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Abstract 

State-of-the-art General Circulation Models (GCMs) typically operate at a coarse spatial 

resolution, posing challenges in accurately assessing regional climate changes and their 

impacts. This limitation is particularly evident in representing regional-scale topography and 

meteorological processes, including extreme weather events. Traditional dynamical 

downscaling methods address these issues but are computationally intensive, while statistical 

approaches, though efficient, often compromise spatial consistency. This study introduces an 

innovative application of Conditional Generative Adversarial Networks (cGANs) for climate 

data downscaling to address these challenges. GANs consist of two interconnected components: 

a generative and discriminative models. The generative model is based on ERA5 climate 

reanalysis data (Hersbach et al., 2020, ~31 km resolution) and learns to produce high-resolution 

data. The discriminator uses the VHR-REA_IT dataset (Raffa et al., 2021, ~2.2 km resolution) 

to distinguish between real and generated data by the GAN, known as ERA5-DownGAN. 

VHR_REA-IT is a convection-permitting reanalysis (horizontal grid spacing 0.02°, ≃2.2 km) 

generated with COSMO in Climate Mode (COSMO-CLM) over a domain covering the Italian 

Peninsula. The generative model refines its output through an iterative adversarial process to 

achieve enhanced spatial coherence. This study pioneers the use of cGANs to downscale ERA5 

reanalysis data to high horizontal resolution (~2.2 km) for both temperature and precipitation 

fields. Specifically, the model uses 2-meter temperature (T_2M) data to downscale T_2M and 

precipitation data (TOT_PREC) to downscale precipitation. The training phase (1990-2000) 

allows the cGAN to learn the high-resolution data patterns, while the testing phase (2001-2005) 

evaluates its performance against VHR-REA_IT. The cGAN accurately reproduces patterns and 

value ranges for temperature and total precipitation fields, exhibiting a slight tendency toward 

cooler values. Furthermore, the cGAN downscaling model maintains strong consistency across 

all percentile classes (from the 1st to the 99th) for temperature, and in nearly all classes for total 

precipitation, with a tendency to generate outliers in the precipitation fields for the extreme 

classes (98th and 99th percentiles). Additionally, the GAN model developed was validated in



collaboration with the National Center for Atmospheric Research (NCAR) through an added 

case study centered on the United States territory.  

This extension assessed the model's versatility across different datasets and geographical 

domains, confirming its effectiveness and potential as a robust tool for high-resolution climate 

data generation and regional climate analysis. This research demonstrates the significant 

potential of GANs to address the spatial limitations of traditional climate models, offering a 

powerful method for high-resolution climate data generation and contributing valuable insights 

into regional climate dynamics. 
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1 
 

I | Aim of the Work 

This study explores the application of a new Conditional Generative Adversarial Neural 

Networks (cGAN) architecture for statistical downscaling, discussing its methodology, 

advantages, and contributions to refining climate predictions at a finer scale. Inspired by GAN 

architectures used for image super-resolution, this work introduces a novel approach to enhance 

the resolution and quality of climatological data visualization. By leveraging a generator-

discriminator architecture, these GANs generate high-resolution climate datasets that are 

indistinguishable from real high-resolution data, offering an efficient means to increase the 

spatial resolution of climatological datasets. Through adversarial training, the generator 

network learns intricate spatial features and patterns intrinsic to climate data, producing more 

detailed representations. The application of GANs for super-resolution in climatology 

represents a cutting-edge advancement, particularly for understanding complex climatic 

processes. This study evaluates the robustness and versatility of a newly developed cGAN-

based statistical downscaling model across varied applications. The initial implementation 

focuses on downscaling the 2-meter temperature field for a test period (01/2001–12/2005), 

starting from low-resolution data (ERA5, ~31 km) to obtain a new high-resolution dataset (~2.2 

km) consistent with the high-resolution training dataset (VHR_REA-IT). The computational 

domain for this application includes the Italian Peninsula, parts of Northern and Central Europe, 

and Northern Africa. In a second application, the model’s performance was evaluated by 

downscaling a more complex variable, cumulative total precipitation, over the same geographic 

region. To further assess the model’s flexibility for other geographical domains, it was applied 

for the downscaling of 2m-temperature centered on the United States territory. This 

investigation was born during an internship with NCAR (National Center for Atmospheric 

Research). This implicated downscaling from ERA5’s low resolution (~31 km) to 4 km, 

achieving a resolution aligned with the high-resolution WRF-NCAR dataset used in training. 

Additionally, the portability of this downscaling architecture was confirmed across different 

high-performance computing systems at CMCC (Euro-Mediterranean Center on Climate 

Change), and NCAR.
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These applications collectively underscore the effectiveness of the developed methodology and 

lay a foundation for future studies aimed at scaling to additional atmospheric variables and 

extended simulation periods, enhancing precision in climate prediction across diverse scales 

and regions. 

The thesis is organized as follows: 

Chapter I introduces the fundamentals of Generative Adversarial Networks (GANs), 

encompassing the evolution of artificial intelligence, neural networks, and the various types of 

GAN architectures, with a particular emphasis on Conditional GANs (cGANs). 

Chapter 2 details the design and implementation of the ERA5-DownGAN for super-resolution 

in atmospheric fields, covering dataset preparation, cGAN architecture, and training 

procedures. 

Chapter 3 applies the developed cGAN to downscale 2-meter temperature and total 

precipitation data for the Italian Peninsula, comparing results with traditional dynamical 

downscaling methods 

Chapter 4 demonstrates the flexibility of the developed cGAN for applications in other 

domains and with different datasets, specifically extending the cGAN application to the United 

States in collaboration with NCAR, and evaluating its performance in downscaling using the 

ERA5 and WRF dataset 

Chapter 5 provides final considerations and discussion, highlights open questions, and 

indicates directions for future research. 
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I.I | Introduction  

Statistical downscaling techniques represent alternative or complementary methods to 

the use of dynamic downscaling models to increase the spatial-temporal resolution of global 

climate models. Climate change impacts and adaptation applications often require increasing 

spatial resolution, making it a priority to close the existing gap between climate data produced 

by General Circulation Models (GCMs), which typically operate at resolutions that are too 

coarse (often 100-200 km), and climate information at local levels. The outcomes derived from 

downscaling techniques, whether dynamic or statistical, play a crucial role in developing a 

comprehensive understanding of the localized impacts of climate variability and change, 

particularly in the context of extreme climate events. Local climate data is indispensable for 

enhancing risk assessments and formulating adaptation strategies across various sectors 

(Kondrup C., et al., 2022). The application of downscaled climate data is crucial for multiple 

sectors. In agriculture, downscaled precipitation and temperature projections can inform crop 

management strategies and irrigation planning under future climate scenarios (Xiao D. et al., 

2021). In hydrology, accurate downscaling of precipitation data is essential for assessing water 

resource availability and flood risks, as coarse-resolution models often misrepresent 

precipitation extremes (Sun Q., et al., 2020). Furthermore, downscaled climate projections are 

increasingly used in ecological modeling to evaluate the potential impacts of climate change on 

biodiversity and habitat suitability (Tabor K. and Williams J.W., 2010; Zhang F. & Georgakakos 

A.P., 2012). 

Statistical downscaling is more cost-effective and flexible compared to dynamic downscaling, 

allowing for faster implementation in new areas or regions. A review of current statistical 

downscaling techniques includes Empirical Statistical Downscaling (ESD), which maps 

empirical statistical relationships between large-scale climate drivers and local meteorological 

variables based on historical observational records (Benestad, R., et al., 2008). Various 

mathematical approaches, including linear regression, principal component analysis (PCA), and 

multiple linear regression, are applied in ESD. Weather generators (Yin, S., and Chen, D., 2020) 

also contribute to the field by generating synthetic meteorological data informed by statistical 

attributes from historical climate observations. Quantile mapping (Panofsky, H.W., and Brier 

G.W., 1968) adjusts the probability distributions of coarse climate model outputs using 

empirical observations. Additionally, Bayesian statistical downscaling techniques (Liu, J., 
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Yuan, et al., 2015) combine statistical methodologies with Bayesian principles to estimate 

uncertainties due to the downscaling process. 

Generative Adversarial Networks (GANs) offer a promising alternative by addressing many 

limitations of traditional methods. GANs learn directly from training data without making 

specific assumptions about the form of relationships or the stationarity of climatic relationships. 

This flexibility enables GANs to generate synthetic data that preserves the statistical 

characteristics of the training data (Leinonen, J. et al., 2021), adapting to complex and non-

linear time variations. By avoiding rigid assumptions, GANs are well-suited to handle scenarios 

of climate change, capturing the complexity of meteorological phenomena, especially extreme 

weather conditions or non-linear climate changes. GANs represent an innovative method in the 

statistical downscaling landscape. Unlike Bayesian approaches, which require substantial data 

and specific assumptions, GANs operate in an unsupervised learning context, making them 

more adaptable to situations with limited labeled data. GANs do not rely on assumptions of 

linearity or stationarity, offering a more flexible downscaling process compared to quantile 

mapping, which applies fixed statistical rules and may struggle with changes in distribution 

shapes or extreme events. GANs address these limitations by capturing complex relationships 

and mitigating challenges associated with fixed-statistics methods. Beyond traditional 

statistical downscaling methods, Generative Adversarial Networks (GANs), particularly Super-

resolution GANs (SR-GANs), have demonstrated superior performance in different 

applications compared to other deep learning-based approaches such as DeepSD, ConvLSTM, 

and U-NET. As highlighted by Kumar B., et al. 2023, SR-GANs exhibited higher correlation 

scores and more effectively captured fine-scale precipitation structures. According to the 

authors, among the techniques analysed, SR-GANs emerged as the most data-driven approach 

for precipitation downscaling. Despite their advantages, GANs face challenges such as training 

instability and computational complexity. These issues present opportunities to enhance the 

robustness and practical application of GANs. As a result, GANs are emerging as promising 

tools in the climatic context, playing a significant role in the machine learning landscape. 

I.2 The Role of Artificial Intelligence in Weather and 

Climate  

Atmospheric sciences, like many other disciplines that rely on computational methods, 

have been swept up in one of the greatest revolutions of our era: the development of a new set 

of sophisticated algorithms collectively known as Artificial Intelligence. While the origins of 
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such algorithms can be traced back to the mid-20th century, notably with the 1956 summer 

conference at Dartmouth College in Hanover, New Hampshire, as recounted by Mamalakis A. 

et al. (2022), their use became increasingly established from the 2000s onward, driven by the 

rise in computational power and the advancement of techniques such as machine learning and 

deep neural networks (deep learning). 

Artificial intelligence (AI) classification has evolved significantly since its inception, reflecting 

advancements in both theoretical and practical dimensions. Initially, Russell and Norvig (1995) 

provided a framework for categorizing AI based on two axes: one distinguishing between 

thinking and acting, and the other contrasting human imitation with ideal rationality. This 

classification system highlights fundamental approaches to AI, including the explicit and 

implicit categories. The concept of explicit AI, or symbolic AI, is rooted in early work by Allen 

Newell and Herbert A. Simon, particularly their influential publication “Human Problem 

Solving”, (1972). This approach, characterized by rule-based systems and logical structures, 

laid the groundwork for what became known as expert systems. On the other hand, implicit AI, 

which encompasses modern machine learning techniques, emerged from the pioneering 

research of Geoffrey Hinton and Yoshua Bengio. Their seminal paper “Learning 

Representations by Back-Propagating Errors” (1986) marked a significant advancement in 

neural network approaches, underscoring the shift towards data-driven methodologies that 

abstract complex patterns from large datasets.  

It is precisely from machine learning systems that the fields of climatology and meteorology 

have sought to mitigate the computational costs associated with the increasing need to improve 

the representation of sub-grid atmospheric and oceanic processes and to enhance model 

resolution. The application of machine learning in weather and climate science is remarkably 

versatile, encompassing everything from substituting specific sub-components of conventional 

models to improve their accuracy and reduce computational requirements to the complete 

replacement of the entire numerical modeling framework (de Burgh-Day and Leeuwenburg 

2023). The versatility of machine learning algorithms allows for their application across various 

domains, including forecasting, data assimilation, downscaling, post-processing of model 

outputs, and decision support tools. For instance, in weather forecasting, machine learning 

algorithms have been employed to enhance precipitation predictions. A notable example is the 

use of convolutional neural networks (CNNs) to analyze historical weather data and improve 

short-term precipitation forecasts, as demonstrated by Wang J et al. (2024). This approach 

allows for the extraction of spatial patterns from large datasets, leading to more accurate 
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predictions compared to traditional methods. Similarly, AI techniques have been utilized in the 

post-processing of numerical weather prediction outputs to correct biases and improve forecast 

reliability, as highlighted by Haupt S. E. et al. (2021). In the realm of climate modeling, AI has 

shown promise in downscaling coarse-resolution climate model outputs to finer spatial 

resolutions. For example, Baño-Medina J. et al. (2020) explored various deep learning 

configurations for statistical downscaling, demonstrating that machine learning can effectively 

capture local climate variations that are often missed by traditional models. Moreover, AI has 

been applied to enhance the understanding of complex climate phenomena, such as the 

interactions between the Antarctic Ice Sheet and global sea-level rise. Sadai S. et al. (2020) 

utilized machine learning to analyze the future responses of the Antarctic Ice Sheet to 

anthropogenic warming, providing insights into potential climate feedback mechanisms.  

Reichstein M. et al. (2019) utilized deep learning techniques to classify extreme weather 

patterns from climate simulation data, demonstrating how AI can effectively identify and 

categorize complex atmospheric phenomena. This clustering capability is essential for 

understanding the frequency and intensity of extreme weather events, which are increasingly 

relevant in the context of climate change. Furthermore, machine learning has shown promise 

in enhancing the representation of cloud processes in climate models. Barnes E.A. et al. (2019) 

discussed how AI can autonomously detect complex patterns in cloud formation and behavior, 

which are critical for accurate climate modeling. In conclusion, the integration of artificial 

intelligence in weather and climate science represents a transformative shift in how atmospheric 

research is conducted. By leveraging machine learning and deep learning techniques, 

researchers can improve predictive accuracy, address biases in traditional models, and enhance 

the understanding of complex atmospheric processes. As AI continues to evolve, its role in 

advancing weather and climate science is likely to expand, offering new opportunities for 

addressing the challenges posed by climate change and extreme weather events. These 

applications underscore the ability of AI to process vast amounts of data and identify critical 

patterns that inform climate science and the potential of AI to improve the fidelity of climate 

models, particularly in representing processes that are often poorly understood. 

To fully grasp the application of artificial intelligence for downscaling in this study, a detailed 

overview of the use of machine learning techniques in climate and meteorology, specifically 

related to this topic, will be presented. 



7 
 

I.3 Machine Learning and Deep Learning for Statistical 

Downscaling 

Computational efficiency, versatility, and the ability to learn complex relationships from 

data make the statistical approach a valuable downscaling method, especially when 

implemented through machine learning algorithms. Before providing a precise classification of 

the different statistical downscaling approaches, it is important to understand that, regardless of 

the specific application, most methods establish an empirical link between a set of predictors x 

and the predictands y through a statistical model F(.), 

y ∼ F (x). 

The predictands commonly describe local or regional-scale surface weather or climate, whereas 

the predictors are generally of larger scale (Maraun D. and Widmann M., 2018). 

From this formulation, it is evident that the choice of the downscaling function F(x), the 

predictors x, and the predictands y results in different downscaling methods. There are various 

categorizations of downscaling methods (Klein W. and Glahn H. 1974; Wilby R.L. and Wigley 

T.M.L. 1997; Maraun D. and Widmann M. 2018), but two main subsets are common to divide 

the empirical downscaling strategies: observational downscaling (or empirical statistical 

downscaling) and RCM emulation (Fig. I.I). Observational downscaling (or empirical statistical 

downscaling) involves the development of a model trained on real-world observational data. In 

contrast, an RCM emulator aims to replicate the functionality of a physics-based RCM and can 

be trained on simulations of both historical and future climates. Although these two strategies 

produce downscaling outputs with different characteristics, recent years have seen an increasing 

use of modern machine learning algorithms (including deep learning) in both approaches, often 

replacing traditional statistical methods. 
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Fig. I.I: (a) Comparison of PP (left) and SR (right) approaches for climate downscaling in New Zealand: PP 

maps large-scale fields to high resolution, while SR maps coarsened fields to high resolution. (b) Comparison 

between perfect and imperfect RCM training frameworks, with perfect using coarsened RCM fields and 

imperfect using GCM fields. Adapted from Rampal N. et al. (2024). 

According to Rampal N. et al. (2024), one of the most recent reviews on the statistical 

downscaling topic, empirical downscaling approaches can be classified into four main 

categories: Perfect Prognosis (PP), Super-Resolution (SR), Weather Generators (WGs), and 

Model Output Statistics (MOS). The PP (Perfect Prognosis) statistical downscaling methods 

are so named because the model is trained entirely using real-world data, with both predictors 

and predictands sourced from observations (or observational proxies such as reanalysis data). 

This approach allows the model to be grounded in data that closely represents physical reality. 

Once trained, the model is applied to predictors generated by a GCM (Global Circulation 

Model) to simulate high-resolution predictands. While this methodology has been widely 

adopted, its performance depends heavily on the choice of the GCM that provides the 

predictors. PP methods are inherently unable to correct for biases present in the GCM, which 

may lead to distorted downscaling results. A specific application of Perfect Prognosis (PP) is 

Super-Resolution (SR), where a low-resolution surface field is used on its own to predict a high-

resolution counterpart. 

Model Output Statistics (MOS) gets its name from the way it uses statistical linking functions, 

identified during the calibration phase, to directly adjust the output fields of GCMs already at 

that stage. This approach allows biases in climate models to be structurally considered and 

corrected as early as the calibration process. A substantial difference between MOS and other 

techniques such as Perfect Prognosis (PP) concerns the applicability of the corrections: in the 
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case of MOS, adjustments are made on a GCM-specific basis, making them non-transferable 

between different models. As a result, PP is more flexible and generalisable, and more in line 

with the dynamic Regional Climate Models (RCMs) approach (Rampal N. et al, 2024). Another 

distinctive aspect is that while in the PP the predictors and predictors, both derived from 

observations, are temporally synchronised during the calibration phase, in the MOS this 

calibration does not occur in a coupled manner. This is because climate simulations are not 

synchronised with real observations. Consequently, the calibration in the MOS is usually based 

on long-term distributions (distributional calibration), which is only meaningful when 

predictors and predictors share the same physical dimension, a limitation not found in PP that 

allows for heterogeneous predictor/predictor pairs.  In the climate context, therefore, the MOS 

almost always takes the form of a simple correction of model biases (e.g. empirical quantile 

mapping), rather than a calibration based on a precise temporal correspondence between 

simulations and observations. 

Weather Generators (WG) rely on stochastic statistical algorithms, in contrast to PP, SR, and 

MOS, which employ a deterministic approach. The WG are designed to replicate the 

distribution and temporal dependence of meteorological variables, introducing variability and 

randomness into the simulations, even when starting from the same input data. They create 

synthetic meteorological scenarios based on the statistical properties of the data itself, aiming 

for precise replication of spatiotemporal dynamics, natural variability of the variables of 

interest, and correlation structures.  

Despite their promising computational efficiency, Empirical Statistical Downscaling (ESD) 

methods are not without limitations. Firstly, ESD methods are constrained by the availability 

of long-term observational data, which limits their ability to produce high-resolution data only 

for regions and variables with sufficient local observations. ESD methods are also constrained 

in their selection of GCMs due to the requirement for specific variables at particular pressure 

levels and with a specific temporal frequency for effective calibration. 

Additionally, ESD methods rely on the assumption of stationarity in the relationship between 

large-scale and local scales, implying that a statistical model calibrated on past and present 

climate conditions remains reliable for future climate scenarios (Doury A. et al. 2022). 

Numerous studies have demonstrated that this assumption can significantly impact results 

(Wilby R.L. et al. 1998; Dayon G. et al. 2015; Erlandsen H. et al. 2020). To address the high 

computational cost of Dynamic Downscaling (DD) and the limitations of ESD, hybrid models 
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have been introduced, combining the advantages of dynamic and statistical downscaling to 

address their respective shortcomings, known as Regional Climate Model (RCM) emulators. 

Initially defined by Maurun and Widmann (2018), these emulators use predictors from 

simulations by a low-resolution RCM-GCM and predictands from simulations by a high-

resolution RCM. Thus, the final high-resolution output obtained from an RCM emulator is 

constrained only by the resolution of the RCM output, and the performance can be at most 

comparable to that of RCMs, as this methodology cannot overcome the biases inherent in 

RCMs (Giorgi F. et al. 2009). 

Emulators of Regional Climate Models (RCMs) operate without observational constraints, 

allowing them to be trained on simulations from both historical and future periods. These 

emulators can be categorized into two frameworks based on their training methodology: 

"imperfect" and "perfect." In the "imperfect" framework, an emulator is trained to directly map 

outputs from GCMs to those of RCMs. Conversely, in the "perfect" framework, the process 

begins with an upscaling of the RCM resolution to match that of the GCM, followed by the 

training of an algorithm to establish a mapping between the upscaled RCM and the original 

RCM (Rampal N. et al., 2024). In the imperfect framework, the emulator learns a relationship 

specific to each GCM-RCM pair, thus functioning as a Model Output Statistics (MOS) 

technique. In contrast, the perfect model framework focuses on learning general relationships 

between fields at different resolutions (Boé J. et al., 2023). This framework typically deals with 

weak correlations and a degree of "independence" between RCM and/or GCM fields, aligning 

it with the Perfect Prognosis (PP) approach. Training within the perfect framework is more 

aligned with PP because it only learns general relationships between low and high-resolution 

RCM pairs (Boé J. et al., 2023). The consistency between low and high-resolution RCM pairs 

during training in the perfect framework simplifies the emulator training compared to the 

imperfect framework (Rampal et al., 2024). 

Empirical Statistical Downscaling (ESD) and RCM emulators share some of the most widely 

used ML algorithms (including DL), such as: multiple linear regression (e.g., Sharifi E. et al., 

2019 for observational downscaling and Holden P.B. et al., 2015 for RCM emulators), random 

forest (e.g., Limon G. and Jablonowski, C., 2023 for RCM emulators and Hutengs C. and 

Vohland M., 2016 for use in ESD), generalized linear models (Baño-Medina J. et al., 2020 for 

ESD and Maraun D. et al., 2017 for RCM emulators), multilayer perceptron (e.g., Nishant N. 

et al., 2023 for use in RCM emulators and Hobeichi S. et al., 2023 for PP), or short-term 

memory (e.g., Bittner M. et al., 2023 for RCM emulators and Hobeichi S. et al., 2023 for ESD). 
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The difference between the two strategies lies in how these techniques are employed, what 

inputs are passed on, and what outputs are desired. For instance, traditional PP methods may 

not be well-suited for downscaling nonlinear variables such as precipitation, as their site-

specific approach (i.e., extracting variables one "site" at a time) does not incorporate 

information from adjacent grid points. Furthermore, these methods can be computationally 

inefficient, as the algorithm must be repeatedly applied, point by point, across large datasets. 

RCM emulators, by receiving one or more fields as input over the entire spatial grid, generate 

high-resolution output fields for the entire region covered by the RCM. Recent years have 

demonstrated significant potential in applying computer vision algorithms to the fields of 

meteorology and climatology, particularly in downscaling tasks. Notably, generative models 

such as Generative Adversarial Networks (GANs) have been extensively studied, with 

Leinonen J. et al. (2021) providing a comprehensive description of their application. 

Additionally, diffusion models, as detailed by Mardani M. et al. (2023), have shown promising 

results. These models utilize various architectures, including Convolutional Neural Networks 

(CNNs), U-Net, and Fully Connected Networks (FCNs) or Multilayer Perceptrons (MLPs). The 

complexity of these models involves compromises between the computational costs, the 

horizontal resolution and, in some cases, the domain size (Doury A. et al. 2022). 

I.4 Artificial Neural Networks (ANNs) 

The architecture underlying the various Deep Learning (DL) algorithms employed for 

downscaling in weather and climate modeling are rooted in the framework of artificial neural 

networks (ANNs), commonly referred to as neural networks (NNs). These architectures are 

particularly suited for representing sub-grid scale processes and are therefore discussed in detail 

in this section. The development of neural networks was driven by the need to overcome the 

limitations in capacity and processing speed of traditional digital computers compared to the 

human brain, which, through its network of neurons, can perform highly complex and non-

linear tasks, such as pattern recognition and perception, within mere ms. Neural networks are 

designed to emulate the functioning of the human brain, with several terminologies shared 

between the two. In the human brain, learning occurs through experience, whereas in artificial 

systems, this is achieved through a learning algorithm, which enables NNs to improve their 

performance adaptively. The basic structural components of a neural network, known as 

“neurons” or “processing units,” are extensively interconnected via synaptic weights. These 

weights encode the acquired knowledge and are adjusted by the learning algorithm to enhance 

the network’s performance. Neurons in NNs are organized into multiple interconnected layers 
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that define relationships between different parameters (Fig. I.2), thereby removing the need for 

explicit parameterization or numerical models to encode such relationships. Consequently, 

neural networks serve as universal function approximators (Lu L. et al., 2019). 

 

Fig. I.2: Example of a fully connected Neural Network. Reproduced by Simon Haykin (1999). 

 

According to the definition provided by Simon Haykin (1999),  

“a neural network is a massively parallel distributed processor consisting of simple processing 

units, with an inherent ability to store experiential knowledge and make it available for 

application.”  

An important task for a neural network is to learn a model of the environment in which it 

operates and to maintain the model in sufficient coherence with the real world to achieve the 

specified objectives of the application. In real-world applications of "intelligent" machines, it 

can be asserted that a good solution hinges on an effective representation of knowledge (Wood 

J. and Shawe-Taylor, J., 1996). According to Fischler M. and Firschein O. (1987), this 

representation pertains to the information or models stored and utilized, generally by either a 

person or a machine, to interpret, predict, and respond appropriately to the external world. 

The advantages associated with the use of neural networks are manifold, including their ability 

to model nonlinear processes and generalize learned patterns to previously unseen data. The 

capability to represent nonlinearity is crucial, particularly when the underlying physical 

mechanism responsible for generating the input signals exhibits intrinsically nonlinear 
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characteristics. This is especially pertinent in the context of weather and climate, where the 

phenomena involved are often highly complex and nonlinear. Another advantage of neural 

networks is their ability to incorporate an evidential response, which provides a confidence 

level along with the network's output. In a context where the difficulty of interpreting the 

complex processes within machine learning models and the occasional lack of transparency can 

undermine user trust, the evidential response allows for more informed and robust decision-

making. By managing ambiguity and enhancing the reliability of the results provided by the 

algorithms, this feature addresses critical challenges in leveraging these advanced models 

effectively. 

I.4.I Neurons and Activation Functions 

The configuration of neurons within a neural network enables the formation of various 

architectures. To fully appreciate these architectures, it is essential first to understand the 

characteristics of a neuron, its constituent components, and its mathematical formulation. The 

simplest instance of a neural network comprises a single input, a single neuron, and a basic 

activation function. Mathematically, the operation of an individual neuron k, as illustrated in 

Figure I.3, can be characterized by examining the fundamental components that define its 

model: 

• Input: a neuron receives incoming signals from the preceding layer of neurons or directly 

from raw data inputs. These signals are represented as a vector of numerical values 

x1,x2,…,xm, where each value xj corresponds to a specific input data feature. 

• Synaptic Weights: each input xj is associated with a weight wkj , which signifies the relative 

importance of that input to the neuron. The weights wkj  are parameters learned during the 

model training phase and can either amplify or attenuate the input signals. 

• Bias: the bias bk is a constant additive term that allows for the shifting of the activation 

function, thereby enhancing the model's flexibility. Depending on the sign of the bias, the 

relationship between the induced local field (or activation potential) vk of neuron k and the 

output of the linear combiner∑ 𝑤𝑘𝑗𝑥𝑗
𝑚

𝑗=1
 is modified. The bias enables the neuron to produce 

an output even when the inputs are zero. 

• Activation Function: after processing the weighted inputs, the neuron applies an 

activation function 𝜑(.) to the result. This function introduces non-linearity into the model, 

enabling the network to learn more complex relationships between the inputs and the 
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output. Examples of activation functions include the sigmoid, ReLU (Rectified Linear 

Unit), and tanh. 

• Output: The output of a neuron, denoted as yk, represents the value predicted by the neural 

network. This output can either be a continuous value in the context of regression problems 

or a probability in classification tasks. The final value is obtained by applying the activation 

function to the weighted input of the neuron. 

 

Fig. I.3: Nonlinear model of a neuron, labeled k. Reproduced by Simon Haykin (1999). 

 

Formally, the output y of a neuron is obtained through two main steps: 

1. Weighted sum of inputs: Each input xi is multiplied by its corresponding weight wki, and 

the bias bk is added to the total sum. This operation can be expressed as: 

 

𝑣𝑘 = ∑ 𝑤𝑘𝑗𝑥𝑗

𝑚

𝑗=1

+ 𝑏𝑘 

 

2. Application of the Activation Function: The result of the weighted sum z is then passed 

through an activation function 𝜑(⋅), which transforms the neuron's output. This step is 

crucial for introducing non-linearity into the system, enabling the network to solve real-

world problems. The final output of the neuron y is therefore given by: 

 

𝑦𝑘 = 𝜑(𝑣𝑘) = 𝜑 (∑ 𝑤𝑘𝑗𝑥𝑗

𝑚

𝑗=1

+ 𝑏𝑘) 
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Activation functions are integral components of neural network architectures, as they facilitate 

the introduction of non-linearity into the model. This non-linearity enables the network to learn 

and accurately represent intricate relationships within the data. Mathematically, an activation 

function operates on the weighted sum of inputs directed toward a neuron, yielding an output 

signal. This output signal is pivotal in determining the activation status of the neuron and the 

degree of its response. In the absence of activation functions, a neural network would 

fundamentally reduce to a linear regression model, thereby lacking the capacity to capture 

complex patterns and non-linear relationships inherent in real-world datasets. 

