experiments 3 1 and 3 2, where the discriminator update step (d_step) was
increased from 1 to 5, the generated maps exhibited a marked decline in visual quality,
characterized by undesirable artifacts. This phenomenon may arise from the excessive update
frequency of the discriminator, which, updating more rapidly than the generator, can lead to a
degree of overfitting to the real data, thereby limiting the generator’s ability to refine its
representations. Consistent with Goodfellow et al. (2014) and Mescheder et al. (2017), a
misalignment in the learning rates between the generator and discriminator may induce

instability in image generation, ultimately compromising the quality of the final outputs.

In conclusion, the results suggest that EXP2, which utilizes a pixel loss of 0.7 and an adversarial
loss of 0.3, represents a well-balanced compromise, demonstrating a slight mitigation of the
underestimation observed in EXPI1. In particular, EXP2 exhibits improved performance
compared to EXP1 in extreme percentiles (Fig. 3.24). Although increasing the discriminator
update steps (d_step) to 5 in EXP3 1 and EXP3 2 leads to better alignment of mean values and
standard deviations with the real dataset compared to EXP1 and EXP2, this adjustment
significantly compromises the structural coherence of the generated outputs. Consequently, at
epoch 200, EXP2 emerges as the optimal configuration, providing the best trade-off between

accuracy and stability among the evaluated experimental setups.

3.2.3 An Alternative Normalization Scheme

The complexity of precipitation fields motivated an investigation into alternative
normalization schemes could enhance GAN output performance. We introduced Scheme 1 in
Fig. 2.4, a method that scales all input data based on the minimum and maximum values
obtained from a bilinear interpolation of the ERAS5 dataset onto the VHR-REA-IT grid
(ERAS interp-VHR). Minimum and maximum values were computed separately for both
training and testing periods’ temperature distributions, allowing ERA5-DownGAN to be
denormalized according to ERAS interp-VHR data from the testing period. Benchmark results
from EXP1 were then compared with EXP4, which applies this new normalization strategy, to

evaluate potential improvements in model accuracy and generalization.

Specifically, for both experiments (EXP1 and EXP4), the trends of the mean value, standard
deviation, spatial and temporal correlations were analyzed in comparison to the real dataset
(VHR_REA-IT), along with the Fréchet Inception Distance (FID) over the epochs ranging from
20 to 200 in increments of 20 (see Fig. 3.26). Additionally, frequency histograms for the various

precipitation classes and maps of bias, mean absolute error (MAE), and root mean square error
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(RMSE) were produced, averaging the results over the comparison period between the two

experiments against the high-resolution dataset.
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Fig. 3.26: Comparative analysis of performance metrics (mean, standard deviation, FID, spatial and temporal
correlation) for experiments EXP1 and EXP4 as a function of epochs.

Although the spatial and temporal correlations in EXP4 are slightly higher than those in EXP1
(see Fig. 3.26), the mean and median values in EXP4 are further from the actual dataset
compared to EXP1, and the Fréchet Inception Distance (FID) is also elevated. This suggests
that the cGAN implemented in EXP4, despite its comparable performance to EXP1, encounters
greater challenges in aligning with the mean values and distribution of the test period, which
impacts its generalization capabilities. This discrepancy may be attributed to the training on
data that are inherently smoother, resulting from the bilinear interpolation of ERAS onto the
VHR_REA-IT grid. In contrast, EXP1 was trained directly on the actual high-resolution dataset
VHR REA-IT. Consequently, the training values in EXPI1, particularly those representing
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frequency classes associated with high precipitation, are more representative of real-world

conditions, facilitating improved generalization during the testing phase.

The observation that EXP4 fails to capture the higher values of the distribution as effectively
as EXPI, resulting in a lower mean and reduced dispersion, initially suggested by Fig. 3.26, is
confirmed by the frequency distribution analysis presented in Fig. 3.27. This analysis highlights
the limitations of EXP4 in accurately representing the full spectrum of precipitation events,

particularly those characterized by high intensity.

In particular, starting from 50 mm, EXP4 records a lower frequency not only compared to the
actual dataset but also relative to EXP1. The most significant differences emerge from 100 mm,
with a further deterioration at 200 mm, where only EXP1 presents values in this class,
confirming its ability to represent the more intense event classes, a capability lacking in EXP4.
An inversion of trend is observed exclusively for the weak event class, ranging from 1 to 5 mm,
where both EXP1 and EXP4 show a higher frequency compared to the actual dataset. In
contrast, for the intermediate precipitation classes (from 5 to 50 mm), both datasets exhibit a

slightly lower frequency relative to VHR REA-IT.

10° VHR_REA-IT
ERA5-DownGAN (Exp4)
ERA5-DownGAN (Expl)

107%
T
g2 1072
o)
El
=
¢
=
°
N
= 19-3
T 1O
£
<
5]
-4

10~4

10-°

T T T T
& & & & & & & &
&
\'Dé‘ ﬁu@ s 9@ 96‘ 096‘ QDG‘ m@é‘
o o o M o) o o
o N oF o o g:\’ N 7
~ v & &

TOT_PREC [mm]

Fig. 3.27: Frequency distribution of precipitation events across different intensity classes for datasets:
VHR_REA-IT (blue), ERA5-DownGAN EXP4 (green) and ERA5-DownGAN EXP1 (coral). The use of a
logarithmic y-axis highlights the occurrence of higher-intensity precipitation events.
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Figure 3.28 reveals that the two experiments exhibit no substantial differences in terms of mean
bias, MAE, and RMSE. However, a notable reduction in bias is observed in EXP4 within the
Friuli Venezia Giulia region and the Central Apennines, while a greater bias is evident in the
mountainous areas of Croatia and Montenegro. This finding suggests that there is not a uniform
mitigation of overestimation across all mountainous regions, contrasting with the results
observed in EXP2 (Figure 3.25). Therefore, although EXP4 demonstrates a specific reduction
in bias in certain locations, it does not ensure superior performance in mountainous contexts,

where EXP2 provided a significant advantage over the benchmark EXP1.

Fig. 3.28: Maps of time average. Mean absolute errors (MAEs), Mean bias (BIAS) and root-mean-square errors
(RMSESs), comparing downscaled daily total precipitation for EXP1and EXP4 (ERAS5-DownGAN) with the
high-resolution dataset (VHR REA _IT) for the test period (2001-2005).
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In conclusion, the results obtained from the comparison between EXP1 and EXP4, highlighting
the differences in the use of Schema 3 and Schema 1 for normalization (Figure 2.4), further
emphasize the importance of selecting an appropriate normalization scheme during the training
of GANSs. The findings confirm that Schema 3 proves superior in accurately representing the
actual distribution of the atmospheric field under investigation, particularly at higher values.
Therefore, to achieve more accurate and reliable precipitation forecasts, it is crucial to adopt
more sophisticated normalization approaches, such as the one employed in EXP1. This supports
the notion that effective normalization, directly based on high-resolution data and devoid of
pre-processing interpolations, can enhance the model's generalization capabilities and overall

performance.

3.2.4 Comparison of All Configurations

In this chapter, several experiments were conducted to evaluate the effectiveness of our
cGAN architecture initially developed for the downscaling of 2-meter temperature (T_2M) and
later adapted to handle precipitation fields (TOT PREC), a more complex meteorological
variable. The preliminary experiment (EXPO0) indicated that while scaling between -1 and 1 was
effective for T2M, precipitation data required additional pre-processing to correct its highly
skewed distribution. The introduction of a logarithmic transformation in EXP1 significantly
improved the GAN's ability to replicate the high-resolution precipitation field (VHR REA-IT),
notably enhancing the model’s precision in capturing spatial patterns across various intensities
(Figs. 3.15, 3.19). This new pre-processing step enabled the model to generate precipitation
distributions that closely resemble real high-resolution data, as demonstrated by its capacity to
reconstruct daily and seasonal precipitation patterns. Percentile analysis (Fig. 3.18) highlighted
that the GAN accurately represents the distributional characteristics of the real dataset, even at
higher percentiles (from the 75th to the 99th), although it exhibits a more pronounced

underestimation in the extreme classes (98th to 99th percentiles).

Nevertheless, the generated dataset maintains a realistic distribution and strong temporal
correlation with high-resolution real data, showing substantial improvements over the low-
resolution ERAS dataset (Fig. 3.16). Using EXP1 as a benchmark, further parameter
adjustments were made in EXP2 and EXP3 to optimize GAN performance. Increasing the
weights of pixel and adversarial losses (from 0.5 to 0.7 and from 0.2 to 0.3, respectively) in
EXP2 yielded marginal improvements in bias, particularly in complex orographic regions, with

a closer alignment of mean values and standard deviations between ERA5-DownGAN and
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VHR REA-IT, though generating much higher outliers in the synthetic dataset than seen in the
real dataset. In the configuration with d_step set to 5 (EXP3), aliasing phenomena emerged,
indicating that a d_step value of 1 is crucial for maintaining spatial fidelity. The configuration

with increased weight settings demonstrated a stronger dependency on the d_step setting.

Comparative analyses of seasonal and cumulative precipitation (Table 3.3, Figs. 3.19, Fig. 3.20)
confirm the robustness of the GAN in reconstructing complex atmospheric patterns. The ERAS-
DownGAN dataset successfully approximated the monthly cumulative precipitation of
VHR REA-IT, showing good correspondence across all months, with only slight
underestimations during the summer months and good adherence to spatial structures in areas
with intense events. Despite the presence of biases in orographically challenging areas, high
correlation values over land areas confirm the GAN’s ability to replicate trends in the

VHR_REA-IT dataset (Fig. 3.20).

In summary, the results indicate that the developed GAN architecture, with the addition of
specific pre-processing and targeted parameter optimization, performs downscaling of
precipitation fields while maintaining good consistency with the high-resolution real dataset. It
is important to note that the developed cGAN demonstrates sufficient flexibility to handle
complex atmospheric variables such as precipitation, highlighting its potential applicability
beyond T2M downscaling. The study further suggests that, for precipitation fields, the optimal
number of training epochs (300) is higher than for T2M (100 epochs), without necessitating
structural modifications to the GAN architecture. This adaptability to various meteorological
variables, combined with the ability to replicate not only mean values but also specific patterns
of the real high-resolution dataset while maintaining spatial and temporal coherence,
underscores the potential of the developed methodology as a versatile tool for atmospheric

downscaling applications.

3.2.5 Computational Details

All simulations were performed on the Juno supercomputer at the Euro-Mediterranean
Center on Climate Change (CMCC), as the Zeus system was no longer available. Juno is
equipped with advanced computational resources, including 12,240 processing cores and 20
NVIDIA A100 GPUs, which facilitate the tackling of ambitious challenges related to scalability
and computational complexity. Juno's peak performance reaches 1134 TFlops, with each

compute node featuring 72 cores and 512 GB of memory.
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years Ir samples  batch size epochs time/training
EXP1 10 0.0001 4000 100 100 4 h 57 min
EXP2 10 0.0001 4000 100 100 5h 28 min
EXP3_1 10 0.0001 4000 100 100 3 h 7 min
EXP3 2 10 0.0001 4000 100 100 1 h 9 min
EXP4 10 0.0001 4000 100 100 2 h 13 min

Tab. 3.5: Computational details for the training period on Juno Supercomputer.

