
  

DOTTORATO DI RICERCA IN

FISICA

Ciclo 37

Settore Concorsuale: 02/A1 - FISICA SPERIMENTALE DELLE INTERAZIONI 
FONDAMENTALI

Settore Scientifico Disciplinare: FIS/01 - FISICA SPERIMENTALE

OPTIMIZATION OF ML-BASED BSM TRIGGERING WITH KNOWLEDGE 
DISTILLATION FOR FPGA IMPLEMENTATION IN THE CMS LEVEL-1 TRIGGER

Presentata da: Marco Lorusso

Supervisore

Daniele Bonacorsi

Esame finale anno 2025

Coordinatore Dottorato

Alessandro Gabrielli





Abstract

To enhance the discovery potential of the Large Hadron Collider (LHC) at
CERN in Geneva and improve the precision of Standard Model measurements,
the High Luminosity LHC (HL-LHC) Project was initiated in 2010 to extend its
operation by another decade and increase its luminosity by approximately tenfold
beyond the design value. To fully utilize the HL-LHC period, significant upgrades
and consolidations of all four main detectors are planned. The increased collision
rate and expected pileup will result in high particle multiplicity and a challeng-
ing radiation environment, necessitating advancements in the Trigger system to
maintain performance.

In this context, the scope of applications for Machine Learning, particularly
Artificial Neural Network algorithms, has experienced an exponential expansion
due to their considerable potential for elevating the efficiency and efficacy of data
processing in this experimental setting.

Nevertheless, one frequently overlooked aspect of utilizing Artificial Neural Net-
works (ANNs) revolves around the imperative of efficiently processing data for
online applications. This becomes particularly crucial when exploring innovative
methods for selecting intriguing events at the trigger level, as seen in the pursuit
of Beyond Standard Model (BSM) events. The study delves into the potential
of Autoencoders (AEs), an unbiased algorithm capable of event selection based
on abnormality without relying on theoretical priors. However, the distinctive la-
tency and energy constraints within the Level-1 Trigger domain at the Compact
Muon Solenoid (CMS) at CERN necessitate tailored software development and
deployment strategies. These strategies aim to optimize the utilization of on-site
hardware, with a specific focus on Field Programmable Gate Arrays (FPGAs).
This is why a technique called Knowledge Distillation (KD) is studied in this PhD
Thesis. It consists in using a large and well trained “teacher”, like the aforemen-
tioned AE, to train a much smaller student model which can be easily implemented
on an FPGA. The optimization of this distillation process involves exploring differ-
ent aspects, such as the architecture of the student and the quantization of weights
and biases, with a strategic approach that includes hyperparameter searches to
find the best compromise between accuracy, latency and hardware footprint.

The strategy followed to perform Offline Response Based KD on a teacher model
will be presented, together with consideration on the difference in performance
of applying the quantization before or after the best architecture of the student
model has been found. All the steps to obtain a firmware for FPGA from a purely
pythonic model, using both the hls4ml library and proprietary software from a
FPGA vendor, will also be described. Moreover, Online Response Based KD was
also explored as an alternative and preliminary results will be shown.

Finally, a new teacher model was tested using an AE based on Graph Convo-
lutional Neural Network, to search for more complex architecture able to perform



Anomaly Detection, due to the possibilities opened up by KD to implement ad-
vanced algorithms on efficient hardware.
Chapter 1 provides a global view Large Hadron Collider at CERN in Geneva,

Switzerland;
Chapter 2 presents an introduction to the Compact Muon Solenoid experiment

at LHC, with a particular attention to the Level 1 Trigger system and its
upgrade to keep up with HL-LHC, the next phase of the particle accelerator;

Chapter 3 describes the main characteristics of FPGAs, as well as the workflow
to implement designs with such a kind of electronics devices and two ways to
interact with them from a host machine;

Chapter 4 introduces Machine Learning concepts and terminology, offering an
overview of the mathematical formulation behind this kind of algorithms.
Artificial Neural Network will also be described, together with a focus on the
models used in this thesis;

Chapter 5 Gives an overview on different strategies to compress and optimize
Machine Learning and specifically Neural Networks to reduce their hardware
footprint and latency;

Chapter 6 presents the original findings of this project, focusing on the distil-
lation of an AutoEncoder for Anomaly Detection in data containing a mix
of Standard Model events and Beyond the Standard Model (BSM) decays,
with the goal of making the model efficiently implementable on FPGAs. The
chapter details the impact of two hyperparameter search strategies and pro-
vides latency results from actual hardware implementation. Additionally, it
introduces preliminary results for Online Knowledge Distillation (KD) and
explores an AutoEncoder based on Graph Neural Networks.

Appendices Three appendix are included in this thesis about: further tests with
PYNQ which allows the use of FPGAs via a Python script, the technical
setup behind a workshop in Bologna organized to teach ML on FPGA tech-
niques, and QUnfold, a Python library to perform statistical unfolding using
Quantum Algorithms on simulated and real Quantum Processing Units.

2



Contents

1 The Large Hadron Collider 7
1.1 LHC Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.1 ALICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.2 ATLAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.3 LHCb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.4 Other experiments . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 LHC Operational History . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 High Luminosity LHC . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 The CMS Detector and the challenge for fast triggering 17
2.1 The different subdetectors . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 The Tracking System . . . . . . . . . . . . . . . . . . . . . . 18
2.1.2 Calorimeters . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.3 The CMS Muon System . . . . . . . . . . . . . . . . . . . . 22

2.2 Trigger and data acquisition . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1 The Level-1 Trigger system . . . . . . . . . . . . . . . . . . 29
2.2.2 The High Level Trigger and DAQ . . . . . . . . . . . . . . . 31
2.2.3 Global Event Reconstruction and Particle Flow Algorithm . 32

2.3 The CMS Phase-2 Level-1 Trigger upgrade . . . . . . . . . . . . . . 33
2.3.1 Upgrade Requirements and Conceptual Design . . . . . . . . 34
2.3.2 Trigger algorithms for the HL-LHC . . . . . . . . . . . . . . 36

3 Field Programmable Gate Arrays 41
3.1 The Computing Architecture . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Logic Elements . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.2 The Interconnection Fabric . . . . . . . . . . . . . . . . . . . 44

3.2 Programming Hardware . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.1 An Example of Hardware Description Language - VHDL . . 47
3.2.2 High Level Synthesis . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Interacting with a FPGA . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.1 OpenCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.2 The Python Way: PYNQ . . . . . . . . . . . . . . . . . . . 54

4 The Artificial Neural Networks Landscape 57
4.1 How Machines Learn . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.1 Machine Learning Formalism . . . . . . . . . . . . . . . . . 62
4.2 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 69

3



CONTENTS

4.3 Examples of Artificial Neural Networks . . . . . . . . . . . . . . . . 74
4.3.1 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.2 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . 77

4.4 Writing a Neural Network . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.1 TensorFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.2 Keras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Machine Learning in High Energy Physics . . . . . . . . . . . . . . 85
4.5.1 Event Selection: Separating Signal from Background . . . . 86
4.5.2 Event Reconstruction . . . . . . . . . . . . . . . . . . . . . . 87
4.5.3 Fast Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5.4 Monitoring and Data Quality . . . . . . . . . . . . . . . . . 89

5 Fast Machine Learning with Model Compression 91
5.1 Quantized Neural Networks . . . . . . . . . . . . . . . . . . . . . . 92

5.1.1 QKeras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2 Knowledge Distillation . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.1 Types of Knowledge . . . . . . . . . . . . . . . . . . . . . . 98
5.2.2 Distillation Schemes . . . . . . . . . . . . . . . . . . . . . . 101

5.3 NN Inference on FPGAs . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3.1 HLS4ML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Finding BSM signals with Anomaly Detection 109
6.1 Knowledge Distillation for Fast BSM events search . . . . . . . . . 114

6.1.1 Hyperparameter Search . . . . . . . . . . . . . . . . . . . . . 115
6.2 FPGA Implementation of a NN for AD . . . . . . . . . . . . . . . . 124

6.2.1 Using HLS4ML to create a firmware . . . . . . . . . . . . . 125
6.2.2 Accuracy of BSM signal detection . . . . . . . . . . . . . . . 129
6.2.3 Towards synthesis and implementation . . . . . . . . . . . . 132
6.2.4 Running on FPGA . . . . . . . . . . . . . . . . . . . . . . . 136

6.3 A test with Online Distillation . . . . . . . . . . . . . . . . . . . . . 141
6.4 An alternative to CNNs - A GNN for AD . . . . . . . . . . . . . . . 142

6.4.1 The formalism behind the Edge Convolution . . . . . . . . . 144
6.4.2 Implementation and results . . . . . . . . . . . . . . . . . . 145

A Machine Learning inference using PYNQ environment in a AWS
EC2 F1 Instance 151
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.1.1 AWS EC2 F1 Instance . . . . . . . . . . . . . . . . . . . . . 152
A.2 The PYNQ project . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
A.3 Neural Network performance on FPGA . . . . . . . . . . . . . . . . 153

A.3.1 pT resolution histogram . . . . . . . . . . . . . . . . . . . . 155

B Cloud Classrooms for ML on FPGA 159
B.1 An Innovative Course . . . . . . . . . . . . . . . . . . . . . . . . . . 160

B.1.1 The BondMachine . . . . . . . . . . . . . . . . . . . . . . . 161
B.2 A scalable classroom using Cloud Computing . . . . . . . . . . . . 162
B.3 Expanding INFN Cloud Services with HPC Bubbles . . . . . . . . . 164

4



CONTENTS

C QUnfold - A Python library for unfolding using Quantum Com-
puting 165
C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

C.1.1 Challenges in Unfolding . . . . . . . . . . . . . . . . . . . . 165
C.1.2 Existing Unfolding Methods . . . . . . . . . . . . . . . . . . 167

C.2 Quantum Annealing as a New Paradigm . . . . . . . . . . . . . . . 167
C.2.1 Fundamentals of Quantum Annealing . . . . . . . . . . . . . 167
C.2.2 Advantages of Quantum Annealing . . . . . . . . . . . . . . 168

C.3 The QUnfold Framework . . . . . . . . . . . . . . . . . . . . . . . . 168
C.3.1 QUBO problem formulation . . . . . . . . . . . . . . . . . . 168
C.3.2 Implementation in QUnfold . . . . . . . . . . . . . . . . . . 169

C.4 Validation and Performance Evaluation . . . . . . . . . . . . . . . . 170
C.4.1 Simulated Data Analysis . . . . . . . . . . . . . . . . . . . . 170
C.4.2 Comparison with Classical Methods . . . . . . . . . . . . . . 170
C.4.3 Computational Performance . . . . . . . . . . . . . . . . . . 170

C.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . 171

Bibliography 173

5



CONTENTS

6



Chapter 1

The Large Hadron Collider

The Large Hadron Collider (LHC) [1]–[3] is a particle accelerator operating at
CERN since 2010. Placed in a 27 km tunnel at the border between Switzerland
and France, the former Large Electron–Positron Collider (LEP) tunnel, it is ca-
pable of accelerating either protons or heavy-ion beams. In the first case LHC
currently reaches a center-of-mass energy of 13 TeV. The entire accelerator ring is
divided into eight independent sectors. Particles travel in two separated beams on
opposite directions and in extreme vacuum conditions. Beams are controlled by
superconductive electromagnets, keeping them in their trajectory. Both of these
will be very briefly described in this section.

Figure 1.1: The CERN accelerator complex.

The proton injection is done employing pre-existing accelerators. This chain of
accelerators, shown in Figure 1.1, comprises the following steps:

1. Protons are obtained by removing the orbiting electron on hydrogen atoms,
with a process called stripping;

7



Quantity Value

Circumference 26659
Magnets working temperature (K) 1.9
Number of Magnets 9593
Number of principal dipoles 1232
Number of principal quadrupoles 392
Number of radio-frequency cavities per beam 16
Nominal energy, protons (TeV) 6.5
Nominal energy, ions (TeV/Nucleon) 2.76
Magnetic field maximum density (T) 8.33
Project luminosity (cm−2s−1) 2.06 ×1034

Number of proton packages per beam 2808
Number of proton per package (outgoing) 1.1 ×1011

Minimum distance between packages (m) ∼ 7
Number of rotations per second 11245
Number of collisions per crossing (nominal) ∼ 20
Number of collisions per second (millions) 600

Table 1.1: Main LHC technical parameters.

2. A linear accelerator, called LINAC2, starts the proton acceleration bringing
them to an energy up to 50 MeV;

3. Protons are then injected in the Proton Synchrotron Booster (PSB), where
the energy of the beam reaches about 1.4 GeV;

4. Protons then enter the Proton Synchrotron (PS), and are accelerated up to
25 GeV;

5. The proton beam is sent to the Super Proton Synchrotron (SPS), where they
reach an energy of 450 GeV;

6. Finally, protons are transferred in a bunch configuration into the two adjacent
and parallel beam pipes of the LHC, circulating for several hours around the
ring, with one beam in the clockwise direction and the second one in an
anticlockwise direction.

Some technical parameters can be found in Table 1.1.

The Vacuum System

The LHC vacuum system [4], extending over 104 kilometers of vacuum ducts, is
one of the most advanced in the world. Its primary function is to prevent colli-
sions between beam particles and air molecules by creating an ultra-high vacuum
environment (10−13 atm), as empty as interstellar space. Additionally, the vacuum
minimizes heat exchange between components that require extremely low temper-
atures to operate efficiently, thus maximizing the system’s overall performance.

The vacuum system is made of three independent parts:

8



1. an isolated vacuum system for cryomagnets;

2. an isolated vacuum system for Helium distribution line;

3. a vacuum system for beams.

The Electromagnets

The electromagnets in the accelerator [5] are designed to guide beams along their
path, modifying single particles trajectories as well as align them in order to in-
crease collision probability. To bend protons in the LHC, a magnetic field B is
needed with an intensity given by the following equation

p[TeV] = 0.3 ·B[T] · r[km] (1.1)

where p is the momentum of the beam particle and r is the radius of the LHC ring.
The LHC consists of eight arc sections [6], which house the magnetic fields and

vacuum chambers, and eight straight sections, where the collision points and utili-
ties are located. These straight sections include four collision points (two of which
are optimized for maximum luminosity) beam injectors, beam dump facilities, ra-
diofrequency cavities and the collimation systems.

Figure 1.2: Transversal section of a dipole magnet of the LHC [7].

There are more than fifty different kind of magnets in LHC, totaling approx-
imately 9600 magnets. The most numerous magnets (1232) are dipoles, shown
schematically in Figure 1.2, generating a magnetic field with a maximum inten-
sity of 8.3 T. In order to reach such an intense field, a current of 11 850 A is
needed. To minimise power dissipation, superconducting magnets are employed,
using cables made of niobium-titanium (NbTi). A system of liquid He distribu-
tion keeps the magnets at a temperature of about 1.9 K. At this incredibly low

9



temperatures, below that required to operate in conditions of superconductivity,
helium becomes also super-fluid: this means an high thermal conductivity, thus an
efficient refrigeration system for magnets.

Other important magnets are the quadrupoles (392), which help focusing the
beam by squeezing it either vertically or horizontally in order to maximise the
change of two protons colliding head-on. Finally, high order magnets contribute to
correct imperfections of the magnetic field in the main ring magnets (dipoles and
quadrupoles) and in the interaction region magnets.

Radiofrequency Cavities

Radiofrequency cavities [8] are metallic chambers where an electromagnetic field is
applied. Their primary function is to organize protons into tightly packed bunches
and focus them at the collision point, ensuring high luminosity and maximizing
the number of collisions.

As particles pass through the cavity, they experience the force of the electro-
magnetic field, which propels them forward along the accelerator. When the LHC
operates at nominal energy, a perfectly timed proton with the correct energy en-
counters zero accelerating voltage, while protons with slightly different energies are
either accelerated or decelerated, grouping the particle beams into "bunches." The
LHC has eight cavities per beam, each providing 2 MV at 400 MHz. These cavities
operate at 4.5 K and are arranged in four cryomodules. At regime conditions, each
proton beam is divided into 2808 bunches, each containing about 1011 protons.
Away from the collision point, the bunches are a few cm long and 1 mm wide, and
are compressed down to 16 nm near the latter, increasing the probability of a p−p
collision.

The number of bunches affects significantly the instantaneous luminosity L of
the machine, defined as

L = fγ
nbN

2
b

4πεnβ∗
F (1.2)

where nb and Nb are the number of bunches and particles per bunch respectively,
f represents the bunch crossing (BX) frequency, γ is the relativist Lorentz factor
of the protons, εn the transverse emittance describing the shape of the beam and
finally β∗ is the focal length at the collision point. The F factor then takes into
account the geometric reduction of the luminosity, depending on the transverse
and longitudinal dimensions of the beams σxy and σz at the interaction point, and
on the beam crossing angle θc:

F =
(

1 + θc
σz

2σxy

)−1

(1.3)

At full luminosity packages are separated in time by 25 ns, corresponding to a
frequency of 40 MHz, or 40 million BX per second. The luminosity defined in 1.2
represents the coefficient of proportionality between the number of events produced
per second dN/dt, the event rate, and the cross section of the physical process in
question σp:

dN

dt
= Lσp (1.4)

10



1.1. LHC DETECTORS

To obtain the total number of collision in a defined time interval, another kind
of luminosity is often used, called integrated luminosity, defined as

L =
∫
Ldt (1.5)

1.1 LHC Detectors
The collisions happen at four interaction points, where the 4 main detectors are
located: ATLAS and CMS are general purpose detectors, ALICE focuses on the
heavy ions physics and on the study of the quark-gluon plasma, and LHCb studies
the CP violation in b-physics.

Figure 1.3: Schematic drawings of the four main LHC detectors.

Here is a small description of these experiments, except CMS which will be
covered in the next chapter (Chapter 2)

1.1.1 ALICE
ALICE (A Large Ion Collider Experiment) [9] is a detector dedicated to heavy-
ion physics at the LHC. It is designed to study the physics of strongly interacting
matter at extreme energy densities, where a phase of matter called quark-gluon
plasma is formed. By exploiting the similarities between these conditions and
those just after the Big Bang, it is possible to gain insight on the origin of the
Universe. It allows a comprehensive study of all kinds of known particles produced
in the collision of heavy nuclei (Pb-Pb). During proton-proton runs, data is taken
nonetheless in order to provide reference data for the heavy-ion programme and to
a number of specific strong-interaction topics for which ALICE is complementary
to the other LHC detectors.

11



1.2. LHC OPERATIONAL HISTORY

The ALICE detector is 16 × 16 × 23m3 with a total weight of approximately
10000 tons. It consists of a central barrel part and a forward muon spectrometer.
The barrel is embedded in a large solenoid magnet capable of a magnetic field up
to 0.5 T.

1.1.2 ATLAS
ATLAS (A Toroidal LHC ApparatuS) [10] is the other general-purpose detector
at the LHC. It investigates a wide range of physics, such as the search for extra
dimensions and particles that could make up dark matter. The detector is forward-
backward symmetric with respect to the interaction point, making it comparable
to a 25m high and 44m long cylinder. A solenoid aligned on the beam axis provides
a 2 T magnetic field in the inner detector, while three toroids (one for the barrel
and one for each end-cap) produce a toroidal magnetic field of approximately 0.5
T and 1 T for the muon detectors in the central and end-cap regions, respectively.

Although it has the same scientific goals as the CMS experiment, it uses differ-
ent technical solutions in some subsystems and a different magnet-system design.

1.1.3 LHCb
The LHC beauty experiment (LHCb) [11] experiment specializes in investigating
the difference between matter and antimatter by studying a type of particle called
the “beauty quark”, or “b quark”. Instead of surrounding the collision point with
an enclosed detector as ATLAS and CMS, the LHCb experiment uses a series of
subdetectors to mainly detect forward particles.

The 5600-tonne LHCb detector is made up of a forward spectrometer and planar
detectors. It is 21 metres long, 10 metres high and 13 metres wide.

1.1.4 Other experiments
Aside from the aforementioned major LHC experiments, other smaller ones are
worth a mention. One of them, LHCf [12], uses particles thrown forward by p− p
collisions as a source to simulate high energy cosmic rays. LHCf is made up of
two detectors which sit along the LHC beamline, at 140m from either side of the
ATLAS collision point. They only weight 40 kg and measures 30× 80× 10 cm.

Another experiment placed at the LHC is called TOTEM [13]. It is designed
to measure p − p total elastic and diffractive cross section by measuring protons
emerging at a small angle with respect to the beam lines. Detectors are spread
across half a kilometre around the CMS interaction point in 26 special vacuum
chamber called “roman pots”, and they are connected to beam ducts, in order to
reveal particles produced during the collisions.

1.2 LHC Operational History
After some major technical problems caused by a magnet quench in one of the
sectors of the LHC in 2008, the collider began its research program in the spring

12



1.2. LHC OPERATIONAL HISTORY

of 2010, starting the first phase of operations called in jargon Run 1.
Initially, during the first operational run in November 2009, the center of mass

energy was
√
s = 900 GeV. Then, during the early part of 2010, the energy was

increased up to 3.5 TeV per beam. The record of high energy collisions was reached
on the end of March 2010 by colliding proton beams at a center of mass energy of
7 TeV By the end of 2011, the CMS experiment had collected a total integrated
luminosity of 5.6 fb−1 with a record peak instantaneous luminosity of 4 × 1033

cm−2s−1. In 2012, the center of mass energy was increased to 8 TeV with higher
instantaneous luminosities. In total, the luminosity gathered by CMS during this
year amounted to 22 fb−1 with a record peak luminosity of 7.7× 1033 cm−2s−1. In
both 2011 and 2012, the LHC operated with a bunch spacing of 50 ns corresponding
to a collision frequency of 20 MHz. The LHC remained in operation until February
2013, running continuously for three years and delivering a total luminosity of
around 30 fb−1. The CMS experiment collected a luminosity of 20 fb−1, achieving
the discovery of the Higgs boson together with the ATLAS Collaboration.

At the beginning of 2013, the LHC was shutdown in order to prepare the collider
and run at high energy and luminosity. The accelerator was turned on in early
2015, operating at a center of mass energy of 13 TeV, and starting the second phase
of operations called Run 2.

Figure 1.4: Instantaneous peak luminosity recorded by the CMS experiment per
year [14]. The luminosity is given in Hz/µb i.e. 1030 cm−2s−1.

During the years 2016-2018 the majority of the Run 2 data was delivered and
collected, with the full 40 MHz collision frequency. The LHC was operating proton-
proton collisions from April to November of each year, with increasingly higher
instantaneous luminosities. The record luminosity was 1.5× 1034 cm−2s−1 in 2016,
and 2.1 × 1034 cm−2s−1 in 2017 and 2018, measured by CMS as shown in Figure
1.4. The total number of collision in 2016 exceeded the number from the whole
Run 1 at a higher energy per collision. The integrated luminosities measured by
CMS were 41 fb−1 in 2016, 50 fb−1 in 2017 and 68 fb−1 in 2018, as shown in Figure
1.5.

The year 2018 was the end of Run 2. During this data taking period, it was
possible to achieve good physics results, in particular precision measurements for
the constraints of the SM: the masses of the Higgs and the W bosons were computed

13



1.2. LHC OPERATIONAL HISTORY

Figure 1.5: Cumulative luminosity versus day delivered to CMS during stable
beams for pp collisions at nominal center-of-mass energy. This is shown for data-
taking in 2010 (green), 2011 (red), 2012 (blue), 2015 (purple), 2016 (orange), 2017
(light blue), 2018 (navy blue), 2022 (brown), and 2023 (light purple), with all years
plotted on the same range. [14]

with greater precision, new couplings of the Higgs were observed and an improved
measurement of the CKM matrix allowed an investigation on the CP violations.
A new shutdown followed Run 2.

The collider resumed delivering new data in 2022 with the new Run 3, aiming
at 300 fb−1 in the following three years period. The actual integrated luminosities
measured by CMS did not reach the expected performance with 42 fb−1 in 2022,
33 fb−1 in 2023 and 117.3 fb−1, nonetheless a considerable increase was possible, as
shown also by the slight increase in record instantaneous luminosity with 2.6×1034

cm−2s−1 in 2022, 3.8 × 1034 cm−2s−1 in 2023 and 2.2 × 1034 cm−2s−1. After Run
3 and the subsequent long shutdown, around 2026, a new era of the LHC will
begin, with a complete redesign of several components of the accelerator and the
surrounding experiments, in a phase of operations called High Luminosity LHC.

Such high luminosities have been possible only by squeezing the proton bunches
as much as possible at the interaction point. This increases the instantaneous lumi-
nosity, but also increases the multiple collisions happening in a single bunch cross-
ing, phenomenon called pileup. The distributions of the number of reconstructed
interactions, or pileup profiles, are shown per year in Figure 1.6. In general, an
high luminosity is advantageous for the physics analysis, thanks to the higher rates
of rare interesting processes. However, the unavoidably larger pileup is an obstacle
for the data taking and reconstruction.

14



1.3. HIGH LUMINOSITY LHC

Figure 1.6: Distribution of the average number of interactions per crossing (pileup)
for pp collisions in 2011 (red), 2012 (blue), 2015 (purple), 2016 (orange), 2017
(light blue), 2018 (navy blue), and 2022 (brown). The overall mean values and the
minimum bias cross sections are also shown. [14]

1.3 High Luminosity LHC
In order to further increase LHC’s discovery potential, as well as to improve the
precision of Standard Model physics measurements, the High Luminosity LHC
(HL-LHC) [15] Project was setup in 2010 to extend its operability by another
decade and to increase its luminosity (and thus collision rate) by a factor of ∼ 10
beyond its design value. The main objective of the HL-LHC design study was
to determine a set of beam parameters and the hardware configuration that will
enable the LHC to reach the following targets:

• a peak luminosity of up to ∼ 7.5×1034 cm−2s−1 with leveling, i.e. a constant
luminosity at a value below the virtual maximum luminosity, in order to
reduce the "luminosity burn-off" (protons consumed in the collisions) which
follows a luminosity peak without leveling;

• an integrated luminosity of 250 fb−1 per year with the goal of 3000 fb−1 in
about a dozen years after the upgrade. The integrated luminosity is about ten
times the expected luminosity of the first twelve years of the LHC lifetime.

The overarching goals are the installation of the main hardware for the HL-
LHC during the Long Shutdown 3 (LS3), scheduled for 2026-2028 (see Figure 1.7),
finishing the hardware commissioning at machine re-start in 2028-2029 while taking
all actions to assure a high efficiency in operation until 2035-2040.

Upgrading such a large scale, complex piece of machinery is a challenging pro-
cedure and it hinges on a number of innovative technologies. The process relies

15



1.3. HIGH LUMINOSITY LHC

Figure 1.7: LHC/ HL-LHC Plan (last update February 2022 [16]).

on a combination of 11-12 T superconducting magnets, compact and ultraprecise
superconducting radio-frequency cavities for beam rotation, as well as 100-m-long
high-power superconducting links with zero energy dissipation. In addition, the
higher luminosities will make new demands on vacuum, cryogenics and machine
protection, and they will require new concepts for collimation and diagnostics, ad-
vanced modelling for intense beam and novel schemes of beam crossing to maximize
the physics output of the collisions.

The HL-LHC physics program is designed to address fundamental questions
about nature of matter and forces at the subatomic level. Although the Higgs boson
has been discovered, its properties can be evaluated with much greater precision
with ∼ 10 times larger data set [17] than the original design goal of 300 fb−1.
The low value of the Higgs boson mass poses the so-called hierarchy problem of
the Standard Model, which might be explained by new physics and from a better
understanding of electroweak symmetry breaking. The imbalance between matter
and anti-matter in the universe is the big open issue for flavour physics. Finally,
there may be a new weakly interacting massive particle to explain the existence of
Dark Matter. The HL-LHC will also allow further scrutiny of the new landscape of
particle physics in case evidence of deviations from the SM, including new particles,
are found. In the absence of any such hint, the ten-fold increase in data taking will
nevertheless push the sensitivity for new physics into uncharted territory.

The ATLAS and CMS detectors will be upgraded to handle an average number
of pile-up events per BX of ∼ 200, corresponding to an instantaneous luminosity
of approximately 7.5×1034 cm−2s−1 for operation with 25 ns beams at 7 TeV. The
detectors are also expected to handle a line density of pile-up events of 1.3 events
per mm per BX. ALICE and LHCb will be upgraded to operate at instantaneous
luminosity of up to 2× 1031 cm−2s−1 and 2× 1033 cm−2s−1 respectively.

16



Chapter 2

The CMS Detector and the
challenge for fast triggering

TheCompactMuon Solenoid (CMS) [18], [19] is a general purpose detector, whose
main goal is to explore the p−p physics at the TeV scale, with a particular focus on
the search for the SM Higgs boson [20]. However, thanks to its incredible versatil-
ity it allows to cover many other physical processes at the LHC energy scale, with
the final goal of probing different unproven models of the elementary structure of
matter. It is also well suited for the study of top, beauty, and τ physics at lower
luminosity as well as operating on the heavy ions physics program. It was designed
to operate in p − p (Pb−Pb) collisions at a center-of-mass energy of 14 TeV (5.5
TeV), with luminosities up to 1034 cm−2s−1 (1027 cm−2s−1). The cylindrical design
is structured in several layers, each dedicated to detecting a specific type of parti-
cle. The detector is primarily optimized to identify and measure muons, photons,
and electrons with high precision. Key components include a high-performance
muon system, a central tracking system capable of excellent track reconstruction,
a high-quality electromagnetic calorimeter, and a hadronic calorimeter with good
energy resolution. The entire detector is enveloped by a strong magnetic field,
generated by a superconducting solenoid, which enables precise measurement of
muon momentum.

The CMS collaboration consists in over 4000 particle physicists, engineers, com-
puter scientists, technicians and students from around 200 institutes and universi-
ties from more than 40 countries.

2.1 The different subdetectors
The CMS detector consists in a cylindrical barrel, built of five slices, and two
disk-like endcaps. The overall detector length is 21.6 m, its diameter is around
15 m and it has a total weight of approximately 12500 tons. It is made up of
different layers, as illustrated in Figure 2.1. Each of them is designed to trace
and measure the physical properties and paths of different kinds of subatomic
particles. Furthermore, this structure is surrounded by a huge solenoid based on
superconductive technologies, operating at 4.4 K and generating a 3.8 T magnetic
field.

17



2.1. THE DIFFERENT SUBDETECTORS

Figure 2.1: Overall view of the CMS detector.

In CMS, a right-handed coordinate system can be defined (schematically shown
in Figure 2.2): the x-axis points to the center of the accelerator ring, the y-axis
points upwards and the z-axis is parallel to the beam pipe and the solenoid magnetic
field. Due to the cylindrical symmetry of the CMS detector, a polar coordinate
system is often used to describe the position and momentum of particles. It is
defined by a polar angle θ measured with respect to the z-axis, defined in the
range 0 ≤ θ ≤ π, and an azimuthal angle φ measured in the x− y plane from the
x-axis which can take values 0 ≤ φ ≤ 2π.

In a collision, the center of mass is boosted along the z-axis with respect to the
laboratory frame. Therefore, the kinematics are usually described by the coordi-
nates pT , y, φ and m, where φ is the azimuthal angle, m is the invariant particle
mass, pT the transverse momentum defined as pT = p sinθ =

√
p2
x + p2

y, and y is
the rapidity defined as

y = 1
2 ln

(
E + pz
E − pz

)
(2.1)

An ultra-relativistic approximation (|~p| � m) of the rapidity y, known as pseu-
dorapidity η, is used in most cases:

y ≈ η = 1
2 ln

(
|~p|+ pz
|~p| − pz

)
= − ln

(
tan θ2

)
(2.2)

where E, |~p| and pz are the energy, the 3-momentum and the component along
the z-axis of a particle.

As previously stated, in order to achieve high detection coverage of the physics
produced in the collisions, the CMS is made up of various subdetectors with very
different characteristics and technologies. Here is a quick rundown of them, with
a slightly major focus on the so-called muon system, due to its importance and
being the main aspect that makes CMS stand out with respect to other general
purpose HEP detectors. [21], [22]

2.1.1 The Tracking System
The Tracker is a crucial component in the CMS design. It measures particles’
momentum through their path, the greater is their curvature radius across the

18



2.1. THE DIFFERENT SUBDETECTORS

Figure 2.2: The CMS internal coordinate system.

magnetic field, the larger is their momentum. The Tracker is able to reconstruct
muons, electrons and hadrons paths as well as tracks produced by short-lived par-
ticles decay, such as b quarks. It has a low degree of interference with particles and
a high resistance to radiation: these are important characteristics due to the high
radiation environment in which the Tracker is installed. On the other hand, the
detector has to feature high granularity and fast response in order to keep up with
the rate of particles crossing the Tracker (about 1000 particles from more than 20
overlapping p − p interactions every 25 ns). These requirements on granularity,
response time and radiation hardness lead to a design entirely based on silicon
detector technology.

Considering that particle flux quickly decreases with radius, three detection
regions can be identified: a fine granularity pixel detector system in its innermost
parts, and silicon strips modules of different pitch in its central and external part.
This design allows to have an occupancy of ≈ 1% everywhere during high lumi-
nosity p − p collisions, ensuring also a reasonable occupancy level during Pb-Pb
ones (1% in the pixels, 210% in the silicon strip detectors). However, this high
granularity leads to increased power consumption and, with the low temperatures
required to allow a good functioning and to prevent radiation damage (around
-10 °C), requires an efficient cooling infrastructure. At the same time, the overall
material in the tracker must be minimized to reduce multiple scattering and other
unwanted interactions. As a result, a careful balance in the tracker design was
essential to meet these competing demands.

The pixel detector system consist of finely segmented silicon pixels, whose cell
size is of 100×150µm2, placed on a silicon substrate. It is built to ensure a precise
3D vertex reconstruction. The system covers a pseudorapidity range up to |η| < 2.5
and the small pixel size allows to keep single channel occupancy per bunch crossing
around 10−4 , even in the expected high flux scenario.

When a charged particle goes through one of this units, the amount of energy
releases an electron with the consequent creation of an hole. This signal is than
received by a chip which amplifies it. It is possible, in the end, to reconstruct a
3D image using bi-dimensional layers for each level.

This system was upgraded in 2017 to the current configuration [21] of 4 layers
at radii between 29 mm and 160 mm in the barrel region of CMS and 3 disks in
both endcaps with a radial coverage from 45 to 161 mm. The new tracker had the

19



2.1. THE DIFFERENT SUBDETECTORS

innermost layer in the barrel region closer to the beam line and overall improved
tracking efficiency. During LS2, the innermost layer was again replaced due to
the radiation aging, providing also electronics upgrade which resolved issues with
readout synchronization, noise shielding and radiation resistance experienced in
Run 2. Even more upgrades [23] are planned for the so-called Phase-2 of CMS,
which is planned to begin in 2029, after the Long Shutdown 3.

The two outermost regions of the tracking system are composed of several layers
of silicon microstrip detectors. They consist of ten layers with about 10 million
detector strips, divided into 15200 modules and scanned by 80000 microelectronic
chips in a silicon area of about 200 m2 , capable of detecting the passage of charged
particles from p−p collisions. Each module consists of three key components: a set
of sensors, a support structure, and the electronics required for data acquisition.
The sensors provide high responsiveness and excellent spatial resolution, enabling
the detection of numerous particles within a confined space. They detect electrical
currents generated by interacting particles and transmit the collected data. This
part of the detector also needs to be kept at low temperatures (around -15 °C)
to "freeze" radiation-induced damage to the silicon structure and prevent it from
worsening over time.

2.1.2 Calorimeters

As previously mentioned, there are two types of calorimeters in the CMS experi-
ment which measure the energy of particles emerging from the collisions.

Electromagnetic calorimeters measure the energy of particles subjected to the
Electromagnetic interaction by keeping track of their energy loss inside the detec-
tor. The Electromagnetic Calorimeter (ECAL) of CMS [24] is a hermetic homoge-
neous calorimeter made of 61200 lead tungstate (PbWO4) crystals, mounted in the
central barrel part, with a pseudorapidity coverage up to |η| = 1.48, closed by 7324
crystals in each of the two endcaps, extending coverage up to |η| = 3.0. PbWO4
scintillates when electrons and photons pass through it, i.e. it it produces light
in proportion to the crossing particle’s energy. ECAL is designed to reconstruct
electrons and photons position and energy accurately, as well as to perform, in
conjunction with the Hadron Calorimeter, precise measurement of hadronic jets.
The measurement provided by the tracking system and the calorimetry are often
complementary in CMS. However, while the tracker is able to identify only charged
particles with a precision inversely proportional to the particle’s pT , the calorime-
ters can measure both charged and neutral particles with a resolution proportional
to the increase of the particle’s energy.

The use of these high density crystals guarantees a calorimeter which is fast,
has fine granularity and it is radiation resistant: all important characteristics in
the LHC environment. The low emitted light output (4.5 γ/MeV at room tem-
perature), requires some photodetectors with an high gain operating in an high
magnetic field. Therefore solutions based on Vacuum Photodiodes (VPT) and
Avalanche Photodiodes (APD) are thus been adopted in endcaps and barrel re-
spectively. As the latter has a response which is sensitive to temperature, thermal
stability up to 0.1 °C is required to preserve the energy resolution. For energy

20



2.1. THE DIFFERENT SUBDETECTORS

below 500 GeV, the energy resolution for ECAL can be parametrised as follows:(
σ√
E

)2

=
(
S√
E

)2

+
(
N

E

)2
+ C2 (2.3)

where S is a stochastic term due to fluctuations in lateral shower containment,
photostatistics and energy deposit in the pre-shower; N is the noise term related
to electronics, digitisation and pileup; and C is a constant contribution caused by
ECAL calibration, non-uniformities in the light collection and leakage from the
back of the crystals. Studies performed during test beams [25] allowed to estimate
these parameters to be: S = 2.8%, N = 12% and C = 0.30%.

The Hadronic Calorimeter

The Hadron Calorimeter (HCAL) [26] is used, together with the ECAL, to perform
direction and energy measurements of hadronic jets and to estimate the amount
of missing transverse energy (MET) of each event. The request to perform precise
MET measurement implies the development of a very hermetic system, whose
design is constrained by compactness requests and by the high magnetic field. In
order to achieve such requirements, a sampling calorimeter system based on brass
absorber layers alternated to active plastic scintillators has been built. The signal
coming from active scintillators is read out with embedded wavelength-shifting
fibers (WLS) and transported via clear fiber waveguides to hybrid photodiodes.
The choice of brass as absorber material has been driven from its short interaction
length (λI) and its non-magnetic nature.

In the barrel region, a barrel calorimeter (HB) covers an η region up to 1.4 and
its readout segmentation (of ∆η × ∆φ = 0.087 × 0.087) is tight enough to allow
proper di-jet separation and mass resolution. The HB total depth increases as a
function of η, raising from 5.15 λI at η = 0 to 10.15 λI at η = 1.3. Additionally, to
obtain a better energy resolution of the barrel calorimeters, an outer calorimeter
(HO) is placed outside the magnet coil, extending the total interaction length to
about 11λI .

In the endcap region, instead, an endcap calorimeter (HE) has been placed
inside the magnet bore, covering the 1.4 < η < 3.2 region. Its segmentation
overlaps with the HB one and its average depth is about 10.5 λI . Outside the
magnet a forward calorimeter (HF) covers the η region up to 5.2, guaranteeing the
hermeticity of the detector. Due to the harsh radiation environment at high η,
hard quartz fibers have been chosen as active medium. The energy resolution of
the system (with E expressed in GeV), is dependent on the imperfect containment
of the hadronic shower, resulting in a resolution sampling term up to 100% and a
constant term of 5%, according to test beam studies [27]

σ

E
≈
(

65√
E
⊕ 5

)
% for the barrel region, (2.4)

σ

E
≈
(

83√
E
⊕ 5

)
% for the HE, (2.5)

σ

E
≈
(

100√
E
⊕ 5

)
% for the HF. (2.6)

21



2.1. THE DIFFERENT SUBDETECTORS

In LS2, Hybrid photo diodes (HPDs) were replaced with Silicon photomul-
tipliers (SiPM), which have many advantages over HPDs, including high photon
detection efficiency, excellent linearity, rapid recovery, better tolerance to radiation
and insensitivity to magnetic fields. Radial segmentation was also increased, from 2
to 4 in the barrel region, providing improved depth measurement of hadronic show-
ers. The new readout electronics increased readout granularity and redundancy,
and improved quality of information sent to the Level-1 (L1) trigger.

2.1.3 The CMS Muon System
The muon (µ) is an elementary particle classified as a lepton, with an electric charge
of -1 (+1 for antimuons) and a spin of 1

2 with a mass of about 105 MeV, ≈ 200
times higher than the one of an electron. During p− p and heavy ions collisions at
LHC, muons are produced and they are mainly detected via the Tracker system,
see Section 2.1.1, and the Muon System (whose original design is in Figure 2.3), a
group of subdetectors dedicated to this task and placed in the outermost region of
the CMS experiment.

As is implied by the experiment’s middle name, the detection of muons is of
central importance to CMS: precise and robust muon measurement was a central
theme from its earliest design stages. The aim of the Muon System [28] is to
provide a robust trigger, capable to perform BX assignment and standalone trans-
verse momentum (pT ) measurement, perform efficient identification of muons and
contribute to the measurement of the pT of muons with energy as high as few hun-
dreds of GeV or more. Good muon momentum resolution and trigger capability
are enabled by the high-field solenoidal magnet and its flux-return yoke. The latter
also serves as a hadron absorber for the identification of muons.

The experimental muon setup is made up of three different types of gaseous de-
tectors with a different design, coping with the radiation environment and magnetic
field at different values of η:

• 250 Drift Tube Chambers (DT), organized into 4 concentric stations inter-
spersed among the layers of the flux return plates, are used in the barrel
region (with |η| < 1.2) where a low residual magnetic field is present and
track occupancy is low;

• The endcaps (0.8 < |η| < 2.4) are equipped with 540 Cathode Strip Cham-
bers (CSC) with a faster and radiation resistant capability in order to cope
with a higher particle flux and a non uniform magnetic field. There are 4
stations of CSCs in each endcap, with chambers positioned perpendicular to
the beam line and interspersed between the flux return plates;

• To ensure redundancy and improve trigger performances, 610 Resistive Plate
Chambers (RPC) complement the DT and CSC in both regions up to |η| <
2.1, due to their fast response and excellent time resolution but low spatial
resolution, improving the precision in the muon trigger on the determination
of the bunch crossing (BX) in which the muon has been created. RPCs
are organized in 6 layers in the barrel Muon System, two in each of the
first two stations, and one in each of the last two stations. In the endcap

22



2.1. THE DIFFERENT SUBDETECTORS

region, the two outermost layers of CSCs have one layer of RPCs (divided in
two stations) placed right after the CSC chambers. The inner endcap disk,
instead, contains two layers of RPCs: one positioned on the inner side, just
after the innermost CSC chambers, and the other on the outer side, along
the iron yoke that forms the disk.

Figure 2.3: CMS detector longitudinal (top) view and barrel transverse (bottom)
view. Describing LHC a reference frame is usually used in which the x-axis is
pointed towards the center of the circular accelerator, the y-axis goes upward and
the z-axis runs along the accelerated beam.

23



2.1. THE DIFFERENT SUBDETECTORS

(a) The layout of a Drift Tube cell.
(b) Schematic view of a DT chamber.

Figure 2.4: DT chamber schematic in the Muon System (b) and a drift tube cell
(a).

The Drift Tube Chambers

The basic detector element of the DT muon system is a drift tube cell (Figure
2.4a) of 42 mm × 13 mm and it contains a stainless steel anode wire with a
diameter of 50 µm and length varying from 2 to 3 m. Cells are placed next to
each other separated by "I"-shaped aluminium beams, making up layers contained
in between two parallel aluminium planes. Strips of aluminium, deposited on both
faces of each I-beam and electrically isolated serve as cathodes. Anode wires and
cathodes are put at positive and negative voltage (typically +3600 V, -1200 V)
respectively, and provide the electric field within the cell volume. The distance
of the traversing track to the wire is measured by the drift time of ionization
electrons; for this purpose, two additional positively-biased (+1800V) strips are
mounted on the aluminium planes on both inner surfaces in the center of the
cell itself, in order to provide additional field shaping and improve the space-to-
distance linearity over the cell. The tubes are filled with a 85%/15% gas mixture
of Ar/CO2, which provides good quenching properties. The drift speed obtained is
about 55µm/ns. Thus, a maximum drift time (half-cell drift distance) of ∼ 380 ns
(or 15-16 BXs) is obtained. The choice of a drift chamber as tracking detector in
the barrel was dictated by the low expected rate and by the relatively low intensity
of the local magnetic field.

The DT system is segmented in 5 wheels along the z direction, each about
2.5 m wide and divided into 12 azimuthal sectors, covering ∼ 30° each. Drift
tubes are arranged in 4 concentric cylinders, called stations, within each wheel, at
different distance from the interaction point, and interleaved with the iron of the
yoke. Each DT station consists of 12 chambers in each wheel, with the exception
of the outermost station, MB4, whose top and bottom sectors are equipped of two
chambers each, thus yielding a total of 14 chambers per wheel in that station. Each
DT chamber is azimutally staggered with respect to the preceding inner one, in
order to maximize the geometrical acceptance. The DT layers inside a chamber,
as shown in Figure 2.4b, are stacked, half-staggered, in groups of 4 to form three
superlayers (SL), two of them measure the muon position in the bending plane r-φ,

24



2.1. THE DIFFERENT SUBDETECTORS

the other one measures the position along the z coordinate. However, the chambers
in the outermost station, MB4, are only equipped with two φ superlayers. The
overall CMS detector is thus equipped with a total of 250 DT chambers.

The Cathode Strip Chambers

The high magnetic field and particle rate expected in the muon system endcaps
does not allow to use drift tubes detectors to perform measurements at large η
values. Therefore a solution based on Cathode Strip Chambers has been adopted
[29].

(a) Layout of the CSC subsystem.

(b) Schematic view of CSC chamber sig-
nal formation.

Figure 2.5: The Cathode Strip Chambers of the CMS endcap muon system.

Each endcap region of CMS has four muon station disks (from ME1 to ME4) of
CSCs. These chambers are trapezoidal multi wire proportional chambers (MWPC)
with segmented cathodes, capable of providing precise spatial and timing informa-
tion, due to a short drift length which leads to fast signal collection, even in presence
of large inhomogeneous magnetic field and high particles rates. A charged particle
crossing the layers produces a signal which is collected by several adjacent cathode
strips; since the strips are deployed radially, a charge interpolation provides a high
resolution measurement of the φ-coordinate. The additional analysis of the wire
signal offers the measurement of the orthogonal r-coordinate. Wire signals provide
a fast response, useful for trigger purposes.

Each CSC has six layers of wires sandwiched between cathode panels. Wires
run at approximately constant spacing, while cathode panels are milled to make
six panels of strips running radially, one plane of strips per gas gap. Therefore,
each chamber provides six measurements of the φ -coordinate (strips) and six
measurement of the r-coordinate (wires).

ME1 has three rings of CSCs, at increasing radius, while the other three stations
are composed of two rings. All but the outermost chamber of ME1 overlap in φ
and therefore form rings with no dead area in azimuth. In station 2 to 4 there are
36 chambers covering 10° in φ making up the outer ring, and 18 chambers covering

25



2.1. THE DIFFERENT SUBDETECTORS

20° in the inner ring, closer to the beam pipe. which are then arranged to form
four disks of concentric rings placed in between the endcap iron yokes.

The Resistive Plate Chambers

Resistive Plate Chambers (RPCs) [30] are used both in the barrel and endcaps,
complementing DT and CSC systems, in order to ensure robustness and redun-
dancy to the muon spectrometer. RPCs are gaseous detectors characterized by a
coarse spatial resolution, however they show a time response comparable to scin-
tillators, and, with a sufficient high segmentation, they can measure the muon
momentum at the trigger time and provide an unambiguous assignment of the
BX.

Figure 2.6: Schematic view of a CMS double gap RPC.

