

DOTTORATO DI RICERCA IN

COMPUTER SCIENCE AND ENGINEERING

Ciclo 37

Settore Concorsuale: 01/B1 - INFORMATICA

Settore Scientifico Disciplinare: INF/01 - INFORMATICA

MULTILEVEL MODELING AND SIMULATION: METHODOLOGIES AND
APPLICATIONS

Presentata da: Luca Serena

Supervisore

Moreno Marzolla

Esame finale anno 2025

Coordinatore Dottorato

Ilaria Bartolini

Co-supervisore

Gabriele D'Angelo

Abstract

Multilevel modeling and simulation is a methodology that involves the

hierarchical decomposition of complex systems into modular, cooperating

components, each representing specific aspects of interest. The motivations

behind this approach can vary widely, including the ability to leverage existing

software, the need for different levels of abstraction and granularity, or the

opportunity to better organize model development by separating semantically

distinct aspects.

This thesis presents a comprehensive study of multilevel modeling and

simulation techniques, providing an overview of their use in scientific literature

and discussing the design principles and key issues involved.

The analysis of the current state of the art reveals that while multilevel

modeling is widely used across various scientific fields, little effort was directed

toward formal and methodological aspects. As a result, there are no precise

standards for the design of such models, and ambiguities exist starting with

the terminology. To address this gap and better define potential approaches

for building a multilevel framework, the thesis proposes some categories of

design patterns that address some critical aspects that may be encountered

during the development phase, and a metamodel crafted to enhance multilevel

modeling clarity and effectiveness.

The proposed design principles were ultimately applied to create multilevel

simulations for IoT applications, with a focus on developing a decentralized,

efficient sensor data marketplace. This scenario leverages technologies like

LoRa and blockchain to support secure and scalable data exchange. Given

i

the complexity of factors involved — including mobility, physical message

propagation, data storage and trading — multilevel modeling has proven to be

exceptionally effective in managing the complex interactions and dependencies

among these components.

Contents

I Background 1

1 Introduction 3

1.1 Research Methodology . 5

1.2 Outline of the Thesis . 7

2 Background 9

2.1 Types of Models . 9

2.2 Definition of Multilevel Modeling 13

2.3 Benefits and Challenges . 15

3 Related Works 19

3.1 Epidemic Modeling . 19

3.2 Traffic Modeling . 25

3.3 Crowd Modeling . 31

3.3.1 Emergencies . 32

3.3.2 Interactions with other means of transportation 34

3.4 Urban Issues . 35

3.4.1 Morphology of cities 35

3.4.2 Activities of Residents 38

3.5 Social Sciences . 39

3.6 Others . 43

iii

CONTENTS CONTENTS

II Methodology 45

4 Design Patterns 47

4.1 Orchestration Patterns . 48

4.1.1 Models’ Controller . 49

4.1.2 Director-Worker . 50

4.1.3 Director on Hold . 50

4.1.4 Worker on Demand . 51

4.1.5 Concurrent Modularity 52

4.2 Structural Patterns . 53

4.2.1 Composite . 53

4.2.2 Bridge . 54

4.2.3 Adapter . 56

4.3 Information Exchange Patterns 58

4.3.1 Return Value . 59

4.3.2 Pipe Through Temporary Files 60

4.3.3 Shared Memory . 61

4.3.4 Rounding Strategies 62

4.4 Multiscale Patterns . 63

4.4.1 Adaptive Resolution 63

4.4.2 Spatial Aggregation-disaggregation 64

5 Design Principles for Multilevel M&S 67

5.1 Metamodels in the State of Art 68

5.2 GEMMA . 72

5.3 GEMMA-compliant framework 74

5.4 Illustrative Example . 77

III Applications 85

6 Simulation of multi-agents systems 87

6.1 Peer-to-Peer Environments . 88

Index v

6.1.1 Background . 88

6.1.2 Simulation Scenario . 91

6.1.3 Simulation Setup . 92

6.1.4 Simulation Results . 93

6.2 Data Mules and Smart Territories 96

6.2.1 Background . 96

6.2.2 Simulation Scenario . 97

6.2.3 Simulation Setup . 97

6.2.4 Simulation Results . 100

6.3 Edge Computing . 101

6.3.1 Background . 101

6.3.2 Simulation Scenario . 104

6.3.3 Simulation Setup . 105

6.3.4 Simulation Results . 105

7 Simulation of IoT scenarios 109

7.1 Background . 109

7.1.1 LoRa and LoRaWAN 110

7.1.2 Blockchain . 112

7.1.3 Blockchain-based LoRaWAN systems 114

7.2 Architecture of a blockchain-based IoT application 117

7.3 Multilevel Model . 120

7.4 Simulation Results . 123

8 Conclusions 129

Part I

Background

1

Chapter 1

Introduction

Modeling and simulation (M&S) is a wide family of methodologies em-

ployed in various fields to replicate and study the behavior of complex systems.

The representations are centered on replicating the temporal evolution of real-

world entities using mathematical or logical models, delineating the behavior

of the system in response to certain events.

This methodology finds application across various scenarios and purposes,

including:

• Investigations on highly complex systems, where it would be hard to

study analytically the interactions among the parties involved;

• Assessing the impact of structural, organizational, or environmental

changes on a system;

• Exploring the correlation between simulation inputs and outcomes to

understand which are the most important variables and their interac-

tions;

• Identifying potential threats to the regular operation of a system, such as

vulnerabilities, bottlenecks, or scalability issues, to anticipate potential

problems and deploy improvements ahead of time;

3

4 1. Introduction

• Testing critical application scenarios, where it is desirable to run tests

on digital twins before dealing with real systems, in order to avoid severe

damages to things or people (e.g., medical applications, the resilience of

buildings to major events such as flooding or emergency evacuations).

Regardless of the goals of the investigation, and the modeling methodolo-

gies employed, simulated systems are populated by a collection of possibly

heterogeneous entities, which perform some role or task during the simu-

lation and are characterized by specific attributes that denote mutable or

non-mutable properties. In a simulation, the system continuously evolves its

state, defined as the collection of all relevant information and variables that

define the system’s condition at a given instant. The state changes occur as

a result of events, which are triggered by the behavior of some entities or by

some inherent property of the model.

When dealing with systems of a certain complexity, it may not be feasible

to conduct simulations using a monolithic architecture. In such cases, a

multilevel approach can be employed, with the system being represented as

a collection collaborating of sub-models, each one in charge of reproducing

a certain “level” of the simulation. Multilevel modeling is an increasingly

popular methodology in M&S studies due to its flexibility, allowing developers

to select the most suitable modeling paradigm for each level of simulation.

Additionally, developers can integrate existing task-specific simulators into

the complex model, which saves time and reduces implementation costs.

However, multilevel modeling is only a generic approach to simulation, as

it encompasses a wide range of techniques that can be used to represent a

system, including considerations on how to break down a system into various

levels, the simulation paradigms employed, and the integration of different

components. In the scientific literature, there are few standards and guidelines

for designing and implementing these simulators, and many of them apply

only to specific use cases or types of models. This lack of clarity starts with

nomenclature, which is often ambiguous and inconsistent.

1.1 Research Methodology 5

1.1 Research Methodology

The aim of the research has been to conduct a comprehensive study on

multilevel modeling, examining the current state of the art and considering

both methodological and application aspects.

The first step involved examining how this approach is utilized in the

scientific literature. Specifically, the review consisted of 127 papers focusing on

human behavior and mobility. This selection was made to restrict the domain

since multilevel modeling techniques are used across a variety of scientific

fields and to consider topics that can be understood without specialized

knowledge in a particular scientific area. It emerged that while often terms

are used ambiguously, with various expressions employed interchangeably

despite potential distinctions, the multilevel approach for M&S is widely used

by researchers from all over the world, and the number of papers using these

techniques over the years is increasing, as shown in Figure 1.1. This trend has

also been influenced by the arrival of COVID-19, which in recent years has

led researchers to study transmission mechanisms using multilevel approaches,

as shown in Figure 1.2.

Regarding methodological aspects, an analysis of the scientific literature

revealed that multiple metamodels and formalisms are proposed for M&S, but

little effort was devoted to the multilevel aspects. In particular, while certain

formalisms describe interactions between modeling components within a

complex framework, none of them is universally applicable across all modeling

paradigms and problem semantics. For instance, certain metamodels assume

the inclusion of multiple scales of detail or the employment of an agent-

based approach, while others do not consider structural issues of multilevel

modeling, such as criteria for invoking sub-models or policies for ensuring

global consistency of the state of the system. The subsequent step was to

identify general development principles applicable to any type of multilevel

domain, regardless of the type of the models employed, their mechanisms of

instantiation and the modes for data exchange.

Analogously, it emerged that while many design patterns are proposed for

6 1. Introduction

Year

P
ap

er
 c

ou
nt

0,00

5,00

10,00

15,00

2000 2005 2010 2015 2020

Other

ASIA

EU

USA

Figure 1.1: Paper counts by year and geographic area of the authors.

software development, few solutions are tailored for multilevel M&S. Therefore,

several critical points have been identified in the design of multilevel models,

such as the hierarchical structuring of various sub-models and their modes

of interaction. The proposed solutions, which in part came directly from

the software engineering domain, were then summarized into multiple sets of

design patterns.

Finally, the methodological knowledge acquired was exploited to develop

multilevel simulators that can investigate actual scenarios of interest. In

particular, the focus has been directed towards smart territories, where

Internet of Things (IoT) applications make use of technologies such as sensors,

wireless connectivity, and blockchain to provide services. The considered case

study was a decentralized crowdsensing architecture where vehicles act as

data collectors and transfer data from sensing devices to networked access

points. While the presented architecture is based on existing proposals, the

novelty of the work is the simulation of the multiple factors of interest involved

(i.e. wireless transmission, vehicle mobility, blockchain storage) within a

1.2 Outline of the Thesis 7

Year

P
ap

er
 c

ou
nt

0,00

5,00

10,00

15,00

2000 2005 2010 2015 2020

Other

ASIA

EU

USA

Figure 1.2: Breakdown of research topics by year.

single complex model, according to the principles of multilevel M&S.

1.2 Outline of the Thesis

The thesis is organised as follows. Chapter 2 is an overview of multilevel

modeling and simulation. Chapter 3 reviews how the methodology is employed

in the scientific literature. In Chapter 5 a novel formalism for the development

of multilevel models is presented. In Chapter 4 some categories of design

patterns are proposed to address recurrent issues that can be encountered in

the development phase. In Chapter 6 some agent-based models are presented.

Chapter 7 introduces an architecture for gathering and trading sensor data

and shows how the behavior of the proposed framework can be reproduced

through multilevel M&S. Finally, Chapter 8 provides some conclusive remarks.

8 1. Introduction

Chapter 2

Background

This chapter introduces multilevel modeling, defining exactly what this

expression means and which are the motivations for its use. The Chapter

is organized as follows. Section 2.1 discusses the various types of modeling

paradigms. Section 2.2 clarifies the use of the terminology. Finally, Chapter 2.3

examines benefits and challenges of the adoption of multilevel M&S.

2.1 Types of Models

M&S includes a wide variety of methodologies, as the various models can

be characterized by different features and can adhere to different simulation

paradigms. To comprehensively characterize models, they can be classified

across three critical dimensions:

1. Time Management (continuous, discrete, mixed): This dimension

is about how time is represented within the sub-model. In continuous

models, time evolves in a seamless, uninterrupted manner. Conversely,

in a discrete model time is split into distinct steps or intervals. Discrete

models can either be time-stepped if time is divided into fixed intervals

of uniform length or event-driven if changes in the system are triggered

by specific events or conditions and time progresses based on such

occurrences. Finally, mixed models amalgamate both continuous and

9

10 2. Background

discrete elements in their temporal representation. Analogously to

time, also the management of the space follows similar principles. The

locations of interest, if any, can be represented in the simulation space

by either discrete or continuous points.

2. Execution policy (sequential or parallel): This dimension describes

how models are executed. Sequential execution follows a linear pro-

gression, where tasks are completed one after the other, using a single

core. On the other hand, parallel execution involves simultaneous task

execution, potentially enhancing computational efficiency by utilizing

multiple processing units. The cost of parallelism is a more complex

management of various execution processes, as multiple activities need

to be synchronized to be consistently performed. A further option is

Parallel and Distributed Simulation (PADS), where computational re-

sources from various computers can be leveraged. The speedup that can

be achieved through parallelization might vary considerably from model

to model, so assessing whether this approach may be advantageous or

not depends on the semantics of the problem.

3. Level of detail (low, high, adaptive): This dimension refers to the

number of state variables that are used to represent the state of a

model. Coarse-grained models employ a minimal set of state variables,

offering a generalized view of the system and focusing on computational

efficiency. Conversely, fine-grained models use an extensive set of state

variables, enabling a comprehensive representation of the system under

investigation, at the cost of a greater use of computational resources.

Finally, adaptive models dynamically adjust their level of detail based

on the system’s complexity or specific conditions, allowing for a flexible

and responsive representation.

Another crucial aspect concerns predicting the evolution of the models’

state. While in deterministic models the evolution of the state of the system

is entirely predictable from the initial conditions, stochastic models are

2.1 Types of Models 11

influenced by random decisions. Moreover, since experiment reproducibility

is essential in simulation studies, it is always desirable for the generation of

random numbers to be linked to a seed rather than volatile elements. In this

way, other researchers will be able to replicate the experiments and assess

the correctness of the results.

On the other hand, M&S paradigms refer to a set of principles and

methodologies that guide the design and implementation of a simulation.

They encompass the fundamental approach adopted to represent and analyze

systems in a simulated environment. As far as simulation models are con-

cerned, several paradigms are available, among which the most important

are:

Agent-Based Models (ABMs) where the system is portrayed as a set

of heterogeneous self-governing entities, whose behavior is defined by

the features of the agent and by the interaction with other agents.

With this methodology, it is possible to individually represent the

behavior of each actor within the system under investigation, with a

level of granularity that is contingent on specific design choices. Also,

the connection between agents and the simulated environment holds

significant importance. The expression “situated agents” is often used

to indicate entities that engage with environmental objects to achieve

their design objectives [1], to the extent that it would make no sense

to describe their behavior outside of the environment in which they

are located. An example of situated agents is vehicles in traffic models.

In alternative scenarios, agents may not strongly connect with the

environment, as the spatial aspect might be irrelevant to the simulation’s

purpose. In these cases, agents derive their behavior from interactions

with other system entities. Peer-to-peer system studies, such as those

focused on the interplay among various peers, exemplify this approach.

For instance, in [2], an ABM is employed to assess the feasibility of

cyberattacks on proof-of-work blockchains. In ABMs, the computational

cost of the simulation depends on factors such as the number of agents,

12 2. Background

the complexity of their behaviors, and the volume of interactions among

the simulated entities.

Equation-Based Models (EBMs) where systems or phenomena are de-

scribed by a set of differential equations that describe the relationship

among various variables, capturing the dynamics, interactions, and

dependencies among different elements of a system. EBMs come in

various forms, including Ordinary Differential Equations (ODEs) and

Partial Differential Equations (PDEs), depending on the nature of the

system and the dynamics involved. A particular type of EBMs are

compartmental models, where the system’s entities are divided into

various compartments, each representing groups or categories of agents

sharing common features, and the transitions between compartments

are governed by a set of ODEs. Typically, EBMs are significantly

less resource-intensive and time-consuming compared to ABMs. The

efficiency in equation execution comes, however, at the expense of a

reduced level of granularity, given that ABMs generally handles more

aggregated representations.

Cellular Automata (CA) where the actors of the system are situated in a

lattice of cells. The cells themselves act as agents in the system, and the

evolution of the agents’ states is influenced by the current state of the

neighboring cells [3]. CA can exhibit either a continuous or discrete state

space, while typically time advances over small discrete steps. CA find

frequent application in complex systems investigations across various

domains, such as physics, biology, social sciences, and computation.

They are defined by simple local rules while demonstrating the potential

to display emergent patterns and behaviors on a global scale.

System Dynamics (SD) where sets of differential equations describe the

relations among the entities of the system, and feedback loops update

the state variables over time [4]. These models can be thought of

as a stock and flow diagram, where stocks represent accumulations

2.2 Definition of Multilevel Modeling 13

of quantities (e.g., populations or number of items sold), while flows

determine the change rate of stocks over time. Mathematically, (stock(t+

dt) − stock(t))/dt = flow(t). SD helps analyze how changes in one

part of a system can affect other components, allowing for a deeper

understanding of the system’s behavior and the possible long-term

implications of different choices or interventions. This methodology

was applied in first place in the World3 model [5], where five key sub-

models (i.e. population, food production, industrialization, pollution,

and consumption of nonrenewable natural resources) are integrated

to encompass the most significant interactions between the Earth and

human population.

Monte Carlo methods where stochastic simulations are employed to es-

timate the likelihood of specific scenarios or combinations of events

to occur. This approach involves running repeated simulations with

random inputs to generate a range of possible outcomes, from which

probabilities can be inferred. Thus, the accuracy of these methods de-

pends heavily on the randomness of the input sampling process. Monte

Carlo simulations are particularly useful in estimation and optimization

problems, other than in contexts where analytical methods are hard to

apply due to the system complexity.

2.2 Definition of Multilevel Modeling

When representing a system of significant complexity, it is often convenient

to implement a model in a manner that multiple views of the system are

provided or various sub-models are aggregated to effectively collaborate. As

the nature of these approaches may vary considerably, it is desirable to employ

precise nomenclature that leaves no room for ambiguity. However, in the

state of the art, the use of the terminology is quite inconsistent, as multiple

expressions are often used interchangeably even though some significant

differences exist. In this subsection, a definition of the technical terms is

14 2. Background

provided:

Multilevel to generically indicate a framework where the system is depicted

through semantically distinct models, each one describing a specific

part [6]. By adopting this approach, it becomes feasible to utilize

simulation strategies tailored to the considered scenario, enabling pre-

existing task-specific models to collaborate within a more complex

simulation environment. An example is epidemiological models, as

frequently these types of studies consist of one model defining how a

virus evolves within the body of a patient, while another model describes

the dynamics of contagion at the population level [7].

Multiscale to indicate a framework where representations at different de-

grees of detail are integrated to simulate a system [8]. The term

multi-resolution is sometimes used as a synonym. The goal of multiscale

modeling is to strike a balance between the computational resources

required for model execution and result accuracy. Opting for maximum

detail is not always feasible, as it demands extensive execution time and

also possibly generates vast amounts of data from fine-grained models

that are hard to convey in the metrics of interest. Thus, multiscale

representations enable a greater focus on the phases or spaces where

the most important events occur. Secondary events, on the other hand,

can be modeled more approximately, often without individually con-

sidering the behavior of all actors in the system but using aggregate

representations. In a typical multiscale approach, micro and macro

models alternate, with the option to include intermediate scales, such as

mesoscale models. An example is traffic modeling, where micro models

describe the behavior of all the vehicles in the critical areas, while

the surrounding zones deal with the aggregate macro representation.

However, multiple scales may not only imply different levels of detail

in representations but can also influence the semantics of the system.

For example, in DNA studies the highest level of resolution may involve

quantum mechanics, while gradually decreasing granularity modelers

2.3 Benefits and Challenges 15

might deal with molecular mechanics and polymer physics [9]. Multi-

scale models can be further classified into two types: sequential and

concurrent. Sequential multiscale models use information computed

at a lower scale to solve problems at a higher scale, while concurrent

multiscale models simultaneously compute quantities from both macro

and micro scales during the overall model’s computations, capturing

interactions between scales [10].

Multi-layer to indicate a framework portraying the system’s actors through

a multilayered graph, which is a data structure comprising nodes, edges,

and layers and whose interpretation of the layers depends on the im-

plementation of the model [11]. A special case of multilayer graphs is

multiplex graphs, which are a sort of network of networks that feature

nodes distributed across multiple layers, each distinguished by distinct

connections [12]. These models are often used to represent human rela-

tionships, where each layer represents some type of social connectivity

(e.g., friendship, co-working, family).

2.3 Benefits and Challenges

There are several reasons to adopt a multilevel approach in simulations.

Firstly, this paradigm allows the use of existing software, saving time and

costs both in the implementation phase and during testing. Assuming trust

in the accuracy of the available code, specific code for the relevant scenarios

can be utilized, which is assumed to have been thoroughly tested and proven

effective in reproducing certain system dynamics. Simulating everything

from scratch often puts developers in the position of having to model certain

types of systems they are not experts in, risking significant errors due to

limited knowledge of the subject. Of course, this is a double-edged sword

because, in the case of bugs or modeling errors, it becomes more challenging

to identify and correct mistakes made by third parties, especially if the

application’s source code is not available. Secondly, even in cases where it

16 2. Background

is necessary to build a system from the ground up due to the unavailability

of effective simulators for the considered use case, multilevel modeling can

be an efficient approach for organizing the development of the code as well.

Organizing the model into various building blocks helps to more effectively

divide tasks among developers. Furthermore, unlike monolithic architectures

where a single model takes care of describing the whole system, in multilevel

frameworks it is possible to commit changes to local portions of the code

without affecting the other components of the complex models, thus making

it easier to carry out upgrades and tests. Finally, the ability to represent

a complex system at different levels of detail allows for a balanced tradeoff

between accuracy and computational efficiency. Depicting a system at the

highest level of detail is not always practical, as it can demand excessive

resources and lead to prohibitively long execution times.

However, multilevel modeling also involves some concerning issues that

must be addressed. Firstly, identifying optimal partitioning - whatever

the definition of optimal may be - is not always straightforward. Some of

these issues must be tackled during the design phase, where the various

compartments of the complex model need to be defined. This involves

determining what aspects should be represented in detail, what should be

depicted more coarsely, and what can be neglected. In the case of multiple

levels of detail, placing the most important events on a spatiotemporal

timeline is not always easy, and often empirical rules are the only way to

define transitions from a micro to a macro representation and vice versa.

Another critical point concerns how to couple different sub-models, especially

when dealing with different simulation paradigms or when there are different

mechanisms for managing the progression of time. While standard interfaces

for interoperation across simulators have been proposed [13], they tend to be

quite large and cumbersome to implement. Metamodels and design patterns

can provide guidelines that developers can follow during the design phase to

determine how the sub-models will be coupled. These guidelines may relate to

the structuring of the various sub-models, typically organized hierarchically,

2.3 Benefits and Challenges 17

how information exchange occurs between different components, and under

what conditions a transition from one level of detail to another takes place;

then it is up to the developer to decide which approach is the most suited,

after examining the various pros and cons of the different proposals. Another

crucial aspect involves ensuring consistency among all system representations.

There are several instances where the risk of inconsistencies arises, such

as when i) there is a partial overlap among various sub-models, ii) certain

system actors transition from one sub-model to another, iii) the input for one

sub-model is based on the output from other sub-models. Transitions between

discrete and continuous models, as well as shifts from individual-based to

aggregated representations, pose particularly significant challenges. Finally, a

last issue concerns the generation of (pseudo-)random values, as it is often

necessary to use one or more of these streams during the execution of a model.

A common practice involves generating pseudo-random numbers from a single

initial seed to ensure result repeatability. However, in a parallel or distributed

setting each model has its random stream. Therefore, it is necessary to ensure

that (i) the random streams do not overlap, meaning the initial seeds (or

the pseudo-random generator) are chosen to guarantee independence among

the random streams, and (ii) the outcome of the multilevel model remains

unaffected by the order in which the sub-models are executed.

18 2. Background

Chapter 3

Related Works

A part of the work presented in this chapter has been published in [14]

and is reported here for the reader’s convenience. Multilevel modeling, in its

various forms, is employed in a wide range of applications, particularly in

the scientific domain, where numerous studies have been conducted in fields

such as chemistry, physics, biology, engineering, epidemiology, and sociology.

However, given that many of these domains require specific knowledge of the

addressed subjects, the state-of-the-art analysis focuses on topics related to

mobility and human behavior.

3.1 Epidemic Modeling

Among the investigation areas that have been considered, epidemiology is

the topic where most of the multilevel modeling works have been proposed,

especially in recent years following the unfortunate advent of COVID-19.

These studies aim to investigate the dynamics of disease spread, enabling

predictions about how the epidemic will evolve and assessing the effectiveness

of preventive measures such as mobility restrictions and vaccinations. Identi-

fying epidemic peaks enhances the efficiency of risk assessment and resource

planning, facilitating optimized allocation of resources such as hospital beds,

medical supplies, and personnel.

19

20 3. Related Works

From a semantic standpoint, there are multiple crucial aspects to model

this type of system, leading to various combinations of sub-models found in the

scientific literature. Given that pathogens spread through contact or physical

proximity, human mobility plays a fundamental role in these scenarios, both

at the microscopic level to model the local evolution of contagion, and at the

macroscopic level to investigate virus propagation over a large scale.

The most recurrent multilevel modeling framework in the epidemiological

area is to couple a within-host model that describes the evolution of viral

agents inside the human body and a between-host model that reproduces

transmission dynamics among individuals.

Multiple works are based on this methodology to investigate the diffusion of

diseases such as Ebola [15, 16], Influenza [17], cholera [18], toxoplasmosis [19,

20], HIV [21], COVID-19 variants [22, 23], as well as non-human diseases like

scrapie herd infection [24] or host-parasite coevolution [25].

Within-host models usually consist of a set of ODEs that describe the host-

pathogens interactions, immune system responses, and the impact of therapies.

Several within-host models exist, tailored to the specific requirements of

different diseases. Despite the diversity, all these models typically include

fundamental features such as the quantification and density of infected and

healthy cells, mortality rates, shedding rates, and transmission rates of the

pathogen.

Between-host models, on the other hand, usually adopt a compartmental

approach, meaning that the population is divided into distinct and non-

overlapping categories based on certain characteristics or states, in this case,

the state of health of the people. Transition functions describe how individuals

move between compartments over time, reflecting the dynamics of the modeled

process. This modeling strategy is particularly suitable for large populations,

where it becomes feasible to approximate epidemic trends by overlooking

transmission dynamics specific to individuals or small groups. However, at a

smaller scale, stochastic transmission events and population characteristics

can significantly influence outcomes. In such cases, alternative simulation

3.1 Epidemic Modeling 21

paradigms like ABMs may be preferable [26], even though its use in multilevel

frameworks is uncommon. The most popular scheme for between-host analyses

is the SIR model, where individuals are either susceptible, meaning they are

currently healthy but at risk of infection, infected or recovered [27]. The

model is defined by the following set of ODEs.



dS

dt
= −β · S · I

N
,

dI

dt
= β · S · I

N
− γ · I,

dR

dt
= γ · I,

(3.1)

Transition rates between categories might depend on different factor

parameters; in SIR, β depends on the number of contacts between infected

and susceptible individuals, other than on the inherent contagion factor of the

virus. On the other hand, the value of γ, often in the context of multilevel

modeling, can be inferred from within-host systems and depends on how long

the immune system typically takes to rid itself of pathogens. Of course, this

model has certain limitations, such as a small number of compartments and the

absence of births and deaths, resulting in a constant decrease in the number of

susceptible individuals over time, and the inability to represent the mortality

rate in the case of severe diseases. To cope with these issues, many alternative

models have been proposed, as illustrated in Figure 3.1. In SIRD, people

labeled as infected can transition to either recovered or deceased, in SIRV

susceptible individuals can progress to either infected or vaccinated state, in

SEIR there is a phase where individuals are exposed to the virus, meaning they

have contracted the disease but they are still not experiencing symptoms [28],

and finally in SIS people after healing are susceptible again, enabling the

modeling of diseases that do not confer long-lasting viral immunity [29]. It

is worth saying that the concepts of these models can be easily combined

to create a more accurate representation of some diseases. Moreover, the

transmission dynamics are significantly impacted by the nature of interactions

among individuals. For example, in [30] the authors proposed a model where

22 3. Related Works

social interactions at home, workplace, and public places are characterized by

a specific exposure rate, defined as the probability of getting exposed while

interacting with silent carriers.

