ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

DOTTORATO DI RICERCA IN
AUTOMOTIVE ENGINEERING FOR INTELLIGENT MOBILITY

Ciclo 37

Settore Concorsuale: 01/B1 - INFORMATICA

Settore Scientifico Disciplinare: INF/O1 - INFORMATICA

RACE SMART, LAST LONGER: DEEP LEARNING APPROACHES FOR LI-ION
BATTERY STATE ESTIMATION AND AUTONOMOUS RACING VEHICLES

Presentata da: Michael Bosello

Coordinatore Dottorato Supervisore
Davide Moro Giovanni Pau
Co-supervisore

Roberto Girau

Esame finale anno 2025






ALMA MATER STUDIORUM — UNIVERSITA DI BOLOGNA

Department of Computer Science and Engineering

PhD in Automotive Engineering for Intelligent Mobility

Race Smart, Last Longer: Deep Learning
Approaches for Li-ion Battery State Estimation
and Autonomous Racing Vehicles

Author Supervisor
Michael Bosello Giovanni Pau

Co-supervisor
Roberto Girau

Final Examination Year: 2025






Abstract

As the global demand for advanced autonomous systems continues to grow, reliable energy
storage and management becomes paramount, especially in high-performance contexts such as
autonomous racing vehicles—including cars and drones. This dissertation explores two inter-
related topics: (1) the accurate estimation and prediction of Lithium-ion (Li-ion) battery states,
and (2) the development of Autonomous Vehicles (AVs) in competitive racing environments.
The integration of these topics underscores the pivotal role that energy management plays in
maximizing the operational efficiency, safety, and performance of autonomous systems.

The first subject of the thesis addresses the challenges associated with the state estimation and
prediction of Li-ion batteries, which are the cornerstone of energy storage in modern autonomous
systems. The accurate estimation of the State Of Charge (SOC), State Of Health (SOH), and
Remaining Useful Life (RUL) is critical for ensuring the longevity, reliability, and optimal
performance of these batteries, particularly in applications where they are exposed to extreme
operational stress. Through the application of handpicked Deep Learning (DL) techniques and
the development of novel data-driven models, this research improves the accuracy of battery
state estimation and prediction, mitigating the risk of unexpected failures and enhancing the
operational lifespan of energy storage systems. These advancements are validated through testing
on real-world datasets, demonstrating significant improvements over conventional methods.
Moreover, this research has developed a comprehensive dataset of battery data under varied
conditions, which has been made publicly available to support further research in battery state
estimation.

The second subject of this dissertation focuses on the development and testing of AVs,
particularly in the context of high-speed racing environments. Racing provides a unique and
challenging testing ground for autonomous systems, where the need for rapid decision-making,
precise control, and high performance under dynamic and uncertain conditions is critical. This
research contributes to the field by employing deep Reinforcement Learning (RL) techniques for
autonomous driving tasks, particularly utilizing LIDAR and 3D-LIDAR sensors for perception.
The thesis introduces methodologies to tackle the challenges of sim-to-real transfer, ensuring
that models trained in simulation environments can perform in the real world. Additionally,
a novel dataset for autonomous drone racing is introduced, which provides a benchmark for
aggressive, high-speed navigation tasks.

The third subject of the thesis explores the potential for integration between these two

domains, which is the unifying theme presented throughout the study. This part highlights



the symbiotic relationship between battery performance and vehicle control policies’ success.
AVs can extend their operational time and improve performances by adjusting control strategies
based on real-time battery state information. Conversely, battery health can be preserved and
optimized by controlling energy spikes through adaptive driving strategies.

Overall, this dissertation makes contributions to both the fields of battery state estimation
and AV control. It presents open-source software and publicly available datasets that support
the research community in advancing both these domains. By improving the accuracy of Li-ion
battery state estimation and prediction, this research enables more reliable and efficient energy
use in autonomous systems. Simultaneously, the advancements in autonomous racing vehicles
provide valuable insights into the future of high-performance autonomy, where speed, precision,
and reliability are of the utmost importance. These findings lay the groundwork for future
research into the convergence of energy management and autonomous system design, promising

further innovations in the pursuit of more sustainable and capable autonomous technologies.
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Chapter 1
Introduction

The rapid advancement of autonomous systems has driven remarkable innovations in both
robotics and energy management, two fields increasingly interconnected as the world embraces
more sustainable and efficient technologies. At the core of this progress are Lithium-ion
(Li-ion) batteries, which power a wide range of modern autonomous systems, from electric
ground vehicles to aerial drones. As those systems rely on Li-ion batteries for energy storage,
accurate estimation and prediction of the battery state become critical for ensuring optimal
performance, longevity, and safety [6]], [7]. The battery State Of Charge (SOC), State Of
Health (SOH), and Remaining Useful Life (RUL) emerge as crucial variables for optimizing
the productivity and cost of those systems [8]. In parallel, Autonomous Vehicles (AVs)—
particularly in high-speed and safety-critical contexts such as urgent delivery, search and rescue
missions, and transportation—are pushing the boundaries of Machine Learning (ML) and control
algorithms [9], [10]. These systems rely on tightly integrated perception-action loops and
real-time decision-making capabilities to navigate complex environments at high speeds. The
synergy between energy management and AV control is an emerging field of research poised
to transform the performance of autonomous systems in energy-intensive scenarios [11]]. The
symbiotic relationship between these two interconnected domains is evident when considering
how one affects the other. For instance, taking aerial vehicles as an example, it exists an optimal
speed at which a quadrotor should operate to minimize energy consumption and extend the
operational range [12], resulting in cost reduction during deployment, i.e., by flying faster,
drones can be more productive [12]. This is shown by the plot in Fig. suggesting the
optimal speed is above 15 m/s (54 km/h) for small drones. This dependence is bi-directional as
on one hand, the vehicle’s control policy affects how efficiently the battery is discharged and how
it degrades, and on the other hand, the battery’s state affects the vehicle’s performance and the
control algorithm’s effectiveness. In the first case, the vehicle’s control policy can be optimized
to minimize or limit energy consumption and improve overall system efficiency by adjusting
the speed and acceleration profile based on the battery’s state. In the second case, the battery’s
state can inform the vehicle’s decision-making process, allowing it to adjust its speed or strategy
to conserve energy when the task requires the full use of the battery capacity throughout the

mission and maximize performance by balancing battery consumption during the task execution.
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Figure 1.1: Flight range vs. speed for a multicopter, computed by using the full aerodynamics
plus the battery model. The optimal speed for energy consumption w.r.t. operational range is
above 15 m/s in the case of small drones. Source: [[12].

This dissertation explores these two distinct, yet closely related, topics. The first (Sec.
focuses on the state estimation and prediction of Li-ion batteries using ML, with an emphasis on
SOH and RUL. The second (Sec. addresses the challenges of autonomous vehicle control in
high-performance racing contexts, with contributions to both autonomous car and drone racing,
which have been proved to be excellent benchmarks for assessing the state-of-the-art of AVs
systems. Both topics are tackled using ML, which has significantly transformed both battery
management [13] and autonomous systems [14]. Although no direct work has been done to fully
integrate battery management with autonomous control, this dissertation lays the groundwork
for future research in this area by enhancing both domains separately, and highlighting the
potential for their integration (Sec. [3.1), with the promise to revolutionize the performance and
sustainability of autonomous systems. This work introduces novel Deep Learning (DL)-based
models for battery state estimation and prediction, Reinforcement Learning (RL)-based control
systems for autonomous—racing—cars, and Optimal Control (OC)-based data recording of
aggressive autonomous drone flights. It also shares novel publicly available datasets and open-
source tools for both battery and autonomy topics. By fostering accurate energy management
and sophisticated vehicle control, this thesis provides a pathway for the future development of
sustainable and high-performance autonomous systems.

This thesis is organized in the form of a collection of papers. The first part, composed
of three introductory chapters, highlights the concepts, motivations, and contributions of this
work. It follows the appendix containing the standalone publications. The dissertation evolves
as follows: Chapter (1| has introduced the two topics of interest and their union, outlining how
the sections will be divided into three parts: (Sec. Li-ion Battery State Estimation and
Prediction; (Sec. Autonomous Vehicles in Racing Contexts; and (Sec. the opportunities
for future Integration of Battery Management and Autonomous Vehicles. The chapter continues
with the motivations behind the research, and an exploration of the challenges and related works,

both divided into three parts as well. Chapter[2]presents the contributions of this work, including
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the development of DL models for battery state estimation (Sec. [2.1)), and the advancements
to the autonomous racing vehicles field (Sec. [2.2)), while Chapter [3| outlines the directions for
future work regarding the integration between battery management and autonomous vehicle
control (Sec. [3.I), discussing how to move towards accurate battery state estimation that can
enhance the performance and reliability of autonomous systems, while also reducing costs and
improving sustainability. The appendices include the contributions as self-contained papers,

each appendix corresponding to a publication.

1.1 Motivations

The importance of Li-ion batteries in modern technology cannot be overstated. From
consumer electronics to Electric Vehicles (EVs) including drones, they provide the energy
necessary for the operation of countless devices. Nevertheless, the safety and reliability of
batteries are a principal concern, as malfunctions can have severe consequences in both safety-
critical and high-performance scenarios [[15]], [[16]. In autonomous systems, the need for accurate
and reliable energy management is amplified. Without accurate knowledge of a battery’s SOC,
SOH, and RUL, autonomous vehicles are prone to unexpected failures.

In parallel, AVs, particularly in racing contexts, represent the cutting edge of robotics and
Artificial Intelligence (AI). Racing environments offer a unique opportunity to test the limits
of perception, decision-making, and control systems, pushing AVs to operate under extreme
conditions of speed and agility [9], [10]. In such environments, every millisecond counts, and
the energy efficiency of the system plays a pivotal role in determining its overall performance.
The ability to accurately predict the battery’s behavior and manage its power output is essential
for success in high-speed autonomous tasks.

This thesis addresses these two critical challenges—battery state estimation and high-
performance autonomous control—highlighting the interplay between them. By improving
battery state estimation, autonomous systems can better manage their energy consumption,

enabling more efficient and sustained performance in high-stakes environments such as racing.

1.1.1 Li-ion Batteries, the fuel of modern technology

In the modern technological landscape, Li-ion batteries have emerged as one of the most
critical enablers of portable power. Their widespread adoption across a variety of industries—
from consumer electronics to EVs and renewable energy storage—is a testament to their superior
energy density, longer cycle life, and high efficiency when compared to older battery chemistries
such as lead-acid or nickel-cadmium [8]. With the global shift towards electrification and sus-
tainability, the reliance on Li-ion batteries is growing exponentially, making them indispensable
in the pursuit of reducing carbon emissions and transitioning away from fossil fuels [[17]. Li-ion
batteries have revolutionized multiple sectors. In consumer electronics, they power the mobile

devices and laptops that have become ubiquitous in daily life. In renewable energy, they are
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vital for grid storage solutions, helping to balance intermittent sources like solar and wind.
However, one of the most transformative impacts has been in the automotive industry, where
Li-ion batteries are central to the development of EVs [[18]], [19]. By providing a lightweight and
efficient energy storage solution, they have made EVs a viable alternative to internal combustion
engines, supporting global efforts to reduce greenhouse gas emissions.

The operational characteristics of Li-ion batteries, such as their high energy-to-weight ratio
and low self-discharge rate, make them well-suited for use in high-performance and energy-
critical applications. Nevertheless, their performance is influenced by several factors [6], in-
cluding temperature, current loads, and the number of charge-discharge cycles, which affect
their SOC, SOH, and overall longevity. Accurate estimation of these parameters is crucial, es-
pecially in systems like EVs and autonomous robots, where the battery’s status directly impacts
performance, safety, and reliability. Despite their advantages, managing the complexities of
Li-ion batteries remains a significant challenge, particularly in demanding applications [8]], [20].
As these batteries age, their capacity to hold charge diminishes, leading to shorter operating
times and reduced overall efficiency. This makes accurate SOC and SOH estimation essential
for optimizing performance, extending battery life, and preventing failures that could lead to
operational downtime or, in extreme cases, hazardous situations such as thermal runaway. In
this context, advanced Battery Management Systems (BMS) are integral [6]], [7]. These systems
leverage sophisticated algorithms, including ML, to predict and manage battery health, ensuring
efficient energy use and extending battery life. As the demand for high-efficiency, sustainable
energy storage continues to rise, the need for innovation in Li-ion battery technology and man-
agement grows more urgent. The research presented in this thesis contributes to this field by
developing novel methods for battery state estimation and prediction, aiming to enhance the

safety, reliability, and sustainability of systems powered by Li-ion technology.

1.1.2 Racing as a Benchmark for Autonomy

Autonomous racing is not limited to entertainment or competitive sports; it also serves as
a critical benchmark for the development of autonomous systems that could have a profound
impact on society. Racing environments demand the highest levels of system reliability, speed,
and precision, making them an ideal proving ground for autonomous technologies [9], [[10]. The
challenges faced in autonomous racing, such as real-time decision-making, high-speed naviga-
tion, and adaptability in dynamic and unpredictable settings, directly translate into real-world
applications where safety and efficiency are paramount. In fact, the development of autonomous
systems that can reliably perform under the extreme conditions of racing will likely yield tech-
nologies that are even more reliable in everyday applications. For instance, autonomous cars
designed for racing are tested for their ability to operate safely at high speeds, manage complex
maneuvers, and respond instantaneously to dynamic environments. These capabilities, when
transferred to consumer AVs, could enhance safety in normal traffic scenarios [[10], where system
reliability is crucial for preventing accidents and ensuring smooth operation in various driving

conditions. Additionally, advancements in autonomous drone racing, where drones must per-
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form complex tasks with high agility, can lead to the development of systems for industrial
inspections, disaster response, and other critical fields that require fast and accurate navigation
through challenging environments [9]. To address the broader applicability of autonomous
racing technologies, it is important to highlight their potential for generalization to various
domains beyond competitive contexts. In urban environments, for example, the real-time per-
ception and decision-making systems developed for racing can be adapted to improve navigation
and collision avoidance for self-driving cars, ensuring safe and efficient transport. Similarly,
logistics operations could benefit from the precise motion planning and trajectory optimization
algorithms honed in racing, allowing autonomous vehicles and drones to navigate warehouses
or deliver goods with greater speed and reliability. In search and rescue scenarios, the ability
to quickly and accurately maneuver through dynamic environments could significantly improve
response times and effectiveness during emergencies. By leveraging advancements in racing,
autonomous systems can address complex challenges across a wide range of real-world appli-
cations, maximizing their societal impact. Therefore, while autonomous racing may appear to
be an isolated niche, it serves as an essential testing ground for innovations that will ultimately
benefit society in broader applications. By pushing autonomous systems to their limits in racing
contexts, we can ensure that these technologies will perform reliably in everyday scenarios, from
transportation and logistics to healthcare and emergency response.

1.1.3 Reciprocal Benefits of Battery Mgmt. and Autonomous Control

The relationship between battery management and autonomous control is reciprocal, with
each domain influencing the other in critical ways. Optimizing an AV’s control policy to
minimize energy consumption and reduce battery strain can result in longer operational durations
and extended battery lifespans. Conversely, precise estimation of the battery’s state can enhance
the vehicle’s control decisions, enabling adjustments to speed or strategy to conserve energy,
prevent premature battery depletion, and maintain optimal performance throughout the task’s

execution.

Control Policy Effects on Energy Consumption and Battery Degradation

The control policies governing autonomous systems play a pivotal role in shaping energy
efficiency and the rate of battery degradation. In AVs, whether ground-based or aerial, decisions
related to speed, acceleration, braking, and maneuvering directly impact energy utilization and,
consequently, battery depletion over time. Optimizing these control policies is essential, not
only to extend the operational range of the vehicle but also to prolong the overall lifespan of its
battery. Control strategies that emphasize aggressive acceleration and high-speed maneuvers
may enhance short-term performance but impose a significant load on the battery. High dis-
charge rates lead to increased internal temperatures, accelerating degradation processes such as
electrolyte decomposition and electrode wear [6], [21]. Conversely, adopting more conservative

control policies—such as limiting acceleration or maintaining steady speeds—can significantly
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alleviate battery stress. These approaches reduce discharge rates, minimize thermal buildup,
and mitigate capacity fade, thereby enhancing the battery’s longevity. The control policy fur-
ther influences battery degradation by the depth and frequency of discharge cycles. Systems
operating near their maximum power output often induce deeper discharge cycles, exacerbating
wear on battery components. In contrast, smoother driving patterns or flight paths that involve
gradual acceleration and deceleration help maintain shallower discharge cycles. This approach
ensures balanced energy consumption and slower aging of the battery, extending its functional
lifespan [20].

Advanced ML algorithms integrated into the vehicle’s control system can further enhance
this relationship. By incorporating real-time data on the battery’s SOC and SOH, control
policies can dynamically adjust to optimize energy use. For example, an AV might reduce its
top speed or reroute based on current battery conditions, conserving energy for critical tasks or
mitigating rapid battery degradation during demanding operations. This feedback loop between
battery state and control policy is essential for achieving both high performance and long-term
sustainability. Such adaptive control strategies can be particularly impactful in scenarios that
demand rapid decision-making under changing environmental conditions, such as autonomous
racing or search and rescue operations. In these high-stakes contexts, where both speed and
efficiency are critical, a finely tuned control policy that balances performance demands with
energy conservation can provide a competitive advantage by not only preserving battery health
but also extending mission capabilities [[11].

In conclusion, the control policy of an autonomous system is a key determinant in how
efficiently energy is consumed and how quickly a battery degrades. By carefully designing
and continuously optimizing these policies, it is possible to significantly enhance both the
performance and longevity of battery-powered AVs, thus contributing to more sustainable and

efficient system operations.

Battery State Effects on Racing Performance

In high-performance environments such as autonomous racing, the state of the battery plays
a pivotal role in determining the vehicle’s overall performance. Unlike traditional applications,
where energy efficiency is often prioritized over speed, racing environments demand a delicate
balance between maximizing power output and conserving enough battery capacity to sustain
performance throughout the race. As a result, the battery’s SOC, SOH, and RUL have direct
implications on the vehicle’s ability to compete effectively.

The SOC, which indicates the remaining available energy, is a crucial determinant of how
aggressively an autonomous racing vehicle can perform at any given moment. Vehicles with
higher SOC can afford to engage in more power-intensive maneuvers such as rapid accelerations,
sharp cornering, and overtaking opponents. However, as the SOC depletes, the vehicle must
strategically adjust its driving behavior to avoid draining the battery too quickly. Maintaining
an optimal SOC throughout the race is essential, as vehicles that fail to manage their energy

consumption risk running out of power before the finish line [[11] or experiencing a noticeable
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drop in performance during critical stages of the race.

Equally important is the SOH, which measures the battery’s ability to hold charge relative
to its original capacity, and affects the vehicle’s long-term performance [22]. Batteries with
poor SOH exhibit reduced capacity and increased internal resistance, both of which degrade the
vehicle’s acceleration and top speed. In a racing context, where every millisecond matters, even
slight reductions in the battery’s ability to deliver power can lead to significant performance
penalties. For instance, a vehicle with a degraded battery may struggle to maintain competi-
tive speeds during high-power segments of the race or fail to keep pace with competitors on
straightaways. Battery degradation is especially critical in prolonged racing scenarios, where the
repetitive cycles of high power output can further erode the SOH. Autonomous racing vehicles
that do not account for battery degradation in their control policies may find themselves facing a
sudden and sharp decline in performance midway through the race, as the battery’s capacity to
deliver power diminishes more rapidly than anticipated. Effective energy management, there-
fore, requires not only optimizing for short-term speed but also considering the long-term health
of the battery to ensure consistent performance throughout the event.

In racing environments where vehicles operate at their limits, even small variations in battery
state can have profound effects on performance. For instance, the internal resistance of a partially
depleted battery can cause voltage drops under high loads, reducing the effective power delivered
to the motors. As a result, the vehicle’s acceleration and handling may suffer, leading to slower
lap times or diminished maneuverability when it matters most. In summary, the battery’s state is
a critical factor in the overall performance of autonomous racing vehicles. Managing the SOC,
SOH, and RUL dynamically during a race allows for strategic adjustments in driving behavior,
enabling the vehicle to maintain competitive speeds while preserving sufficient energy for a
strong finish. By tightly integrating battery state monitoring with autonomous control policies,
it is possible to enhance both performance and battery longevity, creating more resilient and

competitive autonomous racing systems.

1.2 Challenges and Related Works

This section provides details on the main challenges of the topics at hand and the limitations
of the existing works proposed in the literature, which drive the research presented in this thesis.

1.2.1 Li-ion Battery State Estimation and Prediction

Accurate battery state estimation and prediction are vital for effective energy management in
EVs. However, the inherent complexities of battery behavior under real-world conditions pose
significant challenges, with existing methods—despite their diversity and continual evolution—
exhibiting notable limitations.



S 1. Introduction

SOC Estimation

One of the most explored aspects in the field is the accurate estimation of SOC. SOC repre-
sents the available charge within a battery, typically expressed as a percentage of its full capacity,
but it cannot be measured directly. Instead, SOC must be inferred indirectly through measure-
ments of external parameters such as voltage, current, and temperature [23[]. This estimation
is inherently complex due to the highly nonlinear and dynamic nature of the electrochemical
reactions occurring within batteries [24]. Inaccurate SOC estimation can lead to operational
inefficiencies such as overcharging or over-discharging, both of which significantly shorten bat-
tery life and impair EV performance [25]]. For our analysis, the methods of SOC estimation can
mainly be categorized into direct estimation techniques, battery modeling methods, and ML-
based approaches [25]]. Direct methods attempt to correlate SOC with physical characteristic
parameters, but they often suffer from inaccuracies due to the variability of these parameters
across different operating conditions. Battery modeling methods, which rely on mathemati-
cal representations of the battery’s internal processes, are more sophisticated but require deep
knowledge of battery chemistry and physics. These methods, while often accurate under con-
trolled conditions, struggle to generalize to real-world environments due to their reliance on
idealized assumptions and complex electrochemical models. ML methods and DL techniques
have emerged as a promising alternative due to their ability to model complex, nonlinear relation-
ships without needing a detailed understanding of the internal battery mechanisms [[13[]. These
approaches have been particularly successful in estimating SOC by utilizing datasets of voltage,
current, and temperature readings to train neural networks that can predict SOC with high ac-
curacy. For instance, Recurrent Neural Networks (RNNs) and their variant, Long Short-Term
Memory (LSTM) networks [26], have shown the capacity to handle sequential data and learn
long-term dependencies, making them suitable for SOC estimation [27]. Nevertheless, despite
their successes, DL methods face challenges related to the quality and availability of training

data, model interpretability, and robustness across different battery types and conditions.

SOH Estimation

SOH estimation, which reflects battery aging and degradation, adds another layer of com-
plexity. Like SOC, SOH cannot be directly measured and must be inferred from indicators such
as capacity fade or increases in internal resistance. These indicators are influenced by multi-
ple factors, including temperature, current, and charge/discharge rates [28|]. The degradation of
Li-ion batteries is a highly nonlinear and multi-faceted process, making it difficult to model accu-
rately. Battery degradation is influenced by both internal factors, such as chemical side reactions,
and external factors, such as varying operating temperatures and dynamic charging/discharging
profiles [20]. Consequently, electrical and electrochemical models of battery degradation are
not only technically demanding but also require extensive experimental data, which may be
costly and time-consuming to obtain [29]. A classification of battery SOH estimation methods
is detailed in Fig.
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SOH Estimation Methods

Experimental Model-based Estimation
Direct measurement Indirect analysis Adaptive algorithms Data-driven
Capacity/Energy test Charging curve ECM based Empirical model
EKF /UKF /PF / AEKF
Ampere counting ICA methods SPKF/LS/RLS Data fitting

Luenberger observer

H-infinity observer
Ohmic resistance

el TrpesEnEe-E DVA methods PI observer/SMO Optimization
Cycle number counting Ultrasonic inspection EM based Machine learning
Destructive methods Other health index Combined methods Sample Entropy

Figure 1.2: Classification of battery SOH estimation methods.

RUL Prediction

RUL prediction, which estimates the remaining useful life of the battery (i.e., SOH fore-
casting), is a less explored and even more challenging task. An issue that arises when dealing
with the RUL lies in the definition of RUL itself. In real-world EV applications, where batteries
undergo irregular charging and discharging patterns, the traditional definition of RUL as the
number of remaining full cycles before the End Of Life (EOL) [30]-[32] becomes impractical.
An alternative metric is proposed in one of the studies presented in this dissertation (Paper B),
defining the RUL as the remaining ampere-hour (Ah) capacity before EOL.

SOC/SOH/RUL Methods Limitations

The existing approaches to SOC, SOH, and RUL estimation, despite their improvement in
recent years, have several notable limitations.

Physical models, while theoretically sound, often fall short in practical applications. These
methods require detailed knowledge of the battery chemistry and rely on assumptions that may
not hold under real operating conditions. For instance, many models assume Constant Current
(CC) charging and discharging [28], which does not reflect the highly dynamic nature of EV
operations, where usage patterns vary according to driving conditions, temperature fluctuations,
and user behavior [20], [33]]. Besides, those methods typically focus on the current state (e.g.
SOC, SOH), with limited capability for long-term prediction (e.g. RUL).

ML-driven approaches, particularly those utilizing DL, offer an alternative by bypassing

the need for complex physical models. Neural networks, especially LSTMs, have been widely
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employed for SOC and SOH estimation due to their ability to capture long-term dependencies
in time-series data [13], [28]. LSTMs are particularly effective in handling sequential data, such
as voltage and current measurements over time, and have been shown to outperform traditional
methods in many cases. However, one of the main limitations of DL-driven methods is their
dependence on high-quality training data and comprehensive datasets that reflect real-world
driving conditions [28]], [33]. Many studies rely on simplified datasets, such as the widely
used NASA battery dataset [34], which only includes CC cycling. The use of such datasets
limits the generalizability of the trained models to real-world EV operations, where batteries
experience dynamic charging and discharging cycles [20]. Another critical shortcoming of
DL-based approaches is their limited interpretability. Unlike traditional model-based methods,
which are grounded in physical laws and can provide insights into the underlying processes,
neural networks operate as “black boxes”, making it difficult to interpret their predictions [35].
This lack of transparency can be concerning in safety-critical applications like EV battery
management, where understanding the rationale behind predictions is essential for diagnosing
and mitigating potential issues.