A RPC is formed, as shown in Figure 2.6, by two planes of material with high re-
sistivity (Bakelite) separated by a 2mm gap filled with a mixture of freon (C2H2F4)
and isobutane (i−C4H10). The planes are externally coated with graphite, which
forms the cathode for the high voltage (9.5 kV). The crossing particle generates an
electron avalanche which induces a signal in the insulated aluminium strips placed
outside the graphite cathodes ready to be read-out. CMS uses double-gap RPCs,
with two gas-gap read-out by a single set of strips in the middle: this increase the
signal on the read out strip, which sees the sum of the single gap signals. In the
barrel the readout is segmented into rectangular strips 1-4 cm wide and 30-130 cm
long, whereas the endcaps are equipped with trapezoidal shaped strips covering
approximately the range ∆φ = 5− 6◦,∆η = 0.1.

In the barrel region, the system layout follows the DT segmentation and two
RPC stations are attached to each side of the two innermost DT stations of a sector,
whereas one single RPC is attached to the inner side of the third and fourth DT
stations. This solution ensures proper detection of muons in the low pT range
within barrel trigger, which cross by multiple RPC layers before they stop in the
iron yoke.

Muon chambers upgrades for Phase-2

The Phase-2 upgrade of the DT system foresees a replacement of the chamber
on-board electronics, which is presently built with components that are neither
sufficiently radiation hard to cope with HL-LHC conditions nor designed to cope
with the expected increase of L1T rate foreseen for Phase-2 operation. DT cham-
bers themselves will not be replaced, hence the existing detectors will operate

26



2.2. TRIGGER AND DATA ACQUISITION

throughout Phase-2. In the upgraded DT architecture, time digitization (TDC)
data will be streamed by the new on-board DT electronics (OBDT) directly to
a new backend electronics, hosted in the service cavern, and called Barrel Muon
Trigger Layer-1 (BMTL1). Event building and trigger primitive generation will
be performed in the BMTL1 using the latest commercial FPGAs. This will allow
building L1T TPs exploiting the ultimate detector time resolution (few ns) improv-
ing BX identification, spatial resolution and reducing the probability to produce
multiple trigger segments per chamber for a given crossing muon (ghosts), with
respect to the present DT local trigger.

In order to better exploit the intrinsic time resolution of the existing RPC sys-
tem (∼ 2 ns), and ensure the robustness of its readout throughout the HL-LHC
era, the off-detector electronics (called Link System) will be replaced. Regarding
L1T, the most relevant aspect of this upgrade is the increase of the readout fre-
quency from 40 MHz to 640 MHz (reading out the detector 16 times per BX).
As a consequence, each RPC hit provided to the muon track finders will have an
additional time information featuring a granularity of one sixteenth of BX.

In order to increase the redundancy of the Muon System in the challenging
forward region, new improved RPCs (iRPC) chambers will be installed in stations
3 and 4 (RE3/1 and RE4/1), extending the RPC pseudorapidity coverage to
|η| < 2.4. The reduced bakelite resistivity and gap thickness (1.4 mm compared to
2 mm in the present RPC system) allows the detector to withstand the high rates
anticipated in RE3/1 and RE4/1.

Moving on to CSCs, the on-chamber cathode boards on the inner rings of
chambers (1.6 < |η| < 2.4) will be replaced in order to handle higher trigger and
output data rates, together with the FPGA mezzanine boards on most of the on-
chamber anode boards, in order to cope with higher L1T latency. Corresponding
off-chamber boards that receive trigger and readout data will also be replaced to
handle the higher data rates.

Finally, new Gas Electron Multiplier (GEM) chambers have started to be in-
stalled in the forward region 1.6 < |η| < 2.8. The installation of GEM detectors
allows a precise measurement of the muon bending angle in the first and second
stations to be performed and used as a handle to control the muon trigger rate.
The added sensitive detecting layers can increase the trigger efficiency and improve
the operational resilience of the system. GEM foils have been demonstrated to be
a suitable technology for the CMS forward region. A single GEM chamber is made
of three GEM foils. A stack of two or six GEM chambers forms a superchamber.
These superchambers will be installed in three distinct locations in the forward
region (1.6 < |η| < 2.8), dubbed GE1/1 (already mounted before Run 3), GE2/1
and ME0, as shown in red and orange in Figure 2.7.

2.2 Trigger and data acquisition
At LHC, the beam crossing interval for protons is 25 ns, corresponding to a fre-
quency of 40 MHz. Depending on luminosity, several collisions may occur at each
crossing of the proton bunches. Considering that in the two general purpose exper-
iments ATLAS and CMS each event has a size of about 1 MB and it is impossible

27



2.2. TRIGGER AND DATA ACQUISITION

Figure 2.7: Longitudinal view of a quadrant of the CMS Phase-2 muon system.
Different colors in the figure refer to different sub-detectors: DT (orange), RPC
(light blue), CSC (green), iRPC (purple), GE (red), ME0 (orange).

to store and process this large amount of data, a reduction from the 40 MHz to
the offline storage rate of approximately 1 kHz has to be achieved. Despite the
high rejection factor, trigger algorithms have to be also quite sensitive to physi-
cal processes with very different probabilities in order to not saturate with much
more common type of processes. This problem arises from the very large range of
cross-sections of the processes produced at LHC, as shown in Figure 2.8

Since the time between crossings is too short to collect all the information
coming from all the subdetectors and process it in a single step, an architecture
based on different levels of increasing complexity has been adopted. In CMS this
bandwidth reduction is performed in two main steps:

Level-1 trigger : it is based on custom electronics, and has to reduce the num-
ber of accepted events down to a maximum rate of 100 kHz, using coarse
information coming from the muon detectors and calorimeters;

High Level trigger (HLT): it is based on software algorithms running on a farm
of commercial CPUs. At this stage each event can take much more time for
its processing, since the bandwidth has been already reduced and events are
processed in parallel by different machines of the HLT. In this way the full
information available from all the detectors (including the one of the silicon
inner tracker) can be used, allowing a further reduction of event rate of a
factor 102−3.

In Figure 2.9 a diagram of the CMS trigger chain is pictured, together with the
rate of events which characterize each steps of the chain.

28



2.2. TRIGGER AND DATA ACQUISITION

Figure 2.8: Example of the different cross sections for the main processes produced
at the LHC.

Figure 2.9: Schematic diagram of the CMS Trigger Chain.

2.2.1 The Level-1 Trigger system

The Level-1 Trigger (L1T) [31], [32] must cope with the machine frequency of 40
MHz and the time between collisions, 25 ns, is far too short for running any kind of

29



2.2. TRIGGER AND DATA ACQUISITION

non trivial algorithm and for taking a decision on accepting that event. However,
since dead time has to be avoided, complete information from the subdetectors is
stored in First In First Out (FIFO) memories. In parallel, the trigger logic runs
using a subset of the information, pipelined in small steps requiring less than 25 ns
each, in order to start a new event processing every BX, even if the full processing
requires a much longer time to complete. To make this possible, custom devel-
oped programmable hardware is used: Field Programmable Gate Arrays (FPGA)
are used where possible, but also application-specific integrated circuits and Pro-
grammable Lookup Tables are taken into account to complete each processing step
in time. At the end of the logic chain a decision is taken. If the event has to
be kept, the FIFO memories containing the detector data are read and sent to
the HLT. The maximum time available for the trigger logic to take a decision is
determined by the amount of BXs for which the detector data can be stored into
FIFOs, and corresponds to 4 µs.

The L1T at CMS is further subdivided into three major subsystems: the Muon
Trigger, the Calorimeter Trigger and the Global Trigger. The first two systems pro-
cess information coming from, respectively the muon spectrometer and calorime-
ters and do not have to perform the task of selecting events by themselves. On the
other hand, they identify and perform sorting on various types of trigger objects
(i.e. electron/photon, jets, muons) and then forward the four best candidates of
each kind of trigger object to the Global Trigger where the final decision is made,
as shown in Figure 2.10. This last selection can be performed considering only one
type of object (e.g. selecting events where µ have a pT > 22 GeV) or combining
queries regarding more trigger objects.

For Run 3, a demonstration L1-scouting system has been introduced [33]. It
passively receives L1 trigger data at the full LHC collision rate (nominally 40
MHz, effectively over 30 MHz) via specialized FPGA boards and saves the output
for analysis. The advantage of looking at the full-rate trigger information is in
allowing searches for rare processes whose signatures are difficult to detect by the
trigger.

Figure 2.10: Schematic diagram of the CMS Level-1 trigger.

30



2.2. TRIGGER AND DATA ACQUISITION

The Level-1 Muon Trigger

The Level-1 Muon trigger is designed to reconstruct muon position and pT and to
assign the particle’s origin in terms of BX.

During the LHC Run-2 the L1T had to cope with an increase of the total event
rate of roughly a factor 6 compared to the limits reached during the first LHC run
(Run-1). In view of this increase in luminosity the L1T chain of CMS underwent
considerable improvements.

In the upgraded L1T, the architecture of the electronics devoted to muon track-
ing follows a geographical partitioning. As we can see on the left of Figure 2.10,
Trigger Primitives (TP) from the CSCs are sent to the Endcap Muon Track Finder
(EMTF) and the Overlap Muon Track Finder (OMTF) via a mezzanine on the
muon port card. Endcap RPC hits are sent via the link board to the concentrator
pre-processor and fan-out (CPPF) card and barrel RPC hits are sent to the Twin-
Mux concentrator card. DT trigger primitives are sent to the TwinMux card via
a copper to optical fiber (CuOF) mezzanine. The TwinMux builds “Superprim-
itives”, which combine the very good spatial resolution of DT trigger segments
with the superior timing properties of RPC hits, improving the efficiency and the
quality of the information used in the following steps.

The EMTF receives RPC hits via the CPPF card. In addition to the CSC hits,
the OMTF receives DT hits and RPC hits via the CPPF and the TwinMux, which
also provides DT and RPC hits to the Barrel Muon Track Finder (BMTF). The
Global Muon Trigger sorts the muons, performs duplicate removal and sends the
best eight muons to the Global Trigger.

2.2.2 The High Level Trigger and DAQ
The CMS High Level Trigger [34] has the task to further reduce the event rate from
the L1T to ≈ 1 kHz, as required by the storage system and the offline processing
of events. In order to achieve this reduction, the HLT performs an analysis similar
to off-line event reconstruction relying on a farm of commercial processors.

The architecture of the CMS data acquisition system (DAQ) is shown schemat-
ically in Figure 2.9. The detector front-end electronics are read out in parallel by
the Front-End System (FES) that format and store the data in pipelined buffers.
These buffers must be connected to the processors in the HLT farm, and this is
achieved by the large switch network (Builder Network). From the buffers, data is
moved by the Front End Drivers (FEDs) to the Front End Readout Links (FRLs)
which are able to get information from two different FEDs. Information coming
from different FRLs is then sent to the Event Builder system in charge of building
the full event. At this stage, data reaches the CMS surface buildings while begin-
ning the reconstruction phase. After the assembly phase, each event is sent to the
Event Filter where HLT algorithms, together with some Data Quality Monitor-
ing operations, are performed. Filtered data is then separated into several online
streams, whose content depends on trigger configurations (e.g. all data collected by
single muon triggers), and is sent to a local storage system before being migrated
to the CERN mass storage. Two systems complement this flow of data from the
Front-ends to the processor farm: the Event Manager, responsible for the actual

31



2.2. TRIGGER AND DATA ACQUISITION

data flow through the DAQ, and the Control and Monitor System, responsible for
the configuration, control and monitor of all the elements.

The data acquisition for Run 3 satisfies similar requirements for readout as in
Run 2, handling approximately 200 GB/s of data flow at rate above 100 - 110 kHz
with event sizes of≈ 1.6 MB (at nominal Run 3 LHC conditions). Due to end-of-life
of server and network equipment used in Run 2, the system between the detector
frontend and the HLT was upgraded with more recent computer and network
technologies. A network of Ethernet servers used for data-to-surface transport to
the DAQ system was replaced by a chassis-based 100 Gbit/s Ethernet switch, which
can flexibly route all TCP traffic from readout cards to readout servers connected
via 100 Gbit/s Ethernet links. Approximately 50 of these nodes, equipped with
AMD Rome architecture CPUs, serve also as nodes of the so called folded event
builder network architecture [35], performing the event-building (EVB), a process
of collecting all disparate readout event data in one location, together with a second
100 Gbit/s chassis-based switch which supports remote Direct Memory Access
(RDMA). The second chassis switch supports also other DAQ components, such
as the data transfer to Tier-0 at CERN for permanent storage. Fully built events
are delivered to the HLT, a cluster of 200 nodes integrated into the DAQ data
flow via the same chassis-based switch. These nodes are equipped with powerful
dual AMD Milan 7763 CPUs, 256 GB RAM, and two Nvidia T4 GPUs. In this
way, HLT is able for the first time to run some of the reconstruction algorithms
on GPUs facilitated by the CMS Software framework support for the offloading
of computing workloads. Initially this is supported for Pixel, HCAL and ECAL
reconstruction with approx. Approximately 40% of the CPU capacity is offloaded
to GPUs.

2.2.3 Global Event Reconstruction and Particle Flow Al-
gorithm

This sections aims at concluding the description of the CMS’ data acquisition meth-
ods with an overview on the identification and reconstruction of physics objects
candidates coming from each collisions event, using a particle flow (PF) technique
[36].

The PF approach relies on the combination of information coming from the
CMS subdetectors, in order to give a global and coherent description of the events,
under the form of a reconstructed particle candidate. Events collected by CMS
are centrally processed with reconstruction algorithms referred to as "event recon-
struction", starting from raw data and giving as output a collection of detected
particles with properties like momentum or angle.

Firstly, individual particles are classified into mutually exclusive types: muons,
electrons, photons, charged hadrons, and neutral hadrons. Track trajectories are
reconstructed starting from hits in the tracker and then linked to energy deposits
in the ECAL (for electrons) or both the ECAL and HCAL (for charged hadrons).
Photons are identified as energy clusters in the ECAL that are not matched to
the extrapolation of any charged particle trajectory from the tracker. Muons are
initially identified as tracks in the central tracker and then matched with either

32



2.3. THE CMS PHASE-2 LEVEL-1 TRIGGER UPGRADE

tracks or multiple hits in the muon system, potentially associated with calorimeter
deposits. Charged and neutral hadrons produce hadronic showers in the ECAL, fol-
lowed by absorption in the HCAL; the resulting clusters are used to estimate their
energy and direction. Additionally, an indirect measurement of non-interacting,
neutral particles provided by the calorimeters is crucial for computing the MET,
which could be a signature of new particles and phenomena.

Finally, higher-level physics objects, such as jets, MET, τ leptons, and lep-
ton isolation, are built from PF candidates. Jets are clustered using the anti-kT
algorithm [37], with good momentum and spatial resolution due to the excellent
ECAL granularity and high-quality tracking detectors. τ leptons, characterized by
their short lifetime, are identified through their hadronic decays by reconstruct-
ing intermediate resonances. The MET vector is calculated as the opposite of the
transverse momentum sum of all final state particles reconstructed in the detector.

2.3 The CMS Phase-2 Level-1 Trigger upgrade
In order to fully exploit the HL-LHC running period, major consolidations and
upgrades of the CMS detector are planned [38]–[42]. The collision rate and level
of expected pileup imply very high particle multiplicity and an intense radiation
environment. The intense hadronic environment corresponding to ∼ 200 simulta-
neous collisions per beam crossing, imposes serious challenges to the L1T system
requirements in order to maintain performance.

The Phase-2 upgrade [43] of the Level-1 trigger system aims to not only main-
tain but also improve the signal selection efficiency compared to Phase-1, together
with increasing the potential to identify unconventional signatures indicative of new
physics. This upgrade will enhance precision in physics measurements, especially
in previously challenging areas such as forward detector regions. Most importantly,
state-of-the-art techniques used in offline reconstruction and analyses, such as the
global event reconstruction based on particle-flow techniques, become possible at
the L1 trigger, with the availability of L1 tracks delivered by the upgraded Outer
Tracker, together with the benefits from the increased granularity of the calorime-
ter information. Thanks to the experience gained in Phase-1, the upgraded trigger
system will rely on modern technologies like FPGAs and high-speed optical links
to optimize data handling, ensuring adaptability to changing LHC conditions.

This upgrade of the trigger and DAQ system will keep a two-level strategy while
increasing the L1T maximum rate to 750 kHz. The total latency will be increased
to 12.5 µs to allow, for the first time, the inclusion of the tracker information at this
trigger stage. The extended latency will enable more advanced object reconstruc-
tion and identification, along with the evaluation of complex global event quan-
tities and correlation variables, optimizing physics selectivity, while also allowing
the implementation of sophisticated algorithms such as particle-flow reconstruc-
tion techniques and machine learning-based approaches. These new features will
be implemented on top of the 40 MHz scouting system, already added in Run 3,
which can harvest the trigger primitives produced by sub-detectors and the trigger
objects produced at various levels of the trigger system. The concept of trigger
scouting has been introduced in CMS at the HLT. It is based on the use of physics

33



2.3. THE CMS PHASE-2 LEVEL-1 TRIGGER UPGRADE

objects reconstructed as a by-product of the triggering process to perform data re-
duction and analysis, only storing high-level information for selected events, thus
overcoming the rate to storage limitations of the DAQ. In a very similar way, the
Level-1 scouting system uses L1T reconstructed objects and quantities, selecting
and analyzing them on the fly at the collision rate. This system has the additional
advantage of allowing systematic search of correlations among multiple contigu-
ous bunch crossing, and can be used to scrutinize the collision events and identify
potential signatures unreachable through standard trigger selection processes.

In order to successfully integrate and commission this complex upgraded L1
trigger, an approach similar to that adopted in the Phase-1 upgrade was chosen,
where part of the system started to run in parallel with the established system
during Run-3 operations. The muon system in place now will remain in Phase-2
and is already used to test new algorithms and gain confidence in their development.

2.3.1 Upgrade Requirements and Conceptual Design
To summarize, with the increased complexity of detectors and readout electronics
under HL-LHC conditions, the CMS Level-1 trigger system will undergo significant
upgrades to handle higher luminosity and pileup. These upgrades will utilize ad-
vanced FPGAs and processors to optimize the reconstruction, identification, and
calibration of trigger candidates, leveraging high-granularity detector data. High-
speed optical links will enable global data aggregation for precise event processing,
while a flexible and modular architecture will ensure adaptability to evolving condi-
tions and physics requirements, supporting more sophisticated selection algorithms
and topologies.

Figure 2.11: Functional diagram of the CMS L1 Phase-2 upgraded trigger design.

34



2.3. THE CMS PHASE-2 LEVEL-1 TRIGGER UPGRADE

The functional diagram of the architecture and data flow of the Phase-2 trigger
system is presented in Figure 2.11. With the 12.5 µs latency, not only is information
from the calorimeters and muon detectors used (as in the Phase-1 system), but the
information from the new tracker and high-granularity endcap calorimeter can
also be included. The total output bandwidth considered is 750 kHz. Given the
complexity and large data volume produced by the detector, a significant fraction
of the computing of trigger quantities, such as trigger primitives completed by
particle identification variables, takes place in the detector backend electronics.

A key feature of the proposed system is the introduction of a correlator layer
that combines data from multiple sub-detectors using advanced algorithms to cre-
ate higher-level trigger objects, improving selectivity to levels closer to those of the
HLT.

In order to ensure design flexibility and robustness by generating complemen-
tary types of trigger objects and thus achieve the best physics selectivity, four
independent data processing paths, each tailored to meet specific physics require-
ments and provides independent trigger criteria, are implemented:
Calorimeter Trigger path A barrel calorimeter trigger (BCT) and the back-

end of the new High Granularity Calorimeter (HGCAL) are used to process
high-granularity information from the calorimeters to produce high-resolution
clusters and identification variables to be used for later processing. Outputs
from the BCT, HGCAL and the hadron forward calorimeter (HF) are sent
to a global calorimeter trigger (GCT).

Track Trigger path Tracks from the Outer Tracker are reconstructed in the
track finder (TF) processors as part of the detector backend. The recon-
structed track parameters and track reconstruction quality flags are provided
to the trigger system to achieve precise vertex reconstruction and matching
with calorimeter and muon objects. This key feature maximizes the trigger
efficiency while keeping the trigger rate within the allowed budget. A global
track trigger (GTT) will be included, to reconstruct the primary vertices of
the event along with tracker only based objects, such as jets and missing
transverse momentum.

Muon Trigger path The processing of trigger primitives by muon track finder
algorithms is organized as in the Phase-1 system covering the three separate
regions: barrel, overlap and endcaps. Standalone muons and stubs as well as
L1 tracks are sent to a global muon trigger (GMT). A muon stub contains
reconstructed local information extracted from the detector hits in each of the
muon stations. It includes position, bend angle, and timing, depending on the
station. Beyond the removal of muon duplicates and misreconstructed muons,
the main feature of the GMT is the generation of track-matched muons and
L1 tracks matched to muon stubs, the so-called tracks plus muon stubs.
Tracks can either be received directly from the TF or through the GTT.
Interconnections established between GTT and GMT offer the possibility to
provide the vertex information to the GMT algorithms if required.

Particle-Flow Trigger path The correlator trigger (CT) occupies a central role
in the design. The CT implements sophisticated algorithms to produce

35



2.3. THE CMS PHASE-2 LEVEL-1 TRIGGER UPGRADE

higher-level trigger objects, applies particle identification, and provides a
sorted list of objects to the global trigger. The structure of the CT is or-
ganized in two layers with a first layer, referred to as ”Layer-1” producing
the particle-flow candidates, which are constructed from the matching of
calorimeter clusters and tracks, and a second layer, called ”Layer-2”, build-
ing and sorting final trigger objects and applying additional identification
and isolation criteria.

Finally, outputs from the GCT, GMT, GTT, and CT are combined in the global
trigger (GT), which calculates a trigger decision based on a menu of algorithms.
The GT has resources to evaluate sophisticated correlation variables among various
types of objects to increase the selectivity. The Level-1 Accept signal is transmitted
to the Trigger Control and Distribution System (TCDS), which distributes it to
the detector backend systems, initiating the readout to the DAQ.

The division of labor achieved through the implementation of global triggers
(GCT, GMT and GTT), allows the reduction of the FPGA resources required to
implement the particle-flow algorithm in the CT, meaning that enough headroom
is available to further optimize the algorithms.

2.3.2 Trigger algorithms for the HL-LHC
The upgraded L1 system would more closely replicate the full offline object recon-
struction, instead of making use of simple subsystem variables, to make a better
optimized selection. The Phase-2 trigger algorithms foreseen can thus be used to
reconstruct a large variety of objects: standalone, which are reconstructed from
single detector information (including tracker-only objects), standalone matched
to L1 tracks, and particle-flow. The trigger decision can rely on the redundancy of
these objects to achieve the best possible efficiency while keeping the trigger rate
under control.

Given the discovery targets of HL-LHC, the trigger object requirements are
not only driven by the need to maintain physics selection thresholds to match
those of Phase-1, but also by having to provide the selection of exotic signatures,
including displaced objects. The algorithm implementation in firmware greatly
benefits from the introduction of High-Level-Synthesis software (see Section 3.2.2)
that could be used to design advanced machine learning trained variables or even
iterative processes in the core of the trigger system. This section provides an
overview on some of the baseline algorithms that have been developed with the
minimum requirement of meeting the challenges of the HL-LHC.

Triggering on electrons and photons

Many standalone electron and photon trigger reconstruction techniques are be-
ing investigated to optimise both the response and the position resolution for the
purpose of achieving the highest possible track matching efficiency. Both identifica-
tion criteria and isolation variables based on calorimeter can be used, together with
tracking information, to reduce the background level. Given the intense running
conditions foreseen, the algorithms have also to be designed to be pileup resilient.

36



2.3. THE CMS PHASE-2 LEVEL-1 TRIGGER UPGRADE

An electron finder can be built in the barrel region which uses the crystal
information from the ECAL. A 5× 3 crystal matrix (∆φ×∆η = 0.087× 0.052) is
used to define the maximum size of the electron footprint in the ECAL. As in the
Phase-1 algorithm approach, the extension in φ is motivated by the necessity to
recover energy lost through bremsstrahlung, i.e. energy lost in the material when
deflected. An improved position resolution can be achieved using a weighted-energy
sum around the seed crystal, with a seeding threshold of ET > 1 GeV. Extra shower
shape features are used as identification criteria and the matching of the clusters
with tracks is performed using an extrapolation to the ECAL surface.

On the other hand, the starting point of the electron reconstruction algorithm
in the endcap region would be the cluster reconstructed in the backend electronics
of the HGCAL. Further identification of the electromagnetic object is performed
through a multivariate approach optimized to exploit the input variables trans-
mitted from the HGCAL. Dedicated boosted decision trees (BDTs) can be trained
on signal and background to achieve an optimal signal efficiency while rejecting
pileup-induced clusters. Bremsstrahlung recovery is performed as well as an en-
ergy calibration of the final e/γ candidate. The availability of tracking information
improves the reconstruction of isolated photon candidates. However, reconstruct-
ing electron tracks using the TF is challenging due to the bremsstrahlung radiation
that occurs as electrons pass through the tracker material. The extended tracking
system, which was originally designed to reconstruct displaced trajectories, could
help recover the efficiency of electron track reconstruction.

Triggering on hadronic jets, taus and energy sums

Triggering on hadronic signals has always represented a challenge for detectors
operating in an intense hadronic environment. Algorithms developed for the Phase-
1 Level-1 trigger system are optimized to provide thresholds adequate for physics
using calorimeter-only information and their rate of triggering and, in particular,
the their performance when missing energy transverse energy is involved, is strongly
correlated to the number or pileup events and the filling scheme of the machine.
This is why the level of pileup expected at the HL-LHC could be a problem for the
performance of hadronic triggers, and it explains the study of new pileup mitigation
algorithms exploiting the full capabilities of the Phase-2 detectors. As calorimeter-
only algorithms are expected to have high thresholds, complementary approaches
are proposed with tracker-only information, track-matched calorimeter objects and
higher-level objects.

• Calorimeter-only jet finding algorithms would use barrel ECAL and HCAL
information, endcap HGCAL and forward HF information. Although various
configurations were considered, a simple square geometry of 7 × 7 trigger
towers around a local maximum gives acceptable performance while keeping
the pileup contribution to a minimum. The jet window definition corresponds
approximately to the cone size of 0.4 used by the offline anti-kT algorithm
[37]. Similarly to the Phase-1 algorithm, a tower-by-tower pileup correction
depending on the level of pileup and η would be applied prior to jet clustering.

• Tracker-only jet finding is performed on a set of tracks from the track finder

37



2.3. THE CMS PHASE-2 LEVEL-1 TRIGGER UPGRADE

passing purity requirements to keep the trigger object resilient to pileup.
Track clustering makes no use of the primary vertex information. In order
to optimize the latency, primary vertex computation and jet clustering are
performed in parallel. By considering a smaller z-range of tracks from the
interaction point is possible to gain more robustness against pileup. The
clustering of tracks in the η−φ plane is performed using a nearest-neighbour
approach in two one-dimensional steps. The maximal jet size corresponds to
∆R =

√
∆η2 + ∆φ2 = 0.3, while the jet pT is computed as the sum of each

track pT associated to it.

• The particle-flow based jet finding consists of building jets from particle-flow
candidates grouped into pseudo trigger towers, equivalent to 0.083×0.087 in
the η − φ plane, which are then clustered into a 7× 7 tower window around
a local minimum. The jet momentum is computed as the sum of the objects’
momentum in this window and the seeds coordinates η and φ are associated
to the jet as its position.

Moving on to τ , the benefit of developing a dedicated reconstruction and identi-
fication algorithm for those decaying hadronically (τh) was demonstrated in Run-2.
Like for the jet finding, calorimeter-based τh are built from trigger towers. Given
that they are narrow jets and that several decay products may be producing more
than one cluster separated along the φ direction due to the magnetic field, a 3× 5
tower window, equivalent to ∆η × ∆φ = 0.261 × 0.435, is chosen to optimize pT
resolution. This window is used in conjunction with a 7× 7 one to define the iso-
lation regions to actually identify the τh while maintaining the rate under control.
Although this approach performs well within the entire calorimeter acceptance,
the enhanced granularity of the HGCAL detector allows the implementation of
advanced identification techniques exploiting the τ shower characteristics, being
its profile different from that of pileup induced particles. For example, a dynamic
clustering of 3D-clusters could give optimum response, while trained BDTs could
provide dedicated energy calibrations for each of the τ decay modes.

Finally, the triggering on missing transverse energy (Emiss
T ) is a particularly

challenging task for detectors operating in hadronic environment, especially when
the average expected pileup is 200. This quantity is a key input for many signa-
tures, including beyond Standard Model processes, in the L1 trigger. The use of L1
tracks is essential to achieve manageable rates for moderate thresholds. The algo-
rithms pursued are either tracker-based or PF-based. The tracker-based approach
considers tracks originating from the primary vertex and applying dedicated se-
lection to reject misreconstructed tracks. The rate is considerably reduced using
this approach. With particle-flow, the information of all sub-systems is used and
further mitigation of pileup contributions is obtained with the PileUp Per Particle
Identification (PUPPI), an algorithm that removes charged particles with tracks
not originating at the primary vertex and downweights neutral particles based on
the probability that they originate from pileup. Thresholds applied to particle-flow
and PUPPI inputs in various η regions can be adjusted to optimize performance

38



2.3. THE CMS PHASE-2 LEVEL-1 TRIGGER UPGRADE

Triggering on muons

The overall structure of the muon system for Phase-2 remains similar to the cur-
rent one. The signals from the three partially-overlapping sub-detectors (CSC, DT,
and RPC) are combined to reconstruct muons and measure their transverse mo-
menta. Additional muon stations, such as iRPC, GEM and ME0, are installed in
the forward region to extend the acceptance to |η| = 2.4 and |η| = 2.8 respectively.
Following the approach of the Phase-1 trigger upgrade, the reconstruction of stan-
dalone muons uses information from all available sub-detectors simultaneously to
build tracks in three distinct pseudorapidity regions, improving the muon recon-
struction and increasing signal efficiency while reducing background rates. Given
the improved sub-detector electronics readout for Phase-2, the muon chambers will
provide finer information along with precise timing (≈ 1.5 ns) that can be exploited
by the muon track finding algorithms. Each track finder uses an optimised track
reconstruction algorithm and pT assignment logic, and assigns a track quality cor-
responding to the estimated pT resolution. Similarly to the existing system, the
BMTF uses DT and RPC trigger primitives to reconstruct segments merged to
obtain a muon candidate. The RPC fired strips are clustered before being used by
the muon track finders.

A track finding approach based on a Kalman Filtering technique called Kalman
barrel muon track finder (KBMTF) has been developed and already tested on data.
As tracks can be reconstructed by KBMTFT with and without a constraint forcing
them to originate from the primary vertex, displaced muons can be reconstructed
with acceptable pT resolution resulting in higher acceptance.

In the overlap region, the OMTF receives data from DT, RPC and CSC sta-
tions and reconstructs tracks by associating hits, using generated patterns from
simulated events. This naive Bayes-classifier approach identifies the most likely
muon pT .

The muon endcap track finding algorithms exploit the information from up to
12 muon stations. In addition to CSC and RPC trigger primitives, the Phase-2
EMTF++ system proposed for this upgrade receives information for GEM (in-
cluding ME0) and iRPC detectors. The standalone reconstruction algorithm looks
for correlated CSC trigger primitives through multiple stations compatible with
a muon track corresponding to predefined patterns. Consistent RPC primitives
are associated to this track candidate and a trained deep neural network for pT
assignment, with and without beam constraint, is implemented.

The availability of tracks from the Outer Tracker allows another category of
muons, with increased acceptance at low pT or originating from regions with limited
detector coverage, to be considered. The matching of standalone muons and tracks
is performed optimally in each pseudorapidity region, so that, as in the offline or
Phase-1 HLT cases, misreconstructed muons are reduced, and the pT measurement
accuracy is improved. Another complementary approach consists of propagating
the tracks from the Outer Tracker into the muon detectors and associate stubs
from at least two layers of the muon stations. This algorithm shows optimum
performance for a large variety of physics signals while maintaining efficiency and
providing robustness against detector aging. The possibility to correlate tracking
and muon stubs information is used to produce trigger objects adequate to identify

39



2.3. THE CMS PHASE-2 LEVEL-1 TRIGGER UPGRADE

heavy stable charged particles. Given the particularity of this signal, the candidate
L1 track is matched to muon stubs from the same event or subsequent ones.

Global Trigger Algorithms

Global trigger algorithms refer to those that rely on correlations between physics
objects or use advanced variables like invariant masses. This capability has greatly
improved the selectivity of the Phase-1 trigger system, and is planned to be a key
feature in the Phase-2 upgrade. These algorithms are implemented in the Global
Trigger (GT), which provides customized triggers for specific physics analyses.
Additionally, the Global Muon Trigger, Global Calorimeter trigger, and Global
Tracker Trigger systems generate quantities based on information available up-
stream of the correlator trigger and the GT, allowing specific objects or variables
to be directly combined with other physics data.

For instance, the GTT can calculate invariant masses of track combinations
that pass quality cuts to trigger on specific light resonances. Future upgrades may
include timing information from the MTD to flag out-of-time physics objects, po-
tentially linked to Beyond Standard Model processes. Other global quantities, like
centrality (important for heavy ion triggers), can also be incorporated. Further-
more, machine learning techniques are being explored as alternatives to traditional
cut-based triggers, with tools like hls4ml enabling implementation on FPGAs (see
Section 5.3.1). Early results show that machine learning approaches significantly
improve the detection of signals such as Higgs boson production via VBF, espe-
cially in decay channels like H→ bb̄ and invisible decays H → inv compared to
standard triggers.

40



Chapter 3

Field Programmable Gate Arrays

In this section an introduction on the piece of hardware which shows promising
results for fast Machine Learning inference, Field Programmable Gate Arrays, will
be presented.

There are two main different way to tackle computation [44]: the hardware and
the software approach. Computer hardware, such as application-specific integrated
circuits (ASICs), provides highly optimized resources for quickly performing critical
tasks, but it is permanently configured to only one application via a very expen-
sive design and fabrication effort, which is especially costly in a scenario where
the number of chips requested is of few units. Computer software, on the other
hand, provides the flexibility to change applications and perform a huge number
of different tasks, but is much less optimized than ASIC implementations in terms
of performance, silicon area efficiency, and power usage.

Field programmable gate arrays (FPGAs) are peculiar devices that can be
considered as a blend of the respective benefits mentioned above. Hardware circuits
are implemented in their fabric, providing huge power, area, and performance
benefits over software applications, yet can be reprogrammed cheaply and easily to
implement a wide range of tasks. Just like computer hardware, FPGAs can be set
up to perform a large number of operations in parallel using resources distributed
across a single silicon chip. Such systems can be hundreds of times faster than
microprocessor-based designs. However, unlike in ASICs, these computations are
not permanently frozen by the manufacturing process. This means that an FPGA-
based system can be programmed and reprogrammed many times.

3.1 The Computing Architecture
In order to efficiently implement computation on a particular hardware, it is always
best to understand what goes on "under the hood". This is especially important in
this context, where the boundary between software and hardware is particularly
blurry.

Not unlike the typical desktop computer, where the Central Processing Unit
(CPU) acts as a brain and orchestrates the other devices and peripherals attached
to the machine, an FPGA is the central hub where the computation is carried out
and how to interact with the peripherals is dictated in a reconfigurable computing

41



3.1. THE COMPUTING ARCHITECTURE

platform.
In very general terms, there are two main types of resources in an FPGA: logic

elements (Section 3.1.1) and interconnections (Section 3.1.2): the logic elements
take care of the arithmetic and logical functions, while through interconnections
data is moved from one node of computation to another.

3.1.1 Logic Elements
One of the first concept learnt when starting a digital logic or computer architecture
course is that any computation can be represented as a Boolean equation. In
turn, any Boolean equation can be expressed as a truth table. From these simple
objects, complex structures can be build that can do arithmetic, such as adders
and multipliers, as well as decision-making structures that can evaluate conditional
statements, such as the classic if-then-else. In other words, elaborate algorithms
can be described simply by using truth tables.

One hardware element that can easily implement a truth table is the lookup
table, or LUT. From a circuit implementation perspective, a LUT can be formed
simply from an N-to-one multiplexer and an N-bit memory. In this way, a LUT
simply enumerates a truth table. Therefore, using LUTs gives an FPGA the gen-
erality to implement arbitrary digital logic. Figure 3.1 shows a typical N-input

Figure 3.1: A 3-LUT schematic and the corresponding 3-LUT symbol and truth
table for a logical XOR.

lookup table that could be found in FPGAs. The LUT can compute any function
of N inputs by simply programming the lookup table with the truth table of the
function intended for implementation. As depicted in the figure, to implement a
3-input exclusive-or (XOR) function with a 3-input LUT (also known as a 3-LUT),
values are assigned to the lookup table memory so that the pattern of select bits
chooses the correct row’s “answer.” Consequently, each “row” would produce a re-
sult of 0 except in the four instances where the XOR of the three select lines results
in 1. More complicated functions, and functions of a larger number of inputs, can
be implemented by aggregating several lookup tables together.

However, lookup tables are not sufficient to implement all of the functionality
expected from an FPGA. Indeed, with just LUTs there is no way for an FPGA to
maintain any sense of state, and therefore it is impossible to implement any form
of sequential, or state-holding, logic. To remedy this situation, a simple single-bit

42



3.1. THE COMPUTING ARCHITECTURE

storage element can be added to the base logic block in the form of a Data flip-flop
(D-FF), as shown in Figure 3.2.

Flip-flops are vital ingredients in all except purely combinational logic circuits
[45]. They are basically circuits capable of holding a state (0 or 1). The D-FF is
a type of flip-flop which delays the transfer of its input to its output based on a
clock input.

Figure 3.2: A simple lookup table logic block.

Finding the optimal size and number of LUTs per logic block is one of the
direction for R&D in FPGA design. This open up the larger question of compu-
tational granularity in an FPGA. On one end of the spectrum, the rather simple
structure of a small lookup table (e.g., 2-LUT) represents fine-grained computa-
tional capability. Toward the other end, coarse-grained, one can envision larger
computational blocks, such as full 8-bit arithmetic logic units (ALUs), more typ-
ical of traditional CPUs. Finer-grained blocks may be more adept at bit-level
manipulations and arithmetic, but require combining several to implement larger
pieces of logic. Contrast that with coarser-grained blocks, which may be more
optimal for datapath-oriented computations that work with standard “word” sizes
(8/16/32 bits) but are wasteful when implementing very simple logical operations.
The general practice in industry is to strike a balance in granularity by using rather
fine-grained 4-LUT architectures and augmenting them with coarser-grained het-
erogeneous elements, such as multipliers.

Indeed implementing a multiplication with a number of the aforementioned
logic blocks, albeit possible, would cause a large delay penalty or a large logic block
hardware footprint. This is way these type of operations are usually delegated to
an ad-hoc multiplier implemented into the FPGA fabric. The result is that, for
a small price in silicon area, the otherwise area-prohibitive multiplication can be
offloaded onto dedicate hardware that does it much more efficiently. These units
are usually Digital Signal Processor (DSP) slices which are optimized to perform
fixed-point arithmetic.

Looking at the logic block in Figure 3.2, it is easy to identify the programmable
points. These include the contents of the 4-LUT, the select signal for the output
multiplexer, and the initial state of the D-FF. Most current commercial FPGAs use
volatile static-RAM (SRAM) bits connected to configuration points to configure the
FPGA. Thus, simply writing a value to each configuration bit sets the configuration
of the entire FPGA. In the example above, the 4-LUT would be made up of 16
SRAM bits, one per output; the multiplexer would use a single SRAM bit; and the
D-FF initialization value could also be held in a single SRAM bit.

43



3.1. THE COMPUTING ARCHITECTURE

3.1.2 The Interconnection Fabric
Having defined what is commonly known as the logic block, or function block, of
an FPGA, i.e. LUT and D-FF, the focus can be turned to how these computation
blocks can be tiled and connected together to form the fabric that is our FPGA.
Current popular FPGAs implement what is often called island-style architecture.
As shown in Figure 3.3, this design has logic blocks tiled in a two dimensional
array and interconnected in some fashion. The logic blocks form the islands and
“float” in a sea of interconnect.

Figure 3.3: An island-style architecture with connect blocks and switch boxes to
support more complex routing structures. (The difference in relative sizes of the
blocks is for visual differentiation.)

With this array architecture, computations are performed spatially in the fabric
of the FPGA. Large computations are broken into 4-LUT-sized pieces and mapped
into physical logic blocks in the array. The interconnect is configured to route
signals between logic blocks appropriately. With enough logic blocks, any kind of
computation can be performed using an FPGA.

In Figure 3.3 the connection block and the switch box are introduced. The
logic block accesses nearby communication resources through the connection block,
which connects logic block input and output terminals to routing resources through
programmable switches, or multiplexers. The connection block allows logic block
inputs and outputs to be assigned to arbitrary horizontal and vertical tracks, in-
creasing routing flexibility. The switch block appears where horizontal and vertical
routing tracks converge. In the most general sense, it is simply a matrix of pro-
grammable switches that allow a signal on a track to connect to another track.

44



3.2. PROGRAMMING HARDWARE

Depending on the design of the switch block, this connection could be, for exam-
ple, to turn the corner in either direction or to continue straight. The design of
switch blocks is an entire area of research by itself and has produced many varied
designs that exhibit varying degrees of connectivity and efficiency.

In some segmented routing architectures, longer wires may also be present to
allow signals to travel greater distances more efficiently. These segments may be
long multiples of the length of the wires connecting adjacent blocks. The switch
blocks (and perhaps more embedded switches) become points where signals can
switch from shorter to longer segments. This feature allows signal delay to be less
than O(N) when covering a distance of N logic blocks by reducing the number
of intermediate switches in the signal path. A hierarchically approach can also be
followed by creating tightly connected clusters of logic blocks which are then linked
by longer wires. This strategy exploits the assumption that a well-designed circuit
has mostly local connections and only a limited number of connections that need
to travel long distances.

As with the logic blocks in a typical commercial FPGA, each switch point in
the interconnect structure is programmable. Within the connection block, pro-
grammable multiplexers select which routing track each logic block’s input and
output terminals map to; in the switch block, the junction between vertical and
horizontal routing tracks is switched through a programmable switch; and, finally,
switching between routing tracks of different segment lengths or hierarchy lev-
els is accomplished, again through programmable switches. For all of these pro-
grammable points, as in the logic block, FPGAs use SRAM bits to hold the user-
defined configuration values.

3.2 Programming Hardware
Because of the FPGA’s dual nature of software and hardware, a designer must
think differently from conventional programmers. Software developers typically
write sequential programs that exploit a microprocessor’s ability to rapidly step
through a series of instructions. In contrast, a high-quality FPGA design requires
thinking about spatial parallelism, i.e. simultaneously using multiple resources
spread across a chip to yield a huge amount of computation. Hardware designers
have an advantage because they already think in terms of hardware implementa-
tions; even so, the flexibility of FPGAs gives them new opportunities generally
not available in ASICs. FPGA designs can be rapidly developed and deployed,
and even reprogrammed in the field with new functionality. Thus, they do not
demand the huge design teams and validation efforts required for ASICs. Also, the
ability to change the configuration, even when the device is running, yields new
opportunities, such as computations that optimize themselves to specific demands
on a second-by-second basis, or even time multiplexing a very large design onto
a much smaller FPGA. However, because FPGAs are noticeably slower and have
lower capacity than ASICs, designers must carefully optimize their design to the
target device.

Modern field programmable gate arrays (FPGAs) boast an abundance of re-
sources, including hundreds of thousands of lookup tables (LUTs), embedded mem-

45



3.2. PROGRAMMING HARDWARE

Figure 3.4: A typical FPGA mapping flow.

ories, and multipliers, all interconnected via programmable fabric. Programming
these FPGAs at the level of individual elements would be almost impossible. How-
ever, with modern synthesis and layout tools, it is possible to describe a design
simply by writing logical expressions, a level higher than gates, and letting the
tools do the rest. Register transfer level (RTL) design is a prevalent approach for
this. It allows the designer to express the design by describing the logic without
the need of selecting the actual gates and their mapping to the FPGA. Very High-
Speed Integrated Circuit Hardware Description Language (VHDL) is one popular
programming language that supports RTL hardware descriptions. Transitioning
to a higher-level approach, High-Level Synthesis represents the subsequent stage.
This method involves employing a more conventional "behavioural" description of
firmware, akin to C++ syntax, to generate the necessary firmware.

Because customizing an FPGA merely involves storing values to memory lo-
cations, similarly to compiling and then loading a program onto a computer, the
creation of an FPGA-based circuit is a simple process of creating a bitstream to
load into the device (see Figure 3.4). The abstract design produced with the de-

46



3.2. PROGRAMMING HARDWARE

sired tool is optimized to fit into the FPGA’s available logic through a series of
steps:

1. Logic synthesis converts high-level logic constructs and behavioral code
into logic gates;

2. Technology mapping separates the gates into groupings that best match
the FPGA’s logic resources;

3. Placement assigns the logic groupings to specific logic blocks and routing
determines the interconnect resources that will carry the user’s signals;

4. Finally, bitstream generation creates a binary file that sets all of the
FPGA’s programming points to configure the logic blocks and routing re-
sources appropriately.

After a design has been compiled, the FPGA can be programmed to perform
a specified computation simply by loading the bitstream into it. Typically a host
microprocessor downloads the bitstream to the device. It must be kept in mind
that the appropriate bitstream must be loaded every time the FPGA is powered
up, as well as any time the user wants to change the circuitry when it is running.
Once the FPGA is configured, it operates as a custom piece of digital logic.

3.2.1 An Example of Hardware Description Language -
VHDL

Hardware Description Language (HDL) [46] is an essential Computer Aided Design
(CAD) tool for the modern design and synthesis of digital systems. It offers the
designer a very efficient tool for implementing and synthesizing designs on chips.
Two widely used HDLs are VHDL and Verilog. After writing and testing the
HDL code, the user can synthesize the code into digital logic components such as
gates and flip-flops that can be downloaded into FPGAs. VHDL enjoys widespread
popularity among designers in the industry [44], along with its close cousin, Ver-
ilog. Indeed, almost all modern CAD tools that perform simulation, synthesis,
and layout support both. Verilog differs from VHDL primarily in the syntax it
uses (VHDL is derived from Ada; Verilog, from C), but both languages are IEEE
standards and are periodically reviewed to reflect changing industry realities and
expectations.

VHDL is a strongly typed, Ada-based programming language that includes
special constructs and semantics for describing concurrency at the hardware level.
These concurrency constructs are new for most programmers and can be a source
of confusion for beginners as it is quite different from the usual functional or, in
general, behavioural programming of traditional languages like C or Java. However,
one aspect that is shared by VHDL and, for example, C++ is being object-oriented.
This can be seen in the example in the Listing 1, where a kind of object declaration
is written, i.e. an object called mux is created providing its interface and the
functional components inside this entity can be described later in the code. Indeed,
while an entity specifies the interface of a hardware module, its internal structure
and function are enclosed within the architecture definition.

47



3.2. PROGRAMMING HARDWARE

1 entity mux is
2 port (
3 a : in std_logic;
4 b : in std_logic;
5 mux_sel : in std_logic;
6 c : out std_logic
7 );
8 end;

Listing 1: Example of the declaration of an entity with two inputs, a control signal
and an output port using VHDL.

In a structural description of a module, the constituent submodules are de-
clared, instantiated, and connected to each other. The instantiated components
are connected to each other via internal signals by a process called port mapping
which is performed on a signal-by-signal basis using the => symbol. It is analogous
to assembling a set of integrated circuits (ICs) on a breadboard and wiring up the
connections between the IC pins using jumper wires.

3.2.2 High Level Synthesis
Realizing the intrinsic efficiency of FPGAs in practice is an expensive proposition
and tremendous design effort is expended to reach power, performance and area
goals for typical designs [47]. Such efforts invariably lead to functional, perfor-
mance, and reliability issues when pushing limits of design optimizations. Con-
sequently, each generation of CAD researchers has sought to disrupt conventional
design methodologies with the advent of high-level design modeling and tools to
automate the design process. This pursuit to raise the abstraction level at which
designs are modeled, captured, and even implemented has been the goal of several
generations of CAD researchers.