Beyond their primary function of introducing non-linearity, activation functions also serve the 

critical role of normalizing the output of individual neurons. This normalization process ensures 

that neuron outputs remain confined within a specified range, commonly between 0 and 1 or -

1 and 1. Such normalization is crucial for stabilizing the learning process and mitigating issues 

related to the exploding or vanishing gradients, particularly in deeper network architectures. 

Prominent activation functions employed for this purpose include the sigmoid function, 

hyperbolic tangent (tanh), and softmax functions. 

The distinctive characteristics of each activation function render them suitable for specific tasks 

within neural network architectures. Commonly utilized activation functions include: 

• Sigmoid Function: The sigmoid function is widely regarded as one of the most 

fundamental activation functions in the architecture of neural networks. Characterized by 

its strictly monotonic increasing nature, the sigmoid function elegantly balances linear and 

nonlinear characteristics. A prominent example of this function is the logistic function, 

mathematically represented as: 

𝜑(𝑣) =
1

1 + 𝑒𝑥𝑝(−𝑎𝑣)
 

 

where a denotes the slope parameter of the sigmoid function. By manipulating the value of a, 

it is possible to generate sigmoid functions with varying degrees of steepness. As the slope 

parameter a approaches infinity, the sigmoid function asymptotically behaves like a step 

function. While a step function yields discrete outputs of either 0 or 1, the sigmoid function 

provides a continuous range of outputs between 0 and 1. This property renders the sigmoid 

function particularly advantageous for binary classification tasks, where the objective is to 

assign inputs to one of two distinct categories. However, it is crucial to acknowledge that 
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sigmoid functions are susceptible to the vanishing gradient problem, a limitation that can 

significantly impede the training process in deep neural networks. 

• Tanh: The hyperbolic tangent function, or tanh, maps the input to a value between -1 and 

1. It is an improvement over the sigmoid function because it is zero-centered, which helps 

the network learn more efficiently. 

 

𝜑(𝑣) = tanh(𝑣) 

 

Activation functions are integral components of neural network architectures, as they facilitate 

the introduction of non-linearity into the model. This non-linearity enables the network to learn 

and accurately represent intricate relationships within the data. Mathematically, an activation 

function operates on the weighted sum of inputs directed toward a neuron, yielding an output 

signal. This output signal is pivotal in determining the activation status of the neuron and the 

degree of its response. In the absence of activation functions, a neural network would 

fundamentally reduce to a linear regression model, thereby lacking the capacity to capture 

complex patterns and non-linear relationships inherent in real-world datasets. 

Beyond their primary function of introducing non-linearity, activation functions also serve the 

critical role of normalizing the output of individual neurons. This normalization process ensures 

that neuron outputs remain confined within a specified range, commonly between 0 and 1 or -

1 and 1. Such normalization is crucial for stabilizing the learning process and mitigating issues 

related to the exploding or vanishing gradients, particularly in deeper network architectures. 

Prominent activation functions employed for this purpose include the sigmoid function, 

hyperbolic tangent (tanh), and softmax functions. 

The distinctive characteristics of each activation function render them suitable for specific tasks 

within neural network architectures. Commonly utilized activation functions include: 

• Sigmoid Function: The sigmoid function is widely regarded as one of the most 

fundamental activation functions in the architecture of neural networks. Characterized by 

its strictly monotonic increasing nature, the sigmoid function elegantly balances linear and 

nonlinear characteristics. A prominent example of this function is the logistic function, 

mathematically represented as: 
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𝜑(𝑣) =
1

1 + 𝑒𝑥𝑝(−𝑎𝑣)
 

 

where a denotes the slope parameter of the sigmoid function. By manipulating the value of a, 

it is possible to generate sigmoid functions with varying degrees of steepness. As the slope 

parameter a approaches infinity, the sigmoid function asymptotically behaves like a step 

function. While a step function yields discrete outputs of either 0 or 1, the sigmoid function 

provides a continuous range of outputs between 0 and 1. This property renders the sigmoid 

function particularly advantageous for binary classification tasks, where the objective is to 

assign inputs to one of two distinct categories. However, it is crucial to acknowledge that 

sigmoid functions are susceptible to the vanishing gradient problem, a limitation that can 

significantly impede the training process in deep neural networks. 

• Tanh: The hyperbolic tangent function, or tanh, maps the input to a value between -1 and 

1. It is an improvement over the sigmoid function because it is zero-centered, which helps 

the network learn more efficiently. 

 

𝜑(𝑣) = tanh(𝑣) 

 

• ReLU (Rectified Linear Unit): is a popular activation function that sets negative inputs 

to zero while leaving positive inputs unchanged. It has been widely adopted due to its 

simplicity and its ability to mitigate the vanishing gradient problem, which can occur in 

deep networks during training. However, ReLU suffers from the "dying ReLU" problem, 

where neurons can become inactive and stop learning, typically when their input values are 

consistently negative. 

 

𝜑(𝑣) = 𝑚𝑎𝑥(0, 𝜈) 

 

• Leaky ReLU: Leaky ReLU is a variant of ReLU designed to address the "dying ReLU" 

issue by allowing a small, non-zero gradient when the input is negative. This small slope a 

for negative inputs prevents neurons from becoming inactive and allows learning to 

continue, even for negative inputs. 
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𝜑(𝑣) = {
𝑣       if    𝑣 ≥ 0
𝑎𝑣    if    𝑣 ≤ 0

 

 

• Softmax: is commonly used in multi-class classification problems. It converts the raw 

outputs (logits) of a neural network into a probability distribution over multiple classes, 

ensuring that the sum of the probabilities for all classes equals 1.  

 

𝜑(𝑣𝑖) =
𝑒𝑥𝑝(𝑣𝑖)

∑ exp(𝑣𝑗)
𝐾

𝑗=1

 

Where, 𝑣𝑖 the raw output (logit) from the neural network for class i and K represents the total 

number of classes. 

Once the network's final output has been obtained from steps 1) and 2), which define the 

forward step, we move on to step 3), known as the backward step. The combination of these 

three steps defines what is commonly referred to as the backpropagation algorithm (Rumelhart 

D., et al., 1986). After the output, during step 3, the error is measured against the expected 

output (or “ground truth”) using a loss or cost function (for example, the mean squared error or 

cross-entropy for classification). Specifically, backpropagation computes the gradient of the 

loss function for each of the individual parameters of the neural network by utilizing the “chain 

rule” (Child, J. M., 1916). An optimization function (gradient descent method or stochastic 

gradient descent method) utilizes these gradients to find and update the corresponding weights 

and biases of each neuron during backpropagation.  

By descending along the gradient of the loss function, we minimize the loss function itself. The 

direction in which we should adjust the weights and biases to reduce the loss is known, as the 

gradient we calculated during backpropagation contains the partial derivatives for each model 

parameter.  

The weight update can be expressed as: 

𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 − 𝜂
𝜕𝐿𝑜𝑠𝑠

𝜕𝑤
 

Similarly, the updated bias can be formulated as:   
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𝑏𝑛𝑒𝑤 = 𝑏𝑜𝑙𝑑 − 𝜂
𝜕𝐿𝑜𝑠𝑠

𝜕𝑏
 

Where 𝜂 is the learning rate, which will be discussed in greater detail in section 2.4.4 (“Training 

Strategies”). 

Thus, the weights are updated in the direction opposite to the gradient to minimize the loss, and 

the magnitude of the update is determined by the learning rate. The final goal of the process is 

to minimize the error compared to the expected output and improve the overall prediction 

accuracy of the network. In conclusion, backpropagation is fundamental to training neural 

network models, from the most basic multilayer perceptrons to the complex deep neural 

network architectures used for generative AI. 

As previously mentioned, the configuration of neurons in a neural network defines several 

network architectures (structures).  

Following the classification proved by Simon Haykin (1999), there are three fundamentally 

distinct classes of network architectures can be identified: 

• Single-Layer Feedforward Networks: in a layered neural network, neurons are 

organized into distinct levels (Fig. I.4a). In its simplest form, this network comprises an 

input layer made up of source nodes that connect directly to an output layer containing 

computation nodes (neurons), with no connections in the opposite direction 

(feedforward network, FFNN). This architecture is referred to as a single-layer network 

because only the layers containing computation neurons are counted; the input layer 

does not perform any processing. 

• Feedforward Multilayer: is characterized by the presence of one or more hidden 

layers, where the computation nodes are known as hidden neurons or hidden units (Fig. 

I.4b), so named because they are not directly visible from the network’s input or output. 

Hidden neurons serve as intermediaries between the external input and the network’s 

output, allowing the network to process more complex patterns and extract higher-level 

features from the input data. In this way, even though the network has local connections, 

it gains a broader, more global understanding of the problem thanks to the additional 

synaptic connections and layers of neural interaction (Churchland P. S. and Sejnowski 

T. J., 1992). The source nodes in the input layer provide the components of the 

activation pattern (input vector), which are the signals passed to the neurons in the 

second layer (the first hidden layer). The outputs from the second layer are then fed into 
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the third layer, and this process continues through the rest of the network. The overall 

response of the network to the input from the source nodes in the first layer is determined 

by the signals produced by the neurons in the final layer. This iterative process, where 

inputs are passed through multiple hidden layers, with each layer’s output becoming the 

input for the next, can be formalized as follows: 

𝑣𝑘
(𝑙)

= ∑ 𝑤𝑘𝑗
(𝑙)

𝑦𝑗
(𝑙−1)

𝑚

𝑗=1

+ 𝑏𝑘
(𝑙)

 

Where, as previously defined: wkj
(l) represents the weight connecting neuron k from 

layer l−1 to neuron j in layer l, yj
(l−1) is the output of neuron j from the previous layer 

and bk
(l) is the bias of neuron k in layer l.  

The output of neuron j in layer l is obtained by applying the activation function: 

𝑦𝑘
(𝑙)

= 𝜑(𝑣𝑘
(𝑙)

) 

This process is repeated for each neuron in every layer, propagating the information 

through the network until it reaches the final output layer. 

a)  b)   

Fig. I.4: Network architectures. (a)-(b) feedforward network with a single layer of neurons; fully connected 

feedforward network with one hidden layer and one output layer, as described by Simon Haykin (1999). 
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• Convolutional Networks (CNNs): are characterized by the presence of one or more 

convolutional layers, which play a pivotal role in feature extraction from input data, 

particularly images. These layers utilize filters, or kernels, that traverse the input image 

to generate activation maps, thereby highlighting the presence of local features such as 

edges and corners. The convolution operation involves the multiplication of pixel values 

by the filter weights, enabling the network to learn meaningful representations of the 

data (LeCun Y. et al., 1998). Following the convolutional operations (Fig. I.5), the 

resulting activation maps undergo pooling processes, which reduce their spatial 

dimensions, thereby simplifying the data and enhancing computational efficiency. 

Pooling can be performed using various techniques, such as max pooling or average 

pooling, which select the most salient features while mitigating the risk of overfitting 

by retaining only the essential information necessary for final classification. Ultimately, 

the outputs from the convolutional and pooling layers are flattened and passed through 

one or more fully connected layers. In these layers, the nodes connect the extracted 

features, allowing the network to perform classification based on high-level 

combinations of the learned information. The final output is produced via an activation 

function, typically softmax, which generates probability distributions over the possible 

classes. This hierarchical structure, transitioning from the extraction of simple features 

to the identification of complex patterns, enables CNNs to achieve a deep and 

comprehensive understanding of the data, rendering them particularly effective in 

applications such as computer vision and object recognition. 

 

Fig. I.5: Convolutional Neural Network (CNN). 
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• Recurrent Networks (RNNs): Recurrent Neural Networks (RNNs) are characterized 

by their ability to "remember" information from previous inputs, allowing them to 

influence both current inputs and outputs through one or more feedback loops (Fig. I.6) 

Unlike traditional deep neural networks, which assume independence between inputs 

and outputs, the output of an RNN is dependent on preceding elements within a 

sequence. Additionally, while feedforward networks assign distinct weight parameters 

to each node, RNNs share the same weights across each layer. These weights are 

adjusted through backpropagation and gradient descent, but RNNs utilize 

Backpropagation Through Time (BPTT) specifically to compute gradients for 

sequential data. BPTT follows the same principles as standard backpropagation, where 

the model learns by calculating errors from the output layer back to the input; however, 

it differs in that it sums the errors at each time step, a requirement that feedforward 

networks do not have due to their lack of parameter sharing across layers. Information 

from the output is delayed by one time step before being used as input for the subsequent 

step, accomplished through the use of unit time-delay elements denoted by z-1. The 

integration of non-linear units, such as activation functions like ReLU or tanh, 

introduces complexity to the dynamic behavior of RNNs. As a result, the network's 

response is not merely proportional to its inputs; rather, it can develop intricate patterns 

based on past data. This dynamic capability enables RNNs to effectively capture and 

model temporal dependencies and contextual relationships within sequential data, 

making them particularly suitable for tasks involving time series or sequential 

processing. However, this process introduces two potential challenges (IBM, 

https://www.ibm.com/it-it/topics/recurrent-neural-networks): vanishing and exploding 

gradients. In the case of vanishing gradients, the weight parameters approach zero, 

leading to stagnation in the learning process. Conversely, exploding gradients result in 

excessively large weight values, causing instability and yielding NaN values.  
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a)   b)   

Fig. I.6: Recurrent Neural Networks. (a)-(b), by Simon Haykin (1999). 

 

A common solution to mitigate these issues involves reducing the number of hidden layers 

within the network, thereby simplifying the overall architecture and minimizing the risks 

associated with gradient-related challenges. 

This approach closely aligns with the well-established theory of linear adaptive filters, which 

has been successfully applied across various fields (Widrow B. and Stearns S. D., 1985; Haykin 

S., 2002). However, it is also possible for a neural network to modify its topology, a concept 

inspired by the fact that neurons in the human brain can die and new synaptic connections can 

form. 

I.5 Generative Adversarial Neural Networks (GANs) 

The ability of Generative Adversarial Networks (GANs), particularly conditional GANs 

(c-GANs), to capture fine spatial details and extreme events (Mardani M. et al. 2023; Miralles 

O. et al. 2022; J. Wang J. et al. 2021) has led us to focus this work on developing an innovative 

c-GAN architecture for super-resolution. The pioneering goal is to achieve high-resolution 

downscaling of atmospheric variables of interest. Therefore, this section will commence with a 

brief overview of generative models, placing particular emphasis on Generative Adversarial 

Networks (GANs). This will be succeeded by an in-depth examination of conditional GANs (c-

GANs).  

Generative models are algorithms designed to learn the underlying distribution of data and 

generate new samples that resemble the originals. A generative model can be defined as a 



24 
 

system capable of learning and representing the probability with which data is generated 

(Goodfellow I. et al., 2016). These models differ from discriminative models, which focus on 

class recognition, as they aim to capture the intrinsic structure of the data. Among the most 

well-known generative models are Variational Autoencoders (VAEs), which utilize a 

probabilistic approach to infer latent representations; however, they may produce blurrier 

samples due to their approximation nature (Kingma D. P. and Welling M., 2014). Other models, 

such as Normalizing Flows, offer greater flexibility and generative precision through invertible 

transformations but require higher computational complexity and can be more challenging to 

train (Rezende D. J. and Mohamed S., 2015). Autoregressive models, such as PixelCNN and 

WaveNet, are recognized for their performance in sequential data generation, including images 

and audio. However, they can be slow in inference and demand significant resources due to 

their sequential nature (Oord, A. v. d. et al., 2016). 

In this landscape of generative models, Goodfellow et al. laid the foundations for Generative 

Adversarial Networks (GANs) in 2014 with their seminal paper titled "Generative Adversarial 

Nets." The authors need to develop a new generative neural architecture because the most 

significant advancements in deep learning have predominantly involved discriminative models, 

employing backpropagation and dropout algorithms while utilizing piecewise linear units that 

exhibit well-behaved gradients. In contrast, deep generative models have had a relatively 

limited impact, primarily due to two factors: the complexities associated with approximating 

intractable probabilistic computations that arise in maximum likelihood estimation and related 

strategies, and the difficulty of leveraging the benefits of piecewise linear units within the 

generative context. In response to these challenges, Goodfellow et al. propose a novel procedure 

for estimating generative models that overcome these obstacles. In the framework of the 

presented adversarial networks, the generative model G is confronted with an adversary, namely 

a discriminative model D, which learns to distinguish whether a sample originates from the 

generated distribution or the real distribution. The training procedure for the generative model 

G is based on maximizing the probability that the discriminator D makes an error. This approach 

is structured as a minimax game between two participants (Fig. I.7). 
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Fig. I.7: General structure of the GAN training process. 

 

Within the space of arbitrary functions G and D, it is demonstrated that a unique solution exists, 

wherein the generative model G is able to reproduce the training data distribution, while the 

discriminator D takes on a constant value of  1/2  at all points. In other words, training concludes 

when the models G and D reach an equilibrium in which G produces convincing data, and D is 

no longer able to distinguish between real and generated data. 

The following provides a general formulation of the minimax problem that forms the foundation 

of Generative Adversarial Networks (GANs). In this framework, the generator takes as input a 

vector of random noise, denoted as z, and maps it to a data distribution that closely approximates 

real-world data, such as images or audio signals. This transformation aims to produce synthetic 

samples indistinguishable from authentic data by an associated discriminator model. 

This transformation is represented as G (z ; θg), where θg are the parameters of the generator 

(i.e., the weights of the neural network). The discriminator receives an input, which can either 

be real data or generated data and outputs a value that indicates the probability that the input is 

real. This probability is denoted as D (x ; θd), where x is the input data (which may originate 

from either the generator or the real data), and θd are the parameters of the discriminator. The 

discriminator is trained to maximize its capacity to correctly distinguish real data from fake 

data. Conversely, the generator seeks to minimize the probability that the discriminator 

recognizes its outputs as fake. More precisely, it aims to minimize the expression (1 – D (G (z)) 

which represents the probability that the discriminator makes an error. 

This process can be viewed as a game between two players, the generator and the discriminator, 

each pursuing opposing objectives. This formulation can be expressed as: 
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D (x) represents the probability that x is real, while G (z) denotes the data generated from the 

noise z. 

Generative Adversarial Networks (GANs) offer several distinct advantages over traditional 

generative models such as Gaussian Mixture Models (GMMs), Hidden Markov Models 

(HMMs), Autoregressive Models (AMs), and Variational Autoencoders (VAEs). One of the 

primary advantages of GANs lies in their departure from probabilistic models that explicitly 

aim to estimate the underlying distribution of the data. Unlike such models, GANs do not 

attempt to learn an explicit probability density function to describe the data. Instead, the 

generator in a GAN framework learns to produce samples that exhibit characteristics similar to 

the real data through iterative feedback from the discriminator. 

Moreover, in many traditional learning models, the parameters (i.e., the variables used by the 

model to make predictions) can retain information about the training data, which can lead to 

the issue of overfitting. Overfitting occurs when a model becomes too finely tuned to the 

specifics of the training data, resulting in poor generalization to unseen data. GANs mitigate 

this issue through their adversarial training process. Specifically, the generator does not directly 

copy or memorize the training data. Rather, it learns to synthesize new data instances by relying 

solely on the feedback provided by the discriminator, which evaluates how realistic the 

generated data appear. This indirect learning mechanism ensures that the generator’s parameters 

do not encode a direct representation of the real data, but instead capture a more abstract 

understanding of how to produce samples that fool the discriminator into recognizing them as 

authentic. As a result, the generator is less prone to overfitting, as it avoids storing exact 

representations of the training data and focuses instead on generating plausible new examples. 

Another key advantage of GANs is their avoidance of complex mechanisms such as Markov 

chains, which are often required in probabilistic models for data generation. Markov chains 

typically involve sequential dependencies that can complicate both model design and 

computational efficiency. In contrast, GANs rely entirely on backpropagation, a well-

established and efficient method in neural network training, to compute gradients and update 

model parameters. This not only simplifies the training process but also enhances computational 

tractability, as no inference or sampling mechanisms from a Markov chain are required during 

learning. Additionally, GANs possess a high degree of versatility due to their ability to 

incorporate a wide range of functions into their architecture. This adaptability allows GANs to 

generate highly detailed and precise outputs, often surpassing traditional models that may 
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struggle with producing sharp or complex data samples. Models based on Markov chains or 

probabilistic approximations, for example, are prone to generating “blurred” or “imprecise” 

outputs due to their inherent need to maintain smooth transitions between modes in the data 

distribution. In summary, GANs offer substantial computational and statistical advantages over 

traditional generative models. Their ability to generate data without relying on explicit 

probabilistic modeling, coupled with their robust mechanism for avoiding overfitting and their 

computational efficiency through backpropagation, make them a powerful and flexible tool for 

generating highly detailed and realistic data. 

I.5.I Conditional Generative Adversarial Networks (cGANs) 

Conditioning in neural networks is a fundamental concept that enables the directed 

guidance of the learning process, enhancing both the accuracy and relevance of generated 

outcomes. It facilitates the integration of auxiliary information, such as class labels or specific 

characteristics of the dataset, enriching the representation and aiding in the generation of 

outputs that are coherent with the desired context (Kingma D.P. and Welling M., 2014). 

Conditioning has been shown to be crucial across a variety of applications, ranging from image 

generation to speech recognition, allowing models to produce more relevant and informative 

results (Salimans T. et al., 2016). 

Conditional Generative Adversarial Networks (cGANs), first introduced by Mirza M. and 

Osindero S. (2014) in their seminal paper titled "Conditional Generative Adversarial Nets", 

represent a significant extension of Generative Adversarial Networks (GANs). This innovative 

approach enables both the generator and the discriminator to be conditioned on auxiliary 

information, thereby allowing for direct and precise control over the data generation modes. In 

cGANs, conditioning occurs through the incorporation of auxiliary variables y, which may 

include class labels, data from other modalities, or any relevant information about the 

generation context. 

In the generator, the initial noise pz(z) is combined with the conditioning variable y to create an 

integrated hidden representation. This merging enables the model to leverage the adversarial 

training framework, providing significant flexibility in both the construction and application of 

this representation. Conversely, in the discriminator, both x (representing either real or 

generated data) and y are presented as inputs to a discriminative function, typically implemented 

through a multilayer perceptron (MLP). This configuration allows the discriminator to 
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effectively assess the quality of the generated data concerning the specified conditions, thereby 

enhancing the generator's ability to produce coherent and contextually relevant samples. 

The introduction of conditional GANs (cGANs) has led to numerous advantages over 

traditional GAN models. By allowing the generation process to be conditioned on auxiliary 

variables, cGANs offer more control over the generated data, which can be particularly 

beneficial when the goal is to create data that adheres to specific constraints or characteristics. 

In climate modeling, this capacity is especially useful for downscaling, where the task involves 

generating high-resolution climate data from coarser input. Traditional GANs, which generate 

data based solely on random noise, often struggle to incorporate external information, leading 

to less accurate or less relevant outputs for specific tasks. In contrast, cGANs can leverage high-

resolution observational data or other auxiliary variables to produce more accurate and 

contextually relevant downscaled outputs (Vandal T. et al., 2017; Leinonen J. et al., 2020). 

Furthermore, the ability of cGANs to focus the generation process on specific attributes, such 

as geographic or climatic features, has demonstrated clear advantages in terms of both fidelity 

and precision in generated climate data. This makes them particularly suited for applications in 

downscaling, where preserving spatial and temporal correlations is essential for producing 

meaningful results. As such, cGANs have shown significant improvements in performance over 

traditional GANs in climate downscaling tasks, reducing the introduction of noise and artifacts, 

while better preserving the physical consistency of the data (Stengel K. et al., 2020; Liu Y. et 

al., 2020).  

The demonstrated potential of Generative Adversarial Networks (GANs), particularly 

Conditional GANs (cGANs), in capturing complex spatial and temporal structures remains 

underutilized, with only a limited number of studies employing cGANs for downscaling 

purposes. This study is driven by the pioneering objective of harnessing this potential to develop 

a conditional generative adversarial network for high-resolution atmospheric variable 

downscaling that is flexible and versatile, applicable across various geographical domains and 

variables. This innovative approach aims to advance the field by addressing existing gaps in the 

literature and showcasing the capabilities of cGANs in generating more accurate and 

contextually relevant climatic data. 
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2 | Designing the Super-Resolution c-GAN 

This chapter focuses on the development of the ERA5-DownGAN, a Conditional 

Generative Adversarial Network (cGAN) for super-resolution, designed to enhance the spatial 

resolution of atmospheric data. We start by defining the goals and importance of super-

resolution for atmospheric fields, followed by a description of the GAN architecture. The 

chapter details the datasets used, including ERA5 and VHR_REA-IT, and explains the 

preprocessing and normalization techniques applied. We also cover the specifics of the network 

architecture, including the generator and discriminator components, as well as the training 

process, loss function, and optimization strategies. This chapter provides a clear view of how 

the new cGAN model was developed to improve high-resolution atmospheric data prediction. 

2.I Objectives and Necessity of Super-Resolution for 

Atmospheric Fields 

In many traditional statistical downscaling approaches, a single algorithm is trained for 

each grid point, which results in significant time and computational resource expenditures. This 

methodology presents several limitations, including the inability to capture spatial and temporal 

interactions between points and the difficulty in generalizing learning to new data. Among 

traditional methods, linear regression and multiple regression are among the most widely used, 

allowing for the establishment of relationships between low- and high-resolution climatic 

variables (Maraun D. et al., 2010; Wilby R. L. et al., 2002). Other approaches include statistical 

transfer models, which utilize historical data from meteorological stations to create statistical 

relationships (Hay L.E. et al., 2002), and principal component analysis (PCA) methodologies, 

used to reduce data dimensionality (Eastman, J. R. and Fulk, M., 1993).  Additionally, stochastic 

weather generators (Wilks D. S., 1992) and cumulative distribution function (CDF) matching 

methods (Piani C. et al., 2010) have been applied to generate more accurate estimates of 

precipitation and temperature. While these approaches are effective, they have limitations in 

their ability to model spatial complexities, paving the way for advanced techniques based on 

computer vision, such
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as Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs), 

which promise to further enhance the efficiency and accuracy of downscaling (Xie L. et al., 

2018). 

The integration of CNNs and GANs into the downscaling process offers several advantages 

over traditional approaches. Firstly, these methods allow for the simultaneous processing of 

multiple grid points, leveraging the spatial and temporal correlations between them and 

improving computational efficiency. For instance, GANs can be trained on multidimensional 

datasets, reducing the necessity to train a model for each point (Wang Y. et al., 2018). Moreover, 

these methods are capable of learning directly from the data, diminishing the need for explicit 

models and increasing flexibility in handling variability in climatic data. The ability of GANs 

to generate data that captures original statistical structures makes this approach particularly 

promising for downscaling complex atmospheric variables, such as precipitation. 

2.2 Statistical and Dynamical Downscaling 

Downscaling aims to bridge the gap between the large spatial scales represented by 

GCMs and the smaller scales required for assessing regional climate change and its impacts.  

Two major types of downscaling exist: in dynamical downscaling, a high-resolution regional 

climate model (RCM) is nested into the GCM over the domain of interest (Rummukainen M., 

2010). In statistical downscaling, empirical links between the large-scale and local-scale 

climate are identified and applied to climate model output. 

The first downscaling methods were invented as early as the late 1940s (Klein 1948) and 

became operational during the early days of numerical weather prediction in the late 1950s. 

Klein in 1959 utilized the extensive network of meteorological time series to infer statistical 

relationships between the observed large-scale circulation, described by the limited variables 

simulated at the time by models, and the local meteorological variables of interest. This 

statistical approach was then applied to downscale the actual numerical forecast of large-scale 

circulation, assuming the predictor was perfectly predicted by the model, into a local weather 

forecast. However, as a significant database of past forecasts was accumulated and analyzed, it 

became evident that large-scale weather forecasts were not perfect and exhibited systematic 

deviations from observations. Consequently, the "perfect prognosis" (PP) method was not 

without errors. In 1972, Glahn and Lowry developed a novel approach (Model Output Statistics 

(MOS) to address systematic errors (biases) inherent in large-scale models. Rather than relying 
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on observed data as predictors, as employed in the Perfect Prognosis (PP) method, they 

calibrated the statistical model using archived numerical forecasts. This methodology enabled 

the statistical model to adjust future predictions based on historical model performance. For 

each new weather forecast, the derived statistical relationships are applied to the corresponding 

numerical forecast, facilitating systematic bias correction during the post-processing stage. 

Simultaneously, numerical approaches were developed to enhance the resolution and accuracy 

of forecasts for a specific target region. The first limited-area model was created at the National 

Meteorological Center in the United States (Maraun D. and Widmann M., 2018) and became 

operational in 1971. This model encompassed the United States, Canada, and the Arctic Ocean, 

with a horizontal resolution of 190.5 km at 60°N. It was driven at the lateral boundaries by input 

from a numerical weather prediction model for the Northern Hemisphere.  