S E I R

S I

R

D

S

I

V

R

S I

Figure 3.1: Graphical representation of compartmental models alternative to SIR. The

meaning of the characters is the following: S =⇒ susceptible, E =⇒ exposed,

I =⇒ infected, R =⇒ recovered, D =⇒ deceased, V =⇒ vaccinated

Another frequent approach in epidemiological multilevel modeling is to

combine local compartmental models with macroscopic models describing the

mobility of people over a large scale, in order to represent how pathogens

spread over regions, countries, or continents. A globalized world unfortunately

also entails a global diffusion of epidemic diseases, so information about human

mobility plays a big role in the veracity of the model. Various models to

represent the movement of people exist, and probably the most recurrent

3.1 Epidemic Modeling 23

scheme consists of having some type of graph-based data structure where

nodes and edges represent either individuals and human relationships, or

cities and routes. For example, in [31] an air traffic network is built based

on real data from USA airports, in [32] a multi-layer network is used, with

layers representing different means of transportation and nodes representing

either central or peripheral cities, and in [33] the population is placed in a

graph, where individuals move to different locations with some probability,

and each node is characterized by a specific infection rate, recovery rate, and

migration probability. In [34] a purely ABM approach is used, where micro

agents represent individuals and meso agents represent groups of hundreds

of people. Stochastic decisions are made for managing contagion between

infected and susceptible individuals and for moving agents within and between

cities. Multilayer graphs are also used for representing human interactions of

different nature, like in [35] where multiple layers represent different social

connections, such as the social and working environments of individuals [36].

Similarly, in [37] a multilayer network with inter-layer hopping (MNIH) is used,

where individuals are the nodes of the graph, layers are different sub-networks

and connections occur via both intra-layer and inter-layer edges. Temporal

multilayer graphs are instead used in [38] to model the diffusion of sexually

transmitted diseases, with two layers representing respectively steady and

casual partnerships, while a SIS model is used to model the contagion aspects.

Bipartite graphs are used by [39] to represent movements of individuals from

their neighborhood to points of interest, based on anonymized mobile phone

data.

Human mobility can be alternatively represented using an equations-based

approach. In [40] a set of equations is used to describe a population of

commuters moving over long distances (extra-urban) and a population of

non-commuters acting over short distances (urban). In [41] a molecular-

dynamics-based social-force model is employed to model passenger’s move-

ments inside an airplane during a flight. In [42] contagions occur stochastically

when an infested and a susceptible individual are within the contact radius,

24 3. Related Works

while in [43] a social-force model defines agents mobility, with the paper

aiming at investigating over the effects of social distancing and mobility

restrictions, considering both direct and indirect transmission. To achieve a

realistic representation of inter-cities movements, one may take into account

the composition of the population to generate mobility patterns that align

with socio-economic factors. Following this approach, in [44] the population

is represented as a nested hierarchy of sub-populations, defined as fractions of

the overall population characterized by a common feature, such as ethnicity,

gender, or age. In [45] a mobility model represents the bidirectional recur-

rent commuting flows that couple two sub-populations, while in [46] both

small-scale commuting flow and long-range airline traffic are modeled based

on actual airport traffic and connections between sub-populations. In [47]

a multiscale framework is proposed, with an individual-based model that

simulates contagion dynamics at the micro-scale, providing parameters to the

macroscopic SIR model.

Finally, researchers may also want to investigate how certain social factors,

such as awareness and the fear of the disease, influence the spread of the

epidemic. In [48], the authors coupled the SIR model with a model that

describes the risk awareness of the epidemic, concluding that the knowledge

of contagion dynamics has a big impact on the diffusion of the virus.

In [49], a multilayer modeling approach is employed to capture both

the epidemic contagion and the dissemination of opinions regarding social

distancing, which can influence the infection rate. The overall adherence to

social distancing rules is significantly influenced by social connections, as

uninformed individuals can be swayed by either opinion based on their social

neighborhood. Similarly, in [50] a SIS model is coupled with a graph structure

representing a population made of different communities, which describes how

dissemination processes of both pathogens and opinions over the epidemic are

influenced by the interactions among communities. In this model, opinions

are mainly influenced by the number of infected people, the dominant opinion

within a community, and the dominant opinions within other communities.

3.2 Traffic Modeling 25

3.2 Traffic Modeling

Traffic modeling predicts traffic flow by considering factors such as the

influx of vehicles, drivers’ behavior, road geometry, and traffic signals. These

models play a crucial role in the design of new roads, intersections, traffic

policies, and transportation facilities, offering assessments of their potential

impact on traffic flow and safety. Additionally, these models can be em-

ployed to test traffic conditions during emergencies, aiding authorities in

implementing effective plans for evacuations and traffic management.

Multiscale approaches are often used in traffic modeling, allowing for a

greater emphasis on areas of higher interest. A typical framework consists

of a microscale model describing in detail the behavior of each vehicle, a

macroscale model dealing with the aggregate representation of the traffic flow,

and in certain cases a mesoscale model describing individual vehicles through

simplified flow dynamics [51]. The primary advantage of this methodology lies

in its ability to strike a well-balanced trade-off between simulation accuracy

and computational efficiency, by ‘zooming into” certain critical areas such

as locations prone to congestion or incidents, while simpler macro or meso

models are applied in other regions, optimizing computational resources.

Microscale Models Microscale models describe individually the behavior

of vehicles, defining their movements in response to various environmental

factors, including road features (e.g., route signs, traffic lights, number of lanes)

and the presence of other vehicles in the vicinity. This information guides

decisions on maneuvers like acceleration, braking, and steering. The state of

a vehicle encompasses factors such as current position, speed, acceleration,

vehicle characteristics like maximum speed and acceleration capabilities, and

driver characteristics like reaction time, aggressiveness, or adherence to traffic

rules.

The time and space in which vehicles move can be depicted in different

ways. Some models use continuous representations, like those relying on

differential equations, while others opt for discrete representations, as in CA.

26 3. Related Works

Alternatively, space can be described through a graph-based structure, where

edges correspond to road segments and nodes to the intersections.

Sometimes micro-scale traffic models are themselves multilevel, being

composed of various sub-models that describe various aspects of driver be-

havior [52]. In particular one can find:

Car-following models where the drivers’ behavior depends on the preced-

ing vehicle in the same lane [52];

Gap acceptance models which establish the minimum gap that drivers

accept in road intersections, determining if a vehicle from a secondary

street can enter the main road;

Speed adaptation models which adjust the speed of a car based on road

features such as speed limits or road surface quality;

Lane-changing models which encode the decision to change lanes on a

multi-lane road link, e.g., to overtake another vehicle or to comply with

lane restrictions [53].

All these aspects can be linked together to carry out a more comprehensive

description of vehicle behavior, depending on the modeler’s requirements. In

particular, some of the most used frameworks to model traffic at the micro

scale are:

• Intelligent Driver Model (IDM), where a set of ODEs is used to

determine the positions and velocities of individual vehicles. Parameters

include desired speed, safe time headway, maximum acceleration, and

comfortable deceleration [54].

• Nagel-Schreckenberg (NaSh) models, which are CA where cells

are either empty or occupied by a car. Vehicle velocity depends on the

front vehicle and additional factors [55].

• Agent-based models where individual vehicles are modeled as si-

tuated agents in the micro environments, and behavioral rules define

3.2 Traffic Modeling 27

travel decisions and how vehicles interact with the environment and

with other agents [56]. A wide range of (single-level) ABMs is used for

the simulation of traffic [57], transportation [58], and autonomous vehi-

cles [59]. Noteworthy simulators in this domain include MATSim [60]

and SUMO [61]. To handle a large number of agents, many ABMs use

strategies such as downscaling, which consists of simulating the entire

system’s dynamics based just on a fraction k of the total population [62].

Downscaling is often necessary when dealing with a substantial number

of vehicles. By carefully choosing k, execution times can be significantly

reduced with minimal loss of accuracy.

Macroscale Models Macroscale traffic models provide a high-level perspec-

tive on traffic flow, focusing on the overall behavior of traffic as a collective

rather than individual vehicles. These models use aggregate parameters

to describe traffic conditions and are particularly useful for studying large-

scale transportation networks such as highways or major road systems. Key

parameters in macroscale models include:

• Density, defined as the number of vehicles per unit of road length at

any given time, indicates how crowded the road is.

• Space-mean speed, defined as the average speed of vehicles in a specific

section of the road.

• Flow, defined as the number of vehicles passing through a particular

point in a set amount of time. It helps to assess the volume of traffic

over a specific stretch of road.

Some of the most used frameworks to model traffic at the micro scale are:

• Network Fundamental Diagram (NFD), which describes the rela-

tionship between the number of vehicles in a network and the average

flow in that area [63].

28 3. Related Works

• Lighthill, Whitham and Richards (LWR) model, where the

behavior of traffic streams is expressed through the continuity equation

and an assumed equilibrium speed-density relationship [64].

• Payne-Whitham (PW) model, which uses a set of differential equa-

tions to describe traffic, incorporating mean speed, density, and the

number of vehicles in a specific road segment over a unit of time [65].

• Aw-Rascle-Zhang (ARZ) model, which involves a set of second-

order, nonlinear hyperbolic PDEs to describe traffic density and velo-

city [66].

Multiscale Models The integration of models at different scales requires

careful coupling in order to ensure consistency among the various represen-

tations, regardless of the sub-models involved. The most common method

for linking micro and macro models is the aggregation and disaggregation of

variables [67, 68, 69, 70]. In the context of this approach, aggregation means

that variables representing single actors of the system are grouped, treating

the combined result as a single data point [71]. Following aggregation, specific

attributes and features of micro agents are going to be lost unless some

mechanism is used to save and retrieve them. In contrast, disaggregation is

the inverse process of breaking down aggregated data points into individual

components with their unique characteristics. This process entails the release

in the system of new information, which can be either generated synthetically

or derived from previously saved data. In each case, the new information

must be meaningful for the simulation purposes and consistent with the

semantic constraints of the model. For example, if disaggregation is employed

to populate a zone at the micro scale to study in detail some important

phenomenon, individual velocities should be defined in a manner that ensures

that their average aligns with the macro value, possibly introducing some

random variation to reflect what happens in real traffic [72]. In [73], the

transition from the micro to the macro scale is handled by an entity called

“agent upstream”, which has the role of computing flows and densities of

3.2 Traffic Modeling 29

the aggregations of vehicles. Analogously, an “agent downstream” considers

traffic flow parameters to create an appropriate number of vehicles when

switching from the micro to the macro representation. Another approach to

manage effectively the switch of resolution is to introduce a transition cell at

the boundary zones of the model in order to transmit limit conditions and

manage the shift from continuous to integer values [74]. In fact, during the

disaggregation process, little inconsistencies could occur due to the conversion

from real to integer values. For example, if the average number of vehicles in

a zone is 80.5, a detailed micro simulation of that zone will result in either 80

or 81 vehicles, resulting in a small loss or gain. The accumulation of these

rounding errors may lead to significant variations in the overall number of

vehicles. A possible solution is to save and accumulate the fractional part

until it reaches a unit, at which point a new vehicle is created [75]. A similar

approach is proposed in [76], where “fictitious” vehicles positioned at the

boundaries between scales receive the information and pass it on to the other

vehicles.

In [77] and [78] the authors propose equations-based solutions to address

both local consistency (i.e., agreement between models at different scales)

and global consistency (i.e., overall preservation of traffic characteristics

after several changes of scale). Local inconsistencies may arise when traffic

variable values are not coherent during scale transitions, leading to issues

such as violations in vehicle conservation, abrupt jumps of average speed,

and unrealistic bottleneck effects. On the other hand, global inconsistencies

may occur when information about traffic composition is lost during the

conversion between different scales. For instance, properties computed in

a micro model, such as route choices, vehicle features, or driving styles,

might be lost in the transition to a macro model, and thus such information

would be unusable when switching back to the micro model unless it was

properly stored. In [79], the authors introduce a service-oriented middleware

designed to facilitate collaboration between a macroscopic simulator and

several microscopic ones. The middleware provides a common interface

30 3. Related Works

that can be used by all the parts of the architecture, defining the modes

of interaction, orchestrating the execution of the various components, and

translating data between different scales. In [80] and [81] a tightly coupled

system of partial and ordinary differential equations has been employed to

model, respectively, traffic dynamics and the behavior of specific vehicles,

such as autonomous cars or particularly slow and cumbersome vehicles.

While most of the approaches mainly focus on the microscopic and the

macroscopic scales, other levels of resolution can also be considered. In

mesoscale models, usually, vehicles are still handled individually using pa-

rameters from the micro model [82, 83], and their movements are simulated

according to speed-density relationship or based on a macroscopic flow model,

as proposed in [84]. Similarly, in [75] the Underwood model operates at

the mesoscale, differing from NaSh model by how the vehicles handle their

speed, which is dependent on factors like maximum speed, current concen-

tration, and capacity of the road. In [85] the meso model is inspired by

the macro NFD model, but with the additional capability of keeping track

of single vehicles. Since mesoscale models still treat vehicles individually,

there is no need for aggregation during the switch from the micro models.

Consequently, the model coupling is generally more straightforward, although

certain consistency constraints between scales may still need to be applied.

On the other hand, in sub-microscopic scale representations, all the technical

aspects that can potentially influence the driver’s behavior are considered.

For instance, in [86] the sub-microscopic level is depicted using a bond graph,

where vehicle dynamics are presented in response to acceleration, braking,

steering, considering longitudinal, lateral, yaw, and actuator dynamics of each

vehicle. In [87], the authors proposed a framework that combines sub-micro,

micro, meso, and macro scales. In this scenario, the sub-microscopic level

involves an interactive exchange of information between a driver and a vehicle

model, to determine driving strategies such as braking or steering. On the

other hand, the mesoscopic scale is characterized by functions that establish

the probability of having a vehicle within a certain space and speed range in

3.3 Crowd Modeling 31

the unit of time.

A noteworthy variation of the previously mentioned approaches has been

described in [88], where vehicles are assumed to be equipped with short-range

communication technologies that enable data transfer with nearby vehicles.

Traffic data from the surrounding zone can be collected and aggregated locally

within a group of vehicles and then shared at a higher level among groups.

This high-level processing is realized by some intelligent agents representing

“traffic management centers”. The model is based on a combination of ABM

and CA, where agents represent vehicles and traffic management centers, and

the CA represents the environment where agents operate.

In the process of creating the simulation environment, either synthetic or

real information is employed depending on the research scenario. In certain

works, the goal of the experiments is to investigate traffic dynamics of precise

locations, so that geographical, environmental, and population data of specific

areas must be considered. On the other hand, certain works adopt a more

generic perspective, so that the testbed is a generic environment on which

to perform tests. A more complex approach is presented in [89], where a

synthetic population is created according to the characteristics of the area,

and the daily activity plans are generated based on data from a survey done

to a portion of the population.

3.3 Crowd Modeling

Crowd modeling is applied to analyze how individuals collectively behave

in confined spaces or events, to understand how crowds move, interact, and

respond to different stimuli. There are some similarities between crowd and

traffic modeling, as in both fields the mobility aspects can be described at

various levels of detail. Usually, an ABM describes entities at the micro level,

and EBMs deal with aggregate metrics like density, flow, and average speed at

the macro level. However, studies on crowd mobility differ widely in purpose,

often combining the description of pedestrian movement with other aspects

32 3. Related Works

of the system. In particular, in the state of the art, many multilevel models

have been used to study pedestrians’ response in emergencies like evacuation

due to fire or earthquakes or to investigate interactions between pedestrians

and means of transport.

Modeling Approaches Similarly to traffic modeling, a multiscale approach

can be exploited for describing pedestrian movements by alternating microscale

representations where the behavior of pedestrians is depicted individually to

coarser-level scales dealing with groups of people or crowds.

At the microscopic level, the movements of pedestrians are modeled in

relation to their surroundings, considering factors like destination, obstacle

avoidance, and aversion to crowded areas. To encompass all these aspects,

various approaches such as social force models, centrifugal models, and agent-

based approaches can be employed [90]. Social force and centrifugal models

introduce attractive/repulsive forces between objects in the environment and

individuals, while the agent-based approach treats each person as an intelligent

and autonomous entity. The macroscopic level, instead, refers to the aggregate

dynamics of groups of people, dealing with averaged quantities such as density,

momentum, and energy [91]. Finally, Mesoscopic models lie somewhat between

the micro and macro level and consider groups of pedestrians neglecting

detailed internal interactions, with the purpose of capturing group dynamics

while still maintaining some control over individuals [92].

3.3.1 Emergencies

The simulation of emergencies and in particular those involving evacuations

has gained particular interest from researchers, as a significant volume of

research has been carried out to investigate them. Within these scenarios,

a specific subset of agents, referred to as leaders, assumes the critical role

of identifying secure exits and guiding others to safety. In [93] a strategic

guidance model defines how leaders navigate towards exits, exploiting their

knowledge of the environment to assess both risks and congestion, while a

3.3 Crowd Modeling 33

pedestrian-following model delineates the behavior of followers, who respond

to the leaders’ guidance. Similarly, in [94] the leaders make strategic decisions

on the route to take based on their macroscopic view of the environment,

while the operative aspects regarding pedestrian movements are described

at the microscopic level. In [95], a multiscale framework was proposed by

the authors to simulate the response to a tsunami alert. At the micro level,

people’s behavior is described by a leader-follower model where agents are

marked either as leaders or followers, based on their knowledge of how to

respond effectively to a tsunami alert. On the other hand, at the macro level,

the flow of pedestrians on the road network is represented by a LWR model.

A highly studied field concerns the evacuation of buildings in case of fires.

In these scenarios, a multilevel approach can be employed in order to have

separate models for describing respectively pedestrian mobility and fire/smoke

propagation. In [96] a cellular automaton describes the evolution of the blaze

inside of a building, while in [97] and [98] smoke and fire propagation are

described by a set of equations. In [99] where Markov-chain models are used

to mimic both smoke propagation and people evacuation, while in [100] the

authors reproduce a cinema evacuation scenario by integrating a building

model with a complete city/district model to simulate daily activities in the

areas surrounding the building. A similar approach can also be employed

to simulate the evacuation process resulting from other destructive events,

such as floods. For instance, in [101] a continuous flood model describes the

spread of water over a city, while an agent-based model mimics the behavior

of pedestrians heading from dangerous regions toward safe areas. Similarly,

in [102] the authors consider the extreme scenario of dam failure by combining

an ABM that takes into account diversity in individual behavior and social

characteristics for describing evacuation dynamics, and a hydrodynamics

model based on diffusion equations. Both levels are kept synchronized: the

hydraulic simulation is executed first, and the results are integrated into

the ABM. It is worth observing that the temporal scale of the models is

different (10 minutes vs 5 seconds) so that the water depth is updated only

34 3. Related Works

after 120 steps of the evacuation model. Fluid dynamics are not necessarily

employed to describe liquid propagation, as these equations can also be used

to simulate the movement of individuals in conditions of overcrowding, a

situation often encountered during evacuations or concerts. In [103] the

authors integrate an ABM with Smoothed-Particle Hydrodynamics (SPH), a

method where fluids are represented as a collection of particles that interact

with each other according to a set of physical laws. To couple the two

components, each agent is treated as a SPH particle subject to various types

of forces that ultimately drive the speed and acceleration of agents. Finally,

a multiscale approach is employed in [104], where the physical space in

the evacuation model is either continuous or represented as a network. A

continuous space representation is employed in areas demanding fine-grained

resolution, allowing for a sophisticated depiction of pedestrians’ behavior,

with different types of agents reacting diversely to environmental stimuli.

Each agent is described by a set of continuous attributes such as position,

velocity, body frame width, and others. In regions where a high level of detail

is not required, a network approach is adopted. Natural partitions like rooms

or corridors become graph nodes and connectivity elements such as doorways

serve as edges. Nodes and edges have a capacity defined as the number of

people that a space partition can contain and the maximum number of agents

that are allowed to traverse an edge at any given time.

3.3.2 Interactions with other means of transportation

Considering pedestrians’ behavior in contexts where they share spaces with

various media of transportation may help in evaluating and enhancing the

safety of the urban environments, and identifying potential risks. In [105] the

authors investigate railway crossing intersections, using a discrete-event model

to represent pedestrians and a continuous model to represent trains. In [106]

the risk of collisions between vehicles and pedestrians at road intersections

is evaluated with a multilevel modeling approach, considering both micro-

environment factors (e.g., the characteristics of the intersections like traffic

3.4 Urban Issues 35

signs, vehicle flow, road features, and crosswalks) and macro-environment

factors such as the urban design and land use of the areas surrounding

the intersection. In [107] a queueing network model simulates vehicular

traffic, public transport, and pedestrians in low-density conditions, while the

movement of pedestrians under dense conditions is described by a force-based

model. In [108] the purpose is to simulate crowd behavior in the context of

public events. While a macroscopic model describes the arrival of people via

shuttle bus, the movement of pedestrians inside the event areas is modeled at

three different levels: strategic to define the target of the individuals, tactical

to determine the route toward the destination and operational describing the

actual walking behavior. The operational level is described at either microscale

(for cramped and narrow areas) or mesoscale via a cellular automaton model,

with transition zones managing the scale switching. Although agent-based

models are the most frequently used approaches for crowd simulation, cellular

automata are used as well. In [109] a cellular automaton represents people’s

movements inside the two ferry terminals, while a mesoscopic graph-based

model simulates the journeys of ferries.

3.4 Urban Issues

While the movement of vehicles and pedestrians is a crucial aspect of

city life, some simulation studies focus on other urban issues, such as the

morphology of cities and the activities of their residents. While in this broad

field the purposes of the research are the most diversified among the considered

areas, a common trait is the importance of real geographical data due to

the importance of representing the environment under test as accurately as

possible.

3.4.1 Morphology of cities

Environmental considerations are becoming increasingly important in the

planning of urban structures and infrastructure, as it is necessary to take

36 3. Related Works

into account the impact of climate change and the more frequent occurrence

of destructive events such as floods, droughts, or extreme heat. In [110] the

authors provide a Urban Integrated Assessment Framework (UIAF), designed

to evaluate the impact of the climate and economic change in the cities.

The UIAF consists of a set of models that are coupled according to a three-

level hierarchy. At the top, city models incorporate socio-economic changes

and climate forecasts to analyze spatial patterns of a future population.

City-zonal models downscale the above data to a finer spatial resolution, in

order to estimate climate-related impacts using population, transport, and

land-use models. Finally, zone-parcel models enable the simulation of the

possible spatial pattern of housing development associated with the population

prediction for each zone.

In [111], the authors address the issue of heat islands, referring to urban

areas that exhibit significantly higher temperatures than their surroundings.

The study employs three distinct models operating at various spatial scales,

each considering different parameters like temperature and wind for the

mesoscale and greenery, surrounding buildings, and pavement for the mi-

croscale.

Other research focuses on urban planning, aiming to assess the potential

impact of new policies and infrastructure changes. For instance, Simmobi-

lity [112] is a simulator that integrates various mobility-sensitive behavioral

models, allowing for comprehensive analyses that consider interactions among

land use, transportation, and communication. Simmobility is characterized

by three-time resolutions, ranging from fractions of seconds for short-term

scale to days or even years for long-term resolution. At the long-term scale,

the simulator represents strategic activities like job or house relocations, land

development, or vehicle purchases. The mid-term level includes daily activity

scheduling, route, destination, and departure time choices, encompassing a

pre-day model for deciding the daily schedule of an agent and a within-day

model for transforming the activity schedule into effective decisions and exe-

cution plans. Finally, the short-term scale takes care of traffic and pedestrian

3.4 Urban Issues 37

mobility, modeling the movements of people, vehicles, and commodities.

Some papers have a specific focus on urban planning, such as in [113] and

in [114], where city expansion dynamics are simulated considering respectively

the use case of Wuhan and Auckland. In [113] the development process

of an urban area is simulated by a three-scale framework: a macro SD

model to predict the demand of new urban land use, a meso model to take

into account intercity interaction to determine the areas for potential urban

expansion, and a microscale model to represent neighborhood interactions

through logistic regression. The three scales are then incorporated to form

a cellular automaton describing the evolution of land use in the region.

In [114] government agents manage the urban development at the macro scale

according to zonal requirements and the needs of resident agents, which try

to find the best place to live at the micro level. The ABM is then coupled

with an artificial neural network for supporting agents’ decisions about which

non-urban zones to consider for city expansion. Studies on the potential

urban growth of the city of Wuhan have been carried out in [115] through

a multiscale hierarchical framework. At the macro level the probability of

change is defined in the whole study area, at the meso level the density of

change is defined only in the extent of land-cover change from non-urban to

urban, and at the micro level the intensity of change is determined locally,

detailing the specific extent of the changes. Similarly, in [116] the authors

present a modeling framework aimed at replicating land use and land cover

change processes in Costa Rica. A SD model uses data at different aggregation

scales, showing how local, regional, and national trends can have opposite

effects and results. Finally, some research works use a pure ABM approach

for describing land-use dynamics. In [117] CA are employed both at macro

level to simulate land use and transport infrastructure, and at the micro level

to reproduce pedestrians’ movement. In [118] the authors combine different

agent-based sub-models describing how environmental, social, and economic

factors change the land-use dynamics. Sub-models interact according to the

concept of “co-modeling”, which means that micro models are considered

38 3. Related Works

agents of higher-level models.

3.4.2 Activities of Residents

In [119], the authors analyze air pollution considering the urban scenario

of Madrid. PM10 dispersion is calculated by Computational Fluid Dynam-

ics (CFD) models, which receive important inputs from other sub-models.

Specifically, the Weather Research and Forecasting (WRF) mesoscale model

provides boundary conditions for what concerns meteorological variables such

as wind speed and direction and surface heat fluxes, while a microscale traffic

emissions model provides hourly PM10 emissions.

In [120] a regional regression model is combined with a local agent-based

model to describe deforestation processes in Amazonia. The macro regression

model considers various environmental, demographic, agrarian structure,

technological, and market connectivity indicators, while at the local scale two

types of agents exist: small farmers who prefer lands close to roads or urban

centers and big farmers who look for large pieces of inexpensive land.

Land use research has also been carried out through multilevel regres-

sion techniques. For instance, in [121] the authors constructed a predictive

statistical model to explore land use in the Philippines. The investigation

incorporated data at multiple levels, including field-level details such as the

type of cultivation and land characteristics, household-level information like

the ethnicity of family components, and village-level metrics such as the

percentage of the population with a specific origin.

Some works are dedicated to issues concerning smart territories, a topical

subject due to the recent advent of IoT applications. In [122] human mobility

is integrated in a simulation of IoT and smart territories, focusing on a

smart market scenario where users can subscribe their interests to some

products or services, receiving information about events and sales in the

neighborhood. In this work, two simulators are employed at two different

levels of detail. At a coarser level an agent-based simulator uses PADS

and Descrete-Events Simulation (DES) methodologies to describe dynamics

3.5 Social Sciences 39

over the whole territory, with agents being involved in sales, subscriptions,

and geographical movements. On the other hand, a fine-grained simulator

can be triggered when needed in order to describe in detail the specific

interactions within the smart market, considering wireless communication

issues, interactions, and movements. In [123] a further level is added, with a

set of equations describing the flow of customers and the parking strategies in

the neighborhood. Here a wrapper is used to handle the interactions among

the models, coordinating the execution of the two fine-grained simulators

and synchronizing their activities with the higher-level simulator. Parking

activities have also been studied in [124], where an NFD model describes the

vehicle flow, while at the microscale a parking algorithm mimics cruising-for-

parking activities. In this model, the decisions are influenced by factors like

cruising speed, parking duration, and, of course, parking occupancy.

