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Chapter 1

List of Acronyms
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Chapter 2

Introduction

The estimation of the potential energy of a given molecular configuration is

a crucial task in computational chemistry, especially at the quantum level of

theory. This involves mapping the coordinates and species of a molecule to

its corresponding potential energy scalar value. Such estimations enable the

calculation of forces through derivation, facilitating e.g. the determination

of a molecular ensemble’s ground state and making possible molecular

dynamics simulations.

Computational techniques for this estimation are categorized based on their

theoretical foundations, primarily into quantum methods and molecular

mechanics ones. Density Functional Theory (DFT), an exemplar of quan-

tum methods, approximates the solution of the many-body Schrödinger

equation. While highly accurate, DFT is computationally intensive, with

complexity scaling cubically with the number of electrons in the molecule.

Conversely, molecular mechanics methods operate at a coarser level, of-

fering rapid approximations of atomic forces with a complexity of A logA,

where A represents here the number of atoms. This efficiency makes molec-

ular mechanics widely used in simulations, despite its inability to capture

11



12 CHAPTER 2. INTRODUCTION

electronic phenomena like charge transfer, pH variations, and polarization

due to its simplified model.

The recent advancements in parallel computing and high-performance plat-

forms have enhanced the feasibility of large-scale computational quantum

chemistry. Although DFT remains resource-intensive, the ability to con-

duct systematic computations has created new opportunities. The resulting

wealth of simulated data now fuels machine learning algorithms capable

of effectively approximating original quantum potentials at significantly

reduced computational costs. In this context, the high-dimensional neural

network introduced by Behler and Parrinello [16] stands as a pioneering

work.

Following this initial contribution, neural network potentials have un-

dergone significant enhancements, emerging as a viable alternative for

quantum mechanical computations. Within the so called “feed-forward

neural network” category, ANAKIN [121, 122, 38], developed by Smith

and colleagues, remains a significant benchmark for machine learning

potentials, as noted by other researchers [103, 78] too. ANAKIN’s impor-

tance stems from its generic model trained on millions of molecules in

off-equilibrium configurations, comprising H, C, N, O, F, S, and Cl atoms.

As such, it serves also as the backbone for several, modern neural network

potentials [12, 124], implying that advancements in this approach could

benefit related methodologies.

However, the ANAKIN approach faces a possible limitation: the inefficient

scaling of neural architecture size with the number of chemical species in

the dataset. This inefficiency arises from: (i) the quadratic growth of input

features relative to the number of species considered; (ii) the ANAKIN’s use

of a separate neural model for each species, leading to a possibly significant

expansion of the overall network size when incorporating additional ele-

ments. Furthermore, the architecture precludes knowledge re-utilization

when attempting to include new chemical elements in subsequent training
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procedures. While these are limitations from this perspective, actually

these architectural choices also confer ANAKIN a wide representational

ability.

This work introduces OBIWAN, a neural network potential that addresses

the aforementioned challenges within the ANAKIN-style class of algo-

rithms: (i) we present a novel, learnable layer capable of generating input

vectors with lengths independent of the number of chemical species in the

dataset; (ii) leveraging this new input representation, we deploy a single

model for energy prediction, capable to interpret every input species. The

final result is a neural network architecture with a topology completely

independent of the number of chemical species seen during the training

phase.

While other attempts have been made in this direction, to our knowl-

edge, none has demonstrated performance comparable to ANAKIN. The

SingleNN algorithm by Liu and colleagues [82] shared our objective but

employed no new neural module, instead trading off model representation

capability for transferability by reduce-summing in the chemical space.

Crucially, it was trained and tested on only a few tens of thousands of

molecules, insufficient for validating a general-purpose neural network

potential. Profitt et al. developed a shared-weight, ANAKIN-like neural

network potential [104], testing it on 400,000 (equilibrium) structures from

QM9 [107]. However, by retaining the Behler and Parrinello molecular

description, it did not address the chemical scaling problem that we tackle

in this work.

Our closest competitor is the model published by Gastegger et al. [47],

which we consider, along with ANAKIN, as our primary benchmark. How-

ever, this algorithm was also tested on significantly simpler datasets com-

pared to ANAKIN, comprising just a few thousand molecular configura-

tions, often in equilibrium states [111, 137, 84, 87, 64]. Consequently, a fair

comparison between ANAKIN and this method is currently challenging.
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The work of thesis is structured as follows: in Chapter 3 we illustrate the

theoretical background, starting with the chemical and physical foundation

and then passing through related, classical computational methods; in

Chapter 4 we present feed-forward neural network potentials’ state-of-the-

art from which our framework was developed, reminding also possible

alternatives; in Chapter 5 and 6 we finally detail and discuss our method

and results together with all the open-source software codebase that we

developed in order to support our experiments. Chapter 7 is the concluding

one, containing also our perspectives on future works.

In accordance with the Terms and Rights in the Journal Publishing Agree-

ment of ACS Publications pertaining the use in thesis of material that I

have authored but for which ACS holds copyright [1], the reader will find

in this work some of the figures originally published in [90].



Chapter 3

Theoretical background

Computer simulations are nowadays routinely employed to model bio-

logical systems at microscopic level, where molecules are represented as

interacting entities. These representations can be highly detailed or, par-

ticularly for large systems, can employ a coarse-grained approach where a

molecule is composed by atoms [65].

More specifically, given that systems of biological interest often comprise

large sets of atoms, to describe their behavior one has to leverage statistical

mechanics methods which come in two levels of accuracy: the quantum

mechanical one, reflecting the fundamental nature of reality taking into

consideration every electron, and the classical mechanics one, which ap-

proximates molecules as bonded atoms. The latter approach allows to

model bigger biophysical systems with reasonable precision when chemical

reactivity is not involved (e.g. bond breaking). In the following we intro-

duce basic notions of statistical mechanics, atomistic interaction potentials

and molecular dynamics.

15



16 CHAPTER 3. THEORETICAL BACKGROUND

3.1 Statistical mechanics

Statistical mechanics is a field that examines the large-scale properties of

multi-particle systems by analyzing their microscopic characteristics [26].

In classical mechanics, a molecular system of N particles is described using

two sets of variables:

• Positions: { r1, . . . ,rN } ≡
{

rN
}
;

• Momenta: {p1, . . . ,pN } ≡
{

pN
}
.

Here, ri represents the three-dimensional Cartesian coordinate of the i-th

particle. The system’s degrees of freedom comprise these positions and

momenta, which together form the phase space. A specific point in this

phase space, represents a unique microstate of the system. The system’s

evolution over time is represented by a trajectory
{

rN (t),pN (t)
}
, which

traces the system’s path through phase space.

The total energy of the system is described by the Hamiltonian function

(which becomes an operator in quantum mechanics). The Hamiltonian is

the sum of kinetic K and potential U energies:

H(rN ,pN ) = K(pN ) +U (rN ) =
∑
i

p2
i

2Mi
+U (rN ) (3.1)

with Mi that is the mass of particle i.

In statistical mechanics, equilibrium macroscopic properties are constant

over time. Each such property is calculated as an average ⟨O⟩ of a mi-

croscopic operator O(rN ,pN ) across all possible states. This average is

weighted by the probability ρ(rN ,pN ) of the system being in each state:

⟨O⟩ =
∫
{ rN ,pN }

O(rN ,pN )ρ(rN ,pN )drNdpN (3.2)
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where the integral is taken over all accessible states in the phase space.

Expressing the average ⟨O⟩ in this manner assumes that each point in phase

space can be accessed with varying probabilities. This allows us to define

the already cited time-independent probability density ρ(rN ,pN ) for each

microstate, whose integral is normalized by definition to 1.

In contrast, experimental measurements provide an average of the same

operator O(rN ,pN ) over both time and a macroscopic number of particles

in the system, a quantity that can be expressed as:

⟨O⟩ = lim
τ→∞

1
τ − τ0

∫ τ

τ0

O(rN (t),pN (t))dt (3.3)

where τ is the measured time and the integral represents the time average

of the operator along a trajectory
{

rN (t),pN (t)
}
.

The link between the time-based and ensemble-based approaches is formed

by the so-called ergodic hypothesis [2]. This hypothesis suggests that, given

an isolated system and an infinite amount of time for sampling, the sys-

tem’s trajectory will eventually pass through all possible microstates. If

this hypothesis holds true, the averages calculated over time and those

calculated across the ensemble become equivalent, regardless of the initial

conditions of the infinitely long trajectory.

3.1.1 The canonical ensemble

If we assume that the system has time-constant number of particles N

together with constant volume V and temperature T then the system

is said to be in the “canonical ensemble”. Its probability density is the

Boltzmann distribution:

ρNVT (rN ,pN ) =
1

h3NN !
e−βH(rN ,pN )

QNVT
(3.4)
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where h is the Planck constant, β equal to 1
kBT

(kB is the Boltzmann constant)

and QNVT that is the normalization factor, i.e.:

QNVT =
1

h3NN !

∫
{ rN ,pN }

e−βH(rN ,pN )drNdpN . (3.5)

QNVT , also known as the “partition function”, is typically not calculable

using Equation 3.5 in practical scenarios. However, its significance in statis-

tical mechanics extends far beyond this limitation. The partition function

serves as a cornerstone in understanding ensemble behavior. Theoretically,

if one knows QNVT for a given ensemble, it becomes possible to derive all

macroscopic properties of the system. A prime example of this is found

in the canonical ensemble, where the Helmholtz free energy, F(N,V ,T ), is

directly related to the partition function [63]:

F(N,V ,T ) = U − T S = −kBT lnQNVT (3.6)

where S is the entropy of the system and U is the thermodynamic internal

energy, representing the total energy contained within a system due to the

microscopic kinetic and potential energies of its particles1.

The connection between a system’s observable characteristics and its parti-

tion function can be understood at the microscopic level. For example, we

can express the internal energy using the following equation:

U =
1

h3NN !QNVT

∫
{ rN ,pN }

H(rN ,pN )e−βH(rN ,pN )drNdpN . (3.7)

As a final note, it is worth reminding that, although in a quantum mechan-

ics scenario the r and p operators do not commute, in classical mechanics

1Internal energy is primarily concerned with the energy associated with the internal
state of the system, and it does not account for the kinetic or potential energy of the
system as a whole in relation to external forces.
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they do and for this reason they can be decoupled. Also, the integral over

momentum of each particle can be computed independently as:

1
h3

∫
e−β

p2
2m dpN =

1
Λ3 (3.8)

with Λ that is the de Broglie thermal wavelength of the particle. Thus, in

classical mechanics, the canonical partition function becomes:

QNVT =
1

N !Λ3N

∫
e−βU (rN )drN =

ZNVT
N !Λ3N (3.9)

where ZNVT is commonly called “configurational partition function”.

3.2 Potential energy surfaces

To discuss potentials we can start from the simple but instructive case of

a diatomic molecule. In the classical mechanics case such system is com-

posed of two atoms (two point particles) linked by a spring. As this model

suggests, distorting the molecular geometry by stretching or compressing

the spring increases system potential energy, which depends on atoms

positions. On the other hand, quantum theory offers a more accurate repre-

sentation of molecules. The uncertainty principle dictates that quantum

particles, including atoms, cannot be confined to a single point. Instead,

they continuously vibrate around their equilibrium position. Rather than

having a specific position and momentum, atoms are described by wave

functions. As a consequence, even as temperature approaches absolute

zero, molecules retain both kinetic and potential energy.

Mathematically, molecular interactions are modeled using a potential en-

ergy surface (PES) [46]. This is a function that relates the potential energy
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of a system of N atoms to their 3N spatial coordinates:

U ≡U (rN ) . (3.10)

To describe how potential energy changes with a system’s geometry, re-

searchers use mathematical functions called force fields. As we will see

in the next sections, these tools help map the complex landscape of PES

across various molecular configurations.

3.2.1 Molecular mechanics potentials

A proper definition of the potential energy surface (PES) is fundamental

for accurately simulating condensed matter at atomic or coarse-grained

level. Most biological systems comprise organic molecules, characterized

by a covalent bond backbone further interacting via relatively strong non-

bonded Coulombic forces and weaker, yet pervasive, dispersion ones. This

observation allows organic and biological systems to be conceptualized as

assemblies of particles (typically atoms) and bonds, forming a network of

springs with energy contributions from stretching, bending, and torsion.