In the context of this research, it is essential to highlight that the implementation of the
Generative Adversarial Network (GAN) was carried out sequentially following a serial
approach. The execution of the code efficiently utilized the available resources (1 compute
node, with 72 cores), resulting in a significant increase in efficiency in the GAN-based
downscaling approach. The average execution time for the training phase (for 100 epochs) was
approximately ~3 h 22 min hours to simulate 10 years, considering the average time taken for
the different configurations reported in the Tab. 3.5, and ~ 2.5 minutes to simulate 5 years during
the testing phase (for all experiments). The execution of the precipitation downscaling
experiments on Juno also represented an additional challenge within the work, allowing for the
assessment of the portability of the developed architecture across different computational
environments. This confers replicability to the methodology, enhancing its flexibility and
applicability. This adaptability is crucial to ensure that the downscaling framework based on
the developed cGAN can be effectively utilized in various research contexts and operational

settings.

3.3 Potential Enhancements

Experiments related to the downscaling of precipitation fields to approximately 2.2 km
have produced a dataset generated through statistical downscaling that is highly faithful to the
high-resolution VHR REA-IT dataset, produced through dynamic downscaling and
representative of our reality. However, there are still significant margins for improvement. In
particular, the use of convolutional layers could prove promising, either by integrating them

into the current architecture or by replacing the linear layers currently in use. A convolutional
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architecture enables faster training and broader model applicability (Park, S., & Shin, Y.-G.,
2022), making the GAN suitable for downscaling over large geographic areas. Moreover,
convolutional layers introduce translation invariance, allowing the model to recognize patterns
regardless of their precise position in the data matrix. This characteristic is particularly
advantageous for precipitation fields, where the specific locations of precipitation cores can

vary rapidly.

ERA5-DownGAN has already demonstrated high fidelity in reproducing the high-resolution
VHR REA-IT dataset of total accumulated precipitation; however, there remains room for
improvement, particularly in the representation of extreme precipitation events. The
underestimation observed in the upper quantiles, between the 95th and 99th percentiles,
highlights the need for further refinement of the learning process to ensure that the cGAN-
generated field aligns more closely with the reference dataset, even during extreme events. One
potential strategy involves incorporating a loss function based on Extreme Value Theory (EVT),
such as the Extreme Value Loss, which has been shown to enhance deep learning models' ability
to capture distribution tails by explicitly modelling extreme events (Ding, D. et al., 2019).
Alternatively, approaches that separate the training of extreme values from the rest of the dataset
may prove beneficial (Allouche, M. et al., 2022). The implementation of these developments
would enable a more physically consistent representation of precipitation fields during extreme

events, further strengthening the applicability of the proposed model.

Additionally, another interesting experiment could involve using a radar precipitation dataset
as a high-resolution source for model training, instead of the current reanalysis. Radar datasets
can incorporate information about localized meteorological phenomena that may not be
adequately represented in reanalysis, thereby ensuring greater reliability in the downscaling
process. This combination of advanced technologies and data could thus lead to significant
progress in generating a high-resolution dataset through the developed cGAN, resulting in a
deeper understanding of the relationships between global and local scales, particularly in cases

of complex atmospheric dynamics.
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4 | Expanding the Application of cGAN

Downscaling to U.S. Geographical Domain

This chapter presents the downscaling experiment conducted using a conditional
Generative Adversarial Network (cGAN) developed for 2-meter temperature data across the
United States (U.S.) during an internship at the National Center for Atmospheric Research
(NCAR). We begin by discussing the significance of having a flexible downscaling method that
can be applied to various geographical domains. Subsequently, we provide a detailed
description of the cGAN architecture, emphasizing the preservation of the original design while
increasing the number of neurons to accommodate the extensive spatial scale of the domain.
Additionally, we explore the importance of the number of training epochs, highlighting its
critical role in ensuring convergence of the results. The chapter details the datasets utilized,
particularly the high-resolution Weather Research and Forecasting (WRF) data provided by
NCAR. Overall, this chapter offers a comprehensive overview of how the cGAN-based
approach was adapted to enhance downscaling for high-resolution atmospheric data in diverse

contexts.
4.1 Context and Motivation for the Case Study

The ability of the developed downscaling method, which employs a conditional
Generative Adversarial Network (cGAN), to perform downscaling across various geographical
regions and to incorporate diverse input datasets is a key feature that highlights the flexibility
of the approach. Having established the architecture’s capability to downscale complex
variables, this chapter focuses on its adaptability to different domains, particularly those

significantly larger than our initial case study of the Italian Peninsula.

During an internship at the National Center for Atmospheric Research (NCAR), we directed
our efforts toward applying statistical downscaling Al-based to the entire territory of the United
States (Fig. 4.1; Tab. 4.1). We utilized data from the Weather Research and Forecasting (WRF)
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model, configured by NCAR at a resolution of ~ 4 km. This high-resolution dataset served as
the primary input during the training phase of our architecture, while the low-resolution
counterpart came from ERAS at ~ 31 km. This experiment presented several challenges for the
developed method: adapting to various geographical contexts, maintaining flexibility in
handling diverse datasets, and ensuring the model's portability across different supercomputing
environments. Access to the Cheyenne supercomputing system enabled us to evaluate the

model’s performance on multiple platforms.
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Fig. 4.I: Domain of the 4-km CONUS404 simulation with land surface elevation height (m). Derived by

Rassussen M. L. et al., 2023.

In this context, our experiment not only demonstrates the effectiveness of the developed cGAN
within the specific setting of the United States, but also emphasizes its potential for application
across additional geographical domains and datasets. This flexibility represents a significant
advancement in downscaling technologies, as models that can adapt to different input variables
and geographical contexts greatly enhance their applicability, making them essential tools for

assessing climate risks and informing planning decisions.

horizontal n° grid
Data longitude and latitude
resolution points
0.28°
ERAS (Lon =:55.50 W —138.90°; Lat = 18.3° N-57.50° N) 157x333
(=31 km)
0.02°
WRF (Lon=:56.95 W - 139.05°; Lat=18.1° N-57.91° N) (=4 km) 1359x1015

Tab. 4.1: Domain details for LW and HR dataset: geographical boundaries, horizontal resolution, number of grid

points.
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4.2 Datasets and Pre-processing

The datasets employed for the application of our cGAN for the U.S. case study include
ERAS for the low-resolution data at 31 km, and WRF at 4 km for the high-resolution
counterpart. The specifics of the domain coverage and the number of grid points for each dataset
are summarized in Table 4.1. As the ERAS dataset has already been introduced in Chapter 2,

the following section will focus on the description of the high-resolution WRF dataset.

4.2.1 High-Resolution Dataset: WRF-NCAR (Weather Research
and Forecasting)

The dataset utilized for high resolution in our cGAN model derives from the 4 km
simulations of the Weather Research and Forecasting (WRF) model, which has produced a new
dataset known as CONUS404. This dataset represents a significant advancement in the
availability of high-resolution hydroclimatic data for the contiguous United States, covering a
period of over 40 years, from October 1979 to September 2021, with a spatial resolution of 4
km. Generated through the WRF model, the dataset results from a dynamic downscaling
process applied to global atmospheric reanalysis data from ERAS of the European Centre for
Medium-Range Weather Forecasts (ECMWF). The configuration of the WRF model used
includes 51 vertical levels and employs several physical parameterization schemes, such as the
Morrison Microphysics Scheme for precipitation simulation, the Mellor-Yamada-Janjic (MYJ)
Planetary Boundary Layer Scheme for modeling atmospheric stability, and the RRTMG
Radiation Scheme for solar and terrestrial radiation. These schemes were selected to enhance
the representation of atmospheric processes, especially in complex orographic contexts. The
simulations were executed on the Cheyenne supercomputer at the National Center for
Atmospheric Research (NCAR), utilizing modern architectures with Graphics Processing Units
(GPUs) to accelerate numerical calculations, thereby enabling more detailed and long-term
simulations. The results discussed in Rasmussen R. M. et al. (2023) demonstrate that the dataset
effectively captures the dynamics of temperature and precipitation, highlighting an annual
thermal bias ranging from -1 °C to +1 °C, with a tendency to underestimate winter temperatures,
particularly in northern areas. Furthermore, the dataset exhibits a remarkable capacity to
represent extreme precipitation events, allowing for the distinction of spatial variability at a
mesoscale. However, the authors note limitations such as the underestimation of snowpack and
a positive bias in surface solar radiation, indicating the need for further optimizations. Despite

these challenges, CONUS404 emerges as a valuable resource for the availability of high-
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resolution atmospheric fields over an extended temporal range and a vast domain. The
CONUS404 data are archived and publicly accessible at (https://doi.org/10.5066/P9PHPKA4F)
(Rasmussen R. M. et al. 2023), promoting the sharing of scientific data for research and

innovation in the field.

4.2.2 Assessing the Portability of the Developed cGAN Downscaling
Model on Different Supercomputer Architectures

The portability of code is a fundamental aspect of scientific programming, referring to
the ability of an application to run on different hardware and software platforms without
requiring substantial modifications. This concept is crucial for ensuring the replicability of
scientific results and facilitating the sharing of discoveries among researchers utilizing diverse
infrastructures. Portability also enables researchers to leverage the specific capabilities of
various supercomputers, optimizing computational efficiency and reducing execution timesIn
the context of our study focused on downscaling for the United States, we utilized both the
Casper and Cheyenne

supercomputers (https://ncar-hpc-docs-arc-

iframe.readthedocs.io/compute-systems/casper/), both provided by NCAR. While Cheyenne

featured a node-based architecture with Intel Xeon processors and 36 cores per node, making it
highly capable of handling complex and long-term simulations, our work primarily relied on
Casper. This choice was driven by the fact that Cheyenne was being phased out and was
eventually decommissioned in 2024. Cheyenne system was designed to support a wide range
of workloads, from climate simulations to artificial intelligence applications. In contrast, Casper
is particularly suited for operations that require the use of Graphics Processing Units (GPUs),
which can significantly accelerate the model training processes, especially for deep learning
algorithms and other highly parallelizable applications. The GPU architecture of Casper allows
for more efficient execution of intensive calculations compared to traditional processors. The

infrastructure specifications of the Casper supercomputer are detailed below (Tab. 4.2).

Category Nodes Memory Processors Storage Networking GPUs
| Mellanox 9 nodes: 16GB
Up to 384 2x 18- 2.3 NVIDIA d
Data Analysis 22 Supermicro pfo X fe-core 2TB ConnectX-4 100Gb Quadro
GB DDR4- | GHz Intel Xeon GP100 GPU<br>3
& 7049GP-TRT NVMe Ethernet, 1 Mellanox
T . 2666 per Gold 6140 per nodes: 40GB
Visualization SuperWorkstation SSD local | ConnectX-6 HDR100
node node InfiniBand NVIDIA Ampere
A100 GPU
. 768 GB 1 x 48-core 1.6 TB 1 Mellanox
_GPU 6 Supermicro L40 | -y p s oo | AMDEPYC | NVMe | ConnectX-6 100Gb None
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Table 4.2: Infrastructure of the Casper Supercomputer (NCAR)

The portability of our code has involved the creation of conda environments tailored to each

supercomputer, facilitating the management of libraries and dependencies essential for the

application’s proper functioning. Furthermore, we carefully managed how the code is executed

across the nodes, optimizing operational efficiency. It is noteworthy that previous experiments

conducted in Italy had already anticipated the portability of the architecture developed on other

supercomputers; as previously mentioned, these experiments were initially carried out on the

Zeus supercomputer and later transitioned to Juno, both operated by CMCC, when the former

was decommissioned. The integration of portability within our code allows for a seamless

transition between Cheyenne and Casper, effectively leveraging the different hardware

architectures to optimize performance and efficiency in our experiments. Such practices expand
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the scope of simulations and provide greater flexibility in scientific research, fostering

innovation and collaboration among diverse institutions.