3.5 Social Sciences

M&S is a popular instrument in social studies, as it provides a means to

understand, analyze, and predict complex social phenomena. However, the

general approach to carry out multilevel modeling investigations on social

sciences differs remarkably with respect to the other areas that have been

previously considered. In particular, the concept of “level” in social sciences

often denotes a point of view of the system rather than a component of a

model. While models used in social sciences differ significantly in purposes

and implementations, a common trait is that the dynamics of individuals

are considered in relation to other individuals or groups. Given the diverse

nature of human relationships, a common strategy is to use multilayer graphs

for modeling social connections. In this representation, nodes correspond to

individuals, edges symbolize connections between them and the layers are the

various environments where specific connections occur. This methodology is

popular especially in investigations related to the diffusion of trends, news,

and ideas, since multilayer graphs are well suited for representing information

40 3. Related Works

across various social networks to which individuals may belong.

For instance, in [125] two separate layers are employed to represent Twitter

and FriendFeed links. Similarly, in [126] two layers represent two types of

human relationships, and a SIR-based model is used to mimic information

propagation, where individuals are either unaware of the information, or

spreading the information to the contacts, or no longer spreading informa-

tion. In [127] different layers correspond to different types of relationships.

A multiplex network (i.e., multilayer network where inter-layer edges can

only connect nodes that represent the same actor) is used to investigate

society structuring, proving the hypothesis that society is composed of several

strongly-tied communities which are in turn connected to each other by weak

connections.

In [128], online and “real-life” connections are represented across differ-

ent network layers, while information propagation is described through a

compartmental model where people are labeled either as Ignorant, Spreader,

Variation (i.e., people who diffuse an altered version of the information),

Oyster (i.e., people who received information but are not actively spreading

it) or Recovery (i.e., people who no longer spread information) [129].

Another noteworthy research area in the field of social sciences is popula-

tion dynamics, which encompasses factors such as susceptibility to diseases,

homophily, migration, and gentrification. The latter refers to the influx of

middle-class or wealthy people in popular neighborhoods, causing the rise

of prices that make it hard for low-income residents to cope with the new

cost of living. To model these scenarios accurately it is important to collect

a significant amount of reliable data, which is then analyzed at both the

individual and aggregate level, in order to find useful insights supported by

statistical evidence.

Numerous studies have embraced this approach. The first category of

papers is dedicated to exploring links between health conditions and other

individual characteristics. In [130] childhood obesity is analyzed by conside-

ring information at the individual level (sex, age, ethnicity), zip-code level

3.5 Social Sciences 41

(median household income, lifestyle classifications, urbanization), county level

(median household income, urban-rural distribution). In [131] the authors

study correlations between obesity and diabetes, taking into account the

characteristics of both individuals and the geographical area (e.g., poverty,

population density). In [132] malaria diffusion in children is analyzed consi-

dering risk factors at the individual level, household level (wealth, education,

sources of drinking water), and community level (place of residence). In [133]

the incidence of visceral leishmaniasis in the Brazilian city of Teresina is

studied census tract level (socio-economic and demographic information) and

district level (prevalence canine infection, and insecticide spraying). In [134]

the intent is to evaluate the efficiency of “Avahan”, a HIV prevention program

in India, taking into account variables at both individual and district level.

In [135] a multiscale geographic weighted regression model has been employed

to link economic and social indicators to road fatalities in Texas. From this

investigation, it turned out that one of the most important factors associated

with road accidents at the local scale is the average time required to go to

work, while at the regional and global scale, one of the most concerning

factors is driving alone, which has a negative effect on road security. In [136]

the authors analyzed the role of socio-economic and environmental influence

on food choice, specifically on fruit and vegetable consumption. This study

considers data at both the individual level (survey data on fruit and vegetable

consumption, individual and social influences) and neighborhood level (super-

market and fruit and vegetable store density). In [137], the authors investigate

how sexual orientation affects the earnings of US citizens, considering data

at both the individual level and the contextual level (i.e., the presence or

absence of state-level anti-discrimination laws, and which political party was

governing the state during the considered period).

A second category of papers about population dynamics analyzes the effects

of relocation of individuals. In [138] gentrification is analyzed considering

the case study of Philadelphia. The model incorporates features at both

(i) individual level, including ethnicity, education attainment, marital status,

42 3. Related Works

and income, and at (ii) neighborhood level, such as the gentrification process of

a local area and neighborhood stability. Similarly, in [139] correlations between

gentrification and voter turnout are investigated by examining the social

landscape of Atlanta. In this work, variables are considered at both individual

level (age, gender, ethnicity) and neighborhood level (average instruction

level, gentrification rate, percentage of owner-occupied housing units), while

also taking into account cross-level interactions between gentrification and

longstanding voters. In [140] a multilevel modeling approach is proposed

to analyze the migration phenomenon within Norway. In this work various

approaches are proposed, considering both individual and aggregated features

such as age, job, family status, education level, etc., which define individual

probabilities of migration. The paper proposes models of different complexity,

culminating with the event history models, where decisions are carried out

based on data about the events that occurred throughout the entire life

history of the individuals. Slightly different is the approach adopted in [141]

to model the social integration of migrant workers in China, where a two-

level data structure is employed, considering both individual and city levels.

Similarly to other works, individual variables include demographic, social,

and occupational characteristics of migrants, while city variables concern

the nature of a city, economic conditions, population structure, language

and culture, and institutions. In [142], a study on human mobility considers

features at the micro level (household and housing units), meso level (groups

of micro-agents and urban sectors), and macro level (city characteristics,

urban planning), where people’s mobility is influenced by agents similarity

and affinity between social groups and urban sectors. Research on population

dynamics extends beyond the human species. For instance, in [143] the authors

study poikilotherms (i.e., animals with fluctuating internal temperatures, such

as lizards) with the goal of estimating mortality and fecundity rates. In

the proposed approach, an individual-based model predicts the number of

produced eggs based on the current adult population, while a compartmental

model describes population dynamics through the means of a set of ODEs.

3.6 Others 43

Lastly, in [144] a multiscale approach is proposed for social sciences analyses

based on the well-known prey/predator model [145]; the variation in the

number of predators and prey is defined by differential equations at the macro

level, while the micro model is in charge of describing individual behavior of

both preys and predators.

It is worth noting that ABMs are very popular in the social sciences [146],

even if they are not frequently employed in multilevel frameworks. However,

we believe that multiscale approaches could become increasingly relevant in

the future, as the recent development of multiscale ABMs platforms such as

LevelSpace [147] could boost the use of this methodology. LevelSpace is an

extension of NetLogo [148], a widely used tool for implementing agent-based

models. Through LevelSpace, developers can develop applications composed

of multiple interacting NetLogo models that are structured hierarchically,

facilitating the creation of multilevel simulators and the integration of existing

models.

3.6 Others

This section is used to discuss the papers that did not fit into any of the

previous categories. The work presented in [149] introduces a supply chain

simulation framework. While many studies in this domain rely on discrete-

event models, this paper advocates a multilevel methodology that incorporates

both continuous and discrete models. The activities of a company are modeled

at different scales. The operational level describes activities in single plants

over a short time horizon, while tactical and strategic levels address high-level

policies. The goal of [150] is to quantify the economic impact of climate

change on different stages of the potato supply chain, considering issues such

as drought and extreme weather. The investigation is performed through

a pure agent-based approach, with five levels appearing in the simulation:

the cultivation, shipping, and processing of potatoes, the retailing, and the

logistics of the transportation of commodities. A machine learning model is

44 3. Related Works

also integrated into the simulation for predicting potato prices, taking into

account yearly trends and seasonality. In [151], the lifecycle of commodities

is described by an agent-based modeling framework, with multiple temporal

scales involved. The agents of the model correspond to all actors involved in

the process of producing, consuming, and distributing commodities. Three-

time scales are used: long-term planning represents strategic activities such as

commodity flows and logistic network formation, mid-term planning represents

tactical decisions such as shipment generation, logistic planning, and vehicle

flows, and finally short-term planning represents operative choices, such as

scheduling, routing, and dispatching decisions. In [152] the authors propose a

simulation environment that combines agent-based modeling and SD, taking

a two-company marketplace as an example. At a high level, information

collected from the behavior of customers is aggregated to describe trends.

Customer decisions are influenced by high-level information, such as product

popularity, and also by the choices of their peers, guided by a neighborhood

model. The perspective of the companies is modeled through continuous

feedback loops employing a SD approach, depicting the capacity to attract

and retain customers. Fundamental elements for the described framework

are the Continuous Agent-Based Modeling (CABM) Builder, responsible for

managing the inputs from the agents to build the equations to be solved,

and the CABM solver, which solves the various equations to compute the

simulation results. Finally, in [153] a multilevel approach is used to study

emotional psychology: the authors propose a model that maps the interactions

among mood, emotion, and characters, which are defined on three different

levels and with a set of equations, into changes in mood and emotion.

Part II

Methodology

45

Chapter 4

Design Patterns

A part of the work presented in this chapter has been published in [154]

and is reported here for the reader’s convenience.

In software engineering, design patterns are general design solutions to

recurring problems. Unlike algorithms, where the step-by-step solution to

a problem is detailed, design patterns provide abstract descriptions of how

to address certain categories of common problems in software development.

They do not offer implementation details, as these may vary based on the

context and the technologies employed, but they outline the key concepts to

overcome the issue. Often, it is crucial to offer multiple solutions to a specific

class of problems, as the proposed patterns frequently come with various

pros and cons. Depending on the context and the developer’s needs, greater

emphasis can be placed on one aspect over another.

The concept of design patterns in software engineering first appears in

[155], where the authors proposed solutions for various classes of problems in

the context of object-oriented programming. In particular, three categories

of design patterns were discussed:

• Creational patterns, which deal with object creation mechanisms, ab-

stracting the instantiation process and making the system independent

of how its objects are created, composed, and represented.

• Structural patterns, which deal with the composition of classes or

47

48 4. Design Patterns

objects, forming larger structures while keeping the individual elements

of a structure independent.

• behavioral patterns, which deal with the interaction and responsibility

of objects, defining how they communicate and collaborate.

Other than the categories proposed in [155], many other design patterns

have been studied by researchers in the last decades, such as strategies for

managing concurrency [156] or architectural solutions [157].

As design patterns could lead to a comprehensive investigation of many

aspects of software development, in [154] specific solutions for M&S have been

introduced. In particular, the proposed design patterns were classified into

the following categories:

• Orchestration patterns, which deal with the flow of execution of sub-

models.

• Structural patterns, which describe how sub-components can be aggre-

gated into complex models. Note that these patterns are taken directly

from [155] since they are relevant for multilevel modeling besides general

Object-Oriented programming.

• Information exchange patterns, which define how data can be transferred

between models of different types, e.g., continuous and discrete-space

models.

• Multiscale patterns, which are used to define how models employing

different levels of details can be integrated.

4.1 Orchestration Patterns

GEMMA demonstrates how organizing various components within a com-

plex model can, in most cases, be represented as a non-binary tree. The root

of this tree may be either i) one of the various sub-models, ii) a wrapper

4.1 Orchestration Patterns 49

script responsible for executing other sub-models, or more abstractly in the

case of peer-to-peer structures, iii) the user itself manually executing the

various components. Orchestration patterns illustrate strategies for arranging

the tree structure of the various sub-models, defining how the execution flow

moves from a parent to a child within the tree. These solutions are not

mutually exclusive and can be combined when needed to create more complex

hierarchical structures.

4.1.1 Models’ Controller

This pattern is characterized by a key entity, the Controller, that takes on

the role of a wrapper script, orchestrating the execution of all the instances

of the underlying component(s), and providing higher-level functionalities,

which include managing information exchange between models and exercising

semantic control over the model’s state and input/output operations. Ad-

ditionally, often the Controller serves as the interface for the user, sitting

at the top of the hierarchy. In this case, it can contain all the important

parameters of the model, providing users with the ability to easily modify

the key variables for conducting experiments, enabling the testing of various

system configurations without the need to tinker with the source code of the

sub-models. Moreover, when a system parameter is shared among multiple

sub-models, it is advisable to define it at the top of the hierarchy. This ensures

that the parameter is consistently updated and subsequently passed down to

the underlying components, preventing inconsistencies that may arise if not

all components are updated uniformly.

The introduction of a Controller effectively centralizes the scheduling and

management logic, thereby enabling a clear separation of concerns between

functionality and implementation. Furthermore, this design allows for greater

flexibility, as the addition of extra sub-models is made relatively straightfor-

ward, as only the Controller is involved. However, a potential drawback that

must be acknowledged is the risk of the Controller becoming overly complex

when dealing with a substantial number of incompatible sub-models.

50 4. Design Patterns

An illustrative application of the Models’ Controller pattern can be found

in [158], where it was employed to investigate crowd evacuation through

a multilevel model. In this work, a synchronization module is in charge

of scheduling the execution of micro and macro scales while managing the

exchange of information.

4.1.2 Director-Worker

The Director-Worker pattern occurs when in a hierarchical structure the

execution flow is passed from a parent node of the tree to one of its children.

While the Director includes some functionalities of the Controller, it differs in

that the Director itself is a sub-model, whereas the Controller is an external

entity outside the model. Additionally, the Director-Worker pattern can be

combined with the Composite pattern (see Section 4.2).

It is worth noting that when dealing with preexisting models, the hierar-

chical connection between two components requires some change in the source

code so that at least the Director must be adapted to schedule the instances

of the Worker(s). Similarly to Models’ Controller, if a Director is the root of

the tree structure it must serve as the user interface so that preferably the

root contains the system’s parameters and conveys them to the underlying

components.

Models’ Controller and Director-Worker patterns can easily be combined,

as shown in Figure 4.1. For example, in [123] a simulator positioned at the

top of the hierarchy employs a wrapper script to manage various instances

of underlying models. In this scenario, the wrapper script can be considered

both a Worker within a Director-Worker scheme and a Controller for the

lower-level modules.

4.1.3 Director on Hold

Director on Hold is the simplest way to implement the Director-Worker

scheme. In this pattern, the Director pauses while the Workers are active,

4.1 Orchestration Patterns 51

Model C

run()

Model B

run()
setup_model_C()
launch_model_C()

Model A

run()
Controller

A_args
B_args

setup_model_A(A_args)
setup_model_B(B_args)
launch_model_A()
launch_model_B()

Figure 4.1: UML Class diagram of Model’s Controller and Director-Worker combined

resuming its execution only after the tasks of the Workers are completed.

Despite its simplicity, this approach may introduce notable overhead, in

particular if the creation and destruction of Workers involve significant costs.

While constructing and dismantling EBMs might be a relatively lightweight

procedure, the same cannot be said for ABMs, where the creation of the

agents and the storage of their state often constitute non-negligible activi-

ties. Moreover, the Director remains inactive during the Workers’ execution,

limiting the level of concurrency achievable within the model.

4.1.4 Worker on Demand

Worker on Demand is a design pattern that addresses the problem of the

overhead associated with creating and destroying Workers as needed. When

these procedures are both resource-intensive and repeated multiple times

throughout the execution, a computationally efficient approach is to generate

all Workers at the beginning of the execution and to keep them on standby.

Then, whenever one or more Workers are required, such sub-models are called

to compute some task.

The Worker on Demand pattern introduces a clear separation between the

initialization of Workers and the execution of their tasks, bringing two primary

advantages. Firstly, complex entities are generated only once, potentially

saving significant time, especially when dealing with a large number of entities

over the model’s lifespan. Secondly, this approach allows for the storage and

retrieval of entity states for further examination. In fact, in certain scenarios

resuming the state of a Worker is a costly operation, requiring the creation

52 4. Design Patterns

of temporary files to store information that would otherwise be lost upon

the destruction of the Worker’s instance. However, a notable drawback is

that the Worker pool occupies memory space even when inactive, making

this strategy unsuitable for memory-constrained environments.

Worker

loop

Director

Worker is terminated

An instance of Worker is created

The output Worker is
returned to Director

Worker is called

Figure 4.2: UML sequence diagram of Worker on Demand

4.1.5 Concurrent Modularity

The best way to improve the performance of a multilevel simulator is to

parallelize its execution, running multiple instances concurrently whenever

possible. Unlike PADS, where parallelism refers to the execution of parallel

components or multiple instances of the same model launched together,

the Concurrent Modularity pattern facilitates the simultaneous execution

of semantically different models, potentially of varying types. However,

concurrent execution requires meticulous time management, as different sub-

models may adopt distinct granularities or time concepts, especially when

integrating continuous and time-stepped models.

4.2 Structural Patterns 53

To address the time management issue, several strategies can be employed,

such as:

• Time translation mechanisms, which translate the local time represen-

tation of a sub-model into a global time universally understood by all

other components.

• Checkpointing, meaning that all sub-models progress in lockstep and

synchronize periodically. When a sub-model reaches a checkpoint, its

execution halts, resuming only after all other sub-models reach the

same checkpoint. To optimize efficiency, it is crucial to determine an

appropriate frequency for scheduling checkpoints. If the frequency is too

low, it may lead to excessive overhead, while excessively long intervals

are more likely to result in inconsistencies.

• Rollback mechanisms, which are methods for rolling back in time upon

detecting inconsistencies, undoing recent updates, and reverting to a

previous (virtual) simulation time where a consistent state was calcu-

lated [159].

4.2 Structural Patterns

Structural patterns describe how software elements can be composed into

larger structures while promoting flexibility and code maintainability. The

patterns described in this section are taken from [155], where they have been

initially proposed in the context of software engineering.

4.2.1 Composite

Composite design pattern allows for the hierarchical composition of soft-

ware elements according to a tree-like structure, enabling the uniform manage-

ment of both atomic and composite objects. This facilitates the integration

of new elements in the system as the interface for both atomic and aggregate

components remains the same. The pattern is composed of four elements:

54 4. Design Patterns

• Client, which is the element that interacts with the members in the

composite structure.

• Component, which is an interface that defines the common methods

for both the Leaf and the Composite, allowing them to be treated

uniformly.

• Leaf, which is an atomic element that does not have children in the

hierarchy.

• Composite, which is an internal node of a tree structure. It implements

the Component interface but also maintains a collection of children,

which can either be Leafs or other Composites.

Composite pattern can be applied for building hierarchical ABMs. In

this context, macro agents may serve as containers of multiple micro agents.

The Composite component may thus provide an aggregate coarse-grained

representation of some segment of the model; when a higher level of accuracy

is required the Composite executes the low-level agents that it contains, which

in turn might be composite objects and contain some finer-grain agents.

This pattern could find application in [160], where the authors investigated

the propagation of black rats via commercial transportation. In this work,

the main building block of the simulator is represented by the concept of

World, defined as a complete and self-sufficient sub-model with its own places,

agents, spatial resolution and temporal scale. Worlds allow the creation of

nested structures, potentially including other worlds describing the system at

a higher level of resolution. The Composite pattern could be then applied to

provide a high-level management of all the Worlds in the system.

4.2.2 Bridge

Bridge pattern allows for the separation of a component’s interface (ab-

straction) from its actual implementation, enabling independent modifications

4.2 Structural Patterns 55

Composite
l ist<Component> children
operate()
add(Component c)
removeChild (Component c)
getChild()

Component
operate()
add(Component c)
removeChild (Component c)
getChild()

Leaf
Agent

operate()

Client
l ist <Components> agents

Figure 4.3: UML class diagram representation of Composite design pattern

to both. The Bridge pattern is composed of four main components, as shown

in Figure 4.4:

• Client, which is the component that interacts with the Abstraction

without being aware of the implementation details.

• Abstraction, which defines the high-level interface that clients will use.

• Implementor, which serves as an interface for describing the technical

functionalities of the Abstraction.

• Concrete Implementor, which defines the concrete implementation of

the Implementor.

Decoupling the interface of an object from its implementation is a common

practice in object-oriented programming. This approach enables the definition

of various implementations of an abstraction that can be used interchangeably,

even at runtime, transparently to the client. This enhances code flexibility, as

it becomes possible to make changes to the Concrete Implementor without

56 4. Design Patterns

having to modify the interface through which these elements are perceived

externally. Additionally, different Concrete Implementors can be defined, cre-

ating the opportunity to create heterogeneous objects with distinct behavioral

rules that are uniformly perceived by the client.

Bridge pattern can find application in multi-agents systems, by treating

agents as objects in object-oriented programming, enabling to separate the

definition of the agents from the code that dictates the behavior of certain

types of simulated entities. In particular, in multiscale modeling the pattern

can be employed to treat uniformly atomic and aggregate agents, thus enabling

various levels of granularity.

In simulations focusing on emulating human behavior, the Bridge pattern

can be employed to handle diverse types of entities, including individual

agents (micro-agents), small groups of individual agents (meso-agents), and

large groups of individual agents (macro-agents). For instance, in [161], the

movement of pedestrians is simulated with a hierarchy of crowds, groups, and

individuals that coexist in the same simulated environment. Bridge pattern

empowers developers to modify agent behavior without impacting how the

Client interacts with them. By abstracting away implementation details,

the Abstraction provides a simplified interface for the Client, facilitating the

high-level management of agents

4.2.3 Adapter

Adapter is a design pattern that facilitates the collaboration of elements

with incompatible interfaces by introducing components capable of translating

one interface into another. The pattern is composed of four components:

• Client, which is the component that uses the Adapter to interact with

the Adaptee. It might either be a wrapper of the Models’ Controller

orchestration pattern or a Director in a Director-Worker scheme.

• Target, which is the component that the Client wants to use.

4.2 Structural Patterns 57

Concrete Implementor
Old_Person_Behaviour

move()

Concrete Implementor
Young_Person_Behaviour
move()

Abstraction
Agent

Agent_Behavior ab
operate(Agent_Behavior ab)

Concrete Implementor
Group_Behaviour

move()

Concrete Implementor
Crowd_Behaviour

move()

Implementor
Agent_Behavior

move()

Client
l ist <Agent> agents

Figure 4.4: UML class diagram representation of Bridge design pattern

• Adaptee, which is the component that must be adapted in order to be

used by the Client.

• Adapter, which is the component that acts as an intermediary between

the Client and the Adaptee, translating the interface of the Adaptee to

the interface expected by the Client (i.e., the Target interface).

Adapter can be employed in multilevel modeling, treating objects as if

they were sub-model of a complex simulation. This pattern can facilitate

the interoperability among components that were not originally designed to

work together. This commonly occurs when building a multilevel model upon

pre-existing components, allowing developers to make only minor changes to

the source code of the Client. Another scenario occurs when the Client is

working with a sub-model that represents the system at a specific granularity,

and developers aim to integrate new sub-models at different scales.

Let us consider, for instance, a simulation of urban scenarios, where traffic

is depicted at the micro scale, detailing the individual movements of vehicles.

If developers wish to carry out more comprehensive studies, they may need

to include the surroundings of the area under investigation, providing a

macro-level representation of traffic characterized by aggregate metrics such

58 4. Design Patterns

as density, average speed, and vehicle flow. In this case, developers could

employ an Adapter to translate the interface of the macro model into the

interface of the micro model, enabling its utilization by the Client.

Adaptee
macro_simulate()

Adapter
Adaptee m
Adapter (Adaptee m)
simulate()

Targe t
Micro_model

simulate()

Client
l ist <Adapter> macro_areas
list <Micro_model> micro_areas

Figure 4.5: UML class diagram representation of Adapter design pattern

4.3 Information Exchange Patterns

The execution of various sub-models involves the need for exchanging

information among the various components. Sometimes the flow of data

follows a bottom-up direction, with Directors retrieving the information from

the underlying Workers, other times the flow is bidirectional. Additionally,

the involved components may employ different data representations, leading

to the potential conversion of information from discrete to continuous or vice

versa. Moreover, another crucial factor to take into account is the execution

platform. In distributed environments, communication becomes more complex,

necessitating the flow of data between distinct machines and potentially across

different execution locations. Information Exchange patterns delineate various

possibilities for exchanging data among sub-models and by considering these

4.3 Information Exchange Patterns 59

mentioned implications, one can identify the most suitable approach among

the available options.

4.3.1 Return Value

The Return Value pattern represents the most straightforward strategy for

data exchange in a Director-Worker scenario. In this approach, the Director

invokes the Worker, which then returns a result to the Director. While

this strategy is elementary, implementing it becomes challenging when the

Director is allowed to execute concurrently with the Workers. In such a

scenario, Worker execution operates asynchronously, potentially completing

before the Workers themselves terminate. To address this challenge, the

futures pattern from concurrent programming can be employed [162]. Here,

the Worker returns an object representing a promise to compute a result,

and the Director will block if it attempts to read the result before it has

been computed. Also, developers should check the consistency of the results,

making sure that the returned values align with the expected outcomes. This

can be accomplished through semantic controls or by using exceptions to

effectively handle errors. When the caller and the called models operate

on different machines, the concept of remote procedure call comes into play,

enabling to treat communications between components in a distributed system

as if they were local procedures, abstracting away the underlying network

details. To facilitate this, a communication protocol like XML-RPC must be

involved to manage the exchange of data. For example, in XML-RPC, XML

is used for encoding calls, and HTTP serves as the transport mechanism. The

communication process also involves serializing parameters and return values

for transmission over the network, encoding data in a format that can be

easily reconstructed on the receiving end.

A drawback of this pattern is that information exchange can only occur

when the entire method call completes, potentially causing unnecessary delays.

Additionally, if it is necessary for the Worker not to terminate its execution

after fulfilling the method call from the Director, the Director must perform

60 4. Design Patterns

two separate method calls - one to activate the Worker and another to execute

the simulation module, as illustrated in the Worker on Demand design pattern.

4.3.2 Pipe Through Temporary Files

While the Return Value pattern involves a Director calling a Worker, the

Pipe Through Temporary Files strategy, represented in Figure 4.6, offers a

more versatile approach for communication in any execution scenario. Data

consumers only need to be aware of the location of the file(s) and possibly

when new data becomes available. In this solution, data are encompassed

into files that are going to be erased just after the exchange of information

is over. The organization of data within these files can vary based on the

type of information and the requirements of both the caller and the callee.

Commonly used formats for data representation in this context include JSON,

XML, and YAML, which are human-readable and easy to write. Writing

data into temporary files simplifies the process of adding fields within the list

of values to be returned. This approach enhances flexibility and ensures a

straightforward method for expanding the information exchanged.

Nevertheless, it is crucial to acknowledge certain limitations. File opera-

tions, such as creation, reading, and writing introduce a degree of overhead

whose impact varies based on the number of operations performed. As the

significance of this aspect depends on the scale of operations, it can be safely

overlooked in case the impact on the execution time is negligible. Furthermore,

supplementary mechanisms are required to alert consumers when new data

becomes available. Establishing effective communication about data updates

is essential for maintaining synchronization and ensuring that relevant parties

are informed promptly. Finally, if the application terminates unexpectedly,

the developers should implement some mechanism to delete all temporary files

before a new simulation is performed. This precautionary step is essential to

prevent the contamination of a new execution with outdated information from

previous runs and to avoid the accumulation of meaningless files. A possible

approach to this issue is to implement a simple mechanism that removes old

4.3 Information Exchange Patterns 61

temporary files at the beginning of the execution before the actual simulation

phase starts.

loop

Temporary JSON file

Caller
call()
read_results()
empty_temporary_file()

Callee
perform_simulation()
print_result()

empty_temporary_file()

perform_simulation()

read_results()

print_result()

call()

Figure 4.6: UML sequence diagram representation of Pipe Through Temporary Files

4.3.3 Shared Memory

In the Shared Memory pattern, data are stored in some memory region

accessible to all the sub-models involved. This is the most efficient communi-

cation method, as data can be shared between processes without the need for

copying or serialization, which can introduce overhead in other communica-

tion strategies. However, shared memory is only suitable for communication

between processes on the same machine, and shared memory segments need

to be properly allocated, deallocated, and managed. Finally, similar to the

Pipe Through Temporary Files pattern, some mechanisms are necessary to

inform the data consumer when information becomes available, and possible

read/write conflicts must be carefully managed to maintain data consistency

and integrity.