Additionally, particles carry Coulomb charges and interact through short-

range pair potentials representing dispersion non-bonded forces. Short-

range repulsion, arising from Pauli’s exclusion principle, is also a universal

feature of real systems and is incorporated into all atomistic and coarse-

grained models.

These qualitative considerations form the basis of the force field model,

which has proven to be the most successful and widely used approach for

simulating biomolecules. In this approximation, the PES, call it UFF , of the
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molecular system is expressed as a function of nuclear coordinates [81]:

UFF(r) =

 ∑
pairs

Ustretch(r) +
∑
trip.

Ubend(r) +
∑
quadr.

Utors(r)


bonded

+

+
∑(

Ue(r) +UvdW (r)
)
non−bonded

. (3.11)

The first part represents the above mentioned bonded interactions whereas

the second the not bonded ones. Under common conditions, covalent bond

distances remain nearly constant due to the significant energy required for

both compression and stretching. This constancy is further reinforced by

quantum effects, which effectively freeze vibrational modes with energies

exceeding thermal energy. Consequently, for small deviations from the

equilibrium bond distance r̄, the stretching energy can be approximated

using a Taylor expansion in terms of r − r̄. In practice, the stretching term

is often simplified to just the quadratic term of this Taylor expansion,

providing a computationally efficient approximation that captures the

essential behavior near equilibrium:

Ustretch =
1
2
kstretch(r − r̄)2 (3.12)

where kstretch is the spring constant. It is worth highlighting here that this

simplification of the stretching term has two, main, important implica-

tions: (i) the model’s applicability is limited to conditions close to room

temperature and atmospheric pressure; (ii) it cannot accurately represent

phenomena involving bond breaking or formation.

The angle bending contribution to the system’s potential energy is treated

in a manner analogous to the stretching term:

Ubend =
1
2
kbend(θ − θ̄)2 (3.13)

where θ̄ is the equilibrium bending angle. Bond bending energies are signif-

icantly higher than typical thermal energies. As a result, many molecular
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models simplify their approach by assuming fixed bond angles.

In contrast, torsional angles (also known as “dihedrals”) are characterized

by low internal rotation barriers. This allows for substantial variations in

these angles during molecular dynamics. The torsional energy Utors is a

periodic function that repeats every 360◦ rotation of the dihedral angle.

Its mathematical expression can take various forms depending on which

specific atoms are considered in the calculation. Typically, the torsional

energy is modeled using a truncated Fourier series:

Utors =
∑

dihedrals

∑
n

Vn
2

[1 + cos(nφ−γ)] (3.14)

where Vn is the torsional rotation barrier, φ the dihedral angle, and γ the

phase angle. The complexity of the torsional potential and the desired level

of accuracy determine the number of terms included in the Fourier sum.

In practical applications, the sum typically includes terms up to n = 4.

As already mentioned, force fields also incorporate non-bonded interac-

tions in calculating the system’s potential energy. Starting from electro-

static interactions resulting from non-uniform charge distributions within

molecules, the common approach to modeling them assumes that: (i) point

charges are located at each atomic site; (ii) the sum of charges in neutral

molecules equals zero. Given these assumptions, the electrostatic term is

typically represented by a Coulomb potential:

Ue =
1

4πϵ0

qiqj
rij

(3.15)

where qi and qj are the atomic charges, rij is the inter-nuclear distance

between atoms i and j and ϵ0 is the vacuum permittivity.

In actual systems, atomic charge values fluctuate based on the local bonding

environment, which changes over time. Additionally, atoms in condensed



3.2. POTENTIAL ENERGY SURFACES 23

matter exhibit polarization effects that vary with changing system configu-

rations. These dynamic effects are not explicitly accounted for in "rigid-ion"

force fields, which are the type used in the cases considered here.

The final component of the force field is the Lennard-Jones (LJ) poten-

tial [69], which models van der Waals interactions. This potential en-

compasses all non-electrostatic forces and consists of two main parts: (i)

a short-range repulsion term, proportional to r−12
ij ; (ii) a medium-range

attractive dispersion term, proportional to r−6
ij . We have:

UvdW = 4ϵij

(σijrij
)12
−
(σij
rij

)6
 (3.16)

with ϵij that refers to the van der Waals well depth and σij to the distance

at which the potential is zero. In most cases, the full set of ϵij and σij is

obtained from a more restricted set of homo-nuclear parameters through

empirical equations.

Force fields vary in their mathematical formulation and parameter deriva-

tion methods [132], with structural parameters like bond lengths and

angles determined using computational methods or experimental tech-

niques. Among the various force fields available, AMBER [114] is widely

used for simulating biological systems. Other popular force fields include

CHARMM [22], OPLS [72], and GROMOS [18]. The utility of these force

fields is significantly enhanced by the widespread availability of computer

packages optimized for massively parallel architectures, designed to lever-

age their capabilities.

3.2.2 The Born-Oppenheimer approximation

In the previous section we discussed a first computationally efficient yet

approximate description of the potential energy surface. We have to re-
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mind however that the fully accurate description of molecular interactions

is the quantum mechanical one. In the following, we introduce an ele-

gant description of such interactions, dubbed Born-Oppenheimer (BO)

approximation, introduced by Max Born and J. Robert Oppenheimer in

1927 [21].

The BO approximation is a fundamental principle in quantum chemistry

that allows for a significant simplification of molecular systems still main-

taining their quantum description. Its key insight is that the Schrödinger

equation, which describes the quantum state of a molecule, can be di-

vided into two separate parts: (i) an electronic equation and (ii) a nuclear

one. This separation is based on the vast difference in mass between elec-

trons and nuclei which leads to a significant difference in their velocities,

resulting in the much lighter electrons that are assumed to adjust instanta-

neously to any change in nuclear positions. By decoupling the electronic

and nuclear motions, the BO approximation makes it possible to calculate

molecular properties and energies more efficiently, paving the way for

much of modern computational chemistry.

Given a system, the mathematical starting point is its Hamiltonian, from

which one can derive its behaviour through the time-dependent Schrödinger

equation

iℏ
∂Ψ

(
rN (t)

∣∣∣R)
∂t

=HΨ
(
rN (t)

∣∣∣R)
(3.17)

or alternatively by means of its time-independent version

H
(
rN

∣∣∣R)
Ψα

(
rN

∣∣∣R)
= EαΨα

(
rN

∣∣∣R)
α = 0,1, . . . (3.18)

where Ψ is/are the wave-function/s of the system while the notation
(
rN

∣∣∣R)
means that the function depends on the electrons’ coordinates rN given

the nuclei’s ones R. This Hamiltonian can then be divided into nuclear and

electronic terms

H =Hn +He (3.19)
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and the Hamiltonian of electrons in the “external” Coulomb potential is

defined as:

He = Te +Un,e +Ue,e , (3.20)

with Te that is the kinetic term while Un,e and Ue,e are respectively the

nucleum-electrons and electrons-electrons potential interactions. Due to

the significant mass difference between nuclei and electrons (with the

mass ratio Mn/Me being at least 1800), we can reasonably assume that

electrons move much more rapidly than nuclei. This leads to a scenario

where nuclei essentially perceive electrons as a negative charge cloud. This

cloud’s attractive force between the positive nuclei and negative electrons

effectively holds the nuclei in relatively fixed positions. Consequently,

for any given arrangement of stationary nuclei, we focus on solving the

electronic problem. This approach, in theory, yields an infinite set of

eigenvalues and eigenvectors, with the associated wave functionsψi defined

as:

Hψi
(
rN

∣∣∣R)
= Eiψi

(
rN

∣∣∣R)
i = 0,1, . . . (3.21)

The assumption that electrons evolve rapidly also suggests that they quickly

settle into their instantaneous ground state, faster than the nuclei can move.

As a result, we only need to consider the electronic ground state (i = 0).

When we apply this concept to the initial time-independent Schrödinger

equation and project Ψα
(
rN

∣∣∣R)
onto ψ0

(
rN

∣∣∣R)
, we derive a Schrödinger-like

equation satisfied by the nuclear wave function χα [20, 101]:[
T +E0(R)

]
χα(R) = Eαχα(R) (3.22)

with

χα(R) =
∫

Ψα

(
rN

∣∣∣R)
ψ∗0

(
rN

∣∣∣R)
drN (3.23)

in which the asterisk represents the “complex conjugate” operator.

Equation 3.22 describes how the nuclei move on the potential energy

surface E0(R). The Born-Oppenheimer approximation’s key insight is this
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separation of electron and nuclear motion, and the identification of this

potential energy surface that governs nuclear movement. When conditions

involve low energy and temperature, the parameters R can be seen as the

coordinates of classical particles. Under these conditions, we will write

U (R) = E0(R).

3.2.3 Ab initio potentials

Recent decades have seen significant progress in developing molecular

mechanics force fields optimized for biological systems, balancing accuracy

and computational efficiency. However, these empirical models have limi-

tations. Key approximations include the use of fixed atomic charges, which

inadequately represents charge polarizability, and the requirement for a

fixed molecular topology, which precludes modeling chemical reactions or

bond breaking and formation. This constraint necessitates pre-assigning

specific protonation states to molecular systems. Ab initio potentials, de-

riving from quantum representations of atoms at the cost of a greater

computational demand, try to provide this flexibility.

Biomolecules, like all condensed matter systems, can be conceptualized

as assemblies of electrons and atomic nuclei. The just introduced Born-

Oppenheimer approximation allows us to treat nuclei as classical particles,

while electrons must be described as quantum particles moving within the

Coulomb field generated by the nuclei.

Various methods exist to calculate the ground and excited states of N

electrons in an external field, such as the so-called Hartree-Fock (HF)

method and the Density Functional Theory (DFT) one [70, 127]. While

HF includes exchange interactions exactly, it does not consider electron

correlation effects, on the other hand DFT is capable of considering such

information in an efficient way. In particular, DFT provides a theoretical
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framework for calculating the ground-state properties of many-electron

systems. Instead of solving the full many-electron wave function, DFT

focuses on the electron density ρ0(r), defined as

ρ0(r) =N
∫
d3r2

∫
d3r3 · · ·

∫
d3rN |Ψ (r1, . . . , rN ,σ1, . . . ,σN )|2 , (3.24)

where r = (r1, . . . , rN ), Ψ is the many-electron wave function and the σ1, . . . ,σN
are the spins.

The first Hohenberg-Kohn theorem proves that the ground-state energy of

a system is uniquely determined by its ground-state electron density [77,

118]. The ground-state energy functional of the electrons is expressed as

E0[ρ(r)] = T [ρ(r)] +Eee[ρ(r)] +ENe[ρ(r)] (3.25)

or equivalently

E0[ρ(r)] = FHK[ρ(r)] +ENe[ρ(r)] , (3.26)

where

• T [ρ(r)] is the exact kinetic energy functional of interacting electrons;

• Eee[ρ(r)] is the electron-electron interaction energy;

• ENe[ρ(r)] is the interaction energy between electrons and the external

potential due to the nuclei;

• FHK[ρ(r)] is the Hohenberg-Kohn universal functional.

Since the exact form of FHK[ρ(r)] is unknown, we must rely on approximate

functionals. Various strategies exist for this purpose, ranging from the sim-

plest local density approximation to more advanced generalized gradient

approximations and, in recent years, machine learning based methods [39].
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Minimizing E0[ρ(r)] with respect to ρ(r) subject to the constraint that the

total number of electrons is conserved gives the ground-state energy and

density. This problem leads to the Kohn-Sham (KS) equations. The KS

theory reformulates the problem through the introduction of a system of

non-interacting electrons that reproduces the same ground-state density as

the interacting system [77]. The total energy functional in this framework

is

E[ρ] = Ts[ρ] +
∫
vext(r)ρ(r)dr +EH [ρ] +EXC[ρ] , (3.27)

where Ts[ρ] is the kinetic energy of the non-interacting electrons, EH [ρ] is

the classical Hartree energy defined as

EH [ρ] =
e2

2

∫
dr

∫
dr′

ρ(r)ρ(r′)
|r− r′ |

(3.28)

and EXC[ρ] is the exchange-correlation energy functional, which accounts

for all remaining quantum mechanical effects, including many-body elec-

tron interactions.