Many existing RUL prediction models are flawed by using input data that are not measurable.
For example, they rely on historical SOH data which needs to be estimated as well (introducing
noise and uncertainty at deployment time), plus they require a warm-up period before they
can produce predictions [36]—[38]. This limitation makes them less suitable for real-world
applications, where immediate robust predictions are necessary. Furthermore, most RUL models
have been developed using oversimplified datasets, e.g., several works focused on a subset of
the NASA dataset [38]—[41]], which again fails to capture the complexity of real-world battery
usage. Traditional RUL models also often consider full charge-discharge cycles from 0% to
100% SOC, which are not representative of typical EV usage.

The variability in battery types and configurations further limits the applicability of existing
estimation methods. Many models are tailored to specific battery chemistries, capacities, or
conditions. For instance, models trained on small-capacity batteries in laboratory settings often
perform poorly when applied to larger-capacity commercial EV batteries. Similarly, models

optimized for CC conditions struggle under the dynamic load profiles of real-world operations.

1.2.2 Autonomous Vehicles in Racing Contexts

Autonomous driving and autonomous racing are extensive topics, and a comprehensive
review of them is out of the scope of this section. Some excellent surveys exist in the literature,
like [10] for autonomous car racing, and [9] for autonomous drone racing (which includes the
dataset presented in Paper [E). More specialized surveys are also available, like [42] for the
application of RL to autonomous driving, and [43] for FITENTH autonomous racing (which
includes Paper |C| in the selection of RL-based algorithms). This section will focus on the
challenges associated with the publications presented in this dissertation, specifically addressing
the application of DL and RL in the context of racing and the development of datasets to support

their applicability in such a context.
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The development of AVs within racing environments presents unique challenges compared
to traditional autonomous driving applications. In racing, AVs must operate at high speeds while
navigating complex and dynamic environments, often requiring split-second decision-making
and precise control. Autonomous racing, whether in small-scale setups like FITENTH vehicles,
larger platforms like full-size cars, or agile robots like drones, introduces complexities across
several domains such as perception, planning, and control. Those three elements compose the
typical control loop for autonomous robots, as shown in Fig. One of the primary challenges is
the non-linear dynamics of vehicles at high speeds, which makes the application of ML for control
more complicated. Another main challenge is the need for real-time perception and decision-
making under conditions of high velocity and limited reaction time. The algorithms must account
for real-time processing, requiring high computational efficiency to handle quick decision-
making based on sensor inputs like LIDAR or cameras. Additionally, the stochasticity and
uncertainty in real-world conditions (e.g., dynamic opponents, track surface changes) introduce
further difficulties for the systems. Various approaches have been explored to address these
challenges, with DL, RL, and sensor-specific techniques playing critical roles. However, several

technical limitations and research gaps remain unresolved in this domain.

Environment <«
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A
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Figure 1.3: Two architectures for autonomous control: (red) the traditional perception-planning-

control loop, and (yellow) the end-to-end learning-based control.

Traditional ML models, particularly those leveraging supervised learning, have made sig-
nificant strides in perception tasks using sensors like LIDAR, RGB cameras, and others. Appli-
cations such as lane detection and object recognition are notable examples of their success [44],
[45]. However, these models rely heavily on DL approaches that require extensive labeled
datasets, introducing substantial computational and infrastructural burdens. Moreover, super-
vised learning often fails to generalize to dynamic and novel environments, and it often struggles
to capture the nuanced decision-making needed for racing. In contrast, RL has emerged as a
powerful alternative for autonomous racing [9], [10]. RL enables agents to learn directly through
interaction with the environment [46], bypassing the need for labeled data. This trial-and-error
learning process makes RL particularly suitable for dynamic and unpredictable settings such as
racetracks. RL has shown promise in both end-to-end control and specialized driving tasks like
lane-following and overtaking [42]. Despite its advantages, the challenge of generalizing mod-

els from virtual simulations to real-world scenarios, commonly referred to as the sim2real gap,
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remains a critical hurdle. Even when models perform well in simulation, they often fail to
translate effectively to real-world environments [42] due to differences in data distributions and
unforeseen physical complexities, unless specific countermeasures are adopted [14]. Racing
contexts further exacerbate this gap, as simulations typically simplify the physical dynamics
and interactions that occur at high speeds, which are essential for robust performance. The
sim2real gap is further aggravated by the computational constraints of onboard systems, where
the RL model must take decisions within milliseconds. While some works have ventured into
training RL agents directly in real-world systems [47]], [48]], safety concerns and the high cost
of trial-and-error learning remain barriers to the widespread adoption of such methods.

Aiming to address the challenge of handling aggressive maneuvers and high-speed decision-
making, datasets specifically tailored for aggressive drone racing have begun to emerge, pro-
viding valuable benchmarks for developing and testing new control algorithms [9]], [49]. Those
datasets represent a critical factor in the development of autonomous racing systems, as they
provide the necessary data to train and evaluate models in realistic racing scenarios. However,
many of these datasets still lack the complexity and variability required to fully evaluate the per-
formance of aerial AVs in diverse racing environments. Additionally, existing datasets often rely
heavily on simulation, which may not capture the full range of real-world dynamics encountered
in physical racing [50].

1.2.3 Integration of Battery Management and Autonomous Vehicles

AVs require not only precise control over their navigation and driving dynamics but also
efficient management of energy resources. Batteries are put under significant stress in AVs, as
suggested by the plot in Fig. which shows how voltage drops during aggressive autonomous
aerial maneuvers. Primary challenges in the integration of BMS into AVs revolve around accurate
modeling and control of battery degradation, the optimization of energy consumption strategies,
and the prediction of vehicle performance under various conditions. The reviewed works explore

different aspects of these challenges, providing significant insights into three key aspects.
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Figure 1.4: Battery voltage readings from a quadrotor, showing voltage drops during aggressive

aerial maneuvers. Data recorded in the dataset released in Paper [E.
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Battery Degradation-Aware Control

Battery degradation presents a significant challenge for AVs, particularly in high-performance
contexts like racing, as it significantly affects the performance of autonomous systems. Taking
into account the SOC and the RUL of batteries during execution is vital to reduce maintenance
costs, avoid safety hazards, and limit operational downtimes. Research has highlighted the need
for control strategies that account for battery health while ensuring that performance goals, such
as speed and maneuverability, are met. In this context, Pour et al. [22]] proposed a health-aware
control design for autonomous racing vehicles to optimize both the system performance and
battery lifespan. The proposed system integrates a Linear Parameter Varying (LPV) model to
capture the nonlinear dynamics of the vehicle and a Model Predictive Control (MPC) system that
maximizes the battery’s RUL while minimizing lap time. This dual-objective approach aims
to address both energy consumption and racing performance, thus highlighting the importance
of considering battery degradation during high-speed AV operations. The approach validation
was limited to a simulation environment, and further testing in real-world scenarios is necessary
to assess its practicality and effectiveness. The authors emphasize that the degradation rate of
batteries depends on multiple factors, including high-rate cycling and over-discharge, which can
be mitigated through careful control of SOC and power consumption. By integrating these health
metrics into the vehicle’s decision-making process, the control system can adjust its operational
parameters to balance speed and energy use, ensuring that the vehicle can complete its mission
without compromising battery life. This strategy is particularly useful in high-stakes scenarios,
where maintaining high performance over an extended period is crucial, and the risk of battery

failure must be minimized.

Autonomous Racing and Energy Strategies

In the field of autonomous racing, energy strategies are fundamental to managing the limited
resources of electric race vehicles, as energy constraints should be considered in the overall race
strategy. Herrmann et al. [11] presented a real-time capable energy strategy for autonomous
electric race cars that addresses the Minimum Race Time Problem (MRTP) by optimizing energy
use across the entire race. This strategy incorporates the thermodynamic constraints of electric
powertrain components to prevent overheating and manage battery life effectively. By solving an
OC problem using a sequential quadratic programming (SQP) method, their approach ensures
that race completion time is minimized without violating safety limits. This work highlights
the growing importance of balancing performance with energy efficiency in autonomous racing,
particularly in the context of EVs where battery capacity is a limiting factor. This strategy is
crucial in minimizing total race time while preventing overheating and energy depletion, which
could lead to shutdowns and premature failures during the race. The energy strategy has been
validated with real-world data from the Roborace competition, although closed-loop testing is

necessary to fully evaluate its performance when integrated into autonomous racing vehicles.
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Battery Modeling and Performance Prediction

Accurate battery modeling is essential for predicting the performance and endurance of AVs,
especially under variable and demanding conditions. Many traditional models, such as the
Peukert model, are inadequate for the high discharge rates seen in such systems [|12]]. Advanced
battery models, such as the graybox model described by Bauersfeld and Scaramuzza [|12],
are capable of predicting battery performance with high accuracy, even under non-constant
discharge rates typical of AVs during racing or long-distance missions. Their work, although
focused on aerial vehicles, provides valuable insights into how battery performance can be
predicted under varying operational conditions. The range, endurance, and optimal speed
for such aerial vehicles are determined through a comprehensive model that integrates blade-
element-momentum (BEM) theory for multicopters with an electric-motor model, and a graybox
battery model. The challenge in this area is the precise modeling of energy consumption under
varying flight conditions, especially for vehicles that experience high and dynamic energy
demands. By validating their model through real-world experiments, the authors demonstrate
that their approach yields highly accurate predictions of battery performance, including power
consumption and cell voltage under variable discharge rates. This work emphasizes the need
for sophisticated models that can accurately simulate real-world conditions, particularly when
aiming to maximize the efficiency of battery usage in electric-powered vehicles. While the
proposed model works well for multicopters, extending its applicability to other types of vehicles

or aerial systems could be a challenge.



Chapter 2

Contributions

This thesis is based on five peer-reviewed publications that address critical advancements in
the fields of Li-ion battery state estimation and prediction (Sec. , and autonomous vehicles
in racing contexts (Sec. [2.2)). These contributions collectively advance the two fields, providing
both theoretical insights and practical tools that are essential for the future of sustainable,
high-performance autonomous systems.

Five open-source software repositories corresponding to the five papers have been developed
as part of this research, providing the research community with access to the code and tools
used in the studies. These repositories are publicly available on GitHub (see the
index) and are accompanied by detailed documentation to facilitate their use and
further development.

This research also produced two significant datasets, which are made available for the
research community to encourage further research and development in the areas of battery state
estimation and autonomous control. The datasets are hosted on Mendeley Data and GitHub,

respectively, and are accompanied by detailed descriptions and instructions for use.

2.1 Li-ion Battery State Estimation and Prediction

In recent years, data-driven approaches utilizing DL models have revolutionized traditional
battery state estimation methods. Unlike model-based approaches that rely heavily on electro-
chemical modeling and physical parameters, these advanced techniques leverage large datasets
capturing battery performance across different conditions. This enables the development of
more flexible, scalable, and accurate estimation models. The studies featured in this section
emphasize the integration of neural networks such as Autoencoders, LSTMs, and Convolu-
tional Neural Networks (CNNs), which are particularly well-suited for handling the complex,
time-series data generated by batteries during charge and discharge cycles. These models have
demonstrated significant improvements in the precision of SOC and RUL predictions, providing
valuable insights for both academia and industry. By introducing a novel dataset and innovative
model architectures, these works push the boundaries of what is possible in battery monitor-
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ing. Through the application of DL techniques, the field is moving toward more robust and
generalizable solutions, enabling effective battery management even under varying operational

conditions and battery aging.

2.1.1 Paper [A: Li-Ion Batteries State-of-Charge Estimation Using Deep
LSTM at Various Battery Specifications and Discharge Cycles

This paper presents a robust approach to estimating the SOC in Li-ion batteries using DL
models, specifically LSTM neural networks. The research contributes to the community by
introducing a new dataset, the “UNIBO Powertools Dataset”, designed for evaluating battery

performance under various conditions.

Violw,To ——> LSTM > LSTM > LSTM —— - —> S0C, |
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Figure 2.1: Architecture of the LSTM model used for SOC estimation on the UNIBO dataset.

Methodology

The paper employs a data-driven approach, leveraging deep LSTM neural networks to predict
the SOC of Li-ion batteries based on voltage, current, and temperature data. The main innovation
lies in the full use of two distinct datasets, one of which is a newly created dataset named the
UNIBO Powertools Dataset. The models are trained on two datasets: the UNIBO Powertools
dataset, which was specifically collected for this research, and the well-established, publicly
available, LG 18650HG?2 Li-ion Battery dataset. These datasets capture battery behavior across
different capacities, brands, and discharge profiles, which include both CC discharges and
dynamic driving profiles.

The UNIBO Powertools Dataset comprises 27 different battery cells subjected to various
discharge conditions until their EOL. The dataset is unique in its inclusion of cells from different
manufacturers and its coverage of battery life at different stages, providing a valuable resource
for future research on how SOC is affected by battery age and health. This dataset’s diversity
makes it particularly useful for training ML models to generalize better across different battery
types and conditions.

The methodology centers around the use of deep LSTM networks, which are particularly
well-suited for handling sequential data, such as time-series data generated by battery discharge

cycles. Two distinct LSTM models are implemented: one tailored for the low-frequency
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sampling data from the UNIBO dataset (Fig. and another for the high-frequency data from
the LG dataset. In both cases, battery parameters like voltage, current, and temperature are fed
into the models, with SOC predicted at every step. Data normalization is applied to avoid bias

in training, as the input features (voltage, current, temperature) have different ranges.

Contributions

This paper makes two key contributions to the field of battery state estimation:

1. The introduction and release of the UNIBO Powertools Dataset to the public represents a
significant contribution to the research community, as it offers a new and extensive resource
for battery research. This dataset, publicly available, provides researchers with access to
a wide range of battery types, which have different manufacturers and nominal capacities,
and are cycled until EOL, enabling more robust and diverse model training for SOC, and
potentially other battery management tasks like SOH and RUL. By including batteries
with varying capacities, brands, and health statuses, this dataset broadens the scope of
data-driven approaches in the battery domain and enhances model generalizability.

2. Additionally, the research demonstrates the capability of deep LSTM networks to accu-
rately estimate SOC across multiple battery types and conditions. The paper presents
models that are flexible enough to handle the heterogeneous nature of the datasets, includ-
ing different discharge profiles and battery specifications. While the use of two models has
been necessary to handle the different sampling rates, the use of two datasets highlights
the models’ ability to generalize across different battery technologies and environmental

conditions.

Results

The models achieved a mean absolute error (MAE) as low as 0.69% on the UNIBO dataset
and 1.47% on the LG dataset, with root mean square errors (RMSE) of 1.34% and 1.99%,
respectively. These results show that the proposed method is effective for SOC estimation even
under challenging conditions, such as dynamic driving profiles, different ambient temperatures,
and varying battery degradation levels. For the UNIBO dataset, the model performed well
across different discharge scenarios, with particularly strong results in the preconditioned and
high-current tests. Additionally, the model was shown to be robust against changes in battery
SOH, making it suitable for real-world applications where battery aging affects performance. On
the LG dataset, the model was tested against different driving profiles and temperatures, showing

robust performance even at lower temperatures, where battery behavior is more unpredictable.
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2.1.2 Paper B: To Charge or to Sell? EV Pack Useful Life Estimation via
LSTMs, CNNs, and Autoencoders

The study focuses on the challenge of estimating the RUL of Li-ion batteries, demonstrating
the applicability of DL techniques for such estimation. By using autoencoders, CNNs, and
LSTMs, the proposed models were able to predict the remaining Ah of batteries with high
accuracy, offering a more practical solution for real-time battery health monitoring systems.
The use of diverse datasets ensured the robustness of the models in handling complex real-world

data with varied battery conditions.
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Figure 2.2: The structure of the autoencoder used to compress the cycles. The skip link allows

us to retain both local and global information.

Methodology

The methodology revolves around two models for RUL prediction: autoencoder combined
with CNN and autoencoder combined with LSTM. The role of the autoencoder is to extract
the most relevant features from time-series data of battery discharge cycles. Afterward, CNN
or LSTM is applied to estimate the battery’s RUL based on these compressed representations.
The autoencoder uses voltage, current, and temperature data from discharge cycles to form a
compact representation of the battery’s status. Its structure is shown in Fig.

The innovation lies in predicting the remaining Ah rather than relying on the conventional
cycle count for estimating the RUL, which has been traditionally used in the literature. This
approach makes the method more applicable to real-world scenarios, as the remaining Ah can
be more meaningful for partial charge and discharge cycles commonly seen in EV operations.

The study utilizes two large datasets: the NASA Randomized Battery Usage dataset, which
contains batteries cycled under random current and various conditions, and the UNIBO Power-
tools dataset, which consists of batteries with a wide range of specifications cycled with different
setups. These datasets offer a wide range of battery conditions and cycling patterns, providing
a more realistic scenario for model generalization. The models are trained on historical data
from these datasets to estimate the remaining Ah that the battery can deliver before it reaches
EOL. As mentioned above, the input variables for the models include only voltage, current, and

temperature data recorded during battery discharge cycles, and no future information is used in
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the predictions, which increases the method’s applicability to real-time systems.

Contributions

This paper makes several key contributions to the field of battery health monitoring and RUL

estimation, presenting:

1. A novel RUL prediction approach based on ampere-hours, which is a more practical
metric in real-world EV applications, where full discharge cycles are rare and partial

charge-discharge cycles are routine.

2. The use of autoencoders for efficient and robust feature extraction from large and com-
plex high-dimensional battery time-series data, allowing the models to capture essential

patterns while reducing computational complexity.

3. A comparative analysis of CNN and LSTM models for RUL estimation, providing insights
into their performance in terms of accuracy, stability, and generalizability on diverse

datasets.

4. Usage of datasets with wide variability. Unlike most previous work that relies on limited
datasets, the full use of NASA and UNIBO datasets, which contain diverse conditions and
various battery types, demonstrates the applicability of these methods to a broader range

of real-world scenarios.

Results

The proposed models were evaluated on the two datasets. For the NASA dataset, the models
achieved an RMSE of 0.0799 (CNN) and 0.074 (LSTM), demonstrating that both networks
effectively predict the RUL defined as remaining Ah. While the CNN produced more stable
predictions with well-fitted curves, the LSTM model showed better accuracy but with slightly
irregular curve patterns. The reconstruction capability of the autoencoder was also highlighted,
achieving an RMSE of 0.0356, which proves its effectiveness in extracting relevant features from
the battery data. In the UNIBO dataset, the LSTM model achieved an RMSE of 0.021, further
demonstrating its ability to learn from varied battery data. The results from both datasets indicate
that the proposed methods generalize well across various batteries and operating conditions,

making them suitable for real-world applications.

2.2 Autonomous Vehicles in Racing Contexts

This section delves into the application of AV technologies within the realm of racing,
highlighting the research contributions from multiple papers focused on deep RL, LIDAR-based
perception, and the comparison between human-piloted and OC racing systems. By examining

these studies, we can better understand the advancements and limitations of current autonomous
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control approaches in high-speed, competitive environments and explore the implications for
the future of autonomous driving. In addition to the advancements in AV techniques, the release
of a novel drone racing dataset marks a significant contribution to the autonomous control

community, accelerating research in autonomous racing and drone navigation.

2.2.1 Paper|C: Train in Austria, Race in Montecarlo: Generalized RL for
Cross-Track F1"* LIDAR-Based Races

In this paper, we explored the application of deep RL in the autonomous racing domain,
specifically focusing on the use of a LIDAR sensor in a small-scale autonomous car. This
study addresses the challenges of transferring RL models from simulation to the real world,
commonly referred to as the sim2real problem, by utilizing LIDAR data pre-processing to
enhance the generalization capability of the agent. Our work integrates RL with realistic racing

environments, combining practical experimentation with detailed performance evaluations.

Figure 2.3: The Fltenth race car used in the experiments.

Methodology

The core methodology revolves around employing Deep Q-Networks (DQN), a popular RL
algorithm, for training a 1/10 scale autonomous racing car. The study builds on the use of an
Fltenth platform (Fig. [2.3)), which is a realistic miniature version of Formula 1 cars designed for
research purposes. This platform was equipped with a 2D LIDAR sensor, capturing a 270-degree
field of view, and powered by NVIDIA’s Jetson TX2 hardware for real-time data processing and
training. For each experiment, the agent’s actions were guided by a reward system, fine-tuned
throughout the study. Initial trials used simple rewards based on movement direction, while later
iterations introduced more sophisticated rewards tied to the vehicle’s velocity and proximity to
obstacles. The training environment implemented in ROS (Robot Operating System) coordinates
sensor data, controls, and the RL agent. On top of the RL agent actions, the system’s control was
governed by a safety callback that automatically activated emergency braking when necessary

(followed by automatic reverse), thus preventing crashes and ensuring consistent training.
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We experimented with multiple neural network architectures—1D CNN, 2D CNN, and
MultiLayer Perceptron (MLP)—to determine the optimal approach for processing LIDAR data
in real-time autonomous driving tasks. The 1D CNN and the MLP processed the LIDAR data
directly (after pre-processing), whereas, for the 2D CNN, the data were transformed into a grid
map before feeding it into the network.

The system was designed to operate in both simulated and real-world environments, en-
abling direct comparisons of training efficacy in both domains. To address the challenges of

transitioning from simulated to real-world environments, we implemented two strategies:

* Training directly in the real world using noisy LIDAR data and pre-processing techniques

to filter out bad readings.

» Simulating the environment and transferring the trained model to the physical car without

retraining, leveraging a robust LIDAR pre-processing mechanism to mitigate sensor noise.

The 1D CNN has been used for both sim2real experiments.

The agent was also evaluated in simulation on four complex F1 racetrack layouts, while
trained only on one of them, to test its generalization capabilities across different and unseen
track configurations and difficulties.

Contributions

Our contributions to the field of RL-based autonomous car racing are threefold:

1. Neural networks comparison for LIDAR data: we conducted a comparative study of dif-
ferent neural network architectures for processing LIDAR data, concluding that 1D CNNs
provided the best performance in the autonomous racing task. The 1D CNNs outperformed
both MLP networks and 2D CNNs in terms of learning speed, cumulative rewards, and

overall driving performance, while also being computationally less demanding.

2. Sim2real and LIDAR sensors: we demonstrated two novel approaches to the sim2real
problem. The first approach involved successfully training the car directly in the real
world using noisy LIDAR data. The second approach showed that models trained in a
simulated environment could be seamlessly transferred to the physical world without ad-
ditional tuning, thanks to our LIDAR pre-processing pipeline. Both feats were previously
considered unsolved due to LIDAR’s inherent imperfections and LIDAR measurements
being greatly affected by reflective surfaces [51]].

3. Generalization of DQN on unseen racetracks: we evaluated the generalization abilities
of DQN on complex F1 racetracks, showing that the model trained on one track was
able to generalize to other tracks with varying levels of difficulty. This experiment not
only validated the agent’s race performance but also demonstrated its superior sample
efficiency compared to both model-free and model-based RL algorithms like Dreamer.
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Results

The results of our experiments show that the DQN algorithm, when paired with 1D CNNss,
achieves outstanding performance in autonomous racing tasks, both in simulated and real-world
settings. The 1D CNN agent learned a robust driving policy after approximately 870 training
episodes (compared to 1030 and 1870 episodes of MLP and 2D CNN respectively), with
significantly faster convergence and better final rewards than the other architectures tested.

In our real-world training experiments, the car learned to autonomously navigate simple
tracks, demonstrating that RL-based systems can indeed be trained in noisy physical environ-
ments using LIDAR. The cumulative rewards steadily improved over three hours of training, and
the car was able to handle higher speeds without requiring additional retraining.

In the transfer learning experiments, the model trained in simulation was successfully de-
ployed on a real-world track (the rooftop of our university), with minimal performance degrada-
tion and no retraining required. The car adapted well to the real-world environment, maintaining
robust control and completing laps efficiently.

Lastly, the agent demonstrated excellent generalization capabilities in F1 racetrack experi-
ments, where it was trained on one track and tested on three unseen tracks. The DQN agent
consistently outperformed baseline models, completing the race in competitive times and sur-
passing model-based approaches like Dreamer in both race performance and sample efficiency.
The DQN model required only 550,000 steps to train, significantly fewer than the millions
required by other methods, while consistently completing laps in challenging F1 tracks.

2.2.2 PaperD: Enabling Deep Reinforcement Learning Autonomous Driv-
ing by 3D-LiDAR Point Clouds

This research aims at enhancing autonomous driving through the application of deep RL
techniques to 3D LIDAR point cloud data. The study aims to surpass the limitations of supervised
learning approaches that rely heavily on massive labeled datasets, which are time-consuming
and costly to produce. By utilizing RL, we propose a framework that autonomously learns to

drive in a simulated environment thanks to a reward-based system.

Figure 2.4: LIDAR view in CARLA with the corresponding scene from the RGB camera.
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Methodology

The core methodology of this research integrates 3D LIDAR data with RL algorithms to train
a simulated AV. The 3D LIDAR is a sensor that captures high-frequency point cloud data, and
it is used here as the primary tool for environmental perception. The rendering of a point cloud
from the CARLA simulator is shown in Fig. left. This data is highly granular, capturing
real-time spatial information in a 3D space, which helps the vehicle understand and navigate its
surroundings.

The paper utilizes DQN for RL training. In this setting, the agent (the AV) learns through trial
and error, guided by a reward system. The state of the agent is represented by two consecutive
3D LIDAR frames, each containing 2048 points. These points are split between an 8° vertical
and 270° horizontal field of view, defining the vehicle’s perception of its surroundings. The
agent’s actions are limited to discrete steering commands: forward, left, and right. A positive
reward is given when the vehicle successfully follows the road, and negative rewards are issued
when it collides or leaves the lane, resulting in the termination of the episode. This feedback
loop allows the vehicle to gradually learn the optimal driving behavior.

Two neural network architectures are evaluated to process the point cloud data: PointNet and
a 1D CNN. PointNet, specifically designed for point cloud data, captures the spatial relationships
between points and ensures invariance to point ordering. The 1D CNN, known for its simplicity
and success with 2D LIDAR data, is used as a baseline to compare performance.

The research is conducted in the CARLA simulator, which provides a hyper-realistic urban
environment, as displayed in Fig. right. CARLA allows for the simulation of various road
conditions, obstacles, and pedestrian behaviors, making it an ideal platform for training and

testing autonomous driving algorithms.

Contributions

This study contributes to the field of autonomous driving in several ways:

1. First application of RL to 3D LIDAR data: while RL has been applied to 2D LIDAR data
and vision-based inputs, this is one of the first studies to apply RL to raw 3D LIDAR point

clouds in an autonomous driving context.

2. Comparison of neural network architectures: the research evaluates two different network
architectures for processing point cloud data, offering insights into their strengths and
weaknesses in handling this type of data in RL tasks.

