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”La scienza non è nient’altro che una perversione se non ha come suo

fine ultimo il miglioramento delle condizioni dell’umanità.”

Nikola Tesla





Abstract

This thesis introduces a novel neuro-adaptive control framework for Blucy, an hybrid

unmanned underwater vehicle (UUV), designed for environmental monitoring in complex

underwater environments. Central to this work is the development of a comprehensive

benchmark model, rigorously validated against real mission data, which serves as a foun-

dational simulator for designing the neuro-adaptive controller. An original parameter

identification workflow is proposed, integrating CAD modeling, CFD simulations, and

AMCOMP software to accurately capture hydrodynamic forces and thruster dynamics

critical for precise modeling. Based on the benchmark, a novel fixed-time sliding mode

control system is designed, augmented with neural networks and disturbance observers

that estimate uncertainties and disturbances. To enhance adaptability, the neural network

and disturbance observer are trained using a composite error learning strategy, optimiz-

ing real-time response to environmental changes and system faults. The effectiveness of

the neuro adaptive control framework ensuring precise trajectory tracking and robustness

against uncertainties, disturbance and faults, is demonstrated through extensive simula-

tions.
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Chapter 1

Introduction

The field of control systems has witnessed a surge in data-driven methodologies, largely

due to advances in machine learning and computational power. These developments have

paved the way for direct and indirect data-driven control, especially in complex environ-

ments like underwater. Direct data-driven approaches bypass the need for explicit model

identification, learning control policies directly from system interactions. This allows for

rapid adaptability to nonlinearities and real-time decision-making in uncharted terrains,

which has proven useful in many applications like fault detection and isolation of actuator

fault [P1] and adaptive tracking control in underwater exploration [1]. However, direct

methods depend heavily on extensive datasets and face challenges with generalization

outside of training data, as in [2], which noted that while direct methods excel with large

datasets, they exhibit higher variance and may underperform with limited data.

Conversely, indirect data-driven approaches utilize system identification to create a

model from collected data, which is then used within a structured control framework.

This method retains interpretability and benefits from leveraging empirical data to re-

fine the baseline model, allowing for increased stability. Applications of indirect control

in underwater contexts include an online model identification framework for underwater

vehicles through incremental support vector regression [3] and application of a differen-

tial evolution algorithm for precise hydrodynamic modeling in gliders [4]. Yet, indirect

methods can exhibit bias and are limited by the accuracy of the model, especially in

hostile underwater conditions with unexpected dynamics, as they may converge slower in

response to noise and parameter discrepancies [5].

The limitations of purely data-driven models in hostile environments have led to in-

creased interest in model-based approaches augmented by neuro-adaptive controllers, thus

resulting in hybrid approaches. This strategy combines the advantages of the model based

approach with the adaptability of neural networks, yielding an overall control system that

is structurally sound, dynamically responsive and robust to model uncertainties, faults

1



2 1.1 State of the Art

and exogenous disturbances. In [5], this type of architecture, which integrates intelligent

control elements, is beneficial when system resilience is paramount and when the environ-

ment’s unpredictable dynamics demand quick, adaptive responses. Hence, by establishing

a reliable baseline grounded in known dynamics, the neuro-adaptive component can de-

tect and adjust to unforeseen disturbances in real time, addressing shortcomings in both

direct and indirect methods without extensive reliance on pre-collected data.

1.1 State of the Art

Modeling of UUV

Blucy is a hybrid Unmanned Underwater Vehicle (UUV), capable of operating re-

motely or autonomously, depending on the specific mission requirements. It was developed

in the Interreg IT-HR SUSHI DROP (sustainable fisheries with drone data processing)

[6, P2] project for non-invasive underwater monitoring and to preserve and restore under-

water ecosystems. The hybrid modelling involves establishing a mathematical model and

identifying the parameters of the model. This enables the creation of accurate simula-

tions of the vehicle’s interactions with complex underwater environments, facilitating the

design and testing of robust neuro-adaptive controllers, path following, target-tracking

algorithms, etc.

Blucy’s modular design means the vehicle’s configuration can change frequently based

on specific mission needs, presenting a significant challenge for system identification.

While online system identification methods exist in the literature [7, 8, 9], they are often

computationally intensive and not always feasible for rapid deployment. Thus, there is a

need for an offline identification workflow that balances experimental and numerical sim-

ulation methods, ensuring that it is simple, fast, and produces reliable results for different

configurations. The mathematical model of underwater vehicles is summarised in [10,

11, 12]. In the model, the hydrodynamic forces and moments are expressed as truncated

Taylor series expansion as a function of linear and angular velocities. The coefficients of

the Taylor series are termed hydrodynamic and added mass coefficients that act as param-

eters of the system. Traditionally, these parameters are estimated experimentally using

towing tank tests [13, 14] with a Planar Motion Mechanism (PMM) [15]. This method

involves external equipment to measure hydrodynamic forces and moments in six degrees

of freedom (6 DOF) without using the vehicle’s propulsion system. However, PMMs are

costly, and the testing procedures are time-consuming. Each hydrodynamic coefficient

requires analysis at multiple motions or speeds, leading to long experiment cycles and

difficulty in assessing the overall reliability of the dynamic model. Additionally, these
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experiments are expensive.

To be cost-effective and ensure high repeatability, open-water tests are used for param-

eter identification. This technique utilises the vehicle’s propulsion system in open water

and onboard sensor data for identification. An offline hydrodynamic parameter identifi-

cation method based on the least squares method is proposed in [16, 17], using data from

onboard sensors. An online-adaptive identification method is proposed in [18]. Other

techniques include Kalman filtering [19, 20], neural networks [21], and self-oscillation ex-

periments [22]. In [23], velocity tests are used to identify drag parameters, while oscillatory

tests are used to identify inertial and coupled terms of an open-frame underwater vehicle

using pre-computed forces and moments. A reduced experimental data set method for pa-

rameter identification is proposed in [24], to be cost-effective. However, these approaches

are affected by external noise and biases in sensor measurements [25, 26]. Although ac-

celeration measurement is feasible in underwater robotics, it is often unreliable due to

sensor noise, hydrodynamic disturbances, and the absence of dedicated instrumentation,

making parameter estimation dependent on sensor fusion and indirect methods.

Recent increased computational power has enabled the use of Computational Fluid

Dynamics (CFD) for parameter identification within the scientific community. In [27],

CFD was applied to determine the sway hydrodynamic derivatives of an autonomous

underwater vehicle (AUV), demonstrating the feasibility of using CFD for parameter

identification. CFD was also used to simulate PMM tests and obtain hydrodynamic

parameters in [28]. In [29], hydrodynamic parameters for an underwater tow vehicle were

obtained using CFD and optimised using the least squares method. CFD combined with

a maximum likelihood algorithm was used to estimate hydrodynamic parameters in [30].

For a comprehensive overview of hydrodynamic parameter estimation techniques, readers

are encouraged to refer to the recent survey presented in [31].

Like hydrodynamic parameters, added mass parameters can also be obtained using

CFD [32, 33]. However, calculating added mass with CFD is a computationally intensive

process. For this reason, studies such as [29] use CFD for hydrodynamic parameters

but obtain added mass parameters analytically using strip theory [34]. Added mass for

standard shapes can be computed analytically and adjusted using empirical data [35].

For complex shapes and modular vehicles like Blucy, estimating these parameters each

time a module changes is challenging. To address this, a Computer-Aided Design (CAD)

based environment called AMCOMP, which estimates the added mass of complex shapes

simply and intuitively, is proposed in [36].

Thruster modelling is a crucial aspect of modelling underwater vehicles, as the thruster

generates forces and moments that control the vehicle’s movement. Initially, first-quadrant

modelling is considered which characterises the thruster when both thrust and propeller
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rotation inputs are positive. This type of modelling is often approximated as bilinear [12,

24] and is suitable for vehicles designed to maintain a minimum speed concerning the

water and manoeuvre using control surfaces [37]. However, for vehicles like Blucy, which

require forces and torques for manoeuvring via differential thrust from paired propellers,

thrusters must operate beyond the first quadrant. In such cases, propellers frequently

change rotational direction to execute curved trajectories, necessitating a different model.

The four-quadrant model, which considers arbitrary thrust direction and propeller rota-

tion direction, is more appropriate for these scenarios [38, 39]. Studies on four-quadrant

modelling of ducted propellers can be found in [40, 41, 42].

Control of UUV

In regards to control systems, various control strategies have been extensively stud-

ied to tackle the challenges of trajectory tracking in underactuated underwater vehicles

(UUVs). Classical approaches, such as PID controllers, provide foundational control ca-

pabilities [43]. To address more complex scenarios involving uncertain dynamics, adaptive

integral sliding mode control has been introduced, improving robustness for underactu-

ated autonomous underwater vehicles (AUVs) [44]. Additionally, fuzzy logic observers

have been employed to approximate external disturbances and uncertainties, enhancing

stability in dynamic underwater environments [45].

Advanced nonlinear methods, including robust backstepping control, have been de-

veloped to improve tracking performance in the presence of modeling uncertainties [46].

For scenarios requiring visual data input, a self-triggered vision-based model predictive

control framework has been proposed to facilitate effective trajectory tracking under ex-

ternal disturbances [47]. Disturbance observers, known for their adaptability, have been

integrated with control frameworks to enhance robustness in trajectory tracking, allow-

ing for greater accuracy in uncertain conditions [48, 45, 49]. A comprehensive review of

nonlinear control strategies offers an in-depth exploration of these techniques and their

applications to underactuated AUVs [50].

Among these strategies, Sliding Mode Control (SMC) has garnered significant atten-

tion for its robustness against model uncertainties and external disturbances, making it

well-suited for UUV applications [51, 52, 53]. However, SMC controllers are prone to

chattering, which can be mitigated through techniques such as boundary layer methods,

higher-order SMC, or super-twisting methods [48, 54]. To improve SMC’s response time

and address the need for rapid convergence, Finite-Time Sliding Mode Control (FITSMC)

has been introduced [53, 55, 56]. Unlike traditional SMC, which converges asymptotically,

FITSMC is designed to bring system states to the desired manifold within a finite time,

making it particularly useful in dynamic environments. However, the convergence time



1. Introduction 5

in FITSMC can depend on the initial conditions of the state variables; unknown initial

conditions may result in longer convergence times.

Fixed-Time Sliding Mode Control (FTSMC) advances beyond finite-time control by

guaranteeing convergence within a predetermined time, irrespective of initial conditions

[57]. This characteristic is particularly beneficial for UUV applications, where a known

settling time is crucial for mission-critical tasks with strict timing constraints. Conse-

quently, FTSMC has been employed to tackle trajectory tracking issues for underactuated

underwater vehicles [58, 59]. FTSMC frameworks often integrate disturbance observers

and adaptive mechanisms to manage dynamic external disturbances [60], ensuring robust

performance in uncertain underwater environments [61]. This combination of high ro-

bustness and predictable convergence times positions FTSMC as a key advancement in

nonlinear control for underwater applications.

Recent advances in computational resources have facilitated the rise of Artificial In-

telligence (AI) controllers, particularly Neural Networks (NNs). NNs are recognized for

their effectiveness in managing various uncertainties and their universal approximation

capabilities, making them appealing for researchers. Unlike conventional controllers that

rely solely on robustness, intelligent controllers leverage NNs to estimate and address ex-

ternal disturbances, thereby enhancing robustness. A recent review discusses intelligent

control strategies for trajectory tracking in underactuated UUVs [62]. FTSMC controllers

based on NNs often employ the Feedback Error Learning (FEL) strategy, as seen in [61].

However, this approach may lead to aggressive learning, and the convergence of optimal

NN weights requires persistent excitation; without it, NN parameters can drift from their

optimal values, resulting in high-gain controllers.

To improve learning efficiency, the design of a state estimator based on estimated

uncertainties allows for the incorporation of the estimation error into the learning rule,

a process termed composite learning. A composite learning-based controller for under-

actuated UUVs has been proposed, capable of tracking desired paths amid uncertainties

and external disturbances [63]. A backstepping method incorporating composite learning

for underactuated systems has also been introduced [64], while another study analyzes

composite model reference adaptive control for underactuated AUVs [65].

1.2 Thesis contribution

In the light of the above discussion, in this thesis, a hybrid model-based approach aug-

mented by neuro adaptive controller is proposed for Blucy UUV. The main contribution

of the thesis are:

• End-to-End Benchmark Model Development: A benchmark model of a novel
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underactuated Unmanned Underwater Vehicle, validated using real mission data.

The primary contribution is an end-to-end modeling procedure that can be gener-

alized to various UUVs, offering the scientific community a robust tool for testing

advanced control and guidance algorithms [P3]. This model is fully validated against

real data, encompassing all critical aspects of UUV performance, including physical,

hydrodynamic, added mass parameters, and thruster dynamics.

• Balanced Workflow for Parameter Estimation: The proposed workflow is

peculiar in its balanced integration of experimental methods with numerical simu-

lations for parameter estimation, making it applicable to other underwater vehicles.

Physical parameters are derived from a detailed CAD model, which is then sim-

plified for hydrodynamic analysis through CFD simulations, thereby reducing the

need for costly experimental methods.

• Application of AMCOMP to UUVs with complex structure: A notable

aspect of this work is the application of AMCOMP, a research tool developed by

the University of Bologna and the Royal Melbourne Institute of Technology, to

calculate the added mass of complex shapes. Traditionally used for simpler ge-

ometries, this tool offers an efficient alternative to the computationally demanding

CFD simulations typically required. This study successfully extends the applicabil-

ity of AMCOMP to more complex UUV designs, thereby broadening its utility in

underwater vehicle modeling.

• Thruster Modeling: It introduces a refined thrust model based on four-quadrant

propeller modeling, tuned experimentally, and presents an actuator model for thrusters.

Finally, the benchmark model is validated against real-mission data to ensure that

the simulated results match the actual vehicle dynamics.

• Neuro-Adaptive Control Framework: A fixed-time sliding mode controller aug-

mented by neural networks and a disturbance observer. Unlike the approach in [61],

which develops a neuro-adaptive fixed-time sliding mode controller trained using a

finite error learning (FEL) strategy without incorporating a disturbance observer,

this thesis explicitly integrates a disturbance observer to estimate time-varying dis-

turbances. This integration enhances the controller’s adaptability and robustness

beyond relying solely on the inherent strengths of SMC.

• Fixed time Convergence: In contrast, the controllers presented in [63] and [64]

focus on composite error learning but lack fixed-time convergence properties. By

combining fixed-time sliding mode control with neural networks and disturbance

observation, the proposed controller addresses the limitations found in previous
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work, offering both rapid convergence and improved disturbance estimation. This

comprehensive approach marks a significant advancement in control strategies for

UUVs, facilitating more reliable path-following and trajectory tracking in dynamic

underwater environments

• Stability Proof and Validation: The stability of the methodology is established

using Lyapunov methods. The effectiveness of the control approach is demonstrated

through Blucy’s benchmark model [P3], which indicates that the integrated NN

and DO estimations significantly enhance robustness against disturbances, thereby

validating the control framework’s resilience under realistic operational conditions.
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Chapter 2

Mathematical Model

This chapter introduces the general mathematical modeling of unmanned underwater

vehicles (UUVs) based on Fossen’s model [10, 11, 12]. It covers the coordinate systems

used in modeling, along with the kinematics and dynamics of the vehicle using rigid-body

six-degree-of-freedom (6 DOF) equations. The 6 DOF equations are further generalized

to incorporate the effects of ocean currents.

2.1 Coordinate system

In the context of underwater vehicle dynamics, describing the motion of the vehicle

requires the adoption of a well-defined coordinate frames. These frames of reference are

essential for representing the vehicle’s position, orientation, and velocities relative to the

Earth and the vehicle itself. The selection of a coordinate system plays a fundamental

role in the kinematic and dynamic equations used to model the vehicle’s behaviour in

6 degrees of freedom (DOF). Typically, for underwater vehicles, two primary coordinate

systems are used:

• North-East-Down (NED) reference frame {n} = (xn, yn, zn): it can be considered

to be inertial for most UUVs, as long as they operates at low speeds and within a

localized area. This is know as the flat Earth navigation assumption, which simplifies

modelling by allowing Newton’s law of motion to apply without accounting for the

Earth curvature or rotational effects. The NED frame is Earth-fixed coordinate

system with:

– xn axis pointing toward true North;

– yn axis pointing toward true East;

– zn axis pointing downward, perpendicular to the Earth’s surface;

1
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xb
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Figure 2.1: The body reference frame of the Blucy.

This alignment with geographic coordinates makes the NED highly compatible with

global navigation systems such as Global Navigation Satellite System (GNSS) or

acoustic positioning systems like USBL or LBL. Furthermore, environmental dis-

turbances, such as marine currents are often expressed in the NED frame, making it

easier to integrate these forces into the vehicle’s dynamic models. The NED frame is

also well-suited for path-following and waypoint navigation, where the mission tra-

jectories are defined relative to the fixed geographical coordinates, thus simplifying

both mission planning and control strategies.

• Body-fixed coordinate system {b} = (xb, yb, zb): This frame is attached to the vehicle

and moves with it. It is typically fixed to the vehicle’s center of gravity (CG), and

its axes are defined relative to the vehicle’s structure:

– xb axis points forward along the vehicle’s longitudinal axes (toward the bow);

– yb axis points to starboard side (to the right);

– zb axis points downward, perpendicular to the vehicle’s plane;

The body-fixed frame is essential to represent vehicle’s velocities, forces and control

inputs relative to its own geometry. Velocities such as surge, sway, and heave, as

well as forces and moments generated by thrusters or hydrodynamic effects, are

often computed in this frame. This frame also plays a central role in control system

design, where forces and control commands are applied in the body-fixed axes and

later transformed into the global NED frame for navigation.
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2.2 Kinematics

The six-degree-of-freedom kinematic equations are crucial for describing the motion

of underwater vehicle by relating its position, linear velocities, angular velocities, and

attitude of the rigid body neglecting the forces that drive the motion. These equation

focus on the geometric aspects of motion, describing how the position and attitude evolve

as a result of the vehicle’s velocity in the body frame. To express these relations, let the

following vectors be defined:

η =
[
η1 η2

]⊤
where η1 =

[
x y z

]⊤
and η2 =

[
ϕ θ ψ

]⊤
(2.1)

ν =
[
ν1 ν2

]⊤
where ν1 =

[
u v w

]⊤
and ν2 =

[
p q r

]⊤
(2.2)

where the term η represents the position of the body frame with respect to the NED

frame in terms of linear displacements (η1) and the Euler angles (η2). On the other hand,

the term ν represents the linear velocity (ν1) and the angular velocity (ν2) expressed in

the body-axis system.

The core of UUVs kinematics lies in the transformation between body-frame and NED

inertial frame. The relation between time derivative of the inertial position and the linear

velocity is given as follows:

η̇1 = Rn
b (η2)ν1 (2.3)

where Rn
b is the rotation matrix from the body reference frame to the NED inertial

reference frame, defined as:

Rn
b =


cψcθ −sψcϕ+ cψsθsϕ sψsϕ+ cψcϕsθ

sψcθ cψcϕ+ sϕsθsψ −cψsϕ+ sθsψcϕ

−sθ cθsϕ cθcϕ

 (2.4)

In the above matrix, the terms s(·) and c(·) represent sin(·) and cos(·), respectively.

Similarly, the relation between the attitude angles and the angular velocity is expressed

as:

η̇2 = TΘ(η2)ν2 (2.5)

where, TΘ represents the transformation matrix defined as follows:

TΘ =
1

cθ


1 sϕsθ cϕsθ

0 cϕcθ −sϕcosθ
0 sϕ cϕ

 (2.6)

A critical limitation of this matrix is its singularity when the pitch angle θ = ±90◦ .

However, for practical underwater vehicle applications, such as those involving the vehicle
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Blucy, the likelihood of encountering this issue is null due to the inherent stability of the

vehicle’s pitch and the high moment of inertia around the y axis, which mitigates extreme

pitch angles. Hence, no further analysis on this matter is deemed necessary.

By combining the linear (2.3) and angular (2.5) transformation, the full set of kine-

matic equations in six degrees of freedom can be expressed as:[
η̇1

η̇2

]
=

[
Rn

b (η2) 03×3

03×3 TΘ(η2)

][
ν1

ν2

]
(2.7)

In a vectorial form, the equation reads as:

η̇ = JΘ(η)ν (2.8)

where JΘ is the Jacobian matrix that combines both the rotation matrix Rn
b (η2) and the

trasformation matrix TΘ(η2):

JΘ(η) =

[
Rn

b (η2) 03×3

03×3 TΘ(η2)

]
(2.9)

2.3 Dynamics

Before deriving the equations of motion for a marine craft, it is essential to define two

key body-fixed reference points that are used to describe the motion:

• CO - origin ob of body-fixed reference frame {b}

• CG - center of gravity

These two points coincide if the position vector r⃗g = 0⃗, meaning that the center of gravity

CG is located at the origin of the body-fixed frame. The location of CO is typically

selected by the engineer and serves as the reference for defining the vehicle’s navigation,

guidance, and control systems.