The KS orbitals {ψi(r)} are orthonormal and used to construct the density:

ρ(r) =
N∑
i=1

|ψi(r)|2 . (3.29)

The KS equations, derived by applying the variational principle to E[ρ], are[
− ℏ

2

2m
∇2 + veff(r)

]
ψi(r) = ϵiψi(r) (3.30)

where the effective potential veff(r) is given by

veff(r) = vext(r) + vH (r) + vXC(r) (3.31)

and the ϵi are the energies associated with each single KS orbital.

Here vH (r) is equal to the Hartree potential while vXC(r) is the exchange-
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correlation potential. The choice of the exchange-correlation approxima-

tion defines different density functional variants. A widely used approach

is the generalized gradient corrected approximation, with PBE (Perdew-

Burke-Ernzerhof) [102] and B3LYP [73] being two prime examples.

While DFT primarily calculates energy and electron density for a given

set of nuclear coordinates, its application to geometry optimization and

molecular dynamics requires enhanced computational efficiency and stabil-

ity [92]. The key to improved efficiency lies in recognizing that molecular

dynamics and geometry optimization involve energy calculations for a

series of closely related atomic configurations. Most energy evaluations

can be performed by updating the previous calculation, which is faster

than starting anew. This principle underpins modern DFT approaches to

electronic structure and total energy computations.

From an application perspective, DFT serves as a method for computing

the system’s potential energy surface at the quantum level. The eventual

underlying molecular dynamics framework (see next section) remains

classical.

3.3 Molecular Dynamics

Molecular dynamics (MD) is a computational technique that excels in

exploring localized regions of configuration space. It provides insights

into a system’s temporal evolution and enables the calculation of time-

dependent properties.

In MD simulations, trajectories are generated through the step-wise numer-

ical integration of classical Newtonian equations of motion. The system is

represented by a collection of atomic coordinates { r1, . . . ,rN } ≡
{

rN
}

and
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their corresponding momenta {p1, . . . ,pN } ≡
{

pN
}
. The classical equations

of motion can be expressed using these variables, where fi represents the

force acting on the i-th atom, typically derived from the negative gradient

of the potential energy function:

fi = −∂U (r)
∂ri

. (3.32)

Calculating the classical trajectory for a system of N particles through ana-

lytical methods would require solving 3N interconnected, second-order,

differential equations, making this approach impractical. To address this

challenge, various methods based on time discretization of system evolu-

tion have been developed. Finite difference techniques enable the integra-

tion of motion equations in stages, separated by a time step δt.

The time step selection for MD simulations typically depends on the sys-

tem’s highest frequency motions. In biological systems, where C-H stretch-

ing represents the highest frequency oscillator (period of 10fs = 10−14 s),

a time step of 1fs is commonly used. To increase the time step without

compromising simulation accuracy, constraints can be applied to certain

internal coordinates using methods like SHAKE [112].

Various algorithms, known as integrators, have been created to solve the

equations of motion. These approximations use Taylor expansions for

positions, velocities, and accelerations. A notable example is the Verlet

integration scheme [133], which utilizes information from the previous

time step t to compute new positions at time t + δt.

x(t + δt) = x(t) + v(t)δt +
1
2

a(t)δt2 + o(δt3) (3.33)

x(t − δt) = x(t)− v(t)δt +
1
2

a(t)δt2 − o(δt3) (3.34)

where ai = fi
mi

.
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From previous equations we then obtain:

x(t + δt) = 2x(t)− x(t − δt) + a(t)δt2 + o(δt4) (3.35)

with velocity at time t obtained via a two-sided finite difference:

v(t) =
x(t + δt)− x(t − δt)

2δt
. (3.36)

For each particle in the system, the Verlet algorithm determines the position

at time t + δt using three key components: the current position x(t), the

previous position x(t − δt) and the acceleration a(t), which is derived from

the forces acting on the particle. A variant of this algorithm is the leapfrog

method which we will employ later [52].

An alternative approach is the velocity Verlet scheme [126], a modification

of the original Verlet algorithm. It is a time-reversible and symplectic

algorithm, meaning it conserves energy over long time scales, making it

well-suited for MD simulations. At each time step ∆t, the Velocity Verlet

equations for updating positions and velocities are as follows:

r(t +∆t) = r(t) + v(t)∆t +
1
2

a(t)∆t2 (3.37)

v
(
t +

∆t
2

)
= v(t) +

1
2

a(t)∆t (3.38)

After this half-step for velocities, forces f(t+∆t) based on the new positions

r(t +∆t) are computed, from which accelerations can be obtained. Lastly

velocities are updated as per:

v(t +∆t) = v
(
t +

∆t
2

)
+

1
2

a(t +∆t)∆t (3.39)

This method provides both accurate energy conservation over time and

efficient time integration, making it a popular choice in MD simulations.
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Both Verlet and Velocity Verlet methods maintain long-term energy and

momentum conservation when using sufficiently short time steps.

In MD simulations of large systems, most computational time is spent

evaluating non-bonded interactions. In fact, while bonded interactions

scale linearly with system size, achieving linear scaling for non-bonded

interactions requires the use of neighbors lists for short-range repulsion

and dispersion forces, while Coulomb interactions are calculated using the

Ewald sum [80] for smaller systems and mesh-based versions [34] for larger

ones. Moreover, periodic boundary conditions are typically employed to

support Ewald sums and minimize finite size effects.

The natural ensemble for Hamiltonian dynamics is the microcanonical

(NVE) ensemble, which fixes particle number N , volume V and total

energy E. However, this ensemble has limited practical application as ex-

periments occur at constant pressure and temperature. To align with exper-

imental conditions, MD can be extended to isothermal-isobaric (NP T ) [98]

or canonical (NVT ) [96] ensembles. These non-Hamiltonian dynamics

couple the system to external pressure (barostat) or temperature (thermo-

stat) baths. Thermostats modify equations of motion to achieve canonical

ensemble probability density, requiring the definition of instantaneous

temperature based on kinetic energy. Common thermostats include Nosé-

Hoover [96, 60], Berendsen [17], Langevin [2] and Bussi-Parrinello [23].

Barostats control system pressure by adjusting volume [46].



Chapter 4

Deep learning for ab initio
potentials

The significance of computational modeling in chemistry and materials

science is growing rapidly, approaching parity with experimental methods.

This advancement brings substantial challenges to theoretical approaches

as researchers grapple with increasingly complex systems. These complex-

ities manifest in larger system sizes, more diverse compositions, and a

wider array of properties under investigation. As a result, scientists must

carefully balance their choice of model systems, the properties they aim to

study, and the level of accuracy they can feasibly achieve.

A crucial aspect of computational simulations is calculating potential ener-

gies and forces for specific atomic arrangements. While electronic structure

methods are ideal for moderately sized systems, they quickly become com-

putationally expensive for larger ones. Even with efficient techniques

like density functional theory (DFT), which forms the basis of ab initio
molecular dynamics (MD) [92], most research questions cannot be directly

addressed using first-principle methods due to the aforesaid limitations.

33
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The landscape of mathematical potentials has been dramatically trans-

formed with the emergence of modern machine learning (ML) techniques,

which significantly broadened the applicability of the former and expanded

their reach in modeling complex systems. ML methods have now become

commonplace across various disciplines including chemistry, physics, and

materials science [25, 116, 75], with the 1995 groundbreaking work by

Blank and colleagues [19] marking the beginning of ML’s application in

constructing atomistic potentials. Since then, numerous reviews have been

published discussing ML potentials and their applications in computational

simulations [14, 40, 95]. Also in recent years there has been a proliferation

of ML potentials encompassing a wide range of approaches. Some examples

are: Neural Network Potentials [88, 106, 16, 115, 105], Gaussian Approxi-

mation Potentials [8], Spectral Neighbor Analysis Potentials [36], Atomic

Cluster Expansion [41], Kernel Ridge Regression Methods [113] and Sup-

port Vector Machines [134]. Each of these approaches leverages different

ML techniques to model the complex relationships between atomic posi-

tions and potential energy, offering various trade-offs in terms of accuracy,

efficiency, and applicability to different types of systems.

In this thesis we will refer to the so-called “high-dimensional” ML poten-

tials, defined here to meet the following criteria [13]:

1. Scalability: the potential should be applicable to systems with a very

large number of atoms, typically in the range of thousands;

2. Comprehensiveness: the potential should explicitly depend on all

degrees of freedom within the system.

It’s important to note that this definition is not exclusive, and other equally

valid definitions exist in the field. This definition emphasizes the ability of

these potentials to handle complex, large-scale systems while maintaining

essential physical properties and accounting for all possible system vari-
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ables, setting a high bar for what constitutes a truly high-dimensional ML

potential in the context of atomistic simulations.

In the domain of condensed matter, mathematical potentials typically em-

ploy established machine learning methods like neural networks or kernel

ridge regression, enabling simulations of systems with very large num-

bers of atoms. The use of ML methods for constructing these interatomic

potentials offers several advantages:

1. Flexibility: their nonlinear functional form allows for highly accurate

representation of reference data from electronic structure calcula-

tions;

2. Efficiency: they can be computed orders of magnitude faster than

even relatively quick electronic structure methods like DFT;

3. Unbiased Approach: they don’t require prior knowledge or assump-

tions about functional forms, allowing all types of atomic interactions

to be described without bias and with consistent accuracy;

4. Universal Approximation: in the case of neural networks, it has

been independently proven by several groups that they are universal

approximators. This means they can, in principle, approximate any

multidimensional real-valued function such as PESs with arbitrary

precision [33, 62, 61].

These characteristics make ML potentials powerful tools for modeling

complex atomic systems, bridging the gap between classical efficiency and

quantum accuracy. [12]
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4.1 Feed-forward neural networks

A pioneering effort in ML PES estimation was made by Sumpter and Noid

in 1992 [125], which focused on macromolecules and training a neural

network on vibrational spectra obtained from force fields. However, the

advent of modern ML potentials, based on electronic structure calculations

as defined before, has to be traced to the groundbreaking work by Blank

and colleagues in 1995 [19]. In fact, this seminal paper introduced the first

density functional theory DFT-based ML potential using H2 adsorption

on a Si(100) surface, providing a comprehensive analysis of the benefits

and challenges of employing neural networks for PES representation and

offering solutions that remain relevant today. The core of this initial ML

potential was a feed-forward neural network (FFNN), which became the

standard feature of almost all neural network potentials (NNPs) developed

by various research groups in subsequent years.

Figure 4.1 illustrates the architecture of a feed-forward neural network,

also known as Multi-layer Perceptron (MLP) [110], for a potential energy

surface based on two input features x1 and x2 (for example some cartesian

coordinates) which correspond to neurons (or nodes) in the input layer. The

output layer’s single node represents the system’s potential energy, E, as a

function of these features. Between the input and output layers there’re

can be one or more hidden layers (two in our case). The nodes in these hid-

den layers lack physical significance but provide the network’s functional

flexibility; increasing the number of hidden layers or the numbers of their

neurons enhances the FFNN’s capacity to fit complex functions.

As depicted by arrows in Figure 4.1, neurons in each layer connect to

those in adjacent layers through weights, which serve as the model’s fitting

parameters. The notation wklij represents the weight connecting neuron i

in layer k to neuron j in layer l = k + 1. Here, layers are numbered starting

with 0 for the input layer while neurons in each layer are indexed starting
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Figure 4.1: Computational graph of a small feed-forward neural network.
A complete explanation of its analytic functional form (Equation 4.1) can
be found in the main text.

from 1. Additionally, each node in the hidden layers and the output node

connects to a bias node, providing an input of 1 scaled by a bias weight

b
j
i , targeting neuron i in layer j (in Figure 4.1 those nodes are grouped in

one vector per layer). The bias nodes work as adjustable offsets for each

neuron, which is numerically advantageous when applying the nonlinear

activation functions discussed below.