3. Simulated urban driving using LIDAR data: by leveraging CARLA, the study creates a
robust simulated environment for training RL agents, providing a safe and cost-effective

way to develop autonomous driving systems before transitioning to real-world scenarios.
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Results

The results of the study demonstrate that both neural networks—PointNet and 1D CNN—
were able to learn how to follow the street using 3D LIDAR data in the CARLA simulator.
However, the 1D CNN showed slightly better performance due to its simpler structure, which
was better suited for the less complex task of lane following. The average cumulative rewards
across 100 episodes revealed that the RL agent had learned the basic task but still struggled
with maintaining consistent performance, occasionally resulting in crashes. These findings
suggest that while the approach is promising, there is still significant room for improvement,
particularly in more complex driving scenarios. The loss curves during training indicate that
both neural networks were able to converge, proving the networks’ capacity to learn from 3D
point clouds. However, further refinement is necessary for real-world deployment, as the trained

agents occasionally exhibited unsafe driving behaviors.

2.2.3 Paper[E: Race Against the Machine: a Fully-annotated, Open-design
Dataset of Autonomous and Piloted High-speed Flight
It is presented a comprehensive dataset designed to support research and development in

autonomous drone racing. The dataset is aimed at helping researchers evaluate and benchmark
their algorithms in the context of fast and aggressive drone flights.

Figure 2.5: The autonomous racing drone performing an aggressive maneuver through one of
the gates that form the track.

Methodology

We developed a novel dataset of autonomous and piloted drone racing flights, focusing on
high-speed and aggressive maneuvers, like the one depicted in Fig[2.5] The dataset was collected
using a specially designed quadrotor platform that can be used for both autonomous and piloted
flights without modification. The drone’s design is open-source, built with commercial off-the-
shelf (COTS) components, which allows researchers to recreate the drone setup for their own
experiments.

The flights were conducted in a 25 x 9.7 x 7 meters indoor arena equipped with a 32-camera

Qualisys Motion Capture (MoCap) system to provide highly accurate six-degrees-of-freedom
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(6DoF) poses of the drone and racing gates. The dataset includes 30 flights: 12 human-piloted
and 18 autonomous, under varying illumination conditions (high, medium, and low brightness)
and with different camera settings (auto exposure and fixed exposure).

The custom quadrotor features an InvenSense MPU6000 IMU for real-time tri-axis angular
rate and acceleration data, along with an Arducam 8MP RGB camera for high-speed image
collection at 120Hz. The quadrotor could fly at speeds up to 21.8 m/s (autonomous) through
complex 3D racing tracks. Human pilots used an FPV system, while autonomous flights were
performed using a Proportional Derivative (PD) controller or an MPC, depending on the flight
task. Data was captured and synchronized across multiple systems, including visual, inertial,
MoCap, control inputs, and battery voltage data, and processed into CSV format for easy access

and use.

Contributions

The dataset contributes several unique elements to the drone racing research community:

1. Open design of the racing drone: the design of the drone used to collect the data is made
publicly available, allowing researchers to recreate the platform using COTS components.
This openness encourages reproducibility and standardization in drone racing research.

2. Comprehensive data collection: the dataset includes high-resolution, high-frequency vi-
sual, inertial, and MoCap data. The dataset also includes drone commands, control inputs,
and battery voltages, which can be used for system identification and control-related re-

search.

3. Release of autonomous control code along with control commands data: the dataset
includes not only the flight data but also the actual control commands used by the au-
tonomous system (PD controller for 2D tracks and MPC for 3D tracks). Furthermore,
we have made the code for the PD controller publicly available, while the MPC used is
a well-known open-source solution. This combined release of control algorithms and
control input data provides a unique opportunity for researchers to both benchmark their
own control approaches and directly replicate the control strategies used in the dataset.
This transparency in control methodology enables deeper insights into the performance
of various control techniques and facilitates more direct comparisons between different

approaches in high-speed autonomous drone racing.

4. Versatile experimental setup: the dataset includes flights in varying lighting conditions
and with different camera settings, making it a versatile tool for research in vision-based
navigation and control under challenging conditions. Additionally, both autonomous and
human-piloted flights are included, allowing for a direct comparison between human

piloting and machine autonomy.
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5. Full annotation of drone racing gates: each image frame comes with labels including
gate bounding boxes and associated corners as keypoints, enabling research into scene

understanding, visual-inertial odometry, and gate pose estimation.

Results

The dataset excels in several key metrics from the flights, such as top speed, acceleration,
and distance covered. The autonomous flights reached top speeds of over 21.8 m/s, with the
human-piloted flights reaching lower top speeds of around 9.5 m/s. The results demonstrate the
drone’s ability to execute aggressive and complex maneuvers, also in a challenging 3D track,
making it a suitable benchmark for developing and evaluating new autonomous flight algorithms.

By providing such an extensive and well-annotated dataset, we believe our work will serve
as a foundation for advancing autonomous drone racing research and creating more robust
perception and control methods. The inclusion of the open-source drone design and supporting
scripts further democratizes research in this area, making it accessible to a wide audience of

researchers.



Chapter 3

Future Work

3.1 Integration of Battery Management and Autonomous
Vehicles

The future integration of BMS and AV control represents a significant opportunity to advance
the performance, efficiency, and sustainability of autonomous systems. While current research
has made considerable progress in improving the efficacy of both domains separately — SOC,
SOH, and RUL estimation for batteries, as well as RL and DL-based control systems for AVs
— there remains a gap in fully integrating these two critical areas. The reciprocal relationship
between battery management and control policies can lead to a more holistic approach where
energy efficiency and vehicle performance are co-optimized.

3.1.1 Real-Time Energy-Aware Decision Making

One of the primary challenges in the integration of BMS and autonomous control is enabling
real-time energy-aware decision-making. AVs, particularly in high-performance scenarios like
racing or urgent delivery, require split-second decisions regarding acceleration, braking, and
navigation. Currently, these decisions are often made without considering the detailed status of
the vehicle’s energy reserves. However, integrating BMS data, particularly SOC and SOH, into
the decision-making framework can provide the vehicle with real-time insights into its energy
capacity, allowing for more energy-efficient control strategies.

For instance, real-time SOC data could inform the vehicle’s control policy to dynamically
adjust speed and maneuvering based on available energy reserves. During a race, the vehicle
might opt for more aggressive acceleration and higher speeds early on when energy reserves
are plentiful, and then adopt more conservative strategies as SOC decreases, ensuring enough
energy is conserved to complete the task. Similarly, in delivery or long-range missions, the
vehicle could optimize its route based on real-time battery health and environmental factors
such as terrain or weather conditions. This could be achieved by developing RL algorithms that

incorporate battery state data as part of the observation space and energy-related incentives in

27
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the reward function, allowing the vehicle to learn energy-efficient policies that adapt to changing

conditions in real-time.

3.1.2 Predictive Maintenance and Battery Lifespan Optimization

Integrating battery management with AV control also offers the potential for predictive
maintenance. By continuously monitoring SOH and RUL in real-time, AVs could make informed
decisions about when to reduce the load on the battery or alter operational strategies to prevent
premature degradation. For example, techniques could be employed to adapt driving behavior
based on battery degradation patterns over time. In scenarios where the vehicle detects an
abnormal degradation rate or diminishing SOH, control algorithms could prioritize battery
preservation, reducing stress on the battery and extending its RUL.

In addition to real-time decisions, predictive models for battery degradation could be de-
veloped using historical data, allowing vehicles to anticipate future maintenance needs. By
incorporating ML models trained on battery usage patterns, autonomous systems could proac-
tively schedule charging, replace worn-out components, or optimize charging strategies to extend
the overall lifespan of the battery. This becomes especially important in fleet management, where

downtime for maintenance can result in significant operational costs.

3.1.3 Challenges in Sim2Real Transfer and Model Generalization

One of the key challenges in achieving full integration of BMS and AV control lies in
the sim2real transfer problem. While many models for battery estimation and autonomous
control perform well in controlled or simulated environments, real-world conditions introduce
unpredictable variations that can disrupt the performance of these systems. For example, battery
behavior under variable environmental conditions—such as extreme temperatures or fluctuating
power demands—can differ significantly from the assumptions made during model training.

To overcome this challenge, hybrid approaches that combine data-driven models with phys-
ical models could be employed. By leveraging the strengths of both methods, vehicles could
generalize better across different operational environments. Furthermore, ongoing advance-
ments in transfer learning could enable models trained in one environment (e.g., controlled
laboratory settings) to adapt and function in real-world applications with minimal additional

training.

3.1.4 Toward a Unified Framework

The future of autonomous systems lies in the development of a unified framework that seam-
lessly integrates battery management and autonomous control. Such a framework would require
collaboration between various domains, including ML, electrical engineering, and control the-
ory. By designing systems where control policies and battery health monitoring work together,

the performance and longevity of AVs could be greatly enhanced.
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This integration will be particularly important as the demand for high-performance, energy-
efficient autonomous systems continues to grow in industries such as logistics, transportation,
and emergency response. Autonomous drones, for example, could benefit from this integration
by optimizing flight paths to maximize range and ensure safe landing before battery deple-
tion. In electric autonomous cars, the same framework could reduce overall operational costs
and improve vehicle longevity, making autonomous technology more economically viable and
environmentally sustainable.

In conclusion, the integration of BMS with AV control is an exciting frontier that promises
to elevate the capabilities of autonomous systems. By combining real-time battery health
data with adaptive control strategies, future AVs will not only be more efficient but also more
resilient and capable of performing complex tasks under varying operational conditions. The
path forward requires ongoing research in ML, system modeling, and the development of
reliable, generalizable models that can operate seamlessly across both simulated and real-world

environments.
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Li-Ion Batteries State-of-Charge Estimation Using Deep
LSTM at Various Battery Specifications and Discharge Cycles

Kei Long Wong, Michael Bosello, Rita Tse, Carlo Falcomer, Claudio Rossi,
Giovanni Pau

Abstract — Lithium-ion battery technologies play a key role in transforming the
economy reducing its dependency on fossil fuels. Transportation, manufacturing,
and services are being electrified. The European Commission predicts that in Europe
everything that can be electrified will be electrified within a decade. The ability to
accurate state of charge (SOC) estimation is crucial to ensure the safety of the
operation of battery-powered electric devices and to guide users taking behaviors
that can extend battery life and re-usability. In this paper, we investigate how machine
learning models can predict the SOC of cylindrical Li-Ion batteries considering a

variety of cells under different charge-discharge cycles.
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A.1 Introduction

The transition from fossil fuel to green energy is well known as the desired change in our
society. To reduce the emission of Carbon dioxide (CO,) from conventional transportation, the
development of Electric Vehicles (EV) is growing quickly. Battery technology will be one of
the most important key enablers for the green energy transition.

Lithium-ion batteries have been widely used in electric vehicles. It is projected that the
global EV stock will expand to 140 million by 2030 [52]. Lithium-ion (Li-ion) battery is
the most popular adopted power supply of EV due to its high energy density, long lifespan,
lightweight, and low self-discharge rate [53|]. Several factors could affect the performance and
safety of Li-ion battery such as ambient temperature, over-charge, or over-discharge [54], [55].
A misuse of the battery can lead to a shorter battery life. To overcome these issues, Battery
Management Systems (BMS) are applied to ensure the reliability and stability of the usage of
Li-ion batteries.

One important parameter for the BMS battery health management is the battery State Of
Charge (SOC) estimation which helps to prevent the battery from over-charge and over-discharge
[8]], [S56]. SOC indicates the amount of available charge in the battery which can be represented
by a value in percentage. This value is intended to remain between 0% and 100%, although
it is possible to violate these limits in an over-discharge or over-charge situation [24]]. The
battery itself does not directly provide information on its SOC value. The measurement of SOC
value is complex and error-prone due to the indirect estimation and the non-linear nature of
electrochemical reactions in the battery. Relevant information such as the measured discharge
current, voltage, and ambient temperature can be used to measure the SOC indirectly [23].

Incorrect measurement of SOC could lead to unstable EV performance and even shorten
the battery life, therefore, reducing the environmental benefits of electrification. In general, the
SOC estimation techniques studied in the literature can be divided into three categories: direct
methods, model-based methods, and data-driven methods [25]]. The direct methods look for the
relationship between SOC and the physical battery characteristic parameters. The SOC value
can be estimated according to the observed parameters[24],[25], [S7].

The model-based SOC estimation methods mainly focus on modeling the chemical and
electrical properties of the battery.

Commonly, the model-based methods are used in collaboration with adaptive filters such as
Kalman filter, H-infinity filter, and Particle filter, etc [25], [58]. Model-based methods require
a comprehensive understanding of the electrochemical properties in the battery domain and
cannot be used for SOC forecast[59][60].

This work proposes a data-driven approach for SOC estimation based on Deep Learning
techniques. Deep learning, which can approximate non-linear functions, is a widely adopted
data-driven method to tackle the battery SOC estimation problem [|13]]. Given a sufficient amount
of training data and an appropriate configuration, the SOC value can be predicted accurately

without the need for a sophisticated electrochemical model. Different types of neural networks
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(NNs) such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNSs)
have been studied in the literature to solve various problems of different nature [61], [62].
Among them, RNNs are designed to handle sequential data, and they have been well studied
in the domain of speech recognition and natural language processing with successful outcomes
[63], [64]]. However, RNNs struggle to handle long-term dependencies as long time series could
cause exploding/vanishing gradient during the training phase. To tackle this problem, [26]
proposed the use of RNNs with Long Short-Term Memory (LSTM) cells which can correlate a
long-range of precedent information.

In the literature, various applications of LSTM for SOC estimation have been proposed. [27]]
showcased the ability of LSTM for SOC estimation. They used a dataset composed of discharge
cycles obtained from a Li-ion battery cell with 2.9Ah nominal capacity [65] and collected
through laboratory testing under different driving profiles. The proposed model was validated
against various ambient temperatures with accurate estimation results achieved. Similarly, [66]
proposed the use of a deep LSTM network with data collected from an experiment on a 1.1Ah
nominal capacity battery cell. In [67], a neural network combining CNN and LSTM layers was
proposed for battery SOC estimation. The research result has shown that the CNN part helps
to extract the spatial features from the input data (voltage, current, and temperature) while the
LSTM layers explore the correlation of current SOC and historical input data. Last but not least,
the use of an LSTM encoder-decoder algorithm was proposed by [68]] with accurate estimation
result against both room temperature and various temperature conditions. The proposed model
was trained and tested on 2.0Ah nominal capacity Li-ion battery cell data featuring various drive
cycles.

Although the neural network data-driven approaches for SOC estimation are widely studied
most of the literature mainly focuses on datasets containing only one particular battery model
or setup. This study uses two different Li-ion cell datasets. The first one is original and it
has been collected by the University of Bologna (UNIBO), namely the ‘UNIBO Powertools
Dataset’. The second one is public, the LG 18650HG2 Li-ion battery data [69]. The use of
deep LSTM networks is proposed to perform SOC estimation. Due to the heterogeneity of
the data collection process and the sampling rate of the two datasets, two deep LSTM models
with different setups are employed in this research. The deep networks are tested on Li-ion
battery cells with different nominal capacities, specifications, and brands; the discharge cycles
are produced by both constant current discharge and several dynamic driving profiles (such as
the Urban dynamometer driving schedule (UDDS) [70]).

The rest of this paper is organized as follows. The employed battery datasets are introduced
in section |A.2| Then, section explains the proposed deep LSTM models. In section
the results of the experiments are presented. Finally, section concludes this paper.
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A.2 Li-ion battery datasets

In this paper, two Li-ion battery datasets — one original and one public — with different
features are used. The UNIBO Powertools Dataset is presented here for the first time, and it is
available her Only the discharge cycles are used in the experiments. The two datasets are

briefly introduced in the following sections.

A.2.1 UNIBO Powertools Dataset

The UNIBO Powertools Dataset has been collected in a laboratory test by an Italian Equip-
ment producer. The cycling experiments are designed to analyze different cells intended for
use in various cleaning equipment such as vacuum and automated floor cleaners. The vast
dataset is composed of 27 batteries, and it is summarized in Table The main features of the
dataset are: (1) the use of batteries from different manufacturers, (2) cells with several nominal
capacities, (3) cycling is performed until the cell’s end of life and thus data regarding the cell at
different life stages are produced, which is useful to assess how SOC is affected by the cell’s
age and State of Health (SOH) as well as to validate the capability of the proposed model on
estimating SOC under different health status. Three types of tests have been conducted. (I)
The standard test, where the battery was discharged at SA current in main cycles. (II), the
high current test, where the battery was discharged at 8 A current in main cycles. (III), the
preconditioned test, where the battery cells are stored at 45°C environment for 90 days before

conducting the test.
During discharge, the sampling period is 10 seconds. The experiments were conducted using
the following procedure:

Charge cycle: Constant Current-Constant Voltage (CC-CV) at 1.8A and 4.2V (100mA cut-off)
Discharge cycle: Constant Current until cut-off voltage (2.5V)

Repeat steps 1 and 2 (main cycle) 100 times

Capacity measurement: charge CC-CV 1A 4.2V (100mA cut-off) and discharge CC 0.1A 2.5V
Repeat the above steps until the end of life of the battery cell

A

Table A.1: UNIBO Powertools Dataset summary

Test type Nominal capacity Cell amount
Standard 4.0Ah 2
3.0Ah 4
2.85Ah 4
2.0Ah 6
High current 3.0Ah 3
2.85Ah 2
Preconditioned 3.0Ah 5

Thttps://doi.org/10.17632/n6xg5fzsbv. 1
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A.2.2 LG 18650HG?2 Li-ion Battery Data

The public LG 18650HG2 Li-ion Battery Dataset, published by [69]], was obtained from Mendeley
data. In the dataset, a series of tests were performed under six different temperatures. The battery was
charged at 1C rate to 4.2V with 50mA cut off before each discharge test. The values measured in the
discharge cycles are captured at 0.1 seconds sampling period. Different drive cycles such as UDDS,
LA92, and US06, as well as mixes of them, are applied in the discharge tests. In this paper, the discharge

cycles with temperature of 0°C, 10°C and 25°C were used for training and testing the proposed model.

A.3 Methodology

In this section, the basic theories of RNN and LSTM are introduced and the two proposed deep LSTM
models are briefly introduced. Then, the normalization method used to scale the input data is reviewed.

Lastly, the model’s configuration is discussed.

A.3.1 Recurrent Neural Networks Primer

Recurrent neural networks are a class of neural networks that allows the information to persist over
time. Different from the feed-forward neural networks that are acyclic directed graphs, RNNs have
connections within layers forming cyclic directed graphs. This empowers neural networks to have a state,
and thus memory. The information from the previous state is utilized as input along with the current time
step. It is useful for sequential data prediction as relationships between current and past information are
considered. An example of the architecture of an RNN for SOC estimation unfolded in time, is depicted
in Fig. [A.T. The input vector at the time step 7 contains battery parameters such as voltage, current, and
temperature, and it is denoted as Input,. h, represents the hidden state at time step ¢, while the output
SOC value at time step ¢ is denoted as SOC;. Fig. [A.T demonstrates a common approach for time-series
called many-to-many, where multiple input steps are fed to the network with one prediction made at each
step. Whereas, there are other approaches such as the many-to-one and one-to-many, where in the first
case multiple time-steps are fed with one output produced, and in the second case one input is used to
produce multiple time-steps. As the two battery datasets have very different sampling frequencies, we
used the many-to-many approach for the first model (low-frequency sampling) while in the second one

(high-frequency sampling) we used the many-to-one approach.
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Figure A.1: RNN architecture for SOC estimation unfolded in time
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A.3.2 Long Short-Term Memory Primer

The long short-term memory is a type of RNN which is widely used to learn long-term dependencies
without experiencing the exploding and vanishing gradient problems. The forward pass of an LSTM
cell can be defined by the following steps. In the equations, f;, i;, o, are the forget-gate, input-gate,
output-gate; ¢, and h, are the cell state and hidden state at time step ¢ respectively; o is the sigmoid
function; © is the Hadamard product; W denotes the weight matrix; x; is the input vector at time step ¢
and b is the bias.

The first step in the LSTM cell is to determine what information will be forgotten from the cell state
c;-1. The forget-gate uses a sigmoid function, in which outputs are always between 0 and 1. The result
represents therefore how much should be forgotten, with 0 and 1 representing respectively discarding
everything or keeping everything from the previous cell’s state. As shown in the equations, the decisions

of gates are based on the current input and hidden state as well as on the network’s weights and biases.

fo=oWlx, + Wl h_1+b7) (A.1)

The second step determines whether the information will be stored in the cell state. There are two
parts in the second step. Firstly, the input-gate with sigmoid output determines to what extent the value
will be remembered. Secondly, the tanh layer generates the new value ¢, that is multiplied by the sigmoid
output and then added to the cell state.

it = O'(W)icx, + W;lht—l + bl)

5[ = tanh(W;x, + W}Cl‘ht_l + bc)

(A2)

The cell state ¢, is then update combining the previous cell state ¢,_; with new value ¢, as men-
tioned above. The forget-gate f; and input-gate i, determine whether the values should be discarded or

remembered.

Ct =f,®c,_1 +il®gt (A3)

In the last step, the output-gate with the sigmoid function decides which part of the cell state is
propagated to the hidden state /,. In the hidden state, the cell state ¢, is passed via tanh and multiplied
by the output-gate to keep only the desired output.

0; = O'(W;C)Xt + W;:ht_l + bo) (A4)
hy = 0; © tanh(cy)

A.3.3 Proposed LSTM Approach

There are two deep LSTM models proposed in this paper, one for each dataset, as they have very
different cycle lengths. Scaled exponential linear units (SELU) [71] activation function is used in all
the LSTM cells and hidden dense layers. In the output layer, the linear activation function is applied to
produce the final SOC value.

The first model is used for the UNIBO dataset. It is a deep neural network with three LSTM layers
followed by two dense layers to map the learned states to desired SOC output. The number of cells
of each LSTM layer is 256, 256, and 128 respectively. Fig. [A.2 illustrates the architecture of the first
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proposed model. The first layer is the input layer with battery parameters including voltage V, current /,
and temperature T at each step z. Since it is a deep LSTM network, each LSTM layer returns a sequence
which means that each step is propagated to the next layer. Here, we adopted the many-to-many approach,
the SOC value is therefore estimated at every step. The input time series fed to the deep LSTM network is
defined as [Input;o, Input;, ...Input,, |, where n is the number of steps in the entire discharge cycle, and
Input = [V;, I, T;] represents voltage, current and temperature at each time step respectively. Although
the entire discharge cycle is fed to the network, only the part that precedes the step under examination is
available as input for SOC estimation, i.e., the hidden state from previous steps ¢ — 1 and the current input

at step ¢ are used to estimate the output at step z.
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Input (n,256) (n,256) (n,128) (n,64) (n,1) Output
Figure A.2: Architecture of the first model

The second model is used for the LG 18650HG2 Li-ion battery dataset. The model is composed
of two LSTM layers followed by three dense layers. The number of cells of both LSTM layers is 256.
Fig. [A.3]shows the architecture of the second proposed model. Since the second dataset contains more
steps in one discharge cycle due to its higher sampling rate (0.1 seconds sampling time), the many-to-one
approach is more appropriate. In this case, for each n step as input, one output is returned. In the
implementation, we used 300, 500, and 700 as the number of steps. For example, given input steps

[Input;o, Input,, ...Inputss00], the model should estimate the SOC value at step 500.
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Figure A.3: Architecture of the second model
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A.3.4 Data Normalization

Since the input features have different ranges, such as the temperature has much higher values than
voltage and current, the trained model could give more importance to this feature over the others due to
its larger value. To avoid this problem, the minimum-maximum normalization method is used to scale

all input features into the same common scale.

A.3.5 Model Training

The proposed models are implemented by using the Keras library [72]. The Adam algorithm [|73|]
is chosen as the optimizer to update the network weights and biases with the learning rate configured as
0.00001. All proposed models are trained for 1000 epochs, but the training process would stop earlier if
there is no further improvement of validation loss within 50 epochs. The Huber loss [74] is used as the

loss function. Its peculiarity is that it can be quadratic or linear depending on the error value.

A.4 Results and discussion

The proposed deep LSTM models are trained and tested using the two aforementioned datasets.
The model performance against each dataset is discussed in this section. The source code of the model
implementation and results are available her

Root Mean Square Error (RMSE) and Mean absolute error (MAE) are used to evaluate the proposed
models. The Mean Square Error (MSE) is the sum of squared distances between the target and predicted
variables divided by the number of samples. The RMSE is the square root of the MSE which scales
the output value to the same scale as MAE. It is more sensitive to outliers as it penalizes the model by
squaring the error. The MAE on the other hand is more robust to outliers as the error is not squared.
MAE is an L1 loss function that calculates the sum of the absolute difference between the target and

predicted variables. The MAE is more suitable for problems where the training data present outliers.

A.4.1 UNIBO Powertools Dataset

In the UNIBO dataset tests, the performance of the proposed model is evaluated over constant current
discharge. The proposed model for this dataset was trained with a total of 7738 discharging cycles as the
training set. One cell for each group of test types (standard, high current, pre-conditioned) and nominal
capacity was extracted as testing data for evaluation purposes. The testing data is isolated from training
data so that it is unseen during the training process. The overall MAE and RMSE on all testing data are
0.69% and 1.34% respectively.

To further investigate the performance of the proposed model, Table [A.2 shows the performance of
each test type. The evaluation of standard test type with 4.0Ah nominal capacity and high current test
type with 2.85Ah nominal capacity has the worst performance. This is expected as the dataset contains
only two cell tests of the kind, resulting in one cell used for training and one for testing. Whereas, in the

other test types with sufficient data the model can achieve accurate results with RMSE lower than 1%.

Zhttps://github.com/KeiLongW/battery-state-estimation
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Table A.2: UNIBO dataset tests performance
Test type Nominal capacity MAE RMSE

Standard 4.0Ah 2.68% 3.42%
3.0Ah 0.52% 0.73%

2.85Ah 0.31% 0.39%

2.0Ah 0.59%  0.80%

High current 3.0Ah 0.46% 0.61%
2.85Ah 2.13% 3.24%

Preconditioned 3.0Ah 0.47%  0.66%

The examples of SOC estimation results of the proposed model on the standard, high current, and
preconditioned test types are shown in Fig. [A.4, Fig. [A.5, and Fig. [A.6 respectively. The first and
the last discharge cycles within the entire test of each battery cell are presented to demonstrate the SOC
estimation performance under different health statuses. All results show the discharge process of SOC
being discharged from 100% to 0%. The x-axis represents the discharge steps over the whole discharging
cycle and the y-axis represents the SOC value at each step. The black line is the actual observed SOC
value during the discharge process and the red dashed line is the SOC value estimated by the proposed

model.
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Figure A.4: UNIBO dataset SOC estimation results (standard)
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Figure A.5: UNIBO dataset SOC estimation results (high current)
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Figure A.6: UNIBO dataset SOC estimation results (preconditioned)

The model estimates the SOC of the 3.0Ah nominal capacity cells correctly and without large
fluctuation in each of the three test types. Furthermore, the estimations of standard test types with 2.0Ah
and 2.85Ah nominal capacity are accurate too. SOC in both the first and last cycle are estimated accurately
which suggests that the proposed model is capable to estimate SOC under different battery health statuses.
In addition, good performance is achieved from the preconditioned test type which demonstrates that the
storage temperature before testing does not affect the battery discharging behavior significantly in terms
of SOC estimation. On the other hand, there are some errors during the ending steps of standard 4.0Ah
nominal capacity and high current 2.85Ah nominal capacity battery cell cycles. It is acceptable as there

is only one training example of that kind of setup.

