ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

DOTTORATO DI RICERCA IN
DATA SCIENCE AND COMPUTATION

Ciclo 36

Settore Concorsuale: 09/H1 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI

Settore Scientifico Disciplinare: ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE
INFORMAZIONI

MACHINE LEARNING METHODOLOGIES FOR SUPPORTING HPC SYSTEMS

OPERATIONS
Presentata da: Martin Molan
Coordinatore Dottorato Supervisore
Daniele Bonacorsi Andrea Bartolini

Co-supervisore

Luca Benini

Esame finale anno 2025

1ii

Declaration of Authorship

I, Martin MOLAN, declare that this thesis titled,
Machine Learning methodologies to support HPC systems operations and the
work presented in it are my own. I confirm that:

This work was done wholly or mainly while in candidature for a research de-
gree at this University.

Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

Where I have consulted the published work of others, this is always clearly
attributed.

Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

I'have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed: %_/

b~ 2 547025

Mobile User

“But I made myself ready to endure,
and, aided by your words, I made my way
along the rocky slope, behind my guide.”

Inferno, Canto XXIV, Dante Alighieri

ALMA MATER STUDIORUM
UNIVERSITY OF BOLOGNA

Abstract

Faculty of Engineering
Department of Electrical, Electronic, and Information Engineering

PhD in Data Science and Computation

Machine Learning Methodologies for Supporting HPC Systems Operations
by Martin MOLAN

vii

HTTPS://WWW.UNIBO.IT/EN/HOMEPAGE
HTTPS://WWW.UNIBO.IT/EN/HOMEPAGE
https://dei.unibo.it/en/index.html

viii

The work presented in this thesis has been driven by two equal and intercon-
nected principles: performing fundamental machine learning research and solving real-
life engineering problems. The specific target domain is high-performance computing
(HPC) systems and the specific challenges that come with adapting machine learn-
ing methodologies for their monitoring and management. However, models, find-
ings, and methodologies developed for and motivated by this specific set of require-
ments have applications far beyond the original domain.

The increasing size and complexity of modern HPC systems necessitate introduc-
ing advanced data collection, monitoring, and machine learning methodologies that
support their management and operations. In literature, this collection of method-
ologies from data collection to data processing and visualization is called operational
data analytics (ODA) for HPC systems. The thesis presents and discusses the com-
prehensive ODA framework comprising multiple models that address some of the
most pressing open problems in the field: open-ended data exploration, unsupervised
anomaly detection, and long-term anomaly prediction.

The ODA framework first establishes the continuum of the machine learning
model adoption in the HPC systems, with each part of the framework addressing a
specific stage with its unique requirements and previously unanswered questions.
Depending on the level of adoption of operational data analytic methodologies, HPC
systems can adopt one, some, or all parts of the framework. The stages of the frame-
work support each other; however, each stage, besides solving its primary objective,
enables the adoption of the next one.

The first part of the comprehensive ODA framework is the methodology to per-
form open-ended data exploration and analysis, named the DEM (Data exploration
model). DEM is the foundation of the comprehensive ODA framework as it requires
no structured or labeled data and can thus be deployed as the first machine-learning
model adopted by the HPC system. DEM provides insights into the operation of the
nodes and allows the HPC system administrators, or other relevant stakeholders,
to identify relevant metrics that require additional analysis by dedicated machine
learning models. One such relevant metric is compute node availability, which was
studied by anomaly detection models.

The second component of the ODA framework is RUAD (Recurrent Unsuper-
vised Anomaly Detection), a novel model that addresses the limitations of current
state-of-the-art anomaly detection methods. Unlike traditional approaches that re-
quire labeled data or exhibit poor performance in unsupervised settings, RUAD
leverages temporal dependencies inherent in HPC system data. RUAD captures se-
quential patterns and trends over time by incorporating short-term memory cells
into its architecture. RUAD was assessed on the complete ten-month history of the
Marconi 100 system, encompassing data from all of its compute nodes. It outper-
formed all previous state-of-the-art semi-supervised and unsupervised approaches.

RUAD achieves an area under the curve (AUC) of 0.763 in semi-supervised training

ix

and an AUC of 0.767 in unsupervised training, which improves upon the state-of-
the-art approach that achieves an AUC of 0.747 in semi-supervised training and an
AUC of 0.734 in unsupervised training. It also vastly outperforms the current state-
of-the-art unsupervised anomaly detection approach based on clustering, achieving
the AUC of 0.548. RUAD outperforms all other approaches in an unsupervised set-
ting. This indicates its ability to learn effectively on lower-quality datasets that lack
labeled data and include anomalies.

RUAD can be deployed on a dataset that contains no labels. Based on the results
of the anomaly identification, if performed on an existing dataset, RUAD can, along-
side the input from the domain experts, retroactively provide labels to that dataset.
Consequently, it enables the introduction of the last part of the ODA framework: a
family of long-term anomaly prediction models GRAAFE (GRaph anomaly antici-
pation framework).

The third component of the ODA framework, GRAAFE extends anomaly detec-
tion to anomaly prediction using graph neural networks (GNNS5s). Information about
the physical layout of compute nodes in a compute room is represented as a graph,
where compute nodes are vertices, and the graph edges represent the physical dis-
tance between compute nodes. Capturing spatial information that per-node predic-
tive models otherwise ignore allows GNN models in GRAAFE to surpass state-of-
the-art anomaly prediction methods. The GRAAFE GNN model achieves an area
under the curve (AUC) from 0.91 to 0.78, surpassing state-of-the-art, achieving AUC
between 0.64 and 0.5. GRAAFE is also the first work to introduce long-term (more
than eight hours in advance) node failure predictions in the HPC domain.

The utility of the presented work does not end within the confines of the HPC
systems. Applications far outside the HPC domain prove that scientific work driven
by concrete questions from the HPC domain can achieve universality and widespread
applicability. Moreover, this work underscores that machine learning models remain
highly relevant even in the age of generative Al, serving not only as powerful tools
for HPC management but also as versatile methodologies with broader applicability

across diverse machine learning challenges.

Keywords: Machine Learning, Operational Data Analytics (ODA), High-Performance
Computing Systems (HPC), Anomaly Detection, Anomaly Prediction, Data Explo-
ration, Unsupervised Learning, Predictive Models, Graph Methodologies, Graph
Neural Networks, Self-Supervised Learning

Graphical abstract

M. Molan et al., M. Molan et al., Analyz-
GRAAFE: GRaph ing Supercomputer Nodes
Anomaly Anticipation Behavior with the Latent

Representation of Deep
Learning Models, Euro-
par, 2022.

Framework for Exascale

HPC systems, Future Gen-
eration Computer Systems,

2024.

M. Molan et al., RUAD:
Unsupervised anomaly de-
tection in HPC systems,
Future Generation Com-
puter Systems, 2023.

The comprehensive ODA framework, with the main scientific results,
as presented in the PhD thesis, placed on the continuum of machine
learning adoption in HPC systems.

xi

Acknowledgements

I am deeply grateful to my supervisor, Professor Andrea Bartolini. Thank you for
inviting me to pursue a PhD in Bologna five years ago, for teaching me how to write
papers, for your patience, and for guiding me through the process of conducting
research and mentoring students. Thank you for your ideas and for keeping me
grounded when my own ideas went a little too far. Thank you for helping me adjust
to life in Italy and for believing in me. And thank you for being a friend.

I am very thankful to my collaborator, advisor, and co-author, Professor Andrea
Borghesi. Thank you for your help with our papers and for championing and sup-
porting my ideas. I am grateful for the years of wonderful collaboration we shared.

I'am also grateful to my co-supervisor, Professor Luca Benini, for your guidance,
especially in the early stages of my PhD, and for your support and the many oppor-
tunities you opened up for me along the way. I am particularly thankful for hosting
me at ETH during my period abroad, which was an invaluable experience both per-
sonally and professionally.

I also thank Professor Andrea Acquaviva, head of the ECS lab, for welcoming me
into your lab, involving me in your research activities, and allowing me to work
alongside you and your students.

To my collaborators and friends, Junaid Ahmed Khan and Grafika Jati—thank you
for your great ideas and positivity. Junaid, I am grateful for your work on graph
methodologies and Grafika for your contributions to automotive perception sys-
tems. I am incredibly proud of the work we accomplished together and look forward
to seeing where your careers take you.

I am thankful to my friends Alexis Lope-Bello and Terry Curtis. Thank you both for
always encouraging me to continue with my PhD and thank you for all the laughter
along the way. Thank you for sparking the fire of my ambition. And thank you for
helping me keep its flames in check.

Most of all, am thankful to my parents, Dr. Gregor and Dr. Marija Molan, for their
immense support and guidance. Because of your unwavering support and example,
I have been able to pursue this PhD. You have always been the first to recognize my
potential, believe in me, and help me achieve my goals. Every achievement I have
made, including this thesis, and every future one, is a testament to the love and

support you have always shown me.

Contents

Declaration of Authorship

Abstract

Acknowledgements

Contents

List of Figures

List of Tables

List of Abbreviations

1 Introduction
1.1 History of High-Performance Computing Systems

1.1.1

Top HPC systems trough history

1.2 HPC systems in the age of Generative AL
1.3 CINECA supercomputingcentre

1.3.1
1.3.2
1.3.3

Galileo
Marconi e e e
Leonardo

2 Background
2.1 Monitoringsystems Lo o
2.2 Machine learning applications o0

3 Data processing framework

4 Data exploration - DEM
4.1 Introduction to data exploration
42 Relatedwork. L L oo
4.3 Methodology for data exploration

4.3.1
432
433
434

435
4.3.6
4.3.7

Probabilistic Background
General overview of the approach
Autoencodermodelso oL oo
Featureextraction.
Singular value decomposition
Representativevector
Matrix measures
Clustering
Evaluating clustering
Random sampling baseline

44 Resultsof dataexploration

iii

viii

xi

10

13
17
18
22
23
24
25
26

27
27
28

31

4.5

441 Experimentalsetting
442 Trained autoencoder
443 Cluster analysis: normal operation percentage
Conclusions of data exploration

Anomaly detection - RUAD

51

5.2

53

54

5.5

Introduction to anomaly detection
511 Motivation.o
Relatedwork
52.1 Novelty of the developed approach
Methodology for anomaly detection
53.1 Nodeanomaly labeling
5.3.2 Reconstruction error and result evaluation
5.3.3 Trivial baseline: exponential smoothing
5.3.4 Unsupervised baseline: clustering
5.3.5 Semi-supervised baseline: dense autoencoder
5.3.6 Recurrent unsupervised anomaly detection: RUAD
53.7 Datapre-processing
5.3.8 Summary of evaluated methods
Experimental results of anomaly detection.
54.1 Experimentalsetting
542 Dataset oo
5.4.3 Hyperparameters,
544 Areaunderthecurve (AUC)
545 Comparison of all approaches.
546 Flscores o
Conclusions of anomaly detection
551 Futurework

Anomaly prediction - GRAAFE

6.1
6.2

6.3
6.4

6.5
6.6

Introduction to anomaly anticipation
Related Works
6.2.1 Anomaly Detection & Predictionin HPC
622 GNNsandHPC.
Methodology for anomaly anticipation.
Results of anomaly anticipation
6.4.1 Experimentalsetting
6.42 Anomaly Prediction Model Performance
6.4.3 Anomaly prediction model probability calibration
6.4.4 Visualization of anomaly anticipation
6.4.5 Financial impact of anomaly anticipation
Anomaly prediction as part of a GRAAFE framework
Conclusion of anomaly anticipation

Looking into the Future

7.1

Power and Limitationsof LLMs
7.1.1 Limitations to Perform Symbolic Rasoning
7.1.2 Limitation in Ability toUse Tools

8 Looking beyond HPC systems
8.1 Operational data analytics
82 Dataanalysis. L
8.2.1 Methodologies for Data Explorations
83 Anomalydetection L oL
8.4 Anomaly prediction. o L oo

9 Conclusions
A Publications and available resources

B Paper preprints

114
114
115
115
116
117

119

123

126

List of Figures

1.1

1.2

1.3

1.4

1.5

1.6
1.7

1.8

3.1
3.2

4.1

4.2

4.3

44

4.5

Statistics on high-performance computer (HPC) systems that present
development over time according to application areas [125] such as
Research, IT Services, Weather and Climate Research, Chemistry, En-
ergy, Software, Finance, Geophysics, Information Service, Aerospace,
Logistic Services, Electronics, Services, Web Services, Information Pro-
cessing Service, Semiconductor, Automotive, Telecommunication, Da-

tabase, Defence,and Others. 15
The CDC 6600: a supercomputer from the 1960s primarily used in
scientific research and military applications. 18

The Frontier: an exascale supercomputer at the Oak Ridge National
Laboratory in the United States, featuring HPE Cray architecture with

AMD CPUsand GPUs.o i 19
Growth of supercomputer compute power [127]. The logarithmic y-
axis represents performance in GFLOPS. 20

Statistics on high-performance computers that present development
over time according to segments [126] such as Research, Industry,

Academic, Vendor, Government, and Others. 21
Galileo, the national Tier-1 supercomputer for scientific research. . . . 24
Marconi 100, the Tier-0 supercomputer based on the Lenovo NeXtScale
platform. 25
Leonardo, the BullSequana-x pre-scale Tier-0 supercomputer, world-
wide ranged as the 7. larger supercomputer in2024. 26
Developed data drivenmodels. 32
Developed data driven models as part of the data processing frame-
WOrK. . . e 33

Data flow schema. On each of the nodes (red in the picture), or-
ganized into racks, we train a separate autoencoder model (circles).
From these trained models we extract features that are then used in
the clusteringofnodes. o L oL 40
Architecture of the state-of-the-art model, proposed as AdaHPC [30].
In this work, relevant information is extracted from the latent layer
Dense (*,8). Data is collected for the ExaMon monitoring system [15]. . 42
Example for agglomerative hierarchical clustering of six trained au-
toencoders from AE; to AEg: Each autoencoder starts in its own clus-
ter, and pairs of clusters are merged as one moves right the hierarchy. . 45
Architecture of the autoencoder network, adopted from Borghesi et
al. (AdaHPC) [30] 49
Average error rate per cluster. Representation of nodes with a vec-
tor of singular values identifies two clusters with significantly higher
anomaly rate than the whole population. 51

4.6

51

52
5.3

5.4

55

5.6

5.7

5.8

59

5.10

6.1

6.2

6.3

6.4
6.5
6.6
6.7
6.8
6.9

6.10

Average error rate per cluster. Matrix-based feature extraction per-
forms worse than the vector methods. 51

The model M is composed of two parts: Autoencoder in the upper

part and MSE in the lower part of the figure. 64
Structure of baseline model - the dense autoencoder. 69
Structure of the proposed RUAD model consisting of the LSTM en-

coderand densedecoder. L. 69

Data processing schema. The data flow is represented by green (train-
ing set) and orange (test set) lines. The scaler is trained on the training
set and applied on test set to avoid contaminating the test set. Semi-
supervised and time consistency filters are optional and applied only
when required by the modeling approach as indicated in Table 5.4 . . . 71
To ensure time consistency after removing the anomalous data (A in
the Figure), we first split the data into chunks of successive times-
tamps without anomalies. Then we remove all chunks that are shorter
than the input sequence length. Training sequences are only gener-
ated on the remaining chunks (green in the Figure). 72
Combined ROC curve from all 980 nodes of Marconi 100 for the ex-
ponential smoothing baseline. Exponential smoothing performs even
worse than the dummy classifier - anomaly detection based on expo-
nential smoothing is completely unusable.. 77
Combined ROC curve from all 980 nodes of Marconi 100 for the sim-
ple clustering baseline. This baseline performs only marginally better
than the dummy classifier. 78
Combined ROC curve from all 980 nodes of Marconi 100 for the Dense
autoencoder model. In the area interesting for practical application -
True Positive Rate between 0.6 and 0.9 - semi-supervised approach

outperforms unsupervised approach. 79
Combined results from all 980 nodes of Marconi 100 for RUAD win-
dowsizes5and 10 L L oo 83
Combined results from all 980 nodes of Marconi 100 for RUAD win-
dowsizes20and 40o 84
Finite state machine depicting the transitions between states 0 (normal
operation) and state 1 (anomaly)., 92
The structure of the GCN network exploits the organization of com-
putenodesinarack. o oL 93
Period of 5 timestamps or 75 minutes, starting at 17:00 and ending at
18:15. . . 95
Period of 10 timestamps or25hours. 0 L. 96
Period of 20 timestamps or5hours.. 96
Period of 30 timestampsor 7Z5hours. 97
Period of 50 timestamps or 12.5hours. 98
Period of 100 timestampsor 25hours. 99

Depending on the scenario and the associated probability of prevent-
ing the anomaly, given a specific warning window, the projected ben-
efit is achieved by deploying the predictive system at different future
windows. 105
The software architecture of the GRAAFE framework, built for the
deployment of an anomaly prediction model for HPC systems. 106

7.1
7.2

7.3
74

8.1

Structure of the application LLMs 110
Adoption of LLMs in real world applications: Large language model
(RAG) including broader software infrastructure using tools (11, T» . . .,

Th). o e e e 111
LLMsand tools e 111
Future of operation data analytics. 113

Position of Anomaly prediction in the developed data driven model. . . 117

List of Tables

41

4.2

51
52

53

54

55

5.6

57

5.8

6.1

6.2

6.3

A list of features used in training of an anomaly detection model. An
anomaly detection model is created only on hardware and application
monitoring features. More granular information regarding individual
jobs is not collected to ensure the privacy of the HPC system users. . . 48
Minimum average availability within clusters identified by different
feature extraction methods presented in 4.3.4. Vector of singular val-
ues identifies a cluster with the lowest average availability (highest
anomaly rate). This is the most interesting method as it separates the
target variable (node availability) the best. None of the proposed me-
thods identify a cluster with asinglenode. 50

Summary of anomaly detection approaches on HPC systems 60
Comparison between removed from production and node availability. The
anomalies studied in this work (node availability) significantly differ
(and are more reliable) from anomalies studied in previous works.

The new labels also mark much fewer events as anomalous. 62
Average percentage of removed normal data due to semi-supervised

and time consistency filters.o o0 73
Short names and training strategies for examined methods. DENSEemi
isthe AdaHPC [30]. e 74
Comparison of implemented approaches relating to the training set
requirements. 74

AUC performance of model baselines. According to expectations and
existing work [30], semi-supervised dense autoencoder outperforms
unsupervised dense autoencoder (highlighted by the higher AUC score). 80
RUAD and RUADgemi outperform all previous baselines presented in Ta-
ble 5.6. In contrast to the dense autoencoders, the proposed approach
RUAD performs best in unsupervised manner. 81
Combined F1 scores for all compute nodes. F1 scores worse than the
trivial classifier (decision threshold 1) are greyed out. RUAD outper-
forms all previous approaches, including the previous state-of-the-art

(DENSEseyiand DENSE ;). . . . o oo v o i oo 85
AUC scores of prediction methods. The GNN outperform all other
methods across all future windows (FW). 94
GNN anomaly predictor is well-calibrated for all future windows (FW),

as evidenced by the low Brierscores., 100

Three scenarios are defined based on the probability that the system
administrators can prevent an anomaly if given a signal within a fu-
ture window (inhours). oL 102

10

List of Abbreviations

Notation Description

AdaHPC Anomaly detection and anticipation in high performance com-
puting systems

AE Autoencoders

Al Artificial intelligence

AUC The area under the curve

CDC6000 Mainframe computers manufactured by Control Data Corpo-
ration

CINECA A public university consortium and the main supercomputing
centre in Italy (Consorzio Interuniversitario del Nord-Est per
il Calcolo Automatico)

CLU Ranking anomalous high performance computing sensor data
using unsupervised clustering

CPU Central processing unit

DEM Data exploration model

DENSE Type of deep neural network, which can be characterized by
different topology

DL Deep learning

DNN Deep neural network

DT Decision tree

EuroHPC-JU European high-performance computing joint undertaking

ExaMon Framework for holistic monitoring of a large plant

EXP Exponential smoothing is implemented to demonstrate that
the anomalies we observe are not simply unexpected spikes
in the data signal

FLOPS Floating point operations per second

FPGA Field programmable gate array

FW Future window

GBT Gradient boosting tree

Abbreviations continued on next page

11

Abbreviations continued from previous page

Notation Description

GCN Graph convolutional neural network

GNN Graph neural networks

GPT Generative pre-trained transformer

GPu Graphics processing unit

GRAAFE Graph anomaly anticipation framework for exascale HPC sys-
tems

Grafana Multi-platform open source analytics and interactive visual-
ization web application

HPC High performance computers

HW Computer hardware

LiDAR Light detection and ranging

LLaMa Family of autoregressive large language models

LSTM Long short-term memory

ML Machine learning

MSE Mean squared error

NN Neural network

NVIDIA CUDA | NVIDIA’s software platform

ODA Operational data analytics

PBS Workload manager and job scheduler

RAG Retrieval-augmented generation

RF Random forest

ROC Receiver operating characteristic

RUAD Recurrent unsupervised anomaly detection model

SLURM Simple Linux utility for resource management

SPECFEM3D Simulator of 3D seismic wave propagation in any region of the
Earth

SW Computer software

Tier-0 The most privileged assets and accounts in an IT environment

TOP500 500 most powerful non-distributed computer systems

12

To my mother. My role model, my inspiration, and my rival.
And the greatest scientist I know.

13

Chapter 1

Introduction

Each individual has experience growing up and developing from childhood to
adulthood. Just as we have an ear and understanding for falling in a small child,
we expect an ever-higher level of skill, increasing reliability, and fewer mistakes as
we grow up. The expectation we have about technology is similar. At the begin-
ning of the development of automobiles, our predecessors were satisfied with a few
miles and errors, stoppages, and problems that arose relatively quickly. With the
development of automotive technology, vehicles have become increasingly reliable
and overcome increasing distances, breakdown, failure, or unreliability is becoming
less and less acceptable.

A similar tendency is also encountered in hardware and software development.
The first computers were accepted as a miracle, but it was assumed that only some
things worked as the developers imagined. However, development went forward
rapidly, and increasing demand conditioned increasingly complex devices.

Computers are becoming larger and more powerful. Simultaneously, ever in-
creasing amounts of data are being collected. Just as, 100 years ago, we marveled at
a light bulb connected by a thin wire, early computers with minimal capacity were
considered revolutionary and entirely sufficient for their time. However, as develop-
ment progressed, advancements in information technology gave rise to increasingly
complex systems. Similarly, in the early days, small hydroelectric plants on rivers
met electricity needs adequately. Yet, with industrial growth and the relentless rise
in demand, extensive energy facilities, such as large power plants, became necessary,
struggling to keep pace with the ever-growing need for power.

As electricity demand grows, so does the volume of data. Increasingly vast quan-
tities of data are generated, made accessible, and partially stored. However, pro-
cessing these immense volumes necessitates the development of newer and more
powerful computers.

Large computer systems, commonly referred to as supercomputers or high per-
formance computing (HPC) systems, were initially designed to process research data
in physics. Accelerators in high-energy physics are growing larger, and the volume
of data they generate is increasing exponentially. However, physics is only one of

many fields requiring fast and robust systems.

14 Chapter 1. Introduction

The advent of artificial intelligence (AI) has marked a new era in data processing,
offering solutions to complex challenges across diverse areas of human activity and
the environment. Al has empowered us to uncover archaeological patterns, explore
the biological intricacies of our surroundings, and address critical issues in human
health.

Recognizing the importance of processing vast amounts of data has led to the de-
velopment of computer systems capable of tackling these challenges. HPC systems
were initially designed to address problems in basic research, with applications in
health research soon following. Today, they are essential for addressing the survival
of humanity as a species and improving the quality of life globally.

While computer systems meet the immediate needs of researchers and users
upon installation, evolving demands necessitate larger and more capable HPC sys-
tems. These systems face significant challenges, including the need for efficiency,
continuous operation, and minimized operating costs. As the demand for more
powerful and complex systems grows, energy efficiency, sustained operation, and
full utilization of resources become increasingly critical. The capabilities of HPC
systems have expanded beyond researchers, serving industrial development and
technology. They now play a vital role in addressing global challenges and support-
ing efforts to preserve the planet.

This reliance on HPC systems underscores a significant challenge for human-
ity, one made more manageable by collecting and processing information. Al tools
are invaluable in this learning process but simultaneously drive the need for even
more powerful computing systems. Al tools themselves accelerate the demand and
growth of HPC systems.

However, humanity’s needs cannot be met solely by building ever-larger HPC
systems. Effective planning, maintenance, and management are equally important.
Optimized software for HPC systems represents a critical avenue for enhancing their
functionality and ensuring they meet required performance levels. The challenge of
managing and expanding supercomputers lies in meeting the unrelenting demand
for processing immense volumes of data.

HPC systems have become indispensable in helping us master the world and
drive innovation across various fields. Their evolution is key to tackling the chal-
lenges of the present and unlocking opportunities for the future.

An ever-increasing volume of collected information necessitates processing by
more sophisticated and powerful devices. In this context, HPC systems represent
the definitive solution to these demands.

However, HPC systems remain relatively rare and are reserved for addressing
the most complex problems. These systems are limited in number due to their
immense size, high cost, significant energy consumption, and rapid obsolescence.
Their service life is relatively short, leaving no margin for errors. Consequently, they

are expected to operate as reliably and stably as possible throughout their lifespan

Chapter 1. Introduction 15

100

Aerospace 1 (1.75%) *

Logistic Services 0 (0%)

Electronics 0 (0%)
90 |

Senvicesi0N(0%);

Web Services 0 (0%)
80 \ Information Processing Service 0 (0%)

Semiconductor 0 (0%).
‘ Automotive 0N0%))

70 I\ Telecommunication 0 (0%)

Database 0)(0%:

Defense 0 (0%)

60 2 Informztion Sarvies 1 (L.75%)

.
40

Research 22 (38.60%)

Share

30

20

10

2_ Jun 01, 2024

FIGURE 1.1: Statistics on high-performance computer (HPC) sys-

tems that present development over time according to application

areas [125] such as Research, IT Services, Weather and Climate Re-

search, Chemistry, Energy, Software, Finance, Geophysics, Informa-

tion Service, Aerospace, Logistic Services, Electronics, Services, Web

Services, Information Processing Service, Semiconductor, Automo-
tive, Telecommunication, Database, Defence, and Others.

while maintaining reasonable energy efficiency. These expectations present signifi-
cant challenges for large-scale HPC systems.

Ensuring the stable availability and operation of HPC systems is a critical respon-
sibility for managers and system administrators. Traditional, manual management
approaches are no longer feasible. Instead, advanced control systems that incorpo-
rate the latest innovations, including machine learning, are now essential. During

their operational lifespan, HPC systems generate vast amounts of data, which must

16 Chapter 1. Introduction

be thoroughly analyzed to enhance system stability. These analyses also serve as in-
valuable insights for the design and planning of future systems. Timely error detec-
tion, advanced data analysis, and predictive models for system stability are among
the most pressing challenges in the world of HPCs.

To address these challenges, modern tools and Al are leveraged extensively to
ensure reliable operation, timely responses, and optimal efficiency. Developing sup-
port methodologies for data analysis, error detection, and reliability prediction is
crucial and forms a central theme of the research presented in this dissertation. Ef-
fectively managing and interpreting the vast amounts of data, identifying potential
issues, and forecasting the future trajectory of system performance remain complex
but essential endeavors.

High-performance computing (HPC) systems stand out for their unparalleled
ability to process data and execute complex calculations at extraordinary speeds.
These systems are predominantly employed in scientific research, engineering sim-
ulations, and other domains requiring immense computational power and data han-

dling capabilities. Their primary characteristics include [9]:

e Computational Power: HPC systems possess significantly higher computa-
tional power than conventional computers, thanks to their multiple high-speed
processors. Currently, petascale systems—HPC systems capable of perform-
ing 10 floating-point operations per second—are in operation, and exascale
systems—HPC systems capable of performing 10'® floating-point operations
per second—are becoming a reality. The first exascale system is the "Frontier"
supercomputer at the Oak Ridge National Laboratory in the United States.
It achieved exascale performance, surpassing one exaflop, and has been the
world’s leading HPC since its deployment in 2021 and full capability achieve-
ment in 2022 [130].

¢ Parallel Processing: HPC systems employ parallel processing, enabling them
to perform numerous calculations simultaneously. This is typically achieved
through multicore and multiple processors working in tandem. For example,
the current-generation pre-exascale HPC system at CINECA Bologna, Leon-
ardo, ranked No. 4 in 11/2022 and No. 7 in 06/2024 on the TOP500 list of the
most powerful HPC systems, contains more than 5,000 compute nodes. Each
node features multiple processors and accelerators working in parallel to solve

complex computational problems [43].

¢ Energy Efficiency: Modern HPC systems are designed to optimize energy ef-

ficiency by minimizing power consumption while maximizing performance.

1.1. History of High-Performance Computing Systems 17

This is achieved through techniques such as using low-power processors, ad-
vanced cooling systems, and energy-aware scheduling. Specifically, the Leon-
ardo HPC system is equipped with software tools for dynamic power ad-
justment. The Bull Energy Optimiser monitors energy and temperature pro-
files via IPMI and SNMP protocols. These tools can interact with the SLURM
scheduler to fine-tune features, such as selecting jobs based on expected power
consumption or dynamically capping CPU frequencies to reduce overall con-
sumption. The current generation pre-exascale HPC system Leonardo, hosted
at Cineca, consumes just 31 kW per petaflops (Pflops) of computational power
[43].

¢ Reliability: HPC systems are constructed with redundant components and
fault-tolerant mechanisms to ensure high availability and minimize system
failures. Reliability and availability are further enhanced through machine
learning tools like anomaly detection and prediction, alongside robust hard-
ware and software design. For instance, on the Marconi 100, a petascale HPC
system at CINECA, system downtime accounted for less than 1% of all opera-
tional time [44].

1.1 History of High-Performance Computing Systems

The history of High-Performance Computing (HPC) is marked by continuous ad-
vancements in technology, leading to increases in size, complexity, computational

power and energy efficiency.

¢ Early Developments: The origins of HPC can be traced back to the 1960s with
the development of supercomputers like the CDC 6600, designed by Seymour
Cray. These early systems were primarily used in scientific research and mili-

tary applications [45].

¢ The Rise of Parallel Processing: In the 1980s and 1990s, parallel processing
became a defining feature of HPC. Supercomputers like the Cray-2 and the
Connection Machine introduced new architectures, significantly boosting com-

putational capabilities [133].

* The Era of Teraflop and Petaflop Computing: In the early 21st century, HPC
systems achieved computational power milestones, reaching teraflop (10'? flo-
ating-point operations per second) and then petaflop (10 floating-point op-
erations per second) speeds. Notable systems include ASCI Red, IBM’s Road-
runner, and China’s Tianhe-1A [133].

Chapter 1. Introduction

FIGURE 1.2: The CDC 6600: a supercomputer from the 1960s primar-
ily used in scientific research and military applications.

¢ Exascale Computing: The current frontier in HPC is exascale computing, wh-
ich aims to build systems capable of performing a quintillion calculations per
second (108 floating-point operations per second). This era is marked by sig-
nificant advancements in hardware, such as GPUs alongside CPUs, and inno-

vations in energy efficiency and cooling technologies [46].

In the 1990s, an initiative was launched to define criteria for monitoring the de-
velopment and capabilities of HPC systems worldwide. Since 1993, the list of the 500
most powerful HPCs globally has been published biannually, in June and Novem-
ber [53]. The development of HPCs and their applications reflects the global level
of technological advancement and showcases the capabilities of specific regions. In-
vestments in HPC power and the focus areas of new systems provide insight into
the priorities and strategies of different environments.

Each generation of HPC systems has witnessed increased computational power
and complexity, integrating more advanced technologies in processing, networking,
and storage. These advancements have significantly expanded the scope and capa-

bilities of computational research and practical applications.

1.1.1 Top HPC systems trough history

Since 1993, the global development of High-Performance Computers (HPC) has
been meticulously tracked in terms of power, size, and geographical distribution.

1.1. History of High-Performance Computing Systems 19

FIGURE 1.3: The Frontier: an exascale supercomputer at the Oak
Ridge National Laboratory in the United States, featuring HPE Cray
architecture with AMD CPUs and GPUs.

The preparation of the TOP500 list of the world’s largest HPCs serves as a signif-
icant indicator of technological advancement. This list, updated annually in June
and November, provides a comprehensive overview of the global HPC landscape,
particularly the 10 most powerful HPCs within the TOP500.

In 1993, among the ten largest HPCs in the world were 8 computers in the USA,
1 in Canada and 1 in Japan. In 1994, there were 5 largest HPC systems in the US
and 5 in Japan. But the situation is changing. In 2004, 6 of the largest HPC systems
were in the US, 2 in Japan, 1 in China and 1 in Europe. In 2014, 5 of the largest HPC
systems were in the USA, 1 in China, 1 in Japan and 3 in Europe. In 2024, 5 of the
largest computers were in the US, 1 in Japan, and 4 in Europe. Of these, 1 each is in
Italy, Switzerland, Spain and Germany.

From this data, it is evident that the United States leads in both the number of
HPC systems and the total computational power they represent. For several years,
the American Frontier has held the position as the world’s most powerful HPC. The
global distribution of HPC systems mirrors the economic, financial, and technologi-
cal strengths of individual regions. This distribution provides valuable insights into
the priorities, conditions, and specific needs of different environments.

In the initial periods of monitored HPC development, the use in research ac-
tivities dominated. As much as 70 % of all installed HPC power was dedicated to
research activity. However, it is necessary to realize that the installed power was
significantly lower. In 2024, however, the relationship is significantly different. Only
38.6% of HPC systems are allocated to research activities, amounting to a total of
22 systems globally. The lowest share of HPC power dedicated to research was

20 Chapter 1. Introduction

10.000.000.000 s

1.000.000.000 o r

100.000.000 24002

10.000.000

1.000.000 v

100.000 a

10.000 s

1.000

100

f
g
T

11 #500 |

I

4 l I l
0.1 Hrr T T T e T T T T T T T T T e T T T

1995 2000 2005 2010 2015 2020 2025

FIGURE 1.4: Growth of supercomputer compute power [127]. The
logarithmic y-axis represents performance in GFLOPS.

in November 2021, when it was only 30 %. Some other areas have also begun to
take advantage of HPC’s power and performance. Thus, in the initial periods of
HPC development, HPC was only rarely used for research and activities in the field
of water and climate research as it is presented in Figure 1.1. The proportion of
HPC computational power dedicated to climate and hydrological research has been
steadily increasing, reaching 8.7% in 2021. This is probably the result of the influ-
ence of changing conditions, which will represent a severe threat to planet Earth in
the future.

The power of HPC was discovered in information technology, mainly with the
renewed boom in the use of Al Thus, the share allocated to the information services
field was 5.26 % in June 2024. It is noteworthy that the share of HPC usage across
various activities has been steadily increasing. The widespread availability of HPC
systems globally has enabled the effective use and development of Al tools.

With the development of Al tools and their use in all areas of human life, in
all activities of maintaining a better quality of life for humanity and preserving the
planet. HPCs are becoming the environment that enables research and development
of solutions or new services, measures that will maintain the quality of life in the
future. The use of HPC is becoming more evenly distributed between pure research
activities and the development of practical solutions. These two areas cover 1/3 of
the HPC capacity. There are still HPC uses in some places that were more important
in the past, and services that no longer need HPC power have been developed.

The development of HPC, its global distribution, and the correlation between

HPC deployment and the economic and financial strength of individual regions

1.1. History of High-Performance Computing Systems 21

100

Others 111,116,000 (1.35%)

.

,
TndUstrydl,522,950,430(d18,54%4)) Iy

80 _—
I

70

Research 5,119,807,437 (62.34%)

Share

FIGURE 1.5: Statistics on high-performance computers that present
development over time according to segments [126] such as Research,
Industry, Academic, Vendor, Government, and Others.

highlight the significant dependence of HPC on its surrounding environment. These
systems are inherently large and costly, requiring substantial investment over a rela-
tively short operational lifespan. High energy consumption is a characteristic feature

of HPC systems; however, their rapid technological evolution also makes them more

22 Chapter 1. Introduction

prone to obsolescence compared to other systems designed for broader applications.

Short lifetimes, high power and service requirements, the desire for continuous
operation and availability present major challenges to the operators of large HPCs.
Due to the growth of needs and the ever-increasing number of areas where HPCs are
used, not as an exclusive environment, but to enable the development of solutions
to various problems, it is becoming an error-free environment. Expectation of stable
operation are increasing, and the occurrence of errors, anomalies, and shutdowns is
becoming less and less acceptable. The anomaly is expected to be detected in time
or even announced when malfunctions occur. These challenges are faced by HPC
systems worldwide. The larger the system, the higher the expectations and stakes,
yet the operational lifespan of HPC systems remains relatively short, typically only
a few years.

In 2024, HPC systems are utilized as follows: 62.34% for research, 18.54% by
industry, 10.82% for pure basic research and the academic environment, 4.75% for
market-oriented research and services, and 2.2% by state institutions, as shown in
Figure 1.5. These users typically fund access to HPC resources, although the specific
activities they undertake may vary. These activities are predominantly those that

cannot be performed in conventional environments.

1.2 HPC systems in the age of Generative Al

The proliferation of Al systems has increased the importance of High-performance
Computing (HPC) systems as the training and hosting infrastructure for the new
generations of ever-more-powerful and compute-intensive models. The widespread
adoption of compute-intensive Al workloads, particularly generative Al, compels
us to reevaluate the role of HPC systems in society. Driven by these advancements,
HPC infrastructure is evolving from primarily supporting scientific applications such
as computational fluid dynamics, high-energy physics, and computational chem-
istry to serving as the backbone of a modern Al-driven economy. According to a
2023 report by McKinsey, industry leaders across various sectors have, on average,
allocated 20% of their digital budgets to Al-related technologies, with this percent-
age expected to increase in the coming years [88]. As Al’s importance and invest-
ment continue to grow, so does the demand for robust hosting infrastructure.

This increased demand for the hosting capabilities for computationally expen-
sive Al models has directly translated into a significantly increased investments into
HPC capabilities: Datacenter Dynamics reports that the total investment into HPC
capabilities, driven exclusively by the Al demand, accounted for 36 billion USD in
2023 with 2024 projected to surpass this investment by 24.4% [50]. Increased invest-
ment and demand intensify the problem of efficient and sustainable operation for
the HPC infrastructure. A recent report published in Nature estimates the energy

consumption of training a large-scale large language model (such as GPT 4) to be

1.3. CINECA supercomputing centre 23

as high as an annual consumption of 6500 US households [104]. The energy inten-
siveness of the training of such large models further exemplifies the importance of
efficient utilization and management of the HPC infrastructure; a report by MIT sug-
gests that even simple power-management strategies such as capping GPU power
usage can reduce the energy consumption of a model training by as much as 12-15%
[78].

Another often overlooked aspect of data center sustainability is the opportu-
nity cost of hardware failures. Determined by the rapid hardware development,
HPC infrastructure is, on average, across all applications, replaced every 4.2 years,
with flagship high-performance systems being replaced even more often [47]. Ev-
ery downtime or period of HPC sub-utilization thus carries the opportunity cost in
terms of investment and the embodied carbon associated with the manufacturing of
the system [8].

All these challenges motivate the importance of efficient and holistic manage-
ment. This discipline is called operational data analytics (ODA), and it is based on
high-quality monitoring data, different data processing methodologies, and the data
visualization layer. The objective of ODA is to empower the HPC system adminis-
trators, users, and other stakeholders to make the most informed decisions about the

use and management of the system [106].

1.3 CINECA supercomputing centre

Cineca (Cineca Consorzio Interuniversitario) is a non-profit Consortium with 118 mem-
bers: 2 Ministries, 70 Italian Universities, and 46 Italian National Institutions and
agencies. Cineca was established in 1969 as a consortium of publicly held entities
on a not-for-profit basis, dedicated to advancing the common good and serving the
interests of its consortium members and the national system.

The Cineca High-Performance Computing (HPC) department is the largest com-
puting centre in Italy and one of the largest in Europe. It is the main centre for sci-
entific computing in Italy, with an extensive computing infrastructure available to
Italian and European Researchers. Cineca HPC is also available to important Italian
companies within a programme for supporting national industrial competitiveness.

Cineca HPC aims to accelerate scientific discovery by providing high-performan-
ce computing resources, data management and storage systems and tools, and HPC
services and expertise at large. The department seeks to develop and promote tech-
nical and scientific services related to high-performance computing for the Italian
and European research community [17].

CINECA empowers world-class scientific research by operating and supporting
leading-edge supercomputing technologies. With their extensive expertise, the HPC

staff offer invaluable support and consultancy in HPC tools and techniques across

24 Chapter 1. Introduction

various scientific domains, ensuring that researchers feel guided and supported in
their endeavours.

In 2024, Cineca holds several prominent roles in the high-performance comput-
ing community. It is an NVIDIA CUDA Research Center, recognized for the vision,
quality, and impact of its research leveraging GPU technology. Additionally, Cineca
serves as an Intel Parallel Computing Center, working to accelerate the develop-
ment of open-standard, portable, and scalable parallel applications by integrating
computational science, hardware, programming tools, compilers, and libraries with
domain-specific expertise. Cineca’s focus on Quantum Espresso and SPECFEM3D
underscores its dedication to cutting-edge research and innovation. Moreover, it is
one of the Advanced Training Centres, responsible for coordinating training and ed-
ucation activities that empower the European research community to fully utilize
the computational infrastructure.

Cineca, one of the large-scale facilities in Europe and a EuroHPC-JU Tier-0 host-
ing site, is home to Tier-0 systems Leonardo and Marconi and Galileo, the Tier-1
system. All HPC’s are running on Linux operating system and has InfiniBand inter-

connections.

1.3.1 Galileo

FIGURE 1.6: Galileo, the national Tier-1 supercomputer for scientific
research.

Galileo is the national Tier-1 system for scientific research. IBM set it up and
initially opened and started production in 2015. In June 2015, it was the 105th largest
supercomputer in the world. In September 2021, it was upgraded to Galileo100. Its

1.3. CINECA supercomputing centre 25

latest ranking in the top 500 world supercomputers was 397. place in November
2017.

The current hardware of the Galileo consists of 528 computing nodes each 2
x CPU Intel CascadelLake 8260, with 24 cores each, 2.4 GHz, 384GB RAM. It has
50232 computer cores for compute power of 0.68 Pflops. The power consumption of
Galileo100 is 2825.55 kW. This means that it needs 4155 kW per Pflops.

1.3.2 Marconi

Marconi is the Tier-0 system, co-designed by CINECA and based on the Lenovo

NeXtScale platform. IBM set it up, and the preliminary production started in June
2016 and ended in September 2018.

FIGURE 1.7: Marconi 100, the Tier-0 supercomputer based on the
Lenovo NeXtScale platform.

The second update was the upgrade to 250000 cores to reach the computational
power of 11 Pflops, which lasted until January 2020.

The third upgrade of Marconi started in August 2017 and, in November 2018,
was upgraded to total computation power of 20 Pflops. The current configuration
consists of 2982 nodes to enable 347776 computer cores for 21.64 Pflops of computer
power, while the power consumption is 1476 kW. It has relatively much better effi-

ciency than Galileo: it needs 68 kW per Pflops.

26 Chapter 1. Introduction

1.3.3 Leonardo

Leonardo is Cineca’s largest and newest high-performance computer. As a pre-
exascale Tier-0 EURO HPC system, it ranks as the 7th largest supercomputer glob-
ally. It was developed and deployed by Eviden, a company within the Atos Group.

FIGURE 1.8: Leonardo, the BullSequana-x pre-scale Tier-0 supercom-
puter, worldwide ranged as the 7. larger supercomputer in 2024.

Leonardo was announced in June 2019, powered on in October 2022, inaugurated
in November 2022, started with pre-production in May 2023, and officially opened
with the production phase on August 3rd, 2023.

The current configuration consists of 155 system racks and 4992 computer nodes
to enable 1,824,768 computer cores for 241 Pflops. It has 110 PB of storage and takes
600 m2 footprint size. Leonardo’s power consumption is 7500 kW. It has much better
efficiency than Galileo and Marconi: it needs 31 kW per Pflops.

27

Chapter 2

Background

The size and complexity of modern HPC systems necessitate the introduction of
machine learning methodologies. These methodologies aim to support the work of
the system operators in managing the system and to improve its overall efficiency.
Machine learning methodologies are integrated within an operational data analytics
(ODA) framework. According to Netti et al. 2021 [107] , an ODA framework consists
of (i) a monitoring system that collects the relevant operational data, (ii) machine
learning applications that analyze this data and provide functional insights, and (iii)
a combination layer that relates the analysis results to the end users. Only the tight

integration of all three operational layers can provide added value to the end users.

2.1 Monitoring systems

The monitoring layer is the foundation of machine learning applications and oper-
ational data analytics in HPC systems. The monitoring layer collects data from the
component, facility, and node levels. This data is then communicated back to the
centralized database for storage and to the application layer for processing. There
are two primary possible sources of monitoring data from a supercomputer system:
log monitoring data and node telemetry data.

Log monitoring data is present in many systems, and it’s an extension of the
built-in monitoring of the servers and/or application layers. It is not primarily de-
veloped and deployed to provide the dataset for a comprehensive monitoring solu-
tion. Depending on the deployment, it can also pose a security risk as it exposes a lot
of information about the applications that are running on the systems. This presents
an issue in HPC systems, which are inherently multi-tenant and where user privacy
is paramount.

For this reason, many HPC systems, including the one studied in this dissertation
(Marconi 100 based in CINECA), do not support log collection and log monitoring.
In contrast to log monitoring, node telemetry monitoring collects time series infor-
mation from the hardware and software sensors embedded in the compute nodes of
the HPC system, data about system availability, like the availability to accept com-
pute jobs, job scheduler data, like the status of the compute jobs submitted to the

28 Chapter 2. Background

HPC system and the facility data, which is data about other hardware present in the
compute room.

Different monitoring data types necessitate using different machine-learning me-
thods. Log data, which is unstructured or semi-structured text data, must first be
transformed into informative features or processed by natural language processing
techniques [72]. The most basic method for analysis of log data is log parsing, a
foundational step in system analysis involving the extraction of structured informa-
tion from log messages using rule-based or machine learning-driven approaches.
This includes retrieving timestamps and event details for further examination and
analysis. Named Entity Recognition [72] identifies and categorizes entities like IP
addresses and hostnames, facilitating contextual understanding. Sentiment analysis
gauges the emotional tone of logs, aiding in issue identification. Anomaly detec-
tion employs statistical models or machine learning to identify abnormal patterns
indicative of security threats or system anomalies. Topic modeling categorizes log
messages into themes, revealing patterns, and recurring events. Using deep learning
models, contextual analysis captures nuanced meanings in log text [140]. Sequence-
to-sequence models assess temporal dependencies in log sequences, predicting sys-
tem behavior. Dependency parsing analyzes grammatical structures for key event
extraction, and word embeddings represent log message words as dense vectors for
semantic relationships. Lastly, query expansion improves log search queries by in-
corporating synonyms or related terms. Employing this array of natural language
processing (NLP) techniques enables comprehensive analysis, monitoring, and op-
timization of data center and HPC system log data.

In contrast to log data, telemetry monitoring collects time series data that the
data analysis layer can directly use. Depending on the target application, differ-
ent machine learning methods used for time series data can be directly applied to
the (processed) time series data. Since (node) telemetry monitoring is employed
at CINECA, this work will only study the methods for processing time series node
telemetry data. The most extensive collection of node telemetry data relating to HPC
operation has been made available by the researchers at the University of Bologna
in 2023 [31].

2.2 Machine learning applications

Machine learning methodologies have become integral to HPC systems. The main

uses include:

1. Optimizing System Performance: Machine learning algorithms can predict
and manage workloads on HPC systems, optimizing the usage of resources
like CPU, GPU, and memory for higher computational efficiency and energy
savings [32].

2.2. Machine learning applications 29

2. Fault Detection and Prediction: These systems are prone to failures. Machine
learning models can predict and detect system faults or failures before they

occur, reducing downtime and maintenance costs [98].

3. Enhancing Data Management: In HPC environments, managing large amou-
nts of data efficiently is crucial. Machine learning assists in intelligent data

placement and retrieval strategies [107].

4. Automating System Administration: Tasks such as system monitoring, load
balancing, and tuning can be automated using machine learning, reducing the

need for human intervention [121].

5. Improving Simulation and Modeling: Machine learning models can enhance

the accuracy and efficiency of simulations run on HPC systems [85].

6. Enhancing Cybersecurity: Machine learning can help detect and respond to

security threats more rapidly and effectively in HPC systems [149].

7. Assisting in Workflow Management: Machine learning can optimize the over-

all workflow of HPC systems, leading to better utilization of resources [148].

8. Real-time Analytics and Decision Making: Machine learning algorithms can
process and analyze data much faster than traditional methods for real-time

processing [25].

Machine learning methodologies can significantly optimize HPC system perfor-
mance, particularly when integrated with HPC scheduling. The following are key

areas where machine learning supports optimization [137]:

* Machine learning models can accurately predict resource requirements for
various jobs, allowing for efficient resource allocation. This predictive resource

allocation is crucial for optimizing system performance.

¢ By analyzing past workloads, machine learning can forecast future demands
on the HPC system. This workload forecasting helps optimize job queues and

improve overall system utilization.

* Machine learning algorithms can monitor the system for unusual patterns in-
dicating potential problems. Anomaly detection like this enables preventive

maintenance and can avoid system downtime.

¢ Dynamic scheduling is another area where machine learning proves beneficial.
The technology can dynamically adjust scheduling policies in real-time, pri-
oritizing urgent or high-priority tasks without significantly disrupting other

processes.

30

Chapter 2. Background

In terms of energy efficiency, machine learning models can schedule tasks to
minimize energy consumption. This is achieved by consolidating jobs to re-

duce idle times or scheduling energy-intensive tasks during off-peak hours [32].

Failure prediction is another critical area. Machine learning can analyze system
logs and performance metrics to predict hardware and software failures, thus

avoiding allocating jobs to potentially unreliable resources.

Accurately predicting job runtimes can be challenging. Machine learning
models trained on historical job performance data can provide more accurate
runtime estimates, which the scheduler can use to optimize job placement and

system throughput [42].

Balancing load across nodes is essential for preventing the overuse of certain
nodes while others remain underutilized. Machine learning helps understand

patterns using different nodes and evenly distributes the workload [151].

For distributed computing tasks, communication between nodes can be a bot-
tleneck. Machine learning predictive models optimize the placement of tasks

to minimize communication overhead and improve overall performance [138].

Finally, machine learning models can learn the effectiveness of different sch-
eduling decisions over time. This adaptive learning for scheduling policies
leads to refining scheduling policies to improve efficiency and adapt to chang-
ing workloads [137].

31

Chapter 3

Data processing framework

In order to address the open questions in the operational data analytics (ODA) field,
this work introduces new technologies in the analytics/data processing layer. They
are intended to work in concert with each other and cover different aspects of the
ODA tasks. Inspired by the characterization by Netti et al. [106], all tasks focus on
various aspects of HPC system availability.

Different algorithmic approaches described in this work can be used as inde-
pendent modules or integrated into any ODA framework between the data acqui-
sition and communication layers, or they can be used together as a comprehensive
model toolkit. Since the models described in this work are intended to be used in
the HPC systems of CINECA, they are integrated with ExaMon [26] data acquisi-
tion and monitoring layer and the ExaMon visualization layer based on Grafana
[79]. The modeling approaches, however, are general and can be used with any data
acquisition and visualization technology stack.

The most foundational model, described in Chapter 4, is the model for data ex-
ploration (DEM). This model aims to provide general insights into the operation
of the HPC system by comparing the behavior of different compute nodes. Unlike
the applications of other models in this work, data exploration is not fixed to one
specific modeling task, like system availability, but tries to provide general insights
into the system’s functioning. Since it does not rely on observing a particular label
or modeling tasks, it can be used even in systems where only rudimentary node
telemetry data is collected. It can be used as a first step in deploying data-driven
ODA applications, as it doesn’t require system administrators to specify the target
modeling tasks explicitly.