4.3 Results and Analysis: Comparison with Dynamical
Downscaling

In this section, we discuss the results obtained from the downscaling of ERAS data using
the developed Conditional Generative Adversarial Network (cGAN) approach, comparing them
with those from the Weather Research and Forecasting (WRF) model configured at 4 km,
achieved through dynamic downscaling. The data provided by NCAR, used as input for the
c¢GAN model, spans the period from January 2001 to December 2014. Consistent with the
methodology applied in the experiment conducted over Italy, 10 years (January 2001 to
December 2011) were allocated for training, while the remaining two years (January 2012 to
December 2014) were designated for testing. The focus of this experiment, centered on the
United States, is on two fundamental aspects: the importance of setting an adequate number of
neurons for the considered geographical domain and the impact of the number of training
epochs on the obtained results. The decision to concentrate on these two key points for this
experiment was driven by the desire to highlight other essential aspects of training a GAN,

which become particularly important when working with large geographical domains.

The choice of the number of neurons in neural networks is crucial for representing the
complexity of atmospheric dynamics. An insufficient number of neurons can lead to overly
simplified modeling, resulting in inaccurate outcomes, while an excessive number may cause
overfitting, where the network learns to memorize the training data rather than generalize to
new data. Therefore, for the domain of the United States, it is essential to find a balance that
allows the cGAN to effectively learn the local climatic peculiarities, especially considering

orographic variations, which are particularly relevant in this region.

The second aspect analyzed concerns the impact of the number of training epochs. Previous
researches suggest that the number of epochs significantly influences the network's ability to
learn temporal dynamics. An excessive number of epochs can lead to a model that, while
performing well on the training data, fails to generalize to the test data. Conversely, too few
epochs may prevent the model from fully assimilating the information, resulting in suboptimal
predictions. This experiment demonstrates that the accurate configuration of the number of
neurons and the training epochs is of fundamental importance in the context of GAN-based

downscaling, with direct effects on the quality of the generated atmospheric fields.
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4.3.1 Overall Architecture: Upgrade of the Number of Neurons

Similar to the configuration of the number of neurons employed in the experiments
conducted in Italy, which was derived from an empirical approach, the selection of the
architecture illustrated in Fig. 4.2 for the application in the United States is also grounded in
empirical experimentation and theoretical considerations regarding the significance of an
appropriate number of neurons. Notably, it was essential to increase the number of neurons
while maintaining the same architectural framework as the Italian case study, owing to the
substantially larger dimensions of the geographical domain in the United States. This
adjustment is warranted, as an expansive domain encompasses a wider array of climatic and
geographical features that must be effectively captured to ensure accurate modeling. The
augmentation of the neuron count enables the model to learn and represent these
complexities more, thereby enhancing its generalization capabilities across the diverse
conditions inherent to the study area. Consequently, such optimization of the architecture is
imperative for effectively addressing the intricacies of the data and for improving the model's

super-resolution capabilities.
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Fig. 4.2: Architectures of (a) generator and (b) discriminator. Size input generator 157 x 333, size input

discriminator 1359 x 1015, the number of frames per sequence 100 (batch size = 100) for both data sets
considered here. After training, the best generator is used for the test period. The architecture displayed in this

figure shows an increased number of neurons in each layer compared to the configuration presented in Fig. 2.6.

The analysis of the results for the testing period begins by comparing the configuration

employed for the cGAN application over Italy, referred to as ERA5-DownGAN Italy for

clarity, with the revised setup for this new domain, referred to as ERA5-DownGAN U.S.,
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where the number of neurons was increased. The temporal evolution of the dataset generated
by the cGAN, in comparison with the low-resolution ERAS dataset and the high-resolution real-
world counterpart from WREF, as shown in Fig. 4.3, reveals clear distinctions between the two

configurations.

The temporal evolution of the results comparing the two configurations, ERAS5-
DownGAN Italy and ERA5-DownGAN U.S., reveals interesting differences between them.
Notably, with the increase in the number of neurons (Fig. 4.3b), the model demonstrated an
improved ability to capture the minima, which are now represented by lower temperatures
compared to the previous configuration (Fig. 4.3a). However, this adjustment also resulted in a
shift towards higher values for the maxima, reflecting a certain distortion in the model's
behavior. Nevertheless, it is important to emphasize that both configurations, despite the
positive or negative shift, show a good temporal agreement with the real high-resolution dataset
(WRF). However, this trend is obtained by averaging over the entire geographic area of interest,

making it susceptible to compensation effects.

a)

b)

Fig. 4.3: Temporal evolution of the daily spatial average of 2m-temperature during the test period. The real low-

resolution data (ERAS) is shown in red, the real high-resolution data (WRF) in blue, and the downscaled
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artificial data generated by the GAN (ERA5-DownGAN) in green. Panel (a) compares ERAS-DownGAN_Italy,
while panel (b) compares ERA5-DownGAN_U.S.

Consequently, based on this preliminary exploratory analysis, we opted to compare the spatial
correlation maps (Fig. 4.5) derived from averaging over the entire testing period. This
comparison aims to highlight the differences in reconstruction between the two employed

configurations, which are also evident in Fig. 4.4.

The ERA5-DownGAN_U.S. configuration demonstrates a significantly enhanced capacity for
reconstructing the 2-meter temperature field compared to the ERAS5-DownGAN Italy
configuration (Fig. 4.4). Specifically, the latter is characterized by artifacts and a sparse
representation of the temperature field, which can be attributed to the insufficient number of
neurons in the model architecture tailored for Italy. This limitation restricts the model's ability
to capture the underlying spatial patterns and variations within the dataset, thereby underscoring
the importance of employing the ERA5-DownGAN U.S. configuration with an increased

number of neurons for the domain under investigation.

(b) WRF (4 km)

(a) ERAS (~31 km)

Fig. 4.4: Examples of one day from the test data set. (a)—(d) Real low-resolution data (ERAS), the real high-
resolution data (WRF), the downscaled artificial data ERAS-DownGAN _Italy, and the downscaled artificial data
ERA5-DownGAN_U.S.
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The significant improvement in the results obtained from the ERAS5-DownGAN U.S.
configuration compared to those from the ERA5-DownGAN Italy configuration is also
reflected in the correlation map (Fig. 4.5) illustrating the relationship between the real high-
resolution WRF dataset and the high-resolution outputs generated by the two examined GAN
configurations. The optimized configuration for the U.S. consistently exhibits high average
correlation values, ranging from 0.85 to 1, with the lowest values observed in certain oceanic
regions, dropping to 0.7. In contrast, the correlation map derived from the comparison between
the WRF dataset and the results from the configuration optimized for Italy shows significantly
lower values, ranging from 0.7 across the entire oceanic areas to 0.85. Furthermore, this map
highlights a sparse distribution similar to that observed in the 2-meter temperature field maps,

underscoring the limitations of the Italian configuration.
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Fig. 4.5: Correlation maps showing the relationship between the WRF dataset and the downscaled artificial data
from the GAN configurations. (a) ERAS-DownGAN _Italy; (b) ERA5-DownGAN_U.S.

Figure 4.6 provides insight into the temporal alignment between the two datasets (real and
generated by the GAN). The scatter plots were obtained by considering the spatial mean value
for each time step, both for the high-resolution real dataset (x-axis) and for the values generated
by the GAN in the two configurations (y-axis). In comparing the two configurations of the
developed cGAN, represented by the scatter plots in panels a and b, notable differences emerge
in the model’s ability to reproduce the high-resolution real dataset values. Ideally, if the values
generated by the GAN correspond exactly to the real ones, the points should align along the 45°

line, indicating a perfect match between real and generated values.
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Fig. 4.6: Scatter diagram for evaluating the correlation between WRF and the downscaled artificial data from the
GAN configurations. (a) ERAS-DownGAN _Italy; (b) ERA5-DownGAN_U.S.

In panel a), representing the ERAS5-DownGAN _Italy configuration, the points deviate from the
45° line: for lower and higher spatial mean values, the points are positioned above the line,
while for intermediate values, they fall below it. This pattern suggests that the GAN in this
configuration tends to overestimate the generated values at the extremes of the dataset (low and
high real values) and underestimate them for intermediate values. These discrepancies indicate
that the model struggles to accurately capture the dynamics present in the real dataset,
particularly in the extreme ranges, likely due to its limited capacity to represent complex

patterns.
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Conversely, in panel b), corresponding to the ERA5-DownGAN_U.S. configuration, which
uses a larger number of neurons, the points are more closely aligned with the 45° line, with a
slight overestimation for higher values. This significant improvement suggests that the GAN in
this configuration is more accurate in reproducing the spatial mean values of the real dataset,
even in situations where more “extreme” values are present. The increased number of neurons
likely allowed the model to learn the complex relationships between the data better, enhancing
the agreement with the high-resolution dataset, particularly in the extreme ranges, and reducing

the overestimation and underestimation errors observed in the previous configuration.
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Fig. 4.7: Comparison of the probability density functions (PDF) of the 2m-temperature distribution for the
ERAS5 (green), WRF (blue), and the downscaled artificial data from the GAN configurations (orange). (a) ERAS-
DownGAN Italy; (b) ERA5-DownGAN_U.S.

The analysis of the Probability Density Functions (PDFs) for the two configurations of the
GAN, illustrated in Figure 4.7 with panels a and b, reveals notable differences in their ability
to replicate the high-resolution temperature distribution of the WRF dataset. In panel a,
representing the ERAS5-DownGAN _Italy configuration, the PDF exhibits a flattened shape that
approximates a Gaussian distribution, indicating an inability to capture the peaks present in the
high-resolution WRF dataset. This configuration shows lower values, extending down to -25°C,
whereas both the high-resolution and low-resolution real datasets are limited to a minimum of
-12°C. In contrast, the second configuration depicted in panel b, ERA5-DownGAN _U.S.,
which utilizes a greater number of neurons, successfully captures not only the range of the WRF
dataset (-12°C to 30°C) but also all the peaks within that range, resulting in a shape that closely
resembles the original distribution. However, it is important to note that this configuration

displays a slight rightward shift of approximately 1°C in the results produced by the GAN for
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values above 22°C. This shift aligns with previous observations made in the scatter plots, where
spatially averaged values were considered, while the current analysis of the PDFs takes into

account the average over time across all points in space.
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Fig. 4.8: Comparison of the 2m-temperature (T_2M) distribution for real low-resolution data (ERAS) with the
gray rectangle, the real high-resolution data (WRF) with the blue rectangle, and the downscaled artificial data
from the GAN configurations (white). (a) ERA5-DownGAN Italy; (b) ERAS-DownGAN_U.S.

