

DOTTORATO DI RICERCA IN

DATA SCIENCE AND COMPUTATION

Ciclo 36

Settore Concorsuale: 09/H1 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI

Settore Scientifico Disciplinare: ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE
INFORMAZIONI

SCALING PERFORMANCE AT THE END OF MOORE'S LAW: A PROGRAMMER'S
PERSPECTIVE

Presentata da: Federico Ficarelli

Supervisore

Luca Benini

Esame finale anno 2025

Coordinatore Dottorato

Daniele Bonacorsi

Co-supervisore

Andrea Bartolini

Contents

Abstract xii

Preface 1

1 The Present of Sustainable HPC: GPU-Accelerated Systems 8
1.1 Use Case: Exascale Drug Discovery 11
1.2 The Virtual Screening Application 12
1.3 Architecture of GPU Accelerators 14
1.4 Latency-Optimized Kernels for Task-Based Workloads 15
1.5 Throughput-Optimized Kernels for Task-Based Workloads . . 18
1.6 Experiments . 21

1.6.1 Preprocessed Datasets 22
1.6.2 Scaling Analysis . 23
1.6.3 Real World Datasets 24
1.6.4 Micro-Architectural Profiling 25

1.7 Urgent Computing Against COVID-19 40
1.7.1 Related Work . 40
1.7.2 High-throughput Docking Workflow 41
1.7.3 Urgent Computing Setup 47
1.7.4 Evaluating the storage requirements 48
1.7.5 Intra-node Scaling . 49
1.7.6 HPC System Scale-out 50
1.7.7 Data Pre/Post-processing 51

1.8 Conclusion . 52

2 The Future of Sustainable HPC: RISC-V 56
2.1 The Monte Cimone Experimental System 58
2.2 State-of-the-art . 60
2.3 Hardware Architecture . 61
2.4 Software Environment . 64

2.4.1 HPC Software . 65
2.4.2 Power Monitoring Infrastructure 65

2.5 Assessment Experiments . 65

i

2.5.1 HPC Applications Performance 66
2.6 Heterogeneous HPC on RISC-V: Accelerating Monte Cimone 69
2.7 RISC-V for HPC: Conclusion and Prospects 70

3 Multi-level SSA Compilers for RISC-V Accelerators 72
3.1 Compiling at the End of Moore’s Law : Introduction 74
3.2 The Snitch Architecture . 76

3.2.1 Programming Model 80
3.3 The MLIR Ecosystem . 82

3.3.1 IR Structure . 84
3.3.2 Linear Algebra Programs in MLIR 86

3.4 A Multi-Level Compiler Backend 86
3.4.1 Representing SSRs . 91
3.4.2 Type Legalization . 91
3.4.3 Configuring Software-Managed Prefetchers 95

3.5 Experimental Evaluation . 95
3.5.1 Performance Model . 100
3.5.2 Performance Metrics 101
3.5.3 Continuous Testing and Benchmarking Infrastructure . 102
3.5.4 Experimental Results 104

3.6 Related Work . 111
3.7 Compiling at the End of Moore’s Law : Conclusion 113

Final Conclusions 114

Bibliography 117

ii

List of Figures

1.1 Evolution of the share of compute power per accelerator across
the first 100 positions of TOP500 supercomputer rankings
since 2010. 9

1.2 Task-to-resources mapping for the latency-oriented strategy
on the GPU. Execution time (x axis) is kept optimal by al-
locating the largest possible resources to each task. Multiple
warps process a task, and each task consumes all the resources
available on a GPU streaming multiprocessor (SM). 16

1.3 Logical mapping on how the latency approach hinges on GPU
parallelism to accelerate the execution time. Each step is im-
plemented using at least one dedicated kernel. 17

1.4 Task-to-resources mapping for the throughput-oriented strat-
egy on the GPU. Execution time (x axis) is worse than with
the latency-oriented approach, but each task is granted a
fixed, minimum amount of resources. A single warp processes
a task, and multiple tasks can be fit into the resource pool of
a single GPU streaming multiprocessor (SM). 18

1.5 Logical mapping on how the batched approach hinges on GPU
parallelism to accelerate the execution time. All the steps are
implemented in a single kernel. 19

1.6 Graphical representation of the batch formation process. In-
coming ligands are clustered according to their characteristics:
first by the number of atoms, then by the number of torsional
bonds. When a bucket is full, i.e., when the amount of ligands
is enough to allocate all GPU resources, the batch is executed. 21

1.7 Throughput of the two implementations with the different
datasets, organized by the number of atoms and increasing
the number of fragments on the x-axis. 32

1.8 Throughput of the two implementations with the different
datasets, organized by the number of fragments and increasing
the number of atoms on the x-axis. 33

1.9 Speedup heatmap of batched versus latency for different ho-
mogeneous datasets of 50K ligands with the same characteristics. 34

iii

1.10 Single GPU throughput behaviour with varying input dataset
size for all the presented approaches. While the latency-op-
timized kernel dominates the throughput-optimized one on
small datasets, after the break-even point at around 1000 lig-
ands the latter scales up to a sustained 1600 ligands per second. 34

1.11 Throughput comparison on the Mediate dataset. 35
1.12 Ligand allocation per GPU streaming multiprocessor (SM). . 35
1.13 Roofline analysis comparison between latency (top) and batch

(bottom) on instruction performance. 36
1.14 Roofline analysis comparison between latency (top) and batch

(bottom) on shared memory access pattern. 37
1.15 Comparison between latency (left) and batch (right) on (a)

peak and sustained active warps, (b) efficiency (or thread
predication) and (c) instruction mix. 38

1.16 Speedup heatmap of the batched version against the latency
one for the different homogeneous datasets without the early
exit from the check_bump function. Both throughputs are
taken with large enough datasets. 39

1.17 Time required to dock and score a ligand by varying the num-
ber of atoms and torsional bonds. The C++ implementation
use a single core IBM 8335-GTG 2.6 GHz. The CUDA imple-
mentation use a single NVIDIA V100. 42

1.18 Strong scaling experiment of the high-throughput molecular
docking on the whole Marconi100 supercomputer. 45

1.19 Exscalate workflow, from the input (ligand’s chemical library
and the protein models) on the left to the outcome (most
promising set of molecules) on the right. 46

1.20 Frequency distribution of the measured docking time, using
the CUDA implementation, and its prediction error. Values
with a frequency lower than 0.001 are discarded for conciseness
purposes. 54

1.21 Execution track of two entire job arrays targeting two different
protein pockets on the two different supercomputers. 55

2.1 The custom-built E4 RV007 Server Blade is based on a dual
SiFive Freedom U740 system on a chip (SoC). The form fac-
tor is 4.44 cm (1 RackUnit) high, 42.5 cm wide, 40 cm deep.
A dedicated power supply powers each board to account for
future PCIe expansions. 62

2.2 The HiFive Unmatched board based on the SiFive Freedom
U740 SoC. The form factor follows the Mini-ITX standard
(170mm× 170mm). 63

iv

2.3 HPL strong scaling tests on Monte Cimone. Average attained
throughput values are shown in labels. Standard deviations
are calculated on 10 repetitions. 67

3.1 Double precision vector inner product (BLAS DDOT), in-
creasingly optimized for Snitch. The baseline (left) implemen-
tation using RISC-V standard ISA extensions only (base ISA
with d) reaches a theoretical peak of 0.28FLOP/instruction
in the loop body. The second implementation (center) intro-
duces SSRs from the Snitch ISA, reaching a peak throughput
of 0.66FLOP/instruction. The third implementation (right)
replaces explicit control loop with the frep.o hardware loop,
reaching the architecture’s theoretical peak throughput of 2
FLOP/instruction. This figure is from Lopoukhine et al. [67]. 77

3.2 Simplified high-level overview of the Snitch micro-architec-
ture [48]. This simplified model is used to define the per-
formance model (Paragraph 3.5.1) used by the experimental
evaluation. FPU utilization can be maximized using hardware
loops (FREP) to remove explicit loop control flow and SSR
to eliminate explicit FP load/stores for affine access patterns.
This figure is from Lopoukhine et al. [67]. 78

3.3 BLAS SAXPY operation in Snitch. This code is an optimized
implementation of the single-core kernel utilizing read/write
SSRs, FREP and an unrolled loop body performing packed-
SIMD instructions on vectors of two single precision elements. 81

3.4 Organizing program abstractions as SSA-based IRs enables
a modular approach for compiler construction. The above
vector-matrix product in MLIR makes the use-def relation-
ships explicit and obviates the need for intricate analyses by
capturing information at the right abstraction level (e.g., di-
rectly expressing iteration types in linalg.generic). This
figure is from Lopoukhine et al. [67]. 84

3.5 The LLVM phi-based SSA form compared to an equivalend
MLIR block-based SSA form. In LLVM different SSA values
defined in different incoming branches of the control flow are
merged by the phi instruction. The MLIR snippet uses blocks
with arguments instead of ϕ nodes: the ˆmerge block is en-
tered with different SSA values as its argument. The MLIR
snippet uses the cf dialect to represent unstructured control
flow to keep the two forms as similar as possible 85

v

3.6 The presented approach leverages valuable information that
explicitly captures accesses and computation when expressed
as an MLIR linalg.generic operation. For this matrix mul-
tiplication, the reduction dimension k along with how it maps
to the input and output matrices is clearly expressed. This
figure is from Lopoukhine et al. [67]. 87

3.7 The presented multi-level backend uses a mix of SSAs-based
IRs to represent different levels of abstraction around the
RISC-V ISA for a matrix-vector calculation. The SSA for-
mulation of the ISA empowers the compiler to employ well-
understood analyses and transformations and, when combined
with regions, to encode further information control flow infor-
mation (e.g., for loops) while staying close to the semantics of
the ISAs. This figure is from Lopoukhine et al. [67]. 89

3.8 The memref_stream abstractions bridge the gap between high-
level linear algebra abstractions and Snitch accelerator ca-
pabilities, allowing the scheduling of computation operations
before separating access from execution. This figure is from
Lopoukhine et al. [67]. 92

3.9 Example of element-wise addition of 2-dimensional matrices
(in the form of memref memory buffers) represented with a
memref_stream.generic operation. Element types are sin-
gle precision FP scalars, a data type that is handled by the
Snitch FPU but becomes illegal with respect to SSR memory
transfers. This program needs to be legalized (Figure 3.10). . 93

3.10 Result of Snitch legalization applied on the input example
of element-wise addition of 2-dimensional matrices shown in
Figure 3.9. Highlighted changes are adaptation of static it-
eration bounds, affine access maps and payload body’s block
argument types. The resulting IR represents a generic op-
eration (from the memref_stream dialect) that has been tiled
by a factor of 2 and vectorized in its computational payload. . 94

3.11 snitch lowering to assembly-level dialects dialects (riscv and
riscv_snitch). The program configures a three-dimensional
read stream by setting respective bound, stride and source ad-
dress, and a one-dimensional write stream. The input stream
is also configured with a repetition value. Finally, streaming
semantics is turned on and off. On the right is the IR result
of the lower-snitch transform pass. 96

vi

3.12 The proposed low-level representation is flexible enough to
represent linear algebra operations commonly used in ma-
chine learning (ML) reaching high FPU utilization, reach-
ing 95% peak FPU utilization and 94% of theoretical max-
imum throughput. Despite the high FPU utilization, the
MatMulT kernel only reaches 2.45FLOP/cycle throughput
due to extra vector packing instructions. This figure is from
Lopoukhine et al. [67]. 98

3.13 Selected micro-kernels compiled with the proposed end-to-end
prototype compiler reach up to 95% FPU utilization. In con-
trast, MLIR does not outperform a naive C implementation
compiled with Clang on this platform. This figure is from
Lopoukhine et al. [67]. 99

3.14 Roofline plot of the double precision matrix multiplication
kernel. The input program is MLIR linalg and the resulting
RISC-V assembly kernel is obtained via the lowering pipeline
presented in this chapter. The plot shows data from 500 simu-
lations with varying tensor shapes: with CM×N = AM×KBK×N ,
experiments range from (M = 4,K = 4, N = 8) to (M =
8,K = 64, N = 64). Almost all data points are above the
double precision theoretical peak of the architecture, high-
lighting an extensive use of FMA instructions. 101

3.15 Snitch execution trace. This format is produced by both dis-
assembling the Verilator traces and post-processing the result
via the Snitch repository tooling. 102

3.16 Compiler continuous testing and benchmarking pipeline. Ver-
tices represent tasks, edges represent data dependencies. Tasks
in the form kernel_generate_∗ drive the parametric ker-
nel generator to explore the space of input tensor shapes.
optimization_pipelines generates variants of the lowering
pipeline by incremental addition of optimizations. All tasks
downstream of verilator (that runs the actual simulation)
are devoted to post-processing of execution traces and com-
putation of performance counters. 105

3.17 Sustained throughput of the double precision MatMul ker-
nel (CM×N = AM×KBK×N when M = 1). When compiled
via the proposed approach, it achieves a throughput of over
90% (≥ 1.8 FLOPs/cycle) of the theoretical peak (above
the white border) as shape sizes increase, indicating that the
computation offsets constant overheads. This figure is from
Lopoukhine et al. [67]. 108

vii

3.18 Sustained throughput of the double precision MatMul ker-
nel (CM×N = AM×KBK×N when M = 4). When compiled
via the proposed approach, it achieves a throughput of over
90% (≥ 1.8 FLOPs/cycle) of the theoretical peak (above
the white border) as shape sizes increase, indicating that the
computation offsets constant overheads. This figure is from
Lopoukhine et al. [67]. 109

3.19 Sustained throughput of the double precision MatMul ker-
nel (CM×N = AM×KBK×N when M = 8). When compiled
via the proposed approach, it achieves a throughput of over
90% (≥ 1.8 FLOPs/cycle) of the theoretical peak (above
the white border) as shape sizes increase, indicating that the
computation offsets constant overheads. This figure is from
Lopoukhine et al. [67]. 110

viii

List of Tables

1.1 MEDIATE dataset characterization. For each library, its size
and the average values (± standard deviations) for the number
of heavy atoms and rotatable bonds is reported. 25

1.2 Metrics for the Instruction Roofline Model and Instruction
Mix analysis. 31

1.3 The 3D targets used in the molecular docking experiments. A
target might have different pockets. 47

1.4 The throughput reached per node and per machine for each
binding site evaluated in the experiment. The NSP13ortho
binding site has been partially computed on both machines. . 50

1.5 Time required to complete the experiment’s phases. 52

2.1 User-facing software stack deployed on Monte Cimone. 64
2.2 Performance monitoring events of the SiFive Freedom U740

SoC exposed to the Linux perf_events interface by our cus-
tom pmu_pub plugin. 66

2.3 STREAM benchmark results for four threads on a single SiFive
Freedom U740 SoC. 68

3.1 Snitch performance counters and derived metrics produced by
the simulation traces post-processor provided alongside Ver-
ilog sources. Additional post-processing is performed specif-
ically for this work to compute metrics relevant for SIMD
profiling. The micro-architectural scope (where cc stands for
core complex, snitch for the integer core, fpss for FP sub-sys-
tem and fpu for just the FPU itself) and a description of each
counter/metric are also reported. 103

ix

3.2 Incremental performance improvements by optimization passes
from the proposed compilation pipeline. The prototype back-
end achieves over 90% FPU occupancy for the MatMul kernel,
operating on 1×200 and 200×5 64 bit inputs. Incrementally
adding each optimization minimizes and, eventually elimi-
nates, explicit memory operations, while reducing execution
time (cycles) and maximizing FPU utilization. This table is
from Lopoukhine et al. [67]. 112

x

Acknowledgments

I wish to thank Prof. Luca Benini and Prof. Andrea Bartolini for their end-
less patience and support.
I thank Prof. Biagio Cosenza and Prof. Tobias Grosser for their feedbacks,
suggestions and willingness to review this thesis.
Thanks to all friends at The University of Edimburgh and Cambridge Uni-
versity, especially Sasha Lopoukhine, Chris Vasiladiotis and Anton Lydike.
Thanks to all colleagues at CINECA for bearing with me, especially Dr. Chiara
Latini.
Thanks to Prof. Giuseppe Tagliavini for his support and guidance, and
thanks to all the rest of very fine folks at the Energy-Efficient Embedded
Systems Laboratory (a.k.a. The Dungeon) at Università di Bologna.
Thanks to Simone Manoni for his help in deciphering weird wave forms from
weird processors.
Thanks to Panagiota Dimopoulou and Prof. Daniele Bonacorsi for their in-
valuable help in navigating stormy waters.

This is dedicated to my family, newcomers included.

xi

Abstract

Computer architectures face a fundamental shift as Moore’s law and Dennard
scaling reach their technological limits. This evolution has sparked a Cam-
brian explosion of specialized hardware designs trying to keep scaling systems
sustainable: computing is now a power-bound challenge. While applications
still struggle to scale on current exascale systems, future high-performance
computing (HPC) systems must integrate an increasingly diverse spectrum
of host processors and accelerators, while software stacks must adapt to het-
erogeneous and application-specific platforms. The need for domain-specific
features in hardware designs is driving the advent of the RISC-V architec-
ture: by enabling seamless extension of its widely supported ISA, it could
be the answer to the evolutionary challenges that computing systems are
facing. While already deployed in industry, the adoption of RISC-V in HPC
is still uncharted territory: its role in the future of HPC brings additional
challenges for large-scale system-integration and software stacks. This the-
sis focuses on three ideas. Embarrassingly parallel, task-based workloads
must explore throughput-optimized GPU kernel designs to unlock extreme-
scale drug discovery campaigns on current TOP500 accelerated systems. On
the other hand, HPC systems must overcome design and integration chal-
lenges to prepare for future post-exascale clusters that will be increasingly
diverse and application-specific, where RISC-V could be an answer. At the
same time, the hardware/software interface must adapt. While higher lev-
els of the software stack are adopting novel programming languages and
paradigms, target-specific components of the compilation stack must evolve
to make domain-specific code generation sustainable for future computing
systems. The first part of this thesis involves implementing and scaling drug
discovery simulations on multiple heterogeneous, GPU-accelerated TOP500
systems, focusing on efficient acceleration of task-based workloads that scale
to trillions of concurrent tasks. The second part centers on designing, build-
ing, and evaluating Monte Cimone, the world’s first RISC-V HPC produc-
tion cluster, including a comprehensive experimental evaluation and full-
scale benchmarks. The third part focuses on the endeavor of developing an
MLIR-based compiler backend for Snitch, a novel, energy-efficient RISC-V
streaming accelerator for machine learning. The presented work enabled the
largest drug discovery simulation for SARS-CoV-2 research ever performed,

xii

demonstrating the practical impact of efficient GPU acceleration techniques
needed on present-day accelerated supercomputers. Moreover, the successful
deployment of the Monte Cimone cluster prototype has proven the produc-
tion readiness of RISC-V for HPC, paving the way for future RISC-V super-
computers. On the software side, this thesis covers the collective work that
extended the multi-level, progressive lowering approach to the compiler back-
end, enabling efficient micro-kernel code generation for application-specific
RISC-V accelerators.

xiii

Preface

Computer architectures are currently facing the problem of delivering steadily
growing amounts of compute power at ever-increasing efficiency levels to face
the new challenges posed by the end of Moore’s law [1, 2, 3, 4]: this goal is
crucial to keep operating large-scale supercomputers [5, 6, 7, 8] feasible. The
slowdown of Dennard scaling [9] and the emergence of the effects related to
dark silicon [10, 11] add further complexity to the scenario. The profound
effects of this disruption are becoming progressively more apparent, to the
point that delays in the deployment of TOP500 [12] exascale systems are
now a reality to be dealt with [13]. At the same time, high-performance
computing (HPC) and low-power devices’ goals and constraints are becom-
ing increasingly overlapped under the pressure of the machine learning (ML)
market driver: computing at scale has become a power-bound problem [14].
Computing architectures historically relying on multi-core, superscalar, sin-
gle instruction, multiple data (SIMD) CPUs, are now augmented with a
diverse spectrum of application-specific accelerators to achieve higher effi-
ciency levels at the cost of decreased generality. The computing market is
experiencing a Cambrian explosion of vertical hardware designs spanning
from tensor processors [15] to in-memory accelerators [16], from massively-
parallel specialized architectures [17, 18, 19] to graphics processing units
(GPUs) augmented with application-specific cores [20]. This growing diver-
sity of domain-specific accelerators spans all scales, from mobile devices to
data centers. Managing this diversity constitutes a global challenge across
the HPC stack and is particularly relevant in the field of ML.

Albeit being focused on running linear algebra kernels at scale, acceler-
ator architectures are radically diverse in their underlying design principles,
a diversity that directly impacts the software ecosystem. From the point
of view of traditional, large-scale scientific applications, developed and op-
timized to scale up to entire TOP500 [12] clusters, this diversity is posing
challenges. Despite their rapid growth in HPC installations, GPU accelera-
tors still face adoption barriers due to many scientific workloads not being
designed to exploit accelerated computing capabilities [21]. HPC sites sur-
veys reveal how most GPU-accelerated jobs tend to have low utilization of
available accelerator resources [22]: adapting algorithms and porting large
code bases is still an ongoing effort. Moreover, task-based, embarrassingly-

1

parallel workloads are at the core of mainstream scientific applications like
molecular docking for drug discovery [23, 24], astronomical image process-
ing [25], Monte Carlo methods [26] and genomic sequence alignment [27].
They pose unique challenges as dealing with multi-level load balancing, task
distribution and design of throughput-oriented GPU kernels for such work-
loads is an open research question:

How task-based, embarrassingly-parallel scientific workloads like vir-
tual screening can efficiently scale up to entire pre-exascale, state-of-
the-art GPU-accelerated HPC systems?

From the point of view of artificial intelligence (AI) applications, despite
growing investments, the accelerator diversity challenge usually translates
into the need for efficient implementations of a wide variety of specialized
kernels for each hardware platform: while deep neural network (DNN) frame-
works try their best to leverage existing vendor libraries, large corpora of
hand-optimized, vendor-specific operators written by experts are becoming
a reality to be dealt with.

Compilers are increasingly being adopted as a possible response to these
challenges as they can unlock both efficient utilization of existing kernel
libraries or direct generation of high-performance accelerator-specific code.
This approach fuels a diverse spectrum of compilation techniques: from poly-
hedral (i.e. Tensor Comprehensions [28]) to loop synthesis (i.e. Halide [29],
TVM [30] and PlaidML [31]), from tensor-based intermediate representations
(IRs) (i.e. XLA [32] and Glow [33]) to tile-based approaches (i.e. Triton [34]).
IRs are the languages used by compilers to internally represent, analyze and
transform a program. Traditional IRs based on a single, uniform level of
abstraction proved themselves to be solid foundations for compilers that fo-
cused on relatively low-level frontend languages (i.e., C, C++) [35, 36]. Since
programs are now being written in high-level languages where tensor algebra
is a first-class citizen [37, 38], compilation stacks are transitioning from the
traditional low-level, fixed IRs to expressive, flexible representations. While a
definitive answer to the question of “what a post-Moore software stack would
look like?” remains unknown, all novel compiler construction approaches
share the use of multi-level IRs.

Multi-level IRs allow constructs at multiple levels of abstraction (e.g.,
both an immutable tensor and a memory address) to coexist in the same
program. This single feature alone enables progressive lowering, allowing the
compiler to preserve semantic information until the optimal transformation
can be applied, such that a non-reversible expense of semantic information
brings the most value to the lowering result. Avoiding any semantic loss
during the lowering process is proving itself as an effective approach [39, 40,
33].

2

While being investigated and implemented in production compilers in the
past [41, 42], the static single assignment (SSA), multi-level IR concept is
now further expanded and successfully brought into production. A notable
example is MLIR (Multi-Level IR) [39], a new compiler infrastructure built
on top of a flexible and extensible IR that recently became the foundation
for several novel deep learning (DL) and domain-specific language (DSL)
toolchains. By aiming at making abstractions and transformations modular
and interoperable, MLIR is proving itself as a key tool to tackle the challenges
of the post-Moore compute era.

Along with compilers and software stacks, the challenge of extreme spe-
cialization is affecting the landscape of hardware architectures. In order to
satisfy the demand for efficient linear algebra computations coming from
the HPC and ML markets, industry-standard instruction set architectures
(ISAs) are getting extended with domain-specific features [43, 44, 45]. While
already well established, dominant ISAs (i.e., x86, ARM) are proving them-
selves not flexible enough for the scaling challenges posed by the ML market:
being closed for modification, they can be neither extended nor adapted, forc-
ing third parties and research institutions into looking for alternatives. The
need for a more flexible solution for computing innovation is proven by the
rise of RISC-V, an open, modular, extensible, and royalty-free ISA. Being
designed from scratch to be naturally extensible without breaking the rich
existing software ecosystem, RISC-V has become the platform of choice for
architecture research [46, 47, 48, 49] and the market enabler for an increasing
set of vendors who are exploring novel concepts in accelerator and processor
design [50, 51, 52, 53, 54, 55]. Albeit rapidly growing, the extreme flexibility
of an open-ended ISA poses unique challenges both to software implementors
and system integrators. While RISC-V is believed to have a bright future
in the data center [56], its extreme flexibility poses new questions still to be
addressed:

How an extreme-scale HPC system, based on a heterogeneous offering
of highly specialized accelerators, can be sustainable?

If RISC-V can be an answer to the challenge of extreme hardware
specialization, how future post-exascale systems based on RISC-V will
look like?

On the software side, this increased flexibility is stressing traditional com-
piler designs to their limits. With its flexible ISA intended to be extended,
RISC-V becomes a modular compilation target forcing compiler backends to
deal with a virtually unbounded number of optional, cross-interacting ISA
extensions and features. This issue raises new questions that have yet to be
addressed:

3

Can a multi-level IR represent RISC-V domain specific extensions for
novel linear algebra accelerators?

Can the multi-level approach to compiler construction enable SSA
compiler backends to generate high-performance kernels leveraging
custom, application-specific hardware features?

This thesis covers collective works that tried to answer the questions
posed by our post-Moore era. A description of each chapter, along with
references to relevant publications and my contributions to each work are
detailed in the remainder of this preface.

The Present of Sustainable HPC: GPU-Accelerated Systems.
Chapter 1 considers today’s TOP500 HPC systems that have become het-
erogeneous, GPU-accelerated systems. While the execution of large-scale,
tightly-coupled workloads is a well-understood problem [57, 58], many sig-
nificant HPC applications like drug discovery still rely on less explored task-
based, data-parallel workloads. This chapter presents how algorithms that
need to scale up to trillions of embarrassingly-parallel tasks can be efficiently
executed on pre-exascale HPC systems accelerated with GPUs [59]. Consid-
ering a real-world, production use case stemming from virtual screening,
the work explores different approaches to efficiently map such workloads on
GPU accelerators and how they must be treated differently from common
tightly-coupled workloads, and how warp-synchronous kernels and load bal-
ancing are involved. The experimental evaluation reports results obtained
by integrating such approaches in a production-level HPC application that,
by scaling up to two full pre-exascale systems, is able to screen trillions of
potential drug molecules and helped identify prospect candidates for being
active against SARS-CoV-2 virus replication. This experiment remains the
largest drug discovery simulation to date [24, 60].

Contributions to Chapter 1. The work presented in this chapter
stems from a long-standing partnership between CINECA and Dompé Far-
maceutici S.p.A. for the scientific and technological development of the LiGen [61]
HPC drug discovery platform. This collaborative effort resulted in several
publications.

In particular, Vitali et al. [59] is a collaboration between CINECA,
Dompé Farmaceutici S.p.A., the research group led by Prof. Gianluca Palermo
at Politecnico di Milano and NVIDIA. It covers a novel approach to em-
barrassingly-parallel, task-based workloads on NVIDIA GPUs that resulted
in the first port of the LiGen platform to GPU-accelerated HPC systems.
My contributions to this work concern the exploration of both the batch
and latency workload execution strategies, development and optimization of
GPU kernels relative to the estimation of protein-compound binding energy
(chemical scoring) according to both strategies, benchmarking, performance

4

modeling and micro-architectural profiling, statistical analysis of results, and
overall development of the LiGen platform.

Gadioli et al. [24] presents a description of the overall drug discovery
platform and how the one-trillion-docking experiment against SARS-CoV-
2 protein targets was run after the EXSCALATE4CoV European project
called for an urgent computing action during the global pandemics. This
work brings the advancements presented in Vitali et al. [59] at scale in an
HPC production setting, where my contribution concerned the planning and
execution of the experiment, data pre- and post-processing and statistical
analysis.

Moreover, in Emerson et al. [60] I present my contributions on secur-
ing and managing the HPC resources used during the one-trillion-docking
experiment.

Finally, Vistoli et al. [62] presents the polypharmacology results from
the EXSCALATE4CoV and the MEDIATE initiative, calling for a collabo-
rative, open-access drug discovery effort against pandemic emergencies. My
contributions to this work concern polypharmacology analysis, the big data
post-processing pipeline to compute statistical descriptors and the overall
analysis of data produced during the one-trillion-docking experiment [24].

The Future of Sustainable HPC: RISC-V. Chapter 2 presents Monte
Cimone [63], the world’s first HPC production cluster based on the RISC-
V architecture. Monte Cimone was designed and built with the purpose
of priming the pipe and exploring the challenges of integrating a multi-node
RISC-V HPC cluster. Being composed of a small number of nodes, it doesn’t
aim at achieving strong floating point cluster-wise performance. On the other
hand, to be able to explore application readiness, system integration, deploy-
ment and energy efficiency, the cluster must capable of providing a complete
HPC production stack including interconnect, storage and power monitor-
ing. For this goal, HPC scientific applications must be taken into account: a
platform’s readiness is evaluated by widespread scientific community appli-
cations that are large, complex, and highly optimized code bases that must
efficiently scale up to the full system. The results of the hardware/software
integration efforts demonstrate a remarkable level of software and hardware
readiness and maturity, showing that the first generation of RISC-V HPC
machines may not be so far in the future.

Contributions to Chapter 2. The work presented in this chapter
stems from a collaborative effort between both the research groups led by
Prof. Luca Benini and Prof. Andrea Bartolini at Università di Bologna,
CINECA and E4 Computer Engineering. My contributions concern the over-
all system’s design, the bring-up of the HPC user space, evaluation of the
RISC-V software stack including compiler toolchains, MPI implementations,
linear algebra libraries, and both the methodology and execution of full-
system benchmarks of scientific applications like quantumESPRESSO [64].

This work resulted in several publications, in particular Ficarelli et al. [65,

5

66] and Bartolini et al. [63], all covering the collaborative effort needed to
design, deploy, and evaluate a RISC-V HPC cluster from-scratch.

Multi-level SSA Compilers for RISC-V Accelerators. In Chap-
ter 3 I present the work done by the research group led by Prof. Tobias
Grosser at the University of Edimburgh (now at Cambridge University) and
my contributions while visiting. The work investigates how modern compiler
approaches, based on multi-level SSA IRs, can be leveraged to build a kernel
compiler for novel streaming architectures that, by being extremely energy-
efficient, can become an answer to the future of large-scale systems. The
concept of progressive lowering is applied to the compiler backend to investi-
gate how traditional code generation tasks can be efficiently performed on a
multi-level SSA IR like MLIR. The selected compilation target is Snitch [48],
a RISC-V accelerator architecture designed by the research group led by
Prof. Luca Benini at ETH Zurich. Its design goal is to pursue extreme
compute energy efficiency by means of novel features like stream-seman-
tics registers to reach perfect, software-programmed prefetching, and float-
ing point hardware loops to elide control flow. The resulting publication by
Lopoukhine et al. [67] presents how a new tensor kernel compiler, completely
based on MLIR [39] for both optimization and code generation, can over-
come compilation challenges by progressively lowering high-level linear alge-
bra programs to leverage Snitch features. Evaluation of the generated code is
supported by both the definition of a theoretical peak-performance model for
the target micro-architecture and a comprehensive, reproducible simulation
environment based on precise execution traces. The reference benchmark
set is designed to take into account meaningful linear algebra micro-kernels
that are both difficult to lower efficiently on Snitch (i.e. mixing reduction
and element-wise operations) and widespread in both HPC and DL appli-
cations. Results from an extensive experimental campaign prove that this
approach can lower high-level linear algebra code down to kernels capable of
surpassing performance attained by hand-written, expert-optimized kernels.

Contributions to Chapter 3. My contributions to the effort presented
in Lopoukhine et al. [67] concern several aspects of the MLIR dialects, trans-
formations, and the experimental evaluation of the resulting kernel compiler.

The snitch dialect encodes the target-specific operations needed to set
up and operate the Snitch data movers. The memref_stream.generic oper-
ation extends the linalg.generic operation from upstream MLIR: it aug-
ments the information carried by the operation (affine memory access ex-
pressions and data dependencies) with additional information needed by the
compilation pipeline to generate optimized RISC-V assembly code exploiting
both streaming semantics and hardware loops.

Due to architectural constraints, when dealing with floating-point values
of precision lower than double, instructions in stream-accelerated regions
have to operate on vectors instead of scalars. Thus, from the point of view
of a compiler backend, elements smaller than double precision must be con-

6

sidered illegal in code sections where Snitch-specific features are leveraged to
accelerate computations. For this reason, the legalization pass transforming
memref_stream.generic operations also performs mandatory packed-SIMD
vectorization.

Another area of contribution is the experimental evaluation, testing,
benchmarking, and performance modeling. Building a kernel compiler re-
quires continuous feedback both in terms of correctness and performance
of the generated code, so the adopted approach introduced a deterministic
test and benchmarking harness that is then used in a continuous integration
infrastructure to provide feedback on every change introduced in the code
generation pipeline. The Snitch Verilog source repository provides utilities to
decode simulation traces: post-processing the cycle-accurate execution traces
allowed to compute all the performance metrics needed to support our bench-
marking model without any hardware support (like an actual performance
monitoring unit). A kernel templating system supports the parameter space
exploration needed to guide both the implementation and tuning of opti-
mization passes. While not directly implemented in MLIR but instead as an
external tool, our kernel generator works similarly to the mlir-gen generator
by Golin et al. [68] in that it instantiates variants of kernel programs based
on parametric input tensor shapes and, at the same time, provides test input
data along with reference results to ensure correctness.

7

Chapter 1

The Present of Sustainable
HPC: GPU-Accelerated
Systems

Since its dawn, the technological evolution of the semiconductor industry has
been driven by two laws: Moore’s law and Dennard scaling. While presenting
several economic and societal corollaries, the technological formulation of
Moore’s law [69] stated that the number of components per integrated circuit
doubles every year, an empirical observation that, while adjusted [70] since
its former inception in 1965, has been generally accepted as a self-fulfilling
prophecy. Dennard scaling [71] on the other hand, focuses on the relation
between integration scale and power and roughly states that, as transistors
get smaller, their power density stays constant, so that the power use stays
in proportion with area. The combination of these two laws has driven the
semiconductor industry’s evolution since the 1970s.

During mid-2000s, the semiconductor market started experiencing slow-
downs of the laws discussed above, to the point that the end of both Den-
nard scaling [72] and Moore’s law [1, 2, 3, 4] became major discussion topics
among professionals and researchers and, subsequently, concrete factors to
be taken into account. A direct consequence of this technological disruption
is that energy efficiency has become paramount for HPC and large-scale sys-
tems overall sustainability [73, 74]. Moreover, it is now widely recognized
that computing is power bound [14], and some research claims that com-
puting energy efficiency must obtain improvements by up to ten orders of
magnitude to be able to solve major scientific problems [75].

A historically significant gauge for technological trends in computing ar-
chitectures is the HPC market. Given its extreme scaling needs, all compo-
nents of a computing system must be sustainable to be able to deploy and
maintain an HPC system successfully in operation. As soon as the first ef-
fects of the slowdown of the semiconductor laws became apparent, the HPC

8

market was immediately affected. Figure 1.1 shows how technological dis-

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
List

0

20

40

60

80

100

%
 o

f o
ve

ra
ll

co
m

pu
te

 p
ow

er
 o

f t
op

 1
00

 sy
st

em
s

AMD GPU
Intel GPU
Manycore
NVIDIA GPU
None

Figure 1.1: Evolution of the share of compute power per accelerator across the
first 100 positions of TOP500 supercomputer rankings since 2010.

ruptions affected the largest supercomputer installations across the globe:
both the multicore era and the rise of accelerated computing are visible in
the historical evolution of the TOP500 ranking. Starting from 2010s ac-
celerators have become a key factor for computing efficiency and essential
enablers for systems scale-out [76]. As shown by historical data, after the
multicore era, TOP500 systems began integrating GPU accelerators at an
increasing rate to keep up with computing demands: the evolution of large-
scale systems has been driven by the ability of GPUs to offer energy-efficient
massive parallelism.

9

At the time of their introduction in the late 1990s, GPUs were special-
ized, fixed-function accelerators for graphics applications like video games
or scientific datasets visualizations [77]. The adoption of programmable uni-
fied shaders by NVIDIA in 2006 and, more importantly, the introduction
of CUDA [78] as the programming model for general-purpose computing on
graphics processing units (GPGPU), allowed GPUs to be gradually adopted
in HPC to accelerate an increasingly diverse spectrum of scientific workloads.
Lastly, the introduction of double precision floating-point arithmetic in 2010
(with the NVIDIA Fermi architecture) led to Titan, the supercomputer op-
erated by Oak Ridge National Laboratories and powered by NVIDIA GPUs,
being ranked as the world’s most powerful supercomputer in 2012. Since its
inception, the concept of GPGPU has been applied to all scientific computing
fields traditionally reliant on HPC resources to solve increasingly hard prob-
lems, and the importance of the single instruction, multiple thread (SIMT)
programming model introduced by CUDA is widely recognized as the key
enabling factor to leverage the new massively parallel architecture [79].

Starting from this accelerator-centric perspective, HPC applications must
provide efficient GPU-enabled implementations of their key algorithms. Large-
scale, tightly coupled (or synchronous) workloads are mapped to GPUs by
dividing the problem into smaller parallel tasks that can be executed simul-
taneously [80]. Examples of such workloads vary from linear algebra on large
tensors to solving differential systems on large domains [81]. In this kind of
workload the challenge shifts to parallel communication strategies instead of
computation, and load imbalance between tasks is usually small and limited
to boundaries. Massively parallel, throughput-oriented GPUs are the ideal
platform [82].

Heterogeneous task-based workloads, on the other hand, present chal-
lenges when mapped to GPUs due to potential load imbalance between
threads within warps and between warps in the same kernel. Previous work
on this class of algorithms focuses on loosely-coupled workloads, where data
dependencies between tasks (usually modeled as a directed acyclic graph)
are the major limiting factor for execution parallelism. Current approaches
focus on efficient scheduling of the task graph by means of runtime sup-
port [83, 84, 85, 86, 87] either via task stealing on work queues [88] or even
sophisticated thread coalescing based on their execution path [89].

When dealing with heterogeneous embarrassingly parallel workloads, on
the other hand, runtime approaches become less effective due to the workload
becoming heavily throughput-oriented : individual task’s execution time is
less important than overall system efficiency, and optimal occupancy of the
available hardware resources becomes paramount. This chapter presents a
novel approach to heterogeneous, embarrassingly parallel workloads based
on warp-synchronous [90] GPU kernels and applied to extreme-scale drug
discovery on pre-exascale HPC systems.

10

1.1 Use Case: Exascale Drug Discovery

In recent years, high-throughput virtual screening has been widely applied
in the early stages of the industrial computer-aided drug discovery process.
Indeed, this helped find novel drugs [91, 92, 93]. Several steps are required
to perform a virtual screening campaign [94]; however, the focus is on the
molecular docking step.

Many software tools have been created for this goal, both open [95, 96]
and closed [97, 98] source. There are two main approaches to the molecular
docking step: the first is deterministic, while the second favors a random-
based approach. Random-based approaches use well-known techniques to
create different poses of a ligand and measure their interactions with the
protein docking sites. Examples of these are MolDock [99] and Gold [100]
where genetic algorithms are used, or Glide [97] and MCDock [101] where
the technique used is Monte Carlo simulation. However, this approach has
a significant drawback since its results may only be partially reproducible.
This drawback may be a blocking issue for some pharmaceutical compa-
nies that refuse to start the expensive in-vitro and in-vivo phases without
a reproducible result. For this reason, a deterministic approach is often a
strict requirement. Examples of deterministic approaches are BIGGER [102],
DOCK [95], LiGen [61], and Flexx [98]. These approaches use determinis-
tic algorithms that can modify the shape of the ligands by leveraging their
torsional bonds. Many molecular docking applications were born as sin-
gle workstation applications; however, given the amount of complex elab-
oration that has to be performed, they quickly evolved into HPC applica-
tions. Surveys [103] highlighted that different techniques are currently being
studied to improve the capabilities of widespread software tools and scale
them to HPC machines. The prominent approaches adopt either scaling via
MPI [104] or manually distributing data via intermediate files via ad-hoc
solutions [105]. Given the general availability of GPU accelerators, though,
molecular docking applications are in the process of being ported to exploit
these co-processors [106, 107, 108, 109, 110, 23]. Early examples are Medu-
saDock [106], achieving a 1.54× overall speedup on time-to-solution, and
GeauxDock [109] achieving a 3.5× speedup. More recent examples obtain-
ing much larger advantages are PIPER [107] (17×), AutoDock-Vina [23]
(50×) and PLANT [108] (60×). The latest GPU porting of AutoDock [111,
112, 113] has been optimized for running on the Summit supercomputer [114]
to support COVID-19-related research. A new Autodock development was
recently released: Uni-Dock [115]. Uni-Dock increases the accuracy com-
pared to the Autodock and VINA GPU versions, making the execution ten
times faster thanks to batching. Uni-Dock tries to use heuristics, based on
the type of architecture, to execute a batch of inputs likely to fill the en-
tire memory of the GPU. Other approaches have improved performance by
using dedicated hardware for matrix computation. For example, Autodock

11

Algorithm 1: LiGen virtual screening algorithm
Data: max_num_ligands
Input: ligand_library, target
Output: top_candidates

1 candidates← ∅;
2 foreach ligand← ligand_library do
3 candidates← candidates ∪ dock(ligand, target);
4 end
5 return top_n(candidates,max_num_ligands)

has been accelerated using NVIDIA tensor cores [116]. Using this approach,
they have achieved a 4× to 7× speedup in reduction operations, with an
overall reduction of 27% in docking time. LiGen is an HPC application that
implements an integrated workflow for extreme-scale pharmaceutical virtual
screening; it has been designed from scratch to scale-out on TOP500 sys-
tems and distributes the workload across computing nodes via MPI [117].
It is both an industrial application, being currently used in production by
Dompé Farmaceutici S.p.A, and a notable example of embarrassingly-paral-
lel, throughput-oriented workload in HPC. LiGen has been used to perform
the largest virtual screening campaign ever run (> 70 billion ligands and
12 viral proteins) during the COVID-19 pandemic outbreak [24] (see Sec-
tion 1.7). In this chapter, we focus on the efficient GPU porting of LiGen by
describing and analyzing two different parallelization approaches considering
the peculiarities of the target workload and GPU devices.

1.2 The Virtual Screening Application

LiGen [61] is a molecular docking application designed to run on HPC sys-
tems and adapted for extreme-scale virtual screening campaigns [24]. In this
chapter, we focus on the docking kernel because it is the most demanding re-
garding hardware requirements and computation effort, accounting for 90%
of the execution time.

Algorithm 1 presents the pseudo-code for virtual screening of an input
ligand library against a target docking site. The output lists the ligands with
the highest interaction strength with the target. The procedure is straight-
forward; we must dock each ligand from the input library to estimate its
interaction strength using a scoring function. When we have more than one
docking site, repeating the entire procedure for another target is possible,
generating a different set of best candidates. Domain experts will then com-
bine the data to select a global set of candidates to test in-vitro (or further
in-silico). Thus, we can focus on the single-target scenario without losing
generality.

12

Algorithm 2: LiGen dock algorithm
Data: num_restart
Input: ligand, target
Output: best_pose

1 poses← ∅;
2 for i← 0 to num_restart do
3 pose← init_pose(ligand, i);
4 pose← align(pose, target);
5 pose← optimize(pose, target);
6 pose.validity ← is_valid(pose, target);
7 if pose.validity then
8 pose.score← score(pose.atoms, target);
9 else

10 pose.score← −∞;
11 end
12 poses← poses ∪ {pose};
13 end
14 return max_score(poses)

Algorithm 2 describes in more detail all the steps LiGen uses to dock
a ligand inside a target. The overall algorithm is a gradient descent with
multiple restarts [118]. At each restart, we generate an initial pose (line
3) by rotating the ligand’s rotamers using a heuristic that maximizes the
distance among the iterations in the conformation space of the molecule.
The gradient descent procedure is composed of two operations. The first
considers the molecule to be a rigid body to align with the docking site (line
4). In contrast, the second uses the internal molecule flexibility to optimize
its shape for the target and performs a local minimization (line 5). We
use a geometric score to define the gradient that drives the docking. To
select the most suitable pose, we need to re-score the poses using a scoring
function that considers physical and chemical properties (line 8). To avoid
useless computation, we do not compute the scores of molecules (line 10)
that clash internally or with the protein (lines 6,7). Finally, among all the
ligand’s poses, we are interested only in the one that yields the highest
score (line 14). From the algorithm description, we can notice how a pose
evaluation is independent of the others. We can generate many ligands by
simulating known chemical reactions, making the virtual screening problem
embarrassingly parallel. LiGen uses these properties to distribute the input
ligand library across different nodes [24] and to offload the computation to
GPUs. In this chapter, we explore two strategies to implement the algorithm
in CUDA that use drastically different design choices to leverage hardware
parallelism.

13

1.3 Architecture of GPU Accelerators

While CPUs are latency-optimized processors, GPUs are throughput-opti-
mized processors. On NVIDIA architectures, the underlying design pillar
that embodies this principle is reducing non-compute silicon as much as pos-
sible, resulting in large arithmetic logic units (ALUs) and simplified, shared
execution control units. A GPU accelerator is subdivided into multiple
streaming multiprocessors (SMs), and each SM is again subdivided into 4×
streaming multiprocessor sub-partitions (SMSPs): the SMSP is the actual
execution unit.

In CUDA, threads are arranged hierarchically, whereby they are grouped
into blocks and then launched in grids [119]. These threads and blocks may be
grouped in a three-dimensional structure, allowing for efficient organization
and execution of instructions.

The most immediate consequence of the simplified execution control is
lockstep execution and the associated SIMT architecture. SIMT architecture
is similar to SIMD in that one instruction controls multiple processing ele-
ments. The main difference is that SIMD exposes its width to software, while
SIMT handles the execution and branching of individual threads. Unlike
SIMD, SIMT allows programmers to write both independent, scalar thread
code and data-parallel code for synchronized threads. NVIDIA GPUs group
threads of execution in units of 32 threads [119] called warps: each thread in
the same warp executes the same instruction a the same time. The CUDA
programming model supports conditional branches, though: when threads of
the same warp take different paths from the same conditional branch, the ef-
fects of threads divergence become apparent as a non-negligible performance
loss. It is worth noting that allowing divergent threads on a SIMT architec-
ture is a collaborative effort between the compiler and the GPU hardware.
For each conditional branch on the control flow graph (CFG) of the input
kernel, the CUDA compiler generates a diverge instruction; at the same
time, it identifies the CFG node that post-dominates the branch and gen-
erates a reconverge instruction. Those instructions manipulate a divergence
stack maintained by the GPU hardware: a diverge instruction pushes infor-
mation about the threads that must be active while executing the predicated
control flow; a reconverge pops from the same stack, closing the current top-
level conditional branch. If both paths of a conditional branch have active
threads, both must be executed one at a time: although SIMT behavior
can generally be ignored for correctness, avoiding thread divergence within
warps can significantly improve performance.