In this work, the point CO is initially set to coincide with the center of gravity (CG)

of the vehicle in its full configuration. This means the CG is calculated with all payloads

and subsystems installed. However, if in future missions the drone’s configuration is

modified—such as through changes in weight, payload, or subsystem positioning—this

would cause the center of gravity to shift, resulting in r⃗g ̸= 0⃗. In such cases, the model

will still reference the original configuration where CO = CG, calculated when the drone

was in its fully configured state. Therefore the position vector rg, will no longer be zero

and the effect of this displacement will need to be accounted for in the dynamic model.

The rigid body dynamic equations, as formulated by Fossen [10], are expressed:

MRB ν̇ + CRB(ν)ν = τRB (2.10)
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where, MRB is the rigid-body inertial matrix, defined as follows:

MRB =

[
mI3×3 −mS(rg)
mS(rg) Ig

]
=



m 0 0 0 mzg −myg

0 m 0 −mzg 0 mxg

0 0 m myg −mxg 0

0 −mzg myg Ix −Ixy −Ixz

mzg 0 −mxg −Iyx Iy −Iyz

−myg mxg 0 −Izx −Izy Iz


(2.11)

where:

• m is the mass of the vehicle;

• I3×3 is the identity matrix of size 3× 3;

• rg = [xg yg zg]
⊤ is the location of the CG with respect to the body frame;

• S(·) represents the skew-symmetric matrix of the vector;

• Ig is the inertial matrix defined as follows:

Ig =


Ix −Ixy −Ixz

−Iyx Iy −Iyz
−Izx −Izy Iz

 . (2.12)

While CRB is the rigid-body Coriolis and centripetal matrix which is expressed as:

CRB(ν) =

[
03×3 −mS(ν1)−mS(ν2)S(rg)

−mS(ν1) +mS(rg)S(ν2) −S(Igν2)

]
=

=



0 0 0 m(ygq + zgr) −m(ygp+ w) −m(zgp− v)

0 0 0 −m(xgq − w) m(zgr + xgp) −m(zgq + u)

0 0 0 −m(xgr + v) −m(ygr − u) m(xgp+ ygq)

−m(ygq + zgr) m(ygp+ w) m(zgp− v) 0 −Ixzp+ Izr Iyzr + Ixyp− Iyq

m(xgq − w) −m(zgr + xgp) m(zgq + u) Iyzq + Ixzp− Izr 0 Ixzr + Ixyq + Ixp

m(xgr + v) m(ygr − u) −m(xgp+ ygq) −Iyzr − Ixyp+ Iyq −Ixzr − Ixyq − Ixp 0



(2.13)

The term τRB is the generalized vector of external forces and moments expressed in {b}
and it is given as follows:

τRB = τhs + τhd + τwind + τwaves + τp (2.14)

where τhs is the contribution due to hydrostatic forces acting on the body, τhd is of

hydrodynamic forces, τwind and τwaves are forces and moments due to the wind effect and
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the wave phenomena, respectively. τp represents forces and moments due to the propulsion

system.

It is important to note that in the case of unmanned underwater vehicles, τwind and

τwave can be neglected because usually, the operational depth is far from the surface, i.e.,

the contribution of these forces and moments is negligible.

2.3.1 Hydrostatic Forces

The hydrostatic forces (or restoring forces) are due to the combined effects of gravity

and buoyancy acting on the body, whose equations are given below:

W = mg, B = ρg∇ (2.15)

here, W is the weight, B is the buoyancy force, g is the acceleration due to gravity, ρ is

the water density, and ∇ is the displaced water volume. In vehicles such as Blucy and

other UUVs, the buoyancy B is designed to slightly exceed the weightW , ensuring a state

of positive buoyancy. This has a several key advantages:

• It enhances the heave control, allowing the vehicle to maintain or change its depth

with minimal energy expenditure;

• It ensures static stability in roll and pitch, such that the vehicle naturally returns

to an equilibrium orientation if perturbed;

• It allows for automatic surfacing in the event of system failure, as positive buoyancy

will cause the vehicle to ascend to the surface.

Hydrostatic forces are inherently defined in the inertial (NED) frame which can be

transformed into the body frame using a rotation matrix. The transformed force and

moments are given by:

τhs = −g(η) = −



(W −B) sin θ

−(W −B) cos θ sinϕ

−(W −B) cos θ cosϕ

−(ygW − ybB) cos θ cosϕ+ (zgW − zbB) cos θ sinϕ

(zgW − zbB) cos θ cosϕ+ (xgW − xbB) cos θ cosϕ

−(xgW − xbB) cos θ sinϕ− (ygW − ybB) sin θ


(2.16)

where, rb = [xb yb zb]
⊤ is the location of the Center of the Buoyancy (CB) from the

origin of the body axis system CO. It is important to noticed that the relative position

of CG and CB play a critical role in determining the vehicle’s hydrostatic stability. By

ensuring the CB is vertically above the CG, the vehicle benefits from a natural righting
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moment. This is particularly important for maintaining stable operations in the presence

of external disturbances, such as currents or unplanned maneuvers, where deviations from

the desired orientation can occur.

2.3.2 Hydrodynamic Forces

Hydrodynamic forces and moments result from the interaction between a moving body

and the surrounding fluid. These include inertial forces from added mass effects and

damping forces due to skin friction, vortex shedding, and other factors. The hydrodynamic

forces and moments vector is defined as follows:

τhd =
[
Xhd Yhd Zhd Khd Mhd Nhd

]⊤
(2.17)

where, Xhd, Yhd and Zhd are the hydrodynamic forces along the xb, yb and zb body axes

respectively, whilst Khd, Mhd and Nhd are the moments about xb, yb and zb body axes

respectively. These terms are obtained by integrating pressure distribution on the entire

surface of the body. Given the complexity of this interaction, experimental data is often

used to curve-fit these terms. The curve fitting of experimental data showed that this

terms can be approximated using two key modelling approaches: truncated third-order

odd function Taylor series [66] or second-order modulus expansion [67]. Each method is

derived taking as example Xhd:

Xhd = Xu̇u̇+Xuu+Xuuuu
3 +Xv̇v̇ +Xvv +Xvvvv

3 · · · (2.18)

Xhd = Xu̇u̇+Xuu+Xu|u|u |u|+Xv̇v̇ +Xvv +Xv|v|v |v| · · · (2.19)

The truncated Taylor series expansion (2.18), introduces additional terms to represent the

smooth variation of forces and moments in a differentiable function form. This approach

increases mathematical precision, but it relies on number of terms of Taylor series expan-

sion considered in the mathematical model. This lead to an excessive number of terms

in which the higher order terms do not contribute much to the precision of mathematical

modelling. On the other hand, the second-order modulus function (2.19) yields fewer

terms, especially for dissipative terms like cross-flow drag and surge resistance, modeled

as a sum of linear and quadratic damping. For this reason, hydrodynamic forces and

moments are modeled by second-order modulus expansions, such that:

τhd = −MAν̇ − CA(ν)ν −Dlν −Dn(ν)ν (2.20)

In (2.20), according to Fossen [10], the coefficients of second order modulus expansion

are organized into key matrices: the added mass matrix MA, its associated Coriolis matrix

CA(ν), and the damping matrix D(ν), which includes both linear Dl and nonlinear Dn(ν)

components.
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The added mass is the additional mass experienced by an accelerating or a decelerating

body in the fluid, that moves the volume of the fluid surrounding it. This is due to fact

that body and the fluid cannot occupy the same physical space simultaneously. According

to [68], the general expression for added mass comprise 36 constant parameters that are

used to define the added mass matrix MA:

MA = −



Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ


(2.21)

As an example, each element in this matrix, such as Xu̇, can be defined as [69]:

Xu̇ =
∂X

∂u̇

∣∣∣∣
u̇=0

(2.22)

Furthermore, the hydrodynamic Coriolis and centripetal matrix CA(ν) can be defined:

CA(ν) =



0 0 0 0 −a3 a2

0 0 0 a3 0 −a1

0 0 0 −a2 a1 0

0 −a3 a2 0 −b3 b2

a3 0 −a1 b3 0 −b1

−a2 a1 0 −b2 b1 0


(2.23)

where

a1 = Xu̇u+Xv̇v +Xẇw +Xṗp+Xq̇q +Xṙr

a2 = Yu̇u+ Yv̇v + Yẇw + Yṗp+ Yq̇q + Yṙr

a3 = Zu̇u+ Zv̇v + Zẇw + Zṗp+ Zq̇q + Zṙr

b1 = Ku̇u+Kv̇v +Kẇw +Kṗp+Kq̇q +Kṙr

b2 =Mu̇u+Mv̇v +Mẇw +Mṗp+Mq̇q +Mṙr

b3 = Nu̇u+Nv̇v +Nẇw +Nṗp+Nq̇q +Nṙr

(2.24)

As previously mentioned, viscous damping can be categorized into linear and quadratic

forms. The significance of each type varies depending on the operational regime. For in-

stance, in low-speed motion, linear damping typically prevails, whereas quadratic damping

takes precedence in high-speed scenarios. Nevertheless, it’s often crucial to incorporate
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both linear and quadratic damping in models. This is because quadratic damping in-

duces oscillatory behavior at low speeds, while linear damping facilitates exponential

convergence to zero. Given that both oscillatory and exponential damping phenomena

are observed in real-world scenarios, integrating both forms is essential for accurate rep-

resentation dynamics. Thus, the matrices are defined as follows:

Dl = −



Xu Xv Xw Xp Xq Xr

Yu Yv Yw Yp Yq Yr

Zu Zv Zw Zp Zq Zr

Ku Kv Kw Kp Kq Kr

Mu Mv Mw Mp Mq Mr

Nu Nv Nw Np Nq Nr


(2.25)

Dn(ν) = −



Xu|u||u| Xv|v||v| Xw|w||w| Xp|p||p| Xq|q||q| Xr|r||r|
Yu|u||u| Yv|v||v| Yw|w||w| Yp|p||p| Yq|q||q| Yr|r||r|
Zu|u||u| Zv|v||v| Zw|w||w| Zp|p||p| Zq|q||q| Zr|r||r|
Ku|u||u| Kv|v||v| Kw|w||w| Kp|p||p| Kq|q||q| Kr|r||r|
Mu|u||u| Mv|v||v| Mw|w||w| Mp|p||p| Mq|q||q| Mr|r||r|
Nu|u||u| Nv|v||v| Nw|w||w| Np|p||p| Nq|q||q| Nr|r||r|


(2.26)

However, Blucy is allowed only to move at low speed and also has starboard-port

symmetry this suggests that the contribution from the off-diagonal elements will be much

smaller when compared with diagonal elements. Furthermore, computation of these off-

diagonal elements is very tedious task both theoretically as well as the experimentally.

Hence, these terms can be neglected in MA, which can be reduced as follows:

MA = −diag {Xu̇, Yv̇, Zẇ, Kṗ,Mq̇, Nṙ} (2.27)

accordingly, CA(ν) becomes as follows:

CA (v) =



0 0 0 0 −Zẇw Yv̇v

0 0 0 Zẇw 0 −Xu̇u

0 0 0 −Yv̇v Xu̇u 0

0 −Zẇw Yv̇v 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗp

−Yv̇v Xu̇u 0 −Mq̇q Kṗp 0


(2.28)

By applying similar assumptions, the components within Dl and Dn(ν) can also be simpli-

fied to include only diagonal terms. However, overlooking the off-diagonal elements leads

to a misrepresentation of the nonlinear coupling dynamics. These assumptions are sup-

ported by the CFD simulations in Section 3.2, which are crucial in the design of autopilots
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and control systems. Hence, the Dl and Dn(ν) are written as follows:

Dl = −



Xu 0 0 0 0 0

0 Yv 0 Yp 0 Yr

0 0 Zw 0 Zq 0

0 Kv 0 Kp 0 Kr

0 0 Mw 0 Mq 0

0 Nv 0 Np 0 Nr


(2.29)

Dn(ν) = −



X|u|u|u| 0 0 0 0 0

0 Y|v|v|v| 0 Y|p|p|p| 0 Y|r|r|r|
0 0 Z|w|w|w| 0 Z|q|q|q| 0

0 K|v|v|v| 0 K|p|p|p| 0 K|r|r|r|
0 0 M|w|w|w| 0 M|q|q|q| 0

0 N|r|r|r| 0 N|p|p|p| 0 N|r|r|r|


(2.30)

2.4 6 DOF Models for UUV

Combining together (2.8), (2.10), (2.16) and (2.20), the complete six-degree-of-freedom

model for underwater vehicle can be written as follows:

η̇ = JΘ(η)ν (2.31)

Mν̇ + C(ν)ν +D(ν)ν + g(η) = τp (2.32)

where:

M =MRB +MA C(ν) = CRB(ν) + CA(ν) D(ν)ν = Dlv +Dn(ν)ν (2.33)

Furthermore, the six-degree-of-freedom model can be generalised considering the effect of

the sea current, under the assumption of a 2D constant irrotational flow, introducing νr

that is the relative velocity between the body and the fluid defined as:

νr =
[
u− ubc v − vbc w p q r

]
(2.34)

where ubc, and v
b
c are the body-fixed current velocities. The effect of sea currents can be

incorporated into the dynamic (2.32) by using the relative motion under the assumption

of a 2D irrotational flow:

MRB ν̇ + CRB(ν)ν +MAν̇r + CA(νr)νr +D(νr)νr + g(η) = τp (2.35)

It is evident from equation (2.35) that the terms affected by the current are specifically

those related to the hydrodynamics, namelyMAν̇r+CA(νr)νr+D(νr)νr and τp as discussed

in 3.3.



Chapter 3

Parameters Identification

Introduction

This chapter outlines the methodologies employed for parameter identification in de-

veloping a benchmark model of Blucy UUV. The approach, built upon the work presented

in [P3], introduces a novel end-to-end workflow, balancing experimental data and numer-

ical simulations to accurately estimate the vehicles’s parameters. This workflow can be

generalized to other UUVs, making it a versatile tool for underwater vehicle modelling

and simulation. By validating the benchmark with real mission data, the workflow en-

sures that the resulting model is robust to serve as benchmark for testing new control

and guidance algorithm. In particular, the validated benchmark is used to test the novel

control scheme proposed in Chapter 4.

As shown in Figure 3.1, the process includes a detailed sequence of steps to capture

Blucy’s physical, geometric, hydrodynamic and propulsive characteristics. The key stages

of this workflow are:

• 3D Cad Modelling: develop a high fidelity 3D CAD model of Blucy, based on

technical specifications, sensor data and physical measurements from the actual

drone.

• Model Simplification and Meshing: preparing the CAD model for CFD simulations

and added mass calculation by semplyfying and meshing it.

• CDF Simulations: Estimating the linear and non linear hydrodynamic damping

coefficients through CFD simulations.

• Added Mass Calculation: determining the added mass matrix using AMCOMP

software [36].

11
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Figure 3.1: The workflow implemented for parameter identification.

• Propulsive system modelling: development of 4 quadrant model of thrusters based

on experimental data and literature models [38, 66, 39]. Modelling of actuator

dynamics based on the actual system.

Finally, the benchmark model is validated against real-mission data to ensure that the

simulated results match the actual vehicle dynamics.

This chapter delves into each aspect of the workflow in detail, discussing the methods

used for parameter identification, presenting the results, and exploring the challenges

encountered during the process. The ultimate goal is to provide a validated benchmark of

Blucy that can be used for the development of advanced control and guidance algorithms.

In this thesis, Blucy is considered in its complete configuration, which includes all

the scientific payloads on board. It is worth observing that the developed workflow can

easily be adapted to any configuration of the Blucy, though it is not demonstrated in this

work. Demonstrating this is straightforward because the hydrodynamic and added mass

parameters remain constant regardless of the drone’s payload as do not change the outer

structure of the drone. Only the mass, inertia, CG, CB, and thruster level arm change

with the payload, and these adjustments can be easily and accurately incorporated into

the CAD model and buoyancy calculator.
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Figure 3.2: The complete assembly of Blucy’s CAD model.

3.1 Physical and Geometric Properties

The physical and geometric properties of the drone are determined by analysing its 3D

model, which is developed using CAD software such as SolidWorks (SW). This 3D model

is built referencing the actual drone, the Blucy ”Use and Maintenance” manual [70] and

sensor datasheets. Special attention is given to accurately representing the masses of the

custom components, especially those with complex geometries. Wherever possible, these

components are physically weighed to ensure the highest accuracy. The complete assembly

of all components, including internal subsystems and external structures, is depicted in

Figure. 3.2.

The parameters obtained from the 3D CAD analysis are outlined in Table. 3.1. These

parameters are calculated with reference to the CG, which is set as the origin of the body

reference frame {b}. The position of the CG relative to the CAD reference frame origin

(O), is illustrated in Figure. 3.2. In this study, the CG is treated as the center of the

UUV, which simplifies the dynamic modeling by defining the CG as the origin of the body

reference frame {b}. The CG location is thus set as:

rg =
[
xg yg zg

]⊤
=
[
0 0 0

]⊤
(3.1)

Concerning the inertial parameters, they were automatically derived from SolidWorks

with respect to the body axis centred in the CG. The inertia matrix in (2.12) of the
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Parameter Value

m 216.15 kg

volume 0.179 m3

Ix 11.3114 kg m2

Iy 49.2791 kg m2

Iz 41.7449 kg m2

Ixy 0 kg m2

Ixz 2.8636 kg m2

Iyz 0 kg m2

rOg

[
1.1622 0 −0.3221

]⊤
m

rOb

[
1.1622 0 −0.3701

]⊤
m

Table 3.1: Physical and geometric parameters.

vehicle becomes:

Ig =


11.3114 0 −2.8636

0 49.2791 0

−2.8636 0 41.7449

 (3.2)

It should be pointed out that Ixy = Iyx = Iyz = Izy = 0 in (3.2), since the vehicle has

starboard-port symmetry.

The position of the buoyancy centre (rb) is determined by calculating the wet weight of

each component using its volume from the CAD model and the fluid density (in this case,

ρ = 1025, kg/m3). The position of the buoyancy center relative to the CAD reference

frame origin, denoted as rOb , is computed using the following equation:

rOb =
[
xOb yOb zOb

]′
=
[∑n

i=1 Bi·xO
gi

B

∑n
i=1 Bi·yOgi

B

∑n
i=1 Bi·zOgi

B

]′
(3.3)

where n is the total number of components in the assembly, Bi is the wet weight of the

ith component, and B is the sum of the wet weights of all components. rb is calculated

with respect to the CG, which serves as the origin of the body reference system, using

the following equation:

rb = rOg − rOb =
[
0 0 −0.048

]
m (3.4)

where rOg is the CG in CAD reference frame.

Remark 3.1.1. For different payload configurations, physical and geometric parameters

must be recalculated based on the position of the new CG. This adjustment is necessary

because the body reference frame {b} is centered on CG position. Moreover in the complete

configuration the wet mass of Blucy is mBuoyancy = 216.45 kg.
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Figure 3.3: 3D CAD simplification for hydrodynamic parameters estimation

3.2 Hydrodynamic parameters

To derive hydrodynamic parameters and added mass coefficient, simplification are

applied to the original 3D CAD model. These modification are necessary to streamline the

model and make it more suitable for CFD simulations while preserving the key geometric

features that affect hydrodynamic behaviour.

The simplified model (Figure. 3.3) exclude internal components and gaps, focusing

instead on creating a solid volume with a smooth, continuous external surface. This

reduction in complexity allows the model to capture the essential external flow interac-

tions while minimizing unnecessary computational overhead. Additionally, the rotation

of external thruster propellers is constrained, as their dynamic effects on the overall flow

is not the primary focus at this stage. External cables and other small appendages are

neglected, given their minimal impact on large-scale hydrodynamic forces. Furthermore,

fillets were applied at the sharp edges of the model to smooth out transitions between

surfaces. This refinement is crucial for avoiding unrealistic flow separations and turbu-

lence that can arise at sharp corners, which would otherwise distort the accuracy of the

CFD results. These simplifications ensure that the model remains representative of the

actual vehicle’s hydrodynamic behavior while maintaining computational efficiency for

the parameter estimation process. The simplification are summarized in Table 3.2.