A4.2 LG 18650HG2 Li-ion Battery Data

In the LG 18650HG?2 Li-ion battery dataset, the performance of the proposed model under dynamic
discharge current is evaluated. Six mixed driving cycles for each of three different temperatures 0°C,
10°C, and 25°C were used as training set. We have also tested three different time series lengths, with a
number of steps of 300, 500, and 700, which are approximately equal to 30 seconds, 50 seconds, and 70
seconds depth in time respectively. The test set was composed of a UDDS, an LA92, and a US06 driving
cycle plus one mixed driving cycle for each of the three different temperatures available in the dataset.

The MAE and RMSE achieved by the 300 steps model are 1.47% and 1.99%. The 500 steps one
reached an MAE and RMSE of 1.54% and 2.12%. The 700 steps model achieved 1.94% MAE and 2.72%
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RMSE. All the aforementioned results were tested with testing data under all temperatures. The model
performance under each temperature with different input lengths is listed in Table [A.3. Among all the
configurations, the best performance is achieved from testing data under 25°C temperature with 300 steps
in input, which demonstrates that the battery operates most stably under room temperature. The model
is able to learn the battery behavior under room temperature through the provided driving cycles without
the need for a long history. While, under 10°C and 0°C temperatures, better performance is gained from
the 500 input model. This indicates that increasing input steps could help to improve the estimation result
under temperatures that are lower than room temperature. However, the worst results are from the 700
input steps which suggest that the increment of input steps must be selected carefully for the many-to-one
approach as an inappropriate increment of input steps could result in performance degradation. The SOC
estimation results on the mixed driving cycles under 0°C, 10°C and 25°C temperatures are displayed in
Fig. [A.7. The estimation results under the three temperatures are competitive and without significant
errors. Still, errors can be seen from the ending steps in mixed cycles under 0°C temperature due to their

more dynamic discharge pattern.

Table A.3: LG 18650HG?2 data tests performance

o 300 Steps 500 Steps 700 Steps
Temp. (°C)
MAE RMSE MAE RMSE MAE RMSE
0 1.69% 2.27% 1.47% 2.23% 1.65% 2.60%
10 1.61% 2.12% 1.57% 2.12% 2.22% 2.89%
25 1.17% 1.57% 1.59% 2.02% 1.92% 2.64%
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Figure A.7: LG 18650HG data SOC estimation results (mixed cycles)
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A.5 Final remarks

In this paper, a deep LSTM NN is proposed to estimate SOC over two different Li-ion battery datasets.
Discharge cycles with both constant and dynamic current under various ambient temperatures are used
to train and test the proposed models. The evaluation results show that the proposed models can learn
the battery dynamic behavior during discharge. Battery SOC can be estimated accurately by using the
measured voltage, current, and temperature values, with 1.34% and 1.99% RMSE in constant current
and dynamic current discharge cycle respectively. We have also shown how the proposed estimation
is robust w.r.t. different State of Health statuses. The SOH is another important parameter for battery
management. As future work, we suggest using deep LSTM networks for SOH estimation as we believe

it can be effective as well.
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To Charge or to Sell? EV Pack Useful Life Estimation via
LSTMs, CNNs, and Autoencoders

Michael Bosello, Carlo Falcomer, Claudio Rossi and Giovanni Pau

Abstract — Electric vehicles (EVs) are spreading fast as they promise to provide
better performance and comfort, but above all, to help face climate change. Despite
their success, their cost is still a challenge. Lithium-ion batteries are one of the
most expensive EV components, and have become the standard for energy storage in
various applications. Precisely estimating the remaining useful life (RUL) of battery
packs can encourage their reuse and thus help to reduce the cost of EVs and improve
sustainability. A correct RUL estimation can be used to quantify the residual market
value of the battery pack. The customer can then decide to sell the battery when it
still has a value, i.e., before it exceeds the end of life of the target application, so it
can still be reused in a second domain without compromising safety and reliability.
This paper proposes and compares two deep learning approaches to estimate the
RUL of Li-ion batteries: LSTM and autoencoders vs. CNN and autoencoders. The
autoencoders are used to extract useful features, while the subsequent network is
then used to estimate the RUL. Compared to what has been proposed so far in the
literature, we employ measures to ensure the method’s applicability in the actual
deployed application. Such measures include (1) avoiding using non-measurable
variables as input, (2) employing appropriate datasets with wide variability and
different conditions, and (3) predicting the remaining ampere-hours instead of the
number of cycles. The results show that the proposed methods can generalize on

datasets consisting of numerous batteries with high variance.
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B.1 Introduction and Background

Electric vehicles (EVs) are becoming central to the automotive industry as they can address current
automotive limits. Their constant growth is due to their improved performance and efficiency, but
especially for their suitability in addressing environmental challenges, i.e., urban pollution and global
warming [75], [[76]]. Internal-combustion-based vehicles contribute to global carbon emissions by 14% of
the total [77]; thus, they are facing restrictions in leading markets that aim to reduce their environmental
footprint [76], [78]]. Internal-combustion-based vehicles are also a prominent source of artificial fine
particulate matter (PM25) [[79], [80]]. Air pollution is one of our greatest social issues since it has a
severe impact on health and society [81], possibly causing different diseases and even premature death
[82f], [83[]. EVs are a milestone in addressing such challenges to humanity as they can potentially remove
personal transportation from the environmental impact equation.

A core component of EVs is the battery. Lithium-ion (Li-ion) batteries have become the standard for
energy storage in EVs [18]], [19]. They have several advantages compared to traditional batteries such
as lead-acid or nickel-metal hydride: high energy and power density, low self-discharge, environmental
adaptability, long lifetimes, and high reliability [8]], [84]. These advantages have led to the wide use of Li-
ion batteries in EVs and in several safety-critical areas such as space applications [85]], aircraft, and backup
energy systems. The safety and reliability of Li-ion batteries are critical concerns for such applications
[86[. Li-ion batteries are employed in safety-critical areas, so their defects can cause fatal system failures.
For example, various Boeing 787 aircraft caught fire because of Li-ion battery malfunctions in 2013 [[15]],
and NASA lost a spacecraft because of the lack of power supply due to a false battery over-charging
indication in 2006 [16]]. Such high-impact failures have also recently appeared in the EV domain, with
well-known manufacturers recalling hundreds of thousands of EVs due to fire risk [[87], [88[]. Another far
more significant challenge for Li-ion batteries is their cost. While EVs are promising on various fronts,
their cost is still a considerable drawback [|89]], and the battery is one of the most expensive components
of EVs [90].

The design of an appropriate battery management system (BMS) is crucial to reducing costs and
increasing vehicle efficiency and security [6], [7]. One of the major tasks of the BMS is to evaluate
the current health conditions of the battery as it degrades over time. This degradation is an irreversible
process related to the repetitive charging and discharging operations and electrochemical reactions inside
the battery [21]. Predominant indicators are battery capacity and internal resistance, which inform us
about the battery residual energy and power capabilities, respectively 28], indicated by the state of health
(SOH). The SOH and the remaining useful life (RUL) are the most crucial parameters of battery health
that must be estimated by the BMS [[8]. The SOH quantifies the deterioration level compared to a brand
new battery. While it has not been formally defined by industry [91]], it is typically expressed through a
percentage of capacity loss or power loss (increase in battery resistance) [[13[], [92]. We will consider the
capacity loss (SOHc), which is defined by

C
SOH = =L - 100(%) (B.1)
Co
where C; is the current capacity and Cy is the nominal capacity. The International Electrotechnical
Commission (IEC) [93], International Organization for Standardization (ISO) [94]], and Institute of
Electrical and Electronics Engineers Standards Association (IEEE-SA) [95] have proposed standards to

measure the battery capacity in a standard condition using direct methods that are taken as a reference to
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compute C; and Cy. The BMS adjusts its functioning according to the estimated SOH to ensure vehicle
performance and safety until the health indicators reach the target limits, after which the battery should be
replaced. Battery manufacturers usually set the capacity threshold under which the battery is no longer
suitable for EV applications to 80% of the nominal capacity [[96], measured under a standardized test.
Such threshold is called the end-of-life (EOL). Despite this, the battery might be replaced before the
threshold if the internal resistance rises above a normal level [28]]. The threshold is also recommended
to be 80% by the Center for Advanced Life Cycle Engineering (CALCE) at the University of Maryland
[97]] and 70% by NASA’s Prognostics Center of Excellence (PCoE) [34]. In the context of replacement
and secondary use planning, it is helpful to predict how the SOH will evolve through time and when the
battery will reach its EOL. This is defined by the RUL, which is typically described as the number of
cycles remaining until EOL [30]-[32].

A robust SOH estimation by the BMS is fundamental to ensure battery reliability as well as prevent
failures and hazards [6], [98]], but also to determine the acceleration performance and the driving range
of the EV [20], [99], necessary for a pleasant driving experience, and finally to quantify the residual
market value of the batteries [100]. However, the correct estimation of the RUL encourages the reuse of
batteries, as removing the battery before it exceeds the end of life of the target application allows reuse in
a second domain without compromising safety and reliability [29]]. Batteries can therefore be employed
in secondary applications with lower power requirements. This can have a significant impact in terms of
both sustainability and market value [101]. With the growing number of new EVs, the waste produced by
the spent battery packages is also increasing. Their recycling processes can have a considerable economic
and environmental impact. The interested reader is referred to [102] for lithium-ion battery recycling in
the EV context. To summarize, improving the estimation of SOH and RUL contributes to the spreading
of EVs in two ways: (1) by ensuring security and reliability, (2) by reducing costs and waste through
battery reuse.

The estimation of the SOH and its prediction (the RUL) is a challenging task. The capacity of a cell
cannot be directly measured, so indirect measurements are used instead by using related variables. The
SOH can be precisely computed in laboratory conditions, but it significantly differs from the working
conditions of real applications [28]. This, unfortunately, does not apply to the real-world EVs that have to
employ online estimation algorithms [[6]. Battery aging involves many variables, such as charge/discharge
current, voltage, and operating temperature. EV batteries’ working conditions are also highly dynamic
as they change with the environment and the user’s driving style [20]. As a result, it is challenging to
design accurate physical models due to complex degradation mechanisms and operations. Furthermore,
it requires much knowledge about the phenomena involved and experimental data acquired in controlled
situations, which could be unavailable or quite expensive to collect [29]. SOH estimation techniques can
be classified into two macro-categories: experimental and model-based estimation methods [6], [28]].
Experimental methods analyze aging behavior through numerous laboratory tests. As mentioned above,
this is typically not achievable on board due to the required equipment and the dynamic driving context.
Model-based methods can be further divided into adaptive algorithms and data-driven approaches, and
the latter also includes RUL prediction. Adaptive algorithms use mathematical models and numerical
filters (e.g., equivalent circuit model and Kalman filters). In contrast, data-driven methods use black
box models, which find the mapping between the input and the target. Figure summarizes the main
categories of SOH estimation methods. The following section will focus on machine-learning-based

SOH estimation and RUL prediction techniques and their advantages. For a detailed review of the other
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methods for SOH estimation, please refer to [28|], and for RUL prediction, please refer to [103].

SOH Estimation Methods

Experimental Model-based Estimation
Direct measurement Indirect analysis Adaptive algorithms Data-driven
Capacity/Energy test Charging curve ECM based Empirical model
EKF /UKF/PF / AEKF
Ampere counting ICA methods SPKF/LS/RLS Data fitting

Luenberger observer

H-infinity observer
Ohmic resistance

) TEEeEnEE RS DVA methods PI observer/SMO Optimization
Cycle number counting Ultrasonic inspection EM based Machine learning
Destructive methods Other health index Combined methods Sample Entropy

Figure B.1: Classification of battery SOH estimation methods.

This paper contributes in several directions to the applicability of deep-learning-based RUL estimation

in practical applications.

* We propose a novel RUL definition in the machine learning context, based on ampere-hours, to
push forward the applicability to real cases. The first application of deep learning techniques on
an RUL that is not based on the simplified concept of cycles is also provided.

* Two models for RUL estimation are presented and compared on the NASA Randomized dataset:
autoencoder plus CNN and autoencoder plus LSTM. In addition, an LSTM is proposed to predict
the RUL in the UNIBO Powertools dataset. The results show that the particular autoencoder can
effectively extract the relevant features of the cycle curves, while the CNNs and the LSTMs can be
used to estimate the RUL.

* Two vast datasets containing batteries cycled with an extensive set of different conditions and
variables are used in the experiments to ensure generalization. Compared to the data used in the
literature so far (with a limited amount of batteries typically discharged under constant current), the
examples used in this paper present many more batteries and conditions that are more challenging
to predict. All the relevant details about the data selection and splitting are detailed, ensuring

transparency in the results.

The paper is structured as follows. The next section provides an overview of the deep-learning-based
techniques used for RUL estimation and the problems that affect their deployment. The relevant works
are also summarized. In Section[B.3] the datasets and the models used are described. Section[B.4]shows
and compares the results obtained using the models. Finally, Section concludes the paper with a

summary of the results and future research directions.
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B.2 Related Works

The recent success of machine learning in several domains and the availability of data and computing
power have motivated the development of novel methods for battery state estimation. Data-driven battery
state estimation methods are becoming increasingly popular [[13]]. In particular, the attention to using
deep learning (DL) for battery status estimation has increased over time. Data-driven methods provide
several advantages [6]. They allow us to obtain better results in real complex applications, as complete
knowledge about degradation mechanisms is still lacking. They do not require expert knowledge about
the degradation phenomena as they only rely on enough operational data from which key features are
extracted. They are also suitable for execution on hardware with limited capabilities compared to adaptive
algorithms that are more computationally demandin [99]], [[104]. While the training phase is demanding
as well, the execution is efficient and can run on BMS hardware, with inference models in the order of a
few hundred megabytes [105]. Last but not least, data-driven methods enable the prediction of the SOH
(i.e., the RUL), while other techniques are typically limited to estimating the current SOH.

Drawbacks are present, but the benefits compensate for them. The main drawbacks are limited inter-
pretability and inaccessibility to physical parameters (e.g., internal resistance) [35]]. Before proceeding, it
is worth noting that we may have a conflict of terms. While, in the context of deep learning, “prediction”
typically indicates the result of a neural network, in the context of signal processing, it means predicting
the future value of a time series. In this paper, we will use the term estimation to indicate the estimation
of the current SOH. In contrast, we will use the word prediction to indicate the expected RUL, as it can
be conceived as the prediction of the future SOH.

In the last two years, numerous works using DL for SOH and RUL estimation have been proposed
in the literature. In the following, the common approaches (and issues) in the various papers are first
presented to avoid repetition, and then the single articles are analyzed.

The variables measured by the BMS are usually voltage (V), current (I), and temperature (T). Such
variables are sampled at high rates during subsequent charge and discharge cycles, resulting in very long
time series. The variables most used as input are voltage, current, and temperature, as they can capture
the battery aging factors [99], but sometimes the sampling time and the state of charge (SOC; i.e., the
charge level) are also used. In the case of the RUL, the SOH itself has also been used as input. It is
recalled, however, that care must be taken when non-measured variables (i.e., SOC, SOH) are employed,
as errors could accumulate and robust estimation of the input variable might not always be available—
this is the first issue affecting applicability. The variables can originate from the charging cycles, the
discharging cycles, or both. The resulting time series are often presented to the network through a
moving window, i.e., the NN makes the estimation based on the set of features at time ¢ plus their last N
values. A popular approach is to use a recurrent neural network (RNN)—in one of its various forms—to
find the relation between the SOH or RUL and the time series. Long short-term memory (LSTM) [26]
networks are particular RNNs that are able to handle long-term sequences and have become the baseline
of recurrent networks. LSTMs and their variants are thus also widely used in the battery context. Some
experiments try instead to use convolutional neural networks (CNNs) to process time series, or to use a
simple feed-forward NN (FFNN) preceded by specific pre-processing. The literature offers several battery
datasets to conduct such experiments. One of the most used datasets is the NASA “Battery Data Set”
[34]]. It was the first battery dataset that was publicly available, and thus it has had a significant impact
in the field [33]]. The dataset consists of 34 Li-ion 18,650 cells cycled at various ambient temperatures;
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however, it includes only constant current (CC)-cycled batteries. Even though the dataset contains 34
batteries, the most common approach is to use a specific subset of three or four batteries. In 2014, NASA
released another dataset (“Randomized Battery Usage Data Set”) [106] also containing batteries cycled
with a random current. A review of battery datasets is available in [33[]. The second issue to be addressed
to ensure the suitability of the SOH and RUL methods to real scenarios is the quality of the dataset
used during testing. Most works use simplified databases with batteries cycled under CC discharge, a
condition not applicable to EV operation. Another applicability obstacle in the case of RUL is in the
definition of RUL itself. As already mentioned, RUL is defined as the remaining cycles before EOL.
In the EV context, we have partial charge and discharge cycles (e.g., discharge to 40%, charge to 80%,
discharge to 30%, and so on) as the vehicle can be recharged starting from different SOCs and can be
unplugged before the full charge. An equivalent full cycle (0% to 100%) has little practical meaning,
therefore the definition of RUL has to be rethought. A valid candidate to represent the RUL in the EV
setting is the remaining ampere-hour (Ah) value that the battery can deliver before reaching EOL. The
measures to prevent applicability pitfalls are then (1) avoiding using non-measurable variables as input,
(2) employing appropriate datasets with wide variability and different conditions, and (3) not using cycles
to define the RUL.

The estimation of the SOH has recently become quite robust as it has been applied to realistic
datasets. SOH estimation is well established on simplified datasets [6], [[13]], [107]; here, we report the
recent advances on complex datasets. In [92]], a hybrid network comprising a gated recurrent unit (GRU;
a well-known variation of LSTM) and a CNN is used for SOH estimation. The inputs are the raw V, I, and
T data of the charging curve, converted to a fixed size history of 256. The input converges toward the two
parallel streams (GRU and CNN) concatenated in the last layer. A maximum estimation error of 4.3%
on the Randomized NASA dataset is reported. The authors of [[99] proposed an SOH estimation method
based on the Independently RNN (IndRNN) and tested it on the Randomized NASA dataset. Here, a
discharge cycle is represented by 18 features, including average V, I, and T, as well as the capacity, the
time elapsed, and the time periods of each current load. While it achieves superior results, whether it will
work in real applications needs to be clarified as it also takes capacity as input. In the experiments, the
capacity in input is calculated. In contrast, the proper way to conduct the investigation should have used
the capacity estimated by the network itself in the previous time step. In [29], a CNN takes as input the V,
I, and capacity of the charging cycle discretized in 25 segments. The output is the capacity computed on
the corresponding discharge cycle. Both capacities are computed by coulomb counting. Applicability is
at least doubtful in this case too. In [20], a private database of real-world data collected from 700 vehicles
(full-electric or hybrid) is used to train an FFNN for SOH estimation. The parameters employed are the
accumulated mileage of cars, the C-rate distribution, the SOC range (the SOC is divided into five ranges,
and the SOC range indicates such range), and cell temperatures. The number of variables is reduced
to a lower dimensionality using principal component analysis (PCA). The results are impressive, with a
maximum error of 4.5% and RMSE of 1.1%, which become 2.2% and 0.45% if considering only fully
electric vehicles.

Moving to RUL estimation, it has not yet reached the robustness and applicability of SOH estimation.
The experiments described in the literature are limited to oversimplified datasets that present only CC-
cycled batteries. While adequate performances are typically achieved, there are still some critical issues
regarding data quality and applicability. In [36], a temporal convolutional network (TCN) produces
RUL estimations. The input is the history of the SOH, processed through a moving window. Tests
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are performed on three CC batteries from the NASA dataset and two CC batteries from the CALCE
dataset. As it uses the history of SOH, a robust SOH estimation is necessary to ensure its applicability.
As the experiments rely on ground truth SOH, it needs to be clarified if the proposed method will have
the same performance using estimated SOH levels that are thus affected by some error. In addition, a
long warm-up is required, as the first output is produced after a minimum ¢ of 30 cycles. Both [37]]
and [38]] propose using an LSTM network that takes the SOH’s history as input. In the first case, the
output is the RUL; in the second case, it is the k-step ahead SOH, which can be reduced to the RUL.
The datasets used are one Panasonic CC battery and four CC batteries from the NASA set, respectively.
Both works present the same issues as the TCN-based one (here, the warm-up is even longer). The most
promising article is [39], which presents a variant of LSTM, namely AST-LSTM. Two AST-LSTMs are
trained, one for estimating the SOH and one for the RUL. The input of the first model includes V, I,
T, and the sampling time of the discharge cycles. The second model uses instead the history of SOH
estimated from the previous one. As the SOH input is estimated, the RUL approach is also suitable for
real scenarios. Experiments are conducted on 12 batteries from the NASA dataset. The approach still
needs to be tested on better datasets, and the warm-up is too long. In [84], the IC discharge curve is
computed from the V, I, and sampling time. The features extracted from the curve are inputted to a small
NN that estimates the SOH and RUL. This method is, however, applicable only to CC discharging. In
addition, it has a high computation complexity and low performance. In [40], an autoencoder is used
to perform dimensionality reduction starting from the V, I, T, and sampling time of both charge and
discharge cycles, plus the capacity estimated during discharge. In addition to the applicability doubts, the
accuracy is so low that the approach is substantially inapplicable. Another autoencoder approach from
the same main author was proposed in [41]]. Here, the autoencoder is used instead to augment the data
dimension, and then the result is processed by two branches: an LSTM and a CNN. The features extracted
by them are concatenated and fed to the final NN that returns the RUL prediction. While the performance
has improved, the dataset used is still insufficient, as only CC-discharged batteries are considered. The
properties of the above-mentioned works are summarized in Table
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B.3 Experiments

In this work, we propose and compare three models to predict the remaining useful life of Li-ion
batteries. The contributions and improvements focus on the model’s applicability to real-world scenarios
and the transparency in defining batteries and methodologies used. Existing works have used limited
datasets without specifying why only some batteries from the selected dataset have been used. They also
conform to the definition of RUL based on cycles, which has little meaning in actual applications. Finally,
most of them do not provide enough information about the data structure and how data are employed. To
achieve the desired aims, three aspects have been covered: input definition, output (RUL) definition, and

the use of datasets with wide variability.

* Input: The only information used is voltage (V), current (I), and temperature (T), as using only
measurable variables boosts applicability. The data are taken from the discharge cycles and are
organized in time series, in the format [cycle, timestep, variable]. As explained in Section|B.3.2]
at each cycle n, the input given to the network is based solely on the cycle n and the previous ones
(n—1,...,n— N;where N is the history length), i.e., no information from the future is used.

* Output—RUL definition: As detailed in Section defining the RUL as the number of
remaining cycles has no practical meaning. Here, instead, the RUL is defined as the normalized

remaining ampere-hour (Ah) that the battery can deliver before reaching EOL.
This can be named ah-RUL and is computed as:

ahRUL(n) = [trapz(current|. .|, time|..|)—trapz(current|,.or ], time[n.e0L,:])] /nomcap (B.2)

where n is the current cycle number, frapz is the approximate integral via the trapezoidal method, current
is the matrix of currents where the X is the cycle and y is the timestep, time is the matrix of the elapsed
time corresponding to the current measurement, and nomcap is the nominal capacity of the battery.

As the RUL is a slowly changing value, predicting at every cycle (rather than at each timestep) is
more than sufficient. Thus, for each cycle n (and history N), the model predicts the ah-RUL at the current
cycle.

The code for the pre-processing, as well as the networks, the trained models, the results, and the
plots, are available in the repository of the project, which can be accessed at https://github.com/
MichaelBosello/battery-rul-estimation (accessed on 15 March 2023).

B.3.1 Datasets

Two datasets have been used. The NASA Randomized Battery Usage dataset [[106], which is used
to investigate the performances of batteries cycled with a random current, and the UNIBO Powertools
Dataset, which was released by our team in [1], and contains batteries with different specifications that

were cycled under different conditions.

NASA Randomized Battery Usage Dataset

The NASA Randomized dataset consists of data from 28 batteries. The batteries are lithium cobalt
oxide 18,650 cells with a nominal capacity of 2.2 Ah. The cells were continuously operated by repeatedly
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charging and discharging them according to the corresponding profile. At every 50 cycles, a series of
reference charging and discharging cycles were performed to provide battery health status. The batteries
are split into 7 groups containing 4 cells each according to the charge/discharge profile and temperature
used. The randomized charge/discharge profiles can be as follows: random walk (RW), i.e., the selection
of the current is random with a uniform distribution between the two current ranges; skewed RW, i.e.,
the current selection is random with a custom probability distribution skewed towards lower or higher

currents.

* RW1, RW2, RW7, RWS batteries are repeatedly charged for a random duration between 0.5 and
3 h, then discharged to 3.2 V using a randomized sequence of currents between 0.5 A and 4 A.
The discharge random profile is the RW. The setpoint is loaded every 5 min. Operated at room

temperature.

* RW3, RW4, RWS5, RW6 batteries are repeatedly charged to 4.2 V and then discharged to 3.2 V
using a randomized sequence of currents between 0.5 A and 4 A. The discharge random profile is

the RW. The setpoint is loaded every 5 min. Operated at room temperature.

* RW9, RW10, RW11, RW12 batteries are repeatedly charged and then discharged using a random-
ized sequence of currents between —4.5 A and 4.5 A. The charge and discharge random profile is

the RW. The setpoint is loaded every 5 min. Operated at room temperature.

« RW13, RW14, RW15, RW16 batteries are repeatedly charged to 4.2 V and then discharged to
3.2 V using a randomized sequence of currents between 0.5 A and 5 A. The random profile is the

skewed high RW. The setpoint is loaded every 1 min. Operated at room temperature.

