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"It is not his possession of knowledge, of irrefutable truth, that makes the man of science,

but his persistent and recklessly critical quest for truth."

-Karl Popper, The Logic of Scientific Discovery



Abstract

Stellar evolutionary models serve as the foundation for much of astrophysical research,

including nucleosynthesis, the study of exoplanetary systems, and the formation and evo-

lution of galaxies. However, their internal structures had not been thoroughly tested until

recently, thanks to the advent of asteroseismic observations, which now allow for precise

inference of stellar interiors.

This PhD thesis investigates the internal structure and evolutionary processes of low-

mass core helium burning (CHeB) stars, employing advanced asteroseismic and Bayesian

methodologies. The primary aim is to refine our understanding of these stars and assess

non-standard evolutionary models that challenge conventional paradigms.

The research begins with the identification of eleven red giant stars in the Kepler field,

revealing complex oscillation spectra indicative of very low-mass CHeB stars. These stars

exhibit a unique seismic signature characterised by a helium core of approximately 0.5

M� and a lighter hydrogen-rich envelope, leading to a higher coupling factor between the

internal pressure and gravity mode cavities compared to typical red clump stars. This

work demonstrates the potential of asteroseismology to accurately identify anomalously

low-mass CHeB stars even in the field, highlighting their role in understanding stellar

evolution and mass loss.

While we have improved our methods for detecting these stars, the question of how they

form remains unanswered. To tackle this critical gap in knowledge, the analysis presented

in this thesis extends to a specific anomalously low-mass CHeB star, KIC4937011, which is

a member of the open cluster NGC 6819. This Li-rich star has a mass approximately 1 M�

lower than cluster stars in the same evolutionary phase and provides, thus, a unique op-

portunity to explore the evolutionary pathways that lead to such low-mass configurations.

By coupling advanced Bayesian techniques with interacting binary stellar population mod-

els, this PhD thesis posits that KIC4937011 is a product of a common-envelope evolution

phase where the companion star did not survive, leading to significant mass ejection. This

finding not only elucidates the formation scenario of KIC4937011 but also provides crucial

insights into the evolution of other stars, including subdwarf B stars and metal-rich RR

Lyrae.

Further, this research delves into the asteroseismic signatures associated with structural

variations near the convective core of low-mass CHeB stars. By developing semi-analytical



models, the study reveals how structural glitches influence oscillation spectra, offering

deeper insights into the internal composition and evolutionary transitions of these stars,

paving the way to robust comparisons with high-quality asteroseismic data.

Overall, this thesis contributes significantly to the field of stellar astrophysics by en-

hancing our understanding of low-mass CHeB stars and their evolutionary histories. It lays

the groundwork for future research exploring the complexities of stellar evolution, mass loss

mechanisms, and their broader implications for the formation and evolution of the Milky

Way.

ii



Contents

Problem statement 1

Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Scientific background 5

1.1 Fluid dynamics in stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.2 Reynolds number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Equations of the stellar structure . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Radiative heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Rosseland mean opacity . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 Convective flux and mixing length theory . . . . . . . . . . . . . . . 11

Schwarzschild criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Ledoux criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Low-mass core helium burning stars . . . . . . . . . . . . . . . . . . . . . . 15

1.3.1 Helium flashes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.2 Mixing prescriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Semiconvection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Overshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.3 Nuclear reaction rates . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Asteroseismology of solar-like oscillators . . . . . . . . . . . . . . . . . . . . 22

1.4.1 Adiabatic linear oscillations . . . . . . . . . . . . . . . . . . . . . . . 23

Spherical harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Visibility of the modes . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Radial oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4.2 Cowling approximation . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4.3 Asymptotic analysis of stellar oscillations . . . . . . . . . . . . . . . 31

iii



CONTENTS

Pressure-modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Gravity-modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Mixed-modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 Red horizontal branch stars: An asteroseismic perspective 41

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Observational data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3 Simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.1 Propagation diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.2 Dipole mode properties . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4.3 Power spectral density . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Anomalously low-mass core-He-burning star in NGC 6819 as a post-

common-envelope phase product 57

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Observational data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Bayesian inference of formation scenarios . . . . . . . . . . . . . . . . . . . . 64

3.3.1 Evolutionary code for binary stars . . . . . . . . . . . . . . . . . . . 64

3.3.2 Monte Carlo simulations . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.1 Formation channels constrained by age and mass observations . . . . 68

Common-envelope phases create distinct pathways . . . . . . . . . . 70

Primary star physical properties . . . . . . . . . . . . . . . . . . . . 70

Dichotomy in the chemical space . . . . . . . . . . . . . . . . . . . . 73

3.4.2 Analysis of a more observationally-motivated subsample . . . . . . . 74

New posterior density distributions . . . . . . . . . . . . . . . . . . . 76

KIC4937011’s most credible formation channel . . . . . . . . . . . . 78

3.5 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Parametric models of core-helium-burning stars: structural glitches near

the core 85

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Modelling of a realistic star . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.1 Barotropic CHeB stars . . . . . . . . . . . . . . . . . . . . . . . . . . 90

iv



CONTENTS

4.2.2 Differential equations for barotropic stars . . . . . . . . . . . . . . . 91

4.2.3 Discontinuities in the internal profiles . . . . . . . . . . . . . . . . . 91

4.3 Fiducial barotropic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.1 First zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3.2 Second zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3.3 Third zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Smooth transitions in discontinuous density profiles . . . . . . . . . . . . . . 98

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5.1 Fiducial model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5.2 Different boundaries of the convective core . . . . . . . . . . . . . . . 107

Smooth transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

No jump discontinuity in density at the boundary of the convective

core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5.3 Glitches in the radiative core . . . . . . . . . . . . . . . . . . . . . . 111

δ-distribution glitch . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Bell-shaped glitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.6 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Thesis conclusions 121

A Physical properties of the full sample 125

A.1 Stellar mass from the scaling relation involving 〈∆ν〉 and νmax . . . . . . . . 126

B Grids of stellar models 129

C Contribution of individual eigenmodes to the PSDs of CHeB stars 131

D Likelihood and prior functions 133

E Taylor series solutions near the centre of barotropic stars 135

F Differential equations near the surface of barotropic stars 137

G Numerical solver verification 139

H List of publications and co-authorships 141

Bibliography 143

v





List of Figures

1.1 Rosseland mean opacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Schwarzschild and Ledoux criterions . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Mixing prescriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Periodogram of 16 Cygn A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5 Spherical harmonics for stellar oscillations . . . . . . . . . . . . . . . . . . . 27

1.6 Propagation diagram for a Sun-like star . . . . . . . . . . . . . . . . . . . . 34

1.7 Propagation diagram for a CHeB star . . . . . . . . . . . . . . . . . . . . . 37

2.1 PSD for five low-mass red giants observed by Kepler . . . . . . . . . . . . . 44

2.1 (Continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2 HRD of a sample of red giants in the Kepler field . . . . . . . . . . . . . . . 48

2.3 Comparison between structure and seismic properties of rHB and RC refer-

ence models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4 Period spacing as a function of the eigenfrequencies of the isolated dipole γ

modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5 Simulated PSD as a function of the eigenfrequencies . . . . . . . . . . . . . 54

3.1 HRD of NGC 6819 showing RC and RGB member stars . . . . . . . . . . . 62

3.2 Age and primary mass density distributions at the CHeB stage for our full

sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3 Posterior density distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Other posterior density distributions of the primary star . . . . . . . . . . . 71

3.5 Surface chemical posterior density distributions . . . . . . . . . . . . . . . . 72

3.6 Age and primary mass density distributions at the CHeB stage for the sub-

sample described in Section 3.4.2 . . . . . . . . . . . . . . . . . . . . . . . . 74

3.7 Posterior density distributions of the subsample described in Section 3.4.2 . 76

3.8 Same as Figure 3.4 but for the subsample described in Section 3.4.2 . . . . . 77

vii



LIST OF FIGURES

3.9 Primary star chemical density distributions at the CHeB stage for the sub-

sample described in Section 3.4.2 . . . . . . . . . . . . . . . . . . . . . . . . 79

3.10 Cartoon showing the most credible formation scenario for KIC4937011 . . . 79

3.11 HRD of a primary star in the subsample from the ZAMS to the end of the

CHeB stage done with binary_c v2.2.3 . . . . . . . . . . . . . . . . . . . . 82

4.1 Brunt-Väisälä frequencies as a function of internal mass for five different

star models at the beginning of the CHeB stage. . . . . . . . . . . . . . . . 87

4.2 Comparison of γ(r) as a function of density for four different models of a 1

M� star at the beginning of the CHeB stage (Yc ≈ 0.9) with solar metallicity. 95

4.3 Comparison between four different density profiles at the boundary between

the convective and the radiative core. . . . . . . . . . . . . . . . . . . . . . . 102

4.4 Brunt-Väisälä frequency, normalised inertia, period spacing and power spec-

tral density for the fiducial barotropic model. . . . . . . . . . . . . . . . . . 104

4.5 Comparison between normalised period spacings for the γ-modes as func-

tions of frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.6 Brunt-Väisälä and period spacing of the γ-modes compared with the fiducial

model and a model with a smooth transition at the boundary between the

convective and radiative core. . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.7 Brunt-Väisälä and period spacing of the γ-modes compared with the fidu-

cial model and a model without a discontinuity in density at the boundary

between the convective and radiative core. . . . . . . . . . . . . . . . . . . . 110

4.8 Brunt-Väisälä and period spacing of the γ-modes compared with the fiducial

model and a model with a jump discontinuity in the radiative core. . . . . . 112

4.9 Trapping of the modes near a jump discontinuity in density. . . . . . . . . . 114

4.10 Brunt-Väisälä frequency and period spacing for bell-shaped glitches in the

radiative core. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.11 Power spectral density for different smoothings in the radiative core. . . . . 116

A.1 HRD of the full sample of red giants . . . . . . . . . . . . . . . . . . . . . . 127

C.1 Smoothed version of the PSDs presented in Sect. 2.4.3 . . . . . . . . . . . . 132

viii



List of Tables

2.1 Summary of the seismic and atmospheric properties for three rHB candidates

of our sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1 Critical mass ratio qcrit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Medians and credible intervals . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Similar to Table 3.2, but for the subsample described in Section 3.4.2 . . . . 75

4.1 Comparison between the reference CLES model and the fiducial barotropic

model presented in Section 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.1 Physical properties for the rest of our sample of rHB candidates . . . . . . . 125

D.1 Intervals of the priors used in Section 3.3.2 . . . . . . . . . . . . . . . . . . . 133

ix





Problem statement

Core helium burning (CHeB) phase represents a pivotal stage in the evolution of low-

to intermediate-mass stars, marking their transition from the red giant branch (RGB),

characterised by an inert and electron-degenerate helium core, to a stable helium-burning

phase within a convective core. CHeB stars in the red clump (RC) are particularly valuable

for understanding the cosmic distance ladder, mapping Galactic structures, and studying

stellar populations (e.g. Girardi 2016).

Recent advancements in asteroseismology, driven by space-based missions such as CoRoT,

Kepler , K2, and TESS, have significantly enhanced our understanding of the internal

structures, properties, and evolutionary phases of red giant stars. The distinct oscillation

patterns observed in RC stars compared to RGB stars enable us to differentiate these oth-

erwise spectroscopically similar objects (e.g. Montalbán et al. 2010; Bedding et al. 2011).

Additionally, it has been demonstrated that RGB star cores can rotate up to ten times

faster than their surfaces (Beck et al. 2012). While models predict significant core spin-up

during the RGB phase, observations indicate (e.g. Mosser et al. 2012a; Mosser et al. 2012b)

that the core does not spin-up as much as expected. At the end of the RGB phase, a spin-

down is observed, which aligns with the expansion of the core (e.g. Mosser et al. 2012a;

Mosser et al. 2012b). The detection of oscillations in thousands of field red giant stars has

opened new avenues for detailed studies of Milky Way stellar populations (e.g. Miglio et al.

2009). Asteroseismic constraints, combined with photospheric chemical abundances and

temperatures, allow for precise measurements of radii and masses (De Ridder et al. 2009;

Hekker et al. 2011; Huber et al. 2011; Miglio et al. 2013; Stello et al. 2013; Mosser et al.

2014; Yu et al. 2018; García et al. 2019; Kallinger 2019). This precision has led to robust

age determinations (Anders et al. 2016; Casagrande et al. 2016; Pinsonneault et al. 2018;

Silva Aguirre et al. 2018; Miglio et al. 2021; Montalbán et al. 2021). Furthermore, it has

been possible to estimate the integrated RGB mass loss (e.g. Miglio et al. 2012; Stello et al.

2016; Handberg et al. 2017; Miglio et al. 2021; Tailo et al. 2022; Howell et al. 2022; Howell

et al. 2024) and from detailed studies of members of star clusters it has been possible

1
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to find red giants with anomalous masses compared to the average for their evolutionary

phases (e.g. Brogaard et al. 2016; Handberg et al. 2017; Brogaard et al. 2018; Brogaard

et al. 2021; Miglio et al. 2021), which may indicate interactions with companion stars (see

also Li et al. 2022; Bobrick et al. 2024).

Despite these advances, considerable uncertainties persist in the modelling of low-mass

CHeB stars and in the identification of non-standard evolutionary paths. One of the main

challenges involves accurately modelling the efficiency of mixing processes within these

stars. Their internal structure is influenced by the transport of material between convec-

tive and radiative core, yet the boundary between these regions and the extent of mixing

across this boundary are still not well understood (e.g. Castellani et al. 1971a; Bressan

et al. 1986; Straniero et al. 2003; Gabriel et al. 2014; Bossini et al. 2015; Constantino

et al. 2015; Bossini et al. 2017; Salaris et al. 2017; Noll et al. 2024). Gaining insight into

these mixing processes is essential for constructing precise models of CHeB stars, which has

broader implications for astrophysical research, particularly regarding the chemical evolu-

tion of galaxies. Moreover, despite potential insights from observations that could assist

in distinguishing between different formation scenarios (Brogaard et al. 2018), the evolu-

tionary history of many observed systems with masses that deviate from their expected

mass remains uncertain. The limited support from other stars in age determination makes

it challenging to identify non-standard evolutionary paths for field stars. An exception to

this is the thick disc, which has a well-defined turn-off mass that allows for the tracking

of the evolutionary history of these stars (Chiappini et al. 2015; Martig et al. 2015; Izzard

et al. 2018; Grisoni et al. 2024).

In light of these critical gaps, the principal objective of this PhD thesis is to accurately

characterise the internal structure of CHeB stars and evaluate non-standard evolutionary

models through the application of advanced asteroseismic techniques. By meticulously

investigating the internal structures of these stars, this study aims to provide essential in-

sights that will refine current models and enhance our understanding of the stellar lifecycle.

This exploration is particularly relevant given the significant role that CHeB stars play in

stellar evolution and their contributions to the chemical evolution of galaxies.

Structure of the thesis

The principal objective of this thesis is to accurately characterise the internal structure

of core helium burning stars and to evaluate non-standard evolutionary models through the

application of asteroseismology. To facilitate this investigation, the subsequent chapters

2
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are organised as follows:

• Chapter 1: This chapter provides the scientific background essential for understand-

ing the results presented in later sections. It specifically explores the structural char-

acteristics of stellar interiors during the core helium burning phase and illustrates

how asteroseismology of solar-like oscillators can serve as a robust methodology for

accurately inferring their internal structures;

• Chapter 2: This chapter builds upon the findings I published in Matteuzzi et al.

(2023). It focuses on the theoretical characterisation of peculiar oscillation spec-

tra observed in core helium burning stars within the Kepler field. By employing

evolutionary models and theoretical adiabatic oscillation eigenfrequencies, I aim to

confirm the very low-mass nature of these stars and their strong coupling between

the g-cavity and the p-cavity;

• Chapter 3: Expanding on the results I published in Matteuzzi et al. (2024), this chap-

ter examines the formation scenarios for some of the low-mass core helium burning

stars introduced in Chapter 2. Notably, it focuses on a star within the old Galactic

star cluster NGC6819, KIC4937011, which possesses approximately 1 M� less mass

than the average of the other stars in the cluster that are in the same evolutionary

phase. The findings suggest that this star is the result of a common-envelope evolu-

tion phase in which the companion does not survive, offering new insights into the

formation of subdwarf B stars and metal-rich RR Lyrae;

• Chapter 4: In this chapter, I conduct a detailed analysis of asteroseismic signatures

related to structural variations in low-mass core helium burning stars, focusing on the

regions near their cores (Matteuzzi et al., to be submitted). I develop semi-analytical

models of these stars, calibrated using evolutionary codes. The investigation con-

centrates on changes in eigenfrequencies and period spacing attributed to density

discontinuities, non-differentiable points within the density profile, and bell-shaped

glitches in the Brunt-Väisälä frequency;

• Thesis conclusions: This last chapter summarises all the results of the thesis work

and it contains a brief discussion on possible future developments;

• Appendix A: This appendix discusses the physical properties of the complete sample

of stars analysed in chapter 2;

3
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• Appendix B: This appendix provides details about the grid of stellar models utilised

in Chapter 2;

• Appendix C: This appendix covers the simulated oscillation spectra of individual

modes referenced in Chapter 2;

• Appendix D: This appendix discusses the selection of the likelihood function and prior

distributions employed in Chapter 3;

• Appendix E: This appendix provides Taylor series solutions near the centre of the

semi-analytical models explained in Chapter 4;

• Appendix F: This appendix shows a set of differential equations to use in Chapter 4

near the surface of barotropic stars to avoid numerical issues;

• Appendix G: This appendix presents analytical solutions for the differential equations

described in Chapter 4. They are used to test the numerical solver;

• Appendix H: This appendix includes a list of published papers, as well as the collab-

orative work I have engaged in as a co-author on other papers that are not covered

elsewhere in this document.
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Chapter 1

Scientific background

This chapter introduces my thesis by outlining the research problem, objectives, and

significance, as well as its limitations. It also details the methodology used for the analysis

presented in subsequent chapters and includes a literature review of key physical processes.

Specifically, Section 1.1 examines stars as systems governed by fluid dynamics, with an

emphasis on their internal turbulence. Section 1.2 delves into the main heat transport

mechanisms occurring within stars. In Section 1.3 I provide an introduction to the core

helium burning evolutionary phase and discuss the primary theoretical challenges associ-

ated with it. Section 1.4 introduces asteroseismology as a valuable tool for elucidating the

internal structure of stars, which is pertinent to the methods deployed in this thesis

1.1 Fluid dynamics in stars

In this section, I introduce the description of the structure and evolution of stars

through the lens of fluid dynamics.

Generally, a star can be conceptualised as a collection of moving particles that interact

with one another. The average distance a particle travels before experiencing a collision

event with another particle is called mean free path (lmean). In stars without electron or

neutron degeneracy, it is not necessary to completely solve the quantum field equations to

analyse the motion of particles in space and time. This is because their lmean is much higher

than their de Broglie wavelength, allowing us to approximate the quantum motion using

classical trajectories, as supported by Ehrenfest’s theorem (Ehrenfest 1927). Furthermore,

upon establishing a characteristic length scale of the system (Hscale), we can compute the

dimensionless Knudsen number defined as

Kn :=
lmean

Hscale
. (1.1.1)

5



CHAPTER 1. SCIENTIFIC BACKGROUND

When Kn � 1, systems comprised of a finite number of particles can be effectively ap-

proximated as a continuous fluid. This situation is applicable to real stars, allowing us to

define macroscopic quantities as continuous functions of space (~x) and time (t). Due to

the continuum approximation, any infinitesimal fluid element is much smaller than Hscale,

contains a sufficiently large number of particles to render any statistical fluctuations asso-

ciated with discreteness negligible, and is significantly larger than lmean (e.g. Landau et al.

1987). From now on Hscale can be defined as

Hscale ≡ HQ :=
Q(~x, t)

‖~∇Q(~x, t)‖
, (1.1.2)

where Q(~x, t) denotes a macroscopic quantity of the fluid. Useful quantities are the velocity

field [~v(~x, t)], density [ρ(~x, t)] and pressure [P (~x, t)] of the fluid. In fact, as it will become

clear later, any other macroscopic quantity (apart from the chemical composition) can be

expressed as a function of these five fundamental quantities.

1.1.1 Navier-Stokes equations

The equations that describe the fluid dynamics are known as the Navier-Stokes equa-

tions (e.g. Landau et al. 1987). These equations are formulated based on the principles of

conservation of mass, momentum, and energy. In the context of a self-gravitating Newto-

nian fluid with no external forces, no magnetic fields, no bulk viscosity, a constant shear

dynamic viscosity (µ) and composed solely of pure hydrogen, the Navier-Stokes equations

can be expressed in the Lagrangian tensorial form as

dρ

dt
+ ρ∂ivi = 0

ρ
dvi
dt

+ ∂iP + ρ∂iφ− µ
[
∂j∂jvi +

∂i∂jvj
3

]
= 0

ρT
ds

dt
+ ∂iFheat,i − 2µSijSij + ρΓnet = 0

Sij :=
(∂ivj + ∂jvi)

2
− δij∂kvk

3

ρT
ds

dt
= ρcP

dT

dt
+

∂ ln ρ

∂ lnT

∣∣∣∣
P

dP

dt

∂i∂iφ− 4πGρ = 0.

(1.1.3)

In this formulation, Φ denotes the gravitational potential of the fluid, T the temperature,

cP the specific heat capacity at constant pressure, s the specific entropy, Sij the deviatoric

strain tensor, ~Fheat the heat flux, and Γnet the net cooling function of the fluid. The equa-

tion in the last row is the Poisson equation, and it specifies how to relate the gravitational

potential to the density of the fluid. Equation 1.1.3 is not a close set of differential equa-

tions, because we have at least seven variables (ρ,~v, P, φ, T ) with six equations. Therefore,
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1.2. EQUATIONS OF THE STELLAR STRUCTURE

we need at least another equation that can relate these macroscopic quantities to each

other, that is, P (~x, t) ≡ P [ρ(~x, t), T (~x, t)]. Such an equation is called equation of state

(EOS).

1.1.2 Reynolds number

In the field of fluid dynamics, it is advantageous to render the system of equations 1.1.3

dimensionless. This transformation enables the identification of dominant terms within the

equations and facilitates the development of meaningful approximations. Specifically, we

can achieve a dimensionless form of the second equation of the system by combining µ with

the average fluid density (〈ρ〉), the average fluid velocity (〈v〉) andHscale. This combination

yields the dimensionless Reynolds number

Re :=
〈ρ〉〈v〉Hscale

µ
, (1.1.4)

which determines the degree of turbulence of the fluid under study as well as its comparative

behaviour with other fluids. It is important to note that as Re increases, the significance of

the viscous terms in the Navier-Stokes equations diminishes, thereby suggesting a higher

turbulence level in the fluid. In the context of stellar structure and evolution, the Re

number reaches extremely high values, such as Re = 6 · 1012 in the convective envelope of

the Sun. This large value allows us to neglect the viscous term in equation 1.1.3. As a

result, fluid dynamics within stars, especially in their convective regions, exhibit markedly

greater turbulence compared to what can be tested in laboratory-scale fluids. This turbu-

lence consists of a spectrum of turbulent eddies of various sizes that propagate throughout

the three-dimensional space, even in stars exhibiting spherical symmetry. Therefore, to ac-

curately model this turbulent motion in stars, it is imperative to utilise three-dimensional

simulations. However, achieving this requires approximately
(

Re3/4
)3
≈ 1028.8 grid points1

to resolve turbulence down to the Kolmogorov length scale (e.g. Chan et al. 1986), which

is a computationally prohibitive requirement (see also Kupka et al. 2017, for a review).

Consequently, formulating a complete theory of turbulence within stars poses significant

challenges, necessitating the application of alternative approximations (see Section 1.2.2).

1.2 Equations of the stellar structure

In Section 1.1, I demonstrated that stars can be modelled as continuous fluids gov-

erned by the Navier-Stokes equations (equation 1.1.3). Nevertheless, further simplification
1This estimate is derived from the Re value representative of the Sun.
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of these equations is feasible when considering non-rotating, spherical stars at virial equi-

librium. In this scenario, the internal velocity becomes negligible (with the exception of

the convective zones discussed in Section 1.2.2), and all the internal variables can be ex-

pressed solely as functions of time and radius (r). Furthermore, stars are composed of

a diverse array of chemical species, with their spatial and temporal distributions being

influenced by plasma dynamics (see Section 1.2.2 and 1.3.2) as well as by nuclear reactions

(discussed in Section 1.3.3). Therefore, it is crucial to integrate the mass concentrations

of these chemical species (Xi) into the system of differential equations that governs stellar

structure. This integration enables the formulation of the new set of simplified differential

equations 

∂m(r, t)

∂r
= 4πr2ρ(r, t)

∂P (r, t)

∂r
= −g(r, t)ρ(r, t)

∂L(r, t)

∂r
= 4πr2

[
ρεnuc − ρεν − ρcP

∂T

∂t
− ∂ ln ρ

∂ lnT

∣∣∣∣
P

∂P

∂t

]
∂T (r, t)

∂r
= −g(r, t)ρ(r, t)T (r, t)

P (r, t)
∇(r, t)

ρ(r, t)
∂Xi(r, t)

∂t
= mi(r, t)

 N∑
j=1

rji −
N∑
k=1

rik

 , i = 1, ..., N

N∑
i=1

Xi = 1 with ρXi ≡ mini

g(r, t) =
Gm(r, t)

r2

(1.2.1)

for the internal structure of stars, as detailed in the literature (e.g. Kippenhahn et al. 2012).

In this formulation, L(r, t) ≡ Lr(t) represents the net energy per second (luminosity)

passing outward through a sphere of radius r. This energy rate depends on the specific

nuclear reaction rates (εnuc) adjusted for energy losses due to neutrino emissions (εν),

and depends on the specific gravitational energy rate
(
εgrav := −cP ∂T∂t − 1

ρ
∂ ln ρ
∂ lnT

∣∣∣
P

∂P
∂t

)
.

These rates depend on the pressure, temperature (or any two thermodynamic variables

when using an EOS) and the chemical species present in that region. In Section 1.3.3,

I will specifically focus on the main nuclear reaction rates occurring in stars undergoing

the core helium burning phase (as defined in Section 1.3) and examine the theoretical

challenges they present. Ultimately, the temperature gradient ∇(r, t) := d lnT/d lnP in

equation 1.2.1 incorporates all heat transfer mechanisms that influence the structure and

evolution of stars, namely conduction, radiation, and convection. In sections 1.2.1 and

1.2.2, I will focus on the heat transport through radiation and convection, respectively,

while conduction will not be discussed, as it significantly affects only those stellar regions
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1.2. EQUATIONS OF THE STELLAR STRUCTURE

that contain degenerate matter. This is due to the fact that, in these cases, the mean free

path of degenerate particles is considerably larger than that of photons (e.g. Kippenhahn

et al. 2012). Conversely, conduction via degenerate electrons is crucial in the evolutionary

phase leading up to the onset of core helium burning in low-mass stars, as discussed in

Section 1.3.

1.2.1 Radiative heat flux

In equation 1.2.1, I presented the temperature gradient as a general term that includes

all the relevant heat transfer mechanisms. This section will investigate the temperature

gradient necessary to transport the luminosity Lr via radiative processes.

Within stellar interiors, photons exhibit a notably short mean free path (lmean ≈ 2 cm

for an average point inside the Sun, as discussed by Kippenhahn et al. 2012) compared to

the pressure scale height, due to their continuous absorption and re-emission in an almost

random manner2. The time taken for a photon to travel from the centre of the star to

its surface (≈ 10 Myr for the Sun, as discussed by Kippenhahn et al. 2012) significantly

exceeds the time that such a photon would require to cover the same distance in vacuum.