Two software tools are utilized for setting up and running the CFD simulations: Open-

FOAM (OF) and SolidWorks (SW) Flow Simulation. OF was used to simulate Blucy’s

linear velocities in surge, sway, and heave, while SW Flow Simulation is employed to sim-

ulate the rotational motion, specifically the angular velocities around the roll, pitch, and

yaw axes. The velocity ranges for the simulations are selected based on telemetry data

collected from real-world missions, ensuring that the simulations accurately reflect Blucy’s

operational conditions. For surge, the velocity range is set to (−0.8, 1.75) m/s, for sway

(−0.8, 0.8) m/s, and for heave (−1.4, 1.4) m/s, with simulations conducted at increments
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Simplifications

Geometry
– all external holes and internal cavities were filled in order to have a

continuous external surface

– fillets were applied at every external edge

– the original shapes of external elements, such as the mounts of the main

thrusters and LEDs, were replaced by extruded cylinders

– external cables were not taken into account

– bottom of Blucy extremely simplified through plane surfaces

Setup
– external propellers were left rigidly in place (no rotation allowed during

simulations)

– the porosity of external surfaces was neglected

Table 3.2: CAD simplifications

of 0.2 m/s. These ranges capture the typical motion of Blucy during underwater opera-

tions. Similarly, angular motion simulations are guided by real-world scenarios observed

during the missions. As a result, angular velocity simulations for roll, pitch, and yaw are

constrained to a maximum of 10 degrees per second. While Blucy is primarily controlled

in yaw, it is not specifically designed for complex rolling and pitching maneuvers. How-

ever, roll and pitch angular velocities may still occur due to hydrodynamic forces and

environmental factors like sea currents, which are accounted for in the simulations.

3.2.1 Linear Motion Simulations

The external control volume is defined as a simple cuboid, with its eight vertices

positioned relative to the vehicle’s CG at the point (0, 0, 0), as shown in Figure 3.4a. The

volume is strategically enlarged in regions where wake formation is anticipated, enhancing

the accuracy of the CFD analysis. For instance, during positive surge motion, the control

volume is extended behind the vehicle, where the wake would predominantly develop.

This approach is similarly applied to the wake size boxes, drone shells, and propellers,

as illustrated in in the Figures. 3.4b and 3.4c. It’s important to note, however, some

distinctions between these elements. While the refinement boxes around the drone and

propellers are kept consistent across all simulations, the wake box is the key variable that

change depending on the expected wake region. Specifically, the volume of the wake box

is substantially enlarged in regions where significant wake generation is anticipated.
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Object Length (m)

x y z

Control volume 32 20 21

Wake size box 6 4 5

Drone size box 2.25 0.84 1.2

Table 3.3: Volume and size boxes dimensions for surge simulations.

(a) Control volume for CFD. (b) Wake and drone size boxes. (c) Propeller size box.

(d) Volume mesh detail: hexa interior. (e) Blucy surface mesh: tetra.

Figure 3.4: Control volume and meshing details of OpenFoam.

The final dimensions of the control volume and refinement boxes for surge motion are

detailed in Table 3.3. This setup ensured that the simulations captured the flow dynamics

around the vehicle with higher precision, particularly in regions where turbulent wake

effects are most pronounced.

In addition to defining the external dimensions of the cuboids, it is essential to specify

the mesh spacing, as it plays a critical role in determining the numerical resolution of the

simulation. Mesh spacing directly influences the accuracy of the results and the compu-

tational cost. To achieve an optimal balance between these factors, a grid convergence

study is carried out for the surge motion case, examining three types of meshes: coarse,

fine, and finest. The drag coefficient (CD) is used as a measure of convergence. The drag

coefficient is defined as CD = 2D
ρUA

, where D represents the drag force, U is the velocity
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Figure 3.5: Grid convergence study of normalised drag coefficient C̄D using three different

mesh element sizing.

in the surge direction, and A is the reference area subjected to the drag force.

Figure 3.5 illustrates the results of the grid convergence study, where the number of

mesh elements is plotted against the normalized drag coefficient (C̄D). The normalized

drag coefficient is the ratio of the drag coefficient of each mesh to that of the finest mesh.

The study revealed that the coarse mesh deviates from the finest mesh by approximately

12%. However, the difference between the fine and finest mesh is only about 2%, demon-

strating a satisfactory level of convergence. Consequently, the fine mesh is selected as

the optimal choice, balancing accuracy with the available computational resources. The

final configuration of the fine mesh has an outer volume resolution that increases gradu-

ally from 1m at the boundaries to 0.25m near the drone surface, resulting in a total of

12, 739, 440 mesh elements.

To solve the velocity and pressure fields, the steady-state Reynolds-Averaged Navier-

Stokes (RANS) equations were employed using the SimpleFoam solver. This solver relies

on the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm, which

is well-suited for incompressible flow simulations. The k-ϵ turbulence model was adopted

to account for turbulent flow behavior, requiring the resolution of two additional trans-

port equations: one for the turbulence kinetic energy (k) and another for the turbulence

dissipation rate (ϵ). This model strikes a balance between computational efficiency and

accuracy, making it ideal for external flows around complex geometries such as Blucy.

An inlet turbulence intensity of 0.1% is set to reflect the calm flow conditions typically

encountered during the vehicle’s operation.
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Control volume

x-size 16m

y-size 16m

z-size 9m

Hexa mesh

Fluid cells 1 807 502

Fluid cells contacting solids 679 793

Maximum refinement level 5

Table 3.4: SolidWorks mesh parameters.

Figure 3.6: The mesh generated in the SolidWorks.

3.2.2 Angular Motion Simulations

The CFD simulations for angular motion are performed using SolidWorks (SW) Flow

Simulation. The fluid density is set to 1025 kg/m3 to represent saltwater, and the k-ϵ tur-

bulence model is applied with an inlet turbulence intensity of 0.1%. SW Flow Simulation

uses the Favre-Averaged Navier-Stokes (FANS) equations in steady-state mode, along

with transport equations for turbulent kinetic energy (k) and dissipation rate (ϵ). The

simulations focus on achieving convergence based on the forces and moments along and

about the three principal body axes: xb, yb, and zb, ensuring accuracy in the calculated

hydrodynamic loads.

The mesh is generated directly within the SW Flow Simulation tool, followed by a

convergence analysis similar to that performed for the linear velocity simulations. The

final mesh characteristics are summarized in Table 3.4 and visually represented in Figure

3.6. This ensured that the mesh is sufficiently refined for accurate resolution of the flow

field around the vehicle during angular motion simulations.
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(a) Pressure distribution. (b) Flow streamlines in top view.

Figure 3.7: Pressure and flow streamlines of Surge motion simulated at 1 m/s.

Figure 3.8: Pressure and flow streamlines of Sway motion simulated at 0.6 m/s.

3.2.3 CFD Simulations Results

The simulation results, which display the forces and moments generated at various

velocity ranges, are illustrated in Figures 3.9-3.14. Figures 3.9-3.11 present the hydro-

dynamic responses for linear motions, including surge, sway, and heave. In contrast,

Figures 3.12-3.14 show the corresponding results for angular motions, such as roll, pitch,

and yaw. These simulations provide valuable insights into the behavior of the vehicle

under different operating conditions, capturing the relationship between velocity and the

resulting forces and moments. By examining these results, the impact of linear and

quadratic damping effects can be better understood.

To ensure an accurate representation of the data, it is essential to identify the dominant

forces and moments associated with each motion, while neglecting the contributions from

non-dominant components. This approach simplifies the analysis by focusing on the most

influential hydrodynamic factors. The dominant forces and moments are then fitted using
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Figure 3.9: CFD simulation results of forces and moments in the surge.

Figure 3.10: CFD simulation results of forces and moments in the sway.

a second-order modulus function, (2.19), which allows for the calculation of the linear and

quadratic damping coefficients. This method effectively captures the non-linear behavior

of the vehicle, particularly at higher velocities, where quadratic damping becomes more

pronounced and significantly impacts the vehicle’s overall dynamic response [10].

For instance, in the surge motion simulation conducted at 1 m/s, the pressure distri-
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Figure 3.11: CFD simulation results of forces and moments in the heave.

Figure 3.12: CFD simulation results of forces and moments in the rolling.

bution and flow field, shown in Figures 3.7a and 3.7b, reveal the formation of a distinct

wake behind Blucy, indicating significant flow separation. The primary contributors to

this flow disturbance are the propulsive thrusters and the cylindrical components located

on the top of the drone. These features amplify turbulence and consequently increase

drag, particularly in the rear section of the vehicle, which predominantly generates drag

forces X in the xb axis. Due to the symmetry of Blucy, the net force in the yb direction
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Figure 3.13: CFD simulation results of forces and moments in the pitching.

Figure 3.14: CFD simulation results of forces and moments in yawing.

remains zero, as the pressure distribution about the yb axis cancels out when integrated.

As observed from the simulation results in Figure. 3.9, the force X along the xb axis is

clearly dominant, aligning with the predictions made in Section 2. This dominance allows

the force in the surge direction to be accurately modeled using a second-order modulus
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function, as described in (2.19), which can be expressed as:

X(u) = Xuu+Xu|u|u|u|. (3.5)

This methodology is applied to all motion types, with the major components of the

linear and quadratic hydrodynamic damping coefficients summarized in Table 3.5. From

the table, it is clear that each motion has dominant forces or moments that exert more

influence than the others. However, secondary forces and moments are also generated due

to the nonlinear coupling of motions. For example, in the sway simulation (Figure 3.10),

the primary force is Y along yb direction, driven by the wake generated along the sides

of the vehicle, as shown in Figure 3.8. Secondary effects, such as the K and N moments,

arise due to the lack of symmetry about the xb and zb axes, respectively. These moments

result from the overall integration of the pressure distribution, which is uneven due to the

vehicle’s geometry.

By referring to the calculated coefficients in Table 3.5, the matrices in (2.29) and (2.30)

are updated to incorporate these effects:

Dl = −



−2.61 0 0 0 0 0

0 −24.72 0 −1.43 0 −1.87

0 0 −2.82 0 −0.07 0

0 0.83 0 −0.04 0 0.14

0 0 −1.71 0 −0.06 0

0 −11.21 0 0.41 0 −0.044


(3.6)

Dn(ν) = −



−61.82|u| 0 0 0 0 0

0 −597.62|v| 0 −38.14|p| 0 −342.89|r|
0 0 −255.86|w| 0 −37.19|q| 0

0 −30.05|v| 0 −23.68|p| 0 41.28|r|
0 0 −38.7|w| 0 −95.69|q| 0

0 −85.4|r| 0 9.28|p| 0 −375.53|r|


(3.7)
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Motion Linear Quadratic

Surge Xu = −2.61 Xu|u| = −61.82

Sway

Yv = −24.72 Yv|v| = −597.62

Kv = 0.83 Kv|v| = −30.05

Nv = −11.21 Nv|v| = −85.4

Heave
Zw = −2.82 Zw|w| = −255.86

Mw = −1.71 Mw|w| = −38.7

Roll

Yp = −1.43 Yp|p| = −38.14

Kp = −0.04 Kp|p| = −23.68

Np = 0.41 Np|p| = 9.28

Pitch
Zq = −0.07 Zq|q| = −37.19

Mq = −0.06 Mq|q| = −95.69

Yaw

Yr = −1.87 Yr|r| = −342.98

Kr = 0.14 Kr|r| = 41.28

Nr = −0.044 Nr|r| = −375.53

Table 3.5: Hydrodynamic damping coefficients obtained after fitting the CFD data.

3.2.4 Added Mass Parameters

The computation of added mass is facilitated by AMCOMP, a research CAD tool de-

veloped by the University of Bologna in collaboration with the Royal Melbourne Institute

of Technology [36]. This software is developed using C++ without reliance on external

third-party libraries. It utilizes the Stereo Lithography (STL) format that discretizes

the external CAD body into triangles for added mass calculations. Common software

like Solidworks supports saving CAD files in the STL format. AMCOMP boasts a user-

friendly interface, allowing for easy loading of STL files and parameter adjustments such

as density within its environment.

The mathematical framework behind the computation of the added mass involves

solving the potential flow around the body. The potential flow is governed by Laplacian

equation given below:

∇2Φ = 0 (3.8)

where ∇ is the Laplacian operator and Φ is velocity potential field that depends only

on the surface shape in a closed control volume. The flow is subjected to the following

boundary conditions:
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1. The watertight condition:

dΦ

dn̂

∣∣∣∣
S

= un (3.9)

where n̂ is the unit vector normal to surface, while the un is projection of velocity

vector on to normal n̂ of a point on the body.

2. The stationary condition:

lim
r→∞

dΦ

dr
= 0 (3.10)

where the r is the distance between the origin and the fluid point that is far enough

from the influence of perturbation of the fluid.

3. Kutta condition: This condition is important to ensure continuous pressure distri-

bution and smooth flow that is leaving the trailing edge.

The above problem is applied to the discretized finite elements body and the unknown

potential Φ is computed by solving the linear algebraic system of equation give by the

following equation:

2πΦi(P ) =

NB∑
j=1
(i ̸=j)

Φj (Qj)Cij −
NB∑
j=1

∂Φ

∂n̂
(Qj)Bij, i = 1, 2, 3 . . . NB (3.11)

where, P represents the point field, while Q denotes the point source. NB denotes the

number of elements on the body. The terms Cij and Bij describe the influence exerted

by the j-th element on the control point of the i-th element. These coefficients can be

determined using the following expressions:

Cij =

∫
SB

∂

∂n̂j

(
1

r⃗ij

)
dS +

∫
SW

∂

∂n̂j

(
1

r⃗ij

)
dS =

∫
SB

−→r ij • n̂j

r⃗3ij
dSj +

∫
SW

r⃗ij • n̂j
−→r 3

ij

dSj

(3.12)

Bij =

∫
SB

1
−→rij

dSj

(3.13)

The symbol r⃗ij denotes the vector connecting the ith and jth elements. While, SB repre-

senting the external surface of the body and SW symbolizing the surface of the wake. By

substituting (3.8) into (3.11), following matrix equation is obtained:

[2πδ − C]NB×NB
{ϕ}kNB×1 = [B]NB×NB

{
∂ϕ

∂ñ

}k

NB×1

(3.14)

where δij is the Kronecker delta function. To obtain the unit flow potential, the solution
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procedure involves iterating through following six boundary conditions:

{
∂Φ

∂n̂

}k

=



α k = 1

β k = 2

γ k = 3

(γy − βz) k = 4

(αz − γx) k = 5

(βx− αy) k = 6

(3.15)

where, α, β, and γ represent the normal direction cosines of each boundary element on

the surface, while x, y, and z denote the position of the element’s center of gravity relative

to the pole, which serves as the reference point for computing the rotational terms of the

inertia.

Following the computation of flow potential Φ, the 6 × 6 added mass matrix can be

obtained using the following expression:

MA = ρ


∑NB

i=1 Φi

{
∂Φ
∂n̂

}
i
dsi · · ·

∑NB

i=1Φi

{
∂Φ
∂n̂

}
i
dsi

· · · · · ·∑NB

i=1 Φi

{
∂Φ
∂n̂

}
i
dsi · · ·

∑NB

i=1Φi

{
∂Φ
∂n̂

}
i
dsi

 (3.16)

herein, ρ is the density of the fluid surrounding the body, si is the surface of the ith

discretised element, NB is the total number of elements into which the surface of the

body is divided, and Φi is the unknown potential obtained by solving the Laplacian

problem.

The solution of the problem depends on the number of elements considered for com-

putation. In this case, the number of elements is the same as in the CFD analysis (fine

mesh), as this configuration provides reliable results, as demonstrated in Section 3.2.

The AMCOMP uses the properties of the linear system of equations and the Gaussian

elimination method to solve the above described numerical problem. Since Blucy moves

at low speed and has starboard-port symmetry, the MA has the same form of (2.27).

The computed added mass values are summarised in the Table. 3.6, so the obtained MA

matrix is:

MA = −diag {−28.94,−166.03,−94.13,−0.0758,−17.10,−33.58} (3.17)

Remark 3.2.1. Hydrodynamic parameters remain valid as long as different payload con-

figurations do not alter the outer shape of the vehicle.
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Coefficient Values

Xu̇ -28.9440 kg

Yv̇ -166.0392 kg

Zẇ -94.1328 kg

Kṗ -0.0758 kg m2

Mq̇ -17.1097 kg m2

Nṙ -33.5838 kg m2

Table 3.6: Added mass coefficients computed using AMCOMP.

Figure 3.15: Thruster components:(a) Canister components; (b) Magnetic couplings; (c)

Brushless servomotors: Faulhaber DC 4490H036BS 38A; (d) Propeller shaft; (e) Kaplan

series kort 19A nozzle; (f) Wageningen Kaplan series Ka 4-70 propeller.

3.3 Propulsive System Modelling

Blucy is an underactuated vehicle with inherent high pitch and roll stability that

enhances control over x, y, z, u, v, w, r, and ψ variables during the different survey opera-

tions. This stability ensures the vehicle remains balanced and maintains its orientation,

which is crucial for precise data collection. The vehicle is equipped with a total of six

thrusters: two horizontal, two vertical, and two lateral. The horizontal thrusters are po-

sitioned behind the CG, one on the port side and the other on the stern side, with each

featuring counter rotating propellers. This counter rotation cancels out roll torque, en-

suring that the vehicle maintains its stability during horizontal maneuvers. The vertical

thrusters, designed to control depth, are installed atop the vehicle. One is located at the

rear, while the other is positioned at the front, both relative to the CG, with propellers

rotating in the same direction. The lateral thrusters, positioned at the bow and stern,
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Number Location Propeller Position l(m) Thrust versor e

TH 1 Rear, starboard Propulsive [-0.821, 0.230, -0.008] [1, 0, 0]

TH 2 Rear, port Propulsive [-0.821, -0.230, -0.008] [1, 0, 0]

TH 3 Front, top Manoeuvre [0.615, 0, -0.386] [0, 0, 1]

TH 4 Rear, top Manoeuvre [-0.835, 0, -0.386] [0, 0, 1]

TH 5 Front, port Manoeuvre [0.490, -0.113, -0.131] [0, 1, 0]

TH 6 Rear, starboard Manoeuvre [-0.660, 0.124, -0.131] [0, 1, 0]

Table 3.7: Position of the motors from the centre of gravity and versor pointing the

direction of the thrust produced.

are primarily allocated for yaw control, enabling precise rotational maneuvers around the

z-axis. However, if there is any remaining thrust capacity after yaw control, the lateral

thrusters can also contribute to sway control, assisting in lateral movements along the y-

axis. The positions of these actuators relative to the centre of gravity (CG) are outlined

in Table. 3.7.

Remark 3.3.1. Position of actuator, relative to the CG, varies depending on the payloads

configuration. In work, these distances are measured with respect to Blucy CG in its

complete configuration.

3.3.1 Thrust and Torque Modelling

The thrusters consist of Kaplan Ka 4-70 series ducted propellers with pitch ratio (P/D)

of 1.28, diameter (D = 0.145m), and area ratio (Ae/Ao) of 0.7, paired with 19A ducts [38,

71, 40] as shown in Figure.3.15. The propellers are categorised into two distinct types:

propulsive and manoeuvring. Propulsive propellers are dedicated to surge motion while

manoeuvring ones are used for heave, sway, or yaw motions. The distinction arises from

the symmetry of the propeller blades according to their intended functionalities. Propul-

sive blades are asymmetrical and are optimised for efficiency at high rotational speed

in surge motion. In contrast, manoeuvring blades are symmetrical, optimised for lower

rotational speed, and have balanced performance characteristics in pushing or pulling.

The thrust and torque generated by the thrusters are described using non-dimensional

coefficients, denoted as CT and CQ, respectively, as functions of the advance ratio J . These
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coefficients CT , CQ, and J are computed using the following equations:

CT =
T

ρn2D4

CQ =
Q

ρn2D5

J =
Va
nD

(3.18)

where T and Q are the thrust and torque respectively, Va is the inflow velocity, n is

the rotational speed of the propeller expressed in rotation per second (rps) and D is the

diameter of the propeller.

Several tests have been conducted by the Maritime Research Institute Netherlands

(MARIN) to evaluate these coefficients, with their findings documented in various reports.

A valuable reference for this series of propeller test can be found in [71, 40], from which

regression polynomials have been developed to express CT and CQ as functions of P/D

and advance ratio J :
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CQ = C0,0 + C0,1J +

+ C6,6

(
P

D

)6

J6
(3.20)

where Ai,j and Ci,j are documented in [39, 71]. It is important to emphasize that the

polynomials in (3.19) and (3.20) provide accurate approximations for high-area ratio Ka

propellers series. However, for propellers with lower area ratios, such those considered

in this work, these models tend to overestimate the behaviour. To address this issue,

open-water tests were conducted at zero inflow velocity of Va = 0 for both propulsive

and manoeuvring propellers. These experiments were performed in a tank, with the

thruster controlled by an in-built velocity controller (Faulhaber MCLM3006S RS) that

logs the rotational speed of the propeller using an internal speed sensor. The thruster

were mounted in the tank using a beam equipped with a strain gauge, to measure both

thrust and torque. The experimental tests cover both positive and negative rps values.

Even though these tests do not cover the entire operating regime of the thrusters, the
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results are used to scale the polynomial approximation (3.20),(3.19) , thus developing a

more accurate and comprehensive model. This scaling ensures that the theoretical CT

and CQ values more accurately reflect the real behavior of the propellers considered in

this work.

Figure.3.16 illustrates the refined CT and CQ curves as functions of J . It can be ob-

served that the reduction factors for the propulsive and manoeuvring propellers due in

rps are 0.811 and 0.9, respectively, consistent with their optimised operating conditions.