Dynamical downscaling relies on the application of physical laws governing atmospheric 

processes to offer a more detailed and accurate representation of climate dynamics. This 

approach is particularly effective in regions with complex terrain, as it captures intricate 

physical interactions. However, it requires significant computational power and may still inherit 

biases from the General Circulation Models (GCMs) that provide the initial conditions. In 

contrast, statistical downscaling establishes empirical links between large-scale climate data 

from GCMs and localized climate records, allowing for the creation of higher-resolution 

climate projections with relatively lower computational demands (Vandal T. et al., 2017). Due 

to its efficiency and ease of application, statistical downscaling is often favored over dynamical 

methods, which use regional climate models (RCMs) to simulate smaller-scale climate 

processes (Tiwari P. et al., 2018). Research indicates that while dynamical downscaling can 

enhance the depiction of extreme weather patterns, it can also introduce uncertainties, 

particularly related to model parameters and boundary conditions (Maraun D. et al., 2010). 

Consequently, the selection between statistical and dynamical approaches depends largely on 

the study’s objectives, including the required resolution, the climate variables of interest, and 

available computational resources (Xiao D. et al., 2021; Tiwari P. et al., 2018).  

Since the mid-1990s, both dynamic and statistical downscaling approaches have seen 

significant advancements and broadening of scope. Numerous studies and reviews, notably 

Hewitson B. C. and Crane R. G. (1996) and Giorgi F. and Mearns L. O. (1999), have evaluated 

these methods. The heightened focus on model errors has spurred model intercomparison 

projects, such as PIRCS and PRUDENCE in Europe and NARCCAP in North America, aimed 

at assessing and addressing biases in climate models. The launch of the Coordinated 
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Downscaling Experiment (CORDEX) in 2009 marked a key milestone toward the 

operationalization of climate downscaling. Furthermore, in 2012, the Global Framework for 

Climate Services (GFCS) provided added momentum for the development of regional climate 

products. Initiatives such as ENSEMBLES have generated extensive databases of regional 

climate simulations, establishing multi-model ensembles to address model uncertainty. 

CORDEX-ESD, introduced in 2013, has further enhanced the coordination of statistical 

downscaling methodologies. Ultimately, downscaling is a vital tool in climate research, 

transforming GCM outputs into actionable data at regional and local scales, and supporting 

more effective decision-making regarding climate adaptation and mitigation across diverse 

sectors. 

2.3 Datasets and Pre-processing 

This section provides a detailed overview of the two datasets with distinct resolutions 

required for the Super-Resolution GAN developed in this work: 1) the low-resolution dataset, 

which serves as the starting point for the statistical downscaling process; 2) the high-resolution 

dataset, which is only required during the training step and represents the final resolution to 

achieve. In our preliminary assessment of the novel algorithm developed for statistical 

downscaling, we have chosen to focus on two crucial atmospheric fields: the daily 2-meter 

temperature and daily precipitation for investigation. This allows us to evaluate the algorithm's 

performance and its ability to downscale temperature and precipitation data effectively. 

Additionally, this section describes the data preprocessing procedures which are crucial for 

training GANs. Given that GANs rely on the comparison during the training phase between 

real and generated data, normalizing distributions and ensuring a coherent representation of the 

studied phenomena directly impacts the GANs' ability to learn underlying patterns in the data 

and generate more plausible and meaningful results. Therefore, a careful preprocessing phase 

is essential to optimize the performance and quality of GANs. 

2.3.I Domain Definition 

The domain was chosen based on that defined in Raffa et al., 2021 for VHR_REA-IT. 

For the high-resolution dataset (VHR_RE-IT), its original domain was taken, and for the low- 

resolution dataset (ERA5), a domain was selected as close as possible to the boundaries defined 

by the high-resolution one, covering the Italian Peninsula (Tab. 2.I). The computational domain 

extends in longitude from ~3.90W to ~19.93 E and in latitude from ~34.80N to ~48.59N. The 
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selection of a domain with similar longitudinal and latitudinal extents in both high-resolution 

and low-resolution real datasets is crucial, as it facilitates the downscaling process during the 

transition from low to high resolution. This ensures a geographical correspondence between the 

datasets and, consequently, a consistent generation of the new artificial high-resolution dataset. 

A consistent geographical correspondence between the two datasets implies that similar points 

in the two datasets occupy similar positions in geographical space. This enables the model to 

learn spatial relationships between corresponding points, contributing to the coherent 

generation of high-resolution geographical details. Furthermore, consistency in geographical 

space aids the GAN in capturing relevant topographic information, and correctly positioning, 

for example, mountain ranges in the new artificial high-resolution dataset. 

 

Data longitude and latitude 
horizontal 

resolution 

n° grid 

points 

ERA5 (Lon = 4° W–23.75° E; Lat = 34.25° N–48.50° N) 
0.28° 

(≃31 km) 
58x80 

VHR_REA-IT (Lon = 3.90° W–19.93° E; Lat = 34.80° N–48.59° N) 
0.02° 

(≃2.2 km) 
680x535 

 

Tab. 2.I: Domain details for LW and HR dataset: geographical boundaries, horizontal resolution, number of grid 

points. 

 

This consideration holds particular significance in geographically complex contexts such as the 

Italian Peninsula (Fig. 8), characterized by diverse topography and a pronounced transition 

between areas with markedly different morphologies. This contributes to defining distinctive 

climatic features for each region, underscoring the importance of accurate domain selection to 

preserve geographical and climatic coherence in the results obtained through the downscaling 

process. 

2.3.2 Low-Resolution Dataset: ERA5  

In this approach, we deviated from the conventional practice of employing random 

sequences for the low-resolution dataset, as often seen in prior GAN-based studies. Instead, we 

opted to utilize a real dataset, specifically the ERA5 reanalysis data (Fig. 2.Ia) at a horizontal 
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resolution of 0.25 degrees (≃ 31 km), which can be accessed online at  

(https://doi.org/10.24381/cds.adbb2d47).  

 

Fig. 2.I: Topography. (a)-(b) ERA5; VHR_REA-IT. 

 

The selected dataset spans a total of fifteen years, divided into two distinct periods: a training 

period (01/1990–12/2000) and a test period (01/2001–12/2005).  

2.3.3 High-Resolution Dataset: VHR_REA-IT 

The very High-Resolution Dynamical Downscaling of ERA5 Reanalysis (VHR_REA-

IT) is chosen as the high-resolution dataset (Fig. 2.Ib). This reanalysis is at the convection-

permitting scale (horizontal grid spacing 0.02°, ≃2.2 km) by COSMO in CLimate Mode 

(COSMO-CLM) on a domain covering the Italian Peninsula, described by Raffa, M. et al. 

(2021) available for download at https://doi.org/10.25424/cmcc/era5-2km_italy. The high-

resolution dataset covers the same periods selected for the low-resolution dataset. During the 

training period (1990-2000) we used both the low-resolution and the high-resolution dataset, 

while during the test period (2001-2005) we used only the high-resolution dataset in the GAN 

algorithm. The high-resolution dataset is subsequently taken into account to validate the results 

obtained during the test period by the GAN to judge the goodness of these at the same horizontal 

resolution.  
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Fig. 2.2: Spatial distribution of daily mean temperature. (a)-(e) SCIA-ISPRA; E-OBS; UERRA; ERA5 and 

VHR-REA_IT over 1989–2020 (except for UERRA covering the period 1989–2019). Reproduced by Adinolfi 

M., et al., 2023. 

 

The selection of the VHR_REA-IT dataset as the counterpart in the high-resolution model is 

based on several key considerations. First and foremost, VHR_REA-IT provides climate data 

for the examined territory with high spatial (2.2 km) over an extended period of 30 years (1989–

2020), thereby overcoming the limitations of traditional approaches that rely on shorter 

simulation periods. Additionally, as highlighted in the study by Adinolfi et al. (2023), the model 

has demonstrated generally strong performance in simulating the downscaled variables using 

artificial intelligence techniques.  
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Fig. 2.3: Spatial distribution of daily total precipitation. (a)-(e) SCIA-ISPRA; E-OBS; UERRA; ERA5 and 

VHR-REA_IT over 1989–2020 (except for UERRA covering the period 1989–2019). Reproduced by Adinolfi 

M., et al., 2023. 

 

Specifically, VHR_REA-IT has shown significant capabilities in reproducing spatial patterns 

of mean temperatures (Fig. 2.2) and precipitation, although a warm temperature bias has been 

observed in flat areas. Furthermore, the model accurately represented precipitation patterns 

(Fig. 2.3), except in alpine regions, while effectively capturing the intensity and frequency of 

heavy precipitation events, particularly in mountainous areas. 

The data used for both high-resolution and low-resolution are available in hourly aggregations, 

but for the sake of simplifying the computational complexity of the problem, we decided to 

employ daily aggregations,  

2.3.4 Transformations and Data Normalization 

Input normalization in a neural network, such as a Generative Adversarial Network 

(GAN), is a process aimed at ensuring that the input data is in a standardized and consistent 

form. This aids the model in converging faster during the training process and enhancing overall 

performance.  
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There exist several normalization techniques: standardization (Z-score normalization), which 

transforms variables to have a mean of zero and a standard deviation of one, thus facilitating 

model convergence; min-max normalization, which constrains the data range between 0 and 1, 

contributing to greater stability during training; Batch Normalization and Layer Normalization, 

which maintain a consistent distribution of inputs across each layer and promote faster 

convergence. This array of normalization techniques played a crucial role in shaping the 

behavior of our GAN network, optimizing data representation, and enabling the generation of 

consistent, high-quality outputs. Within our modeling framework, a targeted normalization 

approach was adopted to handle temperature data. Before utilizing the data as input for the 

GAN generator, the data were standardized to range between -1 and 1. This transformation was 

designed considering the natural distribution of temperatures and the expected range of 

variation.  

The normalization stabilized and balanced the data consistently, rendering them suitable for the 

generation process and enhancing model convergence. Subsequently, the hyperbolic tangent 

function was employed as the activation function in the generator's final layer, ensuring that the 

model's output remained consistent with the range of temperatures in degrees Celsius. The high-

resolution artificial dataset generated by the GAN (ERA5-DownGAN) was also scaled back 

using the same scaling. This normalization strategy proved crucial in ensuring that the generator 

produced coherent and meaningful data in response to a normalized input. 

It has been decided not to standardize the data initially, as this approach can be useful if one 

aims to ensure that the data is balanced concerning the mean and standard deviation. The 

objective is to normalize the input data, particularly both the real high-resolution dataset 

(VHR_REA-IT) and the low-resolution real dataset (ERA5) for both the training and testing 

periods. This can be achieved by selecting a target dataset for both the training and testing 

periods, from which the minimum and maximum values are calculated to properly rescale the 

input data.  

The sensitivity for the normalization choice has been explored, and we have applied various 

normalization and denormalization target datasets to optimize training and enhance the 

performance of our GAN network: Rescaling all input data concerning the minimum and 

maximum values of a dataset obtained through simple bilinear interpolation of the ERA5 

dataset onto the VHR-REA-IT grid (ERA5_interp-VHR). The calculation of minimum and 

maximum values is performed for temperature distributions corresponding to both the training 
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and testing periods. The ERA5-DownGAN is denormalized for the dataset ERA5_interp-VHR 

from the testing period. Using the high-resolution dataset training period for both the training 

and testing periods, utilizing it on both the VHR-REA-IT and ERA5 datasets. In this second 

case, the ERA5-DownGAN is denormalized concerning the dataset VHR_REA-IT of the 

training period. Application of a different target for the training and test phases.  

 

 

Fig. 2.4: Normalization (a) and denormalization (b) approaches with different target datasets.  

 

Specifically, we normalize both datasets with respect to themselves during the training phase. 

However, during the testing phase, we normalized ERA5 with respect to itself and denormalized 

the output of the GAN, considering the dataset VHR_REA-IT from the training phase as the 

target. The calculation of minimum and maximum values is consequently performed on the 

VHR-REA-IT dataset for the training period. This is imperative as, for the testing period, we 

may only have access to the low-resolution dataset, from which we aim to obtain a high-

resolution counterpart through the GAN. 
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Despite testing and evaluating all normalization and denormalization approaches (Fig. 2.4), we 

have opted to exclusively showcase the outcomes of normalization/denormalization 3). This 

specific approach is deemed the most rigorous within the climate change context and 

demonstrates highly promising results when scrutinizing error metrics and statistical analyses. 

This decision is underpinned by the primary aim of normalization, which is to preserve the 

physical consistency between low-resolution and high-resolution data, a pivotal factor for 

accurately representing future climatic variations. 

2.4 Proposed cGAN Architecture: ERA5-DownGAN 

The approach developed in this study for constructing a new method based on neural 

networks is grounded in the general principles of Generative Adversarial Networks (GANs) and 

draws inspiration from the structure of Conditional GANs (Mirza, M., and Osindero, S., 2014). 

However, it is important to emphasize that the construction of this method is original, featuring 

substantial modifications compared to existing approaches. This innovation allows us to address 

specific scientific and practical challenges while ensuring the autonomy of our work. The core 

idea of the algorithm is to establish the empirical link between low-resolution and high-

resolution datasets during the training period and apply this relationship to the low-resolution 

dataset in the test period to generate a new artificial high-resolution dataset. Generative 

Adversarial Networks (GANs) consist of two key components: a generative model (the 

generator) and a discriminative model (the discriminator), both implemented as neural 

networks. In the context of super-resolution with GANs, the generative model's goal is to 

produce synthetic data samples that closely resemble high-resolution real data, while the 

discriminative model is trained to distinguish between real high-resolution data from the 

training set and synthetic high-resolution data produced by the generator, conditioned on the 

corresponding low-resolution data.  

By continuously training these two networks against each other in a feedback loop, GANs have 

demonstrated their ability to generate highly realistic climatic data, significantly advancing the 

field of climatic downscaling. 

Specifically, the use of new conditional Generative Adversarial Networks (cGANs) enables the 

generation of high-resolution fields that retain the fundamental characteristics of the original 

data, utilizing low-resolution data as conditioning input for the generator (Fig. 2.5). This 

approach effectively mitigates the introduction of noise or undesirable artifacts, ensuring that 

authentic information serves as the foundation for the generation process. The objective of the 
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cGAN is for the generator to produce synthetic data that challenges the discriminator to 

distinguish between real high-resolution data and the generated output. The discriminator learns 

to differentiate between actual high-resolution data and the artificial high-resolution data 

generated by the cGAN. Concurrently, the generator seeks to refine its output to deceive the 

discriminator into classifying the generated data as real. 

 

Fig. 2.5: Structure of the developed cGAN, adapted from the general architecture of the Generative Adversarial 

Network (GAN) for the training process in Figure I.7. 

In summary, this particular cGAN employs a specific architecture with LeakyReLU and tanh 

activation functions for the generator, alongside LeakyReLU, dropout, and sigmoid activations 

for the discriminator. The training process focuses on generating high-resolution climate data 

that closely resembles the VHR_REA-IT dataset, to achieve convergence where the generated 

data is indistinguishable from the actual VHR_REA-IT data. 

To implement the planned GAN, several steps were undertaken: 

• Data Pre-processing: This phase includes quality checks of the data, domain selection, 

partitioning the dataset into training and testing intervals, and normalizing the data to ensure 

consistent input conditions. 

• Tensor Conversion from NetCDF Files: The data is transformed into tensor format using 

the Pytorch library, making it suitable for processing within the GAN architecture. 

• Architectural Development: The generator and discriminator networks are carefully 

designed. The generator produces synthetic data, while the discriminator learns to 

differentiate between real and generated data. 

• Loss Function Definition: An appropriate loss function is chosen to guide the training 

process, quantifying how well the generated data matches the real data. 
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• Parameter Optimization: Hyperparameters such as learning rate and batch size are 

systematically adjusted to optimize the GAN's performance, ensuring effective learning and 

convergence. 

2.4.I Overall Architecture 

Generative Adversarial Networks (GANs), like other deep learning architectures, are 

structured with a directed graph that allows data to pass through multiple transformational 

layers until it reaches the output. The evaluation of the loss function is crucial as it measures 

the discrepancy between the network's predicted output and the expected result. Optimization 

algorithms, such as the refined Adam algorithm, use gradients from this loss function to update 

the weights and biases of the neural networks. This framework is characterized by weight 

assignments to connections between neurons across different layers, which affects how data is 

transformed within the network.  

In this study's GAN, specific activation functions were chosen for various segments of the 

architecture, and distinct loss functions were used for the generator and discriminator. These 

design choices, along with the optimizer employed, are essential for the GAN's capacity to learn 

complex representations and produce high-quality outputs. 

2.4.2 Details of the Generator and Discriminator Architectures 

The generator in GAN discussed in this work uses four linear layers with LeakyReLU 

activation functions (Dubey, A. K., Jain, V., 2019), except for the last layer which uses a 

hyperbolic tangent activation function. The LeakyReLU helps prevent the vanishing gradient 

problem, introducing a small slope for negative inputs as described in Cap. I. This contributes 

to enhanced stability and overall learning performance of the neural network. The final tanh 

activation scales the output to a range between -1 and 1. The generator's input data consists of 

matrices with dimensions of 58x80, corresponding to a horizontal resolution of 31 km. The 

architecture we developed for the two neural networks, Generator (G) and Discriminator (D), 

in this new cGAN is illustrated in Fig. 2.6. 
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Fig. 2.6: Architectures of (a) generator and (b) discriminator. Size input generator 58 × 80, size input 

discriminator 680x535, the number of frames per sequence 100 (batch size = 100) for both data sets considered 

here. After training, the best generator is used for the test period. 

 

The primary objective of the generator is to downscale this input to matrices of data with 

dimensions of 680x535, equivalent to a substantially higher horizontal resolution of 2.2 km. 

This enhancement facilitates a finer level of detail and precision in the generated data. In 

particular, the choice to use 1160 neurons in the first layer of the discriminator, as well as the 

decision to utilize 290 neurons in the first layer of the generator, is based on a combination of 

theoretical considerations and empirical results from previous experiments. This number is 

particularly reasonable given the context of the input matrices and their complexity. By 

employing 1160 neurons, the model can capture a significant amount of spatial features from 

the high-dimensional data while maintaining a balance between learning capacity and the risk 

of overfitting. As suggested by He K. et al. (2015), the number of neurons in a layer should 

reflect the complexity of the problem being addressed; in the case of matrices with dimensions 

of 680×535, this configuration is justified by the necessity to learn detailed representations. 

Furthermore, experiments conducted in previous studies have demonstrated that an appropriate 

number of neurons in the initial layers of a discriminator improves performance in image 

classification, enhancing the model's ability to generalize to new data (Zhang H. et al., 2019). 

Therefore, the specific choices regarding the number of neurons utilized are not only supported 

by the literature but also result from an empirical optimization process. The discriminator also 

employs linear layers with LeakyReLU activation functions, and dropout layers to introduce 
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regularization. The dropout rate is set at 0.3 in both the generator and discriminator networks. 

This value is chosen to strike a balance between preventing overfitting and maintaining 

sufficient capacity for learning. A dropout rate of 0.3 allows the model to learn more robust 

features by randomly dropping 30% of the neurons during training (Hinton G. E. et al., 2012), 

thus promoting better generalization to unseen data. Dropout helps prevent overfitting during 

training. The final layer of the discriminator utilizes a sigmoid activation function that 

constrains the final output between 0 and 1. 

2.4.3 Configuration of Hyperparameters and Optimization 

Technique Adopted 

The choice of the optimization strategy plays a pivotal role in shaping the efficacy of 

our Generative Adversarial Network (GAN). To this end, we have harnessed the power of the 

Adam optimizer, an algorithm renowned for its adaptability and efficiency.  

Adam, short for Adaptive Moment Estimation (Kingma, D. P., and Ba, J., 2015), unites the 

virtues of both momentum-based optimization and root mean square propagation. Particularly, 

it combines AdaGrad, which adapts the learning rate based on the historical gradient 

information for each parameter, and RMSProp, which uses an exponentially decaying average 

of squared gradients to maintain a stable training process. This amalgamation empowers the 

optimizer to dynamically calibrate learning rates for each network parameter during the training 

process.  

Mathematically, Adam operates by maintaining two-moment vectors, mt and vt, which represent 

the first and second moments of the gradients at time step t.  

1. Parameter Initialization: 

 

𝑚0 = 𝑂,          𝑣0 = 0
𝑡 = 0

 

 

2. Gradient Calculation. At each time step t, compute the gradient of the loss function L 

with respect to the parameters θ: 

𝑔𝑡 = 𝛻𝜃𝐿(𝜗) 

3. Update Moments. Update the first and second moment estimates: 
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𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 

where β1 and β2  are decay rates typically set to 0.9 and 0.999, respectively. 

4. Bias Correction. To counteract the bias introduced during initialization, Adam applies 

bias correction: 

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 

𝑣𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡 

 

5. Parameter Update. Finally, the parameters are updated as follows: 

𝜃 = 𝜃 −
𝛼

√𝑣𝑡 + 𝜖
𝑚̂𝑡 

where α is the learning rate and ϵ is a small constant added for numerical stability. 

Adam’s ability to adaptively adjust the learning rates for different parameters has shown 

significant benefits in the context of GAN training. Evidence from several studies suggests that 

it effectively stabilizes the training process and mitigates issues such as mode collapse, where 

the generator fails to capture the diversity of the target distribution (Kingma, D. P. & Ba, J. 

2015; Radford A. et al., 2015). Additionally, Adam’s performance with sparse gradients 

enhances its utility in GAN applications, which often experience varying training dynamics 

between the generator and discriminator (Alzubaidi L. et al., 2021; Yu X. et al., 2018). 

Empirical evaluations confirm that Adam not only yields lower loss values but also produces 

higher-quality generated samples compared to alternative optimizers, establishing its reputation 

as a robust choice for GAN training due to fast convergence and reliable performance (Karras 

T. et al., 2019; Salimans T. et al., 2016). 

In the architecture employed in this study, several critical hyperparameters were set to optimize 

performance and ensure an effective model training phase. 

The batch size represents the number of training samples processed before the internal 

parameters of the model are updated. This hyperparameter is critical as it directly impacts the 

training dynamics and the stability of gradient estimates. In this study, a batch size of 100 was 
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selected after the sensitivity test. This choice balances computational efficiency with effective 

model training. In fact, using a batch size that is too small presents several disadvantages, 

including increased variability in gradient estimates, which can make convergence unstable 

(Bottou L. and Boucheron O., 2007). Additionally, this may lead to a longer total training time, 

as more iterations are required to complete one epoch. Models with small batch sizes are also 

more susceptible to overfitting, increasing the risk of poor generalization on unseen data 

(Bejani, M., and Ghatee, M., 2021). Moreover, optimizing with smaller batches may involve 

greater computational complexity and resource demands. On the other hand, a batch size that 

is too large presents its own set of disadvantages, such as reducing the model's ability to 

generalize to new data, as the gradient estimates become more deterministic and less variable 

(Hoffer E. et al., 2017; Keskar N. et al., 2016). Additionally, the computational resources 

required increase significantly, limiting training flexibility and making fine-tuning of 

parameters difficult (Kornblith S. et al., 2019). Another drawback is that larger batch sizes can 

lead to increased convergence times, as the model may not effectively learn the complexities of 

the data (Smith L. N. et al., 2018). Finally, excessively large batch sizes can cause memory 

issues, limiting the size of models that can be trained on hardware with reduced capacity 

(Hestness J. et al., 2017). The learning rate (lr) is a critical hyperparameter that governs the step 

size taken during the optimization process to update the model's weights. An appropriately 

selected learning rate can significantly enhance both convergence speed and the overall 

performance of the model. In this study, a learning rate of 0.0001 was employed, which is 

relatively low, and was chosen in consideration of using the Adam optimizer. Adam 

dynamically adapts the learning rates for each parameter, which promotes more stable 

convergence and mitigates the risks of oscillation or divergence during training. Higher learning 

rates can lead to overshooting minima, while lower rates can impede training progress and result 

in getting stuck in local minima (Kingma D.P. and Ba J., 2015). The learning rate directly 

influences the trade-off between convergence speed and stability, rendering it a critical factor 

in the training of deep neural networks (Loshchilov I. and Hutter F., 2016). 

Finally, the “number of epochs” parameter is set to indicate the total number of complete passes 

through the training dataset during the training process. This hyperparameter is essential to 

ensure that the model has adequate opportunities to learn from the data. In this study, 100 epochs 

were utilized, allowing the model to effectively learn from the dataset without risking 

overfitting. The choice of the number of epochs is critical: an insufficient number may lead to 

underfitting, where the model fails to learn the underlying patterns, while an excessive number 
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can result in overfitting, where the model learns the noise and fails to generalize to unseen data 

(Goodfellow I. et al., 2016). This choice was made by monitoring the trends in the errors 

produced by the generator (“g_err”) and the discriminator (“d_err”). Through this configuration 

of hyperparameters, our GAN successfully converges to a solution that optimally balances the 

interaction between the generator and discriminator networks. This meticulous configuration 

culminates in the generation of high-fidelity and high-resolution climate predictions, thereby 

demonstrating the robustness and effectiveness of our methodological framework. 

2.4.4 Training Strategies 

During the training process of the cGAN model, several critical steps were implemented 

to ensure stable learning for both the generator and discriminator. Shuffling of the data was 

deliberately set to "False" to maintain the alignment between the low-resolution (LR) input data 

and the corresponding high-resolution (HR) target data. This alignment is crucial in a 

downscaling task, where each LR sample corresponds directly to a specific HR sample. If the 

data were shuffled, this correspondence would be disrupted, leading to mismatches between 

inputs and targets and, consequently, poor model performance. 

The parameter “d_steps” refers to the number of updates applied to the discriminator during the 

training process of a GAN. In this case, setting “d_steps” = 1 means that for each update of the 

generator, the discriminator is updated once. This approach follows the recommendations by 

Goodfellow I. et al. (2014), which helps to stabilize the training dynamics between the generator 

and discriminator. The training of the discriminator occurs in two stages: first on real data and 

then on fake data generated by the generator. For the real data, the discriminator predicts its 

authenticity, and the loss is calculated using BCEWithLogitsLoss, where the target corresponds 

to the real data label. The discriminator is subsequently trained on the generated fake data, with 

the loss computed using the same function but employing the target for fake data. 

Once the predictions for both real and fake data have been backpropagated and the gradients 

accumulated, the weights of the discriminator are updated. Following this, the generator is 

trained to minimize a weighted combination of pixel-wise loss (using MSELoss) and 

adversarial loss (using BCEWithLogitsLoss). The objective of the generator is to produce 

synthetic data that can effectively deceive the discriminator into classifying it as real. The 

generator's error is thus the weighted sum of these two losses, which is backpropagated, 

followed by an update of the generator's weights using the optimizer. To determine the optimal 

stopping point for the training, we plotted the performance metrics at regular intervals against 
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a test sample of 16 days. This sample included comparisons between the low-resolution data, 

the high-resolution targets, and the high-resolution outputs generated by the cGAN. The error 

metrics derived from these comparisons were instrumental in assessing the quality of the 

generated high-resolution data against the climatic downscaling reference. Additionally, we 

monitored the trends of the errors associated with both the generator and discriminator, which 

provided insights into their respective learning processes and overall model performance. This 

comprehensive evaluation strategy not only enhanced the reliability of our results but also 

ensured that the training was effectively converging toward high-fidelity outputs. 

2.4.5 Custom Loss Functions 

Within the intricate architecture (Fig. 2.6) of our dedicated Conditional Generative 

Adversarial Networks (cGANs) tailored to the challenging task of climate downscaling, the 

careful selection of loss functions stands as a pivotal facet. These loss functions play a decisive 

role in shaping the training process for both the discriminator and generator networks, ensuring 

the acquisition of refined, high-resolution climate predictions that closely emulate real climate 

observations. For the discriminator, tasked with the critical role of distinguishing between 

authentic climate data (VHR_REA-IT) and the generated synthetic counterpart (ERA5-

DownGAN), we have opted for the nn.BCEWithLogitsLoss() (Binary Cross-Entropy with 

Logits) loss function (PyTorch, 2023). This choice is underpinned by its well-recognized 

effectiveness within the GAN framework, serving as a robust measure of dissimilarity between 

the discriminator's predictions and the actual ground truth labels. Notably, the application of 

this loss function involves the sigmoid activation of the discriminator's output, which, in turn, 

facilitates the calibration of the discriminator's acumen. Consequently, the discriminator attains 

an elevated proficiency in discriminating real climate data from the synthetic data generated by 

the GAN, a pivotal element influencing the overall authenticity of the generated climate data. 

Conversely, for the generator network, which forms the core of the downscaling process, a 

combination of loss functions is employed. Two instances of nn.MSELoss() (Mean Squared 

Error) have been chosen (PyTorch, 2023). The first nn.MSELoss() instance takes the forefront 

by quantifying the mean squared error between the high-resolution climate data produced by 

the generator and their real-world counterparts. This primary loss function serves as the driver 

in the training process, compelling the generator to minimize the disparities between its 

synthetic outputs (ERA5-DownGAN) and the authentic climate observations (VHR_REA-IT). 