Mario Barbacci noted in late 1974 that in theory one could “compile” the
instruction set processor specification into hardware, thus setting up the notion
of design synthesis from a high-level language specification. High-level Synthesis
in later years will thus come to be known as the process of automatic generation
of hardware circuit from “behavioural descriptions” (and as a distinction from
“structural descriptions” such as synthesizable VHDL). Accordingly, the process
was also variously referred to as a transformation “from behaviour to structure.”

High-level synthesis (HLS) is an abstraction that enables a designer to focus
on larger architectural questions rather than individual registers and cycle-to-cycle
operations [48]. Instead a designer captures behaviour in a program that does
not include specific registers or cycles and an HLS tool creates the detailed RTL
micro-architecture. One of the first tools to implement such a flow was based
on behavioural Verilog and generated an RTL-level architecture also captured in
Verilog. Fundamentally, algorithmic HLS does several things automatically that
an RTL designer does manually:

48



3.2. PROGRAMMING HARDWARE

• analyzes and exploits the concurrency in an algorithm;

• inserts registers as necessary to limit critical paths and achieve a desired clock
frequency;

• generates control logic that directs the data path;

• implements interfaces to connect to the rest of the system;

• maps data onto storage elements to balance resource usage and bandwidth;

• maps computation onto logic elements performing user specified and auto-
matic optimizations to achieve the most efficient implementation.

Generally, the goal of HLS is to make these decisions automatically based
upon user-provided input specification and design constraints. However, HLS tools
greatly differ in their ability to do this effectively. Fortunately, there exist many
mature HLS tools (e.g., Xilinx Vitis HLS [49], previously Vivado HLS) that can
make these decisions automatically for a wide range of applications. However, the
designer is still expected to supply the tool:

• A function specified in C, C++, or SystemC;

• A design testbench that calls the function and verifies its correctness by
checking the results;

• A target FPGA device;

• The desired clock period;

• Directives guiding the implementation process.

In general, HLS tools can not handle any arbitrary software code. Indeed, many
concepts that are common in software programming are difficult to implement in
hardware. Still, a hardware description offers much more flexibility in terms of how
to implement the computation. It typically requires additional information to be
added by the designers (expressed using #pragmas) that provide hints to the tool
about how to create the most efficient design. However, there are some limitations
to obtain an efficient design, for example there is often limited support for standard
libraries, system calls are typically avoided in hardware to reduce complexity, and
the ability to perform recursion is often limited. On the other hand, HLS tools
can deal with a variety of different interfaces (direct memory access, streaming,
on-chip memories). And these tools can perform advanced optimizations (pipelin-
ing, memory partitioning, bitwidth optimization) to create an efficient hardware
implementation.

The primary output of an HLS tool is a RTL hardware design that is capable
of being synthesized through the rest of the hardware design flow. Additionally,
the tool may output testbenches to aid in the verification process. Finally, the tool
will provide some estimates on resource usage and performance. As an example,
Vitis HLS generates the following outputs:

49



3.2. PROGRAMMING HARDWARE

1 #define N 11
2 #include ”ap int.h”
3 typedef int coef_t;
4 typedef int data_t;
5 typedef int acc_t;
6 void fir(data_t *y, data_t x) {
7 coef_t c[N] = {53, 0, -91, 0, 313, 500, 313, 0, -91, 0, 53};
8

9 static data_t shift_reg[N];
10 acc_t acc;
11 int i;
12 acc = 0;
13 Shift_Accum_Loop:
14 for (i = N - 1; i >= 0; i--) {
15 if (i == 0) {
16 acc += x * c[0];
17 shift_reg[0] = x;
18 } else {
19 shift_reg[i] = shift_reg[i - 1];
20 acc += shift_reg[i] * c[i];
21 }
22 }
23 *y = acc;
24 }

Listing 2: Example of HLS code to implement a Finite Impulse Response filter.

• Synthesizable Verilog and VHDL;

• RTL simulations based on the design testbench;

• Static analysis of performance and resource usage;

• Metadata at the boundaries of a design, making it easier to integrate into a
system.

Once an RTL-level design is available, other tools are usually used in a standard
RTL design flow.

In order to show an example of HLS in action, consider the code [48] in Listing
2 where a simple Finite Impulse Response (FIR) filter is implemented without
hardware optimization (for a description of this kind of digital filters see [50] Section
6.3.7). The function takes two arguments, an input sample x, and the output
sample y. This function must be called multiple times to compute an entire output
signal, since each time that we execute the function we provide one input sample
and receive one output sample. This code is convenient for modeling a streaming
architecture, since it is called as many times as needed as more data becomes
available. The coefficients for the filter are stored in the c[] array declared inside

50



3.3. INTERACTING WITH A FPGA

of the function. These are statically defined constants. Note that the coefficients
are symmetric. i.e., they are mirrored around the center value c[5] = 500. Many
FIR filter have this type of symmetry. The code uses typedef for the different
variables. While this is not necessary, it is convenient for changing the types of
data. Indeed, bit width optimization, specifically setting the number of integer
and fraction bits for each variable, can provide significant benefits in terms of
performance and area. The code is written as a streaming function. It receives one
sample at a time, and therefore it must store the previous samples. Since this is
an 11 tap filter, the previous 10 samples must be kept. This is the purpose of the
shift_reg[] array. This array is declared static since the data must be persistent
across multiple calls to the function. The for loop is doing two fundamental tasks
in each iteration. First, it performs the multiply and accumulate operation on the
input samples (the current input sample x and the previous input samples stored
in shift_reg[]). Each iteration of the loop performs a multiplication of one of the
constants with one of the sample, and stores the running sum in the variable acc.
The loop is also shifting values through shift array, which works as a First-In-First-
Out (FIFO) buffer. It stores the input sample x into shift_reg[0], and moves the
previous elements “up” through the shift array. After the for loop completes, the
acc variable has the complete result of the convolution of the input samples with
the FIR coefficient array. The final result is written into the function argument y
which acts as the output port from this fir function. This completes the streaming
process for computing one output value of an FIR. This function does not provide
an efficient implementation of a FIR filter. It is largely sequential, and employs a
significant amount of unnecessary control logic.

3.3 Interacting with a FPGA: how to build an
accelerated application

When dealing with running computations on FPGAs, they fall into two distinct
roles: as a standalone device, with everything it needs to communicate, start
the computation and performing the task; or as an accelerator, where parts of a
bigger programme are offloaded to the FPGA to exploit its speed and efficiency
in particular tasks. The latter makes FPGAs as one of the candidates for the
heterogeneous computing paradigm.

In this work the focus will be on using FPGAs as accelerators to test the
capabilities of the hardware as a first step towards a real application as a ready to
trigger device.

3.3.1 OpenCL
OpenCL [51] (Open Computing Language) is an open royalty-free standard for
general purpose parallel programming across CPUs, GPUs and other processors,
giving software developers portable and efficient access to the power of these het-
erogeneous processing platforms. OpenCL supports a wide range of applications,
ranging from embedded and consumer software to HPC solutions, through a low-
level, high-performance, portable abstraction. By creating an efficient, close-to-the-

51



3.3. INTERACTING WITH A FPGA

metal programming interface, OpenCL will form the foundation layer of a parallel
computing ecosystem of platform-independent tools, middleware and applications.
OpenCL is particularly suited to play an increasingly significant role in emerging
interactive graphics applications that combine general parallel compute algorithms
with graphics rendering pipelines. OpenCL consists of an API for coordinating
parallel computation across heterogeneous processors, a cross-platform program-
ming language, and a cross-platform intermediate language with a well-specified
computation environment.

To describe the core ideas behind OpenCL, a hierarchy of models is used:

• Platform Model

• Execution Model

• Memory Model

• Programming Model

Platform Model

The model consists of a host connected to one or more OpenCL devices, shown in
Figure 3.5. An OpenCL device is divided into one or more compute units (CUs)
which are further divided into one or more processing elements (PEs). Computa-
tions on a device occur within the processing elements. An OpenCL application is
implemented as both host code and device kernel code. The host code portion of
an OpenCL application runs on a host processor according to the models native
to the host platform. The OpenCL application host code submits the kernel code
as commands from the host to OpenCL devices. An OpenCL device executes the
commands computation on the processing elements within the device.

Figure 3.5: Platform Model: one host plus one or more compute devices each with
one or more compute units composed of one or more processing elements.

Execution Model

The OpenCL execution model is defined in terms of two distinct units of execution:
kernels that execute on one or more OpenCL devices and a host program that

52



3.3. INTERACTING WITH A FPGA

executes on the host. With regard to OpenCL, the kernels are where the "work"
associated with a computation occurs. A kernel executes within a well-defined
context managed by the host. The context defines the environment within which
kernels execute. It includes the following resources:

• Devices: One or more devices exposed by the OpenCL platform.

• Kernel Objects: The OpenCL functions with their associated argument values
that run on OpenCL devices.

• Program Objects: The program source and executable that implement the
kernels.

• Memory Objects: Variables visible to the host and the OpenCL devices.
Instances of kernels operate on these objects as they execute.

The host program uses the OpenCL API to create and manage the context. Func-
tions from the OpenCL API enable the host to interact with a device through a
command-queue. Each command-queue is associated with a single device. The
commands placed into the command-queue fall into one of three types:

• Kernel-enqueue commands: Enqueue a kernel for execution on a device.

• Memory commands: Transfer data between the host and device memory,
between memory objects, or map and unmap memory objects from the host
address space.

• Synchronization commands: Explicit synchronization points that define order
constraints between commands.

Commands communicate their status through Event objects. Successful com-
pletion is indicated by setting the event status associated with a command to
CL_COMPLETE. Unsuccessful completion results in abnormal termination of the com-
mand which is indicated by setting the event status to a negative value. In this
case, the command-queue associated with the abnormally terminated command
and all other command-queues in the same context may no longer be available
and their behavior is implementation-defined. A command submitted to a device
will not launch until prerequisites that constrain the order of commands have been
resolved.

Memory Model

The OpenCL memory model describes the structure, contents, and behavior of the
memory exposed by an OpenCL platform as an OpenCL program runs. The model
allows a programmer to reason about values in memory as the host program and
multiple kernel-instances execute.

Memory in OpenCL is divided into two parts:

• Host Memory: The memory directly available to the host. The detailed
behavior of host memory is defined outside of OpenCL. Memory objects move
between the Host and the devices through functions within the OpenCL API
or through a shared virtual memory interface;

53



3.3. INTERACTING WITH A FPGA

• Device Memory: Memory directly available to kernels executing on OpenCL
devices.

Programming Model

The OpenCL framework enables applications to use a host and multiple OpenCL
devices as a single heterogeneous parallel computer system. This framework com-
prises several key components. First, the OpenCL Platform layer allows the host
program to identify OpenCL devices, understand their capabilities, and create
contexts. Next, the OpenCL Runtime enables the host program to manage these
contexts once they are created. Additionally, the OpenCL Compiler generates pro-
gram executables that contain OpenCL kernels. It can build these executables from
OpenCL C source strings, or device-specific program binary objects, depending on
the device’s capabilities. Some implementations may also support other kernel or
intermediate languages.

3.3.2 The Python Way: PYNQ
In the last few years there has been a steady rise in the use of interpreted pro-
gramming languages [52], the most popular of which is Python [53], as shown
in Figure 3.6. Working with Python makes writing code much more accessible,
thanks to the clearer interface and the huge number of libraries which makes even
the most difficult task a matter of finding the right library, or module, and invoke
the objects and functions described in them. This trend pushed AMD, and firstly
its subsidiary Xilinx, to publish PYNQ [54], an open-source project which offers
a Python API-based framework for utilizing AMD platforms via a Jupyter-based
interface.

Figure 3.6: Positions of the top 10 programming languages from 1989 to 2024.
Please note that these are average positions for a period of 12 months.

FPGA designs are represented as Python objects referred to as overlays, which
can be accessed via a Python API. Although creating a new overlay still requires
skilled developers with experience in designing programmable logic circuits, over-
lays are designed to be configurable and re-used as much as possible in various
applications, much like software libraries.

54



3.3. INTERACTING WITH A FPGA

1 import pynq
2 ov = pynq.Overlay("model_binary.xclbin")
3 nn = ov.myproject

Listing 3: Programming and calling kernel function using PYNQ.

Traditionally, C or C++ have been the most common embedded programming
languages. Python, on the other hand, raises the level of programming abstraction
and increases programmer productivity. These options are not mutually exclusive,
however. PYNQ employs CPython, which is written in C and can be extended
with optimized C code while also integrating thousands of C libraries. Whenever
possible, the more productive Python environment should be employed, and lower-
level C code can be utilized whenever efficiency demands it.

1 auto devices = xcl::get_xil_devices();
2 auto fileBuf = xcl::read_binary_file(binaryFile);
3 cl::Program::Binaries bins{{fileBuf.data(), fileBuf.size()}};
4 OCL_CHECK(err, context = cl::Context({device},
5 NULL, NULL, NULL, &err));
6 OCL_CHECK(err, q = cl::CommandQueue(context, {device},
7 CL_QUEUE_PROFILING_ENABLE, &err));
8 OCL_CHECK(err, cl::Program program(context,
9 {device}, bins, NULL, &err));

10 OCL_CHECK(err, krnl_vector_add = cl::Kernel(program, "vadd", &err));

Listing 4: OpenCL code to programme a FPGA.

PYNQ strives to work on any computing platform and operating system, which
it accomplishes by utilizing a web-based architecture that is also browser-agnostic.
The open-source Jupyter notebook infrastructure is used to execute an Interactive
Python (IPython) kernel and a web server directly on the ARM processor of an
MPSoC or the host CPU of an acceleration card.

In Listing 3 how simple it is to load a firmware on an FPGA and retrieve the
kernel function inside the design is shown. This can be considered equivalent to
the code in Listing 4, which is much less straightforward. Furthermore, to actually
send and receive data from the FPGA and run the algorithm, the code in Listing 5
is needed. On the other hand, using PYNQ the creation of input and output buffer
is done by calling the allocate function, which returns objects that behave like
numpy arrays and can be moved to and from the device with sync_to_device()
and sync_from_device(). Finally, the kernel function is callable providing the
buffers, for example: nn.call(input,output).

55



3.3. INTERACTING WITH A FPGA

1 OCL_CHECK(err, l::Buffer buffer_in1(context,
2 CL_MEM_USE_HOST_PTR | CL_MEM_READ_ONLY, vector_size_bytes,
3 source_in1.data(), &err))
4

5 OCL_CHECK(err, err = q.enqueueMigrateMemObjects({buffer_input},
6 0 /*0 means from host*/ ,NULL,&eventinp));
7

8 OCL_CHECK(err, err = myproject.setArg(0, buffer_input));
9 OCL_CHECK(err, err = myproject.setArg(1, buffer_output));

10 //[...]
11 OCL_CHECK(err, err = q.enqueueTask(myproject,NULL,&eventker));
12 // wait for all kernels to finish their operations
13 OCL_CHECK(err, err = q.finish());
14

15 OCL_CHECK(err, err = q.enqueueMigrateMemObjects({buffer_output},
16 CL_MIGRATE_MEM_OBJECT_HOST));

Listing 5: OpenCL code to create I/O buffers and call the kernel function of the
FPGA firmware.

56



Chapter 4

The Artificial Neural Networks
Landscape

The expression "Machine Learning" (ML) was first used to describe a particular
type of computer algorithms in 1959 by Arthur Samuel [55] and since then, ML has
become one of the pillars of computer and data science and it has been introduced
in almost every aspect of everyday life. Services like Google, YouTube and Netflix
improve their search engines and "recommendation" functions by implementing a
complex structure of learning algorithms in order to record all users’ choices and
preferences and hence to build a customised environment, theoretically unique for
each user. Large Language Models, like the Generative Pre-trained Transformer
(GPT) behind the famous ChatGPT, have revolutionized how humans can interact
with computers, giving a very realistic text response. This type of algorithms,
together with models able to generate images, videos and songs, have reached a
level of quality which threatens the hard work of artists and their ability to be paid
for their works.

Currently, the spread of learning algorithms in many sectors finds its roots
mainly in an increased quantity of data available, combined with a technological
progress in storage and computational power, which can nowadays be exploited
with lower maintenance and material costs.

ML tasks can be boiled down to two main categories:

Classification The computer algorithm is asked to separate data in different cat-
egories; when there are only two categories, e.g. signal/background discrim-
ination of a measurement, it is usually called binary classification, otherwise
if there are more categories it is a case of multiclass classification. To solve
this task, the learning algorithm usually returns a number between 0 and 1
for each class corresponding to the probability of an input to belong to that
category.

Regression In this case the algorithm is asked to predict a continuous numerical
value given some inputs, e.g. an house prizing algorithm or the prediction
of the transverse momentum of muons given the track information from the
muon chambers [56].

These two categories do not cover more novel and specialized ML applications,

57



4.1. HOW MACHINES LEARN

such as inferring entire probability density functions rather than just point esti-
mates [57].

4.1 How Machines Learn
Machine Learning systems can be classified according to the amount and type
of supervision they get during training [58]. There are three major categories:
supervised learning, unsupervised learning, and reinforcement learning.

Supervised learning

In supervised learning, the training data fed to the algorithm includes the desired
solutions, called labels. In other words, supervised learning [59] involves observ-
ing several examples of a random vector x and an associated value or vector y,
then learning to predict y from x, usually by estimating p(y|x). The adjective
"supervised" originates form the view of the target y being provided by an external
instructor who shows the ML system what to do.

Figure 4.1: A labeled training set for supervised learning on a classification task
(e.g. spam filtering).

Visual recognition, an example is shown in Figure 4.2, is an application domain
that highly relies on supervised ML algorithms. For instance, a system might need
to learn to identify pedestrians on a street in a automotive application for self-
driving cars: to do so, it is trained with millions of short videos about street scenes,
with some of the videos containing no pedestrians at all while others having up to
dozens. The presence or not of pedestrian is known a priori, hence the learning is
supervised: a variety of learning algorithms are trained on such data, with each
having access to the correct answer. Many other decision support mechanisms that
have at disposal large quantity of data on which to train a ML system, could be the
base of a supervised ML approach: e.g. historical data on medical exams’ output
may drive a supervised ML system to learn and prompt the probability of suffering
from a disease, etc.

Unsupervised learning

In unsupervised learning, on the other hand, the training data is unlabeled, see
Figure 4.3. In other words, the model tries to learn without the information about
the desired output. One of the most important unsupervised learning algorithm is

58



4.1. HOW MACHINES LEARN

Figure 4.2: Example of image recognition [60].

Figure 4.3: An unlabeled training set for unsupervised learning.

called clustering. Here is an example to understand what it is.

Figure 4.4: Example of clustering of an unlabeled dataset.

Consider a dataset of visitors to a website and the task is to detect groups
of similar visitors (Figure 4.4). At no point information about the belonging of
a certain group of the visitors is given to the clustering algorithm. Nevertheless,
the model is able to find those connections without any help. For example, it
might notice that 40% of the visitors are male who love comic books and gener-
ally visit the website in the evening, while 20% are young sci-fi lovers who visits
during the weekends, and so on. It is also possible to use a hierarchical clustering
algorithm which may divide each group into smaller groups, allowing finer content
recommendation.

Visualization algorithms are also good examples of unsupervised learning algo-
rithms: they are fed a lot of complex and unlabeled data, and they output a 2D or
3D representation of the data that can easily be plotted (Figure 4.5). These algo-
rithms try to preserve as much structure as they can (e.g., trying to keep separate
clusters in the input space from overlapping in the visualization), so the organi-

59



4.1. HOW MACHINES LEARN

Figure 4.5: Example of a t-SNE visualization highlighting semantic clusters.

zation of the data can be understood and perhaps unsuspected patterns can be
identified.

A related task is dimensionality reduction, in which the goal is to simplify the
data without losing too much information. One way to do this is to merge several
correlated features into one. For example, a car’s mileage may be very correlated
with its age, so the dimensionality reduction algorithm will merge them into one
feature that represents the car’s wear and tear. This is called feature extraction.

Another type of algorithm that falls under the category of unsupervised learning
is Anomaly Detection, which is the main application for ML described in thesis
and will be tackled in Section 4.3.1

Reinforcement learning

Reinforcement learning [61] is an important type of ML, in which an agent learns
how to behave in a environment by performing actions and deciding about the
next actions based on the outcome of the previous ones. In 2016 this kind of
models caught the attentions of the news outlets due to Google’s AlphaGo ability
of besting the world champion of the game of Go, a feat that nobody thought was
possible by a machine.

Reinforcement learning can be understood using the concepts of Agents, Ac-
tions, Environments, States, and Rewards (note that this description is intended
to be short and provided just for completeness in describing possible ML types,
and no deep discussion of its characteristics and implementation will be given, as
it would go beyond the research scope of this thesis):

Agent the component that takes actions, e.g. a video game character navigating
in its virtual environment, as well as a drone making a delivery;

Action one amongst the set of all possible moves/choices the agent can make.
In a reinforcement learning environment, agents can choose only among a

60



4.1. HOW MACHINES LEARN

predefined list of possible actions. E.g. in video games, the list might include
moving right or left, jumping or not, jumping high or low, or crouching, or
standing still; in the stock markets, the list might include buying, selling or
holding any title among a list of financial product;

Environment the world through which the Agent moves. The environment takes
as input the agent’s current State and its selected action as input, and returns
as output the agent’s reward and next state;

State a concrete situation in which the agent happens to put itself. E.g. it could
be a specific moment in time and/or place in space, a local and instantaneous
configuration that puts the agent in contact and relation with its environment
(e.g. tools, obstacles, prices);

Reward the feedback based on which the success or failure of the agent’s choices is
measured. E.g. in a video game, a reward could indeed be the gain of a price
when a special object is captured, and similar. Every time an agent does
something in the environment that foresees a possible reward, the agents
sends output in form of actions to the environment and the environment
returns the agent’s new state as well as the obtained rewards (or lack of
them);

In a nutshell, as shown in Figure 4.6, reinforcement learning judges actions by the
results they produce. It is fully goal oriented, as its aim is just to learn sequences of
actions that will eventually lead an agent to achieve a predefined goal, in terms of
maximizing its objective function. In the video game example, the final goal could
be to finish the game with the maximum score, so each additional point obtained
throughout the game would affect the agent’s subsequent behaviour. In a robotics
example, a robot might have as a goal to travel from A to B: every millimetre step
that makes it closer to the spatial objective B is counted as additional reward, so
the robot will learn the direction to go and eventually reach the final destination.
The implementation of reinforcement learning models requires a lot of training it-

Figure 4.6: Schematic workflow of a reinforcement learning algorithm.

erations and data. For this reason, it has historically been associated with domains
in which plenty of simulated data is available (e.g. video games and robotics, as in
the examples above). One other aspect to mention is that - with respect to other
ML types - it is far from easy to take results from academic research papers and
implement them in real-world applications.

61



4.1. HOW MACHINES LEARN

Nowadays, applications of RL can be seen e.g. in high-dimensional control
problems, like robotics: they have been the subject of research (in academia and
industry) for many years, and now start-ups are more and more using this ML
type to build products for industrial robotics applications.

4.1.1 Machine Learning Formalism
A machine learning algorithm is an algorithm that is able to learn from data. In
[62], Mitchell provides a succinct definition: “A computer program is said to learn
from experience E with respect to some class of tasks T and performance measure
P, if its performance at tasks in T, as measured by P, improves with experience E.”

Machine learning tasks are usually described in terms of how the machine learn-
ing system should process an example. An example is a collection of features that
have been quantitatively measured from some object or event that the machine
learning system should process. An example is usually represented as a vector
x ∈ Rn where each entry xi of the vector is a different feature. For example, the
features of an image are usually the values of the pixels in the image. The tasks
mentioned here can be the ones at the beginning of Section 4.

In this Section a more technical and mathematical description of E will be given.
Roughly speaking, unsupervised learning involves observing several examples of a
random vector x and attempting to implicitly or explicitly learn the probability
distribution p(x), or some interesting properties of that distribution [59]; while
supervised learning involves observing several examples of a random vector x and
an associated value or vector y, then learning to predict y from x, usually by esti-
mating p(y|x). This is another way of explaining the origin of the term supervised
learning as the target y being provided by an instructor or teacher who shows
the machine learning system what to do, while in unsupervised learning, there is
no instructor or teacher, and the algorithm must learn to make sense of the data
without this guide.

Unsupervised learning and supervised learning are not formally defined terms.
The lines between them are often blurred. Many machine learning technologies can
be used to perform both tasks. For example, the chain rule of probability states
that for a vector x ∈ Rn, the joint distribution can be decomposed as

p(x) =
n∏
i=1

p(xi|x1, . . . , xi−1) (4.1)

This decomposition means that one can solve the ostensibly unsupervised problem
of modeling p(x) by splitting it into n supervised learning problems. Alternatively,
one can solve the supervised learning problem of learning p(y|x) by using tradi-
tional unsupervised learning technologies to learn the joint distribution p(x, y),
then inferring

p(y|x) = p(x, y)∑
y′ p(x, y′)

(4.2)

Though unsupervised and supervised learning are not completely formal or distinct
concepts, they do help roughly categorize some of the things that can be done with
machine learning algorithms.

62



4.1. HOW MACHINES LEARN

The definition of a machine learning algorithm as an algorithm that is capable
of improving a computer programme’s performance at some task via experience
is somewhat abstract. To make this more concrete the focus will be now on the
supervised learning formalism.

A ML model is commonly defined as a parametric function f(x,θ), where x is
an element of the features domain and θ are the parameters of the model. Let ŷ
be the value the models predicts y should have. The output can be defined as

ŷ = f(x,θ) (4.3)

The degree of correspondence between a model and data is defined in terms of
some error (or loss) metric. This metric is usually written as a function of the
model’s output and the desired one: L(ŷ,y). The choice of the loss function is
highly dependent on the type and the task of the model. Since it is quite difficult to
find a perfectly suitable candidate, a computational-friendly loss function is often
used, at least as a starting point.

A commonly used example of a loss function is the mean squared error (MSE),
i.e. the averaged squared numerical difference between ŷ and y among the inputs:

LMSE = 1
N

∑
(x,y)∈D

(y− f(x,θ))2 (4.4)

where (x,y) is an input in a dataset D containing many labelled examples. The
objective of training is to find the parameters’ values that minimize the expected
loss over all possible examples:

θ = arg min
θ

[E(x,y)L(f(x,θ),y)] (4.5)

The task of either minimizing or maximizing some function by altering its input
are generally referred to as optimization. In this context the loss function can
also be called objective function. An example of optimization technique is called
Gradient Descent. Generally attributed to Augustin-Louis Cauchy, it has become
the predominant method in Machine Learning to find the minimum of the loss
function.

In order to briefly explain how it works, consider a point x = (x1, . . . , xn) ∈ Rn

and a function of n real variables G(x1, . . . , xn). Then, starting from a point x0,
the direction in which G decreases most rapidly is given by [63]

zi = −λ∂G(x)
∂xi

or in vector form z0 = −λ∇xG(x) (4.6)

where λ is an arbitrary positive factor of proportionality. Then, the function
g(t) = G(x0 + tz0) has a negative derivative at t = 0. It will therefore be possible
to find a t > 0 such that

g(t) < g(0) (4.7)
With such a t, x1 = x0 + tz0 can be taken as a new starting point and continue.
From this a sequence of points x0,x1,x2, . . . such that G(xk+1) < G(xk). In
this way the sequence will converge to a stationary point of G, i.e. a minimum,
maximum or saddle point, as shown in Figure 4.7.

63



4.1. HOW MACHINES LEARN

Figure 4.7: Graphical representation of gradient descent of a function as a manifold.

If t is chosen to be the smallest positive root of g′(t) = 0, the process has the
following geometrical interpretation. Starting at x0, using 4.6, the direction in
which the surface

y = G(x) = G(x1, . . . , xn) (4.8)
is descending most rapidly is found. The procedure is followed until a contour is
found (i.e. a horizontal section of the surface). Then, a new direction of steepest
descent is taken and so on. Since the direction of steepest descent is always normal
to the contour, it follows that the direction zk and zk+1 are at right angles.

Nearly all of machine learning is powered by an extension of the gradient de-
scent algorithm: stochastic gradient descent (SGD). Indeed, a recurring problem
in ML is that large training sets are necessary for good generalization, but large
training sets are also more computationally expensive. As mentioned before, the
cost function used by machine learning algorithm often decomposes as a sum over
training examples of some per-example loss function. For example, the negative
conditional log-likelihood of the training data can be written as

J(θ) = E(x,y)L(x,y,θ) = 1
m

m∑
i=1

L(x(i),y(i),θ) (4.9)

where L is the per-example loss L(x,y,θ) = −log p(y|x;θ) and x(i),y(i) are
the input vectors in the dataset.

For these additive cost functions, gradient descent requires computing

∇θJ(θ) = 1
m

m∑
i=1
∇θL(x(i),y(i),θ) (4.10)

The computational cost of this operation is O(m). As the training set size grows to
billions of examples, the time to take a single gradient step becomes prohibitively
long.

The insight of SGD is that the gradient is an expectation. The expectation
may be approximately estimated using a small set of samples. Specifically, on each

64



4.1. HOW MACHINES LEARN

step of the algorithm, we can sample a batch of examples B = {x(1), . . . ,x(m′)}
drawn uniformly from the training set. The batch size m′ is typically chosen to be
a relatively small number of examples. In this way a training set with billions of
examples can be fitted using updates computed on only a hundred examples.

The estimate of the gradient is formed as

g = 1
m′
∇θ

m′∑
i=1

L(x(i),y(i),θ) (4.11)

using examples from the batch B. The stochastic gradient descent algorithm then
follows the estimated gradient downhill:

θ ← θ − αg (4.12)

where α is a scalar value known as learning rate (or step size), an example of what
is called a hyperparameter, i.e. special parameters that are not changed by the
training procedure but identify the characteristics of a specific model.

SGD has many important uses outside the context of machine learning. It is
the main way to train large linear models on very large datasets. For a fixed model
size, the cost per SGD update does not depend on the training set size m. In
practice, larger model is often used as the training set size increases, but it is not
always the case. The number of updates required to reach convergence usually
increases with training set size. However, as m approaches infinity, the model will
eventually converge to its best possible test error before SGD has sampled every
example in the training set. Increasing m further will not extend the amount of
training time needed to reach the model’s best possible test error. From this point
of view, one can argue that the asymptotic cost of training a model with SGD is
O(1) as a function of m.

Figure 4.8: An example of underfitting and overfitting in the case of a binary
classification and a regression task. Image from [64]

Thus, in practice, the learning procedure starts with all parameters picked
random from a chosen distribution (e.g. normal or uniform), and at each iteration

65



4.1. HOW MACHINES LEARN

the value of the loss function is evaluated again with the new parameters given
by 4.12 until a minimum is found. However, an excess in training could result in
overfitting, which describes the situation when a trained model is very accurate
dealing with the training dataset but it generalize poorly over new, previously
unseen data. On the other hand when a model performs poorly on both training
and new data is called underfitted. In Figure 4.8 an example is shown.

Figure 4.9: Training workflow using a validation and test subset.

In order to find the best hyperparameters of the model to avoid falling in the
two cases just described, a validation set is needed, i.e. examples that the training
algorithm does not observe. This subset is different from what is known as test
set, composed from the same distribution as the training set, which can be used
to estimate the generalization of a learner, after the entire learning procedure has
completed and the model is ready to be deployed. Indeed, it is important that
the test examples are not used in any way to make choices about the model,
including its hyperparameters. For this reason, no example from the test set can
be used in the validation set. Therefore, the validation set is always built from
the training data. Specifically, the training data is split into two disjoint subsets.
One of these subsets is used to learn the parameters. The other subset is the
validation set, used to estimate the generalization error during or after training,
allowing for the hyperparameters to be updated accordingly, as can be seen in the
workflow shown in Figure 4.9. Typically, one uses about 80 percent of the training
data for training and 20 percent for validation. Since the validation set is used
to “train” the hyperparameters, the validation set error will underestimate the
generalization error, though typically by a smaller amount than the training error
does. After all hyperparameter optimization is complete, the generalization error
may be estimated using the test set.

Dividing the dataset into a fixed training set and a fixed validation set can
be problematic if it results in the validation set being small. A small set implies
statistical uncertainty around the estimated average test error, making it difficult
to claim that algorithm A works better than algorithm B on the given task. When
the dataset has hundreds of thousands of examples or more, this is not a serious
issue. When the dataset is too small, alternative procedures enable one to use all
the examples in the estimation of the mean test error, at the price of increased
computational cost. These procedures are based on the idea of repeating the

66



4.1. HOW MACHINES LEARN

Figure 4.10: Graphical representation of 10-Fold Cross Validation.

training and validation computation on different randomly chosen subsets or splits
of the original dataset. The most common of these is the k-fold cross-validation
procedure, shown in Figure 4.10, in which a partition of the dataset is formed by
splitting it into k non-overlapping subsets. The test error may then be estimated
by taking the average test error across k trials. On trial i, the i-th subset of the
data is used as the test set, and the rest of the data is used as the training set.

Choosing the metric used to define an accurate model is quite important and
non-trivial. For example, consider a classification task with three classes and an
entry belonging to class with index 0; this can be represented as a vector made
up of the probabilities of belonging to a certain category: [1.0, 0, 0]. The question
is whether is better a model that outputs [0, 0, 0] or [0.6, 0.4, 0.4]. The answer is
not unique and it depends on the use different use cases and types of algorithm.
However, in the case of a binary classification, a very common way to establish the
accuracy of a model is the Receiver Operating Characteristic (ROC) curve.

Having only two classes, the feature space can be written as Y = [0, 1]. Let
fi ∈ R be the model output for the i-th example: the greater it is, the more likely
the example is of class 1. If a binary decision has to be made using this value, a
threshold t is defined, and the continuous values fi are transformed into the definite
class labels

ypredi =
{

1 when fi > t

0 when fi ≤ t
(4.13)

From a statistics point of view, when classifying, a decision is made under the
null hypothesis that the example is class 1 (or signal hypothesis). Such decisions
will suffer from two kinds of errors: false positives (or type I) errors, where a
background example is wrongly selected as signal, and false negatives (or type II)
errors, when a signal example is rejected as background. By varying this threshold,
the trade-off between the error types can be adjusted. The choice of the threshold
(also called working point) depends on the specific classification problem and the
costs of making the errors of each type. In high-energy physics, for example, the
working point is usually selected with the threshold value that maximises the so
called significance, defined as:

S = Ns√
nb

(4.14)

67



4.1. HOW MACHINES LEARN

where Ns is the number of selected signal examples and Nb is the number of selected
background examples.

Figure 4.11: Definition of True Positive (TP), False Positive (FP), True Negative
(TN) and False Negative (FN). This matrix is often called confusion matrix.

For each threshold value, the true positive rate (TPR) (also called signal effi-
ciency or sensitivity) is computed as

TPR = TP
TP + FN (4.15)

where TP and FN are the number of true positives and false negatives respectively.
A simple and graphical explanation on what these terms mean is in Figure 4.11.
Together with the TPR, the False Positive Rate (FPR) is also calculated:

FPR = FP
FP + TN (4.16)

with the number of false positives FP and true negatives TN (see Figure 4.11).
This quantity is also called background efficiency in the High Energy Physics field.
Thus, the TPR is the fraction of the signal examples that pass the selection thresh-
old, while the FPR is the fraction of background examples that erroneously pass
the selection threshold. If there is no priori information to decide the decision
threshold, a common measure is to plot the TPR as a function of FPR, that is the
Receiver Operating Characteristic curve.

While allowing for maximum flexibility of evaluation, such curve is not a conve-
nient scalar performance score. To solve this, a commonly used summary statistic
is the Area Under the ROC Curve (AUC). The AUC has mathematical properties
that makes it attractive for the comparison of different classifiers. First of all, the
AUC is a finite quantity, lying in a well-defined interval. For a perfect classifier,
all predicted values for signal examples are greater than for all background exam-
ples, therefore the AUC = 1. For a totally random classifier, the predictions are
distributed equally for signal and background examples, and the ROC curve is a
straight line from (0, 0) to (1, 1) with an AUC = 0.5. An illustration of all these
concepts is presented in Figure 4.12.

68



4.2. ARTIFICIAL NEURAL NETWORKS

Figure 4.12: An illustration of a Receiver Operating Characteristic curve (ROC),
and the area under the curve (AUC). In red, the ROC curve of the worst possible
model giving random predictions (AUC= 0.5). An higher AUC corresponds to a
better classifier (green, orange and blue lines). The blue dot is the perfect classifier,
with 100% correct predictions. Image from [65].

The AUC is defined for a binary classifier. If there are several classes to distin-
guish, the single ROC AUCmetric can be replaced with a set of numbers. There are
two main ways to transform a n-class classification into sets of binary classification
problems:
one-vs-rest : the classification is reduced to n binary classification problems.

For each class, it considers the value of the metric, computed with the other
classes collapsed into a single virtual class;

one-vs-one : the classification is reduced into n(n − 1)/2 binary classification
problems. Each class is evaluated against every other class.

4.2 Artificial Neural Networks
An artificial neural network (ANN or more commonly NN) is a computing sys-
tem vaguely inspired by the biological neural connections that constitute a human
brain, specifically designed to tackle non-linear learning problems. This type of
architecture are included in the context of deep learning, i.e. an approach to ar-
tificial intelligence where the computer learns complex concepts by building them
from simpler ones, structured in a hierarchy. This hierarchy, when represented
graphically, shows many layers, thus giving rise to the term. Indeed, deep feed-
forward networks (a more specific name for NNs), also called feedforward neural
networks, or multilayer perceptrons (MLPs), are the quintessential deep learn-
ing models. Their goal is to approximate some function f ∗, defining a mapping
y = f(x,θ) and learning the value of the parameters θ that result in the best
function approximation.

69



4.2. ARTIFICIAL NEURAL NETWORKS

These models are called feedforward because information flows through the
function being evaluated from x, through the intermediate computations used to
define f , and finally to the output y. There are no feedback connections in which
outputs of the model are fed back into itself. When feedforward neural networks
are extended to include feedback connections, they are called recurrent neural
networks. Feedforward networks are of extreme importance to machine learning
practitioners. They form the basis of many important commercial applications.
For example, the convolutional networks used for object recognition from photos
are a specialized kind of feedforward network. Feedforward networks are a concep-
tual stepping stone on the path to recurrent networks, which power many natural
language applications [59].

NNs are called networks also because they are typically represented by com-
posing together many different functions. The model is associated with a directed
acyclic graph (DAG) describing how the functions are composed together. A DAG
is a directed graph G = (V,E) that consists of a finite set V of vertices and a finite
set E of edges, where each edge is associated with an ordered pair of vertices [66].
In a DAG, there are no directed circuits, meaning there are no closed trails where
all vertices, except the end vertices, are distinct. Essentially, this means that there
are no cycles in the graph. For example, going back to NNs, there might be three
functions f (1), f (2) and f (3) connected in a chain, to form f(x) = f (3)(f (2)(f (1)(x))).
In this case, f (1) is called the first layer, or input layer, f (2) is called second layer,
and so on. The overall length of the chain gives the depth of the model. The name
deep learning arose from this terminology. The final layer of a feedforward network
is called the output layer. A basic example of NN is in Figure 4.13a.

(a) Neural Network basic architecture.
(b) Graphical representation of a Per-
ceptron.

Figure 4.13: Simple diagrams representing the layout and functioning principle of
Neural Networks.

The NN training consists basically in trying to match f(x), i.e. the result from
the output layer, with f ∗(x). The learning algorithm tries to use the inner layers to
produce the desired output, but the training data do not say what each individual
layer should do. Because the training data does not show the desired output for
each of these layers and they are usually not interpretable (with some important
exceptions, as explained in Section 4.3.1), they are called hidden layers.

70



4.2. ARTIFICIAL NEURAL NETWORKS

Finally, these networks are called neural because they are loosely inspired by
neuroscience. Each hidden layer of the network is typically vector valued. The
dimensionality of these hidden layers determines the width of the model. Each
element of the vector may be interpreted as playing a role analogous to a neu-
ron. Rather than thinking of the layer as representing a single vector-to-vector
function, the layer can also be thought as consisting of many units that act in
parallel, each representing a vector-to-scalar function, called perceptrons. Each
unit resembles a neuron in the sense that it receives input from many other units
and computes its own activation value (see Figure 4.13b). The idea of using many
layers of vector-valued representations is drawn from neuroscience. The choice of
the functions f (i)(x) used to compute these representations was guided by neuro-
scientific observations about the functions that biological neurons compute when
this kind of algorithms was conceived. Modern neural network research, however,
is guided by many mathematical and engineering disciplines, and the goal of neural
networks is not to perfectly model the brain. It is best to think of feedforward net-
works as function approximation machines that are designed to achieve statistical
generalization, occasionally drawing some insights from what is known about the
brain, rather than as models of brain function. An important aspect of NNs is the

Figure 4.14: Examples of activation functions. From the left: ReLU, LeakyReLU
and sigmoid function. The softmax function has the same shape of the sigmoid
but it is normalized to 1 across all outputs.

ability to approximate also non-linear functions. This is made easy by the addi-
tion of non-linear activation function computed in each perceptron, after the linear
combination of all inputs. There is a vast landscape of activation functions, each
with their advantages and disadvantages, but the most common are (a graphical
representation is in Figure 4.14):

Rectified Linear Unit : ReLU(x) = max(0, x). It is zero for negative values
and increases linearly for x > 0. This function is the simplest and obviously
linear in the positive domain, in the sense that it is mainly a piecewise lin-
ear function made up of two linear pieces. Thanks to this almost linearity,
ReLU units preserve many of the properties that make linear models easy
to optimise with gradient-based methods [59]. A drawback of ReLU is the
impossibility to learn from examples which cause the inputs of the function
to be less or equal to zero;

71



4.2. ARTIFICIAL NEURAL NETWORKS

Leaky Rectified Linear Unit : LeakyReLU(x) = max(0, x) + αmin(0, x) [67].
It is a piecewise linear function with a parametrized slope for values < 0 and
a slope equal to 1 for positive values. It alleviates the problems using ReLU
with negative values;

Sigmoid : sigmoid(x) = (1 + e−x)−1. This activation function is usually used in
the last layer of a network tasked with binary classification, since its value
lies in the interval [0, 1]. The value tends to 0 as the argument approaches
negative infinity and to 1 as the argument approaches positive infinity. It
is a poor choice as the activation for the hidden layers, as it suffers from
a vanishing gradient issue, i.e. the gradient can become so small that it
would take an enormous amount of iteration to take a good step towards a
minimum;

Softmax : softmax(x)i = exi(∑K
j=1 e

xj )−1. It is useful to represent a probability
distribution over a discrete variable with n possible values [59]. This can be
seen as a generalization of the sigmoid function, which is used to represent a
probability distribution over a binary variable. Softmax functions are most
often used as the output of a multiclass classifier, to represent the probability
distribution over n different classes. Using this activation guarantees not
only that each output is between 0 and 1, but also that the entire vector of
outputs of an entire layer sums to 1 so that it represents a valid probability
distribution.

Training a NN is usually done via gradient techniques, as described in Section
4.1.1. Given a function L(θ), its minimum will be at a point where its gradient is
zero. To arrive at such a point, iteratively follow the inverse gradient:

θτ+1 = θτ − η∇L(θ(τ)) (4.17)

where τ is the iteration number, and η > 0 is the learning rate parameter. This
procedure can be very computationally expensive when considering that the model
prediction for each input in the dataset would be needed to perform a step. That
is why the SGD is commonly used, where, for each iteration, only a subset, called
batch, of examples is randomly chosen, extracted from the whole dataset and used
to compute the gradients. Once all the entries in the dataset are used, a so-called
epoch is finished. After an epoch, the data is reshuffled and processed again. With
this technique, the gradient is computed after each batch:

θτ+1 = θτ − η 1
m

m∑
i=1
∇θL(f(xi,θ(τ))) (4.18)

where f(xi,θ(τ)) is the model prediction for the i-th example in a batch with m
samples. Stochastic gradient descent follows noisy estimates of the true gradient.
This slows down convergence, as shown in Figure 4.15, but eventually reaches a
similar minimum with a lower computational footprint.

72



4.2. ARTIFICIAL NEURAL NETWORKS

Figure 4.15: Optimising a learning algorithm with gradient descent (black line)
and stochastic gradient descent (red dashed line).

Dropout and Regularization

Neural Networks, during their learning process, use the loss function to establish
the set of parameters, i.e. weights and bias, to obtain an optimal output for the
task at hand. To handle problems like overfitting, described in Section 4.1.1, a
few techniques, called regularisation techniques, are commonly used that, acting
on the loss function, helps reduce the effects of overtraining a NN.

Generally, such techniques add a term, dependent on the weights, after the loss
function:

Ltot(x,θ, λ) = L(x,θ) + λ ·R(θ) (4.19)

where L(x,θ) is the original loss function, R(θ) is the regularisation function
and λ is called regularisation rate or constant. One of the most used family of
regularisation functions is the Lp norm:

Lp(x) = ||x||p =
(

n∑
i=1

xpi

)1/p

(4.20)

of which the most commonly known is the L2 which takes the form of the usual
norm of a vector:

L2(x) = ||x|| =
√√√√ n∑
i=1

xpi (4.21)

In practice, using this kind or regularisation means searching for a compromise
between having small weights and the accuracy of the output. The balance between

73



4.3. EXAMPLES OF ARTIFICIAL NEURAL NETWORKS

these two terms is controlled with λ: when it is small, the minimisation of the loss
function is dominant, otherwise finding a vector of weights with a small norm is
prioritized. Another way to tackle overtraining is the dropout technique. It does

Figure 4.16: Graphical representation of the dropout technique. Each epoch the
network is made slightly different, turning off a random sample of neurons.

not sees the modification of the loss function, but of the network itself. Basically,
applying a dropout means removing some neurons in some or all hidden layers:
during each epoch, some neurons are randomly discarded before the training step,
as shown in Figure 4.16. During the real usage of a model, the network is considered
in its entirety without dropping out neurons.

4.3 Examples of Artificial Neural Networks
In this section two different families of NNs are described: Autoencoders and Graph
Neural Networks. These models are used for different tasks and highlight the
flexibility and power of neural networks in various applications. Their structures
will be explored, how they are trained, and their practical uses, in order to help
understanding why ANNs are so important in today’s technology landscape.

Although these model families are described here as distinct, the best results
are often achieved by hybridizing predefined architectural frameworks, as tested in
Section 6.4.

4.3.1 Autoencoders
An autoencoder (AE) is a neural network that is trained to attempt to copy its
input to its output [59]. Internally, it usually comprises of a hidden layer h that
describes a code used to represent the input. The network can be viewed as made
up of two parts: an encoder function h = f(x) and a decoder that produces a
reconstruction r = g(h). This architecture is presented in Figure 4.17. If an
autoencoder succeeds in simply learning to set g(f(x)) = x everywhere, then it is

74



4.3. EXAMPLES OF ARTIFICIAL NEURAL NETWORKS

not especially useful. Instead, autoencoders are designed to be unable to learn to
copy perfectly. Usually they are restricted in ways that allow them to copy only
approximately, and to copy only input that resembles the training data. Because
the model is forced to prioritize which aspects of the input should be copied, it
often learns useful properties of the data.

Figure 4.17: The general structure of an autoencoder, mapping an input to an
output (called reconstruction) through an internal representation or code. The
autoencoder has two components: the encoder and the decoder. Image from [68].

The idea of autoencoders is not new and conceptualized in the eighties. Tradi-
tionally, they were used for dimensionality reduction or feature learning. Recently,
theoretical connections between AEs and latent variable models [69] have brought
attentions to autoencoders as generative models. Autoencoders may be thought
of as being a special case of feedforward networks and may be trained with all the
same techniques, typically batch gradient descent following gradients computed
by back-propagation. Unlike general feedforward networks, autoencoders may also
be trained using recirculation: a learning algorithm based on comparing the ac-
tivations of the network computed on the original input to the activations of the
reconstructed input, i.e. the output of the model.

As said before, there needs to be a way to avoid the copy of the input in the
output as it is. The most common technique, which also makes the code (or latent
space) take useful properties, is to constrain the latter to have a smaller dimension
than the input x. In this case the AE can be called undercomplete. Learning an
undercomplete representation forces the AE to capture the most salient features
of the training data.