As with threads, GPU memory is also hierarchically organized. There
are 3 different memory levels in an NVIDIA accelerator:

• Global memory: the slowest (2TiB/s of bandwidth on A100) and largest
memory (up to 80GB on A100) available on the accelerator. It is shared

14

by all threads running in the kernel grid.

• Shared memory: a small, low-latency, software-managed, high-bandwidth
memory shared among the threads of a block, and accessible by all of
them.

• Registers: the fastest memory space available to threads. Each SM has
65536 32-bit registers that are partitioned among the threads of the res-
ident blocks. Along with the amount of shared memory, the number of
registers required per thread determines how many blocks can concurrently
run on an SM (also known as occupancy).

It is paramount that all levels of the memory hierarchy are used optimally:
global memory must be accessed following specific patterns only (i.e., regu-
larly strided), and shared memory is usually leveraged as a software-managed
cache. Due to the complete absence of speculative features (e.g., prefetchers)
and the sheer amount of load/store executed by a large number of threads,
spatial and temporal locality of memory accesses are paramount on a GPU.

1.4 Latency-Optimized Kernels for Task-Based Work-
loads

The first implementation we will analyze is the latency implementation. This
approach aims to keep a synchronous interface, where a single ligand is
docked on the GPU in every host call to the dock function. This approach
is the same as the previous implementation of LiGen [120, 24] and allows us
to focus only on the acceleration of the kernels without having to modify the
whole application structure, thus purely following Algorithm 1 for screening
a ligand library. On the GPU, we distribute the operation that we have to
perform as much as possible, trying to make each kernel as parallel (and
fast) as possible (Figure 1.2). This approach is the most straightforward
and traditional one, and it is the same followed by most of the GPU porting
for molecular docking (e.g., AutoDock-GPU [111, 112]). Figure 1.3 provides
an overview of the approach regarding the main parallelism exploited and
execution phases. The idea is to execute all the iterations for the loop at line
3 of Algorithm 2 in parallel. To reach this goal, we must perform each step
of the computation on all the poses as shown in Figure 1.3. The CUDA grid
for each kernel launch is set to have enough execution resources to cover the
different ligand poses. We implemented all the steps using at least one kernel
to increase the exposed parallelism. In this way, we can execute in parallel
the internal loops required to carry out the computation. In particular,
for the init_pose step, each CUDA thread updates the position of a single
atom. For the align step, we use two kernels. The first one evaluates all
the rigid transformations for all the poses in parallel, where each CUDA

15

la
te

nc
y

[ti
m

e]

GPU SM

CUDA Block

CUDA Warp

1 task per CUDA block

Figure 1.2: Task-to-resources mapping for the latency-oriented strategy on the
GPU. Execution time (x axis) is kept optimal by allocating the largest possible
resources to each task. Multiple warps process a task, and each task consumes all
the resources available on a GPU streaming multiprocessor (SM).

thread updates the displacement atoms and computes the gradient value.
The second kernel performs a reduction to find the optimal alignment for
the ligand and updates the displacement of the atoms accordingly. In the
optimize step, we need to evaluate each rotamer sequentially to preserve
the ligand geometry. We use two kernels to evaluate a single rotamer using
an approach similar to the align step. Besides rotating and computing the
gradient value, the main difference is that each CUDA thread needs to check
if the rotamer’s angle leads to an internal clash. For the is_valid step, we
use two different kernels to check whether there is a clash with the protein or
an internal one. In both cases, the distance between each atom pair has to
be calculated. An early exit is performed when we detect a bump between
atoms, a condition that would lead to an invalid pose.

By computing poses using the parallelism at the grid level, these kernels
aim at minimizing the execution time of each task, hence the latency name.
As depicted in Figure 1.2, each task is assigned the largest possible amount
of execution resources to run in the shortest time possible, usually a whole
SM.

To maximize the GPU utilization, we rely on a multi-threaded approach
to instantiate several different kernels on different CUDA streams. Every
ligand will be tied to a host thread controlling an asynchronous execution
queue (CUDA stream) and a dedicated, pre-allocated GPU global memory
area. This first optimization saves memory operations since this memory
space is not linked to the docking of a single ligand but is tied to the appli-
cation’s lifetime. The drawback of this approach is that we need to allocate

16

P
ar

al
le

li
sm

Execution phases

L1 L2

Po
se

 1
Po

se
 2

In
it

_p
o

se

A
li

gn

Is
_v

al
id

Sc
o

re

O
p

ti
m

iz
e

In
it

_p
o

se

A
li

gn

Is
_v

al
id

Sc
o

re

O
p

ti
m

iz
e

...

Figure 1.3: Logical mapping on how the latency approach hinges on GPU par-
allelism to accelerate the execution time. Each step is implemented using at least
one dedicated kernel.

the worst case space, which must be known at compile time. However, this is
not a critical issue since, for each virtual screening campaign, the maximum
size of a molecular graph is known and an important chemical parameter
taken into account by the pharmaceutical scientists. Moreover, some data
structures (such as the one that represents the target pocket) can be shared
among all the threads using the same GPU: this is possible since they are
read-only data structures.

The access to the pocket does not follow a coalesced pattern; instead,
it is given by the atom’s cartesian coordinates and, for this reason, has a
random pattern. Random accesses are a costly operation in GPU since they
prevent efficient transactions to/from the global memory. However, GPU
texture caches allow organizing data in 2D or 3D spaces and are optimized for
semantic data locality: locality becomes n-dimensional in space. Rotations
and translations in three-dimensional space will always interact with local
atoms since chemistry limits the size of the rigid fragment. For this reason,
we use the texture cache to store the protein pocket values. Moreover, to
be able to perform coalesced memory accesses on multi-dimensional arrays
from different blocks, we extensively use CUDA pitched arrays [119] to store
temporary tensors that are needed across kernels: by respecting alignment
constraints, they guarantee optimal memory layout.

17

la
te

nc
y

[ti
m

e]

GPU SM

CUDA Block

CUDA Warp

1 task per CUDA block/warp

N tasks per GPU SM

Figure 1.4: Task-to-resources mapping for the throughput-oriented strategy on
the GPU. Execution time (x axis) is worse than with the latency-oriented approach,
but each task is granted a fixed, minimum amount of resources. A single warp
processes a task, and multiple tasks can be fit into the resource pool of a single
GPU streaming multiprocessor (SM).

1.5 Throughput-Optimized Kernels for Task-Based
Workloads

The second version of the application is the batched (or throughput-oriented)
implementation. This implementation follows a different paradigm from the
previous approach: instead of using the whole GPU to process a single ligand
at a time, we pack it with as many ligands as possible that are processed in
parallel (using fewer resources per ligand) as depicted in Figure 1.4. This
approach follows a paradigm similar to the NAS [121, 122] benchmark suite,
where its throughput efficiency is leveraged to measure peak floating point
performance of a GPU. Adopting this approach is possible since the amount
of data per ligand is limited (up to 20 kB input and 1MB output), and thus
we can upload on the GPU a much greater number.

When optimizing for throughput instead of latency, the time to process
a single ligand (tbatch) will be greater than the time required by the previous
implementation (tlatency); however, many more ligands will be processed in
parallel during the overall kernel execution time (tbatch). As long as the size of
the batch of ligands processed in parallel is greater than tbatch/tlatency, this
implementation is expected to deliver higher throughput than the latency

18

Pose 1 Pose 2

L1

L2

L3
P

ar
al

le
li

sm

Execution phases

In
it

_p
o

se
A

li
gn

Is
_v

al
id

Sc
o

re

O
p

ti
m

iz
e

In
it

_p
o

se
A

li
gn

Is
_v

al
id

Sc
o

re

O
p

ti
m

iz
e

In
it

_p
o

se
A

li
gn

O
p

ti
m

iz
e

In
it

_p
o

se
A

li
gn

Is
_v

al
id

Sc
o

re

O
p

ti
m

iz
e

In
it

_p
o

se
A

li
gn

Is
_v

al
id

Sc
o

re

O
p

ti
m

iz
e

In
it

_p
o

se
A

li
gn

O
p

ti
m

iz
e

In
it

_p
o

se
A

li
gn

Is
_v

al
id

Sc
o

re

O
p

ti
m

iz
e

In
it

_p
o

se
A

li
gn

Is
_v

al
id

Sc
o

re

O
p

ti
m

iz
e

In
it

_p
o

se
A

li
gn

O
p

ti
m

iz
e

...
...

...

Figure 1.5: Logical mapping on how the batched approach hinges on GPU par-
allelism to accelerate the execution time. All the steps are implemented in a single
kernel.

one since it reduces to the minimum the number of synchronization points.
When we focus on the kernel design, we must take a completely different

approach. The main idea is to parallelize the loop at line 2 of Algorithm 1
and to implement all the steps in Algorithm 2 sequentially in the same kernel.

The starting point is to adopt a warp-synchronous [90] approach to kernel
writing. The underlying idea is to use each warp as an autonomous execu-
tion unit, each one processing whole tasks, without having the task itself
spread across multiple warps in the same block. This way, the size of a block
becomes irrelevant as long as the number of threads per block is a multiple
of the warp size (32 threads). After an extensive search of the parameter
space, we found the optimal configuration to be 1 warp per block on both
NVIDIA V100 and A100 GPUs. A CUDA thread may process more than
one atom when the molecule has more than 32 atoms and conversely some
remainder threads are inactive if the molecule has less than 32 atoms. We
launch the kernel over an amount of ligands enough to cover the GPU par-
allelism. Figure 1.5 provides a schematic view of the logical mapping. It is
important to note that using a single warp to compute a ligand implies that
all reductions become warp-wide synchronous operations: we perform those
with a mix of CUDA warp intrinsics and CUDA cooperative groups [119].
In this implementation, external parallelism (CUDA grid) is addressed by
docking multiple ligands simultaneously, while thread-level parallelism by
distributing the set of operations on the atoms of a single ligand over a
single warp.

To make this approach effective, we need to address some critical as-

19

pects. The obvious one is that we need a large number of ligands to fully
utilize the GPU. This is not a concern since, as mentioned in Section 1.1,
the virtual screening task we are targeting considers a large chemical space
(up to millions or billions of candidate molecules). The second one is that,
since we are processing batches of ligands concurrently, the overall kernel
time will be dictated by the slowest warp of the grid, i.e., the warp assigned
to the ligand that requires more operations. Since our kernels’ latency is
data-dependent, we need to balance the size of the ligands that are collected
in a single batch. It is also important to efficiently use registers and shared
memory, two precious and scarce resources on NVIDIA GPUs. To make
the throughput kernels run as fast as possible, temporal locality (i.e., atom
coordinates and fragments indices) is leveraged in registers and shared mem-
ory. Since this requires defining the resources used by the kernels at compile
time, balancing the sizes of the ligands in the batches allows for maximizing
the usage of those statically allocated resources. The optimal grid shape is
obtained by a parameter search campaign on any new GPU architecture the
application is deployed to. To manage load imbalance, we cluster incoming
ligands in 5 different batches according to their number of atoms, obtained
by analyzing statistical distributions of production data sets: (0, 32], (32, 64],
(64, 96], (96, 128] and (128, 160]. A beneficial side-effect of statically known
batch sizes is the ability to compile multiple versions of the same kernel,
each instantiated on the constant upper bound of each range: this allows for
precise resource (i.e., registers and shared memory) management and opti-
mization. Thus, the size of each batch is set equal to the maximum number
of warps that can be concurrently active on all SMs on that specific kernel
launch. We determined this number by using Equation 1.1.

l = b× SM × t

ws
(1.1)

In Equation 1.1, we compute the size of each batch l, where SM is the
number of SMs available on the GPU, ws is the warp size, and b is the number
of blocks that can run on the same SM for any given kernel. Section 1.6 uses
an NVIDIA A100 GPU to validate the approach. However, since we compute
the number of ligands l for each bucket using a query to the CUDA runtime,
the proposed methodology is agnostic about the target architecture. Indeed,
we efficiently deployed LiGen on systems also equipped with V100 and H100
NVIDIA cards. The proposed methodology was able to adapt the number
of ligands accordingly.

Moreover, since the optimize step needs to process the ligand’s rotamers
sequentially, we can introduce a strong imbalance if we bundle in the same
batch ligands with a different number of rotamers. For this reason, we also
need to cluster the ligands by their number of fragments. We decided to
group them by four (i.e., ligands with 0-3 fragments clustered in one batch,
ligands with 4-7 fragments in another). This strategy is a trade-off between

20

Clustering by
#torsional bonds

Complete batch
to GPU

Clustering by
#atoms

Input ligands

Figure 1.6: Graphical representation of the batch formation process. Incoming
ligands are clustered according to their characteristics: first by the number of atoms,
then by the number of torsional bonds. When a bucket is full, i.e., when the amount
of ligands is enough to allocate all GPU resources, the batch is executed.

maximizing ligands similarity and avoiding a combinatorial explosion of the
number of batches. Considering all the resulting ligand clusters, we have
a matrix of buckets where we collect ligands with similar features. This
clustering process is depicted in Figure 1.6.

1.6 Experiments

This section compares the two implementations in terms of application through-
put (i.e., time-to-solution) on different datasets. Given that the target molec-
ular docking application has a highly data-dependent throughput, we per-
formed four types of analyses by changing the characteristics and size of
ligand libraries.

The first one takes considers uniform datasets (preprocessed datasets),
where the input ligands have been clustered ahead of time according to their
characteristics in terms of the number of atoms and fragments. The goal
of this analysis is to highlight the different performance trends free of noise
introduced by the different sizes and flexibility of the target molecules.

21

The second analysis focuses on the application’s throughput scaling ac-
cording to the dataset’s size (see Paragraph 1.6.2). In this case, we want to
know whether each strategy is always optimal or, as expected, it depends
on the size of the dataset. In this second circumstance, we are particularly
interested in finding the dataset size that triggers the optimality change.
This analysis is performed on preprocessed and real-world datasets, where
the molecule size and flexibility are unknown a priori.

The third analysis refers to the performance of both implementations on
real-world public datasets from the MEDIATE [62] initiative. The datasets
are characterized by large compounds and varying chemical characteristics:
for this reason is considered representative of an actual virtual screening
campaign.

Finally, in Paragraph 1.6.2 and Paragraph 1.6.4, we report an in-depth
analysis of the workload using the instruction roofline methodology. This
analysis has been performed to better understand the different resource uti-
lization for the two implementations.

The benchmarking machine is equipped with 2× AMD Epyc 7282 CPUs
and one NVIDIA A100 GPU attached via PCIe.

1.6.1 Preprocessed Datasets

The first set of experiments aims at showing the throughput of the two im-
plementations when we are running at the best of the application capabilities
(i.e., we recorded the average throughput, which is the total number of items
processed since the application launch divided by the total execution time
of the application, when its value reaches the steady state). We have docked
several uniform datasets of 50K ligands, each with fixed characteristics in
heavy atoms and fragments. The range is between 20 and 50 heavy atoms
and 1 and 20 fragments. In this context, we define every non-hydrogen atom
part of the molecule as a heavy atom. We need to point out that for the
batched implementation, having the same number of heavy atoms does not
mean that all the ligands belong to the same batch since LiGen groups them
according to the total number of atoms, which also includes the hydrogens.
The ranges of heavy atoms and molecule fragments are chosen considering
the ones available in commercial databases. Figure 1.7 and Figure 1.8 report
the throughput reached by the two implementations for each uniform dataset
from two different perspectives. Figure 1.7 plots the varying throughput ac-
cording to the change in the number of fragments (x-axis) while considering
a fixed number of heavy atoms: this feature heavily impacts the throughput.
The two implementations show similar behavior, going from a high through-
put value with 1 fragment to slowing down more as the number of fragments
increases. However, if we look at the y-axis, we can notice that the batched
implementation is, on average, three times faster than the latency one.

In Figure 1.8, we plot the variation in the throughput at the change of the

22

number of atoms (plotted on the x-axis) while keeping the number of frag-
ments constant. We can notice that, in this case, the behavior is different.
When we change the number of atoms with a constant number of fragments,
the latency implementation has a negligible throughput degradation, while
the batched implementation has a more significant throughput loss. How-
ever, since it starts from a higher throughput, it still performs better than
the latency implementation, in the worst case, by 1.37×.

To conclude this analysis, we can see in Figure 1.9 the heatmap of
the speedup obtained by the batched implementation compared to the la-
tency implementation, with several datasets of 50K ligands. As we can see,
the batched implementation is always better than the latency one, given
this dataset dimension on a single GPU. However, we can notice that the
amount of speedup changes according to the characteristics of the ligands:
the batched implementation behaves dramatically better with fewer atoms
and a higher number of fragments.

1.6.2 Scaling Analysis

With this experiment, we aim to find the minimal dataset size to reach
throughput optimality with both implementations and are interested in see-
ing how the ligand composition affects this size. We use two different datasets
with homogeneous and heterogeneous ligands for this analysis. We consid-
ered a set of molecules with 35 heavy atoms and 12 fragments within the
first dataset. This dataset has been selected based on the average values for
ligand size and flexibility from the ligands considered in the previous sec-
tion. The second dataset includes a heterogeneous mix of ligands from all
previously considered libraries.

Figure 1.10 shows the growth of the throughput (y-axis) at the vary-
ing of the dataset size (x-axis). As we can see, the latency implementation
outperforms the batched implementation with small datasets. This happens
because the batched implementation waits until the batch size is reached
and distributes the computation on different CUDA warps. If the dataset is
too small and does not reach the size of the batch, we will underutilize the
GPU, which explains why in these circumstances, the latency implementa-
tion performs better. However, after a certain threshold, we can see that
the batched implementation overtakes the latency implementation (with al-
most exponential growth) until it reaches its saturation point (with a total
speedup of around 3.5×). This behavior is observed in both the homo-
geneous dataset (purple and yellow lines) and the heterogeneous one (blue
and red lines). The only difference between the two is when the batched
implementation overtakes the latency one, and this happens for the homo-
geneous dataset one order of magnitude earlier. We can also notice that the
growth phase of the batching application when using a mixed dataset ends
at almost 106 ligands. This means that to get the maximum out of this

23

implementation, we need to dock a large dataset with at least 106 ligands
for each GPU involved in the computation. On the other hand, for the ho-
mogenous dataset, 20K ligands are enough to reach a steady state. Finally,
it is interesting to notice the fluctuations of the throughput in the yellow
line (homogeneous batched implementation). As mentioned, the batches are
created according to the total number of atoms, including hydrogens, and
some ligands are processed in different batches. When many buckets are
processed, even if they are not completed (i.e., small batches), the resources
are not well used, resulting in a performance loss. The higher the number
of ligands, the lower the probability of falling in this situation, which can be
noticed by the fluctuation reduction while increasing the dataset size. The
higher the number of ligands, the lower the probability of falling into this
situation, which can be noticed by the reduced fluctuation at an increased
the dataset size.

1.6.3 Real World Datasets

Finally, we want to evaluate the performance of the two implementations on
real-world datasets. These datasets come from the MEDIATE [62] initiative
and contain libraries including ligands from different categories: commercial
compounds, natural products, drugs, and peptides.

The Commercial category represents compounds already available on the
market [123]. This set is clustered in three libraries where molecules are se-
lected according to their molecular weight (MW). The first contains ligands
with a molecular weight lower than 330 (MW330-), the second set has ligands
with a molecular weight between 330 and 500 (MW330-500), and the last one
contains all the ligands with a molecular weight higher than 500 (MW500+).
The Drugs category contains known drugs, including the set of safe-in-man
drugs, commercialized or under active development in clinical phases. The
Natural category contains two sets of molecules: Foods and Natural Products
taken from the FooDB [124] online database. Finally, Peptides were gener-
ated by mixing in a combinatorial way all 20 natural amino acids. They are
collected in three files according to the number of amino acids that compose
the peptide. In particular, 2AA contains dipeptides (peptides formed by two
amino acids), 3AA contains tripeptides, and 4AA contains tetrapeptides. All
peptides have been constructed with an extended structure and optimized
with MOPAC [125]. They have been protected with acetylation of the N-
terminal and the addition of amide in the C-terminal. Since they are built
by a combination of the 20 amino acids found in nature, the total amount
of peptides is quite low and not evenly distributed. To better contextualize
the different sets concerning the analysis done in the previous subsections,
a characterization of them in terms of the size of the ligand library, number
of heavy atoms, and rotatable bonds, has been performed (Table 1.1).

Figure 1.11 reports the observed throughput for the two approaches on

24

the MEDIATE datasets. We can notice that the batched version strongly
outperforms the latency implementation on the largest files (the Commer-
cial compounds with the different molecular weight). This is expected since
we are considering 5 million molecules, which heavily exceeds what we have
found to be the cross-over point (Paragraph 1.6.2). However, the remain-
ing files are smaller. There are, in particular, two datasets (Drugs and
Peptides_2AA), where the batched version is unable to reach its optimal
performances and a throughput good enough to be better than the latency
implementation. The first dataset has 14K ligands, which should be enough
for the scaling analysis to exceed the latency implementation’s performance
at least. However, it cannot reach a good throughput because it is heavily
unbalanced. Thus, at run time, it forces the execution of several almost-
empty batches, which is detrimental to the overall execution. On the other
hand, the Peptides_2AA is a minimal dataset, and even if it is quite uniform,
it still does not have enough data to outperform the latency implementation.
In all the remaining libraries, the batched implementation performs closely
or better than the latency but cannot reach a steady state.

1.6.4 Micro-Architectural Profiling

The previous analysis shows that the batched implementation has a slow
start but a better overall throughput. Now, we want to analyze the two im-
plementations more in-depth to find the reason behind this result, given that
the batched implementation’s performance improvement goes beyond the re-
duction in the grid-level synchronization. To reach this goal, we will charac-
terize both workloads in terms of execution profiles, applying the instruction
roofline methodology [126], using GIPS (Giga Instructions Per Second) to
assess and measure performance on an input dataset constructed to be rep-
resentative of different molecule categories from real-world datasets [62].

We now consider the dimensions that affect the computational complexity
of the workload, namely the number of atoms and rotatable bonds. We

Table 1.1: MEDIATE dataset characterization. For each library, its size and the
average values (± standard deviations) for the number of heavy atoms and rotatable
bonds is reported.

Library Size #Heavy Atoms #Rot. Bonds
Comm. MW330- 1.9M 18.06 ± 4.05 3.65 ± 1.79
Comm. MW330-500 2.8M 28.12 ± 3.70 5.71 ± 2.11
Comm. MW500+ 250K 38.46 ± 4.83 8.35 ± 3.52
Drugs 8.8K 29.04 ± 12.89 6.87 ± 5.66
Foods 65.5K 51.06 ± 18.88 37.91 ± 20.45
Natural Products 263.5K 30.94 ± 13.03 6.35 ± 6.10
Peptides 2AA 400 20.07 ± 3.33 7.60 ± 1.77
Peptides 3AA 8K 29.05 ± 4.07 11.40 ± 2.16
Peptides 4AA 160K 37.40 ± 4.71 15.20 ± 2.51

25

cannot analyze all possible combinations of atoms and fragments. Therefore,
we analyze the application performance with three clusters of molecules. The
characteristics of the clusters have been chosen in an attempt to highlight
different levels of complexity. A sample molecule was randomly selected from
the test dataset for each cluster and then duplicated. The duplicate of the
molecule in each cluster coincides with the suggested batch size, as described
in Section 1.5. A uniform input dataset allows for homogeneous execution
paths across all warps involved in a single kernel grid, especially for the
batched implementation where each warp handles different input ligands.
The results of this analysis would be the same if, instead of an artificial
dataset composed of a duplicated molecule, we used a dataset composed of
different ligands referring to the same batch. The test molecule clusters have
been defined as:

• Small : (0, 64] atoms, 1 rotatable bond, batch of 1920 molecules;

• Medium: (64, 96] atoms, 12 rotatable bonds, batch of 1600 molecules;

• Large: (96, 160] atoms, 20 rotatable bonds, batch of 960 molecules.

Since the goal is to understand why the steady state throughput varies across
the two approaches, we focus our analysis on each implementation’s CUDA
bottleneck kernel. For the latency version, this is the kernel that performs
the ligand fragment optimization (lines 10-16 in Algorithm 2, accounting for
92% of the overall docking pipeline’s runtime).

Resources Allocation

We first analyze the static resource allocation to understand the conse-
quences of different design principles between the two approaches.

In Figure 1.12, the maximum amount of ligands allocated on a single SM
is shown. While the latency version dedicates all the resources within an
SM to a single ligand, the batch version allocates multiple ligands to a single
warp, allowing for multiple concurrently running ligands in a single SM. In
the latter implementation, the registers per thread are the limiting factor for
the ligands allocation to an SM. Therefore, the number of ligands assigned
to an SM decreases with the increment of their complexity.

This has two consequences: on the one hand, the latency implementation
has a more consistent behavior that does not depend on the ligand size;
on the other hand, the batched implementation is strongly influenced by
the data size. It has an optimal behavior with small ligands and degrades,
increasing the size of the ligand.

Moreover, we can see that the batched implementation can process more
ligands per SM, which allows it to reduce the overheads when launching the
kernels since it will have fewer kernels to launch. Indeed, while in the latency

26

implementation, we have to launch at least one kernel per ligand, we process
between 960 and 1920 ligands with a single kernel in the batched one.

Roofline Analysis

In this section, we compare the use of computing resources for the two imple-
mentations to understand if this could explain the performance differences.
In this analysis, we are more interested in the differences between the two
implementations than in their absolute values. We present a comparison
between different roofline plots [126] produced by measuring the execution
behavior of both approaches via the NVIDIA NSight [127] profiler for both
instruction performance (Figure 1.13) and shared memory utilization (Fig-
ure 1.14).

In particular, in Figure 1.13a and Figure 1.13b, we report the instruc-
tion issued roofline. These rooflines are obtained by considering all kinds
of warp-level instructions issued. From these two graphs, both application
implementations are not memory-bound. Moreover, we use the GPU appro-
priately since we are close to the roof. If we look at their behavior regarding
the size of the different molecules, we can notice a difference in the two im-
plementations. On the one hand, in the batch implementation, the amount
of GIPS decreases with larger molecules; on the other hand, in the latency
implementation, the GIPS value increases with larger molecules. This is ex-
pected due to respective scaling design choices: on the latency version, we
improve the number of instructions because the efficiency of the kernel is
constant; thus, with bigger molecules, the amount of data to feed the GPU
increases. On the other hand, in the batched implementation, we use more
registers to store bigger ligands, which results in fewer active threads per SM
and decreases the number of instructions issued.

These two plots also provide insight into cache reuse: the horizontal
distance between points of the same molecule class represents the cache’s
ability to satisfy a request. The larger the distance between two points,
the more data can be reused in the highest-level memory (i.e., the distance
between L1 and L2 caches represents the ability of the L1 cache to serve the
read request).

The latency implementation (Figure 1.13a) shows regular cache reuse
across molecule classes, and we can notice that the reuse of the L2 cache
increases with the size of the ligands; we can see from the image that the dis-
tance between the red symbols (L2) and purple symbols (HBM) are greater
when comparing squares (Small ligands) with circles (Large ligands). On
the other hand, the batched implementation (Figure 1.13b) has a high L1
reuse for Small, but the L1 arithmetic and instruction intensities are ∼ 10×
lower than L2 and HBM values. However, larger molecule classes begin to
rely heavily on L2 cache: this can be seen by the fact that the HBM arith-
metic and instruction intensities are ∼ 100× higher than L1 and L2 values.

27

This also strengthens the idea that the batched implementation has better
behavior with small molecules but degrades with the data size growth.

The second set of images reports the shared memory roofline (Figure 1.14a
and Figure 1.14b). They are obtained by measuring both warp-level load/store
instructions issued and shared memory transactions performed. The x-axis
indicates how efficient the kernel is in terms of shared memory access within
the interval between no bank conflict and 32-way bank conflicts. It is the
ratio between the number of shared load and store instructions issued by
warps and the actual number of shared memory transactions. For example,
in case of no conflict, we can accommodate the load/store operations of all
warp threads in one shared memory transaction; on the contrary, we need
to serialize all of them. The y-axis represents the number of shared memory
load/store instructions per second. Both implementations show little to no
impact due to shared memory bank conflicts and, thus, an efficient access
pattern.

From this analysis, the two implementations look similar, with the batched
one showing a slightly better utilization of the GPU for small ligands. At the
same time, the latency kernel is more efficient for large ligands. However,
this analysis is unable to explain the speedups that we have found from the
experiments done up to this point.

Instruction Mix

In this section, we want to investigate the execution profiles of the two im-
plementations to gain more insight into them. The results of this analysis
are reported in Figure 1.15.

Figure 1.15a reports the occupancy, defined as the ratio between sus-
tained and peak percentage of active warps per SM (measured by relevant
performance counters1). Occupancy is one of the factors that can be used
to improve performance. However, there are others since it is possible to
reach optimal performances by decreasing the occupancy and having more
registers per thread [128]. For this reason, we are not interested in the ab-
solute value in this graph, but we are looking at the comparison between
the two implementations. Both implementations show a comparable degree
of SM occupancy. We can notice that while for batch, it decreases with an
increasing molecule complexity (more registers used), for latency, the be-
havior is uniform. This analysis does not provide insight into the difference
in throughput but helps explain why the advantage of using the batched
implementation decreases with larger molecules.

Figure 1.15b reports the efficiency, defined as the degree of thread predi-
cation across all the instructions executed in a single SMSP [119] (measured

1sm__maximum_warps_per_active_cycle_pct and
sm__warps_active.avg.pct_of_peak_sustained_active respectively

28

by relevant performance counters2). Both implementations show high exe-
cution efficiency and thus low degrees of thread predication. Slightly lower
efficiency in batch is ascribed to molecule sizes not being a multiple of the
warp size. This plot demonstrates how both implementations are efficient in
the use of resources.

Finally, Figure 1.15c reports the instruction mix, defined as the percent-
age of instructions executed in a single SMSP grouped by instruction type:

• fp: floating point instructions (any precision, including scalar, FMA,
and tensor),

• int: integer instructions (any integer data type),

• mem: memory operations (load/stores),

• cf: control flow operations,

• comm: inter-thread communication and synchronization,

• misc: everything else including bit-wise operations and casts

Table 1.2 lists the ncu metrics used to measure instructions and data oper-
ations on the GPU cores. Translation from the legacy nvprof metrics used
in [126] and their ncu counterparts used in this chapter has been carried
out according to [127]. There are two interesting pieces of information in
this figure. The first one is that the largest part of the operation done is
integer arithmetic. This is expected since they comprehend index calcula-
tions, and the Score function used to select the best pose is a sum over
integer values. Moreover, if we look at the latency implementation, it has
a large (20% to 40%) of comm instructions that almost completely disap-
pear in the batched implementation. These comm instructions are mostly
due to the design of the latency kernel, requiring synchronization between
multiple warps to perform block-wide reductions. As mentioned, we need
to process all the fragments sequentially in the pose optimization phase. To
analyze the impact on the performance of the check_bump kernels, we have
run both implementations without the early exit from this loop and report
the result in Figure 1.16. The advantage in terms of speedup in using the
batched approach has been reduced a lot and reached a maximum value of
2× only for very small ligands. This is expected since the previous analysis
shows that the batched approach is more efficient for small molecules. On
other molecule dimensions (i.e., larger in terms of atoms and fragments) the
speedup is slightly above 1, including a slight slowdown for the bottom left
corner. This analysis confirms that the management of the early exit con-
dition is the tie-breaker between the two implementations since the batched
version can be used without introducing much synchronization overhead.

2smsp__thread_inst_executed.sum for thread-level instructions,
smsp__inst_executed.sum for warp-level instructions

29

The latency implementation demonstrates consistent performance across
molecule classes regarding performance, occupancy, and instruction through-
put. This is due to its design principle of scaling computing resources based
on the complexity of the input ligand.

On the other hand, the batch implementation uses a fixed amount of
computing resources allocated to a batch of input ligands and deals with the
increasing molecules’ complexity by increasing the amount of work a single
warp must carry out. Moreover, this second implementation has its best be-
havior with small molecules, and its performances have a slight degradation
when increasing the data size because fewer compute resources are used since
we need more registers for the data, thus decreasing the number of active
threads.

We have seen that a batched method provides a significant benefit, pri-
marily because processing a ligand with a warp can eliminate most syn-
chronization issues among warps in the same SM. This is fundamental in
the check_bump function because it allows the exploitation of the early exit
condition without introducing too much overhead.

30

Derived Metric Metrics (ncu)

Timing sm__cycles_elapsed.avg
sm__cycles_elapsed.avg.per_second

FLOP

sm__sass_thread_inst_executed_op_dfma_pred_on.sum
sm__sass_thread_inst_executed_op_dmul_pred_on.sum
sm__sass_thread_inst_executed_op_dadd_pred_on.sum
sm__sass_thread_inst_executed_op_ffma_pred_on.sum
sm__sass_thread_inst_executed_op_fmul_pred_on.sum
sm__sass_thread_inst_executed_op_fadd_pred_on.sum
sm__sass_thread_inst_executed_op_hfma_pred_on.sum
sm__sass_thread_inst_executed_op_hmul_pred_on.sum
sm__sass_thread_inst_executed_op_hadd_pred_on.sum
sm__inst_executed_pipe_tensor.sum

Thread Instructions smsp__thread_inst_executed.sum /32

L1 Global Transactions l1tex__t_sectors_pipe_lsu_mem_global_op_ld.sum
l1tex__t_sectors_pipe_lsu_mem_global_op_st.sum

L1 Shared Transactions l1tex__data_pipe_lsu_wavefronts_mem_shared_op_ld.sum
l1tex__data_pipe_lsu_wavefronts_mem_shared_op_st.sum

L2 Transactions

lts__t_sectors_op_read.sum
lts__t_sectors_op_atom.sum
lts__t_sectors_op_red.sum
lts__t_sectors_op_write.sum

DRAM Transactions dram__sectors_read.sum
dram__sectors_write.sum

Warp Instructions smsp__inst_executed.sum

Warp global load/store smsp__inst_executed_op_global_ld.sum
smsp__inst_executed_op_global_st.sum

Warp shared load/store smsp__inst_executed_op_shared_ld.sum
smsp__inst_executed_op_shared_st.sum

DRAM bytes dram__bytes.sum
L2 bytes lts__t_bytes.sum
L1 bytes l1tex__t_bytes.sum
Inst. mix: integer sm__sass_thread_inst_executed_op_integer_pred_on.sum
Inst. mix: control flow sm__sass_thread_inst_executed_op_control_pred_on.sum
Inst. mix: thread comm. sm__sass_thread_inst_executed_op_inter_thread_communication_pred_on.sum
Inst. mix: memory sm__sass_thread_inst_executed_op_memory_pred_on.sum

Inst. mix: misc.
sm__sass_thread_inst_executed_op_bit_pred_on.sum
sm__sass_thread_inst_executed_op_conversion_pred_on.sum
sm__sass_thread_inst_executed_op_misc_pred_on.sum

Table 1.2: Metrics for the Instruction Roofline Model and Instruction Mix anal-
ysis.

31

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g

h
p

u
t

[#
 l
ig

a
n
d

s
p

e
r

se
co

n
d

s]

Fragments

20 Atoms
25 Atoms
30 Atoms

35 Atoms
40 Atoms
45 Atoms

50 Atoms

(a) Latency

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g

h
p

u
t

[#
 l
ig

a
n
d

s
p

e
r

se
co

n
d

s]

Fragments

20 Atoms
25 Atoms
30 Atoms

35 Atoms
40 Atoms
45 Atoms

50 Atoms

(b) Batched

Figure 1.7: Throughput of the two implementations with the different datasets,
organized by the number of atoms and increasing the number of fragments on the
x-axis.

32

 0

 500

 1000

 1500

 2000

 2500

 20 25 30 35 40 45 50

T
h
ro

u
g

h
p

u
t

[#
 l
ig

a
n
d

s
p

e
r

se
co

n
d

s]

Atoms

1 Fragment
4 Fragment

8 Fragment
12 Fragment

16 Fragment
20 Fragment

(a) Latency

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 20 25 30 35 40 45 50

T
h
ro

u
g

h
p

u
t

[#
 l
ig

a
n
d

s
p

e
r

se
co

n
d

s]

Atoms

1 Fragment
4 Fragment

8 Fragment
12 Fragment

16 Fragment
20 Fragment

(b) Batched

Figure 1.8: Throughput of the two implementations with the different datasets,
organized by the number of fragments and increasing the number of atoms on the
x-axis.

33

Figure 1.9: Speedup heatmap of batched versus latency for different homogeneous
datasets of 50K ligands with the same characteristics.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100 1000 10000 100000 1x106

T
h
ro

u
g

h
p

u
t

[#
 l
ig

a
n
d

s
p

e
r

se
co

n
d

s]

Dataset Size [# Ligands]

Batch
Latency

Batch homogeneous
Latency homogeneous

Figure 1.10: Single GPU throughput behaviour with varying input dataset size
for all the presented approaches. While the latency-optimized kernel dominates the
throughput-optimized one on small datasets, after the break-even point at around
1000 ligands the latter scales up to a sustained 1600 ligands per second.

34

 0

 1000

 2000

 3000

 4000

 5000

 6000

M
W

33
0-

M
W

33
0-

50
0

M
W

50
0+

D
ru

gs

Fo
od

s

N
at

ur
al
_p

ro
du

ct
s

Pe
pt

id
es

 2
A
A

Pe
pt

id
es

 3
A
A

Pe
pt

id
es

 4
A
A

T
h
ro

u
g
h
p
u
t

[#
 l
ig

a
n
d
s
 p

e
r

s
e
c
o
n
d
s
] Latency Batch

Figure 1.11: Throughput comparison on the Mediate dataset.

 0.1

 1

 10

 100

 0 20 40 60 80 100 120 140 160

C
o
m

p
o
u
n
d
s

p
er

 S
M

Compound size [# atoms]

batch
28 24 24

16 16
latency

Figure 1.12: Ligand allocation per GPU streaming multiprocessor (SM).

35

 1

 10

 100

 1000

 0.1 1 10 100 1000Pe
rf

or
m

an
ce

 (w
ar

p
GI

PS
)

Instruction Intensity (warp instructions per transaction)

Small
Medium

Large

HBM
L2
L1

Theoretical peak: 609.1 warp GIPS

L1 562.5 GTXN/s

L2 220.3 GTXN/s

HBM 48.6 GTXN/s

(a) Instruction roofline for latency

 1

 10

 100

 1000

 0.1 1 10 100 1000Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

Instruction Intensity (warp instructions per transaction)

Small
Medium

Large

HBM
L2
L1

Theoretical peak: 609.1 warp GIPS

L1 562.5 GTXN/s

L2 220.3 GTXN/s

HBM 48.6 GTXN/s

(b) Instruction roofline for batch

Figure 1.13: Roofline analysis comparison between latency (top) and batch (bot-
tom) on instruction performance.

36

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

Theoretical peak: 609.1 warp GIPS

Shared 140.6 GTXN/s

Pe
rf

or
m

an
ce

 (w
ar

p
GI

PS
)

Instruction Intensity (warp instructions per transaction)

Shared
Small

Medium
Large

N
o

ba
nk

 c
on

fli
ct

32
-w

ay
 b

an
k

co
nfl

ic
t

(a) Shared memory access pattern roofline for latency

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

Theoretical peak: 609.1 warp GIPS

Shared 140.6 GTXN/s

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

Instruction Intensity (warp instructions per transaction)

Shared
Small

Medium
Large

N
o

ba
nk

 c
on

fli
ct

32
-w

ay
 b

an
k

co
nfl

ic
t

(b) Shared memory access pattern roofline for batch

Figure 1.14: Roofline analysis comparison between latency (top) and batch (bot-
tom) on shared memory access pattern.

37

 0

 10

 20

 30

 40

 50

SmallMediumLarge

O
cc

u
p
an

cy
 %

Sustained
Peak

 0

 10

 20

 30

 40

 50

SmallMediumLarge

(a) SM occupancy

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

SmallMediumLarge

R
es

o
u
rc

e
u
ti
liz

at
io

n
 %

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

SmallMediumLarge

(b) Efficiency (thread predication)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

SmallMediumLarge

%
 o

f
ov

er
al

l
in

st
ru

ct
io

n
s

misc
comm

cf
mem

int
fp

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

SmallMediumLarge

(c) Instruction mix

Figure 1.15: Comparison between latency (left) and batch (right) on (a) peak and
sustained active warps, (b) efficiency (or thread predication) and (c) instruction
mix.

38

Figure 1.16: Speedup heatmap of the batched version against the latency one for
the different homogeneous datasets without the early exit from the check_bump
function. Both throughputs are taken with large enough datasets.

39

1.7 Urgent Computing Against COVID-19

The social and economic impact of the COVID-19 pandemic demanded the
reduction of the time required to find a therapeutic cure.

During the first wave of the global pandemic in 2020 [129], the European
Union called for urgent action to leverage the continent’s HPC resources
aiming at finding possible active drugs in the shortest time possible. The
Exscalate4CoV initiative3 gathered 18 institutions and resulted in 1 clinical
trial (repurposing of Raloxifene [130]) and > 400 compounds found to be
active in experimental assays [131]. On the HPC side, the joint effort of
the collaboration between CINECA, the research group led by Prof. Gian-
luca Palermo at Politecnico di Milano and NVIDIA optimized and deployed
the Exscalate platform on two HPC machines with a combined throughput
peak of 81PFLOP/s to rank a chemical library of more than 70 billion small
molecules against 15 binding-sites of 12 viral proteins of SARS-CoV-2. This
required a deep re-design of the Exscalate molecular docking platform to
benefit from heterogeneous computation nodes and avoid scaling issues. The
extreme-scale virtual screening simulation, known as one-trillion-docking ex-
periment4, is still to date the largest in-silico drug discovery simulation ever
performed. It lasted 60 hours and improved on the previous largest experi-
ment [114] by 50× the number of screened compounds and 7.5× the number
of protein targets. The knowledge generated by this experiment, in terms of
top-ranked molecules for each protein pocket (binding sites), is available via
the open-access MEDIATE5 [62] initiative, in an effort to foster a collabora-
tive environment in case of future pandemics.

In the context of urgent computing, where the time required to find a
therapeutic cure should be as short as possible, the Exscalate platform has
been re-designed with the goal of virtual screening as many ligands as pos-
sible in a feasible time budget, i.e. hours, for billions of ligands instead
of months necessary before. To maximize the throughput of the docking
platform, the target are TOP500 European HPC systems: other than sheer
accelerator throughput (covered in the first part of this chapter), pre-exas-
cale scale-out in production poses known challenges [132, 133], from data
management to file system layout optimizations, from MPI topology tuning
to fault management and recovery.

1.7.1 Related Work

The state-of-the-art of high-performance molecular docking on GPU accel-
erators has been explored in Section 1.1.

3https://www.exscalate4cov.eu/
4https://1trilliondock.exscalate4cov.eu/
5https://mediate.exscalate4cov.eu

40

https://www.exscalate4cov.eu/
https://1trilliondock.exscalate4cov.eu/
https://mediate.exscalate4cov.eu

However, the focus on urgent computing requires a holistic point of
view to take into account all aspects needed to large-scale production runs.
AMIDE [134] focuses on inverse docking, where ligands are evaluated in a
large number of proteins. They propose to divide each protein into twelve
overlapping sub-grids to use as independent pockets. To orchestrate the
computation, they use custom scripts and SLURM [135] job arrays. META-
DOCK [136] focuses on blind docking, where the docking phase is not re-
strained in a specific pocket, but it can be docked in the whole protein’s
surface. They propose to use a combined OpenMP/CUDA approach to
leverage NVIDIA accelerators.

In this regard, AutoDock [96] is the most relevant work since it has been
ported to CUDA [111] and deployed on the Summit supercomputer [137]
where they docked over one billion molecules on two SARS-CoV-2 proteins
in less than two days [114]. They hinge on the Summit’s NVMe local storage
to dock batches of ligands in the target pocket and to store the intermediate
results. In particular, AutoDock uses OpenMP to implement a threaded-
based pipeline, where each thread reads ligands from the file, launches the
CUDA kernels, waits for their completion, and it writes back the results.
Since most docking algorithms use a fast but approximated scoring function
to drive the estimation of the 3D pose of a ligand, it is common to re-score
the most promising ones with a more accurate scoring function. They use a
custom CUDA version of RFScore-VS [138] to perform such task and Blaz-
ingSQL [139] for computing statistics and selecting the top-scoring ligands.
To orchestrate the workflow, they use FireWorks [140] from an external clus-
ter to ensure a consistent state in the presence of faults in the compute
nodes.

1.7.2 High-throughput Docking Workflow

A monolithic application to dock and re-score the ligands has been developed,
using MPI [141] to scale out, C++11 threads to scale up and CUDA kernels
to accelerate the compute-intensive sections, exploiting the NVIDIA V100
GPUs available on the target HPC clusters. The proposed solution can
reach a high throughput without relying on the node’s local storage, which
is unavailable in the target HPC systems. The innovation introduced in this
work can be categorized into three main contributions:

1. at the algorithm level, with the CUDA porting and optimization of the
docking and scoring phases.

2. at the application level, with the complete rework of the application
and the creation of the high-throughput molecular docking application.

3. at the workflow level, with the creation of the Exscalate workflow that
allows us to handle the operation easier and more resiliently.

41

The Dock and Score Algorithm

Ti
m

e
 (

m
s)

Number of atoms

1 torsional bond
4 torsional bonds
8 torsional bonds

12 torsional bonds
16 torsional bonds
20 torsional bonds

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 20 30 40 50 60 70 80 90 100 110 120

(a) C++ implementation on CPU

Ti
m

e
 (

m
s)

Number of atoms

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20 30 40 50 60 70 80 90 100 110 120

(b) CUDA implementation on GPU

Figure 1.17: Time required to dock and score a ligand by varying the number of
atoms and torsional bonds. The C++ implementation use a single core IBM 8335-
GTG 2.6 GHz. The CUDA implementation use a single NVIDIA V100.

The final output of the algorithm is an estimation of the bond strength
between a given ligand and the binding site of the target protein. In the
virtual screening context, reducing the problem’s complexity is common by
using heuristics and empirical rules instead of performing a molecular dy-
namic simulation [142]. One implication of this choice is that the numeric
score of a ligand is strongly correlated by the given 3D displacement of its
atoms, which is not trivial to compute due to the high number of degrees of
freedom involved in the operation. In addition to the six degrees of freedom
derived by rotating and translating a rigid object in 3D space, the ligand’s
flexibility has to be considered. A subset of the ligand’s bonds, named tor-
sional bonds [143], partition the ligand’s atoms in two disjoint sets that can
rotate along the bond’s axis, changing the ligand’s shape. A small molecule
can have tens of torsional bonds.