This approach promotes the faithful replication of statistical attributes embodied by real climate 

data. The second application of nn.MSELoss plays an equally significant role. It acts as a 
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mechanism to ensure the alignment of the higher-resolution climate images synthesized by the 

GAN with the lower-resolution inputs, often constituting the initial data. This usage of the 

second instance of nn.MSELoss safeguards the preservation of essential climatic attributes, 

spatial patterns, and structural integrity during the downscaling procedure. In parallel to these 

fundamental loss functions, the generator network is subjected to nn.BCEWithLogitsLoss() as 

part of the adversarial training process. This special loss function quantifies the differences 

between the discriminator's predictions on the generated climate data and the specified target 

labels. The process compels the generator to craft synthetic climate data that, in practical terms, 

becomes almost indistinguishable from authentic climate observations. This adversarial loss is 

a cornerstone of the GAN architecture, underpinning the generator's multifaceted mission: to 

emulate not only statistical attributes but also the detailed spatial and temporal patterns inherent 

in climatic data. The coordinated use of these loss functions collectively delineates the training 

regimen of our climate downscaling GAN, culminating in the proficient generation of high-

resolution climate inferences that mirror the characteristics of real climate data. This interplay 

of loss functions is the keystone of the convergence process during training, ultimately resulting 

in climate predictions that boast augmented spatial resolution and a remarkable level of 

authenticity, an imperative achievement for the evolving domain of climate downscaling. Each 

loss function was assigned specific weights to reflect the different roles they play in optimizing 

the overall performance of the network. The "pixel_weight" was set to 0.5, giving it a more 

substantial influence in the optimization process due to its critical role in ensuring accurate 

reconstruction of the spatial features of the field. This higher weight emphasizes the importance 

of aligning the pixel-level details of the output with the target high-resolution data, which is 

essential for maintaining spatial fidelity. 

In contrast, the "adversarial_weight" was assigned a lower value of 0.2. This reduced weight 

was chosen to limit the influence of the adversarial component, as it may be more prone to 

instability when the adversarial loss dominates the training process (Arjovsky M. et al., 2017; 

Gulrajani I. et al., 2017). By assigning a lower weight to the adversarial term, we aimed to avoid 

overemphasizing the generation of visually plausible outputs at the expense of numerical 

accuracy, thereby balancing the need for realistic outputs with the requirement for spatial and 

temporal consistency in the reconstructed fields. This strategy enables the GAN to effectively 

model complex dynamics while mitigating the risks of overfitting and instability associated 

with adversarial training (Mescheder L. et al., 2018).
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3 | Application of cGAN for the Italian Peninsula 

In this chapter, after providing a clear explanation of dynamic and statistical 

downscaling methods, detailing their respective advantages and limitations, we present the 

main results of applying the Super-resolution GAN developed centered on the Italian domain. 

The configuration parameters for GAN-based downscaling, including batch size, number of 

epochs, and initial values for the loss function, were carefully optimized through sensitivity 

analysis to identify the most effective settings for this geographical area and the specific 

variable under investigation. The daily 2-meter temperature field was initially used to evaluate 

the performance of our Super-resolution GAN. Subsequently, we further assessed its 

capabilities by applying it to the daily total precipitation field, introducing a higher level of 

complexity to the evaluation. The chapter will also describe the preprocessing techniques 

employed for each variable and provide a comprehensive analysis of the results. This analysis 

will focus on general error metrics, as well as spatial correlation and the assessment of extreme 

values. This detailed examination aims to offer an in-depth understanding of the Super-

resolution GAN's performance and its effectiveness in downscaling applications. 

3.I Downscaling of 2-meter Temperature 

In this section, the GAN's performance in the downscaling process of the 2m-

temperature field over the Italian Peninsula is evaluated by putting side by side the synthetic 

high-resolution dataset (ERA5-DownGAN) generated by the GAN against the real high-

resolution dataset (VHR_REA-IT) produced through dynamic downscaling over the specified 

test interval (01/2001-12/2005). The assessment of the GAN's effectiveness is conducted during 

the test period, wherein exclusively the low-resolution dataset is available. The primary aim is 

to derive a novel high-resolution dataset utilizing the optimized generator from the antecedent 

training phase. The high-resolution dataset does not enter any calculation during the testing 

phase, exclusively employed for validation to assess the similarity between the statistically 

downscaled results data by GAN compared to the dynamically downscaled counterparts.
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A suite of conventional error metrics (BIAS, MAE, RMSE, and CORR), combined with 

graphical representations, are analyzed to assess the performance of the GAN for this specific 

geographic domain and meteorological field. Within this comparison, the 2-meter temperature 

field of the low resolution (ERA5) is further examined to assess its deviation from the high 

resolution and to evaluate the GAN's ability to transition from the distribution characterizing 

the low resolution to that typical of the high-resolution counterpart. This analysis aims to 

provide an in-depth understanding of the GAN's behavior in handling differences between the 

2-meter temperature distributions across the two resolution levels, thus contributing to the 

overall assessment of the model's performance in the context of climatic downscaling. 

3.I.I Results and Analysis: Comparison with Dynamical 

Downscaling 

The temporal trend of the 2-meter temperature field (T_2M) is illustrated in Fig. 3.I over 

the test period (2001-2005) for both high-resolution datasets, real (VHR_REA-IT) and 

synthetic (ERA5-DownGAN) and the real low-resolution dataset (ERA5) across the entire 

considered domain. 

 

Fig. 3.I: Temporal evolution of the daily moving average of the 2m-temperature during the test period, 

calculated with a 30-day window. Mean daily spatial average of the real low-resolution data (ERA5), the real 

high-resolution data (VHR_REA-IT) and the downscaled artificially data (ERA5-DownGAN), created by the 

cGAN. 

 

The time series of the daily moving average of the 2m-temperature exhibit a considerable 

correlation among themselves, with a slight discrepancy in terms of value ranges. The real low-

resolution dataset ERA5 generally records higher temperatures, especially during the colder 
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months compared to VHR, with values oscillating in a range from ~6 °C to about 28 °C. On the 

other hand, the high-resolution dataset generated by GAN (ERA5-DownGAN) not only mirrors 

the trend of the reference high-resolution real dataset (VHR_REA-IT), but also records values 

falling within the same range, showing greater proximity to the VHR_REA-IT dataset than to 

ERA5, especially during the colder months, ranging from ~4 °C to ~28 °C. This highlights the 

capability of GAN to generate not only a temporally correlated dataset but also to maintain 

spatial mean values that deviate very little from the reference dataset. 

 

Fig. 3.2: Temporal evolution of daily differences between the dataset generated by the Conditional Generative 

Adversarial Network (cGAN), the ERA5-DownGAN dataset, and the real VHR_REA-IT dataset. 

 

The analysis of the time series (Fig. 3.2) of daily differences between the dataset generated by 

the Conditional Generative Adversarial Network (cGAN), the ERA5-DownGAN dataset, and 

the real VHR_REA-IT dataset revealed an overall average difference of -0.07 °C across the 

entire domain. A maximum positive difference of 1.91 °C was recorded on March 24, 2001, 

alongside a maximum negative difference of -1.70 °C on March 2, 2004. These values, being 

significantly outside the mean range of -1.2 °C to 1.2 °C, prompted an in-depth analysis of these 

specific days. The objective is to understand the potential causes of this marked deviation from 

the VHR_REA-IT dataset and to assess whether there has been a deterioration in the GAN's 

ability to perform statistical downscaling in line with dynamic downscaling under particular 

meteorological conditions. Therefore, it was decided to examine the synoptic conditions 

associated with these anomalies in order to identify the factors influencing temperature 
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variations during these periods. A detailed discussion of these specific events is provided in 

Appendix A to avoid disrupting the main discussion of the statistical downscaling model 

application to the 2m-temperature, ensuring that proper attention is given to a very interesting 

case study in understanding the performance of the developed cGAN, particularly in anomalous 

contexts. 

According to the time plot of the correlation between the 2-meter temperature (T_2M) fields 

from dynamic downscaling (VHR_REA-IT) and those generated by the GAN during the testing 

period (Fig. 3.3), a robust correlation between the datasets emerges, consistently exceeding 

0.94. This suggests a substantial agreement between the predictions of the statistical model and 

the data from the dynamical model. Nevertheless, a more in-depth analysis reveals temporal 

variations. These fluctuations, exhibiting lower correlation values (as low as 0.87), may suggest 

the model's sensitivity in generating reliable downscaling during specific meteorological 

events, such as changes in atmospheric circulation or the spatial distribution of local 

phenomena. A future challenge will be to meticulously examine these variations to identify 

underlying causes, including factors such as the sensitivity to the choice of certain parameters 

in the GAN for specific atmospheric conditions, ultimately leading to the optimization of the 

architecture. 

 

Fig. 3.3: Correlation evolution of the daily spatial average of the 2m-temperature during the test period. (a)–(c) 

Real low-resolution data (ERA5), the real high-resolution data (VHR_REA-IT) and the downscaled artificially 

data (ERA5-DownGAN), created by the cGAN. 
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3.I.2 Error Metrics Evaluation 

We assessed the performance of our Generative Adversarial Network (GAN) using key 

error metrics: Bias, Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE). These 

metrics provided valuable insights into the accuracy and consistency of the generated data 

compared to the high-resolution dataset during the testing period. 

 

 

Fig. 3.4: Maps of time average. (a)-(d) Mean bias (BIAS), mean absolute errors (MAEs), root-mean-square 

errors (RMSEs), and correlation coefficients (CORRs), comparing downscaled daily 2m-temperatures (ERA5-

DownGAN) with the high-resolution dataset (VHR_REA_IT) for the test period (2001-2005). 

 

Bias: The bias, a measure of systematic error, was calculated to determine the average 

difference between the generated data and the high-resolution reanalysis. A lower bias indicates 

a more accurate representation of the target data.  

BIAS = x_gen − x_real 
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,where x_real is the average value of the real dataset obtained from mean calculation in time, 

x_gen is the corresponding mean value of the generated dataset. 

b. Mean Absolute Error (MAE): The MAE, a measure of absolute error, allowed us to quantify 

the average magnitude of errors between the generated data and the high-resolution dataset. 

Lower MAE values suggest closer resemblance and precision.  

MAE = |x_gen − x_real| 

c. Root Mean Squared Error (RMSE): The RMSE, a measure of square-rooted error variance, 

provided insights into the overall discrepancy between the generated data and the high-

resolution dataset. Lower RMSE values reflect improved accuracy and fidelity of the generated 

data.  

RMSE = √(x_gen − x_real)² 

d. Pearson Correlation: The Pearson correlation quantifies the degree of similarity, ranging from 

-1 to +1, with 0 indicating no linear correlation. This metric succinctly captures the GAN's 

ability to replicate patterns observed in the high-resolution dataset (VHR_REA-IT). 

 

The evaluation metrics, including mean bias (BIAS), root-mean-square errors (RMSEs), mean 

absolute errors (MAEs), and correlation coefficients (CORRs), comparing downscaled daily 

2m-temperatures (ERA5-DownGAN) with the high-resolution dataset (VHR_REA_IT) for the 

test period (01/2001-12/2005), are shown in Fig. 3.4. Specifically, major differences are 

observed in regions characterized by complex orography. Regarding BIAS, the range spans 

from -0.5° to +0.5°, with a distinct negative peak centered over Central Europe within our 

investigation domain. Meanwhile, MAE and RMSE exhibit values ranging from 0.5°C to 1.5°C 

and 0.5°C to 2°C, respectively. Throughout the test period, the mean correlation consistently 

approaches 1, with lower values observed near the African, Calabrian, and Sicilian coasts, as 

well as in proximity to the Alps and Etna volcano. 

3.I.3 Spatial and Temporal Consistency 

The comparison among real low-resolution (58x80 grid points), real high-resolution 

(680x535 grid points), and downscaled ERA5-DownGAN (680x535 grid points) high-

resolution test datasets are illustrated in Fig. 3.5. This depicts maps of 2m-temperature field 

over the entire computational domain for one random day of the test period. ERA5-DownGAN 
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was generated utilizing the generator saved after 100 training epochs. The decision to select the 

generator after this specific number of epochs is based on the observed decrease in the 

generator's error beyond this designated epoch count. Simultaneously, the artificially high-

resolution data (ERA5-DownGAN) captures the 2m-temperature pattern observed in real high-

resolution data (VHR_REA-IT), especially the intricate structures along the Alps and 

Apennines, achieving a remarkable level of resolution with all topographical details 

prominently visible.  

 

 

 

 

 

 

 

 

Fig. 3.5: Examples of one day from the test data set. (a)–(c) Real low-resolution data (ERA5), the real high- 

resolution data (VHR_REA-IT) and the downscaled artificial data (ERA5-DownGAN), created by the cGAN. 

 

Furthermore, the GAN output (ERA5-DownGAN) effectively mitigates ERA5's tendency to 

generate a field colder than VHR_REA-IT, maintaining values very close to real high-resolution 

data with slight underestimation, resulting in an overall slightly cooler field. 

 

Fig. 3.6: Scatter diagram for evaluating the correlation between ERA5, VHR-REA_IT and ERA5-DownGAN. 

a) 

b) c) 
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According to Fig. 3.6, this suggests a higher correlation between the new high-resolution dataset 

and the real high-resolution dataset compared to the low-resolution dataset. The results clearly 

show that both the spatial distributions and magnitudes of the downscaled 2m-temperature 

(ERA5-DownGAN) are statistically like those of the real high-resolution dataset 

(VHR_REA_IT). 

 

 

Fig. 3.7: Comparison of seasonal 2m-temperature (T_2M) for real low-resolution data (ERA5), the real high-

resolution data (VHR_REA-IT), and the downscaled artificial data (ERA5-DownGAN), created by the cGAN. 

 

In Fig. 3.7, the seasonal 2m-temperature (T_2M) maps show that the dataset generated by the 

GAN, ERA5-DownGAN, accurately reproduces the spatial patterns and values observed in the 

high-resolution VHR_REA-IT dataset. The results indicate a strong ability of the generative 

model to capture both spatial structures and seasonal variations, with minimal discrepancies 
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from the real data. However, a slight general underestimation of values generated by the GAN 

is evident, particularly in regions of Central Europe, such as between Austria and Hungary, and 

in some areas of northwestern Italy. 

3.I.4 cGAN's Ability to Capture Extreme Values 

The assessment of percentiles ranging from the 1st to the 99th in Fig. 3.8 facilitates an 

understanding of the extent to which the generated data aligns with the distribution 

characteristics of the high-resolution dataset. The comparison of percentile values proved 

valuable in evaluating the GAN's ability to accurately capture extreme events and the overall 

distribution of the data. For the creation of the boxplots in Fig. 3.8, a rigorous and detailed 

methodology was implemented to capture the spatiotemporal variability complexity of the 2m- 

temperature. Specifically, the boxplots were derived by considering all values obtained from 

calculating a single value for each specific percentile (from 1st to 99th) across the entire 

geographical domain.  

 

Fig. 3.8: Comparison of the 2m-temperature (T_2M) distribution for real low-resolution data (ERA5) with the 

gray rectangle, the real high-resolution data (VHR_REA-IT) with the blue rectangle, and the downscaled 

artificial data (ERA5-DownGAN), created by the GAN with a white rectangle for each percentile from the 1st to 

the 99th. 

 

The detailed analysis of the boxplots in the results highlights significant differences in the 

distribution of 2m temperature between the low-resolution real dataset (ERA5) and the two 

high-resolution datasets, real (VHR_REA-IT), and generated through GAN (ERA5-

DownGAN). Overall, ERA5 consistently tends to exhibit a median and distribution shifted 

towards higher temperature values compared to the other two datasets for all analyzed 

percentiles, even with notably higher positive extremes for lower percentiles (1st and 5th; from 

95th to 99th) and notably lower negative extremes for percentiles from 1st to 25th. Furthermore, 
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a wider dispersion is observed, clearly represented by the greater extension of the whiskers 

compared to the other two datasets, especially with the upper whisker extending more than the 

lower one for percentiles above the 95th; whereas a lesser extension of the whiskers is observed 

for the 10th and 25th percentiles. This indicates a tendency of ERA5 to predict higher 

temperatures compared to the other datasets (for both upper and lower extremes). For the 

medium percentiles, ERA5 records a median and dispersion similar to those of the other 

datasets. In the comparison between the results obtained from the GAN and VHR_REA-IT, 

significant similarities emerge in the overall distribution, with the GAN accurately replicating 

the median and whisker extension of VHR_REA-IT. However, a slight shift is observed in the 

limits of the upper and lower whiskers towards lower values compared to VHR_REA-IT. This 

may suggest that the GAN has introduced a slight systematic discrepancy in the predicted values 

relative to the high-resolution dataset, shifting the extreme values towards lower values (for 

both upper and lower extremes). This analysis, comparing the GAN-generated data (ERA5-

DownGAN) with the real high-resolution dataset (VHR_REA-IT) for the test period, 

demonstrates promising results in terms of accuracy and consistency, reproducing a temperature 

field characterized by the same distribution, median, and approximately equal extreme values. 

 

Fig. 3.9: Comparison of the probability density functions (PDF) of the 2m-temperature distribution for the 

ERA5, VHR_REA-IT, and ERA5-DownGAN datasets. 
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The analysis of the Probability Density Functions (PDFs) of the three 2m temperature datasets 

(Fig. 3.9), ERA5, VHR_REA-IT, and ERA5-DownGAN, reveals a similarity in the overall 

shape of the curves, indicating consistency in the distribution of temperatures. However, an 

interesting observation arises in the ERA5 dataset, which displays a slight modulation in the 

right tail of the curve, a phenomenon not observed in the other two datasets. This suggests a 

specific characteristic in the distribution of temperatures for ERA5. Additionally, the persistent 

tendency of ERA5 to be shifted towards higher values is confirmed by this analysis, with a 

range between 10°C and 25°C and a significantly lower variability, which is obviously due to 

the different grid point numbers resulting from the different resolutions. On the other hand, the 

distribution of the GAN mirrors a range similar to that of VHR_REA-IT, ranging from -10°C 

to 25°C. The overlapping curves of ERA5-DownGAN and VHR_REA-IT at many points 

highlight the GAN's ability to faithfully replicate the high-resolution temperature distribution. 

However, it is important to note that the GAN's curve exhibits a slightly lower primary peak 

compared to VHR, centered around 19°C, and a secondary peak around 13°C, which is slightly 

lower and shifted to the left compared to VHR_REA-IT, settling around 12°C. These details 

unveil subtle differences in the reproduction of temperature peaks by the GAN compared to the 

high-resolution dataset. 

 

Fig. 3.I0: Scatter diagram for the test period comparing the correlation of all pairs of grid points of the real 

dataset (VHR_REA-IT) with the correlation of all pairs of grid points of the synthetic dataset by GAN (ERA5-

DownGAN). 



60 
 

Following Sperati et al. (2017), a quantitative assessment of spatial structure using a scatter plot 

that illustrates the correlation between all pairs of grid points from both the real dataset 

(VHR_REA-IT) and the dataset generated by GAN (ERA5-DownGAN) is conducted. This 

diagram was computed for the entire test period, employing a color-encoded kernel density 

estimation technique (Venables and Ripley, 2002) to enhance visualization, as depicted in 

Figure 3.I0. The y-axis in the figure represents the average correlation between all pairs of grid 

points in the real dataset (VHR_REA-IT). On the other hand, the x-axis is determined by 

computing the average correlation between all pairs of grid points in the GAN dataset (ERA5-

DownGAN). The scatter plot reveals that the artificially generated high-resolution dataset by 

the Generative Adversarial Network (GAN) closely mirrors the spatial correlation structure of 

the reference real high-resolution dataset. The data points follow the 1:1 line, and there is a 

larger dispersion around it, ranging from -0.25 to +0.25. The higher density is observed from 

0.5 to 1, indicating a predominant positive correlation between grid points in both high-

resolution datasets. Focusing on specific areas of interest in the plot, excluding regions with 

negligible correlation, more significant features can be identified. In the range from -0.75 to -

0.25 (Fig. 3.I0, at the top left), corresponding to the anti-correlation area between grid points, 

the GAN-produced dataset exhibits a stronger negative correlation compared to the dynamically 

downscaled dataset (VHR_REA-IT), with a higher density around -0.3. Similarly, in Fig. 3.I0 

at the bottom right, which depicts spatial correlation values exceeding 0.8, a higher positive 

correlation is evident in the statistically downscaled dataset compared to the dynamically 

downscaled one. Finally, for values exceeding +0.95, there is a slight reversal of this pattern. 

Specifically, two areas with higher density can be identified, around +0.83 and +0.95. The 

observed spatial correlation trend in the GAN implies a higher level of correlation among grid 

points, whether positively or negatively, compared to VHR_REA-IT. In practical terms, this 

suggests that the GAN generates a field with more coherent temperature variations, exhibiting 

a more pronounced and structured pattern compared to the actual dataset, a characteristic often 

described as a smoother field. Positive correlations result in more similar temperature variations 

among neighboring points, contributing to a more homogeneous field. Conversely, negative 

correlations lead to opposite temperature variations among nearby points, creating a field with 

more distinct variations. In summary, our results suggest that the GAN introduces a heightened 

level of coherence and structural organization in the generated data compared to dynamical 

downscaling. Nevertheless, these distinctions are minor when contrasted with the overarching 

pattern of the GAN-generated high-resolution dataset (ERA5-DownGAN), which demonstrates 
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a correlation between points closely mirroring that observed in the actual VHR_REA-IT 

dataset. 

3.I.5 Computational Details 

Computational results achieved through the implementation of the Generative 

Adversarial Network (GAN) bear paramount significance in the landscape of climate 

downscaling. All simulations were performed on Zeus supercomputer 

(https://www.cmcc.it/research/super-computing-center), hosted at the CMCC, equipped with 

Intel(R) Xeon(R) Gold 6130 CPU 2.10GHz, with 36 physical cores. This computational 

resource facilitated the tackling of ambitious challenges concerning scalability and 

computational complexity. 

In the context of this research, it is crucial to highlight that the implementation of the Generative 

Adversarial Network (GAN) was carried out sequentially following a serial approach. The 

execution of the code was performed using 72 cores in the computational process. One salient 

aspect of our computational findings lies in the remarkable efficiency of the GAN-based 

downscaling approach. The run-time for the training phase was approximately 4 hours to 

simulate 10 years (Tab. 3.Ia), and about 2.5 minutes to simulate 5 years during the testing phase 

(Tab. 3.Ib). This achievement assumes extraordinary importance when compared against the 

substantially protracted timescales required by conventional dynamic downscaling 

methodologies. This computational prowess enables fast generation of high-resolution climate 

predictions, endowing us with a considerable advantage in terms of timeliness for climate 

change analysis and response planning. The utilization of cutting-edge computational resources 

and the optimization of the GAN-based downscaling framework signify a significant leap 

forward within the scientific climate community. They underscore the fact that innovative 

computational solutions can profoundly enhance our capacity to comprehend and proactively 

manage the intricacies of climate change.  

years lr samples batch size epochs time/training 

10 0.0001 4000 100 100 ~ 4 h 

 

years samples batch size time/test 

5 2000 100 ~ 2.5 min 

 

Tab. 3.I: Computational details for the training period (a) and test period (b) on Zeus Supercomputer. 
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The training time, indicated in Tab. 3.Ia, doubles when considering the checks performed to 

evaluate the training at regular intervals, which involve plotting the ERA5 (LR), VHR_REA-

IT (HR), and Era5-DownGAN (HR) maps, as well as the error metric maps. 

3.2 Downscaling of Total Precipitation 

This section analyzes the application of the previously developed Conditional 

Generative Adversarial Network (cGAN), following the extremely promising results achieved 

in downscaling the 2-meter temperature field. These results demonstrated not only the GAN’s 

ability to capture the mean values of the distribution but also its capability to accurately model 

extremes, as well as maintaining spatial and temporal consistency with the high-resolution field. 

The precision and reliability of the GAN in reconstructing the 2-meter temperature fields at a 

national scale, with very high levels of accuracy in both the training and test phases, laid the 

foundation for a new phase of experimentation. Thus, it was deemed appropriate to extend the 

application of the same GAN architecture to a more complex meteorological variable: total 

cumulative precipitation. Precipitation represents one of the most challenging variables to 

model, as it is affected by highly heterogeneous atmospheric phenomena and physical 

processes, influenced by topographic factors, local dynamics, and large-scale climatic 

conditions. Specifically, applying a statistical downscaling model like the GAN to the 

precipitation field is a considerable challenge, given the high spatial-temporal variability 

characterizing this variable, especially in a complex and diverse territory such as Italy. Indeed, 

Italy presents extremely heterogeneous meteorological conditions, with mountainous regions, 

plains, and coastal areas generating very different precipitation dynamics, making the problem 

of downscaling precipitation even more demanding and pioneering. Due to the complexity of 

the phenomenon, applying the cGAN to the precipitation field represents a crucial test of the 

flexibility and versatility of this architecture. While the results obtained for T_2M have 

undoubtedly been encouraging, it is necessary to demonstrate that the GAN can maintain 

competitive performance even for variables whose modeling is intrinsically more challenging. 

The ability of a GAN-based neural network used for downscaling to adapt to different contexts, 

such as domains and variables, is a key indicator of the robustness of the model. 

The datasets used for training and testing the GAN in the precipitation field are consistent with 

those employed for T2M: VHR_REA-IT (~2.2 km) for high resolution and ERA5 for the low-

resolution counterpart (31 km). The training and testing periods are also consistent with the 
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previously analyzed atmospheric field, 1990–2000 for training and 2001–2005 for testing. This 

methodological continuity in transitioning from downscaling the 2-meter temperature field to 

the precipitation field allows for a comparative evaluation of the results, highlighting how the 

GAN performs in a variable and complex field like precipitation compared to a more regular 

field such as temperature. Notably, the national-scale application of the GAN model to the 

precipitation field has the potential to significantly improve the understanding of high-

resolution precipitation dynamics, particularly in orographically complex regions such as the 

Alps, the Apennines, and Italian coastal zones. This provides a valuable and rapid tool for 

various applications, including weather forecasting, water resource management, and 

hydrogeological risk planning. The extension of the developed cGAN to the precipitation field 

is not merely a technical challenge but a critical step in verifying the model's ability to adapt to 

variables with complex dynamics, confirming it as a versatile and robust tool for statistical 

downscaling in climatology. Although the results obtained for the 2-meter temperature field 

(T_2M) were extremely promising, demonstrating the GAN’s capacity to capture the essential 

characteristics of the variable with a high degree of accuracy, it is essential to proceed with 

caution when applying the same architecture to the precipitation field. Given the intrinsic 

complexity of the precipitation field, it is unrealistic to expect, from the initial experimental 

phases, that the GAN will achieve performance entirely comparable to those observed for T2M 

without an appropriate optimization process. In the case of precipitation, spatial and temporal 

variability is much more pronounced and nonlinear, implying that the network’s sensitivity to 

hyperparameters could be significantly different. Consequently, sensitivity tests are essential to 

explore the hyperparameter space, including batch size, learning rate, loss function weights, 

and the number of epochs. 

Experiments Scaling Logarithmic 

Transformation 

Normalization 

Scheme 

d_step Pixel_loss  

weight 

Pixel_adversarial 

weight 

EXP0 -1 to 1 NO Scheme 3 

(Fig. I.2) 

1 0.5 0.2 

EXP1 -1 to 1 YES Scheme 3 

(Fig. I.2) 

1 0.5 0.2 

EXP2 -1 to 1 YES Scheme 3 

(Fig. I.2) 

1 0.7 0.3 

EXP3 -1 to 1 YES Scheme 3 

(Fig. I.2) 

5 0.5/ 

0.7 

0.2/ 

0.3 

EXP4 -1 to 1 YES Scheme 1 

(Fig. I.2) 

5 0.5 0.2 

 

Tab. 3.2: Sensitivity experiments, including scaling methods, logarithmic transformation, normalization scheme, 

and discriminator update steps. 
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Additionally, given the more random and discontinuous nature of precipitation compared to 

temperature, it may be necessary to implement advanced regularization techniques to avoid 

overfitting, particularly in geographic areas characterized by irregular precipitation distribution. 

Further tests may involve temporal resolution to examine how the network responds to different 

temporal resolution configurations and to ensure that precipitation dynamics are captured with 

adequate detail, especially in areas subject to extreme phenomena or orographically complex 

regions. However, the primary goal of this study is to maintain the same innovative architecture 

developed and tested for 2m-temperature across other fields, making only modifications that 

do not alter the developed architecture, thereby demonstrating its versatility. Thus, this section 

reports on several sensitivity experiments conducted (illustrated in Tab. 3.2), regarding dataset 

normalization, loss function weights, and d_step to identify areas for improvement and guide 

the development of future versions of the network. Only through this iterative approach, 

combining sensitivity tests and hyperparameter optimization, will it be possible to achieve a 

versatile architecture while maintaining high performance even for complex fields like 

precipitation. 

3.2.I Logarithmic transformation  

The preliminary application for the downscaling of daily total cumulative precipitation 

(TOT_PREC) of the Conditional Generative Adversarial Network (cGAN) developed, 

establishes the EXP0. In this preliminary assessment, the architecture and hyperparameters 

were maintained in alignment with those utilized in the application for 2m-temperature. This 

methodological choice allowed for the assessment of the model's performance in a different 

data context while ensuring a consistent initial configuration. The same data normalization 

scheme was adopted, as illustrated in Fig. 2.4, and a scaling process was applied to constrain 

the values within the range of -1 to 1, ensuring the homogeneity and comparability of the input 

variables. The analysis of the results obtained from the EXP0, during testing phases, as reported 

in Fig. 3.13 revealed significant limitations in the model's performance when applied to 

precipitation data. Specifically, the GAN, using this scaling approach, is unable to adequately 

reconstruct the precipitation field even after 300 training epochs. In response to these 

observations, an additional step was integrated into the preprocessing process: the logarithmic 

transformation. This approach proved essential for the treatment of precipitation data, as these 

values frequently exhibit a highly skewed distribution characterized by extremely variable 

values, often concentrated at relatively low levels (as shown in Fig. 3.II). Unlike temperature 

data, for which a simple normalization between -1 and 1 is generally adequate, precipitation 
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data require a more sophisticated treatment. The logarithmic transformation helps to mitigate 

the influence of outlier values and stabilize the variance, thereby enhancing the model's ability 

to learn and generate meaningful patterns. 