Therefore, the motion of radiation in stellar interiors can be effectively characterised by

Fick’s law of diffusion (Fick 1855). This law contains a diffusion coefficient that depends

on the speed of light in vacuum (c), the specific heat capacity of the radiation field at

constant volume, and the specific absorption coefficient κν at frequency ν, which is often

referred to as the opacity coefficient. This coefficient represents the radiative cross section

per unit mass at the specified frequency ν. To further simplify the problem, it can be

assumed that photons are almost in thermal equilibrium locally, as indicated by the local

small temperature fluctuations (dT/T ≈ 10−11 at a point with T ≈ 107 K in the Sun, see

Kippenhahn et al. 2012). Consequently, the radiation field can be treated as black body

radiation in these local conditions3. Therefore, the temperature gradient required to carry

the entire luminosity Lr by radiation in a star in hydrostatic equilibrium can be expresses

as

∇rad(r, t) =
3κLrP

64πGσmT 4
, (1.2.2)

where σ is the Stefan-Boltzmann constant and κ represents the opacity coefficient averaged

2This consideration is not true in the vicinity of stellar surfaces, where we have to solve the full equations

of radiative transfer. However, this thesis concentrates on the stellar interiors, rendering the following

analysis applicable and relevant.
3However, it is important to note that a net heat flux moving from higher-temperature regions to those

of lower temperature still remains. Therefore, heat flows from the interior to the exterior parts of stars.
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across all frequencies based on Planck radiation, which is typically referred to as Rosseland

mean opacity (e.g. Kippenhahn et al. 2012). The function κ = κ(T, ρ, chemical elements)

is quite complex, as it must account for a variety of absorption processes. These processes

include bound-bound and bound-free transitions involving ions, atoms, molecules, and dust

grains, in addition to free-free absorption and electron scattering from various chemical

species. In Section 1.2.1, I provide a summary of the main characteristics of κ(T, ρ) for a

plasma with solar chemical composition.

From equation 1.2.2, it can be observed that ∇rad increases in regions of strong en-

ergy generation, because a localised rise in εnuc leads to a corresponding increase in Lr,

as outlined in equation 1.2.1. Additionally, ∇rad increases in regions with high opacity.

Such conditions are frequently found in the cooler outer layers of stars and/or in regions

where the mean molecular weight [µ(r, t)] increases due to the presence of metals4. These

factors will be further examined in Section 1.3.2. Ultimately, in regions where the actual

temperature gradient ∇ is equal to ∇rad, energy transfer occurs predominantly through

radiative processes; these areas are in a state of radiative equilibrium and are referred to

as radiative regions.

Rosseland mean opacity

In Section 1.2.1, I discussed the complexity of the function κ(T, ρ, chemical elements).

The development of realistic opacity models that can be computed in real-time within

stellar evolutionary codes is indeed highly complex. As such, it is necessary to utilise pre-

calculated and tabulated opacity values corresponding to a variety of chemical mixtures,

which are expressed as functions of T and ρ. As a result, evolutionary codes can interpo-

late the most suitable values from opacity tables, significantly reducing calculation time.

Examples of such tables applicable for temperatures exceeding approximately 104 K are

OPAL (Iglesias et al. 1996), the international Opacity Project (OP; Seaton et al. 1994;

Badnell et al. 2005) and OPLIB (Colgan et al. 2016). Figure 1.1 provides a summary of

the key characteristics of opacity at a fixed chemical composition. In conditions of low

density and high temperature, κ remains nearly constant as it is dominated by electron

scattering. In contrast, at higher ρ and lower T , free-free, bound-free and bound-bound

absorptions become the predominant mechanisms. Lastly, at T < 104 K the primary fac-

tors influencing opacity are atomic recombination, as well as the formation of molecular

species and dust particles.
4The term metals refers to all chemical elements heavier than helium, encompassing both traditional

metals and metalloids.
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Figure 1.1: Rosseland mean opacity as a function of temperature for various densities, based on the solar

mixture presented by Grevesse et al. (1993). The image is sourced from the work of Iglesias et al. (1996).

1.2.2 Convective flux and mixing length theory

In this section, I will provide an overview of the challenges associated with plasma

motion in spherically symmetric stars, as well as the conventional approaches used to

quantify convective heat flux in one-dimensional evolutionary models.

As outlined in Section 1.1.2, when the motion of plasma inside stars becomes signifi-

cant, it exhibits no preferential direction of flow and is characterised by a significant degree

of turbulence, as indicated by a high Reynolds number. Therefore, even with spherically

symmetric stars in hydrostatic equilibrium, it would be necessary to use three-dimensional

codes. However, these codes still struggle to accurately simulate long-term convective flows,

and are only capable of representing thick convective layers effectively (see also Kupka et al.

2017, for a review on modelling turbulent flows in stars). Therefore, simplifying assump-

tions and hypotheses about the motion of plasma in stars are needed and cannot be derived

self-consistently from the set of equations 1.1.3. One of the most used phenomenological

models for local, time-independent convection in stars is the mixing length theory (MLT;

e.g. Cox et al. 1968). This model introduces the concept of subsonic flow of fictitious bub-

bles that are not present in actual convective flows, whether observed in the Sun, Earth’s

atmosphere, oceans, laboratory experiments of convection, or numerical simulations. De-
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spite this limitation, MLT remains popular due to its simplicity and adaptability. The

fundamental assumptions underlying this theory include:

• The number of parcels ascending is equal to the number of parcels descending, with

all quantities being averaged over a spherical shell, implying the absence of horizontal

motion;

• The moving bubbles are in pressure equilibrium with their environment, given that

their velocity is significantly lower than the local sound speed;

• Convective regions achieve instantaneous mixing within a single evolutionary time

step;

• Each ascending plasma bubble disperses into the surrounding medium after traveling

a characteristic distance known as the mixing length (λMLT). This mixing length

serves as a free parameter that can be calibrated against observational data, allowing

the predictions to be adjusted accordingly. Consequently, MLT conceptualises a

single large-scale eddy of length λMLT rather than numerous progressively smaller

eddies.

Through a comprehensive examination of the dynamics and heat transfer of these bubbles

(see for example Kippenhahn et al. 2012), one can derive the system of equations

Γconv =
∇−∇e

∇e −∇ad

U =
24
√

2σT 2.5Hp

κcp
√
cp∇adρ2λ2

MLT

∇e −∇ad = 2U
√
∇−∇e

(∇−∇e)
1.5 =

8U

9
(∇rad −∇) ,

(1.2.3)

where Γconv is the efficiency of the convective heat flux, ∇e signifies the temperature

gradient of a plasma parcel that is either ascending or descending within the convective

zone and ∇ the temperature gradient of the surroundings. Additionally, the adiabatic

temperature gradient (∇ad) is defined as

∇ad(r, t) :=
P

ρcPT

(
− ∂ ln ρ

∂ lnT

∣∣∣∣
P

)
. (1.2.4)

This gradient describes the temperature profile that the parcel would maintain if it were

to move adiabatically. In equation 1.2.3, Hp represents the pressure scale height and λMLT

is conventionally expressed as λMLT = αMLTHp, with αMLT being a dimensionless constant
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parameter of the model, typically of order unity, used for calibration against empirical

data.

Equation 1.2.3 indicates that in regions where Γconv ≈ 0 (such as in the outermost

layers of the Sun), ∇ ' ∇rad, which means that the predominant mechanism for heat

transfer in these layers is radiation rather than convection5. However, it is not always

necessary to solve the MLT equations, as the uncertainties associated with this theory

diminish when convection is sufficiently effective in heat transport. This is the case for

the dense central regions of stars and for throughout much of the convective envelope. For

instance, in the Sun, Γconv ≈ 106−9 until the outermost layers (Kippenhahn et al. 2012).

In such scenarios, equation 1.2.3 indicates that ∇ ' ∇ad, which means that each plasma

bubble moves almost adiabatically until it reaches the boundary of the convective envelope.

Furthermore, regions where ∇ falls between ∇ad and ∇rad are termed superadiabatic. High

values of Γconv will be relevant for central convection in core helium burning stars, where

the primary concern lies in the extent of the convective core rather than the MLT itself

(Section 1.3). On the other hand, to gain a more comprehensive understanding of the

stellar physics at the surface layers, non-local and time-dependent models of convection

are necessary. Such models are essential as convection can induce pulsations, either driving

or damping them, and these pulsations may, in turn, influence the convection process (see

Houdek et al. 2015, for a review).

Schwarzschild criterion

To understand the foundation of the MLT, it is important to examine the conditions

under which plasma motion occurs within stars that are in hydrostatic equilibrium. No-

tably, small fluctuations resulting from the thermal motion of particles are always present.

In regions where these perturbations are dissipated, plasma motion is negligible. Conse-

quently, the material mixing within these layers is minimal, apart from the overshooting

regions (see Section 1.3.2), and the convective heat flux is significantly less than the ra-

diative heat flux. These regions are called radiative (see Section 1.2.1). However, in layers

where these perturbations grow over time, material mixing takes place, and the convective

heat flux may emerge as the predominant mechanism of heat transport.

A fundamental and flexible model used to analyse the conditions under which convec-

tion takes place is the Schwarzschild criterion (Schwarzschild 1958), illustrated in figure

1.2. For simplicity, consider a plasma with constant mean molecular weight, but density ρ1

5Nonetheless, a mixing of material still is present within such a convective region.
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Figure 1.2: Density profiles to summarise the stability criterions for plasma parcels against convection.

and pressure P1 at position r. We can define ρ2 and P2 as the density and pressure, respec-

tively, in the surrounding environment at position r + dr. If a fictitious bubble of plasma

located at r undergoes a small upward displacement of dr, it has to expand to achieve

pressure equilibrium with its surroundings, resulting in new density ρe < ρ1. If ρe > ρ2,

the bubble experiences a net buoyancy force directed downward, causing it to return to its

initial position. This motion is characterised by damped oscillations around that position,

occurring at a frequency referred to as the Brunt–Väisälä frequency (see Section 1.2.2).

In this scenario, the region is stable against convection. Conversely, if ρe < ρ2, a net

upward buoyancy force is present, which induces convection. If we assume that ∇e = ∇ad

during the upward displacement dr, from equation 1.2.3 we obtain that a layer is unstable

for convection where ∇rad ≥ ∇ad. In particular, the gradient is superadiabatic where the

convection is not efficient (for example in the near-surface convective regions) and adia-

batic where the convection is very efficient (Section 1.2.2). On the contrary, regions with

∇rad < ∇ad are convectively stable and we can use ∇ = ∇rad.

Ledoux criterion

In the preceding section, I did not account for variations in chemical composition within

the star. This section aims to present a generalisation of the Schwarzschild criterion that

incorporates gradients in mean molecular weight (∇µ), known as the Ledoux criterion

(Ledoux 1947).

As with the earlier discussion, a summary of this criterion is illustrated in figure 1.2.
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The difference respect to the Schwarzschild criterion being a different mean molecular

weight of the surrounding environment between position r and r + dr. If the fictitious

bubble of plasma experiences a small upward displacement without any exchange of matter

with its surroundings, then the mean molecular weight of the bubble remains unchanged.

The region is considered convectively stable when ρe > ρ2, and unstable when ρe > ρ2.

The revised criterion for instability is expressed as (see e.g. Kippenhahn et al. 2012)

∇rad ≥ ∇ad −
χµ
χT
∇µ, (1.2.5)

where χµ := ∂ lnP
∂ lnµ

∣∣∣
ρ,T

, χT := ∂ lnP
∂ lnT

∣∣
ρ,µ

and ∇µ := d lnµ
d lnP . Notably, this new criterion aligns

with the Schwarzschild criterion in cases where ∇µ = 0. From equation 1.2.5 it can be

observed that a gradient in composition may stabilise regions that would otherwise be

convectively unstable according to the Schwarzschild criterion, or conversely, can lead to

instability (see also Salaris et al. 2017, for a review). For instance, a layer constituted of an

ideal gas (where χT = −χµ = 1) that is classified as unstable based on the Schwarzschild

criterion (∇rad ≥ ∇ad) can still exhibit stability under the Ledoux criterion (∇rad <

∇ad +∇µ) if ∇µ > 0. This observation is essential to understand semiconvective zones in

stars undergoing the core helium burning phase (see Section 1.3.2).

In conclusion, it is important to highlight that a comprehensive understanding of the

Ledoux criterion can be encapsulated through the examination of the frequency of oscil-

lations around stable positions in radiative zones. This is effectively represented by the

squared Brunt–Väisälä frequency

N2 =
g2ρ

P

χT
χρ

(
∇ad −∇−

χµ
χT
∇µ
)
, (1.2.6)

where χρ := ∂ lnP
∂ ln ρ

∣∣∣
T,µ

. In this context, regions that exhibit stability according to the

Ledoux criterion are characterised by a real value of the Brunt–Väisälä frequency (i.e.

N2 > 0), while unstable layers correspond to null or imaginary frequencies (i.e. N2 ≤
0). This frequency will be particularly useful to understand asteroseismology of radiative

regions in solar-like oscillators (see Section 1.4).

1.3 Low-mass core helium burning stars

In this section, I explore the core helium burning (CHeB) stage encountered by stars

with masses below ≈ 1.8 − 2.2 M� depending on metallicity 6. Helium burning in these

stars is ignited by a series of helium flashes that eliminate the degeneracy of the helium core
6The higher the metallicity, the lower the mass (e.g. Girardi 2016).
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formed during the red giant branch phase (Section 1.3.1). For clarity and simplicity, in this

section I will primarily focus on evolutionary models computed at solar metallicity (Z� =

0.0134), utilising solar composition outlined by Asplund et al. (2009), unless otherwise

specified. In Section 1.3.2, I will address the uncertainties related to the chemical and

thermal stratifications near the boundary of the convective core, emphasising the most

commonly used mixing prescriptions. Finally, in Section 1.3.3, I will examine the key

issues pertaining to nuclear reaction rates during the CHeB phase.

1.3.1 Helium flashes

Towards the conclusion of the red giant branch (RGB; e.g. Kippenhahn et al. 2012)

phase, low-mass stars contain an inert, electron degenerate helium core characterised by

quasi-isothermal conditions and non-relativistic behaviour. The internal pressure of this

core is primarily generated by degenerate non-relativistic electrons, though there is also a

smaller contribution from non-degenerate ions, which will become relevant for the subse-

quent phases. Consequently, the total pressure within the core can be expressed as

P = Pe + Pion = K

(
ρ

µe

)5/3

+
ρKBT

µionmp
, (1.3.1)

where the ions are modelled as an ideal gas for the purposes of this analysis. During the

RGB phase, both the temperature and the mass of the helium core progressively increase

over time. Numerical calculations indicate that as the core mass grows, the temperature

within the core rises, exhibiting spatial variation. This phenomenon can be attributed to

two closely related effects. First, the temperature of the surrounding shell increases, con-

tributing to the heating of the core. Additionally, non-stationary processes play a role; as

the shell becomes more efficient, it adds more helium to the core. As the mass of the helium

core increases, it undergoes contraction, which releases energy. If this contraction occurs

rapidly enough, it can heat the transition layer below the shell, raising the temperature

of the entire core. Moreover, neutrinos produced within the core interact minimally with

the surrounding stellar material, resulting in a cooling effect that modifies the temperature

gradient in the core. This causes the peak temperature to shift from the centre to a specific

mass value within the core. It is important to note that the primary source of pressure

in the core (i.e. degenerate electrons) does not depend on temperature. Therefore, an

increase in temperature does not change the pressure Pe ≈ P as indicated in equation

1.3.1, meaning the core lacks sufficient pressure to eliminate degeneracy.

When the core temperature is ≈ 108 K, the 3α nuclear reaction (Section 1.3.3) begins

in a degenerate environment. Therefore, no work can be done on the environment (P dρ ≈
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0) and the nuclear energy is directly transformed into internal energy. This situation

corresponds to a helium core mass of ≈ 0.47 M� independently on the total mass of

the star7 (e.g. Girardi 2016). At this point, a thermal runway starts with a huge energy

production at the location of maximum temperature and lasts seconds. This luminosity

is comparable with the total luminosity of a massive disc galaxy (i.e. ∼ 1010 L�) and it

does not reach the surface. Instead, it is used by the ions to remove the degeneracy by

expanding the core. This corresponds to a helium flash. In models of stellar evolution,

we have not just an episode, but at least three or four subflashes that start from the

boundary of the helium core to the centre of the star. The final result is a non-degenerate

helium core that reaches a thermal equilibrium regulated by the 3α nuclear reaction: the

CHeB stage begins. These flashes leave a chemical imprint within the helium core of the

star, which is also visible in the Brunt-Väisälä frequency (e.g. Mocák et al. 2011). Key

unresolved questions include the frequency and spatial distribution of these flashes, the

behaviour of convection during the rapid evolution of the helium flash, and the degree

of spherical symmetry and hydrostatic equilibrium during the ignition of helium and the

subsequent flashing in a shell. Furthermore, mixing induced by the flashes may take place

if the convective shell that forms in the helium-burning region during the flash merges

with the outer convective layer. This additional mixing could significantly enhance surface

abundances of carbon produced by the 3α reaction, as well as nitrogen generated from

proton captures on some of this carbon.

In conclusion, it is important to examine the variations of luminosity of the star during

helium flashes. As previously discussed, the mass of the helium core (Mcore) remains

constant throughout this process, while its radius (Rcore) experiences an increase. This

expansion results in a reduction of the total luminosity, primarily because the hydrogen-

burning shell surrounding the helium core serves as the principal energy source, and its

luminosity follows the relation (see Kippenhahn et al. 2012)

L ≈M7
coreR

−16/3
core . (1.3.2)

Therefore, at the beginning of the CHeB phase, the star has a lower luminosity than

before the first helium flash. In one-dimensional models, this transitional phase generally

lasts approximately 2 Myr, which poses challenges for observations in stellar systems. By

the time the star stabilises on the horizontal branch, its helium-burning core will have

undergone a carbon enrichment of approximately 5% by mass. It is noteworthy that RGB

stars with masses less than ≈ 0.5 M� lack sufficient material to develop helium cores with
7The higher the metallicity, the slightly lower the helium core mass
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a mass ≈ 0.47 M�. Consequently, these lower-mass stars are unable to initiate helium

fusion in their core and are destined to evolve into helium white dwarfs. However, such an

evolution pathway cannot be achieved through single stellar evolution, as it would require

a time span exceeding the current age of the Universe.

1.3.2 Mixing prescriptions

At the beginning of the CHeB phase, the central region of the star where nuclear

reactions occur becomes convective. This change is induced by the substantial increase

in ∇rad (equation 1.2.2) driven by the energy released by the 3α reaction rate. This rise

results in ∇rad exceeding ∇ad (Schwarzschild criterion, see Section 1.2.2), establishing the

boundary between the convective and radiative cores at the point where ∇rad = ∇ad. As

the CHeB phase progresses, the convective core exhibits increased concentrations of carbon

and oxygen owing to ongoing nuclear fusion processes (Section 1.3.3). The augmentation

of carbon and oxygen leads to enhanced opacity, since free-free transitions are positively

correlated with nuclear charge (e.g. Kippenhahn et al. 2012). It follows from equation 1.2.2

that within the convective core, ∇rad continues to rise. Therefore, this disparity in chemical

composition creates a jump discontinuity in opacity, in ∇rad (as illustrated in figure 1.3)

and in density at the boundary between the radiative and convective core (e.g. Ledoux

1947; Schwarzschild 1958; Castellani et al. 1971b). In stellar evolution codes, employing the

Schwarzschild criterion to assess convective stability from the radiative side of the boundary

(specifically, if the convective edge is determined based on the limit from the right of ∇rad)

can lead to a misinterpretation of the criterion. Such an implementation may result in

unstable and non-physical behaviours at the boundary. As shown in the left panel of figure

1.3, the convective core cannot significantly increase in mass under these conditions, and

the position of its boundary becomes destabilised by the discontinuity in opacity. This

approach is commonly referred to as "bare Schwarzschild" (as explained by e.g. Straniero

et al. 2003; Bossini et al. 2015; Salaris et al. 2017), and it establishes a minimum estimate

for the extent of the convective core, as well as a lower bound on the lifetime of a CHeB star.

In contrast, the correct implementation of the Schwarzschild criterion must be performed

from the convective side of the core. Here, the convective boundary is determined based

on the limit from the left of ∇rad (see discussion in e.g. Schwarzschild 1958; Castellani

et al. 1971b; Gabriel et al. 2014). The right panel of figure 1.3 illustrates that, under

this interpretation, the convective core can grow until a local minimum in ∇rad meets

∇ad, allowing for a potential splitting of the convective region (see subsection below). To
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Figure 1.3: The ratios of ∇rad to ∇ad are plotted as functions of internal mass at various evolutionary

stages during the CHeB phase. The left panel illustrates an erroneous interpretation of the Schwarzschild

criterion, leading to an unstable and non-physical behaviour of the convective boundary (referred to as

"bare Schwarzschild" mixing prescription, detailed in Section 1.3.2). The right panel depicts the correct

interpretation of the Schwarzschild criterion (labelled "extrapolated Schwarzschild", as detailed in Section

1.3.2). Figure adapted from Bossini et al. (2015).

further clarify the limitations of the "bare Schwarzschild" approach, consider the concept

of induced overshooting. Each convective element possesses non-zero linear momentum

at the boundary where ∇rad = ∇ad. This momentum facilitates the mixing of carbon

and oxygen-rich material from the convective core with the surrounding radiative core.

Consequently, as this mixing occurs, ∇rad increases, inducing convective instability in the

previously radiative region. Therefore, even in this scenario, the convective boundary is

determined based on the limit from the left of ∇rad.

Semiconvection

During the subsequent evolution, evolutionary stellar models suggest that the growth of

the convective core is associated with changes in the physical conditions within the region.

These alterations, in conjunction with the accumulation of helium-rich materials, lead to

the establishment of a local minimum in ∇rad within the convective core (see right panel

of figure 1.3). Shortly after this local minimum is formed, there is a noticeable decrease

in ∇rad within the convective core, driven by an overall increase in helium-rich materials

that results in decreased opacity (see Salaris et al. 2017, for a review). When Yc ≈ 0.7

(Castellani et al. 1971a), this minimum in ∇rad becomes equal to ∇ad. This condition
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results in the formation of a convective core characterised by a discontinuity in ∇rad at its

boundary, along with an intermediate region where ∇rad = ∇ad holds true. Nevertheless,

such a situation may allow for a section of the mixed core near this minimum to exhibit

convective stability, thereby presenting a contradiction within our model. Specifically, if

instantaneous mixing were to occur throughout the entire convective core, it would produce

a reduction in ∇rad across the mixed region, which would in turn result in a portion of

the core near the minimum achieving a state where ∇rad < ∇ad. To address this issue,

one may define the area between ∇rad = ∇ad and the outer boundary as a semiconvective

region (Castellani et al. 1971a). In this region, a plasma parcel oscillates vertically with

increasing amplitude, ascending progressively into the layer. This represents a slow mixing

environment, which results in a inhomogeneous chemical composition. In this location, the

star exhibits instability with respect to convection according to the Schwarzschild criterion,

yet stability according to the Ledoux criterion (see Section 1.2.2). The complexity of this

process lies in the fact that any degree of mixing inevitably influences the stratification

within the mixed layer (see also the discussion in Gabriel et al. 2014). Nevertheless, each

semiconvective layer is mixed to such an extent that ∇ = ∇ad is achieved in this region

if the diffusion coefficient is large enough (Castellani et al. 1971a). Indeed, this is the

approach employed by numerical simulations to address semiconvective layers when the

main focus is to understand the final structure of the core rather than conduct a detailed

study of the physical properties.

Overshooting

One treatment that extends mixing beyond the classical boundary is convective over-

shooting. As mentioned earlier, each convective element has non-zero linear momentum

at the boundary where the radiative gradient equals the adiabatic gradient. It is generally

assumed that this overshooting into stable layers does not alter their thermal gradient,

thereby maintaining ∇ = ∇rad. Within the framework of the step overshooting formalism

introduced by Maeder (1975), it is proposed that the composition is instantaneously ho-

mogenised between the convective boundary and the radiative layers situated at a distance

dov = αovHp from this boundary. Here, αov is a constant free parameter (overshooting

parameter) that is calibrated against observational data, while Hp represents the pressure

scale height at the convective boundary. Nevertheless, this approach is not unique; al-

ternative criteria can also be established, resulting in varying mixing prescriptions within

stellar models. For instance, choosing an adiabatic temperature gradient instead of main-
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taining a radiative gradient results in a convective overshoot region, a mixing prescription

known as penetrative convection (Zahn 1991). Although this method produces comparable

results with step overshooting, the Brunt-Väisälä frequencies differ between the two sce-

narios, leading to discernible variations observable through asteroseismology (see Section

4). Additionally, overshooting regions with intermediate temperature gradients have also

been proposed (Christensen-Dalsgaard et al. 2011). Moreover, plasma transport beyond

the convective boundary may be a diffusive process, resulting in a slower mixing process

that provides different lifetimes of the CHeB phase compared to instantaneous mixing.

This mixing prescription is described as diffusive overshooting (Herwig 2000), where the

constant free parameter is contained inside the diffusion coefficent. Other evolutionary

models adopt modified forms of step overshooting (e.g. Bossini et al. 2015; Constantino

et al. 2015; Bossini et al. 2017; Noll et al. 2024). Others avoid the semiconvective region

by employing non-local treatments for core overshooting (e.g. Bressan et al. 1986).

1.3.3 Nuclear reaction rates

During the early stages of the CHeB phase, two predominant sources of nuclear energy

are present within the star. The 3α reaction serves as the primary mechanism occurring

in the convective core, while the CNO cycle is the main energy producer in the hydrogen-

burning shell. For Yc > 0.7, the CNO cycle plays a more significant role in energy produc-

tion than the 3α process. However, as Yc declines beyond this threshold, the 3α reaction

increasingly dominates. Eventually, when Yc < 0.2, the primary source of energy is the

nucleosynthesis reaction 12C(α, γ)16O (e.g. Straniero et al. 2003).

The 3α reaction involves two key processes: the fusion of two helium-4 nuclei to form

beryllium-8 (4He + 4He ←−→ 8Be), followed, in less than 10−16 s, by the interaction of

beryllium-8 with another helium-4, resulting in the production of carbon-12 in an excited

state, which subsequently decays to ground state carbon-12 and a gamma photon (8Be +

4He −−→ 12C∗ −−→ 12C + γ). This sequence of reactions occurs at temperatures of

approximately 108 K. The reaction rate for helium burning is quite well known within the

typical temperature and density ranges encountered by CHeB stars. However, Angulo et

al. (1999) estimate a 25% uncertainty in the reaction rate at helium-burning temperatures,

and Fynbo et al. (2005) have suggested an uncertainty of approximately 12%. This latter

estimate is consistent with other evaluations of the reaction rate, although Kibédi et al.

(2020) have presented a value that deviates from the current consensus by roughly 34%.

During the dominance of the 3α reaction (approximately 100 Myr, see Girardi 2016),
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the luminosity of the star increases slightly. Changes in the 3α reaction rate produce a

negligible change in the luminosity of the star at the tip of the red giant branch phase and

at the beginning of the CHeB phase, and a small change in CHeB lifetime.

The 12C(α, γ)16O reaction fuses one carbon-12 nucleus with a helium-4 to form oxygen-

16 and a gamma foton (12C + 4He −−→ 16O + γ). From an evolutionary perspective, when

this reaction becomes dominant, the helium core becomes more compact. Therefore, the

CNO cycle in the hydrogen-burning shell becomes more efficient (equation 1.3.2) and the

total luminosity of the star increases. The cross-sections of this reaction have always been

uncertain at the temperature of interest for CHeB stars (e.g. Metcalfe et al. 2002; Straniero

et al. 2003; Cassisi et al. 2003). Kunz et al. (2002) reported an uncertainty of 35%, Hammer

et al. (2005) an uncertainty of 30% and deBoer et al. (2017) estimate an uncertainty of

about 20% at central helium-burning temperature. These uncertainties are relevant in

determining the chemical profile left at the end of the shell helium-burning phase, but

they have a negligible effect on the predicted evolutionary time scale (e.g. Cassisi et al.