42

The algorithm developed in Exscalate to dock and score a ligand com-
prises four steps. The first step is ligand pre-processing, which flattens the
ligand by rotating the torsional bonds to maximize the sum of the inter-
nal distances between all the molecule atoms. This computation is protein-
independent. The second step docks the ligand inside the binding site of
the target protein by using a greedy optimization algorithm with multiple
restarts. The scoring function used to drive the docking considers only ge-
ometrical steric effects. While the ligand’s flexibility is taken into account,
the pocket is considered a rigid body [144]. 256 different initial poses have
been evaluated for each ligand in the experiment. The third step sorts the
generated poses to select only a few to re-score using the LiGen chemical
scoring function [145] in the fourth step. In particular, the generated poses
are clustered using a root mean square deviation of atomic positions (RMSD)
of 3Å as the threshold to deem two poses as similar. Then all the poses are
sorted according to their score. Only the top 30 poses are scored for each
ligand. The score of the ligand is the score of the best pose found.

The only information required to dock and score a ligand in the target
binding site is its description. Thus, the virtual screening process is an
embarrassingly parallel problem. However, it is paramount to design how
the data can be read from the storage, transferred to the accelerator, and
written back to the storage. Indeed, another innovation introduced with this
work is the high-throughput docking application, which aims to address all
the issues that are not related to the docking and scoring kernels but are
required for the experiment’s success, such as data management, resource
organization, and multi-node scaling.

The workflow application implements an an asynchronous pipeline that
uses MPI point-to-point operations for data exchange. A single process (MPI
rank) is executed per node. Each process manages all the resources on the
node and spawns a local asynchronous pipeline where each stage is a dedi-
cated worker thread.

The first stage is the reader, which reads from the actual file that repre-
sents the chemical library a chunk of data that it enqueues in the splitter ’s
queue. The splitter stage inspects each chunk to split all ligand descrip-
tions. Then it enqueues each ligand description in the docker ’s queue. In
the experiment, a ligand is described using a custom binary format derived
from the TRIPOS Mol2 format. The docker stage dequeues a ligand de-
scription, it constructs the related data structures, performs the dock and
score steps described in Section 1.1, and it enqueues the ligand’s score in the
writer ’s queue. The writer stage dequeues the ligand score and accumulates
the related output in an internal buffer, which is the ligand’s SMILES [146]
representation and its score value. The writer stage initiates the writing
procedure when the accumulation buffer is full.

The docker stage is the only one that can be composed of several threads
that operate on the same queues to enable work-stealing. Moreover, it is pos-

43

sible to use different algorithm implementations, such as CUDA and C++,
to leverage the node’s heterogeneity. Any docker thread is referred to here
as worker. All the workers that use the CUDA implementation are named
CUDA workers, while the ones that use the C++ implementation are named
CPP workers. Even if a single CUDA worker is tied to a single GPU, it is
possible to have multiple CUDA workers tied to the same GPU.

The target binding site is considered constant during the elaboration.
Therefore, each process will fetch the related information once at the begin-
ning of the execution. Each algorithm implementation can store the pocket
data structures in the most appropriate memory location during its initializa-
tion. In particular, the C++ implementation uses constant static memory,
while the CUDA implementation uses texture memory.

I/O operations from virtually all the nodes of an HPC system rely on
MPI collective I/O facilities. Since the computation pipeline is the same for
all the processes, only one MPI process pipeline is depicted here. Regarding
read operations, each MPI process sequentially reads its section of the input
file according to its MPI rank. Collective I/O operations for write opera-
tions are used, too. Indeed, the user can configure the number of processes
that issue I/O operations to reduce the pressure on the file system. All the
writing operations are parallel and sequential. Indeed, as apparent from
Figure 1.18, the I/O does not represent a bottleneck, and the scaling of the
high-throughput molecular docking application is very close to the optimal
theoretical scaling.

As can be seen from the strong scaling experiment, storing all the ligands
to be docked in a single file and deploying the application on the whole
machine is possible. However, this approach has several drawbacks.

The main concern is fault resiliency. The default action to respond to
a fault in an MPI communicator, for example, after a node failure, is to
terminate all the processes [141], which can lead to a significant waste of
computational resources without careful management of application check-
points: this is a known issue [147, 148, 149].

Another concern is load balancing. Figure 1.17 shows how docking and
scoring a large and complex ligand required much more time than a small
ligand. Therefore, there is a significant imbalance between the MPI processes
if all the ligands with many atoms and torsional bonds are close.

These issues were addressed with a pre-processing phase on the chemical
library to have a relatively small number of jobs that can run in parallel
using a plain job array to coordinate the execution, such as the one provided
by SLURM [135] or PBS [150]. The job array is in charge of controlling the
execution of these jobs, and custom reactive tools help it identify failing jobs,
re-run them, and exclude failed nodes. To achieve this goal, the amount of
ligands (70 billion) is divided into ∼3400 smaller sets. For every set, a job
running on a subset of 32 nodes is created.

Figure 1.19 depicts the overall Exscalate workflow. Two kinds of input

44

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

S
p

e
e
d

u
p

Number of Nodes

Measured speedup Theoretical speedup

Figure 1.18: Strong scaling experiment of the high-throughput molecular docking
on the whole Marconi100 supercomputer.

data are required for a virtual screening campaign: viral protein binding sites
and a library of candidate compounds. The identification of protein binding
sites is a complex, compute-intensive endeavor that is outside of the scope
of this work. In the context of the EXSCALATE4CoV effort, a dedicated
team provided the protein structures and described the methodology in Ger-
vasoni et al. [151]. On the other hand, the candidate compound library is
provided in the SMILES format [146].

The first pre-processing step is to obtain the 3-dimensional atom confor-
mation from each a-dimensional input SMILES string. This is carried out by
the LiGen toolchain itself using the MMFF94 force field [152]. The resulting
structures are then minimized via gradient optimization to obtain minimal
energy 3-dimensional coordinates for each atom.

The next step in the ligand pre-processing is to broadly classify them
in buckets according to their expected execution time, reducing the imbal-
ance during the computation as much as possible. As shown in Figure 1.17,
the number of torsional bonds and atoms seem good predictors. However,
extracting these properties from from the SMILES representation is not triv-
ial. For this reason, a model is trained, to predict the execution time given
properties that are more accessible at this point of the workflow: the num-
ber of heavy atoms, rings, and chains. Interactions between them is also
considered. To predict the ligand’s execution time a decision tree model is
adopted, with a maximum depth of 16.

45

CC1CSCc2c(C)cc(cc2C1=
 CC1CC(=O)c2cc(cc(C)c2

CP1(C)CSCc2ccc(cc2C1=O)C3
CF1CSCc2cc(F)c(cc2C1=O)C3
CC1CC(=O)c2cc(C3=C4c5cccc
CF1CSCc2c(F)cc(cc2C1=O)C3
CC1CC(=O)c2cc(cc(F)c2CS1)
CF1(C)CC[C@]2(N)CC[C@]3(C
CC1CC(=O)c2cc(C3=C4c5cccc
CC1CSCc2c(F)cc(cc2C1=O)C3
CP1(C)CSCc2ccc(cc2C1=O)C3
CC1CC(=O)c2cc(cc(F)c2CS1)

CC1CSCc2c(C)cc(cc2C1=O)C3=C4c
CC1CC(=O)c2cc(cc(C)c2CS1)C3=C
CC1(C)CSCc2ccc(cc2C1=O)C3=C4c
CC1CSCc2cc(F)c(cc2C1=O)C3=C4c
CC1CC(=O)c2cc(C3=C4c5ccccc5C(
CC1CSCc2c(F)cc(cc2C1=O)C3=C4c
CC1CC(=O)c2cc(cc(F)c2CS1)C3=C
CC1(C)CC[C@]2(N)CC[C@]3(C)[C@

CC1CC(=O)c2cc(C3=C4c5ccccc5C(
CC1CSCc2c(F)cc(cc2C1=O)C3=C4c
CC1CC(=O)c2cc(cc(F)c2CS1)C3=C
CC1(C)CC[C@]2(N)CC[C@]3(C)[C@

CC1CC(=O)c2cc(cc(F)c2CS1)C

CC1(C)CC[C@]2(N)CC[C@]3(C)

CC1CSCc2c(C)cc(cc2C1=O)C3=C4c
CC1CC(=O)c2cc(cc(C)c2CS1)C3=C
CC1(C)CSCc2ccc(cc2C1=O)C3=C4c
CC1CSCc2cc(F)c(cc2C1=O)C3=C4c
CC1CC(=O)c2cc(C3=C4c5ccccc5C(
CC1CSCc2c(F)cc(cc2C1=O)C3=C4c
CC1CC(=O)c2cc(cc(F)c2CS1)C3=C
CC1(C)CC[C@]2(N)CC[C@]3(C)[C@

CC1CC(=O)c2cc(C3=C4c5ccccc5C(
CC1CSCc2c(F)cc(cc2C1=O)C3=C4c
CC1CC(=O)c2cc(cc(F)c2CS1)C3=C
CC1(C)CC[C@]2(N)CC[C@]3(C)[C@

CC1CC(=O)c2cc(cc(F)c2CS1)C
CC1(C)CC[C@]2(N)CC[C@]3(C)

CC1CSCc2c(C)cc(cc2C1=O)C3=C4c
CC1CC(=O)c2cc(cc(C)c2CS1)C3=C
CC1(C)CSCc2ccc(cc2C1=O)C3=C4c
CC1CSCc2cc(F)c(cc2C1=O)C3=C4c
CC1CC(=O)c2cc(C3=C4c5ccccc5C(
CC1CSCc2c(F)cc(cc2C1=O)C3=C4c
CC1CC(=O)c2cc(cc(F)c2CS1)C3=C
CC1(C)CC[C@]2(N)CC[C@]3(C)[C@

CC1CC(=O)c2cc(C3=C4c5ccccc5C(

CC1CSCc2c(F)cc(cc2C1=O)C3=C4c

CC1CC(=O)c2cc(cc(F)c2CS1)C3=C
CC1(C)CC[C@]2(N)CC[C@]3(C)[C@

CC1CC(=O)c2cc(cc(F)c2CS1)C
CC1(C)CC[C@]2(N)CC[C@]3(C)

CC1CSCc2c(C)cc(cc2C1=O)C3=C4c
CC1CC(=O)c2cc(cc(C)c2CS1)C3=C
CC1(C)CSCc2ccc(cc2C1=O)C3=C4c
CC1CSCc2cc(F)c(cc2C1=O)C3=C4c
CC1CC(=O)c2cc(C3=C4c5ccccc5C(
CC1CSCc2c(F)cc(cc2C1=O)C3=C4c
CC1CC(=O)c2cc(cc(F)c2CS1)C3=C
CC1(C)CC[C@]2(N)CC[C@]3(C)[C@

CC1CC(=O)c2cc(C3=C4c5ccccc5C(

CC1CSCc2c(F)cc(cc2C1=O)C3=C4c

CC1CC(=O)c2cc(cc(F)c2CS1)C3=C
CC1(C)CC[C@]2(N)CC[C@]3(C)[C@

CC1CC(=O)c2cc(cc(F)c2CS1)C
CC1(C)CC[C@]2(N)CC[C@]3(C)CCCCCc1…

CCCFCc1…
CNNCCc1…CCCCCc1…

CCCFCc1…
CNNCCc1…

CCCCCc1…
CCCFCc1…
CNNCCc1…

CCCCCc1…
CCCFCc1…
CNNCCc1…
C***Cc1…
NC[F]C1…
FNNCCc1…

CC1CSCc2c(C)cc(cc2C1=O)C3=C4c
CC1CC(=O)c2cc(cc(C)c2CS1)C3=C
CC1(C)CSCc2ccc(cc2C1=O)C3=C4c
CC1CSCc2cc(F)c(cc2C1=O)C3=C4c
CC1CC(=O)c2cc(C3=C4c5ccccc5C(
CC1CSCc2c(F)cc(cc2C1=O)C3=C4c
CC1CC(=O)c2cc(cc(F)c2CS1)C3=C
CC1(C)CC[C@]2(N)CC[C@]3(C)[C@

CC1CC(=O)c2cc(C3=C4c5ccccc5C(
CC1CSCc2c(F)cc(cc2C1=O)C3=C4c

CC1CC(=O)c2cc(cc(F)c2CS1)C3=C
CC1(C)CC[C@]2(N)CC[C@]3(C)[C@

CC1CC(=O)c2cc(cc(F)c2CS1)C
CC1(C)CC[C@]2(N)CC[C@]3(C)

CC1CSCc2c(C)cc(cc2C1=O)C3=C4c
CC1CC(=O)c2cc(cc(C)c2CS1)C3=C
CC1(C)CSCc2ccc(cc2C1=O)C3=C4c
CC1CSCc2cc(F)c(cc2C1=O)C3=C4c
CC1CC(=O)c2cc(C3=C4c5ccccc5C(
CC1CSCc2c(F)cc(cc2C1=O)C3=C4c
CC1CC(=O)c2cc(cc(F)c2CS1)C3=C
CC1(C)CC[C@]2(N)CC[C@]3(C)[C@

CC1CC(=O)c2cc(C3=C4c5ccccc5C(
CC1CSCc2c(F)cc(cc2C1=O)C3=C4c

CC1CC(=O)c2cc(cc(F)c2CS1)C3=C
CC1(C)CC[C@]2(N)CC[C@]3(C)[C@

CC1CC(=O)c2cc(cc(F)c2CS1)C
CC1(C)CC[C@]2(N)CC[C@]3(C)

Reaction
Evaluation

Geometrical
Docking

Chemical Scoring
+ Ranking

0D → 3D Structure +
Energy Minimization

Reactant Sets (106)
+

Reaction Rules (102)

Protein Models (101) Binding Sites (101)

0D Compounds (109)

Molecular
Dynamics

3D Compounds
(energy minimized, 109)

Pocket
Identification

Docked poses (1011) Top Scoring Poses (105)

Figure 1.19: Exscalate workflow, from the input (ligand’s chemical library and
the protein models) on the left to the outcome (most promising set of molecules)
on the right.

Figure 1.20 shows the experimental campaign used to train a decision
tree regressor [153] written in Python. Figure 1.20a shows the measured ex-
ecution time of a dataset with 21 million of ligands with a different number of
atoms and torsional bonds. The 80% of the data are used to train the model,
while the remaining data are used to compute the prediction error reported
in Figure 1.20b. The model has a negligible mean error (−0.000 88ms), with
a standard deviation of ±3.81ms.

Even if the average error is close to zero, the standard deviation suggests
that there is an error when predicting the docking time of a given ligand.
In the experiment, The ligands are clustered in buckets of 10ms to account
for this variability. Since this pre-process aims at avoiding computation
imbalance,only the average behavior is taken into account.

The last pre-processing step can be performed after the ligands classifi-
cation according to their complexity. For each ligand, the hydrogen atoms
are added, the initial displacement of its atoms in the 3D space is generated,
and the molecule is unfolded(Paragraph 1.7.2). This elaboration is required
once, and it can be re-reused in all the virtual screening campaigns.

Finally, the virtual screening campaign can be performed, once the target
binding sites and the ligand binaries are available. The docking application
is launched on all the ligand files, one pocket at a time.

The output of the virtual screening is the ranking of the chemical library
against each docking site. Domain experts selected ligands that strongly
interact with multiple docking sites or proteins, allowing them to re-create
the 3D displacement of the ligand’s atoms on demand. For this reason, only
the topological representation of the molecule using the SMILES notation
can be stored.

46

1.7.3 Urgent Computing Setup

This section reports the experimental setup for the virtual screening exper-
iment in which 70 billion ligands were evaluated against 15 binding sites of
12 viral proteins of SARS-CoV-2.

Target Dataset

The ligands evaluated in the experiment are part of the EXSCALATE library
owned by Dompé Farmaceutici S.p.A., built starting from a database of
millions of available commercial reagents that were combined using a set
of robust synthetic reactions in order to obtain a tangible chemical space,
meaning that this is truly achievable in one reaction step. The list of target
proteins used in the experiments has been reported in Table 1.3, with the
corresponding PDB code. The crystal structures of the main functional
units of the SARS-CoV-2 proteome were obtained from the Protein Data
Bank [154]. Homology models of the proteins for which the crystal structure
is unavailable were generated and used.

Table 1.3: The 3D targets used in the molecular docking experiments. A target
might have different pockets.

Protein PDB code

3CL protease (NSP5) 6LU7
N-protein 6VYO
NSP3 6W02
NSP6 De novo model
NSP9 6W4B
NSP12 7BV2
NSP13 6XEZ
NSP14 Homology Model
NSP15 6W01
NSP16 6W4H
PL protease 6W9C
Spike-ACE2 6M0J

Hardware Resources

The Exscalate platform was deployed on Marconi100 [155] at CINECA and
HPC5 [156] at ENI S.p.A., aggregating around 81PFLOP/s of compute ca-
pability (respectively 29.3PFLOP/s and 51.7PFLOP/s). At the time of
the experiment, they were the Europe’s two largest HPC systems. A Mar-
coni100 node is equipped with 32 IBM POWER9 AC922 cores (128 hardware

47

threads) and 4 NVIDIA V100 GPUs attached via NVLINK 2.0. The compu-
tation node of HPC5 is very similar since it also uses 4 NVIDIA V100 GPUs,
but it relies on Intel Xeon Gold 6252 24C as the host processor (24 cores and
48 hardware threads) and it uses NVLINK only for the direct GPU-to-GPU
interconnection. The CPU-to-GPU connection uses PCIe. The experiment
has been run using a reservation of 800 out of 970 Marconi100 nodes and
1500 out of 1820 HPC5 nodes for 60 hours on each machine.

Software Environment

For both production systems, all software components were built on top
of the same software stack: upstream GCC 9.3, CUDA toolkit 11.0, and
upstream MPICH 3.4.1.

The main difference between the two systems was in the job scheduler:
SLURM on Marconi100 and PBS on HPC5. On the former, the single 32-
nodes jobs were managed in multiple job arrays, each one covering the whole
set of docking targets, while on the latter, an ENI internal, proprietary
workflow management tool was used to schedule single jobs and deal with
transient node faults.

For the post-processing phase, a custom Dask pipeline dealing with sta-
tistical descriptors and threshold selection was developed and ran on an
environment deployed using upstream conda-forge (Dask 2.21.0 on Python
3.8.3). The same Python environment was also used for the pre-processing
phase, where a custom regression model was trained, serialized and deployed
using scikit-learn 0.22.1.

Performance Measurements

Since a single MPI process is run on each node, the node’s throughput can be
measured using standard C++ timing facilities. Each time the throughput
has to be calculated, the number of ligands the application has elaborated
is divided by the elapsed time. This information is logged in the application
output during the evolution of the elaboration. To compute the average
node’s throughput, the average value among the application final throughput
logs is calculated.

To measure the machine throughput, the total number of ligands is di-
vided by the wall time of the computation, i.e., the time required to complete
the job array. In this way, the measure includes all the overheads related
to the execution. Since a pocket elaboration lasts for hours, the accuracy of
the measure is compatible with the method used.

1.7.4 Evaluating the storage requirements

When scaling an experiment to the scale of a trillion docking operations, the
data to be read and written must be carefully evaluated, paying attention to

48

formats. To perform the virtual screening, information is needed about the
binding sites of the target proteins and the chemical library of ligands to be
analyzed. The former is not an issue since it requires total storage of 29MB
and the information needed is read once the application starts.

Domain experts use the SMILES format to represent a ligand. The chem-
ical library evaluated in the experiment encoded in the SMILES format re-
quires a total of 3.3TB. However, the docking application requires a richer
molecule description, as detailed in Paragraph 1.7.2. The most widely used
format to store the required information is the TRIPOS Mol2, encoded in
ASCII and focuses on readability rather than efficiency. For this reason, a
custom binary format that stores only the information required by the dock-
ing application is adopted, such as the atom’s position, type, and bonds. By
comparing the size of the same molecules, the Mol2 format requires 5× to
6× more space concerning the binary format. Nonetheless, the whole binary
chemical library for the experiment requires 59TB of storage.

Storing all the docked poses is unfeasible, as targeting 15 binding sites
and re-scoring 30 alternative poses per input ligand would require 26PB of
storage. For this reason, only the SMILES representation of the molecule
and its best score as a scalar value for each docking site is retained. The
docked posed can be re-generated on demand if needed, since the docking
algorithm is deterministic. The final output size is 69TB.

On average, the docking application requires a relatively small I/O band-
width: 1.68GB/s for reading and 0.12GB/s for writing on the Marconi100
machine, while 2.53GB/s for reading and 0.18GB/s for writing on the HPC5
machine. Despite this, the I/O configuration must be carefully tuned (Para-
graph 1.7.2) to avoid scaling issues on large systems due to the sheer number
of MPI tasks performing I/O operations [157].

1.7.5 Intra-node Scaling

The availability of multiple dock and score algorithm implementations grants
access to heterogeneous resources. Figure 1.17 shows the time elapsed by the
CPP and CUDA workers to perform the docking operation with different lig-
and characteristics. It can be noticed that the CUDA implementation has,
on average, a 65× speedup concerning the CPU version. Therefore using
only the CUDA implementation is the most efficient solution. However, the
relation between the number of CUDA and CPP workers (Paragraph 1.7.2)
and the application throughput is not trivial. Table 1.4 shows the appli-
cation throughput in terms of docked ligands per second by varying the
number of CUDA and CPP workers when the application is deployed on a
Marconi100 node equipped with 32× IBM POWER9 AC922 cores (128×
hardware threads) and 4× NVIDIA V100 GPU. The application binds each
CUDA worker to a single GPU in a round-robin fashion. For example, when
using 24× CUDA workers, 6× threads feed data and retrieve the results for

49

Table 1.4: The throughput reached per node and per machine for each binding
site evaluated in the experiment. The NSP13ortho binding site has been partially
computed on both machines.

Binding site Thr (ligands/s/node) Thr (ligands/s) HPC machine

PLPRO 2496 1996800 M100
SPIKEACE 2498 1998400 M100
NS12thumb 2499 1999200 M100
NS13palm 2486 1988800 M100
3CL 2427 1941600 M100
NSP13allo 2498 1998400 M100
Nprot 2010 3015000 HPC5
NSP16 1980 2970000 HPC5
NSP3 1969 2953500 HPC5
NSP6 1985 2977500 HPC5
NSP12ortho 2001 3001500 HPC5
NSP14 1965 2947500 HPC5
NSP9 1996 2994000 HPC5
NSP15 1990 2985000 HPC5
NSP13ortho 2454/1987 1963200/2980500 M100/HPC5

each GPU in the node. It can be noticed how the application reaches peak
performance for a high number of CUDA workers. Moreover, overall perfor-
mance decreases when the number of CPP workers is increased to match the
number of hardware threads. This behavior implies that, in our case study,
it is better to use CPUs to support accelerators and I/O operations rather
than contribute to the elaboration itself. Furthermore, to benefit most from
a GPU, using a single CUDA worker is not enough. This is the expected
result, since the CUDA worker needs to parse the ligand description and ini-
tialize the related data structures before launching any CUDA kernel. Thus,
those overheads can be hidden and GPU fully utilized using more CUDA
workers. To perform this analysis, the Commercial Compound MW<330
dataset from the MEDIATE database has been chosen (already detailed in
Paragraph 1.6.3).

1.7.6 HPC System Scale-out

For this experiment, the binding sites are evaluated sequentially. With this
configuration, a job array of ∼3400 jobs for every binding site is used, where
each job is composed of 32× MPI processes that last for about 5 minutes
and targets a single binding site.

Table 1.4 reports for each binding site the average throughput of a node
and the whole machine. On average, a single node’s throughput is 2.4k

50

ligands per second on Marconi100 and 2k ligands per second on HPC5. Both
supercomputer nodes are equipped with 4× NVIDIA V100 GPUs. Since
most of the application’s throughput comes from CUDA-accelerated kernels,
the performance difference between the two nodes is unexpected. However,
there is a big difference in the architectures of the Marconi100 node and the
HPC5 node, that is how the GPUs and CPUs are connected: Marconi100 has
NVLINK, while HPC5 relies on standard PCIe. In our case study, NVLINK
is better at transferring the ligand inputs.

By taking into account the throughput measured on a single Marconi100
node while running live in production, it can be noticed that values are
similar to the results obtained while fine-tuning the application (i.e., the
number of CPU and GPU workers). The Exscalate platform exploited all
the available resources, reaching a combined throughput of 5M ligands per
second on both supercomputers.

Finally, Figure 1.21 shows the execution track of the job arrays on two
different proteins running on the two supercomputers. Also, in this case, the
difference in performance is visible, which is not due to the target protein
but mainly to the different node architecture. Despite the performance being
stable across the workload, the difference in throughput between the jobs is
due to the average complexity (i.e., number of atoms and rotatable bonds)
of the ligands included in the sub-reactions associated with the jobs. This
can also be noticed by the similar profile of the plots on the two different
machines. These results show how the input data strongly influences the
throughput.

1.7.7 Data Pre/Post-processing

The main challenge of the experiment is to generate the chemical knowledge
of the virtual screening. However, it requires a pre-processing phase to pre-
pare the ligands: this phase is described in detail in Paragraph 1.7.2 and it
must be performed only once as the same pre-processed chemical space is
evaluated against all docking sites.

The experiment’s output is a list of output files, each ranking the ligands
according to the interaction strength with the target protein. Even if the
output can be used as-is, for the sake of convenience a preliminary post-
processing step is performed to join all the scores for the same ligand across
all docking sites thus obtaining a single global table for the whole experiment.

The actual post-processing phase involves several steps aimed at obtain-
ing statistical descriptors for the full score’s distributions (mean, median,
standard deviation, several percentiles); these descriptors are then used to
extract the best-scoring compounds for each docking site to form the final
released dataset. The computation has been carried out using a Dask dis-
tributed pipeline on the Marconi100 system. To identify the best prospect
molecules taken into account, for each docking site, all the compounds scored

51

Table 1.5: Time required to complete the experiment’s phases.

Phase Time Resources

Pre-processing 5 days 100 M100 nodes (no GPUs)
Dock & Score 60 hours 800 M100 + 1500 HPC5 nodes
Post-processing 5 days 19 M100 nodes (no GPUs)

higher than 3 standard deviations from the distribution’s mean. The result-
ing data set, containing more than 570 million top-scoring compounds, is
freely available6. Complete chemical analysis of the result dataset is pre-
sente in [62].

Table 1.5 summarizes the computational resources involved in each phase.

1.8 Conclusion

This chapter tackles the problem of virtual screening a large set of molecules,
a representative problem for embarrassingly-parallel, task-based workloads
on HPC systems. As discussed, this type of workload requires a radically
different approach to GPU acceleration compared to the one used for tightly
coupled (or synchronous) workloads, which are characteristic of classical
HPC scientific applications. The problem is usually addressed by performing
molecular docking of the candidate molecules in the protein pocket, which
often requires large-scale computer simulations.

Concerning GPU efficient acceleration, the classical latency-optimized
approach that spreads the computation of a single task (a ligand-protein
pair in our case) across the device to minimize single task latency leads to
satisfactory performance at the task level, but severely hinders overall time-
to-solution. A throughput-optimized approach, on the other hand, even if
it usually leads to a single-task latency increase, is extremely beneficial for
GPU occupancy, leading to 5× better throughput. It has been shown how,
when dealing with embarrassingly-parallel, task-based workloads on GPU
accelerators, the absolute execution latency of a single task is not a meaning-
ful indicator of efficient acceleration, while increased GPU occupancy yields
large improvements in overall kernel throughput in terms of completed tasks
per second, even at the cost of worse task-level latency.

Section 1.7 covers how, in the context of urgent computing, extreme-scale
virtual screening campaigns can lead to drug prospects for viral diseases
in times of pandemics. By leveraging the GPU kernels discussed in this
chapter, more than 70 billion of ligands against 15 binding sites of 12 viral
proteins of SARS-CoV-2 were screened. The workflow scaled over two full
HPC systems, Marconi100 at Cineca and HPC5 at ENI S.p.A., at the time

6https://mediate.exscalate4cov.eu

52

https://mediate.exscalate4cov.eu

of the experiment the two most powerful supercomputers in Europe, to run a
one-trillion-docking experiment7 in 60 continuous hours of production. This
is, to date, the largest virtual screening experiment ever attempted.

7https://1trilliondock.exscalate4cov.eu/

53

https://1trilliondock.exscalate4cov.eu/

Fr
e
q

u
e
n
cy

Execution time [ms]

 0

 0.05

 0.1

 0.15

 0.2

 0.25

[0 5)

[5 10)

[10 15)

[15 20)

[20 25)

[25 30)

[30 35)

[35 40)

[40 45)

[45 50)

[50 55)

[55 60)

[60 65)

(a) Measured docking time

Fr
e
q

u
e
n
cy

Prediction Error [ms]

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

[-20 -15)

[-15 -10)

[-10 -5)

[-5 0)

[0 5)

[5 10)

[10 15)

[15 20)

(b) Prediction error

Figure 1.20: Frequency distribution of the measured docking time, using the
CUDA implementation, and its prediction error. Values with a frequency lower
than 0.001 are discarded for conciseness purposes.

54

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500 3000 3500

T
h
ro

u
g

h
p

u
t

[l
ig

/s
e
c/

N
o
d

e
]

Sub-Reaction ID

SPIKE M100

(a) SpikeACE on Marconi100

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 0 500 1000 1500 2000 2500 3000 3500

T
h
ro

u
g

h
p

u
t

[l
ig

/s
e
c/

N
o
d

e
]

Sub-Reaction ID

NSP3-HPC5

(b) NSP3 on HPC5

Figure 1.21: Execution track of two entire job arrays targeting two different
protein pockets on the two different supercomputers.

55

Chapter 2

The Future of Sustainable
HPC: RISC-V

From the perspective of ISAs, few established players have dominated the
market in the last 20 years. With minor exceptions [158], the same play-
ers driven both the multicore era and the following manycore era with
widespread solutions like the Intel Xeon Phi [159]. This trend is reflected in
the TOP500: the largest supercomputer systems across the globe have been
powered by a small set of processor architectures.

Since the late 1990s, the most significant evolution in the ISA space
has been the universal adoption of SIMD instructions. Starting with In-
tel MMX in 1997, the introduction of vector capabilities into established
architectures has been a steady trend that evolved with conservative, in-
cremental improvements concerning lane data types, vector register size,
and complex instructions. This trend of conservative evolution of industry-
standard ISAs ended with the advent of ML. The exploding demand for
computing power driven by the ML market and the technological hurdles
posed by the end of Moore’s law are driving the integration of an increasing
set of application-specific instructions into industry-standard ISA: the com-
mon goal is to optimize performance and energy efficiency for DL workloads.
New number formats became paramount for DL training and inference to the
point that all major ISAs introduced new instructions to handle non-IEEE
floating point operands like bfloat16. In the same way, mixed precision in-
structions have been introduced by all major processor vendors, especially
expanding reductions to keep error accumulation under control when dealing
with small-precision operands. Moreover, matrix-vector and matrix-matrix
instructions backed by multi-dimensional SIMD registers have been adopted
by an increasing number of established ISAs (e.g., Intel Advanced Matrix
Extensions [160], ARM Scalable Matrix Extensions [45], PowerPC Matrix
Engine [43]).

At the same time, the innovation rate in the space of accelerator archi-

56

tectures is even more extreme, with a proper Cambrian explosion of vertical
hardware designs with features that must be exposed either by extending an
existing ISA or by designing a brand new one: while the former approach
brings licensing and software ecosystem issues that must be addressed, the
latter requires the bringup of full software and hardware integration stacks.

The need for a more flexible solution for computing innovation is proven
by the rise of RISC-V, an open, modular, extensible, and royalty-free ISA.
Being designed from scratch to be naturally extensible without breaking the
existing software ecosystem, RISC-V has become the platform of choice for
architecture research [46, 47, 48, 49] and the market enabler for an increasing
set of vendors who are exploring novel concepts in accelerator and processor
design [50, 51, 52, 53, 54, 55].

Albeit rapidly growing, the extreme flexibility of an open-ended architec-
ture is posing unique challenges to both software implementors and system
integrators: they have to deal with a combinatorial explosion in possible ISA
choices. From the perspective of operating systems and scientific libraries,
there is no concrete RISC-V target since each processor can provide a cus-
tom set of standard and custom extensions. The issue is much more severe
concerning compilers that have to consider a growing set of optional ISA
extensions, often interacting in multiple ways. The outcomes are so severe
that pragmatic details like long and unwieldy ISA strings [161] became real
concerns. This issue is recognized by RISC-V International itself, which re-
cently tried to impose some structure with the introduction of architecture
profiles [162, 161], predefined sets of extensions that should be fully imple-
mented by a platform. The processor market is already experiencing concrete
challenges like actual products being shipped with different versions of the
same extension, where a mix of pre-ratified and ratified implementations of
must coexist in the same system. A particularly severe instance of this issue
involves the RISC-V vector extension (RVV), where available products are
sporting both pre-ratification [163, 164] and ratified versions.

While RISC-V brings key advantages to the prospects of computing ar-
chitectures, it poses new challenges like extreme ISA fragmentation and fast
evolution, issues that are yet to be solved by software and system integra-
tion stacks. For these reasons, the question of whether RISC-V will be sus-
tainable in a post-exascale HPC system is still unanswered. In an attempt
to answer this question, a collaborative effort between both the research
groups led by Prof. Luca Benini and Prof. Andrea Bartolini at Università
di Bologna, CINECA and E4 Computer Engineering, designed, built, and
deployed Monte Cimone [65, 66, 63], the world’s first fully functional RISC-
V HPC prototype. The goal of Monte Cimone is to assess the readiness of
the whole software-hardware integration stack, from interconnects to per-
formance monitoring infrastructures, from scientific libraries to compilers.
Since heterogeneous systems are obiquitous in TOP500 (see Chapter 1), is-
sues related to accelerated systems must be taken into account. For this

57

reason, the Monte Cimone testbed has been augmented with an array of
RISC-V accelerators, from the ML streaming accelerator Occamy [165, 166,
19] to the heterogeneous EPAC [55] released by the European Processor
Initiative [167].

2.1 The Monte Cimone Experimental System

Both academia and industry are aggressively pursuing architectural innova-
tion to develop HPC systems to mitigate the efficiency limitations of tra-
ditional architectures. ISAs have to evolve rapidly to sustain this domain-
driven architectural evolution, and the advent of the RISC-V open, royalty-
free, and extensible ISA has been a major step toward accelerating innovation
in this area. An additional advantage of RISC-V concerning the dominant
proprietary ISAs (x86 and ARM) is that it is maintained by a global non-
for-profit foundation with members across the world, ensuring a high degree
of neutrality concerning geopolitical tensions and their technology downfalls.

Currently, high-performance 64-bit (RV64) RISC-V processors and ac-
celerator chips are being designed, promising prototypes are demonstrated
in numerous publications [2], and products are announced at a fast ca-
dence [168, 169]. Thus, it is reasonable to expect that high-performance
chips based on RISC-V will be available as production silicon within the next
couple of years. However, building a HPC system requires significantly more
than just high-performance chips. Many think that the RISC-V software
stack and system platform are extremely immature, and will need several
additional years of development effort before full applications could be run,
benchmarked and optimized on a RISC-V-based HPC system. The goal of
this work is to dispel this overly conservative notion.

In this chapter, we present Monte Cimone, the first physical prototype
and testbed of a complete RISC-V (RV64) compute cluster, integrating not
only all the key hardware elements besides processors, namely main memory,
non-volatile storage and interconnect but also a complete software environ-
ment for HPC, as well as a full-featured system monitoring infrastructure.
Further, we demonstrate that it is possible to run real-life HPC applications
on Monte Cimone today. Even though achieving strong floating point per-
formance will be possible only with upcoming high-performance chips, we
achieved the following milestones:

• we designed and set up the first RISC-V-based cluster containing eight
computing nodes enclosed in four computing blades. Each comput-
ing node is based on the U740 SoC from SiFive and integrates four
U74 RV64GCB application cores, running up to 1.2GHz and 16GB of
DDR4, 1TB node-local NVME storage, and PCIe expansion cards.
The cluster is connected to a login node and master node running the
job scheduler, network file system, and system management software;

58

• we ported and assessed the maturity of a HPC software stack composed
of (i) SLURM job scheduler, NFS filesystem, LDAP server, Spack pack-
age manager, (ii) compilers toolchains, scientific and communication
libraries, (iii) a set of HPC benchmarks, and applications, (iv) the
ExaMon datacenter automation and monitoring framework. The full
software stack usually adopted for a production TOP500 machine is
available and functional;

• we measured the efficiency of the HPL benchmark and STREAM bench-
mark with the toolchain and libraries installed by Spack. We com-
pared the attained results against the one obtained for other RISC-
based TOP500 supercomputers (namely, Fugaku and Alps). We build
the HPL and STREAM benchmark following the same approach for
the Monte Cimone cluster on two state-of-the-art computing nodes,
namely the Marconi100 [155] node based on a ppc64le IBM Power9
CPU, and the Armida [170] node based on an armv8a Marvell Thun-
derX2 CPU. We compared the attained floating-point unit (FPU) uti-
lization from both HPC systems as a metric of efficiency versus Monte
Cimone while keeping the same benchmarking boundary conditions
(e.g., vanilla, unoptimized libraries, and software stack deployed via a
popular package manager). Results show that upstream HPL achieved
46.5% utilization on Monte Cimone, the Marconi100 and Armida com-
pute nodes achieved 59.7% and 65.79% of their peak respectively. The
Monte Cimone node achieves slightly lower FPU utilization but in the
range with state of the art. When running an unoptimized STREAM
benchmark, Monte Cimone obtained just the 15.5% of the peak band-
width, while Marconi100 and Armida obtained an efficiency of 48.2%
and 63.21% respectively, pointing to significant margins for improve-
ment in application and software stack tuning to the hardware target;

• we extended the ExaMon monitoring framework [171] to monitor the
Monte Cimone cluster. We characterized the power consumption of
various applications executed on Monte Cimone. We reported a power
consumption of 4.81W in idle, composed of 64% of core power, 13%
related to DDR and 23% of related to PCI subsystem. During CPU
intensive benchmark runs on the SiFive Freedom U740 SoC we reported
a power consumption of 5.935W, composed of 69% of core power, 14%
related to DDR and 18% related to PCI subsystem. By profiling the
power consumption of the core complex during the boot process, we
measured a 0.981W of leakage-only power (32% of the Idle power) and
measured 0.514W of power consumed by the operating system during
idle (17% of the Idle power) and a remaining 1.577W of dynamic
and clock tree power, accounting for the 51% of the core idle power.
In addition to providing a detailed analysis of power consumption,

59

ExaMon enabled us to detect and mitigate thermal design issues in
the early cluster physical design;

• we extended the SiFive partition with an accelerated partition based
on a high-performance, SIMD-capable host CPU (the XuanTie C920)
augmented with the Occamy RISC-V accelerator connected via PCIe.
This experiment provides the world’s first fully RISC-V heterogeneous
cluster and a valuable development vehicle for system software, scien-
tific libraries, and compilers.

2.2 State-of-the-art

The most recent successful effort to introduce a new ISA to HPC has in-
volved the ARM ISA. Bringing the ARM ISA and software ecosystem to
HPC maturity has required almost a decade and several funding rounds:
the Mont-Blanc European project series started in 2011, leading to the first
ARM-based HPC cluster deployed in 2015 [172], based on a SoCs developed
for the embedded computing market. Notably, Fugaku [173] the fastest su-
percomputer in the TOP500 list published in June 2020, is based on an
ARM ISA, and achieves more than 400PFLOP/s. Further, high-perfor-
mance ARM-based SIMD processors are being adopted in servers and data
centers worldwide. We observe that it took approximately a decade for ARM
to become a strong player in these highly competitive markets, even though
x86 is still the dominant architecture in HPC and cloud.

The RISC-V ISA was conceived just a decade ago, thus, clearly, its mar-
ket penetration is much smaller than the incumbent ARM and x86 ISAs. To-
day, only a few 64-bit RISC-V (RV64G ISA) SoCs are available commercially,
and none is in volume production for HPC or performance servers. Never-
theless, several high-performance RISC-V processors have been announced
for general-purpose and accelerated computing markets [174, 175, 176]. In
addition, a few research prototypes have been presented in recent literature
that demonstrate on silicon the technical feasibility and competitiveness of
high-performance RISC-V computing engines [177, 50, 178]. Furthermore,
the European Processor Initiative (EPI) launched in 2019 is funding a major
research thrust to develop RISC-V-based accelerators for HPC [167]. One of
the many outputs of the EPI project is the EPAC [55] accelerator, based on
a capable RISC-V out-of-order (OoO) vector engine.

Among the RV64G chips available in low volumes on the market, for our
cluster we chose the SiFive Freedom U740 SoC, featuring a 64-bit dual-
issue, superscalar RISC-V U7 core complex configured with four U74 cores
and one S7 core, an integrated high speed DDR4 memory controller and
PCIe Gen3 channels and standard peripherals. The availability of a main
memory interface with reasonable performance and a PCIe root complex for
connecting fast storage, peripherals, and accelerators, makes this SoC a good

60

basis for exploring the deployment of RISC-V processors in a scalable cluster
and working on the software stack. Still, the performance and number of
cores in the SoC is insufficient to achieve performance comparable to mature
ARM and x86 cores.

The maturity of the software ecosystem around RISC-V has been grow-
ing at a very fast rate. A reasonably complete snapshot of major software
packages available for RISC-V is maintained by RISC-V International [179].
While the list is not complete due to the very fast growth of the RISC-V
developer community, it’s clear how porting efforts have mainly focused on
embedded and AI applications. An HPC special interest group (SIG) for
RISC-V was founded in 2019 [180]. However, to the best of our knowl-
edge, the demonstration of a complete software stack and HPC applications
running on real hardware on RISC-V nodes in a multi-blade cluster is still
missing. Monte Cimone aims at filling this gap.

In addition to libraries and tools for HPC application deployment, a pro-
duction-ready HPC system must support fine-grain utilization, performance,
and power monitoring of the computing resources to enable efficient com-
puting, power, thermal management, and anomaly detection for reliability.
Recently, several works have been proposed to extend the power monitor-
ing attainable from the voltage regulator modules leveraging shunt resistors,
current probes, and out-of-band telemetry [181]. In addition, Operational
Data Analytics (ODA) [182] has been introduced, focusing on monitoring
and managing large-scale HPC installations. Vertical solutions encompass-
ing all layers (from data gathering and storage to processing and analysis)
have been proposed in this area. Notable examples are OMNI [183], an in-
frastructure for extreme-scale operational data collection, and ExaMon [171],
an ODA infrastructure leveraging: i) distributed sensing plugins (including
node-level metrics, processing elements performance metrics, dedicated fine-
grain power monitoring meters, facility data); ii) scalable storage backends;
iii) visualization and analytics targetting anomaly detection and intrusion
detection systems. Current ODA tools are available only for the dominant
ARM and x86 environments. In this chapter we advance state of the art
demonstaring a fully-operational port of the ExaMon ODA infrastructure to
the Monte Cimone RISC-V cluster.

2.3 Hardware Architecture

Monte Cimone is based on the SiFive Freedom U740 RISC-V SoC HiFive
Unmatched board integrated in an HPC node form factor (Figure 2.2). The
board follows the Mini-ITX standard with a size of 170mm× 170mm. Each
board features one SiFive Freedom U740 SoC, 16GB of 64-bit DDR4 memory
operating up to 1866MT/s and high-speed interconnects with PCIe Gen3
x16 (but it’s limited to x8 lanes), one Gigabit Ethernet, and four USB 3.2

61

Figure 2.1: The custom-built E4 RV007 Server Blade is based on a dual SiFive
Freedom U740 SoC. The form factor is 4.44 cm (1 RackUnit) high, 42.5 cm wide,
40 cm deep. A dedicated power supply powers each board to account for future
PCIe expansions.

Gen1.
The E4 RV007 blade prototype system, specifically designed to be the

Monte Cimone building block, is a dual-board platform server, with a form
factor of 4.44 cm (1 RackUnit) high, 42.5 cm wide, 40 cm deep (Figure 2.1).
Two 250W power supplies, one for each board (compute node), are installed
inside the case. This allows turning on every compute node individually, and
makes the system ready with abundant power headroom for future expan-
sions with PCIe accelerators and network cards.

In the RV007 node deployed in Monte Cimone the M.2 expansion slot
is occupied by a 1TB NVME SSD storing the operating system (OS). The
available Micro SD card slot is used only for the UEFI boot process.

The FU740-C000 is a Linux-capable SoC powered by SiFive U74-MC,
the first (to the best of our knowledge) commercially available multi-core
RISC-V core complex. It includes a single 64-bit S7 RISC-V (monitor) core
with a high-performance dual-issue in-order execution pipeline and a peak
sustainable execution rate of two instructions per clock cycle. It implements
the RV64IMAC ISA. The FU740-C000 also features four 64-bit U74 RISC-V
(application) cores, each having a high-performance dual-issue in-order exe-

62

Battery Container

8x 16 GB DDR 4
Memories

NVMe M2 1 TB Storage
Power and Reset
Buttons

Fan on top of
FU740 CPU

Micro SD cards
used for UEFI boot

1 Gb/s Ethernet port

2 x dual port USB3
connectors

PCIe BUS connector

PCIe Switch

Figure 2.2: The HiFive Unmatched board based on the SiFive Freedom U740
SoC. The form factor follows the Mini-ITX standard (170mm× 170mm).

cution pipeline and a peak sustainable execution rate of two instructions per
clock cycle. The U74 application core implements the RV64IMAFDC ISA. An
essential feature for an HPC system is observability : the S7 processor core
provides a hardware performance monitoring (HPM) unit. It supports two
classes of counters: fixed-function and event programmable counters. These
classes consist of a set of fixed counters and their counter-enable registers, as
well as a set of event-programmable counters and their event selector regis-
ters. The registers are available to control the behaviour of the counters. We
extended the Linux perf_events interface to be able to collect performance
events via the Linux tooling (e.g., the perf command). Table 2.2 reports a
complete list of the available events.

The SiFive Freedom board features a Microsemi VSC8541 chip to inter-
connect the SiFive Freedom U740 SoC with a single port gigabit Ethernet
copper interface. Moreover, we equipped two of the compute nodes with
an InfiniBand (IB) host channel adapter (HCA) widely used in large-scale
HPC systems. We target an IB FDR HCA (56Gbit/sec) to leverage RDMA
communications among different nodes to improve the network throughput
and the communication latency. We used a Mellanox ConnectX-4 FDR HCA
interconnect through the PCIe interface on the compute node. This HCA
supports 8× PCIe Gen3 lanes. The first experimental results show that the
kernel can recognize the device driver and mount the kernel module to man-

63

Package Version

gcc 10.3.0
openmpi 4.1.1
openblas 0.3.18
fftw 3.3.10
netlib-lapack 3.9.1
netlib-scalapack 2.1.0
hpl 2.3
stream 5.10
quantumESPRESSO 6.8

Table 2.1: User-facing software stack deployed on Monte Cimone.

age the Mellanox OFED stack. We cannot use all the RDMA capabilities
of the HCA due to device driver incompatibilities of the software stack and
the kernel driver. Nevertheless, we successfully ran an IB ping test between
two boards and between a board and an HPC server, showing that full IB
support could be feasible.

In addition, the SiFive Freedom U740 SoC features 7 separate power rails,
including the core complex, IOs, PLLs, DDR and PCIe subsystems. The
HiFive Unmatched board implements separated shunt resistors in series with
each of the SiFive U740 power rails and for the onboard memory banks [184].
We characterized the power consumption of the system under test exploiting
the set of nine power lines available onboard with embedded shunt resistor
for current monitoring.