* RW17, RW18, RW19, RW20 batteries are repeatedly charged to 4.2 V and then discharged to
3.2 V using a randomized sequence of currents between 0.5 A and 5 A. The random profile is the
skewed low RW. The setpoint is loaded every 1 min. Operated at room temperature.

* RW21, RW22, RW23, RW24 batteries are repeatedly charged to 4.2 V and then discharged to
3.2 V using a randomized sequence of currents between 0.5 A and 5 A. The random profile is the

skewed low RW. The setpoint is loaded every 1 min. Operated at 40 C temperature.

* RW25, RW26, RW27, RW28 batteries are repeatedly charged to 4.2 V and then discharged to
3.2 V using a randomized sequence of currents between 0.5 A and 5 A. The random profile is the

skewed high RW. The setpoint is loaded every 1 min. Operated at 40 C temperature.

UNIBO Powertools Dataset

The UNIBO Powertools dataset contains data from 27 batteries featuring various types of cells and
experimental conditions collected in a laboratory test by an Italian equipment producer. Cells were
charged at 1.8 A until 4.2 V and discharged at 5 A until V,,4. Capacity and resistance reference
cycles were performed every 100 cycles. The batteries are split into 7 groups, according to the battery
manufacturer, the cell type, the cell capacity, and the type of test. The battery manufacturer is defined
by a label, either D or E, to keep the brand name private. The cell type defines its intended use, and it
can be M (mid-power), E (e-bike), or P (power tool). The tests performed on the cells are Standard (5 A
discharge), High Current (8 A discharge), and Pre-conditioned (90 days’ storage at 45 degrees C before
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testing). It follows the list of the groups, with the convention name XW-Y.Y-AABB-T, where X is the
manufacturer, W is the cell type, Y.Y is the capacity, AABB is the delivery date (AA: week, BB: year),
and T is the test type, followed by the list of cell numbers included in the group.

DM-3.0-4019-S 4 cells: 000, 001, 002, 003.

DM-3.0-4019-H 3 cells: 009, 010, O11.

DM-3.0-4019-P 7 cells: 013, 014, 015, 016, 017, 047, 049.

EE-2.85-0820-S 4 cells: 006, 007, 008, 042.

EE-2.85-0820-H 2 cells: 043, 044.

DP-2.00-1320-S 8 cells: 018, 019, 036, 037, 038, 039, 050, 051 (039 has date 2420).

DM-4.00-2320-S 2 cells: 040, 041.

B.3.2 Models
NASA Randomized: AE-LSTM vs. AE-CNN

For the NASA Randomized dataset, we propose and compare two networks. Both models use an
autoencoder to compress the long time series in the set, in which timesteps range from 10k to 100k
measurements per cycle. Using an autoencoder to perform the reduction allows us to retain most of the
information, avoiding the loss of the fundamental information. The prediction of the ah-RUL is then
made by passing the sequence of reduced cycles to a subsequent network, a CNN in one case and an
LSTM in the other. CNNs are known to perform better on structured data with local information, which
motivates their use in this use case. We also considered LSTMs as they are designed to handle long-term
sequences such as the battery aging process. Thus, they can learn the long-term degradation trend of
batteries.

As mentioned above, the autoencoder has to reduce the thousands of values per cycle to a small
number of features (in the order of dozens) that are representative of the cycle. This is done by an NN
with an hourglass shape trained to copy its input to its output (in this case, the cycle measurements). As
there is a bottleneck in the middle layer, it will learn a compact representation of the input that retains
most information. To obtain the best reconstruction results, we employed a specific autoencoder structure
presented in [[108] that retains both local and global information. The autoencoder structure is depicted
in Figure This network uses skip connections, i.e., jumps, to keep the features extracted not only
from the last layer but also from the middle one.

The encoder takes the time series of one cycle as input, composed of 11,800 measurements with 3
values each: voltage, current, and temperature. Voltage, current, and temperature are normalized between
0 and 1 using min-max normalization to prevent the magnitude of the value from affecting its importance.
The min and max values are computed from the training set only. Depending on the experiment, the
length of the time series in the group could be in the order of 10 k, 20 k, or 100 k. To reduce all the
series to the same size, time series with 20 k measurements were sampled, keeping 1 value for each 2,
and similarly, 1 value for each 10 was kept for the 100 k time series. After that, the exceeding length
was cut to 11,800. The series goes into a 1D CNN with 16 filters, a kernel size of 10, and 5 strides. It



B.3 Experiments 57

follows max pooling with size 5. Here, the skip connection opens a fork: the features extracted so far
are given to both a CNN layer and a flattening layer followed by a dense layer. This dense layer with
dimension 7 gives the first part of the encoded vector containing the local information. Coming back to
the other path, the CNN has 8 filters with kernel size 4 and 2 strides, and is followed by max pooling with
dimension 4, a flattening, and a dense layer with size 7 that produces the last part of the feature vector.
The decoder performs the inverse operations mentioned above without the skip link. All the layers use
the ReLu activation function. Adam is used to train the network with a learning rate of 0.0002, MSE
loss, 500 epochs, and batch size 32.

Time Series -11800,3—» Conv1D  +2360, 16> Ma’";';"""g —472,16> ConviD |—236,8-> Ma’";’:f""g —59, 8>

Flatten =~ —7552

’ 472, 1 Flatten —472

X -14 944-»| Reshape 50, 16> UPSAMPINE 30 1o, CovID |, o UpSampling ,.co oy COWID liian0 165 ConviD 1800, 3> Time Series
hbJ Transpose 1D Transpose

Figure B.2: The structure of the autoencoder used to compress the cycles. The skip link allows

us to retain both local and global information

Once the autoencoder has been trained, the encoder is used to reduce the cycles to a feature vector
of size 14. The feature vector is again normalized between O and 1, and then the time series for the RUL
prediction is formed. The subsequent networks take a time series of N = 1000 in the case of the CNN
and N = 500 in the case of the LSTM. The time series is formed by concatenating the vectors of the
current cycle n plus the previous N cycles. If the current cycle number n is below N, the time series is
padded with zeros. A warmup of 15 cycles in training, and 30 in testing, is given to the network, i.e., the
predictions start at cycles 15 and 30, respectively. The output of the nets, detailed at the beginning of the
section, is also normalized between 0 and 1.

The CNN used has two 1D convolutional layers, with 64 and 32 filters, respectively, kernel sizes of
8 and 4, and 4 and 2 strides. It follows the flattening and three dense layers, with dimensions of 32, 16,
and 1. All the layers use L2 kernel regularizers and ReLu activation, except for the last one, which uses
linear activation. The Adam optimizer is used with a learning rate of 0.000003, Huber loss, 3000 epochs,
and a batch size of 32.

The LSTM network has one masking layer to ignore padding zeros, two LSTM layers with 128 and
64 neurons each, and three dense layers with 64, 32, and 1 neuron each. All the layers again use L2 kernel
regularizers but SELU activation, and linear activation in the last one. The same Adam optimizer is used
with a learning rate of 0.000003 and Huber loss, but 500 epochs are performed.

UNIBO Powertools: LSTM

In the case of the UNIBO dataset, the autoencoder is not used since the cycle already has a low
dimensionality. The length of the cycles of this dataset is reasonably short, in the order of 300 measures per

cycle. In this case, using an autoencoder does not provide significant benefits in terms of dimensionality
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reduction, while it would add unnecessary complexity to the data processing pipeline. Simpler pre-
processing has been employed instead. In particular, the discharge cycle is reduced to six features: the
average V, I, T, and their standard deviations. The LSTM network used is the same as presented for the
NASA Randomized dataset, considering both structure and hyperparameters. Likewise, the same history

length, warmups, and normalization are employed.

B.4 Results

B.4.1 NASA Randomized

Batteries from the different groups (as detailed in the previous section) have been used in both training
and testing, to ensure reliable results. Six out of seven groups have been used. The group of batteries
that have been cycled using the RW on both charge and discharge has not been used because it produced
too much data to be handled (having a lot of micro-cycles). Plus, it can be considered an unrealistic use.
Therefore, batteries RW9, RW10, RW11, and RW12 have not been used. Of the remaining 6 groups, each
having 4 batteries, 3 batteries have been used for training and 1 battery for testing, with the following
exceptions. The battery RW3 has been excluded because the temperature measurement is corrupted, and
the battery RW20 has been excluded because all the measurements are 0 for almost all of the battery life.
As a result, the groups of the batteries RW3 and RW20 had only 2 batteries used in training, making the
learning even harder for such groups. The total number of batteries was 16 in training and 6 in testing.
The complete list of the batteries used in training and testing is available in the project repository. The
exact same splitting of batteries is used in the training and testing of both the autoencoder and the ah-RUL
predictor, as it is assumed that at application time, neither of the networks will know the new data.

To evaluate the performance of the autoencoder and the ah-RUL predictor, the average root-mean-

squared error (RMSE) is employed, as defined by the following formula:

RMSE = (B.3)

The average is computed on the RMSE obtained on each cycle of each battery. The reconstruction
error of the autoencoder achieved a notable 0.0356 average RMSE on the testing set. The Autoencoder
is thus able to retain the most important information of the curves at every phase of the battery life and
cycled under different conditions, and then reconstruct them with high accuracy. An example of the
original and reconstructed voltage, current, and temperature curves of a battery in its middle life is shown
in Figure

The CNN-based and the LSTM-based ah-RUL predictors achieved comparable results. The CNN
obtained an RMSE of 0.0799, while the LSTM attained a 0.074 RMSE. Figure [B.4|compares the testing
results of the CNN and the LSTM, taking as an example two batteries from different groups: a battery
from the skewed-high RW at room temperature and a battery from the skewed-low RW at a temperature
of 40 degrees C. While the LSTM achieved slightly better results, the CNN provided more stable and
consistent results over time. This is evident by the plots showing that the CNN prediction curves are
always well-fitted, even though they could have an offset compared to the real curve. The LSTM, instead,

does not suffer from the offset but has much more irregular curves. The plots for all the batteries are
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published in the project repository. It is worth remarking that the remaining ampere-hour is predicted
instead of the number of cycles. Considering that, and considering the very diverse conditions applied to
the batteries, the results of both networks are excellent, although with different strengths, i.e., well-fitted

curves with offsets versus no offset but with irregular curves.
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Figure B.3: Example of the results of the autoencoder reconstruction capabilities on the testing
set. The voltage, current, and temperature curves of a cycle in the battery’s middle life were

reconstructed from the extracted features.
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Figure B.4: A side-by-side example of the results of the CNN and the LSTM in ah-RUL
prediction on the NASA Randomized dataset. The two examples show better stability and curve
fitting of the CNN but a lower offset from the LSTM.
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B.4.2 UNIBO Powertools

In the UNIBO experiment, the batteries in the training and testing sets also came from all the group
types to guarantee the fairness of the results. One battery from each of the 7 groups was selected for the
testing set. All the other batteries were put in the training set. Batteries 047 and 049 were excluded as, at
the time of the dataset construction, they were not cycled yet until end-of-life. Battery 019 was not used
as some of its data are corrupted. This resulted in 7 batteries for the testing set and 20 for the training
set. The LSTM achieved an average RMSE of 0.021. An example of the prediction on the testing set is
shown in Figure The results demonstrate the ability of the LSTM to learn the degradation trends of
the batteries cycled under different conditions.
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Figure B.5: An example of test results of the LSTM ah-RUL prediction on the UNIBO Power-
tools dataset.

B.5 Conclusions and Future Works

In this paper, we proposed and compared two models using the NASA Randomized Battery Usage
dataset for the RUL estimation of Li-ion batteries based on an autoencoder plus CNN and an autoencoder
plus LSTM. In addition, an LSTM was proposed to estimate the RUL in the UNIBO Powertools dataset.

Aiming to push forward the applicability to real cases of the current deep-learning-based methods
for RUL estimation, we proposed a novel definition of RUL based on ampere-hours, which is more useful
for real scenarios. We also employed two datasets with a wide range of cycling conditions to ensure the
generalization of the methods. Compared to the datasets used in the literature so far, which employ a
limited amount of batteries typically discharged under constant current (a condition that is not realistic
in EVs), the NASA Randomized dataset provides an entirely different difficulty in predicting the RUL.
The UNIBO Powertools dataset also provides a fresh perspective on data diversity as it contains batteries

from various manufacturers and with different specifications.
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To the best of the authors’ knowledge, this is the first successful application of deep-learning-based
methods for RUL estimation on such a vast number of Li-ion batteries cycled under different conditions,
and the first study to use the UNIBO dataset. This is also the first application of those methods on an RUL
that is not based on the simplified concept of cycles. The results show that the particular autoencoder
employed can extract the dominant features of the cycle curves, and that both the CNN and the LSTM
proposed can predict the RUL based on those features.

Several directions are open for future investigation. While the results obtained on such complex data
are encouraging, there is still room for improvement. It would be interesting to design a network that
provides the advantages of both the CNN (well-fitted curves) and the LSTM (no offset). In addition,
transformers [[109], which have achieved impressive results in recent times, should be studied. This
kind of NN can learn temporal dependencies that are even longer than the ones learnable by an LSTM.
Therefore, it is quite promising for the objective. To the best of the authors’ knowledge, this kind of NN
has not been tested yet for RUL estimation. The transformer will substitute the current LSTM, in the
hope of achieving even better performances.

The improvement of battery RUL estimation can support the development of battery recycling. Still,
policies will be required to fully develop it, either with economic incentives [110] or with the involvement

of governments [[111]. Further work in this direction is also advised.
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Train in Austria, Race in Montecarlo: Generalized RL for
Cross-Track F1"  IDAR-Based Races

Michael Bosello, Rita Tse, Giovanni Pau

Abstract — Autonomous vehicles have received great attention in the last years,
promising to impact a market worth billions. Nevertheless, the dream of fully
autonomous cars has been delayed with current self-driving systems relying on
complex processes coupled with supervised learning techniques. The deep rein-
forcement learning approach gives us newer possibilities to solve complex control
tasks like the ones required by autonomous vehicles. It let the agent learn by in-
teracting with the environment and from its mistakes. Unfortunately, RL is mainly
applied in simulated environments, and transferring learning from simulations to the
real world is a hard problem. In this paper, we use LIDAR data as input of a Deep
Q-Network on a realistic 1/10 scale car prototype capable of performing training in
real-time. The robot-driver learns how to run in race tracks by exploiting the expe-
rience gained through a mechanism of rewards that allow the agent to learn without
human supervision. We provide a comparison of neural networks to find the best
one for LIDAR data processing, two approaches to address the sim2real problem,

and a detail of the performances of DQN in time-lap tasks for racing robots.
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C.1 Introduction

Autonomous driving (AD) has remained a principal societal goal envisioned since the automotive
infancy [[112]. Despite recent successes in partial automation [[113], [114], AD is still a quite complex
problem for both traditional control algorithms and Machine Learning (ML) techniques [45]]. In contrast,
driving is spontaneous and semi-automatic for humans. Understanding and reacting to stimuli is a natural
behavior for us that is learned during infancy and refined through experience. Developing an artificial
agent able to fully replicate this behavior is one grand challenge of this century.

The first and most prominent impact of ML on AD has been in recognition and scene understanding.
Convolutional Neural Networks (CNNs) [[115] had been a breakthrough in pattern recognition [[105]
affecting several fields and overtaking typical Computer Vision approaches that were not enough robust
for AD. The superior robustness and better performance of Deep Learning (DL) combined with large
datasets [116] lead to the wide use of ML in the field. DL models could require a vast dataset and
even several weeks for training, however, the resulting model is relatively small, typically in the order
of a few hundred Megabytes [[105]. Also, the prediction phase has relatively low requirements for the
hardware, opening to real-time applications. Perception tasks like line and vehicle detection have been
made possible by CNNs which allow performing such tasks at frame rates suitable for AD [44]).

Supervised learning is the most common ML approach to Autonomous Vehicles (AVs), widely
supported by automotive companies. Over 40 companies are working on Automated Driving Systems,
including traditional automotive players and novel ones (e.g. Audi, Tesla, Waymo) as well as tech
companies (e.g. Apple, Amazon, Nvidia) [[117]. The approaches adopted in the industry vary in terms of
sensors and control techniques. The vehicles can be instrumented with a wide range of sensors including
RGB and depth cameras, LIDARs, GPS/GNSS receivers, IMUs, and they can have multiple sensors of the
same kind in different positions and with different features e.g. Field of View, resolution, etc [[118]. On
the software side, the typical strategy is to use ML models for perception (and sometimes for prediction)
to interpret the scene while using hand-engineered policies for control. Those ML models, trained
using supervised learning, demand enormous amounts of labeled data. The training phase becomes
very expensive especially when labeling can not be automated thus requiring considerable human effort.
AD systems that rely on high definition maps crafted using dense sensors are also getting momentum
in industry [119]. Maintaining such complex maps and the supervised ML models lead to a burden on
the communication and computational infrastructure. Sensors costs, operational costs, as well as data
collection, transmission, and processing costs, are driven higher.

A different vision advocates for the use of Reinforcement Learning (RL), where an agent learns
through experience by interacting with the environment in a trial-and-error manner. It thus does not
require explicit human supervision. While supervised learning techniques learn input-output associations
(i.e. they are not able to learn the dynamics of an agent’s environment), RL is specifically formulated
to handle the agent-environment interaction [46]. It is therefore a natural approach for learning robotics
(and autonomous driving) control policies. In the context of robotics applications, RL has taken an
increasingly important role as it allows us to design hard-to-engineer behaviors [[120] and to optimize
problems that have no closed-form solutions. The interest in training RL agents directly in real-world
robotic systems (rather than training in a simulator and transferring the learning) is also growing [121]]
as transferring the experience from a synthesized environment to a real scene has proven itself a difficult
task [42]]. The employment of RL in the real world is spreading also to AD with the first application of RL
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in a real car for line following [47]]. In the same line, we want to explore the use of RL for AVs in the real
world but using a small-scale yet realistic model to keep the costs reasonable and ensure maximum safety.
Despite the small scale, the driver agent has to address all the challenges and uncertainties deriving from
the noises and the unpredictability of sensors and actuators.

In our previous work [48]], we have explored the use of RL directly in the real world using a small-size
robot-car instrumented with a wide-angle camera, and we have shown that Deep Q-Network (DQN) can
be trained in a real-time system using real-world camera frames. In this work, we have built a very
realistic 1/10 scale racing car (namely, an fltenth [122], [[123]), equipped with a LIDAR, and capable of
performing DQN training in real-time. We have then trained the agent to drive on both real and simulated
race tracks using LIDAR data as input. This paper presents three contributions:

* Compares the performance of one-dimensional convolutional neural networks (1D CNN), two-
dimensional convolutional neural networks (2D CNN), and fully-connected networks when used
to detect LIDAR data.

* Introduces two approaches to face the simulation to real-world (sim2real) problem: (i) training
the agent directly in the real world using real LIDAR data as input, which has been considered an
open problem because of LIDAR’s faults and noises [51f]. (ii) training the agent in the simulator
and using the model in Fltenth car without any retraining thanks to our LIDAR pre-processing

algorithm.

* Demonstrates the race-performance, sample efficiency, and generalization capability of DQN

through simulations in challenging F1 racetracks.

The rest of this paper is structured as follows: subsection gives a background on RL-based
autonomous racing while in we examine the challenges of using LIDAR data in the context of RL,
and the work done on this subject. In section|C.3] we briefly introduce RL and define the driving problem
in the RL setting. The setup used in our experiments is described in [C.4] while in section we discuss
the results obtained. Finally, section|C.6|closes the paper with the final remarks and future works.

C.2 Related Works

C.2.1 RL for autonomous racing

The great success of the DQN algorithm [124] proposed by Deep Mind, which reached super-human
level control on Atari games, has forested the use of RL also in the autonomous driving domain. RL has
been used in both end-to-end learning (where the model maps the scene straight to the proper action)
and in single-task handling (where it is applied to one or more AD sub-task, typically in the control
part). For example, multiple works applied RL to racing games using both methods [[125]-[127]. It
is worth noting that video games are an easier environment (having discrete-time events and simplified
mechanics) compared to proper simulators featuring a continuous control setting. RL has been used also
to solve single tasks like motion planning, overtaking, intersections/merging, lane change, lane keep, and
automated parking [42].

While supervised learning can be used in real cars, RL has been usually applied to virtual environments

because of its trial-and-error nature that leads to safety concerns and considerable expenses. however,
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simulated and real data have not the same distribution, and agents trained in a synthesized world often
fail to generalize to the real scene [42] if appropriate domain adaptation measures are not taken. Both
low-dimensional sensors like cameras and high-dimensional sensors like LIDARs are affected by the
issue [51], [128], thus, several methods to address the sim2real problem and transfer the learning from
simulation to the real world have been proposed. As mentioned in the introduction, researchers have
started to explore the training of RL agents directly in the real world. This is a different vision to how the
sim2real problem is usually faced. Authors of [47] used a continuous action RL algorithm, namely Deep
Deterministic Policy Gradients (DDPG), to learn a policy for lane following. The input comes from a
front-facing camera and the rewards are proportional to the distance traveled without human intervention.
The training was carried out in a real car using on-board computation and the model was able to learn to

follow the lane in a road segment in just half an hour.

C.2.2 LIDAR-based RL

LIDAR [129], [130] (an acronym for light detection and ranging) has become an established method
for measuring distances by emitting focused beams of light and measuring the time it takes for the
reflections to be detected by the sensor. The measured distances can be dense, resulting in high-resolution
maps. LIDAR sensors can be either 2D or 3D. 2D LIDARSs produce a map of the azimuth at a fixed height
while 3D LIDARs produce 3D point clouds. In our case study, we employ a 2D LIDAR. An example of
LIDAR data sensed by our car is shown in section

Thanks to the progress in the LIDAR technology and the use of DL, LIDAR has become widely used
in autonomous driving [131], but not in the context of RL-based driving. While the use of camera frames
in RL driving tasks has become rather common, works using LIDAR data to guide RL driving agents
have been proposed only recently in the literature.

Authors of [51] used RL to train several NNs having LIDAR data as input in the context of NN
verification, taking the fltenth platform as a testbed. The system has been trained and verified in a
simulated environment, after that, the sim2real gap has been analyzed. The environment consisted of a
single 90-degree right turn, with the car approaching and passing the turn at constant throttle. When they
moved to the real environment, they found that LIDAR measurements are greatly affected by reflective
surfaces (a problem that we faced as well). When a ray gets reflected, it appears as it is no obstacle in that
direction. The agent performed well in the ideal simulated environment. In the real environment with all
the reflective surfaces covered, LIDAR faults caused crashes in 10% of the runs. In the unmodified real
environment, they were not able to train a robust controller using state-of-the-art RL algorithms. They
have therefore claimed it has been an open problem.

Brunnbauer et al. [[132] presents one of the best studies up to date on the use of RL on the Fltenth
platform. The task is to drive as fast as possible without collisions on racetracks using LIDAR data as
input. Anagentis trained on an F1tenth simulator to run on complex F1 racetracks (scaled to 1/10th) using
a model-based RL algorithm (Dreamer). The race performances, sample efficiency, and generalization
abilities of Dreamer have been assessed by showing how it outperforms the five baseline model-free RL
algorithms tested by the authors. The sim2real transferability was also evaluated by demonstrating that
trained Dreamer can be deployed to the real Fltenth in a physical test track. This work will be used as a
competitor of our model. In our experiments, we will show that DQN (which is model-free) can achieve

better race performance and sample efficiency than Dreamer while keeping the same generalization
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capabilities and sim2real transferability.

In [133]], the sim2real transferability of a LIDAR-based driving agent (as well as image-based and
segmentation image-based agents) is analyzed. The LIDAR-based agent trained on a realistic simulator
using DDPG was not able to run directly in a physical test track. To bridge the sim2real gap it has
been necessary to tune the driving parameters and use a sort of hack, i.e., scaling down the LIDAR
measurements to prevent crashes. [134] proposes two stabilization approaches to smooth the learning of
a driving RL agent. The simulated car equipped with a LIDAR has been trained in a simple track (harder
tracks have been tested in a video game that should not be considered). In [[135] LIDAR measurements
are plotted to an image that is used as input to DQN. The car was able to navigate in a simulated track
and a simple L-shape physical maze.

C.3 Reinforcement Learning Primer

In this section, we first provide a brief overview of RL [46[]. Second, we analyze how to model the
driving problem in an RL context.

RL is a machine learning paradigm in which an agent learns how to accomplish a task by interacting
with its environment. The agent-environment interaction is defined by three signals; at each time step
the agent performs an action and the environment responds with a stafe and a reward. The state is a set
of information about the environment the agent can observe and use to predict the future. The rewards
define how good the behavior of the agent is towards solving its task and it is thus the way the developer
can specify the task to be achieved. The agent uses the states as a guide to select the most appropriate
actions aiming to maximize the cumulative reward, i.e the sum of rewards over time. As the actions
performed by the agent affect the evolution of the environment, it has to balance between actions with
high immediate rewards and actions that lead to favorable states with significant future rewards. The
behavior of the agent is produced by a policy which is a function that associates states to actions. The
policy that maximizes the cumulative reward is called optimal policy and it is the one we want the agent
to learn.

One of the method to create a policy is to estimate the action-value function. This function associates
state and action pairs to a value called expected return. The expected return is an estimation of the
cumulative reward i.e. it is the sum of rewards the agent expects to get starting from a state § and
following a policy . Once the agent has estimated the action-value function, it only needs to select the
action with the greatest expected return. Q-learning is an algorithm to estimate the action-value function
of the optimal policy. At each iteration, the algorithm refines its estimation of the function using the new
experience produced by the agent-environment interaction. The more precise the estimation is, the more
the policy gets closer to the optimal one. Q-learning uses a table to represent the action-value function
but this is not practical when the state space grows. This problem can be solved using a NN instead of a
table. The NN will approximate the Q-function and possibly converge to the real function. This is not just
useful for the dimension problem but it opens also to generalization as the experience gained in one state
can be used for similar ones. Using NN instead of tables in g-learning is known as Deep Q-Network.

In the training phase, the agent has to explore the environment by performing different actions to
improve the estimation of the value function. Balancing exploration and exploitation is a known problem
of RL. In this work, we use one of the typical strategies to face this problem, the e-greedy policy. An
agent that follows an e-greedy policy has a probability 1 — € to behave greedily and a probability € to
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choose a random action.