The learning process is described simply as minimizing a loss function

L(x, g(f(x))) (4.22)

where L is a loss function penalizing g(f(x)) for being dissimilar from x, e.g. a
mean squared error function, see Eq. 4.4.

Autoencoders with nonlinear encoder functions f and nonlinear decoder func-
tions g can learn a more powerful nonlinear generalization of Principal Component
Analysis [70], i.e. a traditional dimensionality reduction technique that transforms
a dataset by projecting it onto a set of orthogonal (uncorrelated) axes, called prin-
cipal components, which capture the most variance in the data. It simplifies the
data while preserving its essential patterns and structures.

Unfortunately, if the encoder and decoder are allowed too much capacity, the
AE can learn to perform the copying task without extracting useful information

75



4.3. EXAMPLES OF ARTIFICIAL NEURAL NETWORKS

about the distribution of the data. Theoretically, one could imagine that an au-
toencoder with a one-dimensional code but a very powerful nonlinear encoder could
learn to represent each training example x(i) with the code i. The decoder could
learn to map these integer indices back to the values of specific training exam-
ples. This scenario does not occur in practice, but it illustrates clearly that an AE
trained to perform the copying task can fail to learn anything useful about the
dataset if the capacity of the autoencoder is allowed to become too great.

An interesting application for AEs is denoising: by changing the usual loss
function shown in Eq. 4.22 with

L(x, g(f(x̃))) (4.23)

where x̃ is a copy of x that has been corrupted by some form of noise, it is possible
to build a denoising autoencoder (DAE). An application of these kind of models
was explored in a Bachelor’s thesis I have co-supervised where a DAE was used to
perform error mitigation on the output of a gate-based quantum computer [71].

Anomaly Detection

Anomaly detection (AD) aims to identify instances containing patterns that deviate
from those observed in normal instances [72]. This task is crucial in various vision
applications, such as manufacturing defect detection, medical image analysis, and
video surveillance. Unlike typical supervised classification problems, anomaly de-
tection presents unique challenges. Primarily, it is difficult to obtain a substantial
amount of anomalous data, whether labeled or unlabeled. Additionally, the differ-
ences between normal and anomalous patterns are often fine-grained, as defective
areas can be small and subtle in high-resolution images. Since the distribution of
anomaly patterns is unknown in advance, models are trained to learn the patterns
of normal instances. An instance is determined to be anomalous if it is not well-
represented by these models (see Figure 4.18). Considering the peculiarities of this
kind of task, AD is one of the popular application for autoencoders [73].

Figure 4.18: Example of how to perform anomaly detection as outliers of a data
reconstruction model trained on normal data.

Autoencoders, when trained solely on normal data instances (which are the
majority in anomaly detection tasks), fail to reconstruct the anomalous data sam-
ples, therefore, producing a large reconstruction error and the data samples which

76



4.3. EXAMPLES OF ARTIFICIAL NEURAL NETWORKS

produce high residual errors are considered outliers. Several variants of autoen-
coder architectures are proposed as illustrated in Figure 4.19 produce promising
results in anomaly detection. The choice of autoencoder architecture depends on
the nature of data, convolution networks are preferred for image datasets while
Long short-term memory (LSTM) based models tend to produce good results for
sequential data. Efforts to combine both convolution and LSTM layers where
the encoder is a convolutional neural network (CNN) and decoder is a multilayer
LSTM network to reconstruct input images are shown to be effective in detect-
ing anomalies within data. The use of combined models such as Gated recurrent
unit autoencoders (GRU-AE), Convolutional neural networks autoencoders (CNN-
AE), Long short-term memory (LSTM) autoencoder (LSTM-AE) eliminates the
need for preparing hand-crafted features and facilitates the use of raw data with
minimal preprocessing in anomaly detection tasks.

Figure 4.19: Autoencoder architectures for anomaly detection. AE: Autoencoders,
LSTM: Long Short Term Memory Networks, SDAE: Stacked Denoising Autoen-
coder, DAE: Denoising Autoencoders, GRU: Gated Recurrent Unit, CNN: Convo-
lutional Neural Networks, CNN-LSTM-AE: Convolution Long Short Term Memory
Autoencoders, CAE: Convolutional Autoencoders

There are alternatives to reconstruction-based anomaly detection, including
several common approaches. Statistical-based methods assume that normal data
follows a certain probability distribution, typically Gaussian. The normal data is
modeled as a Gaussian distribution, and probability theory is used to identify data
points with low probability according to this estimated distribution. Distance-
based methods operate on the assumption that normal data points are closely
grouped, whereas outliers are farther away. These methods define a distance metric
between data points and identify those that are significantly distant from others,
with the Local Outlier Factor (LOF) being a popular example that uses local
density to detect outliers. Clustering-based methods are based on the premise
that normal data points form dense clusters, while outliers do not. Clustering is
performed on the data, and any data points that do not belong to any cluster are
identified as outliers.

4.3.2 Graph Neural Networks
Data can naturally be represented by graph structures in various application areas
[74], including image analysis, scene description, software engineering, and natural
language processing.

77



4.3. EXAMPLES OF ARTIFICIAL NEURAL NETWORKS

A graph G = (V,E) consists of two sets [75]: a finite set V of elements called
vertices and a finite set E of elements called edges. Each edge is identified with
a pair of vertices. If the edges of a graph G are identified with ordered pairs of
vertices, then G is called a directed or an oriented graph. Otherwise G is called an
undirected or a nonoriented graph.

The simplest types of graph structures include single nodes and sequences.
However, in many applications, information is organized into more complex graph
structures such as:

acyclic graphs : A graph without circuits i.e. a finite sequence of vertices
v1, v2, . . . , vk, v1 such that each pair (vi, vi+1) is an edge in the graph, and
no edge or intermediate vertex is repeated (Figure 4.20a).

trees : a connected acyclic subgraph of a graph G (Figure 4.20b).

cyclic graphs : A graph where is it possible to follow a circuit passing through
all vertices (Figure 4.20c).

Traditionally, the exploitation of data relationships has been extensively studied
within the inductive logic programming community. Recently, this research has
evolved in different directions, driven by the application of relevant concepts from
statistics and neural networks to these areas.

(a) Example of acyclic
graph. (b) Example of a tree of a

graph.
(c) Example of a cyclic
graph.

Figure 4.20: Different types of graphs which can represent the relationships be-
tween data.

Conventional machine learning applications handle graph-structured data by
first converting it into a simpler representation, such as vectors of real numbers,
through a preprocessing phase. This preprocessing step "compresses" the graph
data into a vector format, which is then processed using tabular-based techniques.
However, this approach can lead to the loss of crucial information, such as the
topological dependencies between nodes, and the final outcome may be unpre-
dictably influenced by the specifics of the preprocessing algorithm. More recently,
various approaches have emerged that aim to retain the graph-structured nature
of the data throughout the processing phase. The idea is to encode the underlying
graph structured data using the topological relationships among the nodes of the
graph, in order to incorporate graph structured information in the data processing
step. However, there is a family of algorithms that extends even further and deals
directly with graph structured information: Graph Neural Networks (GNN).

GNNs are based on an information diffusion mechanism. A graph is processed
by a set of units, each one corresponding to a node of the graph, which are linked

78



4.3. EXAMPLES OF ARTIFICIAL NEURAL NETWORKS

according to the graph connectivity. The units update their states and exchange
information until they reach a stable equilibrium. The output of a GNN is then
computed locally at each node on the base of the unit state. The diffusion mech-
anism is constrained in order to ensure that a unique stable equilibrium always
exists. GNNs can be used for the processing of general classes of graphs, e.g.,
graphs containing undirected links, and they adopt a general diffusion mechanism.
The intuitive idea behind GNNs is that nodes in a graph represent objects or con-

Figure 4.21: Example of a graph (on the top) and the corresponding network where
the state and output of each node is computed with a Recurrent Neural Network.

cepts, and edges represent their relationships. Each concept is naturally defined
by its features and the related concepts. Thus, a state xn ∈ Rs can be attached
to each node n based on the information contained in the neighbourhood of n, i.e.
the nodes connected to n. The state xn contains a representation of the concept
denoted by n and can be used to produce an output on. Let fw be a parametric
function, called local transition function, that express the dependence of a node n
on its neighbourhood and let gw be the local output function that describes how
the output is produced; then, xn and on are defined as follows:

xn = fw(ln, lco[n],xne[n], lne[n]) (4.24)
on = gw(xn, ln) (4.25)

where ln, lco[n] are respectively the real valued vectors of label of n and its edges,
and xne[n], lne[n] the states and the labels of the nodes in the neighbourhood of

79



4.4. WRITING A NEURAL NETWORK

n. At this point, [74] attests that it is possible to converge exponentially to the
solutions of 4.24 by iterating:

xn(t+ 1) = fw(ln, lco[n],xne[n](t), lne[n]) (4.26)
on(t) = gw(xn(t), ln) (4.27)

Finally, these functional representations of the state and output of each node
can be substituted by Recurrent Neural Networks [59] (RNN) whose peculiarity is
to be able to work better with time-series data thanks to their ability to retain a
previous state of the network and use it, together with the new input, to compute
the next state. These RNNs are then trained with data to reflect the relationships
and information contained in it. A schematic representation of this very superficial
explanation of the very complex algorithm behind GNNs is shown in Figure 4.21.

4.4 Writing a Neural Network
The growth in popularity of ML algorithms has made essential to develop frame-
works which allow any user to build, train and deploy a ML model with little to no
knowledge of the complex underlying algorithms. In this way, it is not necessary
to be an expert in order to deploy a model able to tackle a particular problem in
the scientific or commercial domain, while at the same time, offering the expert
user the ability of fine tuning their models, without taking too much care in the
fundamentals of the model itself. In recent years there has been an increase in the
number of alternatives in ML frameworks. Among the most popular (see Figure
4.22) the two which stand out are [56]:

Figure 4.22: Popularity in Google searches of the most popular ML frameworks
from January 2010 to February 2021 [76]. Numbers represent search interest rel-
ative to the highest point on the chart for the given region and time. A value of
100 is the peak popularity for the term. A value of 50 means that the term is half
as popular. A score of 0 means that there was not enough data for this term.

PyTorch [77]: an open source deep learning framework, originally developed by
Meta AI but now part of the Linux Foundation [78] umbrella, built to be
flexible and modular for research, with the stability and support needed for
production deployment. PyTorch provides a Python package for high-level
features like tensor computation with strong GPU acceleration. With the
latest release of PyTorch, the framework provides graph-based execution,
distributed learning, mobile deployment and quantization.

80



4.4. WRITING A NEURAL NETWORK

TensorFlow [79]: a library developed by Google which offers training, distributed
training, and inference (TensorFlow Serving) as well as other capabilities such
as TFLite (mobile, embedded), Federated Learning (compute on end-user
device, share learnings centrally), TensorFlow.js, (web-native ML), TFX for
platform etc. TensorFlow is widely adopted, especially in enterprise/production-
grade ML. Thanks to its clean design, scalability, flexibility, easy-to-understand
documentation and performance, it has reached the top of the list of the ML
frameworks worldwide.

4.4.1 TensorFlow
TensorFlow is an open-source software library for dataflow programming across a
range of tasks. It is a symbolic math library for numerical computation that uses
data flow graphs. Despite suitable for a variety of tasks, it is particularly useful
for ML applications, such as neural networks. It was developed by the Google
Brain team, now merged into Google DeepMind [80] for internal use and released
under the Apache 2.0 open-source license on November 2015. On September 2019,
a major update to TensorFlow 2.0 has made the library even more efficient and
accessible, by implementing a more intuitive Application Programming Interface
(API) [79]. Currently, it is one of the most utilised ML frameworks worldwide, due
to its completeness and reliable libraries.

Its architecture is flexible enough to allow users to deploy computation to one
or more CPUs or GPUs in a desktop, server, or even mobile device with a single
API. Moreover, through the Google Cloud Platform (GCP) it is possible to imple-
ment models built with TensorFlow on a Tensor Processing Unit (TPU), Google’s
custom-developed ASICs used to accelerate ML workloads [81].

In a not exhaustive list of TensorFlow’s features, one could mention [82]:

• It runs on Windows, Linux and macOS, and also on mobile devices, including
both iOS and Android;

• It provides a Python API which offer flexibility to create all sorts of compu-
tations, including any NN architecture one can think of;

• It includes highly efficient C++ implementations of many ML operations,
particularly those needed to build NNs. There is also a C++ API to define
one’s own high-performance operations;

• It provides several advanced optimization nodes to search for the parameters
that minimize a cost function: TensorFlow automatically takes care of com-
puting the gradients of the functions one defines, i.e. implements automatic
differentiation;

• It also comes with a native visualization tool called TensorBoard, that allows
browsing through computation graph, view learning curves, and more;

• Once a model is done with TensorFlow, computations can be deployed to one
or more CPUs or GPUs, local or remote via any Cloud Computing Service
provider.

81



4.4. WRITING A NEURAL NETWORK

As an example, some code snippets showing how a model that performs linear
regression can be implemented from scratch and trained in TensorFlow are shown
in the following. A correspondent example will be given in the next section for a
higher-level framework as well.

Data in TensorFlow, is almost always represented by tensors. However, by using
TensorFlow’s own functions and class constructors, it is relatively easy to obtain
a tensor from more other types of data containers like Python’s list or Numpy’s
array. Here is some data synthesized by adding Gaussian (Normal) noise to points
along a line using the random generators from TensorFlow:

1 import tensorflow as tf
2

3 # The actual line
4 TRUE_W = 3.0
5 TRUE_B = 2.0
6 NUM_EXAMPLES = 1000
7 # A vector of random x values
8 x = tf.random.normal(shape=[NUM_EXAMPLES])
9 # Generate some noise

10 noise = tf.random.normal(shape=[NUM_EXAMPLES])
11 # Calculate y
12 y = x * TRUE_W + TRUE_B + noise

Then the model can be defined, together with weights and bias as variables:

1 class MyModel(tf.Module):
2 def __init__(self, **kwargs):
3 super().__init__(**kwargs)
4 # Initialize the weights to `5.0` and the bias to `0.0`
5 # In practice, these should be randomly initialized
6 self.w = tf.Variable(5.0)
7 self.b = tf.Variable(0.0)
8 def __call__(self, x):
9 return self.w * x + self.b

10 model = MyModel()

The standard L2 loss can be introduced, also known as MSE (Eq. 4.4):

1 # This computes a single loss value for an entire batch
2 def loss(target_y, predicted_y):
3 return tf.reduce_mean(tf.square(target_y - predicted_y))

The training loop, written from scratch in TensorFlow, is relatively straightfor-
ward:

82



4.4. WRITING A NEURAL NETWORK

1 # Given a callable model, inputs, outputs, and a learning rate...
2 def train(model, x, y, learning_rate):
3

4 with tf.GradientTape() as t:
5 # Trainable variables are automatically tracked by GradientTape
6 current_loss = loss(y, model(x))
7

8 # Use GradientTape to calculate the gradients with respect to W and b
9 dw, db = t.gradient(current_loss, [model.w, model.b])

10

11 # Subtract the gradient scaled by the learning rate
12 model.w.assign_sub(learning_rate * dw)
13 model.b.assign_sub(learning_rate * db)
14

15 model = MyModel()
16

17 # Collect the history of W-values and b-values to plot later
18 Ws, bs = [], []
19 epochs = range(10)
20

21 # Define a training loop
22 def training_loop(model, x, y):
23

24 for epoch in epochs:
25 # Update the model with the single giant batch
26 train(model, x, y, learning_rate=0.1)
27

28 # Track this before I update
29 Ws.append(model.w.numpy())
30 bs.append(model.b.numpy())
31 current_loss = loss(y, model(x))

And finally the model is actually trained by a single function call, namely
training_loop(model, x, y).

From this example, it is clear how, with a few lines of code, it is possible
to implement a ML model without a deep understanding of the theory behind
it. However, higher-level libraries, like Keras, allow an even faster deployment of
models, as shown in the following section.

4.4.2 Keras
Keras [83] is a deep learning API written in Python, primarily running on the
TensorFlow machine learning platform. It offers an intuitive and productive inter-
face for solving modern ML problems. Additionally, Keras can be deployed with
JAX or PyTorch as back-end alternatives. Keras provides essential abstractions

83



4.4. WRITING A NEURAL NETWORK

and building blocks for developing and deploying ML solutions. Designed for rapid
experimentation, its simple interface reduces the number of user actions needed for
common tasks and offers clear, actionable feedback when errors occur.

The core data structures of Keras are "layers" and "models". The simplest type
of model is the Sequential model, a linear stack of layers. However, it is possible to
deploy more complex architectures using the Keras Functional API, which allows
to build arbitrary graphs of layers, or writing models entirely from scratch via
subclassing.

As done in the previous section, some code snippets showing how a model that
performs regression can be implemented using the Keras APIs with a TensorFlow
backend, and how it results in a much simpler and cleaner code base, is shown in
the following.

Building a Sequential model is as follows:

1 from tensorflow.keras.models import Sequential
2

3 model = Sequential()

Then, the add() method is used to stack layers, as follows:

1 from tensorflow.keras.layers import Dense
2 model.add(Dense(units=64,activation='relu',input_dim=100))
3 model.add(Dense(units=10,activation='softmax'))

where units corresponds to the number of nodes, or neurons, of that layer and
activation is the activation function. In the definition of the first layer, the number
of features in input is also specified via the input_dim option.

Once the layout of the model is defined, the compile() method is used to con-
figure the learning process:

1 model.compile(loss='categorical_crossentropy', optimizer='sgd')

Here which loss function will be used in the learning process is specified, to-
gether with the configuration of the optimizer (in this example sgd stands for
Stochastic Gradient Descent).

Now the model can be trained in batches using x_train and y_train as train
set and labels:

1 model.fit(x_train,y_train, epochs=5,batch_size=32)

After the training is done, the model can be used easily to infer on new data:

84



4.5. MACHINE LEARNING IN HIGH ENERGY PHYSICS

1 classes = model.predict(test_data)

This example shows how simple it is to deploy a neural network with Keras.
However, Keras is also a highly flexible framework suitable to iterate on state-of-
the-art research ideas. It follows the principle of progressive disclosure of complex-
ity: it makes it easy to get started, yet it makes it possible to handle arbitrarily
advance use cases, only requiring incremental learning at each step.

4.5 Machine Learning in High Energy Physics
Standard Model has had a resounding success, including almost all subnuclear
particle physics phenomena in nature. However, each problem of interest must be
always accompanied by some assumptions and simplifications, including the results
of proton-proton collisions at the LHC. In particular, at the LHC experiments such
complexity must be multiplied by the scale of a building-sized particle detector. It
is also important to mention that physical considerations and studies only allow
to solve a direct problem: how does a process X look in a Y detector. However,
in order to draw conclusions from any experiment, the inverse problem must be
solved: given some readout from a detector Y, what is occurring in terms of a
physical process X? Most of the utility of ML for particle physics comes from
being able to solve this inverse problem [84], [85].

Compared to traditional, expert-designed algorithms, ML offers two main ad-
vantages. Firstly, it delivers higher quality results. Secondly, it reduces effort
by replacing highly specialized, manually crafted algorithms with general meth-
ods adapted from AI research, which are also used across various fields of study.
However, these benefits come at a cost. Most ML algorithms function as "black
boxes," meaning their inner workings are not easily understood. The primary issue
is not merely the lack of human comprehension, but the specific mathematical re-
quirement that the training data must match the distribution of the data to which
the algorithm will be applied. This is rarely the case, as ML methods generally
lack formal guarantees of performance when faced with such data shifts. While
this may not be a significant concern in many non-scientific applications, scientific
work demands extreme precision and reliability. Although there are methods to
validate data analysis techniques, expert judgment is almost always necessary to
assess each case individually.

In the HEP community, the validation of ML methods follows a similar ap-
proach, with case-by-case physical considerations applied at every stage to achieve
acceptable results:

Training data selection The data must encompass the entire desired phase space
and all relevant physical processes;

Features selection Only the features that correspond to the physics involved are
used;

85



4.5. MACHINE LEARNING IN HIGH ENERGY PHYSICS

Validation on different samples For an algorithm trained on simulated data,
its performance must be measured on a different sample for calibration;

Manual inspection of physically-meaningful distributions Training features
must be selected according to their physical distribution: in case of corre-
lations, for instance, a possible bias may be introduced and therefore affect
negatively the training procedure.

4.5.1 Event Selection: Separating Signal from Background
Selecting events that contain interesting processes is a fundamental requirement
of HEP experiments and is perhaps the most established application of ML in
HEP. Most analyses involve measuring the fraction of events that include a specific
decay channel. Traditionally, this process involves developing an event selection
algorithm, estimating its efficiency in selecting signals and rejecting background
noise, and counting the events that pass the algorithm. The conventional method,
known as cut-based selection, involves manually constructing a decision tree using
physical considerations, Monte Carlo simulations, or both. This procedure can be
fully automated using ML algorithms, both in the final statistical analysis [86] and
at the initial trigger decision stage [87]. These ML tools have found high-profile
application in single t quark searches [88], early Higgs boson searches [89], and the
Higgs boson discovery itself [90].

Figure 4.23: On the left, deep networks (DN) performance in signal-background
classification compared to shallow networks (NN) with a variety of low- and high-
level features [91]. On the right, a comparison of the distributions of invariant
mass of events selected by a deep network (DN21) using only object momentum
to a shallow network (NN7) that has been trained using this feature, at equivalent
background rejection.

In recent years, numerous studies have shown that traditional shallow networks
(with a few hidden layers) using physics-inspired engineered ("high-level") features

86



4.5. MACHINE LEARNING IN HIGH ENERGY PHYSICS

are outperformed by deep networks (with multiple hidden layers) utilizing higher-
dimensional, minimally pre-processed ("lower-level") features. This supports the
notion that feature engineering, which applies physics knowledge to construct high-
level features, is often overvalued. An early study [91], for instance, compared the
performance of shallow and deep networks in distinguishing a cascading decay of
new exotic Higgs bosons from the dominant background. This study used a struc-
tured data set where a large set of basic low-level features (object four-momenta)
was reduced to a smaller set of physics-inspired high-level engineered features.
The results, as illustrated in Figure 4.23, demonstrated that the deeper network
with lower-level data outperformed the shallow network with higher-level physical
features.

4.5.2 Event Reconstruction
Reconstruction is the process of transforming raw detector readouts into physically
meaningful objects, such as particle tracks, particle types, and vertices. In the AT-
LAS, CMS, and LHCb experiments, this involves three distinct operations. First,
charged tracks are reconstructed using input from the tracker. Second, informa-
tion from particle identification subsystems is used to assign particle types to these
charged tracks. Third, calorimeters identify some neutral particles that escape the
magnetic field. This process can be considered the inverse of simulation: in simu-
lation, the response is computed from given particles, while in reconstruction, the
particles causing a given detector response are identified.

ML is a natural approach to this problem due to its algorithmic nature. The
simplest method involves simulating an event, using the detector response as fea-
tures for an ML algorithm, and the Monte Carlo truth as the labels. However,
this approach faces numerous algorithmic challenges. High-energy physics events
are highly complex and structured, making standard ML algorithms ill-suited for
such tasks. Consequently, each reconstruction must be handled by system experts,
depending on the type of object being reconstructed.

Tracking

Track-reconstruction algorithms are among the most CPU and data-intensive of all
low-level reconstruction tasks. The initial stage involves identifying hits, or points
where charge is deposited on a sensing element in the detector. For the pixel
sensors in the innermost layer, neighboring hits are clustered into pixel clusters,
which then form track seeds. These seeds serve as starting points for a Kalman
filter, which extends them into full tracks. ML has proven beneficial in various
aspects of track reconstruction. For instance, when multiple tracks pass through
the same pixel cluster, ATLAS uses neural networks to return measurements for
each track rather than assigning them to the cluster center [92], [93].

Thanks to these algorithms and meticulous tuning, track reconstruction is now
nearly 100% efficient, and spuriously reconstructed tracks are rare, indicating that
the clustering aspect of tracking is largely resolved. However, reducing CPU over-
head remains a significant challenge, especially within high-level trigger farms. In
ATLAS and CMS, these clusters are composed of approximately 10,000 processors

87



4.5. MACHINE LEARNING IN HIGH ENERGY PHYSICS

that reconstruct about 100,000 events per second [94]. To manage tracking CPU
costs, the experiments limit track reconstruction to specific regions of the detec-
tor. These regions are selected based on their proximity to muons or calorimeter
energy deposits that align with relatively rare physical signatures, such as leptons
or high-pT jets.

Jet Tagging

ML has been extensively applied to various jet classification problems, such as
identifying jets originating from heavy (c, b, t) or light (u, d, s) quarks, gluons,
and W, Z, and H bosons. Traditionally, these classification problems have been
categorized into flavor tagging, which differentiates between b, c, and light quarks;
jet substructure tagging, which distinguishes jets from W, Z, t, and H bosons; and
quark-gluon tagging.

Figure 4.24: Example jet image inputs from the jet substructure classification
problem. The background jets (left image) are characterized by a large central core
of deposited energy caused by a single hard hadronic parton, while the signal jets
(right) tend to have a subtle secondary deposition due to the two-prong hadronic
decay of a high-pT vector boson. Use of image-analysis techniques such as CNNs
allow for powerful analysis of this high-dimensional input data.

In 2014, a study recognized [95] that the projective tower structure of calorime-
ters in nearly all modern HEP detectors resembled the pixels of an image (Figure
4.24). This similarity enabled physicists to apply advances in image classification,
such as CNNs. Although the image-based approach has been successful, the irreg-
ular geometry of actual detectors necessitates some preprocessing to represent jets
as images.

Both ATLAS and CMS have since implemented flavor-tagging NNs that rely
on individual tracks or, in the case of CMS, particle-flow candidates. For exam-
ple, CMS’s DEEPJET [96] adopts a neural network that first embeds each flow
candidate with a shared transformation and then combines the high-level variable
candidates in a single dense network.

88



4.5. MACHINE LEARNING IN HIGH ENERGY PHYSICS

High pT muons

Another application of ML techniques in physical object reconstruction involves
high-pT muon reconstruction. Currently, this measurement is performed by the
TuneP algorithm, which selects the best reconstruction from different refit tech-
niques based on a small set of track-quality parameters. The refit techniques
include: inner-track with tracker-only information (used mainly at low momen-
tum); tracker-plus-first-muon-station (TPFMS) using the inner tracker and the
innermost muon station containing hits; picky designed to handle cases where elec-
tromagnetic showers generate a high multiplicity of hits in the muon chambers;
dynamic-truncation (DYT) for cases when radiative energy losses cause significant
bending of the muon trajectory.

Adopting ML techniques, such as tree-based methods and NNs, can identify the
optimal refit by considering a larger set of input variables than those used by TuneP.
Training these ML models involves comparing the resolution in terms of q/pT
relative residual with the generated information from Monte Carlo simulations.
Preliminary results [97] indicate a significant reduction in the q/pT relative residual
distribution tails (outliers) by approximately 60% in the barrel region and 27% in
the endcap region using Boosted Decision Trees implemented with the XGBoost
library. Additionally, results suggest that further improvements are possible with
a larger training dataset.

4.5.3 Fast Simulation
Simulation represents the most CPU-intensive operation in HEP. Achieving fast
simulations is crucial because full simulators, which accurately depict particle in-
teractions with matter at a low level, demand significant computational resources
and consume a substantial portion of current experimental computing budgets.
One promising approach involves Generative Adversarial Networks (GANs). In
this method, a generative model G is trained through competition with an adver-
sary network A. While G creates simulated samples, A evaluates whether a given
sample originates from the generative model or the full simulator. This adversarial
setup drives G to produce samples that mimic those from the original simulation,
attempting to deceive A.

However, ensuring the stability of this training process can be challenging,
often requiring expert knowledge to construct an effective network. Currently,
GAN approaches are applied in simulating electromagnetic showers in calorimeters
[98], demonstrating computational speed-ups while maintaining a realistic energy
deposition model. Similar techniques have been successful in simulating jet images
[99].

4.5.4 Monitoring and Data Quality
The LHC systems and detectors are highly intricate machines equipped with mon-
itoring systems that continuously verify parameters at all levels, from voltages to
reconstructed masses from known decays. A significant challenge for these systems
is distinguishing legitimate changes in data-taking conditions from equipment mal-

89



4.5. MACHINE LEARNING IN HIGH ENERGY PHYSICS

functions. When observed variable distributions deviate from their corresponding
references, operators investigate these discrepancies. If unresolved, incidents are
recorded and relevant experts are notified. The system includes automatic alarms
for detecting significant discrepancies, though false alarms can occur if references
are not promptly updated to reflect legitimate changes in data-taking conditions.

ML algorithms are increasingly utilized to monitor detector conditions and
predict potential anomalies, a field known as anomaly detection, widely applied
in data science [100], [101]. Efforts have already been initiated for the CMS Data
Quality Monitoring system, leveraging unsupervised learning techniques such as
dimensionality reduction and clustering.

90



Chapter 5

Fast Machine Learning with
Model Compression

In the previous chapter an in-depth description of what a Machine Learning algo-
rithm is was given, together with the definition and some examples of HEP ap-
plication of Artificial Neural Network. However, the great results achievable with
these kind of algorithms can come with a drawback. Deploying large, accurate deep
learning models to resource-constrained computing environments such as FPGAs
(see Section 3), mobile phones, smart cameras etc. for on-device inference poses
a few key challenges [102]. Firstly, state-of-the-art deep learning models routinely
have millions of parameters requiring O(MB) storage, whereas on-device memory
is limited. Furthermore, it is not uncommon for even a single model inference to
invoke O(109) memory accesses and arithmetic operations, all of which consume
power and dissipate heat which may drain the limited battery capacity, in the case
of a mobile device, and/or test the device’s thermal limits.

Addressing these challenges, an increasing amount of research aims to develop
methods for compressing neural network models while minimizing any potential
degradation in model quality. Latency-sensitive workloads that depend on energy-
efficient on-device neural network inference are often constrained by memory band-
width. Model compression provides the dual advantage of reducing the number
of energy-intensive memory accesses and improving inference time by effectively
increasing the memory bandwidth available for fetching compressed model param-
eters.

Some of the techniques used for model compression try to exploit the character-
istics of the chip’s architecture where the inference is performed, like Quantization
(Section 5.1) and efficient resource reusage (explained in Section 5.3.1).

Network Pruning

Model pruning is a technique within the realm of model compression that involves
removing (forcing to zero) the less salient connections (parameters) in a neural
network. This approach effectively reduces the number of nonzero parameters in
the model, typically resulting in little to no loss in the final model quality. By
allowing for a trade-off between a slight degradation in model quality and a signif-
icant reduction in model size, model pruning can lead to substantial improvements

91



5.1. QUANTIZED NEURAL NETWORKS

in inference time and energy efficiency [102].

Figure 5.1: Graphical representation of the weight pruning optimization.

The pruning can be done during the training process to allow the NN to adapt
to the changes while learning. The TensorFlow Model Optimization API [103] is
a common way to perform this optimization. It uses an algorithm designed to
iteratively remove connections, based on their magnitude during training. Funda-
mentally, a final target sparsity (i.e. a target percentage of weights equal to zero)
is specified, along with a schedule to perform the pruning (e.g. start pruning at
step 2000, stop at step 10000, and do it every 100 steps), and an optional configu-
ration for the pruning structure (e.g. prune individual values or blocks of values).
As training proceeds, the pruning routine is scheduled to execute, eliminating the
weights with the lowest magnitude (i.e. those closest to zero), until the current
sparsity target is reached. Every time the pruning routine is scheduled to execute,
the current sparsity target is recalculated, until it reaches the final target sparsity
at the end of the pruning schedule by gradually increasing it according to a smooth
ramp-up function (see Figure 5.2).

5.1 Quantized Neural Networks
The term Quantization is used in this field to describe the conversion of the arith-
metic used within the NN from high-precision floating-points to normalized low-
precision integers (fixed-point) [104]. It can be considered as an essential step for
efficient deployment of a model on a FPGA (see Section 5.3).

Floating-point representation allows the decimal point to “float” to different
places within the number, depending upon the magnitude. Floating-point numbers
are divided into two parts, the exponent and the mantissa, whose sum makes up
the total number of bits, or bitwidth, used to represent a number. This scheme is
very similar to scientific notation, which represents a number as A × 10B, where
in this case A is the mantissa and B is the exponent. However, the base of the
exponent in a floating-point number is 2, that is A×2B. The floating-point number
is standardized by IEEE/ANSI standard 754-1985. The basic IEEE floating-point
number utilizes an 8-bit exponent and a 24-bit mantissa.

92



5.1. QUANTIZED NEURAL NETWORKS

Figure 5.2: Example of sparsity ramp-up function with a schedule to start pruning
from step 0 until step 100, and a final target sparsity of 90%. [103]

Figure 5.3: Fixed-point number representation. ap_fixed<width,integer> will be
the C type associated to input, output and parameters of the NN model by the
hls4ml library in Section 5.3.1.

Fixed-point numbers, instead, consist of two parts, integer and fractional, as
shown in Figure 5.3. Compared to floating-point, fixed-point representation main-
tains the decimal point within a fixed position, allowing for more straightforward
arithmetic operations. For example, when dealing with floating-point numbers
arithmetic, one must first ensure the decimal points are aligned, by either multi-
plying the number with more integer bits or dividing the number with the fewest
integer bits by 2 until both operands have the same number of bits in the mantissa.
However, in case of two fixed-point numbers with the same precision, this is not
necessary. The major drawback of the fixed-point system is that a larger number
of bits is needed to represent larger numbers or to achieve a more accurate result
with fractional numbers.

Briefly, integer quantization consists of approximating real values with integers

93



5.1. QUANTIZED NEURAL NETWORKS

[105] according to
xQ = x

scale
(5.1)

where
scale = max (x)−min (x)

2N (5.2)

and N is the number of bits used in the approximation. Each layer’s weights and
activations are given a different scale according to their extremum values. However,
the so called post-training quantization degrades network performance.

Incorporating resource intensive models without a loss in performance poses a
great challenge [106]. In recent years many developments aimed at providing effi-
cient inference from the algorithmic point of view has been achieved. This includes
the aforementioned post-training quantization with its related loss in performance
and accuracy, due to the loss in precision going from a 32-bit floating precision
number to a fixed precision number with less bitwidth. Therefore, a solution is
to perform quantization-aware training (as suggested in [106]): a fixed numerical
representation is adopted for the whole model, and the model training is performed
enforcing this constraint during weight optimization.

5.1.1 QKeras
To simplify the procedure of quantizing Keras models, the QKeras library [107] has
been developed by a collaboration between Google and CERN: it is a quantization
extension to Keras that provides a drop-in replacement for layers performing arith-
metic operations. This allows for efficient training of quantized versions of Keras
models.

QKeras is designed using Keras’ design principle, i.e. being user-friendly, modu-
lar, extensible, and "minimally intrusive" to Keras native functionality. The library
includes a rich set of quantized layers, it provides functions to aid the estimation
of model area and energy consumption, allowing for simple conversion between
non-quantized and quantized networks. Importantly, the library is written in such
a way that all the QKeras layers maintain a true drop-in replacement from Keras
so that minimal code changes are necessary.

In the following, two examples of the QKeras version of native Keras objects
are discussed.

The first code modification that is necessary in order to use QKeras’ objects
consist of typing Q in front of the original Keras data manipulation layers name and
specifying the quantization type, i.e. the kernel_quantizer and bias_quantizer
parameters. Only data manipulation layers, which perform some computation that
may change the data input type and create variables, are changed to the QKeras
version. When quantizers are not specified, no quantization is applied to the layer
and it behaves like the unquantized Keras layer.

The second code change is to pass appropriate quantizers, e.g. quantized_bits.
In the following code snippet, QKeras is instructed to quantize the kernel and

bias to a bit-width of 6 and 0 integer bits. QKeras works by tagging all variables,
weights and biases created by Keras as well as the output of arithmetic layers, by

94



5.1. QUANTIZED NEURAL NETWORKS

1 QDense(64, kernel_quantizer = quantized_bits(6,0),
2 bias_quantizer = quantized_bits(6,0)(x))
3 QActivation('quantized_relu(6,0)')(x)

quantized functions. Quantized functions are specified directly as layers parame-
ters and then passed to QActivation, which acts as a merged quantization and
activation function. The quantized_bits quantizer used above performs mantissa
quantization:

2int−b+1clip(round(x× 2int−b−1 − 2b−1 2b−1 − 1) (5.3)

where x is the input, b specifies the number of bits for the quantization, int specifies
how many bits of b are to the left of the decimal point, and clip and round are
function from the Numpy library [108].

The quantizer used for the activation functions above, quantized_relu, is a
quantized version of ReLU (see Section 4.2). Figure 5.4 shows the quantized ReLU
function for three different bit widths and two different numbers of integer bits.

Figure 5.4: The quantized_relu activation function as implemented in QKeras
for a 2-bit (purple), 3-bit (green and blue) and 6-bit (yellow) precision and for 0 or
1 integer bits. The unquantized ReLU function is shown for comparison (orange).

Through simple code changes like those above, a large variety of quantized
models can be created. QKeras can be used to create a range of deep quantized
models, trained quantization-aware and based on the same architecture as the
baseline model. Finally, it is possible to create an optimally heterogeneously quan-
tized QKeras model with a significantly reduced resource consumption, without
compromising the model accuracy.

95



5.2. KNOWLEDGE DISTILLATION

5.2 Knowledge Distillation
In large-scale machine learning, similar models are often used for both the training
stage and the deployment stage, despite their differing requirements [109]. Tasks
such as speech and object recognition involve training that must extract structure
from large, highly redundant datasets, which does not require real-time operation
and can utilize extensive computational resources. In contrast, deployment to a
large number of users imposes stringent requirements on latency and computational
resources. This suggests that training cumbersome models may facilitate the ex-
traction of structure from data. These cumbersome models could be ensembles of
separately trained models or single, large models trained with strong regularizers
such as dropout (see Section 4.2). After training the cumbersome model, a process
called "distillation" can be used to transfer the knowledge to a smaller model more
suitable for deployment. This strategy, commonly known as knowledge distillation
(KD) and pioneered in [110], demonstrates that the knowledge acquired by a large
ensemble of models can be effectively transferred to a single, smaller model.

A conceptual block that may have hindered further exploration of this promis-
ing approach is the tendency to equate the knowledge in a trained model with
its learned parameter values. This perspective makes it challenging to envision
changing the model’s form while preserving its knowledge. A more abstract view
of the knowledge, independent of any specific instantiation, is to see it as a learned
mapping from input vectors to output vectors. For complex models that clas-
sify numerous classes, the usual training objective is to maximize the average log
probability of the correct answer. However, this process also results in the model
assigning probabilities to incorrect answers. Even when these probabilities are very
small, some incorrect answers are still relatively more probable than others. These
relative probabilities reveal how the complex model generalizes. For instance, an
image of a BMW might be very unlikely to be mistaken for a garbage truck, but
this mistake is still far more probable than mistaking it for a carrot.

It is widely accepted that the training objective should closely reflect the user’s
true objective. Nonetheless, models are typically trained to optimize performance
on training data, while the actual goal is to generalize well to new data. Ideally,
models should be trained to generalize well, but this requires knowledge about the
correct way to generalize, which is not usually available. However, when distilling
knowledge from a cumbersome model into a smaller one, we can train the smaller
model to generalize in the same manner as the cumbersome model. If the large
model generalizes well, perhaps because it is an average of a large ensemble of
models, a small model trained to generalize similarly will often perform much
better on test data than a small model trained traditionally on the same training
set as the ensemble.

A straightforward method to transfer the generalization ability from the cum-
bersome model to a smaller one is to use the class probabilities produced by the
cumbersome model as “soft targets” for training the smaller model. For this trans-
fer phase, we could use the same training set or a separate “transfer” set. When the
large model is an ensemble of simpler models, we can use an arithmetic or geometric
mean of their individual predictive distributions as the soft targets. High-entropy
soft targets provide much more information per training case than hard targets

96



5.2. KNOWLEDGE DISTILLATION

and reduce the variance in the gradient between training cases. Consequently, the
small model can often be trained on much less data than the original large model
and with a much higher learning rate.

As an example consider a multi-classification task. Neural networks typically
produce class probabilities by using a softmax (see Section 4.2) output activation
layer that converts all the outputs for each class of the NN before the activation
function, called logits, zi into a probability qi by comparing each zi with the other
logits:

qi = ezi/T∑
j e

zj/T
(5.4)

where the temperature T , which is normally set to 1, has been made explicit. Using
a higher value for T produces a softer probability distribution over classes, i.e. a
less peaked distribution for each class in the output space.

Figure 5.5: Example of a knowledge distillation scheme with two different loss
functions for the student model, one targeting the distillation of the knowledge
from the teacher, the other used to learn directly from data.

In the simplest form of distillation, knowledge is transferred to the distilled
model by training it on a transfer set using a soft target distribution for each
case. This distribution is produced by the cumbersome model with a high temper-
ature in its softmax function. The distilled model is trained using the same high
temperature, but once trained, it operates with a temperature of 1.

If the correct labels for the transfer set are known, this method can be signifi-
cantly enhanced by also training the distilled model to produce the correct labels.
One approach is to adjust the soft targets using the correct labels, but a more
effective method is to use a weighted average of two objective functions, as shown
in Figure 5.5. The first objective function is the cross-entropy with the soft targets,
computed with the same high temperature in the softmax of the distilled model
as was used to generate the soft targets from the cumbersome model. The second
objective function is the cross-entropy with the correct labels, computed using the
same logits in the softmax of the distilled model but with a temperature of 1.

In knowledge distillation, knowledge types, distillation strategies and the teacher-
student architectures play the crucial role in the student learning [111]. In the next
section, the focus will be on different categories of knowledge for knowledge distil-
lation.

97



5.2. KNOWLEDGE DISTILLATION

5.2.1 Types of Knowledge
As anticipated before, vanilla knowledge distillation uses the logits of a large deep
model as the teacher knowledge. The different forms of knowledge can be put in

Figure 5.6: A schematic illustration of three different types of knowledge that can
be transferred from a deep teacher network: response-based knowledge, feature-
based knowledge and relation-based knowledge.

three main categories: response-based knowledge, feature-based knowledge, and
relation-based knowledge. An intuitive example of these categories of knowledge
within a teacher model is shown in Figure 5.6.

Response-Based Knowledge

Response-based knowledge usually refers to the neural response of the last output
layer of the teacher model. The main idea is to directly mimic the final prediction
of the teacher model. The response-based knowledge distillation is simple yet
effective for model compression, and has been widely used in different tasks and
applications. Given a vector of logits z as the outputs of the last fully connected
layer of a deep model, the distillation loss for response-based knowledge can be
formulated as

LResD(zt, zs) = LR(zt, zs) (5.5)

where LR(zt, zs) indicates a divergence loss (e.g. MSE), and zt and zs are logits of
teacher and student respectively. A typical response-based KD model is shown in
Figure 5.7. In this category the example given in the previous section falls, as a
popular technique for image classification. In that case the distillation loss has the
form

LResD(p(zt, T ), p(zs, T )) = LR(p(zt, T ), p(zs, T )) (5.6)

98



5.2. KNOWLEDGE DISTILLATION

Figure 5.7: Simple diagram of a generic response-based knowledge distillation.

where p(·, T ) is the softmax activation function with temperature T .
The idea of the response-based knowledge is straightforward and easy to under-

stand. However, it usually relies on the output of the last layer, e.g., soft targets,
and thus fails to address the intermediate-level supervision from the teacher model,
which can be very important for representation learning using very deep neural
networks.

Feature-Based Knowledge

Deep neural networks are good at learning multiple levels of feature representation
with increasing abstraction. This is known as representation learning. Therefore,
both the output of the last layer and the output of intermediate layers, i.e., feature
maps, can be used as the knowledge to supervise the training of the student model.
Specifically, feature-based knowledge from the intermediate layers is a good exten-
sion of response-based knowledge, especially for the training of thinner and deeper
networks.

Figure 5.8: Simple diagram of a generic feature-based knowledge distillation.

The intermediate representations were first introduced in [112], to provide hints
to improve the training of the student model. The main idea is to directly match
the feature activations of the teacher and the student.

99



5.2. KNOWLEDGE DISTILLATION

Generally, the distillation loss for feature-based knowledge transfer can be for-
mulated as

LFeaD(ft(x), fs(x)) = LF (Φt(ft(x)),Φs(fs(x))) (5.7)
where ft(x) and fs(x) are the feature maps of the intermediate layers of teacher and
student models respectively. The transformation functions Φt(ft(x)) and Φs(fs(x))
are usually applied when the feature maps of the two models do not have the same
shape. LF (·) indicates the similarity function used to match the feature maps of
teacher and student which can be of different kinds, from the usual L2 and L1 norm
to specific losses used to compare distributions like the cross-entropy loss [113] or
the maximum mean discrepancy loss [114]. A general feature-based KD model is
shown in Figure 5.8.

Though feature-based knowledge transfer provides favorable information for the
learning of the student model, how to effectively choose the hint layers from the
teacher model and the guided layers from the student model remains is still an
open question, as well as how to properly match feature representations of teacher
and student also needs to be explored, due to the significant differences between
sizes of hint and guided layers.

Relation-Based Knowledge

Both response-based and feature-based knowledge use the outputs of specific layers
in the teacher model. Relation-based knowledge further explores the relationships
between different layers or data samples. For example, to explore the relationships
between different feature maps, in [115] it is proposed to summarize the relations
between pairs of feature maps by computing the inner products between features
from two layers. Using the correlations between feature maps as the distilled
knowledge, knowledge distillation via singular value decomposition was proposed
to extract key information in the feature maps.

Figure 5.9: Simple diagram of a relation-based knowledge distillation.

In general, the distillation loss of relation-based knowledge based on the rela-
tions of feature maps can be formulated as

LRelD(ft, fs) = LR1(Ψt(f̂t, f̌t),Ψs(f̂s, f̌s)) (5.8)

where ft and fs are the feature maps of teacher and student models. Pairs of
feature maps are chosen from the teacher, f̂t and f̌t, and from the student, f̂s and

100



5.2. KNOWLEDGE DISTILLATION

f̌s. Ψt(·) and Ψs(·) are the similarity functions for pairs of feature maps from the
two models. Finally, LR1 indicates the correlation function between the feature
maps.

Traditional knowledge transfer methods often involve individual knowledge dis-
tillation. The individual targets of a teacher are directly distilled into a student.
However, knowledge can also be presented by relations of the learned represen-
tations instead of the individual ones [116]; an individual data example, e.g., an
image, obtains a meaning in relation to or in contrast with other data examples in a
system of representation, and thus primary information lies in the structure in the
data embedding space. Thus, structural knowledge can be transferred using mu-
tual relations of data examples in the teacher’s output representation. Unlike the
previous approaches, a relational potential ψ is computed for each n-tuple of data
examples and information is transferred through the potential from the teacher to
the student. Defining ti = fT (xi) and si = fS(xi) as the output of teacher and
student on an input xi, the distillation loss can be expressed as

LRelD =
∑

(x1,...,xn)∈χN

L(ψ(t1, . . . , tn), ψ(s1, . . . , sn)) (5.9)

where (x1, . . . , xn) is a n-tuple drawn from χN , ψ is a relational potential function
that measures a relational energy of the given n-tuple, and L is a loss that penalizes
difference between the teacher and the student.

A typical instance relation-based KD model is shown in Figure 5.9.

5.2.2 Distillation Schemes
In this section, we discuss the distillation procedures for both teacher and student
models. According to whether the teacher model is updated simultaneously with
the student model or not, the learning schemes of knowledge distillation can be
directly divided into three main categories: offline distillation, online distillation
and self-distillation, as shown in Figure 5.10.

Figure 5.10: The three different distillation strategies.

101



5.2. KNOWLEDGE DISTILLATION

Offline Distillation

In the most common use of KD, the knowledge is transferred from a pre-trained
teacher model into a student model. Therefore, the whole training process has two
stages, namely:

1. the large teacher model is first trained on a set of training samples before
distillation;

2. the teacher model is used to extract the knowledge in the forms of logits
or intermediate features, which are then used to guide the training of the
student model during distillation.

The first stage in offline distillation is usually not discussed as part of knowledge
distillation, i.e., it is assumed that the teacher model is pre-defined. Little attention
is paid to the teacher model structure and its relationship with the student model.
Therefore, the offline methods mainly focus on improving different parts of the
knowledge transfer, including the design of knowledge and the loss functions for
matching features or distributions matching.