Previous analyses primarily concentrated on spatial or temporal averages, which can mask
underlying variability within the datasets. In contrast, Figure 4.8 presents a more
comprehensive assessment by considering all available values and evaluating the percentiles
from the Ist to the 95th. This approach enables a deeper understanding of the distributional
characteristics of the temperature data, facilitating the identification of subtle variations and
extreme values that may be critical for accurately capturing the dynamics of the underlying

processes. By analyzing the complete dataset in this manner, we aim to enhance the robustness
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of our evaluation, providing insights that are essential for assessing the performance of the GAN
configurations tested. Fig. 4.8, is organized into two panels (a and b), which illustrate the
performance of the two configurations of the Generative Adversarial Network (GAN) tested:
ERA5-DownGAN Italy and ERA5-DownGAN U.S. In panel a, the dataset generated by the
GAN for the low percentiles, ranging from the 1st to the 25th, shows a median aligned with
that of the real datasets (WRF and ERAS). However, the interquartile range (IQR) of the
boxplots is significantly reduced, with the upper whisker shifted towards notably lower values
(approximately 2 °C) compared to WRF (approximately 15 °C). For the central percentile (50),
there is good agreement in terms of both median and variability, although the upper whisker is
shifted towards lower values by about 1 °C, while the lower whisker extends to higher values
by approximately 3 °C compared to WREF. For the higher percentiles, from the 79th to the 95th,
the situation reverses, revealing reduced variability, with upper whiskers directed towards lower
values and lower whiskers extending to higher values. This behavior suggests that the ERAS-
DownGAN Italy configuration may lack an adequate number of neurons to capture the
complexities of the domain, resulting in an underestimation of extreme values in the lower
percentiles and a poor ability to represent distribution dynamics in the higher percentiles. In
contrast, panel b demonstrates excellent agreement in terms of median, variability, and whisker
length. Generally, for all percentiles, there is a slight tendency towards greater variability,
attributed to an increase in lower values for the lower percentiles and higher values for the upper
percentiles. This improvement is attributable to the increased number of neurons in the ERAS-
DownGAN_U.S. configuration, which has enabled the model to more effectively learn the
complex relationships present in the dataset, leading to a more accurate reproduction of thermal

distributions.

Finally, when comparing the high-resolution real dataset (WRF) with the low-resolution dataset
(ERAS), there is good agreement in terms of median, variability, and whisker length for the low
percentiles up to the 25th. However, from the 50th percentile onward, an increase in variability
and higher upper whiskers is observed, with values greater than those in WRF, while the lower
whisker shows lower values. This behavior is closely related to the difference in resolution:
ERAS, being a coarser dataset, tends to average values over a less fine grid, resulting in a loss

of detail and an increase in discrepancies in extreme values.

This comprehensive evaluation highlights the enhanced performance of the ERAS-
DownGAN_U.S. configuration in accurately reproducing the temperature distribution

characteristics found in the real datasets, further reconfirming the importance of utilizing an
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appropriate number of neurons tailored to the number of points that define the domain under

examination.

4.3.2 The Role of Epochs in Model Training

The number of epochs constitutes a critical parameter in the training regimen of
Generative Adversarial Networks (GANSs), as it substantially influences the quality and stability
of the generated outputs. In the present case study focusing on downscaling within the United
States, the number of epochs employed for comparative analyses was established at 15. This
decision was predicated upon the observation that an increase in the number of neurons within
the network correlates with heightened model complexity. Although such complexity can
potentially enhance the capacity of the conditional GAN (cGAN) to capture intricate features
of the domain, it concurrently necessitates a restart of the training process for a domain as
expansive and multifaceted as the one under consideration. This aspect has been addressed and
integrated into our architectural framework in subsequent phases, yet it remains beyond the

scope of this discussion.

It is noteworthy that the GAN exhibited preliminary signs of convergence (assessed through
the evaluation of generator and discriminator losses, denoted as d_loss and g_loss, respectively)
at the 15-epoch mark, indicating that the model was effectively assimilating the characteristics
of the dataset. Thus, the selection of this specific epoch count was justified. Nevertheless, the
importance of epoch selection cannot be underestimated, as it plays a pivotal role in balancing
the trade-off between underfitting and overfitting. Insufficient epochs may result in a model
that fails to adequately capture the underlying data structures, while excessive epochs may lead
to overfitting, wherein the network memorizes the training data rather than generalizing

effectively to unseen data.
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Fig. 4.9: Comparison of the 2m-temperature (T_2M) distribution for real low-resolution data (ERAS) with the
gray rectangle, the real high-resolution data (WRF) with the blue rectangle, and the downscaled artificial data
from the GAN configurations (white). (a) ERA5-DownGAN Italy; (b) ERA5-DownGAN_U.S.

To illustrate this point, Fig. 4.9 provides a comparative analysis of the probability distributions
(PDFs) generated with 10 and 15 epochs. In particular, in panel (a), which represents the results
obtained with 15 epochs, the GAN clearly demonstrates its ability to capture all the peaks
present in the real WRF dataset. This indicates that the model is effectively learning the
underlying data distribution and can represent the complexities inherent in the dataset.
Conversely, in panel (b), which corresponds to a lower epoch count, the peaks are notably
smoothed out, although the overall shift remains smaller. This suggests that while the model is
able to approximate the general trend of the data, it struggles to capture the finer details and
variations present in the real dataset. The diminished representation of the peaks indicates that
a lower number of epochs may lead to an oversimplification of the data, compromising the
GAN’s ability to generate outputs that truly reflect the complexities of the underlying
distribution. Such findings underscore the importance of selecting an appropriate epoch count

during training to ensure the model can adequately learn and represent the intricacies of the

target domain.

4.4 Summary Evaluation

In conclusion, the developed Conditional Generative Adversarial Network (cGAN) has
demonstrated a remarkable capacity for adaptation to downscaling across various geographic
domains, including those characterized by larger spatial extents. This flexibility is a key strength
of architecture, as it allows for replication and application in diverse contexts, thereby
significantly enhancing the model's potential for broader climate data applications. The

comparative analysis of the ERAS5-DownGAN Italy and ERAS5-DownGAN_U.S.
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configurations has elucidated the considerable impact of architectural choices, particularly the

number of neurons, on the model's performance in downscaling tasks.

Specifically, the results indicate that the increase in the number of neurons within the U.S.
configuration led to substantial improvements in the cGAN's ability to accurately reconstruct
the 2-meter temperature field. This advancement is reflected in the model's enhanced capacity
to capture intricate spatial patterns and mitigate artifacts that were prevalent in the Italy-
optimized configuration. Such improvements are further evidenced by the elevated correlation
values between the GAN-generated fields and the high-resolution WRF dataset, as illustrated
in the correlation maps and scatter plots. The strengthened relationship between the generated
outputs and the high-resolution data underscores the effectiveness of the cGAN in producing

realistic and coherent representations of temperature distributions.

Moreover, the analysis of the Probability Density Functions (PDFs) highlights a critical
disparity between the two configurations. The ERA5-DownGAN _Italy configuration struggled
to accurately represent the temperature value distribution, resulting in a flattened PDF that
failed to capture the key peaks observed in the high-resolution WRF dataset. In contrast, the
ERAS5-DownGAN_U.S. configuration successfully mirrored the distribution of the WRF
dataset, encompassing the full range of temperature values and accurately depicting the relevant
peaks. While this configuration displayed a slight rightward shift in the results, which could
potentially be minimized with extended training, the overall alignment with the high-resolution
dataset indicates a significant advancement in the model's generative capabilities. The
importance of epoch selection has been underscored throughout this study, with findings
demonstrating that an insufficient number of training epochs can lead to oversimplified
representations of the underlying data. The notable discrepancies between outputs generated
with 10 and 15 epochs further emphasize the necessity for thorough training to ensure that the
cGAN can adequately capture the full complexity of the dataset. Insufficient epochs may result
in a model that approximates the general trend of the data without adequately reflecting the

finer details and variations inherent in the real dataset.

Although a direct comparison in terms of training hours between the Italian and U.S. domains
is not provided, due to the differing architectures used, driven by the dataset storage systems on
their respective supercomputers, some preliminary observations can be made regarding the
scalability challenges when transitioning from smaller to significantly larger geographical

domains. For instance, training over 100 epochs takes about 4 hours for the Italian domain,
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whereas the U.S. domain requires approximately 25 hours for 15 epochs. In contrast, the testing
phase incurs considerably lower costs, with the Italian domain requiring only 2 minutes and the
U.S. domain less than 7 minutes. While the computational costs associated with the architecture
developed in this study are highly competitive within the landscape of ML techniques for
downscaling and in comparison to dynamic downscaling, it is important to note that porting the
architecture to GPUs could further enhance the competitiveness of computational costs,

enabling downscaling of even larger geographical domains.

Overall, this investigation underscores the critical interplay between network architecture and
training parameters in the effective application of GANSs for climate data downscaling. With the
increasing demand for high-resolution climate data, the findings of this study highlight the
potential of the developed conditional Generative Adversarial Network (cGAN) as a powerful
and flexible tool for advancing the understanding of climate dynamics at high and very high

spatial resolutions across various geographical contexts.
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S | Discussion

The integration of artificial intelligence (Al) into climate and meteorological sciences
has rapidly established a prominent role, demonstrating significant potential for solving
complex challenges and enhancing predictive capabilities. The exponential growth in the
adoption of advanced machine learning (ML) models and deep learning (DL) architectures has
led to the development of specific platforms and collaborative programs, such as AI2ES (Al for
Environmental Sciences), supported by NOAA for analyzing extreme environmental
phenomena; ML4ESS (Machine Learning for Earth System Science), developed by NCAR to
integrate ML into Earth system modeling; and ECMWF’s Al4Weather, which aims to refine
long-term climate and weather forecasting. A pioneering result of these initiatives is ECMWF’s
use of Al-based global forecasting models, such as Google DeepMind’s GraphCast, which
accelerates computational processes and enables deeper investigation of unresolved questions
by identifying latent relationships in atmospheric data. These advancements signal a profound
shift, with Al emerging as a crucial tool not only for improving forecast efficiency but also for
advancing the understanding of complex climate phenomena, thereby transforming the

approach to climate science.

A critical challenge in climate science is downscaling, given the high computational costs
associated with traditional dynamic downscaling based on physical models. The growing
adoption of ML/DL models and architectures by major international research centers, such as
ECMWFEF, NCAR, and NOAA, has motivated the exploration and development, in this work, of
an innovative downscaling model fully based on DL architecture, specifically a conditional
generative adversarial network (cGAN) trained on physically grounded datasets. The objective
of this architecture is to maintain spatial coherence during the downscaling process,
transitioning from the original low-resolution field (~31 km) to the new high-resolution dataset,
ERAS5-DownGAN (~2.2 km), comparable to high-resolution reanalysis (VHR REA-IT)
achieved through dynamic downscaling based on the COSMO-CLM model. The main goal of
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this study was to demonstrate the comparability between these two high-resolution datasets by
evaluating not only the cGAN’s capacity to reconstruct spatio-temporal patterns but also its
fidelity in replicating the statistics of the original field and its accuracy in capturing extreme
values, an area where many ML/DL models typically face performance limitations. To further
test the robustness and flexibility of the proposed architecture, experiments were conducted on
a different geographic domain (centered on the United States) and on complex climate
variables, such as precipitation, characterized by highly skewed value distributions. Moreover,
to highlight the model's adaptability, optimizations in individual case studies were achieved by
maintaining the base architecture fixed and adjusting only a few configurable parameters, such
as the weights associated with the loss function, the normalization scheme, and the number of
neurons. Finally, an analysis was conducted on the behavior of the cGAN in the presence of
extreme weather events, such as a significant heatwave, to evaluate its robustness in anomalous

climatic conditions relative to climatological averages.