62 4. Design Patterns

4.3.4 Rounding Strategies

In a multilevel framework, various components may employ different

policies for handling information. As a result, data may need to undergo

transformations during the exchange process, especially when transitioning

from continuous to discrete values or vice versa. Rounding strategies must be

carefully defined to oblige with invariant properties of the model, in order

to preserve the global consistency of the representation. Let us consider for

example a scenario where a population is split into compartments and a system

of ODEs updates periodically the number of agents for each compartment.

After the ODE model terminates, one may need to operate again with integer

values. Raw discretization can result in unit losses, breaking the invariant

of having a stable population. To solve this problem multiple strategies are

available.

• Highest decimals. Having n compartments and a loss of 1 ≤ m < n units,

the m compartments with the highest decimal number are rounded up.

This method, however, is not always applicable, as semantic constraints

should be taken into account. For example, in some SEIR model

implementations, the number of susceptible people should be strictly

decreasing.

• Designed compartments. Having a loss of m units, the c compartments

(such that 1 ≤ m < c) that are safer or more convenient to increment

are identified.

• Discretization. If the loss due to the transformation from decimal to

integer is not problematic (e.g., when dealing with high values where

the loss of a few units is negligible), a raw discretization of the decimal

numbers is an acceptable solution.

4.4 Multiscale Patterns 63

4.4 Multiscale Patterns

While multiscale models allow us to achieve an optimal trade-off between

computational efficiency and accuracy of the representation, the coupling

of the various scales also presents some challenges. Multiscale patterns are

strategies that describe how to switch from one scale to another and how to

maintain consistency among the various representations.

4.4.1 Adaptive Resolution

In multiscale modeling, high-resolution sub-models are frequently utilized

to describe critical components of the system. The distinction between a

more and less important part is often dictated by spatial characteristics, with

areas of greater interest detailed at a higher level. However, the concept of

criticality can also extend to time, thereby implying the alternation of various

models at different levels of resolution.

Adaptive Resolution, depicted in Figure 4.7, is a design pattern that enables

the dynamic switch of resolution when specific conditions are fulfilled. These

conditions are inherently dependent on the model and they encompass a wide

range of cases. Examples include changes in the state variables, the passing

of specific thresholds associated with the model’s state, temporal constraints,

the achievement of specific goals of the simulation, or the availability of

computational resources.

An applicative example can be found in [163], where the authors propose

an adaptive multiscale framework to model infection propagation. In this

work, initially, the simulation starts by employing an agent-based paradigm,

to comprehensively capture the initial dynamics of pathogen diffusion. Subse-

quently, once a specific threshold of infected individuals is reached, the model

switches to an equation-based methodology, as there is enough information

for the system of equations to work on aggregated measures. This transi-

tion facilitates the adoption of a population-averaged approach, optimizing

computational efficiency.

64 4. Design Patterns

Figure 4.7: Graphical representation of Adaptive Resolution design pattern

4.4.2 Spatial Aggregation-disaggregation

In multiscale frameworks, the notion of scale commonly revolves around

spatial resolution, allowing representations at various levels of granularity to

coexist within the same virtual environment. A recurring approach involves

employing microscopic models like ABMs to individually describe the behavior

of entities, alongside macroscopic models like EBMs that handle aggregate

representations. The coexistence of different spatial resolutions often requires

transitioning from one scale to another, a critical activity that demands careful

management. To address this scale transition, the concepts of aggregation

and disaggregation become crucial. Aggregation involves collapsing a large

number of entities at the micro level to build a single entity at the macro level,

while disaggregation is the inverse phenomenon. Different strategies can be

employed to establish the transition rules for aggregation and disaggregation.

In particular, in [164] the following four design patterns have been proposed.

As summarized in Figure 4.8, the choice among these solutions depends on

the importance of preserving fine-grained information and how the coupling

between the scales is performed.

• Zoom pattern, where microscale entities are destroyed when transi-

tioning to coarser-grained representations. This is the simplest way

4.4 Multiscale Patterns 65

Is information from micro agents
destroyed when they transition to

macroscale areas?
No

Yes

Zoom

Are micro agents
controlled by macro

agents?
No

YesHow is the coupling
between micro and

macro agents?
Unidirectional

Bidirectional
Puppeteer

View Cohabitation

Figure 4.8: Summary scheme of aggregation/disaggregation design patterns

to perform spatial aggregation, but it entails the permanent loss of

information.

• Puppeteer pattern, where the state of the individual entities is saved

when transitioning to the macroscopic scale, avoiding the loss of infor-

mation. The “frozen” entities will continue to update their state based

on their internal dynamics, but they lose the ability to perform actions,

which is delegated only to the higher-level agents.

• View pattern, where the state of micro entities is computed to reflect

the state of the macro entities from which they originate.

• Cohabitation pattern, where the link between the source and the target

scale is bidirectional so that they influence each other.

66 4. Design Patterns

Chapter 5

Design Principles for Multilevel

M&S

While multilevel modeling emerges in very broad forms in terms of applica-

tions, combinations of M&S paradigms employed, and strategies to coordinate

the execution of the various components, certain foundational principles that

are universal across all types of frameworks can be identified. To formally

define these baselines, one approach is to employ a metamodel capable of

encompassing all the key procedures for developing a complex model. In the

scientific literature, various metamodels have been proposed in the realm of

modeling and simulation, although less effort has been specifically devoted to

multilevel methodologies. To overcome these limitations, a novel metamodel

is presented in this Chapter, with the purpose of providing a comprehensive

and generic guideline to assist the development of multilevel simulators.

The remainder of the Chapter is organized as follows. Section 5.1 reviews

some metamodels for M&S available in the scientific literature. In Section 5.2

GEMMA is presented. Section 5.3 introduces a Python framework for building

GEMMA-compliant models. Finally, Section 5.4 provides an illustrative

example to prove the applicability of the proposal.

67

68 5. Design Principles for Multilevel M&S

5.1 Metamodels in the State of Art

In the context of M&S, various metamodels have been proposed by re-

searchers to formally guide model development. Among these, Discrete Event

System Specification (DEVS) has emerged as the standard for discrete event

models, including versions specifically for multilevel M&S. The goal of DEVS

is to enable users to formally articulate how model components transform

the internal state in response to events, and generate output based on inputs

and the current state.

DEVS atomic models are defined as a tuple [165]:

⟨X, Y, S, S0, ta, δint, δext, λ⟩

where:

• X is the set of all possible inputs;

• Y is the set of all the allowable outputs;

• S is the set of sequential states;

• S0 is the initial state of the model;

• ta is the time advance function that determines the lifespan of a state;

• δint is the internal transition function, which defines the rationale for

producing local state changes;

• δext is the external transition function, which defines how the state

evolves based on input events;

• λ is the output function defining which output is produced given a

certain state.

To better illustrate the functioning of DEVS, let us consider the modeling

scenario of a traffic light. In this use case, the traffic light will alternate

between the states of red, yellow, and green until nighttime arrives, after

5.1 Metamodels in the State of Art 69

which it will flash until dawn. When facing a red or yellow light, vehicles will

come to a stop, and under other conditions, they will proceed through the

intersection. This simple model could be described under DEVS formalism

as follows:

• X = {NIGHT,DAWN}

• Y = {MOV E, STOP}

• S = {GREEN, Y ELLOW,RED,BLINK}

• S0 = RED

• ta =


GREEN → 25sec

Y ELLOW → 5sec

RED → 30sec

• δint =


GREEN =⇒ Y ELLOW

Y ELLOW =⇒ RED

RED =⇒ GREEN

• δext =

 DAWN =⇒ RED

NIGHT =⇒ BLINK

• λ =



GREEN =⇒ MOV E

Y ELLOW =⇒ STOP

RED =⇒ STOP

BLINK =⇒ MOV E

While atomic DEVS can assist the developers in formalizing the behavior

of a sub-model, it is not able to describe the interactions among multiple

components. To address this limitation, researchers introduced Coupled

DEVS [166], which is defined as follows:

⟨X, Y,D,Mi,EIC ,EOC , ID , select⟩

70 5. Design Principles for Multilevel M&S

where:

• X is the set of input events;

• Y is the set of output events;

• D is the set of the sub-components that are included in the coupled

model;

• Mi, i ∈ D is the list of DEVS components that can be either atomic or

coupled;

• EIC is the set of external input couplings, defining mappings between

inputs originating from outside the system and input ports of the specific

module(s);

• EOC is the set of external output couplings, defining mappings between

module outputs and outputs directed outside the system;

• IC is the set of internal couplings, defining mappings between the

output of one module and the input of another module;

• select is a tiebreaker function that provides a way to resolve temporal

ambiguities arising from simultaneous events.

An example of how coupled DEVS should be applied can be found in [167],

where the authors simulated a Building Energy Management System by

decomposing the system into eight components: Costs, Optimizer, Solver,

Regulator, Equipments, Sensor, Hyperconverged infrastructure, and Occu-

pants. The relationships among these sub-models are effectively captured by

the meta-model, which facilitates the formalization of interactions among the

various components.

Both atomic and coupled DEVS can be further extended to enable parallel

execution through Parallel DEVS formalism [168]. In Parallel DEVS an

additional element is included in the tuple to handle collisions between simul-

taneous events, allowing the modelers to define the policies for serialization.

5.1 Metamodels in the State of Art 71

Finally, ML-DEVS is a DEVS extension for multilevel modeling [169] that

relies on MICRO-DEVS and MACRO-DEVS models: MICRO-DEVS defines

the atomic behavior of a model at the microscale, similarly to atomic DEVS,

while MACRO-DEVS describes model interactions, other than the behavior

of the models at the macroscale.

In addition to DEVS and its derivatives, various meta-models have been

developed for multilevel M&S and agent-based modeling in particular. Some

notable examples are:

• GEAMAS, an agent-based architecture based on three levels of ab-

straction, where the microscale agent incorporates the point of view of

the actors of the system, the meso level consists of an aggregation of

micro agents in a specific context or activity, and the macroscale agents

represent the system itself [170].

• IMR4MLS, a meta-model centered on the concepts of influence (i.e., agents’

decisions based on their current state and the perceived environment)

and reaction (i.e., computation of agents’ reactions in response to in-

fluences). A directed graph is then employed to describe interactions

between levels [171].

• PADAWAN, a formalism designed to represent systems with multiple

environments, each having its space-time scales and rules for the agents

that they contain [172].

• GAMA (GIS Agent-based Modeling Architecture), a meta-model for mul-

tilevel ABMs, offering three main sets of abstract classes that represent

the entities (i.e., individual agents, or aggregated agents), the spatial

domain, and temporal aspects within a model [173]. Moreover, GAMA

facilitates model specification through GAML (GAma Modeling Lan-

guage), an agent-oriented language empowering developers to articulate

and define the behavior of the system.

72 5. Design Principles for Multilevel M&S

Finally, High-Level Architecture (HLA) has emerged as a standard for im-

plementing distributed simulation systems [13]. While not explicitly designed

for multilevel modeling, HLA provides a framework that allows multiple simu-

lation systems to interact and exchange information in a coordinated manner

through a standardized interface. HLA consists of the following components:

• Federates, which are applications that support HLA and are capable of

participating in the distributed simulation.

• Run-Time Infrastructure (RTI), a middleware that provides services

for the distributed simulation, such as interactions between Federates

and synchronization primitives.

• Federation, a group of Federates whose interactions are managed by the

RTI.

• Object Models, descriptions of the essential shareable elements of the

simulation.

• Federate Object Model (FOM), a shared specification that defines the

structure and the content of the Object Models.

• Object Model Template (OMT), a standard for the creation of an Object

Model, defining its data, attributes, and interactions.

While HLA addresses certain challenges in multilevel M&S such as data

exchange among sub-models and synchronization, it is not a general-purpose

meta-model like DEVS, but rather an API for interoperability of simulators.

Therefore, HLA is not suitable for describing general multilevel models.

5.2 GEMMA

The DEVS formalism is well-suited for characterizing the behavior of

various types of models, allowing developers to specify both the details of the

atomic components and their interactions. However, DEVS lacks a specific

5.2 GEMMA 73

focus on multilevel modeling: the interactions among various elements are

described in terms of inputs and outputs exchanged, while other factors such

as the hierarchical structuring of system components and the coupling among

the meta-models cannot be comprehensively described. To address these

concerns, it is necessary to design a novel formalism, explicitly tailored for

multilevel modeling. GEneric Multilevel Modeling Abstraction (GEMMA),

loosely inspired by DEVS, is an application-independent meta-model that

can be employed to describe any type of complex model where multiple

components interact. While ML-DEVS refers to scenarios involving multiple

scales of detail within the same model, GEMMA is a more versatile solution,

as different sub-models can describe distinct and not necessarily related

aspects of the same system. The purpose is to assist the developers in the

design phase of a multilevel simulator, as the meta-model should help to

define a systematic procedure for structuring a multilevel framework and for

describing the interaction between sub-models.

GEMMA is defined as follows (as summarized in Figure 5.1):

⟨M,T, S, P, C, I, O, L,R⟩

where:

• M is the set of atomic components that are combined in the complex

model. The elements of M can be of different types and follow different

paradigms, and the specification of their internal behavior is outside

the scope of the formalism.

• T is the component that sits at the top of the hierarchical structuring,

serving as the interface for the user and providing a starting point for

the model execution. It can either be the element of M or a wrapper

script in charge of scheduling the execution of the other components.

• S is a tree structure that describes how levels are organized. T is the

root of the tree and the other nodes are either elements of M or wrapper

scripts that schedule the execution of underlying components. Each

74 5. Design Principles for Multilevel M&S

node is responsible for coordinating the execution of its descendants, if

any.

• P is the set of model parameters, which can be set by the user to control

the execution of the model.

• C is the set of conditions/frequencies that are used by a component a

to call another component b. Conditions can either be quantitative

(i.e., the call occurs periodically every specified amount of time) or

qualitative (i.e., the call occurs after an event, or when a specific value

exceeds a certain threshold). The cardinality of C is at least equal to

the total number of calls between a and b, but there is no upper bound

to the cardinality of C, since there could be multiple conditions for a

to invoke b.

• I is the set of inputs to provide when a model is called, a set of inputs

for each interaction between models.

• O is the set of outputs of the called models. Similarly to I, there is a

set of outputs for each interaction between models.

• L is the set of policies used to maintain consistency, thus preserving

the model’s invariants. They are particularly important when switching

from discrete to continuous representations.

• R Results/Output of the multilevel model: log file or computation of

specific metrics that serve as the final outcome of the execution.

5.3 GEMMA-compliant framework

In this section, the structure of the GEMMA metamodel is described in

a form that is suitable for implementation in a programming language. In

particular, a scheme consisting of a set of abstract classes is presented. This

blueprint should serve as a foundational framework for building a multilevel

5.3 GEMMA-compliant framework 75

Multilevel_model (P)

User

if (C1):
run_M1 (I1)

if (C2):
 run_M2 (I2)if (simulation_is_over):

Write_results()

T M1 ∈ M

if(C3):
run_M3 (I3)M2 ∈ M M3 ∈ M

O2

O3

O1

R

Figure 5.1: Graphical representation of GEMMA formalism

system, ensuring the GEMMA compliance of the complex model. In the

proposed scheme, summarized by Figure 5.2, a multilevel model is defined

as an instance of the Composite Pattern (see Section 4.2.1), as the concrete

elements in the hierarchical structure can be classified as either leaves or

non-leaves. Leaves implement only Worker functionalities, while non-leaves

also encompass Director tasks, therefore supporting the capability to manage

the underlying sub-models.

Regardless of the role, each sub-model belonging to the multilevel model

is a concrete instance of the abstract class GEMMAComponent. A GEMMA-

Component is characterized by a set of parameters of the model, which can be

of any kind of type. Furthermore, it must implement the following methods:

• setup to execute any model-specific setup procedure.

• advance to run the model for a specific amount of simulation time.

• retrieveResults to report the metrics of interest computed during the

model execution; this method is usually called at the end, but might also

be executed periodically to check the evolution of the metrics. When

retrieveResults is called by the top-level component, then it returns the

outcome of the simulation, providing the metrics of the user’s interest

in a human-understandable format.

76 5. Design Principles for Multilevel M&S

Enforce consistency
constraints

True if the model can
be executed now

«Abstract»
ConsistencyChecker

+CheckConsistencyA(GEMMA_Director d)
+CheckConsistencyB(GEMMA_Director d)
...

«Abstract»
CallConditionChecker

+CheckCallConditionA(GEMMA_Director d) : bool
+CheckCallConditionB(GEMMA_Director d) : bool
...

for each m in models:
 if (m.CheckCallCondition(self))
 m.Advance(dt)
for each m in models:
 m.CheckConsistency(self)

for each m in models:
 m.Setup()

«Abstract»
GEMMA_Director

+parameters: Any[]
+models : Gemma_Component[]

+Setup()
+Advance(dt:real)
-RetrieveResults()
+CheckCallCondition(CallConditionChecker c): bool
+CheckConsistency(ConsistencyChecker c)
+CheckCallConditionA(GEMMA_Director d) : bool
+CheckCallConditionB(GEMMA_Director d) : bool
+CheckConsistencyA(GEMMA_Director d)
+CheckConsistencyB(GEMMA_Director d)
-Instantiate_Models()

«Abstract»
GEMMA_Component

+ Parameters: Any[]

+Setup()
+Advance(dt:real)
-RetrieveResults()
+CheckCallCondition(CallConditionChecker c):bool
+CheckConsistency(ConsistencyChecker c)

Figure 5.2: UML class diagram of the foundational framework for GEMMA-compliance

• checkCallConditions to check the calling conditions of the sub-model,

according to the rationale of Visitor Pattern.

• checkConsistency to check the consistency of the retrieved results re-

trieved by the sub-model, according to the rationale of Visitor Pattern.

On the other hand, a GEMMADirector is a specific type of GEMMACom-

ponent, which implements further functionalities to act as a Director. It

is worth noting that a Director can also act as a Worker; in fact, only the

top-level component will have exclusive Director functionalities. First, a

GEMMADirector contains a set of underlying Workers, which are of type

GEMMAComponent. Furthermore, it implements the additional methods:

• instantiateModels to create the instances of the Workers that are handled

by the director.

• set of methods inherited by CallConditionsChecker to apply director-level

policies for the management of the calls to underlying models.

• set of methods inherited by ConsistencyChecker to apply director-level

5.4 Illustrative Example 77

policies to maintain the global consistency of the system, ensuring that

the model’s invariants are maintained.

Finally, abstract classes CallConditionsChecker and ConsistencyChecker con-

tain the actual methods to enforce call conditions and consistency constraints.

One of the benefits of multilevel models is the possibility of reusing existing

models; however, they are unlikely to be compliant with the GEMMA meta-

model, so Workers might employ the Adapter pattern to make the concrete

model to be exposed with the appropriate interface.

5.4 Illustrative Example

To demonstrate how GEMMA should be applied, an illustrative use case

is provided. It is noteworthy to emphasize that the model presented below is

not designed for precision; instead, its purpose is to showcase the feasibility

of the proposed methodology.

Use Case Overview The use case consists of a local pollution model whose

simulation space is populated by multiple types of vehicles, each characterized

by different pollutant emission rates. The model illustrates how vehicles

contribute to environmental pollution and demonstrates that switching to

more ecological fuels results in a cleaner environment over time. In the use

case, vehicles are either petrol-based, powered by LPG (Liquefied Petroleum

Gas), or electric. Petrol-powered cars are the most polluting, while electric

vehicles produce no local emissions, but they still contribute to the overall

contamination as the environmental cost of electricity production is not

negligible.

The multilevel model is composed of three distinct modules: two sub-

models describe vehicle movements and the process of vehicle transition,

while a top-level wrapper script orchestrates the execution of the underlying

components. The mobility model is a discrete CA where each cell is associated

with a value that represents the concentration of pollutants in that area. At

78 5. Design Principles for Multilevel M&S

each time-step, vehicles move toward a random direction, emitting locally a

certain amount of pollutants depending on the fuel employed. Contamination

spreads to adjacent cells and gradually diminishes over time implying that,

in the absence of vehicles in the system, all cells would eventually be free of

pollution. On the other hand, the vehicles-change model is a compartmental

model that describes through a set of ODE the impact of incentives to replace

a vehicle with a less pollutant one. Specifically, let P (t), L(t), E(t) be the

number of petrol, LPG, and electric cars, respectively. It is assumed that the

total number N of vehicles remains constant and that the number of vehicles

in each class at a time obeys the following set of differential equations:

dP

dt
= (−β − σ)P

dL

dt
= βP − γL

dE

dt
= σP + γL

(5.1)

subject to initial conditions P (0) = P0, L(0) = L0, and E(0) = E0. β, σ and

γ represent respectively the transition rate between different compartments,

specifically from P to L (β), from P to E (σ) and from L to E (γ).

In the setup phase of the simulation, the population of the model composed

of N petrol-based vehicles is displaced randomly across the grid. When the

actual execution starts, the CA handles mobility and pollutant emissions,

and the compartmental model is then called at regular intervals, updating

the number of each type of vehicle in circulation. The parameters provided to

the ODE model (5.1) are the number of vehicles for each type, and a coefficient

that has to be applied to β, σ and γ to re-scale their values. Such a coefficient

is determined dynamically and is proportional to the pollution level recorded

in the environment. The rationale is that the incentives for switching towards

more ecological vehicles could be higher when contamination intensifies.

Implementation The mobility model was implemented using NetLogo [174],

an integrated development environment for agent-based modeling that pro-

5.4 Illustrative Example 79

Figure 5.3: NetLogo graphical interface of the pollution model after 1500 time-steps.

vides a multi-agent programming language and graphical interface that allows

users to observe the evolution of the system. A screenshot of the running

system is shown in Figure 5.3. On the other hand, the compartmental model

was developed in Python and its core is the set of ODEs that defines the

number of cars for each category. The model is executed periodically after

the CA has performed a defined number of steps, in order to update the

composition of the population. Finally, a wrapper script is used as a top-level

component to schedule the execution of both the sub-models and to manage

the exchange of data. This was necessary since the NetLogo language does

not natively support interaction with external programs. These components

are integrated within the framework discussed above, as shown in Figure 5.4.

According to the GEMMA interaction scheme, the model can be defined

as follows:

• M . A compartmental model a describing the temporal evolution of the

composition of vehicles and a NetLogo model b that describes mobility

and the diffusion of pollutants.

• T . A wrapper script w at the top of the hierarchy that is in charge of

orchestrating the execution of the various modeling instances and also

serves as the interface for the user.

80 5. Design Principles for Multilevel M&S

• S. w is the root of the tree; a and b are the children of w.

• P . Total number of vehicles, set of parameters used by a to describe how

vehicle owners upgrade their vehicle (β, γ, σ from (5.1)), call frequency

of sub-model a.

• C. Execution starts by running sub-model a; then, sub-model b is

invoked periodically.

• I. w initializes b with the total number of agents; model a instantiated

with the number of vehicles for each compartment up to date.

• O. The output of a is used to update the number of vehicles for each

compartment in b. In turn, the output of b provides the input conditions

for model a.

• L. Loss due to the switch from continuous values (the number of vehicles

for each compartment is a continuous value) to discrete values (cellular

automaton model, each vehicle is an agent).

• R. NetLogo plots representing the diffusion of pollutants through time.

Technical Details Despite the replicability of the proposed framework,

inherent features of the programming language must be considered in the

development phase. For instance, in Python, the Java-style distinction

between abstract classes and interfaces does not exist. By default, Python

does not offer abstract classes; instead, it includes a module called ABC

(i.e. Abstract Base Classes) and utilizes the ”@abstractmethod” decorator

to declare a method as abstract, allowing also for multiple inheritance [175].

Following this modus operandi, an abstract class like GEMMAComponent is

structured as depicted in Listing 5.1, where methods are declared without

implementation, akin to the behavior of an interface.

The abstract classes CallConditionsChecker and ConsistencyChecker deli-

neate the essential operations for overseeing call conditions and ensuring

5.4 Illustrative Example 81

ODE_Model

+ Parameters: Any[]

+Setup()
+Advance(dt:real)
-RetrieveResults()
+CheckCallCondition(CallConditionChecker c):bool
+CheckConsistency(ConsistencyChecker c)

Mobility_Model

+ Parameters: Any[]

+Setup()
+Advance(dt:real)
-RetrieveResults()
+CheckCallCondition(CallConditionChecker c):bool
+CheckConsistency(ConsistencyChecker c)
+GetPollution():int
+updateVehicles()

Launcher

+parameters: Any[]
+models : Gemma_Component[]

+Setup()
+Advance(dt:real)
-RetrieveResults()
+CheckCallCondition(CallConditionChecker c): bool
+CheckConsistency(ConsistencyChecker c)
+checkCallConditionsMobility() : bool
+checkCallConditionsODE() : bool
+checkConsistencyMobility()
+checkConsistencyODE()
-Instantiate_Models()

«Abstract»
ConsistencyChecker

+checkConsistencyMobility(GEMMA_Director d)
+checkConsistencyODE(GEMMA_Director d)
-valuesRounding(int howMany, List values)

«Abstract»
CallConditionChecker

+checkCallConditionsModelA(GEMMA_Component m) : bool
+checkCallConditionsODE(GEMMA_Component m) : bool

«Abstract»
GEMMA_Director

+parameters: Any[]
+models : Gemma_Component[]

+Setup()
+Advance(dt:real)
-RetrieveResults()
+CheckCallCondition(CallConditionChecker c): bool
+CheckConsistency(ConsistencyChecker c)
+checkCallConditionsMobility(GEMMA_Director d) : bool
+checkCallConditionsODE(GEMMA_Director d) : bool
+checkConsistencyMobility(GEMMA_Director d)
+checkConsistencyODE(GEMMA_Director d)
-Instantiate_Models()

«Abstract»
GEMMA_Component

+ Parameters: Any[]

+Setup()
+Advance(dt:real)
-RetrieveResults()
+CheckCallCondition(CallConditionChecker c):bool
+CheckConsistency(ConsistencyChecker c)

Figure 5.4: Class Diagram of the pollutants model

output consistency, with each Worker in the system having a corresponding

method. While nothing has to be done to ensure consistency for the mobility

model, the values retrieved by the ODE model are adjusted according to the

approach described in Listing 5.2.

The adopted strategy for maintaining consistency is to round up the values

of the l elements with the greatest fractional part, where l < #compartments

corresponds to the loss units. This approach guarantees that the population re-

mains constant while obtaining a discrete approximation of the compartments

that is as close as possible to the original continuous values.

The framework, despite being based upon a set of Python abstract classes,

is easy to integrate with models written with different languages by means

of an adapter or through encapsulation. In the considered scenario, the

mobility model, written in NetLogo’s native language, is encapsulated within

a Python class. Specifically, as shown in Listing 5.3, we make use of pynetlogo

82 5. Design Principles for Multilevel M&S

Listing 5.1: Code snippet of the GEMMAComponent abstract class

class GEMMA Component (ABC):

def init (self):

self.parameters = {}

@abstractmethod

def setup (self, ∗args):
#Set up the model

pass

@abstractmethod

def advance (self, ∗args):
#Advance with the simulation

pass

Listing 5.2: Python code snippet to manage consistency.

def valuesRounding(howMany, valueList):

returnList = [int(elem) for elem in valueList]

tempList = [elem − int(elem) for elem in valueList]

for i in range (howMany):

max value = max(tempList)

max index = tempList.index(max value)

tempList[max index] = −1

returnList[max index] += 1

return returnList

5.4 Illustrative Example 83

library to facilitate the interactions between Python and Netlogo. Upon

instantiation, the mobility model is set up by the launcher, which provides

some high-level parameters of the complex model; subsequently, the launcher

executes step-by-step the mobility model.