2003; Straniero et al. 2003; Bossini et al. 2015; Constantino et al. 2015; Bossini et al. 2017;

Tognini et al. 2023; Noll et al. 2024) compared to other sources of uncertainty (as the

convective buondary mixing, see Section 1.3.2).

1.4 Asteroseismology of solar-like oscillators

In this section I review the main physical processes involved in the asteroseismology

of solar-like oscillators. Unless explicitly stated otherwise, many parts of this section are

based on the book by Aerts et al. (2010).

Cepheids, RR Lyrae, Mira, δ Scuti, β Cephei stars are all examples of stars exhibiting

pulsations, primarily driven by the κ-mechanism and γ-mechanism. These stars display

large observable amplitudes, and it was soon recognised (e.g. Shapley 1914) that these

oscillatory motions correlate closely with the dynamical time scale

τdyn =

√
R3

GM
≈ 27

(
R

R�

)1.5(M�
M

)0.5

min. (1.4.1)

Another major driving mechanism for stellar oscillations is stochastic driving. This phe-

nomenon is particularly relevant for stars similar to the Sun, for red giant stars, and,

generally for stars possessing a convective envelope. In this case, even if the κ-mechanism

is not able to drive the oscillations and the modes are intrinsically stable, it is still possible

to observe deviations of the order of µmag in luminosity or cm/s in radial velocity. The

chaotic turbulent motion (see Section 1.1.2) within the convective envelope plays a crucial
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role in this process. Near the surface of these stars, this turbulent motion occurs at near-

sonic speeds (e.g. Kippenhahn et al. 2012), providing an efficient mechanism for exciting

the normal eigenmodes of the star to observable amplitudes. Consequently, solar-like os-

cillations can be understood as damped harmonic oscillations that are externally forced by

acoustic noise from this turbulent activity. Each eigenmode possesses a power spectrum

[P (ω)], which can be derived from a Fourier-like transform applied to time series data.

This spectrum is characterised by a Lorentzian profile, described by the equation

P (ω) ∝ 1

(ω − ωpeak)2 + η2
, (1.4.2)

where ωpeak denotes the angular frequency of the peak, and η represents the half-width

at half maximum (i.e. the linear damping rate of the mode). The amplitudes of these

Lorentzian functions are further modulated by a Gaussian envelope (see figure 1.4), with

its peak indicating the maximum power. The frequency at this maximum power (νmax)

serves as an indicator of the surface gravity of the star once the effective temperature is

known. The same figure also allows for the derivation of two significant seismic indicators:

the large frequency separation (∆ν) and the small frequency separation (δν). ∆ν is defined

as the difference between two modes of the same angular degree but consecutive radial

orders (see definition in Section 1.4.3) and is related to the average density of the star.

By combining ∆ν, νmax and the effective temperature, one can estimate the total mass

and radius of the star. Conversely, δν represents the difference between two modes of

consecutive radial order but differing angular degrees, providing insights into the internal

properties of stars (see definition in Section 1.4.3). For stars in the CHeB phase, oscillation

patterns exhibit increased complexity, which will be discussed in detail in Section 2. In

Section 1.4.1, I will outline the methodology for calculating linear oscillations in spherical,

non-rotating, non-magnetic stars. Section 1.4.2 will explore an approach to analyse the

general behaviour of these oscillations, while Section 1.4.3 will focus on the principal types

of oscillations observed in solar-like oscillators.

1.4.1 Adiabatic linear oscillations

Stellar oscillations play a crucial role in our understanding of stellar structure and

evolution, providing insights into internal structure and chemical composition. Among

the various factors influencing these oscillations, turbulence is a significant yet unresolved

issue (see Section 1.1.2). In solar-like oscillators, the computation of oscillation modes must

account for various physical effects, particularly nonadiabatic ones that become pronounced

near the stellar surface. At this depth, the interplay between oscillations and convection is
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Figure 1.4: Periodogram (in arbitrary units) of the Kepler target 16 Cyg A. The Gaussian envelope used

to determine the frequency at the maximum power (νmax) is in blue. The zoom shows the large frequency

separation ∆ν, and the small frequency separation δν. Image took from García et al. (2019).

critical; however, it is often neglected the contribution of convection to the heat flux during

perturbation calculations. This introduces a major uncertainty in the calculation of the

stability of modes in cool stars with extensive outer convection zones. Furthermore, the

improper modelling of the near-surface layers contributes to a general shift of the computed

frequencies that depends on their inertia: the near-surface effects (see e.g. Ball et al. 2017).

Notably, oscillations occur over exceedingly short timescales, allowing the assumption that

the equilibrium state can be regarded as time-independent. The equations governing these

oscillations can be derived by considering only the first-order terms in perturbation theory,

as the oscillation amplitudes are significantly smaller than the stellar dimensions. Two

primary frameworks exist for describing linear perturbations to an equilibrium state Q0:

the Eulerian and the Lagrangian formulations. In the Eulerian approach, the specific

spatial location from which perturbations are evaluated remains fixed. Consequently, the

Eulerian perturbation of a quantity Q in the position ~x is defined as

Q′(~x, t) := Q(~x, t)−Q0(~x). (1.4.3)

Conversely, the Lagrangian perturbation is determined by tracking the motion of the

plasma parcel as it transitions from the equilibrium position ~x0 to a new position ~x :=

~x0 + δ~x; this is expressed as

δQ(~x, t) := Q(~x0 + δ~x, t)−Q0(~x0) = Q′(~x0, t) +
(
δ~x · ~∇

)
Q0(~x0), (1.4.4)
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where the quantity δ~x represents the Lagrangian displacement8.

Before I proceed with the analysis of the perturbed quantities, I will start by examining

equation 1.2.1, which describes the equilibrium quantities, and establish useful approxima-

tions. As previously noted in Section 1.4, I have to disregard the influence of convection on

the heat flux while calculating these perturbations. Consequently, I will focus exclusively

on the radiative zone of a solar-like star. By incorporating Lr, ∇ = ∇rad and the definition

of ∇ad into equation 1.2.1, one can derive the equation

∂ lnT

∂t
−∇ad

∂ lnP

∂t
=
εnuc − εν
cPT

+
1

ρcPTr2

∂

∂r

(
16σT 3

3κρ
r2∂T

∂r

)
. (1.4.5)

The terms on the left-hand side of equation 1.4.5 evolve over different timescales com-

pared to those on the right-hand side. Thus, when considered independently, these terms

approximate to
εnuc − εν
cPT

+
16σT 3

3κρ2cPH2
scale

≈ 1

107 years
(1.4.6)

and
∂ lnT

∂t
−∇ad

∂ lnP

∂t
≈ 1

τdyn
≈ 1

27 min
(1.4.7)

based on typical conditions found within the Sun’s interior. Consequently, with a high

degree of precision, the complexities associated with the energy equation can be avoided

by omitting the heating term until reaching the outer layers of the convective envelope,

where this approximation no longer holds. A similar rationale is applicable to linear per-

turbations, leading to adiabatic linear oscillations. Following this, one can perturb the

three-dimensional equations 1.1.3 to obtain

δρ = −ρ0
~∇δ~x

ρ0
∂2δ~x

∂t2
= −~∇P ′ − ρ0

~∇φ′ − ρ′~∇φ0

∇2φ′ = 4πGρ′

δP =
Γ1,0P0

ρ0
δρ,

(1.4.8)

where Γ1,0 := ∂ lnP0
∂ ln ρ0

∣∣∣
s0

represents the first adiabatic index of the equilibrium model. At

this stage, it becomes advantageous to employ spherical coordinates. This allows us to

express δ~x as δ~x = ξr(r, θ, φ, t)~er + ~ξh(r, θ, φ, t) leading to the formulation of a new system

8It is important to note that at first order, the time derivative of the perturbed quantity Q is connected

to the time derivative of the Lagrangian perturbation via the relation dQ
dt

= ∂δQ
∂t

. Therefore, the velocity

can be expressed as ~v = d~x
dt

= ∂δ~x
∂t

.
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of equations derived from equations 1.4.8 and 1.4.4



∂2

∂t2

[
ρ′ +

1

r2

∂

∂r

(
r2ρ0ξr

)]
= ∇2

hP
′ + ρ0∇2

hφ
′

−ρ0
∂2ξr
∂t2

=
∂P ′

∂r
+ ρ′

dφ0

dr
+ ρ0

∂φ′

∂r
1

r2

∂

∂r

(
r2∂φ

′

∂r

)
+∇2

hφ
′ = 4πGρ′

ρ′ =
ρ0

Γ1,0P0
P ′ + ρ0ξr

(
1

Γ1,0

d lnP0

dr
− d ln ρ0

dr

)
ρ0
∂2~ξh
∂t2

= −~∇hP ′ − ρ0
~∇hφ′.

(1.4.9)

Here, there are four unknowns (ξr, ρ′, P ′, φ′) articulated through four equations, as ~ξh

is a expressible in terms of P ′ and φ′. Additionally, ∇2
h denotes the horizontal Laplace

operator, while ~∇h represents the horizontal gradient operator.

Spherical harmonics

Equation 1.4.9 contains derivatives of the four functions ξr, ρ′, P ′, φ′ respect to the

angular variables (θ, φ) solely through the differential operator ∇2
h. Consequently, one can

isolate the angular dependencies of these four variables by employing spherical harmonics

[Y m
` (θ, φ)]. This approach is advantageous because the functions Y m

` (θ, φ) are eigenfunc-

tions of the differential operator ∇2
h, with corresponding eigenvalues of −`(` + 1)/r2. As

a result, within equation 1.4.9, one can derive new differential equations that are indepen-

dent of the variables θ and φ. In summary, the angular component is characterised by the

angular degree (`), which is a non-negative integer that defines the number of nodal lines

on the surface, and the azimuthal order (|m| ≤ `), an integer that denotes the number

of surface nodal lines that align with lines of longitude (see figure 1.5). Furthermore, it

has been established that the equilibrium model is nearly static on the timescale of the

oscillations. Thus, the temporal dependence presented in equation 1.4.9 can be decoupled

from the radial and angular variables, as the time derivatives act exclusively on linear

combinations of ρ′ and ξr. The final result is that the four variables can be expressed as



ξr(r, θ, φ, t) =
√

4π ξ̃r(r)Y
m
` (θ, φ)e−iωt

ρ′(r, θ, φ, t) =
√

4π ρ̃′(r)Y m
` (θ, φ)e−iωt

P ′(r, θ, φ, t) =
√

4π P̃ ′(r)Y m
` (θ, φ)e−iωt

φ′(r, θ, φ, t) =
√

4π φ̃′(r)Y m
` (θ, φ)e−iωt,

(1.4.10)
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Figure 1.5: Contour plots of the real part of spherical harmonics Y m` (θ, φ). Positive contours are indicated

by red lines and negative contours by blue lines. Figure courtesy of K. Uytterhoeven.

leading to a new set of differential equations expressed as

ω2

[
ρ̃′ +

1

r2

d

dr

(
r2ρ0ξ̃r

)]
=
`(`+ 1)

r2
(P̃ ′ + ρ0φ̃′)

ω2ρ0ξ̃r =
dP̃ ′

dr
+ ρ̃′

dφ0

dr
+ ρ0

dφ̃′

dr

1

r2

d

dr

(
r2dφ̃

′

dr

)
− `(`+ 1)

r2
φ̃′ = 4πGρ̃′

ρ̃′ =
ρ0

Γ1,0P0
P̃ ′ + ρ0ξ̃r

(
1

Γ1,0

d lnP0

dr
− d ln ρ0

dr

)
~ξh =

√
4π ξ̃h

(
∂Y m

`

∂θ
~eθ +

1

sin θ

∂Y m
`

∂φ
~eφ

)
e−iωt

ξ̃h =
P̃ ′ + ρ0φ̃

′

rω2ρ0
,

(1.4.11)

which is equivalent to a fourth-order differential equation.

Visibility of the modes

In equation 1.4.11, one deals with complex values of ω2. Nonetheless, it has been

demonstrated (e.g. Chandrasekhar 1963; Chandrasekhar 1964) that this system of equa-

tions constitutes an eigenvalue problem expressed as F(δ~r) = ω2δ~r, where F is a linear

operator that is Hermitian for adiabatic oscillations. Consequently, the eigenvalues ω2 are

real, leading to the possibility that ω may either be real or purely imaginary. Therefore,
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under the adiabatic approximation, perturbations can present as undamped oscillations

or as perturbations that are purely growing or decaying. This implies that the absolute

amplitudes of individual eigenmodes cannot be determined solely through adiabatic ap-

proximations; since no thermal energy is exchanged, it is not possible to inject or extract

energy from the oscillations. Furthermore, this eigenvalue problem is independent of the

azimuthal order m; thus, for a fixed `, the values of ω2 remain the same regardless of

the integer m. To derive the perturbed quantities, one can examine the real part of the

equations outlined in 1.4.10. As an illustrative example, the perturbed intensity of the star

is given by

I(θ, φ, t) = I0

√
4π(−1)mc`mP

m
` (cos θ) cos(mφ− ωt+ δ0), (1.4.12)

where δ0 denotes an initial phase. Therefore, for the case where m = 0, standing waves are

observed, while for m 6= 0 the behaviour corresponds to traveling waves characterised by

an angular speed of ω/m. The period of oscillation for these modes is given by 2π/ω. A

noteworthy consequence of equation 1.4.12 is that modes with ` > 3 remain undetectable

in stars regarded as point-like sources. This phenomenon arises because, upon performing

an integral average of the perturbed intensity over the stellar surface, it becomes apparent

that regions with positive perturbed intensity are counterbalanced by those with negative

values for modes with ` > 3. To evaluate the mean square components of the Lagrangian

displacement, it is possible to average equation 1.4.10 and equation 1.4.11 over both the

surface and time, yielding
δr2

rms = 〈|ξr(r, θ, φ, t)|2〉 =
|ξ̃r(r)|2

2

δh2
rms = 〈‖~ξhr, θ, φ, t)‖2〉 =

`(`+ 1)

2
|ξ̃h(r)|2.

(1.4.13)

From this, it follows that oscillation modes with low angular degree exhibit a predominance

of radial displacement over horizontal displacement at the surface of the star. Lastly, the

time-averaged kinetic energy of each oscillation mode (〈Ekin〉) can be derived from equation

1.4.13 and is expressed as
〈Ekin〉 =

1

2

〈∫
V

∥∥∥∥∂δ~r∂t
∥∥∥∥2

ρ0 dV

〉
=

1

4
Eω2

E = 4π

∫ R

0

[
|ξ̃r(r)|2 + `(`+ 1)|ξ̃h(r)|2

]
ρ0r

2 dr.

(1.4.14)

Here E denotes the mode inertia and R the total radius of the star. It is common practice

to refer to a normalised version of the mode inertia, defined as

Enorm :=
4π
∫ R

0

[
|ξ̃r(r)|2 + `(`+ 1)|ξ̃h(r)|2

]
ρ0r

2 dr

M
[
|ξ̃r(R)|2 + `(`+ 1)|ξ̃h(R)|2

] ≡ Mmode

M
. (1.4.15)
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This expression represents the ratio of the so-called modal mass (Mmode) to the total mass

(M) of the star. The normalised inertia is a crucial parameter for assessing the detectability

of non-radial modes in red giant stars (see also Section 1.4.3). Specifically, the probability

of observing a given non-radial mode depends on 1/
√
Enorm (e.g. Dupret et al. 2009).

Boundary conditions

The fourth-order differential equation 1.4.11 has to be solved with two regularity con-

ditions in the centre and two boundary conditions at the surface (e.g. Unno et al. 1989).

From a Taylor expansion near r = 0 it is possible to demonstrate that non-divergent solu-

tions require P̃ ′ ∈ O(r`), φ̃′ ∈ O(r`) and ξ̃r ∈ O(r) if ` = 0, otherwise ξ̃r ∈ O(r`−1). From

these considerations, it is possible to obtain the two independent conditions for r → 0


dφ̃′

dr
→ `φ̃′

r

dP̃ ′

dr
→ `P̃ ′

r

. (1.4.16)

One of the two surface condition is obtained by imposing the continuity of φ̃′ and its

derivative at the surface with solution of the Poisson equation in the vacuum. This happens

because the density vanishes and the condition is dφ̃′
dr + `+1

r φ̃′ = 0 at the surface. The other

boundary condition at the surface is more complicated to obtain, because the modelling

of stellar atmospheres is involved. In this case, a condition is derived when matching the

radial displacement solution with the model of the stellar atmosphere. A key factor in this

analysis is the critical acoustic frequency ωa9, which depends on the sound speed and the

pressure scale height (e.g. Christensen-Dalsgaard 2002). When ω > ωa, perturbations are

only partially reflected by the atmosphere, resulting in the oscillations losing the majority

of their energy through the boundary, even if they are adiabatic. On the other hand,

when ω < ωa, perturbations are fully trapped within the star, making ωa the minimum

frequency for a propagating wave, commonly referred to as the acoustic cut-off frequency

(Lamb 1909). To estimate the boundary condition, one can treat the atmosphere as an

empty field. In this scenario, no forces act on the boundary, allowing it to move freely.

Consequently, one can impose the condition δP = 0 at the surface, reflecting the fact that

pressure remains constant at the perturbed boundary.

9For the Sun, this frequency is approximately 5.3 mHz (e.g. Balmforth et al. 1990).
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Radial oscillations

The set of differential equations 1.4.11 can be simplified when dealing with radial

oscillations (` = 0), because the direct dependence on φ̃′ is removed. In this case, the

linear perturbations mantain the spherical symmetry of the star and we obtain the linear

second-order differential equation

1

r3

d

dr

[
r4Γ1,0P0

d

dr

(
ξ̃r
r

)]
+
ξ̃r
r

d

dr
[(3Γ1,0 − 4)P0] + ρ0ω

2ξ̃r = 0 (1.4.17)

to solve. From a physical perspective, this result holds because linear adiabatic stellar

oscillations can be modelled as a Hamiltonian system (Takata 2006b), and according to

Noether’s theorem (Noether 1918) it is possible to associate a conserved quantity with a

first integral of motion. Specifically, in the case of radial oscillations, this first integral

emerges from the solution of the linearised Poisson equation (e.g. Unno et al. 1989). More-

over, in accordance with Lie’s theorem (e.g. Hagihara 1970), the order of the canonical

equations of the Hamiltonian system is effectively reduced from four to two.

1.4.2 Cowling approximation

In Section 1.4.1, I demonstrated that the fourth-order differential equation 1.4.11 can

be simplified to a linear second-order differential equation when considering purely radial

oscillation modes. This simplification is also applicable to dipole modes (i.e. ` = 1) as a

first integral of motion arises from the conservation of momentum (Takata 2005; Takata

2006a). However, it is important to note that this is not a universal finding; other non-radial

oscillation modes (i.e., those with ` > 0) may not have integrals of motion. Consequently,

a complete resolution of the fourth-order differential equation 1.4.11 is necessary at least

for ` > 1 modes. Nonetheless, Cowling (1941) demonstrated that in short-wavelength

(i.e. much smaller than the radius of the star) waves the Eulerian perturbation to the

gravitational potential (represented as φ̃′ of equation 1.4.11) nearly cancels out at each

point. This cancellation occurs because it is dependent on the integral of the Eulerian

density perturbation (denoted as ρ̃′ in equation 1.4.11), which tends to zero owing to the

rapid spatial variation of ρ̃′. As a result, the fourth-order differential equation may be

approximated with a more tractable linear second-order equation (see also Unno et al.

1989), a method referred to as the Cowling approximation. Before proceeding, it is useful

to introduce two key quantities relevant to mode identification: the squared Brunt-Väisälä

(N2) and Lamb (S2
` ) frequencies. The Brunt-Väisälä frequency was previously defined

in equation 1.2.6, but here we shall adopt a complementary definition that excludes the
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temperature gradient. These quantities are defined as
N2 :=

dφ

dr

(
1

Γ1

d lnP

dr
− d ln ρ

dr

)
S2
` :=

`(`+ 1)Γ1P

ρr2

. (1.4.18)

I can now substitute equation 1.4.18 into equation 1.4.11, and utilising the Cowling ap-

proximation to derive the new set of differential equations
dξ̃r
dr

= −
(

2

r
+

1

Γ1

d lnP

dr

)
ξ̃r +

1

Γ1P

(
S2
`

ω2
− 1

)
P̃ ′

dP̃ ′

dr
= ρ(ω2 −N2)ξ̃r +

1

Γ1

d lnP

dr
P̃ ′

. (1.4.19)

In this formulation, the subscript 0 has been omitted from the equilibrium quantities for

the sake of simplicity in notation. As it will become clearer in Section 1.4.3, the system

of equation 1.4.19 admits non-trivial solutions only for discrete values of the eigenvalues

ω2. These solutions can be associated to an integer number (n) denominated radial order,

because it is related to the number of nodes observed in the radial displacement (Eckart

et al. 1960; Scuflaire 1974; Osaki 1975, e.g.). This mode integer exhibits a monotonous and

continuous increase in relation to the eigenfrequency (Gabriel et al. 1979). Moreover, even

if the adiabatic theory cannot tell us the absolute amplitude of each oscillation mode, it can

helps us in learning the relative importance of each one compared to the others. For modes

of high radial order or high angular degree, the validity of the Cowling approximation has

been corroborated through computational studies (e.g. Robe 1968; Christensen-Dalsgaard

1991). However, its efficacy diminishes progressively for modes characterised by low angular

degree and low radial order, as the term φ̃′ becomes significant in these situations.

1.4.3 Asymptotic analysis of stellar oscillations

The Cowling approximation plays a crucial role in the classification of oscillation modes.

In fact, through the JWKB method (developed by Jeffreys, Wentzel, Kramers and Bril-

louin, see e.g. Unno et al. 1989; Gough 2007) characteristic wave solutions can be derived.

This methodology is predominantly employed to derive approximate solutions for linear

differential equations that exhibit spatially varying coefficients, as exemplified by equation

1.4.19. The resultant solutions are generally expressed as an asymptotic series expansion,

a technique commonly referred to as the asymptotic analysis of stellar oscillations (e.g.

Shibahashi 1979; Tassoul 1980). As will be elaborated upon later, the Cowling classifica-

tion distinguishes stationary waves into three main categories (e.g. Deubner et al. 1984;

Unno et al. 1989; Gough 1993; Gough 1996): gravity modes (g-modes), acoustic or pressure
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modes (p-modes), and the fundamental mode (f-mode), which is associated with surface

gravity waves. In this section, I will summarise the main results concerning p-modes and

g-modes, along with their interaction in CHeB stars.

To elucidate the primary characteristics of these modes, it is advantageous to define

the parameters 

b(r) :=
2

r
+

1

Γ1

d lnP

dr

f(r) :=
1

r2Γ1P

∣∣∣∣S2
`

ω2
− 1

∣∣∣∣
ξ̂r :=

ξ̃r√
f(r)

h̃(r) := b(r)
d ln f

dr
− db(r)

dr
+ b2(r)

h(r) := h̃(r)− 1

2

d2 ln f

dr2
+

1

4

(
d ln f

dr

)2

K(r) :=
ρ

Γ1Pω2

(
S2
` − ω2

) (
N2 − ω2

)
.

(1.4.20)

Subsequently, from equation 1.4.19, the second-order differential equation

d2ξ̂r
dr2

+ [K(r)− h(r)]ξ̂r = 0 (1.4.21)

is derived. At this stage, I can assume that the perturbed variables vary much more

rapidly than the equilibrium quantities, which is particularly applicable to high radial

order oscillations. Therefore, it is possible to neglet all the derivatives of the equilibrium

quantities in equation 1.4.21 and seek solutions of the form
ξ̂r(r) =

eiψ(r)√
|kr(r)|

k2
r(r) = K(r).

(1.4.22)

Here ψ(r) represents a rapidly varying function, and its derivative corresponds to the local

radial wave number kr(r), which, therefore, is large. Finally, the eigenfunctions are

ξ̂r ∝ |K(r)|−1/4



exp

(
−
∫ r1

r

√
|K(x)| dx

)
, K(r) < 0, r < r1

cos

(∫ r

r1

√
K(x) dx− π

4

)
, K(r) > 0, r1 � r � r2

exp

(
−
∫ r

r2

√
|K(x)| dx

)
, K(r) < 0, r > r2,

(1.4.23)

for which r1 and r2 are the points where K(r) = 0. These solutions are related to the

radial order through the integral∫ r2

r1

√
K(r) dr = (n+ α)π, n ∈ N, (1.4.24)
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with α a phase constant. Therefore, where K(r) < 0, the oscillations decay exponentially,

and where K(r) > 0, the oscillations remain undamped. This indicates that each eigen-

mode is confined within the region designated as the resonance cavity, where K(r) > 0,

and its frequency is primarily influenced by the structure of the model within this area.

The boundaries that delineate these trapping regions occur at K(r) = 0, which are referred

to as turning points (i.e. r1 and r2). It is important to notice that the oscillating part

of equation 1.4.23 is applicable only in regions that are sufficiently distant from the turn-

ing points. If this condition were not met, it would not have been possible to neglet the

derivatives of the equilibrium quantities. In such cases, the eigenfunctions would have been

more accurately represented by Airy functions. Finally, there are two principal categories

of trapped oscillations that arise for real values of ω:

• ω > |N | and ω > S`, which we denote as p-modes;

• ω < |N | and ω < S`, which we denote as g-modes.

A useful method to summarise the classification of eigenmodes and their associated prop-

erties is through a propagation diagram. This graph represents S2
` and N2 as functions of

either internal radius or mass, as exemplified for a star comparable to the Sun in figure

1.6.

Pressure-modes

Pressure modes are standing sound waves for which the pressure gradient acts as the

dominant restoring force, and they can have radial or non-radial spherical harmonic ge-

ometries. For radial pressure modes, since there is no angular dependence (i.e. S0 = 0

rad/s), the entire star acts as the resonance cavity. As a result of the definition of K(r) in

equation 1.4.20, the eigenfunctions in equation 1.4.23 and the considerations regarding the

acoustic cut-off frequency of Section 1.4.1, it is possible to obtain that p-modes are trapped

in a region between an inner turning point [rt : ωr2
t ρ(rt) = `(` + 1)Γ1(rt)P (rt)] and the

surface of the star. The propagation diagram of figure 1.6 summarises these results. From

the figure it is clear that rt decreases at decreasing ` and increasing ω. Moreover, as a

consequence of equation 1.4.24, the higher the radial order, the higherK(r). Therefore, the

higher the number of radial nodes of the eigenfunctions and the higher the eigenfrequency.

This is why, conventionally, the radial order is designed as a positive integer for p-modes.

When ω2 � N2 (i.e. high radial order p-modes), K(r) + `(`+1)
r2 ≈ ω2 ρ

Γ1P
, which is

the dispersion relation of an acoustic wave with total wave number k =
√
K(r) + `(`+1)

r2 .
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Figure 1.6: Propagation diagram for a star analogous to the Sun, plotted as a function of the internal

radius. The solid blue line represents the Brunt-Väisälä frequency, while the two dashed lines depict the

Lamb frequency for angular degrees ` = 1 (in orange), ` = 2 (in green) and ` = 70 (in red). The dotted

black line illustrates the frequency at which the model exhibits maximum power, which is an indication of

the frequency domain of observable solar-like oscillations.