Additionally, the propulsive propeller (Figure. 3.16a) generates greater thrust compared

to the manoeuvring propeller (Figure. 3.16b), although the latter produces nearly iden-

tical thrust in both directions of rotation. The overall CQ of the manoeuvring thruster is

higher compared to the propulsive ones.

The description above has focused primarily on the first quadrant performance of

propellers, where the propellers operate with positive rotational speed and forward or

zero advance velocity. This is the typical mode of operation for propulsive thrusters

in the ahead operating condition. However, to study maneuvering situations, a more

generalized dataset is required, particularly for the maneuvering propellers.

Using CT and CQ as functions of the advance ratio J can be impractical when dealing

with reverse or low-speed operations due to the occurrence of singularities and numerical

inconsistencies, especially when the inflow velocity Va and rotational speed n are reversed.

This limitation arises because the advance ratio J does not account for the flow direction

relative to the propeller, making it challenging to accurately model the behavior during

reverse or complex maneuvering scenarios.

To address this, propeller coefficients are expressed in relation to the advance angle β,

which is calculated at 70% of the propeller tip radius defining the four quadrant operation:

β = tan−1

(
Va

0.7πnD

)
= tan−1

(
J

0.7π

)
(3.21)

• 1st quadrant : n > 0 and Va > 0 with 0◦ ≤ β < 90◦

• 2nd quadrant : n > 0 and Va < 0 with 90◦ < β ≤ 180◦

• 3rd quadrant : n < 0 and Va < 0 with 180◦ < β ≤ 270◦

• 4th quadrant : n < 0 and Va > 0 with 270◦ < β ≤ 360◦

The angle β effectively represents the local inflow angle at 70% of the propeller ra-

dius, which corresponds closely to the typical location of maximum blade loading. This

approach accounts for the number of blades and their geometric distribution along the

propeller disc, factors that significantly influence thrust and torque characteristics.
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(a) Propulsive thrusters.

(b) Manoeuvre thrusters.

Figure 3.16: The CT and 10 ∗ CQ curves as function of J fitted using experimentally

refined data.
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Consequently, the coefficients CT and CQ are transformed into KT and KQ, respec-

tively, to better account for the limitations of using J alone and to reflect additional

influencing factors. This transformation enables the development of a four-quadrant rep-

resentation of the thruster model. The corrected coefficients KT and KQ are computed

as follows:

KT =
CT

π
8
J2 + 0.49π2

(3.22)

KQ =
CQ

π
8
J2 + 0.49π2

(3.23)

It is important to note that the coefficients CT and CQ, when expressed as functions of

the advance ratio J , are typically valid only in the first and third quadrants, corresponding

to forward and reverse thrust conditions, respectively. To develop a comprehensive four-

quadrant model, the coefficients for the second and fourth quadrants, which represent off-

design conditions such as negative inflow or reverse rotation, are derived from theoretical

models available in the literature [71, 40]. These theoretical values are then integrated

with the previously calculated experimental KT and KQ data from the first and third

quadrants to construct a complete four-quadrant model.

Finally, the overall refined KT and KQ as a function β in four quadrants are ob-

tained by fitting the data with 20 terms of the Fourier series as shown in Figure.3.17 and

mathematically given as follows:

KT =
20∑
k=0

Ak cos(βk) +Bk sin(βk) (3.24)

KQ =
20∑
k=0

Ck cos(βk) +Dk sin(βk) (3.25)

where Ak, Bk, Ck and Dk of propulsive and maneuvering thruster are described in

Table 3.8 and Table 3.9 respectively. From (3.24) and (3.25), it is possible to estimate the

thrust and torque produced by each thruster, which are summed to obtain total forces

and moments (τp) generated by the thrusters using the following vectorial equations:

τp =


F

M

 =


∑6

i=1(ei · Ti)

∑6
i=1(li × Ti) · ei +Qi

 (3.26)

where F andM are the forces and moments vectors of size 3×1 expressed in body frame.

The vector ei represents the unit normal pointing to the direction of the thrust produced

by the ith motor (Table. 3.7). Ti and Qi are the thrust and torque generated by the ith

motor and li is the position vector from the CG to ith motor.
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Figure 3.17: KT and −10 ∗KQ four quadrant Operation for Propulsive and Manoeuvring

propellers.
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k Ak (for KT ) Bk (for KT ) Ck (for KQ) Dk (for KQ)

0 -0.09206028 - 0.00551495 -

1 0.20180687 -0.00388799 0.04281919 -0.00014652

2 0.13838084 -0.99595941 -0.00453555 -0.13203086

3 0.05676669 0.05504578 0.00464806 0.00603567

4 0.00055262 0.14252157 -0.00192653 0.01148237

5 -0.01324648 -0.02898227 -0.00308513 -0.00223488

6 -0.00118735 0.08885943 -0.00029858 0.01641088

7 0.01006116 -0.00866055 -0.00245483 0.00089074

8 0.00491892 -0.02414735 0.00009848 -0.00512016

9 -0.00241437 -0.01673651 -0.00096852 -0.00166618

10 0.00599285 0.00058718 0.00098547 0.00117258

11 0.01058598 -0.00271682 -0.00138868 0.00118160

12 -0.00893709 -0.00781591 -0.00011500 0.00342105

13 0.00445882 -0.00369873 0.00032087 0.00001993

14 -0.00204943 -0.00756685 0.00057607 0.00096086

15 0.00714124 -0.00256742 0.00153777 0.00022406

16 -0.00617022 -0.00508364 -0.00050650 0.00010467

17 0.00197036 -0.00044922 0.00095716 0.00021173

18 0.00056815 0.00013427 0.00069045 0.00038306

19 -0.00283608 -0.00337977 0.00001148 -0.00047074

20 -0.00004512 -0.00365705 0.00011479 -0.00066125

Table 3.8: Fourier Series Coefficients Ak, Bk, Ck, and Dk for KT and KQ of the Propulsive

Thruster (M1, M2)
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k Ak (for KT ) Bk (for KT ) Ck (for KQ) Dk (for KQ)

0 -0.09098766 - 0.00524171 -

1 0.20527927 -0.99457550 0.04161741 -0.13236558

2 0.13647601 0.06365627 -0.00435855 0.00481390

3 0.04889571 0.14018405 0.00469623 0.01161810

4 -0.00277528 -0.02706614 -0.00173967 -0.00285067

5 -0.01665875 0.08366338 -0.00282881 0.01656645

6 -0.00482159 -0.01161137 -0.00002515 0.00127992

7 0.01391855 -0.02529375 -0.00328790 -0.00495197

8 0.00317517 -0.01989391 0.00008865 -0.00192358

9 -0.00182741 0.00216645 -0.00136061 0.00083231

10 0.00672991 -0.00612963 0.00115739 0.00099105

11 0.00870930 -0.00543145 -0.00121626 0.00316571

12 -0.00655156 -0.00598118 -0.00026942 0.00034412

13 0.00214095 -0.00773791 0.00040556 0.00056637

14 -0.00044575 -0.00112208 0.00033937 0.00042057

15 0.00584554 -0.00664747 0.00175716 -0.00025495

16 -0.00776044 0.00108907 -0.00059986 0.00034795

17 0.00289544 -0.00183957 0.00105730 0.00036738

18 -0.00244427 -0.00316067 0.00060535 -0.00053796

19 -0.00060732 -0.00366892 -0.00002677 -0.00048631

20 -0.00250670 -0.00338672 0.00005741 -0.00060698

Table 3.9: Fourier Series Coefficients Ak, Bk, Ck, and Dk for KT and KQ of Maneuvering

Thrusters (M3, M4, M5, M6)
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3.3.2 Actuator modelling

To optimise the thruster’s response, its dynamics are modelled. It has a Faulhaber

4490H036-24BS single-phase brushless DC motor paired with a Faulhaber 38A gearbox

with a 4:1 ratio. The motor is controlled with a PI velocity controller. The mathematical

model comprises two loops: the electric and the shaft dynamic loops. The electric loop

outputs the torque of the motor and is given as follows:

Lİ = V −Ken−RI

Qm = KmI
(3.27)

where L is the inductance, V is the voltage, Ke and R are the back EMF constant and

thermal resistance, respectively. Km is the torque constant, n is the shaft RPM, and I is

current. Qm represents motor torque.

The shaft dynamics are given as follows:

Isṅ = Qmp −Qp −Qf (n) (3.28)

here, Qmp = KgQm denotes motor torque transferred to the propeller shaft, with Kg as

the gear ratio. Is is total inertial that accounts for the motor inertia (Im) and propeller

inertia (Ip), multiplied by the gear ratio (Kg) to account for gearbox inertia. Qp is

propeller torque, and Qf represents torque due to motor friction:

Qf (n) = C0sign(n) + Cvn (3.29)

where C0 and Cv are static and dynamic friction coefficients. The term sign(·) represents
the sign function. The parameters of the motor are summarised in the Table. 3.10

Parameter Value

R 0.66 ohms

L 219 · 10−6 H

Km 42·10−3 Nm/A

Ke 4.4·10−3 V/min−1

C0 3.86·10−3 Nm

Cv 5.2·10−7 Nm/min−1

Kg 4

Im 2.7375·10−5 kgm2

Ip 2.3·10−4 kgm2

Table 3.10: Thruster actuator parameters.
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Figure 3.18: Simulation scheme of the thruster model.

The motor controller uses cascaded PI controllers, with the outer loop functioning as

the velocity controller to determine the required current and the inner loop functioning

as the current controller to output the required voltage.

All the estimated parameters are summarized in Table 3.11, providing a comprehen-

sive reference for the identified model. This parameter set serves as the foundation for

validating the mathematical model against real-world mission data, as discussed in the

Section 3.4. The benchmark validation assesses the accuracy of the developed 6-degree-of-

freedom simulator, ensuring its reliability as a testing framework for guidance and control

algorithm development.
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Blucy Actuator

Dry mass m 216.15 kg Propeller type Ka 4-70 with 19A Duct

Wet mass m 216.45 kg Number of thrusters 6

Ix 11.3114 kgm2 Number of blades 4

Iy 49.2791 kgm2 Diameter D 0.145 m

Iz 41.7449 kgm2 Pitch ratio P/D 1.28

Ixy 0 kgm2 Area ratio Ae/Ao 0.7

Ixz 2.8636 kgm2 Motor rpm range (−3000, 3000)rpm

Iyz 0 kgm2 Gear ratio 4 : 1

Center of Gravity CG (0, 0, 0) m Prop rpm range (−750, 750)rpm

Center of Buoyancy CB (0, 0, 0.048) m Propulsive M1, M2

Hydrodynamic Coefficients Kt Ak, Bk in Table 3.8

Linear [Kg/s] Quadratic [Kg/m] Kq Ck, Dk in Table 3.8

Xu = −2.61 Xu|u| = −61.82 Maneuver M3, M4, M5, M6

Yv = −24.72 Yv|v| = −597.62 Kt Ak, Bk in Table 3.9

Kv = 0.83 Kv|v| = −30.05 Kq Ck, Dk in Table 3.9

Nv = −11.21 Nv|v| = −85.4 Position w.r.t. CG li [m]

Zw = −2.82 Zw|w| = −255.86 M1 [-0.821 0.230 -0.008]

Mw = −1.71 Mw|w| = −38.7 M2 [-0.821 -0.230 -0.008]

Yp = −1.43 Yp|p| = −38.14 M3 [0.615 0 -0.386]

Kp = −0.04 Kp|p| = −23.68 M4 [-0.835 0 -0.386]

Np = 0.41 Np|p| = 9.28 M5 [0.490 -0.113 -0.131]

Zq = −0.07 Zq|q| = −37.19 M6 [-0.660 0.124 -0.131]

Mq = −0.06 Mq|q| = −95.69 Thrust versor ei

Yr = −1.87 Yr|r| = −342.98 M1 [1 0 0]

Kr = 0.14 Kr|r| = 41.28 M2 [1 0 0]

Nr = −0.044 Nr|r| = −375.53 M3 [0 0 1]

Added Mass M4 [0 0 1]

Xu̇ −28.94 kg M5 [0 1 0]

Yv̇ −166.03 kg M6 [0 1 0]

Zẇ −94.13 kg

Kṗ −0.07 kgm2

Mq̇ −17.10 kgm2

Nṙ −33.58 kgm2

Table 3.11: Summary table of Blucy UUV and actuator parameters.
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Figure 3.19: The cascade architecture of the depth and yaw controller.

3.4 Benchmark Validation

To validate the identified model and create a robust benchmark, real-world mission

data are used to assess the performance of a comprehensive 6-degree-of-freedom (DOF)

simulator developed in Matlab/Simulink. The benchmark incorporates the same PID

cascade control architecture that is deployed on the Blucy during the actual missions.

As depicted in Figure 3.19, the outer control loop governs depth (z) and yaw angle (ψ),

generating reference velocities for the inner control loops. The inner loops then regulate

the linear velocity (w) along the z-axis and the angular velocity (r) about the z-axis.

While the PID cascade structure in the benchmark mirrors the control system used in

the real mission, its implementation here is solely for validation purposes. The broader

objective of this benchmark is to serve as a foundation for the design and development

of novel Guidance, Navigation, and Control (GNC) algorithms, as shown in Chapter 4.

This enables a controlled environment for evaluating new strategies before deployment in

actual missions.

3.4.1 Dataset

The simulator is validated against the data acquired during the previous mission of

the Interreg IT-HR Techera project [72]. In particular, two datasets will be presented

that are recorded during a multibeam survey in the Marine Protected Area of Miramare

in Trieste, Italy. These datasets reflect typical maneuvers performed during a survey

mission, such as diving, forward flight, and turning maneuvers, making them ideal for

validation purposes.

3.4.1.1 Dataset 1: Depth and Yaw autopilot validation

The dataset 1, which is 620 s long, consist in different operation maneuvers as shown

in Table 3.12. This dataset is used to validate the depth and yaw autopilots, which is
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Time Interval (s) Operation

0 - 120 Dive Maneuver @ 5 m

120 - 200 Forward Flight

200 - 260 Turn

260 - 440 Forward Flight

440 - 520 Turn

520 - 570 Forward Flight

570 - 620 Turn

Table 3.12: Operational Phases in Dataset 1

(a) Depth z response. (b) velocity w response.

Figure 3.20: Optimised depth autopilot response: Dataset 1.

crucial because the survey data includes these systems. The validation method involves

passing the same reference signals used by the vehicle to the model and then comparing

the model’s response to the actual data from Blucy. These reference signals include

force along the x-axis for surge velocity control, as well as depth and yaw references

for the autopilots. The autopilot control parameters are optimised using a least squares

algorithm. Specifically, the first 120 s od data are selected to validate the depth controller

parameters, while 120 second from the first turn are used to validate the yaw autopilot.

The optimised values are then utilised to simulate the complete data sets.

The responses of the optimised depth controller (z) and the linear velocity controller

(w) during a dive manoeuvre are illustrated in Figures. 3.20a and 3.20b respectively. In

the Figure. 3.20a, the simulated and measured depth z exibit a close match, demonstrat-

ing a strong correlation between the model and the real-life data. The initial transient

response and the steady-state behaviour indicate that the model accurately captures the

system’s dynamics.
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(a) yaw ψ response. (b) angular velocity r response.

Figure 3.21: Optimised yaw autopilot response: Dataset 1.

Gains Depth (z) Velocity (w) Yaw (ψ) Angular velocity (r)

Proportional 1.5 350 0.5 5000

Derivative 0 30 5 800

Integral 0 2 0 1000

Table 3.13: Optimised PID gains using the dataset 1.

In the Figure. 3.20b, the response of the simulated and measured linear velocity w also

aligns well, though there are slight discrepancies in the transient phase. The measured

data exhibits more variability compared to the simulated response, possibly due to noise

in the system. Nonetheless, the steady-state velocity shows a good agreement, indicating

that the model parameters are well-tuned.

Similarly, the responses of the yaw controller (ψ) and the angular velocity (r) are pre-

sented in Figures. 3.21a and 3.21b respectively. The simulated and measured responses

demonstrate a reasonable correlation. However, there are notable differences in the tran-

sient phases that could be attributed to noise affecting the data. Despite these differences,

the overall trend and steady-state behaviour of the simulated align well with the measured

data. The identified parameters of the depth and yaw autopilots are shown in Table.3.13.

The complete simulation of dataset 1 is shown in Figure 3.22. The simulated trajectory

closely matches the real data, except for the velocities u and v. One possible reason for

this discrepancy is the tether, which introduces additional drag forces. Initially, with

less tether in the water, the measured velocity aligns well with the simulation. However,

as the vehicle turns and more tether is deployed, the measured surge velocity decreases

despite the constant thrust, and sway velocity deviates due to increased tether tension,
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Time Interval (s) Operation

0 - 120 Forward Flight

120 - 220 Turn

220 - 350 Forward Flight

350 - 460 Turn

460 - 550 Forward Flight

Table 3.14: Operational Phases in Dataset 2

affecting the x and y positions. Another contributing factor is that the simulation does

not account for hull-thruster interactions, which influence thrust production. While sea

currents could be a potential source of discrepancy, to the best of the author’s knowledge,

the current was negligible during that survey, as the data were recorded on a calm day.

Figure 3.22: Validation of the states against the real data for dataset 1.

3.4.1.2 Dataset 2: Benchmark Validation

Spanning 550 seconds, Dataset 2 captures a survey conducted at a constant depth of

5 meters, with its various operational phases detailed in Table 3.14. Figure 3.23, demon-

strates the validation of both the PID parameters and the benchmark model, using the

same optimized PID values from Dataset 1.The alignment between the simulated results

and the real data from Dataset 2 highlights the robustness of the proposed simulator.
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It is important to note that data for linear velocities (u, v, w) and position (x, y)

were not recorded during turns, as multibeam survey data collected during such maneu-

vers is often unreliable for 3D reconstruction and post-processing analysis. Despite this

limitation, the comparison of position and ψ data validates the simulator, showing its

effectiveness for designing and testing new guidance and control schemes.

Figure 3.23: Validation of the states against the real data for dataset 2.

To summarize, this chapter presents a benchmark model for Blucy, developed using

a balanced workflow between experimental and numerical simulation for parameter es-

timation (summarized in Table 3.11). Despite some limitations in the accuracy of the

parameter estimations, such as stationary propeller assumption, simplifications in the ve-

hicle’s CAD model for CFD simulations, and the neglect of hull and thrusters interaction,

the simulation results, validated against real mission data, demonstrated the model ef-

fectiveness. Consequently, the proposed benchmark model provides a reliable foundation

for designing and testing new control algorithms, offering a robust baseline for control

prototyping. This will enable the development of new algorithms for path-following, path

generation, and trajectory tracking, enhancing Blucy’s navigation capabilities in complex

underwater environments as is illustrated in Chapter 4.



Chapter 4

Neuro Adaptive Fixed time Sliding

mode control using Composite

Learning

4.1 Control Objective

In this chapter, a robust guidance and control system for the Blucy UUV is devel-

oped to ensure precise trajectory tracking, where the vehicle’s heading remains aligned

with the direction of the trajectory, despite the presence of uncertainties and external

disturbances. The proposed approach builds upon the work presented in [P4, P5], where

adaptive fixed-time sliding mode and neuro-adaptive integral sliding mode control strate-

gies, augmented with composite error learning, have been formulated for underactuated

underwater vehicles.

The guidance and control system is designed in two parts. First, a look-ahead guidance

law based on the Line-of-Sight (LOS) method is designed to enable accurate trajectory

tracking. This approach calculates the desired heading by anticipating the path direction

ahead of the vehicle, ensuring smooth and precise navigation. Secondly, a neuro-adaptive

fixed-time sliding mode controller, enhanced by composite error learning, is designed to

track the virtual inputs generated by the guidance system. The schematic representation

of the overall system is depicted in Figure 4.1.

4.1.1 Preliminaries

To facilitate the forthcoming analysis, it is essential to be cognizant of certain foun-

dational definitions and lemmas. In particular, they include essential results related to

practical fixed-time stability and inequalities that facilitate the derivation of bounded
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Figure 4.1: Guidance and control scheme.

convergence times. These concepts will be instrumental in proving the stability of the

proposed neuro-adaptive fixed-time sliding mode control approach. Therefore, they are

systematically introduced in the following:

Definition 4.1.1. [73] Consider the following nonlinear system:

ẋ(t) = f(x, t), x(0) = x0 (4.1)

where x ∈ Rn is the system state variable and f : R+ ×Rn → Rn is a nonlinear function.

The system (4.1) is practical fixed time stable if for any initial condition x(0) = x0,

there exist constant η > 0 and settling time T (η, x0) < ∞ satisfying |x(t)| < η, ∀t > T .

Moreover, the settling time T (η, x0) is bounded, i.e., there exists T (η, x0) ≤ Tmax, ∀x(0) ∈
Rn.