2.4 Software Environment

Since our goal was to build a software environment as close as possible to
a production HPC cluster, we leveraged the Spack [185] package manager
to deploy the full software stack (Table 2.1) and make it available to all
system users via environment modules [186]. Actual Spack architecture
and micro-architecture support, in the form of platform-specific toolchain
flags, is provided by the archspec [187] module. Explicit support for the
linux-sifive-u74mc target triple was already present (archspec version
0.1.3) and tested to be working without modifications. The user-facing soft-
ware stack installed successfully via Spack (version 0.17.0) and presented to
users is listed in Table 2.1 (transitive dependencies omitted for brevity). All
the nodes are running upstream Ubuntu 21.04 deployed from riscv64 server
images without modifications and mount a remote NFS.

64

2.4.1 HPC Software

We ported on Monte Cimone all the essential services needed to run HPC
workloads in a production environment, namely NFS, LDAP, and the SLURM
job scheduler. Porting all the necessary software to RISC-V was relatively
straightforward, and we can hence claim that there is no obstacle in expos-
ing Monte Cimone as a computing resource in a HPC facility. However,
deployment in a data center requires integrating Monte Cimone within a
holistic monitoring framework. For that purpose, we use the ExaMon [171]
framework.

2.4.2 Power Monitoring Infrastructure

The typical configuration of ExaMon consists of installing plugins dedicated
to data sampling, a broker for transport layer management and a database
for storage. For Monte Cimone cluster both broker and database are in-
stalled in their basic configuration on a master node, while plugins have
been specifically developed for Monte Cimone and deployed on the compute
nodes. As a first step, we created a dedicated version of the pmu_pub [188]
plugin to acquire the performance counters available in the Linux OS through
the perf_events interface. In the current version of the Linux kernel tree,
only the instret (number of retired instructions) and cycle (number of
cycles) counters are exposed for the RISC-V architecture. By default, the
remaining programmable counters available on the hardware performance
monitoring (HPM) unit of the U740 SoC are disabled at boot time [184].
We have, therefore, modified the U-Boot bootloader to enable and program
all available counters (Table 2.2). The counters are sampled for each core in
user-mode by the pmu_pub plugin at regular intervals (2Hz), and values are
published for collection.

A second plugin has been installed and configured to collect operating
system statistics, stats_pub. This plugin mainly accesses the sysfs and
procfs filesystems to get useful metrics about system resources such as load,
CPU usage, memory usage, and network bandwidth. In particular, the Hi-
Five Unmatched board is equipped with three thermal sensors dedicated
respectively to the SoC, the motherboard, and the NVME SSD. This plugin
samples sensors data via the Linux hwmon sysfs with a frequency of 0.2Hz.

Finally, data collected for each board is published via Grafana [171] in the
same way a TOP500 system like Marconi100 keeps track of its operational
data.

2.5 Assessment Experiments

To be able to both stress-test and characterize the system, we performed an
array of experiments with the goal of fixing early design issues and driving

65

Event [Linux perf_events identifier]
cycle floating_point_fused_multiply_add_retired
instret floating_point_division_or_square_root_retired
integer_load_instruction_retired other_floating_point_instruction_retired
integer_store_instruction_retired instruction_cache_itim_busy
system_instruction_retired data_cache_dtim_busy
conditional_branch_retired branch_direction_misprediction
jal_instruction_retired branch_jump_target_misprediction
jalr_instruction_retired pipeline_flush_from_other_event
integer_arithmetic_instruction_retired integer_multiplication_interlock
integer_multiplication_instruction_retired floating_point interlock
integer_division_instruction_retired instruction_cache_miss
floating_point_load_instruction_retired memory_mapped_i_o_access
floating_point_store_instruction_retired data_cache_write-back
floating_point_addition_retired instruction_tlb_miss
floating_point_multiplication_retired data_tlb_miss

Table 2.2: Performance monitoring events of the SiFive Freedom U740 SoC ex-
posed to the Linux perf_events interface by our custom pmu_pub plugin.

future evolution. Of particular importance is assessing the maturity of the
HPC software stack on RISC-V systems. In Paragraph 2.5.1, we focus on the
details of software stack tests. We also carried out extensive thermal and
power experiments [65] that were instrumental in the early design phase;
all measurements were performed via the ExaMon monitoring subsystem.
In particular, thermal experiments highlighed several issues with the initial
chassis layout and allowed further optimization, especially concerning insuf-
ficient heat dissipation from the power supplies due to flaws in the airflow
design. Power experiments allowed detailed characterization of the SiFive
Freedom U740 SoC for different workloads, measuring 4.81W in idle, with
64% due to core power (32% of leakage power, 51% dynamic and clock tree
power and 17% by the OS workload), 13% related to DDR and 23% to the
PCI subsystem. The power consumption increases to 5.935W under CPU-
intensive workloads.

2.5.1 HPC Applications Performance

Considering the peak theoretical value of 1GFLOP/s per core, inferred from
the micro-architecture specification [184], leading to a 4GFLOP/s peak value
for a single chip, the upstream HPL [57] benchmark (built on top of the
software stack presented in Section 2.4) reached a sustained value of 1.86±
0.04GFLOP/s on a single node (on a N=40704 and NB=192 HPL configuration
and a total runtime of 24 105±587 s; this amounts to 46.5% of the theoretical
peak, a result we deem to be promising considering the upstream, unmodified
software stack used in this phase. The same experiment was run on both the
Marconi100 [155] system at Cineca and the Armida [170] system at E4. Both
upstream software stack (and no vendor libraries) and MPI topology (1 MPI
task per physical core) were the same. This experiment obtained 59.7%
and 65.79% of a single node’s CPU-only theoretical peak respectively, a

66

1 2 3 4 5 6 7 8
Nodes

1

2

3

4

5

6

7

8

Re
la

ti2
e

sp
ee

du
p

1.86

3.50

5.13

6.63
7.86

9.54

10.81

12.65

HPL .ela0i2e speed1p @ Mon0e Cimone [N=40704, NB=192]
speedup: linear
speedup: HPL v2.3-s-ack
ave.age GFLOP// (in label/)

Figure 2.3: HPL strong scaling tests on Monte Cimone. Average attained through-
put values are shown in labels. Standard deviations are calculated on 10 repetitions.

result that is comparable to what we observed on Monte Cimone. The same
HPL configuration has been used to carry out a Monte Cimone full-machine
benchmark experiment leveraging the 1GB/s network currently available,
reaching a sustained value of 12.65 ± 0.52GFLOP/s using all of the eight
nodes (with a total runtime of 3548 ± 136 s); this amounts to 39.5% of the
entire machine’s theoretical peak and to 85% of the extrapolated attainable
peak in case of perfect linear scaling from the single-node case. Relative
speedup obtained during the HPL strong scaling experiment are shown in
Figure 2.3. Again, these results are promising and deserving both further
optimization on the software side and tuning (or technology upgrade) on the
interconnect side.

The STREAM [189] benchmark has been used to measure the attainable
memory bandwidth on a single node. Out of the peak 7760MB/s [184], a
4-thread experiment measured the values shown in Table 2.3. No topology
configuration was needed due to the node being a uniform memory access
(UMA) system. We consider the results attained via upstream, unmodified
STREAM unsatisfactory: the results on Monte Cimone show an attained
bandwidth of no more than 15.5% of the available peak bandwidth. The

67

Test STREAM.DDR STREAM.L2

1945.5MiB/s [MB/s] 1.1MiB/s [MB/s]

copy 1206± 3.26 7079± 2.11
scale 1025± 4.94 3558± 3.72
add 1124± 4.93 4380± 3.72
triad 1122± 5.63 4365± 3.56

Table 2.3: STREAM benchmark results for four threads on a single SiFive Free-
dom U740 SoC.

same experiment involving an upstream, unoptimized STREAM benchmark
ran on both Marconi100 [155] and Armida [170] (using the same topology
with 1 OpenMP thread per physical core) attained 48.2% and 63.21% of the
peak bandwith respectively, suggesting that a result higher than the lower
quartile should be easily attained with little to no effort. This observation
is worth of further experimentation, in particular:
(i) the L2 prefetcher provided by the micro-architecture[184], being able to
track up to eight streams per core, should be perfectly capable of reduc-
ing the gap between the two experiments shown in Table 2.3 (DDR-bound
and L2-bound) given the large degree of spatial and temporal locality shown
by the STREAM memory access patterns. Further analysis is needed to
understand how the prefetcher is currently operating and the modifications
needed to leverage it properly; (ii) the overall data size used by STREAM is
currently limited by the RISC-V code model. The medany code model used
by RV64 requires that every linked symbol resides within a ±2GiB range
from the pc register [184, 190]. Since the upstream, unmodified STREAM
benchmark uses statically-sized data arrays in a single translation unit pre-
venting the linker to perform relaxed relocations, their overall size cannot
exceed 2GiB. Further experiments on available workarounds for the absence
of a large code model [191] and modifications to the STREAM source itself
to overcome this limitation are needed;
(iii) while the architecture provides both the Zba and Zbb RISC-V bit manip-
ulation standard extensions[184], the upstream GCC 10.3.0 toolchain isn’t
capable of emitting them nor the underlying GNU as assembler (shipped
with GNU Binutils 2.36.1) is able to assemble them properly. Experiments
with the latest upstream GCC version (minimal support for bit manipula-
tions code generation landed in GCC 12 [192]) and the upstream develop-
ment version of GNU Binutils (patches already merged [193], expected to
be shipped with GNU Binutils 2.37.x) are needed to assess its impact on
current STREAM measurements.

Regarding user applications, we carried out benchmarks for the quantum-
ESPRESSO [64] suite, in particular using its LAX test driver, compiled with

68

OpenMPI, that performs a blocked (and optionally distributed) matrix diag-
onalization as a benchmark representative of the full-scale application work-
load. For a 5122 input matrix, we obtained a value of 1.44± 0.05GFLOP/s
(36% of the theoretical FPU efficiency) on a single node over a total test
duration of 37.40± 0.14 s.

2.6 Heterogeneous HPC on RISC-V: Accelerating
Monte Cimone

Deploying heterogeneous systems is the HPC trend observed in the TOP500
list. As discussed in Chapter 1, the vast majority of large-scale systems
adopted nodes built around a capable host processor augmented with a di-
verse array of throughput-oriented floating point accelerators, attached ei-
ther via PCIe or vendor-specific connections. In order to explore the viability
of RISC-V for the future of HPC, building an heterogeneous prototype clus-
ter is essential.

As a first step toward this goal, we extended the already deployed U740
partition of Monte Cimone with new nodes based on the Sophon SG2042
processor. The Sophon SG20421 is a high-performance CPU built on 64
XuanTie C920 cores, an evolution of the previous XuanTie C910 [50] core.
These 64-bit RISC-V cores are designed for compute-intensive workloads,
sporting a modern 12-stage pipeline with out-of-order execution and 5-way
superscalar execution. The C920 implements the RV64GCV architecture (a
shorthand for RV64MAFDCV): apart from single (F) and double (D) scalar float-
ing point arithmetics, it provides an implementation of the RISC-V vector
extension (V, also commonly referred to as RVV) ISA on a 128-bit vector reg-
ister file. The RVV ISA implemented by XuanTie C920 is the pre-ratification
version 0.7.1 instead of the ratified version 1.0: this poses additional chal-
lenges on the software stack. None of the mainstream toolchains support
RVV version 0.7.1, so manually deploying the GCC fork2 maintained by the
CPU vendor is mandatory for efficient code generation. The memory hierar-
chy consists of separate 64 kB L1 caches for instructions and data per core, a
1MB L2 cache shared within each four-core cluster, and a 64MB of shared
L3 cache. The SoC provides 32 PCIe Gen4 lanes, an essential feature to
augment the system with accelerators. All the nodes Sophon SG2042 nodes
are in the Milk-V Pioneer Box3 form factor, all equipped with 128GB of
DDR4 memory.

With respect to the accelerated part of the system, we chose Occamy [165,
166, 19], a flexible, general-purpose, dual-chiplet system with two 16GiB
HBM2E stacks optimized for regular and irregular floating point intensive

1https://en.sophgo.com/sophon-u/product/introduce/sg2042.html
2https://github.com/XUANTIE-RV/xuantie-gnu-toolchain
3https://milkv.io/pioneer

69

https://en.sophgo.com/sophon-u/product/introduce/sg2042.html
https://github.com/XUANTIE-RV/xuantie-gnu-toolchain
https://milkv.io/pioneer

workloads. Each chiplet integrates a CVA6 [194] RISC-V core and 216
lightweight Snitch [48] cores organized hierarchically in six groups, each con-
taining four nine-core compute clusters. Snitch is a small, efficient, in-order,
32-bit RISC-V integer core with an accelerator port for augmenting its com-
pute capabilities. Being optimized for floating point workloads, each Snitch
core in Occamy is augmented with a large multi-precision FPU supporting
both standard RISC-V scalar (D, F and H) and 64-bit-wide packed-SIMD
custom instructions [195]. It supports a wide range of number formats:
FP64 (IEEE 754 [196] double precision), FP32 (IEEE 754 single precision),
FP16 (IEEE 754 half precision), FP16alt (half precision alternate format
with 8-bit exponent and 7-bit mantissa, also known as bfloat16 [197]), FP8
(custom quarter precision with 5-bit exponent and 2-bit mantissa), FP8alt
(alternate format for custom quarter precision with 4-bit exponent and 3-bit
mantissa). To provide energy-efficient computing, the Snitch core provides
custom RISC-V extensions to allow the FPU accelerator to execute an in-
struction flow without relying on its small frontend integer core for fetch or
decode, loads/stores and address calculations. Characteristics of the Snitch
architecture and its novel features are discussed in detail in Section 3.2.

To bring up both the system and the user-space software stack, we syn-
thesized part (2 full Snitch clusters in addition to the CVA6 host core) of the
whole Occamy accelerator on the AMD AlveoTM U55C FPGA4. The synthe-
sized accelerator has been then successfully connected to the Sophon SG2042
nodes via a PCIe Gen4 link. This accelerated partition is currently used as
the bring-up testbed for device drivers and offload runtimes. We plan to
use the Occamy-accelerated partition as the test-bed for the Snitch linear
algebra compiler presented in Chapter 3.

2.7 RISC-V for HPC: Conclusion and Prospects

The new open and royalty-free RISC-V ISA is attracting interest across
the computing continuum, from microcontrollers to supercomputers. High-
performance RISC-V processors and accelerators have been announced, but
RISC-V-based HPC systems will need a holistic co-design effort, spanning
memory, storage hierarchy interconnects and full software stack. In this
chapter, we presented Monte Cimone, a multi-blade computer prototype
and hardware-software test-bed: it is, to the best of our knowledge, the first
RISC-V cluster which is fully operational and supports a baseline HPC soft-
ware stack, proving the maturity of the RISC-V ISA and the first generation
of commercially available RISC-V components. The prototype is a hetero-
geneous, accelerated cluster based on two different partitions, seamlessly in-
tegrated through its HPC production software stack: a CPU-only partition

4https://www.amd.com/en/products/accelerators/alveo/u55c/
a-u55c-p00g-pq-g.html

70

https://www.amd.com/en/products/accelerators/alveo/u55c/a-u55c-p00g-pq-g.html
https://www.amd.com/en/products/accelerators/alveo/u55c/a-u55c-p00g-pq-g.html

based on the SiFive Freedom U740 SoC, and an accelerated partition based
on the XuanTie C920 processor augmented with a synthesized version of the
Occamy accelerator. We also evaluated the support for IB network adapters
which are recognized by the system but are not yet capable of supporting
RDMA communication. We characterized in detail the power consumption
of the SiFive Freedom U740 SoC for different workloads, measuring 4.81W in
idle, with 64% due to core power (32% of leakage power, 51% dynamic and
clock tree power and 17% by the OS workload), 13% related to DDR and
23% to the PCI subsystem. The power consumption increases to 5.935W
under CPU-intensive workloads. Furthermore, we ported the ExaMon ODA
system on Monte Cimone and used it to detect thermal stability problems in
the first configuration, which led to a thermal shutdown on the central node
during the HPL run. We changed the enclosure design to provide higher
airflow to mitigate the issue.

Monte Cimone does not aim to achieve strong floating point performance,
but it was built with the purpose of priming the pipe and exploring the
challenges of integrating a multi-node RISC-V cluster capable of providing
an HPC production stack including interconnect, storage and power mon-
itoring infrastructure on RISC-V hardware. We present the results of our
hardware/software integration effort, which demonstrate a remarkable level
of software and hardware readiness and maturity: this shows that the first-
generation of RISC-V HPC machines may not be so far in the future.

71

Chapter 3

Multi-level SSA Compilers for
RISC-V Accelerators

The need for energy efficiency affecting hardware designs is fueling the need
for efficient software stacks. Each accelerator design that reaches the market
comes with a wide variety of vendor-specific libraries that allow applications
to efficiently leverage all the available domain-specific features in a straight-
forward way. A prime example of this trend is NVIDIA shipping a wide
range of extremely optimized libraries for neural networks (cuDNN [198]),
dense (cuBLAS) and sparse (cuSPARSE) linear algebra, tensor linear alge-
bra for DL (TensorRT), tensor core computations (CUTLASS), and a wide
variety of scientific acceleration libraries (e.g., for Fourier transforms, linear
and non-linear solvers, etc.). All major accelerator vendors on the market
(e.g., Intel with oneAPI, AMD with ROCm) adopt the same model: by
providing high-performance libraries, they lower barriers for application de-
velopers to leverage their products efficiently. As a consequence, making
the most effective use of vendor libraries has become a critical task for both
HPC and ML developers. The need for careful usage of performance libraries
combined with the sheer amount of native operators needed by mainstream
ML frameworks1 is becoming unsustainable [34]. It is clear that numerical
computing needs full-stack approaches to deal with large corpora of opera-
tors, novel numerical formats [199, 197, 200, 201] and optimizations [30, 202]
that are often combined in large parameter searches for extreme optimiza-
tion: programming abstractions need maintainability and flexibility [203].
This sustainability issue is being tackled by means of a variety of novel
compilation approaches [202]. Tensor-level IRs is used by XLA [32] and
Glow [33] to transform tensor programs into predefined LLVM and CUDA
operation templates (e.g., reductions, element-wise operations, etc.) using
pattern matching. The polyhedral model [204] is used by Tensor Compre-

1For example, PyTorch v2.5.0 ships 2633 operators. Many of them rely on multiple
overloads that dispatch to target-specific implementations.

72

https://github.com/pytorch/pytorch/blob/v2.5.0/aten/src/ATen/native/native_functions.yaml

hensions [28] to parameterize and automate the compilation of one or many
DNN layers into LLVM and CUDA programs. Loop synthesis is used by
Halide [29] and TVM [30] to transform tensor computations into loop nests
that can be then manually optimized using user-defined transformations or
parametric schedules. Other approaches focus on exposing fast, local mem-
ories directly into the programming model, e.g., Triton [34] has been built
on the concept of tile-level operations.

Concerning compiler construction, traditional IRs based on a single, uni-
form level of abstraction proved themselves to be solid approaches for compil-
ers that focused on relatively low-level frontend languages (i.e., C, C++) [35,
36]. Being fixed in their abstraction level, those representations usually set-
tle on the greatest common set of features shared by all front-end languages,
a set that often reduces to a handful of low-level, hardware-friendly con-
cepts. Nevertheless, the need for efficient generated code forced compilers to
introduce key features like fixed-size SIMD vectors2 even though completely
missing from front-end languages. These additions often require non-stan-
dard language extensions3, an approach that, while being essential to sup-
port hardware evolution, present high engineering costs when data types
become increasingly complex4. Moreover, ML programs are usually written
in high-level, domain-specific languages where tensor algebra is a first-class
citizens [37, 38]: to be able to sustain this evolution, compilation stacks are
transitioning from the traditional low-level, fixed IRs to expressive, flexible
representations.

Expanding the abstraction levels of an IR is not a novel concept. One
notable example adopted in a production compiler is WHIRL [205], a multi-
level IR that allows the input program to be represented at different levels of
abstraction, each one designed to make a specific set of analyses and trans-
formations more effective. The key concept highlighted by WHIRL authors
is the importance of designing the most efficient form of representation for
each optimization phase to work on [205]. The IR spans from very high-level
forms designed to perform reasoning close to the input program semantics
(e.g., MPI [206] communications optimizations or structure layout transfor-
mations [207]), to lower levels progressively close to the target machine. The
effectiveness of this approach is witnessed by its traction during the dawn
of the first two great computing disruptions of the last 20 years, namely the
multicore era [41, 208] and GPGPU [42]. The power of multi-level IRs as
tools to overcome the challenges of computing at the end of Moore’s Law is
proven by the fact that all novel ML compilation approaches leverage differ-
ent forms of the multi-level IR concept as it enables carrying rich semantic
information across the compilation pipeline and transforming it most effi-

2LLVM Language Reference Manual: Vector Types
3Clang Language Extensions: Vectors and Extended Vectors
4LLVM Language Reference Manual: X86_amx Type

73

https://llvm.org/docs/LangRef.html#vector-type
https://clang.llvm.org/docs/LanguageExtensions.html#vectors-and-extended-vectors
https://llvm.org/docs/LangRef.html#x86-amx-type

ciently, avoiding any semantic loss [39, 40, 33]. One notable example is
MLIR [39] (or Multi-Level Intermediate Representation), an SSA-based IR
that expands on the multi-level concept by introducing two novel features:
extensibility, as it can be extended with custom types and instructions (log-
ically grouped in modules called dialects) that seamlessly integrate into the
existing language, ecosystem of analyses and transformations; progressive
lowering, as it allows multiple levels of abstractions, coming from different
dialects, to coexist in the same IR program. These features enable compila-
tion process to lower (or spend) precious semantic information only at the
right time when the best possible transformation can be applied, such that
a non-reversible expenditure of semantic information brings the most value
to the lowering result. The effectiveness of MLIR as a compiler construction
framework is proven by several innovative ML toolchains [34, 209, 210, 211].

The back-end or code generation is traditionally the last compilation
stage before program emission and is the closest to the target hardware.
Tasks like instruction selection, target-specific optimizations, and register
allocation are essential for the quality and performance of the resulting pro-
gram [212]. As discussed in Chapter 2, modular, extensible ISAs and domain-
specific architectures are increasing the diversity of compilation targets.

In this chapter I present the work done by the research group led by
Prof. Tobias Grosser at the University of Edimburgh (now at Cambridge Uni-
versity) and my research contributions [213] while visiting. The effort focused
on investigating how progressive lowering can help in dealing with novel, ap-
plication-specific targets and how SSA, multi-level IRs like MLIR can be
leveraged to compile programs. The compilation target is Snitch [48], a
RISC-V accelerator architecture designed by ETH Zurich to pursue extreme
compute energy efficiency using novel features like floating point hardware
loops to elide control flow and stream-semantics registers to reach perfect,
software programmed prefetching. Snitch poses particularly interesting code
generation challenges that require reasoning at multiple levels of abstraction
simultaneously, e.g. affine expressions for memory accesses and target-spe-
cific register allocation constraints must be taken into account at the same
time. In the resulting publication, Lopoukhine et al. [67] show how MLIR
can be leveraged to build an efficient dense linear algebra kernel compiler
for Snitch and how the concept of progressive lowering can be applied to
traditional compiler backend tasks performed on a multi-level SSA IR.

3.1 Compiling at the End of Moore’s Law : Intro-
duction

Modern general-purpose compiler frameworks use a mid-level, target-agnos-
tic, RISC-like IR as input to a generic and well-optimized backend. As a
result, several languages targeting LLVM IR [35] all benefit from shared mid-

74

level optimizations and mature CPU backends. At the same time, modern
DSL compilers are commonly based on multi-level IRs like MLIR [214] that
allow for progressive lowering of the input program across domain-specific
abstractions. While they successfully broaden the expressive power of IRs at
the higher levels of the compilation stack, they commonly target LLVM as a
backend. LLVM targets modern superscalar CPUs reasonably well, but its
RISC-like IR fails to effectively model the domain-specific nature of modern
hardware. It is indeed possible to augment the LLVM IR with an increas-
ingly diverse set of target-specific features [44], but these features impact
all targets and the implementation is usually a long-term community and
engineering effort [215]. At the same time, while being modeled to target
modern superscalar CPU architectures, the general approach to backend de-
sign struggles to generate extremely high-performance kernels, to the point
that even estabilished CPU architecture vendors need to opt out of general-
purpose compiler backends to emit high-performance kernels [216]. These
critical operations are mainly related to linear algebra (i.e., matrix multipli-
cations and convolutions [216]) where input tensors are of fixed size, and rely
on various degrees of auto-tuning and kernel parameter space exploration to
reach the best possible performance [216, 217]. This trend is even more se-
vere for domain- and hardware-specific optimizations that are increasingly
harder to express in traditional backends: as a result many domain-spe-
cific compilers, languages and libraries [198, 218, 219, 220, 217] sidestep the
traditional compiler backend.

The approach proposed by Lopoukhine et al. [67] and described in this
chapter, widens this hourglass model by proposing a multi-level backend
which accepts, preserves, and exploits domain-specific information to target
highly specialized hardware. It is based on a family of static single assign-
ment (SSA) IRs modeling both the base target RISC-V ISA and structured
IRs for domain-specific accelerator extensions. It supports structured control
flow and non-standard register usage through a multi-level register allocator
that operates across IR abstractions and demonstrate that spilling common
in best-effort register allocation is unnecessary for peak performance. By
lowering from a high-level DSL, it proves that a wide backend allows for
direct lowering of domain-specific concepts to corresponding hardware fea-
tures, simplifying code generation compared to traditional backends. These
concepts are applied to a novel backend for Snitch [48], a scalable in-order
RISC-V core augmented with floating point accelerators, custom extensions
for streaming registers and hardware loops, and is capable of generating high-
performance dense linear algebra kernels for Snitch.

This chapter covers the novel approach to backend construction intro-
duced by Lopoukhine et al. [67]. In particular, Section 3.2 covers the Snitch [48]
architecture, its unique ISA extensions and the current programming model
(Paragraph 3.2.1). Section 3.3 introduces the MLIR language and ecosystem.
Section 3.4 describes the overall approach by Lopoukhine et al. [67] with fo-

75

cus on my contributions related to stream semantic register (SSR) represen-
tation in MLIR (Paragraph 3.4.1), type legalization (Paragraph 3.4.2) and
representation and lowering of SSR ISA extensions to assembly-level dialects
(Paragraph 3.4.3). Section 3.5 describes the authors’ approach to the exten-
sive experimental evaluation needed to assess the performance of generated
kernels, focusing on my contributions about the architecture’s performance
model (Paragraph 3.5.1), the performance metrics used (Paragraph 3.5.2)
and how the overall continuous testing and benchmarking methodology is
designed and implemented (Paragraph 3.5.3).

3.2 The Snitch Architecture

As technological challenges drive hardware designs towards vertical special-
ization, the RISC-V modular, extensible, and royalty-free instruction set
architecture (ISA) is gaining popularity for domain-specific accelerators [2].
As shown in Chapter 2, RISC-V has become a key enabler for both architec-
ture research [46, 47, 48, 49] and novel concepts in accelerator and processor
design [50, 51, 52, 53, 54, 55]. The RISC-V ISA defines a simple load-store
reduced instruction set computer (RISC) architecture [169]. The ISA is or-
ganized in small groups of logically related instructions, simplifying their
hardware implementation and enabling composition. Custom extensions are
increasingly adopted to ship specialized designs [51, 221, 176] ranging, for
example, from multi-core cloud CPUs with hardware barriers, cache control
and custom vector instructions [222, 52] to energy efficient architectures with
multi-precision packed-SIMD instructions [223, 224].

Increasing hardware specialization creates challenges in efficient code gen-
eration for traditional compiler backends. This is due to the widening gap
between the high-level, application-driven semantics of such extensions that
are hard to represent with common IR and backend data structures [225].

Snitch [48] is an open-source, state-of-the-art RISC-V core design by
ETH Zurich. It applies novel architectural solutions to address the compute
scalability challenge in terms of energy efficiency, achieving more than double
the floating-point (FP) performance per Watt of other leading commercial
accelerators. It has been successfully used as the fundamental building block
of large, multicore architectures, like Occamy [19], Manticore [177] and het-
erogeneous tiled accelerators [55]. The same accelerator architecture is at
the core of the Monte Cimone accelerated partition presented in Chapter 2.

Snitch (Figure 3.2) comprises a lean, in-order integer core that can be
expanded via an accelerator port. In our case, the Snitch core is augmented
with a large FPU, capable of multi-precision and (non-standard) packed-
SIMD instructions [195, 223]. Moreover, the integer core connects to the
FP accelerator subsystem through a sequencer unit, which drives the FPU
with a stream of instructions independently from the integer core. Its key

76

0.28 FLOP/inst

0.66 FLOP/inst

2 FLOP/inst

dd
ot
:

fm
v.
d.
x
fa
0,
 z
er
o

bl
ez

a0
,
.e
nd

sc
fg
w

sc
fg
w

cs
rs
i

ss
rc
fg
,
1

fr
ep
.o

a0
,
1,
 0
,
0

fm
ad
d.
d
fa
0,
 f
t0
,
ft
1,
 f
a0

cs
rs
i

ss
rc
fg
,
0

.e
nd
:

re
t

dd
ot
:

fm
v.
d.
x
fa
0,
 z
er
o

bl
ez

a0
,
.e
nd

sc
fg
w

sc
fg
w

cs
rs
i

ss
rc
fg
,
1

.l
oo
p:

fm
ad
d.
d
fa
0,
 f
t0
,
ft
1,
 f
a0

ad
di

a0
,
a0
,
-1

bn
ez

a0
,
.l
oo
p

cs
rs
i

ss
rc
fg
,
0

.e
nd
:

re
t

dd
ot
:

fm
v.
d.
x
fa
0,
 z
er
o

bl
ez

a0
,
.e
nd

.l
oo
p:

fl
d

fa
5,
 0
(a
1)

fl
d

fa
4,
 0
(a
2)

fm
ad
d.
d
fa
0,
 f
a5
,
fa
4,
 f
a0

ad
di

a2
,
a2
,
8

ad
di

a0
,
a0
,
-1

ad
di

a1
,
a1
,
8

bn
ez

a0
,
.l
oo
p

.e
nd
:

re
t

F
ig

u
re

3.
1:

D
ou

bl
e

pr
ec

is
io

n
ve

ct
or

in
ne

r
pr

od
uc

t
(B

LA
S

D
D

O
T

),
in

cr
ea

si
ng

ly
op

ti
m

iz
ed

fo
r
Sn

it
ch

.
T

he
ba

se
lin

e
(l

ef
t)

im
pl

em
en

ta
ti

on
us

in
g

R
IS

C
-V

st
an

da
rd

IS
A

ex
te

ns
io

ns
on

ly
(b

as
e

IS
A

w
it

h
d)

re
ac

he
s

a
th

eo
re

ti
ca

l
pe

ak
of

0
.2
8

F
LO

P
/
in

st
ru

ct
io

n
in

th
e

lo
op

bo
dy

.
T

he
se

co
nd

im
pl

em
en

ta
ti

on
(c

en
te

r)
in

tr
od

uc
es

SS
R

s
fr

om
th

e
Sn

it
ch

IS
A

,r
ea

ch
in

g
a

pe
ak

th
ro

ug
hp

ut
of

0
.6
6

F
LO

P
/
in

st
ru

ct
io

n.
T

he
th

ir
d

im
pl

em
en

ta
ti

on
(r

ig
ht

)
re

pl
ac

es
ex

pl
ic

it
co

nt
ro

l
lo

op
w

it
h

th
e
fr

ep
.o

ha
rd

w
ar

e
lo

op
,
re

ac
hi

ng
th

e
ar

ch
it

ec
tu

re
’s

th
eo

re
ti

ca
l
pe

ak
th

ro
ug

hp
ut

of
2

F
LO

P
/i

ns
tr

uc
ti

on
.

T
hi

s
fig

ur
e

is
fr

om
Lo

po
uk

hi
ne

et
al

.[
67

].

77

FPU

FREP

Load
Store
Unit

Load
Store
Unit

FPU
Subsystem

FPU
Sequencer

Integer
Core

TCDM
Hive

Shared
Mul/Div

Snitch Cluster

Peripherals

memory
ports

memory
port

Interconnect

Snitch
Core

0

Snitch
Core

1

Snitch
Core
N-1

Registers

Control

Decode

I-Fetch

Streaming
Registers

Figure 3.2: Simplified high-level overview of the Snitch micro-architecture [48].
This simplified model is used to define the performance model (Paragraph 3.5.1)
used by the experimental evaluation. FPU utilization can be maximized us-
ing hardware loops (FREP) to remove explicit loop control flow and SSR to
eliminate explicit FP load/stores for affine access patterns. This figure is from
Lopoukhine et al. [67].

design idea is to maximize area and energy efficiency, by utilizing the FPU
core for most of the computation. Two custom features enable optimal FPU
utilization:

• Stream semantic registers (SSRs) implicitly handle FP loads/stores
when adhering to affine linear memory accesses [226].

• Floating-point repetition (FREP) repeatedly executes an FP instruc-
tion sequence, removing the need for loop control flow (conditionals, jumps,
induction variables).

Combining SSRs and FREP allows the FPU to execute instructions without
waiting for the integer core to provide them, effectively making the archi-
tecture pseudo-dual issue. Lastly, Snitch uses a fast, energy-efficient, high-
throughput tightly-coupled data memory (TCDM), acting as a software-
managed L1 cache. When the FP accelerator subsystem is configured to
execute streams of FP instructions independently, the integer core can con-
tinue its operation, making the architecture effectively pseudo-dual issue
without any out-of-order execution in the micro-architecture. A hardware
scoreboard enables staggering memory accesses tracking load-use dependen-
cies, thereby achieving a significant degree of latency tolerance for memory
operations at a minimal hardware cost [48].

With the help of a scalable interconnect, multiple Snitch cores are then
aggregated in a cluster, where all cores share a single integer multiply and
divide unit, an L1 instruction cache, and a fast, software-managed TCDM.
While the core has no data cache, the shared TCDM is designed to be used
as a software-managed scratchpad memory. Moreover, one core per cluster is
dedicated to the management of direct memory access (DMA) asynchronous,

78

strided data transfers between the global memory (shared across all clusters)
and the TCDM (shared across all cores of a cluster).

A Snitch core implements the RV32IMAFD ISA and, thanks to the exten-
sibility provided by the RISC-V encoding, exposes all of its novel features
via custom ISA extensions.

To show the effect of Snitch original extensions on instructions streams we
consider a double precision vector inner product using standard RV32IMAFD
instructions only (Figure 3.1). In this case, for each loop iteration, only
1 out of 7 instructions is actual computation while the rest are loads, in-
duction register updates and control flow, allowing an attainable peak of
0.28FLOP/instruction.

By introducing SSRs, all load instructions become implicit accesses to
ft0 and ft1 registers, allowing the elision of load (fld) instructions. In
this case, 1 out of 3 instructions is actual computation: while induction
updates and control flow are still present, all loads and pointer arithmetics
have been removed increasing the attainable peak to 0.66FLOP/instruction.
Essentially, SSRs are working as a prefetcher, directly injecting values from
local memory into the FPU datapath without passing by the floating-point
register file. Traditional hardware prefetchers are based on dedicated micro-
architectural units whose goal is to infer access patterns of unknown in-
struction streams on the fly during execution [227]. In the case of SSRs
no runtime inference is involved and it is the software itself that configures
streaming units ahead of time to load (or store) data according to a linear
affine pattern.

By introducing floating-point repetition (FREP), all control flow and
induction updates can be removed, leaving a loop body containing a single
fmadd.d instruction to be executed. This last form increases the attainable
peak to 2FLOP/instruction. It is worth noting that, by eliding all integer
calculations, the introduction of both SSRs and FREP removed the use of
cluster-shared resources like the single integer multiply and divide unit.

To enable Snitch-based architectures to efficiently support modern DL
models, a wide range of FP formats are supported by the FPU attached to
the integer core via its accelerator extension port. The FPU provides instruc-
tions operating on quarter (Xf8), half (Xf16 and the IEEE 754 2008 [196]
alternate Xf16alt), single (f) and double (d) precision formats. Since the
data movement via SSRs happens in blocks of 64 bit, when working with
data structures of elements smaller that 64 bit (i.e. FP formats of precisions
lower than double), more than one element is transferred from memory to a
FP register and vice-versa. In order to process smaller FP formats efficiently,
the Snitch FPU implements custom packed-SIMD RISC-V extensions (Xfvec
and Xfaux) with rich instructions like expanding inner products and a range
of SIMD reductions. Unfortunately, the absence of shuffling instructions
make some operations extremely inefficient (e.g.: matrix transpose).

79

3.2.1 Programming Model

In practice, Snitch extensions have proven difficult to implement in tradi-
tional compiler backends due to SSRs adding implicit memory side effects
to potentially any FP instruction and FREP introducing a form of implicit
iteration, requiring the reconstruction of a large set of code guarantees. By
focusing on correctness rather than efficiency, previous attempts [228] made
extensive use of global side effects to successfully avoid miscompilations.
While producing correct code, cautious approaches tamper the efficiency of
the result. Moreover, while both Clang builtins and LLVM intrinsics are
available, they are hard to use efficiently and correctly. To date, no compiler
provides analyses to automatically generate code for them. Implementing
Snitch extensions in traditional compilers has proven challenging, as its ca-
pabilities introduce require reconstruction of code guarantees from backend
analyses [48, 228].

The current backend compiler support is provided by means of an LLVM
downstream fork [228]. As part of this work, the pre-existing PULP Project
LLVM fork has been rebased on top of LLVM 18 and the MC Layer support
for FREP, SSR and the full SmallFloat [195] ISA has been fixed and im-
proved. Along Clang builtins and LLVM intrinsics, access to Snitch-specific
features is provided via a C library shipped by the hardware maintainers.
Figure 3.3 shows an example of an optimized BLAS SAXPY (single preci-
sion scaled vector multiplication) implementation for Snitch, using a mix of
application programming interface (API) calls and inline assembly.

Stream semantics must be set up ahead of time (Figure 3.3: a) by
specifying, for each needed data mover, the iteration domain. SSRs support
any linear affine memory access pattern in the form ai+1 = ai + stride× i+
offset. In the SAXPY example only a 1-dimensional iteration domain is
needed while SSRs support up to four: in case of multiple dimensions, the
n-th dimension stream is going to take into account outer dimensions in its
own offset. Note that in Figure 3.3 all streams have the same 1-dimensional
iteration domain, so a single call is needed to set all data movers to the same
configuration.

Proper API calls (Figure 3.3: b) are then used to set the base address for
each SSR. These calls translate to specific configuration instructions writing
to memory-mapped registers.

After these two groups of setup operations, three streams are ready for
operation and, inside a streaming region, ft0 will be use for streaming reads
from the first input vector, ft1 for streaming reads from the second input
vector and ft2 for streaming writes to the output vector.

Moreover, being pipelined, the Snitch FPU benefits from an unroll factor
(Figure 3.3: c) that is at least the cycle latency of the repeated instruc-
tion: avoiding read-after-write (RAW) hazards allows the FPU to retire 1
instruction per cycle in a steady state execution.

80

void saxpy(float a, float* x, float* y, float* z) {

 typedef float v2f32
 __attribute__((vector_size(2 * sizeof(float))));

 const uint32_t niter = N / 2;

 snrt_ssr_loop_1d(SNRT_SSR_DM_ALL, niter, sizeof(v2f32));

 snrt_ssr_read(SNRT_SSR_DM0, SNRT_SSR_1D, x);
 snrt_ssr_read(SNRT_SSR_DM1, SNRT_SSR_1D, y);
 snrt_ssr_write(SNRT_SSR_DM2, SNRT_SSR_1D, z);

#define UNROLL 8

 v2f32 vtmp[UNROLL];
 v2f32 va = {a, a};
 uint32_t nfrep = (niter / UNROLL) - 1;

 snrt_ssr_enable();

 asm volatile(
 "frep.o %[nfrep], 16, 0, 0 \n"
 "vfmul.s %[vtmp0], %[va], ft0 \n"
 "vfmul.s %[vtmp1], %[va], ft0 \n"
 "vfmul.s %[vtmp2], %[va], ft0 \n"
 "vfmul.s %[vtmp3], %[va], ft0 \n"
 "vfmul.s %[vtmp4], %[va], ft0 \n"
 "vfmul.s %[vtmp5], %[va], ft0 \n"
 "vfmul.s %[vtmp6], %[va], ft0 \n"
 "vfmul.s %[vtmp7], %[va], ft0 \n"
 "vfadd.s ft2, %[vtmp0], ft1 \n"
 "vfadd.s ft2, %[vtmp1], ft1 \n"
 "vfadd.s ft2, %[vtmp2], ft1 \n"
 "vfadd.s ft2, %[vtmp3], ft1 \n"
 "vfadd.s ft2, %[vtmp4], ft1 \n"
 "vfadd.s ft2, %[vtmp5], ft1 \n"
 "vfadd.s ft2, %[vtmp6], ft1 \n"
 "vfadd.s ft2, %[vtmp7], ft1 \n"
 : [vtmp0] "=&f"(vtmp[0]), [vtmp1] "=&f"(vtmp[1]),
 [vtmp2] "=&f"(vtmp[2]), [vtmp3] "=&f"(vtmp[3]),
 [vtmp4] "=&f"(vtmp[4]), [vtmp5] "=&f"(vtmp[5]),
 [vtmp6] "=&f"(vtmp[6]), [vtmp7] "=&f"(vtmp[7])
 : [nfrep] "r"(nfrep), [va] "f"(va)
 : "ft0", "ft1", "ft2", "memory");

 snrt_ssr_disable();
}

a

streaming
load of 2xf32 values into

operand

d

e

c

f

g

h

1
streaming

store of 2xf32 values to
memory

data mover #0: ft0 loads from x

data mover #1: ft1 loads from y

data mover #2: ft2 stores yo z

b

Figure 3.3: BLAS SAXPY operation in Snitch. This code is an optimized im-
plementation of the single-core kernel utilizing read/write SSRs, FREP and an
unrolled loop body performing packed-SIMD instructions on vectors of two single
precision elements.

81

In order to remove any control flow from the hot loop (i.e. the stream-
ing region), any iteration instruction (namely induction updates, compar-
isons and jumps) is replaced by the floating-point repetition instruction (the
frep.o at Figure 3.3: e). In the example, the operands tell the Snitch
instruction sequencer to repeat nfrep times the following 16 instructions.
The two additional immediate operands set to zero tell the sequencer to per-
form no register staggering, a feature that allows to avoid data hazards stalls
due to register dependencies: in our case we are manually breaking register
dependencies (with the help of the vtmp temporary registers) for the sake of
clarity.

In the loop body (Figure 3.3: f), the absence of a vector fused multi-
ply-add instruction imposes the use of one vector multiplication (vfmul.s)
and one addition (vfadd.s) for each pair of elements. As pointed out in
Section 3.2, data movement via SSRs happens in blocks of fixed 64 bit size.
In our example, vector elements are 32 bit wide. This forces the introduction
of vector instructions since every streaming read from memory is going to
load two contiguous single precision elements from memory in the same FP
register, that must then treated as a vector of two 32 bit values.

The streaming region (Figure 3.3: 1) is delimited by API calls switch-
ing on (Figure 3.3: d) and off (Figure 3.3: h) the streaming semantics
on the configured FP registers: ft0 for the first input vector, ft1 for the
second input vector and ft2 for the output vector. Inside the streaming
region, each read or write operation to such registers triggers a read or write
memory transfer and the subsequent update of the stream pointer to the
next memory location according to the configured access patterns. For this
reason, proper register clobbers (Figure 3.3: g) must be specified to ensure
the register allocator doesn’t allocate SSR-reserved registers to intermedi-
ate values. Moreover, a global memory clobber must be specified to avoid
incorrect code generation: inside a streaming region, every FP instruction
must be considered side-effecting and effectively a load/store according to
the streaming register they operate on. Any kind of instruction hoisting or
reordering must be prevented to avoid miscompilations.

3.3 The MLIR Ecosystem

Amidst the challenges posed by the end of Moore’s law, software stacks strug-
gle to adapt, especially at the infrastructure level, where the lack of modular-
ity forces constant rebuilding of similar features, resulting in high engineering
costs and limited user flexibility. This issue is particularly evident in the ML
space: frameworks, programming languages, and performance libraries are
developed in vertical silos [229] that neither compose nor interoperate.

MLIR (Multi-Level Intermediate Representation) [39, 214] is a new com-
piler infrastructure that drastically reduces the entry cost to define and in-

82

troduce new abstraction levels for building domain-specific IRs. It is part of
the LLVM project and follows decades of established practices in production
compiler construction. As such, MLIR is an ideal solution to the missing
infrastructure problem.

While details of MLIR as an IR are discussed later in this section, we
can identify its core principles:

Extensibility. The system is built with extensibility as a fundamental
requirement, not an afterthought. Every component, from operations to
types to transformation passes, can be extended or customized while kept
modular and interoperable.

Progressive lowering. Rather than forcing immediate translations be-
tween abstraction levels, MLIR enables gradual lowering of programs, pre-
serving high-level information until it’s no longer needed.

Unified infrastructure. Common compiler tasks like generic optimiza-
tion (e.g., constant propagation or common subexpression elimination), anal-
ysis (e.g., dataflow), and transformations (e.g., loop unrolling or tiling) are
provided through a shared infrastructure, reducing duplication and increas-
ing reliability. For example, in Section 3.5, we describe how parts of the
MLIR core infrastructure can be effectively integrated into a domain-spe-
cific compiler.

MLIR has found application in various domains, and it is becoming the
lingua franca of compiler construction: from tensor algebra compilers [230,
231, 232] to full-stack kernel [68] and graph [233] compilers for DL; from
sparse tensor code generators [234] to stencil programs compilers for dis-
cretized systems of differential equations [235]. MLIR is also used for target-
specific tasks, i.e., to drive automatic code generation for NVIDIA GPU
tensor cores [236].