34



1.4. ASTEROSEISMOLOGY OF SOLAR-LIKE OSCILLATORS

Moreover, it is possible to find an approximate solution for ω with asymptotic expansions

of equation 1.4.24 and obtain the asymptotic relation

νn,` =
ωn,`
2π
≈
(
n+

`

2
+

1

4
+ α

)
∆ν − [A`(`+ 1)− δ] ∆ν2

νn,`
, (1.4.25)

where

∆ν :=

(
2

∫ R

0

dr√
vsound

)−1

(1.4.26)

is the asymptotic large frequency separation, δ is a phase constant and

A :=
1

4π2∆ν

[
vsound(R)

R
−
∫ R

0

dvsound

dr

dr

r

]
. (1.4.27)

From equation 1.4.26, it follows that for a fixed `, νn,` − νn−1,` ≈ ∆ν. This implies

that the eigenfrequencies of consecutive radial order are evenly spaced by the quantity

∆ν. Additionally, the small frequency separation, defined as δνn,` := νn,` − νn−1,`+2, is

particularly sensitive to the structure of the stellar core. As a result, in main sequence

stars, δνn,` serves as a key indicator of age, reflecting changes in the mean molecular weight

within the core. Furthermore, it is important to note that high-order p-modes with low

angular degree satisfy the condition K(r) � `(`+1)
r2 , indicating that their propagation is

predominantly radial than horizontal.

Gravity-modes

Gravity modes are standing waves for which the buoyancy acts as the dominant restor-

ing force. They can have only non-radial spherical harmonic geometries, because buoyancy

necessitates variations across horizontal surfaces10. As a result of the definition of K(r)

in equation 1.4.20 and the eigenfunctions in equation 1.4.23, it is possible to obtain that

g-modes are trapped in a region between an inner turning point [r1 : ω2 = N2(r1)] and an

outer turning point [r2 : ω2 = N2(r2)]. Therefore, it follows that both turning points do

not depend on the angular degree, and that g-modes exponentially decay in regions where

N2 ≤ 0. Consequently, g-modes can be trapped only in the radiative regions of the star.

The propagation diagram of figure 1.6 summarises these results. Moreover, also in this case

as a consequence of equation 1.4.24, the higher the radial order, the higher K(r). However,

the higher the number of radial nodes of the eigenfunctions, the lower the eigenfrequency

for g-modes. This is why the radial order is conventionally a negative integer for g-modes.

When ω2 � S2
` (i.e. high radial order g-modes), K(r) + `(`+1)

r2 ≈ `(`+1)N2

ω2r2 , which is

the dispersion relation of a buoyancy wave with local wave number k =
√
K(r) + `(`+1)

r2 .

10In other words, it does not exist a positive eigenfrequency with ω < 0 rad/s
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Moreover, it is possible to find an approximate solution for ω with asymptotic expansions

of equation 1.4.24 and obtain the asymptotic relation (Tassoul 1980)

ωn,` ≈
√
`(`+ 1)

π
(
n+ `

2 + α
) ∫ r2

r1

N

r
dr (1.4.28)

from which it is useful to define the quantity

∆Pas :=
2π2√
`(`+ 1)

(∫ r2

r1

N

r
dr

)−1

(1.4.29)

called asymptotic period spacing. In fact, from equation 1.4.28 and equation 1.4.31, it

follows that at a fixed `, eigenperiods (i.e. Pn,` = 1/νn,`) of consecutive radial order are

equally spaced by the quantity ∆Pas, that is Pn,` − Pn−1,` ≈ ∆Pas. Moreover, the higher

is `, the lower the period spacing (i.e. Pn,` − Pn−1,`). Furthermore, it is important to

note that high-order g-modes satisfy the condition K(r) � `(`+1)
r2 , indicating that their

propagation is predominantly horizontal than radial.

Mixed-modes

In red giant stars, the oscillation modes observed are not purely p-modes or g-modes;

instead, the oscillation modes exhibit a mixed character, combining the characteristics

of both pressure and gravity modes (e.g. Beck et al. 2011). This mixing occurs due to

the concurrent increase of N2 and S2
` , which facilitates the occurrence of comparable

frequencies for both p-modes and g-modes. This behaviour can be summarised in the

propagation diagram presented in figure 1.7. Notably, an eigenmode near the frequency

of maximum power behaves as a g-mode within the radiative region near the centre of

the star, referred to as the g-cavity. In contrast, within the region that extends from

the base of the convective envelope to the stellar surface, this same mode manifests as

a p-mode, which is termed the p-cavity. Consequently, mixed modes provide valuable

information regarding the internal properties of red giant stars while remaining sufficiently

detectable. If the modes within the g-cavity possess high radial orders, one can apply the

asymptotic expansion of g-modes, as expressed in equation 1.4.28, to those modes with

the highest normalised inertia (as defines in equation 1.4.15). These modes predominantly

probe the g-cavity than the p-cavity, and exhibit low observable amplitudes. In fact, the

observable amplitude for mixed modes near νmax is primarily influenced by E
−1/2
norm (e.g.

Dupret et al. 2009). Conversely, mixed modes with low inertia show higher observable

amplitudes as they are more sensitive to the p-cavity. This p-character leads to deviations

from the expected asymptotic period spacing, a phenomenon that will be elaborated upon

in Chapter 2. Therefore, mixed modes serve as a powerful tool for differentiating between
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Figure 1.7: Propagation diagram for a star at the beginning of the CHeB stage with one solar mass and

solar metallicity, plotted as a function of the internal mass. The solid blue line represents the Brunt-Väisälä

frequency, while the two dashed lines depict the Lamb frequency for angular degrees ` = 1 (in orange) and

` = 2 (in green). The dotted black line illustrates the frequency at which the model exhibits maximum

power, which is an indication of the frequency domain of observable solar-like oscillations.
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low-mass stars on the CHeB phase and those on the red giant branch (e.g. Montalbán

et al. 2010; Bedding et al. 2011; Mosser et al. 2011a; Mosser et al. 2012a). Furthermore,

data gathered from space missions such as CoRoT and Kepler have enabled the assessment

of differential rotation in red giants, in addition to enhancing our understanding of core

rotation characteristics (Beck et al. 2012; Deheuvels et al. 2014; Deheuvels et al. 2015;

Mosser et al. 2018).

The area situated between the two cavities is identified as an evanescent zone, as it

satisfies the conditions ω > N and ω < S`. The dimensions of this zone determine

the intensity of the coupling between the g-cavity and the p-cavity. The behaviour of

mixed modes can be conceptualised in terms of a wave transmission-reflection problem (see

e.g. Roxburgh et al. 2001; Takata 2016b; Pinçon et al. 2022) occurring between resonant

cavities. Specifically, an incoming wave from a cavity is partially reflected at the boundary

while also being partially transmitted (with phase delays) toward the other cavity situated

on the opposite side of the barrier. In the context of adiabatic oscillations, the conservation

of wave energy flux also applies, resulting in a transmission coefficient between the two

cavities that ranges between 0 and 1. This principle can be similarly applied in the presence

of additional g-cavities (Pinçon et al. 2022). The strength of the coupling between two

resonant cavities is commonly quantified using the coupling parameter

q := cot(Φg) tan(Φp), (1.4.30)

where Φg denotes the total phase of gravity-wave oscillations in the core and Φp signifies the

acoustic-wave oscillations in the convective envelope (see e.g. Takata 2016a; Takata 2016b).

The parameter q is related to the trasmission coefficient (T1,2) through the equation

q =
1−

√
1− T 2

1,2

1 +
√

1− T 2
1,2

, (1.4.31)

and thus varies from 0 (indicating no coupling) to 1 (indicating maximum coupling). In low-

mass CHeB stars within the Kepler field, typical coupling values are in the range [0.2−0.45]

(e.g. Mosser et al. 2017), while in red giant branch stars with comparable luminosities, these

values are typically lower (between 0.12 and 0.18, e.g. Mosser et al. 2017). Additionally,

the coupling parameter tends to be greater in lower mass stars, suggesting that CHeB stars

with the lowest masses generally exhibit the strongest couplings (e.g. van Rossem et al.

2024), a point that will be further discussed in Chapter 2. Finally, it is noteworthy that,

from a mathematical perspective, it is feasible to decouple g-modes from p-modes in red

giant stars (e.g. Ong et al. 2020). These uncoupled g-modes, referred to as γ-modes, can be
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employed to investigate the properties of the g-cavity without the complications introduced

by phase lags and the transmission-reflection phenomena. The relevance of γ-modes will

be explored in chapters 2 and 4.
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Chapter 2

Red horizontal branch stars: An

asteroseismic perspective1

Robust age estimates of red giant stars are now possible thanks to the precise inference

of their mass based on asteroseismic constraints. However, there are cases where such

age estimates can be highly precise yet very inaccurate. An example is giants that have

undergone mass loss or mass transfer events that have significantly altered their mass. In

this context, stars with "apparent" ages significantly higher than the age of the Universe

are candidates for stripped stars, or stars that have lost more mass than expected, most

likely via interactions with a companion star or because of the poorly understood mass-loss

mechanism along the red-giant branch.

In this work, my collaborators and I identify examples of such objects among red giants

observed by Kepler , both at low ([Fe/H] . −0.5) and solar metallicity. By modelling

their structure and pulsation spectra, we find a consistent picture that confirms that they

are indeed low-mass objects consisting of a He core of ≈ 0.5 M� and an envelope of

≈ 0.1− 0.2 M�. Moreover, we find that these stars are characterised by a rather extreme

coupling (q & 0.4) between the pressure-mode and gravity-mode cavities, one that is much

higher than the typical value for red clump stars, thus providing a direct seismic signature

of their peculiar structure.

The complex pulsation spectra of these objects, if observed with sufficient frequency

resolution, hold detailed information about the structural properties of likely products of

mass stripping and can hence potentially shed light on their formation mechanism. On

the other hand, our tests highlight the difficulties associated with reliably measuring the

large frequency separation, especially in shorter datasets, which impacts the reliability of

1The work presented in this chapter is based on Matteuzzi et al. (2023).
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the inferred masses and ages of low-mass red clump stars with, for example, K2 or TESS

data.

2.1 Introduction

It is widely accepted that the large range in colour shown by low-mass stars in the

central He-burning phase, called the horizontal branch (HB), is mainly due to variations

in the efficiency of the H-burning shell and, hence, due to the mass of the H envelope

remaining around a He core of ' 0.5 M� (e.g. Salaris et al. 2006). In a colour-magnitude

diagram, low-mass core-He-burning (CHeB) stars appear distributed in both bluer and

redder colours than the RR Lyrae instability strip (RRL-IS). Those located between the

RR Lyrae and the red clump (RC; e.g. Girardi 2016) are called red horizontal branch (rHB)

stars, and they have a H-rich envelope of ≈ 0.1− 0.2 M� (e.g. Rood et al. 1989; Valcarce

et al. 2008; Girardi 2016; Tailo et al. 2020). This HB component has been clearly observed

in globular clusters of different metallicities and ages (e.g. Armandroff 1988; Stetson et al.

1989; Catelan 2009; Tailo et al. 2020); however, rHB objects also exist in the field. While

their identification is challenging, their census has been considered extremely important

for tracing old stellar populations in the Milky Way (e.g. Kaempf et al. 2005; Chen et al.

2010; Chen et al. 2011). Although mainly associated with stars of low to intermediate

metallicity, corresponding to the thick disc and halo population, spectroscopic studies (e.g.

Afşar et al. 2012; Afşar et al. 2018) have shown that rHB stars are also present in the metal-

rich component of the Milky Way. This suggests that the progenitors of these objects have

followed a non-standard evolution with significant mass loss or envelope stripping due to

binary interactions. Signs of significant mass loss have been revealed in red giants observed

by the Kepler space telescope (Borucki et al. 2010) in the field and in the open cluster

NGC 6819 (e.g. Handberg et al. 2017; Brogaard et al. 2021; Li et al. 2022).

Stellar evolution models predict different structures for rHB and RC stars, with the

latter having a similar He core as the former but a larger H envelope. We thus expect

their seismic properties to be different. The exquisite precision achieved after 4 years of

Kepler observations has revealed oscillation spectra of red giants with an increasing level of

complexity (see Chaplin et al. 2013, for a review): frequency patterns in red-giant branch

(RGB) stars similar to those found in main-sequence stars (universal pattern; Mosser et al.

2011b); spectra of RC stars with "forests" of dipole modes around the nominal acoustic

mode, but still with an evident regularity (i.e. Beck et al. 2011); and "outlier" spectra with

a larger number of visible modes over the whole frequency domain, which are hypothesised
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in this work to belong to rHB stars (see Fig. 2.1).

In this work we identify a small sample of 11 rHB candidates among the red giants

in the Kepler field. Their global seismic properties and atmospheric parameters suggest

that they are low-mass CHeB stars with low, intermediate, or solar metallicity. Combining

numerical simulations of stellar structure and evolution and stellar oscillations, we study

the consistency between the location of our rHB candidates in the Hertzsprung–Russell

diagram (HRD), their theoretically predicted internal structure, and their oscillation spec-

tra. Our rHB sample is presented in Sect. 2.2 and the theoretical models in Sect. 2.3.

Section 2.4 discusses the properties of theoretical oscillation spectra of typical rHB and

RC stars, as well as the comparison with observations. In Sect. 2.5 we summarise our

findings.
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Figure 2.1: PSD for five low-mass red giants (grey lines in the five panels) observed by Kepler . Panels

(a), (b), and (c) show the three low-mass CHeB stars KIC5271626, KIC6032981, and KIC8694070 (first

three rows in Table 2.1 and coloured stars in Fig. 2.2). Panels (d) and (e) show the RC star KIC1161618

and the RGB star KIC2436824, for comparison (see next page). All five panels contain a smoothed PSD

(red lines) computed with a box kernel of width 0.5 µHz in panels (a), (b), (c), and (d), and of width 0.1

µHz in panel (e).

44



2.2. OBSERVATIONAL DATA

26 28 30 32 34 36 38 40 42
Frequency [µHz]

0

20000

40000

60000

80000

100000

120000

140000

160000

PS
D

[pp
m

2

µ
H

z
]

(d)
KIC1161618

RC star

[Fe/H] =−0.02
Teff = 4740 K

Original
Smooth

25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0
Frequency [µHz]

0

100000

200000

300000

400000

PS
D

[pp
m

2

µ
H

z
]

(e)
KIC2436824

RGB star

[Fe/H] = 0.34
Teff = 4340 K

Original
Smooth

Figure 2.1: (Continued)

2.2 Observational data

In addition to KIC4937011, a 0.71 M� CHeB star belonging to the open cluster

NGC 6819 (see Handberg et al. 2017) that has a turn-off mass of ∼ 1.6 M�, we found 11 red

giants in the Kepler database2 with peculiar power spectral densities (PSDs). While their

global seismic parameters (mean large frequency separation, 〈∆ν〉, frequency of maximum

power, νmax, and asymptotic period spacing of the dipole modes, ∆Π1) are compatible

with low-mass CHeB stars, they have complex oscillation spectra. They have, for instance,

an unusually high number of observable dipole mixed modes without the amplitude mod-

ulation around the p-like modes that is typically found in low-RGB and RC stars. This

fact suggests that all dipole modes also have a significant amplitude in the outer region of

the star and, hence, that g and p resonant cavities in these objects are strongly coupled.

2https://archive.stsci.edu/missions-and-data/kepler
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The ability to transfer the energy of the mode from one cavity to the other, instead of

it remaining trapped mainly in one of them, is quantified by the coupling factor, q (e.g.

Shibahashi 1979; Takata 2016a). The analysis of Kepler light curves provides the seismic

parameters mentioned above, as well as the value of q (e.g. Vrard et al. 2016; Mosser et al.

2017; Mosser et al. 2018). Theoretically, the parameter q ranges from 0 (uncoupled) to 1

(completely coupled). All the stars in our sample have q & 0.4, while the median for RC

stars is ' 0.25− 0.3 (Vrard et al. 2016; Mosser et al. 2017).

On the other hand, the values of radial mode-linewidths (Γ0 > 0.2 µHz) are larger than

the third quantile of the full sample of CHeB Kepler stars (median value Γ0 = 0.15 µHz;

Vrard et al. 2018). Both a high q and a high Γ0 contribute to increasing the complexity

of the spectra. Moreover, given the dependence of Γ0 on the effective temperature, Teff

(e.g. Chaplin et al. 2009), the quadrupole modes are more difficult to detect in the hotter

metal-poor subsample than in the cooler metal-rich objects.

The seismic properties (νmax, 〈∆ν〉, ∆Π1, and q) for our sample are reported in Ta-

bles 2.1 and A.1, together with the atmospheric parameters (Teff and chemical composition)

from APOGEE Data Release (DR) 16 and DR17 (Ahumada et al. 2020; Abdurro’uf et al.

2022). Twenty-five percent (3 out of 12) of the sample are metal-rich (0 ≤ [Fe/H] < 0.3)

cool (4600 ≤ Teff/K ≤ 4800) stars, and the rest are low- or intermediate-metallicity

(−1.4 < [Fe/H] < −0.5) stars with 5200 ≤ Teff/K ≤ 5600, that is, they belong to the

’classical’ rHB.

Tables 2.1 and A.1 also contain the stellar luminosity derived using Gaia-DR3 astrom-

etry data (see Appendix A for details) and an estimate of their mass. The latter can be

derived from scaling relations involving atmospheric and global seismic parameters (see

e.g. Miglio et al. 2012). Here we use the one combining L, Teff , and νmax:

M

M�
=

(
Teff,�
Teff

)3.5 ( νmax

νmax,�

) (
L

L�

)
, (2.2.1)

where the solar reference values are Teff,� = 5777 K and νmax,� = 3090 µHz (Huber et al.

2011). The mass uncertainties are calculated in quadrature by considering an uncertainty

of at least 50 K in Teff as estimated from an independent analysis of APOGEE spectra (see

Appendix A). In Appendix A.1 we also discuss the stellar mass values from a model-based

corrected scaling relation involving Teff , 〈∆ν〉, and νmax (Eq. A.1.1).

We notice that the mass of KIC 4937011 in Table A.1 is that of Handberg et al. (2017),

and its value is nevertheless compatible with our results obtained with Eqs. 2.2.1 or A.1.1.

All the objects in our sample are then very low-mass stars (M . 0.8 M�) with a high
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coupling3 between p-mode and g-mode cavities.

We selected three stars (those in Table 2.1) as representative of low-mass CHeB stars

in different metallicity domains. Figure 2.2 shows these stars in an HRD, together with

the Kepler -APOGEE red giant sample (Miglio et al. 2021, grey dots) and the red edge of

the RRL-IS (Marconi et al. 2015, dashed red line). The two metal-poor stars (blue star

symbols) are located between the RRL-IS and the RC, as expected for rHB stars, while

the metal-rich CHeB star (orange star symbol) appears in the region of the "ensemble"

Kepler-RC. Its location is nevertheless redder than the RC at solar metallicity, and hence

it is indeed a rHB metal-rich star, as also suggested by its mass (see also Handberg et al.

2017) and oscillation spectra. As mentioned above, rHB stars, especially metal-rich ones,

must have followed a non-standard evolution to reach their current state within the age

of the Universe. They are probably the progeny of strongly interacting binary systems. It

has not been possible to confirm that hypothesis using the currently available Gaia-DR3

astrometry data (see Halbwachs et al. 2023, for the non-single star processing4), but we

cannot exclude that they were part of binary systems in the past.

2.3 Simulated data

The aim of this work is not to fit the available observational data, but to analyse the

relation between the structures of rHB stars, according to stellar evolution theory, and

their oscillation spectra, and to compare the latter with those observed in our sample.

From a grid of models (see Appendix B) we select two sets of parameters that are good

representatives of the mass and chemical composition of classical rHB stars (M = 0.65 M�,

[α/Fe] = 0.2 and [Fe/H] = −1.00) and metal-rich low-mass CHeB stars (M = 0.75 M�,

[α/Fe] = 0 and [Fe/H] = 0). For comparison, we also consider a typical RC star (M =

1.5 M� with solar composition). As shown in Fig. 2.2, the parameters selected for our ref-

erence models do provide a good representation of the low- to intermediate-metallicity and

metal-rich rHB stars in our sample. We also note that without complementary informa-

tion, such as that provided by asteroseismology, a metal-rich rHB star would be mistaken

for a more massive star in the RGB (see also Handberg et al. 2017).

It is generally accepted that, except for the age, the properties of a low-mass star with

a He core of ' 0.5 M� and a H-rich envelope of ∼ 0.1− 0.2 M� are largely independent of
3We notice that stars in the CHeB stage could have multiple cavities in the inner part due to semi-

convection. This could lead to a bias when estimating q from the fit of observations with the asymptotic

relation for dipole modes (e.g. Pinçon et al. 2022). This must be considered in future work.
4We also checked the non-single star hypothesis using the fidelity_v2 table.
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Figure 2.2: HRD of a sample of red giants in the Kepler field. The coloured star symbols highlight the

location of the first three rHB candidates in Table 2.1, and the grey dots in the background correspond to

the Kepler -APOGEE sample in Miglio et al. (2021). The blue and red lines represent the theoretical red

giant evolutionary tracks (from the RGB phase until the first thermal pulse) of low-mass stars with two

different chemical compositions: M = 0.65 M�, [α/Fe] = 0.2, [Fe/H] = −1.00 (blue) and M = 0.75 M�,

[α/Fe] = 0, [Fe/H] = 0 (red). The green line is the evolutionary track for a 1.5 M� with solar composition,

and the dashed red one is the red edge of the RRL-IS for the composition of the blue track (see Marconi

et al. 2015). Solid orange and blue circles correspond to our rHB and RC reference models, with a central

He mass fraction Yc ' 0.27.

Table 2.1: Summary of the seismic and atmospheric properties for three rHB candidates of our sample (Sect. 2.2).

KIC L [L�] Teff [K] [Fe/H] [α/Fe] 〈∆ν〉 [µHz] νmax [µHz] q ∆Π1 [s] M [M�]

5271626∗ 42± 4 4769± 9 0.03 0.01 3.91± 0.05 25.1± 0.5 0.61 291.4± 1.7 0.66± 0.07

6032981+ 44± 4 5300± 110 -1.01 0.37 5.188± 0.017 35.4± 0.6 1.15 321± 3 0.68± 0.08

8694070 53± 5 5300± 30 -1.44 0.25 5.135± 0.018 34.6± 0.6 0.7 332± 4 0.81± 0.09

Mock rHB 44 5663 -1.00 0.2 6.41 42.5 0.65 324 0.65

Mock RC 59 4891 0.00 0.0 4.79 44.1 0.25 313 1.50

Notes. For each Kepler ID (KIC) we report: the effective temperature, Teff , the [Fe/H], and the [α/Fe] from APOGEE-

DR17 or APOGEE-DR16 (one star marked with a plus sign); and the mean large frequency separation, 〈∆ν〉, and frequency

of maximum power, νmax, calculated by us using the code in Davies et al. (2016) or Yu et al. (2018) data (one star marked

with an asterisk). The coupling factor, q, and asymptotic period spacing of the dipole modes, ∆Π1, were calculated using

the stretched-period method (see e.g. Vrard et al. 2016). The current stellar mass, M , was computed from Eq. 2.2.1. The

last two rows show the properties of a simulated rHB and RC star (Sect. 2.3).
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whether the star was born with a small mass or whether it originated from a more massive

star (M . 1.8 M�) that underwent significant mass loss. Therefore, it is justified to use

structure models calculated without mass loss such as those in our grid.

In the following we concentrate on a metal-poor model since, as described in Sect. 2.2,

we expect metal-poor rHB stars to present more marked differences with respect to the

spectra of typical RC stars. We selected structure models with a central He mass fraction

Yc ∼ 0.27 as representative of the CHeB phase. The structures and oscillation spectra of

these reference models will be discussed in Sect. 2.4.

To simulate 4-year-long Kepler observations of such objects, we use the code AADG3

(AsteroFLAG Artificial Dataset Generator, version 3.0.2; Ball et al. 2018, and references

therein). Frequencies and normalised inertiae (Enorm, as outlined in equation 1.4.15 of

Section 1.4.1) of radial (` = 0) and non-radial (` = 1− 3) adiabatic oscillation modes were

computed using the code GYRE (version 6.0.1, Townsend et al. 2013; Townsend et al. 2018;

Goldstein et al. 2020). AADG3 also requires information on mode lifetimes, a quantity that

is directly related to non-adiabatic processes and therefore does not result from the GYRE

computation. AADG3 uses a relation between Γ0, ν, νmax, and Teff calibrated on a small

sample of main-sequence and RGB spectra. Since the temperatures of our metal-poor rHB

stars are outside the domain covered by the calibration sample, and since Γ0 also depends

on the evolutionary state (Vrard et al. 2018), we adopted as values of Γ0 the ones obtained

from peak-bagging radial modes in the spectra of our CHeB sample (using the method

described in Davies et al. 2016).

2.4 Discussion

In this section we analyse the structures and oscillation spectra of our reference models

(rHB and RC), and we compare the simulated PSD with the observed ones (Sect. 2.4.3).

2.4.1 Propagation diagram

The propagation diagrams of dipole modes for our rHB and RC reference models are

shown in the upper panels of Fig. 2.3. In each panel, we show the modified Brunt-Väisälä

(Ñ) and Lamb (S̃) frequencies (Takata 2006a) as a function of the normalised radius

(x = r/Rphot, with Rphot the photospheric radius), as well as the expected frequency

domain of the solar-like oscillations.

The Ñ and S̃ profiles define the inner limits of the g and p cavities. For modes with

a frequency close to νmax, these limits are defined by the condition S̃(x1) = νmax and
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Figure 2.3: Comparison between structure and seismic properties of rHB (left panels) and RC (right

panels) reference models (see Sect. 2.3). Upper panels: Propagation diagrams of the dipole modes, with

blue and orange lines corresponding to the modified Brunt-Väisälä and Lamb frequencies (Takata 2006a),

respectively. The grey bands represent the frequency domain of expected solar-like oscillations, and at their

centre the dashed cyan lines indicate the νmax values. The insets are zoomed-in views of the evanescent

zones, delimited at νmax by the red and black points. Their different extension translates to a different

coupling between g and p cavities (see main text). Lower panels: Normalised inertia, Enorm, and period

spacing of the dipole modes, ∆P , as functions of the eigenfrequencies, with the red curve representing, for

comparison, the Enorm of radial modes. The dashed green line indicates the value of the period spacing

from the asymptotic theory of high-order g modes (∆Pa; Tassoul 1980), and the grey band and the dashed

cyan line have the same meaning as in the upper panels.
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Ñ(x2) = νmax, and in the region between x1 and x2 the modes are evanescent.

The extent of the evanescent zone is one of the ingredients that determine the coupling

between resonant cavities (Takata 2016a; Pinçon et al. 2020). From the zoomed-in boxes

in Fig. 2.3 it appears that this region is smaller in the rHB model than in the RC one, and,

therefore, we expect the coupling factor, q, to be larger in the former than in the latter.

Indeed, using the structure of our reference models and the strong-coupling approximation5

for the dipole modes (Takata 2016a; Pinçon et al. 2020), we obtain qrHB = 0.65 and

qRC = 0.25 at ν = νmax. We note that these values are consistent, given the typical

uncertainties (σq ∼ 0.2), with those measured from the observed PSDs (see Tables 2.1 and

A.1, Vrard et al. 2016, and Mosser et al. 2017; 2018).

We notice that the value of the coupling factor is also a function of the mode frequency

(e.g. Pinçon et al. 2020; Jiang et al. 2020; van Rossem et al. 2024). As shown in Fig. 2.3,

the size of the evanescent zone decreases (and thus q increases) with increasing frequency.

The value of q varies from 0.56 to 0.74 in the solar-like frequency domain for the rHB

model, and from 0.22 to 0.24 for the RC one. In Sect. 2.4.2 we discuss the effect of this

variation on the behaviour of the period spacing.

2.4.2 Dipole mode properties

In this section we analyse the properties of the dipole mode spectra computed for our

reference models. The bottom panels of Fig. 2.3 show Enorm and the period spacing (∆P ,

which is the period difference between two consecutive modes of the same angular degree)

as a function of the eigenfrequencies.

We recall that Enorm is an average of the mode energy, and its value indicates the main

region probed by the mode (see Section 1.4.1). Modes that examine central, high-density

regions have higher Enorm than modes that are preferentially trapped in the outer regions.