Lemma 4.1.1. [74] For some constants α, β > 0, p > 1, 0 < q < 1 and 0 < η < ∞, if

there is a positive definite function such that

V̇ (x) ≤ −αV p(x)− βV q(x) + η, (4.2)

then the system (4.1) is practical fixed-time stable and the settling time T can be estimated

by

T ≤ Tmax =
1

αϕ(p− 1)
+

1

βϕ(1− q)
, (4.3)

with 0 < ϕ < 1 and the residual of the system (4.1) is give by

x ∈
{
V (x) ≤ min

{
(

η

(1− ϕ)α
)
1
p , (

η

(1− ϕ)β
)
1
q

}}
. (4.4)

Lemma 4.1.2. [75] Considering the following scalar system:

ẏ = −l1signm1y − l2sign
m2y, y(0) = 0, (4.5)

where sign(·)y = |y|(·) · sign(y), l1 > 0, l2 > 0, m1 > 1 and 0 < m2 < 1. Then, the

equilibrium is fixed-time stable with settling time T bounded by

T ≤ Tmax =
1

l1(m1 − 1)
+

1

l2(1−m2)
, (4.6)
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Lemma 4.1.3. [76] For a, b ≥ 0 and p, q ≥ 1 such that 1
p
+ 1

q
= 1, the following inequality

holds

ab ≤ ap

p
+
bq

q
. (4.7)

Lemma 4.1.4. [77] For any real values of x > 0 and p ∈ (1, 2), the following inequality

holds
xp

p
≥ x+

1− p

p
(4.8)

Lemma 4.1.5. [78] For x ≥ 0 and y, h > 0, the following inequality holds

xh(y − x) ≤ 1

1 + h
(yh+1 − xh+1). (4.9)

Lemma 4.1.6. [78] For c > 1, a > 0, b ≤ a and b ∈ R, it holds that

(a− b)c ≥ bc − ac. (4.10)

4.1.1.1 Neural Networks

An unknown continuous nonlinear function f(x) can be estimated by employing the

radial basis neural networks. Considering x ∈ Rn and invoking universal approximation

ability the nonlinear function can be approximated as follows [79]:

f(x) = W ∗Tµ(x) + ϵ, (4.11)

where ϵ is the approximation error such that |ϵ| ≤ ϵ̄ and W ∗ are the optimal weights of

neural network that satisfies ∥W ∗∥ = W̄ .

µ(x) is the basis function vector µ = [µ1, µ2, ....., µn] where n is the number of the

neurons and µi is choosen as Gaussian function given as follows:

µi(x) = exp

(
− (x−ci)

T (x−ci)

σ2
i

)
, (4.12)

where ci and σi are the centre and width of the Gaussian function respectively, and j is

the number of neurons of the neural network.

4.2 Synthesis model: 4DOF

The model based on (2.31)-(2.32) is suitable for high fidelity simulations, but for the

guidance and control system design, the use of a transformed set of equation is preferred.

The model considered is the following 4 DOF synthesis model, describing the kinematics

and the dynamics as follows:

ẋ = u cosψ − v sinψ

ẏ = u sinψ + v cosψ

ż = w

ψ̇ = r

. (4.13)
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and
u̇ = 1

m11
(m22vr − d11u+ τu + du)

v̇ = 1
m22

(−m11ur − d22v + dv)

ẇ = 1
m33

(−d33w + τw + dw)

ṙ = 1
m66

((m11 −m22)uv − d66r + τr + dr)

. (4.14)

Here in, m11 = m−Xu̇, m22 = m−Yv̇, m33 = m−Zẇ, m66 = Iz−Nṙ, d11 = Xu+Xu|u||u|,
d22 = Yv + Yv|v||v|, d33 = Zw + Zw|w||w|, d66 = Nr + Nr|r||r|. τu and τw are the forces

along xb and zb respectively, while τr torque about zb. The terms du, dv, dw, and dr

represent the disturbance affecting the systems. It can be seen that the dynamic (4.14)

is underactuated system since there is no actuation in the sway motion.

Remark 4.2.1. This model does not account for roll and pitch dynamics, as the separation

between the CG and the Center of Buoyancy (CB) generates a substantial restoring force

that inherently stabilizes roll and pitch oscillations. Hence in real-time applications for

slow-moving UUVs, the above dynamics are valid.

Assumption 4.2.1. The coupling between pitch and heave motions is assumed to be

negligible.

Remark 4.2.2. According to Fossen [10], this assumption is valid for low-speed Underwa-

ter Unmanned Vehicles (UUVs) equipped with vertical thrusters, as these vehicles do not

need to adjust their pitch to achieve vertical motion. This simplifies the control design by

allowing independent control of heave without significant influence from pitch dynamics.

Assumption 4.2.2. The sway velocity is assumed to be passively bounded, such that

|v| < vm, where vm is a positive constant.

Remark 4.2.3. This assumption is reasonable because the hydrodynamic damping forces

acting in the sway direction are typically strong enough to limit sway velocities, even in

the absence of active control. This passive stability is beneficial for maintaining lateral

stability and minimizing energy consumption in corrective manoeuvres.

Assumption 4.2.3. Unknown time-varying disturbances are assumed to be bounded, such

that |dn| ≤ d̄n, where n = u, v, w, r and d̄n is an unknown but finite constant.

Remark 4.2.4. External disturbances affecting UUVs, such as those from sea currents,

underwater waves, or forces from tethers in Remotely Operated Vehicles (ROVs), are

generally bounded in magnitude. This bounded nature allows for the design of robust

control strategies that can effectively mitigate the impact of such disturbances, ensuring

the stability and performance of the vehicle.

Assumption 4.2.4. The desired path xd, yd, and zd are assumed to be differentiable.
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Remark 4.2.5. The path considered in this study is smooth and continuous; hence, it

is differentiable. This assumption ensures that the path-following control laws can be

designed using differential calculus, which requires smooth and continuous trajectories.

4.3 Look-ahead Distance based Line-of-Sight Guid-

ance System

The desired path is typically described in a path reference frame. The tracking errors

with respect to the inertial reference frame can be expressed in the path reference frame

as follows:

xe = (x− xd) cos(γp) + (y − yd) sin(γp),

ye = −(x− xd) sin(γp) + (y − yd) cos(γp),
(4.15)

where xe and ye are the along-track and cross-track errors, respectively, and γp is the

path tangent angle defined as:

γp = atan2(ẏd, ẋd) (4.16)

The control objective is to drive xe and ye to zero. To achieve this, we take the time

derivative of (4.15) to obtain the error dynamics:

ẋe = −(x− xd) sin(γp)γ̇p + (y − yd) cos(γp)γ̇p + (ẋ− ẋd) cos(γp) + (ẏ − ẏd) sin(γp),

ẏe = −(x− xd) cos(γp)γ̇p − (y − yd) sin(γp)γ̇p − (ẋ− ẋd) sin(γp) + (ẏ − ẏd) cos(γp).

(4.17)

It is important to address the terms involving γ̇p in the error dynamics (4.17). These

terms can be simplified based on the following considerations:

1. Straight Line Path Approximation: When vehicle is expected to follow a

straight-line path, typically defined through waypoints, the rate of change of the

path tangent angle, γ̇p, is approximately zero. This occurs because, for a straight-

line path, the direction of the tangent remains constant, leading to γ̇p ≈ 0. Thus,

for straight-line segments, the effect of γ̇p can be neglected.

2. Low Curvature Approximation: In situations where vehicles follows a curved

path, but the curvature is gentle (i.e., large-radius arcs or gradual turns), the rate of

change of γp remains small. In such cases, γ̇p can be approximated using the radius

of curvature R as follows:

γ̇p ≈
1

R
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where R represents the radius of curvature of the path. For large radii, γ̇p becomes

small, allowing to approximate its effect as negligible.

Therefore, for Blucy’s operational scenarios, the terms involving γ̇p can often be ignored

without affecting the accuracy of the guidance and control system. This is especially true

when Blucy is either following straight paths (where γ̇p ≈ 0) or navigating curved paths

with sufficiently large radii.

In the light of the above discussion (4.17) becomes:

ẋe = (ẋ− ẋd) cos(γp) + (ẏ − ẏd) sin(γp)

ẏe = −(ẋ− ẋd) sin(γp) + (ẏ − ẏd) cos(γp)
(4.18)

Substituting kinematic relation (4.13) in (4.18) and rearranging, one has:

ẋe = u cos(ψ − γp) + v sin(ψ − γp)− ẋd cos(γp)− ẏd sin(γp)

ẏe = u sin(ψ − γp) + v cos(ψ − γp) + ẋd sin(γp)− ẏd cos(γp)
(4.19)

By defining the desired horizontal velocity Ud =
√
ẋ2d + ẏ2d and from the definition of

the path tangent angle γp (4.16), the components of the desired velocity in the x and y

directions can be expressed as:

ẋd = Ud cos γp

ẏd = Ud sin γp
(4.20)

Substituting (4.20) in (4.19):

ẋe = u cos(ψ − γp) + v sin(ψ − γp)− Ud

ẏe = u sin(ψ − γp) + v cos(ψ − γp)
(4.21)

By defining horizontal velocity Uh =
√
u2 + v2, and arranging the remaining terms in

amplitude-phase form, one has:

ẋe = Uh cos(ψ − γp + β)− Ud

ẏe = Uh sin(ψ − γp + β)
(4.22)

where

β = atan2(v, u) (4.23)

β is called as a sideslip angle. The sideslip angle arises due to external disturbances or

non-zero sway velocity during a turn that causes the drift in the orientation of ψ of the

surge velocity u relative to horizontal velocity Uh. Hence the relation between the β and

Uh is given as Uh = u/cosβ

Next, the following Lyapunov function candidate is defined:

V1 =
1

2
x2e +

1

2
y2e . (4.24)
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Taking the time derivative of V1 along the system trajectory, one obtains:

V̇1 = xeẋe + yeẏe

= xe (Uh cos(ψ − γp + β)− Ud) + ye (Uh sin(ψ − γp + β)) .
(4.25)

Recalling that u = Uh cos(β), where u is the surge velocity, the aim is to design a

virtual input ud (desired surge velocity) to ensure that the position error xe goes to zero.

The virtual control input, ud, is designed to guide the surge velocity u toward the desired

velocity Ud. The virtual input ud is designed as follows:

ud =
Udcosβ

cos(ψ − γp + β)
. (4.26)

By substituting (4.26) into (4.25), it becomes:

V̇1 = ye (Uh sin(ψ − γp + β)) . (4.27)

The remaining task is to ensure the convergence of the cross-track error (ye) to zero.

In a fully actuated system, a virtual input for the lateral velocity v would be designed to

make ye converge to zero. However, since the system considered here is underactuated, a

look-ahead-based guidance law as in [80] was employed:

ψd = γp − β + arctan

(
−ye
Λ

)
, (4.28)

where Λ is the look-ahead distance, typically considered to be constant. However, as

presented in [81], a time-varying look-ahead distance as a function of the cross-tracking

error ye can be used to dynamically adjust the vehicle’s behaviour based on its position

relative to the desired path. The time-varying look-ahead distance is given by:

Λ(ye) = (Λmax − Λmin)e
−kΛy

2
e + Λmin, (4.29)

where Λmax and Λmax are the maximum and minimum look-ahead distances respec-

tively, and kΛ is a positive scaling factor. The underlying idea is intuitive and straight-

forward: a smaller Λ is assigned when the vehicle is far from the desired path, resulting

in more aggressive steering to quickly reduce the cross-track error. Conversely, a larger

Λ is assigned when the vehicle is close to the path to reduce the risk of overshooting,

promoting smoother and more stable convergence. If the desired heading ψd is perfectly

tracked, then (4.27) becomes:

V̇1 = −Uh
y2e√

y2e +∆2
max

. (4.30)
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For Uh > 0, this implies that ye converges to zero, indicating exponential stability

as described in [81]. However, the stability is constrained by the ∆max, that is as the

∆max increases, the stability region becomes smaller. This fact should be taken into

consideration when designing ∆max and other related design parameters to ensure optimal

performance and stability.

Remark 4.3.1. Note that in the 4-DOF model, the vertical-track error ze does not require

a specific guidance law for convergence. Any controller capable of generating a non-zero

vertical velocity w can stabilize the vertical-track error in this 4-DOF system.

4.4 Neuro-Adaptive Fixed-Time Control Design and

Stability Analysis

The tracking problem should be converted into a regulatory problem to design the

fixed-time sliding mode controller. To do so, firstly, the equation (4.14) is written in

vectorial form as follows:

Ẋ = f(X) + g(X)τ + δ(X) + d(t) (4.31)

where X = [u,w, r]T , τ = [τu, τw, τr]
T , δ = δf(X) + δg(X)τ ,

f(X) =


1

m11
(m22vr − d11u)
1

m22
(−d33w)

1
m66

((m11 −m22)uv − d66r)

 , g(X) =


1

m11

1
m33

1
m66

 , d(t) =


1

m11
du

1
m66

dw
1

m66
dr

 .
Remark 4.4.1. In the above model, The dynamics of the sway velocity are not considered

as it cannot be controlled but only observed, and hence, its dynamics are not considered in

the control design. Furthermore, δ represents the unknown uncertainties that the system

can have due to ignored nonlinear dynamics in the synthetic model and the parameters.

Define the velocity errors ue = u − ud, we = w − wd, and re = r − rd, where ud, wd,

and rd are desired velocities. Their error dynamics can be written as follows:

Ẋe = f(X) + g(X)τ + δ(X) + d(t)− Ẋd (4.32)

where Xe = [ue, we, re] and Xd = [ud, wd, rd].

Next, the long tracking error xe defined in (4.15) along with the vertical error ze = z−zd
and heading error ψe = ψ − ψd are used to describe the position error dynamics given as

follows:

ẋe = Uh cos(ψ − γp + β)− Ud = cos(ψ − γp + β)(u− ud) = cos(ψ − γp + β)ue

że = ż − żd = w − wd = we

ψ̇e = ψ̇ − ψ̇d = r − rd = re

(4.33)
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In (4.33), the transformation of xe is obtained using (4.26) and the relation Uh = u/cosβ.

The vectorial representation of (4.33) is given as follows:

ė1 = R(ψ)Xe (4.34)

where e1 = [xe, ze, ψe]
T and R(ψ) is defined as diag(cos(ψ + β − γp), 1, 1). An auxiliary

error is then introduced as:

e2 = R(ψ)Xe (4.35)

This results in a transformation that leads to the regulatory problem:

ė1 = e2

ė2 = F (X) +G(X)τ +∆(X) + d̄(t)− ˙̄Xd

(4.36)

where F (X) = R(ψ)f(X), G(X) = R(ψ)g(X), d̄(t) = R(ψ)d(t), ˙̄Xd = R(ψ)Ẋd, and

∆(X) = Ṙ(ψ)X + R(ψ)(δf(X) + δg(X)τ) represents the unmodeled dynamics and un-

certainties. The estimation of ∆ is achieved through a radial basis neural network, which

leverages the universal approximation capability of neural networks:

∆ = W ∗Tµ(X) + ϵ (4.37)

where ϵ represents the approximation error that is bounded, µ(X) is the Gaussian func-

tion and W ∗ are the ideal neurons. Since W ∗ is known, let the Ŵ be its estimation.

Consequently, the estimation of ∆ is given as

∆̂ = Ŵ Tµ(X) (4.38)

An adaptive disturbance observer is introduced to estimate to compensate for the

neural network’s estimation error and account for bounded time-dependent disturbances

defined as D = d̄(t) + ϵ. Let D̂ be the estimation of the D. Since both d̄(t) (Assumption

4.2.3) and ϵ are bounded the following inequality holds:

|D| ≤ χd (4.39)

where χd is positive constant.

4.4.1 Fixed-Time Non-Singular Sliding Mode Control

A fixed-time, non-singular sliding surface, as given in [75], is defined as:

S = signa1e1 +
k2a2

2a2 − 1
sign2−1/a2(e2 + k1sign

a1e1) (4.40)

where signa1e1 = |e1|a1diag(sign(e1)), sign2−1/a2(e2+k1sign
a1e1) = |e2+k1signa1e1|2−1/a2

diag(sign(e2 + k1sign
a1e1)) with k1 > 0, k2 > 0, a2 > 1 and 1 < a1 < 2− 1/a2.
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Subsequently, the singularity-free fixed-time control law is designed as:

τ = −G(X)−1

(
F (X) + D̂ + Ŵ Tµ(X) + k1a1diag(|e1|a1−1)

(
Φ

k1
+ e2

)
+ αsignγ1S + βsignγ2S

)
(4.41)

where α > 0, β > 0, γ1 > 1, and 0 < γ2 < 1 are the design parameters of the controller

and Φ is the auxiliary function defined as follows:

Φ(e1, e2) =
1

k2
sign1/a2(e2 + k1sign

a1(e1)) +
k1a2

2a2 − 1
(e2 + k1sign

a1(e1)) (4.42)

Combining equations (4.42) and (4.40), the following relationship is obtained:

k2 |e2 + k1sign
a1(e1)|1−1/a2 Φ = e2 + k1S (4.43)

4.4.2 State and Disturbance observer Design

State observers are typically designed to estimate system states that cannot be mea-

sured directly. In composite error learning framework they are also used to enhance the

learning process by using the state observer estimation error along with the system’s

tracking error for updating the neural networks and disturbance observer. To this end, a

fixed-time state observer is constructed as:

˙̂
X = f(X) + g(X)u+ Ŵ Tµ(X) + D̂ + k0eo + α3sign

γ1(eo) + β3sign
γ2(eo) (4.44)

where ko, α3 and β3 are the positive definite matrices that represent the state observer’s

gain. eo is the prediction error made by the state observer, defined as:

eo = X − X̂. (4.45)

Taking the time derivative of eo, the observer error dynamics are obtained as:

ėo = W̃µ(X) + D̃ − koeo − α3sign
γ1(eo)− β3sign

γ2(eo) (4.46)

where W̃ = W ∗ − Ŵ and D̃ = Du − D̂ are estimation errors of the neural network’s

weights and the disturbance, respectively.

Now, the composite error learning-based updating law of the neural network is designed

as:
˙̂
W = Γ

(
(SΘ+ keeo)µ(X)− α1Ŵ

γ1 − β1Ŵ
γ2
)

(4.47)

where Γ, ke, α1 and β1 are the positive definite matrices and

Θ = k2diag(|σ|1−1/a2)

σ = e2 + k1sign
a1(e1)

(4.48)
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Using the neural network approximation information and composite learning the non-

linear disturbance observer is designed as follows:

D̂ = X − ξ (4.49a)

ξ̇ = f(X) + g(X)τ + Ŵ Tµ(X) + D̂ − (SΘ+ keeo) + α2D̂
γ1 + β2D̂

γ2 (4.49b)

where α2 and β2 are positive definite matrices.

The disturbance observer estimation error dynamics is given as follows:

˙̃D = Ḋ − (W̃µ(X) + D̃)− (SΘ+ keeo) + α2D̂
γ1 + β2D̂

γ2 (4.50)

4.4.3 Fixed time stability analysis

Theorem 4.4.1. For the system described by equation (4.36) with the singularity-free

sliding surface (4.40), the fixed-time control law (4.41), the state observer (4.44), it can

be concluded that all signals of the closed-loop system are uniformly ultimately bounded.

The switching function S converges to a small region around the surface S = 0 within a

fixed time. T1 ≤ Tr + T (η).