The FFNN’s analytic form is determined by its architecture, i.e. by the num-

ber of hidden layers and relative nodes. For the simple network depicted
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in Figure 4.1, the analytic energy expression is given by:

E = f 3
1

b3
1 +

3∑
l=1

w23
l1 f

2
l

b2
l +

3∑
k=1

w12
kl f

1
k

b1
k +

2∑
j=1

w01
jk xj



 . (4.1)

This nested function first computes a linear combination of the two input

coordinates at each neuron k of the first hidden layer, using the connecting

weights w01
jk as coefficients. The result is then shifted by the respective bias

weight b1
k and, subsequently, a nonlinear activation function f 1

k is applied

to each shifted sum, making the FFNN a nonlinear model capable of repre-

senting arbitrary functions. Various differentiable activation functions can

be used for constructing PESs, provided they have a nonlinear region and

saturate for extreme positive and negative arguments. Common examples

include the hyperbolic tangent, sigmoid function, softplus function and

Gaussians. The output node is an exception, typically using the linear

function to avoid restricting the range of possible output energies.2

The activation function’s application yields a value y1
k for each neuron in

the first hidden layer. This process then repeats for subsequent layers, with

values in the second layer calculated similarly, and so on until reaching the

output node E = y3
1 which in turn results in an output energy dependent

on the connecting and bias weights determined through a training process

utilising a known reference dataset as mentioned before. This one-way

information flow gives rise to the term “feed-forward” neural network.

The just described vanilla architecture already offers a viable route for con-

structing potential energy surfaces [19]. Its numerous fitting parameters

allow for a precise representation of potential energy based on atomic posi-

tions; it can describe all bonding types equally without requiring specific

physical knowledge; it enables calculation of analytic derivatives, useful

2Also, while other activation functions like the rectified linear unit (ReLU) [138] are
popular in neural networks for tasks such as classification, some of these functions can
be problematic for representing continuous functions like PESs due to discontinuities in
their derivatives.
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for computing forces and optimizing weight parameters; energy and force

calculations are significantly faster than even efficient electronic structure

methods like DFT. However, these “first-generation” NNPs [12] had limita-

tions too: increasing FFNN size for larger systems becomes computationally

expensive and challenging to train; suitable input features incorporating

translational, rotational, and permutational invariances are not straightfor-

ward to obtain (and the model itself does not benefit of these mathematical

properties); a single FFNN cannot handle variable numbers of atoms, as

its input vector size must be fixed during training. These limitations have

been overcome through three key developments:

1. Recognizing that a significant portion of atomic interactions can

be described through atoms’ interactions with their local chemical

environments;

2. Developing a new type of descriptor with translational, rotational

and permutational invariance;

3. Utilizing active learning to construct training sets in high-dimensional

configuration spaces.

A crucial advancement was moving away from using a single neural-

network forward-pass for the global potential energy surface (PES). Instead,

the approach now exploits the locality of atomic interaction energies, which

has proven surprisingly effective for many systems. This locality approxi-

mation, introduced by Behler and Parrinello in 2007 [16], has since become

the foundation for many modern ML approaches. Under this framework,

the potential energy is expressed as a sum of atomic energy contributions

E =
N∑
i=1

Ei (4.2)

where N the number of atoms of the same species (this network model

supports one chemical element only). The resulting energy is often referred
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to as “short-range” because every Ei is obtained as a function of the inter-

action between the central atom i and all its neighbours within a certain

cutoff radius Rc, regardless of the physical nature of these interactions.

While truncating atomic interactions beyond the cutoff is a significant

approximation, cutoffs between 6 and 10 Å often prove sufficient for many

systems, yielding reliable potential-energy surfaces with total energy errors

of only a few meV/atom.

After defining interacting atoms via a cutoff radius, the next crucial step is

converting structural information into suitable input for the neural network

potential. This was achieved by introducing atom-centered symmetry func-

tions (ACSFs) [9], a new type of descriptor that enabled the construction

of machine learning PESs that precisely adhere to translational, rotational,

and permutational invariance conditions for any system. By combining the

locality approximation with ACSF descriptors, a separate, neural forward-

pass can be used for each atom in the system to express atomic energy

contributions.

The process for each atom i begins with its Cartesian coordinate position

vector Ri . These coordinates are transformed into a vector of symme-

try function values Gi (see later for full details), which depends on the

Cartesian coordinates of all neighboring atoms within the atomic cutoff
sphere. This atomic symmetry function vector serves as input for an atomic

forward-pass in the network.

Because of their inherent architecture these “second-generation” NNPs [12]

are applicable to systems with any number of atoms. Adding or removing

an atom simply involves including or deleting the corresponding neural

pass in the scheme. This overcomes the limitation of most first-generation

NNPs to systems with a fixed number of atoms, allowing for training

on structures with varying atom counts and application to much larger

systems than those used for the weights determination.
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This scheme also achieves exact permutation invariance for two reasons:

(i) the sum of atomic energies Ei in Equation 4.2 is independent of atom

order; (ii) as will be further discussed, the ACSF input vectors are invariant

to the order of the neighboring atoms.

After this discussion on the total energy expression, we now focus on

another key step in constructing HDNNPs: selecting descriptors for the

inputs. Today, numerous choices are available, each with its own strengths

and weaknesses. They include: Smooth Overlap of Atomic Positions

(SOAP) [7], Coulomb matrix [113], Spherical harmonics-based descrip-

tors [68], Faber-Christensen-Huang-Lilienfeld (FCHL) descriptors [28, 27],

Bag of bonds [55], Many-Body Tensor Representation (MBTR) [64] and

Polynomials in moment tensor potentials [117] and the above mentioned

ACSF. While a comprehensive is beyond the scope of this thesis, various

comparisons can be found in the literature [141].

The primary challenge in developing suitable inputs for high-dimensional

systems has been meeting the mandatory invariances of the potential en-

ergy surface. These invariances include:

1. Translational invariance;

2. Rotational invariance;

3. Permutational invariance, i.e. the one pertaining the order in which

atoms are indexed.

This challenge arises because NNPs process numbers, and changes in input

numbers alter output energies. This becomes problematic when numerical

changes in input don’t correspond to physically meaningful structural

changes in the system. For example, many common coordinates, particu-

larly Cartesian coordinates, often lack physical meaning in their absolute

values: translating or rotating a rigid molecule in vacuum doesn’t change
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relative atomic positions, so the energy should remain constant; however,

Cartesian coordinate values would change, making them unsuitable as

input for ML potentials.

A straightforward solution for translational and rotational invariance in

descriptor-based methods would be using internal coordinates (interatomic

distances, angles, dihedrals, . . . ), as successfully employed in classical force

fields [128]. However, this solution only partially addresses the permuta-

tional invariance requirement, working well for simple force fields but not

for many-body potentials like ML algorithms that couple all coordinates

in a single functional expression. Moreover, neural networks require a

fixed-size input vector, making the use of internal coordinates for variable

numbers of atoms particularly challenging.

Again in 2007 from Behler and Parrinello, atom-centered symmetry func-

tions (ACSFs) were introduced as a new class of descriptors to address these

issues [16, 9]. ACSFs describe the positions of atoms surrounding a central

atom within a defined cutoff radius Rc. This cutoff approach effectively

reduces the complexity of atomic environments to the positions of nearby

atoms, enabling the use of the energy expression in Equation 4.2.

The cutoff function fc(Rij), where Rij represents the distance between

the central atom i and a neighboring atom j, can take various functional

forms [9, 120]. However, certain criteria must be met: the function must

be differentiable and decay smoothly to zero in value, slope and preferably

higher derivatives at the cutoff radius. This smooth decay is crucial to avoid

discontinuities in energy and its gradients when atoms enter or leave the

cutoff spheres e.g. during molecular dynamics simulations. A commonly

used cutoff function is the monotonously decaying portion of the cosine

function [16] shown in Figure 4.2:

fC(Rij) =


1
2 cos

(
π
Rij
Rc

)
+ 1

2 if Rij ≤ Rc
0 if Rij > Rc

(4.3)
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Figure 4.2: Monotonously decaying cosine cutoff function.

It has continuous values and slope at the cutoff radius. Also expressions

based on hyperbolic tangents, exponentials or polynomials had been pro-

posed [9, 120].

The next phase involves describing the positions of nearby atoms within

the cutoff sphere. This is accomplished using two categories of symmetry

functions: "radial" and "angular" ACSFs. They depend on the positions

of all neighboring atoms within the cutoff sphere making them many-

body functions, although they effectively consist of numerous two- and

three-body terms.

Various functional forms are available for each type [9, 10]. These functions

must meet several criteria: (i) they should decrease in value for distant

neighbors near the cutoff radius, reflecting diminishing physical interaction

and facilitating HDNNP representation; (ii) they need to differentiate

different structures; (iii) the number of symmetry functions describing

an atomic environment must remain constant regardless of changes in
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atomic coordination during simulations, as neural networks require fixed

input dimensionality.

The most common radial function is a sum of Gaussian and cutoff function

products for all atoms within a cutoff sphere:

Gil(η,R0) =
all atoms∑
j,i

e−η(Rij−R0)2
fc(Rij) (4.4)

Using a Gaussian instead of the direct distance Rij between the central atom

i and neighbor j, combined with the cutoff function, ensures the required

decay to zero in both value and slope at the cutoff radius. Summing the

Gaussian functions of all neighboring atoms condenses the information

into a single function value, independent of the number of atoms inside of

the neighbours’ sphere. The parameter η determines the effective spatial

range of the radial function, while the maximum range is set by the cutoff
radius. An optional shift parameter R0 can be used to move the center

of the Gaussians to a specific distance from the central atom. Figure 4.3

shows plots of the radial function from Equation 4.4 for both unshifted (a)

and shifted (b) cases, with varying values of η and R0 respectively. Using

a set of these functions with different combinations of parameter values

ensures good radial resolution.

All the real-values Gil(η,R0) functions obtained by varying the (η,R0) hyper-

parameters are then concatenated to form the final Gi vector, which is

the radial ACSF input of the neural model for the atom i. This meets the

requirement for a fixed input vector size in atomic neural networks.

Radial functions alone are insufficient to differentiate between certain dis-

tinct atomic environments. For instance, they cannot distinguish between

a tetrahedral coordination and a square planar one if all neighboring atoms

are equidistant from the central atom. To address this limitation, angular
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(a)

(b)

Figure 4.3: Behaviour of the Gaussian in Equation 4.4 varying (a) the
inverse of the variance η and (b) the center R0.

functions are introduced.
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The most frequently used angular ACSF is expressed as:

H i
l(ζ,λ,η,R0) = 21−ζ

all pairs∑
j<k,i

(1 +λcosθijk)
ζ e
−η(R2

ij+R
2
ik+R2

jk) ×

× fc(Rij) fc(Rik) fc(Rjk) (4.5)

In this equation, θijk represents the angle formed between the vectors

connecting the central atom i to its neighbors j and k. For simpler atomic

environments, the Gaussian term typically uses η = 1. However, for more

complex environments, multiple shells of angular functions can be created

by employing different η values. Angular resolution is achieved by using a

set of different ζ exponents, while the 21−ζ serves as a normalization factor.

The λ parameter, which can be either +1 or −1, is used to center the cosine

term maxima at either θijk = 0◦ or θijk = 180◦ respectively.

In Equation 4.5, using all three pairwise cutoff functions for Rij , Rik, and

Rjk ensures that only terms where all three distances are smaller than the

cutoff radius contribute to the sum over all angles. This typically results

in angular functions having a substantial number of terms less than one,

leading to a smaller range of function values compared to radial functions.

Consequently, it’s common practice to rescale each symmetry function’s

value range to the interval [0,1].

An alternative, less restrictive angular function can also be used:

H i
l(ζ,λ,η,R0) = 21−ζ

all pairs∑
j<k,i

(1 +λcosθijk)
ζ e−η(R2

ij+R
2
ik) ×

× fc(Rij) fc(Rik) (4.6)

This function includes a larger number of angle terms by removing the

Rjk ≤ Rc restriction. This allows for a more comprehensive description of

the angular environment, potentially capturing subtler structural features.
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As before, all the real values H i
l(ζ,λ,η,R0) obtained by varying the correspond-

ing hyper-parameters are then concatenated to form the final Hi vector, i.e.
the angular ACSF input of the neural model for the atom i.