The inertia of dipole modes of the RC model shows a significant variation between local

minima and maxima (ratio up to ≈ 27 in the observable region), corresponding to the p-like

and g-like modes, respectively. On the contrary, the inertia in the rHB is almost uniform,

with a small contrast between maxima and minima (ratio up to ≈ 3 in the observable

region). This indicates that the dipole modes in the rHB are not clearly trapped in any of

the resonant cavities, that is, they have an important mixed p–g character. This behaviour

is consistent with the coupling factor values derived in the previous section.

5The weak-coupling approximation (see e.g. Shibahashi 1979; Unno et al. 1989) does not hold for

low-mass CHeB stars (see e.g. Vrard et al. 2016; Mosser et al. 2017; van Rossem et al. 2024).
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Since the amplitude of the modes is inversely proportional to the square root of the

inertia (see e.g. Dupret et al. 2009), we expect a modulation of the dipole mode amplitudes

around the p-like mode in the case of the RC, as observed in some Kepler red giants, while

many dipole modes with similar amplitudes may be observed in the spectrum of the rHB.

This implies an increasing complexity of the oscillation spectra, as shown by the stars in

our sample (see Fig. 2.1).

The high value of q also affects the behaviour of the period spacing (see also Mosser

et al. 2017). In the bottom part of the lower panels of Fig. 2.3, we plot ∆P as a function

of the eigenfrequencies as well as the constant value (dashed green line) predicted by

the asymptotic g-mode approximation (∆Pa; Tassoul 1980). In the observable frequency

domain, we notice for the rHB model a significant deviation of ∆P from the asymptotic

value even for modes with high inertia, as well as a decreasing trend of ∆P with increasing

frequency. To show that both effects are a consequence of the high value of q and its

frequency dependence, we used the Ong et al. (2020) formalism to separate pure isolated p

modes (π modes) from pure isolated g modes (γ modes), that is, pure g modes not affected

by the coupling with the acoustic cavity. In Fig. 2.4 we plot the period spacing of dipole γ

modes, and, as expected, their average value is consistent with that from the asymptotic

approximation of pure high-order g modes. Therefore, the differences in the period spacing

of the RC and rHB models are explained by the high coupling for the latter, which causes

all dipole modes to have an important acoustic component, thus decreasing the value of

∆P .

2.4.3 Power spectral density

Figure 2.5 shows the simulated PSDs of our reference models together with the inertia

of the ` = 0, 1, 2, 3 modes. The contribution of each degree to the PSD is shown in

Appendix C.

A comparison between Fig. 2.5 and Fig. 2.1 shows many similarities between the rHB-

mock spectrum and the observed ones. These spectra appear noisier than RC ones, with

a large number of peaks corresponding to non-radial modes. In particular, there are ob-

servable dipole modes in the entire frequency range between two consecutive radial modes,

unlike the behaviour in RC and low-RGB stars, where only a few modes around the cor-

responding p-like mode have observable amplitudes.

We see that the strong coupling also affects the quadrupole modes. Several of them,

with frequencies close to those of the p-like modes, are expected to have similar contribu-
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Figure 2.4: Period spacing as a function of the eigenfrequencies of the isolated dipole γ modes (Ong et al.

2020). Other symbols and colours are the same as in Fig. 2.3. The high modulation in the period spacing

above the observable frequencies is connected to structural glitches (see e.g. Bossini et al. 2015).

tions to the PSD. Moreover, because of a higher inertia at the local minima with respect

to the RC model, quadrupole modes in rHB stars would have lower amplitudes. All that

makes it more challenging to detect and characterise ` = 2 modes in CHeB metal-poor

stars. Finally, ` = 3 modes have eigenfrequencies close to those of radial modes, and their

heights are similar to the background noise. They tend to form a continuum that should

be considered during the background analysis (see Appendix C).

2.5 Conclusions

High-quality spectra obtained from the 4-year-long Kepler observations of a large num-

ber of red giants allowed us to identify a small number of red giants (12) whose oscillation

spectra appear to be very noisy or complex with respect to the typical behaviour of oscil-

lation spectra in Kepler red giants. Their global seismic parameters are compatible with

low-mass stars (M . 0.8 M�) in the central He-burning phase, and the fit of the asymp-

totic relation for the dipole modes (e.g. Vrard et al. 2016) results in coupling factor values

q & 0.4, much higher than the typical value for stars classified as RC (q ∼ 0.25 − 0.30;

e.g. Vrard et al. 2016; Mosser et al. 2017; Mosser et al. 2018). In our sample we find

stars with a low to intermediate metallicity (75%) and stars with solar metallicity. Their

position in the HRD is compatible with the so-called rHB stars, that is, low-mass objects

between the RRL-IS and the RC at the corresponding metallicity. Stellar evolution theory
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Figure 2.5: Simulated PSD (grey line) as a function of the eigenfrequencies using theoretical ` = 0, 1, 2, 3

modes for rHB (top) and RC (bottom) models. The red line is a smoothed version of the PSD. The vertical

dashed cyan lines correspond to νmax values, and coloured dots and lines represent the values of Enorm for

the ` = 0, 1, 2, 3 modes.
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predicts for these stars a structure consisting of a He core of ∼ 0.5 M� and an envelope of

≈ 0.1 − 0.2 M� (e.g. Rood et al. 1989; Valcarce et al. 2008; Gratton et al. 2010; Girardi

2016; Tailo et al. 2020).

In this chapter we have shown that the oscillation spectra we expect for this type of

star are entirely consistent with those observed in our sample. These spectra are clearly

different from those of the stars that, with a similar He core but a much larger envelope,

populate the RC. The main factor determining these differences is the coupling between

the inner and outer regions, which reflects very different density profiles inside these stars.

A second factor that increases the complexity of these spectra is the higher temperature

of the less metallic stars, which decrease the lifetime of the modes. In fact, solar-like

oscillations in rHB stars have also been detected in the K2 (Howell et al. 2014) light curves

of the globular cluster M4 (e.g. Wallace et al. 2019), where the complexity of the spectra

and the reduced observation time (80 days) have made it difficult to extract robust 〈∆ν〉
values (e.g. Tailo et al. 2022; Howell et al. 2022).

Stars in the rHB stage are well known and easily identified in globular clusters. Here we

have also shown the ability of asteroseismology to identify these low-mass CHeB stars in

the field and in solar-metallicity environments where, even with high-precision photometry,

they would be hardly distinguishable from other stars in RC or RGB phases.

It is clear that 0.7 M� stars, especially those of solar metallicity, must have followed a

non-standard evolution during which they lost a large amount of mass (see also Li et al.

2022; Bobrick et al. 2024). This work provides us with a solid framework for the future

study of these stars and of the processes that led them to their current mass. Knowledge of

this is fundamental for deriving their ages with accuracy, and potentially providing another

piece of the puzzle in the sequence between RC and subdwarf B stars or other stripped

stars.
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Chapter 3

Anomalously low-mass

core-He-burning star in NGC 6819 as

a post-common-envelope phase

product1

As discussed in Chapter 2, precise masses of red-giant stars enable a robust inference

of their ages, but there are cases where these age estimates are highly precise yet very

inaccurate. Examples are core-helium-burning (CHeB) stars that have lost more mass

than predicted by standard single-star evolutionary models. Members of star clusters in

the Kepler database represent a unique opportunity to identify such stars, because they

combine exquisite asteroseismic constraints with independent age information (members of

a star cluster share similar age and chemical composition). In this work, my collaborators

and I focus on the single, metal-rich (Z ≈ Z�), Li-rich, low-mass, CHeB star KIC4937011,

which is a member of the open cluster NGC 6819 (turn-off mass of ≈ 1.6 M�, i.e. age of

≈ 2.4 Gyr). This star has ≈ 1 M� less mass than expected for its age and metallicity,

which could be explained by binary interactions or mass-loss along the red-giant branch

(RGB). To infer formation scenarios for this object, we perform a Bayesian analysis by

combining the binary stellar evolutionary framework binary_c v2.2.3 with the dynamic

nested sampling approach contained in the dynesty v2.1.1 package. We find that this

star is likely the result of a common-envelope evolution (CEE) phase during the RGB

stage of the primary star in which the low-mass (< 0.71 M�) main sequence companion

1The work presented in this chapter is based on Matteuzzi et al. (2024).
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does not survive. The mass of the primary star at the zero-age main sequence is in the

range [1.46, 1.71] M�, with a log-orbital period in the range [0.06, 2.4] log10(days). During

the CEE phase ≈ 1 M� of material is ejected from the system, and the final star reaches

the CHeB stage after helium flashes as if it were a single star of mass ≈ 0.7 M�, which is

what we observe today. Although the proposed scenario is consistent with photometric and

spectroscopic observations, a quantitative comparison with detailed stellar evolution cal-

culations is needed to quantify the systematic skewness of radius, luminosity, and effective

temperature distributions towards higher values than observations.

3.1 Introduction

The advent of the space mission Kepler has made it possible to study in great detail

the oscillation spectra of tens of thousands of red-giant stars, and thus, to constrain their

internal structures, properties and evolutionary phases. These asteroseismic constraints,

coupled with information on photospheric chemical abundances and temperature, have also

given us the ability to precisely measure their radii and masses (De Ridder et al. 2009;

Hekker et al. 2011; Huber et al. 2011; Miglio et al. 2013; Stello et al. 2013; Mosser et al.

2014; Yu et al. 2018; García et al. 2019; Kallinger 2019).

Precise masses of red-giant stars enable a robust inference of their ages (Anders et

al. 2016; Casagrande et al. 2016; Pinsonneault et al. 2018; Silva Aguirre et al. 2018;

Miglio et al. 2021; Montalbán et al. 2021), but there are cases in the field and in open

star clusters where these estimates are significantly different than the age predicted by

standard single-star evolutionary models. For example, some members of open clusters

have more mass than the observed average mass for their evolutionary phase (Brogaard

et al. 2016; Handberg et al. 2017; Brogaard et al. 2018; Brogaard et al. 2021). This means

that such stars appear younger than they actually are, thus, they must have experienced

mass transfer or merger events in the past (Izzard et al. 2018). Despite potential insights

from observations that could assist in distinguishing between different formation scenarios

(Brogaard et al. 2018), the evolutionary history of many observed systems with masses that

deviate from their expected mass remains uncertain. The limited support from other stars

in age determination makes it challenging to identify non-standard evolutionary paths for

field stars. An exception to this is the thick disc, which has a well-defined turn-off mass

that allows for the tracking of the evolutionary history of these stars (Chiappini et al. 2015;

Martig et al. 2015; Izzard et al. 2018; Grisoni et al. 2024).

While there are observed systems with a significant excess of mass with respect to the
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average mass in the cluster for their evolutionary phase, the opposite is true as well. There

are red-giant members of open clusters with less mass than the observed average mass for

their evolutionary phase (Handberg et al. 2017; Brogaard et al. 2021). Considering their

mass and metallicity, they have lost more mass than expected, most likely via interaction

with a companion star (Li et al. 2022; Bobrick et al. 2024) or because of mass loss along the

red-giant branch (RGB). There are observations of such undermassive stars also in the field

(Miglio et al. 2021; Li et al. 2022; Matteuzzi et al. 2023). Some of them are low-mass, core-

helium-burning (CHeB) stars located in the colour-magnitude diagram between the RR

Lyrae and the red clump (RC), thus are red horizontal branch (rHB) stars. By modelling

their structure and pulsation spectra, Matteuzzi et al. (2023) found that these low-mass

objects have a helium-core mass of ≈ 0.5 M� and a hydrogen-rich envelope of ≈ 0.1− 0.2

M� (see Chapter 2), that is they are stars with a less massive envelope than other stars

in the same evolutionary phase and with similar metallicity, but slightly more massive

than the RR Lyrae stars with similar metallicity. This means that such undermassive

stars are partially stripped, probably as a result of a past binary interaction. Investigating

plausible formation scenarios for these stars is critical to better constrain their actual ages

and to potentially provide another piece of the puzzle in the sequence between RC stars,

metal-rich RR Lyrae and subdwarf B (sdB) stars, or other stripped stars.

In binary stars, mass transfer is possible by direct Roche-lobe overflow (RLOF) or by

wind mass loss (see De Marco et al. 2017, for a review). When mass is transferred from

red-giant stars and low-mass main sequence (MS) stars on a dynamical time-scale, the

companion may be engulfed and a common-envelope evolution begins (CEE; e.g. Paczyński

1976; Ivanova et al. 2013; Röpke et al. 2023). This can happen when mass-transfer is

unstable, i.e. the transfer of mass by the donor leads to an increase in mass-transfer rate.

Whether the mass-transfer becomes unstable is usually determined based on a critical

mass-ratio, qcrit, between the primary mass and the companion mass and when the system

exceeds this mass ratio (q1 > qcrit, Hurley et al. 2002) it will undergo unstable mass-

transfer followed by a CEE. At this stage drag forces transfer part of the orbital energy to

the common envelope (CE), shrinking the orbit and ejecting at least part of the CE (Shima

et al. 1985; Kim 2010; MacLeod et al. 2015; Ohlmann et al. 2016; Chamandy et al. 2019;

Reichardt et al. 2019; Sand et al. 2020). The consequence of this CE phase is that stars

either merge, or end up much closer than before this phase. The easiest way to model the

CEE is using the α-formalism (van den Heuvel 1976; Webbink 1984; Livio et al. 1988; de

Kool 1990; Han et al. 1994; Dewi et al. 2000; Xu et al. 2010b; Xu et al. 2010a; Ivanova
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et al. 2011; Wang et al. 2016), also called the energy formalism. This formalism can be

described by the following equation,

Ebind = αce∆Eorb, (3.1.1)

where

Ebind = −Gm1m1,env

λceR1
(3.1.2)

and

∆Eorb = −Gm1,corem2

2af
+
Gm1m2

2ai
(3.1.3)

are the binding energy of the envelope of the primary star (the donor star) and the difference

in orbital energy after and before the CEE, respectively. Ebind depends on the mass (m1),

the envelope mass (m1,env), the Roche-lobe radius (R1) of the primary star, and it also

contains a numerical factor λce to characterise the central concentration of the envelope.

∆Eorb depends also on the core mass of the primary star (m1,core = m1−m1,env), the mass

of the companion star (the accretor star), and the orbital separation before (ai) and after

(af) the CEE. Finally, αce indicates the fraction of orbital energy converted into energy used

to eject the envelope, thus it is the efficiency of the CE ejection. Unfortunately, there are no

direct observations of CEE events with which we can constrain λce and αce. Nonetheless,

observations of post-CEE systems and 3D hydrodynamical simulations suggest that the

value of αce is not universal and depends on many factors such as donor mass, mass ratio

and evolutionary stage (Taam et al. 2000; Podsiadlowski et al. 2003; Politano 2004; De

Marco et al. 2011; Davis et al. 2012; Iaconi et al. 2019; Belloni et al. 2024). Moreover,

many works (Han et al. 1994; Dewi et al. 2000; Dewi et al. 2001; Podsiadlowski et al.

2003; Webbink 2008; Xu et al. 2010b; Xu et al. 2010a; Wong et al. 2014) suggest that

λce varies as the star evolves and significantly deviates from a constant value. However,

from an analysis of equations 3.1.1, 3.1.2 and 3.1.3, it is evident that the properties of

the post-CEE system do not change when the product αce · λce is held constant. Despite

our limited understanding of the variables λce and αce, we can effectively constrain the

post-CEE phase by using αce · λce. Conversely, a better knowledge of the post-CEE phase

gives us a constraint on the possible αce · λce values.

Members of star clusters observed by the Kepler space telescope represent a unique

opportunity to constrain formation channels of undermassive stars, because they combine

exquisite asteroseismic constraints with age information since members of a star cluster

share similar age and chemical composition. In this chapter we focus on the red-giant star

KIC4937011, a member of the Galactic star cluster NGC 6819 which has a turn-off mass
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of ≈ 1.6 M� (i.e. an age of ≈ 2.4 Gyr, Burkhead 1971; Lindoff 1972; Auner 1974; Rosvick

et al. 1998; Kalirai et al. 2001; Basu et al. 2011; Yang et al. 2013; Jeffries et al. 2013;

Bedin et al. 2015; Brewer et al. 2016). Based on the scaling relation between the mean

large frequency separation and the frequency of maximum power, Handberg et al. (2017)

determined that KIC4937011 has a mass of 0.71±0.08 M�. This value is consistent, within

the errors, with the mass calculated using the scaling relation involving the luminosity and

the frequency of maximum power (Matteuzzi et al. 2023). Additionally, analysis of the

asymptotic period spacing of the dipole modes indicates that KIC4937011 is currently in

the RC phase (Matteuzzi et al. 2023). Based on spectroscopy (Anthony-Twarog et al. 2013;

Carlberg et al. 2015; Lee-Brown et al. 2015), we know that it is a single star with near-solar

metallicity, a high lithium and oxygen content, and a rotational velocity of 8.3± 0.3 km/s

(i.e. a higher value than the other red-giant stars in this cluster). This star has ≈ 1 M�

less mass than the average mass of RC stars in NGC 6819 (i.e. 1.64 M�, Handberg et al.

2017), which could be explained by binary interactions.

The chapter is organised as follows. We briefly describe the observational properties

of KIC4937011 in Section 3.2. In Section 3.3 we describe the theoretical framework that

permits us to predict the formation channel, and how we simulate binary interactions.

In Section 3.4 we present our results, namely the most credible formation channels for

this star, which is the consequence of a common-envelope evolution phase in which the

companion does not survive. Section 3.5 concludes.

3.2 Observational data

In Section 3.1 we state that KIC4937011 is a RC member of the open cluster NGC 6819

(HRD in Figure 3.1, observational properties in Table 3.2), and this is suggested by its

radial velocity (Hole et al. 2009; Anthony-Twarog et al. 2013; Carlberg et al. 2015), CMD

position (Anthony-Twarog et al. 2013), and proper-motion (Gaia Collaboration et al. 2016;

Gaia Collaboration et al. 2023; Babusiaux et al. 2023). This allows for an independent

estimation of the age of KIC4937011 regardless of its mass. In this work we use the age esti-

mate 2.38±0.05±0.22 Gyr2 based on eclipsing binaries of Brewer et al. (2016), but with an

error of 0.27 Gyr3 (Section 3.3.2). The metallicity of the cluster is similar to solar (Rosvick

2These uncertainties are estimates of the random and systematic effects (due to model physics differences

and metal content), respectively.
3We do not add the two uncertainties in quadrature, because the direct addition is an upper limit of

the true uncertainty (Schwarz inequality), which does not depend on any possible correlation between the

two.
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Figure 3.1: HRD of NGC 6819 showing RC and RGB member stars. Apart from standard single stars,

some are members of binary systems, some are overmassive stars and one (KIC4937011) is undermassive.

The solid lines are evolutionary tracks from the RGB phase until the first thermal pulse in the asymptotic

giant branch (AGB) phase for a 1.60 M� and a 2.50 M� star with solar metallicity, while the dotted

line represents a 0.70 M� star with solar metallicity from the beginning of the CHeB stage until the first

thermal pulse in the AGB phase. KIC4937011 is less bright and hot than other member stars at the same

evolutionary stage, and it would be compatible with a 1.60 M� RGB star if we had no information about

its evolutionary state and mass. For a full description of the models used in the figure see Handberg et al.

(2017).
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et al. 1998; Anthony-Twarog et al. 2014; Lee-Brown et al. 2015; Slumstrup et al. 2019),

however other works suggest super-solar metallicities ([Fe/H] = 0.09±0.03, Bragaglia et al.

2001). This is in line with the metallicity of KIC4937011, which is approximately solar

([Fe/H] = 0.04, Carlberg et al. 2015; [Fe/H] = −0.05, Lee-Brown et al. 2015). In this work

we use a metallicity Z = 0.02 for KIC4937011 (Section 3.3.2). The observed 12C/14N of

KIC4937011 is consistent with its other more massive (i.e. ≈ 1.64 M�) counterparts in

the RC phase, although the lower the mass, the higher 12C/14N should be in a star that

evolves in isolation (12C/14N > 3 for such a low-mass, metal-rich star, Salaris et al. 2015).

Past mass transfer events may provide an explanation for the peculiar 12C/14N observed

in the envelope of KIC4937011. It is possible that the envelope originates from a star that

during its first dredge-up was more massive than the current KIC4937011 (Hekker et al.

2019; Tayar et al. 2023).

Handberg et al. (2017) derive masses in NGC 6819 in the RGB and RC phases using

asteroseismic data from Kepler , obtaining average masses of 1.61±0.02 M� and 1.64±0.02

M�, respectively. This means that the integrated mass loss in the RGB phase in this cluster

is compatible with a Reimers’ mass loss law (Reimers 1975; Kudritzki et al. 1978) that has

an efficiency ηRGB = 0.1. However, KIC4937011 has almost 1 M� less mass than its other

counterparts in the RC phase. As a result, an efficiency ηRGB > 1 is required in order

to explain the isolated evolution of this star. Such a high efficiency is highly improbable,

as it far exceeds the average value measured in NGC 6819. Therefore, it is unlikely that

mass loss in the RGB phase through winds alone can account for the mass discrepancy

observed in KIC4937011. Indeed, Carlberg et al. (2015) proposed an interaction between a

≈ 1.7 M� red-giant star and a brown dwarf of mass 45 MJup to explain the enrichment in

lithium [A(Li) = 12 + log (NLi/NH) = +2.3 dex, Anthony-Twarog et al. 2013] and the loss

of almost 1 M�. However, alternative explanations exist for the observed Li-enrichment in

red-giant stars. Some observations suggest that R-stars with similar chemical composition

and lithium content may have interacted with a companion star instead of a brown dwarf

(Zamora et al. 2006). Another possibility is that lithium-rich RC stars could have been

created through the merging of a helium white dwarf (HeWD) star and a RGB star (Zhang

et al. 2020). Several mechanisms have been proposed to account for the Li-enrichment in

red-giant stars, including planet or brown dwarf engulfment (Ashwell et al. 2005; Aguilera-

Gómez et al. 2016b; Aguilera-Gómez et al. 2016a), accretion from an asymptotic giant

branch (AGB) star or a nova (José et al. 1998), and the Cameron et al. (1971) mechanism

with some extra-mixing (Denissenkov et al. 2004; Guandalini et al. 2009; Denissenkov
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2010; Aguilera-Gómez et al. 2023), such as the HeWD-RGB merger mentioned earlier.

Therefore, the lithium content alone is not a reliable indicator to discriminate between

formation channels. However, considering all available pieces of information, we need to

incorporate binary interactions into evolutionary models of KIC4937011.

Carlberg et al. (2015) perform multiple checks of whether the spectroscopic analysis

is affected by either a companion to the Li-rich star or an unrelated background object.

They find that the radial velocity is constant within 0.1− 0.2 km/s in nearly one month of

observations. Even when they consider 20 years of observations with other surveys they do

not obtain variations in its radial velocity. They also search for a secondary spectrum, but

they do not identify any significant secondary peaks. Furthermore, there is no indication

of infrared excess, which is observed in other Li-rich red-giant stars (Rebull et al. 2015;

Mallick et al. 2022). Even using the currently available Gaia-DR3 astrometry data (non-

single star processing in Halbwachs et al. 2023) there is no evidence for companion stars.

We also test the non-single star hypothesis using the fidelity_v2 table (Rybizki et al.

2022) and the RUWE value4. Together, all this information suggests that KIC4937011 has

no companion.

3.3 Bayesian inference of formation scenarios

In this section we describe the Bayesian approach we adopt to infer the most probable

formation scenario for KIC4937011. This is done using an evolutionary code for binary

stars (Section 3.3.1) coupled with a Monte Carlo (MC) method (Section 3.3.2).

3.3.1 Evolutionary code for binary stars

The software binary_c v2.2.35 (Izzard et al. 2004; Izzard et al. 2006; Izzard et al.

2009; Izzard et al. 2018; Izzard et al. 2023) makes synthetic populations of single, binary

and multiple stars. It is based upon the Binary Star Evolution (BSE) code (Hurley et

al. 2002), which uses analytic fits to rapidly follow the properties of a system as a func-

tion of time (Hurley et al. 2000). In addition, binary_c v2.2.3 rapidly calculates nucle-

osynthetic yields from such synthetic populations, adopting first, second, third dredge-up

and thermally-pulsing asymptotic giant branch (TPAGB) prescriptions from Izzard et al.

4The renormalised unit weight error (RUWE) is the square root of the normalised chi-square of the

astrometric fit to the along-scan observation. It is expected to be 1.0 for well-behaved solutions of single

stars (Gaia Collaboration et al. 2016; Gaia Collaboration et al. 2023).
5https://gitlab.com/binary_c/binary_c/-/tree/releases/2.2.3
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(2006), which are based on Karakas et al. (2002), and the supernova yields from massive

stars from Woosley et al. (1995) and Chieffi et al. (2004). These prescriptions are very

useful for globular cluster and Galactic chemical evolution simulations (Izzard et al. 2018;

Yates et al. 2024). The physics implemented in the code (De Marco et al. 2017, for a review

about relevant physical processes in binary systems) is mainly described in the above cited

papers. The code allows for the incorporation of alternative models beyond those utilised

in the BSE code, such as different RLOF (Claeys et al. 2014), wind Roche-lobe overflow

(WRLOF; Abate et al. 2013; Abate et al. 2015), accretion and thermohaline mixing (Stan-

cliffe et al. 2007; Izzard et al. 2018), supernovae (Boubert et al. 2017b; Boubert et al.

2017a), tides (Siess et al. 2013), rejuvenation (de Mink et al. 2013; Schneider et al. 2014),

stellar rotation (de Mink et al. 2013), stellar lifetimes (Schneider et al. 2014), CEE (Wang

et al. 2016), and circumbinary discs (Izzard et al. 2023). This algorithm operates about

107 times faster than full evolution and nucleosynthesis calculations, which makes it very

useful for a Bayesian approach to parameter estimation.

In this work we adopt a Python interface to binary_c v2.2.3, binary_c-python

v0.9.66 (Hendriks et al. 2023). We mainly adopt the binary-physics prescriptions of the

BSE code, but the model of the properties of the AGB comes from Karakas et al. (2002),

the RLOF modelling onto a white dwarf from Claeys et al. (2014), and the critical mass

ratios qcrit from Table 3.1. We fix to 0.5 the fraction of the recombination energy in the

CE that participates in the ejection of the envelope (i.e. λionisation = 0.5 in binary_c

v2.2.3), and we consider αce ·λce as a single free parameter of the model. We force a first

dredge-up in Hertzsprung gap (HG) and RGB stars that undergo a CEE phase, but not for

MS stars, because the dynamical mixing effects owing to the spiral-in process are assumed

to completely mix the envelope in red-giant stars (Izzard et al. 2006). Furthermore, we do

not include mass loss enhanced by rotation, tides and He flashes; we ignore thermohaline

mixing, WRLOF and the lithium abundance change over time.

3.3.2 Monte Carlo simulations

To constrain binary systems that best explain the current state of KIC4937011, we need

to efficiently estimate the posterior of a set of parameters for a given model obtained with

binary_c v2.2.3 and binary_c-python v0.9.6. We use the dynamic nested sampling

approach contained in the dynesty v2.1.17 package (Speagle 2020).

Initial conditions of all MC simulations are a binary system formed by zero-age main
6https://gitlab.com/binary_c/binary_c-python/-/tree/releases/0.9.6/2.2.3
7https://github.com/joshspeagle/dynesty/tree/v2.1.1
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Table 3.1: Critical mass ratio qcrit for stable RLOF for different types of donor stars, in the case of a

non-degenerate and a degenerate accretor. The meaning of each acronym is in Hurley et al. (2002).