Regarding the traditional compiler infrastructure, existing toolchains have
been built as isolated efforts, where abstractions, transformations, and rep-
resentations exist only in the domain of their specific code base. On the
other hand, the interoperability by-design introduced by MLIR allows for
seamless sharing of infrastructure and abstractions. A notable example is
xDSL5: introduced by Fehr et al. [237], it’s a pure-Python compiler construc-
tion toolkit that integrates into the MLIR infrastructure. Its design goal is
rapid DSL prototyping, IR design and compiler construction, something that
requires a non-negligible engineering effort when done in upstream MLIR.
xDSL is built on top of IR definition language (IRDL) [238], an MLIR di-
alect (or meta dialect) designed to describe MLIR dialects. Upstream MLIR
can build dialect definitions from IRDL sources6, integrating them in the
existing infrastructure at run time. By being completely interoperable, both
when transforming programs (by reading and emitting MLIR IR) and defin-

5https://xdsl.dev
6https://mlir.llvm.org/docs/Dialects/IRDL/

83

https://xdsl.dev
https://mlir.llvm.org/docs/Dialects/IRDL/

!T0 = memref<200xf64>
!T1 = memref<5x200xf64>
!T2 = memref<5xf64>
#M0 = affine_map<(d0, d1) -> (d1)>
#M1 = affine_map<(d0, d1) -> (d0, d1)>
#M2 = affine_map<(d0, d1) -> (d0)>

func.func @matvec(%X: !T0, %Y: !T1, %Z: !T2) {
 linalg.generic {
 iterator_types = ["parallel", "reduction"]
 indexing_maps = [#M0, #M1, #M2],
 }

 ins (%X, %Y : !T0, !T1)
 outs(%Z : !T2)
 {
 ^bb0(%x : f64, %y : f64, %acc_old : f64):
 %prod = arith.mulf %x, %y : f64
 %acc_new = arith.addf %acc_old, %prod : f64
 linalg.yield %acc_new : f64
 }
 func.return
}

results

attributes

operation
name

operands

region

block

dialect
name

types

types

attributes

def

use

SSA form

1
*

cross-iteration
dependence type

how indices
are mapped

between
input and output

what to
compute

decoupling
access

from
execution

what the inputs and outputs are

MLIR Linalg

Figure 3.4: Organizing program abstractions as SSA-based IRs enables a modular
approach for compiler construction. The above vector-matrix product in MLIR
makes the use-def relationships explicit and obviates the need for intricate analyses
by capturing information at the right abstraction level (e.g., directly expressing
iteration types in linalg.generic). This figure is from Lopoukhine et al. [67].

ing new dialects (by emitting dialect definitions in IRDL), xDSL is a notable
example of the unified infrastructure enabled by MILR. The validity of this
approach is proven by both previous work [239] and by Lopoukhine et al. [67],
where a mix of xDSL dialects and transformation passes are used alongside
a selection of upstream MLIR’s to build a kernel compiler for the Snitch
architecture (Section 3.2).

As the compiler construction landscape continues to evolve to adapt to
the new challenges coming from the end of Moore’s law, MLIR flexible de-
sign and shared infrastructure make it a powerful tool for addressing the
challenges of modern computing.

3.3.1 IR Structure

Static single assignment (SSA) intermediate representations (IRs) are widely-
used across modern research and industrial compilers (e.g., LLVM [35], GCC [240],
Cranelift [241], xDSL [242]), thanks to the broadly-accepted benefits that
explicit data flow information offers [212, 243]. Values in SSA form are as-
sociated with a unique name, and each use of a value refers to a unique

84

define i32 @inc(i32 %val, i1 %cond) {
entry:
 br i1 %cond, label %then, label %else

then:
 %y = add i32 %val, 1
 br label %merge

else:
 br label %merge

merge:
 %result = phi i32 [%y, %then], [%val, %else]
 ret i32 %result
}

func.func @inc(%val: i32, %cond: i1) -> i32
{
 cf.cond_br %cond, ^then, ^else

^then:
 %c1_i32 = arith.constant 1 : i32
 %0 = arith.addi %val, %c1_i32 : i32
 cf.br ^merge(%0 : i32)

^else:
 cf.br ^merge(%val : i32)

^merge(%result: i32):
 func.return %result : i32
}

Figure 3.5: The LLVM phi-based SSA form compared to an equivalend MLIR
block-based SSA form. In LLVM different SSA values defined in different incoming
branches of the control flow are merged by the phi instruction. The MLIR snippet
uses blocks with arguments instead of ϕ nodes: the ˆmerge block is entered with
different SSA values as its argument. The MLIR snippet uses the cf dialect to
represent unstructured control flow to keep the two forms as similar as possible

definition. We use SSA IR as implemented in MLIR [214].
Operations outline computation alongside their SSA values (i.e., results

and operands) (Figure 3.4). A dialect forms a namespace for a set of related
types and operations. Operations are prefixed with their dialect name (e.g.,
arith.addf) and may contain attributes, a key-value map of compile-time
constants.

Operations organized in blocks correspond to straight-line code (i.e., basic
blocks [212]). Blocks can represent bodies of functions or for loops, and may
have values as arguments. A region is a list of blocks associated with an
operation. The semantics of their parent operation defines complex control
flow between regions and blocks. For instance, scf.for embodies a typical
for loop, with an induction variable incrementing within an integer range
(Figure 3.4). Combining regions as a first-class IR element with SSA allows
the direct encoding of nested hierarchical structures in the IR, without any
restrictions in the combination of dialects used to express a program.

At the language level, the choice of MLIR authors of a block-based SSA
form over traditional alternatives has profound effects on the readability,
compactness and effectiveness of the IR language. The LLVM IR, for ex-
ample, uses a form based on phi (ϕ) functions that are introduced to merge
values from multiple predecessor blocks [243, 212]. If two paths lead to a
block, the ϕ-function selects the appropriate value for the variable depend-
ing on the incoming control flow. On the other hand, the SSA form based
on blocks, the one selected by MLIR authors, eliminates explicit ϕ-functions
by treating variables as arguments to basic blocks: instead of a ϕ-function,
the predecessors pass the appropriate values as arguments when transferring

85

control to a block. This makes the IR more human-readable and compact,
the control flow more explicit and simplifies analyses ans transformations, as
the merging of values is tied to parameter passing rather than separate state-
ments. Comparison between the two approaches is shown with a simplified
example in Figure 3.5.

To build a linear algebra kernel compiler for Snitch that is based on
MLIR, Lopoukhine et al. [67] use a selection of existing upstream dialects
that model common programming abstractions such as functions (func),
structured control flow (scf), memory buffers with reference semantics (memref),
immutable tensors with value semantics (tensor) and SIMD vectors (vector).

3.3.2 Linear Algebra Programs in MLIR

The linear algebra dialect (linalg) is a common lowering destination for
high-level, ML-oriented IRs (e.g., onnx, pytorch) [233, 244]. Its value as an
entry point [245] to the MLIR IR is rooted in the ability to concisely cap-
tures high-level linear algebra computations using a single, versatile opera-
tion, linalg.generic, encoding the following properties: i) explicit iterator
types encoding data dependencies (e.g., whether the iteration of a specific
dimension is element-wise or performs a reduction), ii) affine mappings be-
tween iteration space and operand data, iii) an iteration space completely
defined by input/output operands, and iv) a lambda specifying the compu-
tation (Figure 3.4). These properties are hard, or impossible, to reconstruct
from low-level encodings [246, 229, 247]. The value of having those informa-
tions fully preserved from the input language and readily available during
the lowering process is shown by the results in Lopoukhine et al. [67], where
the linalg dialect is the selected entry point for programs that effectively
utilize the target Snitch accelerator (Section 3.5).

3.4 A Multi-Level Compiler Backend

Lopoukhine et al. [67] introduce a novel RISC-V backend representing target-
specific concepts at multiple levels of abstraction, designed and implemented
from scratch by leveraging the MLIR infrastructure throughout the compi-
lation flow. Target assembly is modeled in SSA with a set of MLIR dialects:
the lower level rv and rv_cf dialects and encode semantics (e.g., structured
control flow in rv_scf and call conventions rv_func) with the higher ones. In
contrast to traditional, monolithic backends, the MLIR-based infrastructure
is split into components that are easy to reason about and extend.

Notably, the rv dialect uses MLIR’s extensible type system, denoting
assembly instructions as operations where source and destination registers
correspond, respectively, to operands and results (Figure 3.7). Some opera-
tions, such as rv.get_register, are not printed in the assembly; these exist

86

linalg.generic {
 iterator_types = [
 "parallel", // m
 "parallel", // n
 "reduction" // k
],
 indexing_maps = [
 affine_map<(m, n, k) -> (m, k)>, // A
 affine_map<(m, n, k) -> (k, n)>, // B
 affine_map<(m, n, k) -> (m, n)> // C
]
}
ins (%A, %B : memref<?x?xf64>, memref<?x?xf64>)
outs (%C : memref<?x?xf64>) {

 ^bb0(%a : f64, %b : f64, %c : f64):
 %d = arith.mulf %a, %b : f64
 %e = arith.addf %c, %d : f64
 linalg.yield %e : f64
}

dependence of iterators
e.g., it may occur in parallel

how indices are mapped
between input and output

what to
compute

what are the inputs and outputs

Decoupling
access

from
computation

Figure 3.6: The presented approach leverages valuable information that explicitly
captures accesses and computation when expressed as an MLIR linalg.generic
operation. For this matrix multiplication, the reduction dimension k along with
how it maps to the input and output matrices is clearly expressed. This figure is
from Lopoukhine et al. [67].

87

to create SSA values in the IR, bridging SSA semantics and the representa-
tion of registers in the type system (Figure 3.7). Operations in the rv_cf
dialect model unstructured control flow via jump instructions to other basic
blocks in the IR.

Along their novel representation of the RISC-V ISA in MLIR, authors
introduce additional, higher level RISC-V dialects allow to preserve more
semantic information that is useful for target-specific optimizations. For
example, the rv_func.func operation (Figure 3.7) encodes the application
binary interface (ABI) constraint of requiring function arguments and results
to be passed in A registers. Similarly, the rv_scf.for operation represents a
for loop in a structured way, easing optimizations and live range construction
during register allocation. These dialects are designed to mirror the existing
func and scf, making lowering from higher abstractions straightforward.

In contrast to monolithic compiler backends, the modular approach in-
troduced by Lopoukhine et al. [67] eases the addition of new capabilities. In
order to target Snitch unique features, the same MLIR backend structure is
augmented for ISA extensions by following a similar multi-level approach,
explicitly encoding accelerator semantics in the IR.

Snitch packed-SIMD operations, streaming configuration, and FREP loops
(Section 3.2) are modeled in the rv_snitch dialect. SSRs add memory effects
to previously pure arithmetic operations, a semantics that is modeled with
MLIR operations interacting with streaming registers (Figure 3.7). Snitch
SmallFloat [195] packed-SIMD instructions are modeled similarly to the stan-
dard FP instructions as they both operate on scalar FP registers. FREP
hardware loops are modeled with a region body and iteration count operand,
along with a mechanism to accumulate results (Figure 3.7), adding the con-
straint that only instructions on FP registers and stream operations are
allowed in the loop body. Additionally, Lopoukhine et al. [67] introduce the
snitch_stream.streaming_region operation to encapsulate the streaming
configuration and the region where streaming is enabled (Figure 3.7). These
operations provide convenient targets for higher-level compiler passes. The
representation of stream configurations as compile-time constants allows to
easily perform some key performance optimizations (Figure 3.7) like con-
stant folding on configurations: since the memory-mapped registers storing
data movers parameters are stateful, redundant configuration sequences can
be folded to avoid useless overheads. A single construct for upper bounds
and strides allows detecting and removing contiguous accesses, reducing the
number of generated assembly operations for accelerator configuration. Sim-
ilarly, a stride of 0 in the last dimension represents a repeated memory access
to the same location, for which the Snitch ISA extensions provide a dedicated
optimization, reducing the pressure on the memory interconnect. Declara-
tive, high-level representations of accelerator capabilities allow the compiler
to use simple peephole rewrites for custom optimizations.

Regarding other traditional backend tasks like scheduling, Snitch’s in-

88

rv
_f
un
c.
fu
nc
 @
ma
tv
ec
(%
X_
ar
g
:
!r
v.
re
g<
a0
>,
 %
Y_
ar
g
:
!r
v.
re
g<
a1
>,
 %
Z_
ar
g
:
!r
v.
re
g<
a2
>)
 {

%X
 =
 r
v.
mv
 %
X
:
(!
rv
.r
eg
<a
0>
)
->
 !
rv
.r
eg
<t
0>

%Y
 =
 r
v.
mv
 %
Y
:
(!
rv
.r
eg
<a
1>
)
->
 !
rv
.r
eg
<t
0>

%Z
 =
 r
v.
mv
 %
Z
:
(!
rv
.r
eg
<a
2>
)
->
 !
rv
.r
eg
<t
0>

sn
it
ch
_s
tr
ea
m.
st
re
am
in
g_
re
gi
on
 {

pa
tt
er
ns
 =
 [

#s
ni
tc
h_
st
re
am
.s
tr
id
e_
pa
tt
er
n<
ub
 =
 [
5,
 2
00
],
 s
tr
id
es
 =
 [
0,
 8
]>
,

#s
ni
tc
h_
st
re
am
.s
tr
id
e_
pa
tt
er
n<
ub
 =
 [
10
00
],

 s
tr
id
es
 =
 [
8]
>

]

}
in
s(
%X
,
%Y
 :
 !
rv
.r
eg
<t
0>
,
!r
v.
re
g<
t0
>)
 {

^0
(%
x
:
!s
tr
ea
m.
re
ad
ab
le
<!
rv
.f
re
g<
ft
0>
>,
 %
y
:
!s
tr
ea
m.
re
ad
ab
le
<!
rv
.f
re
g<
ft
1>
>)
:

%c
0
 =
 r
v.
ge
t_
re
gi
st
er
 :
 !
rv
.r
eg
<z
er
o>

%c
8
 =
 r
v.
li
 8

 :
 !
rv
.r
eg
<t
4>

%c
40
 =
 r
v.
li
 4
0

 :
 !
rv
.r
eg
<t
2>

rv
_s
cf
.f
or
 %
of
fs
et
 :
 !
rv
.r
eg
<t
1>
 =
 %
c0
 t
o
%c
40
 s
te
p
%c
8
{

%p
tr

=
rv
.a
dd
 %
Z_
1,
 %
of
fs
et
 :
 (
!r
v.
re
g<
t0
>,
 !
rv
.r
eg
<t
4>
)
->
 !
rv
.r
eg
<t
4>

%i
ni
t
=
rv
.f
ld
 %
pt
r,
 0

 :
 (
!r
v.
re
g<
t4
>)
 -
>
!r
v.
fr
eg
<f
t3
>

%c
19
9
=
rv
.l
i
19
9

 :
 !
rv
.r
eg
<t
4>

%r
es

=
rv
_s
ni
tc
h.
fr
ep
_o
ut
er
 %
c1
99
 i
te
r_
ar
gs
(%
ac
c_
ol
d
=
%i
ni
t)
 -
>
(!
rv
.f
re
g<
ft
3>
)
{

 %
x_
1

=
rv
_s
ni
tc
h.
re
ad
 f
ro
m
%x

:
!r
v.
fr
eg
<f
t0
>

 %
y_
1

=
rv
_s
ni
tc
h.
re
ad
 f
ro
m
%y

:
!r
v.
fr
eg
<f
t1
>

 %
pr
od

=
rv
.f
mu
l.
d
%x
_1
,
%y
_1

:
(!
rv
.f
re
g<
ft
0>
,
!r
v.
fr
eg
<f
t1
>)
 -
>
!r
v.
fr
eg
<f
t4
>

 %
ac
c_
ne
w
=
rv
.f
ad
d.
d
%a
cc
_o
ld
,
%p
ro
d
:
(!
rv
.f
re
g<
ft
3>
,
!r
v.
fr
eg
<f
t4
>)
 -
>
!r
v.
fr
eg
<f
t3
>

 r
v_
sn
it
ch
.f
re
p_
yi
el
d
%a
cc
_n
ew

:
!r
v.
fr
eg
<f
t3
>

}

rv
.f
sd
 %
pt
r,
 %
re
s,
 0
 :
 (
!r
v.
re
g<
t4
>,
 !
rv
.f
re
g<
ft
3>
)
->
 (
)

}

}

}

3 1 2 abc

A

B

C

D

E

ex
cl

ud
e

re
g

is
te

rs

al
re

ad
y

in
 u

se
 f

o
r

A
B

I c
al

li
ng

 c
o

nv
en

ti
o

ns
ex

p
li

ci
t

sc
o

p
e

w
he

re
st

re
am

in
g

 r
eg

is
te

r
co

ns
tr

ai
nt

s
ar

e
in

 e
ff

ec
t

b
ac

k
w

ar
d

s
tr

av
er

sa
l o

f
SS

A
 u

se
-d

ef
 c

ha
in

s
fo

r
re

g
is

te
r

al
lo

ca
ti

o
n ke

ep
 t

ra
ck

 o
f

va
lu

es
 d

efi
ne

d

o
ut

si
d

e
b

ut
 u

se
d

in
 t

he
 lo

o
p

en
su

re
th

e
sa

m
e

re
g

is
te

r
is

us

ed
 f

o
r

lo
o

p
 r

es
ul

ts
th

ro
ug

h
th

e
it

er
at

io
n

Sn
it

ch
 F

R
E

P
en

co
d

ed
 w

it
h

fo
r-

lo
o

p

se
m

an
ti

cs

ex
p

li
ci

t
in

te
ra

ct
io

n
w

it
h

st
re

am
in

g

re
g

is
te

rs

d

st
re

am
in

g
sc

o
p

e

st
re

am
in

g
b

o
un

d
s

an
d

st

ri
d

es
en

co
d

in
g

F
ig

u
re

3.
7:

T
he

pr
es

en
te

d
m

ul
ti

-le
ve

l
ba

ck
en

d
us

es
a

m
ix

of
SS

A
s-

ba
se

d
IR

s
to

re
pr

es
en

t
di

ffe
re

nt
le

ve
ls

of
ab

st
ra

ct
io

n
ar

ou
nd

th
e

R
IS

C
-V

IS
A

fo
r

a
m

at
ri

x-
ve

ct
or

ca
lc

ul
at

io
n.

T
he

SS
A

fo
rm

ul
at

io
n

of
th

e
IS

A
em

po
w

er
s

th
e

co
m

pi
le

r
to

em
pl

oy
w

el
l-u

nd
er

st
oo

d
an

al
ys

es
an

d
tr

an
sf

or
m

at
io

ns
an

d,
w

he
n

co
m

bi
ne

d
w

it
h

re
gi

on
s,

to
en

co
de

fu
rt

he
r

in
fo

rm
at

io
n

co
nt

ro
l

flo
w

in
fo

rm
at

io
n

(e
.g

.,
fo

r
lo

op
s)

w
hi

le
st

ay
in

g
cl

os
e

to
th

e
se

m
an

ti
cs

of
th

e
IS

A
s.

T
hi

s
fig

ur
e

is
fr

om
Lo

po
uk

hi
ne

et
al

.[
67

].

89

order core, software-managed L1 memory and the absence of caches on any
level of the memory hierarchy make its performance predictable. This hard-
ware design principle, followed by Snitch designers to reach the best possible
compute efficiency both in terms of power and area, allows compiler writ-
ers to rely on a simple scheduling pipeline without the need for expensive
schedule space exploration or sophisticated cost models.

Several other optimizations are introduced by Lopoukhine et al. [67]. For
example, to avoid accumulating intermediate results in memory, reduction
indices are excluded from iteration space specifications, guiding lowering to
loops with local values for accumulation. RAW conflicts are mitigated using
unroll-and-jam, interleaving multiple iterations in innermost loops, balancing
code size and register pressure for performance (Figure 3.8). The optimal
unroll factor depends on pipeline depth: for Snitch, the FPU has three stages,
so stalls are minimized with an unroll factor of at least four. Fixed iteration
space enables separation between stream setup and computation, lowered to
scf loops, with inner operations working on streams instead of memory.

Moreover, Lopoukhine et al. [67] introduce a spill-free register allocation
approach. The allocator is based on three linear passes operating direclty
on MLIR and highlights a key feature of this novel progressive allocation ap-
proach: the Snitch ISA extensions impose additional constraints on register
allocation. Snitch reserves the use of some registers during streaming, and
the set of reserved registers depends on the number of streams configured
and enabled in a specific streaming region. Those constraints can be ex-
pressed locally and naturally by each lowering pass by partially allocating
SSA values to registers known to be required ahead of time. Another impor-
tant feature comes from the fact that the SSA form guarantees that a linear
walk respects the order of use-def relations: this property extends to MLIR’s
SSA with regions, and enable allocation of whole function bodies in a single
backward walk. Moreover, since the handling of unstructured control flow
is not needed when operating on MLIR, no kind of liveness computation is
needed. Finally, another key point claimed by Lopoukhine et al. [67] is that
a register allocator for kernel compilers can afford to be spill-free. Since the
pipeline is designed to compile kernels supposed to be the hottest spots in
a linear algebra program, spilling is not taken into account: as soon as a
specific program runs out of allocatable registers, the compiler is allowed to
fail due to the resulting micro-kernel code being automatically inefficient.

In their work, Lopoukhine et al. [67] present a multi-level, modular ap-
proach to compiler construction that facilitates the extension of backends
to target accelerators with custom ISA extensions by leveraging shared ab-
stractions and infrastructure.

Details of concepts developed as part of this work are presented later
in this section. In particular, we introduce the memref_stream MLIR di-
alect that is the operation that carries all the information needed to exploit
SSRs and hardware loops in later lowering steps (Paragraph 3.4.1). We

90

then discuss a traditional backend transformation like type legalization and
how it is performed on MLIR, and how the operations introduced by the
memref_stream dialect make tasks like vectorization (essential for correct
execution of non-double precision FP code on Snitch) an efficient transfor-
mation (Paragraph 3.4.2). Finally, we present how Snitch ISA extensions are
represented and directly lowered to target assembly code (Paragraph 3.4.3).

3.4.1 Representing SSRs

Dialects introduced by Lopoukhine et al. [67] represent concepts at dif-
ferent level of abstraction to support an effective lowering strategy. The
memref_stream dialect bridges linalg input dialect and snitch_stream op-
erations (Figure 3.8). The memref_stream.generic operation is based on
its linalg counterpart, except an explicit encoding of the iteration bounds,
in contrast to linalg’s approach of inferring bounds from input shapes (Sec-
tion 3.3.2).

Designed to extend the linalg.generic operation from MLIR upstream,
memref_stream.generic is the entry point of the Snitch lowering process.
The memref_stream dialect bridges linalg abstractions and snitch_stream
operations (Figure 3.8). The memref_stream.generic operation is based on
its linalg counterpart, except an explicit encoding of the iteration bounds,
in contrast to linalg’s approach of inferring bounds from input shapes (Sec-
tion 3.3.2). Figure 3.8 shows the structure of a memref_stream.generic
operation.

3.4.2 Type Legalization

Type legalization is the process of transforming data types into lower-level,
hardware-supported types that can be directly handled by the target ma-
chine [212]. The process typically involves decomposing complex types (e.g.,
structures, vectors, or large integers) into smaller, simpler types that conform
to the target architecture’s constraints: this usually simplifies later backend
transformations, e.g., instruction selection patterns can be defined just on
the operand types that the target hardware actually supports. For exam-
ple, a 128 bit integer might be split into two 64 bit integers if the hardware
lacks native support for 128 bit operations. Similarly, vector types may be
expanded, split, or aligned to match the hardware’s SIMD capabilities.

As detailed in Section 3.2, the Snitch architecture integrates a data mover
unit performing either register-to-memory and memory-to-register streaming
transfers operating only on blocks of data of fixed 64 bit size. This means that
all input structures (either memref or tensor) to a memref_stream.generic
structured operation with element types other than f64 must be be analysed
for legality. In particular, if the scalar block arguments to the payload body
are of types other than f64, then the whole memref_stream.generic must

91

!T0 = memref<200xf64>
!T1 = memref<5x200xf64>
!T2 = memref<5xf64>
!S = !memref_stream.readable<f64>
#M0 = affine_map<(d0, d1, d2) -> (d1)>
#M1 = affine_map<(d0, d1, d2) -> (d0 * 5 + d2, d1)>
#M2 = affine_map<(d0, d1) -> (d0 * 5 + d1)>
#SP0 = #memref_stream.stride_pattern<ub = [1, 200, 5], index_map = #M0>
#SP1 = #memref_stream.stride_pattern<ub = [1, 200, 5], index_map = #M1>
memref_stream.streaming_region {patterns=[#SP0,#SP1]} ins(%X,%Y:!T0,!T1) {
^0(%0 : !S, %1 : !S):
 memref_stream.generic {
 bounds = [1, 200, 5],
 indexing_maps = [#M0, #M1, #M2],
 iterator_types = ["parallel", "reduction", "interleaved"]
 } ins(%0, %1 : !S, !S) outs(%Z : memref<5xf64>) {
 ^1(%x0 : f64, %x1 : f64, %x2 : f64, %x3 : f64, %x4 : f64,
 %y0 : f64, %y1 : f64, %y2 : f64, %y3 : f64, %y4 : f64,
 %a0 : f64, %a1 : f64, %a2 : f64, %a3 : f64, %a4 : f64):
 %b0 = arith.mulf %x0, %y0 : f64
 %b1 = arith.mulf %x1, %y1 : f64
 %b2 = arith.mulf %x2, %y2 : f64
 %b3 = arith.mulf %x3, %y3 : f64
 %b4 = arith.mulf %x4, %y4 : f64
 %c0 = arith.addf %a0, %b0 : f64
 %c1 = arith.addf %a1, %b1 : f64
 %c2 = arith.addf %a2, %b2 : f64
 %c3 = arith.addf %a3, %b3 : f64
 %c4 = arith.addf %a4, %b4 : f64
 memref_stream.yield %c0, %c1, %c2, %c3, %c4
 : f64, f64, f64, f64, f64
 }
}

no reduction dimension indices
as it is performed in register

Unroll-and-Jam

stream
setupexplicit bounds

Figure 3.8: The memref_stream abstractions bridge the gap between high-level
linear algebra abstractions and Snitch accelerator capabilities, allowing the schedul-
ing of computation operations before separating access from execution. This figure
is from Lopoukhine et al. [67].

92

func.func public @sumf32(%m0 : memref<8x16xf32>,
 %m1 : memref<8x16xf32>,
 %m2 : memref<8x16xf32>)
 -> memref<8x16xf32> {
 memref_stream.generic {
 bounds = [8, 16],
 indexing_maps = [
 affine_map<(d0, d1) -> (d0, d1)>,
 affine_map<(d0, d1) -> (d0, d1)>,
 affine_map<(d0, d1) -> (d0, d1)>
],
 iterator_types = ["parallel", "parallel"]
 } ins(%m0, %m1 : memref<8x16xf32>, memref<8x16xf32>)
 outs(%m2 : memref<8x16xf32>) {
 ^0(%in0: f32, %in1: f32, %out: f32):
 %0 = arith.addf %in0, %in1: f32
 memref_stream.yield %0: f32
 }
 func.return %m2 : memref<8x16xf32>
}

Figure 3.9: Example of element-wise addition of 2-dimensional matrices (in the
form of memref memory buffers) represented with a memref_stream.generic op-
eration. Element types are single precision FP scalars, a data type that is handled
by the Snitch FPU but becomes illegal with respect to SSR memory transfers.
This program needs to be legalized (Figure 3.10).

be transformed to achieve legality. Figure 3.9 shows an input IR for a simple
element-wise addition of two 2-dimensional memory buffers.

The legalization process on MLIR is achieved via a transformation pro-
cess that works as follows:

1. analyze the input data types and compute the tiling factor for the last
dimension according to the bit width of the element type (i.e. the
number of actual lanes in the packed-SIMD vectors);

2. modify iteration bounds according to the tiling factor. On a struc-
tured loop, this equals to tiling the stride-1 dimension and applying an
equivalent unrolling factor;

3. modify the affine access maps specified in the memref_stream.generic
operation according to the last dimension’s tiling factor. This is needed
to account for the iteration bounds modified in the previous step;

4. modify the payload body introducing vector types of proper size ac-
cording to the tiling factor. This is done with simple rewrites following

93

func.func public @sumf32(%m0: memref<8x16xf32>,
 %m1: memref<8x16xf32>,
 %m2: memref<8x16xf32>)
 -> memref<8x16xf32> {
 memref_stream.generic {
 bounds = [8, 8],
 indexing_maps = [
 affine_map<(d0, d1) -> (d0, (d1 * 2))>,
 affine_map<(d0, d1) -> (d0, (d1 * 2))>,
 affine_map<(d0, d1) -> (d0, (d1 * 2))>
],
 iterator_types = ["parallel", "parallel"]
 } ins(%m0, %m1: memref<8x16xf32>, memref<8x16xf32>)
 outs(%m2: memref<8x16xf32>) {
 ^0(%in0: vector<2xf32>, %in1: vector<2xf32>, %out: vector<2xf32>):
 %0 = arith.addf %in0, %in1: vector<2xf32>
 memref_stream.yield %0: vector<2xf32>
 }
 func.return %m2: memref<8x16xf32>
}

Figure 3.10: Result of Snitch legalization applied on the input example of element-
wise addition of 2-dimensional matrices shown in Figure 3.9. Highlighted changes
are adaptation of static iteration bounds, affine access maps and payload body’s
block argument types. The resulting IR represents a generic operation (from the
memref_stream dialect) that has been tiled by a factor of 2 and vectorized in its
computational payload.

use-def chains from the block arguments to the payload body until both
the yielded type and block arguments are all of legal vector types.

Figure 3.10 shows the result of the legalization transformation, where
only legal types are present in the payload body of the memref_stream.generic
operation.

Vectorization is a challenging problem in traditional compilers due to its
needs of analyzing data dependencies, memory access patterns, and control
flow to ensure correctness while transforming scalar operations into vector in-
structions [212]. In our case, the process starts from a memref_stream.generic
that carries the same information as a linalg.generic operation (as shown
in Section 3.3), augmented with additional metadata needed for Snitch lower-
ing (i.e. static iteration bounds). The decoupling between memory accesses
and actual computation, with the former being completely defined by explicit
iterator types, affine mappings and input/output operands, make transfor-
mations that are traditionally difficult like multi-dimensional tiling and vec-
torization, efficient. The advantage of having such rich information readily
available during the lowering process (as shown in Section 3.3, informations

94

that are hard, or impossible, to reconstruct from low-level encodings [246,
229, 247]) is clearly demonstrated by the legalization process: correct type
legalization and vectorization (via tiling) become straightforward analyses
and transformations.

3.4.3 Configuring Software-Managed Prefetchers

The ability to represent assembly instructions in MLIR can be used to model
Snitch SSR setup instructions. SSR-specific instructions are used to config-
ure and control streaming behaviour, thus defining the boundaries of stream-
ing regions in the instruction stream (Paragraph 3.2.1). Among other target-
specific dialects discussed in previous sections, the snitch dialect is intro-
duced for this purpose. This dialect can be seen as a target dialect, as its
operations are directly mapped to target functionalities (or instructions as
in this case). Figure 3.11 shows the direct lowering performed by a simple
transofmation pass to RISC-V assembly with Snitch extensions. Several ex-
amples of this class of target dialects are present in upstream MLIR (i.e.
nvgpu, amdgpu, arm_sve, and others), even though their output is usually
in the form of LLVM intrinsics instead of machine instructions. Figure 3.11
shows an input IR program that configures a three-dimensional read stream
(Figure 3.11: a , by setting respective bound, stride and source address)
and a one-dimensional write stream (Figure 3.11: b). It’s worth noting
that the first stream is also configured with a repetition value. After the
setup phase, it defines a streaming region in the straight-line operation se-
quence by switching on and off (Figure 3.11: c) the streaming semantics
for the respective FP registers. In Figure 3.11 is also shown the IR result of
the lower-snitch transform pass. The produced IR uses operations from
both riscv and riscv_snitch dialects, where the former is used to repre-
sent instructions part of the RISC-V standard set of extensions (Figure 3.11:
1) and the latter for Snitch-specific ISA extensions (Figure 3.11: 2). It is

worth noting that both dialects (riscv and riscv_snitch), introduced in
Lopoukhine et al. [67], are assembly-level dialects: each operation represent
a specific ISA instruction and operands are either attributes (for immedi-
ate/constant arguments) or proper instruction operands of the riscv.reg
type, that represent SSA values that still need to be allocated to registers.
This snippet highlights key features of MLIR, where multiple dialects can
coexist in the same IR program and a dialect can extend existing dialects by
leveraging its types and transformations.

3.5 Experimental Evaluation

Lopoukhine et al. [67] present an extensive experimental evaluation to assess
the ability of assembly-level RISC-V dialects to represent high-performance
linear algebra kernels and to prove that their multi-level register allocator

95

%b
ou

nd
In

0
=

ri
sc

v.
li

 8
 :

 !
ri

sc
v.

re
g

%s
tr

id
eI

n0
 =

 r
is

cv
.l

i
1

:
!r

is
cv

.r
eg

%b
ou

nd
In

1
=

ri
sc

v.
li

 1
6

:
!r

is
cv

.r
eg

%s
tr

id
eI

n1
 =

 r
is

cv
.l

i
8

:
!r

is
cv

.r
eg

%b
ou

nd
Ou

t
=

ri
sc

v.
li

 2
04

9
:

!r
is

cv
.r

eg
%s

tr
id

eO
ut

 =
 r

is
cv

.l
i

1
:

!r
is

cv
.r

eg
%r

ep
 =

 r
is

cv
.l

i
10

 :
 !

ri
sc

v.
re

g

sn
it

ch
.s

sr
_s

et
_d

im
en

si
on

_b
ou

nd
(%

bo
un

dI
n0

)

{d

m
=

#b
ui

lt
in

.i
nt

<0
>,

 d
im

en
si

on
 =

 #
bu

il
ti

n.
in

t<
0>

}
:

(!
ri

sc
v.

re
g)

 -
>

()
sn

it
ch

.s
sr

_s
et

_d
im

en
si

on
_s

tr
id

e(
%s

tr
id

eI
n0

)

{d

m
=

#b
ui

lt
in

.i
nt

<0
>,

 d
im

en
si

on
 =

 #
bu

il
ti

n.
in

t<
0>

}
:

(!
ri

sc
v.

re
g)

 -
>

()
sn

it
ch

.s
sr

_s
et

_d
im

en
si

on
_b

ou
nd
(%

bo
un

dI
n1

)

{d

m
=

#b
ui

lt
in

.i
nt

<0
>,

 d
im

en
si

on
 =

 #
bu

il
ti

n.
in

t<
1>

}
:

(!
ri

sc
v.

re
g)

 -
>

()
sn

it
ch

.s
sr

_s
et

_d
im

en
si

on
_s

tr
id

e(
%s

tr
id

eI
n1

)

{d

m
=

#b
ui

lt
in

.i
nt

<0
>,

 d
im

en
si

on
 =

 #
bu

il
ti

n.
in

t<
1>

}
:

(!
ri

sc
v.

re
g)

 -
>

()
sn

it
ch

.s
sr

_s
et

_d
im

en
si

on
_s

ou
rc

e(
%a

dd
rI

n)

{d

m
=

#b
ui

lt
in

.i
nt

<0
>,

 d
im

en
si

on
 =

 #
bu

il
ti

n.
in

t<
0>

}
:

(!
ri

sc
v.

re
g)

 -
>

()
sn

it
ch

.s
sr

_s
et

_s
tr

ea
m_

re
pe

ti
ti

on
(%

re
p)

 {
dm

 =
 #

bu
il

ti
n.

in
t<

0>
}:

 (
!r

is
cv

.r
eg

)
->

 (
)

sn
it

ch
.s

sr
_s

et
_d

im
en

si
on

_b
ou

nd
(%

bo
un

dO
ut

)

{d

m
=

#b
ui

lt
in

.i
nt

<0
>,

 d
im

en
si

on
 =

 #
bu

il
ti

n.
in

t<
0>

}
:

(!
ri

sc
v.

re
g)

 -
>

()
sn

it
ch

.s
sr

_s
et

_d
im

en
si

on
_s

tr
id

e(
%s

tr
id

eO
ut

)

{d

m
=

#b
ui

lt
in

.i
nt

<0
>,

 d
im

en
si

on
 =

 #
bu

il
ti

n.
in

t<
0>

}
:

(!
ri

sc
v.

re
g)

 -
>

()
sn

it
ch

.s
sr

_s
et

_d
im

en
si

on
_d

es
ti

na
ti

on
(%

ad
dr

Ou
t)

{d
m

=
#b

ui
lt

in
.i

nt
<0

>,
 d

im
en

si
on

 =
 #

bu
il

ti
n.

in
t<

0>
}

:
(!

ri
sc

v.
re

g)
 -

>
()

sn
it

ch
.s

sr
_e

na
bl

e(
)

:
()

 -
>

()
//

 .
..

sn
it

ch
.s

sr
_d

is
ab

le
()

 :
 (

)
->

 (
)

%b
ou

nd
In

0
=

ri
sc

v.
li

 8
 :

 !
ri

sc
v.

re
g

%s
tr

id
eI

n0
 =

 r
is

cv
.l

i
1

:
!r

is
cv

.r
eg

%b
ou

nd
In

1
=

ri
sc

v.
li

 1
6

:
!r

is
cv

.r
eg

%s
tr

id
eI

n1
 =

 r
is

cv
.l

i
8

:
!r

is
cv

.r
eg

%b
ou

nd
Ou

t
=

ri
sc

v.
li

 2
04

9
:

!r
is

cv
.r

eg
%s

tr
id

eO
ut

 =
 r

is
cv

.l
i

1
:

!r
is

cv
.r

eg
%r

ep
 =

 r
is

cv
.l

i
10

 :
 !

ri
sc

v.
re

g
 %0

 =
 r

is
cv

.l
i

64
 :

 !
ri

sc
v.

re
g

ri
sc

v_
sn

it
ch

.s
cf

gw
 %

bo
un

dI
n0

,
%0

 :
 (

!r
is

cv
.r

eg
,

!r
is

cv
.r

eg
)

->
 (

)
%1

 =
 r

is
cv

.l
i

19
2

:
!r

is
cv

.r
eg

ri
sc

v_
sn

it
ch

.s
cf

gw
 %

st
ri

de
In

0,
 %

1
:

(!
ri

sc
v.

re
g,

 !
ri

sc
v.

re
g)

 -
>

()
%2

 =
 r

is
cv

.l
i

96
 :

 !
ri

sc
v.

re
g

ri
sc

v_
sn

it
ch

.s
cf

gw
 %

bo
un

dI
n1

,
%2

 :
 (

!r
is

cv
.r

eg
,

!r
is

cv
.r

eg
)

->
 (

)
%3

 =
 r

is
cv

.l
i

22
4

:
!r

is
cv

.r
eg

ri
sc

v_
sn

it
ch

.s
cf

gw
 %

st
ri

de
In

1,
 %

3
:

(!
ri

sc
v.

re
g,

 !
ri

sc
v.

re
g)

 -
>

()
%4

 =
 r

is
cv

.l
i

76
8

:
!r

is
cv

.r
eg

ri
sc

v_
sn

it
ch

.s
cf

gw
 %

ad
dr

In
,

%4
 :

 (
!r

is
cv

.r
eg

,
!r

is
cv

.r
eg

)
->

 (
)

%5
 =

 r
is

cv
.l

i
32

 :
 !

ri
sc

v.
re

g
ri

sc
v_

sn
it

ch
.s

cf
gw
 %

re
p,

 %
5

:
(!

ri
sc

v.
re

g,
 !

ri
sc

v.
re

g)
 -

>
()

%6
 =

 r
is

cv
.l

i
64

 :
 !

ri
sc

v.
re

g
ri

sc
v_

sn
it

ch
.s

cf
gw
 %

bo
un

dO
ut

,
%6

 :
 (

!r
is

cv
.r

eg
,

!r
is

cv
.r

eg
)

->
 (

)
%7

 =
 r

is
cv

.l
i

19
2

:
!r

is
cv

.r
eg

ri
sc

v_
sn

it
ch

.s
cf

gw
 %

st
ri

de
Ou

t,
 %

7
:

(!
ri

sc
v.

re
g,

 !
ri

sc
v.

re
g)

 -
>

()
%8

 =
 r

is
cv

.l
i

89
6

:
!r

is
cv

.r
eg

ri
sc

v_
sn

it
ch

.s
cf

gw
 %

ad
dr

Ou
t,

 %
8

:
(!

ri
sc

v.
re

g,
 !

ri
sc

v.
re

g)
 -

>
()

%9
 =

 r
is

cv
.c

sr
rs

i
19

84
,

1
:

()
 -

>
!r

is
cv

.r
eg

<z
er

o>
//

 .
..

%1
0

=
ri

sc
v.

cs
rr

ci
 1

98
4,

 1
 :

 (
)

->
 !

ri
sc

v.
re

g<
ze

ro
>

a b

c

F
ig

u
re

3.
11

:
sn

it
ch

lo
w

er
in

g
to

as
se

m
bl

y-
le

ve
ld

ia
le
ct

s
di

al
ec

ts
(r
is

cv
an

d
ri

sc
v_

sn
it

ch
).

T
he

pr
og

ra
m

co
nfi

gu
re

s
a

th
re

e-
di

m
en

si
on

al
re

ad
st

re
am

by
se

tt
in

g
re

sp
ec

ti
ve

bo
un

d,
st

ri
de

an
d

so
ur

ce
ad

dr
es

s,
an

d
a

on
e-

di
m

en
si

on
al

w
ri

te
st

re
am

.
T

he
in

pu
ts

tr
ea

m
is

al
so

co
nfi

gu
re

d
w

it
h

a
re

pe
ti

ti
on

va
lu

e.
F
in

al
ly

,s
tr

ea
m

in
g

se
m

an
ti

cs
is

tu
rn

ed
on

an
d

off
.

O
n

th
e

ri
gh

t
is

th
e

IR
re

su
lt

of
th

e
lo

we
r-

sn
it

ch
tr

an
sf

or
m

pa
ss

.

96

can support code generation even without support for register spilling. Ex-
perimental methodology, infrastructure, results and findings are summarized
in this sections.

The benchmarking kernels selected by authors aim at being represen-
tative of mainstream DNN models. Namely, the benchmark set contains
kernels from two DNNs: NSNet2 [248], a noise suppression model, and Alex-
Net [249], an image classification model. The selection ensures that input
kernels cover a wide range of operations: element-wise and reduction com-
putations on tensors, linear and non-linear memory accesses, nested loops.
All kernels are manually implemented in both C and MLIR, the latter using
only the linalg dialect operating on tensors, similar to the MLIR IR emit-
ted by mainstream DL frameworks. An additional variant, implemented in
C with inline assembly following the Snitch programming model (as shown
in Paragraph 3.2.1) and optimized to reach peak performance on Snitch, is
provided for a subset of selected kernels.

As described in Section 3.2, the compilation target is Snitch [48]. The
same accelerator architecture is at the core of the Monte Cimone accelerated
partition (Chapter 2). The open-source reference SystemVerilog implemen-
tation of Snitch is compiled with Verilator [250] to generate the register
transfer level (RTL) cycle-accurate simulator. According to the Snitch mi-
cro-architecture (Figure 3.2), the FPU can execute one instruction per cycle
peak or two floating-point operations (FLOPs) per cycle peak in case of the
fused multiply-add (FMA) instruction), when operating on 64 bit values. For
smaller types, a corresponding number of vector operations can be executed.
As an in-order, bare-metal platform with no runtime or operating system,
all measurements on the Snitch platform are deterministic.

The PULP Project provides an LLVM toolchain [228]that is capable of
targeting Snitch, enabling the assembly-based programming model described
in Paragraph 3.2.1. It’s worth noting that no existing compilers can auto-
matically generate code that leveraged Snitch ISA extensions. The evalua-
tion considers two alternative compilation flows, both leveraging the LLVM
RISC-V backend: i) a pipeline using upstream MLIR passes, lowering the
same inputs as this prototype compiler, and ii) a naive C reimplementation
of the same kernel.

A key advantage in constructing MLIR compilation pipelines for the eval-
uation is the ability to take advantage of MLIR’s rich ecosystem of compiler
components and tools. The proposed backend is implemented in the xDSL
open-source compiler framework (v0.21.1) [237, 242], the Pythonic counter-
part of MLIR, enabling native integration of core MLIR constructs (i.e., SSA,
regions) within the language. Interoperability between xDSL and MLIR is
achieved via the common text IR format. For C implementations, we use the
LLVM toolchain provided by the Snitch architects [228], containing both the
assembler and linker used in all our kernel implementations. The program-
ming model used in C implementations is introduced in Paragraph 3.2.1.

97

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPUUtilization

024

Throughput

8
16

24
32

40
S

um
M

x4
0

M
x4

0

0

18
0

36
0

54
0

72
0

90
0

Cycles

8
16

24
32

40
S

um
40

xN
40

xN
8

16
24

32
40

R
eL

U
M

x4
0

8
16

24
32

40
R

eL
U

40
xN

4
8

12
16

20
M

at
M

ul
T

1x
K

40
xK

8
16

24
32

40
M

at
M

ul
T

1x
20

N
x2

0

O
ur

s
P

er
fo

rm
an

ce
R

o
ofl

in
e

M
in

C
yc

le
s

O
ve

rh
ea

d

F
ig

u
re

3.
12

:
T

he
pr

op
os

ed
lo

w
-le

ve
lr

ep
re

se
nt

at
io

n
is

fle
xi

bl
e

en
ou

gh
to

re
pr

es
en

t
lin

ea
r

al
ge

br
a

op
er

at
io

ns
co

m
m

on
ly

us
ed

in
m

ac
hi

ne
le

ar
ni

ng
(M

L)
re

ac
hi

ng
hi

gh
F
P

U
ut

ili
za

ti
on

,r
ea

ch
in

g
95

%
pe

ak
F
P

U
ut

ili
za

ti
on

an
d

94
%

of
th

eo
re

ti
ca

lm
ax

im
um

th
ro

ug
hp

ut
.

D
es

pi
te

th
e

hi
gh

F
P

U
ut

ili
za

ti
on

,t
he

M
at

M
ul

T
ke

rn
el

on
ly

re
ac

he
s
2
.4
5

F
LO

P
/
cy

cl
e

th
ro

ug
hp

ut
du

e
to

ex
tr

a
ve

ct
or

pa
ck

in
g

in
st

ru
ct

io
ns

.
T

hi
s

fig
ur

e
is

fr
om

Lo
po

uk
hi

ne
et

al
.[

67
].

98

S
um

M
x2

0
M

x2
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPUUtilization

S
um

20
xN

20
xN

F
ill

M
x2

0
F

ill
20

xN
R

eL
U

M
x2

0
R

eL
U

20
xN

4
8

12
16

20
C

on
v

3x
3

M
x2

0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPUUtilization

4
8

12
16

20
C

on
v

3x
3

20
xN

4
8

12
16

20
M

ax
P

o
ol

3x
3

M
x2

0
4

8
12

16
20

M
ax

P
o

ol
3x

3
20

xN
4

8
12

16
20

S
um

P
o

ol
3x

3
M

x2
0

4
8

12
16

20
S

um
P

o
ol

3x
3

20
xN

O
ur

s
C

la
ng

M
L

IR

F
ig

u
re

3.
13

:
Se

le
ct

ed
m

ic
ro

-k
er

ne
ls

co
m

pi
le

d
w

it
h

th
e

pr
op

os
ed

en
d-

to
-e

nd
pr

ot
ot

yp
e

co
m

pi
le

r
re

ac
h

up
to

95
%

F
P

U
ut

ili
za

-
ti

on
.

In
co

nt
ra

st
,

M
LI

R
do

es
no

t
ou

tp
er

fo
rm

a
na

iv
e

C
im

pl
em

en
ta

ti
on

co
m

pi
le

d
w

it
h

C
la

ng
on

th
is

pl
at

fo
rm

.
T

hi
s

fig
ur

e
is

fr
om

Lo
po

uk
hi

ne
et

al
.[

67
].

99

Leveraging existing tools popular in industry eases the adoption of our work
in research and production.

3.5.1 Performance Model

To define a roofline performance model [126] for Snitch, peak values for
both compute throughput and memory bandwidth are defined according
to the micro-architecture (Figure 3.2), as follows. The pipelined FPU is
capable of executing one instruction per cycle or, in terms of double precision
(the largest supported format) arithmetic operations, 2FLOP/cycle since
the ISA provides the FMA instruction that performs both an addition and
a multiplication in a single cycle (in the pipeline steady state).