Numerous previous studies support this necessity (e.g. Obaid H.S. et al, 2019; Singh, D., and 

Singh, B., 2019), demonstrating that the adoption of advanced normalization techniques, 

including logarithmic transformation, can lead to a significant improvement in the performance 

of precipitation forecasting models. To address the issue of applying a logarithmic 

transformation to null values in the dataset, where no precipitation is recorded, this study 

utilizes the function np.log1p. This function calculates the natural logarithm of 1 + x for each 

element x in the array. Therefore, for a value of zero, the calculation becomes: 

𝑛𝑝. 𝑙𝑜𝑔 1 𝑝(0) = 𝑙𝑜𝑔(1 + 0) = 𝑙𝑜𝑔(1) = 0 

This function effectively manages zero values by transforming them into zero without the need 

for an additional offset Unlike a previous study, Leinonen J. et al. (2020), where the authors 

added a small offset θ = 0.17 to their data, found that the choice of this parameter did not 

significantly influence the results, our approach opts to directly use the np.log1p function, 

which can be interpreted as applying an "offset" of 1. Furthermore, while both studies apply a 

logarithmic transformation, this work normalizes the data between -1 and 1, in contrast to 

Leinonen J. et al. (2020), who normalize their data between 0 and 1. This choice of 

normalization allows for a better representation of the variability in precipitation data in 

downscaling contexts. 

 

Fig. 3.II: Comparison of the total precipitation grouped for seasons (TOT_PREC) distribution for real low-

resolution data (ERA5) with the gray rectangle, the real high-resolution data (VHR_REA-IT) with the blue 

rectangle. 
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The original datasets reveal distributions ranging from 0 to 7, with outliers reaching up to12 for 

the VHR_REA-IT dataset, and from 0 to 8, with outliers extending to 13 for ERA5 (see Fig. 

3.II). While scaling the data to a range of -1 to 1, as applied to the 2-meter temperature variable, 

effectively reduced the influence of outliers, it also resulted in significant compression of values 

near -1, thereby limiting their variability (see Fig. 3.I2). This issue became particularly apparent 

when evaluating the model's ability to reconstruct precipitation fields in the experiment (EXP0, 

Tab. 3.2), which utilized the same scaling configuration as for 2-meter temperature variable.  

 

Fig. 3.I2: Comparison of the total precipitation scaled from -1 and 1 and grouped for seasons (TOT_PREC) 

distribution for real low-resolution data (ERA5) with the gray rectangle, the real high-resolution data 

(VHR_REA-IT) with the blue rectangle. 

 

In response to the results obtained from EXP0 and the need to make the input provided to the 

GAN more symmetrical, we implement a logarithmic transformation on both input datasets 

(VHR_REA-IT and ERA5) before applying the scaling between -1 and 1. This logarithmic 

transformation is particularly advantageous for addressing highly skewed distributions 

commonly observed in precipitation data, resulting in a more balanced range of values between 

-1 and -0.3. Not only does this approach mitigate the impact of outliers, but it also enhances the 

normality of the data distribution, making it more closely resemble a Gaussian distribution.  
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Fig. 3.I3: Example of one day from the test data set, generated by cGAN in EXP0. 

 

The boxplots presented in Fig. 3.I4 clearly illustrate the marked improvement in value 

distribution following the combined application of logarithmic transformation and scaling to 

the range of -1 to 1. The boxplots in Fig 3.II, Fig. 3.I2,  and Fig. 3.I4 illustrate the distribution 

of total precipitation (TOT_PREC) averaged spatially, obtained by aggregating daily 

precipitation data for each season. 

 

Fig. 3.I4: Comparison of the total precipitation with logarithmic transformation and scaling from -1 and 1; it is 

grouped for seasons (TOT_PREC) distribution for real low-resolution data (ERA5) with the gray rectangle, the 

real high-resolution data (VHR_REA-IT) with the blue rectangle. 

 

The results of the EXP1, with new normalization (logarithmic transformation and scaling), are 

illustrated in Figure 3.15. It shows a comparison between the low-resolution real dataset (58x80 
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grid points), the high-resolution real dataset (680x535 grid points), and the downscaled high-

resolution dataset generated by the ERA5-DownGAN model (680x535 grid points). The maps 

show the total precipitation field across the entire computational domain for three randomly 

selected days from the test period. The improvements relative to the baseline experiment 

(EXP0) are substantial in this new experiment (EXP 1). The GAN model is now capable of 

reconstructing precipitation patterns with a spatial distribution that closely mirrors the real high-

resolution counterpart (VHR_REA-IT). Notably, the downscaled GAN dataset exhibits a clear 

enhancement in detail compared to the low-resolution ERA5 data (Fig. 3.I5). Furthermore, the 

values consistently fall within the range of the high-resolution real dataset, indicating a reliable 

representation of precipitation patterns. 

 

 

Fig. 3.I5: Examples of three random days from the test data set, generated by cGAN in EXP1. 

 

The temporal trend of the total precipitation field (TOT_PREC) is illustrated in Fig. 3.I6 over 

the test period (2001-2005) for both high-resolution datasets, the real dataset (VHR_REA-IT) 
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and the synthetic dataset (ERA5-DownGAN), alongside the real low-resolution dataset (ERA5) 

across the entire study domain.  

 

Fig. 3.I6: Temporal evolution of the daily moving average of the total precipitation  during the test period, 

calculated with a 30-day window. Mean daily spatial average of  the real low-resolution data (ERA5), the real 

high-resolution data (VHR_REA-IT) and the downscaled artificially data (ERA5-DownGAN), created by the 

cGAN in EXP1. 

The time series of daily total precipitation demonstrates a generally strong correlation among 

the datasets, albeit with some minor discrepancies in value ranges. Notably, ERA5 tends to 

deviate from VHR_REA-IT, either significantly or overlaps with it, often positioning itself at 

an intermediate level between the two datasets, with few exceptions. The displayed trends are 

smoothed using a 30-day moving average, which is derived from spatially averaging the 

precipitation data. 

 

Fig. 3.I7: Scatter diagram for evaluating the correlation between ERA5, VHR-REA_IT, and ERA5-DownGAN. 
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According to Fig. 3.I7, this suggests that the new high-resolution dataset exhibits a higher 

spatial-temporal correlation with the real high-resolution dataset (VHR_REA-IT) for lower 

precipitation values compared to the correlation observed between the low-resolution dataset 

(ERA5) and VHR_REA-IT, while the correlation for higher precipitation values remains similar 

between the two datasets. 

The analysis of percentiles, from the 75th to the 99th, presented in Fig. 3.I7, allows for 

evaluating the extent to which the data generated by the GAN replicates the distributional 

characteristics of the high-resolution real dataset for total precipitation. The decision to focus 

on higher percentiles is justified by the inherently skewed nature of precipitation distributions, 

where low or zero values are more frequent. As a result, the examination of higher percentiles 

provides a more insightful evaluation of the GAN’s ability to capture extreme events, which, 

while rare, are of significant meteorological importance.  

 

Fig. 3.I8:  Comparison of the total precipitation (TOT_PREC) distribution for real low-resolution data (ERA5) 

with the gray rectangle, the real high-resolution data (VHR_REA-IT) with the blue rectangle, and the 

downscaled artificial data (ERA5-DownGAN), created by the cGAN in EXP1 with a white rectangle for each 

percentile from the 75th to the 99th. 

 

The analysis reveals that the GAN-generated dataset, ERA5-DownGAN, exhibits a lower 

median compared to the high-resolution real dataset (VHR_REA-IT) across percentiles 95 

through 99. The data generated by the Generative Adversarial Network (GAN) model reveal a 

lower median in comparison to the high-resolution real dataset (VHR_REA-IT) within the 95th 
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to 99th percentile range. Nonetheless, the dispersion of central data, as represented by the 

interquartile range (IQR), is comparable to that of the VHR_REA-IT dataset. This observation 

indicates an enhancement in the distribution when contrasted with the ERA5 dataset, which 

exhibits reduced dispersion of central data. Moreover, the upper whiskers of the boxplot for the 

GAN-generated dataset align more closely with those of VHR_REA-IT than with those 

observed in ERA5. Importantly, the GAN model also demonstrates a greater prevalence of 

outliers compared to VHR_REA-IT, suggesting increased variability in the extreme values of 

the generated dataset. Several factors may contribute to this behavior. Firstly, GANs are 

engineered to learn the underlying distribution of real-world data; thus, if the model fails to 

accurately capture the patterns associated with extreme precipitation or rare occurrences, it may 

yield a lower median. Additionally, the presence of outliers exhibiting higher values than those 

in the real dataset may stem from the GAN's proactive exploration of the generated data space, 

resulting in the creation of rare and extreme samples. This phenomenon is particularly 

pronounced if the training dataset underrepresents high-intensity precipitation events, 

prompting the model to compensate by generating elevated values. 

Finally, it is imperative to recognize the significance of hyperparameter selection, especially 

the weights assigned to the loss functions, as they can greatly influence the performance and 

outcomes of the GAN model. In light of these findings, a decision was made to further 

investigate the weights associated with the loss functions during the training process. 

Specifically, it was deemed appropriate to increase the weight of the pixel loss to encourage the 

generator to produce values more consistent with the actual distribution, thereby improving the 

median of the outputs. Concurrently, reducing the weight of the adversarial loss may contribute 

to stabilizing the generator's outputs, limiting the generation of extreme values and outliers. 

Therefore, the study proceeded with EXP2, aimed at optimizing the model's performance, 

ensuring greater coherence with the real data, and achieving a more accurate representation of 

the desired statistical characteristics. 
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Fig. 3.I9:  Comparison of seasonal total precipitation (TOT_PREC) for real low-resolution data (ERA5), the real 

high-resolution data (VHR_REA-IT), and the downscaled artificial data (ERA5-DownGAN), created by the 

cGAN. 

The seasonal analysis is illustrated through maps (see Fig. 3.I9) depicting the mean precipitation 

values for each region across the three analyzed datasets. These maps highlight the GAN 

model's capability to effectively reconstruct the intricate details of precipitation patterns 

observed in the high-resolution dataset (VHR_REA-IT). In contrast, the ERA5 dataset, due to 

its lower resolution, demonstrates a limited ability to capture these details. Notably, in certain 

specific areas, the dataset generated by the GAN exhibits shapes that are more reminiscent of 

those reproduced by ERA5, albeit with precipitation values that are closer to those of 

VHR_REA-IT. Also in this context, increasing the weight associated with pixel loss at the 

expense of adversarial loss may further enhance the model's ability to accurately reproduce 

precipitation structures. 
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Tab. 3.3: Descriptive statistics for monthly totals, medians, maximum values, and interquartile ranges (Q1 and 

Q3) across the ERA5, VHR_REA-IT, and ERA5-DownGAN datasets.  

 

A detailed statistical analysis of the precipitation datasets (see Tab. 3.3) reveals the significant 

impact of downscaling, revealing substantial differences between high-resolution datasets 

(ERA5-DownGAN and VHR_REA-IT) and the coarse-resolution ERA5. The results show that 

ERA5 consistently underestimates maximum values compared to VHR_REA-IT across all 

months, while recording a higher third quartile (Q3). This discrepancy can be attributed to 

ERA5’s lower spatial resolution, which fails to capture local variations during extreme 

precipitation events. Consequently, maximum values are spread over larger areas, leading to an 

overestimation of Q3 (see Tab. 3.3) and the median compared to high-resolution datasets 

(particularly evident for the 90th and 95th percentiles in Fig. 3.I8). Boxplots further support 

this observation, showing that ERA5 exhibits reduced spread around the median for extreme 

percentiles (98th and 99th), in contrast to both ERA5-DownGAN and VHR_REA-IT. 

Conversely, ERA5-DownGAN better approximates VHR_REA-IT’s maximum values, 

particularly in January, February, May, July, and December. Median values across all months 

for ERA5-DownGAN are almost identical to those of VHR_REA-IT, demonstrating greater 

agreement compared to ERA5. 

We report in Tab. 3.3 the sum for ERA5 for informational purposes only, as the differing 

resolution and, consequently, the varying number of grid points render the values incomparable 

to those of the high-resolution datasets. Regarding cumulative precipitation sums, ERA5-

DownGAN aligns closely with VHR_REA-IT, though with a slight underestimation, 

particularly in June and July. This improvement indicates that the GAN-based architecture 

successfully reconstructs precipitation fields that more accurately reflect the patterns observed 

in the high-resolution dataset. Low-resolution models, such as ERA5, tend to overestimate 

moderate or light precipitation events, contributing to an overall overestimation of total 

precipitation. The frequency analysis (Fig. 3.2I) further illustrates ERA5’s overestimation of 
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light and moderate precipitation events. A logarithmic y-axis is used to better visualize higher 

precipitation classes, where frequency would otherwise appear small and compressed. This 

overestimation diminishes for more intense events (>20 mm), where ERA5 demonstrates more 

realistic behavior, although it still underestimates higher-intensity events. This discrepancy, as 

noted, is primarily due to the different resolutions of the datasets. ERA5, being a coarser-

resolution model, struggles to capture localized, intense precipitation events, which can lead to 

overestimation of light and moderate events due to spatial averaging. In contrast, VHR_REA-

IT shows greater accuracy for high-intensity precipitation events, likely due to its ability to 

resolve local features such as orography, which significantly affects precipitation patterns in 

mountainous or coastal regions. ERA5-DownGAN performs more similarly to VHR_REA-IT 

across different frequency classes, with the notable exception of values >200 mm, where it still 

exhibits some overestimation of very intense events. Not surprisingly, all three datasets show 

similar behavior in the low-intensity precipitation range. Events with negligible precipitation 

(0-1 mm) are frequent and are likely not significantly influenced by spatial resolution. 

To assess the spatial distributions of the two high-resolution datasets, observed and those 

generated through GAN downscaling, we conducted an analysis of the averaged error metrics 

over the entire study period (Fig. 3.20). Our findings consistently demonstrate the tendency of 

the GAN model to underestimate precipitation, particularly in mountainous regions where bias 

and mean absolute error (MAE) can reach up to 10 mm. Specifically, the average bias is 

approximately -1 mm, while the mean MAE is around 1.4 mm. In terms of root mean square 

error (RMSE), the most pronounced values, reaching up to 15 mm, are observed in these 

complex terrains, with an overall average of approximately 4.5 mm. Despite this 

underestimation, the correlation map (Fig. 3.20) indicates a strong correlation over terrestrial 

areas, with values approaching unity in regions characterized by significant underestimation. 

This high correlation implies that, although the model consistently underestimates precipitation, 

the identified patterns remain coherent with the observed data. Such consistency is a positive 

indicator of the model's predictive capabilities, notwithstanding the negative bias. In contrast, 

the lowest correlation values are observed in marine areas, which presents a remarkable 

condition potentially attributable to the absence of sea assimilation in the COSMO-CLM model. 

This model generates the VHR_REA-IT data through dynamic downscaling, leading to 

predictions of precipitation patterns that diverge from those produced by ERA5. 
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Fig. 3.20: Maps of time average. (a)-(d) Mean bias (BIAS), root-mean-square errors (RMSEs), mean absolute 

errors (MAEs), and correlation coefficients (CORRs), comparing downscaled daily total precipitation (ERA5-

DownGAN) with the high-resolution dataset (VHR_REA_IT) for the test period (2001-2005). 

 

The correlation between model estimates and observed data ranges from 0.6 to 1, exhibiting 

particularly high correlations in mountainous regions. This elevated correlation underscores the 

model's ability to maintain alignment with observed data, even in the face of precipitation 

underestimation. Such findings underscore the model's predictive capacity, suggesting that it 

retains a degree of robustness despite the inherent negative bias. 

In conclusion, the downscaling process, particularly for precipitation fields, proves crucial in 

achieving a better correlation with high-resolution observational datasets compared to the 

coarse ERA5 field. However, the cGAN model in its current EXP1 configuration still shows 
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room for improvement, primarily due to its tendency to overestimate values associated with 

very intense events and its slight underestimation of median values relative to VHR_REA-IT.  

 

Fig. 3.2I:  Frequency distribution of precipitation events across different intensity classes for datasets: 

VHR_REA-IT (blue), ERA5-DownGAN (grey) and ERA5 (coral). The use of a logarithmic y-axis highlights the 

occurrence of higher-intensity precipitation events. 

 

This has prompted further investigations, focusing specifically on the model's hyperparameters, 

particularly the weights associated with the loss functions, which will be explored in the next 

section and examined in EXP2. Overall, the results from EXP1 demonstrate that the developed 

GAN is capable of reconstructing the complex patterns characteristic of the precipitation field, 

and that the architecture designed for 2m-temperature proves valid even for more complex 

variables like precipitation. Therefore, the EXP1 establishes a benchmark (EXP0) for 

evaluating the performance of subsequent experiments and improvements. 

3.2.2 Exploring the Influence of Loss Weights and d_step in 

ERA5-DownGAN 

Based on the results obtained from EXP1, we decided to explore different combinations of two 

fundamental parameters in GANs: the weights associated with the loss functions and the d_step. 

These combinations define three additional experiments, as detailed in the Tab. 3.5. In EXP2 

and EXP3_1, both the pixel loss and adversarial loss weights are increased compared to EXP1 

(from 0.5 to 0.7 and from 0.2 to 0.3), with the d_step set to 1 and 5, respectively. EXP3_2, on 

the other hand, extends EXP1 by modifying the d_step from 1 to 5. 
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The weights assigned to loss functions in a GAN play a crucial role in the optimization process, 

balancing different objectives. In the case of a GAN developed for downscaling, such as our 

cGAN, the two main loss functions are typically the pixel loss and the adversarial loss, which 

need to be carefully balanced to ensure both accurate reconstruction and high realism in the 

generated data. The pixel loss (often represented as L1 or L2) encourages the generator to 

produce outputs that closely match real data at the pixel level, emphasizing detail precision. On 

the other hand, the adversarial loss pushes the generator to produce outputs that the 

discriminator cannot distinguish from real data, thus promoting realism in the generated images 

or data samples. 

Experiments 
Pixel_loss 

weight 

Adversarial_loss 

weight 
d_step 

EXP2 0.7 0.3 1 

EXP3_1 0.7 0.3 5 

EXP3_2 0.5 0.2 5 

 

Tab. 3.4: Sensitivity experiments concerning loss weights and d_step parameters. 

 

Increasing the weight of the pixel loss from 0.5 to 0.7, as done in experiments EXP2 and 

EXP3_1, places greater emphasis on reconstruction quality. This adjustment ensures that the 

generator focuses more on minimizing pixel-level differences between the generated images 

and the real ones. As a result, the model tends to generate outputs that more closely resemble 

high-resolution targets, a crucial aspect in applications like downscaling, where precision is 

essential for reliable predictions. However, an excessive increase in the pixel loss weight may 

result in overly smooth or blurry outputs, as the adversarial component is downplayed, reducing 

the sharpness and natural variability in the generated data. 

Similarly, increasing the adversarial loss weight from 0.2 to 0.3 shifts the balance toward 

improving the realism of the generated images. With a higher adversarial weight, the generator 

receives a stronger signal to deceive the discriminator, which leads to more realistic and higher-

frequency details in the results. However, challenges also arise in this case: if the adversarial 

weight is too high relative to the pixel loss, the model might prioritize generating visually 

convincing images, at the expense of accurately reconstructing the original data, thus reducing 

overall prediction accuracy. This trade-off between realism and reconstruction fidelity is a well-

known challenge in GAN training. Properly balancing these two losses is critical and often 
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requires domain-specific fine-tuning. In our context, where both accuracy and realism are 

needed to produce a new high-resolution dataset through AI, comparable to that produced by 

physically based models, increasing the adversarial loss weight should improve the model's 

ability to capture complex patterns in high-resolution data. 

Another parameter investigated in the experiments discussed here is d_step, which defines the 

number of discriminator updates for each generator update. In traditional GAN training, the 

discriminator and generator are updated alternately, generally with a 1:1 ratio, i.e., d_step = 1. 

However, by varying the d_step value, greater flexibility can be introduced into the training 

process: increasing the number of discriminator updates allows it to more accurately capture 

real details compared to generated data before the generator is updated. Setting d_step to 5, as 

in experiments EXP3_1 and EXP3_2, allows the discriminator to learn more effectively before 

the generator attempts to catch up. Increasing d_step to 5 means that the generator will face a 

stronger discriminator, which could lead to more refined outputs, as the generator will be 

pushed to produce data that is increasingly indistinguishable from real data. However, this 

increased strength of the discriminator presents a significant challenge as it could also lead to 

instability during training. The generator may struggle to converge if the discriminator becomes 

too powerful, causing issues such as mode collapse, where the generator produces only a narrow 

range of examples. Conversely, keeping d_step at 1, as in EXP2 and EXP1, ensures that the 

generator and discriminator remain more aligned, promoting a more balanced learning process. 

However, this may slow down the improvement of high-quality details and realism in the 

generated data. 

The combination of these two parameter adjustments in the experiments listed in Tab. 3.4, 

namely the weights assigned to the loss functions and the number of discriminator updates, 

defines different learning dynamics for the developed conditional GAN. By increasing both the 

pixel loss and adversarial loss weights, the model is pushed to produce outputs that are 

simultaneously more accurate and realistic. Additionally, adjusting d_step from 1 to 5 enhances 

the discriminator's learning capability, creating a more challenging learning environment for 

the generator, potentially leading to more detailed and high-quality outputs. However, the 

balance between these parameters is delicate, and the results space was cautiously investigated 

through various experimental setups to avoid training instability or poor convergence. To enable 

a meaningful comparison across the experiments, while balancing computational costs with the 

errors associated with both the generator and discriminator, we determined that limiting the 

training to 200 epochs was sufficient for an adequate evaluation. 
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To evaluate both the visual quality and the internal consistency of the generated dataset, we 

analyzed the performance of various cGAN configurations (Table 3.2) in terms of the evolution 

of the mean value, standard deviation, spatial and temporal correlation, and Fréchet Inception 

Distance (FID) across different training epochs, ranging from 20 to 200 steps in increments of 

20. The analysis of the mean value revealed that the distribution of synthetic data progressively 

converges towards that of real data as training epochs increase, thereby reducing initial 

discrepancies attributed to the model's incremental stability. Additionally, the values of the 

standard deviation approach those of the real dataset, indicating an improvement in the GAN's 

ability to capture the variability inherent in the real dataset. Measures of spatial correlation 

suggest an enhancement in structural coherence, while temporal correlation assesses the 

model's effectiveness in maintaining temporal consistency; this aspect is particularly critical for 

sequential datasets, even though our model does not explicitly account for temporal elements. 

Models EXP1 and EXP2, configured with d_step = 1 and loss weights of 0.5 and 0.2 (EXP1) 

and 0.7 and 0.3 (EXP2), exhibit (Fig. 3.22) similar values for mean, standard deviation, spatial 

correlation, and FID, although they demonstrate distinct trajectories during training. This 

observation suggests that, despite having analogous foundational configurations, the 

differences in loss weights induce variations in the learning dynamics. Conversely, models 

EXP3_1 and EXP3_2, configured with d_step = 5 and utilizing the same loss configurations as 

EXP2 and EXP1, respectively, exhibit mean values and standard deviations that deviate more 

significantly from the real dataset, indicating reduced accuracy in the generated data. 

Furthermore, the spatial correlation in EXP3 models is lower, implying a lack of structural 

coherence in the synthetic data, potentially arising from the increased interval between 

parameter updates for the discriminator. 

When examining configurations with identical loss weights (EXP1 and EXP3_2, EXP2 and 

EXP3_1), a notable similarity in learning trajectories emerges as epochs increase, with a slight 

shift in results attributable to variations in the d_step parameter. Notably, although nearly 

overlapping, EXP1 and EXP3_2 display differences in mean and standard deviation values 

around the 140th epoch, suggesting that the configuration with weights 0.5 and 0.2 is likely 

more sensitive to the choice of d_step. This sensitivity may be due to the diminished influence 

of the adversarial loss in configurations EXP1 and EXP3_2, characterized by pixel_loss = 0.5 

and adversarial_loss = 0.2, which renders the model's balance more dependent on the frequency 

of discriminator updates compared to configurations with pixel_loss = 0.7 and adversarial_loss 

= 0.3. 
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Fig. 3.22:  Comparative analysis of performance metrics (mean, standard deviation, FID, spatial and temporal 

correlation) for experiments EXP1, EXP2, EXP3_1, and EXP3_2 as a function of epochs. 

 

In Fig.3.23 we present the temporal evolution of the daily spatial average of total precipitation 

during the test period, comparing the benchmark configuration (EXP1) with the real high-

resolution dataset (VHR_REA-IT) across various cGAN configurations. The data shown have 

been smoothed using a 30-day moving average. The results demonstrate that all cGAN 

configurations effectively capture the overarching trend of the real dataset (represented by the 

blue line), albeit with differing degrees of temporal shift. Notably, for the configurations with 

d_step = 1 (EXP1 and EXP2), the curves are nearly overlapping, indicating that the specific 

selection of loss weights has a minimal impact on the spatial average value in this context. 

However, both configurations utilizing d_step = 1 exhibit a tendency to underestimate 

precipitation when compared to the real dataset. Conversely, the experiments EXP3_1 and 

EXP3_2, which utilize d_step = 5, demonstrate a reduction in this underestimation, with certain 



81 
 

instances where the values produced by ERA5-DownGAN exceed those of the real dataset. The 

underestimation observed in the configurations with d_step = 1 can be attributed to the more 

frequent updates of the discriminator, which impose stricter constraints on the generator. This 

results in precipitation estimates that may be overly conservative. Conversely, configurations 

with d_step = 5 allow the generator to learn in a more flexible manner, thereby reducing the 

impact of immediate corrections from the discriminator. In this context, the generator is 

afforded the opportunity to explore a broader solution space, potentially leading to precipitation 

that, in certain instances, exceed the values of the real dataset. 

 

 

Fig. 3.23:  Temporal evolution of the daily moving average of the total precipitation during the test period, 

calculated with a 30-day window. Comparison of the mean daily spatial average: benchmark (EXP1) and real 

high resolution dataset (VHR_REA-IT) with  different cGAN configurations. 
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The analysis of boxplots across various cGAN configurations (Fig. 3.24) further corroborates 

the efficacy of the EXP3_1 and EXP3_2 experiments in generating mean values that are both 

higher and more closely aligned with those of the real dataset. Specifically, within the 90th to 

99th percentile range, the boxplots for the EXP2, EXP3_1, and EXP3_2 configurations 

demonstrate a broader interquartile range (IQR), indicating enhanced dispersion in the central 

values. This finding underscores a more robust representation of extreme precipitation events 

in these configurations. Overall, the experiments employing a pixel loss of 0.7 and an 

adversarial loss of 0.3 reveal a distribution characterized by slightly elevated values, thereby 

achieving closer alignment with the real dataset compared to their counterparts utilizing a pixel 

loss of 0.5 and an adversarial loss of 0.2. These results suggest that the selected weightings in 

the loss functions significantly influence the model's capacity to effectively replicate extreme 

precipitation events. 

 

 

Fig. 3.24:  Comparison of the total precipitation (TOT_PREC) distribution for real high-resolution data 

(VHR_REA-IT) with the white rectangle, and the downscaled artificial data (ERA5-DownGAN), created by the 

cGAN in EXP1, EXP2, EXP3_1 and EXP3_2 for each percentile from the 75th to the 99th. 

 

To provide a comprehensive analysis of the performance of the various configurations 

implemented, Figure 3.25 presents a comparison of bias maps, mean absolute error (MAE), and 

root mean square error (RMSE) averaged over time, utilizing the VHR_REA-IT dataset as a 
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reference. The analysis indicates that EXP2, which adopted a pixel loss of 0.7 alongside an 

adversarial loss of 0.2, effectively reduced the general underestimation seen in EXP1, where 

the pixel loss was set at 0.5 and the adversarial loss remained at 0.2. This improvement was 

particularly evident in areas with complex orography. However, in regions where EXP1 

exhibited a slight overestimation of precipitation values compared to the VHR_REA-IT dataset, 

EXP2 exacerbated this overestimation.  

 

Fig. 3.25:  Maps of time average. Mean absolute errors (MAEs), Mean bias (BIAS) and root-mean-square errors 

(RMSEs), comparing downscaled daily total precipitation for EXP1, EXP2, EXP3_1 and EXP3_2 (ERA5-

DownGAN) with the high-resolution dataset (VHR_REA_IT) for the test period (2001-2005). 

 

Despite these discrepancies, both MAE and RMSE values remained relatively stable between 

EXP1 and EXP2. These differences can be attributed to the increased weight assigned to pixel 

loss, which likely encouraged the model to prioritize the accurate reproduction of pixel values. 

While this approach aimed to enhance overall accuracy in regions where underestimation was 

prevalent, it may have inadvertently led to a “forcing” effect, elevating values in other areas. 

Notably, the bias values remain relatively low, ranging from -3 mm to +3 mm, while the MAE 

ranges from 0 to 5 mm. RMSE values, on the other hand, show a broader distribution, generally 

falling between 0 and 8 mm but peaking at 14 mm in specific locations, such as near 

Montenegro's Coastal Region. 
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Furthermore, in Experiments 3_1 and 3_2, where the discriminator update step (d_step) was 

increased from 1 to 5, the generated maps exhibited a marked decline in visual quality, 

characterized by undesirable artifacts. This phenomenon may arise from the excessive update 

frequency of the discriminator, which, updating more rapidly than the generator, can lead to a 

degree of overfitting to the real data, thereby limiting the generator’s ability to refine its 

representations. Consistent with Goodfellow et al. (2014) and Mescheder et al. (2017), a 

misalignment in the learning rates between the generator and discriminator may induce 

instability in image generation, ultimately compromising the quality of the final outputs. 