5.1 General Conclusions

The Al-assisted downscaling model, developed in this study, demonstrates versatility
and ease of application across diverse climatological contexts and complex atmospheric
variables. Specifically, the dataset produced by ERA5-DownGAN (~2.2 km), downscaled from
ERAS5 (~31 km), has shown the capability to replicate patterns and median values that are nearly
identical to those simulated by the dataset (VHR REA-IT) produced with a dynamical model
for 2m-temperature, with a slight tendency to produce a cooler temperature field compared to

its dynamical counterpart.

Even in anomalous situations, ERA5-DownGAN faithfully replicated the patterns of its
dynamic counterpart; for example, during an intense heatwave, it exhibited a tendency to either
amplify or slightly simplify the anomalous conditions in terms of value ranges. This
simplification of the meteorological conditions was particularly evident in the Po Valley, where
the model assimilated the bias inherent in the convection-permitting dynamical model that

produced VHR REA-IT, which overestimates the mean temperature field.

A thorough analysis of extremes over the entire period, averaged over the spatial domain,
demonstrates that the ERA5-DownGAN can capture even the most extreme percentiles (from
the 95th to the 99th), reflecting a distribution that is approximately identical in terms of median

and dispersion compared to that produced by the dynamic model.

111



For the total cumulative precipitation field, the model successfully replicated the observed
patterns in the dataset produced at the same resolution by its dynamical counterpart, exhibiting
some anomalies only at the extreme percentiles (98th and 99th). These results were obtained
without significant changes in the architecture, aside from appropriate settings for certain

hyperparameters and the normalization used.

The application of the developed model to the U.S. domain for downscaling 2m-temperature
also yielded extremely encouraging results, with no architectural alterations other than an
increase in the number of neurons to accommodate a domain, that is n-times larger than that

used in previous experiments focused on the Italian peninsula.

Based on the promising results, the Al-assisted downscaling approach developed proves to be
a viable option for achieving high-performance downscaling, yielding results comparable to
those of its dynamic counterpart while simultaneously reducing the computational resources
involved in the process An important innovation of this study lies in the use of a conditional
Generative Adversarial Network (cGAN), with the stipulation that both the generative and
discriminative models utilize real datasets during the training phase, for both high-resolution
and low-resolution counterparts. This approach conditions the generation process, enabling the
establishment of empirical connections between the two datasets while maintaining correlation

between the two fields.

5.2 Future Developments

Despite the promising results achieved, the complexity of the proposed architecture
opens the door to multiple opportunities for improvement. These enhancements can be
implemented both on the datasets utilized, such as through the adoption of cross-validation
training windows, and on the architecture itself. Among the potential future directions outlined
by this study is the exploration of the model on a broader set of atmospheric variables, including
wind fields and air humidity fields. This would enable the generation of a high-resolution
dataset containing the primary atmospheric variables investigated, based on the proposed
statistical downscaling using cGAN. Moreover, it is crucial to recognize the significance of
seasonal factors and temporal variations arising from the selection of distinct training and
testing phases. A promising approach could be the implementation of a spatiotemporal cross-
validation framework that carefully considers the training and testing periods. This strategy
could significantly enhance the generative model's ability to address seasonal fluctuations and

temporal disparities.
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Another improvement could arise from the adoption of convolutional layers in place of the
current linear layers. While linear layers have been employed to provide a solid architectural
foundation and greater control over the parameters, the use of convolutional layers could offer
significant advantages, especially concerning complex variables such as precipitation.
Convolutional architectures allow for faster training and improved model generalization,
thereby mitigating the risk of overfitting. Furthermore, the translational invariance introduced
by convolutional layers enables the model to recognize patterns irrespective of their precise

position within the data matrix, which is a crucial aspect in meteorological forecasting.

Finally, to further enhance the performance of the developed downscaling model, it is advisable
to consider integrating advanced strategies inspired by two GAN frameworks: the Progressive
Growing Generative Adversarial Network (ProGAN) and the Latent Adversarial Generative
(LAG). ProGAN is recognized for its ability to progressively generate high-resolution images,
optimizing image quality as the training process advances (Li G. and Cao G., 2024). By
implementing a progressive growth strategy within the layers of our cGAN, we can improve

the quality of the generated images, focusing on finer details and superior spatial coherence.

On the other hand, the integration of LAG proves essential for modeling uncertainty in the data,
allowing for the generation of a greater number of plausible samples rather than deterministic
predictions (Li G. and Cao G., 2024). This approach effectively represents the intrinsic
variability within climatic datasets. By incorporating LAG into our cGAN, we anticipate
producing outputs that are not only realistic but also representative of data variability, thereby
further enhancing the quality and reliability of the generated high-resolution dataset. These
developments could not only expand the capabilities of the developed downscaling model but
also contribute to a better understanding of atmospheric dynamics through the provision of
high-resolution datasets across multiple geographical domains in significantly shorter
timescales compared to dynamic downscaling, while ensuring consistency with similarly

resolved datasets produced by physically based models.
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A | Investigating cGAN Downscaling Under
Peculiar Synoptic Conditions

In this section, we investigate the behavior of the downscaling model developed in this
study and, consequently, the ERA5-DownGAN dataset it produced, during complex synoptic
conditions, as introduced in Section 2.2. The primary aim of this analysis is to evaluate the
robustness and performance of the ¢cGAN in anomalous meteorological conditions. This
investigation allows us to assess the model’s effectiveness in downscaling under atypical
conditions, offering a more detailed understanding of its applicability and limitations in real-
world contexts where meteorological patterns deviate significantly from seasonal averages.
Furthermore, to understand the behavior of the dataset produced by the GAN-based statistical
downscaling in comparison with dynamic downscaling, the two datasets ERA5-DownGAN and
VHR_REA-IT are compared with the observed-gridded SCIA data (Sistema nazionale per la
raccolta, elaborazione e diffusione di dati Climatologici di Interesse Ambientale; Desiato F. et
al., 2007). SCIA is an observational dataset derived from hundreds of weather stations covering
the entire Italian Peninsula (http://www.scia.isprambiente.it/wwwrootscia’help eng.html),
shown in Fig. A.3, spanning the period from January 1961 to December 2020 on a regular 5 km
grid for temperature variables. For this analysis, we used the mean temperature field derived
from the variables tmin and tmax, as these are the only temperature variables available in the

SCIA dataset.

The day of March 24, 2001, was characterized by a significant heatwave, attributed to the
establishment of an African anticyclone from March 18 onwards. This high-pressure system
facilitated the inflow of warm air into the central Mediterranean and Italy, resulting in a notable
increase in temperatures. The warmest temperatures were recorded primarily on March 22, 23,
and 24, with values markedly above seasonal averages. In particular, one-third of Sardinia
experienced temperatures exceeding 30 °C, reaching peaks of 34.8 °C in Jerzu, 34.7 °C in
Siniscola, 33.2 °C in Oliena, and 33.0 °C in Muravera. Additionally, several weather stations

reported nighttime minimum temperatures around 20 °C, with 20.2 °C recorded in Iglesias and
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19.7 °C in Modolo and Domus de Maria (timento.imc@arpa.sardegna.it). It is noteworthy that,
according to the historical series maintained by the Regional Meteorological Service (SAR)
dating back to 1928, there are no records of such high temperatures in March. The only
comparable event occurred in March 1990, when select weather stations reported maximum

temperatures exceeding 30 °C, peaking at 33.0 °C in Laconi.

Figure A.I illustrates the synoptic conditions for the specified date, March 24, 2001. These
historical maps were sourced from www.meteociel.it and derived from NCEP reanalyses

(Reanalysis 1, 2, and the 20th Century Edition), featuring a resolution of 2.5° x 2.5°.
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Fig. A.I: Synoptic analysis at 12:00 UTC from NOAA/NCEP reanalysis on 24th March 2001. Maps of
geopotential at 500 hPa (upper) and temperature (°C) at 850 hPa (lower). Reproduced from (www.meteociel.it).

The comparison of the 2-meter temperature field for March 24, 2001, between the low-
resolution ERAS dataset, the statistically downscaled ERAS5-DownGAN field, the dynamically
downscaled VHR REA-IT dataset, and the difference map between ERA5-DownGAN and
VHR REA-IT is illustrated in Fig. A.2. It is observed that the error between ERAS5-DownGAN
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and VHR REA-IT shows a significantly larger discrepancy compared to the results discussed
in Chapter 3, where the comparison between the two datasets indicated excellent agreement and
minimal differences. In this case, however, the differences reach values up to +7.6 and —6.8 °C,
with a median value of +2.2 °C (Fig. A.2, Panel a). To facilitate the analysis of the areas in the
domain with the largest discrepancies, the range of the difference maps was set between -3 and
+3 °C. To assess the alignment of the statistical model (ERA5-DownGAN) with the dynamic
model (VHR REA-IT) for similar period, the mean temperature field for March 24 was
analyzed over the study period (2001-2005). The results show an excellent agreement between
the fields produced by ERA5-DownGAN and VHR REA-IT in this climatological analysis:
the difference between the statistically and dynamically downscaled datasets varies between -
0.5 and +0.5 °C, with a median value across the entire domain of approximately 0.08 °C,
indicating near-zero error, with maximum differences observed only in specific locations,
reaching up to +2.5 and -1.9 °C (Fig. A.2, Panel b). This finding confirms the effectiveness of
the developed cGAN model in the downscaling application for the temperature field, as
discussed in Chapter 3.

ERAS5-DownGAN - 24-03-2001 VHR_REA-IT - 24-03-2001 2 (ERAS5-DownGAN - VHR_REA-IT) -24-03-2001

ERAS - 24-03-2001
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v

(ERAS5-DownGAN) (VHR_REA-IT) (ERA5-DownGAN - VHR_REA-IT)
Average 2m-temperatures on March 24th (2001-2005) Average 2m-temperatures on March 24th (2001-2005) Average 2m-temperatures on March 24th (2001-2005)
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Fig. A.2:. Panel (a): Maps for March 24, 2021, for ERAS (LR), ERA5-DownGAN (HR), and VHR_REA-IT
(HR), along with the difference between ERA5-DownGAN and VHR REA-IT. Panel (b): Average of all March
24 observations from 2001 to 2005 for ERAS (LR), ERA5-DownGAN (HR), and VHR_REA-IT (HR), as well

as the difference between ERA5-DownGAN and VHR REA-IT.
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In the context of analyzing the performance of the statistical downscaling model based on
cGAN developed in this study, we have considered the VHR REA-IT dataset, obtained through
dynamic downscaling, as representative of "high-resolution" reality. This approach is justified
by the model's objective to generate fields that are totally comparable to those produced by a
physically-based model, which has been previously validated in the studies of Raffa et al. 2021
and Adinolfi et al. 2023.

Currently, we focus on assessing the actual performance of the two downscaling models
(VHR _REA-IT and ERAS5-DownGAN) under an anomalous condition, specifically the
heatwave of March 24, 2001, using an observational dataset to represent reality. The
observational dataset in question is the observed-gridded SCIA data (Fig. A.4), from which the
surface mean temperature field is derived from the available variables of maximum (tmax) and
minimum (tmin) temperatures. In this case, the grid resolution is 5 km, and the field is obtained
by interpolating data from meteorological stations. Therefore, it is reasonable to expect
differences arising from the varying resolutions of the two downscaling models, which operate
at a resolution of approximately 2.2 km, compared to the observational SCIA grid dataset at 5

km.
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Fig. A.3:. Map of the distribution of SCIA weather stations for tmin and tmax (2001). Sourced from
https://scia.isprambiente.it/.