Donor Non-deg accretor Deg accretor

MS with M ≤ 0.718 M� 0.6944 1.0

MS with M > 0.718 M� 1.6 1.0

HG, HeHG 4.0 4.7619

RGB, EAGB, TPAGB Hurley et al. (2002) 1.15

CHeB, HeMS 3.0 3.0

HeGB 0.78125 1.15

WD, NS, BH 3.0 0.625

sequence (ZAMS) stars with circular orbits, Z = 0.02 and ηRGB = 0.1, where we choose

the metallicity and mass loss to be compatible with observations (Section 3.2). Our main

results do not change when we allow Z and/or ηRGB to vary freely within the observational

uncertainties. The main difference is that the density distributions become broader and

less predictive. We do not consider initially eccentric binaries, because the evolution of

close binary populations is almost independent of the initial eccentricity (Hurley et al.

2002).

We use uniform priors for αce ·λce (Sections 3.1 and 3.3.1), the logarithm8 of the initial

period, logP0, and the initial mass ratio, qZAMS = M2,ZAMS/M1,ZAMS. For the initial mass

of the primary star, M1,ZAMS, we employ the probability density distribution of Chabrier

(2003)9. We calculate the likelihood function given the current evolutionary phase (CHeB),

mass (M1,CHeB = 0.71 ± 0.08 M�) and age (tage = 2.38 ± 0.27 Gyr) of the star (Sections

3.1, 3.2). For more details on the likelihood used and the intervals chosen for our priors

we refer the reader to Appendix D and Table D.1.

In Fig. 3.2 the corner plot showing the age and primary-mass density distributions of

our MC simulations at the CHeB stage (see also Table 3.2), compared with the observed

values for KIC4937011 (red lines). Our modelling correctly fits, within errors, the observed

current age and mass of KIC4937011.

8In this chapter we use the notation log(x) ≡ log10(x).
9We check that uniform priors for M1,ZAMS lead to the same results. However such new priors require

more CPU time.
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Table 3.2: Medians and credible intervals (CI) of the density distributions explained in Section 3.3.2 and

3.4.1. In the last column the observed values for KIC4937011 with the corresponding references. In Section

3.4.1 we discuss where such narrow CI in chemistry come from.

Parameter Median 68% CI 99.7% CI Obs

tage [Gyr] 2.40 [2.18, 2.62] [1.43, 3.18] 2.38± 0.27a

M1,CHeB [M�] 0.74 [0.65, 0.83] [0.50, 0.96] 0.71± 0.08b

αce · λce 14 [6, 23] [0.5, 47] ...

log (P0/days) 0.58 [0.36, 1.06] [0.08, 2.2] ...

qZAMS 0.29 [0.16, 0.37] [0.05, 0.55] ...

M1,ZAMS [M�] 1.69 [1.59, 1.87] [1.48, 2.62] ...

M2,ZAMS [M�] 0.50 [0.29, 0.63] [0.081, 0.88] ...

M1,He−core [M�] 0.48 [0.38, 0.53] [0.32, 0.60] ...

R1,CHeB [R�] 20 [9.6, 28] [0.2, 50] 9.3± 0.5b

L1,CHeB [L�] 148 [65, 191] [40, 376] 37± 4b

Teff,1,CHeB [K] 4270 [4074, 5347] [3588, 27556] 4710± 50b

12C/13C 90 [32, 90] [14, 90] 25± 5d

12C/14N 3.2 [1.4, 3.2] [0.62, 3.2] 1.4± 0.2d

14N/16O 0.13 [0.13, 0.23] [0.13, 0.34] 0.17± 0.04d

References. (a) Brewer et al. (2016); (b) Handberg et al. (2017); (b) Matteuzzi et al. (2023);
(d) Carlberg et al. (2015)
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Figure 3.2: Corner plot showing the age and primary mass density distributions at the CHeB stage for

our full sample described in Section 3.3.2. The contours are referred to 1, 2, and 3-σ credible regions,

respectively. In red the observed values for KIC4937011 (see also Table 3.2). We see that our modelling

correctly fits, within errors, the observed current age and mass of KIC4937011. As explained in the

Appendix D, we take as the reference time for the CHeB of each MC simulation the age that gives the

highest likelihood.

3.4 Results

In this section we present significant results derived from our Monte Carlo simulations

(Section 3.4.1), and we discuss the most credible formation channel (Section 3.4.2).

3.4.1 Formation channels constrained by age and mass observations

Figure 3.3 shows the estimated posterior density distributions of Monte Carlo simula-

tions discussed in Section 3.3.2 and presented in Table 3.2. A strong anti-correlation is

observed between the product αce ·λce and log P0, with a Pearson correlation coefficient of

approximately −0.69. There are also weaker anti-correlations between logP0 and the other

parameters. Equation 3.1.1 indicates that as the period increases, so does the orbital ra-

dius, while the surface gravity of the CE decreases, requiring a lower αce for mass ejection.

This suggests that certain areas of the log P0−αce · λce plane can be excluded (Figure 3.3

and Table 3.2), but we are unable to provide stricter constraints on the individual values

of log P0 and αce · λce. Furthermore, αce · λce tends to higher values than suggested by

previous studies (Section 2.1). A plausible physical interpretation for this phenomenon

relates to recombination energy. Specifically, high αce · λce values can be obtained when
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Figure 3.3: Corner plot showing the posterior density distributions of our MC simulations described in

Section 3.3.2. The contours are referred to 1, 2, and 3-σ, respectively.

αce is constrained to values below one, and λce is calculated according to the Wang et al.

(2016) prescriptions, utilising a high λionisation value. Nonetheless, we cannot rule out the

influence of additional energy sources, including dust formation or nuclear burning, that

occur during the CEE phase. They may also contribute to the observed high αce · λce

values.

Our estimated M1,ZAMS (Figure 3.3 and Table 3.2) is slightly higher than, but still

consistent with, the observed average mass of RGB stars in NGC6819 (1.61 ± 0.02 M�,

Handberg et al. 2017). This implies that a RGB star with a mass of 1.87 M� (i.e. the upper

limit of our 68% credible interval for M1,ZAMS) would begin the RGB phase about 0.82

Gyr10 earlier than the current RGB stars in NGC6819. Therefore, any binary interaction

and evolution happened between a primary RGB star and a companion should last less

than ≈ 1 Gyr to be consistent with the observations. Moreover, the qZAMS posterior

distribution lower limit in the 99.7% credible interval is very close to the lower limit of

our prior distribution (Table D.1), and probably limits in the prior below 0.08 M� are

necessary for the companion mass.

10This age difference is calculated using binary_c v2.2.3 at Z = 0.02 and ηRGB = 0.1.
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Common-envelope phases create distinct pathways

In this section we summarise the results concerning the number of CEE phases up to

the CHeB stage of the primary star for the full sample. Every MC simulation considered

(i.e. 65225 simulations) had one CEE phase, with a negligible percentage (0.006%, i.e. 4

out of 65225 simulations) having two. This implies that our modelling predicts KIC4937011

to be a post-common-envelope phase product. The majority of the binary systems (i.e.

99.92%) evolves without mass transfers until the primary star is in the subgiant or in the

RGB phase and the companion in the MS phase. At this point an unstable mass transfer

begins, leading to a CEE phase, and to the shrinkage of the orbits (Section 3.1). The

loss of orbital energy is the reason why the probability of undergoing another CEE phase

decreases significantly. Finally, in all our sample of MC simulations the companion star

merges with the primary star, leaving as the final product a single CHeB star. This is in

line with the observations (Section 3.2).

Primary star physical properties

In Fig. 3.4 and Table 3.2 we present the helium-core mass, radius, luminosity, and

effective temperature posterior density distributions of the primary star at the CHeB stage

estimated from the MC simulations. In our simulations the primary stars have helium-core

masses in the 99.7% credible interval [0.32, 0.60] M�. Moreover, from the panel (a) we see

that there are three main peaks: at around 0.32 M�, 0.47 M� and 0.52 M�. The first

helium-core mass peak is expected for a secondary clump star, while the second for a RC

star (Girardi 2016). However, helium-core masses above≈ 0.50 M� are expected during the

early asymptotic-giant branch (EAGB) stage and not during the CHeB stage. Such high

helium-core masses lead to much higher radii (> 15R�) and luminosities (> 100L�) than

expected of CHeB stars of mass ≈ 0.7 M�, and they also lead to effective temperatures well

below 4500 K. Moreover, such high luminosities would not be consistent with the observed

mixed modes behaviour in KIC4937011. It is worth noting that binary_c v2.2.3 is based

on the Pols et al. (1998) evolutionary models, which predict higher radii, luminosities, and

effective temperatures for such low-mass CHeB stars than more recent evolutionary models

(Girardi 2016). These systematic effects must be taken into account when comparing with

observations (Section 3.4.2).
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Figure 3.4: Helium-core mass (panel a), radius (panel b), luminosity (panel c) and effective temperature

(panel d) posterior density distributions of the primary star during the CHeB stage for the full sample

described in Section 3.3.2. We show the histogram (black lines) and the kernel density estimate with a

Gaussian kernel (KDE, red lines). The dashed line and the grey area represent the KIC4937011 observations

and their 1-σ errors (Table 3.2). Effective temperatures above 8000 K have been omitted from the figure

for illustrative purposes only. As explained in the Appendix D, we take as the reference time for the CHeB

of each MC simulation the age that gives the highest likelihood.
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Figure 3.5: Surface 12C/13C (panel a), 12C/14N (panel b) and 14N/16O (panel c) posterior density

distributions of the primary star at the CHeB stage for our full sample described in Section 3.3.2. In

particular, we have the histogram (black lines) and the kernel density estimation with a Gaussian kernel

(KDE, red lines). The dashed line and the grey area represent the observed values of KIC4937011 and

their 1-σ errors (also Table 3.2). As explained in the Appendix D, we take as the reference time for the

CHeB of each MC simulation the age that gives the highest likelihood.
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Dichotomy in the chemical space

In Fig. 3.5 and Table 3.2 the 12C/13C, 12C/14N and 14N/16O density distributions of

the primary star at the CHeB stage estimated from the MC simulations. A dichotomy is

clearly visible in the chemical space, since simulations with the highest 12C/13C also have

the highest 12C/14N and the lowest 14N/16O. These two peaks are the consequence of two

different paths a binary system can follow after the CEE phase. In this section we discuss

the channel that produces the highest 12C/14N peak, while in Section 3.4.2 we discuss the

channel that produces the lowest 12C/14N peak.

To explain the peak at 12C/13C ≈ 90, we need a star that contains material in the

surface that has not been contaminated by the product of the hydrogen-burning core.

Indeed, such a value is not typically observed in CHeB stars, because the first dredge-

up has already taken place. As explained in Section 3.4.1, the CEE phase begins when

the binary systems are formed by a red-giant primary star and a MS companion. A first

dredge-up is forced in HG and RGB stars that undergo a CEE phase, but not for MS

stars (Section 3.3.1). In addition, MS stars are assumed to have negligible contamination

from companion material, as all such material is ejected from the system soon after the

CEE phase. These are the reasons why in our modelling we obtain that 69.51% of the full

sample of MC simulations (i.e. 45339 out of 65225 simulations) after the CEE phase are

close binaries formed by a HeWD star and a MS star with M < 0.88 M�
11 that has not

been contaminated by the primary star. Such close-binary systems start a stable RLOF

from the MS star onto the HeWD star, which eventually formes a single low-mass RGB-

like star that later becomes a low-mass CHeB star with a high 12C/13C. This formation

channel explains such a wide distribution of helium-core mass, radius, luminosity, and

effective temperature, despite a narrow distribution in chemistry; the envelope comes from

the MS star, thus, it depends more on the chosen initial composition than on internal

mixing, atomic diffusion or overshooting. We want to highlight that the initial chemical

composition of all these MC simulations is taken from Grevesse et al. (1989), thus it is

fixed for a fixed metallicity (this explains such narrow bins).

The properties of this formation channel are in good agreement with the literature,

because binary systems formed by a HeWD star and a low-mass MS star are thought

to be progenitors of low-mass RGB stars and of hot subdwarfs depending on the initial

properties of the binary system (Hurley et al. 2002; Shen et al. 2009; Clausen et al. 2011;

11Formally this is not the same as the 99.7% credible interval of M2,ZAMS in Table 3.2, but we checked

whether the companion star has not changed much since the ZAMS.
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Pyrzas et al. 2012; Nelemans et al. 2016; Zhang et al. 2017; Rui et al. 2024).

3.4.2 Analysis of a more observationally-motivated subsample

In Section 3.4.1 we explain that an interaction between a HeWD and a low-mass MS

star can produce a low-mass CHeB star with the same mass and age as KIC4937011, but a

higher 12C/14N. In this section we want to exclude from the analysis all the MC simulations

that predict stars much brighter and carbon-enriched than observations suggest, giving us

more credible formation channels. Considering Figure 3.4 and 3.5, we decide to exclude

stars with luminosity and 12C/14N higher than 100L� and 2.5, respectively, because these

thresholds are at least 5.5-σ away from the observed values12. 13.67% of our full sample

of MC simulations (i.e. 8917 out of 65225 simulations) composes this subsample, thus,

it is a non-negligible part of the full sample and we have sufficiently high number of MC

simulations to calculate statistics13. In Fig. 3.6 the corner plot showing the age and
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Figure 3.6: Corner plot showing the age and primary mass density distributions at the CHeB stage for

the subsample described in Section 3.4.2. The contours are referred to 1, 2, and 3-σ, respectively. In red

the observed values for KIC4937011 (Table 3.3). As explained in the Appendix D, we take as the reference

time for the CHeB of each MC simulation the age that gives the highest likelihood.

primary mass density distributions for the subsample (see also Table 3.3), compared with

12The most credible formation channel remains the same as long as we choose a 12C/14N threshold that

is still able to separate the two main chemical peaks. The luminosity threshold is necessary in order to

exclude stars approaching the beginning of the EAGB.
13We check this by randomly sampling one third of our full sample. Even with a reduced number of MC

simulations we infer the same results.
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Table 3.3: The same as Table 3.2, but for the subsample described in Section 3.4.2.

Parameter Median 68% CI 99.7% CI Obs

tage [Gyr] 2.52 [2.39, 2.74] [1.99, 3.22] 2.38± 0.27a

M1,CHeB [M�] 0.71 [0.64, 0.79] [0.50, 0.94] 0.71± 0.08b

αce · λce 14 [6, 24] [0.4, 43] ...

log (P0/days) 0.54 [0.26, 1.06] [0.06, 2.4] ...

qZAMS 0.15 [0.08, 0.30] [0.05, 0.46] ...

M1,ZAMS [M�] 1.58 [1.54, 1.61] [1.46, 1.71] ...

M2,ZAMS [M�] 0.24 [0.12, 0.48] [0.080, 0.71] ...

M1,He−core [M�] 0.4743 [0.4735, 0.4783] [0.4677, 0.5059] ...

R1,CHeB [R�] 9.8 [7.7, 10.9] [0.38, 13.3] 9.3± 0.5b

L1,CHeB [L�] 65.5 [65.3, 66] [64.5, 99.2] 37± 4c

Teff,1,CHeB [K] 5269 [5013, 5966] [4800, 26695] 4710± 50c

12C/13C 31 [24, 35] [13, 48] 25± 5d

12C/14N 1.4 [1.1, 1.5] [0.6, 2.0] 1.4± 0.2d

14N/16O 0.23 [0.22, 0.26] [0.19, 0.33] 0.17± 0.04d

References. (a) Brewer et al. (2016); (b) Handberg et al. (2017); (b) Matteuzzi et al. (2023);
(d) Carlberg et al. (2015)
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the observed values for KIC4937011 (red lines). We see that our modelling tends towards

higher ages than the full sample, but within the errors the observed current age and mass

of KIC4937011 are still correctly fitted.
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Figure 3.7: Corner plot showing the posterior density distributions of the subsample described in Section

3.4.2. The contours are referred to 1, 2, and 3-σ, respectively.

New posterior density distributions

In Fig. 3.7, 3.8 and 3.9 the estimated posterior density distributions for the subsample

(see also Table 3.3). The anti-correlation between αce · λce and log P0 still holds, and

both distributions have similar 99.7% credible intervals and medians as the full sample

(see Fig. 3.7, Tables 3.2, 3.3). The same conclusion comes for the 99.7% credible interval

of qZAMS, but not for its median value. Indeed, this density distribution in the subsample

is skewed towards lower values of qZAMS compared to the full sample (see Tables 3.2, 3.3).
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The density distribution of M1,ZAMS is also skewed towards lower values in the subsample

than in the full sample, and it has narrower credible intervals than the full sample (see

Tables 3.2, 3.3). However, the M1,ZAMS distribution in the subsample is still consistent,

within the errors, with the observed average mass of RGB stars in NGC6819, suggesting

the presence of a fast evolution after the CE phase. We want to highlight that the qZAMS

posterior distribution is also in the subsample very close to the lower limit we put in the

prior, suggesting the same conclusions we drew in Section 3.4.1. Finally, as discussed in

Section 3.4.1, the high αce · λce values observed in the subsample can be interpreted as an

indication of recombination energy, dust formation, and nuclear burning influencing the

CE ejection process.
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Figure 3.8: Same as Figure 3.4 but for the subsample described in Section 3.4.2 (see aso Table 3.3). Also

here effective temperatures above 8000 K have not been included in the figure for illustrative purposes

only. As explained in the Appendix D, we take as the reference time for the CHeB of each MC simulation

the age that gives the highest likelihood.

The posterior density distributions of helium-core mass, radius, luminosity, and effec-

tive temperature are different in the subsample than in the full sample, they have narrower
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99.7% credible intervals, and they are more compatible with the observations (see Fig. 3.8,

Tables 3.2, 3.3). The helium-core mass distribution is consistent with the theoretical dis-

tribution expected for RC stars (Girardi 2016), and it is consistent with the asteroseismic

observations of KIC4937011 (Handberg et al. 2017). The radius, luminosity, and effec-

tive temperature distributions are a separate case, because they tend to be systematically

skewed towards higher values (see Section 3.4.1) than observations and modern evolution-

ary models (which are more compatible with observations, see Figure 3.1). In fact, even if

the median radius is consistent with the observations, within errors, the median luminosity

and effective temperature are at least 7-σ away from the observed values. However, these

systematic effects do not limit our inference in the formation channel, because they are

not used in the likelihood (Appendix D), thus, they are not used to discriminate between

models. This is the reason why we decide not to rely on effective temperature, luminosity,

and radius to perform a best fit to the observed values in KIC4937011.

Regarding the surface chemical composition distributions (Figure 3.9 and Table 3.3),

the 12C/13C and 12C/14N posterior distributions are consistent, within the errors, with

the observed values. The 14N/16O posterior distribution tends towards higher values than

observations, but with a median of the distribution that is just about 1.2-σ away from the

observed value.

KIC4937011’s most credible formation channel

In Section 3.4.1 we discuss the dichotomy visible in the 12C/14N distribution of the full

sample and how the interaction between a HeWD star and a MS star is the main cause

of the narrow peak at high 12C/14N. Even in the subsample (in which we are looking at

the lowest values of the 12C/14N distribution) nearly all the MC simulations (99.92% of

the subsample, i.e. 8910 out of 8917 simulations) share a similar formation scenario (Fig.

3.10). As explained in Section 3.3.2 and visible in Fig. 3.10, we start from two ZAMS

stars in a circular orbit. If we consider the 99.7% credible intervals of Table 3.3, we have

a mass of the primary star between 1.46M� and 1.71M�, a mass of the companion below

0.71 M�, and an orbital period between 1.15 days and 251 days. Such a close binary starts

a RLOF when the primary goes in the RGB phase or in the HG phase. All these MC

simulations predict an unstable RLOF and, thus, a CEE phase arises. Very differently to

Section 3.4.1 is the post-CEE phase result, because we have not a HeWD with a companion

MS star. We have instead a RGB-like star with an evolved helium-core between 0.16 M�

and 0.40 M� (99.7% credible intervals, see Figure 3.10) and a smaller envelope than before
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Figure 3.9: Primary star 12C/13C, 12C/14N and 14N/16O density distributions at the CHeB stage for the

subsample described in Section 3.4.2. In particular, we have the histogram (black lines) and the Kernel

Density Estimation with a Gaussian kernel (red lines). The dashed line and the grey area represent the

observed values of KIC4937011 and their 1-σ errors (see also Table 3.2). As explained in the Appendix D,

we take as the reference time for the CHeB of each MC simulation the age that gives the highest likelihood.

Figure 3.10: Cartoon showing the most credible formation scenario for KIC4937011. Medians and their

99.7% credible intervals just before and after the CE are also shown.
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the CEE phase (the 99.7% credible interval for the mass of the star is between 0.52 M�

and 0.96 M� after the CEE phase, see Figure 3.10). Indeed, we have a median ejection

of ≈ 1.1 M� from the system and contemporary the merger of the companion with the

helium-core of the primary star. During the CEE phase we have dynamical mixing effects

owing to the spiral-in process that completely mix the envelope with material coming from

the evolved primary star. After the CEE phase the RGB-like star has an envelope with

the low 12C/14N value we observe today. Finally, this star reaches the CHeB stage after

helium flashes as if it were a single star of mass ≈ 0.71 M�, consistently with observations.

Therefore, this formation channel "naturally" predicts the low 12C/14N value compatible

with RC star of ≈ 1.6 M� (Section 2.2). Moreover, the R1,CHeB, L1,CHeB, and Teff posterior

distributions we found after all these binary interactions are compatible with a ≈ 0.7 M�

CHeB star that evolves in isolation, indicating that our findings are self-consistent within

the binary_c v2.2.3 framework.

However, with this formation channel is difficult to explain the high lithium abundance

we observe today in KIC4937011. Insights into this conundrummay be gleaned from studies

of red novae, which are thought to be the direct product of a CEE phase with a merger

(Tylenda et al. 2006; Pastorello et al. 2019). Some of these red novae are lithium-rich

(Kamiński et al. 2023), suggesting the involvement of mechanisms capable of synthesizing

and mixing lithium during the CEE phase.

Between the post-CEE phase and the CHeB stage the star evolves in isolation for

nearly 150 Myr (maximum a posteriori probability estimate, corresponding to stars with

a helium-core mass of about 0.18 M�), which is very short compared to the cluster age.

We check whether this time and this formation channel are compatible with more state-

of-the-art evolutionary codes of single stellar evolution. Using the MESA v11701 (Modules

for Experiments in Stellar Astrophysics; Paxton et al. 2011; Paxton et al. 2019) tool we

test the pre-CEE and post-CEE phase conditions. We adopt as a reference solar mixture

that from Asplund et al. (2009), and high- and low-temperature radiative opacity tables

were computed for the solar specific metal mixture. Envelope convection is described by

the mixing length theory Cox et al. (1968); the corresponding αMLT parameter, the same

for all the models, is derived from the solar calibration with the same physics. Below the

convective envelope, we add a diffusive undershooting (Herwig 2000) with a size parameter

f = 0.02 (see Khan et al. 2018). Extra mixing over the convective core limit during the

CHeB phase is treated following the formalism by Bossini et al. (2017). For the pre-CEE

phase we adopt a 1.60 M� star with Z = 0.022 and Y = 0.28 until it achieves a 0.18 M�
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helium-core mass in the RGB phase, which takes nearly 2.33 Gyr. For the post-CEE phase

we use models with masses between 0.65 M� and 0.80 M� (i.e. a mass range compatible

with the 68% credible interval of M1,CHeB in Table 3.3), and Z = 0.022, Y = 0.28. We

do not include any mass loss in these MESA models. It takes about 500 Myr for a 0.65

M� star to go from a RGB phase with a helium-core mass of 0.18M� to the CHeB stage,

and about 370 Myr for a 0.80 M� star. This means that in MESA models this formation

channel would take at least 2.70 - 2.83 Gyr, which is about 1.6-σ away from the observed

value. However, if we consider not just a single value of the helium-core mass, but a

distribution of values just before the CEE phase, it is also possible in MESA to have a

final age consistent with binary_c v2.2.3. For example, it takes 2.48 Gyr for a 1.60 M�

star in MESA to achieve a helium-core mass of 0.22 M�, and other about 150 Myr for a

star between 0.65 M� and 0.80 M� to ignite helium in the core.

An example of binary_c v2.2.3 HRD of a primary star with such a formation channel

is in Figure 3.11. This specific simulation begins with a 1.60 M� ZAMS primary star

orbiting a 0.25 M� companion in almost 32 days. The CEE begins when the primary star

has a helium-core mass of about 0.279 M�, and it ends with the ejection of 1.12 M� of

material from the system. The post-CEE star begins the CHeB stage at the age of 2.41

Gyr and a mass of 0.70 M�.

3.5 Discussion and conclusions

In this chapter we focused on the single metal-rich (Z ≈ Z�), Li-rich, low-mass, CHeB

star KIC4937011, which is a member of the star cluster NGC 6819 (turn-off mass of ≈ 1.6

M�, i.e. age of ≈ 2.4 Gyr). This star has ≈ 1 M� less mass than expected for its age and

metallicity, thus, it could be the result of a binary interaction or of the poorly understood

mass loss mechanism along the red-giant branch. To infer formation scenarios, we adopt

a Bayesian approach using the binary_c v2.2.3 code coupled with the Dynamic Nested

Sampling approach contained in the dynesty v2.1.1 package. The final conclusions are

summarised here:

1. This star is the result of a common-envelope evolution phase in which the companion

does not survive. All the MC simulations considered have one common envelope

phase within the final stage of the CHeB phase of the primary star, and only a

negligible fraction of simulations (0.006%) experiences two common envelope phases.

2. Considering a subsample composed by CHeB primary stars with luminosity below

81



CHAPTER 3. ANOMALOUSLY LOW-MASS CORE-HE-BURNING STAR IN NGC 6819 AS A
POST-COMMON-ENVELOPE PHASE PRODUCT

30004000500060007000

Teff [K]

101

102

103

L
[L
�

]

CEE

MS

HG

RGB

CHeB

Obs

Figure 3.11: HRD of a primary star in the subsample from the ZAMS to the end of the CHeB stage

done with binary_c v2.2.3. The CEE begins when the primary star has a helium-core mass of about

0.279 M� (arrow in the figure), and it ends with the ejection of 1.12 M� of material from the system.

The simulation begins with a 1.60 M� ZAMS primary star orbiting a 0.25 M� companion in almost 32

days. The primary star begins the CHeB stage at the age of 2.41 Gyr and a mass of 0.70 M�. In black

KIC4937011’s observed values (see also Table 3.3).

100L� and 12C/14N below 2.5, we find that the highest peak in their helium-core

mass density distribution is at 0.4743 M�. This is in line with the expectations

for RC stars, and with the observations of KIC4937011. The 12C/13C and 12C/14N

distributions are consistent, within the errors, with the observations. The 14N/16O

posterior distribution tends towards higher values than observations, but with a

median of the distribution that is just about 1.2-σ away from the observed value.

The effective temperatures, luminosities, and radii distributions are systematically

higher than observations. This is expected, because for such low-mass stars (≈ 0.7

M�) the Pols et al. (1998) evolutionary tracks used in binary_c v2.2.3 deviates

significantly from more modern evolutionary tracks (Girardi 2016). However, these

systematic effects do not limit our inference in the formation channel, because they

are not used in the likelihood, thus, they are not used to discriminate between models.

3. The most credible formation channel is summarised in Figure 3.10. We start from

two ZAMS stars in a circular orbit. In all the MC simulations considered, a RLOF

begins when the companion is still in the MS phase, but with a primary star that

goes in the RGB phase or in the HG phase. This RLOF is dynamically unstable

and, thus, a CEE phase arises. During this CEE phase we have dynamical effects

that induce a mixing of the envelope of the primary star with the MS companion,
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forming the chemical pattern we observe today. The final effect of this CEE phase

is a median ejection of ≈ 1.1 M� of material from the system and contemporary the

merger of the companion with the helium-core of the primary star. The post-CEE

phase product is an RGB-like star of ≈ 0.71 M� with an evolved He core. Finally,

the star reaches the CHeB stage after helium flashes as if it were a single star. This

formation channel is consistent with MESA models of single star evolution before

and after the CEE phase if we take systematic effects into account.