In conclusion, the results suggest that EXP2, which utilizes a pixel loss of 0.7 and an adversarial 

loss of 0.3, represents a well-balanced compromise, demonstrating a slight mitigation of the 

underestimation observed in EXP1. In particular, EXP2 exhibits improved performance 

compared to EXP1 in extreme percentiles (Fig. 3.24). Although increasing the discriminator 

update steps (d_step) to 5 in EXP3_1 and EXP3_2 leads to better alignment of mean values and 

standard deviations with the real dataset compared to EXP1 and EXP2, this adjustment 

significantly compromises the structural coherence of the generated outputs. Consequently, at 

epoch 200, EXP2 emerges as the optimal configuration, providing the best trade-off between 

accuracy and stability among the evaluated experimental setups. 

3.2.3 An Alternative Normalization Scheme 

The complexity of precipitation fields motivated an investigation into alternative 

normalization schemes could enhance GAN output performance. We introduced Scheme 1 in 

Fig. 2.4, a method that scales all input data based on the minimum and maximum values 

obtained from a bilinear interpolation of the ERA5 dataset onto the VHR-REA-IT grid 

(ERA5_interp-VHR). Minimum and maximum values were computed separately for both 

training and testing periods’ temperature distributions, allowing ERA5-DownGAN to be 

denormalized according to ERA5_interp-VHR data from the testing period. Benchmark results 

from EXP1 were then compared with EXP4, which applies this new normalization strategy, to 

evaluate potential improvements in model accuracy and generalization. 

Specifically, for both experiments (EXP1 and EXP4), the trends of the mean value, standard 

deviation, spatial and temporal correlations were analyzed in comparison to the real dataset 

(VHR_REA-IT), along with the Fréchet Inception Distance (FID) over the epochs ranging from 

20 to 200 in increments of 20 (see Fig. 3.26). Additionally, frequency histograms for the various 

precipitation classes and maps of bias, mean absolute error (MAE), and root mean square error 
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(RMSE) were produced, averaging the results over the comparison period between the two 

experiments against the high-resolution dataset. 

 

Fig. 3.26:  Comparative analysis of performance metrics (mean, standard deviation, FID, spatial and temporal 

correlation) for experiments EXP1 and EXP4 as a function of epochs. 

 

Although the spatial and temporal correlations in EXP4 are slightly higher than those in EXP1 

(see Fig. 3.26), the mean and median values in EXP4 are further from the actual dataset 

compared to EXP1, and the Fréchet Inception Distance (FID) is also elevated. This suggests 

that the cGAN implemented in EXP4, despite its comparable performance to EXP1, encounters 

greater challenges in aligning with the mean values and distribution of the test period, which 

impacts its generalization capabilities. This discrepancy may be attributed to the training on 

data that are inherently smoother, resulting from the bilinear interpolation of ERA5 onto the 

VHR_REA-IT grid. In contrast, EXP1 was trained directly on the actual high-resolution dataset 

VHR_REA-IT. Consequently, the training values in EXP1, particularly those representing 
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frequency classes associated with high precipitation, are more representative of real-world 

conditions, facilitating improved generalization during the testing phase. 

The observation that EXP4 fails to capture the higher values of the distribution as effectively 

as EXP1, resulting in a lower mean and reduced dispersion, initially suggested by Fig. 3.26, is 

confirmed by the frequency distribution analysis presented in Fig. 3.27. This analysis highlights 

the limitations of EXP4 in accurately representing the full spectrum of precipitation events, 

particularly those characterized by high intensity. 

In particular, starting from 50 mm, EXP4 records a lower frequency not only compared to the 

actual dataset but also relative to EXP1. The most significant differences emerge from 100 mm, 

with a further deterioration at 200 mm, where only EXP1 presents values in this class, 

confirming its ability to represent the more intense event classes, a capability lacking in EXP4. 

An inversion of trend is observed exclusively for the weak event class, ranging from 1 to 5 mm, 

where both EXP1 and EXP4 show a higher frequency compared to the actual dataset. In 

contrast, for the intermediate precipitation classes (from 5 to 50 mm), both datasets exhibit a 

slightly lower frequency relative to VHR_REA-IT. 

 

Fig. 3.27:  Frequency distribution of precipitation events across different intensity classes for datasets: 

VHR_REA-IT (blue), ERA5-DownGAN EXP4 (green) and ERA5-DownGAN EXP1 (coral). The use of a 

logarithmic y-axis highlights the occurrence of higher-intensity precipitation events. 
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Figure 3.28 reveals that the two experiments exhibit no substantial differences in terms of mean 

bias, MAE, and RMSE. However, a notable reduction in bias is observed in EXP4 within the 

Friuli Venezia Giulia region and the Central Apennines, while a greater bias is evident in the 

mountainous areas of Croatia and Montenegro. This finding suggests that there is not a uniform 

mitigation of overestimation across all mountainous regions, contrasting with the results 

observed in EXP2 (Figure 3.25). Therefore, although EXP4 demonstrates a specific reduction 

in bias in certain locations, it does not ensure superior performance in mountainous contexts, 

where EXP2 provided a significant advantage over the benchmark EXP1. 

  

Fig. 3.28:  Maps of time average. Mean absolute errors (MAEs), Mean bias (BIAS) and root-mean-square errors 

(RMSEs), comparing downscaled daily total precipitation for EXP1and EXP4 (ERA5-DownGAN) with the 

high-resolution dataset (VHR_REA_IT) for the test period (2001-2005). 
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In conclusion, the results obtained from the comparison between EXP1 and EXP4, highlighting 

the differences in the use of Schema 3 and Schema 1 for normalization (Figure 2.4), further 

emphasize the importance of selecting an appropriate normalization scheme during the training 

of GANs. The findings confirm that Schema 3 proves superior in accurately representing the 

actual distribution of the atmospheric field under investigation, particularly at higher values. 

Therefore, to achieve more accurate and reliable precipitation forecasts, it is crucial to adopt 

more sophisticated normalization approaches, such as the one employed in EXP1. This supports 

the notion that effective normalization, directly based on high-resolution data and devoid of 

pre-processing interpolations, can enhance the model's generalization capabilities and overall 

performance. 

3.2.4 Comparison of All Configurations   

In this chapter, several experiments were conducted to evaluate the effectiveness of our 

cGAN architecture initially developed for the downscaling of 2-meter temperature (T_2M) and 

later adapted to handle precipitation fields (TOT_PREC), a more complex meteorological 

variable. The preliminary experiment (EXP0) indicated that while scaling between -1 and 1 was 

effective for T2M, precipitation data required additional pre-processing to correct its highly 

skewed distribution. The introduction of a logarithmic transformation in EXP1 significantly 

improved the GAN's ability to replicate the high-resolution precipitation field (VHR_REA-IT), 

notably enhancing the model’s precision in capturing spatial patterns across various intensities 

(Figs. 3.15, 3.I9). This new pre-processing step enabled the model to generate precipitation 

distributions that closely resemble real high-resolution data, as demonstrated by its capacity to 

reconstruct daily and seasonal precipitation patterns. Percentile analysis (Fig. 3.I8) highlighted 

that the GAN accurately represents the distributional characteristics of the real dataset, even at 

higher percentiles (from the 75th to the 99th), although it exhibits a more pronounced 

underestimation in the extreme classes (98th to 99th percentiles). 

Nevertheless, the generated dataset maintains a realistic distribution and strong temporal 

correlation with high-resolution real data, showing substantial improvements over the low-

resolution ERA5 dataset (Fig. 3.I6). Using EXP1 as a benchmark, further parameter 

adjustments were made in EXP2 and EXP3 to optimize GAN performance. Increasing the 

weights of pixel and adversarial losses (from 0.5 to 0.7 and from 0.2 to 0.3, respectively) in 

EXP2 yielded marginal improvements in bias, particularly in complex orographic regions, with 

a closer alignment of mean values and standard deviations between ERA5-DownGAN and 
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VHR_REA-IT, though generating much higher outliers in the synthetic dataset than seen in the 

real dataset. In the configuration with d_step set to 5 (EXP3), aliasing phenomena emerged, 

indicating that a d_step value of 1 is crucial for maintaining spatial fidelity. The configuration 

with increased weight settings demonstrated a stronger dependency on the d_step setting. 

Comparative analyses of seasonal and cumulative precipitation (Table 3.3, Figs. 3.I9, Fig. 3.20) 

confirm the robustness of the GAN in reconstructing complex atmospheric patterns. The ERA5-

DownGAN dataset successfully approximated the monthly cumulative precipitation of 

VHR_REA-IT, showing good correspondence across all months, with only slight 

underestimations during the summer months and good adherence to spatial structures in areas 

with intense events. Despite the presence of biases in orographically challenging areas, high 

correlation values over land areas confirm the GAN’s ability to replicate trends in the 

VHR_REA-IT dataset (Fig. 3.20). 

In summary, the results indicate that the developed GAN architecture, with the addition of 

specific pre-processing and targeted parameter optimization, performs downscaling of 

precipitation fields while maintaining good consistency with the high-resolution real dataset. It 

is important to note that the developed cGAN demonstrates sufficient flexibility to handle 

complex atmospheric variables such as precipitation, highlighting its potential applicability 

beyond T2M downscaling. The study further suggests that, for precipitation fields, the optimal 

number of training epochs (300) is higher than for T2M (100 epochs), without necessitating 

structural modifications to the GAN architecture. This adaptability to various meteorological 

variables, combined with the ability to replicate not only mean values but also specific patterns 

of the real high-resolution dataset while maintaining spatial and temporal coherence, 

underscores the potential of the developed methodology as a versatile tool for atmospheric 

downscaling applications. 

3.2.5 Computational Details 

All simulations were performed on the Juno supercomputer at the Euro-Mediterranean 

Center on Climate Change (CMCC), as the Zeus system was no longer available. Juno is 

equipped with advanced computational resources, including 12,240 processing cores and 20 

NVIDIA A100 GPUs, which facilitate the tackling of ambitious challenges related to scalability 

and computational complexity. Juno's peak performance reaches 1134 TFlops, with each 

compute node featuring 72 cores and 512 GB of memory.  
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years lr samples batch size epochs time/training 

EXP1 10 0.0001 4000 100 100 4 h 57 min 

EXP2 10 0.0001 4000 100 100 5 h 28 min 

EXP3_1 10 0.0001 4000 100 100 3 h 7 min 

EXP3_2 10 0.0001 4000 100 100 1 h 9 min 

EXP4 10 0.0001 4000 100 100 2 h 13 min 

 

Tab. 3.5: Computational details for the training period on Juno Supercomputer. 

In the context of this research, it is essential to highlight that the implementation of the 

Generative Adversarial Network (GAN) was carried out sequentially following a serial 

approach. The execution of the code efficiently utilized the available resources (1 compute 

node, with 72 cores), resulting in a significant increase in efficiency in the GAN-based 

downscaling approach. The average execution time for the training phase (for 100 epochs) was 

approximately ~3 h 22 min hours to simulate 10 years, considering the average time taken for 

the different configurations reported in the Tab. 3.5, and ~ 2.5 minutes to simulate 5 years during 

the testing phase (for all experiments). The execution of the precipitation downscaling 

experiments on Juno also represented an additional challenge within the work, allowing for the 

assessment of the portability of the developed architecture across different computational 

environments. This confers replicability to the methodology, enhancing its flexibility and 

applicability. This adaptability is crucial to ensure that the downscaling framework based on 

the developed cGAN can be effectively utilized in various research contexts and operational 

settings. 

3.3 Potential Enhancements 

Experiments related to the downscaling of precipitation fields to approximately 2.2 km 

have produced a dataset generated through statistical downscaling that is highly faithful to the 

high-resolution VHR_REA-IT dataset, produced through dynamic downscaling and 

representative of our reality. However, there are still significant margins for improvement. In 

particular, the use of convolutional layers could prove promising, either by integrating them 

into the current architecture or by replacing the linear layers currently in use. A convolutional 
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architecture enables faster training and broader model applicability (Park, S., & Shin, Y.-G., 

2022), making the GAN suitable for downscaling over large geographic areas. Moreover, 

convolutional layers introduce translation invariance, allowing the model to recognize patterns 

regardless of their precise position in the data matrix. This characteristic is particularly 

advantageous for precipitation fields, where the specific locations of precipitation cores can 

vary rapidly. 

ERA5-DownGAN has already demonstrated high fidelity in reproducing the high-resolution 

VHR_REA-IT dataset of total accumulated precipitation; however, there remains room for 

improvement, particularly in the representation of extreme precipitation events. The 

underestimation observed in the upper quantiles, between the 95th and 99th percentiles, 

highlights the need for further refinement of the learning process to ensure that the cGAN-

generated field aligns more closely with the reference dataset, even during extreme events. One 

potential strategy involves incorporating a loss function based on Extreme Value Theory (EVT), 

such as the Extreme Value Loss, which has been shown to enhance deep learning models' ability 

to capture distribution tails by explicitly modelling extreme events (Ding, D. et al., 2019). 

Alternatively, approaches that separate the training of extreme values from the rest of the dataset 

may prove beneficial (Allouche, M. et al., 2022). The implementation of these developments 

would enable a more physically consistent representation of precipitation fields during extreme 

events, further strengthening the applicability of the proposed model. 

Additionally, another interesting experiment could involve using a radar precipitation dataset 

as a high-resolution source for model training, instead of the current reanalysis. Radar datasets 

can incorporate information about localized meteorological phenomena that may not be 

adequately represented in reanalysis, thereby ensuring greater reliability in the downscaling 

process. This combination of advanced technologies and data could thus lead to significant 

progress in generating a high-resolution dataset through the developed cGAN, resulting in a 

deeper understanding of the relationships between global and local scales, particularly in cases 

of complex atmospheric dynamics.
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4 | Expanding the Application of cGAN 

Downscaling to U.S. Geographical Domain 

 

This chapter presents the downscaling experiment conducted using a conditional 

Generative Adversarial Network (cGAN) developed for 2-meter temperature data across the 

United States (U.S.) during an internship at the National Center for Atmospheric Research 

(NCAR). We begin by discussing the significance of having a flexible downscaling method that 

can be applied to various geographical domains. Subsequently, we provide a detailed 

description of the cGAN architecture, emphasizing the preservation of the original design while 

increasing the number of neurons to accommodate the extensive spatial scale of the domain. 

Additionally, we explore the importance of the number of training epochs, highlighting its 

critical role in ensuring convergence of the results. The chapter details the datasets utilized, 

particularly the high-resolution Weather Research and Forecasting (WRF) data provided by 

NCAR. Overall, this chapter offers a comprehensive overview of how the cGAN-based 

approach was adapted to enhance downscaling for high-resolution atmospheric data in diverse 

contexts. 

4.I Context and Motivation for the Case Study 

The ability of the developed downscaling method, which employs a conditional 

Generative Adversarial Network (cGAN), to perform downscaling across various geographical 

regions and to incorporate diverse input datasets is a key feature that highlights the flexibility 

of the approach. Having established the architecture’s capability to downscale complex 

variables, this chapter focuses on its adaptability to different domains, particularly those 

significantly larger than our initial case study of the Italian Peninsula. 

During an internship at the National Center for Atmospheric Research (NCAR), we directed 

our efforts toward applying statistical downscaling AI-based to the entire territory of the United 

States (Fig. 4.1; Tab. 4.1). We utilized data from the Weather Research and Forecasting (WRF)



93 
 

 model, configured by NCAR at a resolution of ~ 4 km. This high-resolution dataset served as 

the primary input during the training phase of our architecture, while the low-resolution 

counterpart came from ERA5 at ~ 31 km. This experiment presented several challenges for the 

developed method: adapting to various geographical contexts, maintaining flexibility in 

handling diverse datasets, and ensuring the model's portability across different supercomputing 

environments. Access to the Cheyenne supercomputing system enabled us to evaluate the 

model’s performance on multiple platforms. 

 

Fig. 4.I: Domain of the 4-km CONUS404 simulation with land surface elevation height (m). Derived by 

Rassussen M. L. et al., 2023. 

In this context, our experiment not only demonstrates the effectiveness of the developed cGAN 

within the specific setting of the United States, but also emphasizes its potential for application 

across additional geographical domains and datasets. This flexibility represents a significant 

advancement in downscaling technologies, as models that can adapt to different input variables 

and geographical contexts greatly enhance their applicability, making them essential tools for 

assessing climate risks and informing planning decisions. 

Data longitude and latitude 
horizontal 

resolution 

n° grid 

points 

ERA5 (Lon = : 55.50 W – 138.90°; Lat = 18.3° N–57.50° N) 
0.28° 

(≃31 km) 
157x333 

WRF (Lon = : 56.95 W - 139.05°; Lat = 18.1° N–57.91° N) 
0.02° 

(≃4 km) 
1359x1015 

 

Tab. 4.I: Domain details for LW and HR dataset: geographical boundaries, horizontal resolution, number of grid 

points. 
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4.2 Datasets and Pre-processing  

The datasets employed for the application of our cGAN for the U.S. case study include 

ERA5 for the low-resolution data at 31 km, and WRF at 4 km for the high-resolution 

counterpart. The specifics of the domain coverage and the number of grid points for each dataset 

are summarized in Table 4.I. As the ERA5 dataset has already been introduced in Chapter 2, 

the following section will focus on the description of the high-resolution WRF dataset. 

4.2.1 High-Resolution Dataset: WRF-NCAR (Weather Research 

and Forecasting) 

The dataset utilized for high resolution in our cGAN model derives from the 4 km 

simulations of the Weather Research and Forecasting (WRF) model, which has produced a new 

dataset known as CONUS404. This dataset represents a significant advancement in the 

availability of high-resolution hydroclimatic data for the contiguous United States, covering a 

period of over 40 years, from October 1979 to September 2021, with a spatial resolution of 4 

km. Generated through the WRF model, the dataset results from a dynamic downscaling 

process applied to global atmospheric reanalysis data from ERA5 of the European Centre for 

Medium-Range Weather Forecasts (ECMWF). The configuration of the WRF model used 

includes 51 vertical levels and employs several physical parameterization schemes, such as the 

Morrison Microphysics Scheme for precipitation simulation, the Mellor-Yamada-Janjic (MYJ) 

Planetary Boundary Layer Scheme for modeling atmospheric stability, and the RRTMG 

Radiation Scheme for solar and terrestrial radiation. These schemes were selected to enhance 

the representation of atmospheric processes, especially in complex orographic contexts. The 

simulations were executed on the Cheyenne supercomputer at the National Center for 

Atmospheric Research (NCAR), utilizing modern architectures with Graphics Processing Units 

(GPUs) to accelerate numerical calculations, thereby enabling more detailed and long-term 

simulations. The results discussed in Rasmussen R. M. et al. (2023) demonstrate that the dataset 

effectively captures the dynamics of temperature and precipitation, highlighting an annual 

thermal bias ranging from -1 °C to +1 °C, with a tendency to underestimate winter temperatures, 

particularly in northern areas. Furthermore, the dataset exhibits a remarkable capacity to 

represent extreme precipitation events, allowing for the distinction of spatial variability at a 

mesoscale. However, the authors note limitations such as the underestimation of snowpack and 

a positive bias in surface solar radiation, indicating the need for further optimizations. Despite 

these challenges, CONUS404 emerges as a valuable resource for the availability of high-
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resolution atmospheric fields over an extended temporal range and a vast domain. The 

CONUS404 data are archived and publicly accessible at (https://doi.org/10.5066/P9PHPK4F) 

(Rasmussen R. M. et al. 2023), promoting the sharing of scientific data for research and 

innovation in the field. 

4.2.2 Assessing the Portability of the Developed cGAN Downscaling 

Model on Different Supercomputer Architectures 

The portability of code is a fundamental aspect of scientific programming, referring to 

the ability of an application to run on different hardware and software platforms without 

requiring substantial modifications. This concept is crucial for ensuring the replicability of 

scientific results and facilitating the sharing of discoveries among researchers utilizing diverse 

infrastructures. Portability also enables researchers to leverage the specific capabilities of 

various supercomputers, optimizing computational efficiency and reducing execution timesIn 

the context of our study focused on downscaling for the United States, we utilized both the 

Casper and Cheyenne supercomputers (https://ncar-hpc-docs-arc-

iframe.readthedocs.io/compute-systems/casper/), both provided by NCAR. While Cheyenne 

featured a node-based architecture with Intel Xeon processors and 36 cores per node, making it 

highly capable of handling complex and long-term simulations, our work primarily relied on 

Casper. This choice was driven by the fact that Cheyenne was being phased out and was 

eventually decommissioned in 2024. Cheyenne system was designed to support a wide range 

of workloads, from climate simulations to artificial intelligence applications. In contrast, Casper 

is particularly suited for operations that require the use of Graphics Processing Units (GPUs), 

which can significantly accelerate the model training processes, especially for deep learning 

algorithms and other highly parallelizable applications. The GPU architecture of Casper allows 

for more efficient execution of intensive calculations compared to traditional processors. The 

infrastructure specifications of the Casper supercomputer are detailed below (Tab. 4.2). 

Category Nodes Memory Processors Storage Networking GPUs 

Data Analysis 

& 

Visualization 

22 Supermicro 

7049GP-TRT 

SuperWorkstation 

Up to 384 

GB DDR4-

2666 per 

node 

2 x 18-core 2.3 

GHz Intel Xeon 

Gold 6140 per 

node 

2 TB 

NVMe 

SSD local 

1 Mellanox 

ConnectX-4 100Gb 

Ethernet, 1 Mellanox 

ConnectX-6 HDR100 

InfiniBand 

9 nodes: 16GB 

NVIDIA Quadro 

GP100 GPU<br>3 

nodes: 40GB 

NVIDIA Ampere 

A100 GPU 

GPU 

Visualization 

6 Supermicro L40 

GPU Visualization 

768 GB 

DDR5 per 

node 

1 x 48-core 

AMD EPYC 

per node 

1.6 TB 

NVMe 

SSD local 

1 Mellanox 

ConnectX-6 100Gb 

Ethernet VPI adapter 

None 

https://ncar-hpc-docs-arc-iframe.readthedocs.io/compute-systems/casper/
https://ncar-hpc-docs-arc-iframe.readthedocs.io/compute-systems/casper/
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Machine 

Learning / 

Deep Learning 

4 Supermicro 

SuperServer with 4 

V100 GPUs 

768 GB 

DDR4-

2666 per 

node 

2 x 18-core 2.6 

GHz Intel Xeon 

Gold 6240 per 

node 

2 TB 

NVMe 

SSD local 

1 Mellanox 

ConnectX-4 100Gb 

Ethernet, 2 Mellanox 

ConnectX-6 HDR200 

InfiniBand adapters 

4 V100 32GB 

SXM2 GPUs with 

NVLink 

 

6 Supermicro 

SuperServer with 8 

V100 GPUs 

1152 GB 

DDR4-

2666 per 

node 

2 x 18-core 2.6 

GHz Intel Xeon 

Gold 6240 per 

node 

2 TB 

NVMe 

SSD local 

1 Mellanox 

ConnectX-4 100Gb 

Ethernet, 2 Mellanox 

ConnectX-6 HDR200 

InfiniBand adapters 

8 V100 32GB 

SXM2 GPUs with 

NVLink 

 
8 Supermicro with 4 

A100 GPUs 

1024 GB 

memory per 

node 

2 x 64-core 

2.45 GHz AMD 

EPYC Milan 

7763 per node 

1.5 TB 

NVMe 

SSD local 

4 Mellanox 

ConnectX-6 network 

adapters 

4 A100 80GB 

SXM4 GPUs with 

NVLink 

 
2 Supermicro with 4 

H100 GPUs 

1024 GB 

DDR5 per 

node 

2 x 32-core 

Intel Xeon Gold 

processors per 

node 

1.5 TB 

NVMe 

SSD local 

4 Mellanox 

ConnectX-6 network 

adapters 

4 H100 80GB 

SXM4 GPUs with 

NVLink 

High-

Throughput 

Computing 

62 small-memory 

workstation nodes 

384 GB 

DDR4-

2666 per 

node 

2 x 18-core 2.6 

GHz Intel Xeon 

Gold 6240 per 

node 

1.6 TB 

NVMe 

SSD local 

1 Mellanox 

ConnectX-5 100Gb 

Ethernet, 1 Mellanox 

ConnectX-6 HDR200 

InfiniBand 

None 

 

2 large-memory 36-

core workstation 

nodes 

1.5 TB 

DDR4-

2666 per 

node 

2 x 18-core 2.3 

GHz Intel Xeon 

Gold 6240 per 

node 

1.6 TB 

NVMe 

SSD local 

1 Mellanox 

ConnectX-5 100Gb 

Ethernet, 1 Mellanox 

ConnectX-6 HDR200 

InfiniBand 

None 

 

6 large-memory 64-

core workstation 

nodes 

1.5 TB 

DDR5 per 

node 

1 x 64-core 

AMD EPYC 

per node 

1.6 TB 

NVMe 

SSD local 

1 Mellanox 

ConnectX-6 100Gb 

Ethernet VPI adapter 

None 

Research Data 

Archive 

4 Supermicro 

Workstation nodes 

94 GB 

DDR4-

2666 per 

node 

2 x 16-core 2.3 

GHz Intel Xeon 

Gold 5218 per 

node 

1.92 TB 

SSD local 

1 Mellanox 

ConnectX-6 VPI 

100Gb Ethernet 

None 

 

Table 4.2: Infrastructure of the Casper Supercomputer (NCAR) 

The portability of our code has involved the creation of conda environments tailored to each 

supercomputer, facilitating the management of libraries and dependencies essential for the 

application’s proper functioning. Furthermore, we carefully managed how the code is executed 

across the nodes, optimizing operational efficiency. It is noteworthy that previous experiments 

conducted in Italy had already anticipated the portability of the architecture developed on other 

supercomputers; as previously mentioned, these experiments were initially carried out on the 

Zeus supercomputer and later transitioned to Juno, both operated by CMCC, when the former 

was decommissioned. The integration of portability within our code allows for a seamless 

transition between Cheyenne and Casper, effectively leveraging the different hardware 

architectures to optimize performance and efficiency in our experiments. Such practices expand 
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the scope of simulations and provide greater flexibility in scientific research, fostering 

innovation and collaboration among diverse institutions. 

4.3 Results and Analysis: Comparison with Dynamical 

Downscaling 

In this section, we discuss the results obtained from the downscaling of ERA5 data using 

the developed Conditional Generative Adversarial Network (cGAN) approach, comparing them 

with those from the Weather Research and Forecasting (WRF) model configured at 4 km, 

achieved through dynamic downscaling. The data provided by NCAR, used as input for the 

cGAN model, spans the period from January 2001 to December 2014. Consistent with the 

methodology applied in the experiment conducted over Italy, 10 years (January 2001 to 

December 2011) were allocated for training, while the remaining two years (January 2012 to 

December 2014) were designated for testing. The focus of this experiment, centered on the 

United States, is on two fundamental aspects: the importance of setting an adequate number of 

neurons for the considered geographical domain and the impact of the number of training 

epochs on the obtained results. The decision to concentrate on these two key points for this 

experiment was driven by the desire to highlight other essential aspects of training a GAN, 

which become particularly important when working with large geographical domains. 

The choice of the number of neurons in neural networks is crucial for representing the 

complexity of atmospheric dynamics. An insufficient number of neurons can lead to overly 

simplified modeling, resulting in inaccurate outcomes, while an excessive number may cause 

overfitting, where the network learns to memorize the training data rather than generalize to 

new data. Therefore, for the domain of the United States, it is essential to find a balance that 

allows the cGAN to effectively learn the local climatic peculiarities, especially considering 

orographic variations, which are particularly relevant in this region. 

The second aspect analyzed concerns the impact of the number of training epochs. Previous 

researches suggest that the number of epochs significantly influences the network's ability to 

learn temporal dynamics. An excessive number of epochs can lead to a model that, while 

performing well on the training data, fails to generalize to the test data. Conversely, too few 

epochs may prevent the model from fully assimilating the information, resulting in suboptimal 

predictions. This experiment demonstrates that the accurate configuration of the number of 

neurons and the training epochs is of fundamental importance in the context of GAN-based 

downscaling, with direct effects on the quality of the generated atmospheric fields. 
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4.3.I Overall Architecture: Upgrade of the Number of Neurons 

Similar to the configuration of the number of neurons employed in the experiments 

conducted in Italy, which was derived from an empirical approach, the selection of the 

architecture illustrated in Fig. 4.2 for the application in the United States is also grounded in 

empirical experimentation and theoretical considerations regarding the significance of an 

appropriate number of neurons. Notably, it was essential to increase the number of neurons 

while maintaining the same architectural framework as the Italian case study, owing to the 

substantially larger dimensions of the geographical domain in the United States. This 

adjustment is warranted, as an expansive domain encompasses a wider array of climatic and 

geographical features that must be effectively captured to ensure accurate modeling. The 

augmentation of the neuron count enables the model to learn and represent these 

complexities more, thereby enhancing its generalization capabilities across the diverse 

conditions inherent to the study area. Consequently, such optimization of the architecture is 

imperative for effectively addressing the intricacies of the data and for improving the model's 

super-resolution capabilities. 

 

Fig. 4.2: Architectures of (a) generator and (b) discriminator. Size input generator 157 × 333, size input 

discriminator 1359 x 1015, the number of frames per sequence 100 (batch size = 100) for both data sets 

considered here. After training, the best generator is used for the test period. The architecture displayed in this 

figure shows an increased number of neurons in each layer compared to the configuration presented in Fig. 2.6. 