Offline methods offer significant advantages due to their simplicity and ease
of implementation. For instance, a teacher model can consist of multiple mod-
els trained with different software packages, potentially distributed across various
machines. The knowledge from these models can be extracted and stored in a
cache.

Typically, offline distillation methods involve a one-way knowledge transfer and
a two-phase training process. Despite the unavoidable complexity and extensive
training time required for high-capacity teacher models, the training of the student
model in offline distillation is generally efficient with the teacher model’s guidance.
Nevertheless, there is always a capacity gap between the large teacher and the
smaller student, causing the student to heavily depend on the teacher.

Online Distillation

Although offline distillation methods are simple and effective, some issues in offline
distillation have attracted increasing attention from the research community, like
the difficulties of transferring knowledge when the gap in complexity and size be-
tween teacher and student is very big [117]. To overcome the limitation of offline
distillation, online distillation is proposed to further improve the performance of
the student model.

An example of this kind of distillation is called Deep Mutual Learning [118]. In
mutual learning, a group of untrained students learn simultaneously to solve a task
together. Each student is trained using two types of losses: a conventional super-
vised learning loss and a mimicry loss that aligns each student’s class posterior with
the class probabilities of other students. This training method enables each student
in a peer-teaching scenario to learn significantly better than in a conventional su-
pervised learning scenario. Additionally, student networks trained through mutual
learning outperform those trained via conventional distillation from a larger pre-
trained teacher. Conventional distillation typically requires a teacher larger and

102



5.3. NN INFERENCE ON FPGAS

more powerful than the student, but mutual learning with several large networks
often leads to better performance compared to independent learning.

Online distillation is a one-phase end-to-end training scheme very adaptable to
a parallel computing paradigm. However, existing online methods (e.g., mutual
learning) usually fails to address the high-capacity teacher in online settings, mak-
ing it an interesting topic to further explore the relationships between the teacher
and student model in online settings.

Self-Distillation

In self-distillation, the same networks are used for the teacher and the student
models. This can be regarded as a special case of online distillation. This can be
done in different ways, e.g.:

• Deeper sections of a network could transfer knowledge to its initial sections
[119];

• Knowledge in the earlier epochs of the network (teacher) can be transferred
into its later epochs (student) to create a more generalized network [120];

• An ensemble of students with the same architecture can be used and at each
consecutive step, a new identical model is initialized from a different random
seed and trained from the supervision of the earlier generation, starting from
the teacher in the first step. At the end of the procedure, additional gains
can be achieved with an ensemble of multiple students generations [121].

5.3 NN Inference on FPGAs
In the previous section two main ways of model compression and optimization
were illustrated. However, no consideration were given on the type of hardware
used to actually use the NNs, i.e. perform the inference on new data. A lot of
research is being carried out on the subject of heterogeneous computing, that is the
use of different kinds of hardware to perform different computing tasks in a single
computing environment. In this field the use of FPGAs as inference accelerators
can be placed. A more detailed description on what an FPGA is can be found
in Chapter 3, but, to summarize, a Field Programmable Gate Array is a piece of
hardware which can be programmed to implement electronic circuits in their fabric,
providing huge power, area, and performance benefits over software applications,
and at the same time they can be reprogrammed cheaply and easily with respect
to ASICs.

The advantages of FPGAs can be very useful for the task of NN inference,
especially when considering IoT and Edge devices, which are asked to perform
quick computations with a usually low power consuming chip without interacting
with a computing cloud; or, in the case studied in this thesis, when the speed and
low hardware footprints are essential to perform the selection of events with a 40
MHz rate, i.e. act as a trigger in an LHC experiment.

Nonetheless, the passage from a purely software object, like a NN built using
Keras (see Section 4.4.2) in Python, to a firmware implementable on a FPGA is

103



5.3. NN INFERENCE ON FPGAS

not without hurdles. Indeed, a Hardware Descriptive Language representation of
the model must be created eventually and the knowledge needed to create this kind
of description is usually not common in the researchers who deals with ML and
NNs, due to the skills needed for the optimization and parameters tuning needed
to create an efficient firmware.

Fortunately there are tools that help this literal translation from software to
hardware, like the one used in this work which will presented in the next Section.

5.3.1 HLS4ML
As explained in Section 3.2.2, HLS is the process of automatic generation of hard-
ware circuit from “behavioral descriptions” contained in a C or C++ program.
HLS acts as a bridge between hardware and software domains, providing an im-
provement in productivity for hardware designers who can work at a higher level of
abstraction while creating high performance hardware as well as an improvement in
system performance for software designers who can accelerate the computationally
intensive parts of their algorithms on a new compilation target, i.e. the FPGA.

Using HLS design methodology allows to develop algorithms at the C-level
typically associated to a shorter development time. Moreover, it is easier to validate
functional correctness at this level than with traditional HDLs.

The hls4ml tool [122], [123] allows physicists to rapidly prototype ML algo-
rithms for both firmware feasibility and physics performance without extensive
Verilog/VHDL experience, thus greatly decreasing the time for algorithm develop-
ment cycles while preserving engineering resources. It is being developed focusing
on the task of the FPGA-based triggers of the ATLAS and CMS experiments at
LHC (see Section 1.1.2 and Chapter 2) with algorithm latencies in the microsecond
range, fully pipelined to handle the 40 MHz LHC collision rate. For this task, solu-
tions with either CPUs or GPUs are not possible due to the severe time limitation
imposed. Such latencies are unique to LHC trigger challenges, and therefore few
general tools exist for this application. Nonetheless, the hls4ml package is a gen-
eral purpose tool and is designed to serve a broad range of applications in particle
physics and beyond, from trigger and DAQ tasks to longer latency trigger tasks
(milliseconds) and CPU-FPGA co-processor hardware.

In other words, hls4ml opens up the possibility to translate ML algorithms, built
using frameworks like TensorFlow, into HLS code. In this way a trained Neural
Network, defined by its architecture, weights, and biases, can be made ready for
hardware synthesis with few lines of code. A schematic of a typical workflow is
illustrated in Figure 5.11.

The part of the workflow illustrated in red indicates the usual software workflow
required to design a NN for a specific task. The blue section of the workflow is
the task of hls4ml, which translates a model into an HLS project that can be
synthesized and implemented to run on an FPGA.

At a high level, FPGA algorithm design differs significantly from programming
a CPU because it allows independent operations to run entirely in parallel. This
capability enables FPGAs to perform trillions of operations per second while main-
taining relatively low power consumption compared to CPUs and GPUs. However,
these operations utilize dedicated resources on the FPGA, which cannot be dynam-

104



5.3. NN INFERENCE ON FPGAS

Figure 5.11: A typical workflow to translate a model into an FPGA implementation
using hls4ml.

ically reallocated during execution. The main challenge in developing an optimal
FPGA implementation is to balance resource usage with the latency and through-
put requirements of the target algorithm. Important metrics for evaluating an
FPGA implementation include:

Latency : the total time (typically expressed in units of “clocks”) required for a
single iteration of the algorithm to complete;

Initiation Interval : the number of clock cycles required before the algorithm
may accept a new input. Initiation interval (often expressed as “II”) is in-
versely proportional to the inference rate, or throughput; an initiation inter-
val of 2 achieves half the throughput as an initiation interval of 1. Conse-
quently, data can be pipelined into the algorithm at the rate of the initiation
interval;

Resource Usage : usually expressed as onboard FPGA memory (BRAM), dig-
ital signal processing (arithmetic) blocks (DSPs), and registers and pro-
grammable logic (flip-flops and lookup tables).

The hls4ml tool offers numerous configurable parameters that allow users to
explore and customize trade-offs between latency, initiation interval, and resource
usage for their specific applications. Given that each application has unique re-
quirements, the primary objective of the hls4ml package is to enable users to opti-
mize these parameters through automated neural network translation and iterative
FPGA design. In practice, translating a neural network with hls4ml is significantly
faster (taking minutes to hours) than manually designing a specific neural network
architecture for an FPGA. This rapid prototyping capability allows machine learn-
ing algorithms to be developed quickly without requiring dedicated FPGA engi-
neering support. For physicists, this makes designing physics algorithms for the
trigger or data acquisition systems much more accessible and efficient, potentially
reducing the "time to physics" considerably.

Thanks to the architecture of FPGAs a new aspect of the performance of a
model must be taken in consideration when implementing NNs on this kind of

105



5.3. NN INFERENCE ON FPGAS

hardware: parallelization. Indeed, the trade-off between latency, throughput, and
FPGA resource usage is determined by the parallelization of the inference calcu-
lation. In hls4ml, this is configured with a multiplier “reuse factor” that sets the
number of times a multiplier is used in the computation of a layer’s neuron values.
With a reuse factor of one, the computation is fully parallel. With a reuse factor of
R, 1/R of the computation is done at a time with a factor of 1/R fewer multipliers.
This is illustrated in Figure 5.12.

Figure 5.12: Illustration of multiplier resource usage for different values of reuse
factor in the case of a two neuron pairs network linked by 4 connections.

FPGAmultipliers are pipelined; therefore, the latency of one layer computation,
Lm, is approximately

Lm = Lmult + (R− 1)× IImult + Lactiv (5.10)

where Lmult is the latency of the multiplier, IImult is the initiation interval of
the multiplier, and Lactiv is the latency of the activation function computation.
This expression is approximate because, in some cases, additional latency can be
incurred for signal routing, for instance in the addition of multiplication results
contributing to a neuron value. In this case each layer calculation is implemented
independently and sequentially. The calculation of one layer cannot be initiated
until the calculation of the previous layer has completed. Therefore, the total
latency is equal to the sum of latencies of each layer plus the latency required to
connect the layers. The number of inferences completed per unit time is inversely
proportional to the reuse factor.

Some code snippets are shown in the following to explain how an already trained
model can be converted into an HLS project using the hls4ml Python API.

Firstly, the model must be loaded:

1 import hls4ml
2 import qkeras
3 model = qkeras.utils.load_qmodel("quantized_model.h5")

Then, a configuration has to be created:

106



5.3. NN INFERENCE ON FPGAS

1 config = hls4ml.utils.config_from_keras_model(model,
2 granularity = 'name')
3 cfg = hls4ml.converters.create_config(part='xc7z020clg400-1',
4 backend='Vivado')
5 cfg['HLSConfig'] = config

The config_from_keras_model() function returns a Python dictionary and
takes the following compulsory arguments:

• The Python object containing the NN;

• The granularity (name, type or model) determines the desired level of detail
for parameter tuning. Opting for name enables the configuration of each layer
and activation function independently. Conversely, texttttype is employed
when a shared configuration is desired for all layers of the same type. Lastly,
model involves utilizing a single configuration for the entire model.

By modifying the configuration dictionary it is possible to change the arithmetic
precision used for weights, biases and results.

On the other hand, create_config creates the actual instruction to write the
final HLS code, like the target FPGA and the backend used for the synthesis and
implementation of the project.

After the configuration, the model can be converted by typing:

1 hls_model = hls_model = hls4ml.converters.keras_to_hls(cfg)

Now, typing hls_model.compile(), the hls_model can be compiled, i.e. scripts
for the chosen backend are generated containing the instructions for synthesizing
the model with the provided device as target hardware. It is also possible to syn-
thesize the project inside a Python session with the hls_model.build() function.

It is clear from the couple of lines of code shown, how easy it is to create the
HLS project, making it feasible also for people who are not experts in FPGAs or
hardware. Indeed, the goal of the hls4ml package is to empower a HEP physicist
to accelerate ML algorithms using FPGAs, thanks to its tools for ML models
conversion into HLS. Indeed, hls4ml makes the translation of Python objects into
HLS, and its synthesis, parts of an automatic workflow, allowing fast deployment
times also for those who know how to write software, yet are not experts on FPGAs.

107



5.3. NN INFERENCE ON FPGAS

108



Chapter 6

Finding BSM signals with
Anomaly Detection

As described in Section 2.2, the L1T in the CMS experiment employs a series of
algorithms implemented as logic circuits on custom electronic boards with FPGAs.
This stage filters out over 98% of events, reducing the incoming data stream to
100K events/s. Given the brief interval between collisions (25 ns) and the limited
buffer capacity, all L1T algorithms must be executed within few microseconds.
The second stage, known as the HLT, processes events using a computer farm
equipped with commercial CPUs and GPUs. This stage runs hundreds of complex
selection algorithms within O(100) ms. These trigger algorithms, schematically
illustrated in Figure 6.1, are designed to ensure a high acceptance rate for the
physics processes of interest.

In searches for new, unobserved physics phenomena, specific theory-driven sce-
narios are typically considered. While this supervised approach has been successful
in theory-motivated searches, such as the discovery of the Higgs boson, it may pose
limitations when there is no strong theoretical guidance. The ATLAS and CMS
trigger systems could potentially discard valuable events, risking the loss of oppor-
tunities to discover new physics.

Figure 6.1: Real-time data processing flow in the ATLAS and CMS experiments:
40 million collisions occur each second and are processed by a hardware-based
event selection system using algorithms implemented as logic circuits on custom
electronic boards. From these events, 100,000 are selected and passed to the second
stage, the High-Level Trigger, which further reduces the rate to around 1,000 events
per second for offline physics analysis.

109



This is why recently there has been an increasing focus on unsupervised and
semi-supervised methods for data selection and analysis, particularly on Anomaly
Detection strategies, explained in Section 4.3.1, using Deep Learning algorithms
(see Section 4.2). These approaches aim to derive a metric directly from LHC data
that can rank events by their typicality. Outliers in this typicality distribution
could represent a subset of data enriched with rare, possibly unobserved, physics
processes. Comprehensive reviews of several proposed methods are provided in
[124], [125], and related sources.

While much of this effort has been directed toward offline data analysis, a par-
allel initiative is needed to integrate AD algorithms into the LHC trigger system,
potentially even at the L1T. This would allow an unbiased dataset to be ana-
lyzed by the AD algorithm before any event is discarded [126], [127]. Rare event
topologies could then be collected in a dedicated data stream, similar to the CMS
exotica hotline [128] used during the first year of LHC data collection. Studying
these events could lead to the development of new theoretical models for unob-
served physics phenomena, which could be tested in future data-taking campaigns.
This strategy would be even more effective if included in the L1T rather than at
the HLT level where some selection bias could be present.

Since each L1T event must be processed within a few microseconds, trigger
decisions could be made using algorithms hard-coded into the hardware as logic
circuits. Deploying DL algorithms in the L1T Field Programmable Gate Arrays
could enhance both the complexity and accuracy of these algorithms. This was
indeed one of the reason the hls4ml library, explored in Section 5.3.1, was intro-
duced as a tool to convert DL models into electronic circuits. By integrating an
entire neural network onto the FPGA, hls4ml prioritizes inference speed, making
it ideal for small networks with O(100 ns) latencies.

The Dataset

Proton-proton collisions at the LHC can result in the production and observation
of numerous processes predicted by the Standard Model (SM) of particle physics.
A brief overview of the SM particle content can be found in [129]. The occur-
rence rate of each process can be calculated using the SM framework and validated
through experimental measurements. In this work, the events under study involves
electrons (e) and muons (µ), which, along with taus (τ) and their neutrino coun-
terparts, make up the three lepton families. While an unfiltered dataset would
more accurately represent an unbiased L1T data stream, such dataset was used as
a more manageable use case to test the strategy.

In the confined space of an LHC detector, electrons and muons are stable
particles that do not decay inside the detector and can be directly observed as
they pass through the detector material. In contrast, τs are much heavier than
electrons and muons and decay rapidly into other particles. In some of these
decays, electrons and muons are produced. At the LHC, the primary source of
high-energy leptons is the production of W and Z bosons [130], which are among
the heaviest SM particles, with masses around 80 and 90 GeV, respectively. After
their production, W and Z bosons quickly decay into other particles, particularly
leptons. While W and Z bosons are mostly produced directly in proton collisions, a

110



significant fraction of W bosons also arise from the decay of top quarks (t) and anti-
top quarks (t̄). The top quark, being heavy and highly unstable, rapidly decays
into a W boson and a bottom quark, leading to events with jets or combinations
of an electron, µ, τ , neutrino, and jet.

Leptons can also originate from rarer processes involving W and Z bosons,
such as Higgs boson decays or multi-boson production. However, due to the low
production probability of these processes, they are then excluded from this study.

Leptons can be produced as a result of the creation of light quarks (up, down,
charm, strange, and bottom) and gluons, as predicted by Quantum Chromody-
namics (QCD) [131]. Since quarks and gluons carry a net color charge and are
subject to color confinement, they cannot exist in isolation and are not observed
directly. Instead, they combine to form color-neutral hadrons through a process
called hadronization, which produces a collimated spray of hadrons known as a
jet. Jets are typically defined by algorithms that cluster these particles, such as
the anti-kt algorithm [37]. Leptons are rarely produced within jets and where
they generally arise from the decay of unstable hadrons. However, QCD multi-
jet production is the most common process at the LHC, making its contribution
significant and taken into account in analyses.

The processes mentioned above are the primary contributors to the e or µ data
stream, which refers to the set of collision events selected based on the presence of
an e or µ with energy exceeding a specified threshold. The dataset considered as
not anomalous includes the simulation of such a stream. Additionally, benchmark
examples of potential new lepton-production processes are provided. These involve
the production of hypothetical, yet unobserved particles, serving as examples of
data anomalies that could be useful for evaluating the performance of an AD
algorithm.

The dataset used for this study is a refined version of the high-level-feature
(HLF) dataset used in [126]. Proton-proton collisions are generated using the
PYTHIA8 event-generation library [132], fixing the center-of-mass energy to the
LHC Run-II value (13 TeV) and the average number of overlapping collisions per
beam crossing (pileup) to 20. Events generated by PYTHIA8 are processed using the
DELPHES library [133] to simulate detector efficiency and resolution effects. The
upgraded design of the CMS detector, intended for the High-Luminosity LHC phase
[134], is used as a benchmark, specifically utilizing the CMS HL-LHC detector card
distributed with DELPHES. The DELPHES particle-flow (PF) algorithm combines
data from various detector components to produce a list of reconstructed particles,
referred to as PF candidates. For each particle, the algorithm provides measured
energy and flight direction, classifying particles into one of three categories: charged
particles, photons, or neutral hadrons. Additionally, separate lists of reconstructed
electrons and muons are provided. Jets are clustered from the reconstructed PF
candidates, using the FASTJET [135] implementation of the anti-kt jet algorithm
[37].

As anticipated before, many SM processes would contribute to the considered
single-lepton dataset. For simplicity, the list of relevant SM processes was restricted
to the four with the highest production cross sections, namely:

• InclusiveW boson production, where theW boson decays to a charged lepton

111



0 500 1000
MET pT

101

103

105
Si

m
ul

at
ed

 e
ve

nt
s

-2 0 2
MET ϕ

102

103

104

105

Si
m

ul
at

ed
 e

ve
nt

s

0 500 1000
MET pT

101

103

105

Si
m

ul
at

ed
 e

ve
nt

s

Background
LQ →  bτ
A →  4l
h0 → ττ
h± → τν

0 500 1000
e/γ pT

101

103

105

Si
m

ul
at

ed
 e

ve
nt

s

-2 0 2
e/γ ϕ

102

103

104
Si

m
ul

at
ed

 e
ve

nt
s

-2 0 2
e/γ η

102

103

104

Si
m

ul
at

ed
 e

ve
nt

s

0 500 1000
μ pT

101

103

105

Si
m

ul
at

ed
 e

ve
nt

s

-2 0 2
μ ϕ

102

103

104

Si
m

ul
at

ed
 e

ve
nt

s

-2 0 2
μ η

103

104

Si
m

ul
at

ed
 e

ve
nt

s

0 500 1000
jet pT

101

103

105

Si
m

ul
at

ed
 e

ve
nt

s

-2 0 2
jet ϕ

102

103

104

Si
m

ul
at

ed
 e

ve
nt

s

-2.5 0.0 2.5
jet η

102

103

104

105

Si
m

ul
at

ed
 e

ve
nt

s

Figure 6.2: Distribution of the pT (left), φ (center) and η (right) coordinates of
the physics objects entering the dataset, for missing transverse energy, MET (top
row), electrons (second row), muons (third row) and jets (bottom row).

112



(`) and a neutrino (ν): W → `ν (` = e, µ, τ);

• Inclusive Z boson production: Z → `` (` = e, µ, τ);

• tt̄ production;

• QCD multijet production.

The samples are combined to create a SM cocktail dataset by scaling down
the high-statistics samples (tt̄, W , and Z) to match the lowest-statistics sample
(QCD, the most computationally expensive to generate), based on their production
cross sections (estimated at leading order with PYTHIA) and selection efficiencies,
as shown in Table 6.1.

Process Acceptance L1 trigger
efficiency

Cross
section [nb]

Event
fraction

Events
/month

W 55.6% 68% 58 59.2% 110M
QCD 0.08% 9.6% 1.6 ·105 33.8% 63M
Z 16% 77% 20 6.7% 12M
tt̄ 37% 49% 0.7 0.3% 0.6M

Table 6.1: Acceptance and L1 trigger (i.e. pT and Iso requirement) efficiency
for the four studied SM processes. The total cross section before the trigger, the
expected number of events per month and the fraction in the SM cocktail are listed.

Each event is described by a list of four-momenta for high-level reconstructed
objects: muons, electrons, and jets. To simulate the limited bandwidth of a typical
L1T system, only the top 4 muons, 4 electrons, and 10 jets are considered, ranked
by decreasing pT . Events with fewer particles are zero-padded to ensure consistent
input size, as is done in actual L1T systems. Each particle is defined by its pT ,
η, and φ values (for the definitions of η and φ see Section 2). Additionally, the
MET is included, represented by its magnitude and φ coordinate, calculated as the
vector opposite to the sum of the transverse momenta of all reconstructed particles
in the event.

Once generated, events are filtered requiring a reconstructed electron or a muon
with pT > 23 GeV within |η| < 3 and |η| < 2.1, respectively. Up to ten jets with
pT > 15 GeV within |η| < 4 are included in each event, together with up to four
muons with |η| < 2.1 and pT > 3 GeV, up to four electrons with |η| < 3 and pT > 3
GeV, and the MET. Given these requirements, the four SM processes listed above
provide a realistic approximation of a L1T data stream [136].

In addition to the four SM processes listed above (provided in [137]), the fol-
lowing Beyond the Standard model (BSM) signals are considered to benchmark
anomaly-detection capabilities:

• A leptoquark (LQ) [138] with mass 80 GeV, decaying to a b quark and a τ
lepton [139];

• A neutral scalar boson (A) with mass 50 GeV, decaying to two off-shelf Z
bosons, each forced to decay to two leptons: A→ 4` [140];

113



6.1. KNOWLEDGE DISTILLATION FOR FAST BSM EVENTS SEARCH

• A scalar boson with mass 60 GeV, decaying to two τs: h0 → ττ [141];

• A charged boson with mass 60 GeV decaying to a τ and a ν: h± → τν [142].

The distributions of the features for the SM processes and for the chosen BSM
models are shown in Figure 6.2. All expected features are observed, e.g., the de-
tector φ symmetry, the detection inefficiency in η in the transition regions between
detector components, and the different pT distributions for the different processes.

In total, the background sample consists of 8 million events. Of these, 50%
are used for training, 40% for testing and 10% for validation. The new physics
benchmark samples are only used for evaluating the performance of the models.

6.1 Knowledge Distillation for Fast BSM events
search

To tackle the challenge described in the previous section, in [143] an Autoencoder
(described in Section 4.3.1) is proposed as an unbiased algorithm able to perform
Anomaly Detection at the trigger level without a theoretical prior. Indeed, as
discussed in [126], one can train an AE on a given data sample by minimizing a
measure of the distance between the input and the output, which takes the role of
loss function.

The architecture is part of the CNN family [144] and it is shown in Figure 6.3.
The encoder takes as input the single-channel 2D array of four-momenta including
the two MET-related features (magnitude and φ angle) and zeros for MET η,
resulting in a total input size of 19 × 3 × 1. It should be emphasised that the
dataset does not contain image data, rather the tabular data is being treated as
a 2D image to make it possible to use the CNN architecture. In [143] a direct
implementation on FPGA was considered meaning that some of the features of
the model were thought to optimize the algorithm on hardware. Specifically, the
input is zero-padded in order to resize the image to 20 × 3 × 1, which is required
in order to parallelize the network processing in the following layer on the FPGA,
given that 19 is a prime number and the rows of the "image" could not be divided
and sent to a number of parallel processors.

1

3

Input

20
ZeroPad

20

3

BatchNorm

128 18

1

Conv2D (3,3)

6

Pool
64 6

1

Conv2D (3,1)

2

Pool

32 2

1

Conv2D (1,1)

1

Pool+Flat

8

1

Dense(8) 32

1

Dense(32)

Reshape

32 2

Conv2D (3,1)

Reshape

64

Conv2D (3,3)

6

UpSamp

3

ZeroPad 128

Conv2D (3,1) 18

UpSamp

3

ZeroPad 1 19

Conv2D
(3,3)

Figure 6.3: Network architecture for the CNN AE teacher model.

After padding, the input is scaled by a batch normalization layer, which regu-
larize the input and helps in the training procedure [145]; and then it is processed
by a stack of three CNN blocks, each including a 2D convolutional layer followed
by a ReLU (see Section 4.2) activation function. The first layer has 128 3 × 3

114



6.1. KNOWLEDGE DISTILLATION FOR FAST BSM EVENTS SEARCH

kernels, the second layer 64 3 × 1 kernels and the third one 32 1 × 1 kernels. All
layers have no bias parameters and a stride set to one. The output of the third
CNN block is flattened and passed to a densely connected (DNN) layer, with 8
neurons and no activation, which represents the latent space. The decoder takes
this as input to a dense layer with 32 nodes and ReLU activation, and reshapes it
into a 2×1×16 table. The following architecture mirrors the first half, or encoder,
architecture with 3 CNN blocks with the same number of filters as in the encoder
and with ReLU activation. Both are followed by an upsampling or reshaping layer,
in order to mimic the result of a transposed convolutional layer. Finally, one con-
volutional layer with a single filter and no activation function is added. Its output
is interpreted as the AE reconstructed input.

The model is implemented in TensorFlow (described in Section 4.4.1), and
trained on the background dataset by minimizing the MSE loss with the Adam
[146] optimizer. In order to aid the network learning process, the pT are normalized
to make the quantities O(1).

This Autoencoder, henceforth called teacher, was the subject of a Knowledge
Distillation procedure to obtain a Fully Connected Neural Network much more
suitable for hardware deployment thanks to its simplicity and potential low la-
tency. In order to start the study of this kind of procedure from something easily
approachable, an Offline Response-based distillation was chosen (see Section 5.2).
In practice this means that the response in terms of Mean Squared error between
input and output was retrieved from the teacher and used as truth associated to
each input of the training set for the student models.

6.1.1 Hyperparameter Search
The teacher model was designed following the usual procedure when creating a
Neural Network model: basically trying variations of the architecture and/or hy-
perparameters until a satisfying accuracy is reached on the validation set of the
data available. However, it becomes less viable as a workflow if the number of
configurations becomes too large or difficult to explore manually without a bias or
a hint of the direction to take to get better results.

In general, the objective of a learning algorithm M is to find a function that
minimizes some expected loss L(y; f) over training samples x with an associated
ground truth y via the optimization of a set of parameters θ. Considering the
different options and configurations of the different pieces that make up M, the
set of the chosen hyperparameters λ defines the actual model that is being trained.
Thus, a way to practically choose λ as to minimize the error ofM is needed or, in
other words, a solution to the hyperparameter optimization problem [147]:

λ(∗) = argmin
λ∈Λ

E[L(y;M(x))] (6.1)

The critical step in hyper-parameter optimization is to choose the set of λs.
The most widely used strategy is a combination of grid search and manual search.
If Λ is a set indexed by K configuration variables, then grid search requires the
selection of a set of values for each variable (L(1) . . . L(K)). This means that, by
assembling every possible combination of values, the number of trials in a grid

115



6.1. KNOWLEDGE DISTILLATION FOR FAST BSM EVENTS SEARCH

search is S = ∏K
k=1 |L(k)| elements. This product over K sets makes grid search

suffer from the so-called curse of dimensionality because the number of joint values
grows exponentially with the number of hyperparameters.

Manual search is used to identify regions in Λ that are promising and to develop
the intuition necessary to choose the sets L(k). Despite the doubts regarding the
degree of reproducibility of such an approach, and the computational expense of
grid searches, there are several reasons why these strategies prevail as the state of
the art despite a lot of research into this kind of optimization [147]:

• Manual optimization gives researchers some degree of insight into the be-
haviour of the loss with different hyperparameters;

• There is no technical overhead or barrier to manual optimization;

• Grid search is simple to implement and parallelization is trivial;

• Grid search is reliable in low dimensional spaces (e.g. 1D, 2D).

As a way to fuse the benefits of grid and manual search, a random search can
be performed instead, that is, independent draws from the configurations spaces
as would be spanned by a regular grid to create the trial set of hyperparameters.

This excursus about hyperparameter search in general was done to introduce
the first part of the work presented in this thesis. Indeed, this research was done not
only to test knowledge distillation, but also to try to answer a question related to
the actual procedure to follow when trying to obtain a small model implementable
on an FPGA. In particular, when optimizing a NN for hardware inference, one
must consider not only finding the optimal architecture but also identifying the
best quantization, as defined in Section 5.1.

This raises an important question: Is there a significant difference between
searching for the best candidate architecture with the quantization process in mind
from the outset, versus approaching the task without factoring in quantization at
first? More specifically, how do the results compare when one first identifies the
optimal architecture and subsequently determines the most effective quantization
strategy, as opposed to conducting a hyperparameter search that concurrently
optimizes for both the architecture and the quantization parameters?

The strategy to trying to find an answer to this point is relatively straightfor-
ward. Two different approaches for hyperparameter search can be set up:

PhaseSearch Split the procedure in two phases where the first sees the opti-
mization of the architecture and then the best candidates are optimized for
quantization;

CoSearch Write a single optimization workflow where the configuration spaces of
both architecture and quantization are explored at once.

For both cases, a random search was selected as the optimization method, with
configuration spaces constrained by the strict requirements of hardware implemen-
tation. The number of layers and nodes per layer was kept as low as possible
to reduce FPGA resource usage and achieve models with low latency and energy
consumption. Simultaneously, the number of bits for quantization was limited by

116



6.1. KNOWLEDGE DISTILLATION FOR FAST BSM EVENTS SEARCH

model accuracy, hardware constraints, and further restricted to powers of two to
efficiently utilize the memory available on the chosen device. This means that a
very small set of hyperparameters was chosen:

• The model could have 3, 4, 5 or 6 layers;

• In each layer the network could have 8, 16, 32, 64 nodes;

• Every layer could be quantized differently among two different bitwidth, i.e.
8 total bits with 2 bits for the integer part of the number; or 16 total bits
with an integer part 6 bits wide.

Nevertheless, with these possibilities the total number of different models pos-
sible, considering the quantization, would be 299520. In order to make the task
feasible and focus on a smaller set of the configuration space, an upper and a lower
ceiling were put in place of the total number of parameters (e.g. weights and biases)
of respectively 6000 and 5000. This reduced the number of candidates resulting
from the search to 1042. The thresholds, albeit they could seem too much restrict-
ing at first glance, were chosen after a coarser search with less options showed that
the best candidates lived in this interval of number of parameters.

The hyperparameter search was written in Python using the KerasTuner [148]
module, developed by the Keras team. It is a general-purpose hyperparameter
tuning library. While it integrates seamlessly with Keras workflows, it is not re-
stricted to them and can be used to tune scikit-learn [149] models or other machine
learning frameworks. Given its usefulness, a very brief rundown on how it was used
in this work for the CoSearch procedure will be presented, as an example for the
reader to understand how to implement it for their research.

The first thing to do is to write a function which returns a compiled Keras
model with hp as one of the arguments. This will be used by the function used
to launch the actual search. Inside this build function the hyperparameters to
optimize are defined with options about, for example, their type or minimum and
maximum value. In Listing 6 a very simplified version of the code used in this
work for such a function is shown.

This code begins by defining the input layer using input_shape to specify the
structure of the input tensor. Following this, the input is flattened into a one-
dimensional array that can be processed by fully connected layers.

Next, the code applies a quantized batch normalization layer, QBatchNormal-
ization, which uses quantized bits for the normalization parameters, including beta,
gamma, mean, and variance. This is achieved through the use of quantized_bits
in the quantizer arguments. A hyperparameter, config_indx, is then defined,
which selects a specific architecture configuration from a predefined list.

Another hyperparameter, bits_indx, is defined using hp.Int("bits_indx",
...), which determines the specific quantization configuration from the list, effec-
tively tuning the bit-width precision used for quantization for each layer.

Subsequently, a loop iterates through the selected model configuration, where
the quantized fully connected layers are created using QDense and the number of
units nodes. Both the weights and biases are quantized with bit precision parame-
ters derived from the configuration applicable to the current candidate. After each

117



6.1. KNOWLEDGE DISTILLATION FOR FAST BSM EVENTS SEARCH

1 def build_model(hp):
2 # Input layer
3 inputs = keras.Input(shape=input_shape)
4 # Flattening the 19*3 table
5 x = layers.Flatten()(inputs)
6 # First BatchNormalization common to all models
7 x = QBatchNormalization(beta_quantizer='quantized_bits(8,6)', \
8 gamma_quantizer='quantized_bits(8,6)', mean_quantizer='quantized_bits(8,6)', \
9 variance_quantizer='quantized_bits(8,6)')(x)

10 # Defining the architecture hyperparameter as index in the list with all possible configurations
11 config_index = hp.Int("config_indx", min_value=0, max_value=len(model_configurations)-1, step=1)
12 bits_index = 0
13 selected_bits_conf = []
14
15 temp_idx = []
16
17 # Defining the quantization hyperparameter as index in the list with all possible configurations
18 bits_index = hp.Int("bits_indx", min_value=0, max_value=len(quant_configurations), step=1)
19
20 # Number of hidden layers of the MLP is a hyperparameter.
21 for i, nodes in enumerate(model_configurations[config_index]):
22 # Number of nodes of each layer are different hyperparameters
23 # Quantized Fully Connected layer with parametrized quantization and number of nodes
24 x = QDense(units=nodes, \
25 kernel_quantizer = quantized_bits(quant_configurations[bits_index][i][0], \
26 quant_configurations[bits_index][i][1],alpha=1), \
27 bias_quantizer = quantized_bits(quant_configurations[bits_index][i][0], \
28 quant_configurations[bits_index][i][1],alpha=1), \
29 kernel_initializer = 'he_normal', kernel_regularizer = L2(0.0001))(x)
30 # Quantized ReLU activation function with parametrized quantization
31 x = QActivation(activation = quantized_relu(quant_configurations[bits_index][i][0], \
32 quant_configurations[bits_index][i][1],negative_slope=0.25))(x)
33
34 # The last layer contains 1 unit, which represents the learned loss value
35 # It has a separate quantization hyperparameter
36 final_quant_idx = hp.Int("final_quant_idx", min_value=0, max_value = 2, step=1)
37 final_quant = final_quant_configurations[final_quant_idx]
38
39 outputs = QDense(1,kernel_quantizer = quantized_bits(final_quant[0],final_quant[1],alpha=1), \
40 bias_quantizer = quantized_bits(final_quant[0],final_quant[1],alpha=1), \
41 kernel_initializer = keras.initializers.RandomUniform(minval=0, maxval=5,seed=1234))(x)
42
43 outputs = QActivation(activation=quantized_relu(final_quant[0],final_quant[1], \
44 negative_slope=0.25))(outputs)
45
46 # Building the model with Keras
47 hyper_student = keras.Model(inputs=inputs, outputs=outputs)
48
49 # Compiling the model
50 hyper_student.compile(
51 optimizer=Adam(lr=3E-3, amsgrad=True),
52 loss=distillation_loss
53 )
54 hyper_student.summary()
55 return hyper_student

Listing 6: Simplified version of the code used in this work for the hyperparameter
search of a quantized densely connected neural network.

dense layer, a quantized ReLU activation function, QActivation(activation =
quantized_relu(...)), is applied, which also uses quantized bits and a negative
slope of 0.25.

In addition to tuning the intermediate layers, the final layer of the network is

118



6.1. KNOWLEDGE DISTILLATION FOR FAST BSM EVENTS SEARCH

subject to its own quantization with a separate hyperparameter.
Finally, the Keras model is built using keras.Model(..., ...), linking the in-

put and output layers. The model is compiled with the Adam optimizer (learning
rate = 3E-3 with AMSGrad [150] enabled) and the loss function. The fully con-
structed and compiled model is returned at the end.

1 hypermodel = HyperStudent(x_train.shape, distillation_loss, param_threshold = (5000,6000))
2 tuner = keras_tuner.RandomSearch(
3 hypermodel,
4 max_trials = len(hypermodel.model_configurations),
5 directory = 'output/hyper_tuning',
6 )
7 tuner.search_space_summary()
8 # Using callbacks for early stopping and reducing the learning rate during training
9 callbacks = [

10 EarlyStopping(monitor = 'val_loss', patience = 3, verbose = 1),
11 ReduceLROnPlateau(monitor = 'val_loss', factor = 0.1, patience = 2, verbose = 1, min_lr = 1e-9)
12 ]
13 tuner.search(
14 x = x_train,
15 y = y_train,
16 epochs = 4,
17 batch_size = 2048,
18 validation_data = (x_val,y_val),
19 callbacks = callbacks
20 )
21
22 tuner.results_summary()
23
24 best_hps = tuner.get_best_hyperparameters()

Listing 7: Simplified version of the code to launch an hyperparameter search with
KerasTuner for a model described in the HyperStudent class.

In Listing 7 the process to actually launch the search is shown. The Hyper-
Student class contains the build function described above with options for the loss
and configurations space. The tuner is built with the constructor of the chosen
algorithm, RandomSearch in this case, providing the model and other configura-
tions, e.g. maximum number of trials and directory for the logs. The search
method is very similar to the fit() method in basic Keras, and it basically start
the training of all candidates. Finally the results can be retrieved as a summary
or as a dictionary of the best hyperparameters.

CoSearch and PhaseSearch were launched using this kind of python script,
with the only difference that, in the latter, there was an initial search with only
the hyperparameters concerning the architecture, i.e. number of layers and number
of nodes per each layer, followed by one for the quantization.

The results of the two search strategies for the 1042 student candidates are
presented in Figure 6.4. These figures compare the distributions of MSEs between
the student models and the teacher model, focusing on the different anomalies the
students are expected to detect.

A quick glance at the box plot reveals that both workflows produce student
models with similar levels of accuracy relative to the teacher model. However,
the models generated through CoSearch tend to be distributed slightly closer to
0, indicating a marginally higher proportion of models with better performance

119



6.1. KNOWLEDGE DISTILLATION FOR FAST BSM EVENTS SEARCH

Figure 6.4: Distributions of MSE scores with respect to the teacher model of the
students produced by the PhaseSearch (pink) and CoSearch (green) procedures for
the 4 BSM signals under study.

compared to those from PhaseSearch. This trend is further supported by the
medians and percentiles in Table 6.2, where CoSearch results consistently show
smaller values than those from PhaseSearch.

PhaseSearch (MSE) CoSearch (MSE)

Background
Median 0.003526 0.002124
25%ile 0.001888 0.001625
75%ile 0.010446 0.004469

Leptoquark
Median 0.019514 0.016468
25%ile 0.014612 0.013378
75%ile 0.042097 0.025582

A→ 4`
Median 0.387098 0.330177
25%ile 0.282444 0.266956
75%ile 0.573183 0.468822

h± → τν
Median 0.038740 0.039622
25%ile 0.031283 0.031831
75%ile 0.075944 0.055021

h0 → ττ
Median 0.026144 0.024405
25%ile 0.020311 0.019853
75%ile 0.048265 0.034714

Table 6.2: Robust estimators of MSE scores distributions produced by the Phas-
eSearch and CoSearch procedures for the 4 BSM signals under study.

In Figures 6.5 and 6.6 the ROC curve for the three models with the highest
AUC on average over all four signals are shown.

Comparing ROCs and AUCs

In order to compare and evaluate the best models, a robust way to assess the
uncertainty of the metric used to create the rankings must be found. In this case
the data at hand are the Receiver Operating Characteristic curve (made up of
the True Positive rate vs the False Positive rate at different thresholds) and the

120



6.1. KNOWLEDGE DISTILLATION FOR FAST BSM EVENTS SEARCH

(a) Leptoquark → bτ (b) Neutral scalar boson A→ 4`

(c) Charged boson h± → τν (d) Scalar boson h0 → ττ

Figure 6.5: ROC curves of the three best student produced by the CoSearch pro-
cedure according to the average over the four BSM signals under study of the
AUC.

associated Area under the Curves and a way to compute an error to these quantities
is the Clopper-Pearson interval [151] for the former and Delong’s algorithm [152]
for the latter.

The Clopper-Pearson (CP) interval is an exact method used to calculate the
confidence interval (CI) for a binomial proportion (success rate), i.e. it is a way
to bound the proportion within a specified confidence level, such as 95%. If X is
the number of successes in n independent trials with success probability p, then
the CP interval provides a confidence interval for p using the quantiles or inverse
cumulative distribution function B of the Beta distribution:

CI =
[
B
(
α

2 ;X,n−X + 1
)
, B

(
1− α

2 ;X + 1, n−X
)]

(6.2)

where α is the significance level (e.g. 0.05 for a 95% CI).
This links to the ROC because the TPRs and FPRs used to draw it are based

on binary decisions which are inherently binomial proportions, i.e. the probability
of success calculated from the outcome of a series of success-failure experiments.
Thus, in each point of the ROC an upper and lower confidence interval can be

121



6.1. KNOWLEDGE DISTILLATION FOR FAST BSM EVENTS SEARCH

computed using the scipy [153] library in python, as shown in Listing 8, and used
to draw a band around the curve like in the Figures 6.5, 6.6, 6.9, 6.13, and 6.15.

1 from scipy.stats import beta
2 def clopper_pearson(total, passed, level, bUpper):
3 alpha = (1.0 - level) / 2.0
4
5 if bUpper:
6 return np.where(
7 passed == total,
8 1.0,
9 beta.ppf(1 - alpha, passed + 1, total - passed)

10 )
11 else:
12 return np.where(
13 passed == 0,
14 0.0,
15 beta.ppf(alpha, passed, total - passed + 1)
16 )

Listing 8: Function used to compute the Clopper-Pearson confidence interval for
each point of the ROCs shown in this thesis.

To explain Delong’s algorithm, the starting point is the definition of the sample
version of the AUC:

θ̂ = 1
mn

m∑
i=1

n∑
j=1
H(Xi − Yj) (6.3)

given X1 . . . , Xm and Y1 . . . , Yn two independent and identically distributed sam-
ples drawn from two populations, and

H(t) =


1 t > 0
1
2 t = 0
0 t < 0

(6.4)

i.e. the Heaviside function. Let θ̂ = {θ̂(1), . . . , θ̂(k)} be a vector of statistics repre-
senting the areas under the ROC curves derived from different readingsX(r)

1 . . . , X(r)
m

and Y (r)
1 . . . , Y (r)

n with 1 ≤ r ≤ k fo k different experiments. For the rth element
of the vector, define the "structural component"

V10(X(r)
i ) = 1

n

n∑
j=1
H(X(r)

i − Y
(r)
j ), i = 1, . . . ,m (6.5)

and
V01(Y (r)

j ) = 1
m

m∑
j=1
H(X(r)

i − Y
(r)
j ), j = 1, . . . , n (6.6)

Also define two matrices S10 = [s(r,s)
10 ]k×k and S01 = [s(r,s)

01 ]k×k such that

s
(r,s)
10 = 1

m− 1

m∑
i=1

[
V10

(
X

(r)
i

)
− θ̂(r)

] [
V10

(
X

(s)
i

)
− θ̂(s)

]
(6.7)

and
s

(r,s)
01 = 1

n− 1

n∑
j=1

[
V01

(
Y

(r)
j

)
− θ̂(r)

] [
V01

(
Y

(s)
j

)
− θ̂(s)

]
(6.8)

122



6.1. KNOWLEDGE DISTILLATION FOR FAST BSM EVENTS SEARCH

Then, Delong proposed a variance-covariance matrix estimator for the vector
θ̂ as

S = 1
m

S10 + 1
n

S01. (6.9)

When the vector θ̂ contains only one element, that is r = s = 1 in Eq. 6.7
and Eq. 6.8, the covariance estimator reduces to a variance estimator V(θ̂). In
[152] a variation of the original algorithm is proposed to reduce the computing
complexity from O[kmn+ k2(m+ n)] to O[k(m+ n)log(m+ n) + k2(m+ n)] and
its implementation available on Github at [154] was the one used in this work.

(a) Leptoquark → bτ (b) Neutral scalar boson A→ 4`

(c) Charged boson h± → τν (d) Scalar boson h0 → ττ

Figure 6.6: ROC curves of the three best student produced by the PhaseSearch
procedure according to the average over the four BSM signals under study of the
AUC.

Using these tools from the field of statistics, it is possible to say with more
certainty, from looking at Figures 6.5 and 6.6, that CoSearch and PhaseSearch ul-
timately yield nearly equivalent optimal models. However Figure 6.4 suggests that
optimizing both architecture and quantization simultaneously, as part of a unified
hyperparameter search, increases the likelihood of producing a high-performing
model with fewer iterations.

123



6.2. FPGA IMPLEMENTATION OF A NN FOR AD

6.2 FPGA Implementation of a Fast Neural Net-
work for Anomaly Detection

In the previous section the procedures to find the most accurate candidate for
implementation on hardware were described. From Figures 6.5 and 6.6 it is possible
to select the best performing student to start the workflow which will produce a
running inference machine on an FPGA for the detection of Beyond the Standard
Model signals against a theoretically explainable background within the boundaries
of the Standard Model.

3

Input

19

Flatten 57

1

BatchNorm 64

1

Dense(64)

32

1

Dense(32)

8

1

Dense(8)

8

1

Dense(8)
16

1

Dense(16)

8

1

Dense(8)

1

1

Output

Figure 6.7: Network architecture for the Neural Network for AD to be implemented
on FPGA.

The candidate was chosen from the CoSearch group and it is made up of an
input layer, a flatten layer to reshape the data into a 1-D vector of numbers,
a Batch Normalization layer and 6 hidden fully connected layers, in turn built
with the following characteristics: All the hidden layers, and the output one, are

# Nodes # Bits (Integer part)
64 16 (6)
32 16 (6)
8 16 (6)
8 16 (6)
16 16 (6)
8 16 (6)

followed by a Quantized ReLU activation function with the same quantization as
the preceding layer and negative slope α = 0.25. Their weights are also initialized
with a He normal distribution [155], i.e. a truncated normal distribution centered
on 0 with standard deviation σ =

√
2

fan_in where fan_in is the number of input
units in the weight tensor. Finally, a regularizer was added to each layer from
the L2 family, described in 4.2, with a very small factor of 0.0001. These settings
were chosen as the ones which produced the best results after testing a number of
different initializers, activation functions and regularizers. A visual representation
of the network is in Figure 6.7.

124



6.2. FPGA IMPLEMENTATION OF A NN FOR AD

(a) Leptoquark → bτ (b) Neutral scalar boson A→ 4`

(c) Charged boson h± → τν (d) Scalar boson h0 → ττ

Figure 6.8: ROC curves of the best overall student according to the average over
the four BSM signals under study of the AUC. It was produced by the CoSearch
procedure.

It is worth noting that only 16-bit quantization is used, which is expected given
its higher resolution compared to 8-bit quantization, allowing for a larger range of
possible values for the model parameters. However, the second- and third-best
models in CoSearch utilize one and two layers, respectively, with reduced bitwidth.
Given the very similar performance among these three models, it suggests that
achieving optimal performance with lower bitwidth than the maximum available is
not only possible but plausible. For this thesis, however, the overall best model was
selected, without considering bitwidth variations, in order to prioritize obtaining
the most accurate fast AD algorithm.