It is worth mentioning that the same formation channel could form sdB star or metal-

rich RR Lyrae (Bobrick et al. 2024), because a non-negligible fraction of low-mass CHeB

stars has effective temperatures reaching about 27000 K. This means that this channel

potentially provides another piece of the puzzle in the sequence between RC and sdB

stars, or other stripped stars.

In future we will analyse other very-low mass CHeB stars in open clusters with the same

technique, because a better statistics of such objects is necessary to verify the formation

channel as an universal feature. Furthermore, synthetic populations of Kepler stars provide

valuable insights into the overall probability of such an evolutionary scenario (Mazzi et al.,

in prep.). We will also improve the posterior distributions by using detailed evolutionary

models within the likelihood in order to compute λce and reduce systematic effects. An

analysis of the activity-sensitive He I 10830 Å absorption triplet would also be interesting

in order to better study the current mass loss in KIC4937011 and in order to put this star

in the wider context of the Li-rich RC stars (Sneden et al. 2022).
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Chapter 4

Parametric models of

core-helium-burning stars: structural

glitches near the core1.

Understanding the internal structure of core helium burning (CHeB) stars is essential

for evaluating transport processes in regions where nuclear reactions occur, developing

accurate models of stellar populations, and assessing nucleosynthesis processes that impact

the chemical evolution of galaxies. Until recently, detailed insights into the innermost layers

of these stars were limited. However, advancements in asteroseismic observations have

allowed us to explore their stratification more thoroughly. Despite this progress, the seismic

signatures associated with structural variations at the boundary between the convective

and radiative core, as well as the chemical composition gradients within the radiative core,

have been relatively underexplored in CHeB stars. This chapter aims to fill that gap by

investigating how these gradients influence the oscillation modes of low-mass CHeB stars.

We specifically focus on mixed dipole modes and uncoupled g-modes as effective probes

of stellar interiors. Using semi-analytical models calibrated with the evolutionary codes

BaSTI-IAC, CLES, and MESA, we explore the influence of density discontinuities and their

associated structural glitches on the period spacings of these oscillation modes. These

codes were chosen for their distinct physical prescriptions, allowing us to identify common

relevant features for calibration purposes. This approach enables us to control the type

of glitch introduced while maintaining a realistic representation of the star. As expected

from previous studies, our results indicate that these glitches manifest as distinct periodic

components in the period spacings, which can be used to infer the position and amplitude of
1The work presented in this chapter is based on Matteuzzi et al., to be submitted.
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the structural variations inside CHeB stars. Furthermore, we compare models with smooth

transitions to those with sharp discontinuities, highlighting the differences in period spacing

and mode trapping, which permits us to infer the sharpness of the glitches. Additionally,

we conduct simulations based on four-year-long Kepler observations, demonstrating that

our models predict oscillation frequencies closely resembling the observed data. Ultimately,

our models enable realistic predictions of how each sharp structural variation impacts the

observed power spectral density. This alignment not only validates our theoretical approach

but also suggests promising directions for interpreting glitches signatures in high-quality

asteroseismic data.

4.1 Introduction

Understanding the degree of mixing within the helium core is crucial to refine esti-

mates of CHeB phase lifetimes and improve predictions of stellar internal structures in

subsequent evolutionary stages (see Section 1.3). This knowledge plays a key role in de-

veloping accurate models of stellar populations and elucidating the chemical evolution of

galaxies. Observations of mixed dipole modes in CHeB stars provide a valuable tool for

probing their innermost regions (e.g. Montalbán et al. 2010; Bedding et al. 2011; Montal-

bán et al. 2013; Deheuvels et al. 2016; Deheuvels et al. 2018). These oscillation modes

may reveal structural variations that occur at the boundaries of mixed convective regions,

areas of element ionisation, or at interfaces between layers with different chemical compo-

sitions resulting from nuclear burning. In particular, we expect that CHeB stars exhibit

chemical composition gradients at the boundary between convective and radiative core,

within the hydrogen-burning shell, and at the base of the convective envelope (see Section

1.3). In low-mass stars with a degenerate helium core, the transition from the RGB to

the CHeB phase is expected to involve a succession of off-centre helium flashes (see Sec-

tion 1.3.1), which induce additional chemical composition gradients within the radiative

core. As shown in Figure 4.1 and in equation 1.2.6, these gradients manifest as signatures

in the Brunt-Väisälä frequency (N), which determines the behaviour of oscillation modes

(see Section 1.4.3). This frequency can also produce deviations in period spacing from the

asymptotic value when the characteristic scales of structural variations within the core are

comparable to or smaller than the local wavelength of the waves under investigation (see

Cunha 2020, for a review). These distinct signatures on the eigenfrequencies are commonly

referred to as glitch signatures.

Previous studies have examined near-core mixing conditions through the asymptotic
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Figure 4.1: Brunt-Väisälä frequencies as a function of internal mass for five different star models at

the beginning of the CHeB stage (top panel). The orange, green, red, and violet lines represent models

calculated using the evolutionary codes CLES, MESA, and BaSTI-IAC, while the blue line shows the fiducial

barotropic model discussed in Section 4.3. All lines, except for the red one, correspond to a 1 M� CHeB

star with solar metallicity and a central helium mass fraction of about 0.9. In contrast, the red line depicts

a 1.5 M� CHeB star, which has core properties similar to those of lower-mass stars. Notably, these models

reveal shared features in their Brunt-Väisälä frequencies, including a convective core, a radiative core, a

hydrogen-burning shell, a radiative envelope, and a convective envelope (the last not shown for clarity).

In the bottom panel, we show the helium mass fraction as a function of internal mass for four of the five

models.
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period spacing of dipole modes ∆Pa (e.g. Bossini et al. 2015; Constantino et al. 2015;

Bossini et al. 2017; Noll et al. 2024), but further insights can be gained by analysing

individual eigenfrequencies. Despite extensive observational and theoretical studies on

these glitches (e.g. Miglio et al. 2008; Bossini et al. 2015; Cunha et al. 2015; Cunha et al.

2019; Vrard et al. 2022; Hatta 2023; Cunha et al. 2024), the effects of sharp variations in

the density profile on eigenfrequencies remain not fully explored. The seismic signature

of density discontinuities associated with abrupt composition changes has already been

addressed by McDermott (1990), who noted that such jumps can significantly influence

the pulsation mode spectrum and stability of non-radially oscillating stars. A density

discontinuity can locally contribute to or even become the dominant source of buoyancy.

Such a discontinuity is defined as any region where the density changes so rapidly that the

density scale height becomes much smaller than the effective wavelength of any oscillation

mode of interest. The role of these density discontinuities in the spectrum of gravity modes

was also explored by Gabriel et al. (1979), who found that abrupt density changes can

lead to mode trapping of g-modes with the proper effective wavelength. If the frequency

associated with a density discontinuity is comparable to or larger than the ordinary g-mode

frequency, these discontinuities cannot be ignored in computing the g-mode spectrum.

Structural glitches give rise to periodic components in the period spacing, allowing for

the recovery of information about the location and sharpness of these glitches from their

periodicity and amplitude. Therefore, deviations from ∆Pa contain information about

sharp features in theN frequency, which can be visualised through the normalised buoyancy

radius

Φ(r) :=

∫ r
r1
N/y dy∫ r2

r1
N/y dy

, N > 0, r1 ≤ r ≤ r2. (4.1.1)

This quantity is a monotonically increasing function between the inner turning point r1

and the outer turning point r2, effectively serving as a radial coordinate. The coordinate

Φ(r) is particularly valuable for studying the core/envelope symmetry of high-overtone

modes, though this symmetry is approximate and can be disrupted by various mechanisms

(Montgomery et al. 2003). Within the JWKB approximation (see Section 1.4.3), the

kinetic energy density per unit of normalised buoyancy radius is generally constant, except

at sharp features such as composition transition zones. This property makes variations in

kinetic energy density a clear indicator of mode trapping. Moreover, within the JWKB

approximation, the periodic component in the period spacing (Pglitch) associated with a

structural glitch located at a radius rglitch is related to its normalised buoyancy radius
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[Φ(rglitch)] and its periodicity in radial order (∆nglitch) via the relation:

∆nglitch ≈ 1/Φ(rglitch) ≈ Pglitch/∆Pa (4.1.2)

(see e.g. Miglio et al. 2008; Cunha et al. 2015; Cunha et al. 2019; Vrard et al. 2022; Hatta

2023). This equation is particularly useful for interpreting the periodic signals observed in

the period spacing of oscillation modes, enabling the extraction of information about the

location, amplitude and type of structural glitch. However, studying structural glitches is

challenging due to several factors, including complications arising from the growth of the

convective core, the lack of a comprehensive mixing theory, the emergence of semiconvective

layers (e.g. Castellani et al. 1971a; Straniero et al. 2003), and numerical issues within

predictions from evolutionary models. As a result, artificial glitches can arise, making

the interpretation of the eigenfrequencies more complicated. To address these challenges,

flexible and self-consistent models are essential, particularly for studying low-mass CHeB

stars with high coupling factors (Section 2), as they offer deeper insights into their internal

structures compared to other RC stars.

The chapter is organised as follows. Section 4.2 describes the theoretical framework for

solving the differential equations of stellar structure. Section 4.3 details the semi-analytical

model of a 1 M� RC star with solar composition and Yc ≈ 0.9, which serves as a reference

model for subsequent modifications. Section 4.4 explains how we simulate different levels

of mixing between adjacent zones in a self-consistent manner. Results are presented in

Section 2.4, and Section 3.5 concludes the chapter.

4.2 Modelling of a realistic star

The structure of a single, spherical, non-rotating, non-magnetic star can be described by

the hydrostatic and mass continuity equations (see equation 1.2.1 in Section 1.2). To fully

solve these differential equations, it is essential to establish a relation between pressure and

density. Furthermore, this relation must include temperature, mass fractions of chemical

species, and their corresponding chemical potentials to formulate a complete system of

differential equations. In particular, we must incorporate an equation of state (EOS, as

discussed in Section 1.2) that connects pressure with these other variables, thereby resulting

in a closed system of equations. In this chapter, we will employ a differential representation

of an EOS. We start by defining the variable

γlocal(r) :=
d lnP (r)

d ln ρ
, (4.2.1)
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which allows us to derive the differential equation

dP (r)

dr
= γlocal(r)

P (r)

ρ(r)

dρ(r)

dr
(4.2.2)

that has to be solved together with the hydrostatic and mass continuity equations. All

the information provided by the EOS is encapsulated in equation 4.2.1, which can be

seen through a heuristic approach. For simplicity, and without loss of generality, we may

consider γlocal(r) ≡ γlocal(T, ρ, µ). By applying the chain rule to equation 4.2.1, we can

demonstrate that

γlocal(T, ρ, µ) =
χρ

1− χT∇− χµ∇µ
, (4.2.3)

where χρ, χT , χµ,∇ and∇µ are explicitly defined in Section 1.2.2. It is now more evident

that γlocal is predominantly influenced by the thermal and chemical gradients present within

the star, and that in adiabatically stratified layers γlocal ≡ Γ1. Moreover, according to

equation 4.2.2, a polytropic EOS can be derived (i.e. P ∝ ργlocal) when γlocal is treated as

a constant. For the purposes of the following discussion, we will denote γlocal(r) ≡ γ(r).

4.2.1 Barotropic CHeB stars

As demonstrated in Section 4.2, a closed set of equations is obtained when we pro-

vide the temperature profile and the chemical species. However, stars can be accurately

modelled as systems in barotropic equilibrium (i.e. the thermodynamic variables are strat-

ified as the density profile), because ~∇ρ× ~∇P = ~0 everywhere in self-gravitating spherical

stars in hydrostatic equilibrium. Furthermore, the density is a monotonic function of the

radius with the exception of a small region near the surface where a density inversion

due to hydrogen recombination occurs (e.g. Érgma 1971; Harpaz 1984). This observation

leads to the conclusion that, with a high degree of accuracy, P (r) ≡ P (ρ), T (r) ≡ T (ρ),

Xi(r) ≡ Xi(ρ) and γ(r) ≡ γ(ρ). These relations can be incorporated into equation 4.2.2

to derive the differential equation

dP (r)

dr
=
γ(ρ)P (ρ)

ρ(r)

dρ(r)

dr
. (4.2.4)

A general solution of equation 4.2.4 is

P (ρ) = Pc exp

(∫ ln ρ

ln ρc

γ(t) dt

)
, (4.2.5)

where Pc and ρc are the central pressure and density, respectively. Therefore, an a priori

knowledge of γ(ρ), e.g. from calibrations on evolutionary models, allows us to find the

internal structure of the star using the hydrostatic equation, the mass continuity equation,

and equation 4.2.4 or 4.2.5.

90



4.2. MODELLING OF A REALISTIC STAR

4.2.2 Differential equations for barotropic stars

From now on we normalise all the quantities respect to reference density (ρ1) and

pressure (P1) values. As a result, once the dimensionless quantities

θ :=
ρ

ρ1

ξ := r

√
4πGρ2

1

P1

β :=
P

P1

ψ := m

√
4πG3ρ4

1

P 3
1

(4.2.6)

are defined, the hydrostatic equation, the mass continuity equation, equation 4.2.4 and

equation 4.2.5 become 

dθ(ξ)

dξ
= − ψ(ξ)θ(ξ)2

γ(θ)β(θ)ξ2

dψ(ξ)

dξ
= ξ2θ(ξ)

β(θ) = βc exp

(∫ ln θ

ln θc

γ(t) dt

)
,

(4.2.7)

with initial conditions θ(ξ = 0) = θc, β(ξ = 0) = βc and ψ(ξ = 0) = 0. Therefore,

we numerically solve equation 4.2.7 with a Dormand and Prince Runge-Kutta fifth-order

method from the centre to the surface and obtain the θ(ξ) and ψ(ξ) profiles. Finally, with

such profiles we a posteriori calculate other variables of interest such as the Brunt-Väisälä

frequency

N2(ξ) = 4πGρ1
ψ(ξ)2θ(ξ)

β(θ)ξ4

[
1

γ(θ)
− 1

Γ1

]
. (4.2.8)

To mitigate numerical issues when solving equation 4.2.7 from the centre, we employ Taylor

expansions to approximate the actual solutions near the centre. More details regarding

these expansions are provided in Appendix E. We also want to notice that in certain

situations it may be more beneficial to solve alternative differential equations rather than

equation 4.2.7. In Appendix F, we examine some of these alternative equations, with a

specific focus on equations near the stellar surface. In Appendix G, we present analytical

solutions to equation 4.2.7 for constant values of γ(r), which we utilise to validate our

numerical solver.

4.2.3 Discontinuities in the internal profiles

In CHeB stars we expect that certain internal profiles (e.g. ρ) exhibit discontinuities

or non-differentiable points. For example, we expect a sharp decrease in density at the
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boundary between convective and radiative core due to an abrupt change in the chemical

profile (see Section 1.3.2). Therefore, we can establish the jump conditions at a given

radial position r0 by ensuring the continuity of pressure and mass. In fact, in CHeB stars

at equilibrium, there are no internal shock waves, and the locations where the internal

profiles show discontinuities have zero Lebesgue’s measure. For simplicity let us use the

notation limr→r−0
f(r) := f− and limr→r+

0
f(r) := f+ for an internal profile f(r). Such a

profile is continuous when f− = f+ = f(r0). Let us define

Λ :=
ρ+

ρ−
∈ R+, (4.2.9)

because we are mainly interested in jump discontinuities in the density profile. Then, the

jump conditions are



ξ+ = ξ−

β+ = β−

ψ+ = ψ−

θ+ = θ−Λ

dθ

dξ

∣∣∣∣
r+
0

=
dθ

dξ

∣∣∣∣
r−0

Λ2

(
γ−

γ+

)
dψ

dξ

∣∣∣∣
r+
0

=
dψ

dξ

∣∣∣∣
r−0

Λ

(N2)+ = (N2)−Λ

(
Γ+

1 − γ+

Γ−1 − γ−
)(

γ−

γ+

)(
Γ−1
Γ+

1

)
.

(4.2.10)

Let us now introduce r0 as the boundary between two zones with different normalisation

constants P1 and ρ1. This choice may be useful when equation 4.2.7 creates numerical issues

(for example with small θ and β values, see Appendix F). We then define as normalisation

constants for the first zone (i.e. for r ≤ r−0 ) the density and the pressure in the centre of

the star (i.e. P1 ≡ Pc and ρ1 ≡ ρc). This simplifies all the equations, because now θc ≡ 1

and βc ≡ 1. In the second zone (i.e. where r ≥ r+
0 ) it is useful to define as normalisation

constants the pressure and the density at the boundary between the two zones. Therefore,

we have P1 ≡ P (r0) = Pc exp
(∫ ln θ−

0 γ(t) dt
)
and ρ1 ≡ Λρ−. The new jump conditions are
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now 

ξ+ = ξ−
Λθ−√
β−

β+ = 1

ψ+ = ψ−
(β−)

3
2

(θ−Λ)2

θ+ = 1

dθ

dξ

∣∣∣∣
r+
0

=
dθ

dξ

∣∣∣∣
r−0

γ−

γ+

√
β−

(θ−)2

φ+ = 1

dφ

dξ

∣∣∣∣
r+
0

= (γ+ − 1)
dθ

dξ

∣∣∣∣
r−0

γ−

γ+

√
β−

(θ−)2
,

(4.2.11)

where we include the φ and dθ
dξ variables defined in Appendix F, because useful for Section

4.3.3.

4.3 Fiducial barotropic model

In this section, we derive a fiducial barotropic model for a 1 M� star with solar com-

position at the onset of the CHeB stage, ensuring it incorporates all the fundamental

characteristics of this evolutionary phase. As discussed in Section 4.2.1, knowing γ(ρ) al-

lows us to find the internal structure of the star using the hydrostatic equation, the mass

continuity equation, and equation 4.2.4 or 4.2.5. However, this information is insufficient

on its own; we need detailed evolutionary models for the calibration of γ(ρ). For this pur-

pose we employ the evolutionary codes CLES v21.0 (Code Liégeois d’Évolution Stellaire,

Scuflaire et al. 2008a) and MESA v11701 (Modules for Experiments in Stellar Astrophysics;

Paxton et al. 2011; Paxton et al. 2019). In both codes we focused on models that have

a mass fraction of helium in the centre of about 0.9 (i.e. Yc ≈ 0.9). In particular, both

in CLES v21.0 and in MESA v11701 we adopt as the reference solar mixture that from

Asplund et al. (2009), and high- and low-temperature radiative opacity tables are com-

puted for the solar specific metal mixture. The envelope convection is described by the

mixing length theory of Cox et al. (1968); the corresponding αMLT parameter, the same

for all the models, is derived from the solar calibration with the same physics. Below the

convective envelope, we add a diffusive undershooting (Herwig 2000) with a size parameter

f = 0.02 (see Khan et al. 2018) in the MESA v11701 models, while the CLES v21.0 models

incorporated a step undershooting in the form of penetrative convection. Furthermore,

additional mixing over the convective core limit during the CHeB phase is treated follow-
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ing the formalism by Bossini et al. (2017) in the MESA v11701 models. In contrast, in the

CLES v21.0 models we adopt a step overshooting of 0.50HP in the form of penetrative

convection, along with prescriptions designed to establish a semiconvective region (more

details in Panier et al., in prep.). Unlike MESA v11701, CLES v21.0 begins its simulations

from a zero-age horizontal branch, employing a fixed initial helium core mass of 0.45 M�.

As a result, these models do not undergo helium flashes, but approximately 6% by mass

of helium in the core is converted into carbon.

In figure 4.2 we show the γ(r) of four different models as a function of density. Two of

them are computed with CLES v21.0 and MESA v11701, while another one is a model with

Z = 0.012580 taken from the BaSTI-IAC library2 explained in Hidalgo et al. (2018). It is

clear that they share the same fundamental characteristics of the CHeB phase. We expect

a similar situation for models of different masses and/or metallicity; the main difference

beeing the location (in density) of such characteristics. Finally, the last γ(r) in the figure is

a reference barotropic model we derive in Section 4.3.1, 4.3.2 and 4.3.3, which we will call

fiducial barotropic model. This model is calibrated on the evolutionary model computed

with the code CLES v21.0, which we will simply call reference CLES model. We decide to

divide γ(r) of the barotropic model in three different zones: the convective core (Section

4.3.1), the inner radiative region of the star (i.e. the radiative core, the hydrogen-burning

shell and the radiative envelope, see Section 4.3.2), and the convective envelope (Section

4.3.3).

It is essential to emphasise that the primary aim of this semi-analytical modelling is to

explore the details of the gravity modes spectrum. Therefore, our analysis will concentrate

on the characteristics of the stellar radiative regions, while we will simplify the modelling

of the convective envelope, as it is less relevant to our investigation.

4.3.1 First zone

The first zone is the convective core of the CHeB star. We model this part by using the

same ρc and Pc as the reference CLES model, but a different Γ1. We assume a constant Γ1

equal to γ(θ), i.e. we assume a polytropic EOS in this region. We calibrate the barotropic

model to have the same radius and mass at the end of the convective core as the reference

CLES model by keeping Γ1 as a free parameter to fit. The results of the calibration are in

Table 4.1.

2http://basti-iac.oa-abruzzo.inaf.it/astero.html
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Figure 4.2: Comparison of γ(r) as a function of density for four different models of a 1 M� star at

the beginning of the CHeB stage (Yc ≈ 0.9) with solar metallicity. In blue a model calculated with the

tool CLES v21.0, in red a model calculated with the code MESA v11701, in green a model taken from the

BaSTI-IAC library, and in black the fiducial barotropic model we present in Section 4.3. In orange we also

show the Γ1 obtained with CLES v21.0. All the four models share the fundamental characteristics of the

CHeB phase.
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Table 4.1: Comparison between the reference CLES model and the fiducial barotropic model

presented in Section 4.3.

Zone Γ1 Radius Mass Density Pressure

First 1.6460 < 10−10% < 10−10% 0.08% 0.06%

Second, correct BCE 5/3 < 10−10% 9.3 · 10−10% 1.3 · 10−8% −7.2%

Second, fiducial 5/3 < 10−10% 0.56% 8.2% 7.3%

Notes. This comparison is done by means of the expression (xCLES − xfiducial) /xCLES,

where x is the position, mass, density, and pressure at the boundaries of the zones depend-

ing on the column. The second row presents the values achieved when fitting the correct

radius and mass at the base of the convective envelope (Section 4.3.2). In contrast, the

last row displays the values obtained when aiming for the correct total stellar mass and

radius (Section 4.3.2).

4.3.2 Second zone

In the second zone, we simulate the change in chemical composition at the boundary

between convective and radiative core with a jump in density identical to the reference

CLES model (i.e. we adopt the same Λ < 1). This approach is justified by the fact that

Λ ≈ µ+/µ− in the perfect gas approximation, because at the boundary between convective

and radiative core the pressure and the temperature are continuous functions. In this

second zone, we model the star from the base of the radiative core to the base of the

convective envelope. In particular, we take



Γ1 =
5

3

0 ≤ γ(ρ) < Γ1

θ :=
ρ

Λρ−

β :=
P

P0
= exp

(∫ ln θ

0
γ(t) dt

)
(4.3.1)
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with

γ(θ) =



A exp

[
−(ln θ − ln θP )2

2σ2

]
+ aθK , θP ≤ θ ≤ 1

[A+ aθKP − (a′)θK
′

P ] exp

[
−(ln θ − ln θP )2

2(σ′)2

]
+

+(a′)θK
′
, θ < θP .

(4.3.2)

Therefore, we model γ(θ) in this zone with eight parameters (i.e. [A, θP , σ, a,K, σ
′,K ′, a′]).

The normalised pressure is found when applying equation 4.3.2 into β(θ) of equation 4.3.1,

that is

lnβ(θ) =



A

√
π

2
σ

[
erf

(
ln θ − ln θP√

2σ

)
+ erf

(
ln θP√

2σ

)]
+

+
a

K

(
θK − 1

)
, θP ≤ θ ≤ 1

A

√
π

2
σ

[
erf

(
ln θP√

2σ

)]
+

a

K

(
θKP − 1

)
+

+[A+ aθKP − (a′)θK
′

P ]

√
π

2
(σ′)erf

(
ln θ − ln θP√

2σ′

)
+

+
a′

K ′

(
θK
′ − θK′P

)
, θ < θP .

(4.3.3)

We find initial guesses of the eight parameters by performing a fit between equation 4.3.2

and the γ(θ) of the reference CLES model with a maximum likelihood estimator. Conse-

quently, we modify the values of K ′ and a′ to obtain the same radius and mass at the base

of the convective envelope (BCE) as in the reference CLES model (see Table 4.1). However,

in the final fiducial model we do not keep these values of K ′ and a′, because they would

lead to unphysical values of the total stellar mass and radius (Section 4.3.3).

Finally, we want to notice that in the reference CLES model there is another drop in

density located at the end of the helium core as a signature of the helium-flashes (i.e. the

drop in γ of figure 4.2 near ρ = 100 g/cm3). However, in our fiducial barotropic model we

exclude such signature, because we will explore better additional jump discontinuities in

Section 2.4.

4.3.3 Third zone

In the reference CLES model, the density is non-differentiable at the BCE, that is, γ

has (with abuse of notation) a "jump discontinuity" at the BCE (see the "jump" in γ as

illustrated in figure 4.2 at ρ = 0.01 g/cm3). This characteristic is retained in our barotropic

model. Moreover, in contrast to the convective core, the convective envelope (designated

97



CHAPTER 4. PARAMETRIC MODELS OF CORE-HELIUM-BURNING STARS: STRUCTURAL
GLITCHES NEAR THE CORE

as the third zone in our barotropic model) exhibits low efficiency in convective transport

in the near-surface layers, primarily due to their low density values. As a result, these

near-surface layers are characterised by a temperature gradient that exceeds the adiabatic

temperature gradient, which can be modelled with the mixing length theory (see Section

1.2.2). However, in our barotropic model we adopt a γ(ρ) ≡ Γ1 (i.e. an adiabatic temper-

ature gradient) everywhere in the convective envelope to simplify subsequent calculations.

Additionally, we do not account for helium and hydrogen recombination and we keep a

constant Γ1 = 5/3 (similarly to the second zone, see Section 4.3.2). Finally, we determine

the total stellar mass and radius by solving the Lane-Emden equation F.0.7, with the

appropriate jump conditions described in equation 4.2.11, until we reach a density ρ = 0.

Due to the simplifications implemented, particularly within the convective envelope,

our barotropic model does not yield the same total mass and radius as the reference CLES

model; instead, it results in a star that is larger and more massive. A correct total radius

or a correct total mass can be achieved when Γ1 > 5/3 within the convective envelope.

However, we decide to retain a more physically plausible value of Γ1 = 5/3 and adjust the

parameters [K ′, a′]3 to ensure that the barotropic model attains the correct total mass and

radius. The change in radius, mass, density and pressure at the BCE resulting from the

introduction of the new [K ′, a′] parameters are presented in Table 4.1.

4.4 Smooth transitions in discontinuous density profiles

In real stars, atomic diffusion (e.g. Michaud et al. 1984; Michaud et al. 2010) is expected

to smooth gradients in pressure, temperature, concentration and density. It tends to

smooth out such gradients when present, as in the case of jump discontinuities in density.

Therefore, to make our barotropic model even more realistic, we need a function that

smoothly joins two adjacent zones having otherwise a jump discontinuity in density. This

must be done in a self-consistent manner and by simulating different levels of mixing

between the two zones.