 

The analysis of the results for the testing period begins by comparing the configuration 

employed for the cGAN application over Italy, referred to as ERA5-DownGAN_Italy for 

clarity, with the revised setup for this new domain, referred to as ERA5-DownGAN_U.S., 
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where the number of neurons was increased. The temporal evolution of the dataset generated 

by the cGAN, in comparison with the low-resolution ERA5 dataset and the high-resolution real-

world counterpart from WRF, as shown in Fig. 4.3, reveals clear distinctions between the two 

configurations. 

The temporal evolution of the results comparing the two configurations, ERA5-

DownGAN_Italy and ERA5-DownGAN_U.S., reveals interesting differences between them. 

Notably, with the increase in the number of neurons (Fig. 4.3b), the model demonstrated an 

improved ability to capture the minima, which are now represented by lower temperatures 

compared to the previous configuration (Fig. 4.3a). However, this adjustment also resulted in a 

shift towards higher values for the maxima, reflecting a certain distortion in the model's 

behavior. Nevertheless, it is important to emphasize that both configurations, despite the 

positive or negative shift, show a good temporal agreement with the real high-resolution dataset 

(WRF). However, this trend is obtained by averaging over the entire geographic area of interest, 

making it susceptible to compensation effects. 

 

Fig. 4.3: Temporal evolution of the daily spatial average of 2m-temperature during the test period. The real low-

resolution data (ERA5) is shown in red, the real high-resolution data (WRF) in blue, and the downscaled 



100 
 

artificial data generated by the GAN (ERA5-DownGAN) in green. Panel (a) compares ERA5-DownGAN_Italy, 

while panel (b) compares ERA5-DownGAN_U.S. 

Consequently, based on this preliminary exploratory analysis, we opted to compare the spatial 

correlation maps (Fig. 4.5) derived from averaging over the entire testing period. This 

comparison aims to highlight the differences in reconstruction between the two employed 

configurations, which are also evident in Fig. 4.4. 

The ERA5-DownGAN_U.S. configuration demonstrates a significantly enhanced capacity for 

reconstructing the 2-meter temperature field compared to the ERA5-DownGAN_Italy 

configuration (Fig. 4.4). Specifically, the latter is characterized by artifacts and a sparse 

representation of the temperature field, which can be attributed to the insufficient number of 

neurons in the model architecture tailored for Italy. This limitation restricts the model's ability 

to capture the underlying spatial patterns and variations within the dataset, thereby underscoring 

the importance of employing the ERA5-DownGAN_U.S. configuration with an increased 

number of neurons for the domain under investigation. 

 

Fig. 4.4: Examples of one day from the test data set. (a)–(d) Real low-resolution data (ERA5), the real high-

resolution data (WRF), the downscaled artificial data ERA5-DownGAN_Italy, and the downscaled artificial data 

ERA5-DownGAN_U.S. 
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The significant improvement in the results obtained from the ERA5-DownGAN_U.S. 

configuration compared to those from the ERA5-DownGAN_Italy configuration is also 

reflected in the correlation map (Fig. 4.5) illustrating the relationship between the real high-

resolution WRF dataset and the high-resolution outputs generated by the two examined GAN 

configurations. The optimized configuration for the U.S. consistently exhibits high average 

correlation values, ranging from 0.85 to 1, with the lowest values observed in certain oceanic 

regions, dropping to 0.7. In contrast, the correlation map derived from the comparison between 

the WRF dataset and the results from the configuration optimized for Italy shows significantly 

lower values, ranging from 0.7 across the entire oceanic areas to 0.85. Furthermore, this map 

highlights a sparse distribution similar to that observed in the 2-meter temperature field maps, 

underscoring the limitations of the Italian configuration. 

 

Fig. 4.5: Correlation maps showing the relationship between the WRF dataset and the downscaled artificial data 

from the GAN configurations. (a) ERA5-DownGAN_Italy; (b) ERA5-DownGAN_U.S. 

 

Figure 4.6 provides insight into the temporal alignment between the two datasets (real and 

generated by the GAN). The scatter plots were obtained by considering the spatial mean value 

for each time step, both for the high-resolution real dataset (x-axis) and for the values generated 

by the GAN in the two configurations (y-axis). In comparing the two configurations of the 

developed cGAN, represented by the scatter plots in panels a and b, notable differences emerge 

in the model’s ability to reproduce the high-resolution real dataset values. Ideally, if the values 

generated by the GAN correspond exactly to the real ones, the points should align along the 45° 

line, indicating a perfect match between real and generated values. 
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Fig. 4.6: Scatter diagram for evaluating the correlation between WRF and the downscaled artificial data from the 

GAN configurations. (a) ERA5-DownGAN_Italy; (b) ERA5-DownGAN_U.S. 

 

In panel a), representing the ERA5-DownGAN_Italy configuration, the points deviate from the 

45° line: for lower and higher spatial mean values, the points are positioned above the line, 

while for intermediate values, they fall below it. This pattern suggests that the GAN in this 

configuration tends to overestimate the generated values at the extremes of the dataset (low and 

high real values) and underestimate them for intermediate values. These discrepancies indicate 

that the model struggles to accurately capture the dynamics present in the real dataset, 

particularly in the extreme ranges, likely due to its limited capacity to represent complex 

patterns. 
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Conversely, in panel b), corresponding to the ERA5-DownGAN_U.S. configuration, which 

uses a larger number of neurons, the points are more closely aligned with the 45° line, with a 

slight overestimation for higher values. This significant improvement suggests that the GAN in 

this configuration is more accurate in reproducing the spatial mean values of the real dataset, 

even in situations where more “extreme” values are present. The increased number of neurons 

likely allowed the model to learn the complex relationships between the data better, enhancing 

the agreement with the high-resolution dataset, particularly in the extreme ranges, and reducing 

the overestimation and underestimation errors observed in the previous configuration. 

 

Fig. 4.7: Comparison of the probability density functions (PDF) of the 2m-temperature distribution for the 

ERA5 (green), WRF (blue), and the downscaled artificial data from the GAN configurations (orange). (a) ERA5-

DownGAN_Italy; (b) ERA5-DownGAN_U.S. 

 

The analysis of the Probability Density Functions (PDFs) for the two configurations of the 

GAN, illustrated in Figure 4.7 with panels a and b, reveals notable differences in their ability 

to replicate the high-resolution temperature distribution of the WRF dataset. In panel a, 

representing the ERA5-DownGAN_Italy configuration, the PDF exhibits a flattened shape that 

approximates a Gaussian distribution, indicating an inability to capture the peaks present in the 

high-resolution WRF dataset. This configuration shows lower values, extending down to -25°C, 

whereas both the high-resolution and low-resolution real datasets are limited to a minimum of 

-12°C. In contrast, the second configuration depicted in panel b, ERA5-DownGAN_U.S., 

which utilizes a greater number of neurons, successfully captures not only the range of the WRF 

dataset (-12°C to 30°C) but also all the peaks within that range, resulting in a shape that closely 

resembles the original distribution. However, it is important to note that this configuration 

displays a slight rightward shift of approximately 1°C in the results produced by the GAN for 
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values above 22°C. This shift aligns with previous observations made in the scatter plots, where 

spatially averaged values were considered, while the current analysis of the PDFs takes into 

account the average over time across all points in space. 

 

Fig. 4.8: Comparison of the 2m-temperature (T_2M) distribution for real low-resolution data (ERA5) with the 

gray rectangle, the real high-resolution data (WRF) with the blue rectangle, and the downscaled artificial data 

from the GAN configurations (white). (a) ERA5-DownGAN_Italy; (b) ERA5-DownGAN_U.S. 

 

Previous analyses primarily concentrated on spatial or temporal averages, which can mask 

underlying variability within the datasets. In contrast, Figure 4.8 presents a more 

comprehensive assessment by considering all available values and evaluating the percentiles 

from the 1st to the 95th. This approach enables a deeper understanding of the distributional 

characteristics of the temperature data, facilitating the identification of subtle variations and 

extreme values that may be critical for accurately capturing the dynamics of the underlying 

processes. By analyzing the complete dataset in this manner, we aim to enhance the robustness 
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of our evaluation, providing insights that are essential for assessing the performance of the GAN 

configurations tested. Fig. 4.8, is organized into two panels (a and b), which illustrate the 

performance of the two configurations of the Generative Adversarial Network (GAN) tested: 

ERA5-DownGAN_Italy and ERA5-DownGAN_U.S. In panel a, the dataset generated by the 

GAN for the low percentiles, ranging from the 1st to the 25th, shows a median aligned with 

that of the real datasets (WRF and ERA5). However, the interquartile range (IQR) of the 

boxplots is significantly reduced, with the upper whisker shifted towards notably lower values 

(approximately 2 °C) compared to WRF (approximately 15 °C). For the central percentile (50), 

there is good agreement in terms of both median and variability, although the upper whisker is 

shifted towards lower values by about 1 °C, while the lower whisker extends to higher values 

by approximately 3 °C compared to WRF. For the higher percentiles, from the 79th to the 95th, 

the situation reverses, revealing reduced variability, with upper whiskers directed towards lower 

values and lower whiskers extending to higher values. This behavior suggests that the ERA5-

DownGAN_Italy configuration may lack an adequate number of neurons to capture the 

complexities of the domain, resulting in an underestimation of extreme values in the lower 

percentiles and a poor ability to represent distribution dynamics in the higher percentiles. In 

contrast, panel b demonstrates excellent agreement in terms of median, variability, and whisker 

length. Generally, for all percentiles, there is a slight tendency towards greater variability, 

attributed to an increase in lower values for the lower percentiles and higher values for the upper 

percentiles. This improvement is attributable to the increased number of neurons in the ERA5-

DownGAN_U.S. configuration, which has enabled the model to more effectively learn the 

complex relationships present in the dataset, leading to a more accurate reproduction of thermal 

distributions. 

Finally, when comparing the high-resolution real dataset (WRF) with the low-resolution dataset 

(ERA5), there is good agreement in terms of median, variability, and whisker length for the low 

percentiles up to the 25th. However, from the 50th percentile onward, an increase in variability 

and higher upper whiskers is observed, with values greater than those in WRF, while the lower 

whisker shows lower values. This behavior is closely related to the difference in resolution: 

ERA5, being a coarser dataset, tends to average values over a less fine grid, resulting in a loss 

of detail and an increase in discrepancies in extreme values. 

This comprehensive evaluation highlights the enhanced performance of the ERA5-

DownGAN_U.S. configuration in accurately reproducing the temperature distribution 

characteristics found in the real datasets, further reconfirming the importance of utilizing an 
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appropriate number of neurons tailored to the number of points that define the domain under 

examination. 

 

4.3.2 The Role of Epochs in Model Training 

The number of epochs constitutes a critical parameter in the training regimen of 

Generative Adversarial Networks (GANs), as it substantially influences the quality and stability 

of the generated outputs. In the present case study focusing on downscaling within the United 

States, the number of epochs employed for comparative analyses was established at 15. This 

decision was predicated upon the observation that an increase in the number of neurons within 

the network correlates with heightened model complexity. Although such complexity can 

potentially enhance the capacity of the conditional GAN (cGAN) to capture intricate features 

of the domain, it concurrently necessitates a restart of the training process for a domain as 

expansive and multifaceted as the one under consideration. This aspect has been addressed and 

integrated into our architectural framework in subsequent phases, yet it remains beyond the 

scope of this discussion. 

It is noteworthy that the GAN exhibited preliminary signs of convergence (assessed through 

the evaluation of generator and discriminator losses, denoted as d_loss and g_loss, respectively) 

at the 15-epoch mark, indicating that the model was effectively assimilating the characteristics 

of the dataset. Thus, the selection of this specific epoch count was justified. Nevertheless, the 

importance of epoch selection cannot be underestimated, as it plays a pivotal role in balancing 

the trade-off between underfitting and overfitting. Insufficient epochs may result in a model 

that fails to adequately capture the underlying data structures, while excessive epochs may lead 

to overfitting, wherein the network memorizes the training data rather than generalizing 

effectively to unseen data.  
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Fig. 4.9: Comparison of the 2m-temperature (T_2M) distribution for real low-resolution data (ERA5) with the 

gray rectangle, the real high-resolution data (WRF) with the blue rectangle, and the downscaled artificial data 

from the GAN configurations (white). (a) ERA5-DownGAN_Italy; (b) ERA5-DownGAN_U.S. 

To illustrate this point, Fig. 4.9 provides a comparative analysis of the probability distributions 

(PDFs) generated with 10 and 15 epochs. In particular, in panel (a), which represents the results 

obtained with 15 epochs, the GAN clearly demonstrates its ability to capture all the peaks 

present in the real WRF dataset. This indicates that the model is effectively learning the 

underlying data distribution and can represent the complexities inherent in the dataset. 

Conversely, in panel (b), which corresponds to a lower epoch count, the peaks are notably 

smoothed out, although the overall shift remains smaller. This suggests that while the model is 

able to approximate the general trend of the data, it struggles to capture the finer details and 

variations present in the real dataset. The diminished representation of the peaks indicates that 

a lower number of epochs may lead to an oversimplification of the data, compromising the 

GAN’s ability to generate outputs that truly reflect the complexities of the underlying 

distribution. Such findings underscore the importance of selecting an appropriate epoch count 

during training to ensure the model can adequately learn and represent the intricacies of the 

target domain. 

4.4 Summary Evaluation 

In conclusion, the developed Conditional Generative Adversarial Network (cGAN) has 

demonstrated a remarkable capacity for adaptation to downscaling across various geographic 

domains, including those characterized by larger spatial extents. This flexibility is a key strength 

of architecture, as it allows for replication and application in diverse contexts, thereby 

significantly enhancing the model's potential for broader climate data applications. The 

comparative analysis of the ERA5-DownGAN_Italy and ERA5-DownGAN_U.S. 



108 
 

configurations has elucidated the considerable impact of architectural choices, particularly the 

number of neurons, on the model's performance in downscaling tasks. 

Specifically, the results indicate that the increase in the number of neurons within the U.S. 

configuration led to substantial improvements in the cGAN's ability to accurately reconstruct 

the 2-meter temperature field. This advancement is reflected in the model's enhanced capacity 

to capture intricate spatial patterns and mitigate artifacts that were prevalent in the Italy-

optimized configuration. Such improvements are further evidenced by the elevated correlation 

values between the GAN-generated fields and the high-resolution WRF dataset, as illustrated 

in the correlation maps and scatter plots. The strengthened relationship between the generated 

outputs and the high-resolution data underscores the effectiveness of the cGAN in producing 

realistic and coherent representations of temperature distributions. 

Moreover, the analysis of the Probability Density Functions (PDFs) highlights a critical 

disparity between the two configurations. The ERA5-DownGAN_Italy configuration struggled 

to accurately represent the temperature value distribution, resulting in a flattened PDF that 

failed to capture the key peaks observed in the high-resolution WRF dataset. In contrast, the 

ERA5-DownGAN_U.S. configuration successfully mirrored the distribution of the WRF 

dataset, encompassing the full range of temperature values and accurately depicting the relevant 

peaks. While this configuration displayed a slight rightward shift in the results, which could 

potentially be minimized with extended training, the overall alignment with the high-resolution 

dataset indicates a significant advancement in the model's generative capabilities. The 

importance of epoch selection has been underscored throughout this study, with findings 

demonstrating that an insufficient number of training epochs can lead to oversimplified 

representations of the underlying data. The notable discrepancies between outputs generated 

with 10 and 15 epochs further emphasize the necessity for thorough training to ensure that the 

cGAN can adequately capture the full complexity of the dataset. Insufficient epochs may result 

in a model that approximates the general trend of the data without adequately reflecting the 

finer details and variations inherent in the real dataset. 

Although a direct comparison in terms of training hours between the Italian and U.S. domains 

is not provided, due to the differing architectures used, driven by the dataset storage systems on 

their respective supercomputers, some preliminary observations can be made regarding the 

scalability challenges when transitioning from smaller to significantly larger geographical 

domains. For instance, training over 100 epochs takes about 4 hours for the Italian domain, 
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whereas the U.S. domain requires approximately 25 hours for 15 epochs. In contrast, the testing 

phase incurs considerably lower costs, with the Italian domain requiring only 2 minutes and the 

U.S. domain less than 7 minutes. While the computational costs associated with the architecture 

developed in this study are highly competitive within the landscape of ML techniques for 

downscaling and in comparison to dynamic downscaling, it is important to note that porting the 

architecture to GPUs could further enhance the competitiveness of computational costs, 

enabling downscaling of even larger geographical domains. 

Overall, this investigation underscores the critical interplay between network architecture and 

training parameters in the effective application of GANs for climate data downscaling. With the 

increasing demand for high-resolution climate data, the findings of this study highlight the 

potential of the developed conditional Generative Adversarial Network (cGAN) as a powerful 

and flexible tool for advancing the understanding of climate dynamics at high and very high 

spatial resolutions across various geographical contexts.
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5 | Discussion  

The integration of artificial intelligence (AI) into climate and meteorological sciences 

has rapidly established a prominent role, demonstrating significant potential for solving 

complex challenges and enhancing predictive capabilities. The exponential growth in the 

adoption of advanced machine learning (ML) models and deep learning (DL) architectures has 

led to the development of specific platforms and collaborative programs, such as AI2ES (AI for 

Environmental Sciences), supported by NOAA for analyzing extreme environmental 

phenomena; ML4ESS (Machine Learning for Earth System Science), developed by NCAR to 

integrate ML into Earth system modeling; and ECMWF’s AI4Weather, which aims to refine 

long-term climate and weather forecasting. A pioneering result of these initiatives is ECMWF’s 

use of AI-based global forecasting models, such as Google DeepMind’s GraphCast, which 

accelerates computational processes and enables deeper investigation of unresolved questions 

by identifying latent relationships in atmospheric data. These advancements signal a profound 

shift, with AI emerging as a crucial tool not only for improving forecast efficiency but also for 

advancing the understanding of complex climate phenomena, thereby transforming the 

approach to climate science. 

A critical challenge in climate science is downscaling, given the high computational costs 

associated with traditional dynamic downscaling based on physical models. The growing 

adoption of ML/DL models and architectures by major international research centers, such as 

ECMWF, NCAR, and NOAA, has motivated the exploration and development, in this work, of 

an innovative downscaling model fully based on DL architecture, specifically a conditional 

generative adversarial network (cGAN) trained on physically grounded datasets. The objective 

of this architecture is to maintain spatial coherence during the downscaling process, 

transitioning from the original low-resolution field (~31 km) to the new high-resolution dataset, 

ERA5-DownGAN (~2.2 km), comparable to high-resolution reanalysis (VHR_REA-IT) 

achieved through dynamic downscaling based on the COSMO-CLM model. The main goal of  
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this study was to demonstrate the comparability between these two high-resolution datasets by 

evaluating not only the cGAN’s capacity to reconstruct spatio-temporal patterns but also its 

fidelity in replicating the statistics of the original field and its accuracy in capturing extreme 

values, an area where many ML/DL models typically face performance limitations. To further 

test the robustness and flexibility of the proposed architecture, experiments were conducted on 

a different geographic domain (centered on the United States) and on complex climate 

variables, such as precipitation, characterized by highly skewed value distributions. Moreover, 

to highlight the model's adaptability, optimizations in individual case studies were achieved by 

maintaining the base architecture fixed and adjusting only a few configurable parameters, such 

as the weights associated with the loss function, the normalization scheme, and the number of 

neurons. Finally, an analysis was conducted on the behavior of the cGAN in the presence of 

extreme weather events, such as a significant heatwave, to evaluate its robustness in anomalous 

climatic conditions relative to climatological averages. 

5.I General Conclusions 

The AI-assisted downscaling model, developed in this study, demonstrates versatility 

and ease of application across diverse climatological contexts and complex atmospheric 

variables. Specifically, the dataset produced by ERA5-DownGAN (~2.2 km), downscaled from 

ERA5 (~31 km), has shown the capability to replicate patterns and median values that are nearly 

identical to those simulated by the dataset (VHR_REA-IT) produced with a dynamical model 

for 2m-temperature, with a slight tendency to produce a cooler temperature field compared to 

its dynamical counterpart. 

Even in anomalous situations, ERA5-DownGAN faithfully replicated the patterns of its 

dynamic counterpart; for example, during an intense heatwave, it exhibited a tendency to either 

amplify or slightly simplify the anomalous conditions in terms of value ranges. This 

simplification of the meteorological conditions was particularly evident in the Po Valley, where 

the model assimilated the bias inherent in the convection-permitting dynamical model that 

produced VHR_REA-IT, which overestimates the mean temperature field. 

A thorough analysis of extremes over the entire period, averaged over the spatial domain, 

demonstrates that the ERA5-DownGAN can capture even the most extreme percentiles (from 

the 95th to the 99th), reflecting a distribution that is approximately identical in terms of median 

and dispersion compared to that produced by the dynamic model. 
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For the total cumulative precipitation field, the model successfully replicated the observed 

patterns in the dataset produced at the same resolution by its dynamical counterpart, exhibiting 

some anomalies only at the extreme percentiles (98th and 99th). These results were obtained 

without significant changes in the architecture, aside from appropriate settings for certain 

hyperparameters and the normalization used. 

The application of the developed model to the U.S. domain for downscaling 2m-temperature 

also yielded extremely encouraging results, with no architectural alterations other than an 

increase in the number of neurons to accommodate a domain, that is n-times larger than that 

used in previous experiments focused on the Italian peninsula. 

Based on the promising results, the AI-assisted downscaling approach developed proves to be 

a viable option for achieving high-performance downscaling, yielding results comparable to 

those of its dynamic counterpart while simultaneously reducing the computational resources 

involved in the process An important innovation of this study lies in the use of a conditional 

Generative Adversarial Network (cGAN), with the stipulation that both the generative and 

discriminative models utilize real datasets during the training phase, for both high-resolution 

and low-resolution counterparts. This approach conditions the generation process, enabling the 

establishment of empirical connections between the two datasets while maintaining correlation 

between the two fields. 

5.2 Future Developments 

Despite the promising results achieved, the complexity of the proposed architecture 

opens the door to multiple opportunities for improvement. These enhancements can be 

implemented both on the datasets utilized, such as through the adoption of cross-validation 

training windows, and on the architecture itself. Among the potential future directions outlined 

by this study is the exploration of the model on a broader set of atmospheric variables, including 

wind fields and air humidity fields. This would enable the generation of a high-resolution 

dataset containing the primary atmospheric variables investigated, based on the proposed 

statistical downscaling using cGAN. Moreover, it is crucial to recognize the significance of 

seasonal factors and temporal variations arising from the selection of distinct training and 

testing phases. A promising approach could be the implementation of a spatiotemporal cross-

validation framework that carefully considers the training and testing periods. This strategy 

could significantly enhance the generative model's ability to address seasonal fluctuations and 

temporal disparities. 
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Another improvement could arise from the adoption of convolutional layers in place of the 

current linear layers. While linear layers have been employed to provide a solid architectural 

foundation and greater control over the parameters, the use of convolutional layers could offer 

significant advantages, especially concerning complex variables such as precipitation. 

Convolutional architectures allow for faster training and improved model generalization, 

thereby mitigating the risk of overfitting. Furthermore, the translational invariance introduced 

by convolutional layers enables the model to recognize patterns irrespective of their precise 

position within the data matrix, which is a crucial aspect in meteorological forecasting. 

Finally, to further enhance the performance of the developed downscaling model, it is advisable 

to consider integrating advanced strategies inspired by two GAN frameworks: the Progressive 

Growing Generative Adversarial Network (ProGAN) and the Latent Adversarial Generative 

(LAG). ProGAN is recognized for its ability to progressively generate high-resolution images, 

optimizing image quality as the training process advances (Li G. and Cao G., 2024). By 

implementing a progressive growth strategy within the layers of our cGAN, we can improve 

the quality of the generated images, focusing on finer details and superior spatial coherence. 

On the other hand, the integration of LAG proves essential for modeling uncertainty in the data, 

allowing for the generation of a greater number of plausible samples rather than deterministic 

predictions (Li G. and Cao G., 2024). This approach effectively represents the intrinsic 

variability within climatic datasets. By incorporating LAG into our cGAN, we anticipate 

producing outputs that are not only realistic but also representative of data variability, thereby 

further enhancing the quality and reliability of the generated high-resolution dataset. These 

developments could not only expand the capabilities of the developed downscaling model but 

also contribute to a better understanding of atmospheric dynamics through the provision of 

high-resolution datasets across multiple geographical domains in significantly shorter 

timescales compared to dynamic downscaling, while ensuring consistency with similarly 

resolved datasets produced by physically based models. 
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A | Investigating cGAN Downscaling Under 

Peculiar Synoptic Conditions 

 

In this section, we investigate the behavior of the downscaling model developed in this 

study and, consequently, the ERA5-DownGAN dataset it produced, during complex synoptic 

conditions, as introduced in Section 2.2. The primary aim of this analysis is to evaluate the 

robustness and performance of the cGAN in anomalous meteorological conditions. This 

investigation allows us to assess the model’s effectiveness in downscaling under atypical 

conditions, offering a more detailed understanding of its applicability and limitations in real-

world contexts where meteorological patterns deviate significantly from seasonal averages. 

Furthermore, to understand the behavior of the dataset produced by the GAN-based statistical 

downscaling in comparison with dynamic downscaling, the two datasets ERA5-DownGAN and 

VHR_REA-IT are compared with the observed-gridded SCIA data (Sistema nazionale per la 

raccolta, elaborazione e diffusione di dati Climatologici di Interesse Ambientale; Desiato F. et 

al., 2007).  SCIA is an observational dataset derived from hundreds of weather stations covering 

the entire Italian Peninsula (http://www.scia.isprambiente.it/wwwrootscia/help_eng.html), 

shown in Fig. A.3, spanning the period from January 1961 to December 2020 on a regular 5 km 

grid for temperature variables. For this analysis, we used the mean temperature field derived 

from the variables tmin and tmax, as these are the only temperature variables available in the 

SCIA dataset. 

The day of March 24, 2001, was characterized by a significant heatwave, attributed to the 

establishment of an African anticyclone from March 18 onwards. This high-pressure system 

facilitated the inflow of warm air into the central Mediterranean and Italy, resulting in a notable 

increase in temperatures. The warmest temperatures were recorded primarily on March 22, 23, 

and 24, with values markedly above seasonal averages. In particular, one-third of Sardinia 

experienced temperatures exceeding 30 °C, reaching peaks of 34.8 °C in Jerzu, 34.7 °C in 

Siniscola, 33.2 °C in Oliena, and 33.0 °C in Muravera. Additionally, several weather stations 

reported nighttime minimum temperatures around 20 °C, with 20.2 °C recorded in Iglesias and 
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19.7 °C in Modolo and Domus de Maria (timento.imc@arpa.sardegna.it). It is noteworthy that, 

according to the historical series maintained by the Regional Meteorological Service (SAR) 

dating back to 1928, there are no records of such high temperatures in March. The only 

comparable event occurred in March 1990, when select weather stations reported maximum 

temperatures exceeding 30 °C, peaking at 33.0 °C in Laconi. 

Figure A.I illustrates the synoptic conditions for the specified date, March 24, 2001. These 

historical maps were sourced from www.meteociel.it and derived from NCEP reanalyses 

(Reanalysis 1, 2, and the 20th Century Edition), featuring a resolution of 2.5° x 2.5°. 

 

 

Fig. A.I: Synoptic analysis at 12:00 UTC from NOAA/NCEP reanalysis on 24th March 2001. Maps of 

geopotential at 500 hPa (upper) and temperature (°C) at 850 hPa (lower). Reproduced from (www.meteociel.it). 

 

The comparison of the 2-meter temperature field for March 24, 2001, between the low-

resolution ERA5 dataset, the statistically downscaled ERA5-DownGAN field, the dynamically 

downscaled VHR_REA-IT dataset, and the difference map between ERA5-DownGAN and 

VHR_REA-IT is illustrated in Fig. A.2. It is observed that the error between ERA5-DownGAN 
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and VHR_REA-IT shows a significantly larger discrepancy compared to the results discussed 

in Chapter 3, where the comparison between the two datasets indicated excellent agreement and 

minimal differences. In this case, however, the differences reach values up to +7.6 and –6.8 °C, 

with a median value of +2.2 °C (Fig. A.2, Panel a). To facilitate the analysis of the areas in the 

domain with the largest discrepancies, the range of the difference maps was set between -3 and 

+3 °C. To assess the alignment of the statistical model (ERA5-DownGAN) with the dynamic 

model (VHR_REA-IT) for similar period, the mean temperature field for March 24 was 

analyzed over the study period (2001-2005). The results show an excellent agreement between 

the fields produced by ERA5-DownGAN and VHR_REA-IT in this climatological analysis: 

the difference between the statistically and dynamically downscaled datasets varies between -

0.5 and +0.5 °C, with a median value across the entire domain of approximately 0.08 °C, 

indicating near-zero error, with maximum differences observed only in specific locations, 

reaching up to +2.5 and -1.9 °C (Fig. A.2, Panel b). This finding confirms the effectiveness of 

the developed cGAN model in the downscaling application for the temperature field, as 

discussed in Chapter 3. 