The comparison between the surface mean temperature fields of the two downscaling datasets
and those derived in the SCIA dataset is conducted by exclusively considering the values
recorded on the Italian peninsula and the mainland, thereby limiting the analysis to the territory

covered by the observation stations included in the SCIA dataset.
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Fig. A.4:. Maps of SCIA observed-gridded temperature dataset. (a) Maximum temperature (tmax); (b) Minimum
temperature (tmin) and the derived mean temperature (c).

Dataset Temperature Min. [°C] Max. [°C] Mean [°C] Median [°C]
SCIA derived mean temperature -1.8 24.0 15.6 15.8
ERA5-DownGAN Tmean -4.3 25.5 16.9 18.3
VHR_REA-IT Tmean -7.3 29.3 15.3 16.2
ERA5 Tmean 12.6 28.8 19.8 18.7
SCIA Tmax 1.0 31.0 21.1 20.9
SCIA Tmin -7.5 19.5 10.2 10.7

Tab. A.I: Comparison on 24th March 2001 of minimum, maximum, mean, and median values for the datasets
SCIA, ERA5-DownGAN, VHR REA-IT, and ERAS, with horizontal resolutions of approximately 5 km, 2.2 km,
2.2 km, and 31 km, respectively. Descriptive statistics for the observational dataset SCIA for Tmin and Tmax.

An analysis of the visual comparisons presented in Fig. A.5, along with the descriptive statistics
presented in Tab. A.l, reveals that the datasets derived from downscaling, ERAS5-DownGAN
and VHR REA-IT, representing statistical and dynamic approaches respectively, demonstrate

remarkably similar patterns and comparable values.

SCIA (~5km) ERAS-DownGAN (~2.2km) ~ VHR_REA-IT (~2.2km) ERAS (~31km)
A ' R Y

-10 0 10 20 30
T_2m [*C]

Fig. A.5:. Comparison of 2m-temperature field only over Italian Peninsula on 24th March 2001. SCIA
observed-gridded temperature dataset; ERA5S-DonwGAN; VHR REA-IT and ERAS.
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However, the GAN-generated dataset exhibits higher temperatures in the regions of Emilia-
Romagna, Tuscany, and Abruzzo compared to those obtained through dynamic downscaling
and the observational dataset. This temperature elevation is particularly pronounced in the Po
Valley regions. Conversely, an inversion of this trend is noted in the island regions, where
VHR_ REA-IT is identified as the warmer dataset, displaying a more significant deviation from
the observational dataset SCIA relative to ERA5-DownGAN. While the mean and median
values suggest a stronger concordance between the dynamically downscaled dataset and the
SCIA observational data, the dataset produced via conditional Generative Adversarial Networks
(cGAN) demonstrates a closer alignment with the minimum and maximum values. As
delineated in Table A.I, the maximum temperature recorded for ERA5-DownGAN is 25.5 °C,
in contrast to 29.3 °C for VHR REA-IT and 24.0 °C for SCIA. Regarding the minimum values
documented in alpine areas, the discrepancies are even more pronounced: SCIA records -1.8
°C, while ERA5-DownGAN and VHR REA-IT register -4.3 °C and -7.3 °C, respectively. In
these alpine regions, the overall tendency for higher temperatures in the ERA5-DownGAN

dataset exhibits a closer alignment with the SCIA observations.

Additional case study of particular relevance for assessing the performance of our statistical
downscaling method, as highlighted in the analyses conducted in Chapter 3, is March 2, 2004,
a day when we observed a discrepancy between the dataset generated by the conditional
Generative Adversarial Network (cGAN) and that produced by dynamic downscaling. On
March 2, 2004, Europe was affected by a complex synoptic system characterized by the
presence of a broad low-pressure area that was deepening and translating toward the eastern
sectors. This low-pressure area had dominated much of Europe in the preceding days, due to
the deepening of a jet stream trough that was situated between two high-pressure systems. The
interaction between these structures generated a flow of cold air of Arctic origin toward Central
and Western Europe, promoting atmospheric instability and resulting in a decrease in

temperatures (Fig. A.6), including over the Italian Peninsula.

Figure A.7 illustrates the temperature field at 2 meters for March 2, 2004, comparing the low-
resolution ERAS dataset, the statistically downscaled field using ERAS-DownGAN, the
dynamically downscaled VHR_REA-IT dataset, and the map of differences between ERAS-
DownGAN and VHR REA-IT. For this case study, the results corroborate the observations
made in Chapter 3 for this date, indicating a significantly greater discrepancy between ERAS-
DownGAN and VHR REA-IT compared to other dates in the reference period. This suggests
that the GAN demonstrates a high level of consistency with the high-resolution VHR _REA-IT
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dataset. Notably, the differences reach extreme values of +2.0 °C and -6.8 °C, with a median

value of -1.64 °C (Figure A.7, Panel a).
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Fig. A.6: Synoptic analysis at 12:00 UTC from NOAA/NCEP reanalysis on 2sd March 2004. Maps of
geopotential at 500 hPa (upper) and temperature (°C) at 850 hPa (lower). Reproduced from (www.meteociel.it).

To verify the consistency between the statistical model (ERA5-DownGAN) and the dynamic
model (VHR REA-IT) over the same period, an analysis of the mean temperature field for
March 2 was conducted for the study period (2001-2005). The results show an excellent
agreement between the temperature fields generated by ERA5-DownGAN and VHR REA-IT
in this climatological context: the difference between the statistically and dynamically
downscaled datasets ranges between -0.5 and +0.5 °C, with a median value across the entire
domain of approximately -0.77 °C, indicating a slight tendency toward underestimation (Fig.
A.7, Panel d). This result further confirms the effectiveness of the developed cGAN model in

downscaling the 2m-temperature field.
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Fig. A.7:. Panel (a): Maps for March 2, 2024, for ERAS (LR), ERA5-DownGAN (HR), and VHR REA-IT
(HR), along with the difference between ERAS-DownGAN and VHR REA-IT. Panel (b): Average of all March
2 observations from 2001 to 2005 for ERA5 (LR), ERA5-DownGAN (HR), and VHR REA-IT (HR), as well as

the difference between ERA5-DownGAN and VHR REA-IT.

The analysis of the temperature field at 2 meters produced by the two downscaling
methodologies is further explored in this second case study, comparing the ERA5-DownGAN
and VHR REA-IT datasets with the observational gridded dataset SCIA for the Italian
Peninsula. A preliminary visual analysis (see Fig. A.8) indicates that both downscaling
methodologies generally maintain excellent agreement in terms of pattern localization with
respect to the observational dataset, except for the Islands and the western Alps sector. An
interesting difference emerges for Sardinia, where the SCIA dataset highlights lower
temperatures in the eastern flank. In contrast, ERA5-DownGAN, aligning with the behavior of
VHR_ REA-IT, detects colder temperatures in the western sector. Conversely, ERAS, despite its
significantly lower resolution compared to both the observational dataset and the downscaled
products, appears to replicate the observed behavior in SCIA for Sardinia, albeit with higher
temperature values due to its coarse resolution. This result emphasizes the model's tendency to
align with the conceptual patterns identified in VHR REA-IT, even when starting from the
ERAS dataset. Such alignment is crucial, as the ultimate goal is to produce a high-resolution
field comparable to that generated by physics-based downscaling methods. Despite the strong
agreement in terms of spatial patterns, the ERA5-DownGAN dataset shows a general tendency
to underestimate temperatures compared to the observational dataset SCIA. As indicated in

Table A.2, the minimum recorded in the mean temperature field in ERA5-DownGAN is -20.9
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°C, very close to the -20.4 °C observed in VHR REA-IT but higher than the -23.0 °C reported
in SCIA. The greatest discrepancies are observed in terms of the maximum value identified in
the mean temperature field, with values of approximately 10.3 °C for ERA5-DownGAN, 11.0
°C for VHR REA-IT, and 13.0 °C for SCIA. This trend is further pronounced for the median
temperature, which is around 0.1 °C in ERA5-DownGAN, 2.2 °C in VHR_REA-IT, and 2.7 °C
in SCIA.

Dataset Temperature Min. [°C] Max. [°C] Mean [°C] Median [°C]
SCIA derived mean temperature -23.1 13,0 1.6 2.7
ERA5-DownGAN Tmean -20.9 10.3 -1,0 0.1
VHR_REA-IT Tmean -20.4 11.0 -1,0 2.2
ERA5 Tmean -1.5 10.5 4,0 3.7
SCIA Tmax -19.7 16.3 5.7 6.6
SCIA Tmin -26.4 10.0 -2.5 -1.9

Tab. A.2: Comparison on 2sd March 2004 of minimum, maximum, mean, and median values for the datasets
SCIA, ERA5-DownGAN, VHR REA-IT, and ERAS, with horizontal resolutions of approximately 5 km, 2.2 km,
2.2 km, and 31 km, respectively. Descriptive statistics for the observational dataset SCIA for Tmin and Tmax.

Overall, both downscaling products exhibit an underestimation compared to the observational
dataset SCIA, with a more pronounced trend observed in ERA5-DownGAN. It is important to
note that, despite this underestimation in the dataset produced by downscaling via cGAN, there
is no exacerbation of extreme values related to the minimums. This is a significant aspect in the
context of downscaling using GANSs, as one of the common issues associated with the use of
GAN:Ss in climate science is the generation of anomalous and extreme values, a behavior that s,

however, mitigated by the use of a cGAN (Leinonen et al., 2019, 2021) as in this work.

SCIA (~5km) ERAS5-DownGAN (~2.2km) VHR_REA-IT (~2.2km) ERAS (~31km)
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Fig. A.8:. Comparison of 2m-temperature field only over Italian Peninsula on 2sd March 2004. SCIA observed-
gridded temperature dataset; ERAS-DonwGAN; VHR REA-IT and ERAS.
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In conclusion, the analysis of anomalous weather conditions reveals that the developed cGAN
architecture effectively maintains spatial coherence in the representation of patterns compared
to the dataset produced by the dynamic downscaling method VHR REA-IT. Although the
values generated by ERA5-DownGAN remain within a similar range, there is a noticeable
tendency to exaggerate anomalous conditions relative to the reference dataset VHR REA-IT.
Specifically, during the heatwave of March 24, 2001, ERA5-DownGAN demonstrates an
overestimation of temperatures compared to VHR REA-IT, while aligning more closely with
the observational dataset SCIA, particularly in the regions of the Alps and the islands. This
alignment, however, highlights an extremization of the trends identified in VHR REA-IT and
reflects a broader tendency among convection-permitting models to overestimate surface
temperature fields in the Po Valley. Importantly, despite these tendencies, ERA5-DownGAN
does not generate anomalous maximum values; rather, it tends to mitigate those found in
VHR_REA-IT, aligning them more closely with the SCIA observational dataset. Conversely, in
conditions characterized by colder temperatures relative to the seasonal average, ERAS-
DownGAN registers an underestimation compared to both the SCIA observational dataset and
the VHR REA-IT dataset, without producing anomalous minimum values. Therefore, even
under anomalous weather conditions, the downscaling architecture based on cGAN effectively
replicates the fine patterns and details observed in VHR REA-IT, demonstrating a general
tendency to exaggerate anomalous conditions that does not impact the generation of outliers,
but rather appears to highlight a possible exemplification of meteorological dynamics in such

peculiar contexts.