When used alone, it aims to give the system administrators a model that can
identify clusters of interesting or potentially problematic compute nodes. When used
as a part of a larger model zoo, such as the one proposed in this work, the data ex-
ploration model provides a general overview of the system, which helps to identify
variables or features that require special attention and specific models. In work done
on HPC systems of CINECA, data exploration uncovered clusters of compute nodes
with significantly lower average availability, which, alongside the literature and the

feedback of system administrators, motivated future work focusing on detecting and

32 Chapter 3. Data processing framework

predicting node failures.

When deploying a data-driven model, the first focus should be increasing the
availability of the HPC system [106]. Enhancing a system’s availability boosts its
scientific throughput and, by improving the amortization of its embodied carbon
cost, also contributes to greater environmental sustainability. The first part of intro-
ducing data-driven approaches for improving system availability is the introduction
of anomaly detection models, as described in Chapter 5. Anomaly detection models
detect periods of operation when compute nodes are unavailable to accept compute
jobs (anomalies). As described in this thesis, the proposed anomaly detection model
can, as documented for the first time in literature [98], work even if the labels for the
periods of anomalous operation are unavailable. This allows the system adminis-
trators to deploy data-driven anomaly detection even on systems that do not collect
accurate labels about periods of compute node unavailability. The data collected by
the anomaly detection system and then curated by the system administrators can be

the basis for the transition to anomaly prediction.

FIGURE 3.1: Developed data driven models.

The transition from anomaly detection to anomaly prediction is the primary fo-
cus of the final substantive chapter, Chapter 6, of this thesis. While anomaly pre-
diction, as opposed to anomaly detection, offers significant practical advantages if
deployed in a production HPC system, it also carries substantial difficulties in im-
plementation. The most important obstacle to introducing anomaly prediction is
the need for a high-quality dataset containing accurate anomalous behavior labels.
As the anomaly prediction models are supervised as opposed to self-supervised
anomaly detection models, the performance of the anomaly prediction model di-
rectly relates to the quality of the anomaly labels. Another necessity is additional
information about the compute node structure in a compute room, which is then en-

coded as a graph. The anomaly prediction model cannot be built if this information

Chapter 3. Data processing framework 33

is not present.

Due to the differences in the data required for the anomaly prediction and
anomaly detection models, anomaly prediction should be considered as something
other than an upgrade in capability. Instead, it is an additional capability that comes
at the price of higher data quality. Anomaly detection, in turn, can be deployed even
when the quality of collected data is significantly lower and labels are unavailable.
If deployed with the feedback of the systems administrators, anomaly detection can
even help collect the necessary data (periods of failures or anomalies) for the even-

tual deployment of anomaly prediction.

FIGURE 3.2: Developed data driven models as part of the data pro-
cessing framework.

34

Chapter 3. Data processing framework

35

Chapter 4

Data exploration - DEM

The work presented in this chapter is based on the paper Analysing Supercom-
puter Nodes Behaviour with the Latent Representation of Deep Learning Models
by Molan et al., presented at the Europar 2022 conference [94].

4.1 Introduction to data exploration

High Performance Computing systems have been steadily rising in size and com-
plexity in the last years, as revealed by the exponential increase of the worldwide
supercomputer installation [131]. HPC systems are typically composed by replicat-
ing a large number of components, usually, in the order of thousands of computing
nodes, each of them constituted of a collection of smaller functional parts, such as
CPUs, RAM, interconnections, storage, etc. Even if similar by design, each com-
puting node is affected by manufacturing variability and variations in the operating
conditions.

The sheer size and complexity of supercomputers create huge challenges in terms

of optimal management of the compute components and their significant energy

36 Chapter 4. Data exploration — DEM

footprint [60]. The race towards HPC systems capable of performing more than
10'® operations per second or more than one Exaflop [77], continues to make these
challenges ever more pressing [128].

Overall, it is a daunting task for system administrators and facility managers to
optimize supercomputer performance and power consumption, identify anomalous
behaviors faulty situations, and guarantee systems operate in optimal conditions.
The scale of the problem motivates the development of automated procedures for
anomaly detection and faulty node identification in current supercomputers and this
need will become even more pressing for future Exascale systems [150].

The fact that most of today’s HPC computing systems are endowed with moni-
toring infrastructures [124] that gather data from software (SW) and hardware (HW)
components can be of great help toward the development of data-driven automated
approaches. Historically, system management was performed through hand-crafted
scripts and direct intervention of system administrators; most of the data is stored
in log files, and anomalies are investigated a posteriori to find the source of reported
problems (e.g., when many users recognize the failure and report it to administra-
tors).

At the finer granularity, each core of the processing element is equipped with per-
formance counters which can monitor several micro-architectural events (i.e., cache
misses, stalls, throughput) and physical means (i.e., temperature, power consump-
tion, and clock frequency). Processing units as well as the motherboard, the power
distribution units, the onboard voltage regulators, the PCle devices, and the fans are
equipped with hardware (HW) sensors and counters.

Similarly, software components can provide useful information as well, ranging
from the details about jobs submitted by users (e.g., information gathered by job
dispatchers such as SLURM [71] or PBS [143]) to software tools performing health-
check of various subsystems [48] and I/O monitoring [147].

As the amount of data is overwhelming for human operators, automated pro-
cesses could be highly beneficial in improving the data center usage to ease the bur-
den of human operators and lower the response time to failures. In this context,
Al can provide significant benefits, as it allows to exploit the available big data ef-
fectively and to create decision support tools for HPC system administrators and
facility managers [14, 144].

In the past, many works from the literature and the practice demonstrated the
possibility to extract useful information using data collected from HPC computing
nodes and employing supervised Deep Learning (DL) models [135, 108, 33] and
semi-supervised ones [24, 28, 30]. These methods have been applied to detect nodes’

availability, defined as operation without anomalies.

4.2. Related work 37

Availability rate is the percentage of time the compute node is available to accept

compute jobs. Availability and the corresponding error rate, which is calculated as
1 — availability rate,

is a key metric of the node’s performance, and a target for optimization of the HPC
system operation [107]. Due to its importance, we focus on the availability rate in
the experimental part of this work.

Borghesi et al. in [28] show that semi-supervised anomaly detection models
trained on individual nodes data outperform a single model trained on multi-node
data. This suggests that the semi-supervised model can learn differences between
nodes even if the nodes share the same design and composition.

Theoretically, the learned model encapsulates the node’s characteristics, how-
ever to the best of our knowledge, no one has ever evaluated the feasibility of using
the disparities between trained DL models to evaluate the differences between the
behavior of the corresponding nodes.

In this work, we answer this question by introducing a novel approach that fo-
cuses on the latent representation of the trained DL models, in particular on the
coefficients, the weights of the latent layer). The approach can identify clusters that
deviate from the overall node population’s average availability, relying on the DL
model parameters.

We focused on a Tier-0 supercomputer composed of 985 nodes for which
we trained a series of per-node semi-supervised DL models based on autoen-
coders (AE), as proposed as Anomaly Detection and Anticipation in High Perfor-
mance Computing Systems - AdaHPC [30], the state-of-the-art for semi-supervised
anomaly and fault detection in HPC systems. We focus on semi-supervised me-
thods as the availability of labels cannot be taken for granted in a supercomputer
due to the non-negligible cost of annotating the vast wealth of monitored data. We
explored different approaches to extract features from the weights and biases of the
latent layer of the AE model.

A systematic approach to data analysis is presented in Data Exploration Model

(DEM), which covers all the necessary principles for effective data exploration.

4.2 Related work

Since anomalies in HPC systems are rare events, the problem of anomaly detection
cannot be treated as a classical supervised learning problem [24, 4]. The majority of
works that treat it in a fully supervised fashion have been tested using synthetic [135,
2] or injected anomalies [108]. Instead of learning the properties of both relevant

classes, the standard approach is to learn just the properties of the system’s normal

38 Chapter 4. Data exploration — DEM

operation - anything deviating from this normal operation is then recognized as an
anomaly.

Machine learning models are trained only on normal data to learn the character-
istics of the normal operation. This training of ML models on normal data is called
semi-supervised training [28].

The state-of-the-art for anomaly detection on the HPC system is to train a partic-
ular class of neural networks — called autoencoders — in a semi-supervised way [30].
Autoencoders are a specific type of neural networks that are trained to reproduce an
input signal while simultaneously learning the most efficient latent representation
of the data [12].

The latent representation of the data has a lower dimension than the original
data; this lower dimension of the latent layer naturally leads to the idea of us-
ing autoencoders as pre-processing step before applying clustering techniques [122,
82, 139], as most of the clustering algorithms have worse performance in high-
dimensional spaces [6]. The autoencoders are first trained on the whole dataset
when using autoencoders as a dimension-reduction step before clustering. Then
the dataset is projected by the encoder part of the network into a lower-dimensional
latent layer [122].

Current approaches that combine clustering and autoencoder neural networks
use a single trained autoencoder to encode each instance into a latent space. The
state-of-the-art for HPC anomaly detection, however, is to train multiple models - a
different model for each node in the system [30]. The fact that the models trained on
individual nodes outperform the model trained on combined data of all nodes [30,
24, 28] suggests that there are significant differences between the behavior of the
compute nodes and, consequently, the corresponding trained models.

This work explores the possibility of leveraging the fact that we are training mul-
tiple AE models to explore the relationship between the nodes. Specifically, we ex-
plore the possibility to extract features from the trained neural networks to perform

the clustering of the whole operation history of the compute nodes.

4.3 Methodology for data exploration

In this section we present the architecture of the proposed approach as Data Explo-
ration Model (DEM). We start by providing the probabilistic perspective underlying
the foundations of our approach in Section 4.3.1. We then describe in more detail the
general architecture (Section 4.3.2) and the proved the more detailed description of
the method in Section 4.3.3 and Section 4.3.4.

4.3. Methodology for data exploration 39

4.3.1 Probabilistic Background

The idea of extracting information and comparing trained neural networks extends
the standard methodology of statistical modeling, where two or more populations,
or generally a collection of instances, are compared by contrasting parameters of
titted distributions.

Comparing the parameters of fitted functions is the key idea underlying the pro-
posed approach. Let us consider as an example the common statistical problem
of comparing two populations of individuals - specifically, we want to compare a
specific random variable X in two distinct populations (e.g., height in two different
countries).

The first point of comparison in such cases is to calculate an empirical mean
depicted in equation (4.1)

1

x:Ni

™=z

Xi (41)

I
—_

and an empirical variance depicted in equation (4.2).

1 i >
(x; —X) (4.2)
n—14H
Two populations can be compared by looking at the empirical mean and variance of
the random variables of interest. These are observed variables present inside each

population.

¢ The mathematical foundation of comparing mean and variance between two

populations is directly in line with the idea of this work.

¢ If we are observing two large populations we know from the central limit the-
orem [51] that the sum of the variables will tend towards a Gaussian distribu-

tion.

¢ Two parameters determine Gaussian distribution: expected value y and vari-
ance ¢ [51]; to fit the Gaussian distribution to the data (population), we thus

have to estimate these two parameters.

e [f we fit the distribution via the Maximum Likelihood Estimation (MLE)
method, [38], we see that the best estimator for the expected value is empiri-

cal mean and for variance, the best estimator is empirical variance.

¢ From the probability theory, we know that the difference of two random Gaus-
sian variables is Gaussian variable with mean that is the difference of means

and variance that is the sum of variances [51].

¢ Comparing population mean and population variance is thus actually equiva-

lent to comparing the Gaussian distributions fitted to the data.

40 Chapter 4. Data exploration - DEM

Another perspective from which to examine the problem of comparing popula-
tions is that we fit a function to the data, such as the Gaussian distribution. For some
problems, like HPC system monitoring, autoencoders, a type of neural network,
achieve state-of-the-art results [30, 29]. As autoencoders are the class of functions
that best describe this specific class of problems, namely the behavior of compute
nodes in an HPC system, we examine whether we can compare the compute nodes by

comparing the parameters of the fitted autoencoders.

4.3.2 General overview of the approach

Extracting features and
calculating similarity

Trained

J‘ %‘M'V\

/'\/
\/

T V

Normal operation data \\,

Compute node racks

FIGURE 4.1: Data flow schema. On each of the nodes (red in the

picture), organized into racks, we train a separate autoencoder model

(circles). From these trained models we extract features that are then
used in the clustering of nodes.

The key idea is to apply a geometric transformation to the weight matrix under-
lying the latent layer of the trained AEs; we opted to explore a variety of transfor-

mations; namely, we compute:

1. the vector of singular values,

2. the singular vector corresponding to the largest singular value,
3. the map of the representative vector (with and without bias),
4. the weights matrix similarity in L1, L2, and absolute L2 norm,

5. the affine (augmented matrix) similarity in L1, L2, and absolute L2 norm.

4.3. Methodology for data exploration 41

The empirical evaluation demonstrates that the vector of singular values identifies
interesting clusters among the different methods to extract salient features from the
latent representation.

Figure 4.1 reports the block diagram of the proposed methodology. We can iden-
tify the following steps:

1. Oneachnode, a separate autoencoder model is trained. Semi-supervised train-
ing of per-node autoencoder models is adopted from the work of Borghesi et.
al. [30].

2. After models are trained on each node, features are extracted (as described in

Section 4.3.4) from the deep learning models.

3. Based on these extracted features, the similarity between nodes is calculated.
Calculation of similarity can be done as the autoencoder projects the input
features into a latent representation where only the most salient correlations
between the input variables are preserved. The similarity measure is calcu-
lated by comparing the representation maps - specifically, the parameters of
the latent layer.

4. This similarity measure is then used in hierarchical clustering.

4.3.3 Autoencoder models

Dense autoencoders are a type of deep neural network, which can be characterized
by different topology; those used in this work have a distinct hourglass shape, a
choice motivated by the results obtained by previous works in the state-of-the-art.
These contractive autoencoders use a latent layer significantly smaller than the input
and output layers. This shape forces the autoencoder to learn efficient representation
(encoding) of the data, driven by the small size of the latent layer.

The most relevant information of the network is encoded in the latent layer. In
this particular type of autoencoder, the latent layer is the layer in the middle of the
network and contains the fewest neurons. It is preceded by the encoder and suc-
ceeded by the decoder, each composed of one or multiple layers.

The encoder and decoder layers used in this work have a symmetrical architec-
ture, which, generally speaking, is not strictly required. The fundamental role of
the network is to efficiently encode the information from the input in a compressed
representation in the latent layer.

Training of the autoencoder is driven by the reproduction error produced by the
decoder; reproduction error, which is the difference between the real input and the
reconstructed signal, is minimized during training. The architecture of the network
used in this work is presented in Figure 4.2. It is adapted from AdaHPC presented
by Borghesi et al. [30] where it has been shown to produce state-of-the-art results in

detecting anomalies on an HPC system.

42 Chapter 4. Data exploration - DEM

The set of autoencoders - as in original work [30] - are individually trained on
each node in a semi-supervised setting. Semi-supervised training means that the
data for training is filtered of all anomalies and that only the normal instances are

used in training the model.

Encoder Decoder

Anomaly
probability

Input Dense Dense Dense Dense R. ERROR
(*,462) (*,16) (%,8) (*,16) (*,462) (*,462)

S =

FIGURE 4.2: Architecture of the state-of-the-art model, proposed as

AdaHPC [30]. In this work, relevant information is extracted from the

latent layer Dense (*,8). Data is collected for the ExaMon monitoring
system [15].

4.3.4 Feature extraction

From now on, we will use the following symbols in this section.:

W ... weight matrix,

d ... activation vector,

b ... bias vector,

f ... nonlinear activation function.

Due to the architecture of the neural network used in this work, as discussed in
Section 4.3.3, we extract the relevant features from each node, each with its own
dataset; these features are embedded in the weights of the latent layer.

The latent layer is described by the weights matrix W and the bias vector b. The

activation of the latent layer is given by @’ in equation (4.3)

i = f(Wd+D) (4.3)

4.3. Methodology for data exploration 43

where f is a nonlinear activation function. In the next subsections, we will describe
different encoding approaches of the latent layer information, which will then be

used to extract features.

Singular value decomposition

Singular value decomposition represents matrix A as A = UXVT where ¥ is a diag-
onal matrix containing singular values [136]. In this work, we used singular value
decomposition on W, and we extracted the vector of singular values (abbreviated
to singular values in the future) and a singular vector corresponding to the largest
singular value (abbreviated singular vector).

Given any m X n matrix A, the singular value decomposition of A is an expres-

sion of the form:

A=Uuzv’
Where:
U ... orthogonal matrix with dimension m x m,
Y ... diagonal matrix with dimension m x n and non-negative real numbers
on the diagonal (these are known as the singular values of A),
VT .. transpose of an 1 x n orthogonal matrix V.

The columns of U and V are known as the left-singular vectors and right-singular

vectors of A, respectively.

Representative vector

Let denote the vector 1 of ones as

=l
Il

1

We use the vector of ones 1 as a representative vector as it corresponds to the activa-
tion of all neurons in a latent layer. It can serve as a proxy for the transformation of
the linear part of the latent layer. For each node, we have thus calculated the prod-
uct of W1 (abbreviated vector of ones) and WI+b (abbreviated vector of ones plus
bias).

44 Chapter 4. Data exploration — DEM

Matrix measures

In this work, we leveraged the L1 and L2 norms induced in the matrix space. Norms
L1 and L2 are induced by p norms for p = 1 and p = 2 for vectors [19] presented in
equation (4.4).

Il = <);|xi|P> @4)

Based on these norms we propose two ways to calculate distance between ma-

trices distance depicted in (4.5)
distance = ||[A — B||, (4.5)
and absolute distance depicted in (4.6).
absoulte distance = ‘ I|A — BHP‘ (4.6)

where p = 1 or p = 2 correspond to L1 and L2 respectively. Since the L1 measure is
already symmetric, we do not separate a case with absolute distance. We introduce
the absolute value as we want our distance measure to be symmetric.

We calculate the distance between nodes as a distance between the weights ma-
trices of autoencoders trained on them. Additionally, since the linear part of the

neural network is an affine transform, we introduce an augmented matrix A:

Another way to calculate the distance between nodes is to calculate the distance
between an affine transform that is determined by the (affine W@ + b) part of the
latent layer of the corresponding autoencoder.

4.3.5 Clustering

The calculated distance between clusters is an input for clustering. In this work,
we use agglomerative hierarchical clustering: each instance, in our case node, starts
as its cluster. At every step of the iteration, the two closest clusters are connected.

The connection between clusters is the closest distance between two instances in

4.3. Methodology for data exploration 45

corresponding clusters. The combining of clusters is repeated until we reach the
predetermined number of clusters.

AEg

H [{AE2, AEs,
@ AE,, AEs}

{AE,;, AEs}

{AEZI AE3/

{AE4, AEs} [| AE4, AEs, AEg}

[{AE:, AE,, AEs,
AE4, AEs, AEg}

AE;

FIGURE 4.3: Example for agglomerative hierarchical clustering of six

trained autoencoders from AE; to AEg: Each autoencoder starts in its

own cluster, and pairs of clusters are merged as one moves right the
hierarchy.

4.3.6 Evaluating clustering

There are several possible measures to evaluate the goodness of the clustering (e.g.,
silhouette score) [102]. The silhouette score is a measure used to evaluate the quality
of clusters in a clustering algorithm. It ranges from -1 to 1, where a high value indi-
cates that the object is well-matched to its cluster and poorly matched to neighboring

clusters. It is calculated in the following way:

1. Calculation for Each Point:

¢ For each point, calculate two distances:

— a: The average distance from the point to the other points in the

same cluster (measuring cohesion).

— b: The smallest average distance from the point to points in a differ-

ent cluster, minimized over clusters (measuring separation).
2. Silhouette Score for Each Point:

¢ The silhouette score S for a single data point is calculated using;:

_ b—a
~ max(a,b)

46 Chapter 4. Data exploration — DEM

¢ This score is between -1 and 1, indicating how well the point is clustered.
3. Overall Silhouette Score:

¢ The overall silhouette score for the clustering is the mean of all points,

giving an overall measure of the clustering quality.

Because the silhouette score only focuses on the distance between the clusters,
it gives no information on how informative the constructed clusters are. We evalu-
ate different possible feature extraction methods from the trained autoencoders de-
scribed in the 4.3.4. These different feature extraction approaches produce different
feature spaces. Thus we cannot compare the clustering score, like silhouette score,
between different spaces. For this reason, we evaluate the relevance of our clustering
approaches by evaluating how “interesting” the created clusters are.

The interest of clusters is reflected in how well they separate a specific variable.
Since clustering is an unsupervised method, it is reasonable to assume that not all
clusters will separate the same variable, as such clustering would produce distinctly
uninteresting clusters. However, we expect at least one cluster to show a distribution
of the target variable that is significantly different from that of the entire dataset.

In this chapter, the target variable is system availability. In other words, clusters
will group computing nodes based on the autoencoder model’s latent layer encod-
ing, forming groups with similar availability and, consequently, similar failure rates.
From a practical standpoint, this means that an autoencoder model for each node is
trained solely on "normal" operation samples and encapsulates information about
the likelihood of the node being available or not failing. Clusters of nodes sharing
the same likelihood of failure can then be used to optimize the maintenance proce-
dure.

In the whole dataset, the system is available 0.96179% of the time. The most
interesting cluster is thus the one where the average availability of a cluster will be
as far away from this population average. The best clustering method is the random

sampling baseline producing the most interesting cluster.

4.3.7 Random sampling baseline

The relevance of the produced clusters determines the relevance of feature extrac-
tion and, consequently, of clustering approaches. Specifically, we observe how well
the clusters separate a target variable, in this case, the node’s availability. To claim
the relevance of the clustering approaches, we compare them to random sampling.
We compare how well the target variable is separated by random sampling to how
well clustering methods separate it. We are particularly interested in clustering me-
thods that produce clusters and separations that are very unlikely to occur through

random separation.

4.4. Results of data exploration 47

This work implemented random clustering by producing a random matrix, of
the same size and range as the extracted features, which is then passed to clustering
algorithms. The produced clusters are thus equivalent to random sampling without
replacement. The generation of random clusters is repeated several (in this work
10) times. For each cluster, the distribution of the target variable is calculated; this
distribution is then compared to distributions given by clustering methods. In the
results (Section 4.4), the range of randomly generated distributions is presented as
a box with whiskers plot. Distributions outside the range of random distributions

represent interesting patterns uncovered by the clustering method.

4.4 Results of data exploration

This section presents the results of the experimental analysis conducted on a tier-0
supercomputer, Marconi 100, hosted at CINECA. The results were obtained from a
statistically significant fraction of the supercomputing nodes, exceeding two hun-

dred, and cover a 10-month time span of the system’s production activity.

4.4.1 Experimental setting

As explained in the methodology Section 4.3, an individual model was trained on
each of the 241 randomly selected nodes of Marconi 100. Models were trained semi-
supervised, meaning that only normal operation data was used for training. The

whole dataset consists of 10 months of operational data collected on Marconi 100.
¢ Training set: The first eight months of the data.

o Test set: The last two months of the data.

Autoencoder models were trained on the train set. The cluster analysis was per-
formed only on the test set.

The dataset used in this work comprises a combination of information recorded
by Nagios [13], the system administrator’s tool used to visually check the health
status of the computing nodes, and the ExaMon monitoring systems. The data spans
the first ten months of operation of the Marconi 100 system. The features collected
in the dataset are listed in Table 4.1. To align the different sampling rates of various
reporting services, 15-minute aggregates of data points were created. This interval
was chosen because it is the native sampling frequency of the Nagios monitoring
service, from which the labels are derived. Four values were calculated for each
15-minute period and each feature: minimum, maximum, average, and variance.

Features extracted from trained autoencoders are passed to hierarchical cluster-
ing. Hierarchical clustering has been chosen as it only requires the pairwise distance
between the instances without making any assumptions about the space induced

by the distance measure. The number of clusters is set to 20 for all experiments. A

48 Chapter 4. Data exploration — DEM

Source Features

ambient temp., dimm[0-15] temp.,
fan[0-7] speed, fan disk power,
GPUJ0-3] core temp.,

GPUJ0-3] mem temp.,
gv100card[0-3], core[0-3] temp.,
pl0-1] io power,

Hardware monitoring || p[0-1] mem power,

pl0-1] power, p[0-1] vdd temp.,
part max used,

ps[0-1] input power,

ps[0-1] input voltage,

ps[0-1] output current,

ps[0-1] output voltage, total power
CPU system, bytes out, CPU idle,

proc. run, mem. total,

pkts. out, bytes in, boot time,

CPU steal, mem. cached, stamp,
System monitoring CPU speed, mem. free, CPU num.,
swap total, CPU user, proc. total,
pkts. in, mem. buffers, CPU idle,
CPU nice, mem. shared, PCle,

CPU wio, swap free

TABLE 4.1: A list of features used in training of an anomaly detection

model. An anomaly detection model is created only on hardware and

application monitoring features. More granular information regard-

ing individual jobs is not collected to ensure the privacy of the HPC
system users.

number of clusters is not a tuned parameter; 20 clusters represents roughly 10% of

all nodes and is a randomly chosen number.

4.4. Results of data exploration 49

4.4.2 Trained autoencoder

The trained autoencoder is adopted from the current state-of-the-art semi-super-
vised approach for anomaly detection [30]. The structure of the autoencoder is
presented in Figure 4.4. The autoencoder, used as a binary classifier based on the

normalized reconstruction error, achieves an AUC of 0.7602 on the test set.

Encoder Decoder

input_1: InputlLayer

input: output:

(None, 462) | (None, 462)

Y
dense 1: Dense dense 3: Dense
input: output: input: output:
(None, 462) | (None, 16) (None, 8) | (None, 16)
i !
dense 2: Dense dense 4: Dense
input: output: input: output:
(None, 16) | (None, 8) (None, 16) | (None, 462)

FIGURE 4.4: Architecture of the autoencoder network, adopted from
Borghesi et al. (AdaHPC) [30]

Normal operation, defined as the data on which the autoencoder is trained, is

determined by the label, system availability, provided by the monitoring systems.

50 Chapter 4. Data exploration — DEM

4.4.3 Cluster analysis: normal operation percentage

The proposed approach aims to identify meaningful clusters of nodes that exhibit
similar behavior. This similarity in behavior is reflected in the fact that a cluster
will have comparable values for at least one relevant feature. In this section, we
evaluate the similarity in the average availability rate. In other words, we aim to
determine whether the clustering methods can identify clusters with particularly
low availability (high failure rate). Among the 241 identified nodes in the test set,
the average failure rate is 0.96179. Our goal is to identify clusters with significantly
lower availability rates.

In Table 4.2, the minimum average availability rates in a cluster, unidentified by a
specific feature extraction approach, are reported. The table shows that the vector of
singular values combined by the euclidean distance metric identifies a cluster with
the minimum average availability. This availability is also lower than the minimum

availability ever achieved by the random method.

Distance measure Average availabilitv Number of nodes in
in minimum cluster minimum cluster
Sing. vector (Euc.) 0.9286 6
Vector of sing. values (Euc.) 0.8809 7
WT + b (Euc.) 0.9126 8
WT (Euc.) 0.9367 5
W (absolute 1L2) 0.9191 7
A (absolute L2) 0.9276 5
W (L2) 0.9239 7
A (L2) 0.9124 10
W (L1) 0.9303 8
A (L1) 0.9303 8
Random sampling 0.9021 Not applicable

TABLE 4.2: Minimum average availability within clusters identified
by different feature extraction methods presented in 4.3.4. Vector of
singular values identifies a cluster with the lowest average availabil-
ity (highest anomaly rate). This is the most interesting method as it
separates the target variable (node availability) the best. None of the
proposed methods identify a cluster with a single node.

In Figure 4.5 and Figure 4.6 average availability per node is plotted (red dots).
Results of random sampling without replacement are presented as a box plot. The

average error rate across all nodes (0.96179) is marked with a violet dotted line. Area

4.4. Results of data exploration 51

of values, observed in a random process, are marked with gray. Values never ob-

served by the random process are left white.

1.00

0.98 - : H s .
= ° $
g * . i
g ! : i
=] a
30964 | | s ¢ 3 d
5 s ° °
o
9 0.94 + o °
©
. R S
20924 o
(0])
(O]
R
E °
z

0.88 - °

086 T T T T T

Random Singular vec. Singular val. Vec. of [1] Vec. of [1] + bias

Embedding

FIGURE 4.5: Average error rate per cluster. Representation of nodes
with a vector of singular values identifies two clusters with signifi-
cantly higher anomaly rate than the whole population.

1.00
o
. 0.98 1 : ' i ‘
g : :
g 1 T T R
G 0.96 1 3 : . ' . .
L]

g . . : : :
9 0.94 ~ s ° °
C . s s
= N
0921 o . ° -
Q °
(]
& 0.90 [
()
2

0.88

0.86

Random Lin. [L2| Aff. |[L2] Lin.L2 Aff.L2 Lin.L1 Aff. L1l
Embedding and distance measure

FIGURE 4.6: Average error rate per cluster. Matrix-based feature ex-
traction performs worse than the vector methods.

Analyzing Figures 4.5 and 4.6 we observe that only the vector of singular values

produced cluster with averages never observed in random samples.

52 Chapter 4. Data exploration — DEM

We propose to use the deviation from population average availability to evalu-
ate the goodness of the clustering results. The vector of singular values, extracted
from the weights matrix of the latent layer of the trained autoencoder, identifies two
clusters with an average overall availability lower than 89% (compared to the 96%
population average). The proposed method’s ability to identify these clusters is sig-
nificant as the autoencoders have no access to the availability label during training.

The clustering method based on a vector of singular values combined with eu-
clidean distance identifies two clusters with particularly low average availability.
Such low average availability has also never occurred in a random selection of clus-
ters. Low average availability means that hierarchical clustering based on singu-
lar value decomposition of weights matrix produces non-trivial clusters that are ex-
tremely unlikely to be matched by a random selection of clusters.

Identifying interesting clusters regarding availability is a non-trivial result as a
neural network has no access to that label during training.

This promising result suggests that the created clusters share similar availability,
and thus clusters can be created based on autoencoder semi-supervised models la-
tent layer information. This cluster can then be used during the system’s lifetime to
create canaries to focus the maintenance over nodes belonging to the same cluster of

the canary node.

4.5 Conclusions of data exploration

This work opens the possibility of extracting additional information from the state-
of-the-art approach towards anomaly detection in the HPC setting. Besides using
per-node autoencoder models for anomaly detection like several works by Borghesi
et al. such as AdaHPC [30], [24] or [28], it is also possible to construct informative
clusters from the parameters of the trained neural networks themselves.

We demonstrate the usefulness of the identified clusters on a concrete example:
identifying clusters with the abnormal failure rate. This result is significant as the
neural networks, from where the features are extracted, have no access to that label
during training. Still, our approach can identify two clusters of nodes with lower
availability (higher failure rate) than the population average.

We stress the fact that with this approach, clusters can be created based on a
model trained on the first month of operations and then applied for the remaining
lifetime of the system to focus maintenance to the nodes belonging to the same clus-
ter containing the node which has experienced failures. System administrators focus

their regular inspections only on canary nodes, each representative of one cluster.

53

Chapter 5

Anomaly detection - RUAD

The work presented in this chapter is based on the paper RUAD: Unsupervised
anomaly detection in HPC systems by Molan et al., published in the Future Gen-

eration Computer Systems journal in 2023 [98].

5.1 Introduction to anomaly detection

Recent trends in the development of HPC systems (such as heterogeneous architec-
ture and higher-power integration density) have increased the complexity of their
management and maintenance [121]. A typical contemporary HPC system consists
of thousands of interconnected nodes; each node usually contains multiple different
accelerators such as graphical processors, field programable gate arrays (FPGAs),
and tensor cores [90]. Monitoring the health of all those subsystems is an increas-
ingly daunting task for system administrators. To simplify this monitoring task and
reduce the time between anomaly insurgency and response by the administrators,

automatic anomaly detection systems have been introduced in recent years [107].

54 Chapter 5. Anomaly detection — RUAD

Anomalies that result in downtime or unavailability of the system are expen-
sive events. Their cost is primarily associated with the time when the HPC system
cannot accept new compute jobs. Since HPC systems are costly and have a limited
service lifespan [114], it is in the interest of the system’s operator to reduce unavail-
ability times. Anomaly detection helps in this regard as it can significantly reduce
the time between the fault and the response by the system administrator, compared
to manual reporting of faulty nodes [30].

Modern supercomputers are endowed with monitoring systems that give the
system administrators a holistic view of the system [107]. Data collected by these
monitoring systems and historical data describing system availability are the basis
for machine learning anomaly detection approaches [24, 27, 108, 109, 55], which
build data-driven models of the supercomputer and its computing nodes. In this
work, we focus on CINECA Tier-0 HPC system (Marconi 100 [65, 22] ranked 9th
in Jun. 2020 TOP500 list [131]), which employs a holistic monitoring system called
ExaMon [15].

Production HPC systems are reliable machines that generally have very few
downtime events - for instance, in Marconi 100 at CINECA, timestamps correspond-
ing to faulty events represent, on average, only 0.035% of all data. However, al-
though anomalies are rare events, they still significantly impact the system’s overall
availability - during the observation period, there was at least one active anomaly
(unavailable node) 14.4% of the time.

State-of-the-art methods for anomaly detection on HPC systems are based
on supervised and semi-supervised approaches from the Deep Learning (DL)
field [30]; for this reason, these methods require a training set with ac-
curately annotated periods of downtime (or anomalies). In turn, this re-
quires the monitoring infrastructure to track downtime events; in some in-
stances, this can be done with specific software tools (e.g.,, Nagios [13]), but
properly configuring these tools is a complex and time-consuming task for
system administrators.

So far, the challenges of anomaly detection on HPC systems have been ap-
proached by deploying anomaly reporting tools by training the models in a su-
pervised or semi-supervised fashion [30, 92, 135, 108]. The need for an accurately
labelled training set is the main limitation of current approaches as it is expensive,
in terms of time and effort of the system administrators, to be applied in practice.

Downtime tracking also has to be able to record failures with the same granu-
larity as the other monitoring services. Some methods in production HPC systems
only record downtime events by date [121, 90, 107]. In most production HPC sys-
tems, accurate anomaly detection is thus not readily achievable.

For this reason, the majority of the methods from the literature were tested on
historical or synthetic data or in supercomputers where faults were injected in a

carefully controlled fashion [105].

5.1. Introduction to anomaly detection 55

Another limitation for the curation of an accurately labeled anomaly dataset is
the short lifetime of most HPC systems. In the HPC sector, a given computing node
and system technology have a lifetime of between three and five years. Short lifetime
means, in practice, that the vendor has no time to create a dataset for training an
anomaly detection model before the system is deployed to the customer site.

A completely unsupervised anomaly detection approach could be deployed on
a new node or even on an entirely new HPC system. It would then learn online and
without any interaction with the system administrators. Additionally, such a system
would be easier to deploy as it would require no additional framework to report
and record anomalous events (in addition to the monitoring infrastructure needed
to build the data-driven model of the target supercomputer - a type of infrastructure
which is becoming more and more widespread in current HPC facilities [107]).

Unsupervised anomaly detection approaches for HPC systems exist such as [49,
102, 36]. They either work on log or sensor data. Approaches based on log data [49,
36], while useful, can only offer a post-mortem and restricted view of the supercom-
puter state.

The current state-of-the-art for anomaly detection on sensor data [102] is based
on clustering, which requires a degree of manual analysis from system adminis-
trators and offers poor performance compared to semi-supervised methods. The
semi-supervised methods [30, 24, 25], based on the dense autoencoders, which are
trained to reproduce their input, could be trained in an unsupervised fashion. How-
ever, none of the presented works has explored this possibility. According to the
current state-of-the-art, the models would perform worse as the dense autoencoder
is also capable of learning the characteristics of the anomalies [30, 24, 25].

We propose an unsupervised approach: RUAD (Recurrent Unsupervised Anomaly
Detection) that works on sensor data and outperforms all other approaches, includ-
ing the current state-of-the-art semi-supervised approach (Anomaly Detection and
Anticipation in High Performance Computing Systems - AdaHPC) [30] and current
state-of-the-art unsupervised approach [102].

RUAD achieves that by taking into account temporal dependencies in the data.
We achieve that by using Long Short-Term Memory (LSTM) cells in the proposed
neural network model structure, which explicitly take into consideration the tempo-
ral dimension of observed phenomena.

We also show that the RUAD model, comprising of LSTM layers, is capable of
learning the characteristic of the normal operation even if the anomalous data is
present in the test set - the RUAD model is thus able to be trained in an unsupervised
manner.

RUAD targets single HPC computing nodes: we have different anomaly detec-
tion models for each computing node.

The motivation behind this is scalability: in this way, each node can be used to

train its own model with minimal overhead - moreover, this strategy would work in

56 Chapter 5. Anomaly detection — RUAD

larger supercomputers as well, as if the number of nodes increases, we just have to

add new detection models.

5.1.1 Motivation

The primary motivation for this work is to propose a novel approach that relies
only on the fact that the anomalies are rare events and works at least equally well when
trained in an unsupervised manner as it does when trained in semi-supervised manner -
this has not been the case in the current state-of-the-art.

A completely unsupervised anomaly detection approach - such as the one pre-
sented in this chapter - could be deployed on a new node or even on an entirely new
HPC system. It would then learn online and without any interaction with the system
administrators. Additionally, such a system would be easier to deploy as it would
require no additional framework to report and record anomalous events, apart from
the monitoring infrastructure needed to build the data-driven model of the target
supercomputer—a type of infrastructure that is becoming increasingly widespread
in current HPC facilities. There exist unsupervised approaches for anomaly detec-
tion such as [49, 102, 36]. They either work on log data or on sensor data. Ap-
proaches based on log data [49, 36], while useful, can only offer a post-mortem and
restricted view of the supercomputer state. The current state-of-the-art for anomaly
detection on sensor data [102] is based on clustering which requires a degree of man-
ual analysis from system administrators and offers poor performance compared to
semi-supervised methods.

Among the semi-supervised approaches that have been tested on real, in-
production anomalies, the current state-of-the-art approach [30] is based on a dense
autoencoder and takes (almost) no advantage of temporal dependencies within
the data (the only temporal dependency-aware element of the approach presented
in [30] is the exponential moving average anomaly threshold).

Interestingly, it was also shown that the signal produced by such a model,
in some cases, anticipates the occurrence of an anomaly (the model predicts the
anomaly before it occurs).

The capability to anticipate an anomaly means that the anomalies are events that
have temporal dynamics - part of the characteristic behavior of an anomaly occurs
before standard software-based monitoring tools (such as Nagios) record an anomaly.
This happens as these tools need to be configured by system administrators, which,
as human, might only take into account a limited set of indicators known to be im-
portant, while an automated DL method can extract information from all available
sensors. For this reason, we seek to extend the approach presented by Borghesi et

al. [30] by taking into account temporal dependencies in the data.

5.2. Related work 57

We achieve that by using Long Short-Term Memory (LSTM) cells in the proposed
neural network model structure, which explicitly takes into consideration the tem-
poral dimension of observed phenomena.

We also show that the RUAD model, comprising of LSTM layers, is capable of
learning the characteristic of the normal operation even if the anomalous data is
present in the test set - RUAD model is thus able to be trained in an unsupervised

manner.

5.2 Related work

The drive to detect events or instances that deviate from the norm (i.e. operational
anomalies) is present across many industrial applications. One of the earliest appli-
cations of anomaly detection models was credit card fraud detection in the financial
industry [103, 1]. Recently, anomaly detection (and associated predictive mainte-
nance) has become relevant in manufacturing industries [80, 118], internet of things
(IoT) [86, 40, 146], energy sector [57], medical diagnostics [152, 10], IT security [119],
and even in complex physics experiments [93].

Typically, anomalies in an HPC system refer to periods of (and leading to) sub-
optimal operating modes, faults that lead to failed or incorrectly completed jobs, or
node and other components hardware failures. While HPC systems have several
possible failure mitigation strategies [59] and fault tolerance strategies [89], anoma-
lies of this type still significantly reduce the amount of compute time available to
users [23]. The transition towards Exascale and the increasing heterogeneity of
hardware components will only exacerbate the issues stemming from failures, and
anomalous conditions that already plague HPC machines [121, 107, 66]. A DARPA
study estimates that the failures in future exascale HPC systems could occur as fre-
quently as once every 35-39 minutes [20], thus significantly impacting the supercom-
puting availability and system administrator load.

However, when looking at specific components and not at the entire HPC system
(e.g., considering a single computing node), faults remain very rare events, thus
falling under the area of anomaly detection, which can be seen as an extreme case of
supervised learning on unbalanced classes [112].

Because data regarding normal operation far exceeds data regarding anomalies,
classical supervised learning approaches tend to overfit the normal data and give a
sub-optimal performance on the anomalous data [113].

In order to mitigate the problem of unbalanced classes, the anomaly detection
problem is typically approached from two angles. Approaches found in the current
state-of-the-art that address the class imbalance either modify the data [81] or use

specialized techniques that work well on anomaly detection problems [30].

58 Chapter 5. Anomaly detection — RUAD

Data manipulation approaches address the dataset imbalance either by decreas-
ing the data belonging to normal operation (under sampling the majority class) or by
oversampling or even generating anomalous data (over sampling minority class) [81].

Data manipulation for anomaly detection in HPC systems has not yet been thor-
oughly studied. Conversely, most existing approaches rely on synthetic data gener-
ation, e.g., injection of anomalies in real (non-production) supercomputers or HPC
simulators [30].

Another research avenue exploits the abundance of normal data from HPC sys-
tems using a different learning strategy, namely semi-supervised ML models. In-
stead of learning on a dataset containing multiple classes — and consequently learn-
ing the characteristics of all classes — semi-supervised models are trained only on the
normal data. Hence, they are trained to learn the characteristics of the of the normal
class (the majority class in the dataset). Anomalies are then recognized as anything
that does not correspond to the learned characteristic of the normal class [112, 24, 28,
25, 145].

Regarding the type of data used to develop and deploy anomaly detection sys-
tems, we can identify two macro-classes: system monitoring data collected by holis-
tic monitoring systems (i.e. ExaMon [15]) and log data. This data is then annotated
with information about the system or node-level availability, thus creating a label
associated with the data points.

The label encodes whether the system is operating normally or experiencing an
anomaly. Since it is expensive and time-consuming to obtain labelled system moni-
toring data, a labelled dataset for supervised learning can be obtained by "injecting"
anomalies into the HPC system (like the method proposed by Netti et al. [105]). La-
bels are important for supervised, semi-supervised and unsupervised approaches.
In the first case, they are used to compute the loss, in the second case to identify the
training dataset and validation, and in the third case, only for validation.

This data can then be used in a supervised learning task directly or after process-
ing new features (feature construction). Examples of this approach are [134, 135, 2]
where authors use supervised ML approaches to classify the performance variations
and job-level faults in HPC systems. For fault detection, [108, 105] propose a super-
vised approach based on Random Forest (an ensemble method based on decision
trees) to classify faults in an HPC system.

All mentioned approaches use synthetic anomalies injected into the HPC system
to train a supervised classification model.

Approaches proposed by Borghesi et al. [30] and Molan et al. [92] are among the
few that leverage real anomalies collected from production HPC systems as opposed
to injected anomalies. In this work, we are interested in real anomalies, and thus,
we will not include methods using synthetic/simulated data or injected anomalies

in our quantitative comparisons.

5.2. Related work 59

All mentioned approaches do not take into account temporal dependencies of
data, as the models are not trained on time series but on tabular data containing no
temporal information.

System monitoring data approach [5] is the first to take into account temporal
dependencies in data by calculating statistical features on temporal dimension (ag-
gregation, sliding window statistics, lag features). Most approaches that deal with
time series anomaly detection do so on system log data. Labelled anomalies are either
analyzed with log parsers [16] or detected with deep learning methods.

Deep learning methods for anomaly detection are based on LSTM neural net-
works as they are a proven approach in other text processing fields.

Compared to labelled training sets, much less work has been done on unlabelled
datasets - despite this case being much more common in practice. So far, all research
on unlabelled datasets has focused on system log data. [49] propose a k-means based
unsupervised learning approach that does not take into account temporal dynamics
of the log data.

A clustering-based approach on sensor data is proposed by [102]. This approach
will serve as one of the baselines in the experimental section, as it is the only unsu-
pervised approach that uses sensor data instead of log data.

An approach [36] works on time series data in an unsupervised manner. It uses
the LSTM-based autoencoder and is trained on the existing log data dataset. The
proposed anomaly detector on system log data achieves the AUC (area under the
receiver operating characteristic curve) of 0.59. Although it works on a drastically
different type of dataset (log data as opposed to system monitoring data), it is the
closest existing work to the scope of the research presented in this work.

As we show later in the chapter, we can achieve much better results than the one
reported for the log data models [36] by deploying an unsupervised anomaly detec-
tion approach on system monitoring data on a per-node basis. Table 5.1 summarizes
the most relevant approaches described in this section, focusing on the training set
and temporal dependencies.

The novelty of the proposed approach is, in relation to the existing works, three-
fold:

* it introduces an unsupervised time-series based anomaly detection model named
RUAD;

¢ it proposes a deep learning architecture that captures time dependency;

¢ the approach is evaluated on a large scale production dataset with real anomalies
— this is the largest scale evaluation ever conducted on this kind of problem, to

the best of our knowledge.

60 Chapter 5. Anomaly detection — RUAD
Tabular data Time series
Proctor: A Semi-Supervised
Performance Anomaly Diagnosis
E2EWatch: An FEnd-to-End Framework for Production HPC
Anomaly Diagnosis Framework Systems [5]
Supervised for Production HPC Systems [3] Interpretz.ible. Anomaly Detection
Online Fault Classification in for Momtorlng' of High Perfor-
HPC Systems through Machine mance Computing Systems [16]
Learning [109] DeepLog: Anomaly Detection
and Diagnosis from System Logs
through Deep Learning [55]
Anomaly Detection and Anticipa-
tion in High Performance Com-
puting Systems [30]
Anomaly detection using autoen-
coders in HPC systems [24]
S.emi-super- A semisupervised autoencoder-
vised based approach for anomaly de-
tection in high performance com-
puting systems [28]
Online anomaly detection in hpc
systems [25]
K-means Application for
Anomaly Detection and Log
Classification in HPC [49] Anomaly Detection From Log
Unsupervised Ranking Anomalous High Per- Files Using Unsupervised Deep
formance Computing Sensor Learning [36]
Data Using Unsupervised Clus-
tering [102]
TABLE 5.1: Summary of anomaly detection approaches on HPC sys-
tems
5.2.1 Novelty of the developed approach

To recap, in this chapter, we propose an anomaly detection framework that can
handle complex system monitoring data, scale to large-scale HPC systems, and be
trained even if no labeled dataset is available. The key contributions presented in

this work are:

* We propose a completely unsupervised anomaly detection approach (RUAD)
that exploits the fact that the anomalies are rare and explicitly considers the
temporal dependencies in the data by using LSTM cells in an autoencoder net-

work.

— The resulting deep learning model outperforms the previous state-of-the-
art semi-supervised approach [30], based on time-unaware autoencoder

networks.

5.3. Methodology for anomaly detection 61

— On the dataset presented and analysed in this work (collected from the
Marconi 100 supercomputer), the previous approach achieves an AUC
test set score of 0.7470.

— In contrast, our unsupervised approach achieves the best test set AUC
score of 0.7672.

— To the best of our knowledge, this work is the first time such an approach
has been applied to the field of HPC system monitoring and anomaly

detection.

¢ We have conducted a very large-scale experimental evaluation of our methods. We
have trained four different deep learning models for each of the 980+ nodes of
Marconi 100.

— To the best of our knowledge, this is the largest scale experiment relating
to anomaly detection in HPC systems, both in terms of the number of

considered nodes and length of time.

— Previous works only evaluate the models on a subset of nodes with a
short observation time (for instance, only analyzed 20 nodes of the HPC
system over two months [30]). Per-node training of models also demon-
strates the feasibility of per node models for large HPC systems. The
training time for the individual model was under 30 minutes on a sin-
gle NVIDIA Volta V100 GPU.

5.3 Methodology for anomaly detection

In this section, we describe the proposed approach for unsupervised anomaly de-
tection. We do not directly introduce the proposed method (the LSTM autoencoder
deep network) as we want to show how it is a significant extension to the current

state-of-the-art; thus, we start by introducing three baseline methods:
(i) exponential smoothing (serving as the most basic method for comparison,
(ii) unsupervised clustering,
(iii) the dense autoencoder used in [30].

We then describe our approach in detail and highlight its key strengths (the unsu-

pervised training regime and the explicit inclusion of the temporal dimension).

62 Chapter 5. Anomaly detection — RUAD

5.3.1 Node anomaly labeling

We aim to recognize the severe malfunctioning of a node that prevents it from exe-
cuting regular compute jobs. This malfunctioning does not necessarily coincide with
removing a node for the production, as reported by Nagios.

In our discussions with system administrators of CINECA, we have concluded
that the best proxy for node availability is node status state, as reported by Nagios.

For this reason, we have created a new label called node anomaly that has a value
1 if any subsystem reported by Nagios reports a critical state. From these events (re-
ported anomalies), we then filter out known false positive events based on reporting
tests or configurations in Jira.

Jira is a popular project management tool developed by Atlassian. It’s widely
used for issue tracking, project management, and agile software development [142].
In CINECA, it is used to track maintenance work on HPC systems. Jira logs are
supplied by CINECA. The labels used in our previous work [30] do not apply to
Marconi 100 as they were extensively used to denote nodes being removed from
production for testing and calibration.

In this work, we are examining the early period of the HPC machine life-cycle,
when several rounds of re-configuration were performed, thus partially disrupting
the normal production flow of the system. Comparing the two labelling strategies
in Table 5.2, we can see that the overlap between the two is minimal. Additionally,
there are far fewer anomalies as reported by the node anomaly mainly because the
Marconi 100 went through substantial testing periods in the first ten months of op-
eration where nodes are marked as removed from production while still functioning
normally.

In this work, class 0 or class 1 will always refer to the value of node anomaly being 0
or 1 respectively. Normal data is all data where node anomaly has value 0 and anoma-
lies are instances where node anomaly has value 1. The dataset, preserving the same
meaning behind the labels, was expanded in a publication in Nature [31], where

RUAD was featured as a case study.

Node anomaly

0 1

Removed from production: False || 12139 560 | 4 280

Removed form production: True 15783 12

TABLE 5.2: Comparison between removed from production and node

availability. The anomalies studied in this work (node availability)

significantly differ (and are more reliable) from anomalies studied

in previous works. The new labels also mark much fewer events as
anomalous.

5.3. Methodology for anomaly detection 63

5.3.2 Reconstruction error and result evaluation

In this part, we formally present the theoretical background underpinning the prac-
tical approaches for anomaly detection described in the subsequent sections.

The problem of anomaly detection can be formally stated as a problem of training
the model M that estimates the probability P that a sequence of vectors of length W

ending at time #(represents an anomaly at time ty. Suppose the following;:
(i) Model M.
(i) Time .
(iii) Size W of the window for input data.
(iv) The past window of a time series X, _w.1, - .., Xt,—1.
(v) Data ¥y, at the current time #.
(vi) Probability P of an anomaly.

Let’s define the model M gives the probability of the anomaly of the vector Xy, at
time £(as

M : Xy—wi1, ..., Xyy—1, Xty —> P(Xy, is an anomaly). (5.1)

based on the whole size W of data X, _w.1,. .., Xt,—1, Xt,-

Vector X} collects all feature values at time t; the features are the sensor measure-
ments collected from the computing nodes. W is the size of the past window that the
model M takes as input. In practice, this means that we are looking for a model that
given a time series of a certain time length (W) produces as output the probability
that the final data point in the time series (X;,) correspond to an anomalous point,
rather than a normal one.