Listing 5.3: Portion of the Mobility model

import pyNetLogo

class MobilityModel(GEMMA Component):

def init (self, modelPath, NetLogoPath, version):

self.netlogo = pyNetLogo.NetLogoLink(gui=True,

netlogo home=NetLogoPath, netlogo version=version)

self.netlogo.load model(modelPath)

def setup (self, population):

self.netlogo.command(’setup ’ + str(population))

def advance(self):

self.netlogo.command(’go’)

def retrieve results (self, ∗args):
pass

84 5. Design Principles for Multilevel M&S

Part III

Applications

85

Chapter 6

Simulation of multi-agents

systems

In this chapter, three simulation studies are presented. All of them are

characterized by the use of a pure ABM paradigm, as the semantics of the

scenarios under examination did not require the inclusion of multiple levels.

However, it is worth noting that agent-based models often serve as essential

building blocks in multilevel modeling frameworks, as they accurately capture

dynamics involving multiple, potentially heterogeneous entities.

The following experiments are conducted using LUNES (Large Unstruc-

tured Network Simulator), a time-stepped discrete-event simulator that serves

as a key component in the multilevel simulators introduced in Chapter 7.

LUNES is built on the ARTÌS/GAIA simulation middleware, which provides

communication primitives, time management, and support for parallel and

distributed execution. One of LUNES’ core strengths is its scalability, en-

abling simulations with over 10 000 entities on a single machine. Nodes are

assigned integer IDs and other state variables, supporting the modeling of

multilayer and temporal graphs. LUNES relies on two critical functions: one

executes required actions for all nodes at each time-step, while the other is

triggered whenever a message is received.

The remainder of the Chapter is organized as follows. In Section 6.1 a

87

88 6. Simulation of multi-agents systems

data streaming scenario within a peer-to-peer environment is simulated using

temporal networks; Section 6.2 presents the simulation of an opportunistic

mobile network exploiting public transportation; finally Section 6.3 analyzes

a hybrid P2P-edge computing architecture.

6.1 Peer-to-Peer Environments

A part of the work presented in this chapter has been published in [176]

and is reported here for the reader’s convenience.

6.1.1 Background

The traditional way to store and retrieve information through the Internet

is to rely on a client-server setup where data are stored in remote servers,

typically on centralized data centers. However, decentralized alternatives

exist. Edge computing, for instance, aims to bring computation closer to

end-users by distributing lightweight server replicas across multiple geographic

locations. This procedure reduces latency and minimizes single points of

failure.

An alternative for content sharing is to use a peer-to-peer approach, where

each node in the network actively participates in the system’s operations.

No central authority is required, although one may be present to oversee

participant management and maintain content ownership records. Peer-to-

peer systems are generally built on top of an existing physical network, such

as the Internet [177], with the overlay network structured as a graph. In

this graph, nodes represent peers, and edges connect neighboring nodes that

are in direct contact. To accurately model distributed environments with

churn (i.e. flow of nodes frequently joining and leaving), temporal graphs are

especially useful. These graphs represent interactions among entities over time,

differing from traditional graphs by allowing nodes and edges to evolve as time

progresses. This adaptability enables temporal graphs to effectively capture

the dynamic nature of temporary connections and interactions [178]. In

6.1 Peer-to-Peer Environments 89

peer-to-peer systems, participants frequently disconnect within a few minutes,

and it is rare for nodes to remain connected for more than a few hours. The

high churn rate presents a significant challenge for overlay management, as

compared to static networks. To address this, robust policies are required

to prevent issues such as node isolation, where a node loses all its neighbors

before it can establish new connections, which could impair overall network

functionality.

Overlay networks in peer-to-peer (P2P) systems are typically classified

into two categories:

• Tree-based Networks, where the various participants are organized in

a tree structure. The source node, which originates the dissemination,

serves as the root of the tree, while neighbors are child nodes. Messages

propagate from the source node to the leaves in a top-down manner,

optimizing the number of forwards. However, tree construction and

management can be costly due to churn, as the tree structure breaks

when non-leaf peers exit, requiring a new logical tree for each data

source.

• Mesh-based Networks, where participants form a randomly connected

overlay, maintaining a certain number of incoming and outgoing con-

nections. Upon joining, each peer connects to available peers via a

tracker or bootstrap node. Since source and destination nodes usually

are not directly connected and they are unaware of the system’s overall

structure, messages are relayed to multiple other peers until reaching

the destination. To this purpose, a gossip algorithm is employed to

dictate the policy for dissemination.

In a P2P environment, for scalability reasons, the nodes are directly in

touch only with a bunch of peers, and they do not know the location of the

other nodes. Thus, in the communication process, the information is relayed

multiple times among the participants of the system (i.e. multi-hop), until the

final destination is reached. To define the policy for message dissemination

90 6. Simulation of multi-agents systems

in a P2P environment a gossip protocol is employed. Different types of

algorithms can be implemented depending on the semantics of the system. In

some networks achieving a very high coverage (i.e. percentage of peers who

eventually receive the message) and a low delay (i.e. average time for a peer

to receive a message) is fundamental, while other ones may be focused on

traffic minimization or retention of anonymity.

Some of the most important gossip algorithms are:

• Probabilistic Broadcast (PB), where each node has a probability p of

forwarding the message to all its neighbors (except the forwarder) and

a probability 1− p of not forwarding it to any other node.

• Fixed Probability (FP), where each neighbor (except the forwarder) has

a p% chance of receiving the message, determined by an individual roll

of the dice.

• Degree-Dependent Functions (DDP), where a message is forwarded

based on the number of neighbors of the potential receiver: the fewer

connections a neighbor has, the higher the probability it will receive

the message.

All these algorithms are characterized by a time-to-live parameter, which

defines the maximum number of hops a message can take, thereby preventing

infinite loops.

The employment of peer-to-peer applications can bring various benefits,

such as avoiding single points of failure, the ability to download from multiple

sources simultaneously, and the promotion of self-sustaining systems. However,

potential drawbacks like network traffic congestion should also be considered.

Dissemination of messages can result in a significantly higher amount of

network traffic compared to client-server applications, requiring a balance

between delivery speed and network traffic. Additionally, the dynamic nature

of peer-to-peer networks, with participants frequently joining and leaving,

further complicates message delivery by causing continuous fluctuations in

network structure.

6.1 Peer-to-Peer Environments 91

6.1.2 Simulation Scenario

Let us consider a hybrid push-pull protocol that combines both mesh-based

and tree-based approaches for data dissemination. The protocol utilizes two

separate overlay levels: a mesh-based overlay for pulling stream requests and

a tree-based overlay for pushing data chunks. This approach enhances system

decentralization by eliminating the need for servers or special participants

when discovering which peers own certain resources. A network participant

can have three possible roles:

• Streamer, which is the node that generates the data stream.

• Downloader, if the node is interested in receiving the data stream.

• Non-Downloader, if the node just contributes to the dissemination of

messages.

The protocol operates as follows. When a Downloader node A wants to

join a data stream, it disseminates a Request message. Since the IP address

of the streamer is unknown, a pull-based gossip algorithm is used to contact

the streamer. Once the streamer S receives a request from node A, it adds

A to the stream tree. Assuming each node can relay data to at most n

other peers (with n being the maximum degree for the nodes) if S has fewer

than n children, it adds A as a child. Otherwise, S randomly selects one

of its children to place A in the streaming tree. This procedure continues

recursively until A becomes a leaf of the tree. After a short delay (needed

for tree construction), the streamer begins emitting data. Other nodes can

dynamically join the streaming tree at any point. If a non-leaf node in the

streaming tree becomes inactive, its children will resend the request message

through the overlay to rejoin the streaming tree upon detecting the failure.

The interactions among the nodes are based on the exchange of five types

of messages:

• Request messages, which are sent by downloaders when joining the data

stream. They are disseminated using a gossip algorithm.

92 6. Simulation of multi-agents systems

• Item messages, which contain chunks generated by the streamer and

requested by downloaders. They are sent through the streaming tree

from parent to children.

• Tree messages, which are originated by the streamer upon receiving

a request message. They are forwarded down the tree to add the

downloader as a leaf.

• Ping messages, which are sent periodically to neighbors to check if they

are still alive.

• Pong messages, which are sent in response to Ping messages.

This strategy aims to minimize both latency and network traffic, which are

major concerns in peer-to-peer environments. The only messages disseminated

throughout the network are the request messages, which contain minimal

data (i.e., information about the node and the stream to join). Instead, the

chunks, which constitute the main data load, are forwarded exactly once for

each stream participant, employing at most h relays to reach a participant

node, where h is the height of the unbalanced tree. Typically, the chunks

constitute the majority of the communication overhead in such systems.

6.1.3 Simulation Setup

In the experiments, time is segmented into epochs, each characterized

by a single data source, with one active node elected as the streamer at the

beginning of each epoch. During each epoch, the streamer emits 470 chunks,

one per time-step. The system comprises 10 000 simulated entities, with an

average of 80% being active, each having approximately 10 connections in the

mesh-based overlay. Among the active nodes, 5% functions as downloaders,

and those transitioning from inactive to active during an epoch have an equal

chance of assuming the streamer role. Additionally, the streamer waits for 10

time-steps at the epoch’s start before emitting chunks to allow downloaders

to organize into the streaming tree.

6.1 Peer-to-Peer Environments 93

In the experiments, all the chunks are 1MB large, similar to real peer-to-

peer applications, where typically chunk size ranges from some hundreds of

KBs to 1 MB [179]. Excluding chunks, all the other messages carry very little

information, so it is assumed that their size in terms of bytes is equivalent

to the minimum Ethernet frame size, which is 72 bytes (also considering the

8 bytes for the preamble) [180], while the 12 bytes for the interframe gap

are not necessary in this case, since all the small messages (i.e. the non-item

messages) are sent atomically.

Several parameters influence the simulation outcome, including the dissem-

ination protocol for request messages, network temporariness (activation/deac-

tivation of nodes to maintain stability), and node degree (affecting tree height

and average latency). Churn, or nodes leaving the network, significantly

impacts tree reconstructions and overall system performance.

6.1.4 Simulation Results

The choice of dissemination protocol can significantly impact network

traffic. In the evaluated framework, only request messages are disseminated

through the network using a gossip algorithm, while chunks are delivered

via the streaming tree. Consequently, the number of forwarded items is

proportional to the number of chunks to be sent, while the volume of forwarded

request messages depends on both the number of downloaders and the overall

active participants in the system. Additionally, an increased churn rate can

exacerbate network traffic, as frequent tree reconstructions necessitate that

downloaders rejoin the stream, leading to additional overhead.

Figure 6.1 shows the outcomes of various metrics based on the average

number of neighbors per node, comparing the Fixed Probability and Pro-

babilistic Broadcast dissemination protocols. When the average number of

connections per node and the forwarding parameter of the gossip algorithm

are high, coverage and delay improve, but at the cost of increased network

traffic.

94 6. Simulation of multi-agents systems

(a) Less than 10% of the network traffic

is actually used for sending the requested

items.

Figure 6.1: The marker indicates the minimum forwarding value to achieve a coverage of

99.9%. FPx = Fixed Probability having x as the average degree. PBx = Probabilistic

Broadcast having x as the average degree.

In a scenario with 2000 simulated entities, using Fixed Probability with

a 0.6 as a forwarding parameter (the minimum for full coverage), network

traffic is evenly split between chunks and overhead. However, with 10 000

nodes, the impact of request messages significantly increases, constituting

almost 90% of the network traffic. Introducing a significant deactivation

rate (0.1% in these experiments) alters the message weight proportion, as

shown in Figure 6.1a. In this configuration, a ping-pong of messages occurs

every 20 time-steps. Reducing the ping-pong frequency can lower network

traffic but it worsens chunk reception rates. Undetected node failures can

6.1 Peer-to-Peer Environments 95

cause significant issues for both the overlay and the streaming tree. As the

churn rate increases, detecting failures quickly becomes more critical. Thus,

adjusting the ping-pong frequency based on the node deactivation rate is an

advisable strategy.

The deactivation rate significantly influences the outcome of the tests, as

failures or exits of non-leaf downloaders lead to tree reconstruction, causing

other Downloaders to lose the stream for the amount of time needed to detect

the failure and rejoin the tree. In both overlays, a lower degree increases

the importance of quickly detecting peer disconnections. This is crucial for

maintaining an adequate number of links, which allows nodes to effectively

propagate request messages through the mesh overlay and efficiently distribute

chunks within the streaming tree. Forwarding chunks to a deactivated node

wastes bandwidth, and undetected exits can reduce the degree of the streaming

tree, compromising propagation efficiency. Downloaders can infer that their

parent node has exited the network if they stop receiving messages after a

certain period. Conversely, detecting the departure of children or common

neighbors in the mesh overlay requires an active strategy, such as implementing

a ping-pong messaging system between neighbors at regular intervals to ensure

participants are still alive and online.

(a) (b)

Figure 6.2: Average delay and chunk reception rate worsen as the deactivation rate

increases.

96 6. Simulation of multi-agents systems

In the proposed dissemination scheme, the delay in chunk delivery is

proportional to the height of the streaming tree, or more accurately, to the

average depth of the Downloaders. This is because, on average, more hops are

necessary to deliver a chunk. Therefore, the maximum degree of the nodes is a

crucial parameter that can significantly influence the outcome. In a real-world

scenario, the number of children for each Downloader would depend on its

upload bandwidth, and it would be convenient to place nodes with higher

bandwidth availability at the top of the tree to minimize its height. However,

to reduce the complexity of the simulation scenario, all nodes are assumed to

have similar bandwidth availability in the experiments and are characterized

by a parameter d indicating the node’s degree. While a balanced tree strategy

could minimize tree height, the overhead required to maintain the balance

might outweigh the benefits.

Figures 6.2a and 6.2b show the interdependence between d and both delay

and chunk delivery rate. When the parameter d is high, the average depth

of the downloaders in the streaming tree decreases, and more nodes in the

streaming tree are leaves. This leads to fewer tree reconstruction events, as

the number of requests for re-joining the streaming tree following a node

failure is proportional to the number of descendants of the node that failed.

On the other hand, the delay is inversely proportional to the average height

of the steaming tree, thus d is another relevant factor.

6.2 Data Mules and Smart Territories

A part of the work presented in this chapter has been published in [181]

and is reported here for the reader’s convenience.

6.2.1 Background

Data Mules (an acronym for Mobile Ubiquitous LAN Extensions) are

a technology designed to provide digital communication in areas without

direct Internet connectivity. This technology offers a specific type of solution

6.2 Data Mules and Smart Territories 97

for opportunistic networking. Data Mules are mobile devices equipped with

storage and wireless communication mediums, such as Wi-Fi, Bluetooth, or

LoRa, allowing them to exchange data with nearby static sensors or access

points they encounter [182]. As they move between remote areas, they create

effective data communication links. Given that device movement is crucial

for message delivery, Data Mules are suitable for delay-tolerant services.

Data Mules facilitate communication and data transfer in the absence

of the Internet, making them vital tools for IoT applications. They are

commonly used in services based in smart cities or villages, particularly where

significant data flows originate from remote areas [183]. Depending on the

context, Mules can be vehicles like buses or cars, or even walking persons.

6.2.2 Simulation Scenario

In the scenario under consideration, it is assumed that a set of Clients

have data to communicate, despite a lack of Internet connectivity in the

simulation area. The messages need to reach a special node, the Proxy, which is

responsible for delivering (online) the message to the final recipient. To contact

the Proxy, the nodes can exploit the presence of Data Mules, such as public

transportation vehicles. Furthermore, to incentivize collaboration among

Clients and incorporate opportunistic networking typical of smart territories,

Clients are allowed to relay messages within other nodes in proximity. All

communications are performed through Wi-Fi, considering the Wi-Fi link rate

at 12Mbps and Mules’ velocity at 36km/h, as in [184]. Through simulation,

it is possible to analyze the delays (and their specific composition) ranging

from the creation of a message by a Client up to its delivery to the Proxy.

6.2.3 Simulation Setup

To conduct the simulations, a square discrete space consisting of 1000

x 1000 cells was used as a testbed. This area represents a single village

populated by several Clients and equipped with Couriers and transport

98 6. Simulation of multi-agents systems

service, as illustrated in Figure 6.3. Each cell in the grid represents a 20m x

20m area, potentially containing one or more Client nodes. The total area

measures 20km x 20km, with a node density of 25 nodes per km2.

Figure 6.3: Representation of the simulated area. The grid is divided into 16

regions. In addition to the Client nodes scattered throughout the area, there are

16 Local Mules, 16 Radial Mules, and the Proxy located at the center of the grid.

Some of the couriers and buses in the transport service also function as

Mules, covering both central and peripheral regions. Consequently, the grid

was divided into N2 square regions.

In the model there are five types of simulated entities:

• Proxy node, which is situated at the center of the grid and is the final

destination for all the messages.

• Client nodes, which have a certain probability of generating new mes-

sages at each time-step. In the experiments, 10 000 Clients are placed

6.2 Data Mules and Smart Territories 99

within the simulated area, distributed randomly either with a homoge-

neous or centralized pattern. In the homogeneous distribution, nodes

are scattered randomly across the grid. Conversely, in the centralized

distribution, the likelihood of a cell hosting nodes decreases with its

distance from the center, in order to reproduce a village-like scenario,

where usually most individuals reside near the center, with peripheral

areas being less densely populated.

• Local Mules, which traverses a specific region of the grid in a zigzag

pattern, collecting messages from nearby Client nodes as they move.

After completing a lap, the Local Mules deliver the messages to the

Radial Mule or directly to the Proxy if it is nearby, before starting their

route again.

• Radial Mules, which gather messages from the designated Local Mule

and transport them to the Proxy. After delivering the messages, the

Radial Mules return to their initial positions, ready to receive messages

from the Local Mule’s next lap. Each Local Mule is paired with a

corresponding Radial Mule for this task.

• Couriers, which move according to the Random Waypoint mobility

model, i.e. they are either still or in motion, and when they activate

they pick a random point, moving towards it with the same speed as

buses. Couriers gather messages to carry them until a reachable mule

is found.

Interactions are proximity-based, allowing Clients to deliver messages

within a communication range of 200m to Mules or directly to P . Mules

move at an average speed of 36 km/h, advancing to adjacent cells in discrete

time-steps representing 2 seconds. Additionally, messages can be delivered

directly to P or the Radial Mule if sufficiently close for direct communication.

100 6. Simulation of multi-agents systems

Avg Delay ± Std (seconds) Coverage

RC NOR RC NOR

C
U
R HOM 2276 ± 1 202 3 106 ± 2 324 98.3% 39.2%

CENT 1 500 ± 1 197 2 340 ± 2 311 96.7% 44.7%

N
O
C HOM 2995 ± 2 557 3 101 ± 2 320 61.1% 39.2%

CENT 2 137 ± 2 415 2 335 ± 2 298 71.3% 44.7%

Table 6.1: Average delay & standard deviation (i.e. Std) in seconds. Population is

HOM = homogeneous or CEN = centralized. Relay among Clients = RC, or not

= NOR. Couriers are present = CUR, or not = NOC.

6.2.4 Simulation Results

Several tests were conducted to measure message delivery delay and

coverage (i.e., the percentage of Client nodes able to send messages to a Mule)

by varying: (i) the number of couriers, (ii) the feasibility of relaying between

clients, and (iii) the population distribution. The experiments included 16

Local Mules, 16 Radial Mules, and, if applicable, 16 Couriers, over 30 000

time-steps, allowing Local Mules to complete their routes several times.

Table 6.1 shows the metrics retrieved from the tests. As expected, a

centralized population significantly reduces the average delay because most

nodes are near the center, making it easier to directly connect with the Proxy

or meet one of the Radial Mules on the way to the center.

The feasibility of relaying between Clients and the presence of Couriers

positively impacts coverage, substantially increasing the percentage of nodes

reachable by the Mules. Also, these two factors help to reduce the average

delay, as shown in the heat maps in Figure 6.4.

Finally, a centralized population generally achieves higher coverage, as

central nodes are easier to contact. With a centralized population, areas at

the grid’s edge lack connectivity despite the feasibility of relaying among

Clients. However, this issue is mitigated by employing couriers, which increases

coverage from 71.3% to 96.7% for centralized distribution and from 61.1% to

6.3 Edge Computing 101

Figure 6.4: Heat map representing the average delay in a scenario with a homoge-

neous population. The left map does not account for the presence of Couriers or

the ability for Clients to relay messages. In contrast, the right map includes both

of these factors.

98.3% for homogeneous distribution.

6.3 Edge Computing

A part of the work presented in this chapter has been published in [185]

and is reported here for the reader’s convenience.

6.3.1 Background

Edge computing is a paradigm that aims to bring computation closer to

end-users by deploying lightweight servers, known as edge nodes, geograph-

ically close to users. This decentralization of content storage and delivery

offers several benefits, such as:

• Reduced latency, end-user devices connect to the nearest server, de-

creasing communication delay and making real-time execution closer to

accomplishment.

• Reducing data center workload, leading to more sustainable energy

consumption.

102 6. Simulation of multi-agents systems

• No single point of failure, the content remains available even in the event

of certain data servers being unavailable for malfunction or maintenance.

There have already been studies and proposals to combine P2P and edge

computing paradigms, for example in [186] a P2P communication approach

among the edge nodes has been proposed. Other works, such as [187] high-

lighted some similarity in management and structuring between P2P and edge

computing, while in [188] spatial modeling was used to investigate computing

and communication latencies in an edge computing environment.

Dissemination As introduced in Section 6.1, in a P2P environment nodes

are connected only to a few peers and rely on multi-hop communication to

relay information across the network. In wireless communication, further

constraints have to be considered, as the signal propagates in the air only

within a certain range. In particular, in this work the following algorithms

are considered:

• Pure broadcast - The message is forwarded to all the neighbors, except

the forwarder. In this way, we achieve the theoretical minimum time

delivery and the maximum coverage, at the cost of a high amount of

network traffic.

• Probabilistic Broadcast - Given a forwarding parameter p, there is p%

of chance that a node forwards the message to all the neighbors and

(100− p)% that it does not send it to any other node.

• Reduced Range - Since in wireless communication a signal is spread

through air, then it is not possible to arbitrarily deliver the content to a

limited set of receivers. Therefore, an alternative for traffic minimization

is to reduce the power of the signal, thus reaching a lower number of

peers. By adjusting a parameter p, the signal is transmitted at only p%

of its normal power range d, thus reaching on average (d− p)2/d2 of the

nodes with respect to the standard configuration.

6.3 Edge Computing 103

• Directed Propagation - Following the same principle of Reduced Range,

the purpose is to reach fewer nodes with the propagation of the signal.

In particular, the signal is propagated only in certain directions. In

this case, some geographical information about the environment can be

exploited.

Mobility Algorithm The typical IoT deployments include applications

for both static and mobile devices. Devices emitting signals can either be

stationary (e.g., a household appliance) or move to different geographical

locations over time (e.g., smartphones, cars, drones). Various approaches can

be employed to simulate these movements, considering the human behaviors

that drive such changes.

• Static model - The end-nodes (i.e. devices) are randomly positioned

within the grid and remain stationary for the entire duration of the

tests.

• Random independent movements model - At each time-step the nodes

have a probability p to move into an adjacent cell and probability 1− p

to stay still.

• Random Waypoint model - In this widely used movement model, a node

is either stationary or in motion toward a certain location. Stationary

nodes have a probability of activating and choosing a random location

on the grid as their destination. Once a destination is selected, the

node starts moving towards that point at a given speed [189]. In the

proposed model, since the simulation steps represent small time units,

nodes only move to an adjacent cell in one time-step.

• Community-based model, which represents groups of individuals behav-

ing similarly [190]. When a stationary node n activates by choosing a

destination point, nearby stationary nodes will also move towards the

same destination cell.

104 6. Simulation of multi-agents systems

6.3.2 Simulation Scenario

This study investigates a hybrid edge-P2P system where end nodes attempt

to connect with an edge node by relaying their requests through other nodes

until a destination point (i.e., one of the edge nodes) is reached. In this

system, nodes are arranged in a grid, and each participant is associated with

a geographical position. The system is represented by a multilayer graph,

consisting of two layers that reflect the hybrid configuration of the distributed

system: the mobile P2P layer and the edge computing layer. Consequently,

there are two types of nodes: (i) peer nodes (end-users) and (ii) edge nodes.

Each node can communicate with other nodes within a certain distance, and

end-users move along the grid during the simulation. Therefore, neighborhood

relationships are dynamic and change over time, depending on the mobility

model.

Several factors influence the efficiency of communication:

• Gossip Protocol. The primary concern is the time required to deliver

a message, as one of the main goals of edge computing is to reduce

communication latency. While pure broadcast guarantees the fastest

delivery, other protocols can minimize traffic, especially in crowded

environments.

• Mobility Model. Appropriate mobility models can be used to simu-

late the movements of the actors involved, depending on the specific

application being simulated.

• Communication Range. In this wireless communication model, nodes

can directly exchange data when within a certain distance. Adjusting

this parameter significantly impacts metrics: a short range may cause

nodes to struggle to connect with peers, increasing the number of hops

and time to reach an edge node. Conversely, a long-range could make

the P2P aspects irrelevant, as end-users would quickly connect with

edge nodes.

6.3 Edge Computing 105

• Node Density. Similar to models with short communication ranges, a

sparsely populated graph risks failing to relay requests to their desti-

nation. A very crowded environment, however, could lead to excessive

network traffic for message relaying. This issue can be mitigated by

adopting an appropriate gossip protocol.

• Amount and Position of Edge Nodes. More edge nodes in the network

reduce communication latency. Additionally, strategically positioning

edge nodes can significantly decrease delivery time.

6.3.3 Simulation Setup

In the default configuration, used for the following tests, 10 000 nodes

populate a 1000 x 1000 grid, thus on average there is a node every 100 cells.

The communication radius is set to 40, which means that on average a node

reaches 50 other nodes within a circular area of 402 ∗ π cells, unless it is

positioned on the edges of the grid. Where it is not specified differently, pure

broadcast and Random Waypoint are used respectively as the gossip protocol

and the mobility algorithm. Furthermore, the time-to-live for messages has

been set equal to 20, even though it was noticed that this value is widely

abundant. In the model, 9 edge nodes are placed in an “optimized position”

at the center of the Cartesian plane, so that the distance between a cell and

an edge node is minimized. However, with such a configuration, end nodes at

the edge of the Cartesian plane are the most distant from the edge nodes.

6.3.4 Simulation Results

In this subsection, it is shown how different factors can influence the

efficiency of the communication

Mobility Model Figure 6.5 shows how different mobility models affect the

average number of hops needed to contact an edge node. In a static setup,

fewer messages are sent, leading to higher delivery delays because edge nodes

106 6. Simulation of multi-agents systems

Figure 6.5: Average number of hops necessary to contact an edge node, depending

on the mobility model of the nodes.

are centrally placed, making distant nodes send fewer messages. In contrast,

the Random Waypoint model has nodes spending more time in the grid center,

reducing the number at the edges after an initial period. The static model

keeps about 15% of nodes at the edges, while the Random Waypoint model

has around 5%. Other algorithms, such as the community-based model and

Random Independent Movements, exhibit behaviors akin to the Random

Waypoint and static models, respectively.

Grid Density The proposed information dissemination approach assumes

a crowded environment where numerous end nodes relay messages to ensure

system functionality. In sparsely populated environments, there is a risk of

message loss or a significant increase in routing hops. Figure 6.6 illustrates

how the successful communication rate (i.e. the percentage of times that a

6.3 Edge Computing 107

Figure 6.6: Successful communication rate achieved depending on the number of

nodes on the grid.

specific node is able to get in touch with a designated node, with respect to

all attempts made) changes with a decreasing node population. With the

default configuration of 10 000 nodes, 100% coverage is consistently achieved,

and similar results are seen with more than 5 000 nodes. Coverage exceeds

99.5% with 3 000 to 5 000 nodes but drops below 99% when fewer than 2 000

nodes are present. Communication reliability notably decreases with 1 500

nodes, where an average of about 7.5 nodes is within the wireless radius.