Proof. Consider the following Lyapunov function candidate function

V =
1

2
STS +

1

2
W̃ TΓ−1W̃ +

1

2
D̃T D̃ +

1

2
eTo keeo (4.51)

Where W̃ = W ∗ − Ŵ and D̃ = D − D̂. Differentiating the above equation one gets:

V̇ =ST Ṡ + W̃ T ˙̃W + D̃T ˙̃D + eTo ėo

=ST
(
(a1diag(|e1|a1−1)e2 + k2diag(|e2 + k1sign

a1e1|1−1/a2)

(ė2 + k1a1diag(|e1|a1−1)e2)
)
+ W̃ TΓ−1 ˙̃W + D̃T ˙̃D + eTo keėo

=ST
(
(a1diag(|e1|a1−1)e2 + k2diag(|e2 + k1sign

a1|1−1/a2)

(F (x) +G(x)τ +W ∗Tµ(x) +D + k1a1diag(|e1|a1−1)e2)
)
+ W̃ TΓ−1 ˙̃W + D̃T ˙̃D + eTo keėo

(4.52)

substituting (4.41) in the above equation and simplifying:

V̇ =ST
(
(a1diag(|e1|a1−1)e2 + k2diag(|e2 + k1sign

a1|1−1/a2)(a1diag(|e1|a1−1)Φ

+ D̃ + W̃ Tµ(x)− αsignγ1S − βsignγ2S)
)
+ W̃ TΓ−1 ˙̃W + D̃T ˙̃D + eTo keėo

(4.53)
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By using the relation (4.43) one has the following equation:

V̇ =ST
(
− (k1a1diag(|e1|a1−1)S + k2diag(|e2 + k1sign

a1|1−1/a2)(D̃ + W̃ Tµ(x)

− αsignγ1S − βsignγ2S)
)
+ W̃ TΓ−1 ˙̃W + D̃T ˙̃D + eTo keėo

=− k1a1diag(|e1|a1−1)STS + ST
(
k2diag(|e2 + k1sign

a1|1−1/a2)(D̃ + W̃ Tµ(x)

− αsignγ1S − βsignγ2S)
)
+ W̃ TΓ−1 ˙̃W + D̃T ˙̃D + eTo keėo

≤ST
(
k2diag(|e2 + k1sign

a1|1−1/a2)(D̃ + W̃ Tµ(x)− αsignγ1S − βsignγ2S)
)

+ W̃ TΓ−1 ˙̃W + D̃T ˙̃D + eTo keėo

≤STΘ
(
D̃ + W̃ Tµ(x)− αsignγ1S − βsignγ2S

)
+ W̃ TΓ−1(− ˙̂

W ) + D̃T ˙̃D + eTo keėo

≤STΘD̃ + STΘW̃ Tµ(x)−Θα|S|γ1+1 −Θβ|S|γ2+1 − W̃ T
(
(S + eo)µ(x)

− α1Ŵ
γ1 − β1Ŵ

γ2
)
+ D̃T

(
Ḋ − (W̃µ(X) + D̃)− (SΘ+ keeo) + α2D̂

γ1 + β2D̂
γ2
)

+ eTo ke

(
W̃µ(X) + D̃ − koeo − α3sign

γ1(eo)− β3sign
γ2(eo)

)
≤−Θα|S|γ1+1 −Θβ|S|γ2+1 + α1W̃

T Ŵ γ1 + β1W̃
T Ŵ γ2 + D̃T Ḋ − D̃T W̃µ(X)

− D̃T D̃ + α2D̃
T D̂γ1 + β2D̃

T D̂γ2 − kek0eo
T eo − α3|eo|γ1+1 − β3|eo|γ2+1

(4.54)

By using the Lemma 4.1.5 and 4.1.6 below inequalities holds

W̃ T Ŵ γ1 ≤ 1

γ1 + 1

(
2W ∗γ1+1 − W̃ γ1+1

)
W̃ T Ŵ γ2 ≤ 1

γ2 + 1

(
2W ∗γ2+1 − W̃ γ2+1

)
D̃T D̂γ1 ≤ 1

γ1 + 1

(
2Dγ1+1 − D̃γ1+1

)
D̃T D̂γ2 ≤ 1

γ2 + 1

(
2Dγ2+1 − D̃γ2+1

)
(4.55)

Eq. (4.54) becomes :

V̇ ≤−Θα|S|γ1+1 −Θβ|S|γ2+1 +
α1

γ1 + 1
(2W ∗γ1+1 − W̃ γ1+1) +

β1
γ2 + 1

(2W ∗γ2+1 − W̃ γ2+1)

+ D̃T Ḋ − D̃T W̃µ(X)− D̃T D̃ +
α2

γ1 + 1
(2Dγ1+1 − D̃γ1+1) +

β2
γ2 + 1

(2Dγ2+1 − D̃γ2+1)

− kek0eo
T eo − α3|eo|γ1+1 − β3|eo|γ2+1

(4.56)

from Lemma 4.1.3, the following inequalities hold:

D̃T Ḋ ≤ 1

2
D̃T D̃ +

1

2
||χd||2

D̃T W̃µ(X) ≤ ε

2
D̃T D̃ +

1

2ε
||µ(X)||2W̃ T W̃ with ε > 0

(4.57)
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V̇ ≤−Θα|S|γ1+1 −Θβ|S|γ2+1 +
α1

γ1 + 1
(2W ∗γ1+1 − W̃ γ1+1) +

β1
γ2 + 1

(2W ∗γ2+1 − W̃ γ2+1)

− 2− ε

2
D̃T D̃ +

1

2
||χd||2 −

||µ(X)||2

ε
W̃ T W̃ +

α2

γ1 + 1
(2Dγ1+1 − D̃γ1+1)

+
β2

γ2 + 1
(2Dγ2+1 − D̃γ2+1)− kek0eo

T eo − α3|eo|γ1+1 − β3|eo|γ2+1

≤−Θα|S|γ1+1 −Θβ|S|γ2+1 +
α1

γ1 + 1
(2W ∗γ1+1 − W̃ γ1+1) +

β1
γ2 + 1

(2W ∗γ2+1 − W̃ γ2+1)

+
1

2
||χd||2 +

α2

γ1 + 1
(2Dγ1+1 − D̃γ1+1) +

β2
γ2 + 1

(2Dγ2+1 − D̃γ2+1)− α3|eo|γ1+1 − β3|eo|γ2+1

(4.58)

Manipulating the following terms:

1

γ1 + 1
W̃ γ1+1 =

2
γ1+1

2

γ1 + 1

(
1

2
W̃ T W̃

) γ1+1
2

1

γ2 + 1
W̃ γ2+1 =

2
γ2+1

2

γ2 + 1

(
1

2
W̃ T W̃

) γ2+1
2

1

γ1 + 1
D̃γ1+1 =

2
γ1+1

2

γ1 + 1

(
1

2
D̃T D̃

) γ1+1
2

1

γ2 + 1
D̃γ2+1 =

2
γ2+1

2

γ2 + 1

(
1

2
D̃T D̃

) γ2+1
2

|S|γ1+1 =2
γ1+1

2

(
1

2
STS

) γ1+1
2

|S|γ2+1 =2
γ2+1

2

(
1

2
STS

) γ2+1
2

|eo|γ1+1 =2
γ1+1

2

(
1

2
eTo eo

) γ1+1
2

|eo|γ2+1 =2
γ2+1

2

(
1

2
eTo eo

) γ2+1
2

(4.59)

V̇ ≤−

(
Θα2

γ1+1
2

(
1

2
STS

) γ1+1
2

+
α12

γ1+1
2

γ1 + 1

(
1

2
W̃ T W̃

) γ1+1
2

+
α22

γ1+1
2

γ1 + 1

(
1

2
D̃T D̃

) γ1+1
2

+α32
γ1+1

2

(
1

2
eTo eo

) γ1+1
2

)
−

(
Θβ2

γ2+1
2

(
1

2
STS

) γ2+1
2

+
β12

γ2+1
2

γ2 + 1

(
1

2
W̃ T W̃

) γ2+1
2

+
β22

γ2+1
2

γ2 + 1

(
1

2
D̃T D̃

) γ2+1
2

+ β32
γ2+1

2

(
1

2
eTo eo

) γ2+1
2

)
+

(
2α1

γ1 + 1
W ∗γ1+1

+
2β1
γ2 + 1

W ∗γ2+1 +
2α2

γ1 + 1
Dγ1+1 +

2β2
γ2 + 1

Dγ2+1 +
1

2
||χd||2

)
(4.60)

The (4.60) can be written in the form:

V̇ (x) ≤ −ᾱV γ̄1(x)− β̄V γ̄2(x) + η (4.61)
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where:

γ̄1 =
γ1 + 1

2
γ̄2 =

γ2 + 1

2

ᾱ = min
{
Θα2γ̄1 ,

α12
γ̄1

γ1 + 1
,
α22

γ̄1

γ1 + 1
, α32

γ̄1
}

β̄ = min
{
Θβ2γ̄2 ,

β12
γ̄2

γ2 + 1
,
β22

γ̄2

γ2 + 1
, β32

γ̄2
}

η =
2α1

γ1 + 1
W ∗γ1+1 +

2β1
γ2 + 1

W ∗γ2+1 +
2α2

γ1 + 1
Dγ1+1 +

2β2
γ2 + 1

Dγ2+1 +
1

2
||χd||2

In terms ᾱ and β̄ all the terms are positive, except for the term that contains the Θ.

This term, needs further analysis. Thus, for the convenience of the proof, the state space

is divided into different spaces as:

Ω =

Ω1 = { (e1, e2)|Θ ≥ 1}

Ω2 = { (e1, e2)|Θ < 1}
(4.62)

When the system is in the area Ω1, i.e., Θ > 1 and σ ̸= 0, the terms Θα2γ̄1 > 0 and

Θβ2γ̄2 > 0. Hence according to the Lemma 4.1.1, the system will converge to V = 0 or

to a small region ∆1 around V = 0 in fixed time T1:

∆1 =

{
lim
t→T1

V ≤ min

{(
η

(1− ϕ)ᾱ

) 2
γ1+1

,

(
η

(1− ϕ)β̄

) 2
γ2+1

}}
(4.63)

T1 ≤ Tmax =
2

ᾱϕ(γ1 − 1)
+

2

β̄ϕ(1− γ2)
, (4.64)

This also means that sliding surface S will converge to 0 or it will converge in the

neighborhood S = 0 or enter in the region Ω2. If the system states enter the region Ω2 ,

0 < Θ < 1 and σ ̸= 0 from (4.61), it can be demonstrated that S = 0 is still an attractor.

What is remaining to prove is that σ = 0 is not an attractor expect for the origin. It

is clear that on the curve σ = 0, the function Φ = 0, thus the control input τ (4.41)

becomes:

τ = −G(X)−1(F (X) + D̂ + Ŵ Tµ(X) + k1a1diag(|e1|a1−1e2) + αsignγ1(S) + βsignγ2(S))

(4.65)

Taking the time derivative of σ of (4.48), one obtains following equation:

σ̇ =ė2 + k1a1diag(|e1|a1−1)e2

=F (X) +G(X)τ +W ∗Tµ(X) +D + k1a1diag(|e1|a1−1)e2
(4.66)

Substituting (4.65) in (4.66), one obtains:

σ̇ = W̃ Tµ(X) + D̃ − αsignγ1S − βsignγ2S (4.67)
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From (4.67), the terms W̃ Tµ(X) and D̃ converge to region close to zero. Consequently,

if S > 0 then σ̇ < 0, while if S < 0 one has σ̇ > 0. Thus the system states will transgress

the regions Ω2 into Ω1 monotonically in finite time. Then for a given t > 0 there exist a

constant λ(t) > 0 that represents the time required for the system to pass through the

area Ω2. Thus, σ = 0 is not an attractor except for the origin. Hence, the overall time

required for V to converge to ∆1 is: Tr < T1 + λ(t).

Theorem 4.4.2. The tracking error and velocity error converge to the equilibrium e1 = 0

and e2 = 0 or to the neighbourhood of the equilibrium within a fixed-time if S = 0 condition

is satisfied or the S converge to a small region around S = 0 respectively.

Proof. If the sliding surface S = 0 is satisified, Then the eqution 33 cna be written as

follows: (
2a2 − 1

k2a2
signa1e1

) a2
2a2−1

+ e2 + k1sign
a1e1 = 0 (4.68)

By defining the following equations:

k̄1 = k1 k̄2 =(
2a2 − 1

k2a2
)

a2
2a2−1

ā1 = a1 ā1 =(
a1a2

2a2 − 1
)

(4.69)

and noting that ė1 = e2, one has the following equation:

ė1 = −k̄1signā1e1 − k̄2sign
ā2e1 (4.70)

By invoking the Lemma 4.1.2, the error will converge to the equilibrium with in the fixed

time Ts:

Ts ≤
1

k̄1(ā1 − 1)
+

1

k̄2(1− ā2)
(4.71)

On the other hand if the S converges to the neighbourhood of S = 0, From theorem

one analysis, one has :

S =signa1e1 +
k2a2

2a2 − 1
sign2−1/a2(e2 + k1sign

a1e1)

=ϵ, |ϵ| ≤ ∆1

(4.72)

The maximum value of the ϵ is achieved when the signa1e1 and k2a2
2a2−1

sign2−1/a2(e2 +

k1sign
a1e1) have the same sign. The case of the positive sign is considered in this analysis

From Lemma 4.1.4 the following inequality holds :

e2 + k1sign
a1(e1)−

a2 + 1

2a2 − 1
≤ |e2 + k1sign

a1(e1)|2−1/a2

2− 1/a2
(4.73)

Multiplying the by k2 on both sides, the following equation is obtained

k2e2 + k1k2sign
a1(e1)−

k2(a2 + 1)

2a2 − 1
≤ k2a2

2a2 − 1
|e2 + k1sign

a1(e1)|2−1/a2 (4.74)
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substituting the above equation into (4.72), it follows:

signa1(e1) + k2e2 + k1k2sign
a1(e1) = ϵ́+

k2(a2 + 1)

2a2 − 1
(4.75)

where |ϵ́| ≤ |ϵ| ≤ ∆1 the above equation can be written as follows:

e2 +

(
1 + k1k2

k2
−

1
k2
ϵ́+ (a2+1)

2a2+1

signa1(e1)

)
signa1(e1) = 0 (4.76)

Recalling that ė1 = e2, the upper bound of e1 can be analysed using the steady state

analysis as follows: (
1 + k1k2

k2
−

1
k2
ϵ́+ (a2+1)

2a2+1

signa1(e1)

)
signa1(e1) = 0 (4.77)(

1 + k1k2
k2

)
signa1(e1) =

ϵ́

k2
+

a2 + 1

2a2 + 1
(4.78)

solving for signa1(e1), one has:

signa1(e1) =
ϵ́
k2

+ a2+1
2a2+1

1+k1k2
k2

(4.79)

It follows:

|e1|a1 =
|ϵ́|+ k2(a2+1)

2a2+1

1 + k1k2
(4.80)

taking the 1
a1

root on both sides one obtains the upper bound of the tracking error as

follows:

|e1| ≤

(
|ϵ́|+ k2(a2+1)

2a2+1

1 + k1k2

) 1
a1

(4.81)

The upper bound of the velocity error, e2, can be obtained by substituting (4.81) in (4.76)

and solving for e2:

|e2| ≤

(
2
|ϵ́|+ k2(a2+1)

2a2+1

k2

)
(4.82)

Consequently the overall settling time is given by:

T ≤ Tr + Ts ≤ 2

ᾱϕ(γ1 − 1)
+

2

β̄ϕ(1− γ2)
+

1

k̄1(ā1 − 1)
+

1

k̄2(1− ā2)
+ λ(t) (4.83)

This concludes the proof.

4.5 Simulations

Remark 4.5.1. In this thesis, the heading angle ψ is presented within the range [−180◦ 180◦].

In the plots displaying the heading angle, abrupt changes may appear when the angle

crosses the ±180◦ boundary, due to quadrant shifts. These changes are inherent to the

angular representation and should be interpreted as wraparound effects rather than actual

discontinuities in the system’s heading.
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4.5.1 4 DOF Simulations

This section presents the results of trajectory tracking control, demonstrating the

effectiveness of the overall control scheme through various simulations. In these tests, the

4-DOF model of Blucy is tasked with tracking a spatial circular trajectory over 200 seconds

of simulation. This trajectory is defined in the inertial reference frame and consists of

three distinct phases: descent, waiting, and 2D circular motion. The trajectory can be

described as follows:

• Phase 1: Descent (0 s ≤ t ≤ 10 s) — The vehicle performs a vertical descent

from the surface to a predefined depth of 5 meters.

• Phase 2: Stationary Waiting (10 s < t ≤ 15 s) — Blucy maintains its position

at the depth of 5 meters. During this phase, all control inputs are held steady.

• Phase 3: 2D Circular Motion (15 s < t ≤ 200 s) — The vehicle follows a circular

path at a constant depth of 5 meters. Given that Blucy is underactuated, based on

the principle of the guidance system (Section 4.3), only the forward motion and yaw

angle are actively controlled, with the vehicle’s orientation aligned with the tangent

of the circular path.

The desired trajectory in each phase is mathematically expressed as follows:



Phase 1: Descent, 0s ≤ t ≤ 10s

xd(t) = 20

yd(t) = 0

zd(t) = − 5t
10

ψd(t) =
π
2

(4.84)



Phase 2: Waiting, 10s < t ≤ 15s

xd(t) = 20

yd(t) = 0

zd(t) = −5

ψd(t) =
π
2

(4.85)
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

Phase 3: 2D Circular Motion, 15s < t ≤ 200s

xd(t) = R · cos
(
2π
T
(t− t2)

)
yd(t) = R · sin

(
2π
T
(t− t2)

)
zd(t) = −5

ψd(t) = tan−1

(
sin( 2π

T
(t−t2))

cos( 2π
T

(t−t2))

)
(4.86)

where R = 20 m is the radius of the circular path, T = 160 s is the time required to

complete a circumference and t2 = 15 s represent the time of the descent and waiting

phase. During the simulations, the initial conditions for the 4-DOF model of Blucy are

set as follows: x(0) = 20, y(0) = z(0) = u(0) = v(0) = w(0) = r(0) = 0, and ψ(0) = π
2
. It

should be noted that although the system is considered in 4 degrees of freedom (DOF),

the figures that follow include plots for p, q, ϕ, and θ for the sake of completeness. Since

these states are not considered in the 4-DOF system, their values remain zero throughout

the entire simulations The guidance and controller parameters used, are shown in the

Table 4.1.

Guidance Guidance Parameter

LOS - Look Ahead Distance Λmin = 0.1 Λmax = 1

kΛ = 0.2

Control Method Control Parameter

FTSMC k1 = 1 k2 = 0.0008

a1 = 1.005 a2 = 1.08

α = diag{0.001, 2, 1.5} γ1 = 1.5

β = diag{1, 0.5, 0.7} γ2 = 0.5

k0 = diag{2, 4, 4}
α3 = diag{0.4, 0.4, 0.4} β3 = diag{1.2, 1.2, 1.2}

FTSMNNDO ke = diag{15, 15, 15}
α2 = diag{0.4, 0.4, 0.4} × 10−3 β2 = diag{0.2, 0.2, 0.2} × 10−3

n = 20 C ∈ [0, 1]

σ ∈ [1, 2] Γ = diag{15, 20, 25}
α1 = diag{0.5, 0.5, 0.5} β1 = diag{1.5, 1.5, 1.5}

Table 4.1: Control Parameters used in the simulations for FTSMC and FTSMNNDO

In addition, to enhance the realism of the simulation and accurately reflect the limita-

tions of Blucy’s propulsive system (as detailed in Section 3.3), the control inputs for surge

(τu), heave (τw), and yaw (τr) are subjected to saturation limits based on the vehicle’s
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physical capabilities:

τi = sat(τi) =


τimax, τi ≥ τimax

τi, τimin < τi < τimax

τimin, τi ≤ τimin

(i = u,w, r) (4.87)

Specifically, the control forces are capped at ±80 N in surge, ±70 N in heave, and the

yaw moment is limited to ±40 Nm. Without loss of generality, the control input plots are

presented in dimensionless percentages, scaled to ±100%, to facilitate comparison with

the system’s maximum capabilities.

Simulations considers different working conditions to proof the effectiveness of the

designed control scheme: (a) Test 1 will demonstrate the effectiveness of the trajectory

tracking control and discuss the fixed time stability as well as the chattering mitigation;

(b) Test 2 introduces external disturbances as defined in Assumption 4.2.3 and evaluates

the performance of the control scheme. A comparison is made between the Fixed Time

Sliding Mode Controller (FTSMC) and the proposed Fixed Time Sliding Mode Neural

Network Disturbance Observer (FTSMNNDO) in terms of Integrated Absolute Error

(IAE), Integrated Square Error (ISE), and Integrated Time Absolute Error (ITAE). (c)

Test 3 compares FTSMNNDO and FTSMC in presence of external disturbances, model

uncertainties and simultaneous actuator faults, demonstrating the super performances

in handling difficult operational scenario due to the estimation of Neural Networks and

Disturbance observer.

4.5.1.1 Test 1: Undisturbed System

This test demonstrates the effectiveness of the proposed control scheme in the absence

of uncertainties and external disturbances. The figures associated with this scenario are

presented in Figures 4.2 -4.7.

The Figure 4.2 represents the state variable, demonstrating the effectiveness of the

proposed control system in the stabilization of all variables. In particular, the figures

show that after an initial transient response in certain controlled variables (such as u, w,

and r), the system quickly damps oscillations and brings the system to a stable state.

The flat lines in several angular plots (p, q, ϕ, θ) are justified because 4 DOF system is

considered.

Moving on the Figure 4.3, a comparison is made between the simulated trajectory

(blue line) and the desired trajectory (red dashed line). The trajectory tracking appears

highly accurate, suggesting that the control system is performing well, especially after the

initial settling period in altitude as can be seen in Figure 4.4. The largest error appears

in ze due to the different initial condition z(0) compared to the desired zd. However, once
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Figure 4.2: State Variables Test 1

Figure 4.3: Trajectory Test 1

the desired ze is reached, the error reduces to 0. The maximum error in the x and y

direction is approximately bounded at 10−1m, while the maximum error magnitude ψe

remains within 10−2deg.

Figure 4.5 represents the sliding variables, the control system successfully drives the

sliding variable in the neighbourhood of zero within a fixed-time window regardless of

the initial conditions or system states. This fixed-time convergence can particularly be

studied in the Sw plot. Given that the desired z trajectory is treated as a step input, the

sharp transition in the sliding surface at the start of the response is clearly visible. By
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Figure 4.4: Position and Attitude Tracking Error: Test 1
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Figure 4.5: Sliding Surfaces Test 1

using the (4.64) and control parameters (Table 4.1), Tmax = 20.38 s and from the figure

it is the clear the reach time is less than the Tmax, as predicted.