Better explanation of the Equation 5.1 with clear presentation of the possible

larger window of the input data is in the following Equation 5.2.

M : X w1, , X1, Xty —> P(Xy, is an anomaly). (5.2)

the past window

If the model does not take past values into account - like the dense model imple-
mented as a baseline [30] - and the window size W is 1, the problem can be simpli-
fied. For instance, the problem statement for the window W of size equal to 1 can be
summarised as:

M : Xy, — P (X4, is an anomaly). (5.3)

The crucial difference between Equations 5.1 and 5.3 is that the former takes as
input entire time sequences, while the latter works on single data point, disregard-
ing their past. This is one of the key differences between the model proposed in

this work (RUAD) which does take into account temporal sequences, and the current

64 Chapter 5. Anomaly detection — RUAD

state-of-the-art based on previous works of Borghesi et al. [30], which takes as input
single data points.

In the case of autoencoders, model M is composed of two parts: autoencoder (a
neural network) and the anomaly score, which is computed using the reconstruction
error of the autoencoder, see Figure 5.1. The reconstruction error is calculated as the
sum of the absolute difference between the output of model A and the normalized

input value for each feature:
N
Error(t) =) |%; — xi
i

where N is the number of features and ¥, is the output of the model A.

input encoder code decoder output

X1

X2

X3 [' \

N ‘
%/% ‘

—

X4 |

/N

X5 |

X6 |

X7

MSE

Error(ty) = ZZN |2 — x4

FIGURE 5.1: The model M is composed of two parts: Autoencoder in
the upper part and MSE in the lower part of the figure.

The error is then normalized by dividing it by the maximum error on the training

set:
Error(to)

Normalized error(ty) = m

5.3. Methodology for anomaly detection 65

Using the normalized error is then possible to estimate the probability that a certain

data point (¥y,) is an anomaly, as summarized in the following equation:

o 1, if : Normalized error > 1,
P(%y, is an anomaly) = (5.4)
Normalized error, otherwise

The probability is directly proportional to the normalized error:

* A lower error indicates a low probability of the point being an anomaly.

¢ Larger values represent points that are very likely to be anomalous.

The maximum probability is capped to 1, in order to maintain its meaning.

Based on probability P(X;, is an anomaly), the classifier makes the prediction
whether the sequence X;,_w,- - -, X;, belongs to class 1 (anomaly) of class 0

(normal operation).

This prediction depends on a threshold T, which is a tunable parameter.

The mechanism to decide whether a data point is anomalous or not depending on

the threshold T, is summarized in the following equation:

1,if : P(X isananomaly) > T,
Class(Xy,) = fe B3y v = (5.5)
0, otherwise

If the normalized error is larger or equal to T then the data point is classified
as an anomaly with a probability equal to one, i.e., we are certain that the point
is an anomaly; alternatively, the data point is classified as corresponding normal
behaviour.

However, this approach suffers from the fact that it is not trivial to decide which
is the optimal threshold — different thresholds might lead to different outcomes
(see [29] for an extensive analysis of this phenomenon in a similar anomaly detection
setting).

To avoid selecting a specific threshold T, we introduce the receiver operating
characteristic curve (ROC curve) as a performance metric, a standard practice to as-
sess the quality of an anomaly detection approach regardless of the threshold choice.
It allows us to evaluate the performance of the classification approach for all possi-
ble decision thresholds [116]. The receiver operating characteristic curve plots the
true-positive rate in relation to the false-positive rate. The random decision repre-
sents a linear relationship between the two — for a classifier to make sense, the ROC
curve needs to be above the diagonal line. For each specific point on the curve, the

better classifier is the one whose ROC curve is above the other.

66 Chapter 5. Anomaly detection — RUAD

The overall performance of the classifier can be quantitatively computed as the
area under the ROC curve (AUC); a classifier making random decisions has the AUC
equal to 0.5. AUC scores below 0.5 designate classifiers that are worse than random
choice. The best possible AUC score is 1, which is achieved by a classifier with a
true-positive rate equal to 1 while having a false-positive rate equal to 0. Broadly
speaking, this is only achievable on trivial datasets or very simple learning tasks.

AUC has been chosen as the main evaluation metric as it is among the most
widely used metric in the anomaly detection domain [75]. In particular, it has been
suggested that the AUC protects from pitfalls that are common to other relatively
simpler metrics (e.g., pure accuracy detection rate or F-score measures) [56].

However, another metric was also added to the experimental evaluation, namely
the F-score, which combines precision and recall. Raw accuracy is noted to be very
misleading when dealing with anomaly detection tasks rather than pure classifica-

tion due to the inherent imbalance between normal and abnormal classes.

5.3.3 Trivial baseline: exponential smoothing

Exponential smoothing is implemented as a trivial baseline comparison. It is a sim-
ple and computationally inexpensive method that detects rapid changes (jumps) in
values. If the anomalies were simply rapid changes in values with no correlation
between features, a simple exponential smoothing method would be able to dis-
criminate them. Therefore, we chose exponential smoothing as a first baseline as it
is computationally inexpensive and requires no training set.

Additionally, if exponential smoothing performs poorly, this underlines that we
are indeed solving a non-trivial anomaly detection problem, for which more power-
ful models are needed.

For the baseline, we choose to implement exponential smoothing per feature in-

dependently. Exponential smoothing for feature i at time ¢ is calculated as:
=axi+(1—wa)fl [VieF (5.6)

where #£! is an estimate of x at time t and & is a parameter of the method called
the smoothing factor (0 < a < 1), which governs the degree of smoothness of the
resulting processed series.

Larger values of a reduce the level of smoothing, and if « = 1 the output series is
equal to the observed one. In practice, smaller smoothing factors give more impor-
tance to past data points, while larger values focus on more recent data. We do this
for all features in set F. The estimate at the beginning of the observation is equal to

the actual value at time to: %! . = xi .

5.3. Methodology for anomaly detection 67

5.3.4 Unsupervised baseline: clustering

A possible approach to unsupervised anomaly detection is to use standard unsuper-
vised machine learning techniques such as k-means clustering proposed by [102].
The clusters are determined on the train set; each new instance belonging to the test
set is associated with one of the pre-trained clusters.

We opted for this particular unsupervised technique for the comparison, as it is
the only unsupervised method found in the literature, to the best of our knowledge,
that uses sensor data instead of logs, thereby ensuring a fair comparison.

It has to be noted, however, that clustering, while belonging to the field of unsu-
pervised machine learning cannot detect anomalies in an unsupervised manner - for
each of the clusters determined on the train set, the probability for the anomaly has
to be calculated. This probability can only be calculated using the labels.

In this work, the clustering approach inspired by [102] is implemented to prove
the validity of the obtained results. We have used K-means clustering [49] like it has
been proposed in [102]. We have trained the clusters on the train set.

The Silhouette score is a measure of performance for a clustering method. It is

calculated as
b—a

P nax(a,B)
where g is the mean inter-cluster distance, and b is the mean nearest cluster distance
for each sample.

The silhouette score measures how similar an instance is to others in its own
cluster compared to instances from the other clusters [120].

Optimal number of clusters is the number of clusters that produces the highest
silhouette score on the train set.

Based on the silhouette score on the train set, we have determined the optimal
number of clusters for each node.

The percentage of instances that belong to class 1 is calculated for each of the
determined clusters. We use this percentage of anomalous instances as the anomaly
probability for each instance assigned to a specific cluster. The train and test set split
is the same as in all other evaluated methods.

For the practical implementation of the clustering baseline, an anomaly probabil-
ity has to be assigned to each cluster. To generate and associate this anomaly prob-
ability a post-training action should be performed by domain experts who should
manually identify anomalous clusters of instances, making it a costly operation This
analysis, however, cannot produce anomaly probability estimation that is better than
the probability estimated from the actual labels.

By analysing the actual labels, which are not available in real time during an
actual deployment and can only be obtained through post mortem data analysis, we

obtain an upper bound for the performance of the clustering method.

68 Chapter 5. Anomaly detection — RUAD

5.3.5 Semi-supervised baseline: dense autoencoder

The competitive baseline method is based on the current state-of-the-art dense au-
toencoder model proposed by [30]. Autoencoders are types of neural networks (NN)
trained to reproduce their input. The network is split into two (most often symmet-
ric) parts: encoder and decoder.

The role of the encoder is to compress the input into a more condensed repre-
sentation. This representation is called the latent layer. To prevent the network from
learning a simple identity function, we choose the latent layer to be smaller than the
original input size (number of input features) [24].

The role of the decoder is to reconstruct the original input using the latent repre-
sentation.

Dense autoencoders are a common choice for anomaly detection since we can
restrict their expressive power by acting on the size of the latent layer. Compressing
the latent dimension forces the encoder to extract the most salient characteristics
from the input data; unless the input data is highly redundant, the autoencoder
cannot correctly learn to recreate its input after a certain latent size reduction.

In the current state-of-the-art for anomaly detection in production supercomput-
ers [30] the dense autoencoder is used in a semi-supervised fashion, meaning that
the network is trained using only data points corresponding to the normal operation
of the supercomputer nodes (Class 0).

Semi-supervised training is doable as the normal points are the vast majority and
thus are readily available; however, this requires having labelled data or at least a
certainty that the HPC system was operating in normal conditions for a sufficiently
long period of time.

Once the autoencoder has been trained using only normal data, it are able to
recognize similar but previously unseen points.

Conversely, it will struggle to reconstruct new points which do not follow the
learned normal behaviour, that is, the anomalies we are looking for; hence, the re-
construction error will be higher.

The structure of the autoencoder model is presented in Figure 5.2.

The dense autoencoder does not take into account the temporal dynamics of the
data — its input and target output are the same vector (the set of metrics collected
from a computing node). The input and output data for the AdaHPC anomaly de-

tection approach is summarized in the following equation:
AdaHPC : fto — fto' (57)

This is the standard approach of autoencoder neural networks, which strive to re-

produce their input as faithfully as possible.

5.3. Methodology for anomaly detection 69

Layer
size

Anomaly

probability

N

Input Dense Dense Dense Dense

() By (ED) R (1) R Rl)

Encoder Decoder

Data flow

FIGURE 5.2: Structure of baseline model - the dense autoencoder.

Anomaly

probability

Dense Dense
Dy [g

Data flow ¢
. . Encoder Decoder
Recurrent dimension

FIGURE 5.3: Structure of the proposed RUAD model consisting of the
LSTM encoder and dense decoder.

The proposed approach replaces the encoder of the baseline model in Figure 5.2
with the LSTM autoencoder in Figure 5.3. The last layer of LSTM encoder returns
a vector (not a temporal sequence) which is then passed to the fully connected de-
coder. W is the window size, I is the size of the input data, L is the size of the latent
layer and E1 and D1 are sizes of encoder and decoder layer respectively. Chosen
parameters for L, W, E1 and D1 are listed in Section 5.4.3.

5.3.6 Recurrent unsupervised anomaly detection: RUAD

Moving beyond the state-of-the-art model, we propose a different approach, RUAD.
It takes as input a sequence of vectors and then tries to reconstruct only the last vector
in the sequence. The input and output data for the proposed model RUAD is depicted

in equation 5.8:

RUAD : fto_w+1, oo /fto — 5(}0 (58)

The input sequence length is a tunable parameter that specifies the size of the
observation window W. The idea of the proposed approach is similar to the dense

autoencoder in principle, but with a couple of significant innovations:

70 Chapter 5. Anomaly detection — RUAD

1. We are encoding an input sequence into a more efficient representation (latent

layer).

2. We train the autoencoder in an unsupervised fashion thus removing the re-

quirement of labelled data.

The key insight in the first innovation is that while the data describing supercom-
puting nodes is composed of multi-variate time series, the state-of-the-art does not
explicitly consider the temporal dimension - the dense autoencoder has no notion
of time nor of sequence of data points.

To overcome this limitation, our approach works by encoding the sequence of
values leading up to the anomaly.

The encoder network is composed of Long Short-Term Memory (LSTM) layers,
which have been often proved to be well suited to the context where the temporal
dimension is relevant [83]. An LSTM layer consists of recurrent cells that have an
input from the previous timestamp and from the long-term memory.

To address the scale of current pre-exascale and future exascale HPC systems
that will consist of thousands of nodes [107], we want a scalable anomaly detection
approach.

The most scalable approach currently for anomaly detection on a whole super-
computer is a node-specific approach as each compute node can train its own model.
Still, we want to achieve this by minimally impacting the regular operation of the
HPC system. This is why it is important for the proposed solution to have a small
overhead.

Additionally, since we want to train a per-node model, we want the method to
be data-efficient. To address these requirements, we choose not to make the decoder
symmetric to the encoder. The proposed approach is thus comprised of a Dense
decoder and an LSTM encoder. LSTM encoder output is passed into a dense decoder
trained by reproducing the final vector in an input sequence. The decoder network
is thus composed of fully connected dense layers.

The architecture of the proposed approach presented in Figure 5.3 is compared
to the state-of-the-art approach presented in Figure 5.2 more advanced.

The reduced complexity of training allows us to train a separate model for each
compute node. As shown previously [29], node-specific models provide better re-
sults than a single model trained on all data.

We decided to adopt this scheme (one model per node) after a preliminary empir-
ical analysis showed no significant accuracy loss while the training time was vastly
reduced (by approximately 50%); this is very important in our case as we trained one
DL model for each of the nodes of Marconi 100 (980+), definitely a non-negligible

computational effort.

5.3. Methodology for anomaly detection 71

©._

5.3.7 Data pre-processing

!

f Semi-supervised \.
! filter ;

[Apply scaling] [Apply scaling]

...............

FIGURE 5.4: Data processing schema. The data flow is represented

by green (training set) and orange (test set) lines. The scaler is trained

on the training set and applied on test set to avoid contaminating the

test set. Semi-supervised and time consistency filters are optional and

applied only when required by the modeling approach as indicated
in Table 5.4

As introduced in Section 5.3.6, our proposed methodology consists of training a
model for each node. Figure 5.4 describes the whole data pre-processing pipeline.
The data from each node is first split into training and test sets. The training set
consists of 80% of the data, while the test set comprises the remaining 20%, which
corresponds approximately to the last two months of data. The data is divided into
time-consecutive chunks.

It is important to stress that we have chosen to have two non-overlapping
datasets for training and testing. This avoids the cross-transferring of information
when dealing with sequencing. Moreover, the causality of the testing is preserved:
the model is trained without using data from the future, as no random split has
been performed, which is more common when not dealing with temporal data. This
ensures that the results are valid for practical usage.

For semi-supervised training, the training set is filtered by removing anomalous
events, which are identified by the node anomaly label as described in Section 5.3.1.
This filter is referred to as the semi-supervised filter, as shown in Figure 5.4. For unsu-

pervised learning, the training set is not filtered since both normal and anomalous

72 Chapter 5. Anomaly detection — RUAD

points are utilized.

¢ For both the cases (unsupervised and semi-supervised learning), labels are

used to evaluate the results.
 After filtering, a scaler is fitted to training data.
e A scaler is a transformer that scales the data to the [0, 1] interval.

¢ In the experimental part, a min/max scaler is used on each feature [115].

After being fitted on the training data, the scaler is applied to the test data. For
rescaling the test set, the minimum and maximum values of the training set are used,

following standard practice in deep learning methods.

Input sequence length Input data
1 A

1

[T T TP IAL T AR T PP T T JAL T T T

| Semi-supervised filter |

| Time consistency filter |

IIIIIIIII]X[IIIIIIIIIIIII

[l J
T

All chunks are larger or equal to the input sequence length

FIGURE 5.5: To ensure time consistency after removing the anoma-
lous data (A in the Figure), we first split the data into chunks of suc-
cessive timestamps without anomalies. Then we remove all chunks
that are shorter than the input sequence length. Training sequences
are only generated on the remaining chunks (green in the Figure).

After scaling, both training and test sets are filtered out to ensure time consis-
tency (as depicted in Figure 5.5).

The time consistency filter consists of two steps:

1. The data is divided into chunks of successive timestamps. For semi-supervised

training, these successive timestamps do not contain anomalies.

2. All chunks that are smaller than the input sequence of length W are dropped.
Batches of sequences of length W are then generated for each chunk individu-

ally.

Timestamps with missing values are dropped from the dataset (for all methods);
missing timestamps — like anomalies — also split that dataset into smaller chunks.
This — unlike anomalies — has no significant impact on the comparison of the me-

thods as it is done for all analysed approaches.

5.3. Methodology for anomaly detection 73

Removing anomalous data points results in splitting the dataset into smaller
chunks. As illustrated in Figure 5.5, all data between two anomalous data points
closer together than the length of the input sequence W are removed from the train-
ing set.

An important observation is that because we have to ensure time consistency,
removing anomalous data points results in also removing normal data points. This, as dis-
cussed in Section 5.4.5, causes RUAD (which is unsupervised) to slightly outperform
RUADgemi (which is semi-supervised). RUAD outperforms RUADgemi

For larger W, more (normal) data points are dropped from the training set. This
contributes to the decline in performance of RUAD and RUAD;,,,; with larger W (this
is fully discussed in Section 5.4.5).

Input sequence Average percentage of
length removed normal data

5 4.7%

10 7.9%

20 13.8%

40 23.5%

TABLE 5.3: Average percentage of removed normal data due to semi-
supervised and time consistency filters.

The average percentage (across all nodes in the dataset) of normal data that is

removed, depending on the length of the input sequence, is collected in Table 5.3.

5.3.8 Summary of evaluated methods

We compare our proposed approach RUAD against established semi-supervised and
unsupervised baselines. Summary of pre-processing filters is presented in Table 5.4.

The semi-supervised filter is applied to all semi-supervised approaches. A time
consistency filter is applied to methods that explicitly consider the temporal dimen-
sion of the data: Exponential smoothing and RUAD. RUAD and the current state-of-
the-art anomaly detection approach based on dense autoencoders [30] is evaluated
in both semi-supervised and unsupervised versions.

We wish to highlight that, unlike the unsupervised learning baseline [102], our
proposed method RUAD requires no additional action after the training of the model
(like the manual analysis of the clusters).

The approach RUAD proposed in this work, works on an unlabeled dataset and
requires no additional post training analysis. A summary of approaches relating to

training set requirements is presented in Table 5.5.

74 Chapter 5. Anomaly detection — RUAD

Filters
Model Sem%— T%me Name
supervised consistency
Tr?vial baseli.ne: NO YES EXP
exponential smoothing
Unsupervised baselipe: NO NO CLU
clustering
]?ENSE ?utoencc.)der YES NO DENSE,op;
baseline semi-supervised
DENSE autoencc?der NO NO DENSE,,
baseline unsupervised
RUAD semi-supervised YES YES RUAD semi
RUAD unsupervised NO YES RUAD

TABLE 5.4: Short names and training strategies for examined me-
thods. DENSEgen,; is the AdaHPC [30].

Method | Training set required Post-training

EXP Unlabeled dataset No action required

Assigning anomaly

CLU [102] Unlabeled dataset .
probability to clusters

DENSEgem; [30] Labeled dataset No action required

RUAD || Unlabeled dataset No action required

TABLE 5.5: Comparison of implemented approaches relating to the
training set requirements.

5.4 Experimental results of anomaly detection

5.4.1 Experimental setting

HPC systems are composed of multiple compute nodes organized in racks. The
focus of this work are node-level failures. We thus consider, in this work, nodes of
the HPC system to be independent. Future works will study multi-node failures.
For this reason, in this work and in line with the state-of-the-art works [105, 24, 30],
anomaly detection is performed per node.

The focus of the experimental part of this work is Marconi 100 HPC system,
located in the CINECA supercomputing centre. It is a tier-0 HPC system that consists
of 980 compute nodes organized into three rows of racks. Each compute node has 32
core CPU, 256 GB of RAM and 4 Nvidia V100 GPUs. In this work, nodes of the HPC

5.4. Experimental results of anomaly detection 75

system are considered independent. This is also in line with the current state-of-
the-art works [105, 24, 30] where anomaly detection is performed per node. Future
works will investigate inter-node dependencies in the anomaly detection task.

Our prior in this case is that the failure of a single node is not strongly linked
with other nodes. The assumption that the node failures are independent depends
on the type of faults that are registered by the status monitoring service, which does
not currently include multi-node failures. For this reason, anomaly detection is per-
formed per node.

The monitoring system in an HPC setting typically consists of hardware moni-
toring sensors, job status and availability monitoring, and server room sensors. In
the case of Marconi 100, hardware monitoring is performed by ExaMon [15], and
system availability is provided by system administrators [13]. This raw informa-
tion provided by Nagios, however, contains many false-positive anomalies. For this
reason, we have constructed a new anomaly label called node anomaly described in
Section 5.3.1.

For each of the 980 nodes of Marconi 100, a separate dataset was created. Dataset
details are explained in Section 5.4.2.

DENSE and RUAD models were trained and evaluated on the node-specific
training and test sets for each node. The training set consisted of the first eight
months of system operation, and the test set comprised the remaining two months.
Such testing split ensures a fair evaluation of the model as described in Section 5.4.2.

For the baseline, the exponential smoothing operation, defined in equation (5.6),
was applied only over the test set (as the approach requires no training).

For each node, the scaler (for min and max scaling) was trained on training data
and applied to test data. All results discussed in this section are combined results from
all 980 nodes of Marconi 100.

The dense autoencoder and the RUAD model were trained in two different
regimes: semi-supervised and unsupervised.

For the semi-supervised training, the semi-supervised filter was applied that re-
moved all data points corresponding to anomalies.

In the unsupervised case, no such filtering was performed. It can hence be no-

ticed one of the key advantages of the unsupervised approach:

No data pre-processing needs to be done and no preliminary knowledge about the

computing nodes condition is required.

For all three approaches
1. exponential smoothing,
2. dense autoencoder and

3. the RUAD,

76 Chapter 5. Anomaly detection — RUAD

the probability for an anomaly (class 1) was estimated from reconstruction error as
explained in Section 5.3.2.

The probabilities from the test sets of all nodes from a single modelling approach
(e.g. RUAD with observation window of length W = 40) were collected together to
plot the receiver operating characteristic (ROC) curve that is a characteristic for the
modelling approach across all nodes.

For clustering baseline and exponential smoothing (worst performing baselines),
the ROC curve is compared against a dummy classifier which randomly chooses the

class.

5.4.2 Dataset

The dataset used in this chapter consists of a combination of information recorded
by Nagios (the system administration tool used to visually check the health status of
the computing nodes) and the ExaMon monitoring systems; the data encompasses
the first ten months of operation of the Marconi 100 system.

The procedure for obtaining a node anomaly label is described in Section 5.3.1. The
features collected in the dataset are listed in Table 4.1 in Subsection 4.4.1. The dataset
contains 462 features. The data covers 980 compute nodes and five login nodes. Lo-
gin nodes have the same hardware as the compute nodes but are reserved primarily
for job submission and accounting. Thus we removed them from our analysis. The
data is collected by the University of Bologna with approval from CINECA!.

In order to align different sampling rates of different reporting services (each of
the sensors used has a different sampling frequency).

Fifteen (15) minute aggregates of data points were created, with the 15-minute
interval selected as it corresponds to the native sampling frequency of the Nagios
monitoring service, from which our labels are derived. For each 15-minute period
and each feature, four values were calculated: minimum, maximum, average, and

variance.

5.4.3 Hyperparameters

Hyper-parameters for all methods discussed in this work were determined based on
initial exploration on the set of 50 nodes. The chosen parameters demonstrated the
best performance during testing on the initial exploration nodes, achieving the high-
est AUC score on the test set. Results from the initial exploration set are excluded
from the results discussed further in the chapter. Tuned hyperparameters include
the structure of the neural nets (number and size of layers) and the smoothing factor

of the exponential smoothing;:

e Exponential smoothing: smoothing factor « = 0.1

ICINECA is a public university consortium and the main supercomputing centre in Italy [141].

5.4. Experimental results of anomaly detection 77

* Clustering: hyper-parameter (number of clusters) is trained on a train set for

each node independently.

* Dense autoencoder: Structure of the network consists of 5 layers of shapes:
(*462), (*,16), (*8), (*16), (*462).

e RUAD (LSTM encoder, dense decoder): Structure of the network consists of 5
layers of shapes: (*,W462), (*,W,16), (*,W,8), (*,16), (*,462). W is the length of
the input sequence (observation window). Chosen input sequence lengths W
were: 5,10, 20, 40.

5.4.4 Area under the curve (AUC)

The most basic baseline, exponential smoothing (EXP) is implemented to demon-
strate that the anomalies we observe are not simply unexpected spikes in the data
signal. Furthermore, exponential smoothing is applied to each feature indepen-
dently of other features. As shown in Figure 5.6, exponential smoothing performs
even worse than a dummy classifier (random choice). Poor performance of expo-
nential smoothing shows that the anomalies we are searching for are more complex

than simple jumps in values for a feature.

Exponential smoothing baseline

1.0 9 —— ROC curve
—— Dummy classifier

0.8 -

0.6 -

0.4 -

True Positive Rate

0.2

0.0 +

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

FIGURE 5.6: Combined ROC curve from all 980 nodes of Marconi

100 for the exponential smoothing baseline. Exponential smoothing

performs even worse than the dummy classifier - anomaly detection
based on exponential smoothing is completely unusable.

The simple clustering baseline performs better than the exponential smoothing

baseline and better than the dummy classifier, as seen in Figure 5.7. However, as

78 Chapter 5. Anomaly detection — RUAD

we will illustrate in the following sections, it performs worse than any other autoen-
coder method.

This demonstrates that the problem we are addressing (anomaly detection on
an HPC system) requires more advanced methodologies like semi-supervised and

unsupervised autoencoders.

Clustering baseline

1.0 — RoOC curve
—— Dummy classifier

0.8 1

0.6 A

0.4

True Positive Rate

0.2 1

0.0 A1

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

FIGURE 5.7: Combined ROC curve from all 980 nodes of Marconi
100 for the simple clustering baseline. This baseline performs only
marginally better than the dummy classifier.

We now consider the dense autoencoder. We train a different network for each
computing node of Marconi 100.

These parameters were identified after a preliminary empirical evaluation, albeit
not exhaustive, which suggested the best values; furthermore, the initial parameter
space was constrained by adhering to indications from previous works in the same
domain.

The network structure, including the number and size of layers, was determined
through a thorough preliminary exploration, which identified the best values; ad-
ditionally, the initial parameter space was constrained by adhering to indications
provided by previous works in the same domain, as outlined by Borghesi et al. [29].

In line with the existing work [30], the semi-supervised learning approach
DENSE,,;; slightly outperforms the unsupervised learning approach DENSE,,,, as
seen in Figure 5.8. The improved performance of the semi-supervised model is due
to the peculiarities of the autoencoder network, namely its capability to reconstruct

its input.

5.4. Experimental results of anomaly detection 79

Dense AE
1.0 A
0.8 A
(O]
L
o 0.6 1
=
=
[e]
2 0.4 4
(0]
2
l_
0.2 4
—— ROC curve semi-supervised
0.0 4 —— ROC curve unsupervised

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

FIGURE 5.8: Combined ROC curve from all 980 nodes of Marconi 100

for the Dense autoencoder model. In the area interesting for practical

application - True Positive Rate between 0.6 and 0.9 - semi-supervised
approach outperforms unsupervised approach.

For instance, let consider the unsupervised case. If anomalous examples are fed
as input to the unsupervised model during the training phase, the autoencoder will
learn to represent them in its latent space. Thus, it will be capable to partially re-
construct them as well, albeit with much more difficulty, as these anomalous points
are extremely rare (the scarcity of anomalies is a critical assumption for the correct
functioning of the unsupervised model).

In turn, this implies that the unsupervised model are slightly less capable of dif-
ferentiating normal and anomalous points than the semi-supervised model, as the
latter has been strictly fed only with normal examples.

The most important parameter of the RUAD model (unsupervised LSTM autoen-
coder) is the length of the input sequence W that is passed to the model. This pa-
rameter encodes our expectation of the length of the dependencies within the data.
Since each data point represents 15 minutes of node operation, the actual period we
observe consists of W x 15 min. In this set of experiments, we selected the following
time window sizes: 5 (75 minutes), 10 (2h30), 20 (5h), 40 (10h). These period lengths
were obtained after a preliminary empirical evaluation; moreover, these time frames
are in line with the typical duration of HPC workloads, which tend to span between
dozens of minutes to a few hours [37].

Comparison of different window lengths for the RUAD model. For all window

lengths, performances of semi-supervised and unsupervised approaches are similar.

80 Chapter 5. Anomaly detection — RUAD

Performance of the proposed model (red and blue line) is compared to the state-of-
the-art baseline semi-supervised autoencoder proposed by Borghesi et al. [30].

We have trained the model in both semi-supervised RUAD;,,,; and unsupervised
RUAD fashion for each selected window length. Results across all the nodes are

collected in Figure 5.9 and Figure 5.10.

5.4.5 Comparison of all approaches

The main metric for evaluating model performance is the area under the ROC curve
(AUC). This metric estimates the classifiers’ overall performance without the need to
set a discrimination threshold [116]. The closer the AUC value is to 1, the better the
classifier performs. AUC scores for implemented methods are collected in Table 5.6
and Table 5.7.

Method || Combined AUC score
EXP 0.4276
CLU 0.5478
DENSEgem; 0.7470
DENSE,;n 0.7344

TABLE 5.6: AUC performance of model baselines. According to

expectations and existing work [30], semi-supervised dense autoen-

coder outperforms unsupervised dense autoencoder (highlighted by
the higher AUC score).

From Table 5.7, where rows correspond to different training regimes and
columns to the window size for the RUAD network, and Table 5.6, where rows rep-
resent the performance of different implemented baselines, we observe that the pro-
posed approach outperforms the existing baselines.

The highest AUC achieved by the previous baselines is 0.7470, achieved by the
DENSEg,i. This is outperformed by RUAD for all window sizes.

The best performance of RUAD is achieved by selecting the windows size 10
where it achieves an AUC of 7.672. This result clearly shows that some temporal
dynamics contribute to the appearance of anomalies.

The final consideration is the impact of observation window length W on the
performance of the RUAD model. One might expect that considering longer time
sequences would bring benefits, as more information is provided to the model to
recreate the time series. This is, however, not the case (as seen in Table 5.7) as the
RUAD achieves the best performance of 0.7672 with window size 10.

The performance then reduces sharply with window size 40, only achieving an

AUC of 0.7473. Several factors might explain this phenomenon. For instance, in

5.4. Experimental results of anomaly detection 81

Method Combined AUC score

Input sequence length 5 10 20 40
RUADger || 0.7632 | 0.7582 | 0.7602 | 0.7446
RUAD || 0.7651 | 0.7672 | 0.7655 | 0.7473

TABLE 5.7: RUAD and RUADsp,; outperform all previous baselines pre-
sented in Table 5.6. In contrast to the dense autoencoders, the pro-
posed approach RUAD performs best in unsupervised manner.

tens of hours, the workload on a given node might change drastically. Consider-
ing longer time series might thus force the RUAD model to concentrate on multiple
workloads, hindering its learning task. Finally, an issue arises from the presence of
gaps, or periods of missing measurements, in the collected data, which is a common
challenge in many real-world scenarios.

Longer sequences mean that more data has to be cut from the training set to
ensure time-consistent sequences; this is because we are not applying gap-filling
techniques. We decided not to consider such techniques for the moment, as we
wanted to focus on the modelling approach and gap-filling methods tend to require
additional assumptions and to introduce noise in the data. Thus, sub-sequences
missing some points need to be removed from the data set. Combining these two
factors contributes to the model’s decline in performance with longer observation
periods.

Considering all discussed factors, the optimal approach is to use the proposed
model architecture with window size W = 10 (i.e. 2 hours and 30 minutes),
trained in an unsupervised manner. This configuration outperforms semi-supervised
RUAD,,,; as well as the dense autoencoder. As mentioned in the related work, la-
belled datasets are expensive to obtain in the HPC setting.

Good unsupervised performance is why this result is promising - it shows us that
if the anomalies represented a small fraction of all data, we could train an anomaly
detection model even on an unlabeled dataset (in an unsupervised manner).

Such a model not only achieves the state-of-the-art performance but outperforms
semi-supervised approaches. The best AUC, achieved by the previous AdaHPC
DENSEgepi, is 0.7470. The best AUC score achieved by RUAD is 0.7672. Moreover,
unsupervised training makes this anomaly detection model more applicable to a
typical HPC (or even datacentre) system.

Compared to the previous state-of-the-art for completely unsupervised anomaly
detection CLU, which achieves an AUC of just 0.5478 RUAD achieves significantly
better results with an AUC 0f 0.7672. RUAD thus sets a new state-of-the-art for un-
supervised anomaly detection.

82 Chapter 5. Anomaly detection — RUAD

5.4.6 F1 scores

To illustrate the performance of the proposed classifiers, we present the comparison
of F1 scores of all the methods with different thresholds in Table 5.8. The threshold
1 represents a trivial classifier that classifies all data as normal operation.

Scores lower than the scores of this trivial classifier represent classifiers that are
useless for practical evaluation and should be excluded from the analysis (in Ta-
ble 5.8 are greyed out). For all autoencoder-based approaches (RUAD, RUAD;i,
DENSE,,,, DENSE,.,,;) the difference in F1 score is small for different thresholds.
This suggests that the predicted probabilities are either very low (for normal opera-
tion) or very high (for anomalies).

The difference between semi-supervised training and unsupervised training is
less noticeable but RUAD still outperforms all other approaches. Particularly interesting
is the comparison to the unsupervised benchmark CLU that, for the chosen thresh-

olds, performs particularly bad — even worse than exponential smoothing.

5.4. Experimental results of anomaly detection

83

True Positive Rate

True Positive Rate

RUAD window size 5

1.0 1

0.8 A

0.6 -

0.4

0.2 -

0.0 +

—— ROC curve semi-supervised learning
—— ROC curve unsupervised learning
—— ROC curve dense semi-supervised baseline

0.0

0.2 0.4 0.6 0.8 1.0
False Positive Rate

(A) Input sequence length 5

RUAD window size 10

1.0 1

0.8 -

0.6 -

0.4 -

0.2 A

0.0 1

—— ROC curve semi-supervised learning
—— ROC curve unsupervised learning
—— ROC curve dense semi-supervised baseline

0.0

0.2 0.4 0.6 0.8 1.0
False Positive Rate

(B) Input sequence length 10

FIGURE 5.9: Combined results from all 980 nodes of Marconi 100 for

RUAD window sizes 5 and 10

84 Chapter 5. Anomaly detection — RUAD
RUAD window size 20
1.0 A
0.8 A
()
5
o 0.6 1
2
=
o
2 0.4 4
Q
35
=
0.2 1 —— ROC curve semi-supervised learning
—— ROC curve unsupervised learning
0.0 - —— ROC curve dense semi-supervised baseline
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
(A) Input sequence length 20
RUAD window size 40
1.0 A
0.8 A
3
<
o 0.6 -
2
=
o
a 0.4 4
[
3
=
0.2 1 —— ROC curve semi-supervised learning
—— ROC curve unsupervised learning
0.0 - —— ROC curve dense semi-supervised baseline
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

(B) Input sequence length 40

FIGURE 5.10: Combined results from all 980 nodes of Marconi 100 for

RUAD window sizes 20 and 40

F1 score

Threshold |0 |01 |02 |03 |04 |05 |06 |07 |08 |09 |1
EXP || 0.009 | 0.767 | 0.893 | 0.927 | 0.941 | 0.947 | 0.948 | 0.948 | 0.948 | 0.948 | 0.894
CLU || 0.009 | 0.887 | 0.891 | 0.895 | 0.898 | 0.899 | 0.899 | 0.898 | 0.895 | 0.895 | 0.894
DENSE.en || 0009 | 0465 | 0.941 | 0.952 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 | 0.894
DENSE,, || 0.009 | 0.298 | 0.926 | 0.951 | 0.952 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 | 0.894
5 | 0009 | 0.391 | 0.936 | 0.957 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.894
g A, | S 10 | 0009 | 0.395 | 0.935 | 0.957 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.894
Z g |20 0.009 | 0.420 | 0.937 | 0.957 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.894
% 40 :0.009 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.894
=5 0.009 | 0.333 | 0.928 | 0.956 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.894
UAD é 10 0.009 | 0.307 | 0.924 | 0.957 | 0.959 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.894
= |20 0.009 | 0.439 | 0.938 | 0.958 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.894
40 | 0009 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.894

uonoaap Afewrour jo symsal fepuowridadxg §'c

TABLE 5.8: Combined F1 scores for all compute nodes. F1 scores worse than the trivial classifier (decision threshold 1) are greyed out.
RUAD outperforms all previous approaches, including the previous state-of-the-art (DENSE,,,;; and DENSE,;;).

a8

86 Chapter 5. Anomaly detection — RUAD

5.5 Conclusions of anomaly detection

This chapter presents an anomaly detection approach for HPC systems (RUAD)
that outperforms the current state-of-the-art approach based on the dense autoen-
coders [30]. Improving upon state-of-the-art is achieved by deploying a neural net-
work architecture that considers the temporal dependencies within the data.

The proposed model architecture achieves the highest AUC of 0.77 compared to
0.75, which is the highest AUC achieved by the dense autoencoders (on our dataset).

Another contribution of this work is that the proposed method — unlike the pre-
vious work [30, 92, 135, 108] — achieves the best results in an unsupervised training
case. Unsupervised training is instrumental as it offers a possibility of deploying an
anomaly detection model to the cases where (accurately) labelled dataset is unavail-
able.

The only stipulation for the deployment of unsupervised anomaly detection mod-
els is that the anomalies are rare — in our work, the anomalies accounted for only
0.035% of the data. The necessity to have a few anomalies in the training set, how-
ever, is not a significant limitation as HPC systems are already highly reliable ma-
chines with low anomaly rates [54, 121].

Furthermore, the ability to function without the accurately labelled dataset is a
big step toward adopting anomaly detection frameworks to the systems where error
reporting is not handled precisely (or even not recorded altogether) [107].

To illustrate the capabilities of the approach proposed in this work, we have col-
lected an extensive and accurately labelled dataset describing the first 10 months of
operation of the Marconi 100 system in CINECA [141]. The creation of accurately la-
belled dataset was necessary to compare the performance of different models on the
data rigorously.

Because of the large scale of the available dataset, we can conclude that for the
model proposed in this work, the unsupervised model outperforms semi-supervised
model even if accurate anomaly labels are available.

This is the first experiment of this type and magnitude conducted on a real in-
production data centre, both in terms of the number of computing nodes considered
and the length of the observation period.

Results discussed in this work are the collection of data from all 980+ nodes
of Marconi 100; for each node, 4 different deep learning models were trained and
evaluated. The results presented in this work thus contain the characteristics from
almost 4000 (3940 to be precise) different instances of deep learning models. Based
on this experimental work, we can with confidence claim that the proposed model is
the first step towards unsupervised at scale and production-ready anomaly detection

models.

5.5. Conclusions of anomaly detection 87

5.5.1 Future work

Introducing an unsupervised anomaly detection framework opens several exciting
possibilities for future work. In the cases where anomalies are rare (such as on data
presented in this work), and we have temporal information about data (data is time-
coherent or ordered into sequences), the presented approach provides a clear up-
grade over dense autoencoder models. As such, it has a broad range of potential
application areas.

Since it requires no label data, the proposed model could also be used as an
anomaly detection tool in cases where system availability is not recorded. In the
HPC sphere, this would allow us to analyze the availability of the systems that do
not possess the anomaly monitoring infrastructure like Nagios [13].

This approach would also be valuable beyond HPC - for instance, it could an-
alyze the overall availability of an online retail platform by monitoring key perfor-
mance indicators [11].

Besides the analysis of historical data, the proposed approach also offers a pos-
sibility to deploy anomaly detection models to the fields where high-quality datasets
are unavailable - like online retail [7].

The proposed methodology thus offers exciting possibilities also far outside the

field of high-performance computing for which it was initially developed.

88

Chapter 6

Anomaly prediction - GRAAFE

The work presented in this chapter builds upon the following contributions by

Molan et al.:

¢ The Graph-Massivizer Approach Toward a European Sustainable Data Center
Digital Twin [100]

* Graph neural networks for anomaly anticipation in HPC systems [96]

* GRAAFE: GRaph Anomaly Anticipation Framework for Exascale HPC sys-
tems [95]. The code associated with the paper is available on a GitLab reposi-

tory1 .

The anomaly anticipation model for HPC systems has been recognized as a
significant innovation within the Graph-Massivizer European research project? and

has been featured on the European Commission’s Innovation Radar [129].

IThe source code, deployment guidelines, and additional experimental results for GRAAFE can be
found at https://gitlab.com/ecs-1lab/GRAAFE
Zhttps://graph-massivizer.eu/project/data-center-digital-twin/

https://gitlab.com/ecs-lab/GRAAFE
https://graph-massivizer.eu/project/data-center-digital-twin/

6.1. Introduction to anomaly anticipation 89

6.1 Introduction to anomaly anticipation

Driven by the need for greater computational performance, today’s HPC systems are
becoming increasingly more complex. The current generation of petascale systems
consists of hundreds of compute nodes, while the HPC field begins to transition
to pre-exascale systems consisting of thousands of compute nodes. In addition to
large scale, HPC systems are based on heterogeneous design, usually consisting of
four AMD or NVIDIA GPUs per compute node [53]. This increased size, combined
with cutting-edge technologies, heterogeneous design, and integration densities, in-
crease the system’s complexity and cost, directly transposing into more complex
and failure-prone management and maintenance of the HPC installations. Machine
learning methodologies are introduced to support the HPC system administrators
address this complex task.

In HPC systems, anomalies refer to occurrences deviating from regular system
operations, jeopardizing its availability, or capacity to perform computational tasks.
The transition to exascale and the associated increase in complexity and cost of the
HPC systems has increased the importance of proactive management and antici-
pation (prediction) of anomalous operation of the HPC system or its parts. Jauk
et al. [70] provide a comprehensive taxonomy of anomaly anticipation in practice.
According to them, anomalies can be node level, referring to the availability of the
entire compute node, or component level, such as the availability of a CPU or GPU.
According to the taxonomy proposed by the survey, the paper focuses on predict-
ing node-level anomalies. The survey paper [70], however, only focuses on anomaly
prediction in HPC systems based on log information.

System log information, however, is not always available in the HPC systems.
Depending on the implementation, log collection can have a significant performance
impact [87]. Compared with log collection, node telemetry monitoring has a lower
performance impact on the system (CPU utilization) [26]. Due to performance rea-
sons and privacy and security concerns, some HPC centers, like CINECA, do not
collect system logs. For such HPC centers, the only available information is node
telemetry data [31]. Based on node telemetry data, several anomaly detection ap-
proaches have been introduced [30, 98]. To the best of our knowledge, however,
the approach presented in this work is the first node-level, telemetry-based anomaly
prediction approach deployed and evaluated on large production HPC systems.

Predicting anomalies is more complex than only detecting deviations from regu-
lar behaviour as previous and forthcoming system behaviour should be considered.
To cope with this difficulty, we opted not to treat single nodes in isolation from each
other (as done in x) but rather exploit the fact that computing nodes are physically
and logically tightly coupled. In particular, nodes belonging to the same rack share
a similar behaviour [74]; our idea is to exploit these proximity-based correlation to

improve the overall accuracy.

90 Chapter 6. Anomaly prediction - GRAAFE

In order to address the complexity of developing and deploying the topology-
aware machine learning models to large production HPC systems, we intro-
duce GRAAFE: graph anomaly anticipation framework for exascale HPC systems.
GRAAFE exploits Graph Neural Networks (GNNs), as they are well-suited to
learning tasks where there are complex dependencies that can be represented as
graphs [153]. GNNs have never been applied to represent topological information in
supercomputers but we claim that they are ideal to handle proximity graphs defined
by nodes in the same HPC rack; additionally, since this approach deals with multiple
nodes at the same time (entire racks), it is also more computationally efficient. We
demonstrate this by conducing a large-scale experiment on the Marconi 100 super-
computer [44] hosted at CINECA. We also bridge the gap toward in-production data
analytics by extending the CINECA’s ODA framework with an MLops framework.

Summing up, the main contributions of the proposed GRAAFE framework are:

1. Development of a GNN to predict real, node-level anomalies that are shown to
outperform other state-of-the-art approaches. With a 4-hour look-ahead win-
dow the GNN anticipates anomalies with an accuracy of 0.91 AUC; to the best
of our knowledge, GRAAFE is the first work to demonstrate the feasibility of

anomaly prediction in a production supercomputer.

2. Large-scale training and validation on 980 compute nodes followed by deploy-

ment at scale to evaluate its real-world effectiveness.

3. The pipeline can be deployed with only an additional 30% of CPU resources
and less than 5% RAM usage increase. Of these overheads, the pipeline execu-

tion accounts for less than the 1%, making it scalable.

4. Ensure high reproducibility thanks to open-source code and definition of
detailed computing requirements to implement the monitoring system and

MLOps framework for Tier-0 supercomputer.

6.2 Related Works

6.2.1 Anomaly Detection & Prediction in HPC

One of the core objectives of ODA for HPC is anomaly detection and prediction,
identifying aberrant or atypical patterns or behaviors from monitoring data [90] as
soon as possible to minimize the system downtime. These deviations may comprise
of any unusual occurrences concerning resource usage, performance variations, or
network traffic flow. this work focuses on node-level anomaly analysis using node
telemetry data. Several other approaches exist in the literature that either focus on
component-level anomalies or on predicting anomalies based on log data [90, 70].
Approaches on log data deployed on a complex in-production large-scale HPC sys-
tem predict node level anomalies with a future window of only 10 seconds [58].

6.2. Related Works 91

Works with larger future windows, such as the work of Devesh Tiwari [84], focus
on component failure prediction (disk failure specifically). Considerations on per-
formance, security, and privacy prevent the deployment of system log collection in
some HPC centers [87]. The only available monitoring data for the HPC systems in
those centers, such as Marconi 100 in CINECA, is the node telemetry data [31].

Minimal attempts have been made to create a node-level anomaly anticipation
system based on node telemetry data. To the best of our knowledge, the only node
telemetry based approach that mentions anomaly anticipation is the work proposed
as AdaHPC by Borghesi et al. [30]. The approach, however, fails to provide any
estimate about the future window of the anomalies. Based on the taxonomy [70], the
presented work is the first that addresses the question of node-level anomaly prediction
based on node telemetry data.

Outside of the HPC domain, Carvalho et al. [39] propose random forest and ar-
tificial neural networks (dense neural networks) as the best-performing approaches
for failure prediction based on a systematic literature review. Behera et al. [18] pro-
pose a Gradient Boosting tree for failure prediction. These methods inspire baseline
per-node methods implemented in this work and are adapted for use as per-node

anomaly predictors in HPC compute nodes.

6.2.2 GNNs and HPC

Most anomaly detection methods for HPC operate at a compute-node level, as they
disregard the spatial structure of HPC systems — which instead has been suggested
to be useful [74]. These structures can be represented as graph, thus suggesting
the usage of graph-specialized ML models. Graph neural networks (GNNs) are
ML models for graph-structured data [153]. Graph convolutional neural networks
(GCNis) constitute a special type of GNN that relies on executing convolution oper-
ations. The convolutions combine insights from neighboring nodes to create pow-
erful embeddings used in downstream tasks, such as node labeling or link predic-
tion [101].

GNN s are very good at exploiting node proximity [154]. As supercomputers are
organized in racks of neighbouring nodes, GNNs have great potential. For instance,
GNNSs can be trained using labeled data more efficiently than per-node supervised
methods that tend to over-fit on the majority class. This advantage is especially
noteworthy when dealing with extremely unbalanced classes typical of anomaly de-
tection in HPC systems [101]. The use of GNN to improve anomaly detection and
prediction performance has already partially been studied [41, 52]. For instance,
Song et al. [123] use a couple of GNNs to identify abnormal performance fluctu-
ations in cloud environments. The impact of proximity on the behavior of HPC

nodes has been explored only in a limited way. Ghiasvand et al. [62] detect faults

92 Chapter 6. Anomaly prediction - GRAAFE

using system logs that consider nodes’ proximity in terms of hardware architecture,

resource allocation and physical location.

6.3 Methodology for anomaly anticipation

In this work, we consider node-level anomalies. Anomaly prediction can be under-
stood as a problem of predicting the transitions between states. We frame it as a bi-
nary classification problem [21]; the HPC system is either experiencing an anomaly
(state 1) or operating normally (state 0). Consequently, we have four possible state

transitions:
1. From state O to state 0: this is the continuation of normal operation.

2. From state 0 to state 1: the rising edge event. This is the occurrence of an
anomaly; we are primarily interested in this transition and want to predict
it with ML methods.

3. From state 1 to state 1: continuation of the anomalous state.

4. From state 1 to state 0: the falling edge event. This is the resolution of the

anomalous state and the return to the normal operation.

Transitions 3 and 4 are not the focus of this work as they are not the result of the
malfunctioning of the HPC system but are connected to the response of the system
administrators. Transition 3 persists until the fault is resolved, leading to transition

4. Thus, our approach are evaluated only on transitions 1 and 2.

Normal Operation Continuous anomaly

Rising edge

Baseline: 0

Falling edge

FIGURE 6.1: Finite state machine depicting the transitions between
states 0 (normal operation) and state 1 (anomaly).

We embraced Graph convolutional network (GCN) based on:

1. The hypothesis that node physical proximity would benefit the anomaly pre-

diction task.

2. Preliminary experiments demonstrating its potential for improved perfor-

mance.

6.3. Methodology for anomaly anticipation 93

We encode the physical layout of compute nodes within racks as graphs. We de-
velop distinct models for each rack; this ensures scalability within large supercom-
puters similarly to the approach proposed by Molan et al. [98]. The GCN model for
each rack is depicted in Figure 6.2; on the left, we can see how racks are represented
as graphs: vertices correspond to individual nodes connected vertically.

While conducting the initial study, we did not conduct a comprehensive explo-
ration of hyperparameters but instead relied on prior knowledge and manual fine-
tuning. Following an empirical investigation, it was found that the following GNN

architecture delivers the best results:
¢ Graph convolution layer of shape (417 x 300)

¢ Graph convolution layer of shape (300 x 100)

Graph convolution layer of shape (100 x 16)

Dense layer of shape (16 x 16)

Dense layer of shape (16 x 1)

The architecture presented in Figure 6.2, is based on the physical organization of
compute nodes in racks. The GCN is trained on the supervised classification task.
Labels are obtained by considering a future time window T; labels with 1 indicate
anomalies, and 0 indicate normal samples. For each node and at any point in time,
a label of value 1 (anomaly) is assigned if the node encounters any anomaly in the

future window T; otherwise, the label are 0.

Graph Convolution Graph Convolution Graph Convolution
417 x 300 300 x 100 100 x 16

[]

° | | ¢p \ \ >

° / /

°

Node Rack Input : GCN1 GCN2 GCN3 Flatten : Flatten: Output:
Graph 16x16 16x1 2 Class

FIGURE 6.2: The structure of the GCN network exploits the organiza-
tion of compute nodes in a rack.

94 Chapter 6. Anomaly prediction - GRAAFE

6.4 Results of anomaly anticipation

‘ Time Window ‘ FW H GNN ‘ DNN ‘ GBT ‘ RF ‘ DT ‘ MC ‘

1h 4 0,91 064 | 063 | 061 | 051 | 0,5
1.5h 6 0,89 066 | 064 |05 | 05 | 05
3h 12 0,84 065 | 063 | 059 | 05 | 05
6h 24 0,78 0,62 06 [055 | 05 | 05
8h 32 0,75 059 | 058 | 055 | 05 | 05
16h 64 0,66 0,5 048 | 049 | 049 | 0,5
24h 96 0,62 05 | 051|058 |051 | 05
48h 192 0,55 047 | 048 | 052 | 05 | 05
72h 288 0,53 052 | 051|052]|049 | 0,5

TABLE 6.1: AUC scores of prediction methods. The GNN outperform
all other methods across all future windows (FW).