B | Lateral work: Dynamical Downscaling over
the Italian Peninsula Using WRF, COSMO,
and ICON Atmospheric Models

In the context of enhancing climate modeling efforts, it is essential to investigate the
intrinsic differences between statistical approaches and physically-based traditional climate
models. To this end, a complementary study was conducted focusing on the configuration of
the Weather Research and Forecasting (WRF) model in its version 4.2.1. This work aimed to
develop an optimized configuration for the Italian peninsula, achieving a horizontal resolution

of 2 km. Through extensive sensitivity testing, various physical parameterizations were
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examined, including the boundary layer (PBL), microphysics, and short- and long-wave
radiation schemes. This analysis facilitated an evaluation of the developed WRF configuration’s
performance compared to other atmospheric models, such as COSMO and ICON, at the same
resolution, highlighting differences in predictive capabilities. The findings of this research were
published in the paper by Manco I. et al. (2023), titled "A Comparative Performance Study of
WREF, COSMO, and ICON Atmospheric Models for the Italian Peninsula at Very High
Resolution." (DOI:10.3369/tethys.2023.20.01) The results demonstrate strong agreement and
excellent performance of the optimized WRF configuration over the Italian Peninsula.
Understanding these dynamics is essential for informing the statistical downscaling process
using Al-based methods, as a solid foundation in physically-based models enhances the

accuracy and relevance of local climate simulations.

Planetary
Sensitivity Boundary Deep Convection . _— Land Surface Map
~ ., Microphysics Scheme . b
Group Layer Scheme Scheme Projections
Scheme
. - . unified Noah land-
ref Mellor no cumulus parameterization Thompson graupel - Mercator
surface model
. - - unified Noah land- ..
Sim | Mellor no cumulus parameterization Thompson graupel - Conformal Lambert
surface model
. - - unified Noah land- .
Sim 2 Mellor ledtke Thompson graupel - Conformal Lambert
surface model
Sim 3 Mellor no cumulus parameterization Thompson graupel thermal diffusion Conformal Lambert
Sim 4 Mellor no cumulus parameterization WSM 6-class graupel thermal diffusion Conformal Lambert
Sim 5 Mellor no cumulus parameterization Morrison 2-moment thermal ditfusion Conformal Lambert
Sim 6 Mellor no cumulus parameterization  NSSL 2-moment 4-ice thermal ditfusion Conformal Lambert
Sim 7 YSU no cumulus parameterization Thompson graupel thermal ditfusion Conformal Lambert
Sim 8 YSU no cumulus parameterization ~ WSM 6-class graupel thermal ditfusion Conformal Lambert
Sim 9 YSU no cumulus parameterization Morrison 2-moment thermal ditfusion Conformal Lambert
Sim 10 YSU no cumulus parameterization  NSSL 2-moment 4-ice thermal ditfusion Conformal Lambert

Tab. B.I: The sensitivity analysis about: PBL, microphysics, surface physics schemes and geographic projection
has allowed to determinate the best configuration of the WRF model, that minimizes the error metrics for the

precipitation, wind speed and temperature fields (Sim 9). Reproduced by Manco I. et al 2023.

The atmospheric forcing used was the Integrated Forecasting System (IFS) with analyses
provided by the European Centre for Medium-Range Weather Forecasts (ECMWF), with a grid-
point distance between neighboring points of approximately 9 km. The simulations were
conducted in a single run of 15 days and the lateral boundary conditions for each model were

refreshed every 6 hours.
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ERAS5-LAND SCIA 2019
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Fig. B.I: PDFs for 2019 of T_max (a,d), T _min(b,e) and T mean (c). Panels (a,b,c) identify the evaluation
against ERAS5-Land and panels (d,e) identify the evaluation against SCIA. Reproduced by Manco 1. et al 2023.
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ERA5-LAND SCIA 2020
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Fig. B.2: PDFs for 2020 of T_max (a,d), T_min(b,e) and T _mean (c). Panels (a,b,c) identify the evaluation
against ERAS5-Land and panels (d,e) identify the evaluation against SCIA. Reproduced by Manco 1. et al 2023.

Through this sensitivity analysis, is possible to identify Sim9 as the most effective model
configuration by assessing the simulated temperature and precipitation fields against
observational data (details not shown here). A set of statistical metrics was employed for
validation, such as MAE (mean absolute error), RMSE (root mean square error), MBIAS (mean
bias), oA (Index of Agreement), and Taylor diagrams. Notably, the application of the Planetary

Boundary Layer "YSU" scheme led to significant performance improvements, providing a more
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accurate representation of both temperature and precipitation ranges. Among the various
microphysics options, the "Morrison 2-moment scheme" proved to be the best for accurately
modeling precipitation. Additionally, employing a Lambert projection minimized distortions
compared to the Mercator projection. For all simulations, the Monin-Obukhov scheme (Janjic

Eta) was utilized to effectively parameterize the surface layer.

SCIA

ERA5-LAND

Fig. B.3: Taylor Diagrams of the daily cumulative precipitation at 2m in WRF, COSMO and ICON evaluated
against ERAS-Land (a,c) and SCIA (b,d) in 2019 (left column) and 2020 (right column). Reproduced by Manco
I. et al 2023.

The best-model configurations for the Weather Research and Forecasting (WRF), COSMO, and
ICON models were rigorously evaluated against two observational datasets, ERAS5-Land and
SCIA. This assessment aimed to quantify their efficacy in simulating key atmospheric variables,
namely minimum temperature (tmin), mean temperature (tmean), maximum temperature
(tmax), shown in Fig. B.I and Fig. B.2, total precipitation (Tot prec), in Fig. B.3, and wind speed
at 10 meters (W10m), in Fig. B. 4, during two distinct periods: winter 2020 and summer 2019.
All models demonstrated robust performance in reproducing temperature, precipitation, and
wind speed, achieving high correlation coefficients ranging from 80% to 99% for temperature
variables. Additionally, low root mean square error (RMSE) values were observed, particularly

in the simulation of temperature fields. In terms of precipitation, the models achieved an
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accuracy of 70% to 96% when evaluated against SCIA data. However, discrepancies in
performance were noted when comparing the models with the coarser resolution of ERAS-

Land, which may inhibit the ability to resolve fine-scale dynamic processes eftectively.
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Fig. B.4: Map of time-mean wind speed at 10 m for ERAS-Land (a,f), SCIA (b,g), WRF (c,h), COSMO (d,i) and
ICON (e,l). Reproduced by Manco 1. et al 2023.

In particular, WRF accurately represented specific meteorological conditions, including cold
temperatures and strong winds in winter, and intense convection in summer. The configuration
of WRF, optimized for the Italian domain, performed on par with or exceeded ICON
configurations from De Lucia et al. (2022) and COSMO configurations described by Baldauf

et al. (2011), with all models tested at a similar horizontal resolution of approximately 2 km.
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C | Lateral work: AI-Based Method for Identifying
Historical Recurrent Precipitation Patterns and
Evaluating Changes in Future Projections

The high-resolution dataset generated through the statistical downscaling methodology
based on a cGAN developed in this study is intended to serve as a robust and versatile product,
comparable to dynamically downscaled datasets. Its applicability has been assessed across
various scientific questions commonly encountered in meteorology and climatology. Among
these applications, a key focus was placed on identifying geographically recurring patterns
during extreme precipitation events. For this purpose, a supplementary methodology (see Fig.
C.I) was developed, utilizing the k-means clustering algorithm (alongside trials with alternative
algorithms, including hierarchical clustering). This investigation was carried out in parallel as

part of the PNRR-HAMMON project, in collaboration with the CMCC.

Starting from a high-resolution dataset of daily cumulative precipitation and the creation of an
extreme-event catalog, this approach identifies statistically recurring extreme regimes over a
selected region and delineates their geographic extent. This process enables the classification
of areas affected by similar precipitation values during extreme events. Figure C.I presents the
average precipitation values recorded within the catalog of extreme events, defined as shown

in Fig. C.3.

3 8
TOT_PREC (mmn]

Fig. C.I: Map of Mean Precipitation on Extreme Event Days Exceeding the 90™ Percentile.
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The k-means algorithm is an unsupervised clustering technique widely used to partition datasets
into k groups, or clusters, based on data proximity (Lloyd, 1982; MacQueen, 1967). The
algorithm begins with the random selection of k centroids, around which data points are
iteratively grouped. At each iteration, each data point is assigned to the nearest centroid,
followed by recalculating each centroid’s position based on the mean of its assigned points.
This process repeats until the centroids stabilize or a predefined number of iterations is reached.
However, a known limitation of the k-means algorithm is the requirement to set the number of
clusters k beforehand, which directly influences the clustering result (Jain A. K., 2010).
Determining the optimal k value is crucial for obtaining meaningful clusters within the dataset.
To address this, this study applied the inertia plot, or "elbow method" (Thorndike, 1953), to
identify the best k. The plot represents the sum of squared distances between data points and
their respective centroids for various k values. The optimal number of clusters, in our case equal
to 10, is typically indicated by the "elbow" in the plot, where increasing the number of clusters
yields only marginal improvements, suggesting an appropriate level of differentiation among

groups.

1e9 Inertia Plot
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Fig. C.2: Inertia Plot to identify the optimal numbers of clusters.

The k-means algorithm is particularly effective at identifying natural clusters or recurring
patterns within large datasets, including meteorological data, making it highly valuable in
climate studies (Jain A. K., 2010; Xu R. and Wunsch D. 1. 1., 2005). Its application allows
researchers to extract meaningful information about precipitation regimes, especially when

examining extreme events. By isolating areas with homogeneous behaviors, k-means facilitates
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the analysis of climate phenomena at regional scales, aiding in the understanding of spatial

patterns associated with extreme weather conditions (Deka, P., and Saha, U., 2023).

Pre-processing

‘ Clustering

1) Selection of dates where at least one
its 98th percentile over
time.

= K-means
Criterion Definition for Identifying

* Hierarchical
Extreme Catalogue Events

2) Creation of a new dataset consisting of]
Input data precipitation values that, for the dates
(VHR-REA_IT or VHR_PRO, 2.2 km) selected in pomt. 1), exce_ed their 90th
percentile over time.

3) Replacing NaN values wi
dataset created in ste|

‘ Output ‘

Clusters Matrix

Fig. C.3: Work-flow of clustering methodology.

Figure C.4 presents a case study of the Emilia-Romagna region, which is notably affected by

very intense precipitation events throughout the entire historical period 1981-2005).

Cluster 0: Mean=16.8 mm, Std Dev=11.5 mm, Median=13.3 mm
Cluster 1: Mean=13.5 mm, Std Dev=9.6 mm, Median=10.6 mm
Cluster 2: Mean=15.8 mm, Std Dev=10.8 mm, Median=12.6 mm
Cluster 3: Mean=13.5 mm, Std Dev=9.9 mm, Median=10.4 mm
Cluster 4: Mean=14.8 mm, Std Dev=9.9 mm, Median=11.7 mm
Cluster 5: Mean=28.6 mm, Std Dev=18.8 mm, Median=22.9 mm
Cluster 6: Mean=19.1 mm, Std Dev=13.3 mm, Median=15.1 mm
Cluster 7: Mean=19.3 mm, Std Dev=12.7 mm, Median=15.6 mm
Cluster 8: Mean=13.1 mm, Std Dev=11.4 mm, Median=9.6 mm
Cluster 9: Mean=25.6 mm, Std Dev=18.4 mm, Median=20.1 mm

Fig. C.4: K-means Clustering 1981-2020.