Edge Nodes The number and arrangement of edge nodes on the Cartesian

plane are crucial for minimizing latency. Predictably, the number of hops

required to contact an edge node is inversely proportional to the number of

edge nodes. In the tests, the default optimized positioning of the edge nodes

is compared with a configuration where edge nodes are placed randomly.

Figure 6.7 demonstrates that optimized positioning reduces the number

108 6. Simulation of multi-agents systems

Figure 6.7: Average number of hops necessary to contact an edge node: comparison

between an optimized positioning and a random positioning of the edge nodes.

of hops needed to contact an edge node. Despite the reduced delay, the

number of messages sent during the experiments remains similar across both

configurations. This occurs because the nodes are not aware of the status of

the dissemination process, resulting in message propagation continuing even

after a destination is reached.

Chapter 7

Simulation of IoT scenarios

The main reason behind the design of this architecture is that while data

collection technology is available, large-scale deployment faces practical chal-

lenges, primarily linked with the funding of the infrastructure. Crowdsourcing

can enhance IoT deployment by leveraging collective community resources,

making user motivation crucial for system success.

In this Chapter, a decentralized crowdsensing architecture for collecting

environmental data is presented. In the proposed application, vehicles act as

data collectors, transferring data to access points, while economic incentives

are in the form of blockchain micropayments. The architecture is then

evaluated through multilevel M&S. The Chapter is organized as follows.

Section 7.1 presents the background concepts behind the proposed architecture

and related works. In Section 7.2 the designed architecture is described.

Section 7.3 describes the multilevel model and the software integration process.

Finally, in Section 7.4 the experiments carried out with the simulator are

discussed.

7.1 Background

This section describes the technologies used to build the proposed archi-

tecture and reviews relevant works from the scientific literature.

109

110 7. Simulation of IoT scenarios

7.1.1 LoRa and LoRaWAN

LoRa is a proprietary wireless communication technology that has gained

popularity in IoT scenarios due to its ability to transmit data over long

distances while consuming minimal power. LoRa is often used in conjunction

with the LoRaWAN, a communication protocol and system architecture that

defines the interaction between end devices and gateways in a LoRa network.

In a typical LoRaWAN scenario, there are the following actors:

• Sensor Nodes, which are the end-devices equipped with sensors to gather

the data of interest over the environment. They transmit packets to

gateways by using LoRa.

• Gateways, which serve as intermediary between IoT devices and the

central network. After receiving the LoRa packets from the sensors,

the information is then re-transmitted to the Network Server through

TCP/IP.

• Network Server, which manages network-level functions like packet

routing, quality of service, and authentication and authorization for the

various involved devices.

• Join Server, which handles the device join procedure and the exchange

of session keys, establishing a secure connection between end devices

and the Network Server.

• Application Server, which leverages sensor data to execute business

logic, offering services to extract meaningful information for the intended

applications, possibly involving external databases or distributed ledgers.

Since LoRaWAN can be used in a wide range of IoT scenarios, multiple

types of end devices and activation procedures can be employed. In particular,

LoRa sensors can be classified into three categories:

• Class A. Devices sleep most of the time, and after sending uplink packets

they open a window for receiving data.

7.1 Background 111

• Class B. In addition to what class A nodes do, devices provide for

regularly-scheduled receive windows.

• Class C. Devices can always receive data except when they are in

transmit mode. Thus, communicating with the node is easier but the

energy consumption is higher.

Regarding the activation procedure, two options are available. Activation

By Personalization (ABP) is the solution that ensures lower energy consump-

tion, by preconfiguring the sensor nodes with static security keys before

deployment. However, ABP has the following limitations: i) nodes can only

work on their predefined network, ii) end devices need to re-negotiate frame

counters and session keys, thus leading to the termination of end devices’

operational life upon the exhaustion of frame counters, iii) ABP devices

cannot negotiate parameters, limiting their flexibility to adapt to changing

network conditions. Due to these restrictions, the most preferred strategy

is Over-the-Air Activation (OTAA) where end-devices dynamically join the

system by exchanging cryptographic keys and parameters with the Network

Server over the air during the activation process.

LoRa Simulation Many simulators of LoRa and blockchain technologies

exist. Tools like OMNeT++1 and ns-32 provide modules to simulate LoRa,

allowing users to customize physical layer attributes like bandwidth and

transmission power. However, these tools are quite complex and heavy-

weight and are primarily intended to be used in stand-alone models rather

than to cooperate with other tools. Fortunately, more lightweight LoRa

simulators also exist; for example, LoRaSIM [191] has been used to test

various Long Range Wide Area Network (LoRaWAN) configurations with

optimized gateway placement, while LoRaWANsim [192] allows users to set

the locations of both nodes and gateways.

1https://omnetpp.org/
2https://www.nsnam.org/

112 7. Simulation of IoT scenarios

7.1.2 Blockchain

Distributed Ledger Technology (DLT) is a digital system where data are

stored in multiple geographically distributed nodes in the form of transactions.

Unlike traditional centralized databases, DLTs rely on Peer-to-peer (P2P)

architectures, and a consensus mechanism is employed to ensure that all

participants in the system can reach an agreement regarding the status of the

ledger. The most popular type of DLT is the blockchain, where transactions

are grouped into containers called blocks, which are logically interconnected,

as depicted in Figure 7.1.

Figure 7.1: A simplified representation of how blocks are chained to form a

blockchain.

Cryptography plays a crucial role in various tasks, including ensuring

the authenticity of transactions and maintaining a coherent logical chain of

blocks within the system. Regardless of the implementation features, in all

blockchains the various active participants use a consensus protocol to agree on

the state of the distributed ledger, allowing them to determine the validity of

the transactions. The most notable examples are Proof of Work (PoW), where

participants solve complex computational puzzles to validate transactions and

add new blocks to the blockchain, Proof of Stake (PoS) where the chances

for the nodes to be the next validators depend on their stake, and Proof of

Authority (PoA) where block validators are pre-selected and approved by a

central authority or consortium [193].

7.1 Background 113

Common properties and benefits of the blockchain systems are:

• Immutability. Once data are recorded on a blockchain, they cannot be

altered or deleted.

• No Bottlenecks or Single Point of Failure due to the decentralized

nature of the blockchains. This makes them more resilient to certain

types of attacks and reduces the risk of system failure or unavailability.

• Non-repudiation. Private keys are used to sign transactions, which can

then be accessible and verified by third parties through the corresponding

public key.

• Transparency and Traceability. All transactions on a blockchain are

visible to all participants in the network, thus creating a high level of

accountability. Moreover, each transaction is attached with a timestamp,

making it easy for the users to trace the origins of historical data items

after analyzing the blockchain data with corresponding timestamps.

• Cost savings. By eliminating intermediaries and automating processes,

blockchains can reduce the cost of conducting business and increase

efficiency.

Despite the common points, blockchains can differ significantly in terms

of provided services and implementation features. In particular, three ge-

nerations of blockchains can be identified. First-generation blockchains like

Bitcoin are focused on cryptocurrency exchange, allowing users to trade

digital coins by means of transactions. The second generation introduced

the concept of smart contracts, which are actual contracts written with code

that can automate the execution of complex business operations. Finally,

the third generation also aims to address in detail issues such as scalability,

interoperability, and sustainability.

Usually, blockchains are permissionless, meaning that everyone is allowed

to join the system, visualize the history of data, and contribute to the

114 7. Simulation of IoT scenarios

validation of blocks. No permission has to be granted to the new users, whose

identity remains unknown. However, access to the system can be restricted

to specific users who have been pre-approved by a single organization or

consortium. In these blockchains, referred to as permissioned, the system

gives up decentralization, but it can be more suitable for specific business

purposes. Permissioned blockchains offer notable scalability benefits by

allowing customization of the consensus protocol and block capacity, which

can be optimized for efficiency. Furthermore, they provide an additional layer

of security because all involved parties are typically considered trusted and

expected to adhere to protocols, barring technical failures.

Blockchain Simulation ABM is a fitting modeling approach for replicating

blockchain behavior, as each node in the DLT can function as an agent within

the simulator. The primary goals of blockchain simulation typically concern

scalability, system resilience against cyberattacks or node failures, and perfor-

mance analysis. Various blockchain simulators exist, such as SimBlock [194]

which follows an event-driven approach to model the neighbor nodes selection

of the peer-to-peer overlay, BlockSim [195], which has a particular focus on

PoW mechanisms and LUNES-blockchain. LUNES-blockchain is based on

LUNES (Large Unstructured NEtwork Simulator), a simulator designed to

simulate large-scale peer-to-peer networks and to evaluate the efficiency of

data dissemination protocols running on top of them.

7.1.3 Blockchain-based LoRaWAN systems

In the scientific literature, many IoT architectures incorporating LoRaWAN

and DLTs have been proposed. The use of blockchain within the LoRaWAN

framework provides a shared environment where all the stakeholders of the

system can execute and receive micropayments, verify the integrity and the

authenticity of data, and easily check the history of transactions. For example,

data customers might use smart contracts to reward both sensors that collect

data and gateways that offer Internet connectivity to the end nodes [196].

7.1 Background 115

The integration of LoRaWAN and the blockchain can be carried out

through various approaches, depending on the diverse roles that LoRaWAN

devices may assume within the distributed ledger [197]. Gateways can be

either full nodes or thin clients depending on whether they contribute to

verifying the integrity of all the received data or only store relevant data

fragments. On the other hand, end-devices usually are either regular sensors

(i.e. low power devices that only broadcast data), server-trusting clients (i.e.

they rely on APIs to interact with the blockchain, so no storage or computing

capability is required), or thin clients. In [198] the authors propose to build

the blockchain system in the layer of the network servers, citing that gateways

normally are resource-constrained and outdoor-deployed IoT devices, thus

not suitable to perform the computations required by blockchain activities

and to store data. In [199] the authors propose to build the blockchain on

the gateway level, claiming that Raspberry platforms have enough power to

cope with blockchain functionalities. In [200], on the other hand, the authors

propose the employment of a permissioned blockchain network, not directly

embedded with one of the LoRaWAN layers. Regardless of the features of

the blockchain and the modality of interactions, many existing IoT data

marketplace applications rely on the following components [201]:

• A query mechanism that enables clients to filter the data of interest based

on selected criteria, such as vendor, temporal and spatial constraints,

topology, and other relevant parameters;

• a ranking system for evaluating the quality of data and the reputability

of the vendors;

• smart contracts that enable payments from clients to data owners ac-

cording to a publish-subscribe policy, other than supporting encryption

and decryption of data;

• a payment channel where payments can be executed, which supports

the execution of smart contracts and possibly guarantees low latencies

and low fees.

116 7. Simulation of IoT scenarios

In [202] a four-layered blockchain platform was designed to manage the

trading of weather data. Specifically, the governance layer is responsible for

deploying and maintaining validators (i.e., those who evaluate the quality of

publishers’ data) and creating bounties; the data storage layer stores the hash

of the publishers’ data and their score on chain; the oracle layer retrieves the

weather data, managing the encryption and the validation of the data; and

finally the marketplace layer manages the payments from the customers to the

publishers. In [203] the authors implemented LoRaCHainCare, a LoRa-based

blockchain system for healthcare monitoring. In the proposed system LoRa

is used to communicate data from the sensors/edge layer to the fog layer

(i.e. distributed network of LoRa gateways), which in turn communicates

with the cloud layer (i.e. including the LoRa server, the Join server, and the

application server) through Internet.

While blockchain is an optimal solution for conducting micropayments and

rewarding data producers, other solutions can be used for storing application

data. In [204] the authors propose a decentralized marketplace for meter data,

where the hash of the data is saved on Ethereum, and IPFS is used to store

the entire data. A similar application context is discussed in [205], although

with a distinct architectural solution that relies on IOTA as the distributed

ledger, again in conjunction with IPFS. Analogously, in [206] the authors

describe an architecture where encrypted data are stored with IPFS and a

consortium blockchain using Raft as a consensus protocol is used to keep

track of metadata. Also, it is not strictly necessary to store transactions into

a blockchain, as other types of DLTs like IOTA could be employed. IOTA is

based on an acyclic directed graph, where each transaction references and

validates previous transactions, thus resulting in higher scalability, faster

confirmation times as the network grows, lower costs, and no need for nodes

acting specifically as validators. In [207] the authors introduce a smart

city data marketplace scenario where transactions are stored on IOTA. The

proposed application provides functions to i) find the devices connected to the

marketplace, ii) retrieve the data of the specific devices to which the clients

7.2 Architecture of a blockchain-based IoT application 117

are subscribed, iii) list all the transactions from the clients to the accounts

that provide data, iv) receive periodically the data from the sensors whose

clients are subscribed.

While LoRa enables communications over a range of several kilometers,

the coverage area can be further increased in scenarios involving the mobility

of sensors or gateways. In [208], the authors designed and simulated a Smart

Livestock Monitoring System where a single mobile gateway moves along

the livestock area to cover the whole space to monitor. The experiments

proved that the configuration with a mobile gateway is more efficient in terms

of economical costs with respect to a setup where multiple static gateways

are used. Similarly, in [209] sensors placed in fixed locations collect data

about electricity meters, and a gateway moves within the residential area to

receive LoRa packets. Mobility also plays an important role in contexts where

cellular connectivity is limited or completely missing. In [210], the authors

proposed a multi-hop approach where messages are disseminated according to

a peer-to-peer strategy in order to enlarge the communication range without

any gateway being involved.

Finally, potential security threats must be taken into account. DoS attacks

are hard to perform, as LoRa gateways are geographically distributed and

only receive physical LoRa signals. However, it is still important that LoRa

gateways filter malicious traffic to guarantee that network servers can stay

healthy and the consensus process is not disturbed [211]. Furthermore, the

distributed nature of the architecture mitigates the problem of the Single

Point of Failure, as long as when a gateway is off other gateways are able to

cover the signals in that area.

7.2 Architecture of a blockchain-based IoT

application

The system discussed in this chapter is based on the LoRaWAN commu-

nication protocol for transmitting sensor data and blockchain to facilitate a

118 7. Simulation of IoT scenarios

marketplace. The use of these technologies aims to enhance energy efficiency

and reduce infrastructure costs within smart city frameworks. LoRaWAN has

emerged as an efficient, scalable, and secure solution for sensor data exchange

in IoT scenarios, supporting various IoT deployments. On the other hand,

private blockchains are used to automate frequent micropayments, reduce

infrastructure costs, and manage data operations through smart contracts,

promoting decentralization while allowing organizations to maintain complete

control over the system.

The proposed case study considers a marketplace for environmental data,

collected opportunistically by vehicles equipped with LoRa-capable sensors.

Data are uploaded via LoRaWAN to a central repository, so that the informa-

tion is accessible to customers upon payment of some fee, possibly according

to the publish-subscribe pattern. Customers may include researchers, mete-

orologists, public entities in charge of monitoring air quality and pollution,

and so forth.

Sensor nodes and LoRaWAN access points are managed by individuals

who voluntarily equip their vehicles with sensors or manage access points

at home, motivated by an economical compensation that occurs through

virtual currency tokens. Similarly, customers pay for accessing the data in

the form of the same tokens, with all financial transactions occurring in the

blockchain. In particular, in the proposed use case sensors are installed on

vehicles, and gateways are placed at fixed locations. While static sensors may

provide continuous location-specific information, mobile IoT devices enable

data gathering on a larger area, possibly including remote places where stable

network connectivity would be impractical or too expensive.

For what concerns the distributed ledger, both permissionless and permis-

sioned blockchains can be employed in IoT applications. However, it is worth

noting that permissioned blockchains are particularly suited for this context,

as they provide significant scalability benefits by enabling the customization

of the consensus protocol and block capacity, which can be set to get an

optimal configuration. Additionally, they offer an extra layer of security since

7.2 Architecture of a blockchain-based IoT application 119

all involved parties may be considered trusted, and therefore are assumed

to behave according to the protocols unless technical failures occur. The

integration of LoRaWAN components in the blockchain can vary based on the

design choices of the application. Gateways can be either full nodes or thin

clients, depending on whether they contribute to verifying the integrity of all

the received data or merely store data fragments of interest. On the other

hand, end-devices could either be regular sensors (i.e., low power devices

that only broadcast data), server-trusting clients (i.e., they rely on APIs

to interact with the blockchain, so no storage or computing capability is

required), or thin clients.

For the sake of simplicity, it is assumed that all actors are trusted and

have followed the necessary LoRaWAN join procedure. Mobile sensors store

environmental data locally and forward it to the application server when a

gateway is encountered. Gateways then send the data to the network server,

which authenticates the source and removes duplicate messages. The network

server forwards the filtered information to the application server, which stores

the data into a database and credits the gateway, the LoRaWAN provider,

and the sensor with tokens, representing virtual currency. The system allows

multiple independent service providers (i.e., data brokers) to coexist. A

permissioned blockchain might therefore be maintained cooperatively by the

service providers, under the assumption that all participants are identifiable

and trustworthy. An appropriate balance between the inflow of virtual

currency from customers and the outflow towards LoRaWAN administrators

and sensor owners is required for the service providers to break even and

generate profit for themselves. All monetary transactions are managed by the

blockchain, which automatizes the micropayments at a lower cost compared to

the traditional channels. Rewards are intended for blockchain nodes linked to

physical devices, allowing a single actor to own multiple gateways or sensors.

This allows sensor nodes, which are resource-constrained and have sporadic

network connectivity, to be excluded from any interaction with the blockchain.

Of course, all involved entities (customers, service providers, sensor owners)

120 7. Simulation of IoT scenarios

can check their balance anytime using personal devices.

To summarize, four categories of nodes are defined in the proposed archi-

tectures:

• Full nodes, which are the nodes operated by providers that gather

transactions and insert them into blockchain blocks. Each provider has

at least one full node, enabling a shared marketplace that distributes

infrastructure costs and offers a common platform for purchasing sensor

data.

• Sensors, which generate data and are rewarded by service providers

through micropayments. Sensor owners can access the blockchain via

personal devices to monitor transactions and withdraw virtual currency

so that no blockchain functionality must be embedded in the sensors,

conserving their energy by avoiding complex computations.

• Gateways, which act as proxy allowing sensors to upload data to the

application servers. Gateways are placed at fixed locations where good

network connectivity is assumed to be available. Similarly to sensors,

no blockchain functionality is required on gateways, since their owners

can access the blockchain by other means to check their balance.

• Customers, which are the final users of the data. They are subscribed to

one or more flows of data upon payment of some fees in virtual currency.

The fee might be calculated based on the amount of data accessed, the

number of queries, or any other metric that is deemed appropriate.

7.3 Multilevel Model

The system previously discussed was evaluated through simulation, posing

a challenge due to the complexity of involving a permissioned blockchain,

mobile IoT entities, LoRaWAN technology, and micropayments. To address

the involvement of factors of various kinds, the simulator was developed using

7.3 Multilevel Model 121

the principles of multilevel modeling, in order to speed up the development

process and simplify verification and validation by leveraging existing sub-

models. The choice of the simulators that are going to be integrated into

a multilevel architecture should consider both technical aspects, such as

accuracy in reproducing features of interest, and integration feasibility within

a complex environment. In fact, modifications to existing models are often

necessary to adapt them to the specific scenarios of interest, and to enable

interaction with other components.

The building blocks of the proposed model are:

• A mobility simulator for modeling the movements of vehicles. SUMO,

an agent-based time-stepped tool for microscopic traffic simulation [212],

was selected for this purpose. SUMO provides a platform for modeling

complex traffic scenarios, including road networks, vehicles, pedestrians,

traffic signals, and various control strategies. Furthermore, it allows for

the selection of geographical areas and traffic configurations through

provided scripts.

• A LoRa simulator, capable of measuring metrics such as transmit energy

consumption, packet delivery ratio, and network throughput. The choice

fell on simlorasf [213], a lightweight simulator written in Python that

can be more easily integrated into a multilevel framework with respect

to other network simulators like OMNeT++ or ns-3.

• A blockchain simulator to reproduce the storage of data and the ex-

change of tokens within the marketplace. The simulator employed was

LUNES-blockchain [214], a time-stepped agent-based simulator capable

of reproducing the behavior of all actors involved in the blockchain

activities with high accuracy and efficiency. LUNES-blockchain can be

easily customized to study different types of scenarios and blockchain

policies.

SUMO allows developers to import geographic and road data from Open-

StreetMap and configure vehicle flow within the geographic area of interest.

122 7. Simulation of IoT scenarios

Two parameters contribute to the setup: Through Traffic Factors controls

the likelihood for vehicles to enter or exit the simulation area. A higher

value involves a greater influx and outflow of vehicles at the network borders,

displaying increased movement of cars entering and exiting the simulation

area. Count instead determines the number of vehicles per Km of lane that

are generated every hour. The execution of SUMO can be triggered through

the TraCI Python library3 which facilitates the interoperability of SUMO

with external software.

Blockchain
output f i le

LoRa
output f i le

SUMO

While
step < total_steps

LUNES-blockchain simlorasf

User

Launcher

writes blockchain metrics

inserts transactions
in the blockchain

writes energy consumption and
metrics about message delivery

runs LUNES steps until
temporal sync is achieved

executes SUMO time-step

labels vehicles with LoRa sensors;
keeps track of sensor positions

launches LUNES

Outcome of the LoRa communications

every n SUMO steps, executes lorasimfs

launches SUMO

Sets parameters and
launches the execution

Figure 7.2: Sequence diagram of the multilevel simulator.

The integration of different sub-models requires the definition of orches-

tration and data exchange patterns, that specify how the various components

interact and how they exchange information (for more details see Chapter 4.

The interactions are shown in the sequence diagram in Figure 7.2. The Model’s

Controller orchestration pattern is employed, where an ad-hoc module (the

Controller, in this case, a launcher script) sits at the top of the multilevel

model hierarchy, acting as both the user interface and the Controller for the

execution of the sub-models. SUMO and LUNES-blockchain are initiated

at the start and remain active throughout the simulation to maintain state

3https://pypi.org/project/traci/

7.4 Simulation Results 123

information (e.g., vehicle positions, velocities, directions, blockchain content)

across the entire execution. The launcher progresses through a predefined

number of steps: at each step, SUMO advances to the next timestep to

update the positions of the vehicles. Next, simlorasf is triggered to manage

data transfers for vehicles that have entered the communication range of a

gateway. Additionally, simlorasf calculates the energy consumption of the

mobile sensors and records this data for post-simulation analysis. Once all

communications are finalized, the launcher calls LUNES-blockchain to allocate

rewards to nodes and gateways, storing the results in the distributed ledger.

7.4 Simulation Results

The city of Bologna was chosen as the geographical location for the expe-

riments, while the gateways were placed in the positions shown in Figure 7.3.

Gateways 1, and 2 are actual LoRaWAN Gateways that are installed in the

city, Gateways 3, 4, and 5 are placed in strategic positions (Piazza Maggiore,

Dall’Ara Stadium, and Bologna-Mazzini train station), and Gateway 6 is

placed in a peripheral location. The arrangement of the sensors has been

chosen to cover a significant portion of the map and particularly focusing on

high-traffic areas. Most of the vehicles in fact are active in the center, while

the green-shaded parts of the map represent hilly zones with the surrounding

streets having lower vehicle density.

Following an initial warm-up phase required to populate the area with a

suitable number of vehicles, the simulation proceeded for 1000 steps, where

each SUMO step represents 1 second of wall-clock time. It is assumed that

every 10 seconds the sensors emit messages, which can be received in the

range of 2100 meters [215]. LoRa-equipped vehicles lack awareness of gateway

presence within their transmission range, making it hard to ensure that all

transmitted data has been received. While occasional data losses might

be acceptable in some applications, it might not be acceptable in others.

There are various solutions to mitigate this issue. One approach involves

124 7. Simulation of IoT scenarios

Figure 7.3: Placement of LoRa Gateways in the simulation scenario.

storing and transmitting the last k data points, where k is the transmission

window. Higher values of k increase the likelihood that all data points will

eventually reach the application server at least once, at the cost of a larger

message size and greater effort for identifying and removing duplicates on the

receiving side. Other approaches based on explicit acknowledgements using

the downlink channel might be designed, but they require sensors to wait

for message receipts and the handling of retransmissions. In terms of SUMO

traffic generation parameters, the testbed has a Through Traffic Factors value

(i.e. likelihood for the vehicles of choosing a boundary edge) of 5 and a Count

value (i.e., quantity of vehicles produced every hour per kilometers of lane)

of 100; it is also assumed that 10% of all vehicles are equipped with sensors.

Regarding financial compensation, it is assumed that sensors, gateways,

and providers are rewarded with 1 token for every transaction validated in

7.4 Simulation Results 125

the blockchain. This fixed reward has been chosen to simplify experiments,

whereas in a real scenario different services may have varying prices, and

the reward could be distributed among the involved actors in different ways.

In the experiments, the amount of tokens earned by gateways is directly

proportional to the number of forwarded messages. If multiple gateways

receive the same message, LoRaWAN deduplication policies apply, and the

token is assigned to the gateway with the strongest signal, which in the

simulation is always assumed to be the one closest to the sensor.

Figure 7.4 shows the reward obtained by the gateways after 1000 seconds

of simulated time. The gateways receiving a higher reward are either those

positioned in the busiest areas (Gateways 1 and 3) or those individually

covering a wide territory (Gateway 5). On the other hand, Gateway 6, which

is located in a peripheral and low-traffic area of the city, is by far the one

that retransmits the fewest messages.

The fraction of cars equipped with sensors has a big influence on metrics

such as transmit energy consumption and the packet delivery ratio, as shown

in Figure 7.5. As this parameter increases, the energy consumption grows

proportionally, while the packet delivery ratio decreases due to a higher

amount of interference.

Managing a large volume of transactions implies the need for blockchain

solutions capable of handling high data flow. Permissioned blockchains

offer the advantage of customizing the distributed ledger’s configuration to

effectively accommodate the data rate required by the IoT application. The

capacity to support transactions within a specific timeframe is determined

by two key attributes: the maximum number of transactions per block and

the block production frequency, together defining the maximum transaction

throughput. Figure 7.6 shows the percentage of transactions successfully

inserted into a block, depending on the number of vehicles equipped with

LoRa sensors and the throughput, measured as the maximum number of

transactions that can be inserted in one minute. Obviously, in a real-world

system, it is desirable that no transaction gets lost. Therefore, it is necessary

126 7. Simulation of IoT scenarios

Figure 7.4: Rewards obtained by each gateway.

to customize the blockchain attributes in a way that a 100% insertion rate is

ensured.

In the experiments, consensus is achieved through PoA where provider

nodes, serving as trusted entities, are responsible for block production. The

proposed architecture is not heavily reliant on a specific consensus mechanism.

While PoA is a well-established choice for permissioned blockchain [216],

there is no specific standard about how the PoA is implemented. Therefore,

a PoS-based implementation was chosen due to its compatibility with the

simulator. However, any suitable consensus mechanism could be integrated.

7.4 Simulation Results 127

Figure 7.5: Increasing the number of sensors entails greater transmit energy

consumption and lower packet delivery ratio.

128 7. Simulation of IoT scenarios

Figure 7.6: Transactions successfully validated in the blockchain. The three curves

represent the percentage of vehicles equipped with LoRa sensors, respectively 5%,

10%, and 20% of all vehicles.

Chapter 8

Conclusions

In this dissertation, several aspects connected with multilevel modeling

have been investigated. Through the analysis of the state of the art, it turned

out that multilevel modeling is widely used in scientific research, and also finds

application in fields concerning human mobility and behavior. In particular,

in the various areas that have been considered, it was possible to identify

certain methodological patterns, meaning that frequently certain types of

studies are carried out with similar methodologies, as pointed out in Table

8.1.