6.4.1 Experimental setting

The Marconi 100 HPC system located in CINECA was utilized to conduct an ex-
perimental evaluation. A solitary compute node of Marconi 100, which included
32 IBM POWERSY cores, a RAM capacity of 256 GB, and four NVIDIA V100 GPUs
with a memory size of 16 GB, was employed for the training the GNNs. The dataset
comprises 31 months wherein two computer racks of the Marconi 100 system were
subjected to observation. To establish an efficient model, 80% of the data mentioned
above was designated as the train set, while historically, the remaining 20% was
allocated for testing purposes.

The proposed approach was tested against all known per-node anomaly antici-
pation approaches to demonstrate the necessity of the GNN. The label creation and
the train/test split were the same across all examined models. Specifically, we have
chosen the deep per-node neural network (DNN), the gradient boosting trees (GBT),
random forest (RF), and decision trees (DT) as comparative models. The Markov
Chain (MC) serves as a trivial predictor baseline, representing a simple approach
that consistently predicts the probability of failures as equal to the overall failure rate
observed in the dataset, regardless of the input data. The hyperparameters of all the
models and the accompanying code for the experimental evaluation are described
and included in the Artifact Description. The experimental evaluation is also per-
formed on an open and publicly accessible dataset. This ensures transparency and

reproducibility of the experimental setup for further research in this field.

6.4. Results of anomaly anticipation 95

- 1.0
-0.8
0.6°
0.4 .
0.2
0.0

17:00 17:15 17:30 17:45 18:00
Time (HH:MM)

TW 4 raw anomaly label

Failure probability

TW 6

FIGURE 6.3: Period of 5 timestamps or 75 minutes, starting at 17:00
and ending at 18:15.

6.4.2 Anomaly Prediction Model Performance

In line with other works in Operational Data Analytics and, specifically, anomaly
detection [98], the area under the ROC curve (AUC) is selected as the primary eval-
uation metric for the experimental analysis. The predictive models output the prob-
ability of the anomaly (instead of just predicting class 0 or 1). This helps system
operators. Furthermore, examining the whole ROC curve allows for a more gen-
eral analysis that does not favor only the performance of the classifiers at a specific
threshold. AUC is also chosen as a primary performance metric as it protects from
pitfalls shared by other relatively more common metrics (precision, recall, f1) [76].
Across all Future Windows (FW), the GNN significantly outperforms all other
approaches that operate on per-node data. Table 6.1 demonstrates higher AUC val-
ues and thus indicates better performance in detecting anomalies. The performance
of all models decreases with future observation windows showing the increasing
difficulty in detecting anomalies further away in the future. The comparative ad-
vantage of the GNN model also decreases with larger future windows. At the last
observed window 288 (72 hours in the future), the performance differences between

various models become almost negligible. All models are slightly better than the

96 Chapter 6. Anomaly prediction - GRAAFE

5 -1.0

o]

o

>

©

g 0.8

5 .

(o]

2

o
>
=
o)
3

S o

2 3
Q
—
=
‘©
L

(o]

=

|_

Tg} o Te] o T} o e} o g} o

< e — m A e i m A e

To) o) te) Vo) Vo) ~ ~ ~ ~ 0

— — — — — — — — — —
Time (HH:MM)

FIGURE 6.4: Period of 10 timestamps or 2.5 hours.

random choice model, which has a 0.5 AUC score.

The performance of the GNN model is strong up to a future window of 64 (16
hours in the future). Then, the performance of all other models (including the per-
node NN) dips to around the performance of the random choice. In other words,
predicting up to 16 hours in the future is only possible with GNNSs. The performance
of all other per-node models is within expectation. The best performing is the per-
node DNN, followed by GBT, RF, and, lastly, DT. The experimental analysis shows
that the GNN model is far superior for predicting anomalies in HPC systems.

FIGURE 6.5: Period of 20 timestamps or 5 hours.

6.4.

Results of anomaly anticipation 97

-1.0
raw a.label
TW 4
-0.8
TW 6
TW 12
TW 24
TW 32
TW 64
TW 96
0.2
TW 192
TW 288
0.0

o
o

o
H

Failure probability

N omnNnMomomoumoumoOmMomomnNnNowmomnowmownowmnown o

SO dMTOdMIEOdMTOTMETOdMTETOAMTOAMTO

Ou—!HHHNNNNMMMMQ‘Q’V?mmmm@@@@l\l\l\l\w

L T O e O e T o Y e Y e O e B e O O O B B T e B IO o IO e T e Y e O e O e, O O O e O B IO e O O |
Time (HH:MM)

FIGURE 6.6: Period of 30 timestamps or 7.5 hours.

The main points of analysis of the experimental results can be summarised as:

Superiority of GNN: The GNN model exhibits a clear superiority over other
models in anomaly detection across all Future Windows (FW). This is evident
from the higher area under the curve (AUC) values presented in Table 6.1,
a robust indicator of the model’s ability to distinguish between normal and

abnormal states.

Performance Degradation Over Time: A notable trend observed is the grad-
ual decline in the performance of all models as the future observation window
increases. This suggests a fundamental challenge in predicting anomalies fur-
ther into the future, likely due to the increasing uncertainty and variability in

data over extended time frames.

Comparative Advantage of GNN Diminishes with Larger Windows: While
the GNN maintains its lead, its comparative advantage diminishes in larger
future windows. By the last observed window of 288 (equivalent to 72 hours

ahead), the models’ performance differences shrink considerably.

GNN’s Strong Performance in Shorter Time Frames: The GNN model’s
strength is particularly pronounced up to a future window of 64 (16 hours
ahead). Beyond this point, other models, including the per-node Neural Net-

work (NN), decline to levels comparable to the random choice model.

Performance of Other Per-node Models: Among the other models tested, the
per-node Deep Neural Network (DNN) shows the best performance, followed
by Gradient Boosting Trees (GBT), Random Forest (RF), and Decision Trees
(DT).

98 Chapter 6. Anomaly prediction - GRAAFE

-1.0

raw a.label

TW 4
-0.8

TW 6

TW 12
0.6

TW 24

TW 32
0.4

TW 64

TW 96
0.2

TW 192

TW 288
0.0

FIGURE 6.7: Period of 50 timestamps or 12.5 hours.

Failure probability

¢ Overall Implications: The experimental results underscore the GNN's effec-
tiveness in the specific application of anomaly detection in HPC systems, espe-
cially for short to medium-term predictions. The diminishing returns in longer
prediction windows suggest a need for continued research into models that

can maintain high accuracy over extended future windows.

* Future Research Directions: This analysis suggests potential areas for future
research, such as exploring hybrid models that combine the strengths of GNN
with other models or developing new techniques to enhance long-term predic-

tion accuracy in HPC systems.

6.4.3 Anomaly prediction model probability calibration

The importance of calibration in the GNN anomaly anticipation model cannot be
overstated, as its primary output is predicting the probability of an anomaly occur-
ring in the next time window. Proper calibration is essential to ensure these prob-
ability predictions are aligned accurately with the actual frequencies of anomalies
observed in the test set. This alignment is critical not only for the model’s reliability
but also for the trust system administrators place in the model’s predictions.

A key measure used for evaluating the calibration of probability predictions in
binary classification scenarios, like that of the GNN model, is the Brier score [34].
This score assesses the mean squared difference between the predicted probabilities
and the actual outcomes. A score of zero in this metric indicates perfect calibration,
signifying that the predicted probabilities precisely match the observed frequencies.
It’s crucial to understand that while the Brier score is a robust measure of calibration,
it does not directly reflect the classifier’s performance in terms of its accuracy in

predicting outcomes.

6.4. Results of anomaly anticipation 99

-1.0
raw a.label
TW 4
-0.8
TW 6
TW 12 z
0.63%
TW 24 &
o
(e}
TW 32 o
0.4 2
TW 64 £
TW 96
0.2
TW 192
TW 288
0.0
NonNomnMoOMnNONMNONONONONONONOINONONOLNOLWNOLWNnO
T o< Mot MO MHOSSTMHOST MO MHOSSTMAHOS MO
NOBANOS A A NMOSOS AN MNMEIDBDOORBINSANNMI NN O N O
HF A AN NN ANNOOOOOOOOOD OO OO O AT A A A A d A+
Time (HH:MM)

FIGURE 6.8: Period of 100 timestamps or 25 hours.

The calibration results of the GNN model, as indicated in Table 6.2, reveal that
the model achieves a Brier score of less than 0.1 across all future windows. This
indicates a high level of calibration accuracy. Particularly noteworthy is the model’s
performance in the shorter future windows of 4 and 6, which correspond to one hour
and one and a half hours, respectively. The Brier score is below 0.01, highlighting
the model’s exceptional calibration in these time frames.

However, it is observed that the calibration score increases with larger future
windows, which aligns with the expected trend considering the increasing difficulty
of making accurate predictions further into the future. As the prediction window
extends, the model encounters greater uncertainty and variability, which naturally
poses a challenge to maintaining high calibration accuracy.

The implications of these findings are significant for applying the GNN model in
system administration. The high level of calibration accuracy, especially in shorter
prediction windows, means that the model’s probability outputs can be reliably
communicated directly to system administrators. This aspect is further discussed in
Section 6.4.4. Despite these positive results, continuous monitoring and evaluation
of the model’s calibration over time is advisable, particularly as new data emerges
or operational contexts evolve. Future research might also explore the potential ben-
efits of additional calibration techniques, especially for enhancing the model’s per-

formance in longer future windows.

100 Chapter 6. Anomaly prediction - GRAAFE

Time Window | FW || Avg. Brier Score
1h 4 0.007674
1.5h 6 0.009031
3h 12 0.011626
6h 24 0.016599
8h 32 0.019567
16h 64 0.030524
24h 96 0.039851
48h 192 0.062677
72h 288 0.082576

TABLE 6.2: GNN anomaly predictor is well-calibrated for all future
windows (FW), as evidenced by the low Brier scores.

6.4.4 Visualization of anomaly anticipation

GNN:s trained on different future windows are used concurrently for each node. The
AUC scores in Table 6.1 show that the prediction methods with the shortest obser-
vation window are the most reliable. The longer observation window methods (e.g.,
72 hours) give system administrators an early warning which can then be confirmed
via shorter time windows (e.g., 1-hour and 1.5-hour). To illustrate this, we have ex-
amined a single raising edge event (transition from state 0 to state 1). This event
is taken from a training set of node 240, located in compute rack 12. The anomaly
occurred on 7/5/2022 at 18:15. The event with different lengths of the preceding pe-
riods is plotted in Figure 6.8. We have plotted the (normalized) probability for class
1 from different GNN classifiers.

Examining the classifier designed for the shortest prediction window, precisely a
future window of 4 timesteps, equivalent to predicting an anomaly one hour ahead,
we observe that this classifier successfully anticipates the anomaly. Despite this short
anticipation window, it generates a distinct anomaly signal before the event’s esca-
lation.

A consistent pattern of anomaly anticipation is observed as the focus shifts to
classifiers designed for longer observation windows, spanning 2.5 to 5 hours. These
classifiers, trained to detect anomalies over longer windows, also correctly predict
the impending anomaly. Notably, the classifier trained for a one-hour advance pre-
diction (future window FW 4) does not signhal anomalies in these extended windows.
This aligns with expectations since its design and training are tailored for a shorter
prediction horizon.

When examining classifiers tasked with even larger time windows, ranging from

7.5 to 25 hours, all exhibit the anticipated increase in anomaly probability as the time

6.4. Results of anomaly anticipation 101

of the actual anomaly approaches. This trend is visually represented in Figure 6.8,
where the probability density intensifies as the timeline converges on the anomaly
event.

A critical observation across these varying time windows is the emergence of a
rising wave pattern in the probability predictions as time approaches the anomaly.
This pattern is more pronounced and clear-cut in classifiers with shorter predic-
tion windows. The clarity of this pattern correlates with the AUC scores, being
more distinct and reliable in classifiers designed for shorter windows. Conversely,
as the prediction window widens, the anomaly pattern becomes increasingly noisy
and less defined. In classifiers with very large time windows, the anomaly pattern
tends to lose its distinctiveness, resulting in a near-constant probability output for
an anomaly. This indicates a diminishing efficacy and reliability in the anomaly pre-
dictions as the prediction window extends.

These findings highlight a key challenge in anomaly prediction: maintaining
accuracy and clarity in the predictive pattern as the prediction window increases.
While short-window classifiers offer precise and actionable predictions, the effec-
tiveness of long-window classifiers is hampered by increasing noise and uncertainty.
This insight is crucial for the practical application of these classifiers in real-world
scenarios, where the choice of prediction window must balance the need for warning
against the reliability of the predictions.

In summary, the extended analysis underscores a consistent pattern of rising
probability as the time nears an anomaly, with the clarity and reliability of this
pattern being inversely proportional to the length of the prediction window. This
observation has significant implications for the design and application of anomaly
prediction classifiers, especially in their operational environment and the specific

requirements of advance warning versus prediction accuracy.

6.4.5 Financial impact of anomaly anticipation

Deployment of the anomaly prediction model in real-life operations consists of es-
timating the positive aspects and benefits of the deployment against the potential
negative aspects and costs. To do this, we have developed a model, which is in-
cluded in the code repository, that models the benefits of the model against the costs
associated with mispredictions. We are combining the model with some assump-
tions about the operational aspect of a typical supercomputer and the additional
results of our predictive models, as described in the additional results in the code
repository. We are using the optimal threshold for the classifier and the true positive
and false positive rates, as reported in the additional results. The general equation

of the cost-benefit model is:

B = Cgn — Crp

102 Chapter 6. Anomaly prediction - GRAAFE

where:

B represents the overall benefit,
Crn denotes the cost associated with false negatives,

Crp denotes the cost associated with false positives.

Compared to the case where no predictive model is deployed, the deployment
of the GRAAFE framework results in no additional costs of false negatives. For this
reason, the cost of false negatives is modeled as zero in our model. The cost of false
positives, however, is associated with the time that the system administrators waste
analyzing false positive signals. We are modeling it as an unnecessary action cost.

Unnecessary action cost is calculated as:
Cua = Ppp X Tp X Wsp
where:
Cua is the unnecessary action cost,
Prp is the probability of a false positive,

Ty is the analysis duration,

Wsa is the hourly pay of the system administrator.

The unnecessary action cost increases for larger future windows as the false pos-

itive rate increases and the overall anticipation accuracy decreases.

Hours || Optimistic | Conservative | Pessimistic
0 0.0 0.0 0.0
1 0.7 0.3 0.0
3 0.8 0.6 0.0
6 - - 0.3
72 0.8 0.8 0.8

TABLE 6.3: Three scenarios are defined based on the probability that
the system administrators can prevent an anomaly if given a signal
within a future window (in hours).

The benefit of the model development is estimated as the expected value of the

deployment benefit:

B = PDF(FW) X PPF(FW) X CF

6.4. Results of anomaly anticipation 103

where:

B is the benefit,
Ppp(FW) is the probability to detect failure, as a function of FW,
Ppp(FW) is the probability to prevent failure, as a function of FW,
Cr is the cost of failure,

FW is the future window.

The probability of detecting failure is a characteristic of the predictive model, and
it equals the true positive rate. For the analysis presented in this section, we are
using the true positive rate of the per-rack GNN model. The cost of failure is related
to the opportunity cost of the HPC system downtime. Our analysis estimates it to
be a fraction of the overall cost of the HPC system.

The probability of preventing failure is a characteristic of the organizational
specifics of each data center and its system administration team. Since we do not
have accurate organizational information for the Marconi 100 supercomputer, we
have prepared three scenarios demonstrating different system administration teams.
Based on the warning period (in hours), the system administrator teams prevent the
anomaly with different probabilities as depicted in Table 6.3.

Optimistic scenario depicts a very effective system administration team that can
prevent 70% of anomalies with a warning window of one hour and 80% with a warn-
ing period of three or more hours.

Conservative scenario depicts a conservative estimation of the system admin-
istration team’s effectiveness. System administrators can only prevent 30% of the
anomalies with a prediction window of one hour.

Pessimistic scenario is an overly pessimistic option where system administrators
cannot prevent anomalies if they have a warning period of less than six hours.

Based on the important points of each scenario, a smooth (double differentiable)
function is fitted over them. This gives us the probabilities for every other future
window. The function is based on the assumption of being monotonic positive as
the prevention probability cannot decrease. Based on three scenarios, we get three
different anomaly prevention probability functions as depicted in Figure 6.9a.

Given the anomaly prevention probability function, we can estimate the cost-
benefit of deploying the model in each scenario. The cost-benefit, measured in the
percentage of the overall system cost, is depicted in Figure 6.9b. In the optimistic
scenario, the maximum benefit is achieved for the one-hour future prediction win-
dow. For the conservative scenario, the maximum is achieved for the prediction
window of 3 hours. Interestingly, for the conservative scenario - the cost-benefit is
negative for future windows up to 3 hours. This is because the system administra-

tors cannot prevent the anomalies but would still have to react to the false positive

104 Chapter 6. Anomaly prediction - GRAAFE

signal (and incur the associated costs). As seen in Figure 6.9, the model’s benefit and
the optimal deployment strategy (size of the future window) depend strongly on the
organizational characteristics of each data center.

Estimating the organizational characteristics of the individual data center is be-
yond the scope of this work. For this reason, we have prepared a computational
model included in the code repository® that takes the operational parameters as
input and outputs the cost-benefit function for the defined specific scenario. This
allows potential adopters of our framework to decide on the optimal deployment

strategy based on their organizational reality and needs.

Shttps://gitlab.com/ecs-1lab/GRAAFE/-/blob/main/Cost_benefit.ipynb

https://gitlab.com/ecs-lab/GRAAFE/-/blob/main/Cost_benefit.ipynb

6.4. Results of anomaly anticipation 105

Probability to prevent an anomaly based on the future window

0.8 1 el
'4;\ (
3
©
O 0.6
o
o
C
k)
€ 04
(]
>
N
—— Optimistic scenario
0.2
—— Conservative scenario
—— Pessimistic scenario
0.0

0 10 20 30 40 50 60 70
Future window in hours

(A) The prevention probability function models the probability that the system administrators will be
able to prevent the anomaly if given the anomaly signal in a given future window.

014 Cost-benefit function for different future windows

—— Optimistic scenario
0.12 1 . .
011 —— Conservative scenario
0.10 1 —e— Pessimistic scenario

0.08 4

0.04

0.00 1

Benefit as a percentage of the system cost
g

-0.02 T — T T T -
0 o O%® & »° &> 00
Future window in hours

(B) The cost-benefit function models the net benefit (benefit minus the cost) of the model adoption for
different future windows, expressed as the percentage of the total HPC system cost.

FIGURE 6.9: Depending on the scenario and the associated probabil-

ity of preventing the anomaly, given a specific warning window, the

projected benefit is achieved by deploying the predictive system at
different future windows.

106 Chapter 6. Anomaly prediction - GRAAFE

6.5 Anomaly prediction as part of a GRAAFE framework

An anomaly prediction system has been developed and deployed as an integral part
of the GRAAFE framework. GRAAFE, which stands for Graph Anomaly Anticipation
Framework for Exascale HPC Systems, is a comprehensive operational data analytics
framework that combines data acquisition, anomaly prediction, and visualization.
The data acquisition and visualization functionalities are seamlessly integrated with
the EXAMON monitoring tool [26].

Supercomputer/Datacenter

I
It

Monitoring System (ExaMM Kubeflow W Git Repository Hosting ®
/ Service
PFOXY Trained Models l
Load Balancer
©
@ MQTT Broker Development (GNN Model) g o s
¥ o APlGateway g8 5| &
= 3 =
data_extraction.py (1) git push 2 8 I
preprocessing.py g a a 'a
inference.py 1 5 2 b a
| publishing_results.py 2 T = F
= g pipeline_main.py =< 2
FIL L s
KairosDB KairosDB Dockerfile pipeline_main.py
Write Read -—
Cluster Cluster Deployment (GNN Model) Dockerfile

KFP: (3) pull
- define pipeline container l

- compile pipeline image S A—
- run pipeline Cl/CD P@

(5) run pipeline (2) Config. Action

) Build Image
cassandra Kubernetes l Push Image
Cassandra Cluster *
K8s Pods Kubeflow Pods Pipeline Pods

00 ® (ew
© ||loo @g

(4) create
Kubeflow
pipeline

L 2 4

Container Registry &5

On-premise Cloud (ADA Cloud @ CINECA)

e B 2 @
(5]

IF NN ver.a

cassandra kubernetes Kubeflow .
Z5 NN ver.2

e i " .

Virtual Machine Virtual Machine Virtual Machine Virtual Machine Virtual Machine

FIGURE 6.10: The software architecture of the GRAAFE framework,
built for the deployment of an anomaly prediction model for HPC
systems.

The entire data pipeline, depicted in Figure 6.10, is built on Kubernetes/Kube-
flow virtualization technology, enabling real-time anomaly prediction for all Mar-
conil00 nodes with updates every 120 seconds. This system achieves a remarkable

balance between computational efficiency and model accuracy, requiring only 30%

6.6. Conclusion of anomaly anticipation 107

additional CPU resources and less than 5% more RAM compared to monitoring
alone. This efficiency is attributed to the use of graph neural networks for anomaly
prediction, which offers an optimal trade-off between performance and accuracy.

The successful deployment of this predictive model within a production-ready
anomaly prediction framework is the result of collaborative efforts with my co-
authors, culminating in a publication in the Future Generation Computer Systems jour-
nal [95].

6.6 Conclusion of anomaly anticipation

In this section, we proposed the first anomaly prediction approach for HPC sys-
tems explicitly exploiting the underlying proximity structure of computing nodes.
The graph structure significantly influences the performance of anomaly anticipa-
tion models for supercomputers. Our GNN approach has enabled us to surpass all
previously known ML methods in this domain; in particular, we thoroughly demon-
strate how we can not only detect failures, as already done in previous work, but
predict such failures with several hours of anticipation.

The MLOps framework has been thoroughly evaluated in various deployment
configurations to measure the overhead introduced by the Kubernetes pipeline. In
its current setup, the impact on the supercomputer itself is negligible, as the MLOps
operates on the same cloud infrastructure, located within the HPC facility host-
ing the supercomputer, where the monitoring infrastructure is also deployed. We
have also explored different deployment setups, highlighting how different solu-
tions can be adopted, granting greater flexibility while satisfying real-time require-
ments. Moreover, the additionally incurred computational overhead with regards
to the monitoring infrastructure, which we can assume to be present in most super-

computers nowadays, is minimal.

108

Chapter 7

Looking into the Future

The most significant innovation in recent years in machine learning—and arguably
in the history of machine learning—has been the development of large models with
generative capabilities. The most famous and notorious of these models are large
language models (LLMs).

The first has been the Generative Pre-trained Transformer (GPT) developed by
OpenAl in 2018 and released to the public in 2020 [35]. Other models with genera-
tive capabilities include generative image models or text-to-image models, such as
Stable Diffusion [117]. Another recent development in large generative models is the
emergence of multimodal models—models that combine the understanding of tex-
tual data and images. Examples of this include OpenAl’s large multimodal models,
such as GPT4 [111] or LLaMa [132] from META.

7.1 Power and Limitations of LLMs

The development of these large models has challenged the previous belief, that only
specialized models trained on specific tasks, like text generation or semantic seg-
mentation in images could achieve high performance. It's understood that large,
general models trained on a broad range of tasks can perform well across various
applications. However, despite these models” rapid deployment and development
and the significant market interest and investment they have attracted, the integra-
tion of large models—or foundational models—has not yet fully extended to other
types of data, specifically multivariate time series data.

This type of data, often collected by monitoring systems or IoT devices, still re-
quires custom-made models, such as those discussed in this work. Given the trends
and the success of large models, a key question arises: How can we intelligently in-
tegrate foundational and large models with custom-developed models for specific

applications?

7.1.1 Limitations to Perform Symbolic Rasoning

One limitation of foundational models is their ability to perform symbolic reason-

ing, such as arithmetic and mathematics, where they operate with numbers rather

7.1. Power and Limitations of LLMs 109

than just tokens or strings. Some attempts, like TimeGPT [61], have been made to
translate time series prediction tasks into sequence prediction tasks to leverage the
capabilities of LLMs. However, these efforts have yielded mixed results and are not
yet applicable to the full range of predictive tasks required for monitoring data.

These tasks often need more complex and specialized models beyond the simple
predictive tasks that LLMs can handle. For example, advanced data analysis models
require comprehensive clustering techniques, while anomaly detection models need
sophisticated supervised learning approaches, as discussed in the relevant chapters
of this work. Tasks such as time series prediction may require a combination of time
series forecasting and graph-based predictions as it is developed and presented in
this thesis.

Even if research advances significantly in treating time series as tokens for se-
quence prediction, more complex tasks, such as those discussed in this work, will
likely remain outside the scope of what foundational or LLMs can effectively han-
dle. Most of the reasoning capabilities of leading LLMs, such as GPT-4, come from
being trained on large corpora of code data. When asked to perform simple arith-
metic operations, these models typically generate small code snippets that execute
the calculations rather than relying on the model’s intrinsic next-token prediction
logic. This behavior, known as "tool use," highlights an important aspect of current
research: integrating LLMs into broader software infrastructures, enabling them to
retrieve live data from different streams and analyze it using pre-written functions
or libraries.

Currently, a significant portion of practical large language model applications
involves integrating these models into existing software ecosystems. An essential
aspect of this integration is called Retrieval-Augmented Generation (RAG).

Instead of constantly updating LLMs with current data—thus avoiding the risk
of hallucinations—mission-critical documents are encoded in a separate database,
often a vector database. Based on a query, the most relevant documents are re-
trieved and used as context for the language model during answer generation. This
approach allows businesses to use specialized LLMs without needing expensive re-
training or fine-tuning. However, a limitation of current RAG systems is that they
mainly focus on textual documents, leaving other data modalities, such as real-time
monitoring and time series data, less integrated.

The practical applications of LLMs in today’s industry are primarily limited to
integration with RAG systems and vector databases. Most documents in these vector
databases are already encoded in a way that LLMs or multimodal models can ingest.
This typically means that these are textual documents, potentially with images. A
significant drawback of these systems is their limited ability to integrate with other
data modalities, such as real-time monitoring or time series data. This limitation
underscores the need to connect LLMs with specific data sources to tackle particular

organizational problems.

110 Chapter 7. Looking into the Future

Existing
software
ecosystems

Large Custom
language developed
models models

FIGURE 7.1: Structure of the application LLMs

7.1.2 Limitation in Ability to Use Tools

Another critical aspect of integrating LLMs into current business solutions is their
ability to use tools. While LLMs are trained to predict the next token in a sequence,
they do not inherently possess the capability to perform complex data analysis or
mathematical operations.

To enable such capabilities, these models must be integrated with specific func-
tions. The first attempts at such integration involve "tool use", where the language
model is instructed to call specific functions. Once capable of calling these functions,
the model can integrate with existing libraries, such as those used for data analysis.
This, in turn, allows LLMs to perform more complex tasks and offers greater degrees
of automation within a business context.

These developments — namely, RAG and tool use — indicate that the future
adoption of LLMs in real-world applications will likely make them part of a broader
software infrastructure. Specifically, I believe that the future role of LLMs will be as
a highly advanced and capable integration layer. Due to their generalizability and
flexibility, they can connect various parts of the software ecosystem efficiently.

For example, they could connect with domain knowledge stored as documents,

existing code libraries, data analysis tools, and machine learning model repositories.

7.1. Power and Limitations of LLMs 111

FIGURE 7.2: Adoption of LLMs in real world applications: Large lan-
guage model (RAG) including broader software infrastructure using
tools (Ty, Ty . . ., Tyy).

Tool 1
data analysis tools

Tool 4 Tool 2
machine learning R AG domain knowledge

model repositories as documents

Tool 3

existing
code libraries

FIGURE 7.3: LLMs and tools

112 Chapter 7. Looking into the Future

In the context of the work presented in this thesis and within the field of opera-
tional data analytics, the role of LLMs will be to integrate and present the developed

models in a more useful and relevant way to system administration.

Example 7.1.1 A system administrator could ask a language model agent:
What is the probability of node #13 failing due to hardware issues in the next 10 hours?

This answer cannot be generated by the language model alone nor by simply retrieving in-
formation from a vector database.

Instead, it requires live telemetry data, which must be analyzed using a trained anomaly
prediction model, such as the graph model described in this work, before the results can be

communicated to the end user.

More advanced scenarios could further enhance the language model’s ability to
analyze data from multiple sources autonomously. Even in its current form, this ap-
proach would provide invaluable assistance to system administrators, making man-
aging a model framework a more streamlined and efficient experience.

Indeed, I believe that until truly foundational models for time series data
emerge—if they ever do—the future of operational data analytics and real-time
modeling in the context of AI will involve a combination of LLMs and custom-

developed models. This approach leverages the strengths of each.
¢ Custom Models.
e LLMs.

The predictive power of custom models, such as the work on graph-based
anomaly detection presented here, remains unparalleled. It makes sense to use these
highly specialized, custom-trained models to achieve the best results.

However, the strength of LLMs lies not in making predictions themselves but in
managing and integrating models within different parts of a software ecosystem.

Thus, until, or perhaps even after, foundational time series models are devel-

oped, operational data analytics will benefit from
LLMs serving as an integration layer.

This integration will likely require modifications to the traditional three-layer
data analytics approach, as Netti and others described [110]. Their model outlines
three layers of operational data analytics:

1. data acquisition,
2. data analysis, and

3. data visualization.

7.1. Power and Limitations of LLMs 113

combinations:
Large Different
language custom
models models
\ Custom- /
trained models
Predictive

power of
custom models

FIGURE 7.4: Future of operation data analytics

We believe an additional layer will emerge between data analysis and visualization,
integrating the two.

This new layer is where the large language model agent will reside. The lan-
guage model agent will manage the model framework in the data analysis layer and
potentially modify the data visualization layer on demand. However, it will not
replace either of these layers but rather extend their capabilities.

We live in the age of large models and generative Al, which represent tremen-
dous scientific accomplishments. These developments bring new capabilities and
enthusiasm to the field of operational data analytics.

However, they do not fundamentally change the core challenges of the field.
The state-of-the-art models still follow research directions similar to those before
the advent of large foundational models. What has changed is the ease with which
we can integrate these models into existing solutions, generate actionable insights

for end-users and stakeholders, and manage model toolkits more efficiently.

114

Chapter 8

Looking beyond HPC systems

The topic of this thesis and the common theme of all the models presented in this
work is the use of machine learning applications in the context of operational data
analytics and the monitoring and management of high-performance computing sys-
tems. While the management of high-performance computing systems is essential
as they represent a significant societal and economic resource, the methodologies
and the study of real-time monitoring offer utility far beyond the original scope of

high-performance computing systems.

8.1 Operational data analytics

Operational data analytics emerged as a discipline aimed at supporting the work of
HPC system administrators in automatically analyzing vast quantities of real-time
telemetry data. As described in Chapter 4, it first emerged as a combination of data
acquisition and visualization systems. Then, driven by the need for more advanced
and automatic data analysis, data-driven methodologies, such as the models pre-
sented in this work, have been gradually introduced.

The gradual development of operational data analytics in the HPC sector,
marked by the introduction of machine learning methodologies, serves as a model
for other 4.0 industries. This evolution, as outlined in this work, starts from the
most general (data analytics) tasks that require the least high quality of data and
progresses to the most specific tasks (anomaly prediction) that demand the highest
data quality. Data Exploration Model DEM is applicable to any domain where real-
time data processing is essential.

Operational data analytics as a paradigm combining the three pillars of data ac-
quisition, data processing, and data visualization applies beyond the domain of In-
dustry 4.0 to every field where real time data analytics is essential. Such applications,
especially in conjunction with anomaly detection, are mainly present in the finance
industry and banking (fraud detection), online retail (downtime detection), and even
customer management systems (personalized campaigns).

Beyond the machine learning methodologies themselves, the lesson that applies

to these other domains is that the machine learning models cannot exist in a vacuum:

8.2. Data analysis 115

to deliver value to the end user (system administrator, account manager, or system
operations manager), machine learning models have to be tightly integrated into a
broader framework that records the data, analyses it and then displays the results of
the analysis.

In the world of generative Al, the realm of real-time telemetry processing will
remain relevant and emerge as another significant topic of Al. Despite significant
advances in large multi-modal models, foundational models that generalize across
all time-series data from all domains remain elusive [63]. In the machine-learning
landscape of the future, real-time data processing will emerge as a component, inte-

grated into a broader framework with generative Al as described in Chapter 7.

8.2 Data analysis

When initially introducing data-driven methodologies for telemetry data, it’s crucial
to start with exploratory models. These models play a pivotal role in helping data
scientists comprehend the data corpus. They are designed to uncover intriguing pat-
terns and subgroups within the dataset, which, in turn, guide further analysis and
study. In some cases, they may even pave the way for introducing custom machine-

learning models.

8.2.1 Methodologies for Data Explorations

Alongside statistical methodologies for data exploration, which can provide only
limited insights into the nature of the dataset, different machine learning method-
ologies have been proposed. The leading data exploration methodology in the field
of unsupervised learning is clustering.

Clustering methodologies aim to define the distance metric between the points of
the dataset and thus, by extension, define segments (clusters) of the dataset with
points close to one another. The intuition behind clustering methodologies is that
the defined distance measure, as determined by a specific clustering methodology,
corresponds to a similarity between the data points in a dataset.

The identified clusters of data points are close to one another, thus correspond-
ing to the instances (data points) that are similar to one another. Clustering is an
invaluable aid to the data scientists as it allows them to, instead of analyzing each
data point in the dataset individually, analyze each cluster - the intuition behind this
being that all the data points in the same cluster are similar enough that they can
share the same conclusions and insights.

The current data landscape, however, is much more complex than the simple
tabular dataset anticipated by the clustering algorithms. The modalities of the data
are such that they first require a powerful embedding approach to encode them into

a latent space that preserves the notion of similarity. This is the approach of the

116 Chapter 8. Looking beyond HPC systems

representation learning and the powerful (and large) embedding models for images
and text (large language and large multimodal models).

Another modality of data that is often overlooked, however, is the trace time-series
data. The intuition behind such data is that it is produced by different generators.
Here, instead of comparing different data points (such as two different images or
two different text documents), we wish to compare different generators that have
produced the traces.

Examples of data traces produced by some hidden generator that cannot be di-
rectly observed are telemetry data for different machines on an assembly line, price
traces for stocks or commodities, or, as described in this thesis, telemetry traces for
nodes in an HPC system.

Compute nodes of an HPC system are a perfect prototype for studying the char-
acteristics of different generators. If we abstract the methodology for data analysis
as presented in Chapter 4, different compute nodes of an HPC system can be seen as
hidden generators, producing an observable trace of the telemetry data as recorded
by the monitoring system. Instead of comparing specific data points, we aim to
compare the generators themselves. The final output of that methodology are not the
clusters of data points but the clusters of compute nodes - clusters of generators them-
selves.

The methodology described in Chapter 4 and demonstrated on a dataset of HPC
compute nodes has thus utility and applications far beyond the HPC field itself. It
can serve as a prototype for data analysis methodologies that go from the point-wise
comparison to the latent data generator comparison and become an invaluable part of

a data-scientist framework when dealing with complex and heterogeneous datasets.

8.3 Anomaly detection

On the spectrum going from the more general to more specific models, anomaly de-
tection is in the middle, between data exploration and anomaly prediction. While it
provides less general observation than data exploration, described in Chapter 4), it
is still more general than the anomaly prediction described in Chapter 6. Anomaly
prediction requires a specifically defined label - node availability - that is predicted
for different future windows. In contrast, anomaly detection simply detects periods
of HPC compute node operation that deviate from the standard. While associated
with compute node unavailability, these anomalies can also be related to other fluc-
tuations in compute node behavior (like software misconfigurations).

When deploying a specific machine learning model, anomaly detection can be
the first model deployed. Unlike supervised models (like anomaly prediction),
anomaly detection requires no particular label in the training set. When deployed

in this fashion, anomaly detection can be seen as an extension of data exploration.

8.4. Anomaly prediction 117

Instead of identifying different clusters of data points, anomaly detection only rec-
ognizes a few interesting (outlying) data points that may require further analysis.
In the cases where the data objective is defined, such as the case of the HPC
anomaly detection described in Chapter 5, anomaly detection serves as the first
model that can be deployed even if the target label is not present in the dataset
(thanks to the methodological innovation of RUAD [98]). The annotation of the data,
powered by RUAD in conjunction with the domain expert, can then be used to create

a dataset for more specific supervised models (like anomaly prediction).

8.4 Anomaly prediction

Amongst the modeling technologies presented in this work, anomaly prediction is
the most specific as it requires the highest data quality. Still, in turn, it provides the
highest quality and the most informative predictions. Anomaly prediction requires
both a clear definition of the target label and the presence of the target label in the
data set. Additionally, as described in Chapter 6, anomaly prediction also requires

additional information in the data set in the form of graph structure.

FIGURE 8.1: Position of Anomaly prediction in the developed data
driven model.

As a part of a more comprehensive model zoo, anomaly prediction seats as the
final type of model that is adopted during the introduction of data-driven model

methodologies - data exploration and anomaly detection have to be adopted first:

¢ Data exploration helps the System Administrator and other stakeholders to

determine which variables in the data require closer observation.

¢ Anomaly detection, in turn, helps improve the data set’s quality with semi-
automatic annotation, paving the way for anomaly prediction target applica-

tions.

118 Chapter 8. Looking beyond HPC systems

¢ Anomaly prediction applications are similar to anomaly detection applica-

tions.

All the applications were anomaly detection, like fraud prediction in financial
industries, and retail platform availability. All those domains would also benefit
from anomaly prediction, but anomaly detection is a necessary step in achieving
that.

An important innovation in the anomaly prediction methodology described in
this thesis is using multiple data sources to construct a predictive model. The pri-
mary data source comprises datasets collected by the data acquisition systems, ex-
amined explicitly in the context of CINECA.

While these datasets are also used in anomaly detection models, anomaly pre-
diction distinguishes itself by incorporating additional information through a graph
structure.

This graph structure not only encodes the physical proximity of the machine
room but also represents more abstract information and domain knowledge relevant
to the modeling problem. This approach resembles applications where graph struc-
tures encode domain knowledge, particularly in lighter processing tasks. Although
these tasks may seem different from anomaly prediction in high-performance
computing systems, graphs have proven to be effective in capturing the data’s

shape and the ingested data’s sparsity.

Overall, this work demonstrates that the anomaly prediction methodology, and
more broadly, the idea of encoding domain knowledge as a graph structure, can

serve as a blueprint for addressing complex challenges across various domains.

119

Chapter 9

Conclusions

The work performed during the PhD and presented in this thesis has been driven
by two equal and interconnected principles: performing fundamental machine learning
research and solving real-life engineering problems. 1 believe both goals are intrinsi-
cally connected as paradigm shifts in the real world can only be driven by scientific
breakthroughs; any real-world impact not grounded in scientific progress is nothing
more than smoke and mirrors, destined to collapse like a Potemkin village under the
weight of its over-inflated promises and expectations. The only way to deliver truly
impactful results, at any scale or domain, is the synthesis of these two principles:
scientific research and exploration, driven by real-life problems.

Driven by these two principles, the work presented in this thesis should be eval-
uated along two axes: how scientifically productive and innovative it is and how well
these innovations translate into real-world impact. The organization of the devel-
oped framework and machine learning models, as well as the organization of the
thesis itself, follows this principle. The specific target domain of this work is high-
performance computing (HPC) systems and the specific challenges that come with
adapting machine learning methodologies for their monitoring and management.
However, models, findings, and methodologies developed for and motivated by
this specific set of requirements have applications far beyond the original domain.

The increasing size and complexity of modern HPC systems necessitate the in-
troduction of advanced data collection, monitoring, and machine learning method-
ologies that support their management and operations. In literature, this collection
of methodologies that go from data collection to data processing and visualization
is called operational data analytics (ODA) for HPC systems. The thesis presents and
discusses the comprehensive ODA framework comprising multiple models that ad-
dress some of the most pressing open problems in the field: open-ended data explo-
ration, unsupervised anomaly detection, and long-term anomaly prediction.

The ODA framework first establishes the continuum of the machine learning
model adoption in the HPC systems, with each part of the framework addressing a
specific stage with its unique requirements and previously unanswered questions.

Depending on the level of adoption of operational data analytic methodologies, HPC

120 Chapter 9. Conclusions

systems can adopt one, some, or all parts of the framework. The stages of the frame-
work support each other; however, each stage, besides solving its primary objective,
enables the adoption of the next one.

The first part of the comprehensive ODA framework is the methodology to per-
form open-ended data exploration and analysis. It motivated by trying to answer the
question: Which compute nodes (a small part of the larger HPC system) are the most
similar to one another? This seemingly trivial question has been an open problem
in the literature. Existing approaches would compare nodes at a specific time (or
short period). Comparing the complete history of compute nodes was impossible as
it would require significant, multivariate time series clustering. Comparison, how-
ever, would, due to noise, yield unusable results. The methodology presented in
this thesis brings a fundamentally different perspective to the problem: instead of
trying to compare the traces produced by the compute nodes, we compare the au-
toencoders (type of self-supervised neural network) that best describe the compute
nodes. This approach enables us to, for the first time, find similarities in the behavior
of different compute nodes along the whole lifetime of a supercomputer.

Data exploration presented in DEM is the foundation of the comprehensive
ODA framework as it requires no structured or labeled data and can thus be de-
ployed as the first machine learning model adopted by the HPC system. DEM
provides insights into the operation of the nodes and allows the HPC system ad-
ministrators (or other relevant stakeholders) to identify relevant metrics that require
additional analysis by dedicated machine learning models. One such relevant metric
is compute node availability, which was studied by anomaly detection models.

Anomaly detection in HPC systems has been a well-explored, documented, and
mature topic. Pioneered by professors Borghesi and Bartolini of the University of
Bologna, it has been shown to be able to provide reliable anomaly signals that dras-
tically reduce the response time of the system administrators and thus increase the
overall availability of the HPC system. At the beginning of the PhD, this first gen-
eration of anomaly detection models was well established and understood. How-
ever, the significant drawback of this first generation of anomaly detection models
has been the need for semi-supervised training and, consequently, a high-quality
dataset. This first-generation anomaly detection model required a training set that
contained no anomalous data. No anomalous data, in turn, requires that any sys-
tem where such anomaly detection has been deployed tracks and documents the
anomalies extremely carefully.

This requirement for "clean", high-quality datasets proved to be a big obstacle
on the road to practical adoption as it prevents deployment on any system that
produces a dataset where anomalies are not precisely annotated. In practice, this
includes all but a few experimental and small-scale HPC installations. The open
question of anomaly detection was thus: Is it possible to train an anomaly detection

model on a dataset that is contaminated with anomalies? RUAD proves that it is

Chapter 9. Conclusions 121

possible. It exploits a well-known phenomenon in machine learning, which is "over-
fitting" the majority class. Since anomalous data points (failures) are in a significant
minority, the carefully constructed structure of the RUAD model ignores them as it
focuses on the majority of data. RUAD not only proves that unsupervised anomaly
detection is possible (anomaly detection on the clean dataset), but it outperforms all
other anomaly detection models (including all models that work on clean datasets).

RUAD can be deployed on a dataset that contains no labels. It is thus the second
stage of the comprehensive ODA framework. Based on the results of the anomaly
identification, if performed on an existing dataset, RUAD can, alongside the input
from the domain experts, retroactively provide labels to that dataset. Consequently,
in turn, paves the way for the last part of the ODA framework: a family of long-term
anomaly prediction models.

In contrast to anomaly detection, anomaly prediction in HPC systems has been
significantly less explored. It has either been focused on component failures (such
as disk, GPU, or CPU failure) or has explored providing a short-term anomaly antic-
ipation signal (with no clear time frame of the anomaly). GRAAFE is the first work
that attempts the challenging problem of long-term failure prediction. The classical
approach to anomaly prediction has proved futile as the anomalies are rare, and it is
thus almost impossible to train a reliable (supervised) prediction model. GRAAFE
circumvents these limitations by not only considering node trace data but also con-
sidering the physical layout of the compute nodes in a compute room. This addi-
tional information is encoded as a graph, which is then processed by graph neural
networks. Compared to other machine learning models in HPC systems, GRAAFE
is the first generation of model additional domain information and encodes it as a
graph. This paradigm shift allows GRAAFE to significantly outperform all known
anomaly prediction models and, for the first time, unlocks the ability to perform
true long-term predictions—up to 8 hours—and reliable compute node failure pre-
dictions.

Every scientific innovation presented in this work has been conceived as an an-
swer to a specific open real-world engineering challenge. However, it does not mean
that the utility of the presented work ends within the confines of the HPC systems.
Anomaly detection and graph methodologies with the idea of harvesting the struc-
ture information, have already proved to be a valuable tool in driving innovation
in LiDAR processing and LiDAR sensor integrity research. Applications in the au-
tomotive and autonomous driving fields, far outside the HPC domain, prove that
scientific work that is driven by concrete questions can still achieve universality and
widespread applicability.

We live in the renaissance of Al and machine learning. The advent of new tech-
nologies, specifically generative Al, has changed the Al landscape and greatly im-
pacted the economy and general society. It has reinvigorated the interest in the field

of Al and spurred additional interest and enthusiasm of the general public. It has

122 Chapter 9. Conclusions

also highlighted the need for an HPC system as the critical infrastructure that has
to run efficiently and with the maximum possible availability. As such, the field of
ODA and machine learning-powered HPC systems management is more important
than ever.

Generative Al poses another, more fundamental question. In the world of ever-
more advanced LLMs and autonomous agents, what is the role of human creativity?
Some believe that Al will become the dominant creative force, replacing humans in
music, creative writing, visual arts, and even scientific discovery. Recent discoveries
show that even the largest language models still possess no symbolic reasoning skills
and that we are still a fundamental scientific breakthrough away from real Al. Un-
til then, such models will remain an exceptionally powerful (but limited) tool, glue,
and packaging for models that humans will still develop. Models like GRAAFE
and RUAD, as well as the future models developed by my mentors, colleagues, and

students, will eventually (hopefully) surpass them.

()
Until then, scientific discoveries will remain the greatest and purest expres-

sion of being uniquely human. We have managed to build machines that can
have echoes of human creativity and serve to help and empower us. Still, hu-

man creativity is the only known force in the universe that can truly create

something new.

123

Appendix A

Publications and available

resources

The work presented in this thesis is a sample of the most relevant research conducted
during the PhD research duration. It represents the results that had the most signif-
icant scientific and practical value and presents a comprehensive collection of tools
to address the challenge of effectively introducing machine learning methodologies
into high-performance computing systems.

Alongside the selected works presented in detail in this thesis, additional re-
search results have been obtained either as a derivative of the proposed approaches
or its foundational explorations. As they do not form the main structure of the argu-
ment, they are collected here. They can be treated as a resource for further reading
and may interest the reader who wishes to deepen research in the area connected to
the thesis.

Main scientific results:

¢ Analysing Supercomputer Nodes Behaviour with the Latent Representation of
Deep Learning Models (Molan et al. 2022 [94]). Foundation for the argument
presented in Chapter 4. It shows that the trained semi-supervised models can
be used as a data analysis tool beyond their utility for anomaly detection, iden-

tifying non-trivial compute node clusters.

¢ RUAD: Unsupervised anomaly detection in HPC systems (Molan et al. 2023
[98]). Foundation for the argument presented in Chapter 5. It introduces the
first practically usable anomaly detection approach that can be trained entirely

unsupervised.

* GRAAFE: GRaph Anomaly Anticipation Framework for Exascale HPC sys-
tems (Molan et al. 2024 [95]). Foundation for the argument presented in Chap-
ter 6. It is the first work that uses large-scale training and deployment of large
Graph Neural networks in HPC systems. It also shows that GNN opens the
doors to previously impossible supervised training on classifiers on extremely

imbalanced HPC node telemetry monitoring data.

124 Appendix A. Publications and available resources

Supporting the main scientific results are the following works:

¢ LIDAROC: Realistic LIDAR Cover Contamination Dataset for Enhancing Au-
tonomous Vehicle Perception Reliability (Jati et al. 2024 [68]). This paper
describes and demonstrates the phenomenon of environmental contaminants
(water, mud, dust) introducing anomalous readings in LiDAR-based percep-
tive systems. Specifically, it introduces the concept of the critical failure: a
high-confidence miss-classification by the downstream processing task. To
develop algorithms to detect such anomalies, the paper also introduces the

largest open-source LiDAR contaminant dataset.

¢ TinyLid: a RISC-V accelerated Neural Network For LIDAR Contaminant Clas-
sification in Autonomous Vehicle (Jati et al. 2024 [69]). This paper introduces
the compute and energy-efficient LIDAR contaminant detection algorithm that
is ported to the RISC-V system. Developed contaminant detection achieves la-
tency and energy consumption in an order of magnitude lower than LiDAR

(the data source).

* Exploring the Utility of Graph Methods in HPC Thermal Modeling (Guindani
et al. 2024 [64]). This paper critically examines the utility of graph representa-
tions and graph neural networks for predicting the thermal evolution of HPC
systems. It shows that while graphs are powerful representations in the con-
text of HPC thermal modeling, they do not outperform the most optimized

per-node models.

* AutoGrAN: Autonomous Vehicle LiDAR Contaminant Detection using Graph
Attention Networks (Jati et al. 2024 [67]). This paper introduces the novel
architecture of a LIDAR anomaly detection algorithm based on graph repre-

sentations and graph detection neural networks.

e ExaQuery: Proving Data Structure to Unstructured Telemetry Data in Large-
Scale HPC (Khan et al. 2024 [73]). This paper proposes the introduction
of ontology (high-level graph representation) to structure unstructured HPC

telemetry data and present it as a knowledge graph, supporting graph queries.

* Model for Quantitative Estimation of Functionality Influence on the Final
Value of a Software Product (Molan et al. 2023 [91]). This paper introduces the
methodology for quantitatively estimating the value of functionalities within
the software development process. It is based on the idea of representing the
software product as a (computational) graph, with each functionality repre-
senting a vertex in this graph. The software product’s value can thus be mod-
eled as a function of individual functionality values and the relationships be-

tween them.

Appendix A. Publications and available resources 125

¢ M100 ExaData: a data collection campaign on the CINECA’s Marconi 100 Tier-
0 supercomputer (Borghesi et al. 2023 [31]). This paper is a culmination of a
multiple-year data collection and monitoring campaign by the University of
Bologna. RUAD is demonstrated as a use case for the utility of the data, while
GRAATFE uses its open dataset to validate the results.

¢ The Graph-Massivizer Approach Toward a European Sustainable Data Center
Digital Twin (Molan et al. 2023 [100]). The work has examined the integration
of GRAAFE and similar graph-based approaches into a larger framework for

general-purpose graph processing called Graph-Massivizer.

¢ Graph neural networks for anomaly anticipation in HPC systems (Molan et
al. 2023 [96]). Preliminary work preceding GRAAFE explored graph neural
networks’ feasibility and application to anomaly anticipation. Positive initial

results then led to developing the comprehensive framework in GRAAFE.

¢ Machine Learning Methodologies to Support HPC Systems Operations:
Anomaly Detection (Molan et al. 2022 [97]). Comprehensive presentation of
the Ph.D. topic as well as motivation, supported by the analysis of state-of-
the-art research for the research direction within the field of machine learning-

powered data analytics in HPC systems.

¢ Semi-supervised anomaly detection on a Tier-0 HPC system. Preliminary re-
sults for the anomaly detection in HPC systems (Molan et al. 2022 [99]). Here,
the novel approach of using temporal information for anomaly detection was
initially explored. This idea was then developed into RUAD, where the possi-

bility of unsupervised training was explored.