Equation 4.2’s energy expression allows for the calculation of analytic

derivatives, which are essential for determining atomic forces in applica-

tions like molecular dynamics simulations or geometry optimizations. The

force component Fiα acting on atom i in direction α (where α can typically

be x, y or z) as usual is the negative derivative of E with respect to the

coordinate Riα:

Fiα = − ∂E
∂Riα

= −
N∑
i=1

∂Ei
∂Riα

(4.7)

The chain rule has to be employed in order to take into account the transfor-

mation from Cartesian coordinates to atom-centered symmetry functions.

As a result, we will have a first set of derivatives (atomic energy with respect

to symmetry functions) determined by the atomic neural networks’ archi-

tecture and a second set (symmetry functions with respect to Cartesian

coordinates) defined by the functional forms of the ACSFs. This approach

also allows for analytic calculation of other gradient-related properties,

such as the stress tensor [9] and the Hessian.

The relationship between E and Fiα in Equation 4.7 is exact, ensuring

consistency between energies and forces. This has interesting implications

for the environment-dependence of forces [11], as illustrated in Figure 4.4:

in fact, while atomic energies only depend on neighboring atom positions

within the cutoff radius, forces depend on the atomic energies of all atoms

within this radius; thus, since these atomic energies depend on their own

local environments, forces can effectively be influenced by atom positions

up to twice the cutoff radius around the central atom i.

It is worth repeating that in HDNNPs atomic forces are not obtained as

independent additional output neurons. Thus, being them calculated
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Figure 4.4: While atomic energies only depend on neighboring atom po-
sitions within the cutoff radius, forces depend on the atomic energies of
all atoms within this radius; thus, since these atomic energies depend on
their own local environments, forces can effectively be influenced by atom
positions up to twice the cutoff radius around the central atom i.
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as analytic derivatives of the energy, they depend on the same weight

parameters of the atomic energy contributions. As will be discussed, this

dependence allows for the use of force components, in addition to energies,

during the network’s training.

4.2 ANAKIN

Within this category of feed-forward neural networks, ANAKIN [121, 122,

38] stands out as a notable example. Developed by Smith et al., this

method continues to serve as a significant benchmark for machine learning

potentials in this class, as acknowledged by various researchers [103, 78].

ANAKIN’s importance stems from its efficient, versatile design trained on

an extensive dataset of millions of molecules in non-equilibrium states,

encompassing H, C, N, O, F, S, and Cl atoms. Furthermore, it forms the

foundation for numerous contemporary feed-forward networks [12, 124]

and, consequently, any enhancements to this approach could potentially

benefit related methodologies.

Figure 4.5 illustrates the computational graph of the ANAKIN architecture.

The model is a significant enrichment of the previously discussed Beheler

and Parrinello network model. One of the most relevant differences is that

now the network can deal with many elements types hence is a universal

approximator. To support this flexibility several network changes are

necessary. Again the model calculates an “atomic energy” for each atom,

which represents that same atom’s contribution to the system’s global

energy based on its local environment. However this time one has a distinct

network for each element type. These atomic energies are then summed

to predict the total molecular energy. The architecture comprises three

main components: (i) the Atomic Environment Vectors (AEVs) Computer, a

non-learnable featurizer; (ii) the elemental MLPs block, which determines

the atomic energies; (iii) the polynomial self-energies block, which applies
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Figure 4.5: The ANAKIN computational graph.
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a constant shift to each atomic energy based on the atom type, facilitating

the learning process of the MLPs.

The AEV Computer takes as input a pair of sets containing the coordinates

and the chemical identities of every atoms in the molecule. It outputs a

set of AEVs, each describing the local environment of the relative atom.

Figure 4.6 shows an example AEV for the i-th atom in a dataset containing

only H, C, N, and O.

The AEV of the i-th atom consists of two parts: radial and angular. The

radial part encodes 2-body information for all atom pairs including the

central atom i employing the following, atom type enriched ACSF:

Gil(η,R0,Φ) =
all Φ atoms∑

j,i

exp(−η(Rij −R0)2) fC(Rij) . (4.8)

Here, Φ represents a chemical species, Rij is the distance between atoms

i and j and η and R0 are the hyperparameters discussed in the previous

section. Since the above radial function can’t differentiate between different

chemical elements in the neighborhood, a separate set of radial functions

is created for each chemical species in the system represented by the Φ

parameter. As a result, the number of radial functions for a given central

atom increases linearly with the number of chemical species in the system.

fC(Rij) is the monotonously decaying portion of the cosine function dis-

cussed in Equation 4.3. Albeit already discussed we report it also here for

the sake of completeness:

fC(R) =


1
2 cos

(
πR
RC

)
+ 1

2 if R ≤ RC
0 if R > RC

. (4.9)

The angular part encodes 3-body information for all triplets including the
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Figure 4.6: Illustration of an ANAKIN atomic environment vector for a
dataset containing only H, C, N and O.
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Table 4.1: Architecture details of the ANAKIN Elemental MLPs.

Layer 1 Layer 2 Layer 3 Layer 4
Hydrogen

Nodes 256 192 160 1
Activation CELU CELU CELU Linear

Regularization L2 (5.0E-3) L2 (1.0E-6) L2 (1.0E-6) None
Carbon

Nodes 224 192 160 1
Activation CELU CELU CELU Linear

Regularization L2 (5.0E-3) L2 (1.0E-6) L2 (1.0E-6) None
Nitrogen/Oxygen

Nodes 192 160 128 1
Activation CELU CELU CELU Linear

Regularization L2 (5.0E-3) L2 (1.0E-6) L2 (1.0E-6) None
Sulfur/Fluorine/Chlorine

Nodes 160 128 96 1
Activation CELU CELU CELU Linear

Regularization L2 (5.0E-3) L2 (1.0E-6) L2 (1.0E-6) None

central atom i. It uses a more complex ACSF:

H i
l(ζ,θ0,η,R0,Φ ,Λ) = 21−ζ

all ΦΛ pairs∑
j<k,i

(1 + cos(θi −θ0))ζ ×

× exp
[
− η

(
Rij +Rik

2
−R0

)2]
×

× fC(Rij)fC(Rik) (4.10)

where Φ ,Λ denote atom types. Analogously to the previous section, the

final AEV is the concatenation of the radial and angular scalar values

obtained with different combinations of the hyperparameters, as shown

in Figure 4.6. This representation ensures rotational, translational, and

axis-inversion invariance, as well as independence from atom ordering.

The Elemental MLPs block maps each AEV to its corresponding atomic
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energy. It consists of one multi-layer perceptron (MLP) for each chemical

element in the dataset, with architectures detailed in Table 4.1. The atomic

energy for each of the N atoms is computed by passing its AEV through

the appropriate MLP based on the atom’s type.

The final step involves computing atomic “self-energies”, which can be

interpreted as 1-body contributions of each atom interacting with itself.

For this purpose ANAKIN employs a polynomial model fitted indepen-

dently of the Elemental MLPs’ training process. Despite its simplicity,

this component is crucial, as approximately 99% of the energy in most

molecular conformations comes from individual atomic self-energies [43].

Thus, incorporating this precomputed model facilitates a smoother training

process for the neural network block.

The total molecular energy is obtained by summing the atomic energies

from the MLPs and the polynomial self-energies. This scalar value pre-

serves all the required invariances mentioned during our discussion.

4.3 Long-range and non-local interactions

Limiting the per-atom energy estimation to a cutoff sphere around it, as

done often in neural network potentials, implicitly assumes that the ener-

getic of the system is dominated by local interactions. However it is well

known that in molecular systems long-range interactions such as electro-

statics and dispersion forces are important factors. In fact, electrostatic

interactions have been included and are crucial in classical atomistic po-

tentials force fields, which typically use fixed partial charges for each atom

types [31, 3, 93, 109]. Including long-range electrostatics in ML potentials

too is relevant for various reasons, including the incorporation of physically

meaningful energy terms via Coulomb’s law thus improving the reliability

of these models.
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As a result, these efforts led the community to try to express partial charges

and higher multipole moments using neural networks [35, 54], starting the

so-called “third-generation” HDNNPs’ era, which use learnt, environment-

dependent atomic charges to compute long-range electrostatic interactions

explicitly. The first third-generation HDNNP was published in 2012, with

applications to zinc oxide [5] and water dimers [94]. These potentials use a

second set of atomic neural networks to express environment-dependent

charges, which are then used to calculate long-range electrostatic energy

without truncation.

The previous approach is insufficient when long-range charge transfer oc-

curs. In such cases, an atom’s charge may depend on structural or electronic

changes far beyond its local environment. Additionally, different ionization

states can globally alter charge distribution, which methods based solely

on local structural information cannot distinguish [37, 99, 76].

Charge equilibration methods [135], long used in advanced force fields like

ReaxFF [131] and approximate electronic structure methods like DFTB [44],

had offered a potential solution to the long-range charge transfer challenge.

From them, an example of “fourth-generation” high-dimensional neural

network potential dubbed 4G-HDNNP has been developed [76], combining

the advantages of second-generation HDNNPs and the charge equilibration

neural network technique (CENT) proposed by Goedecker and co-workers

in 2015 [49, 45]. The total energy in 4G-HDNNPs is calculated as the

sum of a short-range component and a long-range electrostatic one, using

a method that differs from third-generation HDNNPs: the electrostatic

energy is derived from charges obtained through a charge equilibration

process, which relies on environment-dependent electronegativities ex-

pressed by atomic neural networks; these electronegativities are designed

to reproduce reference Hirshfeld charges [57] from DFT calculations, rather

than aiming to minimize electrostatic energy. As a result, these charges

contain information about the global electronic structure, allowing both

electrostatic and short-range energies to adapt consistently to charge den-
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sity redistributions.

With a final note we underline that, as also remarked by other authors [12],

despite these third- and fourth-generation HDNNPs models are the most

advanced ones, often they are not the main choice for nowadays, practical

routine. This is due primarily to the fact that contributions beyond the

cutoff are often effectively screened in many systems, particularly con-

densed ones. The result is a potential energy error reduction of a few

meV/atom that is not worth the increased computational cost for training

and inference.

The above mentioned techniques are not the only ones usable to incor-

porate long range interactions. A further, indirect way to include these

interactions is given by message passing techniques [50] implemented in

systems such as AIMNet [139, 140, 4]. These methods involve iterative

information transfer from one atom to another throughout the system, thus

extending the effective range of representations and interactions along with

the number of information passing steps included. From this point of view,

when covering interactions with only a few nearby neighbor shells, they

resemble second-generation high-dimensional neural network potentials

(HDNNPs). At the other extreme, with an infinite number of informa-

tion passing steps encompassing the entire system globally, they approach

fourth-generation HDNNPs.

We will detail in the concluding parts of this thesis how OBIWAN [90], our

newly proposed method, could benefit from message passing modules in

cases where the interactions’ landscape is too complex for a short-range

only description, paving the way for further accuracy enhancements.



Chapter 5

Introducing OBIWAN

ANAKIN proved to be a largely successful and efficient network, yet it

presents some possible limitations. Its primary constraint lies in the length

of its Atomic Environment Vectors (AEVs), which serve as input to the

neural component of the model. The AEV length grows quadratically with

the number of species in the dataset due to the computation of angular

components. This leads to significant computational demands even with

fewer than a dozen elements, considering that the parameter count in the

initial layers of the elemental MLPs is tied to the number of input features.

Furthermore, incorporating new chemcal elements necessitates adding a

new elemental MLP and retraining all the others from scratch, highlighting

ANAKIN’s inherent inability to leverage previously acquired chemical and

physical knowledge.

It’s worth noting that these limitations also constitute ANAKIN’s strengths

and the source of its expressiveness: the resulting representation of input

molecules allows for precise learning of various potential energy surfaces.