Figure 4.6 illustrates the performance of a state estimator and its corresponding error

dynamics. The left side shows the estimated states (û, ŵ, r̂) compared to the true states,

while the right side shows the estimation errors (eou, eow, eor). During the transient phase

an overshoot can be observed, this due to the fact that the state observer takes estimations

of the neural network and disturbance observer into account (4.44). These elements
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Figure 4.6: State Observer Estimations and Corresponding Estimation Errors: Test 1

Figure 4.7: Neural Network and Disturbance Observer Estimations (∆̂ + D̂) of Uncer-

tainties and Disturbances

require a brief training period to accurately estimate the uncertainties and disturbances

within the system. As a result, the initial discrepancy between the estimated values and

the actual values leads to a temporary overshoot, as shown in Figure 4.7, which presents

the sum estimations of the NN and DO, expressed as ∆̂ + D̂. It has to be noticed that

DO incorporate estimation derived from NN (4.49), while the prediction errors capture

discrepancies in disturbance estimation. There is a continuous exchange of information
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Figure 4.8: Control inputs of Test 1: τu, τw and τr

between the DO and NN, indicating that they collaboratively share the task of estimation,

hence the summation of the estimations is presented in the figure. Once the NN and

DO sufficiently train and converge to accurate estimates, the overshoot diminishes, and

the system stabilizes since the disturbance and uncertainties are not considered in this

scenario.

Figure 4.8 represents the control action of the control law. The control signal oscillates

between the boundaries of the control authority (represented in percentage: ±100%). The

high-frequency oscillations observed in the figure are a classic indication of chattering in

sliding mode control [82]. This is also reflected in the sliding variables and states in Figures

4.5 and 4.2. Chattering occurs due to the discontinuous nature of the sign function in the

control law and the sliding variable, which switches the control input at high frequencies

to maintain the system on the sliding surface. This leads to problems like excessive wear

on actuators, energy inefficiency, heat generation, and induced vibrations.

To mitigate chattering, various methods such as boundary layer approximation (soft

switching)[83], higher-order sliding modes [84], or adaptive control [85] can be employed .

These techniques are effective in reducing the high-frequency oscillations associated with

sliding mode control while preserving its inherent robustness. In this work, a boundary

layer approximation is adopted [83], where the discontinuous sign(x) function is replaced

with the smooth tanh
(
x
ϵ

)
function. As the value of ϵ approaches zero, the hyperbolic tan-

gent function behaves increasingly like the sign function, allowing for a balance between

chattering reduction and control precision.

The simulation results after replacing the sign function with tanh
(
x
ϵ

)
, using ϵ =

0.0001, are shown in Figures 4.9 and 4.10. Compared to the previous results in Figures
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Figure 4.9: Control inputs without chattering: τu, τw and τr
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Figure 4.10: Sliding Surfaces without chattering

4.8 and 4.5, where high-frequency oscillations due to chattering were evident, the control

inputs are now considerably smoother. While the initial transients remain visible, they

stabilize quickly, and the aggressive switching and oscillations dissipate after approxi-

mately 20 seconds. The sliding surfaces exhibit a marked improvement, with minimal

oscillations compared to the noisy behavior observed earlier. The use of the tanh func-

tion effectively suppresses chattering while maintaining the control system’s stability and

overall performance.
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4.5.1.2 Test 2: External Disturbances

In Test 2, the simulation setup is specifically designed to analyse the effects of time-

varying external disturbances on Blucy’s dynamics. Underwater vehicles are subject to

various external influences that can significantly impact their motion and stability. These

disturbances primarily include ocean currents, environmental disturbances such as sur-

face waves and turbulence, and the effects of tether cables in ROVs. To model these

disturbances, a combination of sinusoidal wave functions and bias is used, representing

both periodic and transient influences on the system. The mathematical representation

of the external disturbances acting on the vehicle’s surge, sway, heave, and yaw directions

is given by:

du(t) = −0.03 sin
(
0.06t

)
dv(t) = 0.09 sin

(
0.05t+

π

6

)
+ 0.01

dw(t) = 0.1 sin
(
0.2t+

π

4

)
+ 0.08

dr(t) = −0.06 sin
(
0.5t

)
(4.88)

The results of this test are depicted in Figures 4.11 - 4.18, illustrating the underwater

vehicle’s response under the influence of these disturbances. To quantitatively evaluate

the performance of the proposed control strategies, a comparison is made between the

Fixed-Time Sliding Mode Controller (FTSMC) and the proposed Fixed-Time Sliding

Mode Control augmented with Neural Networks (NN) and Disturbance Observer (DO)

techniques, indicated in the plots as FTSMNNDO.

For this analysis, the overall tracking error is defined as:

ρe =
√
x2e + y2e + z2e (4.89)

This error metric provides a consolidated measure of the vehicle’s deviation from its

desired trajectory, allowing the evaluation of control precision.

To further evaluate the controller’s performance, standard performance indices are

utilised, including the Integrated Absolute Error (IAE), Integrated Square Error (ISE),

and Integrated Time Absolute Error (ITAE), calculated as follows:

IAE =

∫ ∞

0

|ρe(t)| dt (4.90)

ISE =

∫ ∞

0

ρe(t)
2 dt (4.91)

ITAE =

∫ ∞

0

t · |ρe(t)| dt (4.92)

Figure 4.11 compares the behaviour of FTSMC against FTSMNNDO under the influ-

ence of disturbances. The state variables show that while both controllers stabilize the
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Figure 4.11: State Variables Test 2: FTSMNNDO vs FTCSMC
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Figure 4.12: Ψ for FTSMNNDO vs FTSMC: Test 2

system, the FTSMNNDO demonstrates improved disturbance rejection, particularly in

the heave velocity (w), yaw rate (r) and lateral velocity (v), where oscillations are more

effectively minimized. Overall, the controller with DO and NN provides smoother system

behaviour as can be seen from Figures 4.13, 4.14, and 4.15. Indeed, from Figure 4.13 it has

to be noticed that FTSMC is not able to maintain constant depth throughout the motion.

Moreover, from Figure 4.14 and considering xe and ye in Figure 4.15, FTSMNNDO is able

to converge to the desired trajectory faster than FTSMC. The error ψe in Figure 4.15 is

primarily caused by the time-varying disturbance dv(t), to which the yaw dynamics react.
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Figure 4.13: Trajectory 3D: Test 2
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Figure 4.14: Trajectory 2D: Test 2

This disturbance, with both a sinusoidal and constant component, continuously affects

the system, making it challenging for the controllers to fully reject its influence on the

state variables. While both FTSMC and FTSMNDO attempt to track the desired yaw

reference (ψd), some error remains due to their limitations in disturbance rejection as can

be seen in τr in Figure 4.16. The FTSMNDO controller shows better performance with

smaller oscillations and faster recovery, while the FTSMC controller exhibits larger track-

ing errors and slower response, especially when the disturbance becomes more pronounced

in the time interval [30− 48] s of the simulation (See also Figure 4.12).
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Figure 4.15: Position and Attitude Tracking Error: Test 2

Figure 4.16: Control inputs Test 2: τu, τw and τr

This observation is further substantiated by the quantitative comparison provided in

Table 4.2. The results indicate that FTSMNNDO exhibits superior performance across

all evaluation metrics. Specifically, FTSMNNDO achieves an ISE that is approximately

9.6% lower than FTSMC, demonstrating a more effective overall error reduction. Simi-

larly, the IAE shows a 7.3% improvement, while the ITAE exhibits the most significant

enhancement, being 11.8% lower, reflecting a more efficient time-weighted error reduction.

These quantitative findings reinforce the visual observations from Figure 4.13, demon-
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Figure 4.17: State Observer Estimations and Corresponding Estimation Errors: Test 2

Figure 4.18: (∆̂ + D̂) of Uncertainties and Disturbances: Test 2

strating that FTSMNNDO achieves improved disturbance rejection and smoother control

performance. Notably, the enhancement is particularly evident in its ability to reduce

the long-term and oscillatory effects of disturbances on the system. While the standard

FTSMC alone is inherently robust against disturbances due to the sliding mode control

technique, the addition of Neural Networks and Disturbance Observer in FTSMNNDO

significantly enhances its overall performance, achieving more precise and stable control.

The Figure 4.17 illustrates the superior performance of the FTSMNNDO state estimation
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Term ISE IAE ITAE

FTSMC 1158 289 12640

FTSMNNDO 1047 268 11146

Table 4.2: Quantitative comparison in Test 2

in comparison to the FTSMC. The FTSMNNDO leverages DO and NN whose estimates

are depicted in Figure 4.18, achieves much more accurate estimations and significantly

reduces errors across all state variables. In particular, it exhibits minimal oscillations and

maintains low error levels over time, as seen in eou, eow and eor that remain small and

steady, indicating effective estimation of state and robust disturbance rejection. Con-

versely, FTSMC, lacking the DO and NN, shows larger and persistent oscillations in the

errors, highlighting its reduced capability in handling external disturbances.
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4.5.1.3 Test 3: External Disturbances, Model Uncertainties and Actuator

faults

The simulations in this scenario are designed to compare the performance of the pro-

posed FTSMNNDO controller against the FTSMC under the influence of external distur-

bances (4.88), model uncertainties and concurrent actuator faults. These uncertainties are

introduced to asses their impact on the 4 DOF system’s dynamics (4.14) and to evaluate

the controller’s ability to compensate for them effectively.

Model uncertainties, in particular, arise due to discrepancies between the nominal

model and the actual vehicle, which may result from factors such as inaccurate parameter

estimation, unmodeled dynamics, or payload variations during real-world missions. Ad-

ditionally, actuator faults are modeled as concurrent thrust losses relative to the nominal

thrust available from the vehicle’s propulsion system. This reflects a realistic scenario

where the actuators may not deliver the full expected thrust, introducing further chal-

lenges for maintaining system performance.

Considering the system in (4.31) to analytically express the effects of these uncertain-

ties and actuator faults, perturbations are introduced, δf(X) and δg(X), into the mass,

inertia, hydrodynamic coefficients. Specifically, these uncertainties are modeled as devia-

tions in the parameters, reflecting differences between the nominal and actual behavior of

the vehicle. The following expressions represent the perturbed dynamics of the system:

m11Actual = (m+ δm)− (Xu̇ + δXu̇)

m22Actual = (m+ δm)− (Yv̇ + δYv̇)

m33Actual = (m+ δm)− (Zẇ + δZẇ)

m66Actual = (Iz + δIz)− (Nṙ + δNṙ)

d11Actual = (Xu + δXu) + (Xu|u| + δXu|u|)|u|

d22Actual = (Yv + δYv) + (Yv|v| + δYv|v|)|v|

d33Actual = (Zw + δZw) + (Zw|w| + δZw|w|)|w|

d66Actual = (Nr + δNr) + (Nr|r| + δNr|r|)|r|

τuActual = τu + fu

τwActual = τw + fw

τrActual = τr + fr

(4.93)

with

• δm: uncertainty in vehicle mass.

• δXu̇, δYv̇, δZẇ, δNṙ: uncertainties in added mass coefficients.
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• δIz: uncertainty in yaw inertia.

• δXu, δYv, δZw, δNr: uncertainties in linear hydrodynamic damping coefficients.

• δXu|u|, δYv|v|, δZw|w|, δNr|r|: uncertainties in quadratic hydrodynamic damping coef-

ficients.

• fu, fw, fr: represents faults on actuator system.

In this case, all uncertainties, represented by the δ terms, are modeled as a percentage of

their nominal values. Specifically, each uncertainty is proportional to the original param-

eter, meaning that δm = %m, δXu̇ = %Xu̇, and similarly for the other dynamic terms.

Furthermore, actuator faults are incorporated into the simulation using a multiplicative

fault model, as outlined in [86]. These faults directly impact the system’s inputs by

reducing the available thrust or torque, and are defined as:

fu = −luτu
fw = −lwτw
fr = −lrτr

(4.94)

where 0 ≤ lu, lw, lr ≤ 1. In this context, lu, lw, and lr represent the fault levels in the

surge, heave, and yaw control inputs, respectively. A value of l = 0 signifies no fault,

where the control input is fully available, while l = 1 indicates a total failure, meaning

the actuator provides no control effort.

By substituting both the modeled uncertainties and actuator faults from (4.93) and

(4.94) into the 4-DOF dynamic model (4.14), the complete system dynamics under the

influence of these uncertainties and faults becomes:

u̇ =
1

m11

(m22vr − d11u+ τu + du) + δu+
fu
m11

v̇ =
1

m22

(−m11ur − d22v + dv) + δv

ẇ =
1

m33

(−d33w + τw + dw) + δw +
fw
m33

ṙ =
1

m66

((m11 −m22)uv − d66r + τr + dr) + δr +
fr
m33

(4.95)

where:

δu =
1

m11

(
(−δm+ δXu̇)u̇+ (δm− δYv̇)vr − (δXu + δXu|u||u|)u

)
δv =

1

m22

(
(−δm+ δYv̇)v̇ − (δm− δXu̇)ur − (δYv + δYv|v||v|)v

)
δw =

1

m33

(
(−δm+ δZẇ)ẇ − (δZw + δZw|w||w|)w + fw

)
δr =

1

m66

(
(−δIz + δNṙ)ṙ + (−δXu̇ + δYv̇)uv − (δNr + δNr|r||r|)r

)
(4.96)
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(a) State Variables
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(b) Ψ for FTSMNNDO vs FTSMC

Figure 4.19: Comparison of FTSMNNDO and FTCSMC State Variables with 20% of

uncertainties and 15% of thrust losses.

Remark 4.5.2. Recalling that ∆(X) = Ṙ(ψ)X +R(ψ)(δf(X) + δg(X)τ) and

R(ψ) = diag(cos(ψ + β − γp), 1, 1), using the guidance law defined in section 4.3, it can

be shown that:

cos(ψ + β − γp) ≈ 1

It follows that R(ψ) ≈ I, where I is the identity matrix and Ṙ(ψ) ≈ 0. Consequently, one

has:

∆(X) ≈ δf(X) + δg(X)τ
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(a) 3D Trajectory
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(b) 2D trajectory

Figure 4.20: Comparison of FTSMNNDO and FTCSMC Trajectories with 20% of uncer-

tainties and 15% of thrust losses.

The simulation result presented in Figure 4.19 - 4.23 along with Table 4.3, demon-

strate the clear superiority of the FTSMNDO controller over the FTSMC in the presence

of external disturbances (4.88), 20% model uncertainties, and 15% of efficiency losses in

all actuators. In Figure 4.19, the states variables illustrate how the FTSMNNDO con-

troller is able to quickly dampen oscillations in the variable w, v and r, leading to a faster

stabilization compared to the FTSMC. This faster response is also visible in the trajectory

(Figure 4.20), where the FTSMNNDO drives the vehicle to converge to the desired trajec-
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Figure 4.21: FTSMNNDO and FTSMC Position and Attitude Tracking Error with 20%

of uncertainties and 15% of thrust losses

tory with minimal tracking error. The FTSMC, on the other hand, experiences significant

oscillations, particularly in the z axis. This behaviour is confirmed also in the tracking

error Figure 4.21. Importantly, the reduced control effort required by FTSMNNDO, as

shown in Figure 4.22, highlights its efficiency in handling uncertainties and faults, while

using less energy compared to FTSMC.

This simulation scenario proves the crucial importance of incorporating NN and DO

within the control architecture, indeed in Figures 4.23a it can be seen that the state esti-

mation error remain close to zero for the FTSMNNDO, thanks to the real time adaptation

provided by the NN and DO. Figure 4.23b further emphasizes the importance of these

estimation mechanism, where the NN+DO, (∆̂ + D̂), accurately tracks the disturbances

as well as uncertainty and faults affecting the system.

In test 3, FTSMNNDO clearly demonstrates its potential, with performance differ-

ences between FTSMNNDO and FTSMC becoming more pronounced in the challenging

environment (Table 4.3). FTSMNNDO achieves an ISE that is 26.3% lower, an IAE

17.1% lower, and an ITAE 17.9% lower than FTSMC, highlighting its superior ability

to handle uncertainties and multiple actuator faults. In Test 2, with only disturbances

present, FTSMNNDO still outperformed FTSMC but by smaller margins, emphasizing

its advantages in complex scenarios.

To further validate the robustness of the proposed FTSMNNDO controller, additional

simulations are conducted with an increasing magnitude of actuator faults. From the

Table 4.4 it is evident that FTSMNNDO controller can handle up to 20% fault magni-
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Figure 4.22: FTSMNNDO and FTCSMC Control inputs with 20% of uncertainties and

15% of thrust losses: τu, τw and τr

Term ISE IAE ITAE

FTSMC 1057 257 10026

FTSMNNDO 779 213 8230

Table 4.3: Quantitative comparison in Test 3 in presence of 20% Uncertainties and 15%

multiple fault on thrusters.

tude without failure, maintaining performance and stability, as resflected by the relatively

consistent values of ISE, IAE and ITAE. Even as the fault magnitude increases, FTSMN-

NDO demonstrates its resilience, with error values gradually increasing but without dras-

tic degradation. In contrast, the FTSMC controller fails at 17.2% fault magnitude, as

seen by the dramatic surge in ISE, IAE, and ITAE, indicating its inability to maintain

stability beyond this point.

This ability of FTSMNNDO to handle up to 20% simultaneous actuator faults with-

out failure, underscoring its superior active fault-tolerant capability, is largely thanks to

the estimations provided by the NN and DO. These estimators, effectively adapt to the

uncertainties and disturbances introduces by the faults, allowing the control system to

compensat for the lost actuator efficiency. This allows FTSMNNDO to maintain stability

and minimize error, even in the face of severe actuator faults. In contrast, FTSMC lacks

this adaptive estimation mechanism, making it far more vulnerable to higher levels of

faults.
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(a) FTSMNNDO and FTSMC State Observer Estimations and Estimation Errors

(b) ∆̂ + D̂ of FTSMNNDO

Figure 4.23: State observer and ∆̂ + D̂ in presence of 20% of uncertainties and 15% of

thrust losses

4.5.2 6 DOF Simulations

This section presents the result of trajectory tracking control, comparing the perfor-

mances of the proposed FTSMNNDO control scheme with the FTSMC, using the complete

6-DOF benchamrk of Blucy. The comparison evaluates each controller’s ability to han-

dle the nonlinearities and coupling effect in a more comprehensive and realistic dynamic

setting. However, unlike the simplified model, the 6-DOF model includes additional dy-
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Fault FTSMC FTSMNNDO

Magnitude % IAE ISE ITAE Failure IAE ISE ITAE Failure

16 1049.37 254.51 9898 No 772.31 211.99 8166.52 No

16.5 1052.73 255.12 9943.05 No 769.2 211.34 8138.55 No

17 1066.64 258.99 10170.3 No 766.38 210.72 8109 No

17.2 79298.94 3263.13 433863.99 Yes 765.32 210.45 8093.43 No

17.5 233849.98 5475.44 742291.7 Yes 763.72 209.96 8060 No

18 268514.04 5940.27 8070065 Yes 761 208.81 7969.77 No

18.5 294519 6211 846164 Yes 758.51 207.55 7862.77 No

19 305173 6327 862990 Yes 756.71 208.09 7949 No

19.5 314647 6425 877649 Yes 758.64 212.98 8513 No

20 322476 6504 889609 Yes 772.61 221.48 9468.39 No

21 323108 6512 891829 Yes 42429 1824 281030 Yes

Table 4.4: Comparison of IAE, ISE, and ITAE for FTSMC and FTSMNNDO under

different fault conditions

namics associated with roll (ϕ), pitch (θ), and lateral sway (v), leading to significant

nonlinear coupling between the different degrees of freedom.

In this 6-DOF benchmark model, Blucy’s motion is represented across six degrees

of freedom, where the inclusion of roll (ϕ) and pitch (θ) significantly impacts system

dynamics. This configuration introduces nonlinear coupling, particularly between lat-

eral and vertical dynamics, as well as buoyancy-related forces, resulting in more complex

interactions during the trajectory tracking task.that further influence stability and ma-

neuverability. For example, the vehicle’s forward motion (u), sway (v), and yaw (r) are

now coupled with the pitch (θ) and roll (ϕ) motions, leading to oscillatory behaviors that

were not present in the 4-DOF model.

In the following tests, two different trajectories will be considered: circular trajectory

for test 1 and test 2; multibeam (MBES) survey trajectory in test 3. The circular spatial

trajectory from the 4-DOF simulations is adapted for the 6-DOF model. Unlike the

4-DOF trajectory, which included a waiting phase, the trajectory here is structured as

a continuous descent followed by simultaneous circular motion and depth maintenance,

totaling 400 seconds of simulation time. The trajectory is divided into two phases:

• Phase 1: Descent and Circular Initiation (0 s ≤ t ≤ 10 s) — During this

phase, the depth zd(t) changes linearly from 0 to 5 meters, while xd(t) and yd(t)

follow a circular path based on the radius R and period T .