6.2.1 Using HLS4ML to create a firmware
Having chosen the desired model to implement in hardware, the next step is to cre-
ate the High Level Synthesis able to replicate its functionality in a so-called kernel
which will be the computing unit in the overall firmware that will be implemented
on the FPGA. This task is made easier for a person with a background in physics
by the hls4ml library described in Section 5.3.1. Using this python package, the

125



6.2. FPGA IMPLEMENTATION OF A NN FOR AD

process is simplified by leaving out the chore of writing the code in C++ related
to the layers and activation functions of the neural network, specifically optimized
to create a HLS kernel.

In order to start the conversion, the first step is to import the model using the
chosen ML library. In this case it is QKeras due to the fact that the model under
development was quantized directly during its training:

1 model = load_qmodel("coquantization_best_student.h5")

Listing 9: Importing a Neural Network model using QKeras.

Once the model is accessible a configuration dictionary has to be created:

1 config = hls4ml.utils.config_from_keras_model(model, granularity = 'name',default_reuse_factor=5)

Listing 10: How to create a default configuration for the HLS code produced by
hls4ml.

The config_from_keras_model infers a lot of the parameters needed for the
writing of the HLS code from the model itself. However, with the granularity =
’name’ argument it is possible to overwrite the default configuration for each of
the elements of the neural network. In this case, this was needed to impose the
right number of bits for the output of the activation functions and the internal
parameters of the BatchNormalization layer, which were manually optimized, as
shown in Listing 11.

1 config['LayerName']['input_1']['Precision']['result'] = 'ap_fixed<16,9>'
2
3 config['LayerName']['q_activation']['Precision'] = 'ap_fixed<16,6,RND_CONV,SAT>'
4 config['LayerName']['q_activation_1']['Precision'] = 'ap_fixed<16,6,RND_CONV,SAT>'
5 config['LayerName']['q_activation_2']['Precision'] = 'ap_fixed<16,6,RND_CONV,SAT>'
6 config['LayerName']['q_activation_3']['Precision'] = 'ap_fixed<16,6,RND_CONV,SAT>'
7 config['LayerName']['q_activation_4']['Precision'] = 'ap_fixed<16,6,RND_CONV,SAT>'
8 config['LayerName']['q_activation_5']['Precision'] = 'ap_fixed<16,6,RND_CONV,SAT>'
9

10 config['LayerName']['q_batch_normalization']['Precision']['beta'] = 'ap_fixed<16,6,RND_CONV,SAT>'
11 config['LayerName']['q_batch_normalization']['Precision']['gamma'] = 'ap_fixed<16,6,RND_CONV,SAT>'
12 config['LayerName']['q_batch_normalization']['Precision']['mean'] = 'ap_fixed<16,6,RND_CONV,SAT>'
13 config['LayerName']['q_batch_normalization']['Precision']['variance'] = \
14 'ap_fixed<16,6,RND_CONV,SAT>'
15 config['LayerName']['q_batch_normalization']['Precision']['result'] = \
16 'ap_fixed<16,6,RND_CONV,SAT>'
17 config['LayerName']['q_batch_normalization']['Precision']['scale'] = 'ap_fixed<16,6,RND_CONV,SAT>'
18 config['LayerName']['q_batch_normalization']['Precision']['bias'] = 'ap_fixed<16,6,RND_CONV,SAT>'

Listing 11: In depth configuration of the quantization of activation functions and
a batch normalization layer with the hls4ml library.

The terms RND_CONV and SAT refer to different quantization strategies. RND_CONV
instructs the compiler to use convergent rounding, where values are rounded to the

126



6.2. FPGA IMPLEMENTATION OF A NN FOR AD

nearest representable value. In cases where the value is exactly midway between
two possible values ("ties"), the number is rounded to the nearest even value, en-
suring that the least significant bit after rounding is set to zero. SAT, on the other
hand, directs the compiler to handle overflow by capping values at the maximum
representable value, and negative overflow by assigning the minimum representable
value.

Tracing, which involves saving the output of individual elements within the
model, was activated for all layers (Listing 12). This was done to monitor and
detect any potential unwanted behaviors, such as overflow or insufficient precision,
that could arise within the network. By capturing the intermediate outputs, we
can more effectively diagnose and address issues related to numerical stability and
precision limitations throughout the model’s layers.

1 for layer in config['LayerName'].keys():
2 config['LayerName'][layer]['Trace'] = True

Listing 12: Activating tracing for all layers of a Neural Network to be translated
to HLS with hls4ml.

The code to be produced by hls4ml have to be suitable for the development
using the Vitis platform, which is specific for the creation of firmware for accelerator
cards like the AMD/Xilinx Alveo U50. To set up this feature another configuration
has to be written with information on the FPGA part number, the backend of
hls4ml to use where the right templates and script are described, and the interface
desired. This can be seen in Listing 13.

1 cfg = hls4ml.converters.create_config(part='xcu50-fsvh2104-2-e', backend='VivadoAccelerator')
2
3 cfg['HLSConfig'] = config
4 cfg['AcceleratorConfig']['Driver'] = 'python'
5 cfg['AcceleratorConfig']['Board'] = 'alveo-u50'
6 cfg['AcceleratorConfig']['Interface'] = 'axi_stream'
7 cfg['IOType']= 'io_parallel'
8 cfg['KerasModel'] = model
9 cfg['OutputDir'] = 'HLS_Project'

Listing 13: Hls4ml configuration for an accelerator platform like the AMD/Xilinx
Alveo U50.

Finally, the project can be compiled to create all the scripts and code in HDL
ready to be used by the Vivado/Vitis suite for development of FPGA firmware:

1 hls_model = hls4ml.converters.keras_to_hls(cfg)
2
3 hls_model.compile()

127



6.2. FPGA IMPLEMENTATION OF A NN FOR AD

Fixing a bug in hls4ml

While using hls4ml to produce the code for the Vitis platform, a bug was encoun-
tered in the translation of the activation layers of the model to HLS code. The
function used in the student network is the quantized ReLU with a negative slope
of 0.25. This means that its output values can be also negative but they follow a
straight line in the third quadrant of the cartesian plane with an angular coefficient
of 0.25 instead of 1 used with positive inputs.

1 def parse_qactivation_layer(keras_layer, input_names, input_shapes, data_reader):
2 # [...]
3 # Parsing all supported layers
4 # [...]
5 else:
6 layer['class_name'] = 'Activation'
7 layer['activation'] = activation_config['class_name'].replace('quantized_', '')
8 # [...]

Listing 14: Snippet of the old version of the script in the hls4ml library parsing
the activation layers of models built using QKeras.

However, in the code used to parse the quantized activation layers, this kind
of function was not listed and this caused the use of the default version of the
non-quantized version, as seen in Listing 14, where the code simply suppressed the
’quantized_’ part of the name, making it a regular ReLU, instead of a LeakyReLU
which is described by a different class of objects in TensorFlow.

1 elif activation_config['class_name'] == 'quantized_relu' and \
2 activation_config['config']['negative_slope'] != 0:
3 layer['class_name'] = 'LeakyReLU'
4 layer['activation'] = activation_config['class_name'].replace('quantized_', 'leaky_')
5 layer['activ_param'] = activation_config['config']['negative_slope']

Listing 15: if case added in the script in the hls4ml library parsing the activation
layers of models built using QKeras to include the correct translation of quantized
LeakyReLUs.

This issue was resolved by adding a new case to the if-else statement, as
shown in 15. The added code triggers when the layer’s name is quantized_relu
and the negative slope is non-zero, effectively identifying it as a LeakyReLU. At
this point, the quantized part of the name is replaced with leaky. Finally, the
configuration for the negative slope is stored in the dictionary that holds all the
layer information to be parsed.

To finalize the fix, an additional adjustment was made in the script responsi-
ble for retrieving the initial configuration from the imported model for conversion.
Initially, the output of the quantized_relu function was assumed to be unsigned.
However, this assumption does not hold if the ReLU has a negative slope. There-
fore, support for signed output was added, as shown in Listing 16.

128



6.2. FPGA IMPLEMENTATION OF A NN FOR AD

1 if quantizer['class_name'] in ('quantized_relu', 'quantized_relu_po2'):
2 if quantizer['config']['negative_slope'] != 0.0:
3 signed = True
4 else:
5 signed = False
6 integer -= 1

Listing 16: Fix in the script of the hls4ml library to retrieve the right configuration
of the output of the quantized_relu activation function. Originally the case of a
signed output was not allowed, making it impossible to produce a negative value,
which are instead possible for LeakyReLUs.

Together with the necessary suite of tests, these fixes were part of a Pull Request
on the official hls4ml repository [156] and the merge was approved to make it part
of the published code base [157].

6.2.2 Accuracy of BSM signal detection
After creating the HLS code to implement the functionalities of the quantized Neu-
ral Network at hand, the accuracy in detecting the anomalies, here represented by
the 4 BSM signals under study, must be checked again before the actual hardware
implementation.

In the previous sections, model performance was evaluated using TPRs at a
fixed FPR as a benchmark, focusing on low FPR levels. It is important to note
that the purity of signal detection is tied to a specific threshold in the neural
network output, which defines the boundary between background and signal. The
aim of this study is to explore the potential deployment of such an algorithm at
the Level-1 trigger of CMS, enabling the selection of signals without reliance on
theoretical assumptions. This requires selecting a single threshold that ensures high
purity in the positive dataset, regardless of the signals in the input sample. To
determine the optimal cut value, performance was analyzed across the four BSM
signals, with the threshold corresponding to the lowest FPR where the relative
difference between the TPRs of the student and teacher models was less than 1%.
This resulted in four different thresholds, each producing slightly higher TPRs
compared to an FPR of 10−5. The smallest of these thresholds was ultimately
chosen as the final cut point to increase the likelihood of capturing rare events,
given the nature of the signals targeted by this approach.

All of this is shown in Figure 6.9 which shows the ROC curves comparing the
best student model implemented using QKeras (brown) and HLS (red) against
the teacher model (green). Three key TPRs are highlighted at different FPRs.
The first TPR corresponds to an FPR of 10−5; the second TPR occurs where the
student model’s performance is closest to that of the teacher, illustrating the lowers
FPR where the student approximates the teacher’s accuracy in a satisfying matter.
Lastly, a third TPR is shown at a common threshold applied across four signals,
chosen based on the highest loss value where one of the signals achieves a TPR
most similar to the teacher model.

In Table 6.3, a compendium of the numerical values obtained for the test signals

129



6.2. FPGA IMPLEMENTATION OF A NN FOR AD

(a) Leptoquark → bτ (b) Neutral scalar boson A→ 4`

(c) Charged boson h± → τν (d) Scalar boson h0 → ττ

Figure 6.9: ROC curves comparing the best student model using QKeras (brown)
and the HLS implementation (red) against the teacher model (green). Three TPRs
are highlighted for different false positive rates FPRs: one at 10−5, another where
the student’s performance is closest to the teacher’s, and a third at a common
threshold across the four signals, selected based on the highest loss value where
one signal’s TPR most closely matches the teacher’s.

is listed, together with the significance. This metric, described in [158], is used to
evaluate the sensitivity of the experiment by analyzing the ratio of the signal
strength s to the background fluctuation

√
b.

In particle physics experiments one often searches for processes that have been
predicted but not yet seen. The statistical significance of an observed signal can
be quantified by means of a p-value or its equivalent Gaussian significance. It is
useful to characterize the sensitivity of an experiment by reporting the expected
(e.g., mean or median) significance that one would obtain for a variety of signal
hypotheses. Finding both the significance for a specific data set and the expected
significance can involve Monte Carlo calculations that are computationally expen-
sive.

In [158] an approximate method it is proposed by which one can obtain both
the significance for given data as well as the full sampling distribution of the

130



6.2. FPGA IMPLEMENTATION OF A NN FOR AD

Process
True Positive Rate

@ 10−5 FPR

True Positive Rate

Single threshold

False Positive Rate

Single threshold
Significance

LQ → bτ 0.00014+0.00006
−0.00005 0.00032+0.00010

−0.00008 1.83× 10−5 0.061173

A→ 4` 0.00457+0.00079
−0.00070 0.02129+0.00163

−0.00155 3.00× 10−5 0.700552

h± → τν 0.00039+0.00006
−0.00006 0.00156+0.00013

−0.00012 3.81× 10−5 0.694085

h0 → ττ 0.00047+0.00007
−0.00006 0.00229+0.00016

−0.00015 4.26× 10−5 0.925252

Table 6.3: Results from the HLS representation of the student model to be imple-
mented on FPGA for the 4 BSM signals under study. Three TPRs are highlighted
for different FPRs: one at 10−5, another where the student’s performance is closest
to the teacher’s, and a third at a common threshold across the four signals, se-
lected based on the highest loss value where one signal’s TPR most closely matches
the teacher’s. Finally, the significance described in [158] is reported to assess the
statistical confidence in the signal selection by the model.

significance under the hypothesis of different signal models, all without recourse to
Monte Carlo. In this way one can find, for example, the median significance and
also a measure of how much one would expect this to vary as a result of statistical
fluctuations in the data. A useful element of the method involves estimation of the
median significance by replacing the ensemble of simulated data sets by a single
representative one, referred to here as the “Asimov” data set, defined as a data set
such that when one uses it to evaluate the estimators for all parameters describing
a data set under study, one obtains the true parameter values.

The case under study in this thesis falls under the umbrella of counting exper-
iments, however it can be considered as a special case where the background b is
much larger than the signal s. If b is regarded as known, the observed number
of events n follows a Poisson distribution with a mean of s + b. The likelihood
function for observing n events, given s and b, is:

L(µ) = (µs+ b)n
n! e−(µs+b) (6.10)

To assess the presence of a signal, the test statistics q0 is used. It can quantify
the lack of agreement with having only background events in the data and it can
be written as:

q0 =
{
−2 lnL(0)

L(µ̃) µ̃ ≥ 0
0 µ̃ < 0

(6.11)

where µ̃ = n− b. For sufficiently large b the following asymptotic formula can
be used for the significance

Z0 = √q0 =
{ √

2(n lnn
b

+ b− n) µ̃ ≥ 0
0 µ̃ < 0

(6.12)

To approximate the median significance assuming the hypothesis that there is a
signal (µ = 1), n is replaced by the value s+ b, obtained by considering an Asimov
data set:

med[Z0|1] = √q0,A =
√

2((s+ b)ln(1 + s/b)− s) (6.13)

131



6.2. FPGA IMPLEMENTATION OF A NN FOR AD

and, expanding logarithm in s/b one finds

med[Z0|1] = s√
b
(1 +O(s/b)) (6.14)

Although med[Z0|1] ≈ s/
√
b has been widely used for cases where s+ b is large,

one sees here that this final approximation is strictly valid only for s� b.
Based on the significance values presented in Table 6.3, it could be concluded

that the current model is not yet capable of detecting BSM signals with sufficient
confidence against the background while keeping the number of false positives as
low as possible. However, the primary focus of this work is on demonstrating
the feasibility of deploying such complex architectures on hardware to achieve ex-
tremely low latencies. The main objective of this section is to highlight that it is
possible to distill a network and obtain a similar performance between the distilled,
quantized, and hardware-translated network and the original teacher model. These
results underscore the need for further research into more accurate and sophisti-
cated models for this task. Importantly, knowledge distillation has proven effective
in enabling the deployment of such advanced models on FPGAs. A preliminary
exploration of a novel architecture is provided in Section 6.4, marking an initial
step in this direction. Furthermore a Master’s thesis was supervised on the devel-
opment of more complex Variational Autoencoders to perform Anomaly Detection
for signal hunting, however on a more simple background and signal dataset [159].
This work was also presented at the International Symposium on Grids & Clouds
(ISGC) 2023 in Taipei [160].

6.2.3 Towards synthesis and implementation
Now that the model written in HLS code is ready, the next step is to create
a firmware to load onto the FPGA. Being a proof of concept, and due to the
hardware availability, the target platform for the workflow in this thesis is an
Alveo U50, manufactured by AMD/Xilinx [161]. This means that the firmware
will not be a standalone product, running on a FPGA without the need of a host
computer, but it will take the image of an accelerated application which will be
launched on the card containing the FPGA by the host’s CPU via a PCI Express
connection, as schematically shown in Figure 6.10, where HBM stands for High
Bandwidth Memory and it is the on chip memory of this kind of accelerator cards.

To create this kind of application on an AMD device, the workflow sees the
use of the Vitis Design Suite [162]. The process starts with the creation of a
project where the target platform is chosen, as seen in Figure 6.11. This will
give the information to Vitis on how to build the part of the firmware which is
independent from the custom application described in HLS, instead it contains the
needed circuitry to sustain the kernel containing the neural network and perform
all the communication from and to the FPGA.

At this stage, the source files generated by the hls4ml library must be imported.
These include header and implementation files that handle the various data types
and layers supported by the library. Custom files, on the other hand, define the
weights, biases, and layers, with the appropriate data types specified in the config-
uration (Listing 17). Additionally, they include the necessary #include directives

132



6.2. FPGA IMPLEMENTATION OF A NN FOR AD

Figure 6.10: System schematics of an accelerated function running on a FPGA (on
the right) which is launched by a host PC with a traditional processor via a PCIe
connection, and interacting with the on-device memory (HBM).

1 // Insert fixed sizes
2 #define N_INPUT_1_1 19
3 #define N_INPUT_2_1 3
4 #define N_INPUT_3_1 1
5 // [...]
6 #define N_LAYER_14 8
7 #define N_LAYER_14 8
8 #define N_LAYER_16 1
9 #define N_LAYER_16 1

10
11 // Insert layer-precision
12 typedef ap_fixed<16,9> input_t;
13 typedef ap_fixed<16,6,AP_RND_CONV,AP_SAT> layer3_t;
14 typedef ap_fixed<16,7> weight4_t;
15 typedef ap_fixed<16,7> bias4_t;
16 // [...]
17
18 #endif

Listing 17: Configuration file defining the data types, layers, weights, and biases
for the neural network architecture.

for files containing the neural network’s parameters and the configuration of acti-
vation functions and layers, which are structured as structs (Listing 18). Lastly,
the main script contains the core function that will be invoked to perform inference
on the inputs provided to the FPGA (Listing 19). All of this code in C++ can be
modified if needed, giving great flexibility in the use of hls4ml, in the fact that it
could be also used as an optimal starting point even if a desired feature is not yet
implemented.

In Listing 19 there is the actual instantiation of the neural network. All pieces
of the model are described as template functions which are able to deal with the
different types of inputs and outputs accordingly. Their arguments are the ac-
tual pointers with the data coming in and out of the layer or activation function,
together with the necessary weights and/or other parameters. In this way the en-
tire functionality of the model is encapsulated in a single void function, with all
the inner workings neatly split in functional units, which can then be translated in
different areas of the chip and run independently, only driven by the data available.

133



6.2. FPGA IMPLEMENTATION OF A NN FOR AD

Figure 6.11: Snapshot of one of the steps to create a project with the Vitis Design
Suite. Here the target platform is chosen in order to create a specific accelerated
application to run on the FPGA.

At the beginning of the code for the kernel function there is also the description
of its inputs and outputs using HLS’ pragmas. This tells the Vitis’ compiler to
create and reserve the correct ports for the entire IP core. In this case these
arrays are also reshaped and partitioned in order to make them more optimized
to be stored in the memory of the FPGA. Focusing on the type of interface, the
Advanced eXtensible Interface (AXI4) [163] was chosen, as it is a standard interface
which allows the sending and receiving of structured data in batches and it is easily
managed by the Vitis compiler to make a ready to go firmware to use with OpenCL
or Python using the PYNQ library (see Section 3.3).

The hls4ml tool also generates an additional file that creates a buffer between
the main function and the rest of the firmware. However, due to compatibility
issues with the platform, it was decided to bypass this buffer and directly use the
kernel function. As a result, minor modifications were made to the generated code
to make the function in Listing 19 standalone. This function was then designated
as the main function for the entire project.

Latency (ns) BRAM BRAM(%) DSP DSP(%) FF FF (%) LUT LUT (%)
790 2 ∼ 0 1002 16 62969 3 207144 23

Table 6.4: Latency and hardware footprint of the kernel containing the neural
network in terms of the memory units, computing units and registers used.

With the kernel ready the synthesis, implementation and bitstream generation

134



6.2. FPGA IMPLEMENTATION OF A NN FOR AD

1 // Layer includes
2 #include "nnet_utils/nnet_activation.h"
3 #include "nnet_utils/nnet_batchnorm.h"
4 #include "nnet_utils/nnet_dense.h"
5 // [...]
6
7 // Weights and bias values includes
8 #include "weights/s3.h"
9 #include "weights/b3.h"

10 // [...]
11
12 // Insert layer-config
13
14 // QDense
15 struct config4 : nnet::dense_config {
16 static const unsigned n_in = 57;
17 static const unsigned n_out = 64;
18 static const unsigned io_type = nnet::io_parallel;
19 static const unsigned reuse_factor = 5;
20 // [...]
21 };
22
23 // QActivation
24 struct leaky_relu_config5 : nnet::activ_config {
25 static const unsigned n_in = 64;
26 static const unsigned table_size = 1024;
27 static const unsigned io_type = nnet::io_parallel;
28 static const unsigned reuse_factor = 5;
29 typedef q_activation_table_t table_t;
30 };
31
32 // [...]

Listing 18: Header file containing #include directives for the neural network’s
parameter values, activation functions, and layer configurations structured as
structs.

workflow was launched. This then produced the actual file containing the entire
firmware to be used to program the FPGA to perform the task of Anomaly Detec-
tion.

At this stage, some insights into the hardware footprint of the neural network
implementation are available. Table 6.4 presents the usage of BRAMs, DSPs,
Flip-Flops, and Lookup Tables, along with the corresponding percentages of total
resources available on the platform. The resource usage is minimal, demonstrating
that the distillation process was highly effective in producing a compact imple-
mentation of a complex algorithm. This reduction in complexity is achieved with a
negligible impact on accuracy, underscoring the success of the approach. It is im-
portant to note that, while the Alveo U50 lacks the characteristics of standalone,
on-board FPGAs typically used for Level-1 triggering, it is one of the smallest
cards in the accelerator space. Achieving such low resource consumption on this
platform highlights the efficiency of this implementation, making it a noteworthy
success in terms of both performance and resource management.

Finally the power consumption and thermal information of the card running
the produced firmware is shown in Table 6.5. All values are well within the range
of ideal operation. This reinforce the idea that the distillation was very successful
and it could be used to reduce the complexity of model performing difficult tasks

135



6.2. FPGA IMPLEMENTATION OF A NN FOR AD

1 #include "myproject.h"
2 #include "parameters.h"
3
4 void myproject(
5 input_t input_1[N_INPUT_1_1*N_INPUT_2_1*N_INPUT_3_1],
6 result_t layer17_out[N_LAYER_16]
7 ) {
8 // Insert IO and some reshaping and partition to increase performance
9 #pragma HLS ARRAY_RESHAPE variable=input_1 complete dim=0

10 #pragma HLS ARRAY_PARTITION variable=layer17_out complete dim=0
11 #pragma HLS INTERFACE m_axi port=input_1,layer17_out
12 #pragma HLS PIPELINE
13
14 #ifndef __SYNTHESIS__
15 static bool loaded_weights = false;
16 if (!loaded_weights) {
17 // Load weights
18 nnet::load_weights_from_txt<q_batch_normalization_scale_t, 57>(s3, "s3.txt");
19 nnet::load_weights_from_txt<q_batch_normalization_bias_t, 57>(b3, "b3.txt");
20 nnet::load_weights_from_txt<weight4_t, 3648>(w4, "w4.txt");
21 nnet::load_weights_from_txt<bias4_t, 64>(b4, "b4.txt");
22 // [...]
23 }
24 #endif
25 // Insert layers for network instantiation
26 auto& layer2_out = input_1;
27 layer3_t layer3_out[N_SIZE_0_2];
28 #pragma HLS ARRAY_PARTITION variable=layer3_out complete dim=0
29 nnet::normalize<input_t, layer3_t, config3>(layer2_out, layer3_out, s3, b3); // qbatchnorm
30
31 layer4_t layer4_out[N_LAYER_4];
32 #pragma HLS ARRAY_PARTITION variable=layer4_out complete dim=0
33 nnet::dense<layer3_t, layer4_t, config4>(layer3_out, layer4_out, w4, b4); // qdense
34
35 layer5_t layer5_out[N_LAYER_4];
36 #pragma HLS ARRAY_PARTITION variable=layer5_out complete dim=0
37 nnet::leaky_relu<layer4_t, layer5_t, leaky_relu_config5>(layer4_out, 0.25, layer5_out);
38 // [...]
39 layer16_t layer16_out[N_LAYER_16];
40 #pragma HLS ARRAY_PARTITION variable=layer16_out complete dim=0
41 nnet::dense<layer15_t, layer16_t, config16>(layer15_out, layer16_out, w16, b16); // dense_fin
42
43 nnet::leaky_relu<layer16_t, result_t, leaky_relu_config17>(layer16_out, 0.25, layer17_out);
44 }

Listing 19: Main script implementing the function for performing inference on the
inputs provided to the FPGA.

but at the same time the constraints in terms of number of layers and nodes in the
fully connected neural network could be lifted a bit.

6.2.4 Running on FPGA
After exporting the bitstream from Vitis, contained in a xclbin file, it is the mo-
ment to actually run the algorithm on hardware. As briefly explained in Section
3.3, there are two main ways to launch an accelerated application on a FPGA card:
one uses OpenCL code to write a programme running on the host machine which
will communicate with the PCIe peripheral using the Xilinx Runtime Drivers (xrt),
the other takes advantage of the PYNQ library which allows the programming and
use of FPGAs with a completely Python API. There is obviously a difference in tim-

136



6.2. FPGA IMPLEMENTATION OF A NN FOR AD

Total On-Chip Power 13.178 W
FPGA Power 12.803 W
HBM Power 0.375 W

Design Power Budget 60 W
Power Budget margin 46.822 W
Junction Temperature 64.9 °C

Thermal Margin 35.1 °C (41.3 W)
Ambient Temperature 55.0 °C

Table 6.5: Power footprint of the kernel containing the neural network. Other than
the power needed to run the model, the temperature of the chip is shown and the
margins left from the maximum possible for correct functioning.

ing performance between these two approaches (also studied in Appendix A), due
to the difference in the programming languages and different layers of abstraction
needed to run the two applications [164]. However, the level of expertise needed
to create an application using OpenCL and to write a simple Python script is also
very different, making the second alternative a good way to open up the world
of FPGAs and accelerated applications to new people and of different scientific
backgrounds.

In this section a brief explanation on how to write the C++ application to use
the FPGA will be given, with short snippets of simplified code coming from the
actual one used to run the AD algorithm on FPGA. Obviously the first step is to
import the relevant libraries, other than the general ones used in C++, for example,
for IO operations and manipulation, advanced mathematical operations, and data
handling. In this case the OpenCL includes could be the cl_ext_xilinx.h header
for dealing with data streams, or xcl2.hpp, a library of Xilinx-provided helper
functions to wraparound some of the required initialization functions.

The core component of the application is the main function, as is standard in
all C++ or C programs, which primarily operates on the host machine’s CPU.
This allows it to be handled like a typical application, especially in terms of input
arguments and their management. In this case, the application is designed to
accept the bitstream file name, the number of inputs, and an optional debug mode
flag as command-line arguments when the program is launched (Listing 20).

Once the input arguments are read, and the data is loaded using the desired
way of reading file and put in a data container, the OpenCL code begins. Integral
part of writing code with this standard is the use of objects which represent the
different parts needed to run the application on the device. For example in Listing
21, objects are instantiated representing:

• Device (the FPGA);

• Context (an ensemble of devices, in this case it will contain only one device);

• Queue of commands that will be given to the card;

• Programming operation;

• Kernel containing the function described in the previous Section.

137



6.2. FPGA IMPLEMENTATION OF A NN FOR AD

1 int main(int argc, char **argv) {
2
3 // Check input arguments
4 if (argc < 2 || argc > 4) {
5 std::cout << "Usage: " << argv[0] << " <XCLBIN File> <#samples(optional)> <debug(optional)>"
6 << std::endl;
7 // [...]
8 }
9 // Read FPGA binary file

10 auto binaryFile = argv[1];
11 unsigned int num_samples = 1;
12 // Check if the user defined the # of samples
13 if (argc >= 3){
14 user_size = true;
15 num_samples = std::stoi(argv[2]);
16 // [...]
17 }

Listing 20: Argument handling in the main function of an example of OpenCL
application to interact with a FPGA to run code on the device.

It is also useful to use an error handler to keep track of any error that could
come up in each step of the application.

1 // OpenCL Host Code Begins.
2 // OpenCL objects
3 cl::Device device;
4 cl::Context context;
5 cl::CommandQueue q;
6 cl::Program program;
7 cl::Kernel myproject;
8
9 cl_int err;

Listing 21: Instantiation of objects in OpenCL representing the different parts
needed to run the application on a device.

Programming the FPGA is simplified thanks to utility APIs provided by Xil-
inx/AMD. For instance, the xcl::get_xil_devices function retrieves a list of
devices connected to a Xilinx platform, while xcl::read_binary_file loads a bi-
nary file and returns a pointer to its buffer. With these utilities, FPGA program-
ming essentially involves calling the constructor of the program object, passing in
the context, the list of devices, and the output from the file-reading function.
This is shown in Listing 22. Finally the kernel can be initialized with the program
object and it is ready to be queued as a command to the device.

As anticipated before, to perform tasks on the FPGA, a queue is needed where
the different kernels inside a single firmware could be called in succession. In this
case only one kernel is present, containing the neural network, and so the process
is relatively simpler, as shown in Listing 23. Firstly, the input and output have
to be represented by pointers of the correct length. In this case the data method
of vectors was used to return it from the data containers. Then the input has
to be loaded onto the input buffer of the device, while the output buffer must be
made ready to accept the output of the kernel and store it at a pointer. Now these

138



6.2. FPGA IMPLEMENTATION OF A NN FOR AD

1 auto devices = xcl::get_xil_devices();
2 auto fileBuf = xcl::read_binary_file(binaryFile);
3 cl::Program::Binaries bins{{fileBuf.data(), fileBuf.size()}};
4
5 for (unsigned int i = 0; i < devices.size(); i++) {
6 device = devices[i];
7 cl::Program program(context, {device}, bins, NULL, &err);
8
9 OCL_CHECK(err, myproject = cl::Kernel(program, "myproject" , &err));

10 }

Listing 22: Programming a FPGA device using OpenCL code.

buffers can be set as the two arguments of the kernel. This is because the function
inside it was written to accept two arguments, namely the data going in the neural
network and its result. After queuing the copy of the input data on the device, the
kernel call can be put on the list and, after a waiting function to be sure to give
enough time for the computation, the output can also be told to be copied back to
the host machine’s memory.

1 for (unsigned int k = 0; k < num_samples; ++k)
2 {
3 // [...]
4 // Device-to-host communication
5 OCL_CHECK(err, cl::Buffer buffer_input(context,
6 CL_MEM_USE_HOST_PTR | CL_MEM_READ_ONLY,
7 size_bytes_in, input_pointer, &err));
8 OCL_CHECK(err, cl::Buffer buffer_output(context,
9 CL_MEM_USE_HOST_PTR | CL_MEM_WRITE_ONLY,

10 size_bytes_out, output_pointer, &err));
11 // Setting Kernel Arguments
12 OCL_CHECK(err, err = myproject.setArg(0, buffer_input));
13 OCL_CHECK(err, err = myproject.setArg(1, buffer_output));
14 // Copy input data to device global memory
15 OCL_CHECK(err, err = q.enqueueMigrateMemObjects({buffer_input},
16 0 /* 0 means from host*/ ,NULL,&eventinp));
17 OCL_CHECK(err, err = q.finish());
18 // Launching the Kernel
19 OCL_CHECK(err, err = q.enqueueTask(myproject,NULL,&eventker));
20 // wait for the kernel to finish their operations
21 OCL_CHECK(err, err = q.finish());
22 // Copy Result from Device Global Memory to Host Local Memory
23 OCL_CHECK(err, err = q.enqueueMigrateMemObjects({buffer_output},
24 CL_MIGRATE_MEM_OBJECT_HOST,NULL,&eventout));
25 OCL_CHECK(err, err = q.finish());

Listing 23: Code needed to run an application, or kernel, on a FPGA device using
OpenCL.

This is a schematic explanation of how to write an OpenCL code to use an
accelerator card containing a FPGA. In Listing 23 events handlers were used to
extract information about the three different phases of the runtime, namely input
injection, kernel execution, and output extraction. These were used as shown
in Listing 24 to have the timings needed to perform inference on this device and
compare it to a GPU, the standard architecture used nowadays when talking about
machine learning.

139



6.2. FPGA IMPLEMENTATION OF A NN FOR AD

1 eventker.getProfilingInfo(CL_PROFILING_COMMAND_START, &time_start);
2 eventker.getProfilingInfo(CL_PROFILING_COMMAND_END, &time_end);
3
4 nanoSecondsker = time_end-time_start;

Listing 24: Functions used to extract the wall time of the three phase making up
the launch of an application on a device: input injection, kernel execution, and
output extraction.

The results obtained for the latency of the inferences are shown in Figure 6.12.
For comparison the latency of the same kernel deployed using PYNQ is shown as
well (to have an idea on how it was done see [165], the script is very simple and
does not need an in depth explanation.)

Figure 6.12: Latency for Anomaly Detection inference using a FPGA with an
OpenCL application (orange) and a Python script with PYNQ (blue), compared
to the performance of an Nvidia RTX 2060 GPU with both single event and batched
inputs.

The plot demonstrates that using OpenCL to write an application for inter-
acting with the FPGA results in a shorter inference time, averaging 0.112 ms
compared to 0.129 ms with the Python approach. However, the most significant
outcome is the comparison with inference times using an Nvidia RTX 2060 GPU,
which shows an increase of two orders of magnitude for both single-event inference,
like the FPGA, and a batch size of 256. Since the average inference time for the
larger batch size is shorter than for single events, it can be inferred that increasing
the batch size would further reduce total inference time when using a GPU. How-
ever, the GPU’s higher latency and unpredictability, evidenced by a small cluster
of events with longer processing times (the cause of which remains unclear), make
it unsuitable for real-time analysis at the trigger level. Additionally, the use of
custom buffer mechanisms makes it more feasible to integrate a scouting system

140



6.3. A TEST WITH ONLINE DISTILLATION

with this AD algorithm into the existing workflow for exploring new physics at
CMS and other large LHC experiments. This suggests that the ideal kernel would
need to be highly efficient for single-event processing, while the management of
incoming data buffers would require tailored research to meet the accelerator and
data acquisition system timing constraints.

6.3 A test with Online Distillation
The anomaly detection model implemented in the last section was a product of
an offline response-based knowledge distillation. This is the simplest and fastest
to implement type of KD, where it is simply a matter of taking the output of a
pre-trained teacher student and use it as the "truth" to be learned by the student
model.

Another approach which has shown some degrees of success [111] is the online
distillation, i.e. perform the training of the small and relatively simpler neural
network at the same time of the more complex and bigger model. This means
that the training steps required to implement this kind of procedure are not the
standard and readily available, but the actual code running when the models are
trained has to be written by hand. Thankfully, TensorFlow gives all the tools
to make this relatively simple, needing only a bit of tuning and adapting to its
formalism, and it support the plugging in of a custom training step without losing
all the other commodities, like the use of callbacks to monitor the process or the
usual model interface, which characterize Keras’ models.

In practice, to perform the training of two models at the same time, the
train_step function, the one called when the fit method is used with a Ten-
sorFlow neural network, has to be rewritten. As shown in Listing 25, the function
is still preceded by the @tf.function decorator like the default one, which allows
the creation of a static computational graph, increasing the speed of execution.
Then, the gradients of both models are independently tracked with the use of two
different tf.GradientTape() and computed on a total_loss obtained by adding
up the reconstruction loss of the teacher, the student loss with respect to it, and
a weighted loss on the latent space of the teacher Autoencoder with respect to a
central hidden layer of the student.

Finally the gradients are applied to the trainable variables using their respective
optimizers, which will then give the next set of parameters for the following step.

The training step just described was implemented in each epoch of the overall
training procedure as shown in Listing 26. With these two modifications in the fit
function, a hyperparameter search was launched, but due to the more complexity
of the problem, and linked increase in training times, it was reduced to 47 total
pairs of teacher and student. The teacher in each of them was kept with the same
architecture as the one used for the offline distillation, while the quantization and
architecture was changed for the students.

The results of the three best model pairs are shown in Figure 6.13, ranked
by the student’s average AUC across the four BSM signals. While the results are
promising, with values relatively close to those achieved through offline distillation,
the added complexity of the co-training procedure does not yield a sufficient pay-

141



6.4. AN ALTERNATIVE TO CNNS - A GNN FOR AD

1 @tf.function
2 def train_step(inputs):
3 x = inputs[0]
4 y = inputs[1]
5 with tf.GradientTape() as t_tape, tf.GradientTape() as s_tape:
6 tlatent, reconstruction = teacher_model(x, training=True)
7 slatent, loss_prediction = student_model(x, training=True)
8 t_loss, loss_signal = teacher_loss(y, reconstruction)
9 s_loss = student_loss(loss_signal, loss_prediction)

10 l_loss = latent_loss(tlatent, slatent[-1, 0:8])
11 total_loss = t_loss + s_loss + latent_loss_factor*l_loss
12
13 grad_of_teacher = t_tape.gradient(total_loss, teacher_model.trainable_variables)
14 grad_of_student = s_tape.gradient(total_loss, student_model.trainable_variables)
15
16 teacher_optimizer.apply_gradients(zip(grad_of_teacher, teacher_model.trainable_variables))
17 student_optimizer.apply_gradients(zip(grad_of_student, student_model.trainable_variables))
18
19 return t_loss, s_loss

Listing 25: Custom training step for a teacher-student model in TensorFlow, where
both models are optimized together to perform online Knowledge Distillation.

1 for epoch in range(epochs):
2 train_epoch_tloss_avg = tf.keras.metrics.Mean()
3 train_epoch_sloss_avg = tf.keras.metrics.Mean()
4
5 for i, (x, y) in enumerate(train_dataset):
6
7 t_loss, s_loss = train_step((x,y))
8
9 train_epoch_tloss_avg.update_state(t_loss)

10 train_epoch_sloss_avg.update_state(s_loss)
11
12 state = (train_epoch_tloss_avg.result().numpy(),
13 train_epoch_sloss_avg.result().numpy(),
14 val_epoch_tloss_avg.result().numpy(),
15 val_epoch_sloss_avg.result().numpy())
16
17 state_accumulator.append(state)

Listing 26: for loop performing the training step for all the data provided and
storing the losses after each epoch.

off. Moreover, the results are highly unstable, requiring precise tuning of the loss
weights to ensure the teacher learns effectively before the student begins to overfit
with an undertrained teacher. In conclusion, while the strategy shows potential, it
requires further refinement to be a viable alternative to the offline approach.

6.4 An alternative to CNNs - A GNN for AD
As mentioned at the end of Section 6.2.2, there is a need in finding an optimal neural
network for anomaly detection and the promising results in knowledge distillation
open up the possibility of exploring new and more complex architectures for this
task. This is the idea behind testing the idea of using Graph Neural Networks (see

142



6.4. AN ALTERNATIVE TO CNNS - A GNN FOR AD

(a) Leptoquark → bτ (b) Neutral scalar boson A→ 4`

(c) Charged boson h± → τν (d) Scalar boson h0 → ττ

Figure 6.13: ROC curves of the three best pairs of student-teacher produced using
an online Knowledge Distillation procedure. The rank was given according to the
average over the four BSM signals under study of the AUC.

Section 4.3.2) as the encoder and decoder of an autoencoder trained for anomaly
detection.

The idea comes from [166], where a new neural network module called Edge-
Conv is proposed for CNN-based high-level tasks on point clouds including clas-
sification and segmentation. This module acts on graphs dynamically computed
in each layer of a network and it is differentiable and can be plugged into existing
architectures.

But first the concept of point cloud must be introduced: they are basically
scattered collections of points in 2D or 3D, which makes them the simplest way
to represent shapes. Indeed, with the advent of fast 3D point cloud acquisition,
recent pipelines for graphics and vision often process point clouds directly, bypass-
ing expensive mesh reconstruction or denoising due to efficiency considerations or
instability of these techniques in the presence of noise. Traditionally, point cloud
classification and segmentation were carried out employing handcrafted features
to capture geometric properties, however, more recently the success of deep neural
networks for image processing has motivated a data-driven approach to learning

143



6.4. AN ALTERNATIVE TO CNNS - A GNN FOR AD

features on point clouds. Deep point cloud processing and analysis methods are
developing rapidly and could outperform traditional approaches in various tasks.

Inspired by the PointNet model [167], the idea is to exploit local geomet-
ric structures of data by constructing a local neighborhood graph and applying
convolution-like operations on the edges connecting neighboring pairs of points, in
the spirit of GNNs. From this edge convolution the EdgeConv name comes from.
Unlike graph CNNs, the graph here is not fixed but rather is dynamically updated
after each layer of the network. That is, the set of k-nearest neighbors of a point
changes from layer to layer of the network and is computed from the sequence of
representation of data inside the model. Proximity in feature space differs from
proximity in the input, leading to non-local diffusion of information throughout
the point cloud.

6.4.1 The formalism behind the Edge Convolution
A point cloud is represented by an F -dimensional vector with n points, denoted
by X = {x1, . . . , xn} ⊆ RF . In the implementation explored in this study F = 3,
i.e. the three quantities pT , η, and φ of the particles, jets and MET in the dataset.
This could be interpreted as each point containing 3D coordinates. In a deep neural
network architecture, each subsequent layer operates on the output of the previous
layer, so more generally the dimension F represents the feature dimensionality of
a given layer when inside the model.

A directed graph G = (V , E) is computed representing local point structure,
where V = {1, . . . , n} and E ⊆ V × V are the vertices and edges respectively. In
this case G is constructed as the k-nearest neighbours (k-NN) graph of X in RF .
The graph includes self-loops, meaning each node also points to itself. hen, the edge
features are defined as eij = hΘ(xi, xj), where hΘ : RF × RF → RF ′ is a nonlinear
function with a set of learnable parameters Θ. Now the EdgeConv operation can
be defined as a channel-wise symmetric aggregation operation 2 (e.g. ∑ or the
maximum function) on the edge features associated with all the edges emanating
from each vertex. Thus, the output at the i-th vertex is given by

x′i
.= 2
j:(i,j)∈E

hΘ(xi,xj) (6.15)

As an analogy to convolution in images, the xi can be regarded as the central
pixel, and {xj : (i, j) ∈ E} as a patch around it. The EdgeConv operation will
produce a F ′-dimensional point cloud with n points from a F -dimensional one with
the same number of points.

The choice of the edge function and the aggregation operation has a crucial in-
fluence on the properties of EdgeConv. The option chosen for this implementation
is an asymmetric edge function hΘ(xi,xj) = hΘ(xi,xj − xi). This explicitly com-
bines global shape structure, captured by the coordinates of the centers xi, with
local neighborhood information, captured by xj − xi. In particular, the operator
can be written as:

e′ijm = ReLU(θm · (xj − xi) + φm · xi) (6.16)

144



6.4. AN ALTERNATIVE TO CNNS - A GNN FOR AD

where Θ = (θ1, . . . , θM , φ1, . . . , φM). This can be implemented in Keras using a 2-
dimensional convolutional layer with a 1 by 1 kernel followed by a ReLU activation
function.

Before it was anticipated that the graph is updated after each layer of the
network. The way of doing that is by using the nearest neighbours in the feature
space produced by each layer. Such a dynamic graph update is the reason why this
architecture could be called Dynamic Graph CNN (DGCNN). With dynamic graph
updates, the receptive field is as large as the diameter of the point cloud, while
being sparse. At each layer there is a different graph G(l) = (V(l), E (l)), where the
l-th layer edges are of the form (i, ji1), . . . , (i, jikl

) such that x(l)
ji1 , . . . ,x

(l)
jikl

are the kl
points closest to x(l)

i . Put differently, the architecture learns how to construct the
graph G used in each layer rather than taking it as a fixed constant constructed
before the network is evaluated. That is done by computing a pairwise distance
matrix in feature space and then take the closest k points for each single point.

6.4.2 Implementation and results
In the Python implementation of the DGCNN Autoencoder using TensorFlow, as
mentioned earlier, the graph is updated at each layer by computing the pairwise
distances between points in 3D space. This is accomplished within the EdgeComp
function, which calculates the standard Euclidean distance using code similar to
that in Listing 27, based on the formula:

distance(pi, pj) = ||pi − pj||2 = ||pi||2 + ||pj||2 − 2 · pTi pj (6.17)

1 point_cloud_transpose = tf.transpose(point_cloud, perm=[0, 2, 1])
2 point_cloud_inner = tf.linalg.matmul(point_cloud, point_cloud_transpose)
3 point_cloud_inner = -2*point_cloud_inner
4 point_cloud_square = tf.math.reduce_sum(tf.square(point_cloud), axis=-1, keepdims=True)
5 point_cloud_square_tranpose = tf.transpose(point_cloud_square, perm=[0, 2, 1])
6 adj_matrix = point_cloud_square + point_cloud_inner + point_cloud_square_tranpose

Listing 27: Python code to compute the pairwise distance of each point in 3D
space, used to find the k-nearest neighbours and create the 3D graph inside the
Dynamic Graph CNN.

In Listing 28 the first few lines of the code used to build the encoder of the model
are shown. The decoder follows a very similar architecture in order to make a final
model as symmetric as possible to facilitate the reconstruction of the original point
cloud from the encoded latent space. There is an element in this build function
that is to note: the input_transform_net object.

This cluster of layers (whose build function is in Listing 29) was introduced
to align the input point set to a canonical space by applying an estimated 3 ×
3 matrix. This matrix is calculated by concatenating each point’s coordinates
with the coordinate differences between that point and its k nearest neighbors.
Essentially, this process mirrors the operations performed throughout the rest of
the network. Introducing this transformation allows the points in the cloud to be

145



6.4. AN ALTERNATIVE TO CNNS - A GNN FOR AD

1 def build_encoder(self):
2 inputs = tf.keras.layers.Input((self.cloud_shape,3,1))
3 edge_feature = EdgeComp(k=self.k)(inputs)
4
5 transform = input_transform_net(edge_feature, K=3)
6
7 point_cloud_transformed = MatMult()([inputs,transform])
8 edge_feature = EdgeComp(k=self.k)(point_cloud_transformed)
9

10 x = tf.keras.layers.Conv2D(64, kernel_size=(1,1), use_bias=True, padding='valid')(edge_feature)
11 x = tf.keras.layers.Activation('relu')(x)
12 x = tf.keras.layers.BatchNormalization()(x)

Listing 28: First part of the function dedicated to the description of the encoder
in the Dynamic Graph CNN Autoencoder.

1 def input_transform_net(edge_feature,K=3):
2 num_point = edge_feature.shape[1]
3
4 x = tf.keras.layers.Conv2D(64,kernel_size=(1,1), use_bias=True, padding='valid')(edge_feature)
5 x = tf.keras.layers.Activation('relu')(x)
6 x = tf.keras.layers.BatchNormalization()(x)
7
8 # [...] Two more Conv2D with activation and BatchNormalization
9

10 x = tf.keras.layers.MaxPooling2D(pool_size=(num_point,1),strides=(2,2))(x)
11 x = tf.keras.layers.Flatten()(x)
12
13 x = tf.keras.layers.Dense(512,activation='relu')(x)
14 x = tf.keras.layers.BatchNormalization()(x)
15 x = tf.keras.layers.Dense(256,activation='relu')(x)
16 x = tf.keras.layers.BatchNormalization()(x)
17
18 transform = tf.keras.layers.Dense(K*K)(x)
19 transform = tf.keras.layers.Reshape((K,K))(transform)
20 return transform

Listing 29: Input transformation net described as a collection of Keras layers. This
object was used at the beginning of the encoder, after the first edge convolution,
to align an input point set to a canonical space by applying an estimated 3 × 3
matrix.

projected from their original pT , η, and φ space into a new 3D space, where graph
operations should be performed more effectively. The transformation is trainable
and learned simultaneously with the rest of the neural network, enabling the model
to optimize this alignment dynamically.

The code written for this implementation was inspired by the one made for
[166], however all the TensorFlow had to be translated from v1.x to v2, which
follows a fundamentally different programming paradigm, making the translation
not trivial [168].