OBIWAN [90], our newly proposed architecture, was conceived as an op-

timal compromise between the aforementioned effectiveness, portability,

57
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and generality.

In the existing literature, the approach most comparable to OBIWAN is the

one published by Gastegger et al. [47], which we refer to as the W-ANAKIN

model. Aiming to eliminate the quadratic scaling of the original ANAKIN’s

input length, the authors reformulated the AEV computation procedure

using a "weighted" ACSF expression. The equation for the radial part

becomes

Gil(η,R0) =
all atoms∑
j,i

zj exp(−η(Rij −R0)2)fC(Rij) (5.1)

while the angular part is given by

H i
l(ζ,λ,η,R0) = 21−ζ

all pairs∑
j<k,i

zjzk (1 +λcos(θi))
ζ exp(−η(Rij −R0)2) ×

× exp(−η(Rik −R0)2) exp(−η(Rjk −R0)2) ×

× fC(Rij) fC(Rik) fC(Rjk) (5.2)

where zjand zk represent atomic numbers. The key distinction from

ANAKIN is that these formulas are no longer element-specific, with sum-

mation now performed over all atoms (or atom pairs) in the vicinity. Es-

sentially, all ANAKIN AEV components associated with different species

are condensed into a single scalar, attempting to preserve chemical infor-

mation by weighting each addend j with the atomic number zj for the

radial part and each addend jk with the product of atomic numbers zjzk for

the angular part. Environmental sensing remains controlled solely by the

symmetry functions’ hyper-parameters, effectively creating an AEV whose

length is independent of the number of species in the dataset. Each AEV

undergoes a z-score transformation before being input into the Elemental

MLPs, ensuring all descriptors have a mean of 0 and a standard deviation

of 1.

As noted by Rostami and colleagues [111], the original W-ANAKIN pa-
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per [47] provides limited evidence of the approach’s accuracy, given that

the authors train and test the model on only a few tens of thousands of

structures in their equilibrium states. Moreover, as will be demonstrated

in Section 5.2, the fact that Equation 5.2 is nearly a direct application of

the original Behler and Parrinello angular symmetry function [16] rather

than the ANAKIN version leads to a decline in the algorithm’s general-

ization capability. Thus, for fairness, our tests also considered a modified

W-ANAKIN model, termed W-ANAKIN-OE, which reinstates the ANAKIN-

optimized angular function. The W-ANAKIN-OE angular AEV expression

is therefore:

H i,OE
l(ζ,θ0,η,R0) = 21−ζ

all pairs∑
j<k,i

zjzk (1 + cos(θi −θ0))ζ ×

× exp
[
− η

(
Rij +Rik

2
−R0

)2]
×

× fC(Rij) fC(Rik) (5.3)

The radial symmetry function employed by W-ANAKIN-OE remains iden-

tical to that of W-ANAKIN.

5.1 Architecture

To address the limitations of the ANAKIN framework mentioned earlier,

we replaced its deterministic symmetry functions with fully learnable

components. We collectively named the resulting, enhanced AEVs as Deep

Atomic Environment Vectors (DeepAEVs). This modification allowed us

to train a single MLP for atomic energy inference, ultimately creating an

architecture whose structure is independent of the chemical species present

in the dataset. We named this approach OBIWAN [90].

Figure 5.1 illustrates the computational graph of our proposed model. In
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Figure 5.1: The OBIWAN computational graph.
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the following, we will elaborate on the DeepAEVs, the single MLP for

energies, and the self-energies strategy we adopted.

Deep Atomic Environment Vectors

For representing the input molecule, we maintain ANAKIN’s efficient

atomic neighbourhood scanning procedure and combine it with W-ANAKIN’s

global sum. For each atom i, its set of neighbours (or pairs of neighbours) is

mapped to a new set of vectors; these vectors are then summed to obtain the

AEV, which ultimately represents the featurized information of atom i and

its neighbourhood. This process requires two key decisions: (i) selecting

the geometric/physical observables used to construct the AEVs (e.g., atomic

distances and angles for ANAKIN); (ii) defining the mapping function

applied to these observables to obtain the values for the sum-reduction

(e.g., the radial and angular ACSFs for ANAKIN).

For the radial component of our DeepAEVs, we use distances and atomic

numbers as observables. We identified each neighbour atom j by its dis-

tance Rij from the central atom i along with the atomic number zj of the

former. We also included the atomic number zi of the central atom in each

neighbour representation, providing every DeepAEV with knowledge of

its center (unlike ANAKIN’s center-agnostic AEVs). Thus, each neighbour

j is represented by the set {Rij , zi , zj }.

To transform these sets into an expressive feature space, we employ a ded-

icated MLP, denoted as M⃗rad. Since we’re dealing with sets, we need to

convert them into vectors before inputting them into M⃗rad. However, we

wanted this conversion to be independent of any prescribed ordering to

completely maintain the atoms’ indices invariance required by neural net-

work potentials: although one could order these three numbers by always

placing the geometrical feature Rij before the atomic numbers, deciding
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an order for zi and zj remains an issue, because one could always place

zi before zj , but we aimed to represent the sub-system ij in a way that is

independent of the choice of the central atom, resulting in a representation

that is consistent across all AEVs to introduce an invariance that can aid

M⃗rad in its fitting process. Thus, instead of imposing an arbitrary order, we

performed an explicit set-to-vector conversion. We achieved this by intro-

ducing a new layer, leveraging the bijective relationship between the zeros

x1, . . . ,xn (atomic numbers in our case) of an n-grade monic polynomial

P (x) and the ordered set of its coefficients an−1, . . . , a0 (our desired vector).

Given the polynomial expression:

P (x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 (5.4)

all the an−1, . . . , a0 can be analytically computed using the Viète-Girard

formulas, of which some examples are:

an−1 = −(x1 + x2 + · · ·+ xn)

an−2 = (x1x2 + x1x3 + · · ·+ x1xn) + (x2x3 + x2x4 + · · ·+ x2xn) + · · ·+ xn−1xn

· · ·

a0 = (−1)n(x1x2 · · ·xn) (5.5)

or more generally

an−k = (−1)k
∑

1≤i1<i2<···<ik≤n
xi1xi2 · · ·xik . (5.6)

For the radial part G⃗irad of our DeepAEV, we need these formulas up to the

second order because we are considering a polynomial with only two zeros:

zi and zj . Thus, denoting V⃗ as the function that performs the Viète-Girard

set-to-vector mapping and using
∣∣∣ to represent the concatenation operation,

we have:

G⃗irad =
all atoms∑
j,i

M⃗rad

(
Rij

∣∣∣ V⃗ ({zi , zj })
)
fC(Rij) (5.7)
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Figure 5.2: The radial part of our DeepAEV computing procedure.

with

V⃗ ({zi , zj }) = (zi + zj)
∣∣∣ (zi ∗ zj) (5.8)

Figure 5.2 illustrates the radial part of our DeepAEV computation proce-

dure, including the architectural details of M⃗rad with its main hyperparam-

eters and residual connections [56]. For the cutoff smoothing operation, we

retain the monotonic cosine function employed in ANAKIN.

The angular part H⃗ i
ang of our DeepAEVs follows a similar strategy. To rep-

resent the unordered pairs of atoms jk in the neighbourhood of i, including

information relative to the center, we consider the three triangle sides

Rij , Rik and Rjk as geometrical features and zi , zj and zk as chemical ones.
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However, while V⃗ can be directly used for the radial part, care must be

taken here to preserve the association of each atom to its triangle vertex. To

address this, we pair each atomic number zi with its corresponding angle

θi , interpreting the pair (zi ,θi) as the real and imaginary parts of a com-

plex number, which can still serve as a root of a polynomial. Viète-Girard

formulas apply to any polynomial with coefficients in a commutative ring,

so this generalization poses no problem for our procedure. Naturally, a set

of n complex numbers will be mapped to a complex-valued vector by our

V⃗ function, resulting in 2n real features for our mapping function.

Employing a new MLP M⃗ang for the high-dimensional projection of the

angular part H⃗ i
ang of our DeepAEV, we have:

H⃗ i
ang =

all pairs∑
j<k,i

M⃗ang

(
V⃗ ({Rij ,Rik ,Rjk })

∣∣∣ V⃗ ({zi + Iθi , zj + Iθj , zk + Iθk })
)
×

× fC(Rij) fC(Rik) (5.9)

where I is the imaginary unit. The V⃗ evaluations are more complex here,

so we’ve chosen not to report them; they can be found in the carefully

commented GitHub repo cited in Chapter 6.

Figure 5.3 illustrates the angular part of our DeepAEV computation proce-

dure, including the architectural details of M⃗ang with its main hyperparam-

eters and residual connections [56]. For the cutoff smoothing operation, we

retain the monotonic cosine function employed in ANAKIN. Additionally,

we also employed just a “double cutoff"” as in ANAKIN because we found

it effectively leads to better performance.

Finally, each radial and angular part of the DeepAEV is independently

divided by its norm before the usual concatenation that forms the actual

environment vector. This final operation is crucial as it confines the vector

coefficients (originally too large due to the summation over all neighbours)



5.1. ARCHITECTURE 65

Figure 5.3: The angular part of our DeepAEV computing procedure.
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to a numeric interval suitable for the subsequent MLP forward pass. It’s

worth noting that our implementation of the V⃗ preprocessing function

performs a similar rescaling operation, normalizing the resulting vector

in a Group Normalization fashion [136] before passing it as input to M⃗rad

and M⃗ang.

All DeepAEV computations are a function of interatomic distances and

angles only, thus maintaining all the geometrical invariance properties of

ANAKIN necessary for a neural network potential. Moreover, thanks to

our newly introduced Viète-Girard layer, the model remains invariant to

the permutation of atom indices too.

Single MLP

At this stage of the pipeline, we have one AEV per atom, similar to ANAKIN.

However, the key difference is that each vector now contains information

about the chemical identity of the central atom i as well. This allows us to

deploy just a single MLP for atomic energy inference, reducing ANAKIN’s

elemental forward passes to only one shared module.

As we will demonstrate in Section 5.2, thanks also to this single MLP

OBIWAN results in an architecture that is completely independent of

the chemical species present in the dataset. This allows the end user

to leverage past chemical knowledge in new training routines involving

unseen elements without the need to add blocks and restart training from

scratch each time.
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Coupled-cluster self-energies

As mentioned earlier, accurate energy estimation requires consideration

of one-body contributions (“self-energies”) as well. This component is

crucial in both training and inference as it constitutes the major part of

the final molecular energy. While ANAKIN obtained these components

from a data-dependent, learned polynomial, we opted for a more physi-

cally accurate approach. Following the procedure employed by Plé and

colleagues [103], we evaluate the one-body contributions using CCSD(T)

isolated atom energies. Specifically, we used the values tabulated in the

work of Ranasinghe et al. [108]

Consequently, in our approach, adding a new element to the network

simply involves retrieving (or computing) the corresponding CCSD(T)

value once and for all. This differs significantly from the ANAKIN approach

where adding a new element would not only require retraining the neural

model from scratch, as previously mentioned, but would also necessitate

retraining (and possibly changing the grade of) the polynomial for the

self-energies.

5.2 Results

This section presents the OBIWAN [90] model’s performance across four

distinct scenarios:

1. A comparative analysis of OBIWAN against ANAKIN and W-ANAKIN

using the 5 million configurations dataset ani2x [38].

2. An evaluation of OBIWAN on the comprehensive test set COMP6v2 [38,

122], following an extensive force-training process on the 10 million
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configurations dataset resulting from the combination of ani1x [122,

123] and ani2x.

3. A validation of OBIWAN’s capabilities in dihedral scanning and

molecular dynamics.

4. An assessment of OBIWAN’s ability to leverage previously acquired

knowledge for efficient training on new elements, utilizing the re-

cently released drugs and peptides dataset SPICE [43].

We begin by describing the aforementioned datasets, followed by the

specifics of the employed architectures and training configurations. The

final subsection presents our findings.

5.2.1 Datasets

The primary challenge in developing truly general and transferable neu-

ral network potentials is the scarcity of high-quality training data [43].