One limitation of the k-means algorithm is its difficulty in accurately representing non-spherical
patterns within data. However, through the developed methodology, which includes a
preliminary filtering of extreme events, the algorithm successfully identifies the core of the
most intense precipitation, as also shown in Fig. C.I following the clustering process
(highlighted in orange in Fig. C.5). This outcome confirms k-means’ ability, once optimized for
extreme events, to precisely delineate clusters corresponding to areas of higher precipitation

intensity.
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Cluster 0: Mean=5.6 mm, Std Dev=9.3 mm
Cluster 1: Mean=5.4 mm, Std Dev=9.3 mm
Cluster 2: Mean=5.2 mm, Std Dev=8.5 mm
Cluster 3: Mean=15.3 mm, Std Dev=25.1 mm
Cluster 4: Mean=5.5 mm, Std Dev=9.0 mm
Cluster 5: Mean=9.8 mm, Std Dev=15.8 mm
Cluster 6: Mean=10.9 mm, Std Dev=18.5 mm
Cluster 7: Mean=6.9 mm, Std Dev=11.3 mm
Cluster 8: Mean=4.5 mm, Std Dev=7.5 mm
Cluster 9: Mean=4.4 mm, Std Dev=7.3 mm

Fig. C.5: K-means Clustering 1981-2020 (winter).

The investigation initially examined the historical period from 1981 to 2005, both as a whole
and seasonally. Subsequently, in line with the findings of Puente A. et al. (2015), which
emphasize the importance of extending cluster-based analyses to future scenarios, we aimed to
understand how these clusters may evolve in terms of localization and spatial extent under the
RCP8.5 scenario. To this end, the VHR PRO dataset (Raffa M. et al., 2023) was utilized to
compare historical data with future projections (Fig. C.6).

Clusters Summer

BN Cluster 0: Mean=13.7 mm, Std Dev=11.1 mm, Median=10.2 mm
Cluster 1: Mean=6.3 mm, Std Dev=7.7 mm, Median=3.5 mm
BN Cluster 2: Mean=12.3 mm, Std Dev=11.4 mm, Median=8.3 mm
Cluster 3: Mean=8.3 mm, Std Dev=8.0 mm, Median=5.6 mm
BN Cluster 4: Mean=10.2 mm, Std Dev=9.4 mm, Median=7.1 mm
Cluster 5: Mean=11.2 mm, Std Dev=11.0 mm, Median=7.6 mm
BN Cluster 6: Mean=14.3 mm, Std Dev=11.3 mm, Median=10.4 mm
Cluster 7: Mean=14.8 mm, Std Dev=12.4 mm, Median=10.7 mm
W Cluster 8: Mean=12.7 mm, Std Dev=10.7 mm, Median=9.0 mm
! Cluster 9: Mean=13.9 mm, Std Dev=11.2 mm, Median=10.4 mm

1981-2005

Clusters Summer

WEN Cluster 0: Mean=10.5 mm, Std Dev=10.9 mm, Median=6.6 mm
Cluster 1: Mean=>5.4 mm, Std Dev=8.8 mm, Median=2.1 mm
BN Cluster 2: Mean=12.1 mm, Std Dev=12.3 mm, Median=7.8 mm
Cluster 3: Mean=8.8 mm, Std Dev=8.4 mm, Median=5.8 mm
BN Cluster 4: Mean=12.0 mm, Std Dev=12.8 mm, Median=7.6 mm
Cluster 5: Mean=12.0 mm, Std Dev=11.9 mm, Median=7.9 mm
Bl Cluster 6: Mean=12.1 mm, Std Dev=10.9 mm, Median=8.4 mm
Cluster 7: Mean=8.3 mm, Std Dev=9.8 mm, Median=4.7 mm
W Cluster 8: Mean=10.3 mm, Std Dev=11.3 mm, Median=6.4 mm
Cluster 9: Mean=11.2 mm, Std Dev=11.2 mm, Median=7.3 mm

2035-2065(RCP8.5)

Fig. C.6: Comparison of cluster distribution for the historical (1981-2005) and future (2035-2065) RCP8.5

during the summer.
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In conclusion, the investigation revealed no significant differences in the extent and localization
of clusters when comparing historical data with projections under the RCP8.5 scenario. Key
statistical measures such as mean, median, and standard deviation remained relatively

consistent across the datasets.

However, when examining seasonal variations, distinct differences emerged. During the winter
months, the RCP8.5 scenario exhibited significantly higher precipitation values for the cluster
representing the most intense precipitation events compared to historical data. In contrast,
summer showed notable changes in the localization and extent of the clusters. Specifically, in
the provinces of Parma and Piacenza, lower average precipitation values and higher standard
deviations were observed, indicating increased variability in precipitation patterns during this
season. This highlights the importance of conducting seasonal analyses to capture the nuanced
changes that may occur under future climate scenarios. The results of this preliminary
investigation using the dynamic dataset lay the groundwork as a benchmark for future
experiments involving the dataset generated through statistical downscaling using the GAN

model developed in this study.
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Code and data availability

The cGAN developed in this study will be made publicly available upon publication. The code
will be accessible through Zenodo and will be fully open-source. The high-resolution dataset
produced by cGAN-downscaling will be available on the DDS (Data Delivery System) of
CMCC (https://dds.cmcc.it/). The implementation is written in Python and operates within a

Miniconda environment. The machine learning components require the following libraries:
PyTorch, Torchvision, Scipy, and Numpy. For visualization, the required libraries include
Matplotlib and Torchvision.utils. A list of dependencies, including the specific versions of these

libraries, is provided below to ensure proper environment setup.

Name Version (Build Channel
libgee_mutex 0.1 conda_forge conda-forge
_openmp_mutex 4.5 2 gnu conda-forge
absl-py 1.4.0 pyhd8edlab 0 conda-forge
affine 2.4.0 pypi_0 pypi

aiohttp 3.8.4 py39h72bdee0 0 |lconda-forge
aiosignal 1.3.1 pyhd8edlab 0 conda-forge
anyio 3.6.2 pyhd8edlab 0 conda-forge
argon2-cffi 21.3.0 pyhd8edlab 0 conda-forge
argon2-cffi-bindings 21.2.0 py39h718727¢ 0 anaconda
asttokens 2.2.1 pyhd8edlab 0 conda-forge
async-timeout 4.0.2 py39h06a4308 0 |anaconda
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Name Version ([Build Channel
attrs 22.1.0 pyh71513ae 1 conda-forge
autopep8 2.0.4 pypi 0 pypi

babel 2.11.0 pyhd8edlab 0 conda-forge
backcall 0.2.0 pyh9f0adld 0 conda-forge
backports 1.1 pyhd3eb1b0 0 anaconda

backports.functools_Iru cache

1.6.4

pyhd8edlab 0

conda-forge

beautifulsoup4 4.11.1 pyha770c72 0 conda-forge
black 23.10.1 pypi 0 pypi

blas 1.0 mkl anaconda
bleach 5.0.1 pyhd8edlab 0 conda-forge
blinker 1.5 pyhd8edlab 0 conda-forge
blosc 1.21.0 h4ff587b 1 anaconda
brotli 1.0.9 hl166bdaf 8 conda-forge
brotli-bin 1.0.9 hl166bdaf 8 conda-forge
brotlipy 0.7.0 py39h27c¢fd23 1003|lanaconda
brunsli 0.1 h2531618 0 anaconda
bzip2 1.0.8 h7t98852 4 conda-forge
c-ares 1.18.1 h7f98852 0 conda-forge
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Name Version ([Build Channel
ca-certificates 2024.11.26{|h06a4308 0

cachetools 5.3.0 pyhd8edlab 0 conda-forge
cartopy 0.22.0 py39hddac248 1 conda-forge
cdo 1.5.7 pypi 0 pypi

certifi 2024.8.30 (lpy39h06a4308 0

cf xarray 0.7.6 pyhd8edlab 0 conda-forge
cffi 1.15.1 py39h5eeel8b 3 anaconda
cfitsio 3.470 h5893167 7 anaconda
cftime 1.6.2 py39h2ae25f5 1 conda-forge
charls 2.2.0 h2531618 0 anaconda
charset-normalizer 2.1.1 pyhd8edlab 0 conda-forge
click 8.1.3 unix_pyhd8edlab 2 |lconda-forge
click-plugins 1.1.1 pypi 0 pypi

cligj 0.7.2 pypi 0 pypi
cloudpickle 2.2.1 py39h06a4308 0 |anaconda
colorama 0.4.6 py39h06a4308 0

comm 0.1.2 pyhd8edlab 0 conda-forge
contourpy 1.0.6 py39ht939315 0 conda-forge
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Name Version ([Build Channel
cryptography 38.0.1 py39h9cele76 0 anaconda
curl 7.86.0 h5eeel8b 0 anaconda
cycler 0.11.0 pyhd8edlab 0 conda-forge
cytoolz 0.12.0 py39hSeeel8b 0 anaconda
dask-core 2023.6.0 |py39h06a4308 0 |lanaconda
dbus 1.13.18 hb2f20db 0 anaconda
debugpy 1.5.1 py39h295c¢915 0  |lanaconda
decorator 5.1.1 pyhd8edlab 0 conda-forge
defusedxml 0.7.1 pyhd8edlab 0 conda-forge
distributed 2023.6.0 |py39h06a4308 0 |anaconda
docutils 0.18.1 pyhd8edlab 0 conda-forge
entrypoints 0.4 pyhd8edlab 0 conda-forge
esmpy 8.1.0 py39h635207f 0 conda-forge
flask 2.2.2 py39h06a4308 0 |anaconda
fonttools 4.39.0 pyhd8edlab 0 conda-forge
fsspec 2023.5.0 |pyhd8edlab 0 conda-forge
future 0.18.3 pyhd8edlab 0 conda-forge
geospatial-python 0.11.0 pyhd8edlab 0 conda-forge
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Name Version ([Build Channel
gdal 3.7.2 h2ee2clb 0 conda-forge
geoviews 1.10.4 pyhd8edlab 0 conda-forge
git 2.39.1 h9ed2024 0 conda-forge
greenlet 2.0.2 py39hSeeel8b 0  |lconda-forge
h5py 3.8.0 py39h0£fd1996 0 anaconda
icu 70.1 h2f8d375 0 conda-forge
importlib-metadata 6.0.0 pyhd8edlab 0 conda-forge
ipykernel 6.22.0 py39h06a4308 0 |lanaconda
ipython 8.11.0 py39h06a4308 0 |anaconda
ipython_genutils 0.2.0 pyhd8edlab 0 conda-forge
jinja2 3.1.2 pyhd8edlab 0 conda-forge
joblib 1.2.0 pyhd8edlab 0 conda-forge
jsonS 0.9.6 pyhd8edlab 0 conda-forge
jsonschema 4.17.3 pyhd8edlab 0 conda-forge
jupyter client 8.2.0 py39h06a4308 0 |lanaconda
jupyter core 5.3.0 pyhd8edlab 0 conda-forge
jupyterhub 3.2.0 py39h06a4308 0 |anaconda
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