C.3.1 Modeling the driving problem

A Markov Decision Process (MDP) completely formalizes an RL problem. An MDP is a tuple
composed of the set of states, actions, immediate rewards for each state transition s — s’, and the state
transition probability function which specifies the probability that performing an action a in the state s
will lead to the state s’. The fundamental property of a state, known as the Markov property, is that it
can be used to predict the future. A stochastic process (i.e., an environment) has the Markov property if
the conditional probability distribution of the future state s,,; depends only upon the current state s, and
action a,, not on the sequence of events that preceded it. In many cases of interest such as autonomous
driving, the agent has only partial information about the world and it receives only some observations
about the environment instead of the complete state. In such cases, the agent tries to reconstruct the state
obtaining an approximation of it that may not be Markov. In some situations, the Markov property could
be partially dropped, but performance may dramatically worsen if no appropriate measures are taken.
In a Partially Observable MDP, the Markov property is assumed to hold in the underneath process, but
the agent is not able to observe all the variables of the environment. To reconstruct the state, the agent
integrates the information over time e.g. by keeping a history of observations or by using a Recurrent NN.

Properly characterizing the driving task requires close attention as developers have a great deal of
freedom in choosing input features (states) and control signals (actions) [42]. Moreover, the driving
problem is open to subjective definitions as different behaviors in similar situations may be equally
acceptable [[116]. As a result, designing a suitable reward function could be tricky. The correct design
of the reward function is crucial to obtain the desired behavior, especially in real-world systems [42]. A
set-up of driving as an MDP is given in [42], [47]], [136]]. The definition of the states, actions, and rewards

used in our experiments are detailed in the next section.

C.4 System Overview

C.4.1 The Fltenth platform

We used the F1/10 (or fltenth) platform [122] as a testbed for our experiments. Fltenth is an
open-source 1/10 scale race car designed for autonomous systems and cyber-physical systems research.
This platform offers high-performance and hardware/software stacks similar to full-scale solutions while
limiting costs and dangers typical of real vehicles. To conduct real-world experiments, the f1tenth features
realistic dynamics like Ackermann steering and the ability to achieve high speeds. Remarkably, authors
of the platform have shown that it is possible to port the stack on a real car. Ackermann steering is the
geometric arrangement of linkages used in the steering of a typical car. Compared to differential steering,
which allows a vehicle to turn by applying different drive torque to its sides, Ackermann steering has a
more complex dynamic model and requires a wider operating space. In our previous experiment [48]] we
used differential steering which required less engineering efforts to design the learning environment and
that resulted in less training time. For example, a vehicle with differential steering can recover from bad
states near an obstacle by turning on itself, whereas a car with Ackermann steering will eventually reach

a fatal state. This kind of dynamics makes the agent learn slower and, if care is not taken, the agent might
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not learn at all. The fltenth platform is much more realistic than typical robots employed in navigation
which deliver slow speeds and differential steering.

The bottom chassis of the fltenth comes from a 1/10 scale race car available from Traxxas. The
Traxxas model has very realistic mechanisms, just like a real race car. It has a brush-less motor capable
of reaching (depending on the model) over 90 km/h, and a servo motor for steering control. The top
chassis is a custom laser-cut ABS plate that hosts all the electronic components. The power board is a
PCB designed to provide stable voltage to the car and its peripherals, and it is connected to a Lithium
Polymer battery. The VESC (Vedder Electronic Speed Controller) controls the speed of the motor and
the direction of the servo. The mainboard that controls the car is a Jetson TX2 [137], a GPU module
designed to enable embedded Al. Its GPU and memory capabilities make it possible to train NNs in
real-time. The TX2 module is housed on a carrier board [[138] characterized by a reduced form factor.
Both the hardware and software stacks of the fltenth are modular. Several sensors are available on the
fltenth, but only the LIDAR is present in our build. Fig. [C.I]shows our produced f1tenth. The 2D LIDAR
used is a Hokuyo UST-10LX [139]. The sensor has a 270° field of view with an angular resolution of
0.25°, for a total of 1081 scan rays. It has a detection range of 10m, an accuracy of +40mm, and a scan
speed of 25ms. According to the datasheet, a specific number is returned if a measurement error occurs

like there is no object in the detection range or the object has low reflectivity.

Figure C.1: The fltenth race car used in the experiments.

On the software side, sensors, actuators, and controllers are represented as nodes and coordinated by
ROS (Robot Operating System) [140], a middleware strongly based on the publish/subscribe paradigm.
Even though ROS provides several facilities, only hardware abstraction and communication have been
used in our context. A very handful feature of the f1tenth is the possibility to run your code on both the real
fltenth and the provided realistic simulator, almost without changes. The simulated hardware implements
sensors and actuators nodes with the same interfaces as the real car. The simulated environment is rendered
using rviz, a visualization tool for ROS. The biggest difference is the field of view of the simulated LIDAR
which is 360°. We reduced it to 270° like the Hokuyo to conduct experiments with the same conditions.

C.4.2 RL environment

As mentioned above, the software is coordinated through ROS. The RL environment implements

the controller node that communicates with the — simulated — hardware nodes. The node uses rospy,
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the Python controller for ROS. In rospy, the callbacks associated with a subscriber are executed in a
separate thread, while a publisher sends messages from the main thread. Publishers and subscribers
are Python objects that a node can create. The RL environment is built as follows. Two subscribers
receive respectively LIDAR and odometry data. The RL environment uses the latest stored data, which
are updated asynchronously by the subscribers at every new measurement. A publisher, in a separate
thread, sends the latest driving command chosen by the RL agent to the VESC. The publisher sends
the command at fixed time intervals and continues to send it until the agent asynchronously updates the
command. A safety callback implements the automatic emergency braking and ensures that the car will
not — hardly — crash. Every time it receives a LIDAR scan message, the time-to-collision is calculated on
every ray. If the time-to-collision is below a threshold, the car will brake with a higher priority compared
to commands sent by the RL agent. The time-to-collision is calculated using the following equation:
TTC;(t) = ri(t)/[—vxcos(0;)]+ where r; is the distance measured by ray i, v, is the car’s linear velocity
(obtained from the odometer), and 0; is the beam angle. At each cycle, the RL environment executes the
provided action and returns a state, a reward, and a boolean that indicates if the episode ended. If the
emergency braking was activated, the episode ends and a negative reward is given. Before starting a new
episode and returning the control to the agent, the car goes in reverse to ensure it has enough space to
start again. The state is formed by the two latest raw LIDAR scans (plus the car’s velocity in the third
experiment setting). The agent has three actions: forward, right, and left (plus a slowdown action in the
third experiment setting). Having few actions let the agent learn faster. Considering that the commands
update is quite fast, there is no need for more actions as the agent can still achieve appropriate control.
We tested several reward functions during our experiments. We started with a simple reward function
in the first experiment and ended with a more appropriate function for the second and third ones. In
both instances, the car gets a negative reward (—1) when the emergency braking is activated, and rewards
are clipped between [—1, 1] because it could dramatically affect the learning efficiency [124]. In the
first reward function, a fixed reward is assigned to each action: the forward movement gives a reward of
0.2, while turn and left give a 0.05 reward. This differentiation prevents zigzagging behaviors which are
a form of reward hacking [141] i.e. the agent finds a way to get more rewards but with a detrimental
behavior (in this case by running in a zigzag pattern). In the case of the second reward function, the
reward is proportional to the car velocity obtained through odometry, with a maximum of 0.09. This
optimizes for the fastest route. A small bonus, with a maximum of 0.01, proportional to the distance to

the nearest obstacle is added to the previous reward to award safer routes.

C.4.3 LIDAR data pre-processing

The Hokuyo LIDAR has 1081 rays with an angular resolution of 0.25°. Due to the curse of
dimensionality, each additional value in the input vector makes the state space grow exponentially.
To reduce the state size, we have cut the field of view from 270° to 180° as we are not interested in
overtaken obstacles. In addition, we have further reduced the state size by grouping values together.
In our experiments, the fltenth’s hardware was able to manage in real-time a NN that can process at
most 40 rays, and the best results were obtained with 20 rays. Moreover, a coarse-grained resolution is
sufficient for racetracks. We used the exceeding rays to strengthen the measurements by grouping the rays
together. We have tested three grouping method: average, values are split in 20 groups and averaged;

sampling, a value each x is taken; minimum, the minimum of the group is taken. As the average method
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seems to be the most robust, it is the method used in the experiments. Values are also scaled between
0 and 1 (min-max normalization), with 1 corresponding to the maximum measurable distance, as in

backpropagation having input values in the range [0, 1] improves learning [|142].

C.4.4 From simulation to reality

The greatest challenge when moving to the real car is given by LIDAR faults and noises. This is
true in both the proposed sim2real approaches i.e, directly training the agent in the physical world or
transferring the learning from the simulator. As explained in section|C.2.2] LIDAR faults could be tedious
for correct control. Since we already achieved resilience to noise with the pre-processing, at this stage
we needed only to filter out the bad readings (the ones with the error value specified by the manufacturer)
from the groups. Thanks to the grouping method, removing bad readings does not affect the resulting
vector. This was sufficient to train/transfer a robust controller.

When it comes to training the agent in the physical world, two more issues should be considered:
the cycle timing and the reset mechanism[121]. In the continuous time settings, the clock is ticking
independently of the agent behavior. As a result, the agent cycle should have the right timing or it will not
learn a robust policy. If the cycle is too fast, the agent will not be able to see the changes in states and to
relate the consequences of its actions. If the cycle is too slow, the agent will not be able to correlate states
as changes would be too substantial. The cycle speed is a problem also for the reward signal. The faster
the cycle, the more the reward received; vice-versa, the slower the cycle, the fewer the rewards received.
Obtaining an appropriate timing required to optimize the code to speed up the cycle in the car as it has
limited hardware as well as slowing down the cycle in the simulator by adding a sleep. Regarding the
reset mechanism, when an episode ends because of emergency braking activation, the car goes backward
for a fixed time before starting a new episode. This mechanism was chosen because it is feasible in both
simulation and real-world. When more complex scenarios are approached, a new reset mechanism will

have to be conceived instead.

C.4.5 Driver-agent software

The algorithm used is DQN [143] along with standard enhancements that make it effective like
experience replay, target network, and state history. The main parts of the agent’s software are the NN
and the training cycle.

The NN approximates the Q-function by taking a state as input and giving as output a vector formed
by the expected return for every available action. The details of the NNs used are discussed in the next
section.

The training cycle starts with the action selection following an e-greedy policy. The agent chooses
the action with the greatest expected return inferred by the NN with probability 1 — € and a random
one with probability €. The selected action is then performed and the environment responds with a new
observation vector, a reward, and a boolean value indicating whether the episode ended. The observations
are pre-processed as stated in section|C.4.3|and two subsequent observations are stacked together to form
the state. This integration over time (state history) allows to detect movements of surrounding objects
but also of the car itself. Training is performed using transition samples which contains a state with

its reward, the performed action, the state reached after that action, and the terminal indicator. The
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information of the sample allows to compute a revised expected return — improved thanks to the new
experience — and train the network on it through gradient descent. A new sample is produced at every
iteration step through the new experience and it is added to the replay buffer. The buffer stores all the
samples obtained from the interaction with the environment. If the maximum capacity of the buffer
is reached, the older samples are discarded. The training starts when the replay buffer is filled with a
minimum number of samples called observation steps. After the update of the replay buffer, a training
step is executed on a random batch of transition samples. Using a random batch allows using the samples
multiple times capitalizing on them and also to break their temporal relation ensuring that the batch is
i.i.d (identically and independently distributed), a fundamental condition for Stochastic Gradient Descent
(SGD) effectiveness. This technique is called experience replay. As having a moving target makes NNs
unstable, two NN are used to reduce the instability: the target network and the behavior network. The
target network is the one updated at every cycle through gradient descent while the behavior network is
the one used to select the actions and produce behavior. The behavior network is then updated every few
steps by copying the target network’s weights.

The source code, the trained models, and the Tensorboard logging of experiments are available hereﬂ

C.5 Results and Discussion

This study about RL analyzes three factors. The first one assesses the best NN for LIDAR data
processing. The second one verifies two sim2real approaches. The third one shows the race performances,
sample efficiency, and generalization abilities of DQN in complex F1 racetracks. All the experiments use
the following parameters: the learning rate is 0.00042; gamma is 0.98; epsilon goes from 1 to 0.1; the
other hyperparameters can be consulted in the repository. It should be mentioned that using Huber loss

[74] had a greatly positive effect on learning.

C.5.1 NN comparison experiment

The NN tested have been: 1D CNNs, fully connected networks, and 2D CNNs. A set of NNs having
a range of hidden layers up to 6 and units per layer up to 256 have been tested for each category. The
NN reported below are the respective best ones. The comparison experiment has been conducted in
simulation to have a consistent and uniform environment between runs as well as to use a complex track.
The track is shown in fig. The task is to run on the track without collisions. The speed is set to 1/3

of the maximum car speed.

Thttps://github.com/MichaelBosello/f1tenth-RL
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Figure C.2: The simulated racetrack used in the comparison experiment.

The 1D CNN has two convolution layers with respectively 16 filters with kernel size 4 and 32 filters
with kernel size 2. It follows a flatten layer and a dense layer with 64 neurons. The fully connected
network has two dense layers with 128 units each. The 2D CNN operates on black and white images
generated from LIDAR data (grid maps) obtained by outlining the measured borders. The coordinates
of the white pixel corresponding to one beam are calculated as follows (where the zoom factor helps to
separate borders):

x =value; x zoomfactor = cos(angle;) + of fset

vy =value; x zoom factor = sin(angle;) + o f fset

The network is composed of a convolution layer with 16 filters and kernel (4, 4); a max-pooling layer
with kernel (2, 2); another convolution layer with 8 filters and kernel (2, 2); another max-pooling layer
with kernel (2, 2); a flatten layer; a dense layer with 64 units.

CNNs perform better on structured and spatially related data and they are typically used on inputs
with local information (i.e. data structured as an array where position matters) such as images, audio,
and text [[144]. 1D CNNs have proven to be very effective in processing LIDAR data as they have been
the best performer in our tests. The agent equipped with a 1D CNN also showed a behavior oriented to
cut curves to minimize turning actions and maximize forward actions.

The plot in fig. shows the average cumulative reward on 100 episodes of the three NNs during
the training stages and the evaluation phases, that alternated train stages. The 1D CNN learned a robust
policy in almost 870 episodes with a total training time of three hours, and it reached a maximum of
430 average cumulative rewards in the evaluation stage. The dense network performed well with 1030
training episodes in three hours and a maximum cumulative reward of 230. The 2D CNN learned a decent
control policy after 1870 episodes with a total training time of four hours, and a maximum cumulative
reward of 98. We have not been able to make the 2D CNN learn a robust policy. Moreover, It should be
noted that the 2D CNN is much more hardware demanding, and it could be hardly suitable in embedded
systems like the f1tenth.
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Figure C.3: Comparison of the average cumulative reward on 100 episodes of different NN in
the training (top) and evaluation (bottom) phases

C.5.2 Sim2real experiments
Training on the physical car

This experiment aims to verify whether training of DQN could be performed directly in a real
environment with noisy LIDAR data. Due to space constraints, we had at the time, the physical track of
this experiment is a simple round track. The track along with a visual representation of data produced
by LIDAR scans is shown in fig. [C.4] The challenges addressed to train a robust controller in the real
world have already been discussed in section [C.4.4] The model used in the sim2real experiments is the
1D CNN explained above as it is the best option.

Figure C.4: The track used in the real-world training experiment and the visual representation
of the perceived LIDAR data.

The physical fltenth successfully learned a robust control policy to drive in a simple track in three

hours. The training has been done at 1/8 of the maximum car speed. We have verified that the policy can
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scale to higher velocities without re-training. In this track, the higher velocity reached has been 1/4 of
the maximum car speed. A demonstrative video about the evolution of the car’s behavior is accessible in
the project’s repository. The results are evident in the plot of average cumulative reward during training
which is shown in fig. (it should be noted that the rewards obtained in the simulator and the real
environment have different magnitudes as the cycle time is different. The average cumulative reward of

40, obtained in the real car, is quite good compared to the one of the random policy which is 5).
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Figure C.5: Average cumulative reward on 100 episodes in the training phase of the real car

experiment.

Transfer learning

For the transfer learning experiment, we employed a wide and complex-shaped area, the roof of our
university. To keep from building an actual race track, the perimeter is used as the track the car should
follow. To let the car follow the perimeter, the emergency braking is activated also when all the LIDAR
measures are greater than a threshold. Therefore, when the car goes too far from the perimeter, the
episode ends with a negative reward. This configuration has no impact on the overall system and the car
can learn how to use the perimeter as a racetrack.

The area has been mapped through the car’s LIDAR using the Hector SLAM [145] package available
in ROS. The area and the map are shown in figure The map has been used to train the agent on the
simulator and then move the model to the physical f1tenth. Thanks to the realism of the Fltenth simulator
and our pre-processing that prevents the disruption caused by noises and faults of the real LIDAR, the
trained model was able to control the real-world car without any additional training or changes. We
tested the Fltenth at a speed up to 1/3 of the maximum for security reasons, although it is likely that the
policy could scale to higher velocities. The video of this experiment will be available in the project’s

repository as well.



C.5 Results and Discussion 77

e

Figure C.6: The roof of our university used as a track and the map resulted from Hector SLAM.

C.5.3 F1 racetracks experiment

The agent task in this experiment is to complete laps as quickly as possible in complex F1 racetracks
(scaled to 1/10th) replicated on the Fltenth simulator. The racetrack difficulty is evident by analyzing
their minimal track width, track length, and minimum curve radius , .

To make the agent competitive, the speed limits are removed and two changes are adopted. A
slowdown action is added to the basic three — forward, right, left —. This action keeps the last direction
but reduces by half the throttle (if it is greater than a minimum threshold). The state is extended with the
linear velocity of the car, which is computed using the car odometer, to let the agent know when to use
or not the slowdown action. The state is thus composed of the latest two LIDAR measurements and the
latest two car’s velocities. The NN used is the same as the 1D CNN explained in the first experiment but
with the addition of a direct link from the two velocities in input to the last dense layer of the network.

The agent has been tested on four F1 tracks that are displayed in figure |C.7, The agent has been
trained only on the AUT track and it reached top results on all the four racetracks, demonstrating how

DON can generalize very well on unseen hard tracks.

Red Bull Ring (AUT) Circuit de Catalunya (BRC) Silverstone Circuit (GBR) Circuit de Monaco (MCO)

7§ A’

Figure C.7: The F1 tracks used in the experiment.

The performances (i.e., lap time) and sample efficiency of DQN are evident from the test results
showing that our model outperforms the algorithms presented in [[132] in both terms. The authors of
[132] evaluated their model-based RL algorithm (Dreamer) and five model-free alternatives (D4PG, PPO,
LTSTM-PPO, MPO, SAC) with the same experimental setting used by us where the agents were trained
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on AUT and then tested on other tracks. Regarding the sample efficiency, Dreamer was trained for over
2 million steps and the model-free agents for more than 8 million while our model required only 550
thousand steps. Moving to the race-performance analysis, our model can achieve better times compared
to both Dreamer and the other model-free competitors. Over ten trails, our agent was always able to
complete the laps in under 23s in AUT, 56s in BRC, 48s in GBR, and 42s in MCO. Furthermore, Dreamer
was not always able to complete the laps while the other model-free algorithms were not able to complete
the lap-time tasks at all (see [[132]). The comparison of the lap times of our agent and the other algorithms
is plotted in figure|[C.8] The chart shows the results of the algorithms that were able to complete the task:
DQN, Dreamer, and Follow The Gap (a baseline algorithm for robot navigation). Only the results on
AUT and BRC were available in [[132].

While authors of [132] claimed that model-free RL can not complete the tasks when the complexity
of the track increases, thus advocating for the better performance of model-based RL, our results demon-
strate that model-free RL can compete with and even surpass model-based RL, while keeping the same
generalization capabilities and sim2real transferability.
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Figure C.8: The lap times achieved by the best algorithms on four tracks (the lower, the better).

C.6 Conclusions and Future works

In this work, we provide three contributions to the study of RL-based racing cars. Our comparison
experiment has shown that 1D CNNs are particularly effective in LIDAR data processing. The sim2real
experiments have shown that: (1) it is possible to train a robust controller using DQN directly in the real
world and in the presence of LIDAR faults, thanks to appropriate pre-processing. A problem previously
considered not solved. (2) A model trained in simulation can be transferred to the physical car without
additional training and changes when a realistic simulator and a robust pre-processing are used. Finally,
the race-performance, sample efficiency, and generalization abilities of DQN are demonstrated in complex
simulated F1 scenarios, outperforming the alternatives.

We aim at continuing our investigation in several directions that can help to understand how close to
real urban scenarios it is possible to push this approach without sacrificing safety. Specifically, we plan

to act in several directions:

* Testing multi-modal approaches using both LIDAR and camera frames.
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* Implementing a deep RL technique for continuous action space like Asynchronous Advantage
Actor-Critic [[147].

* Experimenting with meta-learning [[148] approaches and verify if they could be useful in the
context of AVs.

* Move to an urban scenario and make the agent follows high-level directions to reach a target.

* Performing cooperative learning by exchanging car’s experience with efficient communication
[[149].

* Using Imitation Learning [[150] to speed up learning in the initial phase through human demon-
stration and then refine the policy through RL
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Enabling Deep Reinforcement Learning Autonomous Driving
by 3D-LiDAR Point Clouds

Yuhan Chen, Rita Tse, Michael Bosello, Davide Aguiari, Su-Kit Tang, and
Giovanni Pau

Abstract — Autonomous driving holds the promise of revolutionizing our lives and
society. Robot drivers will run errands such as commuting, parking cars, or taking
kids to school. It is expected that, by the mid-century, humans will drive only
for their pleasure. Autonomous vehicles will increase the efficiency and safety of
the transportation system by reducing accidents and increasing the overall system
capacity. Current autonomous driving systems are based on supervised learning
that relies on massive, labeled data. It takes a lot of time, resources, and manpower
to produce such data sets. While this approach is achieving remarkable results,
the required effort to produce data becomes a limiting factor for general driving
scenarios. This research explores Reinforcement Learning to advance autonomous
driving models without labeled data. Reinforcement Learning is a learning paradigm
that uses the concept of rewards to autonomously discover, through trial & error,
how to solve a task. This work uses the LiDAR sensor as a case study to explore
the effectiveness of Reinforcement Learning in interpreting complex data. LiDARs
provide a dynamic high time-space definition map of the environment and it could

be one of the key sensors for autonomous driving.



D.1 Introduction 83

D.1 Introduction

Automated driving has a high social actual value [151]. It can reduce the incidence of traffic
accidents and effectively alleviate traffic congestion. Many traffic accidents result from erroneous or
dangerous driving behaviors, such as fatigue driving and drunk driving. The application of self-driving
can greatly reduce these situations and accidents caused by unskilled driving techniques. According
to SAE’s definition of Autonomous Driving (AD) technology, as the intelligence of cars increases,
automatic driving can be divided into five levels,1 starting from no automation (LO), passing through
driving assistance, partial automation, conditional automation (L1, L2, L3), and ending in high/full
automation (L4, L5). The most cutting-edge technologies are now focused on the last two stages, L4 and
L5. With the increasing level of AD, the real-time perception accuracy and sensitivity requirements of
the surrounding environment (roads, pedestrians, vehicles, buildings, etc.) are getting higher.

The driver-less technology uses various algorithms to automatically control a moving vehicle to
achieve the same driving effect as a driver [152]. As Fig.[D.I shown below,autonomous vehicles drive by
repeating three high-level tasks [116]: (i) Recognition; (ii) Prediction; and (iii) Decision Making. Each
of those tasks comprises several algorithms and processes like sensing, localization, and communication.
The resulting vehicle control entails actual driving (controlling the engine, steering the wheel, using the
brake, etc.) to ensure it is always safe, as well as to follow the correct directions. In order to successfully
implement these three steps, the following five sub-modules need to be completed. First, in the sense
module, the car perceives the surrounding environment through multiple sensors. In the perceive and
localize module, the car applies different algorithms to extract information from the sensory data then
analyze the environment. The next task is to understand the scene and predict the possible evolution of
the environment. After the execution of the above modules, the unmanned vehicle will generate a driving
strategy and plan the path. The last module is to control the different behaviors of the car while following

the computed path.
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Figure D.1: Modules of autonomous driving systems (source: Tapaert ta. {116) - modified)

The previous approach used to realize the aforementioned modules is supervised learning, especially
for the recognition/tracking and prediction processes [45]. Nonetheless, such a method requires huge,

labeled datasets, resulting in a burden on the computational and communication infrastructure. The cost
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of obtaining labels is also quite expensive. The label typically needs to be added manually, which costs
a lot of labor. A technique that does not require labels could help to cover more and more scenarios,
thus obtaining better generalization. According to this idea, Reinforcement Learning (RL) is a candidate
to advance AD. RL is a learning paradigm in which an agent learns how to fulfill a task by trial &
error [46[. Unlike supervised learning, which learns input-output associations [[153], a RL agent relies
on the experience obtained by interacting with the environment, and its behavior is guided by the reward
signal that evaluates the agent’s actions.

As one of the core sensors in current AD technology, LiDAR plays a key role in the perception of
the surrounding environment [[154], thus it can provide appropriate environment representations for our
RL agents. The LiDAR [129], [130], an acronym for Light Detection And Ranging, measures the time
it takes a light beam emitted by the transmitter to hit a target and come back to the sensor. From the
Time-of-Flight (ToF), it is possible to compute the distance from the detected surface. A 3D-LiDAR
can emit thousands of high-frequency beams at different vertical and horizontal angles. The result is an
accurate 3D structure information of the object or scene [[155], expressed as a point cloud. An example
of a rendered point cloud of a driving scene is shown in Fig.[D.2. The point cloud is made up of a set of
three-dimensional points. The information in the cloud includes the location of each point, i.e., the x, y,
and z coordinates in the three-dimensional space. In addition, there can be color details, light intensity,
category label, and other information [156]. Therefore, the general point cloud shape format is [N, M],
where N is the number of points, and M can be akin to the total of channels in the image. The point cloud
can depict the characteristics of a sparse 3D world, and it can be used to perceive obstacles through the
method of classification and clustering. With the breakthrough in detection and segmentation technology
brought by Deep Learning (DL), LiDAR has been able to efficiently detect pedestrians and vehicles, and
output detection boxes, namely 3D bounding boxes [[157], or output labels for each point in the segmented
point cloud [[158].

Figure D.2: Lidar view in CARLA with the corresponding scene from RGB camera

LiDAR is a valuable sensor due to its dense and fast measurement capabilities, and high accuracy.
Therefore, LiDAR is a promising sensor for highly and fully automated AD, and the research on it
could lead to improvements in the field. After obtaining the point cloud data from LiDAR, this research

proposes a process to employ point clouds in RL for AD training to exploit the advantages of RL which
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does not need labels and can learn directly from the experienced situation. Since that, it does not need
direct human supervision and it is particularly effective in agent-based tasks learning.