 

Fig. A.2:. Panel (a): Maps for March 24, 2021, for ERA5 (LR), ERA5-DownGAN (HR), and VHR_REA-IT 

(HR), along with the difference between ERA5-DownGAN and VHR_REA-IT. Panel (b): Average of all March 

24 observations from 2001 to 2005 for ERA5 (LR), ERA5-DownGAN (HR), and VHR_REA-IT (HR), as well 

as the difference between ERA5-DownGAN and VHR_REA-IT.
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In the context of analyzing the performance of the statistical downscaling model based on 

cGAN developed in this study, we have considered the VHR_REA-IT dataset, obtained through 

dynamic downscaling, as representative of "high-resolution" reality. This approach is justified 

by the model's objective to generate fields that are totally comparable to those produced by a 

physically-based model, which has been previously validated in the studies of Raffa et al. 2021 

and Adinolfi et al. 2023. 

Currently, we focus on assessing the actual performance of the two downscaling models 

(VHR_REA-IT and ERA5-DownGAN) under an anomalous condition, specifically the 

heatwave of March 24, 2001, using an observational dataset to represent reality. The 

observational dataset in question is the observed-gridded SCIA data (Fig. A.4), from which the 

surface mean temperature field is derived from the available variables of maximum (tmax) and 

minimum (tmin) temperatures. In this case, the grid resolution is 5 km, and the field is obtained 

by interpolating data from meteorological stations. Therefore, it is reasonable to expect 

differences arising from the varying resolutions of the two downscaling models, which operate 

at a resolution of approximately 2.2 km, compared to the observational SCIA grid dataset at 5 

km. 

 

Fig. A.3:. Map of the distribution of SCIA weather stations for tmin and tmax (2001). Sourced from 

https://scia.isprambiente.it/. 

 

The comparison between the surface mean temperature fields of the two downscaling datasets 

and those derived in the SCIA dataset is conducted by exclusively considering the values 

recorded on the Italian peninsula and the mainland, thereby limiting the analysis to the territory 

covered by the observation stations included in the SCIA dataset. 
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Fig. A.4:. Maps of SCIA observed-gridded temperature dataset. (a) Maximum temperature (tmax); (b) Minimum 

temperature (tmin) and the derived mean temperature (c). 

Dataset Temperature Min. [°C] Max. [°C] Mean [°C] Median [°C] 

SCIA derived mean temperature -1.8 24.0 15.6 15.8 

ERA5-DownGAN Tmean -4.3 25.5 16.9 18.3 

VHR_REA-IT Tmean -7.3 29.3 15.3 16.2 

ERA5 Tmean 12.6 28.8 19.8 18.7 

SCIA Tmax 1.0 31.0 21.1 20.9 

SCIA Tmin -7.5 19.5 10.2 10.7 
 

Tab. A.I: Comparison on 24th March 2001 of minimum, maximum, mean, and median values for the datasets 

SCIA, ERA5-DownGAN, VHR_REA-IT, and ERA5, with horizontal resolutions of approximately 5 km, 2.2 km, 

2.2 km, and 31 km, respectively. Descriptive statistics for the observational dataset SCIA for Tmin and Tmax. 

 

An analysis of the visual comparisons presented in Fig. A.5, along with the descriptive statistics 

presented in Tab. A.I, reveals that the datasets derived from downscaling, ERA5-DownGAN 

and VHR_REA-IT, representing statistical and dynamic approaches respectively, demonstrate 

remarkably similar patterns and comparable values.  

 

 

Fig. A.5:. Comparison of  2m-temperature field only over Italian Peninsula on 24th March 2001. SCIA 

observed-gridded temperature dataset; ERA5-DonwGAN; VHR_REA-IT and ERA5. 
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However, the GAN-generated dataset exhibits higher temperatures in the regions of Emilia-

Romagna, Tuscany, and Abruzzo compared to those obtained through dynamic downscaling 

and the observational dataset. This temperature elevation is particularly pronounced in the Po 

Valley regions. Conversely, an inversion of this trend is noted in the island regions, where 

VHR_REA-IT is identified as the warmer dataset, displaying a more significant deviation from 

the observational dataset SCIA relative to ERA5-DownGAN. While the mean and median 

values suggest a stronger concordance between the dynamically downscaled dataset and the 

SCIA observational data, the dataset produced via conditional Generative Adversarial Networks 

(cGAN) demonstrates a closer alignment with the minimum and maximum values. As 

delineated in Table A.I, the maximum temperature recorded for ERA5-DownGAN is 25.5 °C, 

in contrast to 29.3 °C for VHR_REA-IT and 24.0 °C for SCIA. Regarding the minimum values 

documented in alpine areas, the discrepancies are even more pronounced: SCIA records -1.8 

°C, while ERA5-DownGAN and VHR_REA-IT register -4.3 °C and -7.3 °C, respectively. In 

these alpine regions, the overall tendency for higher temperatures in the ERA5-DownGAN 

dataset exhibits a closer alignment with the SCIA observations. 

Additional case study of particular relevance for assessing the performance of our statistical 

downscaling method, as highlighted in the analyses conducted in Chapter 3, is March 2, 2004, 

a day when we observed a discrepancy between the dataset generated by the conditional 

Generative Adversarial Network (cGAN) and that produced by dynamic downscaling. On 

March 2, 2004, Europe was affected by a complex synoptic system characterized by the 

presence of a broad low-pressure area that was deepening and translating toward the eastern 

sectors. This low-pressure area had dominated much of Europe in the preceding days, due to 

the deepening of a jet stream trough that was situated between two high-pressure systems. The 

interaction between these structures generated a flow of cold air of Arctic origin toward Central 

and Western Europe, promoting atmospheric instability and resulting in a decrease in 

temperatures (Fig. A.6), including over the Italian Peninsula. 

Figure A.7 illustrates the temperature field at 2 meters for March 2, 2004, comparing the low-

resolution ERA5 dataset, the statistically downscaled field using ERA5-DownGAN, the 

dynamically downscaled VHR_REA-IT dataset, and the map of differences between ERA5-

DownGAN and VHR_REA-IT. For this case study, the results corroborate the observations 

made in Chapter 3 for this date, indicating a significantly greater discrepancy between ERA5-

DownGAN and VHR_REA-IT compared to other dates in the reference period. This suggests 

that the GAN demonstrates a high level of consistency with the high-resolution VHR_REA-IT 
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dataset. Notably, the differences reach extreme values of +2.0 °C and -6.8 °C, with a median 

value of -1.64 °C (Figure A.7, Panel a). 

 

 

Fig. A.6: Synoptic analysis at 12:00 UTC from NOAA/NCEP reanalysis on 2sd March 2004. Maps of 

geopotential at 500 hPa (upper) and temperature (°C) at 850 hPa (lower). Reproduced from (www.meteociel.it). 

 

To verify the consistency between the statistical model (ERA5-DownGAN) and the dynamic 

model (VHR_REA-IT) over the same period, an analysis of the mean temperature field for 

March 2 was conducted for the study period (2001-2005). The results show an excellent 

agreement between the temperature fields generated by ERA5-DownGAN and VHR_REA-IT 

in this climatological context: the difference between the statistically and dynamically 

downscaled datasets ranges between -0.5 and +0.5 °C, with a median value across the entire 

domain of approximately -0.77 °C, indicating a slight tendency toward underestimation (Fig. 

A.7, Panel d). This result further confirms the effectiveness of the developed cGAN model in 

downscaling the 2m-temperature field. 
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Fig. A.7:. Panel (a): Maps for March 2, 2024, for ERA5 (LR), ERA5-DownGAN (HR), and VHR_REA-IT 

(HR), along with the difference between ERA5-DownGAN and VHR_REA-IT. Panel (b): Average of all March 

2 observations from 2001 to 2005 for ERA5 (LR), ERA5-DownGAN (HR), and VHR_REA-IT (HR), as well as 

the difference between ERA5-DownGAN and VHR_REA-IT. 

 

The analysis of the temperature field at 2 meters produced by the two downscaling 

methodologies is further explored in this second case study, comparing the ERA5-DownGAN 

and VHR_REA-IT datasets with the observational gridded dataset SCIA for the Italian 

Peninsula. A preliminary visual analysis (see Fig. A.8) indicates that both downscaling 

methodologies generally maintain excellent agreement in terms of pattern localization with 

respect to the observational dataset, except for the Islands and the western Alps sector. An 

interesting difference emerges for Sardinia, where the SCIA dataset highlights lower 

temperatures in the eastern flank. In contrast, ERA5-DownGAN, aligning with the behavior of 

VHR_REA-IT, detects colder temperatures in the western sector. Conversely, ERA5, despite its 

significantly lower resolution compared to both the observational dataset and the downscaled 

products, appears to replicate the observed behavior in SCIA for Sardinia, albeit with higher 

temperature values due to its coarse resolution. This result emphasizes the model's tendency to 

align with the conceptual patterns identified in VHR_REA-IT, even when starting from the 

ERA5 dataset. Such alignment is crucial, as the ultimate goal is to produce a high-resolution 

field comparable to that generated by physics-based downscaling methods. Despite the strong 

agreement in terms of spatial patterns, the ERA5-DownGAN dataset shows a general tendency 

to underestimate temperatures compared to the observational dataset SCIA. As indicated in 

Table A.2, the minimum recorded in the mean temperature field in ERA5-DownGAN is -20.9 
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°C, very close to the -20.4 °C observed in VHR_REA-IT but higher than the -23.0 °C reported 

in SCIA. The greatest discrepancies are observed in terms of the maximum value identified in 

the mean temperature field, with values of approximately 10.3 °C for ERA5-DownGAN, 11.0 

°C for VHR_REA-IT, and 13.0 °C for SCIA. This trend is further pronounced for the median 

temperature, which is around 0.1 °C in ERA5-DownGAN, 2.2 °C in VHR_REA-IT, and 2.7 °C 

in SCIA. 

Dataset Temperature Min. [°C] Max. [°C] Mean [°C] Median [°C] 

SCIA derived mean temperature -23.1 13,0 1.6 2.7 

ERA5-DownGAN Tmean -20.9 10.3 -1,0 0.1 

VHR_REA-IT Tmean -20.4 11.0 -1,0 2.2 

ERA5 Tmean -1.5 10.5 4,0 3.7 

SCIA Tmax -19.7 16.3 5.7 6.6 

SCIA Tmin -26.4 10.0 -2.5 -1.9 
 

Tab. A.2: Comparison on 2sd March 2004 of minimum, maximum, mean, and median values for the datasets 

SCIA, ERA5-DownGAN, VHR_REA-IT, and ERA5, with horizontal resolutions of approximately 5 km, 2.2 km, 

2.2 km, and 31 km, respectively. Descriptive statistics for the observational dataset SCIA for Tmin and Tmax. 

 

Overall, both downscaling products exhibit an underestimation compared to the observational 

dataset SCIA, with a more pronounced trend observed in ERA5-DownGAN. It is important to 

note that, despite this underestimation in the dataset produced by downscaling via cGAN, there 

is no exacerbation of extreme values related to the minimums. This is a significant aspect in the 

context of downscaling using GANs, as one of the common issues associated with the use of 

GANs in climate science is the generation of anomalous and extreme values, a behavior that is, 

however, mitigated by the use of a cGAN (Leinonen et al., 2019, 2021) as in this work. 

 

 

Fig. A.8:. Comparison of  2m-temperature field only over Italian Peninsula on 2sd March 2004. SCIA observed-

gridded temperature dataset; ERA5-DonwGAN; VHR_REA-IT and ERA5. 
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In conclusion, the analysis of anomalous weather conditions reveals that the developed cGAN 

architecture effectively maintains spatial coherence in the representation of patterns compared 

to the dataset produced by the dynamic downscaling method VHR_REA-IT. Although the 

values generated by ERA5-DownGAN remain within a similar range, there is a noticeable 

tendency to exaggerate anomalous conditions relative to the reference dataset VHR_REA-IT. 

Specifically, during the heatwave of March 24, 2001, ERA5-DownGAN demonstrates an 

overestimation of temperatures compared to VHR_REA-IT, while aligning more closely with 

the observational dataset SCIA, particularly in the regions of the Alps and the islands. This 

alignment, however, highlights an extremization of the trends identified in VHR_REA-IT and 

reflects a broader tendency among convection-permitting models to overestimate surface 

temperature fields in the Po Valley. Importantly, despite these tendencies, ERA5-DownGAN 

does not generate anomalous maximum values; rather, it tends to mitigate those found in 

VHR_REA-IT, aligning them more closely with the SCIA observational dataset. Conversely, in 

conditions characterized by colder temperatures relative to the seasonal average, ERA5-

DownGAN registers an underestimation compared to both the SCIA observational dataset and 

the VHR_REA-IT dataset, without producing anomalous minimum values. Therefore, even 

under anomalous weather conditions, the downscaling architecture based on cGAN effectively 

replicates the fine patterns and details observed in VHR_REA-IT, demonstrating a general 

tendency to exaggerate anomalous conditions that does not impact the generation of outliers, 

but rather appears to highlight a possible exemplification of meteorological dynamics in such 

peculiar contexts. 

B | Lateral work: Dynamical Downscaling over 

the Italian Peninsula Using WRF,  COSMO, 

and ICON Atmospheric Models 

 

In the context of enhancing climate modeling efforts, it is essential to investigate the 

intrinsic differences between statistical approaches and physically-based traditional climate 

models. To this end, a complementary study was conducted focusing on the configuration of 

the Weather Research and Forecasting (WRF) model in its version 4.2.1. This work aimed to 

develop an optimized configuration for the Italian peninsula, achieving a horizontal resolution 

of 2 km. Through extensive sensitivity testing, various physical parameterizations were 



124 
 

examined, including the boundary layer (PBL), microphysics, and short- and long-wave 

radiation schemes. This analysis facilitated an evaluation of the developed WRF configuration’s 

performance compared to other atmospheric models, such as COSMO and ICON, at the same 

resolution, highlighting differences in predictive capabilities. The findings of this research were 

published in the paper by Manco I. et al. (2023), titled "A Comparative Performance Study of 

WRF, COSMO, and ICON Atmospheric Models for the Italian Peninsula at Very High 

Resolution." (DOI:10.3369/tethys.2023.20.01) The results demonstrate strong agreement and 

excellent performance of the optimized WRF configuration over the Italian Peninsula. 

Understanding these dynamics is essential for informing the statistical downscaling process 

using AI-based methods, as a solid foundation in physically-based models enhances the 

accuracy and relevance of local climate simulations. 

 

Tab. B.I: The sensitivity analysis about: PBL, microphysics, surface physics schemes and geographic projection 

has allowed to determinate the best configuration of the WRF model, that minimizes the error metrics for the 

precipitation, wind speed and temperature fields (Sim 9). Reproduced by Manco I. et al 2023. 

The atmospheric forcing used was the Integrated Forecasting System (IFS) with analyses 

provided by the European Centre for Medium-Range Weather Forecasts (ECMWF), with a grid-

point distance between neighboring points of approximately 9 km. The simulations were 

conducted in a single run of 15 days and the lateral boundary conditions for each model were 

refreshed every 6 hours. 
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Fig. B.I: PDFs for 2019 of T_max (a,d), T_min(b,e) and T_mean (c). Panels (a,b,c) identify the evaluation 

against ERA5-Land and panels (d,e) identify the evaluation against SCIA. Reproduced by Manco I. et al 2023. 
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Fig. B.2: PDFs for 2020 of T_max (a,d), T_min(b,e) and T_mean (c). Panels (a,b,c) identify the evaluation 

against ERA5-Land and panels (d,e) identify the evaluation against SCIA. Reproduced by Manco I. et al 2023. 

 

Through this sensitivity analysis, is possible to identify Sim9 as the most effective model 

configuration by assessing the simulated temperature and precipitation fields against 

observational data (details not shown here). A set of statistical metrics was employed for 

validation, such as MAE (mean absolute error), RMSE (root mean square error), MBIAS (mean 

bias), IoA (Index of Agreement), and Taylor diagrams. Notably, the application of the Planetary 

Boundary Layer "YSU" scheme led to significant performance improvements, providing a more 
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accurate representation of both temperature and precipitation ranges. Among the various 

microphysics options, the "Morrison 2-moment scheme" proved to be the best for accurately 

modeling precipitation. Additionally, employing a Lambert projection minimized distortions 

compared to the Mercator projection. For all simulations, the Monin-Obukhov scheme (Janjic 

Eta) was utilized to effectively parameterize the surface layer. 

 

Fig. B.3: Taylor Diagrams of the daily cumulative precipitation at 2m in WRF, COSMO and ICON evaluated 

against ERA5-Land (a,c) and SCIA (b,d) in 2019 (left column) and 2020 (right column). Reproduced by Manco 

I. et al 2023. 

 

The best-model configurations for the Weather Research and Forecasting (WRF), COSMO, and 

ICON models were rigorously evaluated against two observational datasets, ERA5-Land and 

SCIA. This assessment aimed to quantify their efficacy in simulating key atmospheric variables, 

namely minimum temperature (tmin), mean temperature (tmean), maximum temperature 

(tmax), shown in Fig. B.I and Fig. B.2, total precipitation (Tot prec), in Fig. B.3, and wind speed 

at 10 meters (W10m), in Fig. B. 4, during two distinct periods: winter 2020 and summer 2019. 

All models demonstrated robust performance in reproducing temperature, precipitation, and 

wind speed, achieving high correlation coefficients ranging from 80% to 99% for temperature 

variables. Additionally, low root mean square error (RMSE) values were observed, particularly 

in the simulation of temperature fields. In terms of precipitation, the models achieved an 
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accuracy of 70% to 96% when evaluated against SCIA data. However, discrepancies in 

performance were noted when comparing the models with the coarser resolution of ERA5-

Land, which may inhibit the ability to resolve fine-scale dynamic processes effectively. 

 

Fig. B.4: Map of time-mean wind speed at 10 m for ERA5-Land (a,f), SCIA (b,g), WRF (c,h), COSMO (d,i) and 

ICON (e,l). Reproduced by Manco I. et al 2023. 

 

In particular, WRF accurately represented specific meteorological conditions, including cold 

temperatures and strong winds in winter, and intense convection in summer. The configuration 

of WRF, optimized for the Italian domain, performed on par with or exceeded ICON 

configurations from De Lucia et al. (2022) and COSMO configurations described by Baldauf 

et al. (2011), with all models tested at a similar horizontal resolution of approximately 2 km.  
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C | Lateral work: AI-Based Method for Identifying 

Historical Recurrent Precipitation Patterns and 

Evaluating Changes in Future Projections 

 

The high-resolution dataset generated through the statistical downscaling methodology 

based on a cGAN developed in this study is intended to serve as a robust and versatile product, 

comparable to dynamically downscaled datasets. Its applicability has been assessed across 

various scientific questions commonly encountered in meteorology and climatology. Among 

these applications, a key focus was placed on identifying geographically recurring patterns 

during extreme precipitation events. For this purpose, a supplementary methodology (see Fig. 

C.I) was developed, utilizing the k-means clustering algorithm (alongside trials with alternative 

algorithms, including hierarchical clustering). This investigation was carried out in parallel as 

part of the PNRR-HAMMON project, in collaboration with the CMCC. 

Starting from a high-resolution dataset of daily cumulative precipitation and the creation of an 

extreme-event catalog, this approach identifies statistically recurring extreme regimes over a 

selected region and delineates their geographic extent. This process enables the classification 

of areas affected by similar precipitation values during extreme events. Figure C.I presents the 

average precipitation values recorded within the catalog of extreme events, defined as shown 

in Fig. C.3.  

 

Fig. C.I: Map of Mean Precipitation on Extreme Event Days Exceeding the 90th Percentile.
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The k-means algorithm is an unsupervised clustering technique widely used to partition datasets 

into k groups, or clusters, based on data proximity (Lloyd, 1982; MacQueen, 1967). The 

algorithm begins with the random selection of k centroids, around which data points are 

iteratively grouped. At each iteration, each data point is assigned to the nearest centroid, 

followed by recalculating each centroid’s position based on the mean of its assigned points. 

This process repeats until the centroids stabilize or a predefined number of iterations is reached. 

However, a known limitation of the k-means algorithm is the requirement to set the number of 

clusters k beforehand, which directly influences the clustering result (Jain A. K., 2010). 

Determining the optimal k value is crucial for obtaining meaningful clusters within the dataset. 

To address this, this study applied the inertia plot, or "elbow method" (Thorndike, 1953), to 

identify the best k. The plot represents the sum of squared distances between data points and 

their respective centroids for various k values. The optimal number of clusters, in our case equal 

to 10, is typically indicated by the "elbow" in the plot, where increasing the number of clusters 

yields only marginal improvements, suggesting an appropriate level of differentiation among 

groups. 

 

Fig. C.2: Inertia Plot to identify the optimal numbers of clusters. 

 

The k-means algorithm is particularly effective at identifying natural clusters or recurring 

patterns within large datasets, including meteorological data, making it highly valuable in 

climate studies (Jain A. K., 2010; Xu R. and Wunsch D. I. I., 2005). Its application allows 

researchers to extract meaningful information about precipitation regimes, especially when 

examining extreme events. By isolating areas with homogeneous behaviors, k-means facilitates 



131 
 

the analysis of climate phenomena at regional scales, aiding in the understanding of spatial 

patterns associated with extreme weather conditions (Deka, P., and Saha, U., 2023). 

 

Fig. C.3: Work-flow of clustering methodology. 

Figure C.4 presents a case study of the Emilia-Romagna region, which is notably affected by 

very intense precipitation events throughout the entire historical period 1981-2005). 

 

 

Fig. C.4: K-means Clustering 1981-2020. 

 

One limitation of the k-means algorithm is its difficulty in accurately representing non-spherical 

patterns within data. However, through the developed methodology, which includes a 

preliminary filtering of extreme events, the algorithm successfully identifies the core of the 

most intense precipitation, as also shown in Fig. C.I following the clustering process 

(highlighted in orange in Fig. C.5). This outcome confirms k-means’ ability, once optimized for 

extreme events, to precisely delineate clusters corresponding to areas of higher precipitation 

intensity. 
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Fig. C.5: K-means Clustering 1981-2020 (winter). 

 

The investigation initially examined the historical period from 1981 to 2005, both as a whole 

and seasonally. Subsequently, in line with the findings of Puente A. et al. (2015), which 

emphasize the importance of extending cluster-based analyses to future scenarios, we aimed to 

understand how these clusters may evolve in terms of localization and spatial extent under the 

RCP8.5 scenario. To this end, the VHR_PRO dataset (Raffa M. et al., 2023) was utilized to 

compare historical data with future projections (Fig. C.6). 

 

Fig. C.6: Comparison of cluster distribution for the historical (1981-2005) and future (2035-2065) RCP8.5 

during the summer. 
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In conclusion, the investigation revealed no significant differences in the extent and localization 

of clusters when comparing historical data with projections under the RCP8.5 scenario. Key 

statistical measures such as mean, median, and standard deviation remained relatively 

consistent across the datasets.  

However, when examining seasonal variations, distinct differences emerged. During the winter 

months, the RCP8.5 scenario exhibited significantly higher precipitation values for the cluster 

representing the most intense precipitation events compared to historical data. In contrast, 

summer showed notable changes in the localization and extent of the clusters. Specifically, in 

the provinces of Parma and Piacenza, lower average precipitation values and higher standard 

deviations were observed, indicating increased variability in precipitation patterns during this 

season. This highlights the importance of conducting seasonal analyses to capture the nuanced 

changes that may occur under future climate scenarios. The results of this preliminary 

investigation using the dynamic dataset lay the groundwork as a benchmark for future 

experiments involving the dataset generated through statistical downscaling using the GAN 

model developed in this study. 
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Code and data availability 

The cGAN developed in this study will be made publicly available upon publication. The code 

will be accessible through Zenodo and will be fully open-source. The high-resolution dataset 

produced by cGAN-downscaling will be available on the DDS (Data Delivery System) of 

CMCC (https://dds.cmcc.it/). The implementation is written in Python and operates within a 

Miniconda environment. The machine learning components require the following libraries: 

PyTorch, Torchvision, Scipy, and Numpy. For visualization, the required libraries include 

Matplotlib and Torchvision.utils. A list of dependencies, including the specific versions of these 

libraries, is provided below to ensure proper environment setup. 

Name Version Build Channel 

_libgcc_mutex 0.1 conda_forge conda-forge 

_openmp_mutex 4.5 2_gnu conda-forge 

absl-py 1.4.0 pyhd8ed1ab_0 conda-forge 

affine 2.4.0 pypi_0 pypi 

aiohttp 3.8.4 py39h72bdee0_0 conda-forge 

aiosignal 1.3.1 pyhd8ed1ab_0 conda-forge 

anyio 3.6.2 pyhd8ed1ab_0 conda-forge 

argon2-cffi 21.3.0 pyhd8ed1ab_0 conda-forge 

argon2-cffi-bindings 21.2.0 py39h7f8727e_0 anaconda 

asttokens 2.2.1 pyhd8ed1ab_0 conda-forge 

async-timeout 4.0.2 py39h06a4308_0 anaconda 

https://dds.cmcc.it/
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Name Version Build Channel 

attrs 22.1.0 pyh71513ae_1 conda-forge 

autopep8 2.0.4 pypi_0 pypi 

babel 2.11.0 pyhd8ed1ab_0 conda-forge 

backcall 0.2.0 pyh9f0ad1d_0 conda-forge 

backports 1.1 pyhd3eb1b0_0 anaconda 

backports.functools_lru_cache 1.6.4 pyhd8ed1ab_0 conda-forge 

beautifulsoup4 4.11.1 pyha770c72_0 conda-forge 

black 23.10.1 pypi_0 pypi 

blas 1.0 mkl anaconda 

bleach 5.0.1 pyhd8ed1ab_0 conda-forge 

blinker 1.5 pyhd8ed1ab_0 conda-forge 

blosc 1.21.0 h4ff587b_1 anaconda 

brotli 1.0.9 h166bdaf_8 conda-forge 

brotli-bin 1.0.9 h166bdaf_8 conda-forge 

brotlipy 0.7.0 py39h27cfd23_1003 anaconda 

brunsli 0.1 h2531618_0 anaconda 

bzip2 1.0.8 h7f98852_4 conda-forge 

c-ares 1.18.1 h7f98852_0 conda-forge 
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Name Version Build Channel 

ca-certificates 2024.11.26 h06a4308_0  

cachetools 5.3.0 pyhd8ed1ab_0 conda-forge 

cartopy 0.22.0 py39hddac248_1 conda-forge 

cdo 1.5.7 pypi_0 pypi 

certifi 2024.8.30 py39h06a4308_0  

cf_xarray 0.7.6 pyhd8ed1ab_0 conda-forge 

cffi 1.15.1 py39h5eee18b_3 anaconda 

cfitsio 3.470 h5893167_7 anaconda 

cftime 1.6.2 py39h2ae25f5_1 conda-forge 

charls 2.2.0 h2531618_0 anaconda 

charset-normalizer 2.1.1 pyhd8ed1ab_0 conda-forge 

click 8.1.3 unix_pyhd8ed1ab_2 conda-forge 

click-plugins 1.1.1 pypi_0 pypi 

cligj 0.7.2 pypi_0 pypi 

cloudpickle 2.2.1 py39h06a4308_0 anaconda 

colorama 0.4.6 py39h06a4308_0  

comm 0.1.2 pyhd8ed1ab_0 conda-forge 

contourpy 1.0.6 py39hf939315_0 conda-forge 
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Name Version Build Channel 

cryptography 38.0.1 py39h9ce1e76_0 anaconda 

curl 7.86.0 h5eee18b_0 anaconda 

cycler 0.11.0 pyhd8ed1ab_0 conda-forge 

cytoolz 0.12.0 py39h5eee18b_0 anaconda 

dask-core 2023.6.0 py39h06a4308_0 anaconda 

dbus 1.13.18 hb2f20db_0 anaconda 

debugpy 1.5.1 py39h295c915_0 anaconda 

decorator 5.1.1 pyhd8ed1ab_0 conda-forge 

defusedxml 0.7.1 pyhd8ed1ab_0 conda-forge 

distributed 2023.6.0 py39h06a4308_0 anaconda 

docutils 0.18.1 pyhd8ed1ab_0 conda-forge 

entrypoints 0.4 pyhd8ed1ab_0 conda-forge 

esmpy 8.1.0 py39h635207f_0 conda-forge 

flask 2.2.2 py39h06a4308_0 anaconda 

fonttools 4.39.0 pyhd8ed1ab_0 conda-forge 

fsspec 2023.5.0 pyhd8ed1ab_0 conda-forge 

future 0.18.3 pyhd8ed1ab_0 conda-forge 

geospatial-python 0.11.0 pyhd8ed1ab_0 conda-forge 
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Name Version Build Channel 

gdal 3.7.2 h2ee2c1b_0 conda-forge 

geoviews 1.10.4 pyhd8ed1ab_0 conda-forge 

git 2.39.1 h9ed2024_0 conda-forge 

greenlet 2.0.2 py39h5eee18b_0 conda-forge 

h5py 3.8.0 py39h0fd1996_0 anaconda 

icu 70.1 h2f8d375_0 conda-forge 

importlib-metadata 6.0.0 pyhd8ed1ab_0 conda-forge 

ipykernel 6.22.0 py39h06a4308_0 anaconda 

ipython 8.11.0 py39h06a4308_0 anaconda 

ipython_genutils 0.2.0 pyhd8ed1ab_0 conda-forge 

jinja2 3.1.2 pyhd8ed1ab_0 conda-forge 

joblib 1.2.0 pyhd8ed1ab_0 conda-forge 

json5 0.9.6 pyhd8ed1ab_0 conda-forge 

jsonschema 4.17.3 pyhd8ed1ab_0 conda-forge 

jupyter_client 8.2.0 py39h06a4308_0 anaconda 

jupyter_core 5.3.0 pyhd8ed1ab_0 conda-forge 

jupyterhub 3.2.0 py39h06a4308_0 anaconda 
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