* An explainable model for fault detection in HPC systems (Molan et al. 2021).
The first exploration of an explainable model for anomaly detection in the HPC
systems. The model, still based on supervised training, however, proved to be
less competitive compared to self-supervised approaches. This led to a change
of direction in the development of the data analysis techniques and the devel-

opment of the work presented in [92].

¢ Anomaly detection and anticipation in high-performance computing systems
(Borghesi et al. 2021 [30]). This work represents the basis for all anomaly
detection and data analysis approaches the thesis presents. Led by Professor
Borghesi, it establishes the self-supervised, per-node models as the optimal

approach toward anomaly detection in HPC systems.

126

Appendix B
Paper preprints

As a reference and for the sake of completion, the three primary papers that form the
basis of the work are included in the appendix. The included version of the paper is
the version after the revision and accepted for publication. The included versions,
however, do not contain the formatting of the publications (by the publisher’s copy-
right). The content of the papers, however, is precisely the same as in the published

version. The included papers are (in order of appearance):

¢ Analysing Supercomputer Nodes Behaviour with the Latent Representation of
Deep Learning Models, [94]

¢ RUAD: unsupervised anomaly detection in HPC systems, [98]

* GRAAFE: GRaph Anomaly Anticipation Framework for Exascale HPC sys-
tems, [95]

Analysing Supercomputer Nodes Behaviour with
the Latent Representation
of Deep Learning Models

Martin Molanl[0000—0002—6805—2232}, Andrea Borghesil[0000_0002_2298_2944]

)
Luca Beninil’2[0000_0001_8068_3806], and Andrea Bartolinil[0000_0002_1148_2450]

! DISI and DEI Department, University of Bologna, Bologna, Italy
{martin.molan2, andrea.borghesi3, luca.benini,
a.bartolini@unibo.it}@unibo.it
2 Institut fiir Integrierte Systeme, ETH, Ziirich, Switzerland

Abstract. Anomaly detection systems are vital in ensuring the avail-
ability of modern High-Performance Computing (HPC) systems, where
many components can fail or behave wrongly. Building a data-driven rep-
resentation of the computing nodes can help with predictive maintenance
and facility management. Luckily, most of the current supercomputers
are endowed with monitoring frameworks that can build such represen-
tations in conjunction with Deep Learning (DL) models. In this work, we
propose a novel semi-supervised DL approach based on autoencoder net-
works and clustering algorithms (applied to the latent representation) to
build a digital twin of the computing nodes of the system. The DL model
projects the node features into a lower-dimensional space. Then, cluster-
ing is applied to capture and reveal underlying, non-trivial correlations
between the features.

The extracted information provides valuable insights for system adminis-
trators and managers, such as anomaly detection and node classification
based on their behaviour and operative conditions. We validated the
approach on 240 nodes from the Marconi 100 system, a Tier-0 super-
computer located in CINECA (Italy), considering a 10-month period.

Keywords: supercomputer monitoring - deep learning - unsupervised
learning - autoencoders - predictive maintenance.

1 Introduction

High Performance Computing systems have been steadily rising in size and com-
plexity in the last years, as revealed by the exponential increase of the worldwide
supercomputer installation®. HPC systems are typically composed by replicating
a large number of components, usually, in the order of thousands of computing
nodes, each of them constituted of a collection of smaller functional parts, such
as CPUs, RAM, interconnections, storage, etc. Even if similar by design, each

3 https://www.top500.org/

2 M. Molan et al.

computing node is affected by manufacturing variability and variations in the op-
erating conditions. The sheer size and complexity of supercomputers create huge
challenges in terms of optimal management of the I'T components and their sig-
nificant energy footprint[1]. The race towards Exascale* continues to make these
challenges ever more pressing[3-5].

Overall, it is a daunting task for system administrators and facility man-
agers to optimize supercomputer performance and power consumption, identify
anomalous behaviors faulty situations, and guarantee systems operate in optimal
conditions. The scale of the problem motivates the development of automated
procedures for anomaly detection and faulty node identification in current su-
percomputers and this need will become even more pressing for future Exascale
systems[6]. The fact that most of today’s HPC computing systems are endowed
with monitoring infrastructures[7] that gather data from software (SW) and
hardware (HW) components can be of great help toward the development of
data-driven automated approaches. Historically, system management was per-
formed through hand-crafted scripts and direct intervention of system adminis-
trators; most of the data is stored in log files, and anomalies are investigated a
posteriori to find the source of reported problems (e.g., when many users recog-
nize the failure and report it to administrators). At the finer granularity, each
core of the processing element is equipped with performance counters which can
monitor several micro-architectural events (i.e., cache misses, stalls, throughput)
and physical means (i.e., temperature, power consumption, and clock frequency).
Processing units as well as the motherboard, the power distribution units, the
onboard voltage regulators, the PCle devices, and the fans are equipped with
hardware (HW) sensors and counters. Similarly, software components can pro-
vide useful information as well, ranging from the details about jobs submitted
by users (e.g., information gathered by job dispatchers such as SLURM][8| or
PBSI9]) to software tools performing health-check of various subsystems[10] and
I/O monitoring|[11].

As the amount of data is overwhelming for human operators, automated
processes could be highly beneficial in improving the data center usage to ease
the burden of human operators and lower the response time to failures. In this
context, Artificial Intelligence (AI) can provide significant benefits, as it allows
to exploit the available big data effectively and to create decision support tools
for HPC system administrators and facility managers[12, 13]. In the past, many
works from the literature and the practice demonstrated the possibility to ex-
tract useful information using data collected from HPC computing nodes and
employing supervised Deep Learning (DL) models[14-16] and semi-supervised
ones[17-19]. These methods have been applied to detect nodes’ availability, de-
fined as operation without anomalies. Availability and the corresponding error
rate (1 minus availability rate) is a key metric of the node’s performance, and a
target for optimization of the HPC system operation [20]. Due to its importance,
we focus on the availability rate in the experimental part of this paper.

* The supercomputer peak performance is expected to reach the ExaFlops (10*8) scale
in 2023[2].

Title Suppressed Due to Excessive Length 3

Borghesi et al. in [18] show that semi-supervised anomaly detection models
trained on individual nodes data outperform a single model trained on multi-
node data. This suggests that the semi-supervised model can learn differences
between nodes even if the nodes share the same design and composition. Theo-
retically, the learned model encapsulates the node’s characteristics, however to
the best of our knowledge, no one has ever evaluated the feasibility of using the
disparities between trained DL models to evaluate the differences between the
behavior of the corresponding nodes. In this work, we answer this question by
introducing a novel approach that focuses on the latent representation of the
trained DL models (in particular on the coefficients, the weights of the latent
layer); the approach can identify clusters that deviate from the overall (node)
population’s average availability, relying on the DL model parameters.

We focused on a Tier0 supercomputer composed of 985 nodes for which we
trained a series of per-node semi-supervised DL models based on autoencoders
(AE), as proposed by authors in [19], the state-of-the-art for semi-supervised
anomaly and fault detection in HPC systems. We focus on semi-supervised meth-
ods as the availability of labels cannot be taken for granted in a supercomputer
due to the non-negligible cost of annotating the vast wealth of monitored data.
We explored different approaches to extract features from the weights and bi-
ases of the latent layer of the AE model. The key idea is to apply a geometric
transformation to the weight matrix underlying the latent layer of the trained
AEs; we opted to explore a variety of transformations; namely, we compute: (1)
the vector of singular values, (2) the singular vector corresponding to the largest
singular value, (3) the map of the representative vector (with and without bias),
(4) the weights matrix similarity in L1, L2, and absolute L2 norm, (5) the affine
(augmented matrix) similarity in L1, L2, and absolute L2 norm. The empirical
evaluation demonstrates that the vector of singular values identifies interesting
clusters among the different methods to extract salient features from the latent
representation.

We propose to use the deviation from population average availability to evalu-
ate the goodness of the clustering results. The vector of singular values, extracted
from the weights matrix of the latent layer of the trained autoencoder, identifies
two clusters with average overall availability lower than 89% (compared to 96%
population average). The proposed method’s ability to identify these clusters is
significant as the autoencoders have no access to the availability label during
training.

2 Related work

Since anomalies in HPC systems are rare events, the problem of anomaly de-
tection cannot be treated as a classical supervised learning problem [17,21]; the
majority of works that treat it in a fully supervised fashion have been tested us-
ing synthetic[14, 22] or injected anomalies[15]. Instead of learning the properties
of both relevant classes, the standard approach is to learn just the properties of
the system’s normal operation - anything deviating from this normal operation

4 M. Molan et al.

is then recognized as an anomaly. Machine learning models are trained only on
normal data to learn the characteristics of the normal operation. This training
of ML models on normal data is called semi-supervised training [18].

The state-of-the-art for anomaly detection on the HPC system is to train a
particular class of neural networks — called autoencoders — in a semi-supervised
way [19]. Autoencoders are a specific type of neural networks that are trained
to reproduce an input signal while simultaneously learning the most efficient
latent representation of the data [23]. The latent representation of the data has
a lower dimension than the original data; this lower dimension of the latent layer
naturally leads to the idea of using autoencoders as pre-processing step before
applying clustering techniques [24-26], as most of the clustering algorithms have
worse performance in high-dimensional spaces[27]. The autoencoders are first
trained on the whole dataset when using autoencoders as a dimension-reduction
step before clustering. Then the dataset is projected (by the encoder part of the
network) into a lower-dimensional latent layer [24].

Current approaches that combine clustering and autoencoder neural networks
use a single trained autoencoder to encode each instance into a latent space. The
state-of-the-art for HPC anomaly detection, however, is to train multiple models
(a different model for each node in the system) [19]. The fact that the models
trained on individual nodes outperform the model trained on combined data
of all nodes [19,17, 18] suggests that there are significant differences between
the behavior of the compute nodes and, consequently, the corresponding trained
models. Thus, this paper’s contribution is to explore the possibility of leveraging
the fact that we are training multiple AE models to explore the relationship
between the nodes themselves. Specifically, we explore the possibility to extract
features from the trained neural networks to perform the clustering of the whole
operation history of the compute nodes.

3 Methodology

In this section we present the architecture of the proposed approach. We start
by providing the probabilistic perspective underlying the foundations of our
approach in Sec. 3.1. We then describe in more detail the general architecture
(Sec. 3.2) and the proved the more detailed description of the method in Sec. 3.3
and Sec. 3.4.

3.1 Probabilistic Background

The idea of extracting information and comparing trained neural networks ex-
tends the standard methodology of statistical modeling where two (or more)
populations (or generally a collection of instances) are compared by contrasting
parameters of fitted distributions. Comparing the parameters of fitted functions
is the key idea underlying the proposed approach. Let us consider as an example
the common statistical problem of comparing two populations of individuals -
specifically, we want to compare a specific random variable X in two distinct

Title Suppressed Due to Excessive Length 5)

populations (e.g., height in two different countries). The first point of compar-
ison in such cases is to calculate empirical mean T = % Zivzl x; and empirical

variance —- Zivzl(xz —7)2. Two populations can be compared by looking at
the empirical mean and variance of the random variables of interest (observed
variables present inside each population).

The mathematical foundation of comparing mean and variance between two
populations is directly in line with the idea of this paper. If we are observing
two large populations, we know (from the central limit theorem [28]) that the
sum of the variables will tend towards a Gaussian distribution. Two parameters
determine Gaussian distribution: expected value p and variance o2 [28]; to fit
the Gaussian distribution to the data (population), we thus have to estimate
these two parameters. If we fit the distribution via the Maximum Likelihood
Estimation (MLE) method, [29], we see that the best estimator for the expected
value is empirical mean and for variance, the best estimator is empirical vari-
ance. From the probability theory, we know that the difference of two random
Gaussian variables is Gaussian variable with mean that is the difference of means
and variance that is the sum of variances [28]. Comparing population mean and
population variance is thus actually equivalent to comparing the Gaussian dis-
tributions fitted to the data.

Another perspective from which to examine the problem of comparing pop-
ulations is that we fit a function to the data (this function being the Gaussian
distribution). For some problems - like High Performance Computer (HPC) sys-
tem monitoring - autoencoders (type of neural networks) achieve state-of-the-art
results [19, 30]. As autoencoders are the class of functions that best describe this
specific class of problems (behavior of compute node in an HPC system), we
examine if we can compare the compute nodes by comparing the parameters of
the fitted autoencoders.

3.2 General overview of the approach

Figure 1 reports the block diagram of the proposed methodology. We can identify
the following steps:

1. On each node, a separate autoencoder model is trained. Semi-supervised
training of per-node autoencoder models is adopted from the state-of-the-
art paper [19].

2. After models are trained on each node, features are extracted (as described
in Section 3.4) from the deep learning models.

3. Based on these extracted features, the similarity between nodes is calculated.
Calculation of similarity can be done as the autoencoder projects the input
features into a latent representation where only the most salient correlations
between the input variables are preserved. The similarity measure is calcu-
lated by comparing the representation maps - specifically, the parameters of
the latent layer.

4. This similarity measure is then used in hierarchical clustering.

6 M. Molan et al.

Trained
AE

Extracting features and
calculating similarity

T - v :
Normal operation data \

Compute node racks

Fig. 1: Data flow schema. On each of the nodes (red in the picture), organized
into racks, we train a separate autoencoder model (circles). From these trained
models we extract features that are then used in the clustering of nodes.

3.3 Autoencoder models

Dense autoencoders are a type of deep neural network, which can be charac-
terized by different topology; those used in this work have a distinct hourglass
shape, a choice motivated by the results obtained by previous works in the
state-of-the-art®. The most relevant information of the network is encoded in
the latent layer. In this particular type of autoencoder, the latent layer is the
layer in the middle of the network and contains the fewest neurons. It is preceded
by the encoder and succeeded by the decoder, each composed of one or multiple
layers. The encoder and decoder layers used in this work have a symmetrical
architecture, which, generally speaking, is not strictly required. The fundamen-
tal role of the network is to efficiently encode the information from the input in
a compressed representation in the latent layer. Training of the autoencoder is
driven by the reproduction error produced by the decoder; reproduction error,
which is the difference between the real input and the reconstructed signal, is
minimized during training. The architecture of the network used in this work is
presented in Figure 2. It is adapted from the work by Borghesi et al. [19] where
it has been shown to produce state-of-the-art results in detecting anomalies on
an HPC system.

The set of autoencoders - as in original work [19] - are individually trained on
each node in a semi-supervised setting. Semi-supervised training means that the

® They are also referred to as contractive autoencoders

Title Suppressed Due to Excessive Length 7

data for training is filtered of all anomalies and that only the normal instances
are used in training the model.

Encoder

Anomaly
probability

. R. ERROR
(+462) (*,462)

Fig. 2: Architecture of the state-of-the-art model, proposed by [19]. In this pa-
per, relevant information is extracted from the latent layer Dense (*,8). Data is
collected for the ExaMon monitoring system [31].

3.4 Feature extraction

Due to the architecture of the neural network used in this work - as discussed
in Section 3.3 - we extract the relevant features from each node (each one with
its data set); these features are embedded in the weights of the latent layer. The
latent layer is described by the weights matrix W and the bias vector b. The
activation of the latent layer is given by @ = f(Wd + b) where f if a nonlinear
activation function. In the next subsections, we will describe different encoding
approaches of the latent layer information, which will then be used to extract

features.

Singular value decomposition Singular value decomposition represents ma-
trix M as M = USV™* where S is a diagonal matrix containing singular values
[32]. In this work, we used singular value decomposition on W, and we extracted
the vector of singular values (abbreviated to singular values in the future) and a
singular vector corresponding to the largest singular value (abbreviated singular
vector).

Representative vector A vector of ones 1 is used as a representative vector
as it corresponds to the activation of all neurons in a latent layer. It can serve as
a proxy for the transformation of the (linear part) of the latent layer. For each
node, we have thus calculated the product of W1 (abbreviated vector of ones)

and W1 4 b (abbreviated vector of ones plus bias).

8 M. Molan et al.

Matrix measures In this work, we leveraged the L1 and L2 norms induced in
the matrix space (induced by p norms for vectors) [33]. Based on these norms
we propose two ways to calculate distance between two matrices: distance =
||A — B||, and absolute distance abs_distance = |||A — Bl||,| where p is 1 or
2. Since the L1 measure is already symmetric, we do not separate a case with
absolute distance. We introduce the absolute value as we want our distance
measure to be symmetric.

We calculate the distance between nodes as a distance between the weights
matrices of autoencoders trained on them. Additionally, since the linear part of
the neural network is an affine transform, we introduce an augmented matrix A:

A= (Vo)
001

This matrix A captures the affine transform since @’ = Wa + b is equivalent to

a a
=A :
Another way to calculate the distance between nodes is to calculate the

distance between an affine transform that is determined by the (affine Wa + b)
part of the latent layer of the corresponding autoencoder.

3.5 Clustering

The calculated distance between clusters is an input for clustering. In this work,
we use agglomerative hierarchical clustering: each instance (in our case node)
starts as its cluster. At every step of the iteration, the two closest clusters are
connected. The connection between clusters is the closest distance between two
instances in corresponding clusters. The combining of clusters is repeated until
we reach the predetermined number of clusters.

3.6 Evaluating clustering

There are several possible measures to evaluate the goodness of the clustering
(e.g., Silhouette score) [34]. These scores, however, are not applicable in the
scenario explored by this work. We evaluate different possible feature extrac-
tion methods from the trained autoencoders; these different feature extraction
approaches produce different feature spaces. Thus we cannot compare the clus-
tering score (like Silhouette score) between different spaces. For this reason, we
evaluate the relevance of our clustering approaches by evaluating how “interest-
ing” the created clusters are.

The interest of clusters is reflected by how well they separate a specific vari-
able. Since clustering is an unsupervised method, it is reasonable to assume that
not all clusters will separate the same variable (such clustering would produce
distinctly wuninteresting clusters). However, we expect that there would be at

Title Suppressed Due to Excessive Length 9

least one cluster where the distribution of the target variable would be signifi-
cantly different than it is in the whole dataset. In this work, the target variable
is system availability. In other words, clusters will separate computing nodes
based on the autoencoder model’s latent layer encoding in groups having similar
availability, thus similar failure rate. We stress that from a practical point of
view, this means that an autoencoder model for each node is trained only on
"normal” operation samples and contains the information on the likelihood of
the node to be available (or not to fail). Clusters of nodes sharing the same
failure’s likelihood can be used to rationalize the maintenance procedure.

In the whole dataset, the system is available 0.96179% of the time. The most
interesting cluster is thus the one where the average availability of a cluster will
be as far away from this population average. The best clustering method is the
one producing the most interesting cluster.

3.7 Random sampling baseline

The relevance of the produced clusters determines the relevance of feature ex-
traction and, consequently, of clustering approaches. Specifically, we observe how
well the clusters separate a target variable (in the case of this work, the node’s
availability). To claim the relevance of the clustering approaches, we compare
them to random sampling. We compare how well the target variable is separated
by random sampling to how well clustering methods separate it. We are particu-
larly interested in clustering methods that produce clusters and separations that
do not (are very unlikely to occur) in random separation.

This paper implemented random clustering by producing a random matrix
(of the same size and range as extracted features) that is then passed to cluster-
ing algorithms. The produced clusters are thus equivalent to random sampling
without replacement. The generation of random clusters is repeated several (in
this work 10) times. For each cluster, the distribution of the target variable is
calculated; this distribution is then compared to distributions given by clustering
methods. In the results (section 4), the range of randomly generated distribu-
tions is presented as a box with whiskers plot. Distributions outside the range of
random distributions represent interesting patterns uncovered by the clustering
method.

4 Results

This section presents the results of the experimental analysis conducted on a tier-
0 supercomputer, Marconil00, hosted at CINECA, the largest Italian computing
center. The results were conducted on a statistically significant fraction of the
supercomputing nodes (more than two hundred) and cover a 10-months time
span of production activity of the system.

10 M. Molan et al.

4.1 Experimental setting

As explained in the methodology section 3, an individual model was trained on
each of the 241 randomly selected nodes of Marconil00. Models were trained
semi-supervised, meaning that only normal operation data was used for train-
ing. The whole dataset consists of 10 months of operational data collected on
Marconil00. The first eight months of the data were used as a training set and
the last two as a test set. Autoencoder models were trained on the train set. The
cluster analysis was performed only on the test set.

The dataset used in this work consists of a combination of information
recorded by Nagios (the system administrators tool used to visually check the
health status of the computing nodes) and the Examon monitoring systems; the
data encompasses the first ten months of operation of the M100 system. The
features collected in the dataset are listed in table 1. In order to align differ-
ent sampling rates of different reporting services, 15 minute aggregates of data
points were created. 15 minute interval was chosen as it is the native sampling
frequency of the Nagios monitoring service (where our labels come from). Four
values were calculated for each 15 minute period and each feature: minimum,
maximum, average, and variance.

Source Features

ambient temp., dimm|[0-15] temp.,
fan[0-7] speed, fan disk power,
GPUJ[0-3] core temp. ,

GPUJ0-3] mem temp. ,
gv100card|[0-3], core[0-3] temp. ,
p[0-1] io power,

Hardware monitoring|p[0-1] mem power,

p[0-1] power, p[0-1] vdd temp. ,
part max used,

ps[0-1] input power,

ps[0-1] input voltage,

ps[0-1] output current,

ps[0-1] output voltage, total power
CPU system, bytes out, CPU idle,
proc. run, mem. total,

pkts. out, bytes in, boot time,
CPU steal, mem. cached, stamp,
System monitoring |CPU speed, mem. free, CPU num.,
swap total, CPU user, proc. total,
pkts. in, mem. buffers, CPU idle,
CPU nice, mem. shared, PCle,
CPU wio, swap free

Table 1: An anomaly detection model is created only on hardware and applica-
tion monitoring features. More granular information regarding individual jobs is
not collected to ensure the privacy of the HPC system users.

Title Suppressed Due to Excessive Length 11

Features extracted from trained autoencoders are passed to hierarchical clus-
tering. Hierarchical clustering has been chosen as it only requires the pairwise
distance between the instances without making any assumptions about the space
induced by the distance measure. The number of clusters is set to 20 for all ex-
periments. A number of clusters is not a tuned parameter; 20 clusters represents
roughly 10% of all nodes and is a randomly chosen number.

4.2 Trained autoencoder

The trained autoencoder is adopted from the current state-of-the-art semi-super-
vised approach for anomaly detection [19]. The structure of the autoencoder is
presented in Figure 3. The autoencoder used as a binary classifier (form the
normalized reconstruction error) on the test set achieves the AUC (area under
the receiver-operator characteristic curve) of 0.7602.

Normal operation (the data where the autoencoder is trained) is determined
by the label (system availability) provided by the monitoring systems.

Encoder Decoder
1
input_1: InputLayer dense_1: Dense dense_2: Dense dense_3: Dense dense_4: Dense
input: | output: — input: | output: — input: | output: [— input: output: 3 input: output:
(None, 462) I (None, 462) (None, 462) I (None, 16) (None, 16) | (None, 8) (None, 8) | (None, 16) (None, 16) | (None, 462)
1

Fig. 3: Architecture of the autoencoder network, adopted from Borghesi et al.
[19]

4.3 Cluster analysis: normal operation percentage

The proposed approach aims to identify interesting clusters of nodes that behave
similarly. The similarity in behavior is also reflected in the fact that a cluster will
have similar values for at least one relevant feature. In this section, we evaluate
the similarity in average availability rate - in other words, we are interested
in seeing if the clustering methods can identify clusters with particularly low
availability (high failure rate). The average failure rate amongst 241 identified
nodes (in the test set) is 0.96179. We wish to identify clusters with significantly
lower availability rate.

In Table 2, the minimum average availability rates in a cluster, unidentified
by a specific feature extraction approach, are reported. The table shows that the
vector of singular values combined by the euclidean distance metric identifies
a cluster with the minimum average availability. This availability is also lower
than the random method’s minimum availability (ever achieved).

In Figure 4 and Figure 5 average availability per node is plotted (red dots).
Results of random sampling without replacement are presented as a box plot.

12 M. Molan et al.

Distance measure:

Avg ava. in min. cluster:

Num. of nodes in min. cluster:

Sing. vector (Euc.) 0.9286 6

Vector of sing. values (Euc.) 0.8809 7

W1+b (Euc.) 0.9126 8

WT (Euc.) 0.9367 5

W (absolute 1.2) 0.9191 7

A (absolute L2) 0.9276 5

W (L2) 0.9239 7

A (L2) 0.9124 10

W (L1) 0.9303 8

A (L1) 0.9303 8
Random sampling 0.9021 Not applicable

Table 2: Minimum average availability within clusters identified by different
feature extraction methods. Vector of singular values identifies a cluster with the
lowest average availability (highest anomaly rate). This is the most interesting
method as it separates the target variable (node availability) the best. None of
the proposed methods identify a cluster with a single node.

1.00
_ 0.98 1 : i g .
]
Sl || . a |
50961 || ; : : :
8 H
o o L]
% 0.94 . . :
L

7 =S
ot []
[
& 0.90 R
[°
2

0.88 .

0.86

Random

T T
Singular vec. Singular val.

Embedding

Vec. of [1] Vec. of [1] + bias

Fig. 4: Average error rate per cluster. Representation of nodes with a vector of
singular values identifies two clusters with significantly higher anomaly rate than

the whole population.

The average error rate across all nodes (0.96179) is marked with a violet dotted

Title Suppressed Due to Excessive Length 13

1.00
. 0.98 | E_‘ i H ‘ ! I
[]

g ! 0 : [i s s
© 0.96 1 s . (] s A R
g . 5 ¢ H H
_8 0.94 -] ° °
© ° H H
- R . S o I
209241 o .
(0] [
(0]
& 0.90 e
(0]
z

0.88

0.86 .

Random Lin. |L2| Aff. |[L2] Lin.L2 Aff.L2 Lin.L1 Aff. L1
Embedding and distance measure

Fig.5: Average error rate per cluster. Matrix-based feature extraction performs
worse than the vector methods.

line. Area of values, observed in a random process, are marked with gray. Values
never observed by the random process are left white.

Analyzing Figures 4 and 5 we observe that only the vector of singular values
produced cluster with averages never observed in random samples.

The clustering method based on a vector of singular values combined with
euclidean distance identifies two clusters with particularly low average availabil-
ity. Such low average availability has also never occurred in a random selection
of clusters. Low average availability means that hierarchical clustering based on
singular value decomposition of weights matrix produces non-trivial clusters that
are extremely unlikely to be matched by a random selection of clusters.

Identifying interesting clusters regarding availability is a non-trivial result as
a neural network has no access to that label during training.

This promising result suggests that the created clusters share similar avail-
ability, and thus clusters can be created based on autoencoder semi-supervised
models latent layer information. This cluster can then be used during the sys-
tem’s lifetime to create canaries to focus the maintenance over nodes belonging
to the same cluster of the canary node.

5 Conclusions

This work opens the possibility of extracting additional information from the
state-of-the-art approach towards anomaly detection in the HPC setting. Besides

14 M. Molan et al.

using per-node autoencoder models for anomaly detection [19,17, 18], it is also
possible to construct informative clusters from the parameters of the trained
neural networks themselves.

We demonstrate the usefulness of the identified clusters on a concrete exam-
ple: identifying clusters with the abnormal failure rate. This result is significant
as the neural networks, from where the features are extracted, have no access to
that label during training. Still, our approach can identify two clusters of nodes
with lower availability (higher failure rate) than the population average.

We stress the fact that with this approach, clusters can be created based
on a model trained on the first month of operations and then applied for the
remaining lifetime of the system to focus maintenance to the nodes belonging
to the same cluster containing the node which has experienced failures. Sys-
tem administrators focus their regular inspections only on canary nodes, each
representative of one cluster.

6 Acknowledgments

This research was partly supported by the EuroHPC EU PILOT project (g.a.
101034126), the EuroHPC EU Regale project (g.a. 956560), EU H2020-1CT-11-
2018-2019 IoTwins project (g.a. 857191), and EU Pilot for exascale EuroHPC
EUPEX (g. a. 101033975). We also thank CINECA for the collaboration and
access to their machines and Francesco Beneventi for maintaining Examon.

References

1. M. Garcia-Gasulla, B. J. Wylie, Performance optimisation and productivity for eu
hpc centres of excellence (and european parallel application developers preparing
for exascale): Best practice for efficient and scalable application performance, in:
Platform for Advanced Scientific Computing (PASC) Conference, no. FZJ-2022-
00887, Jiilich Supercomputing Center, 2021.

2. P. Kogge, D. R. Resnick, Yearly update: exascale projections for 2013., 2013.

doi:10.2172/1104707.

T. C. Germann, Co-design in the exascale computing project (2021).

4. J. Gao, F. Zheng, F. Qi, Y. Ding, H. Li, H. Lu, W. He, H. Wei, L. Jin, X. Liu,
et al., Sunway supercomputer architecture towards exascale computing: analysis
and practice, Science China Information Sciences 64 (4) (2021) 1-21.

5. O. Terzo, J. Martinovi¢, HPC, Big Data, and AI Convergence Towards Exascale:
Challenge and Vision, CRC Press, 2022.

6. X. Yang, Z. Wang, J. Xue, Y. Zhou, The reliability wall for exascale supercomput-
ing, IEEE Transactions on Computers 61 (6) (2012) 767-779.

7. K. S. Stefanov, S. Pawar, A. Ranjan, S. Wandhekar, V. V. Voevodin, A review
of supercomputer performance monitoring systems, Supercomputing Frontiers and
Innovations 8 (3) (2021) 62-81.

8. M. A. Jette, A. B. Yoo, M. Grondona, Slurm: Simple linux utility for resource
management, in: In LCNS: Proceedings of JSSPP, Springer-Verlag, 2002.

9. A. P. Works, Pbs professional®14.2 plugins (hooks) guide,
https://pbsworks.com/pdfs/PBSHooks14.2.pdf (2017).

w

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Title Suppressed Due to Excessive Length 15

T. Dang, N. Nguyen, Y. Chen, Hiperview: real-time monitoring of dynamic be-
haviors of high-performance computing centers, The Journal of Supercomputing
77 (10) (2021) 11807-11826.

B. Yang, X. Ji, X. Ma, X. Wang, T. Zhang, X. Zhu, N. El-Sayed, H. Lan, Y. Yang,
J. Zhai, et al., End-to-end {I/O} monitoring on a leading supercomputer, in: 16th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
19), 2019, pp. 379-394.

A. Bartolini, F. e. a. Beneventi, Paving the way toward energy-aware and auto-
mated datacentre, in: Proceedings of the 48th International Conference on Parallel
Processing: Workshops, 2019, pp. 1-8.

N. Wu, Y. Xie, A survey of machine learning for computer architecture and systems,
ACM Computing Surveys (CSUR) 55 (3) (2022) 1-39.

O. Tuncer, E. Ates, Y. e. a. et Zhang, Online diagnosis of performance variation
in hpc systems using machine learning, IEEE Transactions on Parallel and Dis-
tributed Systems (9 2018).

A. Netti, Z. Kiziltan, O. Babaoglu, A. Sirbu, A. Bartolini, A. Borghesi, A machine
learning approach to online fault classification in hpc systems, Future Generation
Computer Systems (2019).

A. Bose, H. Yang, W. H. Hsu, D. Andresen, Hpcgen: A predictive framework on
high performance computing cluster log data using graph convolutional networks,
in: 2021 IEEE International Conference on Big Data (Big Data), IEEE, 2021, pp.
4113-4118.

A. Borghesi, A. Bartolini, et al., Anomaly detection using autoencoders in hpc
systems, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2019.
A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, L. Benini, A semisupervised
autoencoder-based approach for anomaly detection in high performance computing
systems, Engineering Applications of Artificial Intelligence 85 (2019) 634-644.

A. Borghesi, M. Molan, M. Milano, A. Bartolini, Anomaly detection and anticipa-
tion in high performance computing systems, IEEE Transactions on Parallel and
Distributed Systems 33 (4) (2022) 739-750. doi:10.1109/TPDS.2021.3082802.

A. Netti, W. Shin, M. Ott, T. Wilde, N. Bates, A conceptual framework for hpc op-
erational data analytics, in: 2021 IEEE International Conference on Cluster Com-
puting (CLUSTER), 2021, pp. 596-603. doi:10.1109/Cluster48925.2021.00086.

B. Aksar, Y. Zhang, E. Ates, B. Schwaller, O. Aaziz, V. J. Leung, J. Brandt,
M. Egele, A. K. Coskun, Proctor: A semi-supervised performance anomaly diag-
nosis framework for production hpc systems, in: International Conference on High
Performance Computing, Springer, 2021, pp. 195-214.

B. Aksar, B. Schwaller, O. Aaziz, V. J. Leung, J. Brandt, M. Egele, A. K. Coskun,
E2ewatch: An end-to-end anomaly diagnosis framework for production hpc sys-
tems, in: European Conference on Parallel Processing, Springer, 2021, pp. 70-85.
D. Bank, N. Koenigstein, R. Giryes, Autoencoders, CoRR abs/2003.05991 (2020).
arXiv:2003.05991.

URL https://arxiv.org/abs/2003.05991

C. Song, F. Liu, Y. Huang, L. Wang, T. Tan, Auto-encoder based data clustering,
in: J. Ruiz-Shulcloper, G. Sanniti di Baja (Eds.), Progress in Pattern Recognition,
Image Analysis, Computer Vision, and Applications, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013, pp. 117-124.

X. Li, Z. Chen, L. K. Poon, N. L. Zhang, Learning latent superstructures in
variational autoencoders for deep multidimensional clustering, arXiv preprint
arXiv:1803.05206 (2018).

16

26.

27.

28.

29.

30.

31.

32.

33.
34.

M. Molan et al.

W. Wang, D. Yang, F. Chen, Y. Pang, S. Huang, Y. Ge, Clustering with orthogonal
autoencoder, IEEE Access 7 (2019) 62421-62432.

A. Alam, M. Mugeem, S. Ahmad, Comprehensive review on clustering techniques
and its application on high dimensional data, International Journal of Computer
Science & Network Security 21 (6) (2021) 237-244.

B. Davis, D. McDonald, An elementary proof of the local central limit theorem,
Journal of Theoretical Probability 8 (3) (1995) 693-702.

L. L. Cam, Maximum likelihood: An introduction, International Statistical Review
/ Revue Internationale de Statistique 58 (2) (1990) 153-171.

URL http://www.jstor.org/stable/1403464

A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, L. Benini, A semisupervised
autoencoder-based approach for anomaly detection in high performance comput-
ing systems, Engineering Applications of Artificial Intelligence 85 (2019) 634-644.
doi:https://doi.org/10.1016/j.engappai.2019.07.008.

URL https://www.sciencedirect.com/science/article/pii/S0952197619301721

A. Bartolini, F. Beneventi, A. Borghesi, D. Cesarini, A. Libri, L. Benini, C. Cavaz-
zoni, Paving the way toward energy-aware and automated datacentre, in: Pro-
ceedings of the 48th International Conference on Parallel Processing: Workshops,
ICPP 2019, Association for Computing Machinery, New York, NY, USA, 2019.
doi:10.1145/3339186.3339215.

URL https://doi.org/10.1145/3339186.3339215

M. E. Wall, A. Rechtsteiner, L. M. Rocha, Singular value decomposition and prin-
cipal component analysis, in: A practical approach to microarray data analysis,
Springer, 2003, pp. 91-109.

G. Belitskii, et al., Matrix norms and their applications, Vol. 36, Birkh&user, 2013.
F. Murtagh, P. Contreras, Algorithms for hierarchical clustering: an overview, Wi-
ley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2 (1) (2012)
86-97.

RUAD: unsupervised anomaly detection
in HPC systems

Martin Molan?, Andrea Borghesi®, Daniele Cesarini®, Luca Benini®®, Andrea Bartolini®

4DISI and DEI Department, University of Bologna, Bologna, Italy
PCINECA consorzio interuniversitario, Bologna, Italy
CInstitut fiir Integrierte Systeme, ETH, Ziirich, Switzerland

Abstract

The increasing complexity of modern high-performance computing (HPC) systems necessitates the introduction of automated and
data-driven methodologies to support system administrators’ effort toward increasing the system’s availability. Anomaly detection is
an integral part of improving the availability as it eases the system administrator’s burden and reduces the time between an anomaly
and its resolution. However, current state-of-the-art (SoA) approaches to anomaly detection are supervised and semi-supervised, so
they require a human-labelled dataset with anomalies - this is often impractical to collect in production HPC systems. Unsupervised
anomaly detection approaches based on clustering, aimed at alleviating the need for accurate anomaly data, have so far shown poor
performance.

In this work, we overcome these limitations by proposing RUAD, a novel Recurrent Unsupervised Anomaly Detection model.
RUAD achieves better results than the current semi-supervised and unsupervised SoA approaches. This is achieved by considering
temporal dependencies in the data and including long-short term memory cells in the model architecture. The proposed approach is
assessed on a complete ten-month history of a Tier-0 system (Marconil00 from CINECA with 980 nodes). RUAD achieves an area
under the curve (AUC) of 0.763 in semi-supervised training and an AUC of 0.767 in unsupervised training, which improves upon
the SoA approach that achieves an AUC of 0.747 in semi-supervised training and an AUC of 0.734 in unsupervised training. It also
vastly outperforms the current SoA unsupervised anomaly detection approach based on clustering, achieving the AUC of 0.548.

1. Introduction

Recent trends in the development of high-performance com-
puting (HPC) systems (such as heterogeneous architecture and
higher-power integration density) have increased the complex-
ity of their management and maintenance [1]. A typical con-
temporary HPC system consists of thousands of interconnected
nodes; each node usually contains multiple different accelera-
tors such as graphical processors, FPGAs, and tensor cores [2].
Monitoring the health of all those subsystems is an increasingly
daunting task for system administrators. To simplify this mon-
itoring task and reduce the time between anomaly insurgency
and response by the administrators, automatic anomaly detec-
tion systems have been introduced in recent years [3].

Anomalies that result in downtime or unavailability of the
system are expensive events. Their cost is primarily associated
with the time when the HPC system cannot accept new com-
pute jobs. Since HPC systems are costly and have a limited
service lifespan [4], it is in the interest of the system’s opera-
tor to reduce unavailability times. Anomaly detection helps in
this regard as it can significantly reduce the time between the
fault and the response by the system administrator, compared
to manual reporting of faulty nodes [5].

Modern supercomputers are endowed with monitoring sys-
tems that give the system administrators a holistic view of the
system [3]. Data collected by these monitoring systems and his-
torical data describing system availability are the basis for Ma-

Preprint submitted to Future Generation Computer Systems

chine Learning anomaly detection approaches [6, 7, 8, 9, 10],
which build data-driven models of the supercomputer and its
computing nodes. In this work, we focus on CINECA Tier0
HPC system (MarconilOO [11, 12] ranked 9th in Jun. 2020
Top500 list [13]), which employs a holistic monitoring system
called EXAMON [14].

Production HPC systems are reliable machines that gen-
erally have very few downtime events - for instance, in Mar-
conil00 at CINECA, timestamps corresponding to faulty events
represent, on average, only 0.035% of all data. However, al-
though anomalies are rare events, they still significantly impact
the system’s overall availability - during the observation pe-
riod, there was at least one active anomaly (unavailable node)
14.4% of the time. State-of-the-art (SoA) methods for anomaly
detection on HPC systems are based on supervised and semi-
supervised approaches from the Deep Learning (DL) field [5];
for this reason, these methods require a training set with accu-
rately annotated periods of downtime (or anomalies). In turn,
this requires the monitoring infrastructure to track downtime
events; in some instances, this can be done with specific soft-
ware tools (e.g., Nagios [15]), but properly configuring these
tools is a complex and time-consuming task for
system administrators.

So far, the challenges of anomaly detection on HPC systems
have been approached by deploying anomaly reporting tools by
training the models in a supervised or semi-supervised fashion

August 23, 2024

[5, 16, 17, 8]. The need for an accurately labelled training set
is the main limitation of current approaches as it is expensive,
in terms of time and effort of the system administrators, to be
applied in practice. Downtime tracking also has to be able to
record failures with the same granularity as the other monitor-
ing services. Some methods in production HPC systems only
record downtime events by date [1, 2, 3]. In most production
HPC systems, accurate anomaly detection is thus not readily
achievable. For this reason, the majority of the methods from
the literature were tested on historical or synthetic data or in
supercomputers where faults were injected in a carefully con-
trolled fashion [18]. Another limitation for the curation of an
accurately labeled anomaly dataset is the short lifetime of most
HPC systems. In the HPC sector, a given computing node and
system technology have a lifetime of between three and five
years. Short lifetime means, in practice, that the vendor has no
time to create a dataset for training an anomaly detection model
before the system is deployed to the customer site.

A completely unsupervised anomaly detection approach
could be deployed on a new node or even on an entirely new
HPC system. It would then learn online and without any in-
teraction with the system administrators. Additionally, such a
system would be easier to deploy as it would require no ad-
ditional framework to report and record anomalous events (in
addition to the monitoring infrastructure needed to build the
data-driven model of the target supercomputer - a type of in-
frastructure which is becoming more and more widespread in
current HPC facilities [3]).

Unsupervised anomaly detection approaches for HPC sys-
tems exist such
as [19, 20, 21]. They either work on log or sensor data. Ap-
proaches based on log data [19, 21], while useful, can only
offer a post-mortem and restricted view of the supercomputer
state. The SoA for anomaly detection on sensor data [20] is
based on clustering, which requires a degree of manual anal-
ysis from system administrators and offers poor performance
compared to semi-supervised methods. The semi-supervised
methods [5, 6, 22], based on the dense autoencoders, which are
trained to reproduce their input, could be trained in an unsu-
pervised fashion. However, none of the presented works has
explored this possibility. According to the SoA, the models
would perform worse as the dense autoencoder is also capable
of learning the characteristics of the anomalies [5, 6, 22].

The primary motivation for this work is to propose a novel
approach that relies only on the fact that the anomalies are rare
events and works at least equally well when trained in an un-
supervised manner as it does when trained in semi-supervised
manner - this has not been the case in the current SoA. In this
work, we propose an unsupervised approach: RUAD (Recur-
rent Unsupervised Anomaly Detection) that works on sensor
data and outperforms all other approaches, including the cur-
rent SOA semi-supervised approach [5] and SoA unsupervised
approach [20]. RUAD achieves that by taking into account tem-
poral dependencies in the data. We achieve that by using Long
Short-Term Memory (LSTM) cells in the proposed neural net-
work model structure, which explicitly take into consideration
the temporal dimension of observed phenomena. We also show

that the RUAD model, comprising of LSTM layers, is capable
of learning the characteristic of the normal operation even if the
anomalous data is present in the test set - the RUAD model is
thus able to be trained in an unsupervised manner. RUAD tar-
gets single HPC computing nodes: we have different anomaly
detection models for each computing node. The motivation be-
hind this is scalability: in this way, each node can be used to
train its own model with minimal overhead - moreover, this
strategy would work in larger supercomputers as well, as if the
number of nodes increases, we just have to add new detection
models.

1.1. Contributions of the paper

To recap, in this paper, we propose an anomaly detection
framework that can handle complex system monitoring data,
scale to large-scale HPC systems, and be trained even if no la-
belled dataset is available. The key contributions presented in
this paper are:

e We propose a completely unsupervised anomaly detec-
tion approach (RUAD) that exploits the fact that the anoma-
lies are rare and explicitly considers the temporal depen-
dencies in the data by using LSTM cells in an autoen-
coder network. The resulting Deep Learning model out-
performs the previous state-of-the-art semi-supervised
approach [5], based on time-unaware autoencoder net-
works. On the dataset presented and analysed in this
paper (collected from the Marconil00 supercomputer),
the previous approach achieves an Area-Under-the-Curve
(ACU) test set score of 0.7470. In contrast, our unsuper-
vised approach achieves the best test set AUC score of
0.7672. To the best of our knowledge, this work is the
first time such an approach has been applied to the field
of HPC system monitoring and anomaly detection.

e We have conducted a very large-scale experimental eval-
uation of our methods. We have trained four different
deep learning models for each of the 980+ nodes of Mar-
conil00. To the best of our knowledge, this is the largest
scale experiment relating to anomaly detection in HPC
systems, both in terms of the number of considered nodes
and length of time. Previous works only evaluate the
models on a subset of nodes with a short observation
time ([5] paper, for instance, only analyzed 20 nodes of
the HPC system over two months). Per-node training
of models also demonstrates the feasibility of per node
models for large HPC systems. The training time for
the individual model was under 30 minutes on a single
NVIDIA Volta V100 GPU.

1.2. Structure of the paper

We present the current state-of-the-art and position our pa-
per in Section 2. The machine learning approaches used for
anomaly detection, including our novel approach, are described
in section 3. The experimental setting for empirical validation
of our results is detailed in Section 4.1 and our results are dis-
cussed in the rest of Section 4. Finally, Section 5 offers some
concluding remarks.

2. Related Works

The drive to detect events or instances that deviate from the
norm (i.e. operational anomalies) is present across many indus-
trial applications. One of the earliest applications of anomaly
detection models was credit card fraud detection in the financial
industry [23, 24]. Recently, anomaly detection (and associated
predictive maintenance) has become relevant in manufacturing
industries [25, 26], internet of things (IoT) [27, 28, 29], energy
sector [30], medical diagnostics [31, 32], IT security [33], and
even in complex physics experiments [34].

Typically, anomalies in an HPC system refer to periods of
(and leading to) suboptimal operating modes, faults that lead
to failed or incorrectly completed jobs, or node and other com-
ponents hardware failures. While HPC systems have several
possible failure mitigation strategies [35] and fault tolerance
strategies [36], anomalies of this type still significantly reduce
the amount of compute time available to users [37]. The transi-
tion towards Exascale and the increasing heterogeneity of hard-
ware components will only exacerbate the issues stemming from
failures, and anomalous conditions that already plague HPC
machines [1, 3, 38]. A DARPA study estimates that the fail-
ures in future exascale HPC systems could occur as frequently
as once every 35-39 minutes [39], thus significantly impacting
the supercomputing availability and system administrator load.

However, when looking at specific components and not at
the entire HPC system (e.g., considering a single computing
node), faults remain very rare events, thus falling under the area
of anomaly detection, which can be seen as an extreme case of
supervised learning on unbalanced classes [40]. Because data
regarding normal operation far exceeds data regarding anoma-
lies, classical supervised learning approaches tend to overfit the
normal data and give a sub-optimal performance on the anoma-
lous data [41]. In order to mitigate the problem of unbalanced
classes, the anomaly detection problem is typically approached
from two angles. Approaches found in the State-of-Art (SoA)
that address the class imbalance either modify the data [42]
or use specialized techniques that work well on anomaly de-
tection problems [5]. Data manipulation approaches address
the dataset imbalance either by decreasing the data belonging
to normal operation (under sampling the majority class) or by
oversampling or even generating anomalous data (over sam-
pling minority class) [42]. Data manipulation for anomaly de-
tection in HPC systems has not yet been thoroughly studied.
Conversely, most existing approaches rely on synthetic data
generation, e.g., injection of anomalies in real (non-production)
supercomputers or HPC simulators [5].

Another research avenue exploits the abundance of normal
data from HPC systems using a different learning strategy,
, namely semi-supervised ML models. Instead of learning on
a dataset containing multiple classes — and consequently learn-
ing the characteristics of all classes — semi-supervised models
are trained only on the normal data. Hence, they are trained
to learn the characteristics of the of the normal class (the ma-
jority class in the dataset). Anomalies are then recognized as
anything that does not correspond to the learned characteristic
of the normal class [40, 6, 43, 22, 44].

Regarding the type of data used to develop and
deploy anomaly detection systems, we can identify two macro-
classes: system monitoring data collected by holistic moni-
toring systems (i.e. Examon [14]) and log data. This data
is then annotated with information about the system or node-
level availability, thus creating a label associated with the data
points. The label encodes whether the system is operating nor-
mally or experiencing an anomaly. Since it is expensive and
time-consuming to obtain labelled system monitoring data, a
labelled dataset for supervised learning can be obtained by "in-
jecting” anomalies into the HPC system (like [18]). Labels are
important for both supervised, semi-supervised and unsuper-
vised approaches. In the first case, they are used to compute
the loss, in the second case to identify the training dataset and
validation, and in the third case, only for validation. This data
can then be used in a supervised learning task directly or af-
ter processing new features (feature construction). Examples
of this approach are [45, 17, 46] where authors use supervised
ML approaches to classify the performance variations and job-
level faults in HPC systems. For fault detection, [8, 18] propose
a supervised approach based on Random Forest (an ensemble
method based on decision trees) to classify faults in an HPC
system. All mentioned approaches use synthetic anomalies in-
jected into the HPC system to train a supervised classification
model. Approaches [5] and [16] are among the few that lever-
age real anomalies collected from production HPC systems (as
opposed to injected anomalies). In this paper, we are interested
in real anomalies, and thus, we will not include methods using
synthetic/simulated data or injected anomalies in our quantita-
tive comparisons.

All mentioned approaches do not take into account tempo-
ral dependencies of data (models are not trained on time se-
ries but on tabular data containing no temporal information).
System monitoring data approach [47] is the first to take into
account temporal dependencies in data by calculating statisti-
cal features on temporal dimension (aggregation, sliding win-
dow statistics, lag features). Most approaches that deal with
time series anomaly detection do so on system log data. La-
belled anomalies are either analyzed with log parsers [48] or
detected with deep learning methods. Deep learning methods
for anomaly detection are based on LSTM neural networks as
they are a proven approach in other text processing fields.

Compared to labelled training sets, much less work has been
done on unlabelled datasets - despite this case being much more
common in practice. So far, all research on unlabelled datasets
has focused on system log data. [19] propose a k-means based
unsupervised learning approach that does not take into account
temporal dynamics of the log data. A clustering-based approach
on sensor data is proposed by [20]. This approach will serve
as one of the baselines in the experimental section (as it is the
only unsupervised approach on the sensor and not on log data).
An approach [21] works on time series data in an unsupervised
manner. It uses the LSTM-based autoencoder and is trained on
the existing log data dataset. The proposed anomaly detector
achieves the AUC (area under the receiver-operator character-
istic curve) of 0.59. Although it works on a drastically different
type of dataset (log data as opposed to system monitoring data),

it is the closest existing work to the scope of the research pre-
sented in this paper. As we show later in the paper, we can
achieve much better results than the one reported for the log
data models [21] by deploying an unsupervised anomaly detec-
tion approach on system monitoring data on a per-node basis.
Table 1 summarizes the most relevant approaches described in
this section, focusing on the training set and temporal depen-
dencies.

Tabular data | Time series
Supervised [49, 9] [47, 48, 10]
Semi-supervised | [5, 6,43, 22]
Unsupervised [19, 20] [21]

Table 1: Summary of anomaly detection approaches on HPC systems

The novelty of this paper is, in relation to the existing works,
threefold:

o it introduces an unsupervised time-series based anomaly
detection model named RUAD;

e it proposes a deep learning architecture that captures time
dependency;

e the approach is evaluated on a large scale production
dataset with real anomalies — this is the largest scale eval-
uation ever conducted on this kind of problem, to the best
of our knowledge.

3. Methodology

In this section, we describe the proposed approach for un-
supervised anomaly detection. We do not directly introduce
the proposed method (the LSTM autoencoder deep network)
as we want to show how it is a significant extension to the cur-
rent state-of-the-art; thus, we start by introducing three baseline
methods, i) exponential smoothing (serving as the most basic
method for comparison), ii) unsupervised clustering and iii) the
dense autoencoder used in [5]. We then describe our approach
in detail and highlight its key strengths (the unsupervised train-
ing regime and the explicit inclusion of the temporal dimen-
sion).

3.1. Node anomaly labeling

We aim to recognize the severe malfunctioning of a node
that prevents it from executing regular compute jobs. This mal-
functioning does not necessarily coincide with removing a node
for the production, as reported by Nagios. In our discussions
with system administrators of CINECA, we have concluded
that the best proxy for node availability is the most critical state,
as reported by Nagios. For this reason, we have created a new
label called node anomaly that has a value 1 if any subsystem
reported by Nagios reports a critical state. From these events
(reported anomalies), we then filter out known false positive
events based on reporting tests or configurations in Jira [50].