Eventually, the DGCNN obtained had an encoder with the architecture shown
in Figure 6.14. Just from this it can be said that the DGCNN is much more complex
than the CNN AE previously used, given also the presence of links between different
parts of the network, making it not completely sequential. The complex schematic

146



6.4. AN ALTERNATIVE TO CNNS - A GNN FOR AD

Figure 6.14: Encoder architecture of a Dynamic Graph CNN Autoencoder built to
perform Anomaly Detection.

and the related increase in the number of parameters and operations needed for
such a model, makes it a perfect candidate to test the Knowledge Distillation
procedure in the future.

In order to support the last statement, the anomaly detection scores as ROC
curves used throughout all this thesis are shown in Figure 6.15, compared to the
teacher previously used. The performance obtained is comparable but still slightly
worse than the CNN AE, however it must be kept in mind that this was a very
preliminary test, and a lot of the effort was made towards the upgrade of the
code to TensorFlow 2, rather than the optimization of the hyperparameters or the
architecture in general.

147



6.4. AN ALTERNATIVE TO CNNS - A GNN FOR AD

(a) Leptoquark → bτ (b) Neutral scalar boson A→ 4`

(c) Charged boson h± → τν (d) Scalar boson h0 → ττ

Figure 6.15: ROC curves of the Graph Autoencoder trained on the point cloud
compared to the Convolutional AE used in the rest of this thesis as a teacher for
KD.

148



Conclusions

This thesis has explored the application of Machine Learning techniques, specif-
ically Autoencoders (AEs), to enhance data analysis and event selection at the
Compact Muon Solenoid experiment placed in the Large Hadron Collider at CERN,
with a focus on efficiently implementing these methods on hardware suited for
online applications, such as Field Programmable Gate Arrays (FPGAs). The in-
creasing versatility of Artificial Neural Networks (ANNs) in high-energy physics has
demonstrated significant potential, but the challenge of meeting the strict latency
and energy constraints of the Level-1 Trigger requires specialized approaches.

To address these challenges, this work investigated the use of Knowledge Dis-
tillation (KD) as a method for compressing large, well-trained models into smaller,
more hardware-efficient versions. The distillation process was optimized, consider-
ing various student architectures and the quantization of weights and biases, finally
achieving a balance between accuracy, latency, and hardware footprint. The per-
formance of Offline Response-Based KD was examined, along with the impact
of applying quantization before or together with determining the optimal student
model architecture, reaching the conclusion that the latter has a higher probability
of giving optimal results with fewer trials. A detailed account of the steps required
to convert a Python-based model into firmware for FPGA, using both the hls4ml
library and proprietary FPGA software, was provided.

Additionally, the thesis presented preliminary exploration into Online Response-
Based KD as a potential alternative approach. Finally, a more advanced teacher
model, based on a Graph Convolutional Neural Network Autoencoder, was tested
for Anomaly Detection, highlighting the potential for KD to facilitate the imple-
mentation of more sophisticated algorithms on resource-constrained hardware.

This research has demonstrated that KD can play a critical role in enabling
efficient, high-performance Machine Learning models for real-time data process-
ing in environments like the Level-1 Trigger at CMS, paving the way for future
advancements in trigger systems at the LHC and beyond.

149



6.4. AN ALTERNATIVE TO CNNS - A GNN FOR AD

150



Appendix A

Machine Learning inference using
PYNQ environment in a AWS
EC2 F1 Instance

A.1 Introduction

Machine Learning has become in recent years one of the pillars of computer and
data science and it has been introduced in almost every aspect of everyday life and
research fields alike. Currently, the spread of learning algorithms in many sectors
finds its roots mainly in an increased quantity of data available, combined with a
technological progress in storage and computational power, which can nowadays
be delivered with lower maintenance and building costs.

In order to reach the full potential of ML algorithms, new computing solutions
are being developed and tested like never before since the rise of the x86 archi-
tecture as the de facto standard for general purpose computing. This is done to
find the perfect combination of fast prediction times and low energy consumption
needed to deploy ML efficiently in a variety of use cases, from IoT devices to data
centers applications and scientific research.

This work focuses on a specific type of hardware called Field Programmable
Gate Array (described in Chapter 3) which promises low latencies and unprece-
dented power efficiency. In order to facilitate the translation of ML models to fit
in the usual workflow for programming FPGAs, a variety of tools have been de-
veloped. One example is the HLS4ML toolkit, developed by the HEP community,
which allows the translation of Neural Networks built using tools like TensorFlow
to a High-Level Synthesis description (e.g. C++) in order to implement this kind
of ML algorithms on FPGAs.

The analysis described in this appendix concentrate on a new way to interact
and retrieve results from FPGAs: PYNQ (Section A.2). This Python package
allows to use a simple Python script to program the FPGA and use the function
included in its design in a similar way to usual function calls.

Performance tests on a regressor model used as benchmark, will be presented
in Section A.3, where the consistency in the predictions of the NN with respect to
using an OpenCL application, will be verified.

151



A.2. THE PYNQ PROJECT

Summing up, this paper describes the work done to produce a complete and as
simple as possible workflow to implement algorithms of interest to the HEP field,
namely Neural Networks, on FPGAs. A case study from the CMS experiment
at CERN was used as an example to test the different tools employed and as a
benchmark to take some preliminary measurements regarding latency and accuracy
of the algorithm.

A.1.1 AWS EC2 F1 Instance
In order to test the capabilities of the implementation workflow presented in this
work, cloud computing resources, more specifically Amazon Web Services’ EC2 F1
instances [169], equipped with Xilinx FPGA acceleration cards, have been used.
F1 instances are equipped with tools to develop, simulate, debug, and compile a
hardware acceleration code.

Using F1 instances to deploy hardware accelerations can be useful in many ap-
plications to solve complex science, engineering, and business problems that require
high bandwidth, enhanced networking, and very high compute capabilities. Exam-
ples of target applications that can benefit from F1 instance acceleration are ge-
nomics, search/analytics, image and video processing, network security, electronic
design automation (EDA), image and file compression and big data analytics.

F1 instances provide diverse development environments: from low-level hard-
ware developers to software developers who are more comfortable with C/C++ and
OpenCL environments. Once an FPGA design is complete, it can be registered as
an Amazon FPGA Image (AFI), and deployed to every F1 instance needed.

To deploy a design on these instances, the bitstream must be uploaded to an
S3 Bucket [170] and request the creation of an AFI using a script included in the
official github repository of the AWS EC2 FPGA Hardware Development Kit [171].
This will produce a awsxclbin file that can be used to program Amazon’s FPGAs.

A.2 The PYNQ project
PYNQ [54] is an open-source project from Xilinx®, a prominent FPGA producer.
It provides a Jupyter-based framework with Python APIs for using Xilinx platforms
and AWS-F1 instances.

FPGA designs are presented as Python objects called overlays that can be
accessed through a Python API. Creating a new overlay still requires developers
with expertise in designing programmable logic circuits. Overlays, like software
libraries, are designed to be configurable and re-used as often as possible in many
different applications.

To date, C or C++ are the most common embedded programming languages. In
contrast, Python raises the level of programming abstraction and programmer pro-
ductivity. These are not mutually exclusive choices, however. PYNQ uses CPython
which is written in C, and integrates thousands of C libraries and can be extended
with optimized code written in C. Wherever practical, the more productive Python
environment should be used, and whenever efficiency dictates, lower-level C code
can be used.

152



A.3. NEURAL NETWORK PERFORMANCE ON FPGA

Figure A.1: PYNQ’s components in the different level of abstraction needed for
running applications on FPGAs.

PYNQ aims to work on any computing platform and operating system. This
goal is achieved by adopting a web-based architecture, which is also browser ag-
nostic. It incorporates the open-source Jupyter notebook infrastructure to run an
Interactive Python (IPython) kernel and a web server directly on the ARM pro-
cessor of a MPSoC or host’s CPU of an acceleration card. The web server brokers
access to the kernel via a suite of browser-based tools that provide a dashboard,
bash terminal, code editors and Jupyter notebooks. The browser tools are imple-
mented with a combination of JavaScript, HTML and CSS and run on any modern
browser. PYNQ’s main components are summed up in Figure A.1.

A description on how to use PYNQ and a comparison with writing an OpenCL
application can be found in Section 3.3. By looking at both approaches, it is
evident how writing Python code including the PYNQ package is less complicated
than the alternative.

A.3 Neural Network performance on FPGA
Two main aspects have been considered to study the performance of using the
PYNQ package to carry out Neural Network inference on an FPGA: latency and
inference accuracy. The model built for this research is the next iteration of the
regressor designed for the Master’s thesis [56]. Its purpose was to find an alter-
native algorithm to perform transverse momentum (pT ) assignment to muons in
the context of the Level-1 trigger at the Compact Muon Solenoid experiment at
CERN. This NN has been implemented with the following structure: the first hid-
den layer has 35 neurons and receives the information directly from the input layer
of 27 different features with the ReLU selected as activation function. The second
layer is identical to the first one but contains 20 neurons and this is repeated for
other 4 additional hidden layers with 25, 40, 20 and 15 neurons, respectively. In
the end, the output layer (with only one node) closes the network.

Also a pattern recognition classifier trained and tested using the Iris dataset
from the UCI Machine Learning Repository [172] was tested, but only to verify

153



A.3. NEURAL NETWORK PERFORMANCE ON FPGA

(a) PYNQ (b) OpenCL

Figure A.2: Distribution of the times needed to inject data in the FPGA, perform
NN inference and extract the output using the PYNQ package in Python (left)
and an OpenCL application (right).

that this workflow could also be applied to classification algorithms, albeit this
example being a very simple one.

Figure A.3: Total inference time distribution (input injection + inference + output
extraction) using PYNQ (pink) and an OpenCL application (blue).

For the first metric, the wall time has been measured for the three main tasks
that are executed by the host-FPGA pair for each inference that is requested. In
Figure A.2 the time distribution for the input injection on the FPGA card (blue),
the actual inference (red) and output extraction (black) is shown for the entire
validation dataset using PYNQ on the left and the OpenCL application on the
right. In the PYNQ case, a degree of consistency can be seen between the different
tasks. This can be explained by a common overhead caused by Python’s nature

154



A.3. NEURAL NETWORK PERFORMANCE ON FPGA

as an interpreted language, which can also be considered as the main cause for
the overall larger total processing time, shown in Figure A.3, with respect to the
application compiled in C++.

Nonetheless, the main objective of using PYNQ is offering an easier interface
and less steep learning curve in dealing with accelerating algorithms using FP-
GAs. This means that, to achieve the full potential of this type of hardware, the
traditional approach using C/C++ application is still the way to follow.

A.3.1 pT resolution histogram
To study the accuracy of the NN model implemented on the F1 instance pT res-
olution histograms were used. For each entry of the dataset, the histograms were
built using the following relation:

∆pT
pT

= pTest − pTsim

pTsim

(A.1)

where pTest is the estimation of the transverse momentum, given by the model
prediction or the actual algorithm used in the Level-1 trigger at CMS to perform
this task, and pTsim

is the "true" transverse momentum associated to each entry of
the validation set. Even though this metric makes a quick and easy to understand
comparison possible, it is important to keep in mind that this resolution is asym-
metric, i.e. its range can go from -1 to infinite. This means that, for a constant
actual spread, the standard deviation associated to its distribution is affected by
the value of its mean: the smaller it is, the smaller the standard deviation gets.

Figure A.4: Transverse momentum resolution histograms computed for the ma-
chine learning model (blue) and Level-1 trigger (red) based momentum assignment.

Firstly, the resolution of the model before the implementation on the FPGA
must be checked (Figure A.4). The red histogram describes the resolution distri-
bution of the Level-1 trigger system while the blue one shows the resolution of the
predictions made by the network model running on a consumer CPU.

155



A.3. NEURAL NETWORK PERFORMANCE ON FPGA

Figure A.5: Transverse momentum resolution histograms computed for the ma-
chine learning model (blue) and Level-1 trigger (red) based momentum assignment.

In particular, it is possible to notice a less broad distribution for the ML reso-
lution, resulting in an overall improvement, yet small, with respect to the Level-1
trigger system. Another noticeable detail is the small peak corresponding to the
value -1: this happens when the pT assigned by the trigger is significantly under-
estimated with respect to the true pT . The Machine Learning based momentum
assignment is therefore less prone to large pT underestimation.

Figure A.6: Transverse momentum resolution histograms computed for the ma-
chine learning model (blue) and Level-1 trigger (red) based momentum assignment.

Having verified the accuracy of the NN model, its implementation on the FPGA
available in the F1 instance can be analyzed. In Figure A.5 the pT resolution
histogram obtained by performing the inference using the PYNQ environment is
shown over the model resolution described before. It is clear that the model infer
momenta with a resolution distribution which is narrower when the computation

156



A.3. NEURAL NETWORK PERFORMANCE ON FPGA

is carried out on a CPU. When the assignment is performed on an FPGA, slightly
worse results are produced, with a small bias towards higher values of ∆pT/pT .
This could be the effect of the loss in precision the input features have to go
through due to the conversion to fixed-point representation needed to perform
computations efficiently in an FPGA [56]. Nevertheless, the hardware approach
still appears compatible, or in case of higher momenta, even better than the Level-1
trigger based momentum assignment.

For a final comparison, in Figure A.6 there is the resolution histogram ob-
tained by performing the inference on the FPGA using an OpenCL application.
As expected the result is very similar to the PYNQ one, however there is a small
difference which can be explained by a different implementation of floating point
numbers to fixed point precision conversion.

157



A.3. NEURAL NETWORK PERFORMANCE ON FPGA

158



Appendix B

Scalable training on scalable
infrastructures for programmable
hardware

Machine Learning has gained significant prominence in recent years within the field
of computer science. This is evident through the proliferation of educational ini-
tiatives, workshops, and courses aimed at enhancing skills in this domain. In 2020,
the AI Index [173], an independent effort associated with the Stanford Institute
for Human-Centered Artificial Intelligence (HAI), conducted a survey targeting
top-ranked universities across the globe. This survey focused on four key aspects
of AI education: undergraduate and graduate program offerings, education in AI
ethics, and faculty diversity and expertise. The survey received responses from 18
universities spanning 9 countries. The results of the survey indicate a notewor-
thy increase in the quantity of AI courses offered, concentrating on the practical
development and deployment of AI models, as well as an uptick in AI-specialized
faculty.

The survey also delved into advanced-level courses, specifically those intended
for graduate students seeking to acquire the necessary skills for constructing and
implementing practical AI models. Over the course of the last four academic years,
these offerings saw a substantial 41.7% surge, rising from 151 courses in the 2016–17
academic year to 214 in the 2019–20 academic year.

In response to the escalating demand for AI courses and degree programs,
there was a significant rise in the number of tenure-track faculty members with a
primary research emphasis on AI at the surveyed universities. The count of AI-
focused faculty increased by 59.1%, expanding from 105 individuals in the 2016–17
academic year to 167 in the 2019–20 academic year.

The European Commission’s Joint Research Center (JRC) evaluated advanced
digital skills education across 27 European Union member states and an additional
six countries: the United Kingdom, Norway, Switzerland, Canada, the United
States, and Australia. The Commission counted a total of 1,680 specialized AI
programs across all considered countries during the 2019–20 academic year. No-
tably, the United States boasted a higher count of specialized AI programs com-
pared to other regions, although the EU closely followed, particularly in terms of
AI-specialized Master’s programs.

159



B.1. AN INNOVATIVE COURSE

B.1 The course: Machine learning techniques
with FPGA devices for particle physics ex-
periments

The introduction of FPGAs has significantly transformed the landscape of digital
logic design and deployment [44]. By blending the performance attributes of ASICs
with the adaptability of microprocessors, FPGAs have enabled novel applications
and even replaced ASICs and digital signal processors in some conventional roles.
However, harnessing the potential of FPGAs requires a comprehensive grasp of
both hardware and software considerations. This entails not only accounting for
the hardware components required for computations but also incorporating the
software workflow that facilitates the design process. Although FPGAs offer the
advantages of software flexibility and hardware efficiency, achieving optimal results
demands a more intricate programming approach compared to microprocessors, de-
spite FPGAs’ superior speed and energy efficiency. Effectively leveraging FPGAs
necessitates a foundational comprehension of both software and hardware princi-
ples. This includes, as depicted in Figure B.1, familiarity with digital logic design,
hardware description languages like Verilog or VHDL, as well as basic computer
programming knowledge encompassing data structures and algorithms. An ideal
user profile would integrate expertise in electrical engineering, computer science,
and computer engineering. Condensing such a vast array of concepts within a
single course or workshop presents a significant challenge.

In the previous section, the abundance of new courses focused on Machine
Learning and Artificial Intelligence is evident, yet the same is not observed when
considering the integration of AI and FPGAs. Despite the potential benefits of
combining these advanced technologies, such as reduced latency and energy con-
sumption, particularly in fields like High Energy Physics [122], there have been
limited endeavors to educate individuals in this intersection.

Figure B.1: Different set of skills needed to be proficient in both the world of AI
and FPGAs.

From the gap in tutorials on ML on FPGAs, the idea of a course called Machine
learning techniques with FPGA devices for particle physics experiments [174] came
up, in order to give a start in understanding and experimenting the various tools
that allow the connection between the world of AI and FPGAs.

The course took place from 2nd to 4th November 2022 and it was organized by
the Bologna division of the Italian National institute for Nuclear Physics (INFN)
with the technical support of CNAF, the main data processing and computing
technology research center of INFN. This effort was funded by the INFN Training
program. It represented a first step towards a greater focus on education in this field

160



B.1. AN INNOVATIVE COURSE

in Italy. The course featured leading international lecturers who are involved in the
development of tools to make hardware more approachable at a higher level. The
program also received support from the AMD/Xilinx University Program (XUP).

A lot of topics were addressed in the dense two days of lectures and more than
half of the duration of the course was spent on tutorials:

• Introduction to efficient use of Machine Learning in HEP;

• Crash course on what FPGAs are;

• HLS4ML and how to translate Python to something implementable in hard-
ware (see Section 5.3.1)

• Vitis-AI, the AMD/Xilinx solution to Artifical Intelligence on programmable
hardware;

• A new kind of computer architecture (multi-core and heterogeneous) which
dynamically adapts to the specific computational problem rather than being
static: the BondMachine (see Section B.1.1)

• How Quartus and Intel make ML on FPGA possible;

In the next Section a small description of the BondMachine is given, as it was one
of the two topics of major interest for the high-energy physics community, together
with hls4ml, explained in section 5.3.1.

B.1.1 The BondMachine
BondMachine (BM) [175] is an open-source framework that enables the creation
of computational systems with co-designed hardware and software. This approach
maximizes the use of existing resources in terms of concurrency and heterogeneity.
The unique feature of BM is the creation of a dynamic architecture that adapts to
the specific problem, rather than being static. The hardware is customized to meet
the software requirements, implementing only the necessary processing units, re-
sulting in significant advantages in terms of energy consumption and performance.
Furthermore, BM is vendor and board independent, allowing for the creation of
clusters of heterogeneous FPGAs.

Compared to the use of Hardware Description Language (HDL) code, BM in-
troduces an architecture abstraction layer with minimal overhead, allowing for the
use of a standard computational model. This toolkit makes full use of the main
features of FPGAs and can be used as an High-Level tool to generate custom
firmware for accelerated computation.

The BM architecture is particularly suitable for computational models and
graphs. The project’s flagship activity involves generating firmware with the aim of
developing accelerated systems on FPGA to solve different computational problems
with a particular focus on machine learning inference [176]. The firmware for
accelerated inference generated starting from an high-level trained model with
standard machine learning libraries, is highly customizable according to the needs
of the specific problem. Different hardware and software optimization techniques

161



B.2. A SCALABLE CLASSROOM USING CLOUD COMPUTING

Figure B.2: An example of a BondMachine architecture. This specific BM is
made of two inputs and three outputs interconnected between the input/output
registers of the processors. Shared objects, such as memory, Channel and Barrier,
are connected among the processors.

have been implemented, starting from the choice of the numerical precision, up to
the collapse and pruning of the processors, in order to reduce the resource usage
and the energy consumption while improving the inference speed at the same time.

B.2 A scalable classroom using Cloud Comput-
ing

The course aimed to provide an avenue for participants to gain hands-on experience
with FPGA technology and the workflows that will be used to create a functional
ML design. However, the development of ML algorithms and FPGA firmware
requires specific software and libraries, which means a dedicated development ma-
chine must be available to attendees. On the other hand, despite the desire to
use actual hardware to test the firmware, it is typically not possible for multiple
individuals to access FPGAs simultaneously for programming. At the same time it
is evident that providing a board for each attendee would be cost-prohibitive and
impractical. As a result, the solution was to utilize FPGAs in the cloud.

A system with two different machines was set up (Figure B.3): a Development
machine and a Deployment machine.

The Development machines consist in CentOS 7 Virtual Machines (VM) cre-
ated in the INFN Cloud infrastructure. By utilizing Anaconda [177], a Python
environment was made accessible which contained all the necessary tools to ma-
nipulate data and construct Neural Networks such as TensorFlow, Keras, QKeras
[106] for quantization and optimization, and HLS4ML. To access the machines,
SSH with X11 support has been used. The Vivado Design Suite was installed to
enable the creation of FPGA firmware, equipped with the relevant libraries to tar-
get the available board in the deployment machine. To guarantee remote access to
the machines, a public floating IP (FIP) address has been assigned to each VM.
In order to let the users play with the available resources and services after the

162



B.2. A SCALABLE CLASSROOM USING CLOUD COMPUTING

Figure B.3: Layout of the two virtual machines made available to each attendee of
the course.

working period of the workshop, they were maintained for a few weeks after the
workshop ended.

The Deployment machines hosted by AWS are EC2 F1 instances [169], equipped
with Xilinx FPGA acceleration cards. F1 instances are equipped with tools to
develop, simulate, debug, and compile a hardware acceleration code, including an
FPGA Developer Amazon Machine Image (AMI) and supporting hardware level
development on the cloud. In order to test the Vitis-AI toolkit [178], the Docker
Daemon was added to the AMI.

Using F1 instances to deploy hardware accelerations can be useful in many
applications to solve complex science, engineering, and business problems that
require high bandwidth, enhanced networking, and very high compute capabilities.
A variety of target applications can benefit from F1 instance acceleration, including
but not limited to genomics, search/analytics, image and video processing, network
security, electronic design automation (EDA), image and file compression, and big
data analytics.

F1 instances provide diverse development environments: from low-level hard-
ware developers to software developers who are more comfortable with C/C++ and
OpenCL environments. Once an FPGA design is complete, it can be registered as
an Amazon FPGA Image (AFI), and deployed to every F1 instance needed.

The course has been used as a test to exploit the potential benefits of a seamless
integration between INFN Cloud and a cloud provider like AWS. The proposed
sketch of how this integration could work are listed hereafter:

• The users would authenticate themselves on the INFN Cloud using a feder-
ated authentication system;

163



B.3. EXPANDING INFN CLOUD SERVICES WITH HPC BUBBLES

• They would then select the type of resource they need, even FPGAs from
various vendors;

• If the desired FPGA resource is not available on INFN Cloud, it could be
instantiated on AWS transparently;

• The user would be provided with an endpoint to connect to, without the
need for a different authentication or interface.

B.3 Expanding INFN Cloud Services with HPC
Bubbles

This proof of concept is part of the effort by the people behind INFN Cloud to
continuously expand the services that they can offer and keep up with the ever-
growing interest in heterogeneous computing.

Indeed, INFN spearheaded the Terabit network for Research and Academic Big
data in Italy (TeRABIT) initiative, which is backed by the Italian National Re-
covery and Resilience Plan (NRRP) [179]. The project’s objective revolves around
establishing a distributed, highly interconnected hybrid Cloud-HPC computing en-
vironment. This entails the integration of the distributed INFN infrastructure with
PRACE-Italy’s HPC resources, facilitated by a high-speed network provided by the
National computer network for universities and research (GARR)

Within this framework, INFN is expanding its INFN Cloud infrastructure by
deploying distributed HPC infrastructures known as "HPC Bubbles" These HPC
Bubbles encompass various clusters featuring CPUs, CPUs + GPUs, and CPUs
+ FPGAs, along with swift storage capabilities. The plan encompasses achiev-
ing integration both among the distributed HPC bubbles themselves and between
these bubbles and the INFN Cloud infrastructure. Moreover, integration is sought
between the HPC bubbles and conventional HPC systems, with a notable focus on
the Leonardo@CINECA system.

The overarching aim is to establish a scalable "Edge-Cloud Continuum" that
leverages AI technologies. This continuum is designed to empower users to flexibly
process substantial volumes of big data, offering a dynamic and adaptable approach
to data processing.

Acknowledgments
We would like to express our gratitude to Dr. Thea Aarrestad (ETH), Dr. Vladimir
Loncar (CERN), Dr. Jennifer Ngadiuba (CALTECH), and Dr. Sioni Summers
(CERN) for their invaluable support and constructive feedback. Additionally, we
would like to acknowledge the financial support provided by the INFN Training
Commission and the technical assistance offered by the AMD/Xilinx University
Program. Furthermore, we extend our appreciation to Mariella Gangi and An-
tonella Monducci for their organizational support.

164



Appendix C

QUnfold - A Python library for
unfolding using Quantum
Computing

C.1 Introduction
In High-Energy Physics (HEP), the analysis of experimental data often involves
correcting for distortions introduced by the measurement process. These distor-
tions stem from various systematic effects such as the finite resolution of detectors,
their limited efficiency and geometric acceptance, as well as background noise.
These factors combine to obscure the true underlying distribution of the physical
quantities of interest. The process of correcting these distortions to recover the
true distribution is known as the statistical unfolding problem.

The importance of unfolding cannot be overstated, as it is crucial for accurate
comparison between experimental results and theoretical predictions. Without
proper unfolding, the biases and smearing effects inherent in the data would lead
to incorrect conclusions about the physical phenomena being studied.

In this context, the emerging technology of quantum computing represents an
opportunity to enhance the unfolding performance and potentially yield more ac-
curate results. QUnfold [180] is a Python package designed to tackle the unfolding
problem by leveraging the capabilities of Quantum Annealing (QA), explained
briefly in Section C.2. The regularized log-likelihood maximization formulation of
the unfolding problem is translated into a Quantum Unconstrained Binary Opti-
mization (QUBO) problem, solvable by D-Wave [181] QA systems.

C.1.1 Challenges in Unfolding
The unfolding problem is mathematically challenging due to the ill-posed nature
of the inverse problem it represents.

Consider an unknown probability density function f(z) of a physical observable
and the corresponding g(µ), the expected distribution to be measured in the ex-
perimental setup. To model the distortion effects introduced by the measurement
process, the detector response function (usually estimated empirically by Monte

165



C.1. INTRODUCTION

Carlo simulations) is defined as

r(µ|z) = m(µ|z) ε(z) (C.1)

where m(µ|z) is the migration (or resolution) function, normalized such that∫
m(µ|z) dz = 1, (C.2)

and ε(z) is the detection efficiency. This function r(µ|z) represents the probability
to observe µ, including the effect of limited efficiency, given that the true value of
the observable was z. Therefore, the expected distribution g(µ) can be expressed
as

g(µ) =
∫
r(µ|z)f(z) dz (C.3)

This convolution represents the folding process of the true distribution with the
response function, and thus the inverse task of estimating f(z) from g(µ) is called
unfolding (or deconvolution).

Considering a binned version of the same problem, the observable histogram
can be represented by an integer-valued vector z = (z1, . . . , zM). Also, the integral
in Equation (C.3) breaks into a sum over M bins and the expected number of
entries to be observed in bin i becomes:

µi =
M∑
j=1

Rijzj or µ = Rz (C.4)

Thus, the unfolding problem essentially reduces to an inversion of the response
matrix R setting the estimator µ̂ = d, where d represents the actual observed
histogram. However, the matrix R may be nearly singular, leading to solutions that
are highly sensitive to statistical fluctuations in the observed data. To mitigate
this issue, it is convenient to write the problem using the equivalent log-likelihood
maximization formulation and introducing an additional regularization term:

max
z

(logL(z|d) + λS(z)) (C.5)

The likelihood L(z|d) is typically a product of Poisson distributions P (di;µi) of
the number of entries in bin i and the function S(z) represents the regularization
term controlled by the λ multiplicative parameter.

The logarithm of Poisson terms product can be replaced by the L2-norm of
the difference between the reconstructed and the observed histogram, which cor-
responds to take the Gaussian approximation in the limit of a large number of
entries. Moreover, the regularization term S(z) is usually defined as a second
derivative operator (i.e. Tikhonov regularization), related to the average curvature
of the true distribution and approximated by finite differences using the discrete
Laplacian operator D acting on the true histogram.

Eventually, the log-likelihood maximization problem in Equation (C.5) can be
rewritten as a quadratic minimization problem:

min
z

(
||Rz − d||2 + λ||Dz||2

)
(C.6)

166



C.2. QUANTUM ANNEALING AS A NEW PARADIGM

C.1.2 Existing Unfolding Methods
Several approaches have been developed to address the unfolding problem:

1. Bin-by-bin Correction: The simplest approach involves applying a cor-
rection factor to each bin of the observed distribution independently. This
method is easy to implement but often fails to account for correlations be-
tween bins, making it unsuitable for complex unfolding problems.

2. Matrix Inversion: Direct inversion of the response matrix R can be used,
but this approach is typically unstable due to noise amplification and often
requires strong regularization.

3. Regularized Unfolding: Techniques such as Tikhonov regularization or
iterative methods (e.g., the Richardson-Lucy algorithm) impose smoothness
constraints on the solution to obtain stable and physically meaningful results.

4. Bayesian Unfolding: This method integrates prior knowledge about the
expected true distribution into the unfolding process, using a probabilistic
framework to balance the observed data with prior expectations.

Despite these advances, traditional methods often struggle with the computational
complexity and instability inherent in unfolding problems, especially as the size
and complexity of datasets increase.

C.2 Quantum Annealing as a New Paradigm
Quantum Annealing (QA) offers a fundamentally different approach to solving
optimization problems, which has shown promise in addressing challenges like those
posed by unfolding. QA operates by exploiting quantum mechanical principles to
explore the solution space more efficiently than classical algorithms.

C.2.1 Fundamentals of Quantum Annealing
QA is a quantum algorithm used to solve optimization problems by finding the
minimum of a cost function, which is represented as the ground state of a quantum
Hamiltonian. Unlike classical optimization methods that may get trapped in local
minima, QA leverages quantum tunneling to escape these local minima, potentially
finding better solutions more efficiently.

The general form of the Hamiltonian for a Quantum Annealing process is:

H(t) = A(t)Hinit +B(t)Hfin, (C.7)

where Hinit is the initial Hamiltonian, representing a simple problem with a known
ground state, and Hfin is the final Hamiltonian, encoding the problem we want to
solve. The functions A(t) and B(t) control the evolution from the initial to the final
Hamiltonian over time t. According to the adiabatic theorem, if this evolution is
slow enough, the system remains in its ground state, and at the end of the process,

167



C.3. THE QUNFOLD FRAMEWORK

it should be in the ground state of Hfin, which corresponds to the optimal solution
of the problem.

The target problem is often expressed as a Quadratic Unconstrained Binary
Optimization (QUBO) problem, where the cost function takes the form:

HQUBO =
∑
i

aixi +
∑
i,j

bijxixj, (C.8)

where xi ∈ {0, 1} are binary variables, and ai, bij ∈ R are coefficients that define
the problem. QA searches for the configuration of binary variables that minimizes
this cost function.

C.2.2 Advantages of Quantum Annealing
QA offers several advantages over classical optimization methods:

• Global Optimization: The ability to explore multiple solution paths simul-
taneously through quantum superposition can lead to finding global minima
more effectively than classical algorithms, which are often limited by local
minima.

• Scalability: QA is particularly well-suited for large-scale optimization prob-
lems, as the quantum annealers are designed to handle thousands of inter-
acting variables efficiently.

• Robustness to Noise: Quantum systems inherently operate in a regime
where noise and decoherence are present, but the QA process can be ro-
bust against these factors, making it potentially more stable than classical
methods in certain scenarios.

Given these advantages, QA presents a promising approach to the unfolding
problem, where the complexity and instability of the solution space pose significant
challenges.

C.3 The QUnfold Framework
In order to run simulated or quantum annealing-based algorithms, the first funda-
mental step is to reformulate the given optimization task as a Quadratic Uncon-
strained Binary Optimization (QUBO) problem.

C.3.1 QUBO problem formulation
Consider the set of all possible binary vectors x ∈ {0, 1}n with n being the number
of bits. The function fQ : {0, 1}n → R assigns a real value to each binary vector x
through

fQ(x) = xTQx =
n∑
i=1

n∑
j=1

xiQijxj (C.9)

168



C.3. THE QUNFOLD FRAMEWORK

where Q ∈ Rn×n is the so-called QUBO real-valued matrix. The optimization
problem consists of finding the binary vector x∗ of the function fQ, namely:

x∗ = arg min
x
fQ(x) (C.10)

With respect to the unfolding problem, it is straightforward to show that, if the
linear coefficients vector a ∈ RM and the quadratic interaction matrix B ∈ RM×M

are defined as
a = −2RTd

B = RTR + λDTD
(C.11)

the minimization problem of Equation (C.6) can be rewritten as

min
z

(
a z + zTB z

)
(C.12)

This is defining the unfolding formulated as an optimization problem over the
integer-valued vector z, representing the underlying true histogram.

However, to get a QUBO function in the form of Equation (C.9), each integer
variable zi (i.e. number of entries in bin i) must be encoded by a binary vector (or
bitstring) xi of length li. In order to do so, we follow the encoding strategy proposed
in [182], generalized for the case of different resolutions for each bin. Thereby,
different resolutions correspond to different lengths of the precision vectors pi =
(20, 21, . . . , 2li−1) for each bin i = 1, . . . ,M . Then, each integer variable is encoded
by

zi = pi · xi (C.13)
The linear and quadratic terms in Equation (C.12) can now be written as

a · z =
M∑
i=1

ai pi · xi = abin x (C.14)

zTBz =
M∑
i=1

M∑
i=j
xTi p

T
i Bij pj xj = xTBbin x (C.15)

where x ∈ {0, 1}n is the full vector of binary variables, built concatenating all the
bitstrings xi. The vector abin ∈ Rn and matrix Bbin ∈ Rn×n represent respectively
the linear coefficients and the quadratic interactions of the binary variables defined
in the encoding procedure. Note that the scaling of the required number of bits
n = ∑M

i=1 li is linear with the number of bins and logarithmic with the number of
entries in each bin.

Finally, the matrix Q ∈ Rn×n defining the QUBO problem function of Equation
(C.9) is constructed by simply summing the vector of linear coefficients abin to the
diagonal of the interaction matrix Bbin.

C.3.2 Implementation in QUnfold
The QUnfold package is an open-source Python library designed to implement
the QA-based unfolding approach described above. It is built on top of the D-
Wave Ocean SDK [183], which provides access to D-Wave’s quantum annealers,
and NumPy, which is used for linear algebra computations.

169



C.4. VALIDATION AND PERFORMANCE EVALUATION

QUnfold is designed for ease of use and integration with existing HEP analysis
workflows. Users can define the response matrix and observed data, set the regu-
larization parameters, and choose between different solvers (simulated annealing,
quantum annealing, or hybrid approaches).

The package is publicly available on GitHub at [180], making it accessible to
the broader scientific community. It is designed to handle real-scale HEP data,
making it suitable for use in large-scale experiments such as those conducted at
the LHC.

C.4 Validation and Performance Evaluation

C.4.1 Simulated Data Analysis
To validate the effectiveness of QUnfold, we applied it to simulated data for the tt̄
process, a well-known physics process studied extensively at the LHC. The process
involves the production of a top quark and an anti-top quark, which then decay
into leptons and b-jets:

pp→ tt̄→ W+bW−b̄→ l+νl l
−ν̄lbb̄, (C.16)

where p are protons, W are weak bosons, b are bottom quarks, l are leptons, and
ν are neutrinos.

We generated approximately 2.5 million events using the Madgraph generator
[184] to obtain the truth-level distribution and used the Delphes framework [133]
to simulate the detector response, providing the measured data. We then applied
QUnfold to recover the true distribution from the measured data.

C.4.2 Comparison with Classical Methods
The performance of QUnfold was benchmarked against two classical unfolding
methods: Matrix Inversion (MI) and Iterative Bayesian Unfolding (IBU), both
of which are implemented in the RooUnfold framework [185]. We conducted toy
Monte Carlo (MC) experiments to compute the covariance matrix and evaluate
the quality of the unfolding using the χ2 test statistic.

The comparison focused on key observables such as the transverse momenta
(pT ) and the pseudo-rapidity (η) of the leading and sub-leading leptons. The
results, shown in Figure C.1, demonstrate that QUnfold performs comparably to or
better than classical methods, particularly in scenarios where the classical methods
struggle with instability or noise.

C.4.3 Computational Performance
In addition to accuracy, we evaluated the computational performance of QUnfold,
particularly its scalability and resource requirements. Quantum Annealing was
tested on D-Wave’s Advantage QPU, which currently features over 5000 qubits.
The hybrid solver was also tested, combining classical and quantum resources to
optimize performance.

170



C.5. CONCLUSION AND FUTURE WORK

100000

200000

300000

400000

500000
En

tri
es

Truth
Measured
Unfolded MI ( 2 = 75.23)
Unfolded IBU ( 2 = 20.25)
Unfolded SA ( 2 = 36.8)
Unfolded HYB ( 2 = 27.81)

10.0 32.8 44.9 56.4 68.0 80.4 93.8 108.8 125.8 145.7 169.8 199.9 240.0 298.6 400.0

P lep1
T  [GeV]

0.90

0.95

1.00

1.05

1.10

Ra
tio

 to
Tr

ut
h

50000

100000

150000

200000

250000

300000

350000

400000

450000

En
tri

es

Truth
Measured
Unfolded MI ( 2 = 31.6)
Unfolded IBU ( 2 = 9.53)
Unfolded SA ( 2 = 11.08)
Unfolded HYB ( 2 = 55.86)

10.0 16.7 22.728.6 34.7 41.2 48.2 55.9 64.6 74.6 86.1 99.7 115.9 136.0 161.7 197.0 250.0

P lep2
T  [GeV]

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Ra
tio

 to
Tr

ut
h

50000

100000

150000

200000

250000

300000

En
tri

es

Truth
Measured
Unfolded MI ( 2 = 33.44)
Unfolded IBU ( 2 = 14.03)
Unfolded SA ( 2 = 2.98)
Unfolded HYB ( 2 = 15.86)

2.500 2.156 1.849 1.557 1.272 0.990 0.708 0.425 0.142 0.140 0.424 0.707 0.990 1.274 1.559 1.850 2.158 2.500
lep1

0.97

0.98

0.99

1.00

1.01

1.02

1.03

Ra
tio

 to
Tr

ut
h

50000

100000

150000

200000

250000

En
tri

es

Truth
Measured
Unfolded MI ( 2 = 22.73)
Unfolded IBU ( 2 = 6.58)
Unfolded SA ( 2 = 4.13)
Unfolded HYB ( 2 = 11.14)

2.500 2.177 1.876 1.584 1.296 1.008 0.721 0.433 0.145 0.143 0.432 0.720 1.008 1.296 1.585 1.876 2.177 2.500
lep2

0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

Ra
tio

 to
Tr

ut
h

Figure C.1: Comparison of different unfolding methods for key observables.

The results indicate that while pure quantum solutions offer significant po-
tential, hybrid approaches currently provide a more stable solution due to the
limitations of current quantum hardware. However, as quantum hardware contin-
ues to evolve, we expect the performance of pure quantum solutions to improve
substantially.

C.5 Conclusion and Future Work
In this paper, we introduced QUnfold, a novel approach to statistical unfolding in
High-Energy Physics using Quantum Annealing. By reformulating the unfolding
problem as a QUBO problem, QUnfold leverages the power of quantum comput-
ing to address the inherent challenges of unfolding, such as instability and noise
sensitivity.

Our validation on simulated data for the tt̄ process shows that QUnfold per-
forms on par with, or in some cases better than, traditional unfolding methods.
The computational performance, particularly in hybrid configurations, also demon-
strates the practicality of using quantum approaches in real-scale HEP analyses.

Future work will focus on further optimizing the binarization process and the
QUBO matrix pre-conditioning to enhance the annealing performance. We also
plan to explore fully quantum approaches on small data samples to assess the pure
power of quantum annealing.

171



C.5. CONCLUSION AND FUTURE WORK

The continued evolution of quantum hardware, particularly improvements in
qubit quality, will undoubtedly enhance the solutions presented in this work, paving
the way for more widespread adoption of quantum computing techniques in HEP
and beyond.

Finally, a Bachelor’s thesis was supervised on the topic of new applications of
QUnfold and testing its features [186].

172



Bibliography

[1] O. S. Brüning, P. Collier, P. Lebrun, et al., LHC Design Report. Geneva:
CERN, 2004, vol. 1. doi: 10.5170/CERN-2004-003-V-1.

[2] O. S. Brüning, P. Collier, P. Lebrun, et al., LHC Design Report. Geneva:
CERN, 2004, vol. 2. doi: 10.5170/CERN-2004-003-V-2.

[3] M. Benedikt, P. Collier, V. Mertens, et al., LHC Design Report. Geneva:
CERN, 2004, vol. 3. doi: 10.5170/CERN-2004-003-V-3.

[4] European Organization for Nuclear Research (CERN). (2024). Pulling
together: Superconducting electromagnets, [Online]. Available: https://
home.web.cern.ch/science/engineering/vacuum-empty-interstellar-
space.

[5] European Organization for Nuclear Research (CERN). (2024). A vacuum
as empty as interstellar space, [Online]. Available: https://home.web.
cern.ch/science/engineering/pulling-together-superconducting-
electromagnets.

[6] L. Evans and P. Bryant, “LHC Machine”, Journal of Instrumentation,
vol. 3, no. 08, Aug. 2008. doi: 10.1088/1748-0221/3/08/S08001.

[7] J. L. Caron. (1998). Cross section of LHC dipole, [Online]. Available: https:
//cds.cern.ch/record/841539.

[8] European Organization for Nuclear Research (CERN). (2024). Accelerat-
ing: Radiofrequency cavities, [Online]. Available: https://home.web.cern.
ch/science/engineering/accelerating-radiofrequency-cavities.

[9] K. Aamodt, A. Abrahantes Quintana, R. Achenbach, et al. [ALICE Col-
laboration], “The ALICE experiment at the CERN LHC”, Journal of In-
strumentation, vol. 3, no. 08, Aug. 2008. doi: 10.1088/1748-0221/3/08/
s08002.

[10] G. Aad, E. Abat, J. Abdallah, et al. [ATLAS Collaboration], “The ATLAS
experiment at the CERN large hadron collider”, Journal of Instrumentation,
vol. 3, no. 08, Aug. 2008. doi: 10.1088/1748-0221/3/08/s08003.

[11] A. Augusto Alves Jr., L. M. Andrade Filho, A. F. Barbosa, et al. [LHCb
Collaboration], “The LHCb detector at the LHC”, Journal of Instrumenta-
tion et al., vol. 3, no. 08, S08005, Aug. 2008. doi: 10.1088/1748-0221/3/
08/s08005.

173

https://doi.org/10.5170/CERN-2004-003-V-1
https://doi.org/10.5170/CERN-2004-003-V-2
https://doi.org/10.5170/CERN-2004-003-V-3
https://home.web.cern.ch/science/engineering/vacuum-empty-interstellar-space
https://home.web.cern.ch/science/engineering/vacuum-empty-interstellar-space
https://home.web.cern.ch/science/engineering/vacuum-empty-interstellar-space
https://home.web.cern.ch/science/engineering/pulling-together-superconducting-electromagnets
https://home.web.cern.ch/science/engineering/pulling-together-superconducting-electromagnets
https://home.web.cern.ch/science/engineering/pulling-together-superconducting-electromagnets
https://doi.org/10.1088/1748-0221/3/08/S08001
https://cds.cern.ch/record/841539
https://cds.cern.ch/record/841539
https://home.web.cern.ch/science/engineering/accelerating-radiofrequency-cavities
https://home.web.cern.ch/science/engineering/accelerating-radiofrequency-cavities
https://doi.org/10.1088/1748-0221/3/08/s08002
https://doi.org/10.1088/1748-0221/3/08/s08002
https://doi.org/10.1088/1748-0221/3/08/s08003
https://doi.org/10.1088/1748-0221/3/08/s08005
https://doi.org/10.1088/1748-0221/3/08/s08005


BIBLIOGRAPHY

[12] The LHCf Collaboration, “The LHCf detector at the CERN large hadron
collider”, Journal of Instrumentation, vol. 3, no. 08, Aug. 2008. doi: 10.
1088/1748-0221/3/08/s08006.

[13] The TOTEM Collaboration, Journal of Instrumentation, vol. 3, no. 08,
Aug. 2008. doi: 10.1088/1748-0221/3/08/s08007.

[14] The CMS Collaboration. (2024). CMS Luminosity public plots, [Online].
Available: https : / / twiki . cern . ch / twiki / bin / view / CMSPublic /
LumiPublicResults.

[15] G. Apollinari, I. Béjar Alonso, O. Brüning, et al., “High-Luminosity Large
Hadron Collider (HL-LHC)”, Tech. Rep. CERN-2017-007-M, 2017. doi: 10.
23731/CYRM-2017-004.

[16] The HL-LHC Project. [Online]. Available: https://hilumilhc.web.cern.
ch/content/hl-lhc-project.

[17] P. Campana, M. Klute, and P. Wells, “Physics goals and experimental
challenges of the proton–proton high-luminosity operation of the lhc”, An-
nual Review of Nuclear and Particle Science, vol. 66, no. 1, 2016. doi:
10.1146/annurev-nucl-102115-044812.

[18] The CMS Collaboration, “The CMS experiment at the CERN LHC”, Jour-
nal of Instrumentation, vol. 3, no. 08, Aug. 2008. doi: 10.1088/1748-
0221/3/08/s08004.

[19] The CMS Collaboration, “CMS, the Compact Muon Solenoid: Technical
proposal”, Dec. 1994. [Online]. Available: http://cds.cern.ch/record/
290969.

[20] M. Della Negra et al. [CMS Collaboration], “CMS: The Compact Muon
Solenoid: Letter of intent for a general purpose detector at the LHC”, Oct.
1992.

[21] S. Morović, “Cms detector: Run 3 status and plans for phase-2”, ArXiv
e-prints, 2023. arXiv: 2309.02256 [hep-ex].

[22] G. Pásztor [CMS Collaboration], “The Phase-2 Upgrade of the CMS De-
tector”, PoS, vol. LHCP2022, p. 045, 2023. doi: 10.22323/1.422.0045.

[23] The Tracker Group [CMS Collaboration], “The CMS Phase-1 Pixel De-
tector Upgrade”, CERN, Tech. Rep. CMS-NOTE-2020-005, 2020. [Online].
Available: https://cds.cern.ch/record/2745805.

[24] The CMS Collaboration, “The CMS electromagnetic calorimeter project:
Technical Design Report”, Tech. Rep. CERN-LHCC-97-033, 1997. [Online].
Available: https://cds.cern.ch/record/349375.

[25] The CMS Collaboration, “Energy calibration and resolution of the CMS
electromagnetic calorimeter in pp collisions at

√
s = 7 TeV”, Journal of

Instrumentation, vol. 8, no. 09, Sep. 2013. doi: 10.1088/1748-0221/8/09/
P09009.

[26] The CMS Collaboration, “The CMS hadron calorimeter project: Technical
Design Report”, Tech. Rep. CERN-LHCC-97-031, 1997. [Online]. Available:
https://cds.cern.ch/record/357153.