• Phase 2: Continuous 2D Circular Motion (10 s < t ≤ 400 s) — After reaching

the target depth, Blucy continues to follow a circular trajectory at a constant depth
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of 5 meters, completing one full circumference over 380 seconds.



xd(t) = R cos
(
2π
T
t
)

yd(t) = R sin
(
2π
T
t
)

zd(t) =

−5
10
t if 0 ≤ t ≤ t2 = 10 s

−5 if t > t2 = 10 s

ψd(t) = tan−1

(
sin( 2π

T
(t−t2))

cos( 2π
T

(t−t2))

)
(4.97)

The desired trajectory follows these mathematical expressions, where the radius R =

20m, the completion time for a full circumference T = 380 s, and t2 = 10 s to account for

the descent duration.

The MBES survey trajectory used in Test 3 replicates the survey pattern typically

followed during multibeam echosounder (MBES) operations. The trajectory consists of

parallel transects connected by smooth semicircular turns at each end, as shown in Figure

4.24. This pattern ensures uniform data coverage and controlled overlaps between adjacent

transects, mimicking real-world operation, and optimizing data reliability. The trajectory

generation process begins with the definition of a set of waypoints that represent the

desired positions of the vehicle in the horizontal plane. These waypoints are arranged

to create a series of parallel transects, each 50 meters in length, positioned at a distance

of 20 meters from each other. This configuration is designed to account for the MBES

swath width, ensuring controlled overlaps between adjacent transects to improve data

resolution and avoid coverage gaps. Smooth transitions between transects are achieved

by introducing semicircular arcs at the turning points, ensuring continuous and smooth

motion along the survey path. The trajectory is generated by interpolating between these

waypoints to create a piecewise continuous path. Along the linear transect segments, the

vehicle position changes linearly between the waypoints, maintaining a constant forward

speed of u = 5m/s. At the ends of each transect, the vehicle performs smooth semicircular

turns, mathematically defined, to transition to the next transect. During these turns, the

vehicle’s heading angle ψd(t) is dynamically adjusted to follow the curvature of the arc.

Throughout the trajectory, Blucy maintains a constant depth of zd = 5m, providing stable

conditions for the MBES data acquisition. The total simulation time for this trajectory

is 800 seconds, allowing sufficient duration to evaluate the vehicle control performance

during an extended survey mission.

The initial conditions and control parameters for the 6-DOF simulations are set as

in the 4-DOF model, with p(0) = q(0) = ϕ(0) = θ(0) = 0, to account for the lateral

dynamics neglected in the 4 DOF model.

To further increase the realism of the simulation, a current model has been integrated
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Figure 4.24: MBES Survey Trajectory

into the 6-DOF simulations instead of using a generic disturbance model. The Ocean

current is modeled as a 2D constant irrotational flow with constant velocity components

in the North-East-Down (NED) reference frame [10]. The current introduces additional

forces and moments acting on Blucy, affecting its dynamics. The current model is defined

by a velocity vector in the Flow reference frame then it is transformed to obtain in the

NED frame as follows:

V n
c = Rn

f


Vc

0

0

 (4.98)

where Rn
f is the rotation matrix from flow reference frame to inertial reference frame

defined as follows:

Rn
f =


cos(β) sin(β) 0

−sin(β) cos(β) 0

0 0 1

 (4.99)

which then can be transformed to body reference using Euler angle rotation matrix as

follows:

V b
c = Rn

b
T


uccos(β)

vcsin(β)

0

 (4.100)

Now the current induces hydrodynamic forces and moments on Blucy, which can be

expressed as functions of the relative velocity between the current and the vehicle’s velocity

in the body-fixed frame can be calculated using (2.35). Based on real measurements of

the Adriatic Sea, a current speed of 0.2 ,m/s is implemented in the simulations, with the
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current direction defined by the angle β. For Test 1 and Test 3, a current angle of β = 90◦

is used, while β = 0◦ is implemented in Test 3. The chosen current speed of 0.2 ,m/s lies

within the observed range of 0.08 to 0.20m/s, reflecting typical current speeds reported

in the high and central Adriatic regions. This range, supported by high-frequency radar

and drifter studies, captures the variability induced by local winds, seasonal influences,

and thermohaline structures specific to the Adriatic Sea [87, 88, 89].

4.5.2.1 Test 1: Unmodeled Dynamics and Ocean Current

This test evaluates the performance of both control systems, the FTSMNNDO and

FTSMC, under conditions of nonlinear coupling and ocean current uncertainty. Unlike

the 4-DOF simulations, where explicit uncertainty and disturbance signals are introduced

to facilitate comparisons with estimation methods, the 6-DOF model does not incorporate

predefined uncertainty or disturbance signals for direct comparison. Instead, the system’s

inherent non linearity, particularly the coupling between different degrees of freedom

and the influence of ocean currents, naturally introduce uncertainties into the dynamics.

Consequently, it is challenging to directly compare the estimations made by the Neural

Network (NN) and Disturbance Observer (DO) with specific disturbance signals, as was

possible in the 4 DOF case.

However, the aim here is to evaluate how the estimation of these complex, unmodeled

dynamics by the NN and the compensation for external forces by the DO can improve the

control system’s overall performance. The result are presented in Figures 4.25 - 4.29. In

Figure 4.25, in terms of linear velocities (u, v, w), both controllers demonstrate similar re-

sponses, but the FTSMNNDO controller achieves slightly smoother transitions with fewer

oscillations, particularly in the u and v. The FTSMNNDO’s impact is most noticeable in

the angular rates (p, q, r), where it significantly dampens oscillations faster than FTSMC.

This quicker damping effect allows the FTSMNNDO to stabilize the vehicle’s orientation

more efficiently, as evident in the reduced oscillations in the attitude angles (ϕ, θ, ψ).

This suggests that the disturbance observer and neural network (NN) improve stability

by compensating for nonlinear effects and currents. In contrast, FTSMC struggles to

handle the nonlinear coupling, leading to persistent oscillations in the angular velocities

and yaw rate.

Both controllers closely follow the desired trajectory, as shown in the 3D and 2D tra-

jectory plots (Figure 4.26). However, a comparison of the position and attitude tracking

errors (Figure 4.27 reveals that FTSMNNDO consistently achieves smaller errors across all

axes, especially in yaw tracking. This deviation indicates that the FTSMC has difficulty

maintaining accurate tracking under the same conditions, committing an error around

20◦. Additionally, the thruster input plots (Figure 4.28) show that FTSMNNDO main-
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Figure 4.25: 6 DOF State Variables of FTSMNNDO and FTCSMC with Unmodeled

Uncertainty and Ocean Current.

tains smoother control actions. As expected, the results in Figure 4.29 align with findings

from the 4-DOF test, where FTSMNNDO achieved lower estimation errors, benefiting

from neural network and disturbance observer estimations. Table 4.5 further highlights

FTSMNNDO’s advantages in the 6-DOF model, showing an 18.03% reduction in ISE, a

7.14% reduction in IAE, and a 38.38% reduction in ITAE compared to FTSMC. These

improvements are more pronounced than in the 4 DOF case, given the influence of un-
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(a) 3D Trajectory
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Figure 4.26: 6 DOF Trajectories of FTSMNNDO and FTCSMC with unmodeled Uncer-

tainty and Ocean Current.

modeled dynamics and ocean currents in the 6 DOF environment. This comprehensive

comparison confirms FTSMNNDO’s robustness and accuracy, particularly in challenging

conditions with complex dynamics.

4.5.2.2 Test 2: Unmodeled Dynamics, Ocean Current and Actuator faults

As in Section 4.5.1.3, both controllers are tested under unmodeled uncertainty, ocean

currents, and actuator faults. In this scenario, a multiplicative incipient fault is intro-
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Figure 4.27: 6 DOF Position and Attitude Tracking Error of FTSMNNDO and FTSMC

with unmodeled Uncertainty and Ocean Current.
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Figure 4.28: 6 DOF Thrusters inputs of FTSMNNDO and FTCSMC with Unmodeled

Uncertainty and Ocean Current.

duced in M5 thruster (lateral bow) at t = 150 s, modeled as fM5 = −lM5τM5. This fault

progressively reduces the effective thrust of M5, and the fault level lM5 will be incre-

mentally increased to determine each controller’s ability to track the desired trajectory.

The goal is to determine the maximum fault level at which each control scheme can

maintain stability and tracking accuracy, under the combined influence of ocean currents,
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Figure 4.29: 6 DOF State observer and ∆̂+ D̂ in presence of Unmodeled Uncertainty and

Ocean Current.

unmodeled dynamics, actuator faults, and the specified trajectory. Simulation results are

presented for an initial fault magnitude of lM5 = 0.2, shown in Figures 4.30 - 4.34. As ob-

served in the state variables and tracking error plots(Figures 4.30 and 4.32), the FTSMC

controller fails to maintain accurate trajectory tracking after the fault, with oscillations

emerging in response to the disturbance. This degradation leads to notable deviations

in ϕ and ψ angles, disrupting the overall stability and precision of trajectory tracking.
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Term ISE IAE ITAE

FTSMC 122 182 43900

FTSMNNDO 100 169 27061

Table 4.5: Quantitative comparison in 6 DOF in the presence of Unmodeled Uncertainty

and Ocean Current.
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Figure 4.30: 6 DOF State Variables of FTSMNNDO and FTCSMC with lM5 = 0.2.
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(a) 3D Trajectory
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Figure 4.31: 6 DOF Trajectories of FTSMNNDO and FTCSMC with lM5 = 0.2.

In contrast, FTSMNNDO remains unaffected by the fault, showing stable and bounded

behavior across all state variables, particularly in ϕ where it closely resembles nominal

performance. As shown in Figure 4.34, the estimation errors remain minimal, and the NN

and DO estimates accurately track the disturbances and uncertainties introduced by the

fault. Furthermore, FTSMNNDO maintains precise trajectory tracking, as seen in Figure

4.31, exhibiting smooth control inputs (Figure4.33) and minimal tracking errors. Overall,

FTSMNNDO’s performance highlights its passive fault-tolerant capability and robust-

ness, as it achieves reliable trajectory tracking and stability throughout the simulation
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Figure 4.32: 6 DOF Position and Attitude Tracking Error of FTSMNNDO and FTSMC

with lM5 = 0.2.
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Figure 4.33: 6 DOF Thrusters inputs of FTSMNNDO and FTCSMC with lM5 = 0.2.

despite the occurrence of a fault.

The performance robustness of FTSMNNDO is further demonstrated by comparing

the IAE, ISE, and ITAE across simulations with increasing fault magnitudes in the M5

thruster. Table 4.6 presents a comprehensive view of these indices across different fault

levels, demonstrating that the FTSMNNDO succesfully maintains its trajecktory traking

capability, even when lM5 = 1, corresponding to a complete failure of the M5 thruster.
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Figure 4.34: 6 DOF State observer and ∆̂ + D̂ with lM5 = 0.2.

The results show that, under each fault condition, the FTSMNNDO controller’s per-

formance indices remain stable, underscoring its ability to adapt effectively to differ-

ent fault magnitudes through NN and DO estimates. This adaptability is confirmed by

the negligible changes observed in the IAE, ISE, and ITAE values, which highlight the

FTSMNNDO’s passive fault-tolerant functionality.Moreover, the results contrast with the

performance of the FTSMC controller, which fails to track the trajectory when the fault

magnitude reaches 0.39, illustrating the limitations of FTSMC in handling larger actuator
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faults.

This table emphasizes that the FTSMNNDO controller not only compensates for ac-

tuator faults passively but also retains stability and accuracy in tracking, even under

complex fault conditions and environmental disturbances, validating its effectiveness as a

robust fault-tolerant control approach in 6-DOF underwater vehicle applications.

Fault lM5 FTSMC FTSMNNDO

Magnitude IAE ISE ITAE Failure IAE ISE ITAE Failure

0.05 174 141 43071 No 169 100 27030 No

0.06 179 157 44801 No 169 100 27025 No

0.07 185 174 46890 No 169 100 27020 No

0.08 193 194 49282 No 169 100 27015 No

0.09 201 217 51979 No 169 100 27010 No

0.10 209 236 54262 No 169 100 27005 No

0.11 215 251 56063 No 169 100 27008 No

0.12 221 264 57687 No 169 100 27008 No

0.13 227 277 59328 No 169 100 27008 No

0.14 233 291 60959 No 169 100 27008 No

0.15 239 306 62649 No 169 100 27008 No

0.16 245 318 64168 No 169 100 26977 No

0.17 249 327 65399 No 169 100 26977 No

0.18 253 335 66508 No 169 100 26977 No

0.19 257 342 67511 No 169 100 26977 No

0.20 261 349 68497 No 169 100 26977 No

0.25 279 385 73625 No 169 100 26967 No

0.30 309 457 82162 No 169 100 26960 No

0.35 318 474 83865 No 169 100 26955 No

0.36 321 481 84846 No 169 100 26955 No

0.37 335 522 89112 No 169 100 26955 No

0.38 340 541 90570 No 169 100 26955 No

0.39 490 2174 148912 Yes 169 100 26955 No

0.40 549 3192 171281 Yes 169 100 26955 No

0.45 698 6314 227137 Yes 169 100 26963 No

0.50 409 803 108279 Yes 170 100 26980 No

0.60 623 1893 175817 Yes 170 100 27035 No

0.70 931 4227 271580 Yes 170 101 27093 No

0.80 1080 5788 319604 Yes 170 101 27149 No

0.90 1177 6902 351018 Yes 170 101 27233 No

1.00 1208 7287 361102 Yes 171 101 27337 No

Table 4.6: 6 DOF comparison of IAE, ISE, and ITAE for FTSMC and FTSMNNDO

under different fault conditions on thruster M5
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Figure 4.35: 6 DOF MBES Trajectory: State Variables

4.5.2.3 Test 3: MBES Survey

Test 3 is designed to evaluate the overall performance of the proposed FTSMNNDO

control scheme under realistic operational conditions, including the presence of ocean

currents and unmodeled dynamics, by simulating an MBES survey trajectory as depicted

in Figure 4.24. The vehicle navigates a systematic pattern of parallel transects, each 50

meters long and separated by 20 meters, with smooth semicircular turns at each end to

ensure continuous motion. By employing a trajectory that mimics actual MBES opera-

tions, Test 3 serves as a benchmark for demonstrating the control scheme’s capabilities

in handling the complexities of real-world missions.

The simulation results are presented in Figure 4.35-4.39. As can be seen in Figure

4.35, the pitch θ and roll ϕ angles remain close to zero, demonstrating the system’s robust-

ness in preventing oscillations that could compromise the multibeam’s pointing accuracy.

Furthermore, Figures 4.36 and 4.37 illustrate that the actual trajectory closely follows

the desired one. It has to be noted that even if the semicircular turns are particularly

challenging due to the lateral effect of the ocean current, the vehicle maintains smooth

transitions and adheres to the desired trajectory showcasing the controller robustness.

The contribution of the NN and DO estimations to achieving precise trajectory tracking

is highlighted in Figure 4.39b. The NN and DO estimation is particularly significant in

the r dynamics, where the combined effect of the ocean current and unmodeled vehicle dy-

namics during the semicircular turns are most pronounced. This coordinated estimation

plays a crucial role in maintaining precise traking throughout the MBES survey.

The results of Test 3 highlight the effectiveness of the proposed FTSMNNDO control
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(a) 3D Trajectory
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Figure 4.36: 6 DOF MBES Trajectory with unmodeled dynamics and Ocean Current.

scheme in accurately tracking a realistic MBES survey trajectory, even under challenging

conditions with ocean currents and unmodeled dynamics, demonstrating its robustness

and applicability to real-world operational scenarios.
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Figure 4.37: 6 DOF MBES Trajectory: Position and Attitude Tracking Error.
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Figure 4.38: 6 DOF MBES Trajectory: Thrusters inputs.
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Figure 4.39: 6 DOF MBES Trajectory: State observer and ∆̂ + D̂



Chapter 5

Conclusions

This thesis presents, for the first time, an augmented fixed-time sliding mode controller

for Blucy Unmanned Underwater Vehicle, integrating neural networks (NN) and a distur-

bance observer (DO) trained using composite error learning to estimate uncertainties and

time-varying disturbances. The hybrid model-based approach is selected over an indirect

data driven approach to avoid limitations due to data dependency. Data driven controls

rely heavily on the data used for training; thus, if the vehicle is actually operating outside

of known data, the results may be unreliable. To address this, a benchmark mathemati-

cal model, based on physical laws, for the underwater vehicle Blucy is developed. Model

parameters are obtained by integrating high-fidelity CAD modeling, computational fluid

dynamics (CFD) simulations, and specialized software such as AMCOMP. Physical pa-

rameters, including mass and inertial properties, are derived from the CAD model, while

hydrodynamic and added mass coefficients are determined using CFD and AMCOMP,

respectively. A four-quadrant thrust model is developed and refined using both experi-

mental and simulation data. This comprehensive workflow can be generalized to other

Blucy configurations and similar unmanned underwater vehicles (UUVs).

However, several limitations affect the accuracy of the parameter estimation. For in-

stance, CFD simulations assumed stationary rotors, whereas in reality, they are moving,

leading to potential discrepancies. Additionally, the CFD analysis simplified the vehicle

model, potentially introducing further inaccuracies. Added mass parameters are esti-

mated using AMCOMP, which relies on discretized STL files, making the accuracy of

these estimates dependent on the quality of discretization and the balance between com-

putational cost and model precision. Furthermore, cross-coupling terms for the added

mass are neglected, reducing the overall accuracy of the model. The four-quadrant thrust

model simplifies thruster nonlinearities and does not account for significant interactions

between the hull and the thrusters, which can notably affect thrust generation.

Despite these limitations, the simulation results for the proposed benchmark model,

99
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validated against real-world mission data, demonstrated its accuracy and reliability. The

developed model is thus suitable for control prototyping across underactuated UUVs,

enabling efficient testing and refinement of control strategies.

Building on a simplification of the benchmark model, i.e. synthesis model (4 DOF),

a novel neuro-adaptive fixed-time sliding mode control strategy with composite learning

is introduced to meet Blucy’s control objectives. This control approach integrates a Neu-

ral Network (NN), Disturbance Observer (DO), and state estimator, working together

to adapt to and compensate for model uncertainties and external disturbances. Com-

posite learning enhances the feedback error learning adaptability by incorporating state

estimation errors into the learning rule, reducing the need for high learning rates typi-

cally required in neuro-adaptive schemes. This adaptive control is further supported by

a line-of-sight guidance law tailored to Blucy’s underactuated dynamics, ensuring precise

trajectory tracking. The stability of the developed control stystem is rigorously proven

using the Lyapunov approach.

Simulations demonstrate that the Fixed-Time Sliding Mode Control with the neuro-

adaptive NN and DO (FTSMNNDO) outperforms the standard Fixed Time Sliding Mode

Controller (FTSMC) in both the 4-DOF and complete 6-DOF models, even in the presence

of uncertainties, time-varying disturbances, and faults. This enhanced performance is

attributed to the disturbance and uncertainty estimations provided by the NN and DO.

Additionally, the thesis explores the accuracy of these estimations. However, producing an

exact reference signal for evaluating the NN and DO estimations against true uncertainties

and disturbances is challenging, particularly in the complete 6-DOF model. For the

simplified 4-DOF model, controlled uncertainty and disturbance signals are generated to

allow a more detailed assessment of estimation performance.

The NN and DO estimations are presented as combined outputs since these compo-

nents are not structurally decoupled. This coupling of time-dependent disturbances with

state-based uncertainties means that the NN and DO share information and jointly esti-

mate disturbances and uncertainties, rather than isolating them individually. While the

exact accuracy of these estimations remains unclear, simulation results indicate that they

significantly enhance robustness against external disturbances and uncertainties.

The future works that can be derived from this thesis can be categorized into two

main areas:

1. Enhancing the Mathematical Model: Future efforts will focus on addressing the

identified limitations to improve model accuracy. This includes incorporating a

tether model to study the interactions between the tether, body frame, and pro-

pellers, which will provide insights into how these dynamics affect the vehicle’s

maneuverability and stability during remote operations. Additionally, investigating
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hull-propeller interactions will help identify and mitigate performance issues related

to thruster dynamics, further enhancing the reliability and precision of the model.

2. Advancing the Control Framework: From a control perspective, future work will

aim to investigate the possibility of structural decoupling of the NN and DO to

better define their individual estimation roles. A promising approach is to apply

differential geometry to create a subspace where uncertainties can be separated from

disturbances, allowing the NN and DO to estimate each element independently. This

separation would clarify the NN and DO’s specific roles in estimation, reducing

ambiguity in the control framework and enabling more targeted parameter tuning.

Additionally, another valuable direction is to generalize the NN’s capabilities to

estimate uncertainties that are functions of both system states and time-varying

disturbances, thereby broadening its adaptability and robustness.
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