The article evolves as follows. The related work section introduces the literature related to this
research. The methodology section illustrates the algorithms and methods employed. The experiment
section explains the proposed method and the realized software, as well as the experiments performed to
achieve the research goals. The conclusion section sums up the results and puts forward prospects for

future research directions.

D.2 Related work

D.2.1 Reinforcement Learning in autonomous driving

Deep Q Network (DQN) [143]] has been one of the breakthroughs of Deep Reinforcement Learning.
Its core ideas are the following three points: use rewards to construct labels through Q-Learning; use
experience pool to solve the correlation and non-static distribution problems; use a Convolutional Neural
Network (CNN) — the MainNet — to generate the current Q value and use another CNN — Target — to
generate the target Q value. DQN is nowadays a powerful baseline agent. As a first version attempt,
DQN has achieved versatility in the game field. Since its success in several complex tasks [[143], [[159],
[160], RL has been also widely studied in AD tasks. Initially, RL has been applied to complete racing
games using end-to-end learning [127], [161] (i.e. controlling the car starting from the raw data without
splitting the task) or to complete driving sub-tasks like lane-following, merging, overtaking, parking [42].
More recently, more refined approaches were proposed that can transfer the learning of a simulated car
to real prototypes [3], [42], [132] or train the RL agent directly in real-world robotic systems (rather than
training in a simulator and transferring the learning) [47], [48], [136], [162]. In the following, we present
the front-line works on AD and RL whose ideas we consider more promising and profitable.

Waymo published ChaufferNet [[162] at the end of 2018, introducing how to use and improve Imitation
Learning to obtain a more robust driving model. Different from the typical end-to-end learning, it uses a
mid-mid method, which performs well in both the simulation environment and the actual vehicle test. The
model not only imitates and learns reasonable driving behaviors based on a large amount of data, but also
creates various special driving situations by adding disturbances to the reasonable driving trajectories and
combines the corresponding additional loss functions to train the network how to deal with disturbances
and avoid bad behaviors.

Xuet al. [163] correlated the robustness of the driving strategy to the changes in the vehicle dynamics
model, such as changes in model parameters (mass, moment of inertia, tire model parameters, etc.)
and external disturbances such as road inclination and sideways. The authors indicate that the trained
driving strategy can be directly applied to vehicles that have certain changes relative to the one in the
training environment, such different vehicles can be simulated or real and still achieve the same effect as
in the training environment. In order to achieve this goal, the author proposes a driving strategy transfer
framework based on robust control (RL-RC). They train the initial RL strategy in the simulated training
environment (source domain), and then apply the trained agent to the target domain.

Wang et al. [[164] published Vision-Language Navigation in 2019, such as an active learning scenario
where linguistic semantics and visual perception are combined to teach an agent how to move in a 3D

environment. The authors propose a new Reinforced Cross-modal Matching method, which can promote
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both local and global cross-modal reference through RL. To improve the generalization of the learned
policies, the authors further proposed a Self-supervised Imitation Learning (SIL) method to explore
unseen environments by imitating their own good decisions in the past. The authors also show that SIL
can derive better and more efficient strategies, which greatly reduces the difference in the success rate of
agents in seen and unseen environments.

Chiang et al. [165] proposed a robot autonomous control algorithm that combines Deep RL and
long-distance motion planning in 2018, which has strong adaptive capabilities. First, the local planning
agent they trained can perform basic navigation actions and safely traverse short terrain without colliding
with other moving objects. These local planners can accept input from noisy sensors. For example, 2D
LiDAR data can provide the distance to obstacles, and the planner can calculate the linear and angular
speeds required for robot control. The authors use Automatic Reinforcement Learning (AutoRL) to train
local plans in a simulated environment. Its function is to automatically search for RL feedback and the
neural network architecture. This allows the local planner to migrate well to real robots and environments
that have never been seen before. On this basis, Aleksandra Faust et al. [166] use a local planner based on
RL and probabilistic roadmaps to complete long-distance robot navigation tasks. Next, Anthony Francis
and his team [[167] replaced the RL local planner with AutoRL training, which improved the performance
of long-distance navigation. A Simultaneous Localization And Mapping (SLAM) map is also added
to the system, with the robot performing synchronized positioning and map reconstruction during the
navigation process. This can be used as a resource for probabilistic roadmaps reconstruction. Since the
SLAM map is noisy, this change also compensates for the difference in performance between the robots
in the simulated environment and the real environment due to different levels of noise. In fact, the success
rate of navigation in a virtual environment is almost the same as the success rate of experiments on a
real robot. Finally, the researchers also added distributed map construction, which greatly increased the

maximum map size that the robot can support.

D.2.2 Object detection technology based on LiDAR

The output of a 3D LiDAR is a point cloud. Unlike the representation of image data in the computer,
which usually encodes the spatial relationship between pixels, point cloud data is represented by a set of
disordered data points. Therefore, two methods to pre-process such data before using the DL model have
been proposed.

The first one is projecting the point cloud onto a two-dimensional plane. This method does not
directly consider the three-dimensional point cloud data, but initially projects the point cloud to some
specific perspectives and then processes them, such as the front view and the bird’s-eye view. At the same
time, image information from the camera can also be used through fusion. The research of Volumetric
CNNs [168] and Multi-view CNNs for 3D shape recognition [169] are examples of works using this
method.

The second approach is dividing the point cloud data into Voxels with spatial dependence. This
method divides the three-dimensional space, introduces spatial dependency into the point cloud data,
and then uses 3D convolution and other methods for processing. The accuracy of this method depends
on the fineness of the three-dimensional space segmentation, but the computational complexity of 3D
convolution could be high. Voxnet [[170] and the research of Wu et al. [171] are some methods using this

idea.
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Different from the aforementioned methods of pre-processing point cloud data, Charles Qi et al.[[172]]
proposed a new type of DL model for processing point cloud raw data: PointNet. The authors also
verified that it can be used for a variety of cognitive tasks, such as classification, semantic segmentation,

and target recognition.

D.2.3 Related work in CARLA simulator

The CARLA (Car Learning to Act) simulator, developed by Dosovitskiy et al. [173] in 2017, is an
open-source simulator that can simulate the real traffic environment, pedestrian behavior, several car
sensors, etc. Sauer et al. [174] used CARLA to estimate several affordances from sensor inputs to drive a
car in a simulated urban environment. Muller et al. [175] developed a system using CARLA by training a
driving policy from a scene segmentation network to output high-level control, thereby enabling transfer
learning to the real world using a different segmentation network trained on real data. Pan et al. [[128]
achieved the transfer of an agent trained in simulation to the real world using a learned intermediate
scene labeling representation. Reinforcement learning may also be used in a simulator to train drivers on
difficult interactive tasks such as merging, which require a lot of exploration, as shown in Shalev-Shwartz
et al. [176] A CNN operating on a space-time volume of bird’s eye-view representations is employed by
Luoetal. [177]; Leeetal. [[178] completed the tasks like 3D detection, tracking, and motion forecasting.
Finally, there exists a large volume of works on vehicle motion planning outside the Machine Learning

context using CARLA, and Paden et al. [179] presented a notable survey.

D.3 Methodology

D.3.1 Reinforcement Learning

The main reference for this sub-section on RL is Sutton and Barto [46].

Markov Decision Process

Reinforcement Learning is one of the paradigms of Machine Learning, which is used to describe
the agent-environment interaction and to solve tasks through learning strategies to maximize returns and
achieve the specific goal. The common model of RL is the Markov Decision Process (MDP) which
formalizes the RL problem. The interaction between the agent and environment evolves as follows: at
each time step ¢ the agent takes an action A, based on the current state S;, the environment thus returns
the corresponding reward R;,1, and makes the agent transfer to the new state S;,;. Actions are what
the agent can do to affect the environment and its evolution. States are all the information useful to
predict the future and make decisions. Rewards are scalar values indicating whether the behavior of the
agent is good or bad toward solving the task. MDPs can be expressed as M =< S, A, P, R,y >. Among
them: s € S: a limited set of states, s represents a specific state; a € A: A limited set of actions, a
represents a specific action; P is the state transition matrix based on the environment. Each item is the
probability of transferring to a state s’ after taking the action a starting from the state s, expressed as
P (s;41 = 5" | 8¢ = s,a; = a); R is the reward function that maps state-action pairs to rewards, expressed
as R (s; = s,a; = a); vy is the discount with the value range [0, 1] which indicates the weight given to

immediate and future rewards. With y = 0 the agent considers only the immediate reward at the current
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time, while with y tending to 1 it considers future rewards more. From the MDPs formalization, one can
notice that they follow the Markov property: state transitions depend entirely on the present state and the

selected action, thus states do not depend on their history.

Value Iteration

We want the agent to learn a policy i.e., a strategy. A policy is a map from states to the probabilities to
select an action. Specifically, we are searching for the optimal policy which is the one that maximizes the
cumulative reward (the discounted sum of rewards over time) defined as: G, = 37", Y, 0<y<l.
A way to produce a policy is to estimate the value function v . (s). Given the function, the agent needs
only to perform the action with the greatest value. The value function is a function that associates
at each state a value indicating the cumulative reward we expect to gain, namely the expected return
E[G,], by following a policy r starting from such state. Similarly, the action-value function q (s, a)
associates to state-action pairs the expected return performing a starting in s and following 7 thereafter.
The value function is defined as: v,(s) = E[G; | s; = s]. The action-value function is defined as:
qr(s,a) =E[G; | s; = s,a; = a]. Supposing we completely know the problem’s MDP including the
state transition matrix, we could use the Bellman optimality equation to compute the optimal action
corresponding to the current state by solving a system of nonlinear equations. The equations are as
follows for the value and action-value respectively:

vi(s) =maxy Xy, p(s',r | s,a) [r+yvi(s)]
(D.1)

4:(5.0) = Sy, p(s'.r | 5.0) [r +y maxy q.(s'.a")]

As we typically do not know the state transition matrix and the reward distribution, we can instead

estimate the action-value function based on experience, known as the Monte Carlo approach.

Q-learning

Q-learning is an algorithm that estimates the action-value function. At every iteration, the estimation
is refined thanks to the new experience, and every time the evaluation becomes more precise, the policy
gets closer to the optimal one. In Q-learning, a table associates state-action pairs to a value randomly
initialized. At every new experience of the agent (s;, a;, r1+1, S;+1 sequence) the error made at time ¢ by
the estimation is computed and used to update the table. The update function, where « is the learning

rate, is:

O(ss,ar) «— Q(sg,as) + @ |ree1 +ymax Q(se41,a) — Q(s¢, ar) (D.2)

When the number of states increases, it becomes impossible to use a table to store the Q-function.
Deep Q-Network uses a neural network to approximate the Q-function. Other than solving the table
dimension problem, the NN also provides better generalization and the ability to deal with non-Markovian
environments as the experience gained in one state is useful also to similar ones, unlike the table that

requires perfect matching. This research uses DQN as the RL algorithm to train cars to realize AD.
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D.3.2 PointNet Algorithm

The output format of 3D-LiDAR is point cloud data. Point cloud data is a subset of points in Euclidean

space, and it has the following three characteristics [[172]:

Disorder: point cloud data is a collection, and it is not concerned with the data order. This means
that the model for processing point cloud data needs to be invariant to the different arrangements of
the data. The methods used in the literature include: (i) reordering the disordered data; (ii) using all
arrangements of the data followed by a Recurrent Neural Network; (iii) using symmetric functions.
Due to the simplicity of the third method and easy implementation in the model, PointNet uses it

with the symmetric function of max-pooling to extract the features of the point cloud data.

Spatial relationship between points: an object is usually composed of a certain number of points
in a specific space, which means that there is a spatial relationship between these points. To
make effective use of this correlation, the algorithm used concatenates local and global features to

aggregate information.

Immutability: the target represented by the point cloud data should be invariant to spatial transfor-
mations, such as rotation and translation. Before performing feature extraction, the algorithm first
aligns the point cloud data to ensure invariance. The alignment operation is achieved by training

a small network to obtain the transformation matrix and multiplying the input point cloud data.

This research uses the PointNet model to process the 3D LiDAR data. The key processes of PointNet
are [[172]:

Enter a collection of all point data of a frame, expressed as a 2D tensor of N X 3, where n represents

the number of points, and 3 corresponds to X, y, z coordinates.

The input data is aligned by multiplying with a transformation matrix learned by T-Net, which

ensures the invariance of the model to specific spatial transformations.

After performing feature extraction on each point cloud through multiple Muti-Layer Perception
(MLP), a T-Net is used to align the features.

Perform max-pooling operation to get the final global feature.

For the classification task, the global feature is used to predict the final classification score through
MLP; for the segmentation task, the global feature is concatenated with the local features of each
point cloud learned before, and then the classification result of each point is obtained through MLP.

D.3.3 Carla Simulation Environment

Training the car in a real environment may cause damage and bring significant costs. So, the debugging

and effect evaluation of AD algorithms should be done in a hyper-realistic simulation environment firstly.

This research selects CARLA36 as the simulation environment for AD development and testing. The

simulator embeds the 3D urban scene and supports perception, planning, and control. CARLA is open

source, grounded on C++ and Unreal Engine, and relies on a client-server structure. The simulation

itself runs on the server. On the client-side, the user can interact with the agents controlling the scene



90 Appendix D

settings. It uses OpenDrive[180] standard to define different roads and map types, trying to replicate the
complexity of urban environments. CARLA can create countless events and agents providing them with
a wide range of sensors (including 3D LiDAR as shown in Fig. [D.2) through powerful Python API which
meets the requirements of this research. It can thus reproduce common scenes in the environment, such
as lane conditions, road conditions, obstacle distribution, weather, pedestrian behaviors, etc.

CARLA provides three approaches to AD systems: (i) classical modular method, including vision-
based perception modules, rule-based planners, and behavior controllers; (ii) end-to-end Imitation Learn-
ing method; (iii) end-to-end Reinforcement Learning method. CARLA is particularly well-suited to RL
applications: it can simulate various kinds of emergencies, in which RL algorithms define specific rewards
according to vehicles’ responses. Therefore, as long as the simulator can simulate enough emergencies,
the RL algorithm can learn the corresponding processing methods, instead of defining separate rules for
each situation. Moreover, the simulator can enhance the learning efficiency, producing emergencies that

cannot be solved by the current RL algorithm.

D.4 Experiment

This research explores how raw 3D LiDAR data can be used in conjunction with RL to address AD
tasks. Specifically, as this is the first application of RL to 3D LiDAR points, we started with a simple
setting including a simple task as well as a reduced point set and action set. The task is lane following in
an urban town featuring complex roadways with intersections and roundabouts. An example of the scene
is shown in Fig. [D.2. The environment is simulated using CARLA as it allows to simulate 3D LiDARs in
urban environments. The CARLA environment and the RL environment work asynchronously with the
CARLA simulation independently updated at fixed time intervals. The agent thus uses the latest available
measurements without waiting for updates while the simulation performs the latest action delivered by
the agent. The RL environment is structured as follows. The state is composed of two subsequent raw
3D LiDAR measurements with 2048 points each. The points are split on an 8° vertical FoV and 270°
horizontal FoV, with a vision range of 50m. Having two subsequent measurements allows us to include
the notion of movement into the state. The actions are discrete due to the DQN nature and are forward,
right, left. The agent actions affect only the steering while the car’s throttle is kept constant. The reward
function gives a positive reward (0.01) each time the forward action is selected. When the car collides or
leaves the lane a negative reward (-1) is given, and the episode ends. The new episode starts with the car
in a random spawn point. The agent aims to maximize the cumulative reward by following the street as
long as possible.

The RL agent software is composed of fwo main parts: the training cycle and the NN. The training
cycle is the typical one of DQN with a e-greedy policy for exploration, replay buffer for I.I.D. data,
and target network to reduce instability. The selected Neural Network should be designed to extract
features from point clouds to successfully support the DQN algorithm. We considered and compared
two NNss to this aim: PointNet and 1D CNN, as both can extract the spatial relation from data. PointNet
is specifically designed for point cloud processing and can deal with the disorder and transformations of
the points [[172]. CNNs are known to perform better on structured and spatially related data with local
information, and 1D CNNs have been proved to perform well on 2D LiDAR data [[3]. The input to the
networks is a vector of [2048, 6] values, with 2048 being the number of points and 6 are the coordinates

Xty Vi, 2p attimet  and  x,_1,y;-1,2,—1 attime ¢ — 1. The output of the NN is the expected return for



D.4 Experiment 91

each of the 3 actions. We tested multiple settings for each network:

* The best one for PointNet is a reduced version composed of a (reduced) T-Net with two convolution
layers with 32 and 64 filters respectively and kernel size 1; a global max-pooling layer; a dense
layer with 64 units; a dense layer with 36 (num_features*num_features) units with orthogonal
regularizer and initialized to zero. The T-Net is followed by a convolution layer with 32 filters and
kernel size 1; a global max-pooling layer; a dense layer with 64 units; a dense layer with 3 units as

output layer. Every layer uses the Batch Normalization with momentum 0.

* The best for 1D CNN instead contains the following hidden layers: a convolution layer with 32
filters and kernel size 4; another convolution layer with 64 filters and kernel size 2; a global

max-pooling layer; a dense layer with 64 units. The complete structure of the NNs is shown in

Fig. [D.3
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Figure D.3: Visual representation of the two NN models (PointNet, left; 1D CNN, right)

Our preliminary results show that DQN with both the considered NNs can learn how to follow the
street in the CARLA simulator using 3D LiDAR data. However, the agent failed to fully master the task
as it misbehaves on multiple occasions causing crashes. As a result, there is room for improvement and

further research must be performed to assess the suitability of the approach. The ability of the NNs to
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learn is proved by the loss curve shown in Fig. [D.4 (left) and the RL agent learning is evident by the plot
displayed in Fig. [D.4 (right) that shows the average cumulative reward on 100 episodes of the two NNs.
The agent was trained for 5 million and 7.5 million steps for the PointNet and 1D CNN, respectively. The
two networks have comparable results, but the 1D CNN performed slightly better. This may be due to the
simpler structure of the 1D CNN that can better adapt to a not too complex problem like line following.

The source code of the project is available at: github.com/MichaelBosello/fltenth-RL
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Figure D.4: NNs training loss during experiments (left). Average cumulative reward on 100
episodes in the training phase (right).

D.5 Conclusions

World Health Organization (WHO) estimated that road traffic crashes cost most countries 3% of
their gross domestic product [181]. AD technology cannot only improve driving safety but also improve
the efficiency of the entire transportation system; upgrading it to the next level is essential for the
vehicle industry and has great significance to our society. This research aims at harnessing the power
of Reinforcement Learning to interpret complex data from 3D LiDAR sensors. 3D LiDAR maps the
surroundings in all three dimensions with a fine time granularity (i.e., milliseconds); this provides a
massive amount of data for in-vehicle processing. This data is highly dynamic and, potentially, represents
all the countless driving scenarios that can ever happen. In contrast with supervised learning, RL can
adapt to cope with new cases thanks to simulation and has the potential to augment current AD by
introducing causality based on a reward system designed to prize good choices and penalize bad ones.
This project will be implemented via hybrid simulations: the initial phase will be performed in a simulated
environment to increase the learning speed and avoid hardware disruptions. Once the system reaches
stability, it will be ported on a model car. This will re-introduce the noise — typical from hardware
tolerances — and will test our conjectures on RL resilience to new scenarios. This approach can also
reduce the cost of Machine Learning by ensuring high-precision views. The results of this project will
play a positive role in promoting the field of AD.
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Race Against the Machine: a Fully-annotated, Open-design
Dataset of Autonomous and Piloted High-speed Flight

Michael Bosello, Davide Aguiari, Yvo Keuter, Enrico Pallotta, Sara Kiade,
Gyordan Caminati, Flavio Pinzarrone, Junaid Halepota, Jacopo Panerati, and
Giovanni Pau

Abstract — Unmanned aerial vehicles, and multi-rotors in particular, can now per-
form dexterous tasks in impervious environments, from infrastructure monitoring
to emergency deliveries. Autonomous drone racing has emerged as an ideal bench-
mark to develop and evaluate these capabilities. Its challenges include accurate
and robust visual-inertial odometry during aggressive maneuvers, complex aero-
dynamics, and constrained computational resources. As researchers increasingly
channel their efforts into it, they also need the tools to timely and equitably compare
their results and advances. With this dataset, we want to (i) support the develop-
ment of new methods and (ii) establish quantitative comparisons for approaches
originating from the broader robotics and artificial intelligence communities. We
want to provide a one-stop resource that is comprehensive of (i) aggressive au-
tonomous and piloted flight, (ii) high-resolution, high-frequency visual, inertial, and
motion capture data, (iii) commands and control inputs, (iv) multiple light settings,
and (v) corner-level labeling of drone racing gates. We also release the com-
plete specifications to recreate our flight platform, using commercial off-the-shelf
components and the open-source flight controller Betaflight, to democratize drone
racing research. Our dataset, open-source scripts, and drone design are available at:

github.com/tii-racing/drone-racing-dataset.
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E.1 Introduction

Unmanned aerial vehicles (UAVs) and multi-rotor drones have become ubiquitous robotic platforms,
supporting a wide array of industries from video-making to warehouse monitoring, to surveillance
and inspection of energy and transport infrastructure. Drone racing, in particular, has emerged as the
go-to benchmark problem to measure the advances made by researchers in the quest to surpass human-
level, autonomous performance in fast and aggressive flight [14]], [49], [182], [183]. Yet, drone racing
competitions, equipment, and venues can still be difficult and expensive to access.

The last decade of machine learning progress has shown how datasets, open standards, and open-
source code help scientific progress and transparency, shaping the entire scientific fields [184]. One of
the fundamental advantages of datasets is to greatly simplify and shorten the development pipeline of new
methods by allowing researchers to re-use the tried and tested data collection and consolidation work of
others. Datasets allow researchers from different parts of the world and disciplines to work on common

problems.

Figure E.1: Long exposure, low-light capture of the open-design racing drone used to collect
the dataset (top), and an aggressive maneuver through one of the labeled gates (bottom).

Today, several conferences and journals, including NeurIPS, the IEEE Robotics and Automation
Letter, and the International Journal of Robotics Research explicitly solicit data and benchmark papers
as a way to increase the number and visibility of peer-reviewed datasets [[185].

Robotics datasets and benchmarks are as important and beneficial to the community as they are
challenging to create—because of the idiosyncrasies of robotic hardware and real-world systems. Notable
robotics datasets have focused on vision problems, e.g., the KITTI Vision Benchmark Suite []@],
including data from stereo cameras, GPS, and laser scanners for tasks such as object detection, tracking,
and visual-inertial odometry (VIO) , or the use of special, novel sensors and instruments . Early
drone racing datasets also focused on scene understanding and gate pose estimation problems, while
more recent datasets have put a greater emphasis on the coupling with on-board inertial data, ground
truth information, and controls [9], [190].
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Our dataset builds upon these and aims to be a one-stop resource for researchers to simultaneously
pursue multiple lines of work, including semantic scene understanding, VIO, mapping and planning,
and data-based system identification for fast and aggressive multi-rotor flight. As for a benchmark to be
successful, it must be effectively and easily repeatable, in Section we release the complete design
specifications of the drone used to collect the dataset.

The main contributions of our work are as follows.

» The public release of a dataset for drone racing (inclusive of open-source code for visualization
and post-processing) that is characterized by:

— fast(>20m/s), aggressive flight, both autonomous and human-piloted, on multiple trajectories

(including a complex 3D racing track);

— high-resolution, high-frequency (~10?Hz) collection of visual, inertial, and motion capture
data;

— versatility—our dataset includes drone racing gates fully labeled to the level of individual
corners [191] (for VIO, self-localization, scene understanding, etc.), information about
commands, control inputs, and battery voltages (for estimation problems, etc.), as well as

lighting and sensor settings metadata.

* The open design (with commercial off-the-shelf (COTS) components) of the racing drone used
to collect the data. For direct comparisons, the same design allows, without modifications, both

autonomous and piloted flight.

E.2 Related Work

In Table we summarize the—all very recent—datasets for vision-based flight, drone racing, and
aggressive quadrotor control related to our own. Earlier datasets for multi-rotor VIO and simultaneous
localization and mapping (SLAM) included the 2016 EuRoC [192] and the 2017 Zurich Urban [193]
micro aerial vehicle (MAV) datasets. However, these were characterized by comparatively lower speeds
and frequencies of images and collected data than those needed for drone racing.

The last five years have seen a renewed interest in aggressive flight [9]. In [187], a new dataset was
introduced to validate stereo VIO methods for fast autonomous flight, although without the inclusion
of racing gates. The Blackbird dataset [50] was proposed as an aggressive indoor flight dataset for
agile perception. While inertial data were collected in the real world, its high-resolution images were
generated in simulation. In 2019, Lockheed Martin released an image dataset for Test#2 of its AlphaPilot
challenge’s virtual qualifiers [[189], that did not include drone state information (while Test#3 consisted
of control in simulation).

The work closest to ours is the dataset presented in [49]. It also observes that previous benchmarks
for drone VIO had focused on too slow trajectories. Our dataset differs from [49] in that it provides
higher-frequency RGB mono-camera images (the information used by human pilots), it includes piloted
and autonomous flights on identical tracks, and it is fully annotated with high-frequency motion capture

data as well as the gates’ corner labels.
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Other recent, specialized datasets for drone racing and aggressive multi-rotor flight include [194],

[195]. Another open-source, open-hardware racing drone was proposed in [196]. In comparison, our

design has a more powerful companion computer and it can be seamlessly used by human pilots.
Compared to the existing literature (Table [E.1) [9], our dataset (i) includes high-resolution, high-

frequency images captured in different light settings and (ii) it is fully annotated, down to the gates’

individual corners. It can support research in all aspects of autonomous drone racing from VIO, to gate

pose estimation [[197], [198] and data-driven control.