This limitation can lead to models that perform well within their specific

chemical domain but struggle with broader, real-world scenarios involving

numerous molecules and conformations. To fully realize the potential

of machine learning in producing accurate and transferable forces and

energies, training and validation datasets should adhere to the following

key criteria [43]:

• Extensive chemical space coverage, encompassing a wide range of

elements and bond types, resulting in diverse compounds;

• Broad conformational space representation, including off-equilibrium

structures necessary for molecular dynamics simulations;

• Inclusion of both forces and energies as labels, providing atomic-level

information [100] for models with atom-wise outputs;
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• Utilization of the highest computationally feasible level of theory.

The datasets used to train the models in this thesis exemplify the aforesaid

best practices and their main characteristics are listed below.

ani1x: An actively-learned dataset developed for early versions of ANAKIN [122,

123]. It contains:

• Molecules with H, C, N, and O atoms;

• 63,865 distinct configurations in 4,956,005 total 3D conformations;

• Labels for energy and forces;

• Computations using the wb97x DFT functional and 6-31g* basis set.

ani2x: An extension of ani1x using similar active learning techniques [38].

It features:

• Molecules with H, C, N, O, F, S, and Cl atoms;

• 13,405 distinct configurations in 4,695,707 total 3D conformations;

• Labels for energy and forces;

• Computations using the wb97x DFT functional and 6-31g* basis set.

COMP6v2: A comprehensive benchmark suite for assessing the transfer-

ability of general machine learning potentials [122, 38]. It comprises:

• Molecules with H, C, N, O, F, S, and Cl atoms;

• 8,247 distinct configurations in 157,728 total conformations;
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• Labels for energy and forces;

• Computations using the wb97x DFT functional and 6-31g* basis set.

SPICE: A quantum chemistry dataset for simulating drug-like small molecules

interacting with proteins [43]. The subset used in this study, “PubChem”,

includes:

• Structures with H, C, N, O, F, P, S, Cl, Br, and I atoms;

• 12,962 distinct configurations in 627,692 total conformations;

• Labels for energy and forces;

• Computations using the wB97M-D3(BJ) DFT functional and def2-

TZVPPD basis set.

It’s important to note that the ani1x and ani2x datasets, extensively used

in our experiments, were developed through active learning cycles specif-

ically optimized for the ANAKIN architecture [122, 123]. Consequently,

OBIWAN’s accuracy levels should be interpreted as both a validation of

the effectiveness of this training technique and a lower bound of what

OBIWAN could achieve with an active learning strategy tailored to it.

5.2.2 Models details

Our experiments incorporates three neural network potential architectures:

1. ANAKIN [121, 122, 38]: The starting model from which ours evolved;

2. W-ANAKIN [47]: To our knowledge, the most successful attempt in

our same direction (including two enhanced versions developed by

us);
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3. OBIWAN: Our candidate model.

The architectural specifics for each are as follows:

ANAKIN: Re-implemented in TensorFlow [129], our ANAKIN model fea-

tures:

• 112 radial and 896 angular AEV components, yielding a 1008-length

concatenated AEV;

• Cutoff values: 5.1 Angstrom (radial) and 3.5 Angstrom (angular);

• Elemental MLPs: One feed-forward neural network per species, with

layer and neuron counts as per Table 4.1;

• 1,713,223 trainable parameters.

AEV coefficients (η, ζ, etc.) and relevant self-energies are available in our

GitHub repository [91].

W-ANAKIN: We developed three variants:

1. Original W-ANAKIN:

• 26 radial and 6 angular AEV components;

• Cutoff values aligned with ANAKIN for fair comparison;

• Elemental MLP architectures matching ANAKIN (Table 4.1);

• 401,479 trainable parameters.

2. W-ANAKIN-OE:

• Incorporates symmetry functions from Roitberg et al. [121];

• 422,983 trainable parameters.
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3. W-ANAKIN-OE-FULL:

• Input AEVs’ length matching the OBIWAN DeepAEVs’ length;

• Enlarged Elemental MLPs;

• 1,715,825 trainable parameters (for a fair comparison).

Detailed specifications for all variants are available in our GitHub reposi-

tory [91].

OBIWAN: Our candidate model:

• DeepAEV computation as per Figures 5.2 and 5.3;

• 128 radial and 256 angular components, yielding 384-length Deep-

AEVs;

• M⃗rad and M⃗ang: 29,376 and 58,624 neurons respectively (88,000 total

learnable featurizer parameters);

• ANAKIN cutoff values for fair comparison;

• Single MLP: Dense layers [1024, 768, 512, 256, 1] with CELU hidden

activations and linear output (1,706,753 parameters);

• CCSD(T) self-energies from Ranasinghe et al. [108];

• 1,794,753 total trainable parameters.

5.2.3 Training protocol

Our experiments utilized a consistent objective function across all models,

mirroring the original ANAKIN approach. This function combines “nor-

malized” energy and forces losses. For a given molecular configuration xk,
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with atom i and coordinate j, let Ê(xk) and f̂ij(xk) = −∇xk,i,j Ê(xk) represent

predicted energies and forces, while E(xk) and fij(xk) denote QM reference

values. The loss L for each sample is defined as:

L(xk) ≡
(Ê(xk)−E(xk))2

√
Nk

+ w

∑Nk
i=1

∑3
j=1(f̂ij(xk)− fij(xk))2

Nk
(5.10)

where Nk represents the atom count in the molecule and w > 0 balances

energy and forces loss terms during training. The global loss is the mean of

Equation 5.10 across all batch samples, with batch size dynamically scaling

based on GPU count. Forces are estimated analytically via TensorFlow’s

automatic differentiation engine.

For weight updates, we employed the Adam optimizer [74] with default

TensorFlow parameters, except for epsilon that we set equal to 1e-8. The

learning rate’s initial magnitude depended on the GPU count, halving every

20 consecutive epochs without training loss decrease. This schedule ceased

at a learning rate of 1e-5, though training continued until reaching the

desired plateau.

Additional training details include:

• OBIWAN Single MLP and ANAKIN/W-ANAKIN Elemental MLPs:

Hidden layer kernels constrained to a maximum norm of 3.0;

• Hardware: Up to 4 V100 or A100 Nvidia GPUs, depending on cluster

node availability;

• Training duration: Approximately 5-6 weeks on 4 A100s for OBIWAN

on the 9.6M structure training set;

• Dataset split: 80% training, 20% validation.
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Figure 5.4: RMSE progression on the ani2x validation set for OBIWAN and
competing models.

5.2.4 Tests

We conducted an initial experiment to evaluate OBIWAN’s performance

against its theoretical upper bound ANAKIN and its rival W-ANAKIN. As

already said, W-ANAKIN represents the current best attempt that we found

in literature to achieve species-independence remaining in the ANAKIN

framework.

All the aforementioned models were trained on the 4,695,707 energy

values of the ani2x dataset, with the weight w of Equation 5.10 set equal

to 0. Our comparison included not only the original W-ANAKIN [47], but

also two enhanced versions we developed in order to match ANAKIN and
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Figure 5.5: OBIWAN’s training and validation errors on the combined
ani1x and ani2x dataset.

OBIWAN’s representational capabilities. Figure 5.4 displays the resulting

RMSE curves for the validation set.

As expected, OBIWAN surpassed the original W-ANAKIN model, which

was relatively small for this data-rich scenario. Notably, even equipping

W-ANAKIN with OBIWAN’s parameter count and input AEV length did

not bridge the performance gap. Thus, OBIWAN’s result establishes a new

state-of-the-art benchmark for species-independent feed-forward neural

networks in this task domain. It’s also particularly noteworthy that OBI-

WAN’s learned input representation (DeepAEV) is 2.6 times more compact

than ANAKIN’s original input, yet OBIWAN achieves comparable accuracy.
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(a)

(b)

Figure 5.6: (a) ANAKIN and OBIWAN mean errors on the COMP6v2 bench-
mark suite; (b) ANAKIN and OBIWAN median errors on the COMP6v2
benchmark suite.
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Figure 5.7: ANAKIN and OBIWAN error distributions on the COMP6v2
benchmark suite (including outliers).

Figure 5.8: ANAKIN and OBIWAN error distributions on the COMP6v2
benchmark suite (excluding outliers).
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To better compare the out-of-distribution performance of ANAKIN and

OBIWAN we conducted a second experiment. We trained OBIWAN on the

energies and forces of the 9,651,712 structures resulting from the combi-

nation of the ani1x and ani2x datasets, with the weight w in Equation 5.10

set to 0.1 matching ANAKIN’s original works [38, 48]. We then evaluated

this OBIWAN model and the original ANAKIN one (trained on the same

data) over the datasets from the COMP6v2 benchmark suite. Figure 5.5

illustrates OBIWAN’s learning curves on the 9.6M sample dataset, while

Figures 5.6 to 5.8 depict error statistics on the COMP6v2 suite. We ex-

cluded the ANI-MD subset from these experiments, as it comprises frames

from molecular dynamics using ANAKIN as forces’ predictor [122], po-

tentially biasing the results and not accurately reflecting a general NNP

extrapolation performance.

Figure 5.6 (a) shows that OBIWAN matches ANAKIN’s performance in

most energy prediction tasks where ANAKIN is deployable (i.e. when

RMSE < 3kcal/mol). This similarity is particularly evident for the “not

heavy” subsets containing only H, C, N, and O atoms. We hypothesize that

this occurs because only the ani2x dataset includes molecules with F, S, and

Cl atoms. Consequently, the final training set, combination of ani2x and

ani1x, contains more examples of molecules with only H, C, N, and O ele-

ments, allowing OBIWAN’s end-to-end nature to achieve greater accuracy

for these elements. This trend is also visible when comparing DrugBank-

SFCl to DrugBank-testset; the latter, lacking S, F, and Cl elements, shows

slightly better performance.

For a more comprehensive analysis of these error statistics and to further

validate our method, we also plotted the error distributions of OBIWAN

and ANAKIN for each COMP6v2 test subset. Figure 5.7 reveals that both

models exhibit critical outliers (i.e. points beyond 1.5 times the interquartile

range from Q1 or Q3) in nearly identical positions. These few high-error

samples compress the box plots to the chart’s bottom edge, obscuring

finer details. Therefore, Figure 5.8 presents the same box plots without
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Table 5.1: Statistics of the relaxed 2D torsion profiles shown in Figure 5.9.
RMSEs are in kcal/mol, measured relative to DFT.

Molecule num. atoms RMSE OBI RMSE ANI

Cysteine-
Dipeptide

25 3.41 3.15

DDT 28 1.52 0.73

Hexafluoroacetone 10 0.29 0.22

Bendamustine 44 0.95 0.70

outliers, demonstrating similar error distributions across all sets for both

models. Finally, Figure 5.6(b) displays the error medians of OBIWAN

and ANAKIN on the COMP6v2 test subsets. This visualization shows

that both models perform below the 3.0 kcal/mol deployability threshold

when outliers are appropriately weighted, with most errors approaching

chemical accuracy. This aligns with OBIWAN’s satisfactory application

results reported in subsequent paragraphs. It also suggests that both

OBIWAN and ANAKIN might benefit from additional active learning

rounds, or that some structures may have incorrect DFT reference energies.

Recognizing that low error metrics alone are insufficient to demonstrate

a neural network potential’s utility, we further validated OBIWAN em-

pirically by employing it as a force field in two common computational

chemistry tasks: 2D dihedral torsion scanning and molecular dynamics

(MD).

We start deploying OBIWAN to estimate the potential energy surfaces of

the same four small molecules (and dihedrals) examined in the ANI-2x

study [38].

For each system in Table 5.1 and Figure 5.9, we computed the relaxed
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(a)

(b)

(c)

(d)

Figure 5.9: Relaxed 2D torsion profiles for the four small molecules and
dihedrals examined in the ANI-2x study [38]: (a) Cysteine-Dipeptide;
(b) DDT; (c) Hexafluoroacetone; (d) Bendamustine. Columns represent
OBIWAN, ANAKIN, and DFT results.
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2D torsion profile using OBIWAN, ANI-2x, and DFT3 to determine the

relative potential energies for each method. We generated each surface

by rotating two dihedrals in ten-degree increments and optimizing the

resulting geometries with DFT while keeping those dihedrals fixed. Unlike

the ANI-2x paper [38], we did not re-optimize the DFT geometry using

either ANAKIN or OBIWAN for comparison purposes, an approach that

naturally leads to higher ANAKIN errors compared to those reported in

the original ANI-2x manuscript [38].