Jira logs are supplied by CINECA. The labels used in our pre-
vious work [5] do not apply to M100 as they were extensively
used to denote nodes being removed from production for test-
ing and calibration. In this work, we are examining the early
period of the HPC machine life-cycle, when several rounds of
re-configuration were performed, thus partially disrupting the
normal production flow of the system. Comparing the two la-
belling strategies in table 2, we can see that the overlap between
the two is minimal. Additionally, there are far fewer anomalies
as reported by the node anomaly mainly because the M100 went
through substantial testing periods in the first ten months of op-
eration where nodes are marked as removed from production
while still functioning normally. In the remainder of the paper,
class 0 or class 1 will always refer to the value of node anomaly
being 0 or 1 respectively. Normal data is all data where node
anomaly has value 0 and anomalies are instances where node
anomaly has value 1.

Node anomaly
0 1
Removed from production: False | 12 139 560 | 4 280
Removed form production: True 15783 12

Table 2: Comparison between removed from production and node availability.
The anomalies studied in this work (node availability) significantly differ (and
are more reliable) from anomalies studied in previous works. The new labels
also mark much fewer events as anomalous.

3.2. Reconstruction error and result evaluation

The problem of anomaly detection can be formally stated as
a problem of training the model M that estimates the probabil-
ity P that a sequence of vectors of length W ending at time 7
represents an anomaly at time #):

M : Xy_wii,- -, Xy = P(X, is an anomaly). (1

Vector x, collects all feature values at time 7; the features are
the sensor measurements collected from the computing nodes.
W is the size of the past window that the model M takes as in-
put. If the model does not take past values into account - like
the dense model implemented as a baseline [5] - and the win-
dow size W is 1, the problem can be simplified as estimating:

M : X, — P(X, is an anomaly). 2)

In the case of autoencoders, model M is composed of two
parts: autoencoder A (a neural network) and the anomaly score,
which is computed using the reconstruction error of the autoen-
coder. The reconstruction error is calculated by comparing the
output of autoencoder model A and the real value vector X,.
The task of model A is to reconstruct the last element of its
input sequence:

L2 = 5
A Xty 5 Xy = Xgge 3)

Vector ,%’,U the reconstruction of vector ¥;,. As in Eq. 2, win-
dow size W can be 1. The model A outputs normalized data .
The reconstruction error is calculated as the sum of the absolute

difference between the output of model A and the normalized
input value for each feature: Error(ty) = va |X; — x;| where N
is the number of features and):c’,n is the output of the model A.
The error is then normalized by dividing it by the maximum er-
ror on the training set: Normalized error(fy) = —=rerfol__ e

. . max(Error(t))
estimate the probability for class 1 (anomaly) as

1, if : Normalized error > 1,
P(%,, is an anomaly) = s . - @)
Normalized error, otherwise

Based on probability P(X,,isananomaly), the classifier makes
the prediction whether the sequence Xj,—w,-- , X;, belongs to
class 1 (anomaly) of class O (normal operation). This predic-
tion depends on a threshold 7', which is a tunable parameter:

1, if © P(%, is an anomaly) > T,)

Class(X) = {O, otherwise

To avoid selecting a specific threshold 7', we introduce the
Receiver-Operator Characteristic curve (ROC curve) as a per-
formance metric. It allows us to evaluate the performance of
the classification approach for all possible decision thresholds
[51]. The receiver-operator characteristic curve plots the true-
positive rate in relation to the false-positive rate. The random
decision represents a linear relationship between the two — for
a classifier to make sense, the ROC curve needs to be above
the diagonal line. For each specific point on the curve, the bet-
ter classifier is the one whose ROC curve is above the other.
The overall performance of the classifier can be quantitatively
computed as the Area Under the ROC Curve (AUC); a classi-
fier making random decisions has the AUC equal to 0.5. AUC
scores below 0.5 designate classifiers that are worse than ran-
dom choice. The best possible AUC score is 1, which is achieved
by a classifier that would achieve a true-positive rate equal to 1
while having a false-positive rate equal to O (broadly speaking,
this is only achievable on trivial datasets or very simple learning
tasks).

3.3. Trivial baseline: exponential smoothing

Exponential smoothing is implemented as a trivial baseline
comparison. It is a simple and computationally inexpensive
method that detects rapid changes (jumps) in values. If the
anomalies were simply rapid changes in values with no correla-
tion between features, a simple exponential smoothing method
would be able to discriminate them. Therefore, we chose ex-
ponential smoothing as a first baseline as it is computationally
inexpensive and requires no training set. Additionally, if ex-
ponential smoothing performs poorly, this underlines that we
are indeed solving a non-trivial anomaly detection problem, for
which more powerful models are needed.

For the baseline, we choose to implement exponential smooth-
ing per feature independently. Exponential smoothing for fea-
ture 7 at time ¢ is calculated as:

fi=ax+(l-a)f_ | VieF

©)

where # is an estimate of x at time ¢ and « is a parameter
of the method. We do this for all features in set F. The estimate
at the beginning of the observation is equal to the actual value
at time #o: fcﬁu = inA

3.4. Unsupervised baseline: clustering

A possible approach to unsupervised anomaly detection is
to use standard unsupervised machine learning techniques such
as k-means clustering proposed by [20]. The clusters are deter-
mined on the train set; each new instance belonging to the test
set is associated with one of the pre-trained clusters. We opted
for this particular unsupervised technique for the comparison as
it is the only unsupervised method found in the literature (to the
best of our knowledge) which uses sensor data and not logs -
and thus, we guarantee a fair comparison. It has to be noted,
however, that clustering, while belonging to the field of unsu-
pervised machine learning cannot detect anomalies in an un-
supervised manner - for each of the clusters determined on the
train set, the probability for the anomaly has to be calculated.
This probability can only be calculated using the labels.

In this work, the clustering approach inspired by [20] is im-
plemented to prove the validity of the obtained results. We have
used K-means clustering [19] like it has been proposed in [20].
We have trained the clusters on the train set. Based on the sil-
houette score! on the train set, we have determined the optimal
number of clusters for each node?. The percentage of instances
that belong to class 1 is calculated for each of the determined
clusters. We use this percentage of anomalous instances as the
anomaly probability for each instance assigned to a specific
cluster. The train and test set split is the same as in all other
evaluated methods.

3.5. Semi-supervised baseline: dense autoencoder

The competitive baseline method is based on the current
state-of-the-art dense autoencoder model proposed by [5]. Au-
toencoders are types of neural networks (NN) trained to repro-
duce their input. The network is split into two (most often sym-
metric) parts: encoder and decoder. The role of the encoder is to
compress the input into a more condensed representation. This
representation is called the latent layer. To prevent the network
from learning a simple identity function, we choose the latent
layer to be smaller than the original input size (number of in-
put features) [6]. The role of the decoder is to reconstruct the
original input using the latent representation.

Dense autoencoders are a common choice for anomaly de-
tection since we can restrict their expressive power by acting
on the size of the latent layer. Compressing the latent dimen-
sion forces the encoder to extract the most salient character-
istics from the input data; unless the input data is highly re-
dundant, the autoencoder cannot correctly learn to recreate its

Ithe Silhouette score is a measure of performance for a clustering method.
It measures how similar an instance is to others in its own cluster compared to
instances from the other clusters [52]. It is calculated as S score = % where
a is the mean inter-cluster distance, and b is the mean nearest cluster distance
for each sample.

2Qptimal number of clusters is the number of clusters that produces the
highest silhouette score on the train set.

input after a certain latent size reduction. In the current state-
of-the-art for anomaly detection in production supercomputers
([5]) the dense autoencoder is used in a semi-supervised fash-
ion, meaning that the network is trained using only data points
corresponding to the normal operation of the supercomputer
nodes (Class 0). Semi-supervised training is doable as the nor-
mal points are the vast majority and thus are readily available;
however, this requires having labelled data or at least a certainty
that the HPC system was operating in normal conditions for a
sufficiently long period of time. Once the autoencoder has been
trained using only normal data, it will be able to recognize sim-
ilar but previously unseen points. Conversely, it will struggle to
reconstruct new points which do not follow the learned normal
behaviour, that is, the anomalies we are looking for; hence, the
reconstruction error will be higher. The structure of the autoen-
coder model is presented in Figure 1a. The dense autoencoder
does not take into account the temporal dynamics of the data —
its input and target output are the same vector:

So0A : % — X,. @)

3.6. Recurrent unsupervised anomaly detection: RUAD

Moving beyond the state-of-the-art model, we propose a
different approach, RUAD. It takes as input a sequence of vec-
tors and then tries to reconstruct only the last vector in the se-
quence:

RUAD : X w1, Xy = Xy (8)

The input sequence length is a tunable parameter that spec-
ifies the size of the observation window W. The idea of the pro-
posed approach is similar to the dense autoencoder in principle,
but with a couple of significant extensions: 1) we are encoding
an input sequence into a more efficient representation (latent
layer) and 2) we train the autoencoder in an unsupervised fash-
ion (thus removing the requirement of labelled data). The key
insight in the first innovation is that while the data describing
supercomputing nodes is composed of multi-variate time series,
the state-of-the-art does not explicitly consider the temporal di-
mension — the dense autoencoder has no notion of time nor of
sequence of data points. To overcome this limitation, our ap-
proach works by encoding the sequence of values leading up to
the anomaly. The encoder network is composed of Long Short-
Term Memory (LSTM) layers, which have been often proved
to be well suited to the context where the temporal dimension
is relevant [53]. An LSTM layer consists of recurrent cells that
have an input from the previous timestamp and from the long-
term memory.

To address the scale of current pre-exascale and future ex-
ascale HPC systems that will consist of thousands of nodes
[3], we want a scalable anomaly detection approach. The most
scalable approach currently for anomaly detection on a whole
supercomputer is a node-specific approach as each compute
node can train its own model. Still, we want to achieve this by
minimally impacting the regular operation of the HPC system.
This is why it is important for the proposed solution to have a
small overhead. Additionally, since we want to train a per-node

model, we want the method to be data-efficient. To address
these requirements, we choose not to make the decoder sym-
metric to the encoder. The proposed approach is thus comprised
of a Dense decoder and an LSTM encoder. LSTM encoder out-
put is passed into a dense decoder trained by reproducing the
final vector in an input sequence. The decoder network is thus
composed of fully connected dense layers. The architecture of
the proposed approach is compared to the state-of-the-art ap-
proach in Figure 1.

The reduced complexity of training allows us to train a sepa-
rate model for each compute node. As shown previously ([54]),
node-specific models provide better results than a single model
trained on all data. We decided to adopt this scheme (one model
per node) after a preliminary empirical analysis showed no sig-
nificant accuracy loss while the training time was vastly re-
duced (by approximately 50%); this is very important in our
case as we trained one DL model for each of the nodes of Mar-
coni 100 (980+), definitely a non-negligible computational ef-
fort.

3.7. Data pre-processing

As introduced in Section 3.6 our proposed methodology
consists of training a model for each node. Thus, the data from
each node is first split into training and test sets. The training
set contains 80% of data, and the test set contains the last 20%
of data (roughly the last two months of data). It is important to
stress that we have chosen to have two not overlapping datasets
for the training and test. This avoids the cross-transferring of in-
formation when dealing with sequencing. Moreover, the causal-
ity of the testing is preserved. (No in-the-future data are used
to train a model). This makes the results valid for in-practice
usage.

For semi-supervised training, the training set is filtered by
removing anomalous events (anomalous events are identified by
the node anomaly label as described in Section 3.1). We name
this filter the semi-supervised filter, as depicted in Figure 2. For
unsupervised learning, the training set is not filtered. For both
the cases (unsupervised and semi-supervised learning), labels
are used to evaluate the results. After filtering, a scaler is fitted
to training data. A scaler is a transformer that scales the data
to the [0, 1] interval. In the experimental part, a min/max scaler
is used on each feature [55]. After fitting to the training data,
the scaler is applied to the test data - for rescaling the test set,
min and max values of the training set are used (as it is stan-
dard practice in DL methods). After scaling, both training and
test sets are filtered out to ensure time consistency: the data is
split into sequences without missing chunks (missing chunks
are the result of the semi-supervised filter). The sequences that
are smaller than W are dropped. Finally, sequences are trans-
formed into batches of sequences with length W. Figure 2 de-
scribes the whole data pre-processing pipeline.

3.8. Summary of evaluated methods

We compare our proposed approach RUAD against estab-
lished semi-supervised and unsupervised baselines. Summary
of pre-processing filters is presented in Table 3. The semi-
supervised filter is applied to all semi-supervised approaches. A

4

Dense
(*;L)

Data flow Encoder

Anomaly

probability

Dense Dense

-, D) P (. 1)

Decoder

(a) Structure of baseline model - the dense autoencoder.

[nput
(*,W,I)

Data flow ¢
. . Encoder
Recurrent dimension

(b) Structure of the proposed RUAD model consisting of the LSTM encoder and dense decoder.

Anomaly

probability

Dense Dense
DD "+ 1

Decoder

Figure 1: The proposed approach replaces the encoder of the baseline model (1a) with the LSTM autoencoder (1b). The last layer of LSTM encoder returns a vector
(not a temporal sequence) which is then passed to the fully connected decoder. W is the window size, [is the size of the input data, L is the size of the latent layer
and E1 and D1 are sizes of encoder and decoder layer respectively. Chosen parameters for L, W, E1 and D1 are listed in Section 4.3.

time consistency filter is applied to methods that explicitly con-
sider the temporal dimension of the data: Exponential smooth-
ing and RUAD. RUAD and the current SoA anomaly detection
approach based on dense autoencoders ([5]) is evaluated in both
semi-supervised and unsupervised version.

Filters

Model | Semi-supervised | Time i Name

Trivial baseline: exponential smoothing NO YES EXP
Unsupervised baseline: clustering NO NO CLU

DENSE der baseline semi-supervised YES NO DENS E sepi
DENSE autoencoder baseline unsupervised NO NO DENSE,,
RUAD semi-supervised YES YES RUAD i
RUAD unsupervised NO YES RUAD

Table 3: Short names and training strategies for examined methods.
DENS E i is the current SoA [5].

We wish to highlight that, unlike the unsupervised learn-
ing baseline [20], our proposed method RUAD requires no ad-
ditional action after the training of the model. The approach
RUAD, proposed in this work, works on an unlabeled dataset
and requires no additional post training analysis. A summary
of approaches relating to training set requirements is presented
in Table 4.

Method | Training set required Post-training
EXP Unlabeled dataset No action required
CLU [20] Unlabeled dataset Assigning anomaly probability to clusters
DENS E i [5] Labeled dataset No action required
RUAD | Unlabeled dataset No action required

Table 4: Caparison of implemented approaches relating to the training set re-
quirements.

4. Experimental results

4.1. Experimental setting

The focus of the experimental part of this work is Marconi
100 (M100) HPC system, located in the CINECA supercom-
puting centre. It is a tier-0 HPC system that consists of 980
compute nodes organized into three rows of racks. Each com-
pute node has 32 core CPU, 256 GB of RAM and 4 Nvidia
V100 GPUs. In this work, nodes of the HPC system will be
considered independent. This is also in line with the current
SoA works [18, 6, 5] where anomaly detection is performed per
node. Future works will investigate inter-node dependencies in
the anomaly detection task.

Evaluation

Apply scaling

: Semi-supervised !

i filter

\-{Train scalingHAppIy scaling V' i ;

Training

Figure 2: Data processing schema. Data flow is represented by green (training set) and orange (testing set). Scaling is trained on training set and applied on testing
set to avoid contaminating the testing set. Semi-supervised and time consistency filters are optional and applied only when required by the modeling approach as

indicated in Table 3

The monitoring system in an HPC setting typically con-
sists of hardware monitoring sensors, job status and availabil-
ity monitoring, and server room sensors. In the case of M100,
hardware monitoring is performed by Examon[14], and system
availability is provided by system administrators[15]. This raw
information provided by Nagios, however, contains many false-
positive anomalies. For this reason, we have constructed a new
anomaly label called node anomaly described in Section 3.1.

For each of the 980 nodes of M100, a separate dataset was
created. Dataset details are explained in Section 4.2. DENSE
and RUAD models were trained and evaluated on the node-
specific training and test sets for each node. The training set
consisted of the first eight months of system operation, and the
test set comprised the remaining two months. Such testing split
ensures a fair evaluation of the model as described in Section
4.2. For the baseline, the exponential smoothing operation (de-
fined in equation (6)) was applied only over the test set (as the
approach requires no training). For each node, the scaler (for
min and max scaling) was trained on training data and applied
to test data. All results discussed in this section are combined
results from all 980 nodes of M100.

The dense autoencoder and the RUAD model were trained
in two different regimes: semi-supervised and unsupervised.
For the semi-supervised training, the semi-supervised filter was
applied that removed all data points corresponding to anoma-
lies. In the unsupervised case, no such filtering was performed.
It can hence be noticed one of the key advantages of the un-
supervised approach: no data pre-processing needs to be done
and no preliminary knowledge about the computing nodes con-
dition is required.

For all three approaches (exponential smoothing, dense au-
toencoder and the RUAD), the probability for an anomaly (class
1) was estimated from reconstruction error as explained in Sec-
tion 3.2. The probabilities from the test sets of all nodes from a
single modelling approach (e.g. RUAD with observation win-
dow of length W = 40) were collected together to plot the
Receiver Operator Characteristic (ROC) curve that is a char-
acteristic for the modelling approach across all nodes. For clus-
tering baseline and exponential smoothing (worst performing
baselines), the ROC curve is compared against a dummy clas-
sifier which randomly chooses the class.

4.2. Dataset

The dataset used in this work consists of a combination of
information recorded by Nagios (the system administration tool
used to visually check the health status of the computing nodes)
and the Examon monitoring systems; the data encompasses the

Features
ambient temp., dimm[0-15] temp.,
fan[0-7] speed, fan disk power,
GPU[0-3] core temp. ,
GPU[0-3] mem temp. ,
gv100card[0-3], core[0-3] temp. ,
plO-1] io power,
pl0-1] mem power,
plO-1] power, p[0-1] vdd temp. ,
part max used,
ps[0-1] input power,
ps[0-1] input voltage,
ps[0-1] output current,
ps[0-1] output voltage, total power
CPU system, bytes out, CPU idle,
proc. run, mem. total,
pkts. out, bytes in, boot time,
CPU steal, mem. cached, stamp,
CPU speed, mem. free, CPU num.,
swap total, CPU user, proc. total,
pkts. in, mem. buffers, CPU idle,
CPU nice, mem. shared, PCle,
CPU wio, swap free

Source

Hardware monitoring

System monitoring

Table 5: An anomaly detection model is created only on hardware and applica-
tion monitoring features. More granular information regarding individual jobs
is not collected to ensure the privacy of the HPC system users.

first ten months of operation of the M100 system. The proce-
dure for obtaining a node anomaly label is described in Section
3.1. The features collected in the dataset are listed in table 5.
The data covers 980 compute nodes and five login nodes. Lo-
gin nodes have the same hardware as the compute nodes but are
reserved primarily for job submission and accounting. Thus we
removed them from our analysis. The data is collected by the
University of Bologna with approval from CINECA3.

In order to align different sampling rates of different re-
porting services (each of the sensors used has a different sam-
pling frequency), 15 minute aggregates of data points were cre-
ated. 15 minute interval was chosen as it is the native sampling
frequency of the Nagios monitoring service (where our labels
come from). Four values were calculated for each 15 minute
period and each feature: minimum, maximum, average, and
variance.

3CINECA is a public university consortium and the main supercomputing
centre in Italy[56].

4.3. Hyperparameters

Hyper-parameters for all methods discussed in this paper
were determined based on initial exploration on the set of 50
nodes. Chosen parameters performed best on the test from the
initial exploration nodes (they achieved the highest AUC score
on the test set). Results from the initial exploration set are ex-
cluded from the results discussed further in the chapter. Tuned
hyperparameters include the structure of the neural nets (num-
ber and size of layers) and the smoothing factor of the exponen-
tial smoothing:

e Exponential smoothing: smoothing factor & = 0.1

o Clustering: hyper-parameter (number of clusters) is trained
on a train set for each node independently.

e Dense autoencoder: Structure of the network consists of
5 layers of shapes: (*,462), (*,16), (*,8), (*16), (*¥462).

e RUAD (LSTM encoder, dense decoder): Structure of the

network consists of 5 layers of shapes: (*,W,462), (*,W,16),

(*,W,8), (*,16), (*,462). W is the length of the observa-

tion window. Chosen window lengths W were: 5, 10, 20, 40.

4.4. Exponential smoothing

As mentioned in the methodology, exponential smoothing
(EXP) is implemented to demonstrate that the anomalies we
observe are not simply unexpected spikes in the data signal.
Furthermore, exponential smoothing is applied to each feature
independently of other features. As shown in Figure 3, expo-
nential smoothing performs even worse than a dummy classifier
(random choice). Poor performance of exponential smoothing
shows that the anomalies we are searching for are more com-
plex than simple jumps in values for a feature.

Exponential smoothing baseline

1.0 1 — ROC curve
—— Dummy classifier

o o o
ES o o
L s s

True Positive Rate

o
N

0.0

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 3: Combined ROC curve from all 980 nodes of M100 for the exponen-
tial smoothing baseline. Exponential smoothing performs even worse than the
dummy classifier - anomaly detection based on exponential smoothing is com-
pletely unusable.

4.5. Clustering

The simple clustering baseline performs better than the ex-
ponential smoothing baseline and better than the dummy classi-
fier, as seen in Figure 4. However, as we will illustrate in the fol-
lowing sections, it performs worse than any other autoencoder
method. This demonstrates that the problem we are addressing
(anomaly detection on an HPC system) requires more advanced
methodologies like semi-supervised and unsupervised autoen-
coders.

Clustering baseline

1.04 — ROC curve
—— Dummy classifier

True Positive Rate

0.0 02 0.4 06 08 1.0
False Positive Rate

Figure 4: Combined ROC curve from all 980 nodes of M100 for the simple

clustering baseline. This baseline performs only marginally better than the
dummy classifier.

4.6. Dense autoencoder

Dense AE
1.0
0.8
3
&
o 0.6 1
=
£~
o
2 0.4 A
o
S
=
0.2 4
—— ROC curve semi-supervised
0.0 4 —— ROC curve unsupervised

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 5: Combined ROC curve from all 980 nodes of M100 for the Dense au-
toencoder model. In the area interesting for practical application - True Positive
Rate between 0.6 and 0.9 - semi-supervised approach outperforms unsupervised
approach.

We consider now the dense autoencoder. We train a dif-
ferent network for each computing node of Marconi 100. The
optimal network topology was determined during a prelimi-
nary exploration done on the sub-sample of the nodes of the
system and following the guidelines provided by Borghesi et

al.[54]. In line with the existing work[5], the semi-supervised
learning approach DENS E,,,; slightly outperforms the unsu-
pervised learning approach DENS E,,,, as seen in Figure 5. The
better performance in the semi-supervised case is due to the
nature of the autoencoder learning model - its capability to re-
construct its input. For example, suppose the autoencoder is fed
with anomalous input during the training phase, as in the unsu-
pervised case. In that case, anomalous examples in the training
data constitute a type of “noise” that renders the autoencoder
partially capable of reconstructing the anomalous examples in
the test set.

4.7. RUAD

This section examines the experimental results obtained with
the RUAD model (unsupervised LSTM autoencoder). The most
important parameter is the length of the input sequence W that
is passed to the model. This parameter encodes our expectation
of the length of the dependencies within the data. Since each
data point represents 15 minutes of node operation, the actual
period we observe consists of W X 15 min. In this set of ex-
periments, we selected the following time window sizes: 5 (75
minutes), 10 (2h30), 20 (5h), 40 (10h). These period lengths
were obtained after a preliminary empirical evaluation; more-
over, these time frames are in line with the typical duration of
HPC workloads, which tend to span between dozens of min-
utes to a few hours[57]. We have trained the model in both
semi-supervised RUAD,,; and unsupervised RUAD fashion
for each selected window length. Results across all the nodes
are collected in Figure 6.

4.8. Comparison of all approaches

The main metric for evaluating model performance is the
area under the ROC curve (AUC). This metric estimates the
classifiers’ overall performance without the need to set a dis-
crimination threshold [51]. The closer the AUC value is to 1,
the better the classifier performs. AUC scores for implemented
methods are collected in table 6. From the lower table in table
6 (rows correspond to different training regimes and columns
to window size for RUAD network) and upper table in 6 (rows
correspond to the performance of different implemented base-
lines), we see that the proposed approach outperforms the exist-
ing baselines. The highest AUC achieved by the previous base-
lines is 0.7470 (achieved by the DENS E ;. This is outper-
formed by RUAD for all window sizes. The best performance
of RUAD is achieved by selecting the windows size 10 where it
achieves an AUC of 7.672. This result clearly shows that some
temporal dynamics contribute to the appearance of anomalies.

The final consideration is the impact of observation window
length W on the performance of the RUAD model. One might
expect that considering longer time sequences would bring ben-
efits, as more information is provided to the model to recreate
the time series. This is, however, not the case (as seen in ta-
ble 6) as the RUAD achieves the best performance of 0.7672
with window size 10. The performance then reduces sharply
with window size 40, only achieving an AUC of 0.7473. Sev-
eral factors might explain this phenomenon. For instance, in

10

tens of hours, the workload on a given node might change dras-
tically. Considering longer time series might thus force the
RUAD model to concentrate on multiple workloads, hinder-
ing its learning task. Finally, an issue stems from the fact that
there are gaps (periods of missing measurements) in the col-
lected data (a very likely problem in many real-world scenar-
ios). Longer sequences mean that more data has to be cut from
the training set to ensure time-consistent sequences; this is be-
cause we are not applying gap-filling techniques at the mo-
ment*, thus, sub-sequences missing some points need to be re-
moved from the data set. Combining these two factors con-
tributes to the model’s decline in performance with longer ob-
servation periods.

Considering all discussed factors, the optimal approach is to
use the proposed model architecture with window size W = 10
(i.e. 2 hours and 30 minutes), trained in an unsupervised man-
ner. This configuration outperforms semi-supervised RUA D,
as well as the dense autoencoder. As mentioned in the related
work (Section 2), labelled datasets are expensive to obtain in
the HPC setting. Good unsupervised performance is why this
result is promising - it shows us that if the anomalies repre-
sented a small fraction of all data, we could train an anomaly
detection model even on an unlabeled dataset (in an unsuper-
vised manner). Such a model not only achieves the state-of-the-
art performance but outperforms semi-supervised approaches.
The best AUC, achieved by the previous SOA DENS E.;, is
0.7470. The best AUC score achieved by RUAD is 0.7672.
Moreover, unsupervised training makes this anomaly detection
model more applicable to a typical HPC (or even datacentre)
system.

Method | Combined ROC score

EXP 0.4276

CLU 0.5478

DENSE o 0.7470

DENSE,, 0.7344

Method Combined ROC score
Sequence length 5 10 20 40

RUAD4,,,; | 0.7632 | 0.7582 | 0.7602 | 0.7446
RUAD | 0.7651 | 0.7672 | 0.7655 | 0.7473

Table 6: According to expectations, the semi-supervised dense autoencoder
outperforms the unsupervised dense one (highlighted by the higher AUC score).
RUAD and RUADy,; outperform all previous baselines. In contrast to the
dense autoencoders, the proposed approach RUAD performs best in unsuper-
vised manner.

5. Conclusions

The paper presents an anomaly detection approach for HPC
systems (RUAD) that outperforms the current state-of-the-art
approach based on the dense autoencoders [5]. Improving upon

#We decided not to consider such techniques for the moment, as we wanted
to focus on the modelling approach and gap-filling methods tend to require
additional assumptions and to introduce noise in the data.

RUAD window size 5

1.0 4

0.8 -
3
&
o 0.6 1
2
2
o
a 0.4 4
[
2
i

0.2 1 —— ROC curve semi-supervised learning

—— ROC curve unsupervised learning
0.0 4 —— ROC curve dense semi-supervised baseline
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
(a) Window length 5
RUAD window size 20

1.0 1

0.8
3
&
v 0.6 1
2
=]
@
o
a 0.4 4
[
2
i

0.2 1 —— ROC curve semi-supervised learning

—— ROC curve unsupervised learning
0.0 4 —— ROC curve dense semi-supervised baseline
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

(c) Window length 20

RUAD window size 10

1.0 1
0.8 -
QU
:
o 0.6 1
2
k=1
@
o
2 0.4 4
ﬂl
=
E
0.2 1 —— ROC curve semi-supervised learning
—— ROC curve unsupervised learning
0.0 4 —— ROC curve dense semi-supervised baseline
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
(b) Window length 10
RUAD window size 40
1.0 1
0.8
2
&
o 0.6 1
2
k=1
@
o
2 0.4 4
ﬂl
=
E
0.2 1 —— ROC curve semi-supervised learning
—— ROC curve unsupervised learning
0.0 4 —— ROC curve dense semi-supervised baseline

0.0 0.2

0.4 0.6 0.8 1.0

False Positive Rate

(d) Window length 40

Figure 6: Combined results from all 980 nodes of M100. Comparison of different window lengths for the RUAD model. For all window lengths, performances
of semi-supervised and unsupervised approaches are similar. Performance of the proposed model (red and blue line) is compared to the state-of-the-art baseline

semi-supervised autoencoder proposed by Borghesi et al.[5].

state-of-the-art is achieved by deploying a neural network ar-
chitecture that considers the temporal dependencies within the
data. The proposed model architecture achieves the highest
AUC of 0.77 compared to 0.75, which is the highest AUC
achieved by the dense autoencoders (on our dataset).

Another contribution of this paper is that the
proposed method — unlike the previous work [5, 16, 17, 8] —
achieves the best results in an unsupervised training case. Un-
supervised training is instrumental as it offers a possibility of
deploying an anomaly detection model to the cases where (ac-
curately) labelled dataset is unavailable. The only stipulation
for the deployment of unsupervised anomaly detection models
is that the anomalies are rare — in our work, the anomalies ac-
counted for only 0.035% of the data. The necessity to have a
few anomalies in the training set, however, is not a significant
limitation as HPC systems are already highly reliable machines
with low anomaly rates [58, 1].

To illustrate the capabilities of the approach proposed in this
work, we have collected an extensive and accurately labelled
dataset describing the first 10 months of operation of the Mar-

11

conil00 system in CINECA [56]. The creation of accurately
labelled dataset was necessary to compare the performance of
different models on the data rigorously. Because of the high
quality and large scale of the available dataset, we can con-
clude that for the model proposed in the paper, the unsuper-
vised model outperforms semi-supervised model even if accu-
rate anomaly labels are available. This is the first experiment
of this type and magnitude conducted on a real, in-production
datacentre (both in terms of the number of computing nodes
considered and the length of the observation period).

In future works, we will further explore the problem of
anomaly detection in HPC systems, in particular, discovering
the root causes of the anomalies - e.g., why a computing node
is entering a failure state? We also have plans to further extend
and refine the collected dataset and make it available to the pub-
lic, in accordance with the facility owners and regulations about
users’ personal data (albeit not considered in this work, infor-
mation about the users submitting the jobs to the HPC system
can indeed be collected). Moreover, in this work, we focused on
node-level anomalies; this was done to be comparable with the

state-of-the-art and for scalability purposes; in the future, we
will explore the possibility of detecting systemic anomalies as
well, i.e., anomalies involving multiple nodes at the same time.
In this direction, the natural follow-up to the present work is
to build hierarchical approaches which generate anomaly sig-
nals based on the composition of the signals generated by the
node-specific detection models.

6. Acknowledgments

This research was partly supported by the EuroHPC EU PI-

LOT project (g.a. 101034126), the EuroHPC EU Regale project
(g-a. 956560), EU H2020-ICT-11-2018-2019 IoTwins project
(g.a. 857191), and EU Pilot for exascale EuroHPC EUPEX (g.
a. 101033975). We also thank CINECA for the collaboration
and access to their machines and Francesco Beneventi for main-
taining Examon.

References

(1]

[2]

3

[4]

[5]

[6]

(71

[8

9

[10]

(1]

W. Shin, V. Oles, A. M. Karimi, J. A. Ellis, F. Wang, Revealing
power, energy and thermal dynamics of a 200pf pre-exascale supercom-
puter, in: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC "21, Associ-
ation for Computing Machinery, New York, NY, USA, 2021, pp. 1-14.
doi:10.1145/3458817.3476188.

URL https://doi.org/10.1145/3458817.3476188

D. Milojicic, P. Faraboschi, N. Dube, D. Roweth, Future of
hpc: Diversifying heterogeneity, in: 2021 Design, Automation
Test in Europe Conference Exhibition (DATE), 2021, pp. 276-281.
doi:10.23919/DATES51398.2021.9474063.

A. Netti, W. Shin, M. Ott, T. Wilde, N. Bates, A conceptual frame-
work for hpc operational data analytics, in: 2021 IEEE International
Conference on Cluster Computing (CLUSTER), 2021, pp. 596-603.
doi:10.1109/Cluster48925.2021.00086.

L. A. Parnell, D. W. Demetriou, V. Kamath, E. Y. Zhang, Trends in high
performance computing: Exascale systems and facilities beyond the first
wave, in: 2019 18th IEEE Intersociety Conference on Thermal and Ther-
momechanical Phenomena in Electronic Systems (ITherm), 2019, pp.
167-176. doi:10.1109/ITHERM.2019.8757229.

A. Borghesi, M. Molan, M. Milano, A. Bartolini, Anomaly detection
and anticipation in high performance computing systems, IEEE Trans-
actions on Parallel and Distributed Systems 33 (4) (2022) 739-750.
doi:10.1109/TPDS.2021.3082802.

A. Borghesi, A. Bartolini, et al., Anomaly detection using autoencoders
in hpc systems, in: Proceedings of the AAAI Conference on Artificial
Intelligence, 2019, pp. 24-32.

A. Borghesi, M. Milano, L. Benini, Frequency assignment in high per-
formance computing systems, in: International Conference of the Italian
Association for Artificial Intelligence, Springer, 2019, pp. 151-164.

A. Netti, Z. Kiziltan, O. Babaoglu, A. Sirbu, A. Bartolini, A. Borghesi, A
machine learning approach to online fault classification in hpc systems,
Future Generation Computer Systems (2019).

A. Netti, Z. Kiziltan, O. Babaoglu, A. Sirbu, A. Bartolini, A. Borghesi,
Online fault classification in hpc systems through machine learning, in:
European Conference on Parallel Processing, Springer, 2019, pp. 3-16.
M. Du, F. Li, G. Zheng, V. Srikumar, Deeplog: Anomaly detection and
diagnosis from system logs through deep learning, in: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’17, Association for Computing Machinery, New York,
NY, USA, 2017, p. 1285-1298. doi:10.1145/3133956.3134015.

URL https://doi.org/10.1145/3133956.3134015

F. Iannone, G. Bracco, C. Cavazzoni, et al., Marconi-fusion: The new
high performance computing facility for european nuclear fusion mod-
elling, Fusion Engineering and Design 129 (2018) 354-358.

12

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

N. Beske, Ug3.2: Marconil00 userguide, accessed: 2020-08-17 (2020).
URL https://wiki.u-gov.it/confluence/pages/viewpage.
action?pageld=336727645

Top500list, https://www.top500.o0rg/lists/top500/2020/06/ (2020).

A. Bartolini, F. Beneventi, A. Borghesi, D. Cesarini, A. Libri, L. Benini,
C. Cavazzoni, Paving the way toward energy-aware and automated data-
centre, in: Proceedings of the 48th International Conference on Parallel
Processing: Workshops, ICPP 2019, Association for Computing Machin-
ery, New York, NY, USA, 2019, pp. 1-8. doi:10.1145/3339186.3339215.
URL https://doi.org/10.1145/3339186.3339215

W. Barth, Nagios: System and network monitoring, No Starch Press,
2008.

M. Molan, A. Borghesi, F. Beneventi, M. Guarrasi, A. Bartolini, An ex-
plainable model for fault detection in hpc systems, in: H. Jagode, H. Anzt,
H. Ltaief, P. Luszczek (Eds.), High Performance Computing, Springer In-
ternational Publishing, Cham, 2021, pp. 378-391.

O. Tuncer, E. Ates, Y. e. a. et Zhang, Online diagnosis of performance
variation in hpc systems using machine learning, IEEE Transactions on
Parallel and Distributed Systems (9 2018).

A. Netti, Z. Kiziltan, et al., Finj: A fault injection tool for hpc systems,
in: European Conference on Parallel Processing, Springer, 2018, pp. 800—
812.

M. Dani, H. Doreau, S. Alt, K-means application for anomaly detection
and log classification in hpc, in: Lecture Notes in Computer Science book
series (LNAIvolume 10351), 2017, pp. 201-210. doi:10.1007/978-3-
319-60045-1_23.

A. Morrow, E. Baseman, S. Blanchard, Ranking anomalous high perfor-
mance computing sensor data using unsupervised clustering, in: 2016
International Conference on Computational Science and Computational
Intelligence (CSCI), 2016, pp. 629-632. doi:10.1109/CSCI.2016.0124.
S. Bursic, A. D’Amelio, V. Cuculo, Anomaly detection from log files
using unsupervised deep learning (09 2019).

A. Borghesi, A. Libri, et al., Online anomaly detection in hpc systems,
in: 2019 IEEE International Conference on Artificial Intelligence Circuits
and Systems, IEEE, 2019, pp. 229-233.

G. Moschini, R. Houssou, J. Bovay, S. Robert-Nicoud, Anomaly and
fraud detection in credit card transactions using the arima model (2020).
arXiv:2009.07578.

M. Ahmed, A. N. Mahmood, M. R. Islam, A survey of anomaly detection
techniques in financial domain, Future Generation Computer Systems 55
(2016) 278-288. doi:https://doi.org/10.1016/j.future.2015.01.001.

URL https://www.sciencedirect.com/science/article/pii/
S0167739X15000023

K. B. Lee, S. Cheon, C. O. Kim, A convolutional neural network for fault
classification and diagnosis in semiconductor manufacturing processes,
IEEE Transactions on Semiconductor Manufacturing 30 (2) (2017) 135-
142.

L. Rosa, T. Cruz, M. B. de Freitas, P. Quitério, J. Henriques,
F. Caldeira, E. Monteiro, P. Simdes, Intrusion and anomaly de-
tection for the next-generation of industrial automation and control
systems, Future Generation Computer Systems 119 (2021) 50-67.
doi:https://doi.org/10.1016/j.future.2021.01.033.

URL https://www.sciencedirect.com/science/article/pii/
S0167739X21000431

1. Martins, J. S. Resende, P. R. Sousa, S. Silva, L. Antunes, J. Gama,
Host-based ids: A review and open issues of an anomaly detection sys-
tem in iot, Future Generation Computer Systems 133 (2022) 95-113.
doi:https://doi.org/10.1016/j.future.2022.03.001.

URL https://www.sciencedirect.com/science/article/pii/
S0167739X22000760

F. Cauteruccio, L. Cinelli, E. Corradini, G. Terracina, D. Ursino,
L. Virgili, C. Savaglio, A. Liotta, G. Fortino, A framework
for anomaly detection and classification in multiple iot scenar-
ios, Future Generation Computer Systems 114 (2021) 322-335.
doi:https://doi.org/10.1016/j.future.2020.08.010.

URL https://www.sciencedirect.com/science/article/pii/
S0167739X19335253

R. Xu, Y. Cheng, Z. Liu, Y. Xie, Y. Yang, Improved long short-term
memory based anomaly detection with concept drift adaptive method for
supporting iot services, Future Generation Computer Systems 112 (2020)
228-242. doi:https://doi.org/10.1016/j.future.2020.05.035.

[30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

URL https://www.sciencedirect.com/science/article/pii/
S0167739X20302235

S. Fu, S. Zhong, L. Lin, M. Zhao, A re-optimized deep auto-
encoder for gas turbine unsupervised anomaly detection, Engi-
neering Applications of Artificial Intelligence 101 (2021) 104199.
doi:https://doi.org/10.1016/j.engappai.2021.104199.

URL https://www.sciencedirect.com/science/article/pii/
S0952197621000464

C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni,
B. Zong, H. Chen, N. V. Chawla, A deep neural network for unsupervised
anomaly detection and diagnosis in multivariate time series data, CoORR
abs/1811.08055 (2018). arXiv:1811.08055.

P. V. Astillo, D. G. Duguma, H. Park, J. Kim, B. Kim, I. You, Feder-
ated intelligence of anomaly detection agent in iotmd-enabled diabetes
management control system, Future Generation Computer Systems 128
(2022) 395-405. doi:https://doi.org/10.1016/j.future.2021.10.023.

URL https://www.sciencedirect.com/science/article/pii/
S0167739X21004192

T. Salman, D. Bhamare, A. Erbad, R. Jain, M. Samaka, Machine
learning for anomaly detection and categorization in multi-cloud en-
vironments, 2017 IEEE 4th International Conference on Cyber Se-
curity and Cloud Computing (CSCloud) (2017). arXiv:1812.05443,
doi:10.1109/CSCloud.2017.15.

M. Molan, Pre-processing for Anomaly Detection on Linear Accelerator.
CERN openlab online summer intern project presentations (Sep 2020).
M. Gamell, K. Teranishi, et al., Modeling and simulating multiple fail-
ure masking enabled by local recovery for stencil-based applications at
extreme scales, IEEE Transactions on Parallel and Distributed Systems
28 (10) (2017).

E. Meneses, X. Ni, et al, Using migratable objects to en-
hance fault tolerance schemes in supercomputers, IEEE Transac-
tions on Parallel and Distributed Systems 26 (7) (2015) 2061-2074.
doi:10.1109/TPDS.2014.2342228.

1. Boixaderas, D. Zivanovic, et al., Cost-aware prediction of uncorrected
dram errors in the field, in: 2020 SC20: International Conference for
HPC, Networking, Storage and Analysis (SC), IEEE Comp. Soc., Los
Alamitos, CA, USA, 2020, pp. 1-15.

G. Iuhasz, D. Petcu, Monitoring of exascale data processing, in:
2019 IEEE International Conference on Advanced Scientific Computing
(ICASC), 2019, pp. 1-5. doi:10.1109/ICASC48083.2019.8946279.

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Den-
neau, P. Franzon, W. Harrod, K. Hill, J. Hiller, et al., Exascale comput-
ing study: Technology challenges in achieving exascale systems, Defense
Advanced Research Projects Agency Information Processing Techniques
Office (DARPA IPTO), Tech. Rep 15 (2008).

G. Pang, C. Shen, L. Cao, A. V. D. Hengel, Deep learning for
anomaly detection: A review, ACM Comput. Surv. (mar 2020).
doi:10.1145/3439950.

G. Pang, C. Shen, L. Cao, A. V. D. Hengel, Deep learning for
anomaly detection: A review, ACM Comput. Surv. 54 (2) (Mar. 2021).
doi:10.1145/3439950.

URL https://doi.org/10.1145/3439950

G. Lemaitre, F. Nogueira, C. K. Aridas, Imbalanced-learn: A python tool-
box to tackle the curse of imbalanced datasets in machine learning, Jour-
nal of Machine Learning Research 18 (17) (2017) 1-5.

A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, L. Benini, A semisu-
pervised autoencoder-based approach for anomaly detection in high per-
formance computing systems, Engineering Applications of Artificial In-
telligence 85 (2019) 634—644.

P. Wu, C. A. Harris, G. Salavasidis, A. Lorenzo-Lopez, I. Kamarudza-
man, A. B. Phillips, G. Thomas, E. Anderlini, Unsupervised anomaly
detection for underwater gliders using generative adversarial networks,
Engineering Applications of Artificial Intelligence 104 (2021) 104379.
doi:https://doi.org/10.1016/j.engappai.2021.104379.

URL https://www.sciencedirect.com/science/article/pii/
S095219762100227X

O. Tuncer, E. Ates, et al., Diagnosing performance variations in hpc ap-
plications using machine learning, in: International Supercomputing Con-
ference, Springer, 2017, pp. 355-373.

B. Aksar, B. Schwaller, O. Aaziz, V. J. Leung, J. Brandt, M. Egele, A. K.
Coskun, E2ewatch: An end-to-end anomaly diagnosis framework for pro-

13

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

duction hpc systems, in: European Conference on Parallel Processing,
Springer, 2021, pp. 70-85.

B. Aksar, Y. Zhang, E. Ates, B. Schwaller, O. Aaziz, V. J. Leung,
J. Brandt, M. Egele, A. K. Coskun, Proctor: A semi-supervised per-
formance anomaly diagnosis framework for production hpc systems, in:
B. L. Chamberlain, A.-L. Varbanescu, H. Ltaief, P. Luszczek (Eds.), High
Performance Computing, Springer International Publishing, Cham, 2021,
pp. 195-214.

E. Baseman, S. Blanchard, N. DeBardeleben, A. Bonnie, A. Morrow, In-
terpretable anomaly detection for monitoring of high performance com-
puting systems, in: Outlier Definition, Detection, and Description on De-
mand Workshop at ACM SIGKDD. San Francisco (Aug 2016), 2016, pp.
1-27.

B. Aksar, B. Schwaller, O. Aaziz, V. J. Leung, J. Brandt, M. Egele, A. K.
Coskun, E2ewatch: An end-to-end anomaly diagnosis framework for pro-
duction hpc systems, in: L. Sousa, N. Roma, P. Tomds (Eds.), Euro-
Par 2021: Parallel Processing, Springer International Publishing, Cham,
2021, pp. 70-85.

Wikipedia, Jira (software) Wikipedia, the free encyclope-
dia, http://en.wikipedia.org/w/index.php?title=Jira\
%20 (software)&0ldid=1052315603, [Online; accessed 04-
December-2021] (2021).

Receiver operating characteristic (Nov 2021).

URL https://en.wikipedia.org/wiki/Receiver_operating_
characteristic

K. R. Shahapure, C. Nicholas, Cluster quality analysis using sil-
houette score, in: 2020 IEEE 7th International Conference on
Data Science and Advanced Analytics (DSAA), 2020, pp. 747-748.
doi:10.1109/DSAA49011.2020.00096.

B. Lindemann, T. Miiller, H. Vietz, N. Jazdi, M. Weyrich, A survey on
long short-term memory networks for time series prediction, Procedia
CIRP 99 (2021) 650-655.

A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, L. Benini,
A semisupervised autoencoder-based approach for anomaly
detection in high performance computing systems, Engineer-

ing Applications of Artificial Intelligence 85 (2019) 634-644.
doi:https://doi.org/10.1016/j.engappai.2019.07.008.

URL https://www.sciencedirect.com/science/article/pii/
S0952197619301721

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay,
Scikit-learn: Machine learning in Python, Journal of Machine Learning
Research 12 (2011) 2825-2830.

Wikipedia, CINECA — Wikipedia, the free encyclopedia, http://en.
wikipedia.org/w/index.php?title=CINECA&01did=954269846,

[Online; accessed 04-December-2021] (2021).

M. C. Calzarossa, L. Massari, D. Tessera, Workload characterization: A
survey revisited, ACM Computing Surveys (CSUR) 48 (3) (2016) 1-43.

J. Dongarra, Report on the fujitsu fugaku system, University of
Tennessee-Knoxville Innovative Computing Laboratory, Tech. Rep.
ICLUT-20-06 (2020).

GRAAFE: GRaph Anomaly Anticipation Framework for Exascale HPC systems

Martin Molan®, Mohsen Seyedkazemi Ardebili®, Junaid Ahmed Khan?, Francesco Beneventi?, Daniele Cesarini®, Andrea
Borghesi?, Andrea Bartolini®

“DISI and DEI Department, University of Bologna, Bologna, Italy
bCINECA consorzio interuniversitario, Bologna, Italy

Abstract

The main limitation of applying predictive tools to large-scale supercomputers is the complexity of deploying Artificial Intelligence
(AI) services in production and modeling heterogeneous data sources while preserving topological information in compact models.
This paper proposes GRAAFE, a framework for continuously predicting compute node failures in the Marconil00 supercomputer.
The framework consists of (i) an anomaly prediction model based on graph neural networks (GNNs) that leverage nodes’ physical
layout in the compute room and (ii) the computationally efficient integration into the Marconil00’s ExaMon holistic monitoring
system with Kubeflow, an MLOps Kubernetes framework which enables continuous deployment of Al pipelines. The GRAAFE
GNN model achieves an area under the curve (AUC) from 0.91 to 0.78, surpassing state-of-the-art (SoA), achieving AUC between
0.64 and 0.5. GRAAFE sustains the anomaly prediction for all the Marconi100 nodes every 120s, requiring an additional 30% CPU

resources and less than 5% more RAM w.r.t. monitoring only.

Keywords: Anomaly prediction, High-Performance Systems, Graph Neural Networks, MLOps

1. Introduction

Driven by the need for greater computational performance,
today’s high-performance computing (HPC) systems are be-
coming increasingly more complex. The current generation of
petascale systems consists of hundreds of compute nodes, while
the exascale systems consist of thousands of compute nodes. In
addition to large scale, HPC systems are based on heteroge-
neous design, usually consisting of multiple AMD or NVIDIA
GPUs per compute node [1]. This increased size, combined
with cutting-edge technologies, heterogeneous design, and in-
tegration densities, increases the system’s complexity and cost,
directly transposing into more complex and failure-prone man-
agement and maintenance of the HPC installations. Machine
learning-powered Operational Data Analytics (ODA) is intro-
duced to support the HPC system administrators in addressing
this complex task.

Proactive management and anticipation (prediction) of ano-
malous operation of the HPC system or its parts grows in im-
portance with the system’s size and cost. In HPC systems,
anomalies refer to occurrences deviating from regular system
operations that jeopardize its availability (capacity to perform
computational tasks). In line with the recent works on HPC
anomaly anticipation [2, 3], anomalies in this work are syn-
onymous with the unavailability of the compute node to accept
compute jobs; these are periods where a compute node is of-
fline, removed from production, experiencing severe configu-
ration issues or is otherwise unavailable to the job scheduler.
According to Jauk et al. [4], anomalies can be at the node
level (in this context, availability of the whole compute node)
or component level (e.g., CPU [5], GPU availability [6]). In the
aforementioned survey paper [4], the authors survey state-of-

Preprint submitted to Future generation computing systems

the-art (SoA) methods for anomaly prediction, identifying two
major approaches, one based on telemetry data and the other
on log information. From the survey, the authors conclude that
node-level anomaly prediction is less studied, and all the ap-
proaches discussed are based on log information. All the pro-
posed approaches rely on the availability of datasets of produc-
tion systems with annotated data. According to a recent survey
on ODA frameworks deployed in production [7], only half of
the centers use a log-monitoring capable ODA framework. In-
deed, log collection has a significant performance impact (CPU
utilization) [8] than node telemetry. In addition, log data shows
higher privacy and security concerns than telemetry data, which
consists only of numerical time-series data. If we restrict to
telemetry data and node-level failures, only anomaly detection
approaches have been studied [2, 3]. With this regard, the ap-
proaches in the SoA focus on detecting anomalies reported as
the NAGIOS node’s drained state. So far, related works have
proposed models based on classifiers, autoencoders, and recur-
rent models, but all are trained per node.

Predicting anomalies is more complex than only detecting
deviations from regular behavior, as previous and forthcoming
system behavior should be considered. To cope with this diffi-
culty, we opted not to treat single nodes in isolation from each
other (as done in current solutions [2]) but rather to exploit the
fact that computing nodes are physically and logically tightly
coupled. In particular, nodes belonging to the same rack share
a similar behaviour [9]; our idea is to exploit this proximity-
based correlation to improve the overall accuracy. Moreover,
we target the rising edge anomalies or transitions from normal
operation to the anomaly. The persistence of the anomaly and
its resolution depend solely on the response time of the system

August 23, 2024

administrators and are thus not a machine learning task.