Table E.1: Comparison of multi-rotor and drone racing datasets for visual-inertial odometry,
scene understanding, and control
Time & Data Conditions Gates Top Vision/Camera Specifications Pose/Inertial Data Control Inputs Battery Data
Ref.
Distance Coll. Scene Lighting  Pose  Labels  Speed Resolution/Freq. Color FoV Stereo Event MU MoCap CTBR Motor Voltage Formats
Ours ~29° Real Indoor 3 Levels v { 95m/E 640x480@120Hz RGB D175° X X @500Hz @275Hz @100Hz @100Hz @50Hz rosbag,
TILRATM  ~7km Labeled 21.8m/} CSV, JPEG
149] ~24° Real Indoor; Multiple, X X 26.8m/: 848x800@30Hz Grayscale D163° v 4 @200Hz X X X rosbag,
UZH-FPV ~11km Outdoor ~ Unlabel. 23,4111/3{"_] 346x260@50Hz Grayscale  120° @500Hz @ZOHﬂ TXT, PNG
640x480@30H;E Grayscale  186° @1000Hz
1189] n/{ Real Indoor,  Multiple, X ./m n/a 1296x864 RGB n/a X X X X X X X JSON,
AlphaPilot 1 Gate Unlabel. JPEG
150] ~10h Real + Indoor, Multiple, X X Tm/s 1024x768@120H Grayscale  V60° v X @100Hz @360Hz X @190Hz X rosbag,
Blckbind  ~100km  Synth. 5 Scemes Unlabel. 1024x768@360]—{ RGB CSV, MP4,
PNG Depth
[192] ~22 Real Indoor, ~ Multiple, X X 2.3m/s 752x480@20Hz Grayscale H115° v/ X @200Hz @20H X X X CSV, PLY,
EuRoC ~1km 2 Scenes  Unlabel. @100Hz PNG
1187] ~10° Real Outdoor; Multiple, X X 17.5m/s 960x800@40Hz Grayscale n/a v X @200Hz X X X X rosbag
GRASP ~3km 1Scene  Unlabel.
[194] ~300 Synth.  Indoor, ~ Multiple, v 13.8m/s 800x600@60Hz RGB 120° X X X @SOOHE @500Hz X X CSV, MP4
EyeGaze ~100km 2 Scenes  Unlabel.
[195] ~75’ Real n/a X X X 18m/s X X X X X @1000Hz @400Hz X @1000Hz @400Hz CSv
NeuroBEM
"Bounding boxes, top-bottom left-rigth corners. °Piloted. 1 Autonomous. *Stereo.
SLeica laser tracker.  ¥9300 frames. lnternal corners. "' Synthetic camera images.
qq . .
I Area of interest of the gaze. **Simulated.

E.3

ing and Data Collection

An Open-design Quadrotor for Autonomous Drone Rac-

To collect this dataset, we designed a new custom quadrotor (Figure [E.2). Our design is based on

a 5” carbon-fiber frame with a propeller-to-propeller diagonal of 215mm. The fully-assembled drone,

including the battery, weighs ~870g, has a thrust-to-weight ratio of 7.5 (load cell), and can reach a

maximum speed (measured outdoors) of 179km/h—allowing for the aggressive maneuvers required in

drone racing. The top linear acceleration and angular velocity in the dataset are 69.85m/s? (>7g’s) and

20.01rad/s. Importantly, our design can be used, without modifications, as both an autonomous and a

human-piloted FPV racing drone. We do this to create a true test bench to benchmark drone racing

autonomy against human performance. Our dataset includes both autonomous and piloted flights. Its
components are listed in Table
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E.3.1 Design Overview

Table E.2: Off-the-shelf components needed to re-create the open-design racing drone used to
collect the dataset

Component Producer Model
ESC T-MOTOR F55A PROII 6S 4IN1
FCU Holybro Kakute H7 v1.3

RC Receiver Team BlackSheep CROSSFIRE NANO RX (SE) LONG RANGE

Battery Tattu R-Line v5.0 1400mAh 22.2V 150C 6S1P LiPo
Computer NVIDIA Orin NX 16GB Module
Carrier board Seeed Studio A203 (Version 2)
BEC Matek BEC12S-PRO
Camera Arducam BO179 8MP IMX219
FPV Camera Foxeer T-Rex Mini 1500TVL
Frame Pyrodrone Hyperlite Floss 3.0 Race Frame 5"
Motors T-MOTOR F60 PRO V 2020KV
Propellers T-MOTOR T5147

The quadrotor has three main sub-systems: (i) the quadrotor electronics, (ii) the autonomous module,
and (iii) the First-Person-View (FPV) system. These sub-systems are combined by means of the frame
and fasteners. The assembled system comprises two cameras. One digital, connected to the autonomous
module, and one analog, used by the human pilot in the FPV system. The two cameras share the same
mount, and the FPV camera is placed above the digital one (Figure[E.2).

Quadrotor electronics

These are (i) the electronic speed controller (ESC), (ii) the Kakute H7 v1 flight controller unit (FCU),
(iii) the radio controller (RC) receiver, and (iv) the battery. They are mounted underneath the frame.
These components are protected by the aluminum standoffs connecting the frame and a 3D-printed
custom battery cage. The FCU hosts an STM32H7 microcontroller and it is capable of running multiple
firmware, including Betaflight, Ardupilot, and PX4.

Autonomous module

It comprises (i) an NVIDIA Orin NX (hosted on the A203v2 carrier board with SSD and wireless
card), (ii) the battery eliminator circuit (BEC) powering it, and (iii) an Arducam RGB camera. These
components are placed above the frame and are secured by two 3D-printed plates, connected by aluminum
standoffs. The top plate provides the mount for the cameras. A MIPI CSI-2 ribbon cable connects the
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companion board with the Arducam. The FC is connected via a serial port, using a shielded cable. This

connection is used to both control the drone and read FC’s sensors.

FPYV system

Independent from the autonomous module and used for human piloting instead, it comprises an FPV
analog camera, a video transmitter, and its antennas, all placed above the frame.

Figure E.2: The drone platform used to record the dataset, the body frame B has its origin at
the FCU’s IMU location, the camera frame C is located where the bottom lens is (the top lens
being the one of the FPV system).

The CAD models of all the 3D printed parts and the bill of materials of all other COTS components
are available onlin with a video tutorial on how to re-create our drone.

E.3.2 Sensors

Our quadrotor is equipped with multiple sensors for autonomous and piloted aggressive flight:

InvenSense MPU6000 IMU

Part of the quadrotor electronics (E.3.1), it is embedded into the FC. This module has two functions:
delivering precise, real-time tri-axis angular rate sensor (gyroscope) data, as well as accurate tri-axis
accelerometer data. The raw IMU data are read by the companion computer in a demand/response
exchange fashion, using the Multiwii Serial Protocol (MSP) [[199].

Arducam B0179 IMX219 SMP RGB Bayer camera

Part of the autonomous module (E.3.1), it captures 640x480 pixel frames at 120Hz with a di-
agonal field-of-view (FOV) of 175° and a horizontal field-of-view (HFOV) of 155°. Its readout
speed is 3.22x1075s, computed as the line length divided by the pixel rate before re-scaling, i.e.,

lgithub.com/tii-racing/drone-racing-dataset/tree/ main/quadrotor
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3560px/(1280x720x120Hz). It is one of the most used lightweight embedded cameras on the market and
it is fully supported by NVIDIA with dedicated MIPI CSI-2 drivers. The image YUV frames are captured
in NV12 format. In the NV12 format, each pixel in the luminance (Y) component is represented by a
single byte. The chrominance (UV) components are interleaved and share memory locations. The image
is then converted to BGR, a common color format suitable for processing and analysis. Eventually, the
image is saved as JPEG. This pipeline is accomplished by the NVIDIA GStreamer plugin on the NVIDIA

companion computer.

Foxeer T-Rex Mini 1500TVL

It is the low latency (6ms) camera in the FPV system (E.3.1). For the sake of the data collection in
this letter, this was used by a human pilot in conjunction with a pair of 1280x960 OLED Fat Shark HDO2
googles.

E.3.3 Software
Quadrotor electronics (E.3.1) software

The FC firmware we used is Betaflight 4.3.1 [200], whose proportional-integral-derivative controller
(PID) was tuned by a human pilot. The companion computer uses MSP to both send commands to the
FC and read its sensors. Accordingly, we activate Betaflight’s MSP_OVERRIDE feature to bypass the RC
controller’s commands. An MSP_OVERRIDE channels mask limits to override the motor commands: for

safety reasons, a human can always disarm the drone with an RC controller.

Autonomous module (E.3.1) software

On the Orin NX module, we installed NVIDIA JetPack 5.1.1. The JetPack includes Jetson Linux
35.3.1 Board Support Package (BSP) with Linux Real-Time Kernel 5.10, an Ubuntu 20.04-based root file
system with CUDA 11.4 support. We use the Humble (current LTS) distribution of the Robot Operating
System 2 (ROS2) as the middleware for communication between the perception, planning, and control

modules.

E.4 Data Collection Protocol

E.4.1 Flight Arena, Racing Gates, and Motion Capture System

Our dataset was recorded in a 25 (L) by 9.7 (W) by 7 (H) meters indoor flying arena. The arena
is equipped with a 32-camera Arqus A12 Qualisys Motion Capture (MoCap) system, tracking 6DoF
poses of defined rigid bodies with millimeter accuracy at 275Hz. The drone design from Section |E.3|is
equipped with six 25mm markers defining a single rigid body. The markers are mounted on the top plate,
battery cage, and 48.2mm arm extensions, preventing the markers from being occluded by the propellers
(Figure[E.2). The origin of the drone’s rigid body was placed at the location of the FCU’s IMU, as shown
in Figure The IMU was also calibrated using the RC before each take-off [200].
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MoCap

Gate

Figure E.3: The 25x9.7X7 meters indoor arena, instrumented with 32 Qualisys MoCap cameras
and equipped with four 5x5 feet racing gates used to record the dataset.

We use a minimum of 4 and up to 7 gates to create 2D and 3D racing tracks. The 7-gate track
is inspired by the one in [[14] but shrunken to meet our arena size constraints (Figure [E.3). This track
features challenging maneuvers like the Split-S and sharp turns, and it evolves over the z-axis for 5 meters.

The gates are made of PVC pipes covered by printed fabric banners. They measure 7 by 7 feet (213.36
cm) and have an internal opening of 5 by 5 feet (152.4 cm), similar to those used in major drone racing

leagues [201]. Each racing gate’s rigid body is defined by four markers placed in its inner corners.

E.4.2 Flight Program

Our dataset contains a total of 30 flights (Table [E.3): 12 human-piloted and 18 autonomous ones.
In either case, two shapes—ellipse and lemniscate (Figure [E.4)—have been executed 6 times. The 6
additional autonomous flights are collected on a 3D race track. The 6 repetitions correspond to the

combination of 3 different illumination conditions and 2 camera settings.

Table E.3: Summary of the flights recorded in the dataset

Control Shape Top Speed  Time Distance

Ellips 21.83m/s 149.08s 45527 m

Autonomous Lemniscate’| 10.22m/s 155.08s 359.63 m

Race Track”| 21.39m/s 278.05s 1161.51 m

EllipseH 9.50m/s 575.38s 2586.3m
Piloted

Lemniscat 8.93m/s 593.63s 2593.47 m

TFlown twice in 6 flights (3 brightness X 2 camera settings). ¥*Flown three times in 6 flights (3 brightness x 2

camera settings). SFlown as many times as possible in 6 flights (3 brightness x 2 camera settings).
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E E
E E
X (m) 10
Figure E.4: Examples of recorded trajectories: piloted ellipse flight-01lp-ellipse

(top-left), piloted lemniscate flight-07p-lemniscate (top-center), autonomous ellipse
flight-0la-ellipse (bottom-left), autonomous lemniscate flight-07a-lemniscate (bottom-

center), and autonomous race track flight-13a-trackRATM (bottom-right).

Brightness levels

We created three levels of brightness for data collection. The high brightness level is achieved with
both natural and artificial light (max./avg./min. measured illuminance in the arena of 2480 Ix, 1500 Ix,
and 254 1x); the medium level has controlled light, and it is obtained by turning on all the artificial lights
in the arena but keeping natural light out using the blinds (955 1x/672.3 1x/254 1x). The low brightness
condition is obtained by turning off most of the lights in the arena and keeping the blinds down, (216
1x/72 1x/34.2 1x).

Camera settings

We used two different nvarguscamerasrc settings, auto exposure time and gains, and fixed exposure
time (2.5ms), analog gain (2), and digital gain (1). In the auto setting, the image is brighter but suffers
from higher motion blur. In fixed, the image is darker, with limited motion blur.

E.4.3 Human-piloted and Autonomous Control

In autonomous mode, each flight contains exactly two (ellipse, lemniscate) or three (race track) laps,
lasting ~25 and ~45s, respectively. The human-piloted flights last between 84 and 108s, during which
the pilot tries to achieve the maximum number of laps possible on a single battery charge. We did not
clip the human-piloted flights as they exhibit higher variability and cover a larger state space.

In the autonomous flights, we use a Proportional Derivative (PD) controller based on for the
2D tracks and a Model Predictive Controller (MPC) based on for the 3D track. The motion capture
system feeds the current quadrotor pose into the controller at 275Hz through WiFi. Control commands
are sent to the FCU at the same update frequency of 275Hz by the PD controller, and 160Hz by the MPC.
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A Python implementation of the PD controller and its tuned gains are available on GitHu

The human pilot used a camera angle (for both their FPV camera and the recorded Arducam) of 30°.
The autonomous runs were recorded with a camera angle of 40° for the lemniscate and 50° for the ellipse
and race track, empirically chosen to maximize the gates’ visibility. FPV pilots choose the camera angles
according to the speed they plan to reac We used the same principle to choose the camera angle for

the autonomous mode, making the gates visible at high speed.

E.4.4 Image Labeling

Often being the only well-known object in a racing environment, gates are key to relative localization
and next-waypoint detection. In this dataset, we provide image labels in the form of bounding boxes and
keypoints associated with the inner corners of all visible gates. Coupled with the drone’s inertial data
and the ground truth from the motion capture system, our dataset allows to reproduce and benchmark the
state-of-the-art in gate pose estimation [204] as well as to develop new methods.

Labeling was first performed automatically, using a top-down keypoints detector [205], [206] trained
on a synthetic dataset and fine-tuned on 5’000 manually labeled images. All the images were then labeled
through an iterative process of manual review and re-training. Finally, all labels were eventually manually
reviewed. Bounding boxes and corner positions are provided, based on the auto-labeling results and a
human estimate, even for partially occluded gates. However, no distinction between occluded and fully
visible keypoints is made. Thus, the only visibility values we provide are O (outside the image boundaries)
and 2 (inside the image boundaries) as per COCO format definition [207]. As a convention, gates are not

labeled when there are no visible corners.

E.4.5 Time Synchronization

We record three separate data streams during each flight: (i) a rosbag containing the FCU readings
and the autonomous control setpoints, (ii) the on-board camera images, and (iii) the Qualisys motion
capture measurements.

For the FCU data, we use custom ROS2 messages and the Real-Time Kernel to limit the jitter in the
sensors’ readings. Furthermore, the GStreamer pipeline allows us to save the images and timestamp them
using the frame acquisition time.

In the end, two different clocks are involved: the real-time clock of the drone’s companion computer,
and the clock of the Qualisys workstation. Both were synced with a Network Time Protocol (NTP)
server placed inside the facility, before each flight. The clock offsets w.r.t. the NTP server of the two
machines were recorded before and after each flight to compute the jitter that occurred during the flight.
The drone achieved a microsecond clock accuracy with Chrony, while the Qualisys workstation recorded

a millisecond accuracy. The total jitter from start to end of a trajectory never exceeded 3ms.

E.4.6 Data Post-processing

The motion capture data were converted to CSV, and the clock offset with the onboard computer
was removed. The ROS2 bags were also dumped into CSVs. All the data were then trimmed to remove

2github .com/tii-racing/drone-racing-dataset/blob/main/scripts/reference_controller.py
3www.getfpv.com/learn/fpv-essentials/fpv-camera- angle-full-throttle-flight/


https://github.com/tii-racing/drone-racing-dataset/blob/main/scripts/reference_controller.py
https://www.getfpv.com/learn/fpv-essentials/fpv-camera-angle-full-throttle-flight/
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pre-take-off and post-landing records. We used an open-source script for data alignment (Snipped|E.6)) to
produce user-friendly comprehensive CSVs. The alignment is achieved through linear interpolation for
all the fields with the exception of the rotation matrices, for which spherical linear interpolation [208] is

used instead.

E.5 Data Format

For each flight, we recorded data from four different sources: (i) the motion capture system’s ground
truth (drone and gates poses), (ii) the Arducam IMX219 Bayer camera (images), (iii) the flight controller
(IMU, battery, motors, RC), and (iv) companion computer (autonomous control reference and control
inputs).

All data collected is timestamped (Unix epoch time) with a microsecond resolution. In every flight
folder, a YAML metadata file summarizes the camera and light setting, along with the type of track. The

total time of flight and meters traveled are also included. The folder and file structure of the dataset are
shown in Figure

https://github.com/tii-racing/drone-racing-dataset,/data/
L [autonomous 1
L flight-[01-12][a|p]-[ellipse 1/
M csv_raw/
[~ ros2bag_dump/

M battery_flight-0la-ellipse.csv

N channels_flight-0la-ellipse.csv
M~ tbr_flight—@la—ellipse.csv

[— drone_state_flight-0la-ellipse.csv
[~ imu_flight-0@la-ellipse.csv

N motors_thrust_flight-0la-ellipse.csv

— eference,flighv@lafellipse .csv
[— camera_flight-0Ola-ellipse.csv

[~ gate_corners_flight-0la-ellipse.csv

— mocap_flight-0la-ellipse.csv

N ros2bag_flight-0la-ellipse/

[~ metadata.yaml

‘— ros2bag_flight-0la-ellipse.db3

[~ flight-0la-ellipse_500hz_freq_sync.csv

[~ flight-0la-ellipse_cam_ts_sync.csv

— metadata_flight-0la-ellipse.yaml

* Only in the autonomous flight folders.

Figure E.5: Folder and file structure of the dataset.


https://github.com/tii-racing/drone-racing-dataset
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E.5.1 Camera-aligned and Uniform-sampling CSVs

For each flight, we pre-compiled two easy-to-use, comprehensive CSV files that include all the data

detailed in the subsequent sections, aligned via interpolation. In each [FLIGHT] _cam_ts_sync.csv file,

we use the timestamps from the camera frames, and all other data points are linearly interpolated to align

with these timestamps. Conversely, in each [FLIGHT]_500hz_freq_sync.csv file, timestamps are

sampled at a uniform S00Hz frequency between the first and last camera timestamps. All numerical data

are again interpolated and aligned with timestamps, and each row references the file name of the camera
frame with the closest timestamp. All the columns in each of these CSVs are presented in Table

Table E.4:
(Sec.|[E.5.1)

Data available in the precompiled cam_ts_sync.csv and 500Hz_freq_sync.csv

Column Number and Quantity Name  Unit Data Type
0. elapsed_time s float

1. timestamp us int

2. img_filename n/a string

3. accel_[x/v /-] m/s? float

6. gyro_[x|y|~] rad/s float

9. thrust[o 3] 1 float € [0, 1]
13. channels_[roll ] 1 int € [1000, 2000]
17. aux[1-4] 1 int € [1000, 2000]
21. vbat Vv float
22. drone_[x|y|~] m float
25. drone_[roll ] rad float
28. drone_velocity_linear_[x|y|~] m/s float
31. drone_velocity_angular_[x|y|~] rad/s float
34. drone_residual m float
35. drone_rot[[8-2]] 1 float
44, gate[1-7]_int_[xy|~] m float
56. gate[1-7]_int_[roll ] rad float
68. gate[1-7]_int_residual m float
72. gate[1-7]_int_rot[[0-8]] 1 float
108. gate[1-7]_marker[1-4]1_[xy ~] m float

E.5.2 Drone and Gates’ Poses from Motion Capture

For each flight, files gate_corners_[FLIGHT] . csv contain the timestamped X, y, and z coordinates

of all the gates’ markers, in meters. Files mocap_[FLIGHT].csv contain the poses of all the rigid bodies,

i.e., the drone and the gates. Each pose comprises X, y, z, roll, pitch, yaw, measurement residual, and the

orientation described by a 3x3 column-major order matrix. Poses are in meters and radiants.
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E.5.3 Camera Frames

The images from the Arducam IMX219 Bayer camera are recorded at 120 FPS with a resolution of
640x480px and saved as JPEG files. They are provided as a ZIP file along with a camera_[FLIGHT] .csv
which contains the timestamps of the acquisition of the frame and the name of the corresponding JPEG
file.

E.5.4 Image Labels

For each image, the gates’ bounding boxes and internal corner labels are given as a TXT file with the

same name as the JPEG file. Each line in a TXT file represents a single gate in the form:
Ocxcywhtlytlytl, try try try bry bry br, bl bl, bl,

where 0 is the class label for a gate (the only class in our dataset); cx, ¢y, w, h € [0, 1] are its bounding box
center’s coordinates, width, and height, respectively; and ¢/, t/,, € [0, 1], ¢/, € [0; 2] are the coordinates
and visibility (0 outside the image boundaries; 2 inside the image boundaries) of the top-left internal
corner. Similarly for tr, bl, br, the top-right, bottom-left, and bottom-right corners. All values are in
pixel coordinates normalized with respect to image size. The keypoints label format follows the COCO
definition [[207]. The labels are provided as a ZIP file in 1abel_[FLIGHT].zip.

E.5.5 On-board Data from the Quadrotor Electronics

From the FCU in Subsubsection [E.3.T, we record the following measurements: battery’s voltage
(Volts), at SOHz (battery_[FLIGHT] .csv); IMU, i.e., accelerometer (m/s) and gyroscope (rad/s) X, y,
and z axes in the East-North-Up (ENU) board frame, at SO0Hz (imu_[FLIGHT] . csv); single motor thrust
feedback, normalized between 0 and 1, for all four motors, at 100Hz (motors_thrust_[FLIGHT].csv);
RC’s channels, i.e. roll, pitch, thrust, yaw, aux1, aux2, aux3, and aux4 values of the sticks between 1000
and 2000, at 100Hz (channels_[FLIGHT].csv, only for human-piloted flights).

E.5.6 On-board Data from the Autonomous Module

From the NVIDIA Orin in Subsubsection [E.3.1, we record the following measurements: the drone
state, i.e., position (m), orientation (quaternion), velocity (m/s), and angular velocity (rad/s), at 275Hz,
sent as ground truth from the MoCap system to the drone, with the time delay of the communication
channel (drone_state_[FLIGHT].csv).

Furthermore, only for the autonomous flights, we also record: the controller’s reference, i.e., position
(m), orientation (quaternion), linear (m2/s) and angular velocity (rad/s), acceleration (m /s2), jerk (m/s%),
heading (rad), and heading rate (rad/s), computed at 100Hz for the ellipse and lemniscate, and S00Hz
for the race track (reference_[FLIGHT].csv); the collective thrust and body rates (CTBR) computed
by the autonomous controller, i.e., the normalized thrust (N/kg i.e. m/ s2), roll, pitch, and yaw rates
(rad|/s), at 275Hz for the PD controller, and 160Hz for the MPC, (ctbr_[FLIGHT].csv); and the
RC’s channels sent to the FCU calculated from the CTBR commands, i.e., roll, pitch, thrust, yaw,
auxl, aux2, aux3, and aux4 values of the sticks, at 275Hz and 160Hz for PD and MPC respectively,
(channels_[FLIGHT].csv).
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E.6 Visualization and Post-processing Scripts

Along with the dataset, we provide an installableﬁ open-source Python repository comprising of a set
of processing scripts to visualize and manipulate the data.

data_interpolation.py can be used to re-sample and align the data at an arbitrary frequency
using linear interpolation. Its output is a CSV file containing the aligned, re-sampled data from all the
sources in Section First, one selects a flight by passing its id, e.g., flight-0la-ellipse as an
argument. Then, one can choose which synchronization option to use. In option /, one must choose a
new frequency for which timestamps are generated, using the first and last camera timestamp as a window.
All the data are then interpolated to the generated timestamps. For the camera frames, the one with the
closest timestamp is referred to by file name. In option 2, the timestamps of the camera CSV are used as

a reference instead.

$ python3 data_interpolation.py \

> --flight flight-0la-ellipse \

> --sync-option 1 --freq 200

Loading and pre-processing CSVs...

Using frequency 200 to interpolate all data
Syncing dataframes...

Sync complete.

Saving final CSV...

Final CSV saved.

data_plotting.py is a script to simultaneously visualize multiple sensor data using customizable
subplots. One can select which subplots to include by means of command-line arguments. The script
facilitates quick insights into the drone’s flight behavior and performance, such as its 3D trajectory and the
gate positions, as well as pose, velocities, accelerations, battery voltage, RC channels, etc.; an example
of the script output is shown in Figure
$ python3 data_plotting.py \

> --csv-file flight-0la-ellipse_cam_ts_sync.csv \
> --subplots 3d

label_visualization.py is the script to visualize the label annotations on the images. It allows
one to skim the images of a flight, read the associated YOLO-style label file, and plot the gates’ bounding

boxes and internal corner keypoints. An individual frame example is shown in Figure

$ python3 label_visualization.py \
> --flight flight-0la-ellipse

create_std_bag.py is a utility script that reads all the data from a user-specified flight and creates
anew ROS2 bag with the same data (including images) but only using standard messages from the ROS2
msgs library. All the messages are timestamped in nanoseconds. It may take several GBs.

python3 create_std_bag.py \
> --flight flight-0la-ellipse

4github.com/tii-racing/drone-racing-dataset/blob/ main/README .md


https://github.com/tii-racing/drone-racing-dataset/blob/main/scripts/data_interpolation.py
https://github.com/tii-racing/drone-racing-dataset/blob/main/scripts/data_plotting.py
https://github.com/tii-racing/drone-racing-dataset/blob/main/scripts/label_visualization.py
https://github.com/tii-racing/drone-racing-dataset/blob/main/scripts/create_std_bag.py
https://github.com/tii-racing/drone-racing-dataset/blob/main/README.md
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Figure E.6: Sample output of the utility script data_plotting.py (Section [E.6), plotting 21
different data points for flight-87p-lemniscate, a piloted, 13-lap flight on the lemniscate
trajectory.

Figure E.7: Sample output of script 1label_visualization.py from Section overlaying
the bounding boxes and keypoints (top-left, top-right, bottom-right, and bottom-left corners) for
all obstructed and unobstructed gates in one of the frames from flight-02a-ellipse.

E.7 Conclusions

The development of autonomous racing drones requires simultaneously tackling challenging percep-
tion, state estimation, and control tasks—in real time—under limited computational resources. With this
dataset, we created a one-stop resource to develop and evaluate new algorithms for autonomous drone
racing. Our work is comprehensive of both aggressive autonomous and piloted flight; high-resolution,
high-frequency visual, inertial, and motion capture data; commands and control inputs; multiple light
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settings; and corner-level labeling of drone racing gates. Along with the data, we open-sourced the
scripts used to parse and visualize them. To further democratize autonomous drone racing research, we
also released the parts list and instructions to recreate our flight platform, using commercial off-the-shelf

components, hoping to see it re-created and used by researchers around the world.
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