Each core can issue 5 load/store instructions per cycle: 3 coming from
SSRs and 2 coming from additional load-store units (LSUs), one in the fron-
tend integer core and one in the FPU proper. While the shared low-latency
memory can serve 32 requests per cycle, either a load or a store, each core
is connected via 3 memory ports to the low-latency memory, hence at most
3 requests coming from a single core can be served every cycle. Moreover,
memory transfers are performed in fixed-size transactions of 8B, therefore
the peak attainable memory bandwidth by a single core is 24B/cycle. The
8B fixed transaction has profound effects on both the current assembly-based
programming model and the actual code generation: every kernel operating
on floating-point precisions lower than double, must deal with packed-SIMD
instructions (Paragraph 3.2.1). Since this work doesn’t deal with the ac-
celerator’s global memory (HBM2E in the case of Occamy [19]), the only
memory roof needed refers to the L1 low-latency memory.

The roofline plot for the double precision matrix multiplication kernel
is reported in Figure 3.14. The input program is MLIR linalg and the
resulting RISC-V assembly kernel is obtained via the lowering pipeline pre-
sented in this chapter. The plot shows data from 500 simulations with vary-
ing tensor shapes: with CM×N = AM×KBK×N , experiments range from
(M = 4,K = 4, N = 8) to (M = 8,K = 64, N = 64). The limit to the
shape space exploration is set by the available L1 memory on the Snitch
cluster. Moreover, to overcome the large computational needs of the Verila-
tor simulator, the benchmark harness (described in detail in Paragraph 3.5.3)
is run on the Leonardo [5] supercomputer. The plot highlights how all (but
one) data points are above the double precision theoretical peak of the ar-
chitecture (1FLOP/cycle) thanks to the extensive use of FMA instructions.
Figure 3.14 supports the findings depicted in Figure 3.17, Figure 3.18 and
Figure 3.19: while kernels operating on larger tensors are near-optimal (in
terms of FMA theoretical peak), smaller tensors progressively decrease the
sustained performance due to constant overheads (function calls, SSRs setup
sequences). It’s also worth noting how SSRs behave on the kernel characteris-
tics. Since Snitch’s data movers operate as software-managed L1 prefetchers,

100

1006 × 10 1

Arithmetic Intensity (FLOP/Byte)

1.0

1.2 × 100

1.4 × 100

1.6 × 100

1.8 × 100

2 × 100

Pe
rfo

rm
an

ce
 (F

LO
P/

Cy
cle

)
Matrix multiplication @ fp64, MLIR linalg lowering to RISC-V asm with xDSL

fp64 peak (FMA)
fp64 peak

1.0

1.2

1.4

1.6

1.8

Pe
rfo

rm
an

ce
 (F

LO
P/

Cy
cle

)

Figure 3.14: Roofline plot of the double precision matrix multiplication kernel.
The input program is MLIR linalg and the resulting RISC-V assembly kernel is
obtained via the lowering pipeline presented in this chapter. The plot shows data
from 500 simulations with varying tensor shapes: with CM×N = AM×KBK×N , ex-
periments range from (M = 4,K = 4, N = 8) to (M = 8,K = 64, N = 64). Almost
all data points are above the double precision theoretical peak of the architecture,
highlighting an extensive use of FMA instructions.

the optimal multi-dimensional SSR configuration generated by the proposed
compiler backend make the majority of generated kernels compute bound:
the operands needed by each floating point instruction are always available
at minimal latency at the time of instruction issue.

3.5.2 Performance Metrics

With respect to throughput measurements, both instruction/cycle and FLOP/cycle
are taken into account. Another important metric is FPU utilization, ex-
pressed as the ratio of cycles spent in the FPU executing arithmetic instruc-
tions over the total execution latency. These three metrics assess the kernel
execution speed and the efficient use of the available compute resources.

To obtain accurate performance data, we need to measure the cycle count,
throughput, and FPU utilization for each kernel execution. Each simulation
in the benchmark set is run through the compiled Verilator simulator pro-
ducing a detailed execution trace. The Verilator trace is disassembled to

101

1320 M 0x800001e0 flw ft0, 0(a5) #; ft0 <~~ Word[0x100000c4]
1321 M 0x800001e8 flw ft1, 0(a5) #; ft1 <~~ Word[0x100001c4],
 (f:lsu) ft0 <-- 140.3935394
1322 M 0x800001ec fmul.s ft0, ft0, fa0 #; ft0 = 140.3935394, fa0 = 97.6270065,
 (f:lsu) ft1 <-- 627.5956421
1323 M 0x800001f4 add a5, a2, a3 #; a2 = 0x10000200, a3 = 208,
 (wrb) a5 <-- 0x100002d0
1324 M 0x800001f8 addi a3, a3, 4 #; a3 = 208, (wrb) a3 <-- 212
1325 M #; (f:fpu) ft0 <-- 13706.2011719

b

a

d

c

Cycle Inst. Operands Arch. Events

Figure 3.15: Snitch execution trace. This format is produced by both disassem-
bling the Verilator traces and post-processing the result via the Snitch repository
tooling.

get instructions and operands from opcodes, and then post-processed via
the tooling provided by the Snitch authors along with the SystemVerilog
sources. The resulting output is a condensed execution trace in the format
presented in Figure 3.15. The trace format reports several information, in-
cluding cycle count from the beginning of the simulation, the value of the
program counter at that cycle, the instruction along with its operands and,
more importantly, all the architectural events occurred at each clock cycle.
This latter is of particular importance since it allows to measure instruction
and memory latencies. For example, Figure 3.15: a highlights the single
cycle latency needed to load a single-precision floating point value from L1
memory, from the issue of the flw instruction to the actual write back of
the destination operand ft0 by the FPU own LSU (f:lsu). For the actual
multiplication instruction (fmul.s) shown in the example, the latency spans
4 cycles (Figure 3.15: b) and the two subsequent integer additions (add
and addi in Figure 3.15: b) highlight the pseudo-dual issue capability of
Snitch since they are executed by the integer core while the FPU is still busy.
The actual retirement of the multiplication instruction and write back of the
destination register (ft0) happens 4 cycles later, in a clock cycle that sees
no new instructions issued (Figure 3.15: d), marking it as a stall. From the
analysis of this post-processed trace, we can extract all performance coun-
ters needed by our experimental evaluation. The full overview of available
counters and derived metrics is presented in Table 3.1.

3.5.3 Continuous Testing and Benchmarking Infrastructure

During the early stages of this work we realized that building a kernel com-
piler requires continuous feedback both in terms of correctness and perfor-
mance of the generated code. For this reason, we introduced a deterministic
testing and benchmarking harness that is then used in a continuous inte-

102

C
ou

nt
er

U
n
it

S
co

p
e

D
es

cr
ip

ti
on

ts
ta

rt
cy

cl
es

cc
T

he
gl

ob
al

si
m

ul
at

io
n

ti
m

e
w

he
n

th
e
mc

yc
le

in
st

ru
ct

io
n

op
en

in
g

th
e

cu
rr

en
t
m

ea
su

re
m

en
t
re

gi
on

is
is

su
ed

.
te

nd
cy

cl
es

cc
T

he
gl

ob
al

si
m

ul
at

io
n

ti
m

e
w

he
n

th
e
mc

yc
le

in
st

ru
ct

io
n

cl
os

in
g

th
e

cu
rr

en
t
m

ea
su

re
m

en
t
re

gi
on

is
is

su
ed

.
st

ar
t

cy
cl

es
cc

T
he

co
re

co
m

pl
ex

cy
cl

e
co

un
t

w
he

n
th

e
mc

yc
le

in
st

ru
ct

io
n

op
en

in
g

th
e

cu
rr

en
t

m
ea

su
re

m
en

t
re

gi
on

is
is

su
ed

.
en

d
cy

cl
es

cc
T

he
co

re
co

m
pl

ex
cy

cl
e

co
un

t
w

he
n

th
e
mc

yc
le

in
st

ru
ct

io
n

cl
os

in
g

th
e

cu
rr

en
t

m
ea

su
re

m
en

t
re

gi
on

is
is

su
ed

.
en

d_
fp

ss
cy

cl
es

cc
>

fp
ss

T
he

co
re

co
m

pl
ex

cy
cl

e
co

un
t

w
he

n
th

e
la

st
F
P

op
er

at
io

n
is

su
ed

in
th

e
cu

rr
en

t
m

ea
su

re
m

en
t

re
gi

on
re

ti
re

s.
sn

it
ch

_i
ss

ue
s

in
st

cc
>

sn
it

ch
T
ot

al
nu

m
be

r
of

in
st

ru
ct

io
ns

is
su

ed
by

Sn
it

ch
,

ex
cl

ud
in

g
th

os
e

offl
oa

de
d

to
th

e
F
P

SS
(s

ee
sn

it
ch

_f
se

q_
of

fl
oa

ds
).

sn
it

ch
_o

cc
up

an
cy

in
st

/c
yc

le
cc

>
sn

it
ch

IP
C

of
th

e
Sn

it
ch

co
re

,
ca

lc
ul

at
ed

as
sn

it
ch

_i
ss

ue
s

/
cy

cl
es

.
sn

it
ch

_f
se

q_
of

fl
oa

ds
in

st
cc

>
sn

it
ch

N
o.

of
in

st
ru

ct
io

ns
offl

oa
de

d
by

th
e

Sn
it

ch
to

th
e

F
P

SS
.

sn
it

ch
_f

se
q_

re
l_

of
fl

oa
ds

%
cc

>
sn

it
ch

T
he

ra
ti

o
be

tw
ee

n
sn

it
ch

_f
se

q_
of

fl
oa

ds
an

d
th

e
to

ta
ln

um
be

r
of

in
st

ru
ct

io
ns

is
su

ed
by

Sn
it

ch
co

re
pr

op
er

,
i.e

.,
sn

it
ch

_i
ss

ue
s

+
sn

it
ch

_f
se

q_
of

fl
oa

ds
.

sn
it

ch
_l

oa
d_

la
te

nc
y

cy
cl

es
cc

>
sn

it
ch

C
um

ul
at

iv
e

la
te

nc
y

of
al

l
lo

ad
s

is
su

ed
by

Sn
it

ch
’s

ow
n

L
SU

.
T

he
la

te
nc

y
of

a
lo

ad
is

m
ea

su
re

d
fr

om
th

e
cy

cl
e

th
e

lo
ad

is
is

su
ed

to
th

e
cy

cl
e

it
is

re
ti

re
d.

sn
it

ch
_a

vg
_l

oa
d_

la
te

nc
y

cy
cl

es
cc

>
sn

it
ch

A
ve

ra
ge

la
te

nc
y

of
a

lo
ad

is
su

ed
by

Sn
it

ch
’s

ow
n

L
SU

.
sn

it
ch

_l
oa

ds
in

st
cc

>
sn

it
ch

N
o.

of
lo

ad
in

st
ru

ct
io

ns
re

ti
re

d
by

th
e

Sn
it

ch
ow

n
L
SU

.
fs

eq
_y

ie
ld

%
cc

>
fs

eq
T

he
ra

ti
o

be
tw

ee
n
fp

ss
_i

ss
ue

s
an

d
sn

it
ch

_f
se

q_
of

fl
oa

ds
.

fp
ss

_i
ss

ue
s

in
st

cc
>

fp
ss

T
ot

al
nu

m
be

r
of

in
st

ru
ct

io
ns

is
su

ed
by

th
e

F
P

SS
.

fp
ss

_f
pu

_i
ss

ue
s

in
st

cc
>

fp
ss

>
fp

u
Si

m
ila

r
to

fp
ss

_i
ss

ue
s,

bu
t

co
un

ts
on

ly
in

st
ru

ct
io

ns
de

st
in

ed
to

th
e

F
P

U
pr

op
er

.
fp

ss
_f

pu
_f

ma
dd

_i
ss

ue
s

in
st

cc
>

fp
ss

>
fp

u
Si

m
ila

r
to

fp
ss

_f
pu

_i
ss

ue
s,

bu
t

co
un

ts
on

ly
do

ub
le

-p
re

ci
si

on
fu

se
d

m
ul

ti
pl

y
an

d
ad

d.
fp

ss
_f

pu
_l

at
en

cy
cy

cl
es

cc
>

fp
ss

>
fp

u
C

um
ul

at
iv

e
la

te
nc

y
of

al
l
F
P

U
in

st
ru

ct
io

ns
.

fp
ss

_a
vg

_f
pu

_l
at

en
cy

cy
cl

es
cc

>
fp

ss
>

fp
u

A
ve

ra
ge

la
te

nc
y

of
an

F
P

U
in

st
ru

ct
io

n.
fp

ss
_l

oa
d_

la
te

nc
y

cy
cl

es
cc

>
fp

ss
C

um
ul

at
iv

e
la

te
nc

y
of

al
l
lo

ad
s

is
su

ed
by

F
P

SS
ow

n
L
SU

.
fp

ss
_a

vg
_l

oa
d_

la
te

nc
y

cy
cl

es
cc

>
fp

ss
A
ve

ra
ge

la
te

nc
y

of
a

lo
ad

is
su

ed
by

F
P

SS
ow

n
L
SU

.
fp

ss
_l

oa
ds

in
st

cc
>

fp
ss

N
o.

of
lo

ad
in

st
ru

ct
io

ns
re

ti
re

d
by

th
e

F
P

SS
ow

n
L
SU

.
fp

ss
_s

ec
ti

on
_l

at
en

cy
cy

cl
es

cc
>

fp
ss

ma
x(

en
d_

fp
ss

-
en

d,
0)

.
fp

ss
_o

cc
up

an
cy

in
st

/c
yc

le
cc

>
fp

ss
IP

C
of

th
e

F
P

SS
,
ca

lc
ul

at
ed

as
fp

ss
_i

ss
ue

s
/

cy
cl

es
.

fp
ss

_f
pu

_o
cc

up
an

cy
in

st
/c

yc
le

cc
>

fp
ss

>
fp

u
IP

C
of

th
e

F
P

U
,
ca

lc
ul

at
ed

as
fp

ss
_f

pu
_i

ss
ue

s
/

cy
cl

es
.

fp
ss

_f
pu

_r
el

_o
cc

up
an

cy
%

cc
>

fp
ss

>
fp

u
T

he
ra

ti
o

be
tw

ee
n
fp

ss
_f

pu
_o

cc
up

an
cy

an
d
fp

ss
_o

cc
up

an
cy

.
cy

cl
es

cy
cl

es
cc

O
ve

ra
ll

cy
cl

es
sp

en
t

in
th

e
cu

rr
en

t
m

ea
su

re
m

en
t

re
gi

on
.

to
ta

l_
ip

c
in

st
/c

yc
le

cc
T

he
ov

er
al

l
IP

C
of

th
e

co
re

co
m

pl
ex

,
ca

lc
ul

at
ed

as
sn

it
ch

_o
cc

up
an

cy
+

fp
ss

_o
cc

up
an

cy
.

T
ab

le
3.

1:
Sn

it
ch

pe
rf

or
m

an
ce

co
un

te
rs

an
d

de
ri

ve
d

m
et

ri
cs

pr
od

uc
ed

by
th

e
si

m
ul

at
io

n
tr

ac
es

po
st

-p
ro

ce
ss

or
pr

ov
id

ed
al

on
gs

id
e

V
er

ilo
g

so
ur

ce
s.

A
dd

it
io

na
l
po

st
-p

ro
ce

ss
in

g
is

pe
rf

or
m

ed
sp

ec
ifi

ca
lly

fo
r

th
is

w
or

k
to

co
m

pu
te

m
et

ri
cs

re
le

va
nt

fo
r

SI
M

D
pr

ofi
lin

g.
T

he
m

ic
ro

-
ar

ch
it

ec
tu

ra
ls

co
pe

(w
he

re
cc

st
an

ds
fo

r
co

re
co

m
pl

ex
,s

ni
tc

h
fo

r
th

e
in

te
ge

r
co

re
,f

ps
s

fo
r
F
P

su
b-

sy
st

em
an

d
fp

u
fo

r
ju

st
th

e
F
P

U
it

se
lf
)

an
d

a
de

sc
ri

pt
io

n
of

ea
ch

co
un

te
r/

m
et

ri
c

ar
e

al
so

re
po

rt
ed

.

103

gration infrastructure to provide feedback on every change introduced in
the code generation pipeline. Given the set of selected kernels, the pipeline
explores the parameter space of input tensor shapes and, for each kernel in-
stance, checks for results correctness and produces all performance counters
computed from cycle-accurate Verilator simulation traces (Paragraph 3.5.1).
Moreover, in order to assess the contribution of each optimization pass and
the optimal pass schedule, the test harness explores the parameter space of
optimization passes by adding each optimization incrementally. Results of
this exploration are reported in Table 3.2.

The pipeline is implemented in the Snakemake [251] workflow language
and depicted in Figure 3.16. In particular, kernel_generate_∗ tasks drive
the parametric kernel generator to explore the space of input tensor shapes.
optimization_pipelines generates variants of the lowering pipeline by in-
cremental addition of optimizations. All tasks downstream of verilator
(that runs the actual simulation) are devoted to post-processing of execu-
tion traces and computation of performance counters.

The Snitch Verilog source repository provides utilities to decode simula-
tion traces: post-processing the cycle-accurate execution traces allows us to
compute all the performance metrics needed to support our benchmarking
model without any hardware support (like an actual performance monitoring
unit).

To support the parameter space exploration needed to guide both the im-
plementation and tuning of optimization passes, we also introduced a kernel
templating system. While not directly implemented in MLIR but instead as
an external tool, our kernel generator works similarly to the mlir-gen gen-
erator by Golin et al. [68] in that it instantiates variants of kernel programs
based on parametric input tensor shapes and, at the same time, provides
test input data along with reference results to ensure correctness.

3.5.4 Experimental Results

The first set of experiments presented by Lopoukhine et al. [67] have the
goal of assessing the performance of kernels expressed using low-level RISC-
V dialects. Sum, ReLU, and MatMulT kernels on 32 bit FP elements are
expressed using the snitch_stream, rv_snitch and structured rv dialects,
and lowered to assembly using the presented backend passes. The Sum and
ReLU kernels display similar performance behavior and attain 95% FPU uti-
lization. These kernels are element-wise operations on one or two operands,
have no reductions, and operate in linear manner, resulting in a minimal and
constant overhead for the accelerator setup and a simpler control flow struc-
ture, reaching near-100% FPU utilization. The MatMulT kernel reaches
74% FPU utilization, but only attains a throughput of 2.45FLOP/cycle.
All MLIR kernels match the performance of the optimized, handwritten as-
sembly versions, proving that the low-level MLIR dialects representing both

104

fast

profile_to_csv

csv_to_pivoted

trace_to_profile

dasm_to_trace

verilator

cc_link

cc_assemble

cc_compile_c

assembly_to_regalloc_stats

kernel_generate_source

mlir_linalg_compile xdsl_compile

kernel_generate_params

kernel_generate_data_h

kernel_generate_data_c

xdsl_kernel_generate_source

cc_compile_shared_main cc_compile_ll

optimization_pipelines

regalloc_stats_to_csv

combine_regalloc_stats

Figure 3.16: Compiler continuous testing and benchmarking pipeline. Ver-
tices represent tasks, edges represent data dependencies. Tasks in the form
kernel_generate_∗ drive the parametric kernel generator to explore the space
of input tensor shapes. optimization_pipelines generates variants of the low-
ering pipeline by incremental addition of optimizations. All tasks downstream of
verilator (that runs the actual simulation) are devoted to post-processing of ex-
ecution traces and computation of performance counters.

105

standard and Snitch RISC-V ISAs are capable of matching expert-written
and tuned kernels.

Register allocation is a critical task for compiler backends: the second set
of experiments has the goal of assessing the feasibility of a linear, spill-free
register allocator operating directly on MLIR. The key realization is avoiding
the management of register spilling altogether, due to the high-performance
nature of the considered micro-kernels: spilling to L1 memory (or even to
global memory) would prevent any usage of Snitch ISA features altogether,
making the generated code automatically inefficient. The presented experi-
mental evaluation analyzes the effectiveness of this approach across various
data types and shape sizes to assess its suitability. For double-precision
kernels, register pressure remains manageable, with available registers left
unallocated even considering the reserved floating point registers required
by SSRs. For single-precision, packed-SIMD kernels, register usage is gener-
ally higher. Deeper loop nests due to higher-dimensional tensors and some
peephole optimizations, like loop unrolling, are known sources of increased
register pressure [212]. Despite these combined factors, the measurements
reported by the authors show how spill-free register allocation is fit for high-
performance linear algebra micro-kernels.

The third set of experiments has the goal of assessing the capacity of
the proposed multi-level compilation approach to generate target-optimized,
high-efficiency kernels from high-level abstractions. The effectiveness of code
produced by the proposed compiler backend is evaluated in comparison to
code compiled with MLIR and a naiv C implementation compiled using
Clang. The objective is to minimize kernel execution time while maximizing
FPU utilization.

Empirical results indicate that both MLIR and Clang achieve similar
performance, with a peak utilization of approximately 42%. This limitation
arises because both compilation flows rely on the LLVM RISC-V backend
which, as pointed out, is unable to automatically emit ISA extensions from
input C or LLVM IR programs. Consequently, the generated assembly code
exhibits severe inefficiencies such as explicit load/store operations and RAW
hazards, leading to poor performance. While the Max Pool kernel benefits
the most from LLVM’s backend optimizations, its FPU utilization remains
below 50%. The fundamental insight is that despite leveraging high-level,
domain-specific MLIR optimizations, the LLVM IR and backend dictate and
ultimately constrain the micro-kernels’ performance.

In contrast, the proposed compilation strategy achieves high FPU uti-
lization even for smaller kernel sizes, reaching up to 90%. For element-wise
kernels (Sum, Fill, and ReLU), FPU utilization increases with input size,
approaching 100%. Reduction kernels (Conv, Max Pool, and Sum Pool) also
experience an increase in FPU utilization as input width grows, though at a
slower rate, stabilizing between 70-80%. All kernels are modified to handle
four reductions simultaneously, resulting in an outlier of approximately 90%

106

utilization when N = 4, due to the elimination of the outermost loop over-
head and dimensional reduction in accelerator setup. The remaining kernels
exhibit behavior analogous to their parallel counterparts, with utilization
rising steadily as kernel width increases.

Further measurements are conducted on the MatMul kernel to assess
performance across a broader range of input shapes (Figure 3.17, Figure 3.18,
and Figure 3.19) and to evaluate the impact of stream setup instructions.
When either the inner dimension or the number of columns in the second
operand is minimal, accelerator setup costs dominate execution time, leading
to a lower throughput that does not exceed 80% of the theoretical peak.
As input sizes increase, throughput improves, as setup and function call
overheads become negligible relative to computation time.

To evaluate the impact of individual high- and low-level optimizations,
authors incrementally applied optimization passes to the MatMul kernel (Ta-
ble 3.2). The kernel consists of two linalg.generic operations: one for
initializing the output matrix to zero and another for performing matrix
multiplication. The baseline pipeline, which applies direct lowering without
schedule optimizations while targeting the standard RISC-V ISA, results in
an FPU occupancy of less than 3%, a performance degradation of approxi-
mately 36× compared to the fully optimized pipeline.

The introduction of SSRs halves the cycle count. While the number of
explicit load/store instructions is reduced by 66%, overall performance re-
mains suboptimal. The introduction of additional optimizations like Scalar
Replacement enhances performance by a factor of over 4×, as explicit mem-
ory operations are hoisted and minimized. Applying FRep at this stage pro-
vides only marginal improvement, as execution time remains dominated by
the innermost loop’s dot product computation rather than loop setup over-
head. Moreover, Unroll-and-Jam allows to break cross-iteration RAW de-
pendencies in the reduction dimension and pipeline stalls are eliminate by
unrolling and interleaving with a depth of at least five iterations.

The combined application of high- and low-level optimization passes re-
sults in near-optimal performance for linear algebra micro-kernels, with FPU
utilization ranging between 73% and 90%. The multi-level approach to back-
end construction proposed by Lopoukhine et al. [67] effectively utilizes the
high-level semantics embedded in linalg.generic operations to target cus-
tom ISA extensions, such as SSR and FREP in the Snitch architecture.

The results presented by the authors clearly demonstrate that micro-
kernels expressed as assembly-level dialects can be effectively compiled to
the Snitch accelerator, reaching up to 95% of the theoretical peak perfor-
mance. At the same time, the proposed register allocation shows how, by
being consistently spill-free, high-performance micro-kernels don’t benefit
from sophisticated spilling management. Finally, experiments show how the
presented multi-level compiler backend can efficiently target the Snitch from
a higher-level DSL obtaining 90% FPU utilization.

107

4 12 20 28 36 44 52 60
N

4

12

20

28

36

44

52

60

K

22 25 34 35 42 47 48 51 53 55 56 57 59 60 60 62

34 38 48 49 57 62 63 66 68 67 68 69 70 71 72 74

42 47 57 58 66 68 70 72 73 74 76 77 78 79 79 80

49 53 64 67 71 74 75 77 79 80 81 82 82 83 83 84

54 58 63 69 75 77 79 81 82 83 84 85 85 86 86 86

58 63 69 72 79 80 82 83 84 85 86 87 87 88 88 88

62 66 72 75 81 83 84 85 86 87 88 88 89 89 89 90

65 68 74 78 83 84 86 87 88 88 89 89 90 90 90 91

67 68 76 80 84 86 87 88 89 89 90 90 91 91 91 92

70 70 78 82 86 87 88 89 90 90 90 91 91 92 92 92

71 72 79 83 87 88 89 90 91 91 92 92 92 92 93 93

73 74 81 84 88 89 90 91 91 92 92 92 93 93 93 93

65 75 82 85 88 90 90 91 92 92 92 93 93 93 94 94

67 76 83 86 89 90 91 92 92 93 93 93 94 94 94 94

69 78 83 87 90 91 91 92 93 93 93 94 94 94 94 95

71 79 84 87 90 91 92 93 93 94 94 94 94 95 95 95

20 30 40 50 60 70 80 90 100
% of FLOP/cycle Roofline

Figure 3.17: Sustained throughput of the double precision MatMul kernel
(CM×N = AM×KBK×N when M = 1). When compiled via the proposed approach,
it achieves a throughput of over 90% (≥ 1.8 FLOPs/cycle) of the theoretical peak
(above the white border) as shape sizes increase, indicating that the computation
offsets constant overheads. This figure is from Lopoukhine et al. [67].

108

4 12 20 28 36 44 52 60
N

4

12

20

28

36

44

52

60

K

37 49 56 60 63 65 66 67 68 69 69 70 70 71 71 71

51 63 69 73 75 76 77 79 79 80 80 80 81 81 81 82

60 71 76 79 81 82 83 84 84 85 85 85 86 86 86 86

66 76 81 84 85 86 86 87 87 88 88 88 89 89 89 89

71 80 84 86 87 88 89 89 90 90 90 90 91 91 91 91

74 82 86 88 89 90 90 91 91 91 91 92 92 92 92 92

77 84 87 89 90 91 91 92 92 92 93 93 93 93 93 93

79 86 89 90 91 92 92 93 93 93 93 93 94 94 94 94

81 87 90 91 92 93 93 93 94 94 94 94 94 94 94 94

82 88 91 92 93 93 94 94 94 94 94 95 95 95 95 95

83 89 91 93 93 94 94 94 95 95 95 95 95 95 95 95

85 90 92 93 94 94 95 95 95 95 95 95 95 96 96 96

86 91 93 94 94 95 95 95 95 95 96 96 96 96 96 96

86 91 93 94 95 95 95 95 96 96 96 96 96 96 96 96

87 92 93 94 95 95 95 96 96 96 96 96 96 96 96 96

89 92 94 94 95 95 96 96 96 96 96 96 96 96 97 97

30 40 50 60 70 80 90 100
% of FLOP/cycle Roofline

Figure 3.18: Sustained throughput of the double precision MatMul kernel
(CM×N = AM×KBK×N when M = 4). When compiled via the proposed approach,
it achieves a throughput of over 90% (≥ 1.8 FLOPs/cycle) of the theoretical peak
(above the white border) as shape sizes increase, indicating that the computation
offsets constant overheads. This figure is from Lopoukhine et al. [67].

109

4 12 20 28 36 44 52 60
N

4

12

20

28

36

44

52

60

K

51 60 65 67 69 70 71 72 72 72 73 73 73 73 74 74

65 73 76 78 80 80 81 82 82 82 83 83 83 83 83 83

73 79 82 84 85 85 86 86 87 87 87 87 87 88 88 88

78 83 86 87 88 88 89 89 89 90 90 90 90 90 90 90

81 86 88 89 90 90 91 91 91 91 91 92 92 92 92 92

84 88 90 91 91 92 92 92 92 93 93 93 93 93 93 93

86 89 91 92 92 93 93 93 93 93 94 94 94 94 94 94

86 90 92 92 93 93 94 94 94 94 94 94 94 94 94 95

88 91 93 93 94 94 94 94 95 95 95 95 95 95 95 95

89 92 93 94 94 94 95 95 95 95 95 95 95 95 95 95

90 93 94 94 95 95 95 95 95 95 96 96 96 96 96 96

91 93 94 95 95 95 95 96 96 96 96 96 96 96 96 96

92 94 94 95 95 95 96 96 96 96 96 96 96 96 96 96

92 94 95 95 96 96 96 96 96 96 96 96 96 96 97 97

93 94 95 95 96 96 96 96 96 96 97 97 97 97 97 97

93 95 95 96 96 96 96 97 97 97 97 97 97 97 97 97

50 60 70 80 90 100
% of FLOP/cycle Roofline

Figure 3.19: Sustained throughput of the double precision MatMul kernel
(CM×N = AM×KBK×N when M = 8). When compiled via the proposed approach,
it achieves a throughput of over 90% (≥ 1.8 FLOPs/cycle) of the theoretical peak
(above the white border) as shape sizes increase, indicating that the computation
offsets constant overheads. This figure is from Lopoukhine et al. [67].

110

3.6 Related Work

Traditional compiler designs have converged toward a three-tier architec-
ture, effectively separating implementation concerns and enabling indepen-
dent resolution of problems; tasks like instruction selection and register allo-
cation are traditionally pertaining to the backend. However, this approach
has resulted in increasingly complex and monolithic compiler stages.

Related to the work by Lopoukhine et al. [67] is another micro-kernel
compiler by Castello et al. [252] that leverages a DSL [253] but is constrained
to matrix multiplication and relies on manual user input for scheduling, data
management, and transformations. In contrast, the authors’ approach auto-
mates these processes across a broader spectrum of linear algebra operations.

Certain approaches within the MLIR ecosystem have explored the gen-
eration of optimized code tailored to specific micro-architectures, yet they
frequently integrate existing general-purpose compiler backends. Notably,
Bondhugula [232] applies high-level loop transformations within MLIR to
reproduce optimizations known to be effective in producing basic linear al-
gebra subprograms (BLAS) kernels for Intel CPUs. Kuzma et al. [254] uti-
lize an end-to-end compilation process with C/C++ and LLVM IR types,
while Varoumas [255] focuses on ARM-based architectures through profile-
driven transformations exploration in the vector dialect. On the other hand,
Lopoukhine et al. [67] claim that their approach represents the first MLIR-
based compiler backend that uses accelerator-specific abstractions while, at
the same time, implementing a complete compiler backend.

Several library-based approaches [218, 216, 217] rely on ahead-of-time
(AOT), just-in-time (JIT) compilation or kernel templates augmented with
parameter space exploration to provide the best kernel corpus for a spe-
cific target micro-architecture. None of these approaches provide the same
flexibility of a multi-level compiler backend.

Recent years have seen a proliferation of domain-specific languages and
corresponding tooling aimed at managing computational aspects such as
scheduling and memory placement [30, 256, 257, 29, 229, 258, 259, 260,
253], influenced by methodologies like Halide [29]. This trend has also fos-
tered the integration of autotuning and analytical techniques for optimiz-
ing configuration choices [261, 262, 263, 34]. These DSLs often replicate
tightly coupled compiler infrastructures [34, 264], depend on general-pur-
pose compiler backends for actual code generation [253], or necessitate ex-
ternal tools for interoperability [265]. In contrast, the approach presented
by Lopoukhine et al. [67] is fully integrated in the MLIR ecosystem, and
leverages its open and reusable infrastructure.

111

T
ab

le
3.

2:
In

cr
em

en
ta

l
pe

rf
or

m
an

ce
im

pr
ov

em
en

ts
by

op
ti

m
iz

at
io

n
pa

ss
es

fr
om

th
e

pr
op

os
ed

co
m

pi
la

ti
on

pi
pe

lin
e.

T
he

pr
ot

ot
yp

e
ba

ck
en

d
ac

hi
ev

es
ov

er
90

%
F
P

U
oc

cu
pa

nc
y

fo
rt

he
M

at
M

ul
ke

rn
el

,o
pe

ra
ti

ng
on

1×
20

0
an

d
20

0×
5
6
4
b
it

in
pu

ts
.

In
cr

em
en

ta
lly

ad
di

ng
ea

ch
op

ti
m

iz
at

io
n

m
in

im
iz

es
an

d,
ev

en
tu

al
ly

el
im

in
at

es
,
ex

pl
ic

it
m

em
or

y
op

er
at

io
ns

,
w

hi
le

re
du

ci
ng

ex
ec

ut
io

n
ti

m
e

(c
yc

le
s)

an
d

m
ax

im
iz

in
g

F
P

U
ut

ili
za

ti
on

.
T

hi
s

ta
bl

e
is

fr
om

Lo
po

uk
hi

ne
et

al
.[

67
].

O
p
ti

m
iz

at
io

n
s

A
ll
oc

at
ed

R
eg

is
te

rs
(#

)
A

ss
em

b
ly

O
p
er

at
io

n
s

(#
)

P
er

fo
rm

an
ce

F
P

In
te

ge
r

L
oa

d
s

S
to

re
s

F
M

A
d
d

F
R

ep
C

yc
le

s
(#

)
O

cc
u
p
an

cy
(%

)

B
as

el
in

e
(f

or
M

at
M

ul
)

3
/2

0
13

/1
5

3
00

0
1
00

5
1
00

0
0

40
16

1
2
.4
9

+
St

re
am

s
3
/2

0
11

/1
5

1
00

0
1
00

0
1
00

0
0

19
16

5
5
.2
5

+
Sc

al
ar

Re
pl

ac
em

en
t

3
/2

0
10

/1
5

5
5

1
00

0
0

4
14

7
24
.2
8

+
FR

ep
3
/2

0
9
/1

5
5

5
1
00

0
2

4
12

4
24
.4
2

+
Fu

se
Fi

ll
5/

20
8
/1

5
0

0
1
00

0
1

4
13

0
24
.5

+
Un

ro
ll

-a
nd

-J
am

8/
20

7
/1

5
0

0
1
00

0
1

1
11

5
90

.6
7

112

3.7 Compiling at the End of Moore’s Law : Conclu-
sion

The initial motivation for the work by Lopoukhine et al. [67] is the real-
ization that the strict separation of frontends and backends in the design
of modern general-purpose compilers results in an information bottleneck
between high-level code abstractions and targeted novel hardware features.
This leads to performance experts often bypassing the compiler backend al-
together with hand-written kernels, often written in assembly language or
from templates. The cost and effort in hand-tuning kernels is exacerbated
by a recent proliferation of specialized hardware, driven by the breakdown
of Moore’s law and Dennard scaling in modern silicon technologies. The
MLIR-based prototype presented by Lopoukhine et al. [67] showcases an ef-
ficient methodology for creating modular and expressive compiler backends
that combine domain knowledge with hardware capabilities. Authors show
rhat a novel approach to compiler backend construction, based on a struc-
tured, abstraction-driven strategy with multi-level SSA-based IRs, is able
to generate high-performance assembly kernels for RISC-V accelerators on
a set of real-world workloads from the DL domain. Given the steep learn-
ing curve posed by the Snitch assembly-based programming model and the
complexity of analyses and transformations needed to leverage its unique
ISA features, the proposed approach is a valuable prospect to unlock the
performance of novel hardware platforms both in industry and computing
architectures research.

113

Final Conclusions

This thesis presented published works, along with my contributions, in an
attempt at answering the questions posed by our post-Moore era.

How task-based, embarrassingly-parallel scientific workloads like vir-
tual screening can efficiently scale up to entire pre-exascale, state-of-
the-art GPU-accelerated HPC systems?

Chapter 1 explored virtual screening of large molecular sets, a real-world
example of an embarrassingly-parallel, task-based workload on pre-exascale
HPC systems. Unlike tightly coupled GPU workloads common in classi-
cal HPC applications, this problem requires a different acceleration strat-
egy. For GPU efficiency, a latency-optimized approach, which distributes
a single task (ligand-protein pair) across multiple processing elements, im-
proves task-level performance but hinders overall time-to-solution. On the
other hand, a throughput-optimized strategy, despite increasing single-task
latency, enhances GPU occupancy, achieving up to 5× better throughput.
Thus, maximizing GPU occupancy is crucial for handling task-based work-
loads efficiently. This is done by means of warp-synchronous kernels, static
allocation of kernel resources and off-device load balancing. The presented
works also demonstrated how extreme-scale virtual screening can accelerate
drug discovery during global pandemics emergencies. Using the first GPU
port of LiGen, authors screened over 70 billion ligands across 15 binding sites
of 12 SARS-CoV-2 proteins. Running on both Marconi100 [155] at CINECA
and HPC5 [156] at ENI S.p.A., Europe’s two most powerful supercomputers
at the time, aggregating around 81PFLOP/s, the one-trillion-docking exper-
iment was completed in just 60 hours of continuous production, the largest
virtual screening campaign ever conducted.

How an extreme-scale HPC system, based on a heterogeneous offering
of highly specialized accelerators, can be sustainable?

114

If RISC-V can be an answer to the challenge of extreme hardware
specialization, how future post-exascale systems based on RISC-V will
look like?

Chapter 2 introduced Monte Cimone, a multi-blade computer prototype
and hardware/software testbed, the first fully operational RISC-V cluster
supporting a baseline HPC software stack. The heterogeneous cluster inte-
grates a CPU-only partition and an accelerated partition based on a synthe-
sized, scaled-down version of the Occamy [19] RISC-V accelerator, within a
seamless HPC production stack. The extensive experimental evaluation cam-
paign showed how mainstream HPC applications on Monte Cimone exhibit
near-linear, full-system strong scaling, demonstrating a remarkable readiness
of the whole HPC software stack. While Monte Cimone is not optimized
for high floating-point performance, it serves to explore the integration of a
multi-node RISC-V cluster with a full HPC production stack. The presented
results highlight significant software and hardware maturity, suggesting that
the first generation of RISC-V HPC machines may be closer than expected.

Can a multi-level IR represent RISC-V domain specific extensions for
novel linear algebra accelerators?

Can the multi-level approach to compiler construction enable SSA
compiler backends to generate high-performance kernels leveraging
custom, application-specific hardware features?

Finally, in Chapter 3, Lopoukhine et al. [67] show how the strict separa-
tion of frontends and backends in modern general-purpose compilers creates
an information bottleneck, limiting optimization for novel hardware. The
effort originated from the goal of being able to close the gap between high-
level linear algebra programs and Snitch [48], a RISC-V accelerator architec-
ture designed by ETH Zurich to pursue extreme compute energy efficiency
by means of novel features like stream-semantics registers to reach perfect,
software-programmed prefetching, and floating point hardware loops to elide
control flow. The same architecture is the building block of the Occamy [19]
RISC-V accelerator deployed on Monte Cimone (Chapter 2). The presented
MLIR-based prototype kernel compiler explores a backend methodology that
integrates domain knowledge with hardware capabilities. With the support
of an extensive experimental evaluation, authors demonstrate that a struc-
tured, abstraction-driven approach to compiler backend construction, based
on a multi-level SSA-based IRs, is able to generate high-performance assem-
bly kernels for the Snitch architecture. Given the steep learning curve of the
Snitch assembly-based programming model and the complexity of required
analyses and transformations, this approach offers a promising prospect to

115

unlock performance for emerging domain-specific hardware in both industry
and computing research.

116

Bibliography

[1] Charles E. Leiserson, Neil C. Thompson, Joel S. Emer, Bradley C.
Kuszmaul, Butler W. Lampson, Daniel Sanchez, and Tao B. Schardl.
“There’s Plenty of Room at the Top: What Will Drive Computer
Performance after Moore’s Law?” In: Science 368.6495 (June 5, 2020),
eaam9744. doi: 10.1126/science.aam9744.

[2] John L. Hennessy and David A. Patterson. “A New Golden Age
for Computer Architecture”. In: Communications of the ACM 62.2
(Jan. 28, 2019), pp. 48–60. doi: 10.1145/3282307.

[3] Thomas N. Theis and H.-S. Philip Wong. “The End of Moore’s Law:
A New Beginning for Information Technology”. In: Computing in Sci-
ence & Engineering 19.2 (Mar. 2017), pp. 41–50. doi: 10.1109/MCSE.
2017.29.

[4] Elie Track, Nancy Forbes, and George Strawn. “The End of Moore’s
Law”. In: Computing in Science & Engineering 19.2 (Mar. 2017),
pp. 4–6. doi: 10.1109/MCSE.2017.25.

[5] Matteo Turisini, Giorgio Amati, and Mirko Cestari. LEONARDO: A
Pan-European Pre-Exascale Supercomputer for HPC and AI Appli-
cations. July 31, 2023. url: http://arxiv.org/abs/2307.16885.
Pre-published.

[6] LUMI Consortium. The LUMI Supercomputer. url: https://www.
lumi-supercomputer.eu/lumi_supercomputer/.

[7] Elon Musk. This Weekend, the @xAI Team Brought Our Colossus
100k H100 Training Cluster Online. From Start to Finish, It Was
Done in 122 Days. Colossus Is the Most Powerful AI Training System
in the World. Moreover, It Will Double in Size to 200k (50k H200s)
in a Few Months. Excellent Work by the Team, Nvidia and Our Many
Partners/Suppliers. x.com. Sept. 2, 2024. url: https://x.com/
elonmusk/status/1830650370336473253.

[8] Mark Zuckerberg. Some Updates on Our AI Efforts. Our Long Term
Vision Is to Build General Intelligence, Open Source It Responsibly,
and Make It Widely Available so Everyone Can Benefit. We’re Bring-
ing Our Two Major AI Research Efforts (FAIR and GenAI) Closer

117

https://doi.org/10.1126/science.aam9744
https://doi.org/10.1145/3282307
https://doi.org/10.1109/MCSE.2017.29
https://doi.org/10.1109/MCSE.2017.29
https://doi.org/10.1109/MCSE.2017.25
http://arxiv.org/abs/2307.16885
https://www.lumi-supercomputer.eu/lumi_supercomputer/
https://www.lumi-supercomputer.eu/lumi_supercomputer/
https://x.com/elonmusk/status/1830650370336473253
https://x.com/elonmusk/status/1830650370336473253

Together to Support This. We’re Currently Training Our next-Gen
Model Llama 3, and We’re Building Massive Compute Infrastructure
to Support Our Future Roadmap, Including 350k H100s by the End of
This Year – and Overall Almost 600k H100s Equivalents of Compute
If You Include Other GPUs. Also Really Excited about Our Progress
Building New AI-centric Computing Devices like Ray Ban Meta Smart
Glasses. Lots More to Come Soon. Instagram. Jan. 18, 2024. url:
https://www.instagram.com/p/C2QARHJR1sZ/.

[9] Andrew A. Chien and Vijay Karamcheti. “Moore’s Law: The First
Ending and a New Beginning”. In: Computer 46.12 (Dec. 2013),
pp. 48–53. doi: 10.1109/MC.2013.431.

[10] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan
Sankaralingam, and Doug Burger. “Dark Silicon and the End of
Multicore Scaling”. In: Proceedings of the 38th Annual International
Symposium on Computer Architecture. ISCA ’11. San Jose, Cali-
fornia, USA: Association for Computing Machinery, June 4, 2011,
pp. 365–376. doi: 10.1145/2000064.2000108.

[11] Michael B. Taylor. “Is Dark Silicon Useful? Harnessing the Four
Horsemen of the Coming Dark Silicon Apocalypse”. In: Proceedings
of the 49th Annual Design Automation Conference. DAC ’12: The
49th Annual Design Automation Conference 2012. San Francisco Cal-
ifornia: ACM, June 3, 2012, pp. 1131–1136. doi: 10.1145/2228360.
2228567.

[12] TOP500 Supercomputer Sites. url: https://www.top500.org/.

[13] “Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora
Supercomputer”. In: HPC Wire (July 30, 2020).

[14] Luca Benini. “Open Platforms for Energy-Efficient Scalable Comput-
ing”. Invited talk. The International Conference for High Performance
Computing, Networking, Storage, and Analysis (Dallas, TX, USA).
Nov. 17, 2022.

[15] Norman P. Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Na-
garajan, Lifeng Nai, Nishant Patil, Suvinay Subramanian, Andy
Swing, Brian Towles, et al. “TPU v4: An Optically Reconfigurable
Supercomputer for Machine Learning with Hardware Support for Em-
beddings”. Version 1. In: (2023). doi: 10.48550/ARXIV.2304.01433.

[16] Gokul Krishnan, Sumit K. Mandal, Chaitali Chakrabarti, Jae-sun
Seo, Umit Y. Ogras, and Yu Cao. “In-Memory Computing for AI Ac-
celerators: Challenges and Solutions”. In: Embedded Machine Learning
for Cyber-Physical, IoT, and Edge Computing. Ed. by Sudeep Pas-
richa and Muhammad Shafique. Cham: Springer International Pub-
lishing, 2024, pp. 199–224. doi: 10.1007/978-3-031-19568-6_7.

118

https://www.instagram.com/p/C2QARHJR1sZ/
https://doi.org/10.1109/MC.2013.431
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1145/2228360.2228567
https://doi.org/10.1145/2228360.2228567
https://www.top500.org/
https://doi.org/10.48550/ARXIV.2304.01433
https://doi.org/10.1007/978-3-031-19568-6_7

[17] Zhe Jia, Blake Tillman, Marco Maggioni, and Daniele Paolo Scarpazza.
“Dissecting the Graphcore IPU Architecture via Microbenchmark-
ing”. Dec. 6, 2019.

[18] Gary Lauterbach. “The Path to Successful Wafer-Scale Integration:
The Cerebras Story”. In: IEEE Micro 41.6 (Nov. 1, 2021), pp. 52–57.
doi: 10.1109/MM.2021.3112025.

[19] Gianna Paulin, Paul Scheffler, Thomas Benz, Matheus Cavalcante,
Tim Fischer, Manuel Eggimann, Yichao Zhang, Nils Wistoff, Luca
Bertaccini, Luca Colagrande, et al. “Occamy: A 432-Core 28.1 DP-
GFLOP/s/W 83% FPU Utilization Dual-Chiplet, Dual-HBM2E
RISC-V-Based Accelerator for Stencil and Sparse Linear Algebra
Computations with 8-to-64-Bit Floating-Point Support in 12nm Fin-
FET”. In: 2024 IEEE Symposium on VLSI Technology and Circuits
(VLSI Technology and Circuits). 2024 IEEE Symposium on VLSI
Technology and Circuits (VLSI Technology and Circuits). Hon-
olulu, HI, USA: IEEE, June 16, 2024, pp. 1–2. doi: 10 . 1109 /
VLSITechnologyandCir46783.2024.10631529.