In order to address the complexity of developing and de-
ploying the topology-aware machine learning models to large
production HPC systems, we introduce GRAAFE: graph ano-
maly anticipation framework for exascale HPC systems.
GRAAFE exploits Graph Neural Networks (GNNs), as they
are well-suited to learning tasks where there are complex de-
pendencies that can be represented as graphs[10]. GNNs have
never been applied to represent topological information in su-
percomputers, but we show that they can handle proximity
graphs defined by nodes in the same HPC rack; additionally,
since this approach deals with multiple nodes at the same time
(entire racks), it requires less models inference (only one per
rack).

When it comes to bringing these models into production,
current ODA frameworks lack a unified and standard frame-
work. Some prototype implementations have been proposed
to distribute model inference processing into the compute re-
sources [11] or to leverage spark run-time [12] but are no longer
adopted. In other fields, data analytics pipelines are used in
production by means of MLOps frameworks applying DevOps
principles and practices, such as continuous integration, de-
livery, and deployment, to the ML process for faster experi-
mentation and model development. With GRAAFE, we extend
the current ODA framework (namely ExaMon[13]) used in the
CINECA [14] datacenter with Kubeflow, a widely used MLOps
framework for Kubernetes.

Summing up, the paper’s main contributions are (1) the
Development of a GNN to predict real, node-level anomalies
that are shown to outperform other state-of-the-art approaches.
With a 4-hour look-ahead window, the GNN anticipates anoma-
lies with an accuracy of 0.91 AUC (Area-Under-the-Curve); to
the best of our knowledge, GRAAFE is the first work to demon-
strate the feasibility of anomaly prediction in a production su-
percomputer. (2) Large-scale training and validation (980 com-
pute nodes) followed by deployment at scale to evaluate its
real-world effectiveness. (3) Extension of an existing ODA at
CINECA's facility with the GNN via MLOps.

The pipeline can be deployed with only an additional 30%
of CPU resources and less than 5% RAM usage increase. Of
these overheads, the pipeline execution accounts for less than
the 1%, making it scalable. (4) Ensure high reproducibil-
ity thanks to open-source code and the definition of detailed
computing requirements to implement the monitoring system
and MLOps framework for Tier-0 supercomputers. The source
code, detailed guidelines for the deployment of GRAAFE as
well as additional experimental results are available at https:
//gitlab.com/ecs-1lab/GRAAFE.

The remainder of the manuscript is organized as it follows:
Sec. 2 surveys the related literature; then, we have the core of
the proposed approach, divided into Sec. 3 which covers the
anomaly prediction problem and Sec. 3.3 that describes the de-
ployment of the MLOps framework; Sec. 4 evaluates the per-
formance of the method and Sec. 5 concludes the paper.

2. Related Works

We group the related works into three blocks: a) predictive
maintenance in HPC, b) GNNs, and c¢) monitoring frameworks
and MLOps for supercomputers.

2.1. Anomaly Detection & Prediction in HPC

One of the core objectives of ODA for HPC is anomaly de-
tection and prediction, identifying aberrant or atypical patterns
or behaviors from monitoring data [15] as soon as possible to
minimize the system downtime. These deviations may com-
prise any unusual occurrences concerning resource usage, per-
formance variations, or network traffic flow. This paper focuses
on node-level anomaly analysis using node telemetry data. Sev-
eral other approaches exist in the literature that either focus on
component-level anomalies or on predicting anomalies based
on log data [15, 4]. Approaches on log data deployed on a
complex in-production large-scale HPC system predict node
level anomalies with a future window of only 10 seconds [16].
Works with larger future windows, such as the work of De-
vesh Tiwari [17], or Yu Liu [18] focus on component failure
prediction (disk failure specifically). Liu et al. [18] propose
a disk failure prediction approach, training a generator adver-
sarial network (GAN) for anomaly detection based on SMART
disk monitoring data; the GAN is trained on normal data. The
proposed approach achieves high accuracy for both the startup
period and the lifetime use of the discs.

Considerations on performance, security, and privacy pre-
vent the deployment of system log collection in some HPC cen-
ters [8]. The only available monitoring data for the HPC sys-
tems in those centers, such as M100 in CINECA, is the node
telemetry data [19]. Minimal attempts have been made to cre-
ate a node-level anomaly anticipation system based on node
telemetry data. To the best of our knowledge, the only node
telemetry-based approach that mentions anomaly anticipation
is the work proposed by Borghesi et al. [2]. A self-supervised
autoencoder network generates the anomaly anticipation signal.
The autoencoder, trained to detect the anomalies, sometimes
also generates an anomaly signal that anticipates the anomalies.
The approach, however, fails to provide any estimate about the
future window of the anomalies. Based on the taxonomy [4],
the work presented in this paper is the first work that addresses
the question of node-level anomaly prediction based on node
telemetry data.

Based on the systematic literature review of predictive
maintenance methodologies across all disciplines, Carvalho et
al. [20] propose Random forest and artificial neural networks
(dense neural networks) as the best-performing approaches for
failure prediction. Behera et al. [21] propose a gradient-
boosting tree for failure prediction applied to the problem of
predictive maintenance of turbofan engines. Similarly, Zhang
et al. proposed boosted decision trees and deep neural networks
for anomaly detection in wide-area networks [22]. While Zhang
et al. propose an anomaly detection and not an anomaly predic-
tion method, since the approach is supervised, a similar method
can be extended to the problem of anomaly prediction. These
methods inspire baseline per-node methods implemented in this

work and are adapted for use as per-node anomaly predictors in
HPC compute nodes.

2.2. Graph neural networks (GNN)

Most anomaly detection methods for HPC operate at a
compute-node level, as they disregard the spatial structure of
HPC systems, which has been used to improve the performance
of predictive models [9]. These structures can be represented
as graphs, thus suggesting the usage of graph-specialized ML
models. GNNs are ML models for graph-structured data [10].
Graph Convolutional NNs (GCNs) constitute a special type of
GNN that relies on executing convolution operations. The con-
volutions combine insights from neighboring nodes to create
powerful embeddings used in downstream tasks, like labeling
or link prediction[23].

GNNs are very good at exploiting node proximity[24]. As
supercomputers are organized in racks of neighboring nodes,
GNNs have great potential. For instance, GNNs can be trained
using labeled data more efficiently than per-node supervised
methods that tend to over-fit on the majority class. This advan-
tage is especially noteworthy when dealing with extremely un-
balanced classes typical of anomaly detection in HPC systems
[23]. The use of GNN to improve anomaly detection and pre-
diction performance has already partially been studied[25, 26].
For instance, Song et al.[27] use a couple of GNNs to identify
abnormal performance fluctuations in cloud environments. The
impact of proximity on the behavior of HPC nodes has been ex-
plored only in a limited way. Ghiasvand et al.[28] detect faults
using system logs that consider nodes’ proximity in terms of
hardware architecture, resource allocation, and physical loca-
tion.

The utility of graphs has been explored for anomaly detec-
tion in multivariate time series. Song et al. propose a GNN-
based approach for anomaly detection. The approach observes
the prediction error of the multivariate time series. Since this
approach requires the calculation of observation error, it can
only be used for anomaly detection, not prediction [29]. Con-
sequently, it cannot be used as a baseline of comparison in this
work.

2.3. Monitoring and ML ops frameworks in HPC

Operational data analytics (ODA) consists of two elements:
1) monitoring systems and 2) data analysis applications [30].
The monitoring systems in ODA are responsible for collecting
and analyzing data from various sources within the HPC sys-
tem. This data is then analyzed to provide actionable insights
to system administrators and other stakeholders.

The basis for the application layer of the ODA is the data
collection layer. Specifically for the HPC, several monitoring
frameworks have been proposed: ExaMon, Ganglia, Nagios,
and Prometheus [31]. The common denominator of all these ap-
proaches is that they need to have minimal impact on the overall
system performance, provide data with low latency, and are ca-
pable of being scaled to large HPC systems. Building on the
monitoring frameworks, there have been some attempts to inte-
grate the monitoring and the application layers[31]. The latest

such approach is Wintermute [11], an ODA system developed
for supercomputers. Wintermute comprises a custom-built dis-
tributed framework for “edge-telemetry data processing on the
HPC compute node”. Wintermute supports online access to the
data and OpenCV ML kernels. While its distributed and online
approach can reduce potential overhead in centralized process-
ing, it is limited to OpenCV ML operations. It does not support
continuous development and integration of the machine learn-
ing models.

The IT industry has addressed the drawbacks of data ap-
plication platforms by introducing MLOps platforms. MLOps
stands for "Machine Learning Operations”. It is a set of prac-
tices and tools that combine software (SW) development (De-
vOps) and ML to manage the entire lifecycle of ML models. It
focuses on creating reliable and scalable ML pipelines that can
easily be integrated into existing systems while ensuring these
models continuously improve. MLOps platforms are character-
ized by the following: 1) automation of repetitive tasks such as
data preprocessing, model training, testing, and deployment; 2)
a scalable design; 3) a modular deployment and easy integra-
tion with existing systems; 4) version control for code and ap-
propriate documentation to ensure the reproducibility of results;
5) real-time monitoring of model performance; 6) collaborative
development enabled by shared environments [32].

3. GRAAFE Architecture

The framework for exascale HPC systems (GRAAFE) com-
prises three main parts: The monitoring subsystem, the MLOps
subsystem, and the anomaly anticipation/prediction model.

3.1. Monitoring system

The CINECA datacenter features a holistic monitoring
framework, ExaMon, which aggregates a wide set of telemetry
data [31] collected via a set of plugins (one for each monitored
component) that read the sensor and communicate to the Exa-
monDB via MQTT messages. ExamonDB uses Cassandra and
KairosDB technologies. The different monitored components
are at the system level, the job scheduler, the cooling and power
provisioning equipment, while at the compute node level, Na-
gios and Ganglia for in-band telemetry and IPMI for out-of-
band telemetry. This work focuses on the Nagios state as ano-
maly label [3], and IPMI and Ganglia for node-level telemetry.
The complete list of collected metrics is described by Borgh-
esi et al. [19]. The Intelligent Platform Management Interface
(IPMI) provides remote telemetry access to the built-in sensors
for each node and its associated components, such as voltage
regulators and fans. The ExaMon monitoring system collects
sensor data with the IPMI interface with 20-second sampling
rate. It stores these data in its internal KairosDB database as
time traces and is remotely accessible through REST APIs [31].

3.2. Graph neural network model

To maintain the node physical proximity information in the
ML anomaly prediction task, in GRAAFE, we propose to use a

Graph Convolutional Network (GCN) based on 1) the hypoth-
esis that node physical proximity would benefit the anomaly
prediction task and 2) preliminary experiments demonstrating
its potential for improved performance. We encode the physical
layout of compute nodes within racks as graphs. The connectiv-
ity matrix defines the specific structure of the input graph data.
GCN can thus be thought of as a function that maps input data
X (representing vectors corresponding to nodes) and connectiv-
ity matrix N to y, which is a vector of labels corresponding to
each node in a graph: GCN(X, N) — y.

In this work, we have explored two types of graph structures
based on the physical proximity of the compute nodes in the
computing room: rack-level and room-level models. The room-
level model depicts the compute nodes as vertexes in a graph
that are connected to their neighbors in X, Y, and Z dimensions
(each node has a maximum of six neighbors). The weight of the
connection is inversely proportional to their distance. The rack-
level model achieved far superior performance and consisted of
a line graph where each compute node was connected to the
node above and below. The structure of the rack-level model is
depicted in Fig. 1. While conducting the experimental evalua-
tion, we did not conduct a comprehensive exploration of hyper-
parameters but instead relied on prior knowledge and manual
fine-tuning. The optimal hyperparameters and the connectivity
matrices for each model are described in the code repository.

The GCN models are trained on the supervised classifica-
tion task. Labels are obtained by considering a future time win-
dow T'; label 1 indicates anomalies, and O indicates normal sam-
ples. For each node and at any point in time, a label of value
1 (anomaly) is assigned if the node encounters any anomaly in
the future window T'; otherwise, the label will be 0.

Graph Convolution

@ 417x300 300 x 100 00 16
pud AN .

e

jil ‘ A

. |

Flatten : Flatten :
16x16 16x1

Graph Convolution Graph Convolution
x 1

Output :
2Class

Node Rack Input : GCN1 GCN2 GCN3

Graph

Figure 1: The structure of the GCN network exploits the organization of com-
pute nodes in a rack.

3.3. Machine Learning Operations

The architecture of our novel high-performance comput-
ing monitoring and MLOps framework, as illustrated in Fig-
ure 2, is structured into three distinct layers: the data acqui-
sition layer, represented by the monitoring systems; the data
processing layer featuring a machine learning model, and a
version control layer incorporating the git repository and the
container registry. This three-layer structure follows the con-
ceptual framework for operational data analytics in HPC, intro-
duced by Netti et al. [30]. This paper focuses on the processing
layer, which is a unique implementation built upon the Examon

Supercomputer/Datacenter

Monitoring System (ExaMon,~"_ Git Repository Hosting 0
— Service

Pro ™ Traned wodels |

Kubeflow ®

Load Balancer
Mar Development (GNN Model)
T s A
data_extraction.py ()gitpush
preprocessing oy N
l I inference.py —
publishing_results py
ipeline_main.
s
KairosDB KairosDB. Dockerfile [pivetne_maingy |
wiite Read -
Cluster Cluster Deployment (GNN Model) [Dockerfle |

2 (3)pull
container 1

- compile pipeline image .
fun pipeline ci/co B

(5) run pipeline
Kubernetes
¥

is pods ubetlow pods | [Pipetine pods

7 00 @™
2 |leclles e l

(2) Config. Action
Build Image

cassandra Push Image

Cassandra Cluster

On-premise Cloud (ADA Cloud @ CINECA) Q)] pieine | | container negistry b

(S NN ver

cassandra -
(S NN ver2

Figure 2: HPC monitoring and MLOps framework.

FW | rack GNN | room GNN | DNN | GB RF | DT | MC
4 0,91 0,59 0,64 | 0,63 | 0,61 | 0,51 | 0,5
6 0,89 0.58 0,66 | 0,64 | 059 | 0,5 0,5

12 0,84 0.47 0,65 | 0,63 | 0,59 | 0,5 0,5
24 0,78 0.58 0,62 06 | 055 | 05 0,5
32 0,75 0.55 0,59 | 0,58 | 0,55 | 0,5 0,5
64 0,66 0.42 0,5 048 | 0,49 | 049 | 05
96 0,62 0.58 0,55 | 0,51 | 0,58 | 0,51 | 0,5

192 0,55 0.52 047 | 048 | 052 | 0,5 0,5

288 0,53 0.50 0,52 | 0,51 | 0,52 | 049 | 0,5

Table 1: The rack-level GNN outperforms (achieves higher AUC score) all
other methods across all future windows (FW).

[31] monitoring and data acquisition system. The processing
layer is further divided into three sublayers: the on-premises
cloud layer (CINECA cloud), the container orchestration (Ku-
bernetes) layer, and the MLOps (Kubeflow) layer.

The data processing pipeline, where the machine learning
models are deployed, consists of a set of Python scripts respon-
sible for (1) extracting data from the monitoring system, (2)
preprocessing and transforming data to a suitable for the model,
(3) making predictions based on input samples (inference), and
(4) publishing the results to the monitoring system. The Output
of the processing layer is sent back to the Examon monitoring
system as another monitoring plugin, which allows easy inte-
gration into existing visualization and reporting systems [31].

4. Experimental Evaluation

We have conducted two main experiments: 1) anomaly pre-
diction capability of the GNN-based approach (Sec.4.1); and 2)
analysis of the deployment costs of the GNNs through MLOps
and Kubernetes (Sec.4.2).

4.1. Prediction performance of the GNN models

The Marconi 100 (M100) HPC system located in CINECA
was utilized to conduct an experimental evaluation. The dataset
comprises 31 months wherein all 49 computer racks of the Mar-
coni 100 system were subjected to observation. To establish an
efficient model, 80% of the data mentioned above was desig-
nated as the train set, while historically, the remaining 20% was
allocated for testing purposes.

The experimental part evaluated two GNN model architec-
tures: rack-level GNN based on the line graph and the GNN
covering the whole compute room. GNN approaches were
tested against all known per-node anomaly anticipation ap-
proaches to demonstrate the necessity of the GNN. The label
creation and the train/test split were the same across all exam-
ined models. Specifically, we have chosen the deep per-node
neural network (DNN), and random forest (RF) inspired by
Carvalho et al. [20] and the gradient boosting trees (GBT) and
decision trees (DT) inspired by Behera et al. [21]. The hyper-
parameters of all the models and the accompanying code for
the experimental evaluation are described and included in the
code repository. The experimental evaluation is also performed
on an open and publicly accessible dataset. This ensures trans-
parency and reproducibility of the experimental setup for fur-
ther research in this field.

4.1.1. Anomaly Prediction Model Performance

In line with other works in Operational Data Analytics and,
specifically, anomaly detection [3], the area under the Receiver-
Operator characteristic (ROC) curve (AUC) is selected as the
primary evaluation metric for the experimental analysis. The
predictive models output the probability of the anomaly for a
given future window (instead of just predicting class O or 1).
This helps system operators, as shown in Sec. 4.2.2. Further-
more, examining the whole ROC curve allows for a more gen-
eral analysis that does not favor only the performance of the
classifiers at a specific threshold. AUC is also chosen as a
primary performance metric as it protects from pitfalls shared
by other relatively more common metrics (precision, recall, 1)
[33]. For comparison against other methods, f1 scores, as well
as true positive, true negative, false positive, and false negative
numbers, are reported in the code repository.

We have compared two GNN approaches, the rack-level
GNN and the room-level GNN. Across all Future Windows
(FW), the rack-level GNN significantly outperforms all other
approaches that operate on per-node data. In contrast, the room-
level GNN achieves the AUC values even lower than the per-
node baselines. This suggests that, for the anomaly anticipa-
tion, the rack-level line graph GNNs are the optimal choice. All
AUC values are collected in Table 1 where rows denote future
windows (FW) and columns with different prediction methods.
The performance of all models decreases with future obser-
vation windows, showing the increasing difficulty in detecting
anomalies further away in the future. The comparative advan-
tage of the rack-level GNN model also decreases with larger
future windows. At the last observed window 288 (72 hours in
the future), the performance differences between various mod-

els become almost negligible. All models are slightly better
than the random choice model, which has a 0.5 AUC score.

The performance of the rack-level GNN model is above
0.65 AUC up to a future window of 64 (8 hours in the future).
Then, the performance of all other models (including the per-
node NN) dips to around the performance of the random choice.
In other words, predicting up to 16 hours in the future is only
possible with rack-level GNNs. The performance of all other
per-node models is within expectation. The best performing is
the per-node DNN, followed by GBT, RF, and, lastly, DT. The
experimental analysis shows that the rack-level GNN model is
far superior for predicting anomalies in HPC systems. For this
reason, the rack-level GNN is chosen as the model to be de-
ployed within the GRAAFE framework.

4.1.2. Importance of the graph structure

The work presented in this paper is motivated by introduc-
ing the graph structure for the predictive models in HPC sys-
tems. This section aims to answer a fundamental scientific
question related to this premise: What is the importance of the
graph structure, and how much does it contribute to the (per-
rack) graph models outperforming the per-node models?

Based on the predictive performance, the best-performing
model is the rack-based GNN model that takes a line graph of
a compute rack as an input. To evaluate the actual contribution
of the graph structure, we repeat the experimental evaluation
with the same structure of the graph neural network but with
the random graph as an input.

For each compute rack, the compute nodes (vertex of our
graph) are connected to random other compute nodes from the
same rack. For each compute rack, a different, random con-
nectivity is chosen. Than a new GNN is trained on this rack
structure, exaclty repeating the testing and training procedure
described above. This experimental procedure ensures that we
are estimating a random AUC across a wide number of possible
dummy graph topologies. Compared to the proposed model,
the GNN receives the same vertex attribute (node) data; the
only difference between the experiments is in the graph topol-
ogy (connectivity between vertexes).

As seen in sub-Figure 3b, the AUC of the rack graph mod-
els, trained on random graphs, is lower that the performance of
the rack models, trained on the proposed graph topology. The
difference in performance, as depicted in Figure 3a, increases
with the larger future window. As the performance of the pre-
dictive models decreases, so does the advantage that the sensi-
ble graph topology brings to the predictive model.

The results obtained by this experiment are significant as
they clearly demonstrate the impact the graph topology has on
the performance of the graph model. Both sets of models are
built on the same attribute training data; the graph’s structure
alone, however, results in a difference in AUC as high as 0.2.

The average performance of random rack models is only
slightly higher than the best-performing per-node model deep
neural network (DNN in table 1). This shows that, while there
is an advantage in processing the compute racks together, this
advantage is minimal if the correct graph structure does not sup-
port it.

The results also motivate future work in building predic-
tive graph-based models for HPC systems. Alongside the re-
search in novel modeling approaches and neural network struc-
tures, future research has to focus on finding better connectiv-
ity topologies between compute nodes. The connectivity be-
tween the compute nodes and the associated graph structures
discussed in this work is based on the physical proximity and
organization of compute nodes in a computing room. We pro-
pose a graph topology that produces good results and demon-
strates the importance of the graph topology. However, the
question of the optimal graph structure remains a topic of on-
going research.

AUC across future windows FW Random

08 topology
0s 4 0.72
0ss 6 0.70
o 12 0.66
o 24 | 063
B | 060
o 64 | 056
96 0.53
S R [F L3 I 73
Future window in hours 288 0.50

(b) Average AUC for

(a) Average AUC for different future windows. random graphs.

Figure 3: The average area under the curve (AUC) of the random per-rack graph
topology is compared to that of the proposed per-rack graph topology. For each
of the per-rack models, a different random graph is initialized.

4.2. Deployment Evaluation

To implement the proposed framework, we employ a cloud
system co-hosted in the CINECA supercomputing facility (on-
premise) without creating any overhead on the HPC nodes.
This cloud infrastructure is based on the OpenStack version
of Wallaby. The nodes of this cloud system are composed of
Dual-Socket Dell PowerEdge servers, 2xCPU 8260 Intel Cas-
cadeLake processors (24 cores, 2.4GHz), 48 cores per node,
hyperthreading x2, 768GB DDR4 RAM, and an internal net-
work of Ethernet 100GbE. The OpenStack virtual machine ex-
ecutes the ExaMon production, which we extended with addi-
tional ones for the Kubeflow and Kubernetes pods needed by
the MLOps. The computational resources available for the Ex-
aMon monitoring systems are 300GB of RAM and 40 vCores.
We also collect standard Kubernetes metrics. For implement-
ing the MLOps framework, we used Kubernetes version 1.24
in our framework for automated deployment, scaling, and man-
agement of containerized applications. Our Kubernetes cluster
has 48 vCPUs and 360 GB of RAM available. For Kubeflow,
we used the canonical Charmed Kubeflow version 1.6.

We evaluated six deployment configurations to evaluate the
inference pipeline’s computing time, memory, and computing
cost. We started with a single-rack evaluation and scaled up to
the entire supercomputer. We maintained the same frequency
for prediction as training samples were aggregated with a 15-
minute sampling frequency. However, we also wanted to see
the maximum speed at which we can run the pipeline for the
entire supercomputer and the impact of this on the MLOps and

ODA framework. We conducted experiments with two modes:
1) one with a 900-second frequency period, where the inference
is run every 15 minutes, and 2) a continuous one, where the
pipeline executes on streaming data without any sleep interval.
Table 2, reports the frequency for the continuous conditions.

The term "One Rack” in the experiment name indicates that
inference was performed for a single rack. In contrast, ”All
Racks” in the experiment name indicates that inference was per-
formed on all racks (and nodes) of the HPC cluster (49 racks
with 1K nodes). ”Continuous” means that inference was per-
formed continuously. This means that as soon as one infer-
ence action was completed, the next inference started without
any delay. “Discrete” means that inference was performed pe-
riodically within a 900-second (or 15-minute) period. “Mul-
tiple Pods” in the experiment name indicates that the pipeline
for different racks was performed in parallel by utilizing dif-
ferent pods. On the other hand, ”One Pod” indicates that in-
ference was performed serially, rack by rack, using just one
pod. The latter configuration allows us to evaluate the proposed
approach’s scalability and how the MLOps framework’s over-
heads introduce changes with that.

We collected several metrics to evaluate our pipeline, in-
cluding data extraction latency, preprocessing time, inference
computing time, and publishing results latency. These metrics
are measured in seconds and presented in Table 2. We also
monitored resource usage, including CPU and memory usage
and the number of pods used. The corresponding metrics are
summarized in Table 3, which shows resource usage for the
baseline setup and the six different deployment configurations;
the results are grouped into five sub-tables, reporting the re-
source usage for the monitoring system/ODA ("ExaMon” sub-
table), Kubernetes management, Kubeflow management, user
workload not including the GNN inference (”User Namespace”
sub-table), and the workload due to the GNN models pipeline
(”Anomaly Prediction pipeline” sub-table).

4.2.1. Computational Resources Overhead

Table 2 shows the latency for different pipeline parts. The
last column reports the inference rate, measured as the number
of inferences per hour each configuration achieves. The longer
the pipeline stages take to execute, the lower the framework
overhead the inference rate will be. In discrete pipelines, this
is typically done at a fixed period of 900 seconds (15 minutes)
by definition. However, in continuous pipelines, this rate de-
pends on the processing time and latency of the pipeline. Data
extraction is the most time-consuming step in the pipeline. Pre-
processing only takes up 1% of the data extraction latency, and
inference time is less than 1%. As long as all models proposed
in this manuscript share the same input parameters, we can run
multiple models in production without any extra cost.

By comparing the continuous and discrete methods, it is
clear that the continuous method reduces overall latency by
expanding the data extraction time. In contrast, the discrete
method requires significantly higher amounts of data to be ex-
tracted from databases (12x to 100x), since the pipeline waits
15 minutes for the next sample. This is visible for the One Rack

Configuration Name MLOps Framework Conﬁgurat_ions . MLOps ‘Pipeline Stage Execution Time- [s]- # /Hour
Deployment Inference Mode | Size [Rack] | Data Extraction [s] | Preprocessing [s] | Inference [s] | P Results [s] | Total [s]
One Rack, One Pod, Ci Single Pod Continuous 1 0.084 0.016 0.003 8.508 423
One Rack, One Pod, Discrete Single Pod Discrete 1 10.213 0.115 0.014 0.002 10.344 4
All Racks, Multiple Pods, Continuous | Multiple Pods Continuous 49 69.607 0.063 0.022 0.002 69.694 51
All Racks, Multiple Pods, Discrete Multiple Pods Discrete 49 31.208 0.102 0.022 0.002 31.334 4
All Racks, One Pod, Conti Single Pod Continuous 9 25.783 4.697 0303 0.062 30.845 116
All Racks, One Pod, Discrete Single Pod Discrete 49 51.138 4.557 0.337 0.060 56.092 4
Table 2: Processing time and latency of different deployment configuration.
Configuration Name ExaMon Kubernetes
#vcores Mem [GB] | Netin [kB/s] | Net out [KB/s] | pods | #vcores | Mem [GB] | Net in [kB/s] | Net out [KB/s]
Baseline 3.08 189.96 6670 6739 13 0.31 0.63 1330 864
One Rack, One Pod, C 4.47 188.7 10457 10490 13 0.35 0.63 2000 1040
One Rack, One Pod, Discrete 3.59 189.42 9588 7832 13 0.31 0.63 1750 880
All Racks, Multiple Pods, C 79 189.64 18310 12570 13 0.48 0.64 4280 1870
All Racks, Multiple Pods, Discrete 3.84 189.45 8724 8152 13 0.33 0.64 1950 848
All Racks, One Pod, Continuous 5.87 189.51 9190 8546 13 0.31 0.63 1770 945
All Racks, One Pod, Discrete 3.41 189.43 8686 7738 13 0.31 0.63 1900 761
Configuration Name Kubeflow / User N I Anomaly Prediction Pipeline
pods #vcores Mem [GB] | Netin [kB/s] | Net out [KB/s] | pods | #vcores | Mem [GB] | Net in [kB/s] | Net out [KB/s]
Baseline 59/31022/0.13 | 544 /0.47 23 /17 28 /1 - - - - -
One Rack, One Pod, C 59/310.24/0.14 | 541/0.92 39/42 32/26 1 0.13 0.45 34 26
One Rack, One Pod, Discrete 59/310.23/0.02 | 541/0091 26/8 32/1 1 0.01 0.44 1 1
All Racks, Multiple Pods, Continuous | 59/3 | 023 /0.8 | 545/219 70 /211 62 /156 49 0.78 214 204 153
All Racks, Multiple Pods, Discrete 59/31023/0.12 | 5.44/22.1 29 /33 21 /14 49 0.11 21.4 32 13
All Racks, One Pod, Continuous 59/31023/049 | 542/ 1.54 38 /47 32/12 1 0.48 0.96 39 11
All Racks, One Pod, Discrete 59/3] 022/04 | 541/1.63 31 /21 19/1 1 0.03 1.06 14 1

Table 3: HPC monitoring and MLOps framework computation resource requirements and anomaly prediction pipeline deployment overhead; the 5 main sub-tables

indicate the different framework’s components.

and All Racks, One Pod in Table 2. We recall that the contin-
uous methods at each step only query the missing data and do
not request the entire 15 minutes of data.

As evident in Table 2, when scaling the pipeline to all the
racks of the Marconil00 supercomputers, we notice that (i) the
data extraction time scales sublinearly - while increasing the
data request of 49x (from one rack data to 49 racks data) the
query time to the ExaMon monitoring system increases only by
less than 10x, and (ii) the Multiple Pod configuration underper-
form w.r.t. the One Pod configuration due to the congestion in
the monitoring system. This is visible by the data extraction
latency, which is higher for the All Racks, Multiple Pod, Con-
tinuous than the All Racks, One Pod, Continuous case - this
can be explained by the fact that even if in the case of Multi-
ple Pods, the data extraction is done in parallel by the Pods, the
requests serializes to the worker in the Monitoring Framework.

After extracting the data, the data preprocessing step re-
quires the second most computing time, while the inference and
result publishing steps take negligible time. Interestingly, using
multiple pods to perform inference and other steps in parallel
for racks of the supercomputer takes more time than using a
single pod and performing inference rack-by-rack in a serial
approach — with this latter setting, the framework can run 116
model inferences for all the nodes each hour(All Racks, One
Pod, Continuous in Table 2), or that the pipeline could process
30x more compute nodes guaranteeing real-time performance
— one inference every 15minutes. This result indicates that the
proposed framework can scale to exascale system requirements.
Moreover, being the pipeline bottleneck, the data extraction of
more complex models can be afforded with the current system
at a negligible cost.

To better understand the implication and cost of the pro-

posed MLOps framework in conjunction with ODA, we col-
lected resource usage data for different parts of the monitor-
ing system, Kubernetes, and Kubeflow without running any
pipelines to determine the base load of the framework (as shown
in Table 3). The different sets of deployment configurations al-
low an understanding of the optimal deployment configuration
according to different requirements due to the HPC facility re-
sources and pre-existing cluster configurations.

By looking at the baseline case (Baseline in Table 3), we
can notice that the ExaMon ODA framework under normal op-
erations (continuous data collection from the different sensors
and dashboards) consumes 3 virtual cores (vcores) and 190GB
of memory, while the MLOps framework while not process-
ing any data analytics pipeline uses 75 pods (13 used by Ku-
bernetes, 59 Kubeflow, 3 user namespace), 0.66 vcores and al-
most 7GBs of memory for its micro-services — almost the 22%
more vcores and 4% more memory than the pure monitoring
framework. Interestingly, when a real-time anomaly prediction
pipeline is performed (All Racks, One Pod, Discrete in Table 3)
for all the nodes of the Marconil00 supercomputer, the Exa-
Mon load increases from 3.08 to 3.42. The MLOps load slightly
reduces, from 0.66 vcores to 0.60 vcores due to the lower load
in the user namespace micro-services and relatively negligible
cost of real-time inference (0.03 vcores) — overall supporting
real-time anomaly prediction in-production on the Marconil00
supercomputer costs the 30% of more vcore resources than only
monitoring it. Of this 30% increase, 11% is due to an increase
in the monitoring system load, while the remaining part is re-
lated to the MLOps part. The anomaly prediction pipeline ac-
counts for less than 1% of the entire overhead, making it ready
to scale to larger supercomputers, like exascale systems. When
using multiple pods in a continuous approach (All racks, Multi-

-1.0

-1.0
3 :
2 ~0.8 < -0.8
s s
8 > z
063 063
g g
¢ ¢
0432 042
H &
<
2 0.2
0.2
0.0
] 0.0
17:00 17:15 17:30 17:45 18:00
Time (HH:MM) M
(a) Period of 5 timestamps or 75 minutes. (b) Period of 10 timestamps or 2.5 hours.
) -1.0 e
E raw a.label
% -08 Fwa
FW 6 o8
z >
z 062 FW 12 0o
H Fw 24 2
g g
@ Fw 32 g
© 0.4 2 042
£ FW 64 g
FW 96
02 02
FW 192
Fw 288
0.0 0.0
ime (HH:M| T\:\
(c) Period of 20 timestamps or 5 hours. (d) Period of 50 timestamps or 12.5 hours.
-1.0
raw a.label
FW 4
-0.8
FW 6
FW 12 >
=
0.6 2
FW 24 ©
o
—
[o}
FW 32 S
0.4 2
©
FW 64 w
FW 96
0.2
FW 192
FW 288
0.0
NOoONOoOMONOoONMONMONONONONOINONOINO N OO O LN O
TJeYndesmnadoYmnmAdoeymnAdosnAdosYT Aot N Ao ndo
NOWOO I NMOO TN MMSTSTNOONDDODOANNMS 0D O~
H A A A NANANNNOOOOOOOOOODOOOO e o o
Time (HH:MM)

(e) Period of 100 timestamps or 25 hours.

Figure 4: The same rising-edge event, observed over multiple magnifications. The last timestamp is the occurrence of an anomaly; the rest are the preceding period.
Prob fw is the probability for class 1 as generated by the GNN trained with the future window with the length of fw (the duration of the future window is fw * 15
minutes).

ple pods, Continuous in Table 3), the CPU load of the monitor-
ing system increases by 2.5 times (7.9 vcores), while the load
of the MLOps framework increases by 3 times (1.8 vcores).

Except for the ”Supercomputer Multiple Pods Continues”
setup, the CPU usage during the different configurations is very
close to the base CPU usage of Kubernetes; this is a very wel-
comed sign, as it means that the GNN inference is not im-
pacting too significantly the standard operations of the moni-
toring framework. It must also be noticed that implementing a
pipeline in a continuous approach increases the write load on
the KairosDB and Cassandra clusters.

4.2.2. Visualization of anomaly anticipation

Figure 4 shows the visualization available to system admin-
istrators provided by GRAAFE for a single rising edge event
(transition from state O to state 1). This event is taken from
node 240, located in compute rack 12. The anomaly occurred
on 7/5/2022 at 6:45. The event with different lengths of the pre-
ceding periods is plotted in Fig. 4. The visualization reports the
(normalized) probability for the anomaly (class 1) trained with
different future windows.

First, we focus on the shortest prediction window classifier
- the classifier with the future window of 4 timesteps of 1 hour
in the future. This classifier anticipated the anomaly but only
with one timestep of anticipation (15 minutes). Still, it pro-
duces a clear and distinctive anomaly signal before the rising
edge. Moving on to longer observation windows like 2.5 and
5 hours, we see that classifiers with longer observation win-
dows also anticipate the anomaly correctly. According to ex-
pectations, the classifier trained to detect anomalies one hour in
advance (prob4) predicts no anomalies in this larger observa-
tion window. With much larger time windows (from 7.5 to 25
hours) all other classifiers produce the expected spike in proba-
bility (see Fig. 4e), with density increasing closer to the actual
anomaly.

4.2.3. Financial impact of anomaly anticipation

Deployment of the anomaly prediction model in real-life
operations consists of estimating the positive aspects and bene-
fits of the deployment against the potential negative aspects and
costs. To do this, we have developed a model, which is included
in the code repository, that models the benefits of the model
against the costs associated with mispredictions. We are com-
bining the model with some assumptions about the operational
aspect of a typical supercomputer and the additional results of
our predictive models, as described in the additional results in
the code repository. We are using the optimal threshold for the
classifier and the true positive and false positive rates, as re-
ported in the additional results. The general equation of the
cost-benefit model is:

Benefit = Cost of False Negatives — Cost of False Positives

Compared to the case where no predictive model is de-
ployed, the deployment of the GRAAFE framework results in
no additional costs of false negatives. For this reason, the cost
of false negatives is modeled as zero in our model. The cost of

false positives, however, is associated with the time that the sys-
tem administrators waste analyzing false positive signals. We
are modeling it as an unnecessary action cost. Unnecessary ac-
tion cost is calculated as:

Unnecessary action cost = false positive probability

X analysis duration

X hourly pay of system administrator
The unnecessary action cost increases for larger future windows

as the false positive rate increases and the overall anticipation
accuracy decreases.

Hours | Optimistic | Conservative | Pessimistic
0 0.0 0.0 0.0
1 0.7 0.3 0.0
3 0.8 0.6 0.0
6 - - 0.3
8 0.8 0.8 0.8
72 0.8 0.8 0.8

Table 4: Three scenarios are defined based on the probability that the system
administrators can prevent an anomaly if given a signal within a future window
(in hours).

The benefit of the model development is estimated as the
expected value of the deployment benefit:

Benefit = probability to detect faliure (FW)
X probability to prevent faliure(FW)

X cost of faliure

The probability of detecting failure is a characteristic of the
predictive model, and it equals the true positive rate. For the
analysis presented in this section, we are using the true positive
rate of the per-rack GNN model, as recorded in the additional
results. The cost of failure is related to the opportunity cost of
the HPC system downtime. Our analysis estimates it to be a
fraction of the overall cost of the HPC system.

The probability of preventing failure is a characteristic of
the organizational specifics of each data center and its system
administration team. Since we do not have accurate organi-
zational information for the Marconi 100 supercomputer, we
have prepared three scenarios demonstrating different system
administration teams. Based on the warning period (in hours),
the system administrator teams prevent the anomaly with dif-
ferent probabilities as depicted in table 4. Optimistic scenario
depicts a very effective system administration team that can pre-
vent 70% of anomalies with a warning window of one hour and
80% with a warning period of three or more hours. Conser-
vative scenario depicts a conservative estimation of the system
administration team’s effectiveness. System administrators can
only prevent 30% of the anomalies with a prediction window of
one hour. Pessimistic scenario is an overly pessimistic option
where system administrators cannot prevent anomalies if they
have a warning period of less than six hours.

Based on the important points of each scenario, a smooth
(double differentiable) function is fitted over them. This gives

Probability to prevent an anomaly based on the future window

° °
S *

Prevention probability

—— Optimistic scenario
—— Conservative scenario
—— Pessimistic scenario

°
~

0.0
40 50 60 70

0 10 20 30
Future window in hours

(a) The prevention probability function models the probability that the system adminis-
trators will be able to prevent the anomaly if given the anomaly signal in a given future
window.

Cost-benefit function for different future windows

o
i
IS

—— Optimistic scenario
—— Conservative scenario
—— Pessimistic scenario

oo
28
=39

°
o
o

o
o
@

o
°
=

o
o
M

o
o
)

Benefit as a percentage of the system cost
& (=}
°
8

o
o
N

0,0 0.0 N ° ° N
A0 S S 2 S 8

Future window in hour:

(b) The cost-benefit function models the net benefit (benefit minus the cost) of the model
adoption for different future windows, expressed as the percentage of the total HPC system
cost.

Figure 5: Depending on the scenario and the associated probability of preventing the anomaly, given a specific warning window, the projected benefit is achieved

by deploying the predictive system at different future windows.

us the probabilities for every other future window. The func-
tion is based on the assumption of being monotonic positive as
the prevention probability cannot decrease. Based on three sce-
narios, we get three different anomaly prevention probability
functions as depicted in Figure 5a.

Given the anomaly prevention probability function, we can
estimate the cost-benefit of deploying the model in each sce-
nario. The cost-benefit, measured in the percentage of the over-
all system cost, is depicted in Figure 5b. In the optimistic sce-
nario, the maximum benefit is achieved for the one-hour future
prediction window. For the conservative scenario, the maxi-
mum is achieved for the prediction window of 3 hours. Inter-
estingly, for the conservative scenario - the cost-benefit is neg-
ative for future windows up to 3 hours. This is because the
system administrators cannot prevent the anomalies but would
still have to react to the false positive signal (and incur the as-
sociated costs). As seen in Figure 5, the model’s benefit and the
optimal deployment strategy (size of the future window) de-
pend strongly on the organizational characteristics of each data
center.

Estimating the organizational characteristics of the individ-
ual data center is beyond the scope of this paper. For this rea-
son, we have prepared a computational model included in the
code repository (https://gitlab.com/ecs-1lab/GRAAFE/
-/blob/main/Cost_benefit.ipynb) that takes the opera-
tional parameters as input and outputs the cost-benefit function
for the defined specific scenario. This allows potential adopters
of our framework to decide on the optimal deployment strategy
based on their organizational reality and needs.

5. Conclusion

In this paper, we proposed two contributions: 1) the first
anomaly prediction approach for HPC systems explicitly ex-
ploiting the underlying proximity structure of computing nodes;

2) an MLOps framework for integrating these rack-based mod-
els with monitoring infrastructure and continuously obtaining
predictions on live data. The graph structure significantly in-
fluences the performance of anomaly anticipation models for
supercomputers. Our GNN approach has enabled us to surpass
all previously known ML methods in this domain; in particular,
we thoroughly demonstrate how we can not only detect failures
(as already done in previous work) but predict such failures with
several hours of anticipation.

The MLOps framework has been exhaustively evaluated in
deployment configurations to measure the overhead caused by
the Kubernetes pipeline. In the current setup, the impact on
the supercomputer itself is negligible, as the MLOps runs on
the same cloud infrastructure (residing in the same HPC facility
hosting the supercomputer) where the monitoring infrastructure
is deployed. We have also explored different deployment se-
tups, highlighting how different solutions can be adopted, grant-
ing greater flexibility while satisfying real-time requirements.
Moreover, the additional incurred computational overhead w.r.t.
the monitoring infrastructure (which we can assume is present
in most supercomputers nowadays) is only 30% more CPU re-
sources and less than 5% more RAM.

Acknowledgments

This research was partly supported by the EuroHPC EU
Regale project (g.a. 956560), the HE EU DECICE project
(g.a. 101092582), the HE EU Graph-Massivizer project (g.a.
101093202), the HE EU DECICE project (g.a. 101092582),the
SPOKE 1: Future HPC & Big Data by PNRR, and the Eu-
roHPC EU Pilot for exascale EUPEX (g.a. 101033975). We
also thank CINECA for the collaboration and access to their
machines.

References

(1
(2]

(3]

(4]

(5]

(6]

[71

[8

191

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

J. J. Dongarra, H. W. Meuer, E. Strohmaier, 29th top500 Supercomputer
Sites, Tech. rep., Top500.org (Nov. 1994).

A. Borghesi, M. Molan, M. Milano, A. Bartolini, Anomaly detection
and anticipation in high performance computing systems, IEEE Trans-
actions on Parallel and Distributed Systems 33 (4) (2022) 739-750.
doi:10.1109/TPDS.2021.3082802.

M. Molan, A. Borghesi, D. Cesarini, L. Benini, A. Bar-
tolini, Ruad: Unsupervised anomaly detection in hpc systems,
Future Generation Computer Systems 141 (2023) 542-554.

doi:https://doi.org/10.1016/j.future.2022.12.001.

D. Jauk, D. Yang, M. Schulz, Predicting faults in high performance
computing systems: An in-depth survey of the state-of-the-practice,
in: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC ’19, As-
sociation for Computing Machinery, New York, NY, USA, 2019.
doi:10.1145/3295500.3356185.

URL https://doi.org/10.1145/3295500.3356185

Q. Guan, Z. Zhang, S. Fu, Proactive failure management by integrated
unsupervised and semi-supervised learning for dependable cloud systems,
in: 2011 Sixth International Conference on Availability, Reliability and
Security, 2011, pp. 83-90. doi:10.1109/ARES.2011.20.

B. Nie, J. Xue, S. Gupta, T. Patel, C. Engelmann, E. Smirni, D. Ti-
wari, Machine learning models for gpu error prediction in a large scale
hpc system, in: 2018 48th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN), 2018, pp. 95-106.
doi:10.1109/DSN.2018.00022.

M. Ott, W. Shin, N. Bourassa, T. Wilde, S. Ceballos, M. Ro-
manus, N. Bates, Global experiences with hpc operational data mea-
surement, collection and analysis, in: 2020 IEEE International Con-
ference on Cluster Computing (CLUSTER), 2020, pp. 499-508.
doi:10.1109/CLUSTER49012.2020.00071.

P. Matri, P. Carns, R. Ross, A. Costan, M. S. Pérez, G. Antoniu, Slog:
Large-scale logging middleware for hpc and big data convergence, in:
2018 IEEE 38th International Conference on Distributed Computing Sys-
tems (ICDCS), IEEE, 2018, pp. 1507-1512.

W. Khan, D. De Chiara, A.-L. Kor, M. Chinnici, Exploratory data anal-
ysis for data center energy management, in: Proceedings of the Thir-
teenth ACM International Conference on Future Energy Systems, 2022,
pp. 571-580.

J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, M. Sun,
Graph neural networks: A review of methods and applications (2018).
doi:10.48550/ARXIV.1812.08434.

URL https://arxiv.org/abs/1812.08434

A. Netti, M. Muller, et al., Dcdb wintermute: Enabling online and holistic
operational data analytics on hpc systems, in: Proc. of the 29th Interna-
tional Symposium on High-Performance Parallel and Distributed Com-
puting, ACM, New York, NY, USA, 2020, p. 101-112.

F. Beneventi, A. Bartolini, C. Cavazzoni, L. Benini, Continuous learning
of hpc infrastructure models using big data analytics and in-memory pro-
cessing tools, in: Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2017, IEEE, 2017, pp. 1038-1043.

A. Bartolini, F. Beneventi, et al., Paving the way toward energy-aware and
automated datacentre, in: Proceedings of the 48th International Confer-
ence on Parallel Processing: Workshops, 2019, pp. 1-8.

Wikipedia, CINECA — Wikipedia, the free encyclopedia, http://en.
wikipedia.org/w/index.php?title=CINECA&0ldid=954269846,
[Online; accessed 04-December-2021] (2021).

D. Milojicic, P. Faraboschi, N. Dube, D. Roweth, Future of
hpc: Diversifying heterogeneity, in: 2021 Design, Automation
Test in Europe Conference Exhibition (DATE), 2021, pp. 276-281.
doi:10.23919/DATE51398.2021.9474063.

A. Gainaru, M.-S. Bouguerra, F. Cappello, M. Snir, W. T. C. Kramer,
Navigating the blue waters : Online failure prediction in the petascale
era, 2013.

URL https://api.semanticscholar.org/CorpusID: 16874101

S. Lu, B. Luo, T. Patel, Y. Yao, D. Tiwari, W. Shi, Making disk failure
predictions smarter!, in: Proceedings of the 18th USENIX Conference on
File and Storage Technologies, FAST’20, USENIX Association, USA,
2020, p. 151-168.

11

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Y. Liu, Y. Guan, T. Jiang, K. Zhou, H. Wang, G. Hu, J. Zhang,
W. Fang, Z. Cheng, P. Huang, Spae: Lifelong disk failure pre-
diction via end-to-end gan-based anomaly detection with ensemble
update, Future Generation Computer Systems 148 (2023) 460-471.
doi:https://doi.org/10.1016/j.future.2023.05.020.

URL https://www.sciencedirect.com/science/article/pii/
S0167739X23002030

A. Borghesi, C. Di Santi, M. Molan, M. S. Ardebili, A. Mauri, M. Guar-
rasi, D. Galetti, M. Cestari, F. Barchi, L. Benini, F. Beneventi, A. Bar-
tolini, M100 exadata: a data collection campaign on the cineca’s
marconil00 tier-O supercomputer, Scientific Data 10 (1) (2023) 288.
doi:10.1038/s41597-023-02174-3.

URL https://doi.org/10.1038/s41597-023-02174-3

T. P. Carvalho, F. A. Soares, R. Vita, R. d. P. Francisco, J. P. Basto, S. G.
Alcald, A systematic literature review of machine learning methods ap-
plied to predictive maintenance, Computers & Industrial Engineering 137
(2019) 106024.

S. Behera, A. Choubey, C. S. Kanani, Y. S. Patel, R. Misra,
A. Sillitti, Ensemble trees learning based improved predictive main-
tenance using iiot for turbofan engines, in: Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing, SAC 19, Associa-
tion for Computing Machinery, New York, NY, USA, 2019, p. 842-850.
doi:10.1145/3297280.3297363.

URL https://doi.org/10.1145/3297280.3297363

J. Zhang, R. Gardner, I. Vukotic, Anomaly detection in wide
area network meshes using two machine learning algorithms,
Future Generation Computer Systems 93 (2019) 418-426.
doi:https://doi.org/10.1016/j.future.2018.07.023.

URL https://www.sciencedirect.com/science/article/pii/
S0167739X18302267

F. Monti, D. Boscaini, et al., Geometric deep learning on graphs and man-
ifolds using mixture model cnns, in: Proc. of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 5115-5124.

J.Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, M. Sun,
Graph neural networks: A review of methods and applications, Al open 1
(2020) 57-81.

A. Chaudhary, H. Mittal, A. Arora, Anomaly detection using graph neural
networks, in: 2019 international conference on ML, big data, cloud and
parallel computing, IEEE, 2019, pp. 346-350.

A. Deng, B. Hooi, Graph neural network-based anomaly detection in mul-
tivariate time series, in: Proceedings of the AAAI conference on artificial
intelligence, Vol. 35, 2021, pp. 4027-4035.

Y. Song, R. Xin, et al., Identitfying performance anomalies in fluctuat-
ing cloud environments: a robust correlative-gnn-based explainable ap-
proach, Future Generation Computer Systems (2023).

S. Ghiasvand, F. M. Ciorba, Anomaly detection in high performance com-
puters: A vicinity perspective, in: 18th International Symposium on Par-
allel and Distributed Computing, IEEE, 2019, pp. 112-120.

Y. Song, R. Xin, P. Chen, R. Zhang, J. Chen, Z. Zhao, Identifying perfor-
mance anomalies in fluctuating cloud environments: A robust correlative-
gnn-based explainable approach, Future Generation Computer Systems
145 (2023) 77-86. doi:https://doi.org/10.1016/j.future.2023.03.020.
URL https://www.sciencedirect.com/science/article/pii/
S0167739X23000973

A. Netti, M. Ott, C. e. a. Guillen, Operational data analytics in practice:
experiences from design to deployment in production hpc environments,
Parallel Computing 113 (2022) 102950.

A. Borghesi, A. Burrello, A. Bartolini, Examon-x: a predictive mainte-
nance framework for automatic monitoring in industrial iot systems, IEEE
Internet of Things Journal (2021).

D. Kreuzberger, N. Kiihl, S. Hirschl, Machine learning opera-
tions (mlops): Overview, definition, and architecture, arXiv preprint
arXiv:2205.02302 (2022).

S. Kim, K. Choi, H.-S. Choi, et al., Towards a rigorous evaluation of
time-series anomaly detection, in: Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 36, 2022, pp. 7194-7201.

167

Bibliography

[1]

(2]

3]

[4]

[5]

[6]

[7]

Mohiuddin Ahmed, Abdun Naser Mahmood, and Md. Rafiqul Islam. “A sur-
vey of anomaly detection techniques in financial domain”. In: Future Genera-
tion Computer Systems 55 (2016), pp. 278-288. 1SSN: 0167-739X. DOI: https :
//doi.org/10.1016/ j . future . 2015 .01 . 001. URL: https : / / www .
sciencedirect.com/science/article/pii/S0167739X15000023.