Application Area Methodology

Local epidemic diffusion Within-host model + Between-host model

Global epidemic diffusion Large-scale mobility model + Local between-host models

Traffic Macroscopic model + Microscopic model

Crowd behavior Macroscopic model + Microscopic model

Crowd evacuation Smoke/fire model + Microscopic model

Population Dynamics Multilevel logistic regression model

Information diffusion Multilayer graph

Table 8.1: Most frequently used methodologies within each research area.

Research on epidemic spreading frequently employs a combination of

within-host and between-host models. These models naturally describe the

diffusion of a pathogen inside the human body (within-host) and its spread

across individuals (between-host). On a larger scale, global epidemic diffusion

129

130 8. Conclusions

uses mobility models to account for human movement. Traffic modeling

and crowd mobility studies utilize microscopic models to accurately depict

individual behavior, combined with macroscopic models to describe flows of

vehicles or crowds. Emergency scenarios, such as crowd evacuation due to

floods or fires, integrate microscopic models with water or fire propagation

models, as individual behavior is influenced by perceived danger levels in

their surroundings. Population dynamics studies typically rely on multilevel

continuous models, and finally, multilayer graphs are commonly used for

studying information diffusion.

While it has emerged that various types of methodologies can be employed

and combined, common design principles for multilevel modeling can still be

identified, regardless of the semantics. Therefore, this dissertation introduces

GEMMA, a metamodel designed to facilitate the creation of multilevel models.

GEMMA accurately specifies the interplay among sub-models, potentially

based on different paradigms, including call conditions, information exchange,

and consistency rules.

Furthermore, four categories of design patterns were proposed to give

technical solutions to recurrent modeling issues. Specifically, Orchestration

Patterns are strategies for organizing the various building blocks, Structural

Patterns are design solutions for developing software systems with a hierar-

chical structure, Multiscale Patterns are procedures for representing a system

with multiple scales of detail, and lastly, Information Exchange patterns

describe how data can be exchanged among the sub-models.

The final part of the thesis presents applications of ABM and multilevel

modeling. ABM was proved to be well-suited for detailed representations of

scenarios involving several heterogeneous entities, while multilevel modeling

was employed to study an IoT application, as the presence of multiple factors

of interest makes this methodology particularly appropriate for such a context.

Specifically, the proposed IoT architecture integrates the gathering and trading

of sensor data to create a decentralized marketplace, facilitating the acquisition

of sensor data over the territory of interest. While LoRaWAN is an established

131

standard for IoT applications, enabling efficient retrieval of data, blockchain

technology could facilitate the establishment of a marketplace, empowering

customers to subscribe to various data streams, possibly generated and

managed by different entities. From a modeling perspective, a blockchain

model, a LoRa model, and a vehicle mobility model were integrated using the

discussed methodology. This approach enabled the use of existing specialized

models to represent various aspects of a complex scenario, without the need of

developing a new simulator from scratch. The experiments indicate that even

a small number of strategically positioned gateways can achieve extensive

coverage in large urban areas.

132 8. Conclusions

Bibliography

[1] D. Weyns and T. Holvoet, “A formal model for situated multi-agent

systems,” Fundamenta Informaticae, vol. 63, no. 2-3, pp. 125–158, 2004.

[2] L. Serena, G. D’Angelo, and S. Ferretti, “Security analysis of distributed

ledgers and blockchains through agent-based simulation,” Simulation

Modelling Practice and Theory, vol. 114, p. 102413, 2022.

[3] S. Wolfram, “Cellular automata as models of complexity,” Nature,

vol. 311, no. 5985, pp. 419–424, 1984.

[4] R. G. Coyle, “System dynamics modelling: a practical approach,” Jour-

nal of the Operational Research Society, vol. 48, no. 5, pp. 544–544,

1997.

[5] D. H. Meadows, J. Randers, and D. L. Meadows, Limits to Growth–The

30 year update. Chelsea Green Publishing, 2004.

[6] S. Ghosh, “On the concept of dynamic multi-level simulation,” in

Proceedings of the 19th annual symposium on Simulation, pp. 201–205,

1986.

[7] A. Handel and P. Rohani, “Crossing the scale from within-host infection

dynamics to between-host transmission fitness: a discussion of current

assumptions and knowledge,” Philosophical Transactions of the Royal

Society B: Biological Sciences, vol. 370, no. 1675, p. 20140302, 2015.

133

134 BIBLIOGRAPHY

[8] S. Karabasov, D. Nerukh, A. Hoekstra, B. Chopard, and P. V. Coveney,

“Multiscale modelling: approaches and challenges,” Philosophical Trans-

actions of the Royal Society A: Mathematical, Physical and Engineering

Sciences, vol. 372, no. 2021, p. 20130390, 2014.

[9] P. D. Dans, J. Walther, H. Gómez, and M. Orozco, “Multiscale simula-

tion of dna,” Current opinion in structural biology, vol. 37, pp. 29–45,

2016.

[10] D. Bishara, Y. Xie, W. K. Liu, and S. Li, “A state-of-the-art review

on machine learning-based multiscale modeling, simulation, homoge-

nization and design of materials,” Archives of computational methods

in engineering, vol. 30, no. 1, pp. 191–222, 2023.

[11] Z. Hammoud and F. Kramer, “Multilayer networks: aspects, implemen-

tations, and application in biomedicine,” Big Data Analytics, vol. 5,

no. 1, pp. 1–18, 2020.

[12] A. C. Kinsley, G. Rossi, M. J. Silk, and K. VanderWaal, “Multilayer

and multiplex networks: an introduction to their use in veterinary

epidemiology,” Frontiers in veterinary science, vol. 7, p. 596, 2020.

[13] J. S. Dahmann, “High level architecture for simulation,” in Proceedings

First International Workshop on Distributed Interactive Simulation and

Real Time Applications, pp. 9–14, IEEE, 1997.

[14] L. Serena, M. Marzolla, G. D’Angelo, and S. Ferretti, “A review of

multilevel modeling and simulation for human mobility and behavior,”

Simulation Modelling Practice and Theory, p. 102780, 2023.

[15] V. K. Nguyen, R. Mikolajczyk, and E. A. Hernandez-Vargas, “High-

resolution epidemic simulation using within-host infection and contact

data,” BMC public health, vol. 18, no. 1, pp. 1–11, 2018.

BIBLIOGRAPHY 135

[16] E. A. Hernandez-Vargas, A. Y. Alanis, and J. Tetteh, “A new view

of multiscale stochastic impulsive systems for modeling and control of

epidemics,” Annual Reviews in Control, vol. 48, pp. 242–249, 2019.

[17] S. Lukens, J. DePasse, R. Rosenfeld, E. Ghedin, E. Mochan, S. T.

Brown, J. Grefenstette, D. S. Burke, D. Swigon, and G. Clermont, “A

large-scale immuno-epidemiological simulation of influenza a epidemics,”

BMC public health, vol. 14, no. 1, pp. 1–15, 2014.

[18] B. Musundi, J. Müller, and Z. Feng, “A multi-scale model for cholera

outbreaks,” Mathematics, vol. 10, no. 17, p. 3114, 2022.

[19] X. Cen, Z. Feng, and Y. Zhao, “Emerging disease dynamics in a model

coupling within-host and between-host systems,” Journal of theoretical

biology, vol. 361, pp. 141–151, 2014.

[20] Z. Feng, J. Velasco-Hernandez, and B. Tapia-Santos, “A mathemati-

cal model for coupling within-host and between-host dynamics in an

environmentally-driven infectious disease,” Mathematical biosciences,

vol. 241, no. 1, pp. 49–55, 2013.

[21] E. Numfor, S. Bhattacharya, S. Lenhart, and M. Martcheva, “Optimal

control in coupled within-host and between-host models,” Mathematical

Modelling of Natural Phenomena, vol. 9, no. 4, pp. 171–203, 2014.

[22] N. Bellomo, D. Burini, and N. Outada, “Multiscale models of covid-

19 with mutations and variants,” Networks and Heterogeneous Media,

vol. 17, no. 3, p. 293, 2022.

[23] X. Wang, S. Wang, J. Wang, and L. Rong, “A multiscale model of

covid-19 dynamics,” Bulletin of Mathematical Biology, vol. 84, no. 9,

pp. 1–41, 2022.

[24] B. Durand, M. A. Dubois, P. Sabatier, D. Calavas, C. Ducrot, and

A. Van de Wielle, “Multiscale modelling of scrapie epidemiology: Ii.

136 BIBLIOGRAPHY

geographical level: hierarchical transfer of the herd model to the regional

disease spread,” Ecological Modelling, vol. 179, no. 4, pp. 515–531, 2004.

[25] M. A. Gilchrist and A. Sasaki, “Modeling host–parasite coevolution: a

nested approach based on mechanistic models,” Journal of Theoretical

Biology, vol. 218, no. 3, pp. 289–308, 2002.

[26] M. Tracy, M. Cerdá, and K. M. Keyes, “Agent-based modeling in public

health: current applications and future directions,” Annual review of

public health, vol. 39, p. 77, 2018.

[27] I. Cooper, A. Mondal, and C. G. Antonopoulos, “A sir model assumption

for the spread of covid-19 in different communities,” Chaos, Solitons &

Fractals, vol. 139, p. 110057, 2020.

[28] M. H. A. Biswas, L. T. Paiva, and M. De Pinho, “A seir model for control

of infectious diseases with constraints,” Mathematical Biosciences &

Engineering, vol. 11, no. 4, p. 761, 2014.

[29] H. Shi, Z. Duan, and G. Chen, “An sis model with infective medium

on complex networks,” Physica A: Statistical Mechanics and its Appli-

cations, vol. 387, no. 8-9, pp. 2133–2144, 2008.

[30] A. Welling, A. Patel, P. Kulkarni, and V. G. Vaidya, “Multilevel inte-

grated model with a novel systems approach (mimansa) for simulating

the spread of covid-19,” medRxiv, 2020.

[31] N. Chen, D. Rey, and L. Gardner, “Multiscale network model for

evaluating global outbreak control strategies,” Transportation Research

Record, vol. 2626, no. 1, pp. 42–50, 2017.

[32] T. Li, “Simulating the spread of epidemics in china on multi-layer

transportation networks: Beyond covid-19 in wuhan,” EPL (Europhysics

Letters), vol. 130, no. 4, p. 48002, 2020.

BIBLIOGRAPHY 137

[33] B. Lieberthal and A. M. Gardner, “Connectivity, reproduction number,

and mobility interact to determine communities’ epidemiological super-

spreader potential in a metapopulation network,” PLOS Computational

Biology, vol. 17, no. 3, p. e1008674, 2021.

[34] L. Kou, X. Wang, Y. Li, X. Guo, and H. Zhang, “A multi-scale agent-

based model of infectious disease transmission to assess the impact of

vaccination and non-pharmaceutical interventions: The covid-19 case,”

Journal of Safety Science and Resilience, vol. 2, no. 4, pp. 199–207,

2021.

[35] L. G. A. Zuzek, C. Buono, and L. A. Braunstein, “Epidemic spread-

ing and immunization strategy in multiplex networks,” in Journal of

Physics: Conference Series, vol. 640, p. 012007, IOP Publishing, 2015.

[36] L. G. A. Zuzek, H. E. Stanley, and L. A. Braunstein, “Epidemic model

with isolation in multilayer networks,” Scientific reports, vol. 5, pp. 1–7,

2015.

[37] D. Wu, Y. Liu, M. Tang, X.-K. Xu, and S. Guan, “Impact of hop-

ping characteristics of inter-layer commuters on epidemic spreading in

multilayer networks,” Chaos, Solitons & Fractals, vol. 159, p. 112100,

2022.

[38] A. Vajdi, D. Juher, J. Saldaña, and C. Scoglio, “A multilayer temporal

network model for std spreading accounting for permanent and casual

partners,” Scientific reports, vol. 10, no. 1, pp. 1–12, 2020.

[39] S. Chang, E. Pierson, P. W. Koh, J. Gerardin, B. Redbird, D. Grusky,

and J. Leskovec, “Mobility network models of covid-19 explain inequities

and inform reopening,” Nature, vol. 589, no. 7840, pp. 82–87, 2021.

[40] W. Boscheri, G. Dimarco, and L. Pareschi, “Modeling and simulating

the spatial spread of an epidemic through multiscale kinetic transport

138 BIBLIOGRAPHY

equations,” Mathematical Models and Methods in Applied Sciences,

pp. 1–39, 2021.

[41] S. Namilae, P. Derjany, A. Mubayi, M. Scotch, and A. Srinivasan,

“Multiscale model for pedestrian and infection dynamics during air

travel,” Physical review E, vol. 95, no. 5, p. 052320, 2017.

[42] P. Derjany, S. Namilae, D. Liu, and A. Srinivasan, “Multiscale model for

the optimal design of pedestrian queues to mitigate infectious disease

spread,” PloS one, vol. 15, no. 7, p. e0235891, 2020.

[43] A. Bouchnita and A. Jebrane, “A hybrid multi-scale model of covid-19

transmission dynamics to assess the potential of non-pharmaceutical

interventions,” Chaos, Solitons & Fractals, vol. 138, p. 109941, 2020.

[44] D. J. Watts, R. Muhamad, D. C. Medina, and P. S. Dodds, “Mul-

tiscale, resurgent epidemics in a hierarchical metapopulation model,”

Proceedings of the National Academy of Sciences, vol. 102, no. 32,

pp. 11157–11162, 2005.

[45] L. Wang, Y. Zhang, Z. Wang, and X. Li, “The impact of human

location-specific contact pattern on the sir epidemic transmission be-

tween populations,” International Journal of Bifurcation and Chaos,

vol. 23, no. 05, p. 1350095, 2013.

[46] D. Balcan, V. Colizza, B. Gonçalves, H. Hu, J. J. Ramasco, and

A. Vespignani, “Multiscale mobility networks and the spatial spreading

ofr infectious diseases,” Proceedings of the National Academy of Sciences,

vol. 106, no. 51, pp. 21484–21489, 2009.

[47] B. Bonté, R. Duboz, G. Quesnel, and J. P. Müller, “Recursive simula-

tion and experimental frame for multiscale simulation,” in Proc. 2009

Summer Computer Simulation Conference, Jan. 2009.

BIBLIOGRAPHY 139

[48] S. Funk, E. Gilad, C. Watkins, and V. A. Jansen, “The spread of

awareness and its impact on epidemic outbreaks,” Proceedings of the

National Academy of Sciences, vol. 106, no. 16, pp. 6872–6877, 2009.

[49] K. Peng, Z. Lu, V. Lin, M. R. Lindstrom, C. Parkinson, C. Wang,

A. L. Bertozzi, and M. A. Porter, “A multilayer network model of

the coevolution of the spread of a disease and competing opinions,”

Mathematical Models and Methods in Applied Sciences, vol. 31, no. 12,

pp. 2455–2494, 2021.

[50] B. She, J. Liu, S. Sundaram, and P. E. Paré, “On a networked sis

epidemic model with cooperative and antagonistic opinion dynamics,”

IEEE Transactions on Control of Network Systems, 2022.

[51] J. Casas, J. Perarnau, and A. Torday, “The need to combine differ-

ent traffic modelling levels for effectively tackling large-scale projects

adding a hybrid meso/micro approach,” Procedia-Social and Behavioral

Sciences, vol. 20, pp. 251–262, 2011.

[52] J. J. Olstam and A. Tapani, Comparison of Car-following models,

vol. 960. Swedish National Road and Transport Research Institute

Linköping, 2004.

[53] N. E. Yunus, S. F. A. Razak, S. Yogarayan, and M. F. A. Abdullah,

“Lane changing models: A short review,” in 2021 IEEE 12th Control

and System Graduate Research Colloquium (ICSGRC), pp. 110–115,

IEEE, 2021.

[54] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in

empirical observations and microscopic simulations,” Physical review E,

vol. 62, no. 2, p. 1805, 2000.

[55] D. Makowiec and W. Miklaszewski, “Nagel-schreckenberg model of

traffic–study of diversity of car rules,” in International Conference on

Computational Science, pp. 256–263, Springer, 2006.

140 BIBLIOGRAPHY

[56] G. O. Kagho, M. Balac, and K. W. Axhausen, “Agent-based models in

transport planning: Current state, issues, and expectations,” Procedia

Computer Science, vol. 170, pp. 726–732, 2020.

[57] J. Nguyen, S. T. Powers, N. Urquhart, T. Farrenkopf, and M. Guckert,

“An overview of agent-based traffic simulators,” Transportation research

interdisciplinary perspectives, vol. 12, p. 100486, 2021.

[58] A. L. Bazzan and F. Klügl, “A review on agent-based technology for

traffic and transportation,” The Knowledge Engineering Review, vol. 29,

no. 3, pp. 375–403, 2014.

[59] P. Jing, H. Hu, F. Zhan, Y. Chen, and Y. Shi, “Agent-based simulation

of autonomous vehicles: A systematic literature review,” IEEE Access,

vol. 8, pp. 79089–79103, 2020.

[60] M. Balmer, M. Rieser, K. Meister, D. Charypar, N. Lefebvre, and

K. Nagel, “Matsim-t: Architecture and simulation times,” in Multi-

agent systems for traffic and transportation engineering, pp. 57–78, IGI

Global, 2009.

[61] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,

R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner, “Mi-

croscopic traffic simulation using sumo,” in 2018 21st international

conference on intelligent transportation systems (ITSC), pp. 2575–2582,

IEEE, 2018.

[62] G. Ben-Dor, E. Ben-Elia, and I. Benenson, “Population downscaling

in multi-agent transportation simulations: A review and case study,”

Simulation Modelling Practice and Theory, vol. 108, p. 102233, 2021.

[63] V. L. Knoop, D. De Jong, and S. P. Hoogendoom, “Influence of road

layout on network fundamental diagram,” Transportation Research

Record, vol. 2421, no. 1, pp. 22–30, 2014.

BIBLIOGRAPHY 141

[64] D. Vikram, P. Chakroborty, and S. Mittal, “Exploring the behavior

of lwr continuum models of traffic flow in presence of shock waves,”

Procedia-Social and Behavioral Sciences, vol. 104, pp. 412–421, 2013.

[65] C. Caligaris, S. Sacone, and S. Siri, “On the payne-whitham differential

model: stability constraints in one-class and two-class cases,” Applied

Mathematical Sciences, vol. 4, no. 76, pp. 3795–3821, 2010.

[66] H. Yu and M. Krstic, “Traffic congestion control for aw–rascle–zhang

model,” Automatica, vol. 100, pp. 38–51, 2019.

[67] A. Poschinger, R. Kates, and H. Keller, “Coupling of concurrent macro-

scopic and microscopic traffic flow models using hybrid stochastic and

deterministic disaggregation,” in Transportation and Traffic Theory

in the 21st Century. Proceedings of the 15th International Symposium

on Transportation and Traffic Theory, pp. 583–605, Emerald Group

Publishing Limited, 2002.

[68] N. Bouha, G. Morvan, H. Abouaissa, and Y. Kubera, “A first step

towards dynamic hybrid traffic modeling,” in Proceedings 29th European

Conference on Modelling and Simulation, pp. 64–70, 2015.

[69] J. Sewall, D. Wilkie, and M. C. Lin, “Interactive hybrid simulation

of large-scale traffic,” in Proceedings of the 2011 SIGGRAPH Asia

Conference, pp. 1–12, 2011.

[70] G. Jakovljevic and D. Basch, “Implementing multiscale traffic simula-

tors using agents,” in 26th International Conference on Information

Technology Interfaces, 2004., pp. 519–524, IEEE, 2004.

[71] M. P. Raadsen, M. C. Bliemer, and M. G. Bell, “Aggregation, disag-

gregation and decomposition methods in traffic assignment: historical

perspectives and new trends,” Transportation research part B: method-

ological, vol. 139, pp. 199–223, 2020.

142 BIBLIOGRAPHY

[72] M. S. El Hmam, H. Abouaissa, D. Jolly, and A. Benasser, “Towards an

hybrid simulation approach of transportation systems,” IFAC Proceed-

ings Volumes, vol. 37, no. 19, pp. 75–80, 2004.

[73] M. said EL HMAM, H. ABOUAISSA, D. JOLLY, and A. BENASSER,

“Macro-micro simulation of traffic flow,” IFAC Proceedings Volumes,

vol. 39, no. 3, pp. 351–356, 2006. 12th IFAC Symposium on Information

Control Problems in Manufacturing.

[74] S. Mammar, S. Mammar, and J.-P. Lebacque, “Highway traffic hybrid

macro-micro simulation model,” IFAC Proceedings Volumes, vol. 39,

no. 12, pp. 627–632, 2006.

[75] A. Banos, N. Corson, C. Lang, N. Marilleau, and P. Taillandier, “Mul-

tiscale modeling: application to traffic flow,” in Agent-based Spatial

Simulation with NetLogo, Volume 2, pp. 37–62, Elsevier, 2017.

[76] E. Bourrel and J.-B. Lesort, “Mixing microscopic and macroscopic

representations of traffic flow: Hybrid model based on lighthill–whitham–

richards theory,” Transportation Research Record, vol. 1852, no. 1,

pp. 193–200, 2003.

[77] M. Joueiai, L. Leclercq, H. Van Lint, and S. P. Hoogendoorn, “Mul-

tiscale traffic flow model based on the mesoscopic lighthill–whitham

and richards models,” Transportation Research Record, vol. 2491, no. 1,

pp. 98–106, 2015.

[78] M. Joueiai, H. Van Lint, and S. P. Hoogendoom, “Multiscale traffic

flow modeling in mixed networks,” Transportation Research Record,

vol. 2421, no. 1, pp. 142–150, 2014.

[79] X. Boulet, M. Zargayouna, G. Scemama, and F. Leurent, “Service-

oriented architecture for multiscale traffic simulations,” in 2019

IEEE/ACS 16th International Conference on Computer Systems and

Applications (AICCSA), pp. 1–8, IEEE, 2019.

BIBLIOGRAPHY 143

[80] M. Garavello, P. Goatin, T. Liard, and B. Piccoli, “A multiscale model

for traffic regulation via autonomous vehicles,” Journal of Differential

Equations, vol. 269, no. 7, pp. 6088–6124, 2020.

[81] M. L. Delle Monache and P. Goatin, “Scalar conservation laws with

moving constraints arising in traffic flow modeling: an existence result,”

Journal of Differential equations, vol. 257, no. 11, pp. 4015–4029, 2014.

[82] W. Burghout and J. Wahlstedt, “Hybrid traffic simulation with adaptive

signal control,” Transportation Research Record, vol. 1999, no. 1, pp. 191–

197, 2007.

[83] W. Burghout, H. N. Koutsopoulos, and I. Andreasson, “Hybrid

mesoscopic–microscopic traffic simulation,” Transportation Research

Record, vol. 1934, no. 1, pp. 218–225, 2005.

[84] R. Jayakrishnan, J.-S. Oh, and A.-E.-K. Sahraoui, “Calibration and

path dynamics issues in microscopic simulation for advanced traffic

management and information systems,” Transportation Research Record,

vol. 1771, no. 1, pp. 9–17, 2001.

[85] S. Bosmans, T. Bogaerts, W. Casteels, S. Mercelis, J. Denil, and

P. Hellinckx, “Adaptivity in multi-level traffic simulation using experi-

mental frames,” Simulation Modelling Practice and Theory, vol. 114,

p. 102395, 2022.

[86] P. Kumar, R. Merzouki, B. Conrard, V. Coelen, and B. O. Bouamama,

“Multilevel modeling of the traffic dynamic,” IEEE Transactions on

Intelligent Transportation Systems, vol. 15, no. 3, pp. 1066–1082, 2014.

[87] D. Ni, “Multiscale modeling of traffic flow,” Mathematica Aeterna,

vol. 1, no. 1, pp. 27–54, 2011.

[88] R. Alqurashi and T. Altman, “Hierarchical agent-based modeling for

improved traffic routing,” Applied Sciences, vol. 9, no. 20, 2019.

144 BIBLIOGRAPHY

[89] J. Serras, “Extending transims technology to an integrated multilevel

representation,” in CUPUM ’05: Computers in Urban Planning and

Urban Management, 2005.

[90] K. Ijaz, S. Sohail, and S. Hashish, “A survey of latest approaches

for crowd simulation and modeling using hybrid techniques,” in 17th

UKSIMAMSS international conference on modelling and simulation,

pp. 111–116, 2015.

[91] N. Bellomo and A. Bellouquid, “On multiscale models of pedestrian

crowds from mesoscopic to macroscopic,” Communications in Mathe-

matical Sciences, vol. 13, no. 7, pp. 1649–1664, 2015.

[92] F. Martinez-Gil, M. Lozano, I. Garćıa-Fernández, and F. Fernández,

“Modeling, evaluation, and scale on artificial pedestrians: a literature

review,” ACM Computing Surveys (CSUR), vol. 50, no. 5, pp. 1–35,

2017.

[93] Z. Zhang and L. Jia, “Optimal guidance strategy for crowd evacuation

with multiple exits: A hybrid multiscale modeling approach,” Applied

Mathematical Modelling, vol. 90, pp. 488–504, 2021.

[94] R. Alqurashi and T. Altman, “Multi-level multi-stage agent-based

decision support system for simulation of crowd dynamics,” in 2018

23rd International Conference on Engineering of Complex Computer

Systems (ICECCS), pp. 82–92, IEEE, 2018.

[95] N. T. N. Anh, Z. J. Daniel, N. H. Du, A. Drogoul, and V. D. An, “A

hybrid macro-micro pedestrians evacuation model to speed up simulation

in road networks,” in International Conference on Autonomous Agents

and Multiagent Systems, pp. 371–383, Springer, 2011.

[96] P. C. Tissera, A. M. Printista, and E. Luque, “A hybrid simulation

model to test behaviour designs in an emergency evacuation,” Procedia

Computer Science, vol. 9, pp. 266–275, 2012.

BIBLIOGRAPHY 145

[97] O. Richardson, A. Jalba, and A. Muntean, “Effects of environment

knowledge in evacuation scenarios involving fire and smoke: a multiscale

modelling and simulation approach,” Fire technology, vol. 55, no. 2,

pp. 415–436, 2019.

[98] A. Tsvirkun, A. Rezchikov, L. Y. Filimonyuk, A. Samartsev,

V. Ivashchenko, A. Bogomolov, and V. Kushnikov, “System of in-

tegrated simulation of spread of hazardous factors of fire and evacuation

of people from indoors,” Automation and Remote Control, vol. 83, no. 5,

pp. 692–705, 2022.

[99] J. Barreiro-Gomez, S. E. Choutri, and H. Tembine, “Risk-awareness in

multi-level building evacuation with smoke: Burj khalifa case study,”

Automatica, vol. 129, p. 109625, 2021.

[100] V. Karbovskii, D. Voloshin, A. Karsakov, A. Bezgodov, and A. Za-

garskikh, “Multiscale agent-based simulation in large city areas: emer-

gency evacuation use case,” Procedia Computer Science, vol. 51,

pp. 2367–2376, 2015.

[101] A. Mordvintsev, V. Krzhizhanovskaya, M. Lees, and P. Sloot, “Simula-

tion of city evacuation coupled to flood dynamics,” in Pedestrian and

Evacuation Dynamics 2012, pp. 485–499, Springer, 2014.

[102] K. Chapuis, T. A. Elwaqoudi, A. Brugière, E. Daudé, A. Drogoul,

B. Gaudou, D. Nguyen-Ngoc, H. Q. Nghi, and J.-D. Zucker, “An

agent-based co-modeling approach to simulate the evacuation of a

population in the context of a realistic flooding event: A case study

in hanoi (vietnam),” in Modelling, Simulation and Applications of

Complex Systems: CoSMoS 2019, Penang, Malaysia, April 8-11, 2019,

pp. 79–108, Springer, 2021.

[103] W. van Toll, C. Braga, B. Solenthaler, and J. Pettré, “Extreme-density

crowd simulation: Combining agents with smoothed particle hydrody-

146 BIBLIOGRAPHY

namics,” in Proceedings of the 13th ACM SIGGRAPH Conference on

Motion, Interaction and Games, pp. 1–10, 2020.