[20] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng,
and Jeffrey S. Vetter. “NVIDIA Tensor Core Programmability, Per-
formance & Precision”. In: 2018 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW). 2018 IEEE
International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW). Vancouver, BC: IEEE, May 2018, pp. 522–531.
doi: 10.1109/IPDPSW.2018.00091.

[21] Melissa Riddle, Tom Sorensen, and Earl Joseph. Forecast Update:
GPU and Accelerator Growth in HPC. Hyperion Research, Feb. 2023.

[22] Baolin Li, Rohin Arora, Siddharth Samsi, Tirthak Patel, William Ar-
cand, David Bestor, Chansup Byun, Rohan Basu Roy, Bill Bergeron,
John Holodnak, et al. “AI-Enabling Workloads on Large-Scale GPU-
Accelerated System: Characterization, Opportunities, and Implica-
tions”. In: 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). 2022 IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA). Seoul,
Korea, Republic of: IEEE, Apr. 2022, pp. 1224–1237. doi: 10.1109/
HPCA53966.2022.00093.

[23] Shidi Tang, Ruiqi Chen, Mengru Lin, Qingde Lin, Yanxiang Zhu,
Ji Ding, Haifeng Hu, Ming Ling, and Jiansheng Wu. “Accelerat-
ing AutoDock Vina with GPUs”. In: Molecules 27.9 (May 9, 2022),
p. 3041. doi: 10.3390/molecules27093041.

119

https://doi.org/10.1109/MM.2021.3112025
https://doi.org/10.1109/VLSITechnologyandCir46783.2024.10631529
https://doi.org/10.1109/VLSITechnologyandCir46783.2024.10631529
https://doi.org/10.1109/IPDPSW.2018.00091
https://doi.org/10.1109/HPCA53966.2022.00093
https://doi.org/10.1109/HPCA53966.2022.00093
https://doi.org/10.3390/molecules27093041

[24] Davide Gadioli, Emanuele Vitali, Federico Ficarelli, Chiara Latini,
Candida Manelfi, Carmine Talarico, Cristina Silvano, Carlo Cavaz-
zoni, Gianluca Palermo, and Andrea Rosario Beccari. “EXSCALATE:
An Extreme-Scale Virtual Screening Platform for Drug Discovery
Targeting Polypharmacology to Fight SARS-CoV-2”. In: IEEE Trans-
actions on Emerging Topics in Computing (2022), pp. 1–12. doi:
10.1109/TETC.2022.3187134.

[25] Joseph C. Jacob, Daniel S. Katz, G. Bruce Berriman, John C. Good,
Anastasia C. Laity, Ewa Deelman, Carl Kesselman, Gurmeet Singh,
Mei Hui Su, Thomas A. Prince, and Roy Williams. “Montage: A Grid
Portal and Software Toolkit for Science-Grade Astronomical Image
Mosaicking”. In: International Journal of Computational Science and
Engineering 4.2 (2009), p. 73. doi: 10.1504/IJCSE.2009.026999.

[26] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P.
Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, et al. “Geant4—a
Simulation Toolkit”. In: Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and As-
sociated Equipment 506.3 (July 2003), pp. 250–303. doi: 10.1016/
S0168-9002(03)01368-8.

[27] Ben Langmead and Steven L Salzberg. “Fast Gapped-Read Alignment
with Bowtie 2”. In: Nature Methods 9.4 (Apr. 2012), pp. 357–359. doi:
10.1038/nmeth.1923.

[28] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya
Goyal, Zachary DeVito, William S. Moses, Sven Verdoolaege, Andrew
Adams, and Albert Cohen. Tensor Comprehensions: Framework-
Agnostic High-Performance Machine Learning Abstractions. June 28,
2018. url: http://arxiv.org/abs/1802.04730. Pre-published.

[29] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. “Halide: A Language
and Compiler for Optimizing Parallelism, Locality, and Recomputa-
tion in Image Processing Pipelines”. In: Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation - PLDI ’13. The 34th ACM SIGPLAN Conference. Seattle,
Washington, USA: ACM Press, 2013, p. 519. doi: 10.1145/2491956.
2462176.

[30] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, et al. “TVM: An Automated End-to-End Optimizing Compiler
for Deep Learning”. In: 13th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 18). Carlsbad, CA: USENIX
Association, Oct. 2018, pp. 578–594.

[31] Intel. PlaidML. Intel, 2017.

120

https://doi.org/10.1109/TETC.2022.3187134
https://doi.org/10.1504/IJCSE.2009.026999
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1038/nmeth.1923
http://arxiv.org/abs/1802.04730
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/2491956.2462176

[32] Chris Leary and Todd Wang. “XLA: TensorFlow, Compiled!” Tensor-
Flow Dev Summit. 2017.

[33] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Sum-
mer Deng, Roman Dzhabarov, Nick Gibson, James Hegeman, Meghan
Lele, Roman Levenstein, et al. “Glow: Graph Lowering Compiler
Techniques for Neural Networks”. Apr. 3, 2019.

[34] Philippe Tillet, H. T. Kung, and David Cox. “Triton: An Intermediate
Language and Compiler for Tiled Neural Network Computations”.
In: Proceedings of the 3rd ACM SIGPLAN International Workshop
on Machine Learning and Programming Languages. PLDI ’19: 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation. Phoenix AZ USA: ACM, June 22, 2019, pp. 10–19.
doi: 10.1145/3315508.3329973.

[35] C. Lattner and V. Adve. “LLVM: A Compilation Framework for Life-
long Program Analysis & Transformation”. In: International Sympo-
sium on Code Generation and Optimization, 2004. CGO 2004. In-
ternational Symposium on Code Generation and Optimization, 2004.
CGO 2004. San Jose, CA, USA: IEEE, 2004, pp. 75–86. doi: 10.
1109/CGO.2004.1281665.

[36] Jason Merrill. GENERIC and GIMPLE: A New Tree Representation
for Entire Functions. 2003.

[37] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey
Dean, Matthieu Devin, et al. “TensorFlow: Large-Scale Machine
Learning on Heterogeneous Distributed Systems”. Mar. 16, 2016.

[38] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. Dec. 3, 2019. url: http:/ /
arxiv.org/abs/1912.01703. Pre-published.

[39] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas
Vasilache, and Oleksandr Zinenko. “MLIR: A Compiler Infrastructure
for the End of Moore’s Law”. Feb. 29, 2020.

[40] Scott Cyphers, Arjun K. Bansal, Anahita Bhiwandiwalla, Jayaram
Bobba, Matthew Brookhart, Avijit Chakraborty, Will Constable,
Christian Convey, Leona Cook, Omar Kanawi, et al. “Intel nGraph:
An Intermediate Representation, Compiler, and Executor for Deep
Learning”. Jan. 29, 2018.

121

https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703

[41] Sun C. Chan, Guang R. Gao, Barbara Chapman, Tony Linthicum,
and Anshuman Dasgupta. “Open64 Compiler Infrastructure for
Emerging Multicore/Manycore Architecture All Symposium Tuto-
rial”. In: 2008 IEEE International Symposium on Parallel and Dis-
tributed Processing. Distributed Processing Symposium (IPDPS).
Miami, FL, USA: IEEE, Apr. 2008, pp. 1–1. doi: 10.1109/IPDPS.
2008.4536577.

[42] Mike Murphy. “NVIDIA’s Experience with Open64”. In: IEEE/ACM
International Symposium on Code Generation and Optimization
(CGO). Boston, MA, Apr. 16, 2008.

[43] William J. Starke, Brian W. Thompto, Jeff A. Stuecheli, and Jose E.
Moreira. “IBM’s POWER10 Processor”. In: IEEE Micro 41.2 (Mar.
2021), pp. 7–14. doi: 10.1109/MM.2021.3058632.

[44] Dounia Khaldi, Yuanke Luo, Bing Yu, Alexey Sotkin, Bruno Morais,
and Milind Girkar. “Extending LLVM IR for DPC++ Matrix Sup-
port: A Case Study with Intel ® Advanced Matrix Extensions (In-
tel ® AMX)”. In: 2021 IEEE/ACM 7th Workshop on the LLVM
Compiler Infrastructure in HPC (LLVM-HPC). 2021 IEEE/ACM 7th
Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-
HPC). St. Louis, MO, USA: IEEE, Nov. 2021, pp. 20–26. doi: 10.
1109/LLVMHPC54804.2021.00008.

[45] Finn Wilkinson and Simon McIntosh-Smith. “An Initial Evalua-
tion of Arm’s Scalable Matrix Extension”. In: 2022 IEEE/ACM
International Workshop on Performance Modeling, Benchmarking
and Simulation of High Performance Computer Systems (PMBS).
2022 IEEE/ACM International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Sys-
tems (PMBS). Dallas, TX, USA: IEEE, Nov. 2022, pp. 135–140. doi:
10.1109/PMBS56514.2022.00018.

[46] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer,
David Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt,
John Hauser, Adam Izraelevitz, et al. The Rocket Chip Generator.
UCB/EECS-2016-17. Apr. 2016.

[47] Davide Rossi, Antonio Pullini, Igor Loi, Michael Gautschi, Frank Ka-
gan Gurkaynak, Adam Teman, Jeremy Constantin, Andreas Burg,
Ivan Miro-Panades, Edith Beigne, et al. “Energy-Efficient Near-
Threshold Parallel Computing: The PULPv2 Cluster”. In: IEEE
Micro 37.5 (Sept. 2017), pp. 20–31. doi: 10.1109/MM.2017.3711645.

[48] Florian Zaruba, Fabian Schuiki, Torsten Hoefler, and Luca Benini.
“Snitch: A Tiny Pseudo Dual-Issue Processor for Area and Energy
Efficient Execution of Floating-Point Intensive Workloads”. In: IEEE

122

https://doi.org/10.1109/IPDPS.2008.4536577
https://doi.org/10.1109/IPDPS.2008.4536577
https://doi.org/10.1109/MM.2021.3058632
https://doi.org/10.1109/LLVMHPC54804.2021.00008
https://doi.org/10.1109/LLVMHPC54804.2021.00008
https://doi.org/10.1109/PMBS56514.2022.00018
https://doi.org/10.1109/MM.2017.3711645

Transactions on Computers 70.11 (Nov. 1, 2021), pp. 1845–1860. doi:
10.1109/TC.2020.3027900.

[49] Blaise Tine, Fares Elsabbagh, Krishna Yalamarthy, and Hyesoon
Kim. “Vortex: Extending the RISC-V ISA for GPGPU and 3D-
GraphicsResearch”. Oct. 20, 2021.

[50] Chen Chen, Xiaoyan Xiang, Chang Liu, Yunhai Shang, Ren Guo,
Dongqi Liu, Yimin Lu, Ziyi Hao, Jiahui Luo, Zhijian Chen, et al.
“Xuantie-910: A Commercial Multi-Core 12-Stage Pipeline Out-
of-Order 64-Bit High Performance RISC-V Processor with Vector
Extension : Industrial Product”. In: 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). 2020
ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). Valencia, Spain: IEEE, May 2020, pp. 52–64.
doi: 10.1109/ISCA45697.2020.00016.

[51] Dylan Patel. Tenstorrent Wormhole Analysis - A Scale Out Archi-
tecture for Machine Learning That Could Put Nvidia On Their Back
Foot. SemiAnalysis. 2021. url: https://www.semianalysis.com/p/
tenstorrent-wormhole-analysis-a-scale.

[52] Ventana Micro. Ventana Veyron V1. 2023. url: https : / / www .
ventanamicro.com/technology/risc-v-cpu-ip/.

[53] Amin Firoozshahian, Joel Coburn, Roman Levenstein, Rakesh Nat-
toji, Ashwin Kamath, Olivia Wu, Gurdeepak Grewal, Harish Aepala,
Bhasker Jakka, Bob Dreyer, et al. “MTIA: First Generation Sili-
con Targeting Meta’s Recommendation Systems”. In: Proceedings of
the 50th Annual International Symposium on Computer Architecture.
ISCA ’23: 50th Annual International Symposium on Computer Ar-
chitecture. Orlando FL USA: ACM, June 17, 2023, pp. 1–13. doi:
10.1145/3579371.3589348.

[54] Stavros Kalapothas, Manolis Galetakis, Georgios Flamis, Fotis Plessas,
and Paris Kitsos. “A Survey on RISC-V-Based Machine Learn-
ing Ecosystem”. In: Information 14.2 (Jan. 21, 2023), p. 64. doi:
10.3390/info14020064.

[55] The European Processor Initiative. The European Processor Initia-
tive Accelerator Processor Stream. The European Processor Initia-
tive. 2023. url: https://www.european-processor-initiative.
eu/accelerator/.

[56] Sally Ward-Foxton. “Jim Keller on AI, RISC-V, Tenstorrent’s Move
to Edge IP”. In: EE Times (Sept. 6, 2023).

123

https://doi.org/10.1109/TC.2020.3027900
https://doi.org/10.1109/ISCA45697.2020.00016
https://www.semianalysis.com/p/tenstorrent-wormhole-analysis-a-scale
https://www.semianalysis.com/p/tenstorrent-wormhole-analysis-a-scale
https://www.ventanamicro.com/technology/risc-v-cpu-ip/
https://www.ventanamicro.com/technology/risc-v-cpu-ip/
https://doi.org/10.1145/3579371.3589348
https://doi.org/10.3390/info14020064
https://www.european-processor-initiative.eu/accelerator/
https://www.european-processor-initiative.eu/accelerator/

[57] Antoine Petitet, Clint Whaley, and Jack Dongarra. HPL - A Portable
Implementation of the High-Performance Linpack Benchmark for
Distributed-Memory Computers. Innovative Computing Laboratory,
2008.

[58] Jack Dongarra, Michael A Heroux, and Piotr Luszczek. “High-
Performance Conjugate-Gradient Benchmark: A New Metric for
Ranking High-Performance Computing Systems”. In: The Interna-
tional Journal of High Performance Computing Applications 30.1
(Feb. 2016), pp. 3–10. doi: 10.1177/1094342015593158.

[59] Emanuele Vitali, Federico Ficarelli, Mauro Bisson, Davide Gadioli,
Gianmarco Accordi, Massimiliano Fatica, Andrea R. Beccari, and Gi-
anluca Palermo. “GPU-optimized Approaches to Molecular Docking-
based Virtual Screening in Drug Discovery: A Comparative Analy-
sis”. In: Journal of Parallel and Distributed Computing (Dec. 2023),
p. 104819. doi: 10.1016/j.jpdc.2023.104819.

[60] Andrew Emerson, Federico Ficarelli, Gianluca Palermo, and Francesco
Frigerio. “The High-Performance Computing Resources for the EXS-
CALATE4CoV Project”. In: Exscalate4CoV. Ed. by Silvano Coletti
and Gabriella Bernardi. Cham: Springer International Publishing,
2023, pp. 27–34. doi: 10.1007/978-3-031-30691-4_4.

[61] Andrea R. Beccari, Carlo Cavazzoni, Claudia Beato, and Gabriele
Costantino. “LiGen: A High Performance Workflow for Chemistry
Driven de Novo Design”. In: Journal of Chemical Information and
Modeling 53.6 (June 24, 2013), pp. 1518–1527. doi: 10 . 1021 /
ci400078g.

[62] Giulio Vistoli, Candida Manelfi, Carmine Talarico, Anna Fava, Arieh
Warshel, Igor V. Tetko, Rossen Apostolov, Yang Ye, Chiara Latini,
Federico Ficarelli, et al. “MEDIATE - Molecular DockIng at homE:
Turning Collaborative Simulations into Therapeutic Solutions”. In:
Expert Opinion on Drug Discovery (July 10, 2023), pp. 1–13. doi:
10.1080/17460441.2023.2221025.

[63] Andrea Bartolini, Federico Ficarelli, Emanuele Parisi, Francesco
Beneventi, Francesco Barchi, Daniele Gregori, Fabrizio Magugliani,
Marco Cicala, Cosimo Gianfreda, Daniele Cesarini, et al. “Monte
Cimone: Paving the Road for the First Generation of RISC-V
High-Performance Computers”. In: 2022 IEEE 35th International
System-on-Chip Conference (SOCC). 2022 IEEE 35th International
System-on-Chip Conference (SOCC). Belfast, United Kingdom:
IEEE, Sept. 5, 2022, pp. 1–6. doi: 10 . 1109 / SOCC56010 . 2022 .
9908096.

124

https://doi.org/10.1177/1094342015593158
https://doi.org/10.1016/j.jpdc.2023.104819
https://doi.org/10.1007/978-3-031-30691-4_4
https://doi.org/10.1021/ci400078g
https://doi.org/10.1021/ci400078g
https://doi.org/10.1080/17460441.2023.2221025
https://doi.org/10.1109/SOCC56010.2022.9908096
https://doi.org/10.1109/SOCC56010.2022.9908096

[64] Paolo Giannozzi, Oscar Baseggio, Pietro Bonfà, Davide Brunato,
Roberto Car, Ivan Carnimeo, Carlo Cavazzoni, Stefano de Gironcoli,
Pietro Delugas, Fabrizio Ferrari Ruffino, et al. “Quantum ESPRESSO
toward the Exascale”. In: The Journal of Chemical Physics 152.15
(Apr. 21, 2020), p. 154105. doi: 10.1063/5.0005082.

[65] Federico Ficarelli, Andrea Bartolini, Emanuele Parisi, Francesco
Beneventi, Francesco Barchi, Daniele Gregori, Fabrizio Magugliani,
Marco Cicala, Cosimo Gianfreda, Daniele Cesarini, et al. “Meet
Monte Cimone: Exploring RISC-V High Performance Compute Clus-
ters”. In: Proceedings of the 19th ACM International Conference on
Computing Frontiers. CF ’22: 19th ACM International Conference on
Computing Frontiers. Turin Italy: ACM, May 17, 2022, pp. 207–208.
doi: 10.1145/3528416.3530869.

[66] Federico Ficarelli. “Monte Cimone: Towards RISC-V High Perfor-
mance Compute Clusters”. In: HiPEAC 23. Tolouse, France, Jan. 18,
2023.

[67] Alexandre Lopoukhine, Federico Ficarelli, Christos Vasiladiotis, An-
ton Lydike, Josse Van Delm, Alban Dutilleul, Luca Benini, Marian
Verhelst, and Tobias Grosser. “A Multi-Level Compiler Backend for
Accelerated Micro-Kernels Targeting RISC-V ISA Extensions”. In:
IEEE/ACM International Symposium on Code Generation and Op-
timization (CGO). 2025.

[68] Renato Golin, Lorenzo Chelini, Adam Siemieniuk, Kavitha Madhu,
Niranjan Hasabnis, Hans Pabst, Evangelos Georganas, and Alexander
Heinecke. Towards a High-Performance AI Compiler with Upstream
MLIR. Apr. 15, 2024. url: http://arxiv.org/abs/2404.15204.
Pre-published.

[69] Gordon E. Moore. “Cramming More Components onto Integrated Cir-
cuits, Reprinted from Electronics, Volume 38, Number 8, April 19,
1965, Pp.114 Ff.” In: IEEE Solid-State Circuits Society Newsletter
11.3 (Sept. 2006), pp. 33–35. doi: 10.1109/N-SSC.2006.4785860.

[70] Gordon E. Moore. “Progress in Digital Integrated Electronics [Tech-
nical Literaiture, Copyright 1975 IEEE. Reprinted, with Permission.
Technical Digest. International Electron Devices Meeting, IEEE,
1975, Pp. 11-13.]” In: IEEE Solid-State Circuits Society Newsletter
11.3 (Sept. 2006), pp. 36–37. doi: 10.1109/N-SSC.2006.4804410.

[71] R.H. Dennard, F.H. Gaensslen, Hwa-Nien Yu, V.L. Rideout, E. Bas-
sous, and A.R. LeBlanc. “Design of Ion-Implanted MOSFET’s with
Very Small Physical Dimensions”. In: IEEE Journal of Solid-State
Circuits 9.5 (Oct. 1974), pp. 256–268. doi: 10.1109/JSSC.1974.
1050511.

125

https://doi.org/10.1063/5.0005082
https://doi.org/10.1145/3528416.3530869
http://arxiv.org/abs/2404.15204
https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.1109/N-SSC.2006.4804410
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1109/JSSC.1974.1050511

[72] Mark Bohr. “A 30 Year Retrospective on Dennard’s MOSFET Scaling
Paper”. In: IEEE Solid-State Circuits Newsletter 12.1 (Win. 2007),
pp. 11–13. doi: 10.1109/N-SSC.2007.4785534.

[73] Luiz André Barroso and Urs Hölzle. “The Case for Energy-Proportional
Computing”. In: Computer 40.12 (Dec. 2007), pp. 33–37. doi: 10.
1109/MC.2007.443.

[74] Shekhar Borkar and Andrew A. Chien. “The Future of Microproces-
sors”. In: Communications of the ACM 54.5 (May 2011), pp. 67–77.
doi: 10.1145/1941487.1941507.

[75] Alexander A. Conklin and Suhas Kumar. “Solving the Big Computing
Problems in the Twenty-First Century”. In: Nature Electronics 6.7
(July 20, 2023), pp. 464–466. doi: 10.1038/s41928-023-00985-1.

[76] Wu-chun Feng and Kirk Cameron. “The Green500 List: Encourag-
ing Sustainable Supercomputing”. In: Computer 40.12 (Dec. 2007),
pp. 50–55. doi: 10.1109/MC.2007.445.

[77] William J. Dally, Stephen W. Keckler, and David B. Kirk. “Evolution
of the Graphics Processing Unit (GPU)”. In: IEEE Micro 41.6 (Nov. 1,
2021), pp. 42–51. doi: 10.1109/MM.2021.3113475.

[78] David Luebke. “CUDA: Scalable Parallel Programming for High-
Performance Scientific Computing”. In: 2008 5th IEEE International
Symposium on Biomedical Imaging: From Nano to Macro. 2008 5th
IEEE International Symposium on Biomedical Imaging (ISBI 2008).
Paris, France: IEEE, May 2008, pp. 836–838. doi: 10.1109/ISBI.
2008.4541126.

[79] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, and J.C.
Phillips. “GPU Computing”. In: Proceedings of the IEEE 96.5 (May
2008), pp. 879–899. doi: 10.1109/JPROC.2008.917757.

[80] Wen-mei Hwu, David Kirk, and Izzat El Hajj. Programming Mas-
sively Parallel Processors: A Hands-on Approach. Fourth edition.
Cambridge, MA: Elsevier : Morgan Kauffmann, 2023. 551 pp.

[81] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens
Krüger, Aaron E. Lefohn, and Timothy J. Purcell. “A Survey of
General-Purpose Computation on Graphics Hardware”. In: Computer
Graphics Forum 26.1 (Mar. 2007), pp. 80–113. doi: 10.1111/j.1467-
8659.2007.01012.x.

[82] Michael Garland and David B. Kirk. “Understanding Throughput-
Oriented Architectures”. In: Communications of the ACM 53.11 (Nov.
2010), pp. 58–66. doi: 10.1145/1839676.1839694.

126

https://doi.org/10.1109/N-SSC.2007.4785534
https://doi.org/10.1109/MC.2007.443
https://doi.org/10.1109/MC.2007.443
https://doi.org/10.1145/1941487.1941507
https://doi.org/10.1038/s41928-023-00985-1
https://doi.org/10.1109/MC.2007.445
https://doi.org/10.1109/MM.2021.3113475
https://doi.org/10.1109/ISBI.2008.4541126
https://doi.org/10.1109/ISBI.2008.4541126
https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.1111/j.1467-8659.2007.01012.x
https://doi.org/10.1111/j.1467-8659.2007.01012.x
https://doi.org/10.1145/1839676.1839694

[83] Chengbin Fan, Hui Deng, Feng Wang, Shoulin Wei, Wei Dai, and Bo
Liang. “A Survey on Task Scheduling Method in Heterogeneous Com-
puting System”. In: 2015 8th International Conference on Intelligent
Networks and Intelligent Systems (ICINIS). 2015 8th International
Conference on Intelligent Networks and Intelligent Systems (ICINIS).
Tianjin, China: IEEE, Nov. 2015, pp. 90–93. doi: 10.1109/ICINIS.
2015.42.

[84] Markus Steinberger, Bernhard Kainz, Bernhard Kerbl, Stefan Hauswies-
ner, Michael Kenzel, and Dieter Schmalstieg. “Softshell: Dynamic
Scheduling on GPUs”. In: ACM Transactions on Graphics 31.6 (Nov.
2012), pp. 1–11. doi: 10.1145/2366145.2366180.

[85] Andrew Davidson, Sean Baxter, Michael Garland, and John D.
Owens. “Work-Efficient Parallel GPU Methods for Single-Source
Shortest Paths”. In: 2014 IEEE 28th International Parallel and Dis-
tributed Processing Symposium. 2014 IEEE International Parallel &
Distributed Processing Symposium (IPDPS). Phoenix, AZ, USA:
IEEE, May 2014, pp. 349–359. doi: 10.1109/IPDPS.2014.45.

[86] Muhammad Amber Hassaan, Martin Burtscher, and Keshav Pingali.
“Ordered vs. Unordered: A Comparison of Parallelism and Work-
Efficiency in Irregular Algorithms”. In: ACM SIGPLAN Notices 46.8
(Sept. 7, 2011), pp. 3–12. doi: 10.1145/2038037.1941557.

[87] Yuxin Chen, Benjamin Brock, Serban Porumbescu, Aydın Buluç,
Katherine Yelick, and John D. Owens. Atos: A Task-Parallel GPU
Dynamic Scheduling Framework for Dynamic Irregular Computa-
tions. Nov. 30, 2021. url: http://arxiv.org/abs/2112.00132.
Pre-published.

[88] Kshitij Gupta, Jeff A. Stuart, and John D. Owens. “A Study of Per-
sistent Threads Style GPU Programming for GPGPU Workloads”. In:
2012 Innovative Parallel Computing (InPar). 2012 Innovative Parallel
Computing (InPar). San Jose, CA, USA: IEEE, May 2012, pp. 1–14.
doi: 10.1109/InPar.2012.6339596.

[89] Wilson W.L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt.
“Dynamic Warp Formation and Scheduling for Efficient GPU Con-
trol Flow”. In: 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 2007). 40th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO 2007). Chicago, IL,
USA: IEEE, 2007, pp. 407–420. doi: 10.1109/MICRO.2007.30.

[90] Yuan Lin and Vinod Grover. Using CUDA Warp-Level Primitives.
NVIDIA Technical Blog. Jan. 15, 2018. url: https://developer.
nvidia.com/blog/using-cuda-warp-level-primitives/.

127

https://doi.org/10.1109/ICINIS.2015.42
https://doi.org/10.1109/ICINIS.2015.42
https://doi.org/10.1145/2366145.2366180
https://doi.org/10.1109/IPDPS.2014.45
https://doi.org/10.1145/2038037.1941557
http://arxiv.org/abs/2112.00132
https://doi.org/10.1109/InPar.2012.6339596
https://doi.org/10.1109/MICRO.2007.30
https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/
https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/

[91] Julie R. Schames, Richard H. Henchman, Jay S. Siegel, Christoph
A. Sotriffer, Haihong Ni, and J. Andrew McCammon. “Discovery of
a Novel Binding Trench in HIV Integrase”. In: Journal of Medici-
nal Chemistry 47.8 (Apr. 1, 2004), pp. 1879–1881. doi: 10.1021/
jm0341913.

[92] David E Clark. “What Has Virtual Screening Ever Done for Drug
Discovery?” In: Expert Opinion on Drug Discovery 3.8 (Aug. 2008),
pp. 841–851. doi: 10.1517/17460441.3.8.841.

[93] A.M. MacConnachie. “Zanamivir (Relenza®) — A New Treatment
for Influenza”. In: Intensive and Critical Care Nursing 15.6 (Dec.
1999), pp. 369–370. doi: 10.1016/S0964-3397(99)80031-7.

[94] Enrico Glaab. “Building a Virtual Ligand Screening Pipeline Using
Free Software: A Survey”. In: Briefings in Bioinformatics 17.2 (Mar.
2016), pp. 352–366. doi: 10.1093/bib/bbv037.

[95] Todd J.A. Ewing, Shingo Makino, A. Geoffrey Skillman, and Irwin
D. Kuntz. “DOCK 4.0: Search Strategies for Automated Molecular
Docking of Flexible Molecule Databases”. In: Journal of Computer-
Aided Molecular Design 15.5 (2001), pp. 411–428. doi: 10.1023/A:
1011115820450.

[96] Garrett M. Morris, Ruth Huey, William Lindstrom, Michel F. San-
ner, Richard K. Belew, David S. Goodsell, and Arthur J. Olson.
“AutoDock4 and AutoDockTools4: Automated Docking with Selec-
tive Receptor Flexibility”. In: Journal of Computational Chemistry
30.16 (Dec. 2009), pp. 2785–2791. doi: 10.1002/jcc.21256.

[97] Richard A. Friesner, Jay L. Banks, Robert B. Murphy, Thomas A.
Halgren, Jasna J. Klicic, Daniel T. Mainz, Matthew P. Repasky, Eric
H. Knoll, Mee Shelley, Jason K. Perry, et al. “Glide: A New Ap-
proach for Rapid, Accurate Docking and Scoring. 1. Method and As-
sessment of Docking Accuracy”. In: Journal of Medicinal Chemistry
47.7 (Mar. 1, 2004), pp. 1739–1749. doi: 10.1021/jm0306430.

[98] Ingo Schellhammer and Matthias Rarey. “FlexX-Scan: Fast, Structure-
based Virtual Screening”. In: Proteins: Structure, Function, and
Bioinformatics 57.3 (Nov. 15, 2004), pp. 504–517. doi: 10.1002/
prot.20217.

[99] René Thomsen and Mikael H. Christensen. “MolDock: A New Tech-
nique for High-Accuracy Molecular Docking”. In: Journal of Medici-
nal Chemistry 49.11 (June 1, 2006), pp. 3315–3321. doi: 10.1021/
jm051197e.

128

https://doi.org/10.1021/jm0341913
https://doi.org/10.1021/jm0341913
https://doi.org/10.1517/17460441.3.8.841
https://doi.org/10.1016/S0964-3397(99)80031-7
https://doi.org/10.1093/bib/bbv037
https://doi.org/10.1023/A:1011115820450
https://doi.org/10.1023/A:1011115820450
https://doi.org/10.1002/jcc.21256
https://doi.org/10.1021/jm0306430
https://doi.org/10.1002/prot.20217
https://doi.org/10.1002/prot.20217
https://doi.org/10.1021/jm051197e
https://doi.org/10.1021/jm051197e

[100] Gareth Jones, Peter Willett, Robert C Glen, Andrew R Leach, and
Robin Taylor. “Development and Validation of a Genetic Algorithm
for Flexible Docking 1 1Edited by F. E. Cohen”. In: Journal of Molec-
ular Biology 267.3 (Apr. 1997), pp. 727–748. doi: 10.1006/jmbi.
1996.0897.

[101] Ming Liu and Shaomeng Wang. “MCDOCK: A Monte Carlo Sim-
ulation Approach to the Molecular Docking Problem”. In: Journal
of Computer-Aided Molecular Design 13.5 (1999), pp. 435–451. doi:
10.1023/A:1008005918983.

[102] P. Nuno Palma, Ludwig Krippahl, John E. Wampler, and José J.G.
Moura. “BiGGER: A New (Soft) Docking Algorithm for Predicting
Protein Interactions”. In: Proteins: Structure, Function, and Genet-
ics 39.4 (June 1, 2000), pp. 372–384. doi: 10.1002/(SICI)1097-
0134(20000601)39:4<372::AID-PROT100>3.0.CO;2-Q.

[103] Dong Dong, Zhijian Xu, Wu Zhong, and Shaoliang Peng. “Paralleliza-
tion of Molecular Docking: A Review”. In: Current Topics in Medici-
nal Chemistry 18.12 (Sept. 18, 2018), pp. 1015–1028. doi: 10.2174/
1568026618666180821145215.

[104] Xiaohua Zhang, Sergio E. Wong, and Felice C. Lightstone. “Message
Passing Interface and Multithreading Hybrid for Parallel Molecular
Docking of Large Databases on Petascale High Performance Com-
puting Machines”. In: Journal of Computational Chemistry 34.11
(Apr. 30, 2013), pp. 915–927. doi: 10.1002/jcc.23214.

[105] Shuxing Zhang, Kamal Kumar, Xiaohui Jiang, Anders Wallqvist, and
Jaques Reifman. “DOVIS: An Implementation for High-Throughput
Virtual Screening Using AutoDock”. In: BMC Bioinformatics 9.1
(Dec. 2008), p. 126. doi: 10.1186/1471-2105-9-126.

[106] Mengran Fan, Jian Wang, Huaipan Jiang, Yilin Feng, Mehrdad
Mahdavi, Kamesh Madduri, Mahmut T. Kandemir, and Nikolay V.
Dokholyan. “GPU-Accelerated Flexible Molecular Docking”. In: The
Journal of Physical Chemistry B 125.4 (Feb. 4, 2021), pp. 1049–1060.
doi: 10.1021/acs.jpcb.0c09051.

[107] Bharat Sukhwani and Martin C. Herbordt. “GPU Acceleration of a
Production Molecular Docking Code”. In: Proceedings of 2nd Work-
shop on General Purpose Processing on Graphics Processing Units.
GPGPU ’09: Second Workshop on General-Purpose Computation on
Graphics Processing Units. Washington D.C. USA: ACM, Mar. 8,
2009, pp. 19–27. doi: 10.1145/1513895.1513898.

129

https://doi.org/10.1006/jmbi.1996.0897
https://doi.org/10.1006/jmbi.1996.0897
https://doi.org/10.1023/A:1008005918983
https://doi.org/10.1002/(SICI)1097-0134(20000601)39:4<372::AID-PROT100>3.0.CO;2-Q
https://doi.org/10.1002/(SICI)1097-0134(20000601)39:4<372::AID-PROT100>3.0.CO;2-Q
https://doi.org/10.2174/1568026618666180821145215
https://doi.org/10.2174/1568026618666180821145215
https://doi.org/10.1002/jcc.23214
https://doi.org/10.1186/1471-2105-9-126
https://doi.org/10.1021/acs.jpcb.0c09051
https://doi.org/10.1145/1513895.1513898

[108] Oliver Korb, Thomas Stützle, and Thomas E. Exner. “Accelerating
Molecular Docking Calculations Using Graphics Processing Units”. In:
Journal of Chemical Information and Modeling 51.4 (Apr. 25, 2011),
pp. 865–876. doi: 10.1021/ci100459b.

[109] Ye Fang, Yun Ding, Wei P. Feinstein, David M. Koppelman, Juana
Moreno, Mark Jarrell, J. Ramanujam, and Michal Brylinski. “Geaux-
Dock: Accelerating Structure-Based Virtual Screening with Hetero-
geneous Computing”. In: PLOS ONE 11.7 (July 15, 2016). Ed. by
Alexandre G. De Brevern, e0158898. doi: 10.1371/journal.pone.
0158898.

[110] Irene Sánchez-Linares, Horacio Pérez-Sánchez, José M Cecilia, and
José M García. “High-Throughput Parallel Blind Virtual Screening
Using BINDSURF”. In: BMC Bioinformatics 13.S14 (Sept. 2012),
S13. doi: 10.1186/1471-2105-13-S14-S13.

[111] Scott LeGrand, Aaron Scheinberg, Andreas F. Tillack, Mathialakan
Thavappiragasam, Josh V. Vermaas, Rupesh Agarwal, Jeff Larkin,
Duncan Poole, Diogo Santos-Martins, Leonardo Solis-Vasquez, et al.
“GPU-Accelerated Drug Discovery with Docking on the Summit Su-
percomputer: Porting, Optimization, and Application to COVID-19
Research”. In: Proceedings of the 11th ACM International Confer-
ence on Bioinformatics, Computational Biology and Health Informat-
ics. BCB ’20: 11th ACM International Conference on Bioinformatics,
Computational Biology and Health Informatics. Virtual Event USA:
ACM, Sept. 21, 2020, pp. 1–10. doi: 10.1145/3388440.3412472.

[112] Diogo Santos-Martins, Leonardo Solis-Vasquez, Andreas F Tillack,
Michel F Sanner, Andreas Koch, and Stefano Forli. “Accelerating A
Uto D Ock 4 with GPUs and Gradient-Based Local Search”. In:
Journal of Chemical Theory and Computation 17.2 (Feb. 9, 2021),
pp. 1060–1073. doi: 10.1021/acs.jctc.0c01006.

[113] Leonardo Solis-Vasquez, Diogo Santos-Martins, Andreas F. Tillack,
Andreas Koch, Jerome Eberhardt, and Stefano Forli. “Parallelizing Ir-
regular Computations for Molecular Docking”. In: 2020 IEEE/ACM
10th Workshop on Irregular Applications: Architectures and Algo-
rithms (IA3). 2020 IEEE/ACM 10th Workshop on Irregular Appli-
cations: Architectures and Algorithms (IA3). GA, USA: IEEE, Nov.
2020, pp. 12–21. doi: 10.1109/IA351965.2020.00008.

[114] Jens Glaser, Josh V Vermaas, David M Rogers, Jeff Larkin, Scott
LeGrand, Swen Boehm, Matthew B Baker, Aaron Scheinberg, An-
dreas F Tillack, Mathialakan Thavappiragasam, et al. “High-Throughput
Virtual Laboratory for Drug Discovery Using Massive Datasets”. In:
The International Journal of High Performance Computing Applica-
tions 35.5 (Sept. 2021), pp. 452–468. doi: 10.1177/10943420211001565.

130

https://doi.org/10.1021/ci100459b
https://doi.org/10.1371/journal.pone.0158898
https://doi.org/10.1371/journal.pone.0158898
https://doi.org/10.1186/1471-2105-13-S14-S13
https://doi.org/10.1145/3388440.3412472
https://doi.org/10.1021/acs.jctc.0c01006
https://doi.org/10.1109/IA351965.2020.00008
https://doi.org/10.1177/10943420211001565

[115] Yuejiang Yu, Chun Cai, Jiayue Wang, Zonghua Bo, Zhengdan Zhu,
and Hang Zheng. “Uni-Dock: GPU-Accelerated Docking Enables Ul-
tralarge Virtual Screening”. In: Journal of Chemical Theory and Com-
putation 19.11 (June 13, 2023), pp. 3336–3345. doi: 10.1021/acs.
jctc.2c01145.

[116] Gabin Schieffer and Ivy Peng. “Accelerating Drug Discovery in
AutoDock-GPU with Tensor Cores”. In: Euro-Par 2023: Parallel
Processing. Ed. by José Cano, Marios D. Dikaiakos, George A. Pa-
padopoulos, Miquel Pericàs, and Rizos Sakellariou. Vol. 14100. Cham:
Springer Nature Switzerland, 2023, pp. 608–622. doi: 10.1007/978-
3-031-39698-4_41.

[117] Davide Gadioli, Gianluca Palermo, Stefano Cherubin, Emanuele Vi-
tali, Giovanni Agosta, Candida Manelfi, Andrea R. Beccari, Carlo
Cavazzoni, Nico Sanna, and Cristina Silvano. “Tunable Approxima-
tions to Control Time-to-Solution in an HPC Molecular Docking
Mini-App”. In: The Journal of Supercomputing 77.1 (Jan. 2021),
pp. 841–869. doi: 10.1007/s11227-020-03295-x.

[118] Sebastian Ruder. An Overview of Gradient Descent Optimization Al-
gorithms. Version 2. 2016. doi: 10.48550/ARXIV.1609.04747. url:
https://arxiv.org/abs/1609.04747. Pre-published.

[119] NVIDIA. CUDA C++ Programming Guide. Oct. 1, 2024.

[120] Emanuele Vitali, Davide Gadioli, Gianluca Palermo, Andrea Bec-
cari, Carlo Cavazzoni, and Cristina Silvano. “Exploiting OpenMP and
OpenACC to Accelerate a Geometric Approach to Molecular Dock-
ing in Heterogeneous HPC Nodes”. In: The Journal of Supercomputing
75.7 (July 2019), pp. 3374–3396. doi: 10.1007/s11227-019-02875-
w.

[121] Laxmikant V. Kalé, Abhinav Bhatele, Eric J. Bohm, James C.
Phillips, David H. Bailey, Ananth Y. Grama, Joseph Fogarty, Hasan
Aktulga, Sagar Pandit, David Padua, et al. “NAS Parallel Bench-
marks”. In: Encyclopedia of Parallel Computing. Ed. by David Padua.
Boston, MA: Springer US, 2011, pp. 1254–1259. doi: 10.1007/978-
0-387-09766-4_133.

[122] Chunye Gong, Jie Liu, Jin Qin, Qingfeng Hu, and Zhenghu Gong. “Ef-
ficient Embarrassingly Parallel on Graphics Processor Unit”. In: 2010
2nd International Conference on Education Technology and Com-
puter. 2010 2nd International Conference on Education Technology
and Computer (ICETC). Shanghai, China: IEEE, June 2010, pp. V4-
400-V4–404. doi: 10.1109/ICETC.2010.5529656.

131

https://doi.org/10.1021/acs.jctc.2c01145
https://doi.org/10.1021/acs.jctc.2c01145
https://doi.org/10.1007/978-3-031-39698-4_41
https://doi.org/10.1007/978-3-031-39698-4_41
https://doi.org/10.1007/s11227-020-03295-x
https://doi.org/10.48550/ARXIV.1609.04747
https://arxiv.org/abs/1609.04747
https://doi.org/10.1007/s11227-019-02875-w
https://doi.org/10.1007/s11227-019-02875-w
https://doi.org/10.1007/978-0-387-09766-4_133
https://doi.org/10.1007/978-0-387-09766-4_133
https://doi.org/10.1109/ICETC.2010.5529656

[123] Herman Van Vlijmen, Jean-Yves Ortholand, Volkhart M.-J. Li, and
Jon S.B. De Vlieger. “The European Lead Factory: An Updated HTS
Compound Library for Innovative Drug Discovery”. In: Drug Discov-
ery Today 26.10 (Oct. 2021), pp. 2406–2413. doi: 10.1016/j.drudis.
2021.04.019.

[124] FooDB: The Largest and Most Comprehensive Resource on Food Con-
stituents.

[125] James Stewart. MOPAC. Stewart Computational Chemistry, 2016.

[126] Nan Ding and Samuel Williams. “An Instruction Roofline Model for
GPUs”. In: 2019 IEEE/ACM Performance Modeling, Benchmarking
and Simulation of High Performance Computer Systems (PMBS).
2019 IEEE/ACM Performance Modeling, Benchmarking and Simula-
tion of High Performance Computer Systems (PMBS). Denver, CO,
USA: IEEE, Nov. 2019, pp. 7–18. doi: 10.1109/PMBS49563.2019.
00007.

[127] NVIDIA Nsight Compute Kernel Profiling Guide.

[128] Vasily Volkov. “Better Performance at Lower Occupancy”. NVIDIA
GPU Technology Conference (GTC). 2010.

[129] World Health Organization. WHO Coronavirus Disease (COVID-19)
Dashboard. 2020. url: https://covid19.who.int/.

[130] Marcello Allegretti, Maria Candida Cesta, Mara Zippoli, Andrea Bec-
cari, Carmine Talarico, Flavio Mantelli, Enrico M. Bucci, Laura Scor-
zolini, and Emanuele Nicastri. “Repurposing the Estrogen Receptor
Modulator Raloxifene to Treat SARS-CoV-2 Infection”. In: Cell Death
& Differentiation 29.1 (Jan. 2022), pp. 156–166. doi: 10 . 1038 /
s41418-021-00844-6.

[131] Silvano Coletti and Gabriella Bernardi, eds. Exscalate4CoV: High-
Performance Computing for COVID Drug Discovery. SpringerBriefs
in Applied Sciences and Technology. Cham: Springer International
Publishing, 2023. doi: 10.1007/978-3-031-30691-4.

[132] Tilak Agerwala. “Exascale Computing: The Challenges and Oppor-
tunities in the next Decade”. In: ACM SIGPLAN Notices 45.5 (May
2010), pp. 1–2. doi: 10.1145/1837853.1693454.

[133] William Gropp. “MPI at Exascale: Challenges for Data Structures
and Algorithms”. In: Recent Advances in Parallel Virtual Machine
and Message Passing Interface. Ed. by Matti Ropo, Jan Westerholm,
and Jack Dongarra. Vol. 5759. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 3–3. doi: 10.1007/978-3-642-03770-2_3.

132

https://doi.org/10.1016/j.drudis.2021.04.019
https://doi.org/10.1016/j.drudis.2021.04.019
https://doi.org/10.1109/PMBS49563.2019.00007
https://doi.org/10.1109/PMBS49563.2019.00007
https://covid19.who.int/
https://doi.org/10.1038/s41418-021-00844-6
https://doi.org/10.1038/s41418-021-00844-6
https://doi.org/10.1007/978-3-031-30691-4
https://doi.org/10.1145/1837853.1693454
https://doi.org/10.1007/978-3-642-03770-2_3

[134] Pierre Darme, Manuel Dauchez, Arnaud Renard, Laurence Voutquenne-
Nazabadioko, Dominique Aubert, Sandie Escotte-Binet, Jean-Hugues
Renault, Isabelle Villena, Luiz-Angelo Steffenel, and Stéphanie Baud.
“AMIDE v2: High-Throughput Screening Based on AutoDock-GPU
and Improved Workflow Leading to Better Performance and Reliabil-
ity”. In: International Journal of Molecular Sciences 22.14 (July 13,
2021), p. 7489. doi: 10.3390/ijms22147489.

[135] Andy B. Yoo, Morris A. Jette, and Mark Grondona. “SLURM: Simple
Linux Utility for Resource Management”. In: Job Scheduling Strate-
gies for Parallel Processing. Ed. by Dror Feitelson, Larry Rudolph,
and Uwe Schwiegelshohn. Red. by Gerhard Goos, Juris Hartmanis,
and Jan van Leeuwen. Vol. 2862. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 44–60. doi: 10.1007/10968987_3.

[136] Baldomero Imbernón, Antonio Serrano, Andrés Bueno-Crespo, José L
Abellán, Horacio Pérez-Sánchez, and José M Cecilia. “METADOCK
2: A High-Throughput Parallel Metaheuristic Scheme for Molecular
Docking”. In: Bioinformatics 37.11 (July 12, 2021). Ed. by Alfonso
Valencia, pp. 1515–1520. doi: 10.1093/bioinformatics/btz958.

[137] Verónica G. Vergara Larrea, Wayne Joubert, Michael J. Brim, Reuben
D. Budiardja, Don Maxwell, Matt Ezell, Christopher Zimmer, Swen
Boehm, Wael Elwasif, Sarp Oral, et al. “Scaling the Summit: Deploy-
ing the World’s Fastest Supercomputer”. In: High Performance Com-
puting. Ed. by Michèle Weiland, Guido Juckeland, Sadaf Alam, and
Heike Jagode. Vol. 11887. Cham: Springer International Publishing,
2019, pp. 330–351. doi: 10.1007/978-3-030-34356-9_26.

[138] Maciej Wójcikowski, Pedro J. Ballester, and Pawel Siedlecki. “Per-
formance of Machine-Learning Scoring Functions in Structure-Based
Virtual Screening”. In: Scientific Reports 7.1 (Apr. 25, 2017), p. 46710.
doi: 10.1038/srep46710.

[139] BlazingDB: High Performance GPU Database for Big Data SQL.
2015.