174

https://doi.org/10.1088/1748-0221/3/08/s08006
https://doi.org/10.1088/1748-0221/3/08/s08006
https://doi.org/10.1088/1748-0221/3/08/s08007
https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults
https://doi.org/10.23731/CYRM-2017-004
https://doi.org/10.23731/CYRM-2017-004
https://hilumilhc.web.cern.ch/content/hl-lhc-project
https://hilumilhc.web.cern.ch/content/hl-lhc-project
https://doi.org/10.1146/annurev-nucl-102115-044812
https://doi.org/10.1088/1748-0221/3/08/s08004
https://doi.org/10.1088/1748-0221/3/08/s08004
http://cds.cern.ch/record/290969
http://cds.cern.ch/record/290969
https://arxiv.org/abs/2309.02256
https://doi.org/10.22323/1.422.0045
https://cds.cern.ch/record/2745805
https://cds.cern.ch/record/349375
https://doi.org/10.1088/1748-0221/8/09/P09009
https://doi.org/10.1088/1748-0221/8/09/P09009
https://cds.cern.ch/record/357153


BIBLIOGRAPHY

[27] S. Abdullin, V. Abramov, B. Acharya, et al. [CMS Collaboration], “The
CMS barrel calorimeter response to particle beams from 2 to 350 GeV/c”,
The European Physical Journal C, vol. 60, no. 3, pp. 359–373, 2009, issn:
1434-6052. doi: 10.1140/epjc/s10052-009-0959-5.

[28] J. G. Layter [CMS Collaboration], “The CMS muon project”, Tech. Rep.
CERN-LHCC-97-032, 1997. [Online]. Available: https://cds.cern.ch/
record/343814.

[29] J. Hauser [CMS Collaboration], “Cathode strip chambers for the cms end-
cap muon system”, Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equip-
ment, vol. 384, no. 1, pp. 207–210, 1996, issn: 0168-9002. doi: 10.1016/
S0168-9002(96)00905-9.

[30] G. Wrochna, “The RPC system for the CMS experiment at LHC”, in 3rd
International Workshop on Resistive Plate Chambers and Related Detectors
(RPC 95), 1995, pp. 63–77.

[31] A. Tapper and D. Acosta [CMS Collaboration], “CMS Technical Design Re-
port for the Level-1 Trigger Upgrade”, Tech. Rep. CERN-LHCC-2013-011,
Jun. 2013. [Online]. Available: https://cds.cern.ch/record/1556311.

[32] A. Sirunyan, A. Tumasyan, W. Adam, et al. [CMS Collaboration], “Per-
formance of the CMS Level-1 trigger in proton-proton collisions at

√
s =

13 TeV”, Journal of Instrumentation, vol. 15, no. 10, Aug. 2020. doi: 10.
1088/1748-0221/15/10/P10017.

[33] R. Ardino, C. Deldicque, M. Dobson, et al. [CMS Collaboration], “A 40
mhz level-1 trigger scouting system for the cms phase-2 upgrade”, Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment, vol. 1047, 2023, issn: 0168-
9002. doi: 10.1016/j.nima.2022.167805.

[34] S. Cittolin, A. Rácz, and P. Sphicas [CMS Collaboration], “CMS The Tri-
DAS Project: Technical Design Report, Volume 2: Data Acquisition and
High-Level Trigger”, Tech. Rep. CERN-LHCC-2002-026, 2002. [Online].
Available: http://cds.cern.ch/record/578006.

[35] J.-M. André, U. Behrens, J. Branson, et al. [CMS Collaboration], “The
cms event-builder system for lhc run 3 (2021-23)”, EPJ Web Conf., vol. 214,
2019. doi: 10.1051/epjconf/201921401006.

[36] A. Sirunyan, A. Tumasyan, W. Adam, et al. [CMS Collaboration], “Particle-
flow reconstruction and global event description with the cms detector”,
Journal of Instrumentation, vol. 12, no. 10, Oct. 2017, issn: 1748-0221.
doi: 10.1088/1748-0221/12/10/p10003.

[37] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-kt jet clustering algo-
rithm”, Journal of High Energy Physics, vol. 2008, no. 04, Apr. 2008, issn:
1029-8479. doi: 10.1088/1126-6708/2008/04/063.

175

https://doi.org/10.1140/epjc/s10052-009-0959-5
https://cds.cern.ch/record/343814
https://cds.cern.ch/record/343814
https://doi.org/10.1016/S0168-9002(96)00905-9
https://doi.org/10.1016/S0168-9002(96)00905-9
https://cds.cern.ch/record/1556311
https://doi.org/10.1088/1748-0221/15/10/P10017
https://doi.org/10.1088/1748-0221/15/10/P10017
https://doi.org/10.1016/j.nima.2022.167805
http://cds.cern.ch/record/578006
https://doi.org/10.1051/epjconf/201921401006
https://doi.org/10.1088/1748-0221/12/10/p10003
https://doi.org/10.1088/1126-6708/2008/04/063


BIBLIOGRAPHY

[38] Contardo, Didier and Ball, Austin [CMS Collaboration], “A MIP Timing
Detector for the CMS Phase-2 Upgrade”, CERN, Tech. Rep. CERN-LHCC-
2019-003, Mar. 2019. [Online]. Available: https://cds.cern.ch/record/
2667167.

[39] D. Contardo and A. Ball [CMS Collaboration], “The Phase-2 Upgrade of
the CMS Endcap Calorimeter”, CERN, Tech. Rep. CERN-LHCC-2017-023,
Nov. 2017. [Online]. Available: https://cds.cern.ch/record/2293646.

[40] D. Contardo and A. Ball [CMS Collaboration], “The Phase-2 Upgrade
of the CMS Muon Detectors”, CERN, Tech. Rep. CERN-LHCC-2017-012,
Sep. 2017. [Online]. Available: https://cds.cern.ch/record/2283189.

[41] D. Contardo and A. Ball [CMS Collaboration], “The Phase-2 Upgrade of
the CMS Barrel Calorimeters”, CERN, Tech. Rep. CERN-LHCC-2017-011,
Sep. 2017. [Online]. Available: https://cds.cern.ch/record/2283187.

[42] D. Contardo and A. Ball [CMS Collaboration], “The Phase-2 Upgrade of
the CMS Tracker”, CERN, Tech. Rep. CERN-LHCC-2017-009, Jun. 2017.
[Online]. Available: https://cds.cern.ch/record/2272264.

[43] F. Hartmann and A. Ball [CMS Collaboration], “The Phase-2 Upgrade
of the CMS Level-1 Trigger”, CERN, Tech. Rep. CERN-LHCC-2020-0041,
Apr. 2020. [Online]. Available: http://cds.cern.ch/record/2714892.

[44] S. Hauck and A. DeHon, Reconfigurable computing the theory and practice
of FPGA-based computation, 1st edition., ser. Systems on silicon. Boston,
Massachusetts, USA: Morgan Kaufmann, 2008, isbn: 0-12-370522-3.

[45] B. H.-G. John Crowe, Introduction to Digital Electronics, ser. Essential
Electronics Series. Oxford, Oxfordshire, UK: Butterworth - Heinemann,
1998, isbn: 9780340645703.

[46] N. Botros and N. Botros, HDL with Digital Design. Herndon, Virginia,
USA: Mercury Learning & Information, 2015, isbn: 9781938549816.

[47] P. Coussy and A. Morawiec, High-Level Synthesis: from Algorithm to Dig-
ital Circuit. New York City, New York State, USA: Springer Publishing
Company, 2008, isbn: 1402085877.

[48] R. Kastner, J. Matai, and S. Neuendorffer, Parallel Programming for FP-
GAs. 2018. arXiv: 1805.03648.

[49] Advanced Micro Devices Inc. (2024). Vitis high-level synthesis tool, [On-
line]. Available: https://www.xilinx.com/products/design- tools/
vivado/high-level-design.html.

[50] P. Horowitz and W. Hill, The art of electronics; 3rd ed. Cambridge, Cam-
bridgeshire, UK: Cambridge University Press, 2015, isbn: 9780521809269.

[51] Khronos OpenCL Working Group, The OpenCL Specification. 2024. [On-
line]. Available: https://registry.khronos.org/OpenCL/specs/3.0-
unified/pdf/OpenCL_API.pdf.

[52] The TIOBE organization. (2024). TIOBE Index for May 2024, [Online].
Available: https://www.tiobe.com/tiobe-index.

176

https://cds.cern.ch/record/2667167
https://cds.cern.ch/record/2667167
https://cds.cern.ch/record/2293646
https://cds.cern.ch/record/2283189
https://cds.cern.ch/record/2283187
https://cds.cern.ch/record/2272264
http://cds.cern.ch/record/2714892
https://arxiv.org/abs/1805.03648
https://www.xilinx.com/products/design-tools/vivado/high-level-design.html
https://www.xilinx.com/products/design-tools/vivado/high-level-design.html
https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://www.tiobe.com/tiobe-index


BIBLIOGRAPHY

[53] Python Software Foundation. (2024). Python programming language, [On-
line]. Available: https://www.python.org.

[54] Advanced Micro Devices Inc. (2024). The PYNQ Documentation, [Online].
Available: https://pynq.readthedocs.io/en/latest.

[55] A. L. Samuel, “Some studies in machine learning using the game of checkers.
i”, in Computer Games I. New York City, New York State, USA: Springer
Publishing Company, 1988, pp. 335–365, isbn: 978-1-4613-8716-9. doi: 10.
1007/978-1-4613-8716-9_14.

[56] M. Lorusso, “Fpga implementation of muon momentum assignment with
machine learning at the cms level-1 trigger”, Master’s Thesis, 2021. [Online].
Available: https://amslaurea.unibo.it/23211/.

[57] F. Wick, U. Kerzel, M. Hahn, et al., “Demand forecasting of individual
probability density functions with machine learning”, Operations Research
Forum, vol. 2, no. 3, Jul. 2021, issn: 2662-2556. doi: 10.1007/s43069-
021-00079-8.

[58] A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and Ten-
sorFlow. Sebastopol, California, USA: O’Reilly Media, 2019, isbn: 978-1-
4920-3264-9.

[59] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016. [Online]. Available: http://www.deeplearningbook.org.

[60] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger”, ArXiv
e-prints, 2016. arXiv: 1612.08242.

[61] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. MIT Press, 2018. [Online]. Available: https://mitpress.mit.edu/
9780262039246/.

[62] T. M. Mitchell, Machine learning. New York City, New York State, USA:
McGraw-hill, 1997, isbn: 0070428077. [Online]. Available: http://www.cs.
cmu.edu/~tom/mlbook.html.

[63] H. B. Curry, “The method of steepest descent for non-linear minimization
problems”, Quarterly of Applied Mathematics, vol. 2, no. 3, pp. 258–261,
1944. doi: https://doi.org/10.1090/qam/10667.

[64] The MathWorks, Inc. (2024). What is overfitting?, [Online]. Available:
https://www.mathworks.com/discovery/overfitting.

[65] Cmglee. (2024). Receiver Operating Characteristic (ROC) curve, [Online].
Available: https://commons.wikimedia.org/wiki/File:Roc_curve.svg.

[66] K. Thulasiraman and M. N. S. Swamy, Graphs: Theory and Algorithms.
New York City, New York State, USA: Wiley-Interscience, 1992, isbn: 978-
0-4715-1356-8.

[67] A. L. Maas, A. Y. Hannun, and A. Y. Ng. (2013). Rectifier nonlinearities
improve neural network acoustic models, [Online]. Available: https://ai.
stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf.

177

https://www.python.org
https://pynq.readthedocs.io/en/latest
https://doi.org/10.1007/978-1-4613-8716-9_14
https://doi.org/10.1007/978-1-4613-8716-9_14
https://amslaurea.unibo.it/23211/
https://doi.org/10.1007/s43069-021-00079-8
https://doi.org/10.1007/s43069-021-00079-8
http://www.deeplearningbook.org
https://arxiv.org/abs/1612.08242
https://mitpress.mit.edu/9780262039246/
https://mitpress.mit.edu/9780262039246/
http://www.cs.cmu.edu/~tom/mlbook.html
http://www.cs.cmu.edu/~tom/mlbook.html
https://doi.org/https://doi.org/10.1090/qam/10667
https://www.mathworks.com/discovery/overfitting
https://commons.wikimedia.org/wiki/File:Roc_curve.svg
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf


BIBLIOGRAPHY

[68] F. Chollet. (2016). Building autoencoders in keras, [Online]. Available:
https://blog.keras.io/building-autoencoders-in-keras.

[69] J. Galbraith, I. Moustaki, D. Bartholomew, and F. Steele, The Analysis
and Interpretation of Multivariate Data for Social Scientists. Milton Park,
Oxfordshire, UK: Taylor & Francis, 2002, isbn: 978-1-5848-8295-4.

[70] I. T. Jolliffe and J. Cadima, “Principal component analysis: A review and
recent developments”, Philos. Trans. A Math. Phys. Eng. Sci., vol. 374,
no. 2065, Apr. 2016. doi: 10.1098/rsta.2015.0202.

[71] M. Vassallo, “Machine learning for quantum error mitigation”, Bachelor’s
Thesis, 2024. [Online]. Available: http://amslaurea.unibo.it/32365.

[72] C. L. Li, K. Sohn, J. Yoon, and T. Pfister, “Cutpaste: Self-supervised learn-
ing for anomaly detection and localization”, ArXiv e-prints, 2021. arXiv:
2104.04015.

[73] R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: A
survey”, ArXiv e-prints, 2019. arXiv: 1901.03407.

[74] F. Scarselli, M. Gori, A. C. Tsoi, et al., “The graph neural network model”,
IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61–80, 2009. doi:
10.1109/TNN.2008.2005605.

[75] K. Thulasiraman and M. N. S. Swamy, Graphs: Theory and Algorithms.
New York City, New York State, USA: John Wiley & Sons, 1992, isbn:
978-1-1180-3310-4. doi: 10.1002/9781118033104.

[76] Google LLC. (2021). Google trends, [Online]. Available: https://trends.
google.com/trends.

[77] The PyTorch Foundation. (2024). PyTorch Website, [Online]. Available:
https://pytorch.org/.

[78] The Linux Foundation. (2024), [Online]. Available: https://www.linuxfoundation.
org.

[79] Google LLC. (2024). TensorFlow Website, [Online]. Available: https://
www.tensorflow.org.

[80] Google DeepMind. (2024), [Online]. Available: https://deepmind.google.
[81] Google Cloud Platform. (2024). Introduction to cloud tpu, [Online]. Avail-

able: https://cloud.google.com/tpu/docs/intro-to-tpu.
[82] L. Giommi, “Prototype of machine learning as a service for cms physics

in signal vs background discrimination”, PhD thesis. [Online]. Available:
http://amslaurea.unibo.it/15803/.

[83] The Keras Team. (2024). Keras documentation, [Online]. Available: https:
//keras.io.

[84] D. Guest, K. Cranmer, and D. Whiteson, “Deep learning and its application
to lhc physics”, Annual Review of Nuclear and Particle Science, vol. 68,
pp. 161–181, 2018, issn: 15454134. doi: 10.1146/annurev-nucl-101917-
021019.

178

https://blog.keras.io/building-autoencoders-in-keras
https://doi.org/10.1098/rsta.2015.0202
http://amslaurea.unibo.it/32365
https://arxiv.org/abs/2104.04015
https://arxiv.org/abs/1901.03407
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1002/9781118033104
https://trends.google.com/trends
https://trends.google.com/trends
https://pytorch.org/
https://www.linuxfoundation.org
https://www.linuxfoundation.org
https://www.tensorflow.org
https://www.tensorflow.org
https://deepmind.google
https://cloud.google.com/tpu/docs/intro-to-tpu
http://amslaurea.unibo.it/15803/
https://keras.io
https://keras.io
https://doi.org/10.1146/annurev-nucl-101917-021019
https://doi.org/10.1146/annurev-nucl-101917-021019


BIBLIOGRAPHY

[85] D. Bourilkov, “Machine and deep learning applications in particle physics”,
International Journal of Modern Physics A, vol. 34, no. 35, Dec. 2019. doi:
10.1142/s0217751x19300199. arXiv: 1912.08245.

[86] P. Abreu, W. Adam, T. Adye, et al. [Delphi Collaboration], “Classification
of the hadronic decays of the Z0 into b and c quark pairs using a neural
network”, Physics Letters B, vol. 295, no. 3, pp. 383–395, 1992, issn: 0370-
2693. doi: 10.1016/0370-2693(92)91580-3.

[87] J. Köhne, J. Fent, W. Fröchtenicht, et al., “Realization of a second level neu-
ral network trigger for the H1 experiment at HERA”, Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, vol. 389, no. 1, pp. 128–133, 1997,
issn: 0168-9002. doi: 10.1016/S0168-9002(97)00062-4.

[88] V. Abazov, B. Abbott, A. Abdesselam, et al. [D∅ Collaboration], “Search for
single top quark production at D∅ using neural networks”, Physics Letters
B, vol. 517, no. 3, pp. 282–294, 2001, issn: 0370-2693. doi: 10.1016/S0370-
2693(01)01009-7.

[89] T. Aaltonen, J. Adelman, B. Álvarez González, et al. [CDF Collaboration],
“Search for the higgs boson using neural networks in events with missing
energy and b-quark jets in pp collisions at

√
s = 1.96 TeV”, Phys. Rev. Lett.,

vol. 104, p. 141 801, 14 Apr. 2010. doi: 10.1103/PhysRevLett.104.141801.
[90] V. Khachatryan, A. M. Sirunyan, A. Tumasyan, et al. [CMS Collaboration],

“Observation of the diphoton decay of the higgs boson and measurement
of its properties”, The European Physical Journal C, vol. 74, no. 10, Oct.
2014, issn: 1434-6052. doi: 10.1140/epjc/s10052-014-3076-z. [Online].
Available: http://dx.doi.org/10.1140/epjc/s10052-014-3076-z.

[91] P. Baldi, P. Sadowski, and D. Whiteson, “Searching for exotic particles in
high-energy physics with deep learning”, Nature Communications, vol. 5,
no. 1, Jul. 2014, issn: 2041-1723. doi: 10.1038/ncomms5308.

[92] M. Aaboud, G. Aad, B. Abbott, et al. [ATLAS Collaboration], “Perfor-
mance of the atlas track reconstruction algorithms in dense environments
in lhc run 2”, The European Physical Journal C, vol. 77, no. 10, Oct. 2017,
issn: 1434-6052. doi: 10.1140/epjc/s10052-017-5225-7.

[93] A. Salzburger [ATLAS Collaboration], “Optimisation of the atlas track
reconstruction software for run-2”, Journal of Physics: Conference Series,
vol. 664, no. 7, p. 072 042, Dec. 2015. doi: 10.1088/1742-6596/664/7/
072042.

[94] J. Miguens, “The ATLAS Run-2 Trigger: Design, Menu, Performance and
Operational Aspects”, PoS, vol. ICHEP2016, 2017. doi: 10.22323/1.282.
0244.

[95] J. Cogan, M. Kagan, E. Strauss, and A. Schwarztman, “Jet-images: Com-
puter vision inspired techniques for jet tagging”, Journal of High Energy
Physics, vol. 2015, no. 2, Feb. 2015, issn: 1029-8479. doi: 10.1007/jhep02(2015)
118.

179

https://doi.org/10.1142/s0217751x19300199
https://arxiv.org/abs/1912.08245
https://doi.org/10.1016/0370-2693(92)91580-3
https://doi.org/10.1016/S0168-9002(97)00062-4
https://doi.org/10.1016/S0370-2693(01)01009-7
https://doi.org/10.1016/S0370-2693(01)01009-7
https://doi.org/10.1103/PhysRevLett.104.141801
https://doi.org/10.1140/epjc/s10052-014-3076-z
http://dx.doi.org/10.1140/epjc/s10052-014-3076-z
https://doi.org/10.1038/ncomms5308
https://doi.org/10.1140/epjc/s10052-017-5225-7
https://doi.org/10.1088/1742-6596/664/7/072042
https://doi.org/10.1088/1742-6596/664/7/072042
https://doi.org/10.22323/1.282.0244
https://doi.org/10.22323/1.282.0244
https://doi.org/10.1007/jhep02(2015)118
https://doi.org/10.1007/jhep02(2015)118


BIBLIOGRAPHY

[96] The CMS Collaboration. (2017). Performance of heavy flavour identification
algorithms in proton-proton collisions at 13 TeV at the CMS experiment,
[Online]. Available: https://cds.cern.ch/record/2263801.

[97] T. Diotalevi. (2020). High-pt muon refit with ml, [Online]. Available: https:
//indico.cern.ch/event/973558/.

[98] M. Paganini, L. de Oliveira, and B. Nachman, “Accelerating science with
generative adversarial networks: An application to 3d particle showers in
multilayer calorimeters”, Phys. Rev. Lett., vol. 120, 4 Jan. 2018. doi: 10.
1103/PhysRevLett.120.042003.

[99] L. de Oliveira, M. Paganini, and B. Nachman, “Learning particle physics by
example: Location-aware generative adversarial networks for physics synthe-
sis”, Computing and Software for Big Science, Sep. 2017, issn: 2510-2044.
doi: 10.1007/s41781-017-0004-6.

[100] T. Diotalevi, D. Bonacorsi, A. Falabella, et al., “Collection and harmo-
nization of system logs and prototypal Analytics services with the Elastic
(ELK) suite at the INFN-CNAF computing centre”, PoS, vol. ISGC2019,
2019. doi: 10.22323/1.351.0027.

[101] L. Giommi, D. Bonacorsi, T. Diotalevi, et al., “Towards Predictive Mainte-
nance with Machine Learning at the INFN-CNAF computing centre”, PoS,
vol. ISGC2019, 2019. doi: 10.22323/1.351.0003.

[102] M. Zhu and S. Gupta, “To prune, or not to prune: Exploring the efficacy of
pruning for model compression”, ArXiv e-prints, 2017. arXiv: 1710.01878
[stat.ML].

[103] TensorFlow API Documentation. (2024). Pruning comprehensive guide,
[Online]. Available: https://www.tensorflow.org/model_optimization/
guide/pruning/comprehensive_guide.

[104] A. Taylor, “The basics of FPGAmathematics”, Xilinx Xcell Journal, no. 80,
2012. [Online]. Available: https : / / www . xilinx . com / publications /
archives/xcell/Xcell80.pdf.

[105] E. Meller, A. Finkelstein, U. Almog, and M. Grobman, “Same, same but
different: Recovering neural network quantization error through weight fac-
torization”, in Proceedings of the 36th International Conference on Ma-
chine Learning, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97, PMLR,
Jun. 2019, pp. 4486–4495. [Online]. Available: http://proceedings.mlr.
press/v97/meller19a.html.

[106] C. N. Coelho Jr., A. Kuusela, S. Li, et al., “Automatic deep heterogeneous
quantization of Deep Neural Networks for ultra low-area, low-latency infer-
ence on the edge at particle colliders”, ArXiv e-prints, Jun. 2020. arXiv:
2006.10159 [physics.ins-det].

[107] QKeras Github Repository. (2024), [Online]. Available: https://github.
com/google/qkeras.

180

https://cds.cern.ch/record/2263801
https://indico.cern.ch/event/973558/
https://indico.cern.ch/event/973558/
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.22323/1.351.0027
https://doi.org/10.22323/1.351.0003
https://arxiv.org/abs/1710.01878
https://arxiv.org/abs/1710.01878
https://www.tensorflow.org/model_optimization/guide/pruning/comprehensive_guide
https://www.tensorflow.org/model_optimization/guide/pruning/comprehensive_guide
https://www.xilinx.com/publications/archives/xcell/Xcell80.pdf
https://www.xilinx.com/publications/archives/xcell/Xcell80.pdf
http://proceedings.mlr.press/v97/meller19a.html
http://proceedings.mlr.press/v97/meller19a.html
https://arxiv.org/abs/2006.10159
https://github.com/google/qkeras
https://github.com/google/qkeras


BIBLIOGRAPHY

[108] C. R. Harris, K. J. Millman, S. J. van der Walt, et al., “Array programming
with numpy”, Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020, issn: 1476-
4687. doi: 10.1038/s41586-020-2649-2.

[109] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network”, ArXiv e-prints, 2015. arXiv: 1503.02531 [stat.ML].

[110] C. Buciluundefined, R. Caruana, and A. Niculescu-Mizil, “Model compres-
sion”, in Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’06, New York, NY, USA:
Association for Computing Machinery, 2006, pp. 535–541, isbn: 1595933395.
doi: 10.1145/1150402.1150464.

[111] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A sur-
vey”, International Journal of Computer Vision, vol. 129, no. 6, pp. 1789–
1819, Mar. 2021, issn: 1573-1405. doi: 10.1007/s11263-021-01453-z.

[112] A. Romero, N. Ballas, S. E. Kahou, et al., “Fitnets: Hints for thin deep
nets”, ArXiv e-prints, 2015. arXiv: 1412.6550 [cs.LG].

[113] J. Liu, D. Wen, H. Gao, et al., “Knowledge representing: Efficient, sparse
representation of prior knowledge for knowledge distillation”,ArXiv e-prints,
2019. arXiv: 1911.05329 [cs.CV].

[114] Z. Huang and N. Wang, “Like what you like: Knowledge distill via neuron
selectivity transfer”, ArXiv e-prints, 2017. arXiv: 1707.01219 [cs.CV].

[115] J. Yim, D. Joo, J. Bae, and J. Kim, “A gift from knowledge distillation:
Fast optimization, network minimization and transfer learning”, in 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017. doi: 10.1109/CVPR.2017.754.

[116] W. Park, D. Kim, Y. Lu, and M. Cho, “Relational knowledge distillation”,
ArXiv e-prints, 2019. arXiv: 1904.05068 [cs.CV].

[117] S.-I. Mirzadeh, M. Farajtabar, A. Li, et al., “Improved knowledge dis-
tillation via teacher assistant”, ArXiv e-prints, 2019. arXiv: 1902.03393
[cs.LG].

[118] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu, “Deep mutual learning”,
ArXiv e-prints, 2017. arXiv: 1706.00384 [cs.CV].

[119] L. Zhang, J. Song, A. Gao, et al., “Be your own teacher: Improve the
performance of convolutional neural networks via self distillation”, ArXiv
e-prints, 2019. arXiv: 1905.08094 [cs.LG].

[120] C. Yang, L. Xie, C. Su, and A. L. Yuille, “Snapshot distillation: Teacher-
student optimization in one generation”, ArXiv e-prints, 2018. arXiv: 1812.
00123 [cs.CV].

[121] T. Furlanello, Z. C. Lipton, M. Tschannen, et al., “Born again neural net-
works”, ArXiv e-prints, 2018. arXiv: 1805.04770 [stat.ML].

[122] J. Duarte et al., “Fast inference of deep neural networks in FPGAs for
particle physics”, Journal of Instrumentation, vol. 13, no. 07, 2018. doi: 10.
1088/1748-0221/13/07/P07027. arXiv: 1804.06913 [physics.ins-det].

181

https://doi.org/10.1038/s41586-020-2649-2
https://arxiv.org/abs/1503.02531
https://doi.org/10.1145/1150402.1150464
https://doi.org/10.1007/s11263-021-01453-z
https://arxiv.org/abs/1412.6550
https://arxiv.org/abs/1911.05329
https://arxiv.org/abs/1707.01219
https://doi.org/10.1109/CVPR.2017.754
https://arxiv.org/abs/1904.05068
https://arxiv.org/abs/1902.03393
https://arxiv.org/abs/1902.03393
https://arxiv.org/abs/1706.00384
https://arxiv.org/abs/1905.08094
https://arxiv.org/abs/1812.00123
https://arxiv.org/abs/1812.00123
https://arxiv.org/abs/1805.04770
https://doi.org/10.1088/1748-0221/13/07/P07027
https://doi.org/10.1088/1748-0221/13/07/P07027
https://arxiv.org/abs/1804.06913


BIBLIOGRAPHY

[123] FastML Team, Hls4ml, version v0.8.1, Dec. 2023. doi: 10.5281/zenodo.
10407911.

[124] G. Kasieczka, B. Nachman, D. Shih, et al., “The lhc olympics 2020 a
community challenge for anomaly detection in high energy physics”, Reports
on Progress in Physics, vol. 84, no. 12, Dec. 2021, issn: 1361-6633. doi:
10.1088/1361-6633/ac36b9.

[125] T. Aarrestad, M. van Beekveld, M. Bona, et al., “The dark machines
anomaly score challenge: Benchmark data and model independent event
classification for the large hadron collider”, SciPost Physics, vol. 12, no. 1,
Jan. 2022, issn: 2542-4653. doi: 10.21468/scipostphys.12.1.043.

[126] O. Cerri, T. Q. Nguyen, M. Pierini, et al., “Variational autoencoders for
new physics mining at the large hadron collider”, Journal of High En-
ergy Physics, vol. 2019, no. 5, May 2019, issn: 1029-8479. doi: 10.1007/
jhep05(2019)036.

[127] O. Knapp, G. Dissertori, O. Cerri, et al., “Adversarially learned anomaly
detection on cms open data: Re-discovering the top quark”, ArXiv e-prints,
2020. arXiv: 2005.01598 [hep-ex].

[128] F. Poppi, “Is the bell ringing?. Exotica : à l’affût des événements exotiques”,
no. 46/2010, p. 14, 2010. [Online]. Available: http://cds.cern.ch/record/
1306501.

[129] C. N. Coelho Jr., A. Kuusela, S. Li, et al., “A New Map of All the Particles
and Forces”, QuantaMagazine, Oct. 2020. [Online]. Available: https://
www.quantamagazine.org/a-new-map-of-the-standard-model-of-
particle-physics-20201022.

[130] P. D. Group, P. A. Zyla, R. M. Barnett, et al., “Review of Particle Physics”,
Progress of Theoretical and Experimental Physics, vol. 2020, no. 8, Aug.
2020, issn: 2050-3911. doi: 10.1093/ptep/ptaa104.

[131] R. K. Ellis, W. J. Stirling, and B. R. Webber, QCD and Collider Physics.
Cambridge, Cambridgeshire, UK: Cambridge University Press, 1996. doi:
10.1017/CBO9780511628788.

[132] T. Sjöstrand, S. Ask, J. R. Christiansen, et al., “An introduction to pythia
8.2”, Computer Physics Communications, vol. 191, Jun. 2015, issn: 0010-
4655. doi: 10.1016/j.cpc.2015.01.024.

[133] J. de Favereau, C. Delaere, P. Demin, et al., “DELPHES 3: a modular
framework for fast simulation of a generic collider experiment”, Journal
of High Energy Physics, vol. 2014, no. 2, Feb. 2014, issn: 1029-8479. doi:
10.1007/jhep02(2014)057.

[134] D. Contardo, M. Klute, J. Mans, et al., “Technical Proposal for the Phase-
II Upgrade of the CMS Detector”, Tech. Rep., 2015. doi: 10.17181/CERN.
VU8I.D59J.

[135] M. Cacciari, G. P. Salam, and G. Soyez, “Fastjet user manual: (for version
3.0.2)”, The European Physical Journal C, vol. 72, no. 3, Mar. 2012, issn:
1434-6052. doi: 10.1140/epjc/s10052-012-1896-2.

182

https://doi.org/10.5281/zenodo.10407911
https://doi.org/10.5281/zenodo.10407911
https://doi.org/10.1088/1361-6633/ac36b9
https://doi.org/10.21468/scipostphys.12.1.043
https://doi.org/10.1007/jhep05(2019)036
https://doi.org/10.1007/jhep05(2019)036
https://arxiv.org/abs/2005.01598
http://cds.cern.ch/record/1306501
http://cds.cern.ch/record/1306501
https://www.quantamagazine.org/a-new-map-of-the-standard-model-of-particle-physics-20201022
https://www.quantamagazine.org/a-new-map-of-the-standard-model-of-particle-physics-20201022
https://www.quantamagazine.org/a-new-map-of-the-standard-model-of-particle-physics-20201022
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1017/CBO9780511628788
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1007/jhep02(2014)057
https://doi.org/10.17181/CERN.VU8I.D59J
https://doi.org/10.17181/CERN.VU8I.D59J
https://doi.org/10.1140/epjc/s10052-012-1896-2


BIBLIOGRAPHY

[136] E. Govorkova, E. Puljak, T. Aarrestad, et al., “Lhc physics dataset for
unsupervised new physics detection at 40 mhz”, ArXiv e-prints, 2021. arXiv:
2107.02157 [physics.data-an].

[137] T. Aarrestad, E. Govorkova, J. Ngadiuba, et al., Unsupervised New Physics
detection at 40 MHz: Training Dataset, version v2, Zenodo, Oct. 2022. doi:
10.5281/zenodo.5046428.

[138] B. Diaz, M. Schmaltz, and Y.-M. Zhong, “The leptoquark hunter’s guide:
Pair production”, Journal of High Energy Physics, vol. 2017, no. 10, Oct.
2017, issn: 1029-8479. doi: 10.1007/jhep10(2017)097.

[139] T. Aarrestad, E. Govorkova, J. Ngadiuba, et al., Unsupervised New Physics
detection at 40 MHz: LQ → b tau Signal Benchmark Dataset, version v2,
Zenodo, Oct. 2022. doi: 10.5281/zenodo.7152599.

[140] T. Aarrestad, E. Govorkova, J. Ngadiuba, et al., Unsupervised New Physics
detection at 40 MHz: A → 4` Signal Benchmark Dataset, version v2, Zen-
odo, Oct. 2022. doi: 10.5281/zenodo.7152590.

[141] T. Aarrestad, E. Govorkova, J. Ngadiuba, et al., Unsupervised New Physics
detection at 40 MHz: h0 → ττ Signal Benchmark Dataset, version v2, Zen-
odo, Oct. 2022. doi: 10.5281/zenodo.7152614.

[142] T. Aarrestad, E. Govorkova, J. Ngadiuba, et al., Unsupervised New Physics
detection at 40 MHz: h± → τν Signal Benchmark Dataset, version v2, Zen-
odo, Oct. 2022. doi: 10.5281/zenodo.7152617.

[143] E. Govorkova, E. Puljak, T. Aarrestad, et al., “Autoencoders on field-
programmable gate arrays for real-time, unsupervised new physics detection
at 40 mhz at the large hadron collider”, Nature Machine Intelligence, vol. 4,
no. 2, Feb. 2022, issn: 2522-5839. doi: 10.1038/s42256-022-00441-3.

[144] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition”, Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998. doi: 10.1109/5.726791.

[145] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”, in Proceedings of the 32nd
International Conference on Machine Learning, F. Bach and D. Blei, Eds.,
ser. Proceedings of Machine Learning Research, vol. 37, PMLR, Jul. 2015,
pp. 448–456. [Online]. Available: https://proceedings.mlr.press/v37/
ioffe15.html.

[146] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization”,
ArXiv e-prints, 2017. arXiv: 1412.6980 [cs.LG].

[147] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimiza-
tion”, Journal of Machine Learning Research, vol. 13, no. 10, pp. 281–305,
2012. [Online]. Available: http://jmlr.org/papers/v13/bergstra12a.
html.

[148] T. O’Malley, E. Bursztein, J. Long, et al., Kerastuner, 2019. [Online].
Available: https://github.com/keras-team/keras-tuner.

183

https://arxiv.org/abs/2107.02157
https://doi.org/10.5281/zenodo.5046428
https://doi.org/10.1007/jhep10(2017)097
https://doi.org/10.5281/zenodo.7152599
https://doi.org/10.5281/zenodo.7152590
https://doi.org/10.5281/zenodo.7152614
https://doi.org/10.5281/zenodo.7152617
https://doi.org/10.1038/s42256-022-00441-3
https://doi.org/10.1109/5.726791
https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html
https://arxiv.org/abs/1412.6980
http://jmlr.org/papers/v13/bergstra12a.html
http://jmlr.org/papers/v13/bergstra12a.html
https://github.com/keras-team/keras-tuner


BIBLIOGRAPHY

[149] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine
learning in Python”, Journal of Machine Learning Research, vol. 12, pp. 2825–
2830, 2011.

[150] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and
beyond”, ArXiv e-prints, 2019. arXiv: 1904.09237 [cs.LG].

[151] C. J. Clopper and E. S. Pearson, “The use of confidence or fiducial limits
illustrated in the case of the binomial”, Biometrika, vol. 26, no. 4, pp. 404–
413, Dec. 1934, issn: 0006-3444. doi: 10.1093/biomet/26.4.404.

[152] X. Sun and W. Xu, “Fast implementation of delong’s algorithm for com-
paring the areas under correlated receiver operating characteristic curves”,
IEEE Signal Processing Letters, vol. 21, no. 11, pp. 1389–1393, 2014. doi:
10.1109/LSP.2014.2337313.

[153] P. Virtanen, R. Gommers, T. E. Oliphant, et al., “SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python”, Nature Methods, vol. 17,
pp. 261–272, 2020. doi: 10.1038/s41592-019-0686-2.

[154] Yandex School of Data Analysis, Roc_comparison, 2024. [Online]. Avail-
able: https://github.com/yandexdataschool/roc_comparison.

[155] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification”, ArXiv e-prints,
2015. arXiv: 1502.01852 [cs.CV].

[156] M. Lorusso. (2024). Leaky quantized relu fix, [Online]. Available: https:
//github.com/fastmachinelearning/hls4ml/pull/961.

[157] V. Loncar. (2024). Support negative_slope in quantized_relu, [Online].
Available: https://github.com/fastmachinelearning/hls4ml/pull/
987.

[158] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae
for likelihood-based tests of new physics”, The European Physical Journal
C, vol. 71, no. 2, Feb. 2011, issn: 1434-6052. doi: 10.1140/epjc/s10052-
011-1554-0.

[159] L. Valente, “A variational autoencoder application for real-time anomaly
detection at cms”, Master’s thesis, Alma Mater Studiorum - University of
Bologna, 2023. [Online]. Available: http://amslaurea.unibo.it/28788.

[160] L. Valente, L. Anzalone, M. Lorusso, and D. Bonacorsi, “Joint Varia-
tional Auto-Encoder for Anomaly Detection in High Energy Physics”, PoS,
vol. ISGC&HEPiX2023, p. 014, 2023. doi: 10.22323/1.434.0014.

[161] Advanced Micro Devices, Inc. (2024). Alveo u50 product page, [Online].
Available: https://www.amd.com/en/products/accelerators/alveo/
u50/a-u50-p00g-pq-g.html.

[162] Advanced Micro Devices, Inc. (2024). Amd vitis™ integrated design en-
vironment, [Online]. Available: https://www.amd.com/en/products/
software/adaptive-socs-and-fpgas/vitis/vitis-ide.html.

184

https://arxiv.org/abs/1904.09237
https://doi.org/10.1093/biomet/26.4.404
https://doi.org/10.1109/LSP.2014.2337313
https://doi.org/10.1038/s41592-019-0686-2
https://github.com/yandexdataschool/roc_comparison
https://arxiv.org/abs/1502.01852
https://github.com/fastmachinelearning/hls4ml/pull/961
https://github.com/fastmachinelearning/hls4ml/pull/961
https://github.com/fastmachinelearning/hls4ml/pull/987
https://github.com/fastmachinelearning/hls4ml/pull/987
https://doi.org/10.1140/epjc/s10052-011-1554-0
https://doi.org/10.1140/epjc/s10052-011-1554-0
http://amslaurea.unibo.it/28788
https://doi.org/10.22323/1.434.0014
https://www.amd.com/en/products/accelerators/alveo/u50/a-u50-p00g-pq-g.html
https://www.amd.com/en/products/accelerators/alveo/u50/a-u50-p00g-pq-g.html
https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/vitis/vitis-ide.html
https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/vitis/vitis-ide.html


BIBLIOGRAPHY

[163] AMBA AXI Protocol Specification, ARM Ltd., 2023. [Online]. Available:
https://developer.arm.com/documentation/ihi0022/k/?lang=en.

[164] M. Lorusso, D. Bonacorsi, R. Travaglini, et al., “Accelerating Machine
Learning inference using FPGAs: the PYNQ framework tested on an AWS
EC2 F1 Instance”, PoS, vol. ICHEP2022, p. 243, 2022. doi: 10.22323/1.
414.0243.

[165] M. Lorusso, D. Bonacorsi, D. Salomoni, and R. Travaglini, “Machine Learn-
ing inference using PYNQ environment in a AWS EC2 F1 Instance”, PoS,
vol. ISGC2022, p. 001, 2022. doi: 10.22323/1.415.0001.

[166] Y. Wang, Y. Sun, Z. Liu, et al., “Dynamic graph cnn for learning on point
clouds”, ArXiv e-prints, 2019. arXiv: 1801.07829.

[167] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation”, ArXiv e-prints, 2017.
arXiv: 1612.00593 [cs.CV].

[168] TensorFlow API Documentation. (2024). TensorFlow 1.x vs TensorFlow 2
- Behaviors and APIs, [Online]. Available: https://www.tensorflow.org/
guide/migrate/tf1_vs_tf2.

[169] Amazon Web Services. (2024). Amazon EC2 F1 Instances, [Online]. Avail-
able: https://aws.amazon.com/ec2/instance-types/f1.

[170] Amazon Web Services. (2024). Amazon S3 Object Storage, [Online]. Avail-
able: https://aws.amazon.com/s3.

[171] Amazon Web Services, AWS EC2 FPGA Development Kit, 2023. [Online].
Available: https://github.com/aws/aws-fpga.

[172] R. A. Fisher, Iris Dataset, UCI Machine Learning Repository, 1936. doi:
10.24432/C56C76.

[173] D. Zhang, S. Mishra, E. Brynjolfsson, et al., The AI Index 2021 Annual Re-
port. AI Index Steering Committee, Human-Centered AI Institute, Stanford
University, Mar. 2021.

[174] National Institute for Nuclear Physics (INFN). (2022). Machine learn-
ing techniques with fpga devices for particle physics experiments, [Online].
Available: https://agenda.infn.it/event/15116.

[175] M. Mariotti, D. Magalotti, D. Spiga, and L. Storchi, “The bondmachine, a
moldable computer architecture”, Parallel Computing, vol. 109, 2022, issn:
0167-8191. doi: https://doi.org/10.1016/j.parco.2021.102873.

[176] M. Mariotti, L. Storchi, D. Spiga, et al., “The BondMachine toolkit: En-
abling Machine Learning on FPGA”, PoS, vol. ISGC2019, p. 020, 2019. doi:
10.22323/1.351.0020.

[177] Anaconda Inc. (2024). Anaconda Data Science Platform, [Online]. Avail-
able: https://www.anaconda.com.

[178] Advanced Micro Devices, Inc. (2024). AMD Vitis™ AI Software, [Online].
Available: https://www.amd.com/en/products/software/vitis-ai.
html.

185

https://developer.arm.com/documentation/ihi0022/k/?lang=en
https://doi.org/10.22323/1.414.0243
https://doi.org/10.22323/1.414.0243
https://doi.org/10.22323/1.415.0001
https://arxiv.org/abs/1801.07829
https://arxiv.org/abs/1612.00593
https://www.tensorflow.org/guide/migrate/tf1_vs_tf2
https://www.tensorflow.org/guide/migrate/tf1_vs_tf2
https://aws.amazon.com/ec2/instance-types/f1
https://aws.amazon.com/s3
https://github.com/aws/aws-fpga
https://doi.org/10.24432/C56C76
https://agenda.infn.it/event/15116
https://doi.org/https://doi.org/10.1016/j.parco.2021.102873
https://doi.org/10.22323/1.351.0020
https://www.anaconda.com
https://www.amd.com/en/products/software/vitis-ai.html
https://www.amd.com/en/products/software/vitis-ai.html


BIBLIOGRAPHY

[179] D. Salomoni, A. Alkhansa, M. Antonacci, et al., “Infn and the evolution of
distributed scientific computing in italy”, EPJ Web of Conf., vol. 295, 2024.
doi: 10.1051/epjconf/202429510004.

[180] S. Gasperini, M. Lorusso, and G. Bianco, Qunfold, 2024. [Online]. Available:
https://github.com/Quantum4HEP/QUnfold.

[181] D-Wave Quantum Inc. (2024). D-Wave Systems, [Online]. Available: https:
//www.dwavesys.com.

[182] B. Krakoff, S. M. Mniszewski, and C. F. A. Negre, “Controlled precision
QUBO-based algorithm to compute eigenvectors of symmetric matrices”,
PLOS ONE, vol. 17, no. 5, I. Hen, Ed., May 2022, issn: 1932-6203. doi:
10.1371/journal.pone.0267954.

[183] D-Wave Quantum Inc. (2024). D-Wave Ocean Software Documentation,
[Online]. Available: https://docs.ocean.dwavesys.com.

[184] J. Alwall, R. Frederix, S. Frixione, et al., “The automated computation
of tree-level and next-to-leading order differential cross sections, and their
matching to parton shower simulations”, Journal of High Energy Physics,
vol. 2014, no. 7, Jul. 2014, issn: 1029-8479. doi: 10.1007/jhep07(2014)
079.

[185] L. Brenner, P. Verschuuren, R. Balasubramanian, et al., “Comparison of
unfolding methods using roofitunfold”, ArXiv e-prints, 2020. arXiv: 1910.
14654.

[186] V. Brugnami, “Qunfold a quantum annealing-based unfolding tool for hep:
A case study on entangled tt? pair production at the atlas experiment”,
Bachelor’s Thesis, 2024. [Online]. Available: http://amslaurea.unibo.
it/32515.

186

https://doi.org/10.1051/epjconf/202429510004
https://github.com/Quantum4HEP/QUnfold
https://www.dwavesys.com
https://www.dwavesys.com
https://doi.org/10.1371/journal.pone.0267954
https://docs.ocean.dwavesys.com
https://doi.org/10.1007/jhep07(2014)079
https://doi.org/10.1007/jhep07(2014)079
https://arxiv.org/abs/1910.14654
https://arxiv.org/abs/1910.14654
http://amslaurea.unibo.it/32515
http://amslaurea.unibo.it/32515

	The Large Hadron Collider
	LHC Detectors
	ALICE
	ATLAS
	LHCb
	Other experiments

	LHC Operational History
	High Luminosity LHC

	The CMS Detector and the challenge for fast triggering
	The different subdetectors
	The Tracking System
	Calorimeters
	The CMS Muon System

	Trigger and data acquisition
	The Level-1 Trigger system
	The High Level Trigger and DAQ
	Global Event Reconstruction and Particle Flow Algorithm

	The CMS Phase-2 Level-1 Trigger upgrade
	Upgrade Requirements and Conceptual Design
	Trigger algorithms for the HL-LHC


	Field Programmable Gate Arrays
	The Computing Architecture
	Logic Elements
	The Interconnection Fabric

	Programming Hardware
	An Example of Hardware Description Language - VHDL
	High Level Synthesis

	Interacting with a FPGA
	OpenCL
	The Python Way: PYNQ


	The Artificial Neural Networks Landscape
	How Machines Learn
	Machine Learning Formalism

	Artificial Neural Networks
	Examples of Artificial Neural Networks
	Autoencoders
	Graph Neural Networks

	Writing a Neural Network
	TensorFlow
	Keras

	Machine Learning in High Energy Physics
	Event Selection: Separating Signal from Background
	Event Reconstruction
	Fast Simulation
	Monitoring and Data Quality


	Fast Machine Learning with Model Compression
	Quantized Neural Networks
	QKeras

	Knowledge Distillation
	Types of Knowledge
	Distillation Schemes

	NN Inference on FPGAs
	HLS4ML


	Finding BSM signals with Anomaly Detection
	Knowledge Distillation for Fast BSM events search
	Hyperparameter Search

	FPGA Implementation of a NN for AD
	Using HLS4ML to create a firmware
	Accuracy of BSM signal detection
	Towards synthesis and implementation
	Running on FPGA

	A test with Online Distillation
	An alternative to CNNs - A GNN for AD
	The formalism behind the Edge Convolution
	Implementation and results


	Machine Learning inference using PYNQ environment in a AWS EC2 F1 Instance
	Introduction
	AWS EC2 F1 Instance

	The PYNQ project
	Neural Network performance on FPGA
	pt resolution histogram


	Cloud Classrooms for ML on FPGA
	An Innovative Course
	The BondMachine

	A scalable classroom using Cloud Computing
	Expanding INFN Cloud Services with HPC Bubbles

	QUnfold - A Python library for unfolding using Quantum Computing
	Introduction
	Challenges in Unfolding
	Existing Unfolding Methods

	Quantum Annealing as a New Paradigm
	Fundamentals of Quantum Annealing
	Advantages of Quantum Annealing

	The QUnfold Framework
	QUBO problem formulation
	Implementation in QUnfold

	Validation and Performance Evaluation
	Simulated Data Analysis
	Comparison with Classical Methods
	Computational Performance

	Conclusion and Future Work

	Bibliography