As shown in Table 5.1, OBIWAN achieves chemical accuracy for the same

two bottom systems as ANAKIN, with a higher error only on the first

molecule, similar to ANAKIN. Our error for DDT is twice that of ANAKIN,

but still well below the 3.0 kcal/mol deployability threshold.

We further explored OBIWAN’s applicability in MD simulations by gen-

erating a system trajectory for the GSK1107112A compound, the same

molecule discussed in the ANAKIN-2 paper [38]. For this purpose, we

developed a minimal TensorFlow MD engine from scratch (released with

the OBIWAN code [91]) and conducted multiple simulations varying the

timestep and the starting tautomeric configuration. For equation inte-

gration, we employed a leap-frog integrator with impulsive Langevin for

temperature control [52]. Following standard procedures, we optimized

the molecule’s geometry, then equilibrated the system by gradually raising

the temperature to 300 K and finally run the simulation for 1 ns. For the

experiment shown in Figure 5.10, we used a 1 fs timestep, larger than

the 0.4 fs employed by Devereux and colleagues in their corresponding

work [38]. The energy values and mean force magnitudes for the last 25

ps are displayed. The simulation remained stable throughout its duration,

even with the 1 fs time step. Our findings align with the ANAKIN-2 and

DFT results reported in the cited work [38] in terms of energy range and

fluctuation.

3data from ANI-2x paper [38]
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Figure 5.10: Energies (shifted to the mean) and mean forces’ magnitudes for
the final 25 ps of a molecular dynamics trajectory at 300 K using OBIWAN
as accelerated force field. The drug ligand GSK1107112A was selected as it
contains all atomic elements (H, C, N, O, S, F, and Cl) considered during
training. Refer to the main text for a detailed description of this result.
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Figure 5.11: Throughput performance comparison of OBIWAN and
ANAKIN. We conducted a series of MD runs on liquid water systems
at 300 K and 1 g/cm3, varying the number of molecules and using a 1
fs timestep. For this test, we used the TensorFlow version of ANAKIN
that we implemented, as using the original PyTorch+CUDA code would
have introduced unfair technological differences. All simulations were
performed on a single A100 GPU. The MACE-OFF23 [78] performance
curve is also included as reference.
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Figure 5.11 presents a comparison of the inference performance between

OBIWAN and ANAKIN on liquid water systems. Our modifications to the

ANAKIN framework did not result in a degradation of its remarkable speed.

It’s also worth noting that we did not invest engineering effort in optimizing

the MD engine code for performance (e.g. with domain decomposition or

Verlet neighbor lists for linear scaling), leaving such production concerns

for future framework developments. Additionally, a comparison with the

recently released MACE-OFF architecture shows comparable performance

despite not using LAMMPS [130], a much more optimized MD code.

OBIWAN’s key feature is its ability to serve as a pre-trained model for

diverse datasets, including those with previously unseen elements. To

demonstrate this capability, we conducted the following experiment.

We trained OBIWAN on the 627,692 energies (⇒ w = 0) of SPICE, which

includes molecules formed by H, C, N, O, F, P, S, Cl, Br, and I atoms. We per-

formed two training runs: the first initializing OBIWAN from scratch; the

second utilizing the OBIWAN instance pre-trained on the 9.6M molecules

from the complete ANAKIN dataset. For the latter, we froze the first five

layers of M⃗rad and M⃗ang, and the first two layers of our Single MLP.

It’s important to note that we employed the same OBIWAN architecture

(pre-trained in one case) from the previous experiment, without alter-

ing any model or training procedure hyperparameters. As previously

explained, our network topology disregards the chemical identity of en-

countered atoms, allowing users to incorporate new element types (three in

this case: P, Br, and I) without modifications. Conversely, using ANAKIN in

this manner is mathematically impossible due to its architecture’s inherent

dependence on the elements considered during the “pre-training”. More-

over, to maintain a constant number of free parameters with ANAKIN for

this new dataset, element-wise MLPs would need to be reduced as the AEV

size increases: a 10 elements ANAKIN would result in a 1920-components

AEVs, while OBIWAN’s DeepAEVs remain constant at 384 components.
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Figure 5.12: RMSE progression on the SPICE validation set for OBIWAN
trained: (i) from scratch; (ii) after pre-training on the combined ani1x and
ani2x datasets.
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Given the extensive hyper-parameter search this would necessitate, we

excluded ANAKIN from this final comparison.

Figure 5.12 displays the RMSE curves of the two version of OBIWAN over

the validation set, demonstrating that starting from a pre-trained model

enables a much faster convergence compared to starting from scratch. For

instance, at epoch 5000, the pre-trained OBIWAN achieves an RMSE of

approximately 3.4 kcal/mol, whereas the OBIWAN trained from scratch

reaches about 6 kcal/mol with a significantly slower convergence. This in-

dicates effective re-utilization of previously learned chemical and physical

knowledge, making the model valuable even for a “small” dataset like the

one used here, thus mitigating the substantial cost of DFT computations

for training set construction. Consequently, this approach can save nearly

two weeks of computing time on 4 A100 Nvidia GPUs for this training

setup, resulting in notable energy savings and enhanced sustainability of

the entire procedure.

To contextualize our results within the broader scope of neural network

models beyond feed-forward networks, we compare our findings with

the recent GNN-based MACE-OFF23 models on the SPICE dataset [78].

The MACE-OFF model with an inference speed comparable to OBIWAN

achieves slightly better accuracy on this task: 2.5 kcal/mol vs 3.4 kcal/mol.

This value was estimated from the paper’s figures, assuming an average

of 40 atoms per molecule and a reported error of 2.7 meV/atom on the

PubChem SPICE subset [43]. However, it’s worth noting that this result was

achieved by: (i) training on a carefully augmented dataset; (ii) considering

a "purified" subset of samples, recomputing DFT energies and forces for

detected outliers that, according to the authors, contained “errors in the

underlying electronic structure calculations” which skew the metrics with

nonphysical high-error; (iii) conducting the training procedure in float64

precision, trading accuracy for memory footprint. Concluding, we want

to repeat that in this experiment SPICE is not used as a benchmark to test

OBIWAN’s maximum achievable accuracy, but to showcase its effective
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transferability to unseen chemical species.



88 CHAPTER 5. INTRODUCING OBIWAN



Chapter 6

Software

To run all the experiments we just presented, we developed an extensive,

open-source codebase mostly available in our dedicated GitHub reposi-

tory [91]. In the following sections we give a panoramic of all the software

employed.

6.1 anakin-tf

We started our research by re-implementing the original ANAKIN frame-

work [97] in TensorFlow [129].

The main effort here was the development of the AEVs’ logic, which is

essentially based on some combinatorial algebra techniques not common

in classic neural networks scenarios. Figure 6.1 illustrates the maximum,

component-wise, absolute error between our AEV and the PyTorch “ground

truth” computed for more than 20,000 atoms. As the reader can see, our

TensorFlow results are equivalent to the original ones given the float32

89
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Figure 6.1: Numerical comparison between the original PyTorch AEVs and
our TensorFlow implementation. The vertical dotted line separates the
radial part from the angular part.
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precision employed during the computation.

In the OBIWAN/architectures/anakin.py file of our repo one can find the

ANAKIN-2x implementation we assembled following all the mathematical

details given by the Authors [38]. In the same directory, also all the W-

ANAKIN versions discussed in this work of thesis can be found.

6.2 obiwan-tf

The TensorFlow implementation of OBIWAN [91] is our main contribution.

It includes all the models, data preprocessing, and training codes necessary

to reproduce our results.

We ran our experiments in a Singularity [79] container. Its recipe can be

found at OBIWAN/container.

6.3 tensorflow-md

When we had to run molecular dynamics (MD) simulations in order to

let OBIWAN produce the results shown in Figure 5.10, we didn’t find any

maintained or functioning MD engine interfaceable with TensorFlow mod-

els. All the major libraries recently shifted to the PyTorch paradigm [42].

For this reason we implemented tensorflow-md, released with our GitHub

repo and reachable at OBIWAN/results/MD. It consists of a minimal MD

engine completely written in TensorFlow. For equation integration, we

employed a leap-frog integrator with impulsive Langevin for temperature

control [52].
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6.4 LearningCurves

During our research we often had to share the logged metrics of our ex-

periments between the parts via internet. Unfortunately, we found that

all commercial tools developed for this purpose exhibited characteristics

not suitable for universities or institutions like us, primarily in terms of

privacy: data had to be sent to their servers, stored in cloud, etc. On the

other hand, all the available open-source solutions that we found had an

uncomfortable user experience and, most importantly, they ran on PC only,

which slowed our workflow.

We built LearningCurves to solve these issues. LearningCurves is a free,

privacy-preserving, cross-platform web app we developed to share our ma-

chine learning metrics: no installation is required, running in the browser

in pure javascript; it is accessible from every online device; the computation

is managed by the frontend only, with zero data sent to the cloud. It is

currently live at https://learningcurves.xyz/.

https://learningcurves.xyz/
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Figure 6.2: Screenshot of a typical LearningCurves dashboard.
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Chapter 7

Conclusions

The development of quantum-accurate machine learning potentials has

become a well-established research line. However, significant room for

improvement remains, as a widely accepted foundation model is still lack-

ing. A crucial aspect in developing such a model is the systematic incor-

poration of new atomic elements over time. In this thesis we introduced

OBIWAN [90], a feed-forward neural network potentials that addresses this

challenge with remarkable flexibility, overcoming limitations of previous

models. As shown by our results, OBIWAN demonstrates transferability

and leverages prior knowledge when learning from new data, even when

encountering previously unseen chemical elements.

It is also worth reminding that computational efforts should align with

green computing principles, minimizing resource usage where possible.

As datasets grow, we anticipate increased focus on efficient computing,

enabling scientific progress through sustainable methods. OBIWAN inher-

ently embodies this vision, allowing users to achieve desired performance

with much fewer training epochs by exploiting its generalized and re-usable

architectural topology.
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Our future research aims to achieve ANAKIN-level accuracy [121] through

a series of network enhancements that we are planning. For the present

work we care mostly about the architecture of the model, which is the

part that was invalidating in previous methods. We didn’t extensively

optimise the hyper-parameter values of the architecture. Despite being a

very computationally expensive job to carry on, we believe that it could

improve significantly the accuracy and the generalization capabilities of

OBIWAN, as it already did also in other deep learning scenarios [83].

With the same aim in mind, we think that an implementation of message

passing techniques [50] is worth exploring too, trying to figure out in which

real use cases the added computational effort could be a benefit. In this

sense, the AIMNet series of potentials [139, 140, 4] is certainly the best ref-

erence, being it a graph neural network evolution of the original ANAKIN

framework. In fact, in one of its published version AIMNet uses ANAKIN’s

symmetry functions as node embeddings, suggesting that our DeepAEVs

formulation could be a possible enhancement of the pipeline. Also, our

straightforward way to include novel elements without any modification of

the weights matrices could be a very interesting feature for the end user.

On the other hand, with AIMNet one should manually modify the tensors

involved, updating the “implemented species” list [66] after every chemical

upgrade.

We also plan to create customised version of OBIWAN tailored for RNA,

DNA, and metals, perhaps employing targeted active learning rounds [122].

While classical molecular mechanics force fields exist for these structures,

they lack the precision of those designed for proteins. In fact, developing

advanced machine learning based force fields for nucleic acids could signif-

icantly advance studies of RNA-based vaccines, long noncoding RNAs, and

other atomic-level investigations.

Concluding, we believe that OBIWAN can find significant application in

several scenarios: single point energy estimation, minimization, dihedral
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scanning for molecular mechanics parameterizations and molecular dy-

namics. We ultimately conjecture that most of the molecular mechanics

stack will be based on neural network based computations in the next

years.
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