[140] Anubhav Jain, Shyue Ping Ong, Wei Chen, Bharat Medasani, Xiaohui
Qu, Michael Kocher, Miriam Brafman, Guido Petretto, Gian-Marco
Rignanese, Geoffroy Hautier, et al. “FireWorks: A Dynamic Work-
flow System Designed for High-throughput Applications”. In: Con-
currency and Computation: Practice and Experience 27.17 (Dec. 10,
2015), pp. 5037–5059. doi: 10.1002/cpe.3505.

[141] The MPI Forum. “MPI: A Message Passing Interface”. In: Proceed-
ings of the 1993 ACM/IEEE Conference on Supercomputing - Super-
computing ’93. The 1993 ACM/IEEE Conference. Portland, Oregon,
United States: ACM Press, 1993, pp. 878–883. doi: 10.1145/169627.
169855.

133

https://doi.org/10.3390/ijms22147489
https://doi.org/10.1007/10968987_3
https://doi.org/10.1093/bioinformatics/btz958
https://doi.org/10.1007/978-3-030-34356-9_26
https://doi.org/10.1038/srep46710
https://doi.org/10.1002/cpe.3505
https://doi.org/10.1145/169627.169855
https://doi.org/10.1145/169627.169855

[142] Tiejun Cheng, Qingliang Li, Zhigang Zhou, Yanli Wang, and Stephen
H. Bryant. “Structure-Based Virtual Screening for Drug Discovery: A
Problem-Centric Review”. In: The AAPS Journal 14.1 (Mar. 2012),
pp. 133–141. doi: 10.1208/s12248-012-9322-0.

[143] Daniel F. Veber, Stephen R. Johnson, Hung-Yuan Cheng, Brian R.
Smith, Keith W. Ward, and Kenneth D. Kopple. “Molecular Proper-
ties That Influence the Oral Bioavailability of Drug Candidates”. In:
Journal of Medicinal Chemistry 45.12 (June 1, 2002), pp. 2615–2623.
doi: 10.1021/jm020017n.

[144] Emanuele Vitali, Davide Gadioli, Gianluca Palermo, Andrea Beccari,
and Cristina Silvano. “Accelerating a Geometric Approach to Molecu-
lar Docking with OpenACC”. In: Proceedings of the 6th International
Workshop on Parallelism in Bioinformatics - PBio 2018. The 6th In-
ternational Workshop. Barcelona, Spain: ACM Press, 2018, pp. 45–
51. doi: 10.1145/3235830.3235835.

[145] Claudia Beato, Andrea R. Beccari, Carlo Cavazzoni, Simone Lorenzi,
and Gabriele Costantino. “Use of Experimental Design To Optimize
Docking Performance: The Case of LiGenDock, the Docking Module
of Ligen, a New De Novo Design Program”. In: Journal of Chemical
Information and Modeling 53.6 (June 24, 2013), pp. 1503–1517. doi:
10.1021/ci400079k.

[146] David Weininger. “SMILES, a Chemical Language and Information
System. 1. Introduction to Methodology and Encoding Rules”. In:
Journal of Chemical Information and Computer Sciences 28.1 (Feb. 1,
1988), pp. 31–36. doi: 10.1021/ci00057a005.

[147] Marc Snir, Robert W Wisniewski, Jacob A Abraham, Sarita V
Adve, Saurabh Bagchi, Pavan Balaji, Jim Belak, Pradip Bose,
Franck Cappello, Bill Carlson, et al. “Addressing Failures in Ex-
ascale Computing”. In: The International Journal of High Perfor-
mance Computing Applications 28.2 (May 2014), pp. 129–173. doi:
10.1177/1094342014522573.

[148] Wesley Bland, Aurelien Bouteiller, Thomas Herault, George Bosilca,
and Jack Dongarra. “Post-Failure Recovery of MPI Communication
Capability: Design and Rationale”. In: The International Journal of
High Performance Computing Applications 27.3 (Aug. 2013), pp. 244–
254. doi: 10.1177/1094342013488238.

[149] Roberto Rocco, Davide Gadioli, and Gianluca Palermo. “Legio: Fault
Resiliency for Embarrassingly Parallel MPI Applications”. In: The
Journal of Supercomputing 78.2 (Feb. 2022), pp. 2175–2195. doi: 10.
1007/s11227-021-03951-w.

134

https://doi.org/10.1208/s12248-012-9322-0
https://doi.org/10.1021/jm020017n
https://doi.org/10.1145/3235830.3235835
https://doi.org/10.1021/ci400079k
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1177/1094342014522573
https://doi.org/10.1177/1094342013488238
https://doi.org/10.1007/s11227-021-03951-w
https://doi.org/10.1007/s11227-021-03951-w

[150] PBS Works. OpenPBS: Industry-leading Workload Manager and Job
Scheduler for High-Performance Computing. 2016.

[151] Silvia Gervasoni, Giulio Vistoli, Carmine Talarico, Candida Manelfi,
Andrea R. Beccari, Gabriel Studer, Gerardo Tauriello, Andrew Mark
Waterhouse, Torsten Schwede, and Alessandro Pedretti. “A Compre-
hensive Mapping of the Druggable Cavities within the SARS-CoV-2
Therapeutically Relevant Proteins by Combining Pocket and Docking
Searches as Implemented in Pockets 2.0”. In: International Journal of
Molecular Sciences 21.14 (July 21, 2020), p. 5152. doi: 10.3390/
ijms21145152.

[152] Thomas A. Halgren. “Merck Molecular Force Field. I. Basis, Form,
Scope, Parameterization, and Performance of MMFF94”. In: Journal
of Computational Chemistry 17.5–6 (Apr. 1996), pp. 490–519. doi:
10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.
CO;2-P.

[153] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Andreas
Müller, Joel Nothman, Gilles Louppe, et al. “Scikit-Learn: Machine
Learning in Python”. Version 4. In: (2012). doi: 10.48550/ARXIV.
1201.0490.

[154] H. M. Berman. “The Protein Data Bank”. In: Nucleic Acids Research
28.1 (Jan. 1, 2000), pp. 235–242. doi: 10.1093/nar/28.1.235.

[155] CINECA. The Marconi100 Supercomputer. 2017. url: https://www.
hpc.cineca.it/hardware/marconi100.

[156] ENI S.p.A. HPC5, Supercomputers Serving Research Activities. 2020.
url: https://www.eni.com/en-IT/actions/energy-transition-
technologies/supercomputing-artificial-intelligence/supercomputer.
html.

[157] Stefano Markidis, Davide Gadioli, Emanuele Vitali, and Gianluca
Palermo. “Understanding the I/O Impact on the Performance of High-
Throughput Molecular Docking”. In: 2021 IEEE/ACM Sixth Interna-
tional Parallel Data Systems Workshop (PDSW). 2021 IEEE/ACM
Sixth International Parallel Data Systems Workshop (PDSW). St.
Louis, MO, USA: IEEE, Nov. 2021, pp. 9–14. doi: 10 . 1109 /
PDSW54622.2021.00007.

[158] Tatsumi Aoyama, Ken-Ichi Ishikawa, Yasuyuki Kimura, Hideo Matsu-
furu, Atsushi Sato, Tomohiro Suzuki, and Sunao Torii. “First Appli-
cation of Lattice QCD to Pezy-SC Processor”. In: Procedia Computer
Science 80 (2016), pp. 1418–1427. doi: 10.1016/j.procs.2016.05.
457.

135

https://doi.org/10.3390/ijms21145152
https://doi.org/10.3390/ijms21145152
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
https://doi.org/10.48550/ARXIV.1201.0490
https://doi.org/10.48550/ARXIV.1201.0490
https://doi.org/10.1093/nar/28.1.235
https://www.hpc.cineca.it/hardware/marconi100
https://www.hpc.cineca.it/hardware/marconi100
https://www.eni.com/en-IT/actions/energy-transition-technologies/supercomputing-artificial-intelligence/supercomputer.html
https://www.eni.com/en-IT/actions/energy-transition-technologies/supercomputing-artificial-intelligence/supercomputer.html
https://www.eni.com/en-IT/actions/energy-transition-technologies/supercomputing-artificial-intelligence/supercomputer.html
https://doi.org/10.1109/PDSW54622.2021.00007
https://doi.org/10.1109/PDSW54622.2021.00007
https://doi.org/10.1016/j.procs.2016.05.457
https://doi.org/10.1016/j.procs.2016.05.457

[159] Sparsh Mittal. “A Survey on Evaluating and Optimizing Performance
of Intel Xeon Phi”. In: Concurrency and Computation: Practice and
Experience 32.19 (Oct. 10, 2020), e5742. doi: 10.1002/cpe.5742.

[160] Intel. What Is Intel® Advanced Matrix Extensions (Intel® AMX)?
Intel Blog. url: https://www.intel.com/content/www/us/en/
products/docs/accelerator-engines/what-is-intel-amx.html.

[161] RISC-V International. RVA32 Profiles. Oct. 17, 2024.

[162] RISC-V International. RISC-V Announces Ratification of the RVA23
Profile Standard. Oct. 21, 2024. url: https://riscv.org/announcements/
2024 / 10 / risc - v - announces - ratification - of - the - rva23 -
profile-standard/.

[163] Joseph K. L. Lee, Maurice Jamieson, Nick Brown, and Ricardo Jesus.
Test-Driving RISC-V Vector Hardware for HPC. Apr. 20, 2023. url:
http://arxiv.org/abs/2304.10319. Pre-published.

[164] Joseph K. L. Lee, Maurice Jamieson, and Nick Brown. “Backporting
RISC-V Vector Assembly”. In: High Performance Computing. Ed. by
Amanda Bienz, Michèle Weiland, Marc Baboulin, and Carola Kruse.
Vol. 13999. Cham: Springer Nature Switzerland, 2023, pp. 433–443.
doi: 10.1007/978-3-031-40843-4_32.

[165] Gianna Paulin, Matheus Cavalcante, Paul Scheffler, Luca Bertaccini,
Yichao Zhang, Frank Gurkaynak, and Luca Benini. “Soft Tiles: Cap-
turing Physical Implementation Flexibility for Tightly-Coupled Par-
allel Processing Clusters”. In: 2022 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). 2022 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). Nicosia, Cyprus: IEEE, July 2022,
pp. 44–49. doi: 10.1109/ISVLSI54635.2022.00021.

[166] Gianna Paulin, Florian Zaruba, Stefan Mach, Manuel Eggimann,
Matheus Cavalcante, Paul Scheffler, Yichao Zhang, Tim Fischer, Nils
Wistoff, Luca Bertaccini, et al. Occamy. The IIS Chip Gallery. 2022.
url: http://asic.ethz.ch/2022/Occamy.html.

[167] Mario Kovač. “European Processor Initiative: The Industrial Corner-
stone of EuroHPC for Exascale Era”. In: Proceedings of the 16th ACM
International Conference on Computing Frontiers - CF ’19. The 16th
ACM International Conference. Alghero, Italy: ACM Press, 2019,
pp. 319–319. doi: 10.1145/3310273.3323432.

[168] Alexander Dörflinger, Mark Albers, Benedikt Kleinbeck, Yejun Guan,
Harald Michalik, Raphael Klink, Christopher Blochwitz, Anouar
Nechi, and Mladen Berekovic. “A Comparative Survey of Open-Source
Application-Class RISC-V Processor Implementations”. In: Proceed-
ings of the 18th ACM International Conference on Computing Fron-

136

https://doi.org/10.1002/cpe.5742
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/what-is-intel-amx.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/what-is-intel-amx.html
https://riscv.org/announcements/2024/10/risc-v-announces-ratification-of-the-rva23-profile-standard/
https://riscv.org/announcements/2024/10/risc-v-announces-ratification-of-the-rva23-profile-standard/
https://riscv.org/announcements/2024/10/risc-v-announces-ratification-of-the-rva23-profile-standard/
http://arxiv.org/abs/2304.10319
https://doi.org/10.1007/978-3-031-40843-4_32
https://doi.org/10.1109/ISVLSI54635.2022.00021
http://asic.ethz.ch/2022/Occamy.html
https://doi.org/10.1145/3310273.3323432

tiers. CF ’21: Computing Frontiers Conference. Virtual Event Italy:
ACM, May 11, 2021, pp. 12–20. doi: 10.1145/3457388.3458657.

[169] RISC-V International. “The RISC-V Instruction Set Manual Volume
I: Unprivileged Architecture”. In: (Apr. 11, 2024).

[170] E4 Computer Engineering. The Armida HPC System at E4. 2016.

[171] Andrea Bartolini, Francesco Beneventi, Andrea Borghesi, Daniele Ce-
sarini, Antonio Libri, Luca Benini, and Carlo Cavazzoni. “Paving the
Way Toward Energy-Aware and Automated Datacentre”. In: Work-
shop Proceedings of the 48th International Conference on Parallel
Processing. ICPP 2019: Workshops. Kyoto Japan: ACM, Aug. 5, 2019,
pp. 1–8. doi: 10.1145/3339186.3339215.

[172] Nikola Rajovic, Alejandro Rico, Filippo Mantovani, Daniel Ruiz,
Josep Oriol Vilarrubi, Constantino Gomez, Luna Backes, Diego Nieto,
Harald Servat, Xavier Martorell, et al. “The Mont-Blanc Prototype:
An Alternative Approach for HPC Systems”. In: SC16: International
Conference for High Performance Computing, Networking, Storage
and Analysis. SC16: International Conference for High Performance
Computing, Networking, Storage and Analysis. Salt Lake City, UT,
USA: IEEE, Nov. 2016, pp. 444–455. doi: 10.1109/SC.2016.37.

[173] Mitsuhisa Sato, Yutaka Ishikawa, Hirofumi Tomita, Yuetsu Kodama,
Tetsuya Odajima, Miwako Tsuji, Hisashi Yashiro, Masaki Aoki,
Naoyuki Shida, Ikuo Miyoshi, et al. “Co-Design for A64FX Many-
core Processor and ”Fugaku””. In: SC20: International Conference
for High Performance Computing, Networking, Storage and Analysis.
SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. Atlanta, GA, USA: IEEE, Nov.
2020, pp. 1–15. doi: 10.1109/SC41405.2020.00051.

[174] Ravi Sahita, Vedvyas Shanbhogue, Andrew Bresticker, Atul Khare,
Atish Patra, Samuel Ortiz, Dylan Reid, and Rajnesh Kanwal. “CoVE:
Towards Confidential Computing on RISC-V Platforms”. In: Pro-
ceedings of the 20th ACM International Conference on Computing
Frontiers. CF ’23: 20th ACM International Conference on Comput-
ing Frontiers. Bologna Italy: ACM, May 9, 2023, pp. 315–321. doi:
10.1145/3587135.3592168.

[175] Roger Espasa. “Introducing SemiDynamics High Bandwidth RISC-V
IP Cores”. RISC-V Global Forum. 2020.

[176] David R. Ditzel. “Accelerating ML Recommendation With Over 1,000
RISC-V/Tensor Processors on Esperanto’s ET-SoC-1 Chip”. In: IEEE
Micro 42.3 (May 1, 2022), pp. 31–38. doi: 10 . 1109 / MM . 2022 .
3140674.

137

https://doi.org/10.1145/3457388.3458657
https://doi.org/10.1145/3339186.3339215
https://doi.org/10.1109/SC.2016.37
https://doi.org/10.1109/SC41405.2020.00051
https://doi.org/10.1145/3587135.3592168
https://doi.org/10.1109/MM.2022.3140674
https://doi.org/10.1109/MM.2022.3140674

[177] Florian Zaruba, Fabian Schuiki, and Luca Benini. “Manticore: A 4096-
Core RISC-V Chiplet Architecture for Ultraefficient Floating-Point
Computing”. In: IEEE Micro 41.2 (Mar. 1, 2021), pp. 36–42. doi:
10.1109/MM.2020.3045564.

[178] Colin Schmidt, John Wright, Zhongkai Wang, Eric Chang, Albert
Ou, Woorham Bae, Sean Huang, Anita Flynn, Brian Richards, Krste
Asanovic, et al. “4.3 An Eight-Core 1.44GHz RISC-V Vector Machine
in 16nm FinFET”. In: 2021 IEEE International Solid- State Circuits
Conference (ISSCC). 2021 IEEE International Solid- State Circuits
Conference (ISSCC). San Francisco, CA, USA: IEEE, Feb. 13, 2021,
pp. 58–60. doi: 10.1109/ISSCC42613.2021.9365789.

[179] RISC-V International. “"V" Standard Extension for Vector Opera-
tions, Version 1.0”. In: The RISC-V Instruction Set Manual Volume
I: Unprivileged Architecture (Apr. 11, 2024), pp. 273–371.

[180] Nick Brown. RISC-V for HPC: Where We Are and Where We Need
to Go. Version 1. 2024. doi: 10.48550/ARXIV.2406.12398. url:
https://arxiv.org/abs/2406.12398. Pre-published.

[181] Antonio Libri, Andrea Bartolini, and Luca Benini. “pAElla : Edge
AI-Based Real-Time Malware Detection in Data Centers”. In: IEEE
Internet of Things Journal 7.10 (Oct. 2020), pp. 9589–9599. doi: 10.
1109/JIOT.2020.2986702.

[182] Alessio Netti, Woong Shin, Michael Ott, Torsten Wilde, and Natalie
Bates. “A Conceptual Framework for HPC Operational Data Analyt-
ics”. In: 2021 IEEE International Conference on Cluster Computing
(CLUSTER). 2021 IEEE International Conference on Cluster Com-
puting (CLUSTER). Portland, OR, USA: IEEE, Sept. 2021, pp. 596–
603. doi: 10.1109/Cluster48925.2021.00086.

[183] Elizabeth Bautista, Melissa Romanus, Thomas Davis, Cary Whit-
ney, and Theodore Kubaska. “Collecting, Monitoring, and Analyzing
Facility and Systems Data at the National Energy Research Scien-
tific Computing Center”. In: Workshop Proceedings of the 48th Inter-
national Conference on Parallel Processing. ICPP 2019: Workshops.
Kyoto Japan: ACM, Aug. 5, 2019, pp. 1–9. doi: 10.1145/3339186.
3339213.

[184] SiFive. SiFive U74-MC Core Complex Manual. 2021.

[185] Todd Gamblin, Matthew LeGendre, Michael R. Collette, Gregory L.
Lee, Adam Moody, Bronis R. de Supinski, and Scott Futral. “The
Spack Package Manager: Bringing Order to HPC Software Chaos”.
In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. SC15: The Interna-
tional Conference for High Performance Computing, Networking,

138

https://doi.org/10.1109/MM.2020.3045564
https://doi.org/10.1109/ISSCC42613.2021.9365789
https://doi.org/10.48550/ARXIV.2406.12398
https://arxiv.org/abs/2406.12398
https://doi.org/10.1109/JIOT.2020.2986702
https://doi.org/10.1109/JIOT.2020.2986702
https://doi.org/10.1109/Cluster48925.2021.00086
https://doi.org/10.1145/3339186.3339213
https://doi.org/10.1145/3339186.3339213

Storage and Analysis. Austin Texas: ACM, Nov. 15, 2015, pp. 1–12.
doi: 10.1145/2807591.2807623.

[186] John Furlani. “Modules: Providing a Flexible User Environment”. In:
1991.

[187] Massimiliano Culpo, Gregory Becker, Carlos Eduardo Arango Gutier-
rez, Kenneth Hoste, and Todd Gamblin. “Archspec: A Library for
Detecting, Labeling, and Reasoning about Microarchitectures”. In:
2020 2nd International Workshop on Containers and New Orchestra-
tion Paradigms for Isolated Environments in HPC (CANOPIE-HPC).
2020 2nd International Workshop on Containers and New Orches-
tration Paradigms for Isolated Environments in HPC (CANOPIE-
HPC). Atlanta, GA, USA: IEEE, Nov. 2020, pp. 45–52. doi: 10.
1109/CANOPIEHPC51917.2020.00011.

[188] Francesco Beneventi, Andrea Bartolini, Carlo Cavazzoni, and Luca
Benini. “Continuous Learning of HPC Infrastructure Models Using
Big Data Analytics and In-Memory Processing Tools”. In: Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), 2017.
2017 Design, Automation & Test in Europe Conference & Exhibition
(DATE). Lausanne, Switzerland: IEEE, Mar. 2017, pp. 1038–1043.
doi: 10.23919/DATE.2017.7927143.

[189] John McCalpin. “Memory Bandwidth and Machine Balance in High
Performance Computers”. In: IEEE Technical Committee on Com-
puter Architecture Newsletter (Dec. 1995), pp. 19–25.

[190] RISC-V International. RISC-V ABIs Specification. Nov. 30, 2021.

[191] SiFive. RISC-V Large Code Model Software Workaround.

[192] GNU Compiler Collection. RISC-V: Minimal Support of Bitmanip
Instructions.

[193] GNU Binutils. RISC-V: Add Support for Zbs Instructions.

[194] Florian Zaruba and Luca Benini. “The Cost of Application-Class Pro-
cessing: Energy and Performance Analysis of a Linux-Ready 1.7-GHz
64-Bit RISC-V Core in 22-Nm FDSOI Technology”. In: IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems 27.11 (Nov.
2019), pp. 2629–2640. doi: 10.1109/TVLSI.2019.2926114.

[195] Giuseppe Tagliavini, Stefan Mach, Davide Rossi, Andrea Marongiu,
and Luca Benini. “Design and Evaluation of SmallFloat SIMD Ex-
tensions to the RISC-V ISA”. In: 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE). 2019 Design, Automation
& Test in Europe Conference & Exhibition (DATE). Florence, Italy:
IEEE, Mar. 2019, pp. 654–657. doi: 10.23919/DATE.2019.8714897.

[196] IEEE Standard for Floating-Point Arithmetic. 2008. doi: 10.1109/
IEEESTD.2008.4610935.

139

https://doi.org/10.1145/2807591.2807623
https://doi.org/10.1109/CANOPIEHPC51917.2020.00011
https://doi.org/10.1109/CANOPIEHPC51917.2020.00011
https://doi.org/10.23919/DATE.2017.7927143
https://doi.org/10.1109/TVLSI.2019.2926114
https://doi.org/10.23919/DATE.2019.8714897
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935

[197] Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Di-
pankar Das, Kunal Banerjee, Sasikanth Avancha, Dharma Teja Voo-
turi, Nataraj Jammalamadaka, Jianyu Huang, Hector Yuen, et al. A
Study of BFLOAT16 for Deep Learning Training. Version 3. 2019.
doi: 10.48550/ARXIV.1905.12322. url: https://arxiv.org/abs/
1905.12322. Pre-published.

[198] NVIDIA. NVIDIA cuDNN. NVIDIA, 2023.

[199] Yann LeCun. “1.1 Deep Learning Hardware: Past, Present, and Fu-
ture”. In: 2019 IEEE International Solid- State Circuits Conference -
(ISSCC). 2019 IEEE International Solid- State Circuits Conference -
(ISSCC). San Francisco, CA, USA: IEEE, Feb. 2019, pp. 12–19. doi:
10.1109/ISSCC.2019.8662396.

[200] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Bo-
den, Al Borchers, et al. “In-Datacenter Performance Analysis of a
Tensor Processing Unit”. Apr. 16, 2017.

[201] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and
Kailash Gopalakrishnan. “Training Deep Neural Networks with 8-Bit
Floating Point Numbers”. In: Proceedings of the 32nd International
Conference on Neural Information Processing Systems. NIPS’18. Red
Hook, NY, USA: Curran Associates Inc., 2018, pp. 7686–7695.

[202] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh
Jain, Michael Voznesensky, Bin Bao, Peter Bell, David Berard, Ev-
geni Burovski, et al. “PyTorch 2: Faster Machine Learning Through
Dynamic Python Bytecode Transformation and Graph Compilation”.
In: Proceedings of the 29th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
Volume 2. ASPLOS ’24: 29th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Sys-
tems, Volume 2. La Jolla CA USA: ACM, Apr. 27, 2024, pp. 929–947.
doi: 10.1145/3620665.3640366.

[203] Paul Barham and Michael Isard. “Machine Learning Systems Are
Stuck in a Rut”. In: Proceedings of the Workshop on Hot Topics in
Operating Systems. HotOS ’19: Workshop on Hot Topics in Operating
Systems. Bertinoro Italy: ACM, May 13, 2019, pp. 177–183. doi: 10.
1145/3317550.3321441.

[204] M. Griebl, C. Lengauer, and S. Wetzel. “Code Generation in the Poly-
tope Model”. In: Proceedings. 1998 International Conference on Par-
allel Architectures and Compilation Techniques (Cat. No.98EX192).
1998 International Conference on Parallel Architectures and Compi-
lation Techniques. Paris, France: IEEE Comput. Soc, 1998, pp. 106–
111. doi: 10.1109/PACT.1998.727179.

140

https://doi.org/10.48550/ARXIV.1905.12322
https://arxiv.org/abs/1905.12322
https://arxiv.org/abs/1905.12322
https://doi.org/10.1109/ISSCC.2019.8662396
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3317550.3321441
https://doi.org/10.1145/3317550.3321441
https://doi.org/10.1109/PACT.1998.727179

[205] Silicon Graphics, Inc. “WHIRL Intermediate Language Specification”.
In: The SGI Pro64™ Compiler.

[206] Anthony Danalis, Lori Pollock, Martin Swany, and John Cavazos.
“Implementing an Open64-based Tool for Improving the Performance
of MPI Programs”. In: IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). Bostop, MA, Apr. 16, 2008.

[207] Gautam Chakrabarti and Fred Chow. “Structure Layout Optimiza-
tions in the Open64 Compiler: Design, Implementation and Measure-
ments”. In: IEEE/ACM International Symposium on Code Genera-
tion and Optimization (CGO). Boston, MA, Apr. 16, 2008.

[208] Zhou Shuchang, Liu Ying, Lu Fang, Yin Le, Huang Lei, Li Shuai, Ma
Chunhui, Gao Zhitao, and Lian Ruiqi. “Open64 on MIPS: Porting
and Enhancing Open64 for Loongson II”. In: ().

[209] Hsin-I Cindy Liu, Marius Brehler, Mahesh Ravishankar, Nicolas Vasi-
lache, Ben Vanik, and Stella Laurenzo. “TinyIREE: An ML Execution
Environment for Embedded Systems From Compilation to Deploy-
ment”. In: IEEE Micro 42.5 (Sept. 1, 2022), pp. 9–16. doi: 10.1109/
MM.2022.3178068.

[210] OpenXLA.

[211] Modular Inc. Mojo: A Language for next-Generation Compiler Tech-
nology. Oct. 19, 2024. url: https://docs.modular.com/mojo/why-
mojo.

[212] Keith D. Cooper and Linda Torczon. Engineering a Compiler. Third
edition. Cambridge, MA: Morgan Kaufmann Publishers, an imprint
of Elsevier, 2023. 820 pp.

[213] Federico Ficarelli. “Taming Custom RISC-V Extensions with Multi-
level Compilers”. In: HiPEAC 24. Munich, Germany, Jan. 17, 2024.

[214] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas
Vasilache, and Oleksandr Zinenko. “MLIR: Scaling Compiler Infras-
tructure for Domain Specific Computation”. In: 2021 IEEE/ACM
International Symposium on Code Generation and Optimization
(CGO). 2021 IEEE/ACM International Symposium on Code Genera-
tion and Optimization (CGO). Seoul, Korea (South): IEEE, Feb. 27,
2021, pp. 2–14. doi: 10.1109/CGO51591.2021.9370308.

[215] Sander de Smalen. “Optimizing Code for Scalable Vector Architec-
tures”. 2021 LLVM Developers’ Meeting. 2021.

141

https://doi.org/10.1109/MM.2022.3178068
https://doi.org/10.1109/MM.2022.3178068
https://docs.modular.com/mojo/why-mojo
https://docs.modular.com/mojo/why-mojo
https://doi.org/10.1109/CGO51591.2021.9370308

[216] Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans
Pabst. “LIBXSMM: Accelerating Small Matrix Multiplications by
Runtime Code Generation”. In: SC16: International Conference for
High Performance Computing, Networking, Storage and Analysis.
SC16: International Conference for High-Performance Computing,
Networking, Storage and Analysis. Salt Lake City, UT: IEEE, Nov.
2016, pp. 981–991. doi: 10.1109/SC.2016.83.

[217] Field G. Van Zee, Tyler M. Smith, Bryan Marker, Tze Meng Low,
Robert A. Van De Geijn, Francisco D. Igual, Mikhail Smelyanskiy, Xi-
anyi Zhang, Michael Kistler, Vernon Austel, et al. “The BLIS Frame-
work: Experiments in Portability”. In: ACM Transactions on Math-
ematical Software 42.2 (June 3, 2016), pp. 1–19. doi: 10 . 1145 /
2755561.

[218] Intel. Intel oneDNN. Intel, 2023.

[219] Angelo Garofalo, Manuele Rusci, Francesco Conti, Davide Rossi, and
Luca Benini. “PULP-NN: A Computing Library for Quantized Neu-
ral Network Inference at the Edge on RISC-V Based Parallel Ul-
tra Low Power Clusters”. In: 2019 26th IEEE International Con-
ference on Electronics, Circuits and Systems (ICECS). 2019 26th
IEEE International Conference on Electronics, Circuits and Systems
(ICECS). Genoa, Italy: IEEE, Nov. 2019, pp. 33–36. doi: 10.1109/
ICECS46596.2019.8965067.

[220] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Co-
hen, John Tran, Bryan Catanzaro, and Evan Shelhamer. cuDNN:
Efficient Primitives for Deep Learning. Dec. 18, 2014. url: http:
//arxiv.org/abs/1410.0759. Pre-published.

[221] Florian Zaruba. Harnessing the RISC-V Wave: The Future Is Now.
Axelera AI. 2023. url: https://www.axelera.ai/harnessing-the-
risc-v-wave-the-future-is-now/.

[222] T-Head Semiconductor Co. T-Head ISA Extension Specification
(Xthead*). 2023.

[223] Michael Gautschi, Pasquale Davide Schiavone, Andreas Traber, Igor
Loi, Antonio Pullini, Davide Rossi, Eric Flamand, Frank K. Gurkay-
nak, and Luca Benini. “Near-Threshold RISC-V Core With DSP Ex-
tensions for Scalable IoT Endpoint Devices”. In: IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 25.10 (Oct. 2017),
pp. 2700–2713. doi: 10.1109/TVLSI.2017.2654506.

[224] Antonio Pullini, Davide Rossi, Igor Loi, Giuseppe Tagliavini, and
Luca Benini. “Mr.Wolf: An Energy-Precision Scalable Parallel Ultra
Low Power SoC for IoT Edge Processing”. In: IEEE Journal of Solid-

142

https://doi.org/10.1109/SC.2016.83
https://doi.org/10.1145/2755561
https://doi.org/10.1145/2755561
https://doi.org/10.1109/ICECS46596.2019.8965067
https://doi.org/10.1109/ICECS46596.2019.8965067
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
https://www.axelera.ai/harnessing-the-risc-v-wave-the-future-is-now/
https://www.axelera.ai/harnessing-the-risc-v-wave-the-future-is-now/
https://doi.org/10.1109/TVLSI.2017.2654506

State Circuits 54.7 (July 2019), pp. 1970–1981. doi: 10.1109/JSSC.
2019.2912307.

[225] Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson.
“A Compiler Infrastructure for Accelerator Generators”. In: Proceed-
ings of the 26th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. ASPLOS
’21: 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems. Virtual USA:
ACM, Apr. 19, 2021, pp. 804–817. doi: 10.1145/3445814.3446712.

[226] Fabian Schuiki, Florian Zaruba, Torsten Hoefler, and Luca Benini.
“Stream Semantic Registers: A Lightweight RISC-V ISA Extension
Achieving Full Compute Utilization in Single-Issue Cores”. In: IEEE
Transactions on Computers 70.2 (Feb. 1, 2021), pp. 212–227. doi:
10.1109/TC.2020.2987314.

[227] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. Sixth edition. Morgan Kaufmann, 2019.

[228] LLVM authors PULP Project. Snitch Target Support in LLVM.
GitHub, 2023.

[229] Nicolas Vasilache, Oleksandr Zinenko, Aart J. C. Bik, Mahesh Ravis-
hankar, Thomas Raoux, Alexander Belyaev, Matthias Springer, To-
bias Gysi, Diego Caballero, Stephan Herhut, et al. Composable and
Modular Code Generation in MLIR: A Structured and Retargetable
Approach to Tensor Compiler Construction. Feb. 7, 2022. url: http:
//arxiv.org/abs/2202.03293. Pre-published.

[230] Evangelos Georganas, Dhiraj Kalamkar, Sasikanth Avancha, Men-
achem Adelman, Cristina Anderson, Alexander Breuer, Jeremy
Bruestle, Narendra Chaudhary, Abhisek Kundu, Denise Kutnick,
et al. “Tensor Processing Primitives: A Programming Abstraction
for Efficiency and Portability in Deep Learning Workloads”. In: Pro-
ceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis. SC ’21: The International
Conference for High Performance Computing, Networking, Storage
and Analysis. St. Louis Missouri: ACM, Nov. 14, 2021, pp. 1–14. doi:
10.1145/3458817.3476206.

[231] Lorenzo Chelini, Henrik Barthels, Paolo Bientinesi, Marcin Copik,
Tobias Grosser, and Daniele G. Spampinato. MOM: Matrix Opera-
tions in MLIR. Version 1. 2022. doi: 10.48550/ARXIV.2208.10391.
url: https://arxiv.org/abs/2208.10391. Pre-published.

[232] Uday Bondhugula. “High Performance Code Generation in MLIR: An
Early Case Study with GEMM”. Mar. 1, 2020.

143

https://doi.org/10.1109/JSSC.2019.2912307
https://doi.org/10.1109/JSSC.2019.2912307
https://doi.org/10.1145/3445814.3446712
https://doi.org/10.1109/TC.2020.2987314
http://arxiv.org/abs/2202.03293
http://arxiv.org/abs/2202.03293
https://doi.org/10.1145/3458817.3476206
https://doi.org/10.48550/ARXIV.2208.10391
https://arxiv.org/abs/2208.10391

[233] Tian Jin, Gheorghe-Teodor Bercea, Tung D. Le, Tong Chen, Gong
Su, Haruki Imai, Yasushi Negishi, Anh Leu, Kevin O’Brien, Kiyokuni
Kawachiya, and Alexandre E. Eichenberger. Compiling ONNX Neural
Network Models Using MLIR. Sept. 30, 2020. url: http://arxiv.
org/abs/2008.08272. Pre-published.

[234] Aart J. C. Bik, Penporn Koanantakool, Tatiana Shpeisman, Nicolas
Vasilache, Bixia Zheng, and Fredrik Kjolstad. “Compiler Support for
Sparse Tensor Computations in MLIR”. Feb. 9, 2022.

[235] Tobias Gysi, Christoph Müller, Oleksandr Zinenko, Stephan Herhut,
Eddie Davis, Tobias Wicky, Oliver Fuhrer, Torsten Hoefler, and To-
bias Grosser. “Domain-Specific Multi-Level IR Rewriting for GPU:
The Open Earth Compiler for GPU-accelerated Climate Simulation”.
In: ACM Transactions on Architecture and Code Optimization 18.4
(Dec. 31, 2021), pp. 1–23. doi: 10.1145/3469030.

[236] Navdeep Katel, Vivek Khandelwal, and Uday Bondhugula. “MLIR-
based Code Generation for GPU Tensor Cores”. In: Proceedings of
the 31st ACM SIGPLAN International Conference on Compiler Con-
struction. CC ’22: 31st ACM SIGPLAN International Conference on
Compiler Construction. Seoul South Korea: ACM, Mar. 19, 2022,
pp. 117–128. doi: 10.1145/3497776.3517770.

[237] Mathieu Fehr, Michel Weber, Christian Ulmann, Alexandre Lopoukhine,
Martin Lücke, Théo Degioanni, Michel Steuwer, and Tobias Grosser.
Sidekick Compilation with xDSL. Version 3. 2023. doi: 10.48550/
ARXIV.2311.07422. url: https://arxiv.org/abs/2311.07422.
Pre-published.

[238] Mathieu Fehr, Jeff Niu, River Riddle, Mehdi Amini, Zhendong Su, and
Tobias Grosser. “IRDL: An IR Definition Language for SSA Compil-
ers”. In: Proceedings of the 43rd ACM SIGPLAN International Con-
ference on Programming Language Design and Implementation. PLDI
’22: 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation. San Diego CA USA: ACM,
June 9, 2022, pp. 199–212. doi: 10.1145/3519939.3523700.

[239] George Bisbas, Anton Lydike, Emilien Bauer, Nick Brown, Math-
ieu Fehr, Lawrence Mitchell, Gabriel Rodriguez-Canal, Maurice
Jamieson, Paul H. J. Kelly, Michel Steuwer, and Tobias Grosser.
“A Shared Compilation Stack for Distributed-Memory Parallelism in
Stencil DSLs”. In: Proceedings of the 29th ACM International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, Volume 3. ASPLOS ’24: 29th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3. La Jolla CA USA: ACM, Apr. 27,
2024, pp. 38–56. doi: 10.1145/3620666.3651344.

144

http://arxiv.org/abs/2008.08272
http://arxiv.org/abs/2008.08272
https://doi.org/10.1145/3469030
https://doi.org/10.1145/3497776.3517770
https://doi.org/10.48550/ARXIV.2311.07422
https://doi.org/10.48550/ARXIV.2311.07422
https://arxiv.org/abs/2311.07422
https://doi.org/10.1145/3519939.3523700
https://doi.org/10.1145/3620666.3651344

[240] GNU Project. GCC, the GNU Compiler Collection. 2023.

[241] Cranelift Code Generator. Bytecode Alliance, 2023.

[242] xDSL: A Python-native SSA Compiler Framework. xDSL Project,
2023.

[243] Florent Bouchez Tichadou and Fabrice Rastello, eds. SSA-based Com-
piler Design. 1st ed. 2022. Cham: Springer Nature Switzerland AG,
2023. 382 pp.

[244] The Torch-MLIR Project. 2024.

[245] Jeff Niu and Mehdi Amini. “MLIR Dialect Design and Composition
for Front-End Compilers”. 2023 European LLVM Developers’ Meeting
(Glasgow, UK). May 11, 2023.

[246] Randy Allen and Ken Kennedy. Optimizing Compilers for Modern
Architectures: A Dependance-Based Approach. Transferred to digital
print. San Francisco, Calif.: Morgan Kaufmann, 2011. 790 pp.

[247] MLIR Authors. MLIR Documentation: ’linalg’ Dialect. Multi-Level
IR Compiler Framework. 2023. url: https://mlir.llvm.org/docs/
Dialects/Linalg.

[248] Sebastian Braun and Ivan Tashev. “Data Augmentation and Loss
Normalization for Deep Noise Suppression”. In: Speech and Computer.
Ed. by Alexey Karpov and Rodmonga Potapova. Vol. 12335. Cham:
Springer International Publishing, 2020, pp. 79–86. doi: 10.1007/
978-3-030-60276-5_8.

[249] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet
Classification with Deep Convolutional Neural Networks”. In: Com-
munications of the ACM 60.6 (May 24, 2017), pp. 84–90. doi: 10.
1145/3065386.

[250] Veripool. Verilator.

[251] Felix Mölder, Kim Philipp Jablonski, Brice Letcher, Michael B. Hall,
Christopher H. Tomkins-Tinch, Vanessa Sochat, Jan Forster, Soohyun
Lee, Sven O. Twardziok, Alexander Kanitz, et al. “Sustainable Data
Analysis with Snakemake”. In: F1000Research 10 (Jan. 18, 2021),
p. 33. doi: 10.12688/f1000research.29032.1.

[252] Adrián Castelló, Julian Bellavita, Grace Dinh, Yuka Ikarashi, and
Héctor Martínez. “Tackling the Matrix Multiplication Micro-Kernel
Generation with Exo”. In: 2024 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO). 2024 IEEE/ACM
International Symposium on Code Generation and Optimization
(CGO). Edinburgh, United Kingdom: IEEE, Mar. 2, 2024, pp. 182–
193. doi: 10.1109/CGO57630.2024.10444883.

145

https://mlir.llvm.org/docs/Dialects/Linalg
https://mlir.llvm.org/docs/Dialects/Linalg
https://doi.org/10.1007/978-3-030-60276-5_8
https://doi.org/10.1007/978-3-030-60276-5_8
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.12688/f1000research.29032.1
https://doi.org/10.1109/CGO57630.2024.10444883

[253] Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc,
and Jonathan Ragan-Kelley. “Exocompilation for Productive Pro-
gramming of Hardware Accelerators”. In: Proceedings of the 43rd
ACM SIGPLAN International Conference on Programming Lan-
guage Design and Implementation. PLDI ’22: 43rd ACM SIGPLAN
International Conference on Programming Language Design and Im-
plementation. San Diego CA USA: ACM, June 9, 2022, pp. 703–718.
doi: 10.1145/3519939.3523446.

[254] Braedy Kuzma, Ivan Korostelev, João P. L. De Carvalho, José E.
Moreira, Christopher Barton, Guido Araujo, and José Nelson Ama-
ral. “Fast Matrix Multiplication via Compiler-only Layered Data Re-
organization and Intrinsic Lowering”. In: Software: Practice and Ex-
perience 53.9 (Sept. 2023), pp. 1793–1814. doi: 10.1002/spe.3214.

[255] Steven Varoumas. “Using MLIR to Optimize Basic Linear Algebraic
Subprograms”. 2023 Euro LLVM Developer’s Meetingh (Glasgow,
UK). May 10, 2023.

[256] Bastian Hagedorn, Archibald Samuel Elliott, Henrik Barthels, Rastislav
Bodik, and Vinod Grover. “Fireiron: A Data-Movement-Aware Schedul-
ing Language for GPUs”. In: Proceedings of the ACM International
Conference on Parallel Architectures and Compilation Techniques.
PACT ’20: International Conference on Parallel Architectures and
Compilation Techniques. Virtual Event GA USA: ACM, Sept. 30,
2020, pp. 71–82. doi: 10.1145/3410463.3414632.

[257] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and
Saman Amarasinghe. “The Tensor Algebra Compiler”. In: Proceedings
of the ACM on Programming Languages 1 (OOPSLA Oct. 12, 2017),
pp. 1–29. doi: 10.1145/3133901.

[258] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil,
Julian Shun, and Saman Amarasinghe. “GraphIt: A High-Performance
Graph DSL”. In: Proceedings of the ACM on Programming Languages
2 (OOPSLA Oct. 24, 2018), pp. 1–30. doi: 10.1145/3276491.

[259] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele
Del Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suri-
ana, Shoaib Kamil, and Saman Amarasinghe. “Tiramisu: A Poly-
hedral Compiler for Expressing Fast and Portable Code”. In: 2019
IEEE/ACM International Symposium on Code Generation and Op-
timization (CGO). 2019 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO). Washington, DC, USA:
IEEE, Feb. 2019, pp. 193–205. doi: 10.1109/CGO.2019.8661197.

146

https://doi.org/10.1145/3519939.3523446
https://doi.org/10.1002/spe.3214
https://doi.org/10.1145/3410463.3414632
https://doi.org/10.1145/3133901
https://doi.org/10.1145/3276491
https://doi.org/10.1109/CGO.2019.8661197

[260] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. “LIFT:
A Functional Data-Parallel IR for High-Performance GPU Code
Generation”. In: 2017 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). 2017 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). Austin,
TX, USA: IEEE, Feb. 2017, pp. 74–85. doi: 10.1109/CGO.2017.
7863730.

[261] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry
Moreau, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy.
“Learning to Optimize Tensor Programs”. In: Proceedings of the 32nd
International Conference on Neural Information Processing Sys-
tems. NIPS’18. Red Hook, NY, USA: Curran Associates Inc., 2018,
pp. 3393–3404.

[262] Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas Rountev, and
P. Sadayappan. “Analytical Characterization and Design Space Ex-
ploration for Optimization of CNNs”. In: Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems. ASPLOS ’21: 26th ACM Interna-
tional Conference on Architectural Support for Programming Lan-
guages and Operating Systems. Virtual USA: ACM, Apr. 19, 2021,
pp. 928–942. doi: 10.1145/3445814.3446759.

[263] Nicolas Tollenaere, Guillaume Iooss, Stéphane Pouget, Hugo Brunie,
Christophe Guillon, Albert Cohen, P. Sadayappan, and Fabrice
Rastello. “Autotuning Convolutions Is Easier Than You Think”.
In: ACM Transactions on Architecture and Code Optimization 20.2
(June 30, 2023), pp. 1–24. doi: 10.1145/3570641.

[264] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang,
Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pe-
dram, Christos Kozyrakis, and Kunle Olukotun. “Spatial: A Language
and Compiler for Application Accelerators”. In: Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design
and Implementation. PLDI ’18: ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. Philadelphia PA
USA: ACM, June 11, 2018, pp. 296–311. doi: 10.1145/3192366.
3192379.

[265] Perry Gibson and José Cano. “Transfer-Tuning: Reusing Auto-
Schedules for Efficient Tensor Program Code Generation”. In: Pro-
ceedings of the International Conference on Parallel Architectures
and Compilation Techniques. PACT ’22: International Conference on
Parallel Architectures and Compilation Techniques. Chicago Illinois:
ACM, Oct. 8, 2022, pp. 28–39. doi: 10.1145/3559009.3569682.

147

https://doi.org/10.1109/CGO.2017.7863730
https://doi.org/10.1109/CGO.2017.7863730
https://doi.org/10.1145/3445814.3446759
https://doi.org/10.1145/3570641
https://doi.org/10.1145/3192366.3192379
https://doi.org/10.1145/3192366.3192379
https://doi.org/10.1145/3559009.3569682

	Abstract
	Preface
	The Present of Sustainable HPC: GPU-Accelerated Systems
	Use Case: Exascale Drug Discovery
	The Virtual Screening Application
	Architecture of GPU Accelerators
	Latency-Optimized Kernels for Task-Based Workloads
	Throughput-Optimized Kernels for Task-Based Workloads
	Experiments
	Preprocessed Datasets
	Scaling Analysis
	Real World Datasets
	Micro-Architectural Profiling

	Urgent Computing Against COVID-19
	Related Work
	High-throughput Docking Workflow
	Urgent Computing Setup
	Evaluating the storage requirements
	Intra-node Scaling
	HPC System Scale-out
	Data Pre/Post-processing

	Conclusion

	The Future of Sustainable HPC: RISC-V
	The Monte Cimone Experimental System
	State-of-the-art
	Hardware Architecture
	Software Environment
	HPC Software
	Power Monitoring Infrastructure

	Assessment Experiments
	HPC Applications Performance

	Heterogeneous HPC on RISC-V: Accelerating Monte Cimone
	RISC-V for HPC: Conclusion and Prospects

	Multi-level SSA Compilers for RISC-V Accelerators
	Compiling at the End of Moore's Law: Introduction
	The Snitch Architecture
	Programming Model

	The MLIR Ecosystem
	IR Structure
	Linear Algebra Programs in MLIR

	A Multi-Level Compiler Backend
	Representing SSRs
	Type Legalization
	Configuring Software-Managed Prefetchers

	Experimental Evaluation
	Performance Model
	Performance Metrics
	Continuous Testing and Benchmarking Infrastructure
	Experimental Results

	Related Work
	Compiling at the End of Moore's Law: Conclusion

	Final Conclusions
	Bibliography