[104] N. Chooramun, P. Lawrence, and E. Galea, “Implementing a hybrid

space discretisation within an agent based evacuation model,” in Pedes-

trian and Evacuation Dynamics (R. D. Peacock, E. D. Kuligowski, and

J. D. Averill, eds.), (Boston, MA), pp. 449–458, Springer US, 2011.

[105] R. Ekyalimpa, M. Werner, S. Hague, S. AbouRizk, and N. Porter,

“A combined discrete-continuous simulation model for analyzing train-

pedestrian interactions,” in 2016 Winter Simulation Conference (WSC),

pp. 1583–1594, IEEE, 2016.

[106] D. A. Quistberg, E. J. Howard, B. E. Ebel, A. V. Moudon, B. E. Saelens,

P. M. Hurvitz, J. E. Curtin, and F. P. Rivara, “Multilevel models for

evaluating the risk of pedestrian–motor vehicle collisions at intersections

and mid-blocks,” Accident Analysis & Prevention, vol. 84, pp. 99–111,

2015.

[107] G. Lämmel, M. Chraibi, A. K. Wagoum, and B. Steffen, “Hybrid

multi-and inter-modal transport simulation: a case study on large-scale

evacuation planning,” in Transportation Research Board 95th Annual

Meeting, Jülich Supercomputing Center, 2016.

[108] D. H. Biedermann, C. Torchiani, P. M. Kielar, D. Willems, O. Handel,

S. Ruzika, and A. Borrmann, “A hybrid and multiscale approach to

model and simulate mobility in the context of public events,” Trans-

portation Research Procedia, vol. 19, pp. 350–363, 2016.

[109] L. Crociani, G. Lämmel, J. Park, and G. Vizzari, “Cellular automaton

based simulation of large pedestrian facilities—a case study on the

staten island ferry terminals,” in 96th Transportation Research Board

annual meeting, Jan. 2017.

BIBLIOGRAPHY 147

[110] A. Ford, S. Barr, R. Dawson, J. Virgo, M. Batty, and J. Hall, “A

multi-scale urban integrated assessment framework for climate change

studies: A flooding application,” Computers, Environment and Urban

Systems, vol. 75, pp. 229–243, 2019.

[111] T. K. Lim, M. Ignatius, M. Miguel, N. H. Wong, and H.-M. H. Juang,

“Multi-scale urban system modeling for sustainable planning and design,”

Energy and Buildings, vol. 157, pp. 78–91, 2017.

[112] M. Adnan, F. C. Pereira, C. M. L. Azevedo, K. Basak, M. Lovric,

S. Raveau, Y. Zhu, J. Ferreira, C. Zegras, and M. Ben-Akiva, “Simmo-

bility: A multi-scale integrated agent-based simulation platform,” in

95th Annual Meeting of the Transportation Research Board Forthcoming

in Transportation Research Record, 2016.

[113] Y. Yu, J. He, W. Tang, and C. Li, “Modeling urban collaborative

growth dynamics using a multiscale simulation model for the wuhan

urban agglomeration area, china,” ISPRS International Journal of

Geo-Information, vol. 7, no. 5, p. 176, 2018.

[114] T. Xu, J. Gao, G. Coco, and S. Wang, “Urban expansion in auckland,

new zealand: a gis simulation via an intelligent self-adapting multiscale

agent-based model,” International Journal of Geographical Information

Science, vol. 34, no. 11, pp. 2136–2159, 2020.

[115] J. Cheng and I. Masser, “Modelling urban growth patterns: a multiscale

perspective,” Environment and Planning A, vol. 35, no. 4, pp. 679–704,

2003.

[116] A. Veldkamp and L. Fresco, “Clue-cr: an integrated multi-scale model to

simulate land use change scenarios in costa rica,” Ecological modelling,

vol. 91, no. 1-3, pp. 231–248, 1996.

[117] L. Yang, K. H. van Dam, B. Anvari, and L. Zhang, “Multi-level agent-

based simulation for supporting transit-oriented development in beijing,”

148 BIBLIOGRAPHY

in International Workshop on Agent-Based Modelling of Urban Systems

(ABMUS), p. 17, 2021.

[118] A. Drogoul, N. Q. Huynh, and Q. C. Truong, “Coupling environmental,

social and economic models to understand land-use change dynamics

in the mekong delta,” Frontiers in environmental science, vol. 4, p. 19,

2016.

[119] J. Santiago, B. Sanchez, C. Quaassdorff, D. de la Paz, A. Martilli,

F. Mart́ın, R. Borge, E. Rivas, F. Gómez-Moreno, E. Dı́az, et al.,

“Performance evaluation of a multiscale modelling system applied to

particulate matter dispersion in a real traffic hot spot in Madrid (Spain),”

Atmospheric pollution research, vol. 11, no. 1, pp. 141–155, 2020.

[120] E. Moreira, S. Costa, A. P. Aguiar, G. Câmara, and T. Carneiro,

“Dynamical coupling of multiscale land change models,” Landscape

Ecology, vol. 24, no. 9, pp. 1183–1194, 2009.

[121] K. P. Overmars and P. H. Verburg, “Multilevel modelling of land use

from field to village level in the philippines,” Agricultural Systems,

vol. 89, no. 2-3, pp. 435–456, 2006.

[122] G. D’Angelo, S. Ferretti, and V. Ghini, “Multi-level simulation of

internet of things on smart territories,” Simulation Modelling Practice

and Theory, vol. 73, pp. 3–21, 2017.

[123] G. D’Angelo, S. Ferretti, and V. Ghini, “Distributed hybrid simula-

tion of the internet of things and smart territories,” Concurrency and

Computation: Practice and Experience, vol. 30, no. 9, p. e4370, 2018.

[124] Z. Gu, F. Safarighouzhdi, M. Saberi, and T. H. Rashidi, “A macro-

micro approach to modeling parking,” Transportation Research Part B:

Methodological, vol. 147, pp. 220–244, 2021.

BIBLIOGRAPHY 149

[125] M. Magnani and L. Rossi, “The ml-model for multi-layer social net-

works,” in 2011 International conference on advances in social networks

analysis and mining, pp. 5–12, IEEE, 2011.

[126] Y. Zhuang and O. Yağan, “Information propagation in clustered multi-

layer networks,” IEEE Transactions on Network Science and Engineer-

ing, vol. 3, no. 4, pp. 211–224, 2016.

[127] Y. Murase, J. Török, H.-H. Jo, K. Kaski, and J. Kertész, “Multilayer

weighted social network model,” Physical Review E, vol. 90, no. 5,

p. 052810, 2014.

[128] C. Ju, C. Wang, Y. Jiang, F. Bao, H. Zhou, and C. Xu, “Exploring a

multi-layer coupled network propagation model based on information

diffusion and bounded trust,” International Journal of Public Health,

p. 120, 2022.

[129] C. Ju, Y. Jiang, F. Bao, B. Zou, and C. Xu, “Online rumor diffusion

model based on variation and silence phenomenon in the context of

covid-19,” Frontiers in Public Health, vol. 9, 2021.

[130] X. Zhang, S. Onufrak, J. B. Holt, and J. B. Croft, “A multilevel

approach to estimating small area childhood obesity prevalence at the

census block-group level,” Prev Chronic Dis, vol. 10, no. 8, p. E68,

2013.

[131] P. Congdon, “A multilevel model for comorbid outcomes: obesity and

diabetes in the us,” International Journal of Environmental Research

and Public Health, vol. 7, no. 2, pp. 333–352, 2010.

[132] V. M. Oguoma, A. E. Anyasodor, A. O. Adeleye, O. A. Eneanya, and

E. C. Mbanefo, “Multilevel modelling of the risk of malaria among

children aged under five years in Nigeria,” Transactions of The Royal

Society of Tropical Medicine and Hygiene, vol. 115, no. 5, pp. 482–494,

2021.

150 BIBLIOGRAPHY

[133] G. Werneck, C. Costa, A. Walker, J. David, M. Wand, and J. Maguire,

“Multilevel modelling of the incidence of visceral leishmaniasis in teresina,

brazil,” Epidemiology & Infection, vol. 135, no. 2, pp. 195–201, 2007.

[134] P. Banandur, U. Mahajan, R. S. Potty, S. Isac, T. Duchesne, B. Abdous,

B. M. Ramesh, S. Moses, and M. Alary, “Population-level impact

of avahan in karnataka state, south india using multilevel statistical

modelling techniques,” JAIDS Journal of Acquired Immune Deficiency

Syndromes, vol. 62, no. 2, pp. 239–245, 2013.

[135] A. E. Iyanda and T. Osayomi, “Is there a relationship between economic

indicators and road fatalities in Texas? a multiscale geographically

weighted regression analysis,” GeoJournal, vol. 86, no. 6, pp. 2787–2807,

2021.

[136] K. Ball, D. Crawford, and G. Mishra, “Socio-economic inequalities in

women’s fruit and vegetable intakes: a multilevel study of individual,

social and environmental mediators,” Public health nutrition, vol. 9,

no. 5, pp. 623–630, 2006.

[137] A. K. Baumle and D. L. Poston Jr, “The economic cost of homosexuality:

Multilevel analyses,” Social Forces, vol. 89, no. 3, pp. 1005–1031, 2011.

[138] J. Gibbons, “Are gentrifying neighborhoods more stressful? a multilevel

analysis of self-rated stress,” SSM-population health, vol. 7, p. 100358,

2019.

[139] H. Gibbs Knotts and M. Haspel, “The impact of gentrification on voter

turnout,” Social science quarterly, vol. 87, no. 1, pp. 110–121, 2006.

[140] D. Courgeau and B. Baccaini, “Multilevel analysis in the social sciences,”

Population: An English Selection, pp. 39–71, 1998.

[141] M. Tian, Z. Tian, and W. Sun, “The impacts of city-specific factors on

social integration of chinese migrant workers: A study using multilevel

modeling,” Journal of Urban Affairs, vol. 41, no. 3, pp. 324–337, 2019.

BIBLIOGRAPHY 151

[142] J. Gil-Quijano, “Mechanisms of automated formation and evolution of

social-groups: A multi-agent system to model the intra-urban mobilities

of bogotá city,” in Social Simulation: Technologies, Advances and New

Discoveries, pp. 151–168, IGI Global, 2008.

[143] G. Gilioli and S. Pasquali, “Use of individual-based models for popu-

lation parameters estimation,” Ecological modelling, vol. 200, no. 1-2,

pp. 109–118, 2007.

[144] M. Möhring, “Social science multilevel simulation with mimose,” in

Social Science Microsimulation, pp. 123–137, Springer, 1996.

[145] L. Billard, “On lotka–volterra predator prey models,” Journal of Applied

Probability, vol. 14, no. 2, pp. 375–381, 1977.

[146] C. O. Retzlaff, M. Ziefle, and A. Calero Valdez, “The history of agent-

based modeling in the social sciences,” in International Conference on

Human-Computer Interaction, pp. 304–319, Springer, 2021.

[147] A. Hjorth, B. Head, C. Brady, and U. Wilensky, “Levelspace: A netlogo

extension for multi-level agent-based modeling,” Journal of Artificial

Societies and Social Simulation, vol. 23, no. 1, 2020.

[148] U. Wilensky, “Netlogo.” Center for Connected Learning and Computer-

Based Modeling, Northwestern University, Evanston, IL, 1999. http:

//ccl.northwestern.edu/netlogo/.

[149] Y. H. Lee, M. K. Cho, S. J. Kim, and Y. B. Kim, “Supply chain

simulation with discrete–continuous combined modeling,” Computers

& Industrial Engineering, vol. 43, no. 1-2, pp. 375–392, 2002.

[150] M. M. Rahman, R. Nguyen, and L. Lu, “Multi-level impacts of climate

change and supply disruption events on a potato supply chain: An agent-

based modeling approach,” Agricultural Systems, vol. 201, p. 103469,

2022.

152 BIBLIOGRAPHY

[151] A. Alho, B. Bhavathrathan, M. Stinson, R. Gopalakrishnan, D.-T. Le,

and M. Ben-Akiva, “A multi-scale agent-based modelling framework for

urban freight distribution,” Transportation Research Procedia, vol. 27,

pp. 188–196, 2017.

[152] J. Duggan, “A simulator for continuous agent-based modelling,” in

25th International Conference of the Systems Dynamics Society Boston,

Citeseer, 2007.

[153] Q. Zhou, “Multi-layer affective computing model based on emotional

psychology,” Electronic Commerce Research, vol. 18, no. 1, pp. 109–124,

2018.

[154] L. Serena, M. Marzolla, G. D’Angelo, and S. Ferretti, “Design patterns

for multilevel modeling and simulation,” in 2023 IEEE/ACM 27th

International Symposium on Distributed Simulation and Real Time

Applications (DS-RT), pp. 48–55, IEEE, 2023.

[155] E. Gamma, R. Johnson, R. Helm, R. E. Johnson, and J. Vlissides,

Design patterns: elements of reusable object-oriented software. Pearson

Deutschland GmbH, 1995.

[156] J. Zheng and K. E. Harper, “Concurrency design patterns, software qual-

ity attributes and their tactics,” in Proceedings of the 3rd International

Workshop on Multicore Software Engineering, pp. 40–47, 2010.

[157] A. Sharma, M. Kumar, and S. Agarwal, “A complete survey on software

architectural styles and patterns,” Procedia Computer Science, vol. 70,

pp. 16–28, 2015.

[158] M. Xiong, S. Tang, and D. Zhao, “A hybrid model for simulating crowd

evacuation,” New Generation Computing, vol. 31, no. 3, pp. 211–235,

2013.

[159] D. R. Jefferson, “Virtual time,” ACM Trans. Program. Lang. Syst.,

vol. 7, p. 404–425, jul 1985.

BIBLIOGRAPHY 153

[160] P. A. Mboup, K. Konaté, and J. Le Fur, “A multi-world agent-based

model working at several spatial and temporal scales for simulating

complex geographic systems,” Procedia Computer Science, vol. 108,

pp. 968–977, 2017.

[161] S. R. Musse and D. Thalmann, “Hierarchical model for real time simu-

lation of virtual human crowds,” IEEE Transactions on Visualization

and Computer Graphics, vol. 7, no. 2, pp. 152–164, 2001.

[162] B. Liskov and L. Shrira, “Promises: Linguistic support for efficient

asynchronous procedure calls in distributed systems,” SIGPLAN Not.,

vol. 23, p. 260–267, jun 1988.

[163] G. V. Bobashev, D. M. Goedecke, F. Yu, and J. M. Epstein, “A hybrid

epidemic model: combining the advantages of agent-based and equation-

based approaches,” in 2007 winter simulation conference, pp. 1532–1537,

IEEE, 2007.

[164] P. Mathieu, G. Morvan, and S. Picault, “Multi-level agent-based sim-

ulations: Four design patterns,” Simulation Modelling Practice and

Theory, vol. 83, pp. 51–64, 2018.

[165] Y. Labiche and G. Wainer, “Towards the verification and validation of

devs models,” in in Proceedings of 1st Open International Conference

on Modeling & Simulation, pp. 295–305, Citeseer, 2005.

[166] G. A. Wainer, Discrete-event modeling and simulation: a practitioner’s

approach. CRC press, 2017.

[167] A. Maatoug, G. Belalem, and K. Mostefaoui, “Modeling and simulation

of energy management system for smart city with the formalism devs:

Towards reducing the energy consumption,” International Journal of

Computer Applications, vol. 90, no. 18, 2014.

154 BIBLIOGRAPHY

[168] A. C. H. Chow and B. P. Zeigler, “Parallel devs: A parallel, hierarchical,

modular modeling formalism,” in Proceedings of Winter Simulation

Conference, pp. 716–722, IEEE, 1994.

[169] A. Steiniger, F. Krüger, and A. M. Uhrmacher, “Modeling agents

and their environment in multi-level-devs,” in Proceedings of the 2012

Winter Simulation Conference (WSC), pp. 1–12, IEEE, 2012.

[170] P. Marcenac and S. Giroux, “Geamas: A generic architecture for agent-

oriented simulations of complex processes,” Applied Intelligence, vol. 8,

no. 3, pp. 247–267, 1998.

[171] G. Morvan and D. Jolly, “Multi-level agent-based modeling with the

influence reaction principle,” arXiv preprint arXiv:1204.0634, 2012.

[172] S. Picault, P. Mathieu, and Y. Kubera, “Padawan, un modèle multi-

échelles pour la simulation orientée interactions,” in Systèmes Multi-

agents, Défis Sociétaux - JFSMA 10 - Dix-huitièmes journées franco-

phones sur les systèmes multi-agents, Mahdia, Tunisia, October 18-20,

2010 (M. Occello and L. Rejeb, eds.), pp. 195–204, Cepadues Editions,

2010.

[173] A. Grignard, P. Taillandier, B. Gaudou, D. A. Vo, N. Q. Huynh, and

A. Drogoul, “Gama 1.6: Advancing the art of complex agent-based

modeling and simulation,” in International conference on principles

and practice of multi-agent systems, pp. 117–131, Springer, 2013.

[174] S. Tisue and U. Wilensky, “Netlogo: A simple environment for modeling

complexity,” in International conference on complex systems, vol. 21,

pp. 16–21, Boston, MA, 2004.

[175] S. Khoirom, M. Sonia, B. Laikhuram, J. Laishram, and T. D. Singh,

“Comparative analysis of python and java for beginners,” Int. Res. J.

Eng. Technol, vol. 7, no. 8, pp. 4384–4407, 2020.

BIBLIOGRAPHY 155

[176] L. Serena, M. Zichichi, G. D’Angelo, and S. Ferretti, “On the modeling

of p2p systems as temporal networks: a case study with data streaming,”

in 2022 Annual Modeling and Simulation Conference (ANNSIM), pp. 66–

77, IEEE, 2022.

[177] A. Malatras, “State-of-the-art survey on p2p overlay networks in per-

vasive computing environments,” Journal of Network and Computer

Applications, vol. 55, pp. 1–23, 2015.

[178] L. Serena, M. Zichichi, G. D’Angelo, and S. Ferretti, “Simulation

of dissemination strategies on temporal networks,” in 2021 Annual

Modeling and Simulation Conference (ANNSIM), pp. 1–12, IEEE, 2021.

[179] Y. Song, H. Ni, and X. Zhu, “Analytical modeling of optimal chunk

size for efficient transmission in information-centric networking,” Int. J.

Innov. Comput. Inf. Control, vol. 16, pp. 1511–1525, 2020.

[180] D. Thiele and R. Ernst, “Formal worst-case performance analysis of

time-sensitive ethernet with frame preemption,” in 2016 IEEE 21st

International Conference on Emerging Technologies and Factory Au-

tomation (ETFA), pp. 1–9, IEEE, 2016.

[181] M. Zichichi, L. Serena, S. Ferretti, and G. D’Angelo, “Dlt-based data

mules for smart territories,” in 2022 International Conference on Com-

puter Communications and Networks (ICCCN), pp. 1–7, IEEE, 2022.

[182] G. Anastasi, M. Conti, and M. Di Francesco, “Data collection in sensor

networks with data mules: An integrated simulation analysis,” in 2008

IEEE Symposium on Computers and Communications, pp. 1096–1102,

IEEE, 2008.

[183] M. M. Coutinho, A. Efrat, T. Johnson, A. Richa, and M. Liu, “Health-

care supported by data mule networks in remote communities of the

amazon region,” International scholarly research notices, vol. 2014,

2014.

156 BIBLIOGRAPHY

[184] A. Balasundram, T. Samarasinghe, and D. Dias, “Performance analysis

of wi-fi direct for vehicular ad-hoc networks,” in 2016 IEEE Inter-

national Conference on Advanced Networks and Telecommunications

Systems (ANTS), pp. 1–6, IEEE, 2016.

[185] L. Serena, M. Zichichi, G. D’Angelo, and S. Ferretti, “Simulation

of hybrid edge computing architectures,” in 2021 IEEE/ACM 25th

International Symposium on Distributed Simulation and Real Time

Applications (DS-RT), pp. 1–8, IEEE, 2021.

[186] V. Karagiannis, A. Venito, R. Coelho, M. Borkowski, and G. Fohler,

“Edge computing with peer to peer interactions: Use cases and impact,”

in Proceedings of the Workshop on Fog Computing and the IoT, pp. 46–

50, 2019.

[187] G. Yadgar, O. Kolosov, M. F. Aktas, and E. Soljanin, “Modeling the

edge: Peer-to-peer reincarnated,” in 2nd {USENIX} Workshop on Hot

Topics in Edge Computing (HotEdge 19), 2019.

[188] S.-W. Ko, K. Han, and K. Huang, “Wireless networks for mobile edge

computing: Spatial modeling and latency analysis,” IEEE Transactions

on Wireless Communications, vol. 17, no. 8, 2018.

[189] E. Hyytiä and J. Virtamo, “Random waypoint mobility model in cellular

networks,” Wireless Networks, vol. 13, no. 2, pp. 177–188, 2007.

[190] N. Vastardis and K. Yang, “An enhanced community-based mobility

model for distributed mobile social networks,” Journal of Ambient

Intelligence and Humanized Computing, vol. 5, no. 1, pp. 65–75, 2014.

[191] T. Voigt, M. Bor, U. Roedig, and J. Alonso, “Mitigating inter-network

interference in lora networks.” arXiv preprint arXiv:1611.00688, 2016.

[192] S. Javed and D. Zorbas, “LoRaWAN Downlink Policies for Improved

Fairness,” in IEEE Conference on Standards for Communications and

Networking (CSCN ’22), pp. 1–6, IEEE, Nov. 2022.

BIBLIOGRAPHY 157

[193] B. Lashkari and P. Musilek, “A comprehensive review of blockchain

consensus mechanisms,” IEEE Access, vol. 9, pp. 43620–43652, 2021.

[194] Y. Aoki, K. Otsuki, T. Kaneko, R. Banno, and K. Shudo, “Simblock:

A blockchain network simulator,” in Proc. of the 2nd Workshop on

Cryptocurrencies and Blockchains for Distributed Systems, CryBlock’19,

IEEE, 2019.

[195] M. Alharby and A. van Moorsel, “Blocksim: A simulation framework

for blockchain systems,” SIGMETRICS Perform. Eval. Rev., vol. 46,

pp. 135–138, Jan. 2019.

[196] E. C. Harillo and F. Freitag, “Loracoin: Towards a blockchain-based

platform for managing lora devices,” in IEEE INFOCOM 2022-IEEE

Conference on Computer Communications Workshops (INFOCOM WK-

SHPS), pp. 1–2, IEEE, 2022.

[197] K. R. Ozyilmaz and A. Yurdakul, “Designing a blockchain-based iot

with ethereum, swarm, and lora: The software solution to create high

availability with minimal security risks,” IEEE Consumer Electronics

Magazine, vol. 8, no. 2, pp. 28–34, 2019.

[198] J. Lin, Z. Shen, C. Miao, and S. Liu, “Using blockchain to build trusted

lorawan sharing server,” International Journal of Crowd Science, vol. 1,

no. 3, pp. 270–280, 2017.

[199] L. Felli and R. Giuliano, “Access control in woodland through blockchain

and lorawan,” in 2021 AEIT International Conference on Electrical

and Electronic Technologies for Automotive (AEIT AUTOMOTIVE),

pp. 1–5, IEEE, 2021.

[200] S. M. Danish, M. Lestas, W. Asif, H. K. Qureshi, and M. Rajarajan,

“A lightweight blockchain based two factor authentication mechanism

for lorawan join procedure,” in 2019 IEEE International Conference on

Communications Workshops (ICC Workshops), pp. 1–6, IEEE, 2019.

158 BIBLIOGRAPHY

[201] K. R. Özyilmaz, M. Doğan, and A. Yurdakul, “Idmob: Iot data mar-

ketplace on blockchain,” in 2018 crypto valley conference on blockchain

technology (CVCBT), pp. 11–19, IEEE, 2018.

[202] M. Grebovic, T. Popovic, and R. S. Grebovic, “Blockchain technology

for weather data management,” in 2023 22nd International Symposium

INFOTEH-JAHORINA (INFOTEH), pp. 1–6, IEEE, 2023.

[203] B. Dammak, M. Turki, S. Cheikhrouhou, M. Baklouti, R. Mars, and

A. Dhahbi, “Lorachaincare: An iot architecture integrating blockchain

and lora network for personal health care data monitoring,” Sensors,

vol. 22, no. 4, p. 1497, 2022.

[204] I. Vlachos and N. Harziargyriou, “Design and implementation of a de-

centralized amr system using blockchains, smart contracts, and lorawan,”

in proc. 25th International Conference on Electricity Distribution, AIM,

2019.

[205] L. Gigli, F. Montori, M. Zichichi, L. Bedogni, S. Ferretti, and M. Di Fe-

lice, “On the decentralization of mobile crowdsensing in distributed

ledgers: an architectural vision,” in Proc. of the IEEE Consumer Com-

munications & Networking Conference (CCNC 2024), (Las Vegas, USA),

IEEE ComSoc, January 2024.

[206] M. Shahjalal, M. M. Islam, M. M. Alam, and Y. M. Jang, “Imple-

mentation of a secure lorawan system for industrial internet of things

integrated with ipfs and blockchain,” IEEE Systems Journal, 2022.

[207] S. Musso, G. Perboli, M. Rosano, and A. Manfredi, “A decentralized

marketplace for m2m economy for smart cities,” in 2019 IEEE 28th

International Conference on Enabling Technologies: Infrastructure for

Collaborative Enterprises (WETICE), pp. 27–30, IEEE, 2019.

[208] M. G. Ikhsan, M. Y. A. Saputro, D. A. Arji, R. Harwahyu, and R. F. Sari,

“Mobile lora gateway for smart livestock monitoring system,” in 2018

BIBLIOGRAPHY 159

IEEE International Conference on Internet of Things and Intelligence

System (IOTAIS), pp. 46–51, IEEE, 2018.

[209] S. Sugianto, A. Al Anhar, R. Harwahyu, and R. F. Sari, “Simulation

of mobile lora gateway for smart electricity meter,” in 2018 5th Inter-

national Conference on Electrical Engineering, Computer Science and

Informatics (EECSI), pp. 292–297, IEEE, 2018.

[210] L. Sciullo, A. Trotta, and M. Di Felice, “Design and performance evalu-

ation of a lora-based mobile emergency management system (locate),”

Ad Hoc Networks, vol. 96, p. 101993, 2020.

[211] L. Hou, K. Zheng, Z. Liu, X. Xu, and T. Wu, “Design and prototype im-

plementation of a blockchain-enabled lora system with edge computing,”

IEEE Internet of Things Journal, vol. 8, no. 4, 2020.

[212] D. Krajzewicz, “Traffic simulation with sumo–simulation of urban

mobility,” Fundamentals of traffic simulation, pp. 269–293, 2010.

[213] T. Yatagan and S. Oktug, “Smart spreading factor assignment for lo-

rawans,” in 2019 IEEE Symposium on Computers and Communications

(ISCC), pp. 1–7, IEEE, 2019.

[214] L. Serena, G. D’Angelo, and S. Ferretti, “Security analysis of distributed

ledgers and blockchains through agent-based simulation,” Simulation

Modelling Practice and Theory, vol. 114, p. 102413, 2022.

[215] M. R. Villarim, J. V. H. de Luna, D. de Farias Medeiros, R. I. S. Pereira,

C. P. de Souza, O. Baiocchi, and F. C. da Cunha Martins, “An evaluation

of lora communication range in urban and forest areas: A case study in

brazil and portugal,” in 2019 IEEE 10th Annual Information Technology,

Electronics and Mobile Communication Conference (IEMCON), 2019.

[216] N. Z. Tomić, “A review of consensus protocols in permissioned

blockchains,” Journal of Computer Science Research, vol. 3, no. 2,

pp. 19–26, 2021.