Burak Aksar et al. “E2EWatch: An End-to-End Anomaly Diagnosis Frame-
work for Production HPC Systems”. In: European Conference on Parallel Pro-
cessing. Springer. 2021, pp. 70-85.

Burak Aksar et al. “E2EWatch: An End-to-End Anomaly Diagnosis Frame-
work for Production HPC Systems”. In: Euro-Par 2021: Parallel Processing. Ed.
by Leonel Sousa, Nuno Roma, and Pedro Tomé&s. Cham: Springer Interna-
tional Publishing, 2021, pp. 70-85. ISBN: 978-3-030-85665-6.

Burak Aksar et al. “Proctor: A semi-supervised performance anomaly diag-
nosis framework for production hpc systems”. In: High Performance Comput-
ing: 36th International Conference, ISC High Performance 2021, Virtual Event, June
24—July 2, 2021, Proceedings 36. Springer. 2021, pp. 195-214.

Burak Aksar et al. “Proctor: A Semi-Supervised Performance Anomaly Diag-
nosis Framework for Production HPC Systems”. In: High Performance Com-
puting: 36th International Conference, ISC High Performance 2021, Virtual Event,
June 24— July 2, 2021, Proceedings. Ed. by Bradford L. Chamberlain et al. Cham:
Springer International Publishing, 2021, pp. 195-214. 1SBN: 978-3-030-78712-
7.DOI: 10.1007/978-3-030-78713-4_11. URL: https://doi.org/10.1007/
978-3-030-78713-4_11.

Afroj Alam, Mohd Mugeem, and Sultan Ahmad. “Comprehensive review on
Clustering Techniques and its application on High Dimensional Data”. In: In-
ternational Journal of Computer Science & Network Security 21.6 (2021), pp. 237-
244,

Pedro Amorim, Fredrik Eng-Larsson, and Catarina Pinto. “The cost of a bro-
ken promise: Understanding and mitigating the impact of failure in online
retail”. In: SSRN Electronic Journal (2021). DOI: 10.2139/ssrn.3855425. URL:
https://doi.org/10.2139/ssrn.3855425.

https://doi.org/https://doi.org/10.1016/j.future.2015.01.001
https://doi.org/https://doi.org/10.1016/j.future.2015.01.001
https://www.sciencedirect.com/science/article/pii/S0167739X15000023
https://www.sciencedirect.com/science/article/pii/S0167739X15000023
https://doi.org/10.1007/978-3-030-78713-4_11
https://doi.org/10.1007/978-3-030-78713-4_11
https://doi.org/10.1007/978-3-030-78713-4_11
https://doi.org/10.2139/ssrn.3855425
https://doi.org/10.2139/ssrn.3855425

168

Bibliography

(8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

arXiv. “Sustainability in HPC: Vision and Opportunities”. In: arXiv (2024).
URL: https://arxiv.org/abs/2309.13473.

Priati Assiroj et al. “The Form of High-Performance Computing: A Survey”.
In: IOP conference series 662.5 (Nov. 2019), pp. 052002-052002. DOI: 10.1088/
1757-899x/662/5/052002

Philip Virgil Astillo et al. “Federated intelligence of anomaly detection agent
in JoTMD-enabled Diabetes Management Control System”. In: Future Gener-
ation Computer Systems 128 (2022), pp. 395-405. 1SSN: 0167-739X. DOI: https:
//doi.org/10.1016/j . future . 2021 . 10 . 023. URL: https : / / www .
sciencedirect.com/science/article/pii/S0167739X21004192.

Mohammed Badawy et al. “A survey on exploring key performance indi-
cators”. In: Future Computing and Informatics Journal 1.1 (2016), pp. 47-52.
ISSN: 2314-7288. DOI: https : //doi . org/10.1016/j . fcij . 2016 . 04 .
001. URL: https : / / www . sciencedirect . com/ science / article / pii/

52314728816300034.

Dor Bank, Noam Koenigstein, and Raja Giryes. “Autoencoders”. In: CoRR
abs/2003.05991 (2020). arXiv: 2003 .05991. URL: https://arxiv.org/abs/
2003.05991.

Wolfgang Barth. Nagios: System and network monitoring. No Starch Press, 2008.

Andrea Bartolini, Francesco Beneventi, and et al. “Paving the way toward
energy-aware and automated datacentre”. In: Proceedings of the 48th Interna-

tional Conference on Parallel Processing: Workshops. 2019, pp. 1-8.

Andrea Bartolini et al. “Paving the Way Toward Energy-Aware and Auto-
mated Datacentre”. In: Proceedings of the 48th International Conference on Par-
allel Processing: Workshops. ICPP 2019. New York, NY, USA: Association for
Computing Machinery, 2019. 1SBN: 9781450371964. DOI: 10 . 1145/3339186 .
3339215. URL: https://doi.org/10.1145/3339186.3339215.

Elisabeth Baseman et al. “Interpretable Anomaly Detection for Monitoring of
High Performance Computing Systems”. In: Outlier Definition, Detection, and
Description on Demand Workshop at ACM SIGKDD. San Francisco (Aug 2016).
2016, pp. 1-27.

Sanzio Bassini et al. Cineca HPC Report 2023-2024. Annual Report. Via Mag-
nanelli 6/3, 40033 - Casalecchio di Reno (BO) - Italy: Cineca Consorzio In-

teruniversitario, July 2024. URL: www.hpc.cineca.it.

Sourajit Behera et al. “Ensemble Trees Learning Based Improved Predic-
tive Maintenance Using IlIoT for Turbofan Engines”. In: Proceedings of the
34th ACM/SIGAPP Symposium on Applied Computing. SAC "19. New York,
NY, USA: Association for Computing Machinery, 2019, 842-850. ISBN:

https://arxiv.org/abs/2309.13473
https://doi.org/10.1088/1757-899x/662/5/052002
https://doi.org/10.1088/1757-899x/662/5/052002
https://doi.org/https://doi.org/10.1016/j.future.2021.10.023
https://doi.org/https://doi.org/10.1016/j.future.2021.10.023
https://www.sciencedirect.com/science/article/pii/S0167739X21004192
https://www.sciencedirect.com/science/article/pii/S0167739X21004192
https://doi.org/https://doi.org/10.1016/j.fcij.2016.04.001
https://doi.org/https://doi.org/10.1016/j.fcij.2016.04.001
https://www.sciencedirect.com/science/article/pii/S2314728816300034
https://www.sciencedirect.com/science/article/pii/S2314728816300034
https://arxiv.org/abs/2003.05991
https://arxiv.org/abs/2003.05991
https://arxiv.org/abs/2003.05991
https://doi.org/10.1145/3339186.3339215
https://doi.org/10.1145/3339186.3339215
https://doi.org/10.1145/3339186.3339215
www.hpc.cineca.it

Bibliography 169

[19]

[20]

[24]

(28]

9781450359337. DOI: 10 . 1145/3297280 . 3297363. URL: https://doi . org/
10.1145/3297280.3297363.

Genrich Belitskii et al. Matrix norms and their applications. Vol. 36. Birkhduser,
2013.

Keren Bergman et al. “Exascale computing study: Technology challenges in
achieving exascale systems”. In: Defense Advanced Research Projects Agency In-
formation Processing Techniques Office (DARPA IPTO), Tech. Rep 15 (2008).

Liron Bergman and Yedid Hoshen. “Classification-based anomaly detection
for general data”. In: arXiv preprint arXiv:2005.02359 (2020).

Neva Beske. UG3.2: MARCONI100 UserGuide. Accessed: 2020-08-17. 2020.
URL: https://wiki.u-gov. it /confluence/pages/viewpage .action?
pageId=336727645.

I. Boixaderas, D. Zivanovic, and et al. “Cost-Aware Prediction of Uncorrected
DRAM Errors in the Field”. In: 2020 SC20: International Conference for HPC,
Networking, Storage and Analysis (SC). Los Alamitos, CA, USA: IEEE Comp.
Soc., Sept. 2020, pp. 1-15.

A. Borghesi, A. Bartolini, and et al. “Anomaly detection using autoencoders
in HPC systems”. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence. 2019, pp. 24-32.

A. Borghesi, A. Libri, and et al. “Online anomaly detection in hpc systems”.
In: 2019 IEEE International Conference on Artificial Intelligence Circuits and Sys-
tems. IEEE. 2019, pp. 229-233.

Andrea Borghesi, Alessio Burrello, and Andrea Bartolini. “ExaMon-X: a Pre-
dictive Maintenance Framework for Automatic Monitoring in Industrial IoT
Systems”. In: IEEE Internet of Things Journal (2021).

Andrea Borghesi, Michela Milano, and Luca Benini. “Frequency Assignment
in High Performance Computing Systems”. In: International Conference of the

Italian Association for Artificial Intelligence. Springer. 2019, pp. 151-164.

Andrea Borghesi et al. “A semisupervised autoencoder-based approach for
anomaly detection in high performance computing systems”. In: Engineering
Applications of Artificial Intelligence 85 (2019), pp. 634—644.

Andrea Borghesi et al. “A semisupervised autoencoder-based approach for
anomaly detection in high performance computing systems”. In: Engineer-
ing Applications of Artificial Intelligence 85 (2019), pp. 634—644. 1ISSN: 0952-1976.
DOI: https://doi.org/10.1016/j . engappai.2019.07.008. URL: https:
//www.sciencedirect.com/science/article/pii/S0952197619301721.

https://doi.org/10.1145/3297280.3297363
https://doi.org/10.1145/3297280.3297363
https://doi.org/10.1145/3297280.3297363
https://wiki.u-gov.it/confluence/pages/viewpage.action?pageId=336727645
https://wiki.u-gov.it/confluence/pages/viewpage.action?pageId=336727645
https://doi.org/https://doi.org/10.1016/j.engappai.2019.07.008
https://www.sciencedirect.com/science/article/pii/S0952197619301721
https://www.sciencedirect.com/science/article/pii/S0952197619301721

170

Bibliography

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Andrea Borghesi et al. “Anomaly Detection and Anticipation in High Perfor-
mance Computing Systems”. In: IEEE Transactions on Parallel and Distributed
Systems 33.4 (2022), pp. 739-750. DOI: 10.1109/TPDS.2021.3082802.

Andrea Borghesi et al. “M100 ExaData: a data collection campaign on the
CINECA’s Marconil00 Tier-0 supercomputer”. In: Scientific Data 10 (2023),
p- 288.

Andrea Borghesi et al. “Scheduling-based power capping in high perfor-
mance computing systems”. In: Sustainable Computing: Informatics and Systems
19 (Sept. 2018), pp. 1-13. DOI: 10.1016/j . suscom.2018.05.007. URL: https:
//www.sciencedirect.com/science/article/pii/S2210537917302317.

Avishek Bose et al. “THPCGCN: A Predictive Framework on High Perfor-
mance Computing Cluster Log Data Using Graph Convolutional Networks”.
In: 2021 IEEE International Conference on Big Data (Big Data). IEEE. 2021,
pp. 4113-4118.

GLENN W. BRIER. “VERIFICATION OF FORECASTS EXPRESSED IN
TERMS OF PROBABILITY”. In: Monthly Weather Review 78.1 (1950), pp. 1 3.
DOL: https://doi.org/10.1175/1520-0493(1950) 078<0001 : VOFEIT>2.0.
C0;2.

Tom B. Brown et al. “Language Models are Few-Shot Learners”. In: arXiv
preprint arXiv:2005.14165 (2020). URL: https://arxiv.org/abs/2005.14165.

Sathya Bursic, Alessandro D’ Amelio, and Vittorio Cuculo. Anomaly Detection
From Log Files Using Unsupervised Deep Learning. Sept. 2019.

Maria Carla Calzarossa, Luisa Massari, and Daniele Tessera. “Workload char-
acterization: A survey revisited”. In: ACM Computing Surveys (CSUR) 48.3
(2016), pp. 1-43.

L. Le Cam. “Maximum Likelihood: An Introduction”. In: International Statis-
tical Review / Revue Internationale de Statistique 58.2 (1990), pp. 153-171. I1SSN:
03067734, 17515823. URL: http://www. jstor.org/stable/1403464.

Thyago P Carvalho et al. “A systematic literature review of machine learn-
ing methods applied to predictive maintenance”. In: Computers & Industrial
Engineering 137 (2019), p. 106024.

Francesco Cauteruccio et al. “A framework for anomaly detection and clas-
sification in Multiple IoT scenarios”. In: Future Generation Computer Systems
114 (2021), pp. 322-335. 1SSN: 0167-739X. DOIL: https://doi.org/10.1016/
j.future.2020.08.010. URL: https://www.sciencedirect.com/science/
article/pii/S0167739X19335253.

https://doi.org/10.1109/TPDS.2021.3082802
https://doi.org/10.1016/j.suscom.2018.05.007
https://www.sciencedirect.com/science/article/pii/S2210537917302317
https://www.sciencedirect.com/science/article/pii/S2210537917302317
https://doi.org/https://doi.org/10.1175/1520-0493(1950)078%3C0001:VOFEIT%3E2.0.CO;2
https://doi.org/https://doi.org/10.1175/1520-0493(1950)078%3C0001:VOFEIT%3E2.0.CO;2
https://arxiv.org/abs/2005.14165
http://www.jstor.org/stable/1403464
https://doi.org/https://doi.org/10.1016/j.future.2020.08.010
https://doi.org/https://doi.org/10.1016/j.future.2020.08.010
https://www.sciencedirect.com/science/article/pii/S0167739X19335253
https://www.sciencedirect.com/science/article/pii/S0167739X19335253

Bibliography 171

[41]

[44]

[50]

[51]

Anshika Chaudhary, Himangi Mittal, and Anuja Arora. “Anomaly detec-
tion using graph neural networks”. In: 2019 international conference on ma-
chine learning, big data, cloud and parallel computing (COMITCon). IEEE. 2019,
pp- 346-350.

Xiaomeng Chen et al. “Runtime prediction of high-performance computing
jobs based on ensemble learning”. In: (June 2020). DOI: 10. 1145/3407947 .
3407968. URL: https://dl.acm.org/doi/10.1145/3407947.3407968.

Cineca. Leonardo Pre-exascale Supercomputer. https : / / leonardo -
supercomputer . cineca.eu/hpc-system. Accessed: 2024-08-15. URL: https:
//www.top500.o0rg/system/180128.

Cineca. Marconi Tier-0 system. https : //www . hpc . cineca . it / systems /
hardware /marconil00. Accessed: 2024-08-15. URL: https : //www . top500 .
org/system/179845.

John Connolly. “Book Review : The Supercomputer Era”. In: The international
journal of supercomputer applications 2.1 (Mar. 1988), pp. 95-96. DOI: 10.1177/
109434208800200108. URL: https://journals.sagepub.com/doi/10.1177/
109434208800200108.

Contemporary High Performance Computing | From Petascale toward Exasca. Apr.
2018. DOI: 10.1201/9781351104005. URL: https://wuw.taylorfrancis.com/
books/edit/10.1201/9781351104005/ contemporary-high- performance -

computing-jeffrey-vetter.

Motivair Corporation. “Understanding End-to-End Liquid Cooling for HPC
& Al”. In: Motivair Corporation (2022). URL: https://www.motivaircorp.com/

news/understanding-end-to-end-liquid-cooling-for-hpc-ai.

Tommy Dang, Ngan Nguyen, and Yong Chen. “HiperView: real-time mon-
itoring of dynamic behaviors of high-performance computing centers”. In:
The Journal of Supercomputing 77.10 (2021), pp. 11807-11826.

Mohamed Dani, Henri Doreau, and Samantha Alt. “K-means Application for
Anomaly Detection and Log Classification in HPC”. In: Lecture Notes in Com-
puter Science book series (LNAILvolume 10351). June 2017, pp. 201-210. ISBN:
978-3-319-60044-4. DOI: 10.1007/978-3-319-60045-1_23.

DatacenterDynamics. “2023 second-largest investment year in decade for
data centers - report”. In: DatacenterDynamics (2023). URL: https : / / www .
datacenterdynamics . com/en/news/2023- second - largest - investment -

year-decade-data-centers-report/.

Burgess Davis and David McDonald. “An elementary proof of the local cen-
tral limit theorem”. In: Journal of Theoretical Probability 8.3 (1995), pp. 693-702.

https://doi.org/10.1145/3407947.3407968
https://doi.org/10.1145/3407947.3407968
https://dl.acm.org/doi/10.1145/3407947.3407968
https://leonardo-supercomputer.cineca.eu/hpc-system
https://leonardo-supercomputer.cineca.eu/hpc-system
https://www.top500.org/system/180128
https://www.top500.org/system/180128
https://www.hpc.cineca.it/systems/hardware/marconi100
https://www.hpc.cineca.it/systems/hardware/marconi100
https://www.top500.org/system/179845
https://www.top500.org/system/179845
https://doi.org/10.1177/109434208800200108
https://doi.org/10.1177/109434208800200108
https://journals.sagepub.com/doi/10.1177/109434208800200108
https://journals.sagepub.com/doi/10.1177/109434208800200108
https://doi.org/10.1201/9781351104005
https://www.taylorfrancis.com/books/edit/10.1201/9781351104005/contemporary-high-performance-computing-jeffrey-vetter
https://www.taylorfrancis.com/books/edit/10.1201/9781351104005/contemporary-high-performance-computing-jeffrey-vetter
https://www.taylorfrancis.com/books/edit/10.1201/9781351104005/contemporary-high-performance-computing-jeffrey-vetter
https://www.motivaircorp.com/news/understanding-end-to-end-liquid-cooling-for-hpc-ai
https://www.motivaircorp.com/news/understanding-end-to-end-liquid-cooling-for-hpc-ai
https://doi.org/10.1007/978-3-319-60045-1%5C_23
https://www.datacenterdynamics.com/en/news/2023-second-largest-investment-year-decade-data-centers-report/
https://www.datacenterdynamics.com/en/news/2023-second-largest-investment-year-decade-data-centers-report/
https://www.datacenterdynamics.com/en/news/2023-second-largest-investment-year-decade-data-centers-report/

172

Bibliography

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Ailin Deng and Bryan Hooi. “Graph neural network-based anomaly detec-
tion in multivariate time series”. In: Proceedings of the AAAI conference on arti-
ficial intelligence. Vol. 35. 5. 2021, pp. 4027-4035.

J.]J. Dongarra, H. W. Meuer, and E. Strohmaier. 29th TOP500 Supercomputer
Sites. Tech. rep. Top500.0org, Nov. 1994.

Jack Dongarra. “Report on the Fujitsu Fugaku system”. In: University of
Tennessee-Knoxuville Innovative Computing Laboratory, Tech. Rep. ICLUT-20-06
(2020).

Min Du et al. “DeepLog: Anomaly Detection and Diagnosis from System
Logs through Deep Learning”. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. CCS "17. New York,
NY, USA: Association for Computing Machinery, 2017, 1285-1298. 1SBN:
9781450349468. DOI: 10.1145/3133956 . 3134015. URL: https://doi . org/
10.1145/3133956.3134015.

Damien Fourure et al. “Anomaly Detection: How to Artificially Increase your
F1-Score with a Biased Evaluation Protocol”. In: CoRR abs/2106.16020 (2021).
arXiv: 2106.16020. URL: https://arxiv.org/abs/2106.16020.

Song Fu et al. “A re-optimized deep auto-encoder for gas turbine unsuper-
vised anomaly detection”. In: Engineering Applications of Artificial Intelligence
101 (2021), p. 104199. 1SSN: 0952-1976. DOI: https://doi.org/10.1016/j.
engappai .2021.104199. URL: https://www.sciencedirect.com/science/
article/pii/S0952197621000464.

Ana Gainaru et al. “Navigating the Blue Waters : Online Failure Prediction
in the Petascale Era”. In: 2013. URL: https://api . semanticscholar . org/
CorpusID:16874101.

M. Gamell, K. Teranishi, and et al. “Modeling and Simulating Multiple Fail-
ure Masking Enabled by Local Recovery for Stencil-Based Applications at
Extreme Scales”. In: IEEE Transactions on Parallel and Distributed Systems 28.10
(2017).

Marta Garcia-Gasulla and Brian JN Wylie. “Performance Optimisation and
Productivity for EU HPC Centres of Excellence (and European Parallel Appli-
cation Developers Preparing for Exascale): Best Practice for Efficient and Scal-
able Application Performance”. In: Platform for Advanced Scientific Computing
(PASC) Conference. FZ]-2022-00887. Jiilich Supercomputing Center. 2021.

Azul Garza, Cristian Challu, and Max Mergenthaler-Canseco. “TimeGPT-1".
In: arXiv preprint arXiv:2310.03589 (2023). URL: https: //arxiv . org/abs/
2310.03589.

https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1145/3133956.3134015
https://arxiv.org/abs/2106.16020
https://arxiv.org/abs/2106.16020
https://doi.org/https://doi.org/10.1016/j.engappai.2021.104199
https://doi.org/https://doi.org/10.1016/j.engappai.2021.104199
https://www.sciencedirect.com/science/article/pii/S0952197621000464
https://www.sciencedirect.com/science/article/pii/S0952197621000464
https://api.semanticscholar.org/CorpusID:16874101
https://api.semanticscholar.org/CorpusID:16874101
https://arxiv.org/abs/2310.03589
https://arxiv.org/abs/2310.03589

Bibliography 173

[62]

[69]

[70]

Siavash Ghiasvand and Florina M Ciorba. “Anomaly detection in high per-
formance computers: A vicinity perspective”. In: 2019 18th International Sym-
posium on Parallel and Distributed Computing (ISPDC). IEEE. 2019, pp. 112-120.

Alicia Golden et al. “Generative Al Beyond LLMs: System Implications
of Multi-Modal Generation”. In: May 2024, pp. 257-267. DOI: 10 . 1109 /
ISPASS61541.2024.00032.

Bruno Guindani et al. “Exploring the Utility of Graph Methods in HPC Ther-
mal Modeling”. In: Companion of the 15th ACM/SPEC International Conference
on Performance Engineering. ICPE 24 Companion. London, United Kingdom:
Association for Computing Machinery, 2024, 106-111. ISBN: 9798400704451.
DOI: 10.1145/3629527 .3652895. URL: https://doi.org/10.1145/3629527.
3652895.

FIannone et al. “MARCONI-FUSION: The new high performance computing
facility for European nuclear fusion modelling”. In: Fusion Engineering and
Design 129 (2018), pp. 354-358.

G. Iuhasz and D. Petcu. “Monitoring of Exascale data processing”. In: 2019
IEEE International Conference on Advanced Scientific Computing (ICASC). 2019,
pp- 1-5. DOI: 10.1109/ICASC48083.2019.8946279.

Grafika Jati et al. “AutoGrAN: Autonomous Vehicle LiDAR Contaminant
Detection using Graph Attention Networks”. In: Companion of the 15th
ACMY/SPEC International Conference on Performance Engineering. ICPE 24 Com-
panion. London, United Kingdom: Association for Computing Machinery,
2024, 112-119. 1SBN: 9798400704451. DOI: 10 . 1145/3629527 . 3652896. URL:
https://doi.org/10.1145/3629527 .3652896.

Grafika Jati et al. “LIDAROC: Realistic LIDAR Cover Contamination Dataset
for Enhancing Autonomous Vehicle Perception Reliability”. In: IEEE Sensors
Letters 8.9 (2024), pp. 1-4. DOI: 10.1109/LSENS. 2024 . 3434624.

Grafika Jati et al. “TinyLid: a RISC-V accelerated Neural Network For LIDAR
Contaminant Classification in Autonomous Vehicle”. In: Proceedings of the
21st ACM International Conference on Computing Frontiers. CF '24. Ischia, Italy:
Association for Computing Machinery, 2024, 249-257. I1SBN: 9798400705977 .
DOI: 10.1145/3649153.3649201. URL: https://doi.org/10.1145/3649153.
3649201.

David Jauk, Dai Yang, and Martin Schulz. “Predicting Faults in High Per-
formance Computing Systems: An in-Depth Survey of the State-of-the-
Practice”. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. SC "19. New York, NY, USA:
Association for Computing Machinery, 2019. 1SBN: 9781450362290. DOTI: 10 .
1145/3295500.3356185. URL: https://doi.org/10.1145/3295500.3356185.

https://doi.org/10.1109/ISPASS61541.2024.00032
https://doi.org/10.1109/ISPASS61541.2024.00032
https://doi.org/10.1145/3629527.3652895
https://doi.org/10.1145/3629527.3652895
https://doi.org/10.1145/3629527.3652895
https://doi.org/10.1109/ICASC48083.2019.8946279
https://doi.org/10.1145/3629527.3652896
https://doi.org/10.1145/3629527.3652896
https://doi.org/10.1109/LSENS.2024.3434624
https://doi.org/10.1145/3649153.3649201
https://doi.org/10.1145/3649153.3649201
https://doi.org/10.1145/3649153.3649201
https://doi.org/10.1145/3295500.3356185
https://doi.org/10.1145/3295500.3356185
https://doi.org/10.1145/3295500.3356185

174

Bibliography

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

Morris A. Jette, Andy B. Yoo, and Mark Grondona. “SLURM: Simple Linux
Utility for Resource Management”. In: In Lecture Notes in Computer Science:
Proceedings of Job Scheduling Strategies for Parallel Processing (JSSPP) 2003.
Springer-Verlag, 2002.

Daniel Jurafsky and James H. Martin. Speech and Language Processing. 3rd.
Available online as a draft. Pearson, Draft 2023. URL: https://web.stanford.
edu/~ jurafsky/slp3/.

Junaid Ahmed Khan et al. “ExaQuery: Proving Data Structure to Un-
structured Telemetry Data in Large-Scale HPC”. In: Companion of the 15th
ACM/SPEC International Conference on Performance Engineering. ICPE 24 Com-
panion. London, United Kingdom: Association for Computing Machinery,
2024, 127-134. 1SBN: 9798400704451. DOI: 10 . 1145 /3629527 . 3652898. URL:
https://doi.org/10.1145/3629527.3652898.

Wania Khan et al. “Exploratory data analysis for data center energy manage-
ment”. In: Proceedings of the Thirteenth ACM International Conference on Future
Energy Systems. 2022, pp. 571-580.

Siwon Kim et al. “Towards a Rigorous Evaluation of Time-series Anomaly
Detection”. In: CoRR abs/2109.05257 (2021). arXiv: 2109.05257. URL: https:
//arxiv.org/abs/2109.05257.

Siwon Kim et al. “Towards a rigorous evaluation of time-series anomaly de-
tection”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 36.
7.2022, pp. 7194-7201.

Peter Kogge and David R. Resnick. Yearly update: exascale projections for 2013.
Oct. 2013. DOI: 10.2172/1104707.

MIT Lincoln Laboratory. “Al models are devouring energy. Tools to reduce
consumption are here, if data centers will adopt.” In: MIT Lincoln Laboratory
(2024). URL: https : //www .1l . mit . edu/news / ai - models - devouring -
energy-tools-reduce-consumption-are-here-if-data-centers-will-

adopt.

Grafana Labs. Grafana: The open observability platform. URL: https://grafana.
com/ (visited on 04/29/2020).

Ki Bum Lee, Sejune Cheon, and Chang Ouk Kim. “A convolutional neural
network for fault classification and diagnosis in semiconductor manufac-
turing processes”. In: IEEE Transactions on Semiconductor Manufacturing 30.2
(2017), pp. 135-142.

Guillaume Lemaitre, Fernando Nogueira, and Christos K. Aridas.
“Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced
Datasets in Machine Learning”. In: Journal of Machine Learning Research 18.17
(2017), pp. 1-5.

https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
https://doi.org/10.1145/3629527.3652898
https://doi.org/10.1145/3629527.3652898
https://arxiv.org/abs/2109.05257
https://arxiv.org/abs/2109.05257
https://arxiv.org/abs/2109.05257
https://doi.org/10.2172/1104707
https://www.ll.mit.edu/news/ai-models-devouring-energy-tools-reduce-consumption-are-here-if-data-centers-will-adopt
https://www.ll.mit.edu/news/ai-models-devouring-energy-tools-reduce-consumption-are-here-if-data-centers-will-adopt
https://www.ll.mit.edu/news/ai-models-devouring-energy-tools-reduce-consumption-are-here-if-data-centers-will-adopt
https://grafana.com/
https://grafana.com/

Bibliography 175

[82]

[85]

[86]

[91]

Xiaopeng Li et al. “Learning latent superstructures in variational au-
toencoders for deep multidimensional clustering”. In: arXiv preprint
arXiv:1803.05206 (2018).

Benjamin Lindemann et al. “A survey on long short-term memory networks
for time series prediction”. In: Procedia CIRP 99 (2021), pp. 650-655.

Sidi Lu et al. “Making Disk Failure Predictions SMARTer!” In: Proceedings of
the 18th USENIX Conference on File and Storage Technologies. FAST'20. USA:
USENIX Association, 2020, 151-168. 1SBN: 9781939133120.

Preeti Malakar et al. “Benchmarking Machine Learning Methods for Perfor-
mance Modeling of Scientific Applications”. In: (Nov. 2018). DOI: 10. 1109/
pmbs . 2018 . 8641686. URL: https : / / ieeexplore . ieee . org/ document /
8641686/.

Inés Martins et al. “Host-based IDS: A review and open issues of an anomaly
detection system in IoT”. In: Future Generation Computer Systems 133 (2022),
pp- 95-113. 1SSN: 0167-739X. DOI: https://doi.org/10.1016/j . future.
2022.03.001. URL: https://www.sciencedirect.com/science/article/
pii/S0167739X22000760.

Pierre Matri et al. “Slog: Large-scale logging middleware for hpc and big data
convergence”. In: 2018 IEEE 38th International Conference on Distributed Com-
puting Systems (ICDCS). IEEE. 2018, pp. 1507-1512.

McKinsey. “The state of Al'in 2023: Generative Al’s breakout year”. In: McK-
insey & Company (2023). URL: https : // www . mckinsey . com/ business -
functions/mckinsey-analytics/our-insights/the-state-of-ai-in-

2023-generative-ais-breakout-year.

E. Meneses, X. Ni, and et al. “Using Migratable Objects to Enhance Fault
Tolerance Schemes in Supercomputers”. In: IEEE Transactions on Parallel and
Distributed Systems 26.7 (2015), pp. 2061-2074. DOI: 10 . 1109 /TPDS . 2014 .
2342228.

Dejan Milojicic et al. “Future of HPC: Diversifying Heterogeneity”. In: 2021
Design, Automation Test in Europe Conference Exhibition (DATE). 2021, pp. 276~
281. DOI: 10.23919/DATE51398.2021.9474063.

Gregor Molan et al. “Model for Quantitative Estimation of Functionality In-
fluence on the Final Value of a Software Product”. In: IEEE Access 11 (2023),
pp- 115599-115616. DOI: 10.1109/ACCESS . 2023.3325338.

Marrin Molan et al. “An Explainable Model for Fault Detection in HPC Sys-
tems”. In: High Performance Computing. Ed. by Heike Jagode et al. Cham:
Springer International Publishing, 2021, pp. 378-391. 1SBN: 978-3-030-90539-
2.

https://doi.org/10.1109/pmbs.2018.8641686
https://doi.org/10.1109/pmbs.2018.8641686
https://ieeexplore.ieee.org/document/8641686/
https://ieeexplore.ieee.org/document/8641686/
https://doi.org/https://doi.org/10.1016/j.future.2022.03.001
https://doi.org/https://doi.org/10.1016/j.future.2022.03.001
https://www.sciencedirect.com/science/article/pii/S0167739X22000760
https://www.sciencedirect.com/science/article/pii/S0167739X22000760
https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/the-state-of-ai-in-2023-generative-ais-breakout-year
https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/the-state-of-ai-in-2023-generative-ais-breakout-year
https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/the-state-of-ai-in-2023-generative-ais-breakout-year
https://doi.org/10.1109/TPDS.2014.2342228
https://doi.org/10.1109/TPDS.2014.2342228
https://doi.org/10.23919/DATE51398.2021.9474063
https://doi.org/10.1109/ACCESS.2023.3325338

176

Bibliography

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

Martin Molan. Pre-processing for Anomaly Detection on Linear Accelerator. CERN
openlab online summer intern project presentations. Sept. 2020.

Martin Molan et al. “Analysing Supercomputer Nodes Behaviour
with the Latent Representation of Deep Learning Models”. In: Euro-Par
2022: Parallel Processing. Ed. by José Cano and Phil Trinder. Cham: Springer
International Publishing, 2022, pp. 171-185. 1SBN: 978-3-031-12597-3.

Martin Molan et al. “GRAAFE: GRaph Anomaly Anticipation Framework for
Exascale HPC systems”. In: Future Generation Computer Systems 160 (2024),
pp. 644-653. 1SSN: 0167-739X. DOI: https://doi.org/10.1016/j . future.
2024 .06 .032. URL: https://www.sciencedirect.com/science/article/
pii/S0167739X24003327.

Martin Molan et al. “Graph Neural Networks for Anomaly Anticipation in
HPC Systems”. In: Companion of the 2023 ACM/SPEC International Conference
on Performance Engineering. 2023, pp. 239-244.

Martin Molan et al. “Machine Learning Methodologies to Support HPC Sys-
tems Operations: Anomaly Detection”. In: European Conference on Parallel Pro-

cessing. Springer. 2022, pp. 294-298.

Martin Molan et al. “RUAD: Unsupervised anomaly detection in HPC sys-
tems”. In: Future Generation Computer Systems 141 (2023), pp. 542-554. I1SSN:
0167-739X. DOI: https : / /doi . org/ 10 . 1016/ j . future . 2022 . 12 .
001. URL: https : / / www . sciencedirect . com/ science / article / pii/
S0167739X2200406X.

Martin Molan et al. “Semi-supervised anomaly detection on a Tier-0 HPC
system”. In: Proceedings of the 19th ACM International Conference on Computing
Frontiers. 2022, pp. 203-204.

Martin Molan et al. “The Graph-Massivizer Approach Toward a European
Sustainable Data Center Digital Twin”. In: 2023 IEEE 47th Annual Computers,
Software, and Applications Conference (COMPSAC). IEEE. 2023, pp. 1459-1464.

Federico Monti, Davide Boscaini, and et al. “Geometric deep learning on
graphs and manifolds using mixture model cnns”. In: Proc. of the IEEE confer-

ence on computer vision and pattern recognition. 2017, pp. 5115-5124.

Adam Morrow, Elisabeth Baseman, and Sean Blanchard. “Ranking Anoma-
lous High Performance Computing Sensor Data Using Unsupervised Clus-
tering”. In: 2016 International Conference on Computational Science and Compu-
tational Intelligence (CSCI). 2016, pp. 629—-632. DOI: 10.1109/CSCI.2016.0124.

Giulia Moschini et al. Anomaly and Fraud Detection in Credit Card Transactions
Using the ARIMA Model. 2020. arXiv: 2009.07578.

https://doi.org/https://doi.org/10.1016/j.future.2024.06.032
https://doi.org/https://doi.org/10.1016/j.future.2024.06.032
https://www.sciencedirect.com/science/article/pii/S0167739X24003327
https://www.sciencedirect.com/science/article/pii/S0167739X24003327
https://doi.org/https://doi.org/10.1016/j.future.2022.12.001
https://doi.org/https://doi.org/10.1016/j.future.2022.12.001
https://www.sciencedirect.com/science/article/pii/S0167739X2200406X
https://www.sciencedirect.com/science/article/pii/S0167739X2200406X
https://doi.org/10.1109/CSCI.2016.0124
https://arxiv.org/abs/2009.07578

Bibliography 177

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

Nature. “Generative Al’s environmental costs are soaring — and mostly se-
cret”. In: Nature (2024). URL: https://www.nature.com/articles/d41586-
024-00478-x.

Alessio Netti, Zeynep Kiziltan, and et al. “FINJ: A fault injection tool for
HPC systems”. In: European Conference on Parallel Processing. Springer. 2018,
pp- 800-812.

Alessio Netti et al. “A Conceptual Framework for HPC Operational Data An-
alytics”. In: 2021 IEEE International Conference on Cluster Computing (CLUS-
TER). 2021, pp. 596—603. DOI: 10.1109/Cluster48925.2021.00086.

Alessio Netti et al. “A Conceptual Framework for HPC Operational Data An-
alytics”. In: 2021 IEEE International Conference on Cluster Computing (CLUS-
TER). 2021, pp. 596—603. DOI: 10.1109/Cluster48925.2021.00086.

Alessio Netti et al. “A machine learning approach to online fault classification
in HPC systems”. In: Future Generation Computer Systems (2019).

Alessio Netti et al. “Online Fault Classification in HPC Systems through Ma-
chine Learning”. In: European Conference on Parallel Processing. Springer. 2019,

pp- 3-16.

Alessio Netti et al. “Operational data analytics in practice: experiences from
design to deployment in production HPC environments”. In: Parallel Comput-
ing 113 (2022), p. 102950.

OpenAl. “GPT-4 Technical Report”. In: arXiv preprint arXiv:2303.08774 (2023).
URL: https://arxiv.org/abs/2303.08774.

Guansong Pang et al. “Deep Learning for Anomaly Detection: A Review”. In:
ACM Comput. Surv. (Mar. 2020). DOI: 10.1145/3439950.

Guansong Pang et al. “Deep Learning for Anomaly Detection: A Review”. In:
ACM Comput. Surv. 54.2 (Mar. 2021). 1SSN: 0360-0300. DOI: 10.1145/3439950.
URL: https://doi.org/10.1145/3439950.

Lynn A. Parnell et al. “Trends in High Performance Computing: Exascale Sys-
tems and Facilities Beyond the First Wave”. In: 2019 18th IEEE Intersociety
Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(ITherm). 2019, pp. 167-176. DOIL: 10.1109/ITHERM. 2019 .8757229.

E. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825-2830.

Receiver operating characteristic. Nov. 2021. URL: https://en.wikipedia.org/

wiki/Receiver_operating characteristic.

Robin Rombach et al. “High-Resolution Image Synthesis with Latent Dif-
fusion Models”. In: arXiv preprint arXiv:2112.10752 (2021). URL: https : //
arxiv.org/abs/2112.107527utm_source=chatgpt.com.

https://www.nature.com/articles/d41586-024-00478-x
https://www.nature.com/articles/d41586-024-00478-x
https://doi.org/10.1109/Cluster48925.2021.00086
https://doi.org/10.1109/Cluster48925.2021.00086
https://arxiv.org/abs/2303.08774
https://doi.org/10.1145/3439950
https://doi.org/10.1145/3439950
https://doi.org/10.1145/3439950
https://doi.org/10.1109/ITHERM.2019.8757229
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://arxiv.org/abs/2112.10752?utm_source=chatgpt.com
https://arxiv.org/abs/2112.10752?utm_source=chatgpt.com

178

Bibliography

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

Luis Rosa et al. “Intrusion and anomaly detection for the next-generation of
industrial automation and control systems”. In: Future Generation Computer
Systems 119 (2021), pp. 50-67. 1SSN: 0167-739X. DOI: https://doi.org/10.
1016/ j . future.2021.01.033. URL: https://www . sciencedirect . com/
science/article/pii/S0167739X21000431.

Tara Salman et al. “Machine Learning for Anomaly Detection and Catego-
rization in Multi-cloud Environments”. In: 2017 IEEE 4th International Confer-
ence on Cyber Security and Cloud Computing (CSCloud) (2017). DOI: 10.1109/
CSCloud.2017.15. arXiv: 1812.05443.

Ketan Rajshekhar Shahapure and Charles Nicholas. “Cluster Quality Analy-
sis Using Silhouette Score”. In: 2020 IEEE 7th International Conference on Data
Science and Advanced Analytics (DSAA). 2020, pp. 747-748. DOI: 10 . 1109/
DSAA49011.2020.00096.

Woong Shin et al. “Revealing Power, Energy and Thermal Dynamics of a
200PF Pre-Exascale Supercomputer”. In: Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis. SC
"21. New York, NY, USA: Association for Computing Machinery, 2021, pp. 1-
14. 1SBN: 9781450384421. DOI: 10 . 1145/3458817 . 3476188. URL: https://
doi.org/10.1145/3458817.3476188.

Chunfeng Song et al. “Auto-encoder Based Data Clustering”. In: Progress
in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Ed.
by José Ruiz-Shulcloper and Gabriella Sanniti di Baja. Berlin, Heidelberg;:
Springer Berlin Heidelberg, 2013, pp. 117-124. 1SBN: 978-3-642-41822-8.

Yujia Song et al. “Identifying performance anomalies in fluctuating cloud en-
vironments: a robust correlative-GNN-based explainable approach”. In: Fu-
ture Generation Computer Systems (2023).

Konstantin S Stefanov et al. “A Review of Supercomputer Performance
Monitoring Systems”. In: Supercomputing Frontiers and Innovations 8.3 (2021),
pp- 62-81.

Erich Strohmaier et al. TOP500 Statistics - Development over Time. Tech. rep.
Application Area. Top500.0rg, June 2024.

Erich Strohmaier et al. TOP500 Statistics - Development over Time. Tech. rep.
Segments. Top500.0rg, June 2024.

Erich Strohmaier et al. TOP500 Statistics - Performance Development. Tech.
rep. Top500.org, June 2024. URL: https ://www . top500 . org/statistics/
perfdevel/.

Olivier Terzo and Jan Martinovi¢. HPC, Big Data, and Al Convergence Towards
Exascale: Challenge and Vision. CRC Press, 2022.

https://doi.org/https://doi.org/10.1016/j.future.2021.01.033
https://doi.org/https://doi.org/10.1016/j.future.2021.01.033
https://www.sciencedirect.com/science/article/pii/S0167739X21000431
https://www.sciencedirect.com/science/article/pii/S0167739X21000431
https://doi.org/10.1109/CSCloud.2017.15
https://doi.org/10.1109/CSCloud.2017.15
https://arxiv.org/abs/1812.05443
https://doi.org/10.1109/DSAA49011.2020.00096
https://doi.org/10.1109/DSAA49011.2020.00096
https://doi.org/10.1145/3458817.3476188
https://doi.org/10.1145/3458817.3476188
https://doi.org/10.1145/3458817.3476188
https://www.top500.org/statistics/perfdevel/
https://www.top500.org/statistics/perfdevel/

Bibliography 179

[129]

[130]

[131]
[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

The European Commission. The EU Innovation Radar Platform. INNOVA-
TION: Graph anomaly anticipation tool for exascale HPC systems. [Online; ac-
cessed 31-December-2024]. The European Commission, 2024. URL: https :

//innovation-radar.ec.europa.eu/innovation/58770.

TOP500 LIST - NOVEMBER 2023. Nov. 2023. URL: https : //www . top500 .
org/lists/top500/1ist/2023/11/.

Top500List. https:/ /www.top500.0rg/lists /top500/2020/06/. 2020.

Hugo Touvron et al. “LLaMA: Open and Efficient Foundation Language
Models”. In: arXiv preprint arXiv:2302.13971 (2023). URL: https : / /arxiv .
org/abs/2302.13971.

Trends in high performance computing: a historical overview and examination of
future developments | IEEE Journals and Magazine. URL: https://ieeexplore.
ieee.org/document/1598076/.

Ozan Tuncer, Emre Ates, and et al. “Diagnosing performance variations in
HPC applications using machine learning”. In: International Supercomputing
Conference. Springer. 2017, pp. 355-373.

Ozan Tuncer, Emre Ates, and Yijia et al. et Zhang. “Online Diagnosis of
Performance Variation in HPC Systems Using Machine Learning”. In: IEEE
Transactions on Parallel and Distributed Systems (Sept. 2018).

Michael E Wall, Andreas Rechtsteiner, and Luis M Rocha. “Singular value
decomposition and principal component analysis”. In: A practical approach to

microarray data analysis. Springer, 2003, pp. 91-109.

Sean Wallace et al. “A Data Driven Scheduling Approach for Power Manage-
ment on HPC Systems”. In: (Nov. 2016). DOI: 10.1109/sc . 2016 . 565. URL:
https://ieeexplore.ieee.org/document/7877134/.

Haoyu Wang, Zetian Liu, and Haiying Shen. “Job scheduling for large-scale
machine learning clusters”. In: (Nov. 2020). DOI: 10.1145/3386367 . 3432588.
URL: https://dl.acm.org/doi/10.1145/3386367.3432588.

Wei Wang et al. “Clustering with orthogonal autoencoder”. In: IEEE Access 7
(2019), pp. 62421-62432.

Sholom M. Weiss et al. Text Mining with Machine Learning: Principles and Tech-
niques. London, UK: Springer, 2010. ISBN: 978-1-84996-225-4.

Wikipedia. CINECA — Wikipedia, The Free Encyclopedia. http : / / en .
wikipedia.org/w/index . php?title=CINECA&01did=954269846. [Online;
accessed 04-December-2021]. 2021.

Wikipedia. [ira (software) — Wikipedia, The Free Encyclopedia. http://en .
wikipedia . org / w/ index . php 7 title = Jira % 20(software) &oldid =
1052315603. [Online; accessed 04-December-2021]. 2021.

https://innovation-radar.ec.europa.eu/innovation/58770
https://innovation-radar.ec.europa.eu/innovation/58770
https://www.top500.org/lists/top500/list/2023/11/
https://www.top500.org/lists/top500/list/2023/11/
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://ieeexplore.ieee.org/document/1598076/
https://ieeexplore.ieee.org/document/1598076/
https://doi.org/10.1109/sc.2016.55
https://ieeexplore.ieee.org/document/7877134/
https://doi.org/10.1145/3386367.3432588
https://dl.acm.org/doi/10.1145/3386367.3432588
http://en.wikipedia.org/w/index.php?title=CINECA&oldid=954269846
http://en.wikipedia.org/w/index.php?title=CINECA&oldid=954269846
http://en.wikipedia.org/w/index.php?title=Jira%20(software)&oldid=1052315603
http://en.wikipedia.org/w/index.php?title=Jira%20(software)&oldid=1052315603
http://en.wikipedia.org/w/index.php?title=Jira%20(software)&oldid=1052315603

180

Bibliography

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

Altair PBS Works. PBS Professional®14.2 Plugins (Hooks) Guide.
https:/ /pbsworks.com/pdfs/PBSHooks14.2.pdf. 2017.

Nan Wu and Yuan Xie. “A survey of machine learning for computer archi-
tecture and systems”. In: ACM Computing Surveys (CSUR) 55.3 (2022), pp. 1-
39.

Peng Wu et al. “Unsupervised anomaly detection for underwater gliders us-
ing generative adversarial networks”. In: Engineering Applications of Artificial
Intelligence 104 (2021), p. 104379. 1SSN: 0952-1976. DOI: https://doi.org/10.
1016/ j . engappai . 2021 . 104379. URL: https://www.sciencedirect . com/
science/article/pii/S095219762100227X.

Rongbin Xu et al. “Improved Long Short-Term Memory based anomaly de-
tection with concept drift adaptive method for supporting IoT services”. In:
Future Generation Computer Systems 112 (2020), pp. 228-242. 1SSN: 0167-739X.
DOI: https://doi.org/10.1016/j . future.2020.05.035. URL: https :
//www.sciencedirect.com/science/article/pii/S0167739X20302235.

Bin Yang et al. “End-to-end {I/O} Monitoring on a Leading Supercomputer”.
In: 16th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19). 2019, pp. 379-394.

Renyu Yang et al. “Intelligent Resource Scheduling at Scale: A Machine
Learning Perspective”. In: (Mar. 2018). DOI: 10.1109/sose.2018.00025. URL:
https://ieeexplore.ieee.org/document/8359158/.

Xin Yang et al. “Machine Learning and Deep Learning Methods for Cyberse-
curity”. In: IEEE Access 6 (Jan. 2018), pp. 35365-35381. DOI: 10.1109/access.
2018.2836950. URL: https://ieeexplore.ieee.org/document/8359287/.

Xuejun Yang et al. “The reliability wall for exascale supercomputing”. In:
IEEE Transactions on Computers 61.6 (2012), pp. 767-779.

Felippe Vieira Zacarias et al. “Intelligent colocation of HPC workloads”. In:
Journal of Parallel and Distributed Computing 151 (May 2021), pp. 125-137. DOTI:
10.1016/j.jpdc.2021.02.010. URL: https://arxiv.org/abs/2103.09019.

Chuxu Zhang et al. “A Deep Neural Network for Unsupervised Anomaly
Detection and Diagnosis in Multivariate Time Series Data”. In: CoRR
abs/1811.08055 (2018). arXiv: 1811.08055.

Jie Zhou et al. Graph Neural Networks: A Review of Methods and Applications.
2018. DOI: 10 .48550/ARXIV . 1812.08434. URL: https://arxiv.org/abs/
1812.08434.

Jie Zhou et al. “Graph neural networks: A review of methods and applica-
tions”. In: Al open 1 (2020), pp. 57-81.

https://doi.org/https://doi.org/10.1016/j.engappai.2021.104379
https://doi.org/https://doi.org/10.1016/j.engappai.2021.104379
https://www.sciencedirect.com/science/article/pii/S095219762100227X
https://www.sciencedirect.com/science/article/pii/S095219762100227X
https://doi.org/https://doi.org/10.1016/j.future.2020.05.035
https://www.sciencedirect.com/science/article/pii/S0167739X20302235
https://www.sciencedirect.com/science/article/pii/S0167739X20302235
https://doi.org/10.1109/sose.2018.00025
https://ieeexplore.ieee.org/document/8359158/
https://doi.org/10.1109/access.2018.2836950
https://doi.org/10.1109/access.2018.2836950
https://ieeexplore.ieee.org/document/8359287/
https://doi.org/10.1016/j.jpdc.2021.02.010
https://arxiv.org/abs/2103.09019
https://arxiv.org/abs/1811.08055
https://doi.org/10.48550/ARXIV.1812.08434
https://arxiv.org/abs/1812.08434
https://arxiv.org/abs/1812.08434

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	History of High-Performance Computing Systems
	Top HPC systems trough history

	HPC systems in the age of Generative AI
	CINECA supercomputing centre
	Galileo
	Marconi
	Leonardo

	Background
	Monitoring systems
	Machine learning applications

	Data processing framework
	Data exploration – DEM
	Introduction to data exploration
	Related work
	Methodology for data exploration
	Probabilistic Background
	General overview of the approach
	Autoencoder models
	Feature extraction
	Singular value decomposition
	Representative vector
	Matrix measures

	Clustering
	Evaluating clustering
	Random sampling baseline

	Results of data exploration
	Experimental setting
	Trained autoencoder
	Cluster analysis: normal operation percentage

	Conclusions of data exploration

	Anomaly detection – RUAD
	Introduction to anomaly detection
	Motivation

	Related work
	Novelty of the developed approach

	Methodology for anomaly detection
	Node anomaly labeling
	Reconstruction error and result evaluation
	Trivial baseline: exponential smoothing
	Unsupervised baseline: clustering
	Semi-supervised baseline: dense autoencoder
	Recurrent unsupervised anomaly detection: RUAD
	Data pre-processing
	Summary of evaluated methods

	Experimental results of anomaly detection
	Experimental setting
	Dataset
	Hyperparameters
	Area under the curve (AUC)
	Comparison of all approaches
	F1 scores

	Conclusions of anomaly detection
	Future work

	Anomaly prediction – GRAAFE
	Introduction to anomaly anticipation
	Related Works
	Anomaly Detection & Prediction in HPC
	GNNs and HPC

	Methodology for anomaly anticipation
	Results of anomaly anticipation
	Experimental setting
	Anomaly Prediction Model Performance
	Anomaly prediction model probability calibration
	Visualization of anomaly anticipation
	Financial impact of anomaly anticipation

	Anomaly prediction as part of a GRAAFE framework
	Conclusion of anomaly anticipation

	Looking into the Future
	Power and Limitations of LLMs
	Limitations to Perform Symbolic Rasoning
	Limitation in Ability to Use Tools

	Looking beyond HPC systems
	Operational data analytics
	Data analysis
	Methodologies for Data Explorations

	Anomaly detection
	Anomaly prediction

	Conclusions
	Publications and available resources
	Paper preprints