In the fiducial barotropic model of Section 4.3, we have a jump discontinuity in the

density at the boundary between convective and radiative core. We can smoothly join

these two zones using a sigmoid function S(P ) in the lnP − ln ρ plane. This means that

ρ ≡ ρ(ρI , ρR, S), where ρI(r) is the density profile in the convective core and ρR(r) the

density profile in the radiative part of the star. In general, the new derivative of the density

3We also tested different parameters to reach the correct total mass and radius, but these two are the

best compromise.
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is
d ln ρ

d lnP
=

∂ ln ρ

∂ ln ρI

d ln ρI
d lnP

+
∂ ln ρ

∂ ln ρR

d ln ρR
d lnP

+
∂ ln ρ

∂S

dS

d lnP
, (4.4.1)

with a convenient choice for S(P ) such that it cancels out in the radiative part and becomes

one in the convective core. Consequently, a choice for ρ(ρI , ρR, S) is

ln ρ(P ) := ln ρR + (ln ρI − ln ρR)S(P ), (4.4.2)

which inserted into equation 4.4.1 becomes

d ln ρ

d lnP
=

1− S(P )

γR[ρR(P )]
+
S(P )

Γ1,c
+ (ln ρI − ln ρR)

dS(P )

d lnP
. (4.4.3)

Finally we obtain that 
1

γ(ρ)
=

1− S[P (ρ)]

γR{ρR[P (ρ)]} +
S[P (ρ)]

Γ1,c
+

+{ln ρI [P (ρ)]− ln ρR[P (ρ)]}dS[P (ρ)]

d lnP
,

(4.4.4)

with P (ρ) obtained by inverting equation 4.4.2 numerically. As expected, limS→0 γ =

γR, limS→1 γ = Γ1,c, and limS→1/2 γ has a local minimum whose value depends on the

functional form of S(P ).

From now on we decide to use the error function as a functional form of S(P ):
S(P ) :=

1 + erf[α(lnP − lnP0)]

2
dS(P )

d lnP
=

α√
π

exp [−α2(lnP − lnP0)2],
(4.4.5)

where α ≥ 0 is a constant whose increasing value makes the slope of S(P ) steeper, and

P0 is the pressure at the boundary between convective and radiative core in the fiducial

model of Section 4.3. With such choises, the higher is α, the lower is the amount of mixing

between the two consecutive zones. Indeed, for α→∞ equation 4.4.5 tends to a Heavside

function, thus, we tend to the fiducial model of Section 4.3, while for α = 0 we have a

fixed S(P ) = 1/2 that corresponds to the maximum mixing. Furthermore, this choice for

P0 results in ρI(P0) ≡ ρ−, ρR(P0) ≡ Λρ− and

lim
P→P0

1

γ
=

1

2γR(Λρ−)
+

1

2Γ1,c
+

α√
π

ln

(
1

Λ

)
. (4.4.6)

In summary, in the limit for α→∞, equation 4.4.4 tends to

lim
α→∞

γ(ρ) =


Γ1,c, P > P0

0, P = P0

γR(ρ), P < P0,

(4.4.7)
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and equation 4.4.2 tends to

lim
α→∞

ρ(P ) =


ρI(P ), P > P0

ρR(P ), P < P0,
(4.4.8)

which means that we tend to the fiducial model of Section 4.3 as expected.

To obtain the inverse of ρ(P ) we need to evaluate ln ρI(P ) and ln ρR(P ). From Section

4.3.1 we obtain

ln ρI(P ) = ln ρc +
lnP − lnPc

Γ1,c
, (4.4.9)

but ln ρR(P ) does not have an analytical solution. However,

lnPR(ρ) ≈ lnP0 +
a

K

ρK − ρK+
ρK+

(4.4.10)

is a very good approximation of the equation 4.3.3 when ρ & 0.24Λρ−. Therefore, the

inverse is well approximated by

ln ρR(P ) ≈ ln(Λρ−) +
ln
[
1 + K

a ln
(
P
P0

)]
K

(4.4.11)

when ρR & 0.24Λρ−. Finally we obtain that

1

γ(ρ)
≈ 1− S[P (ρ)]

a+K[lnP (ρ)− lnP0]
+
S[P (ρ)]

Γ1,c
+

+ ln

{
ρc

Λρ−

[
P (ρ)

Pc

] 1
Γ1,c

[
a

a+K(lnP − lnP0)

] 1
K

}
dS[P (ρ)]

d lnP

ln ρ(P ) ≈ ln(Λρ−) +
ln
[
1 + K

a ln
(
P
P0

)]
K

+

+ ln

{
ρc

Λρ−

(
P

Pc

) 1
Γ1,c

[
a

a+K(lnP − lnP0)

] 1
K

}
S(P )

(4.4.12)

when ρR & 0.24Λρ−, and from a numerical evaluation of P (ρ) we obtain γ(ρ).

For |α(lnP − lnP0)| >> 1 we have γ ≈ Γ1,c for ρ ≈ ρ−, and γ ≈ γR for ρ ≈ ρ+. Note

that to a good approximation
P (ρ = 0.24Λρ−) ≈ PR(ρR = 0.24Λρ−) forα ≥ 1.885

γ(ρ = 0.24Λρ−) ≈ γR(ρR = 0.24Λρ−) forα ≥ 2.074,
(4.4.13)

which means that the approximation in equation 4.4.10, which is valid when ρR & 0.24Λρ−,

is also valid when ρ & 0.24Λρ− if α ≥ 2.074. Moreover, from equation 4.4.13 we derive that

γ(ρ ≤ Λρ−) ≈ γR(ρR ≤ Λρ−) and P (ρ ≤ Λρ−) ≈ PR(ρR ≤ Λρ−) if α ≥ 2.074. Therefore,
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we decide to solve equation 4.4.12 when ρ > Λρ−, and when ρ ≤ Λρ− (i.e. until the end

of the second zone) we solve

γ ≈ γR

lnP ≈ lnPR = lnP1 +

∫ ln θ

ln θ1

γR(t) dt =

= lnP1 +A

√
π

2
σ

[
erf

(
ln θ − ln θP√

2σ

)
+ erf

(
ln θP − ln θ1√

2σ

)]
+

+
a

K
(θK − θK1 ),

(4.4.14)

where θ := ρ/(Λρ−), θ1 := 0.24 and lnP1 := lnP (θ1), which is found using equation 4.4.12.

Finally, we choose Γ1 such that

Γ1 =


Γ1,c for ρ ≥ ρ−(

5

3
− Γ1,c

)
ln (ρ)− ln(Λρ−)

ln(Λ)
+

5

3
for Λρ− < ρ < ρ−

5

3
for ρ ≤ Λρ−.

(4.4.15)

With this formalism we can explore different behaviours at the boundary betweeen

convective and radiative core by varying the parameters Λ and α. In the top panel of

figure 4.3, we illustrate four scenarios: one with a jump discontinuity in density (blue lines),

another without such a discontinuity (red lines), and two models that share the same Λ as

the blue case but differ in α values (orange and green lines). The bottom panel displays the

corresponding Brunt-Väisälä frequencies as functions of internal mass, highlighting that a

higher α leads to a sharper bell-shaped structure. Furthermore, the same formalism can

be applied to smoothly connect two adjacent zones that would otherwise exhibit a jump

discontinuity in density within the radiative core. In this context, the primary distinction

lies in the fact that γI(ρ) 6= Γ1,c, and the validity of the approximation presented in the

equations must be verified.

4.5 Results

In this section we explain the main results concerning our fiducial barotropic model

(Section 4.5.1) in comparison with different boundaries of the convective core (Section

4.5.2), and different glitches in the radiative core (Section 4.5.3). We compute the adiabatic

eigenfrequencies, normalised inertia Enorm (as outlined in equation 1.4.15 of Section 1.4.1)

and eigenfunctions of radial (` = 0) and non-radial (` = 1− 3) modes using the code GYRE

(version 6.0.1, Townsend et al. 2013; Townsend et al. 2018; Goldstein et al. 2020), but we
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Figure 4.3: Comparison between four different density profiles (top panel) at the boundary between the

convective and the radiative core and their corresponding Brunt-Väisälä frequencies (bottom panel) as

functions of internal mass. In particular, we compare the fiducial barotropic model (blue) with a model

without a jump discontinuity at the boundary (red), and with two models that smoothly join the two cores

(orange and green). The orange line incorporates a lower α value than the green line. The blue arrow

corresponds to a δ-distribution. The FWHM of the peaks in N presented here are significantly lower than

0.1Hp.
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verify independently the calculations with the tool LOSC (Scuflaire et al. 2008b) in the case

of the fiducial model. We also simulate 4-year-long Kepler observations (lightcurves and

power spectral densities) with the code AADG3 (AsteroFLAG Artificial Dataset Generator,

version 3.0.2; Ball et al. 2018, and references therein), with information on mode lifetimes

taken from the work of Vrard et al. (2018) on CHeB stars in the Kepler field.

4.5.1 Fiducial model

In this section, we highlight the results of the fiducial barotropic model of Section 4.3.

In Figure 4.4 we show the Brunt-Väisälä frequency as a function of the internal mass, with

a specification for the position of the convective core, the hydrogen-burning shell and the

convective envelope (top panel). In the boundary between the convective and radiative

core there is a change in Γ1, a change in γ(ρ) and a jump discontinuity in density. This

implies that N is a δ-distribution (blue arrow in the figure) at the position corresponding

to the boundary. In the BCE, the density profile is non-differentiable due to a "jump" in

γ(ρ), thus here N has a jump discontinuity.

As discussed at the beginning of Section 4.5, we assess our model by computing adia-

batic eigenfrequencies that serve to simulate 4-year-long Kepler observations. The corre-

sponding power spectral density (PSD) as a function of frequency is shown in the bottom

panel of figure 4.4. This panel includes a cyan dashed line representing the νmax, derived

from the reference CLES model, alongside the normalised inertiae as a function of eigen-

frequencies for modes with ` = 0, 1, 2, and 3. As expected (e.g. Montalbán et al. 2010;

Mosser et al. 2011b; Mosser et al. 2012a), the radial modes, along with the minima of

inertia for the non-radial modes, are evenly spaced in frequency with a 〈∆ν〉 ≈ 5µHz.

Additionally, a "forest" of dipole mixed modes appears between two consecutive radial

modes, a characteristic observed in actual low-mass CHeB stars. We further expect that,

in these stars, the period spacing (∆P ) of the observable dipole mixed modes approaches

the asymptotic value (∆Pa), which is notably higher than that of RGB stars (e.g. Mon-

talbán et al. 2010; Bedding et al. 2011). Our fiducial model confirms this expectation, as

illustrated in the middle panel of figure 4.4. It is apparent that as the frequency decreases,

∆P approaches the asymptotic value of ∆Pa = 248.34 s due to the increasing radial order

of the g-modes. Moreover, each minimum in ∆P corresponds to a minimum of inertia,

linked to a pressure-dominated mode, and the higher the frequency the lower the ∆P .

We also calculate the coupling parameter (q) at νmax using the prescriptions of Takata

(2016a), yielding q ≈ 0.24, which aligns with the observational findings (e.g. Vrard et al.
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Figure 4.4: This figure displays the Brunt-Väisälä frequency as a function of internal mass (top), nor-

malised inertia and period spacing (middle), and the simulated power spectral density (bottom). The

observable region of the spectrum is highlighted in gray, with the cyan dashed line indicating νmax.
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2016; Mosser et al. 2017).

In the hydrogen-burning shell, we observe that the Brunt-Väisälä frequency is non-

differentiable at the point where θ = θP , a condition resulting from the specific choice of

γ(ρ) employed in equation 4.3.2. This non-differentiability has the potential to introduce

an artificial glitch in the period spacing of the mixed modes, as noted in previous studies

(e.g. Cunha et al. 2015). Therefore, it warrants careful examination. Upon analysing

∆P at frequencies lower than νmax, we identify a behaviour resembling a small amplitude

oscillation centred in ∆Pa. The periodicity of this oscillation is approximately 11.6 minutes,

while the corresponding periodicity in radial order is ∆n ≈ 2.80. These periodicities

are consistent with expectations based on equation 4.1.2. However, it is important to

note that the Brunt-Väisälä frequency at the normalised buoyancy radius associated with

∆n ≈ 2.80 is smooth, which implies that it should not affect the eigenfrequencies with a

glitch signature (e.g. Cunha et al. 2015). Notably, this periodicity is accompanied by an

alias observed at ∆n ≈ 1.555. When this alias is taken into consideration, we find that the

associated normalised buoyancy radius is in good agreement with the characteristics of the

hydrogen-burning shell, which peaks at Φ ≈ 0.641 and has a full width at half maximum

(FWHM) of 0.126. Nonetheless, it is crucial to remain aware that this periodicity may also

arise from numerical inaccuracies in the computation of the adiabatic frequencies and/or

from the presence of the aforementioned non-differentiable point. A way to solve this

problem is by a comparison between the local wavelength of the eigenfunctions near the

shell and the width of the glitch (or the scale of variation of N , e.g. Cunha et al. 2019),

because it shows whether there is a period trapping in the region and what the main

source of the trapping is. A simpler way to see buoyancy glitches, and conversely to solve

the issue, is to measure the ∆P of the uncoupled g-modes, called γ-modes, through the

prescriptions provided by Ong et al. (2020) and included in GYRE. As can be seen from the

top panel of the figure 4.4 and from figure 4.5, the small amplitude oscillations centred in

the asymptotic period spacing ∆Pa are more visible when the modulation caused by the

coupling with the p-modes is absent. While the aforementioned periodicity in radial order

of these oscillations persists in the γ-modes, we must also account for a newly prominent

glitch signature with periodicity ∆n ≈ 2, as evidenced by a Fourier transform applied to

the period spacing of the oscillation modes. According to equation 4.1.2, we would expect

a glitch structure at Φ(rglitch) ≈ 0.5. However, the N function is smooth at this location,

which means that it cannot generate a glitch signature in the eigenfrequencies. It is now

apparent that the glitch at ∆n ≈ 1.555 aligns with the non-differentiable point, as at this
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Figure 4.5: Comparison between normalised period spacings for the γ-modes as functions of frequency.

The grey area represents the observable region of the spectrum and the cyan line the νmax. It is clear that

the fiducial model (in black) and the simplified model (in red) have similar properties of the g-cavity.

specific location the scale of variation of N is much lower than the local wavelength of the

g-modes near νmax. At this point, we can devise a simplified model that eliminates such

non-differentiable point, albeit at the expense of a less realistic g-cavity. In particular, we

employ the equations

γ(θ) = A exp

[
−(ln θ − ln θP )2

2σ2

]
+ c, θ ≤ 1

lnβ(θ) = A

√
π

2
σ

[
erf

(
ln θ − ln θP√

2σ

)
+ erf

(
ln θP√

2σ

)]
+

+c ln θ, θ ≤ 1

(4.5.1)

instead of the equations 4.3.2 and 4.3.3, with c > 0 a constant chosen in order to have

the correct total mass of the star. Figure 4.5 illustrates the normalised period spacings

for the γ-modes from both the fiducial model (in black) and the simplified model. The

results demonstrate that the observed glitch signature with periodicity ∆n ≈ 2 remains

intact, and that this oscillation appears to be at least compatible, if not predominant, with

the glitch signature originating from the non-differentiable point. To further investigate

this, we employed a finer grid when building the barotropic model and utilised different

numerical solvers. Despite these modifications, the same glitches in the period spacing were
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consistently observed. Therefore, the main deviations from the asymptotic value might

arise from numerical inaccuracies in the computation of eigenfrequencies, rather than from

the presence of the non-differentiable point. Notably, the peak-to-peak relative difference

in the period spacing of the γ-modes is at most 0.2 % (in the high-frequency regime),

which is significantly lower than typical observational uncertainties. Consequently, this

glitch does not compromise the interpretation of the observed power spectral distributions.

Furthermore, it confirms that the other glitches, which will be addressed in subsequent

sections, can be examined without concern for interference from this particular glitch, as

those will likely be much more significant.

4.5.2 Different boundaries of the convective core

In this section, we explore the impact on frequencies of two different types of boundaries

between convective and radiative core. In particular, we discuss the impact of a smooth

transition in the density between the two cores, and of a continuous density function that

is non-differentiable at the boundary.

Smooth transition

In figure 4.6 we show in the top panel the N profile as a function of the internal mass for

a model similar to the fiducial barotropic model, but with a smooth transition in the density

profile between the convective and radiative core (Section 4.4). This new model has a N

profile (red line) very similar to the fiducial model (blue line), but it contains a bell-shaped

structure centred at the boundary instead of a δ-distribution. We expect a value of the

asymptotic period spacing of the new model ∆Pa,Smooth lower than the one of the fiducial

model ∆Pa,Fiducial, because the new model has a slighlty greater g-cavity than the fiducial

model and it has higher values of N near the boundary. Moreover, we expect that such bell-

shaped structure in the N profile becomes a glitch, which creates a sinusoidal behaviour

of ∆P around ∆Pa,Smooth with a decreasing amplitude at increasing frequency, and dips

in the period spacing that are evenly spaced in period, with a periodicity compatible with

the buoyancy radius of the glitch (Cunha et al. 2019; Cunha et al. 2024).

In the bottom panel we show period spacings of the γ-modes as functions of the eigen-

periods for this new model (in red) and the fiducial model (in blue). As expected, there

is a very small difference between the two asymptotic period spacings (i.e. ∆Pa,Smooth ≈
∆Pa,Fiducial−0.65 s) and between the γ-modes in the observable region (dashed grey line).

Moreover, we observe in the new model a periodicity of approximately 23 hours with a
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Figure 4.6: Comparison of N profiles as functions of internal mass (top panel) and period spacings of the

γ-modes as functions of the eigenperiods (bottom panel). The blue line represents the fiducial model, while

the red model features a bell-shaped structure in the N profile at the boundary between the convective and

radiative core (see Section 4.4). The periodicity of the glitch corresponds to the location of the bell-shaped

structure. The half width at half maximum of the bell-shaped structure presented here is 0.0012HP .
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decreasing amplitude at increasing eigenperiods. When expressed in terms of radial or-

ders, this same periodicity corresponds to ∆n ≈ 334, which aligns with the expected value

derived from applying equation 4.1.2 to the new model. According to the same equa-

tion, we also infer that this glitch signature correlates to a structural variation situated at

Φ(rglitch) ≈ 0.0030. This finding is consistent with the normalised buoyancy radius of the

bell-shaped structure in N , which peaks at Φ ≈ 0.0015 and possesses a FWHM of 0.0023.

Furthermore, within this structure lies a local maximum of the Brunt-Väisälä length scale

(HN ) that is significantly lower than the local wavelength of g-modes at νmax. This fur-

ther supports the compatibility of our findings with the characteristics of the bell-shaped

structure. It is important to highlight that within the observable region of the oscillation

spectrum, this periodic component would appear too smooth to be identified as a glitch

signature. Finally, the small glitch explained in Section 4.5.1 adds to the above glitch,

generating relative fluctuations much lower than 1 % around the main behaviour of the

period spacing.

No jump discontinuity in density at the boundary of the convective core

In figure 4.7 we show in the top panel the N profile as a function of the internal mass

for a model similar to the fiducial barotropic model, but with a continuous density function

that is non-differentiable at the boundary between the convective and the radiative core.

This new model has a N profile (red line) very similar to the fiducial model (blue line),

but it contains a jump discontinuity at the boundary instead of a δ-distribution, and the

bell-shaped peak related to the H-burning shell is located at a lower radius than in the

fiducial model. Therefore,
∫ r2
r1
N/r dr is higher in the new model and we expect a value of

the asymptotic period spacing ∆Pa,NO lower than ∆Pa,Fiducial.

In the bottom panel, the period spacings are presented as functions of the eigenfrequen-

cies for both the fiducial model (in blue) and the new model (in red). Although the two

asymptotic period spacings differ, the difference is minimal (≈ 0.76 s). Notably, the small

glitch discussed in Section 4.5.1 now shows an increased peak-to-peak relative difference

in the period spacing of the modes. This could be related to the change of the N profile

at the buondary. However, it is important to note that the JWKB approximation used by

Cunha et al. (2019) and Cunha et al. (2024) cannot be applied in this context to infer the

properties of the glitches. Despite this increased difference, the relative difference remains

at most 1 % in the observable region of the spectrum. As a result, it is very difficult to

detect such a glitch even with the highest quality data available, especially when analysing
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Figure 4.7: Comparison of N profiles as functions of internal mass (top panel) and period spacings of the

γ-modes as functions of the eigenfrequencies (bottom panel). The blue line represents the fiducial model,

while the red model features a step-like structure in the N profile at the boundary between the convective

and radiative core instead of a δ-distribution.
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mixed dipole modes.

Nevertheless, it is important to highlight that the glitches discussed in Section 4.5.2

serve as valuable examples for testing purposes. At this stage, we cannot rule out the

possibility that signatures of convective boundary mixing may be observed in more evolved

CHeB stars, as such glitches at the boundary between the convective and radiative core

could potentially be more pronounced in these cases.

4.5.3 Glitches in the radiative core

In this section, we explore the impact on frequencies of two different types of glitches in

the radiative core. In Section 4.5.3 we study the impact of a jump discontinuity in density

located in a position compatible with a subflash, whereas in Section 4.5.3 we smooth the

same discontinuity using the method of Section 4.4.

δ-distribution glitch

In figure 4.8, the top panel displays the N profile as a function of internal mass for

a model similar to that presented in Section 4.5.2. This model features a continuous,

albeit non-differentiable, density function at the boundary between the convective and

radiative core, and it introduces a new jump discontinuity in density that is compatible

with a subflash event occurring within the radiative core. The resulting N profile (red line)

closely resembles the fiducial model (blue line); however, the red model is characterised

by a jump discontinuity at the boundary between the convective and the radiative core

rather than a δ-distribution. Moreover, a δ-distribution is observed at the location of

the jump discontinuity in density within the radiative core, with the bell-shaped peak

associated with the hydrogen-burning shell occurring at a lower radius compared to the

fiducial model. Overall, the integral
∫ x
r1
N/r dr at a fixed position x ≤ r2 in this new model

resembles that of the Section 4.5.2 mentioned earlier. However, the jump discontinuity in

density within the radiative core leads to a reduction in
∫ x
r1
N/r dr for positions above the

discontinuity when compared to the other case. This cumulative effect drives the value

of the integral
∫ r2
r1
N/r dr below that of the fiducial model. Consequently, we expect a

value of the asymptotic period spacing ∆Pa,Discont higher than ∆Pa,Fiducial. Furthermore,

we expect that the δ-distribution in the N profile will manifest as a glitch, resulting in

periodic deviations of ∆P relative to ∆Pa,Discont (e.g. Cunha et al. 2015). These deviations

will exhibit a decreasing amplitude with increasing frequency, creating evenly spaced dips

in period that align with the periodicity associated with the normalised buoyancy radius
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Figure 4.8: This figure presents a comparison of the N profiles as functions of internal mass (top panel)

and the period spacings of the γ-modes as functions of the eigenperiods (bottom panel). The blue line

represents the fiducial model, while the red model incorporates a δ-distribution glitch in the N profile

located within the radiative core. The fiducial model is not displayed in the bottom panel, as it would be

indistinguishable from the black line, which represents the ∆Pa of the red model. Notably, the periodicity

in the bottom panel corresponds to the location of the δ-distribution, and the maximum period spacings

measured closely match ∆Pa,until Discont. This value reflects the asymptotic ∆P we would obtain if the

g-cavity extends from the position of the glitch to the outer boundary.
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of the glitch. Additionally, some modes are expected to become trapped as a result of the

abrupt change in N .

In the bottom panel, the period spacing of the γ-modes as a function of the eigenperiods

for this new model. The fiducial model is not displayed in the bottom panel, as it would

be indistinguishable from ∆Pa,Discont, which represents the ∆Pa of the red model. As ex-

pected, there is a small difference between the two asymptotic period spacings, specifically

∆Pa,Discont ≈ ∆Pa,Fiducial + 0.46 s. Moreover, the period spacing exhibits a periodicity of

about 51 minutes; when expressed in terms of radial orders, this periodicity translates to

∆n ≈ 12.4, in accordance with the expected value derived from the application of equation

4.1.2 to the model. This analysis also suggests that the glitch signature corresponds to a

structural variation situated at Φ(rglitch) ≈ 0.080, which is compatible with the normalised

buoyancy radius of the δ-distribution. Notably, the maximum period spacings measured

closely match ∆Pa,until Discont. This value reflects the asymptotic ∆P we would obtain if

the g-cavity extends from the position of the glitch to the outer boundary. It is evident

that the inferred ∆Pa from observations would resemble ∆Pa,until Discont rather than the

true ∆Pa, as expected (e.g. Cunha et al. 2015). Finally, the small glitch explained in Sec-

tion 4.5.1 adds to the above glitch, generating relative fluctuations much lower than 1 %

around the main behaviour of the period spacing.

In the top panel of figure 4.9, we compare the period spacing of the γ-modes (in red)

with the period spacing of the mixed dipole modes (in blue) in proximity to the observable

region of the spectrum. Notably, some minima in the period spacing result from mode

trapping rather than the coupling between p-modes and g-modes. This suggests that

certain trapped modes may be detectable in actual data. However, not all of these minima

show observable amplitudes, as modes with higher inertia tend to have lower amplitudes

(e.g. Dupret et al. 2009), leading to decreased detectability even when the period spacing

is low. Consequently, the measured ∆P is likely to differ from the true value if some modes

are absent. This situation becomes even clearer in the bottom panel of figure 4.9, where

we present the PSD (along with the normalised inertiae) for the model featuring a density

discontinuity within the radiative core.

Bell-shaped glitch

In the top panel of figure 4.10, we show the N profile as a function of the internal mass

for a model similar to the model of Section 4.5.3, but with a smooth transition in density

instead of a jump discontinuity. This new model has a N profile (red line) very similar to
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Figure 4.9: This figure displays the period spacing (top panel) as a function of eigenfrequencies. We

compare the γ-modes (shown in red) with mixed dipole modes (in blue) in proximity to the observable

region of the spectrum, indicated by the grey area with νmax as a cyan line. The black line represents the

∆Pa for the red model, while the lime line depicts the expected ∆Pa if the g-cavity extends from the glitch

location to the outer boundary. Importantly, some minima in the period spacing result from mode trapping

rather than the coupling between p-modes and g-modes, and not all of these minima exhibit observable

amplitudes. The impact of mode trapping near the density discontinuity on the observed eigenfrequencies

is further illustrated in the bottom panel, which presents the corresponding simulated power spectral

density.
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Figure 4.10: Comparison of N profiles as functions of internal mass (top panel) and period spacings

of the γ-modes as functions of the eigenperiods (bottom panel). The blue line represents the fiducial

model, while the red model features a bell-shaped structure in the N profile within the radiative core. The

periodicity of the glitch corresponds to the location of the bell-shaped structure. The observable region

of the spectrum is highlighted in gray, with the cyan dashed line indicating νmax. The half width at half

maximum of the bell-shaped structure in N presented here is 0.02HP .
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Figure 4.11: This figure displays a comparison of simulated power spectral densities for two differents

smoothings in the radiative core along with the corresponding period spacings of the mixed dipole modes.

The cyan dashed line indicates νmax, while the black dashed line indicates the asymptotic ∆P for the model

with the highest smoothness (i.e. with the lowest α, see Section 4.5.2). Notably, even within the observable

region of the spectrum, we observe clear differences in both the period spacing and the detectable modes.

the fiducial model (blue line), but it contains a bell-shaped structure where there is the

smooth change in density. This structure increases the integral
∫ r2
r1
N/r dr compared to

the fiducial model, thus, we expect a value of the asymptotic period spacing ∆Pa,Discont

lower than ∆Pa,Fiducial. Moreover, we expect that such bell-shaped structure in the N

profile becomes a glitch, because its width is much lower than the local wavelength of the

waves (Cunha et al. 2019; Cunha et al. 2024). Therefore, we expect a sinusoidal behaviour

of ∆P around ∆Pa,Smooth with a decreasing amplitude at increasing frequency, and dips

in the period spacing that are evenly spaced in period, with a periodicity compatible with

the normalised buoyancy radius of the glitch. This structure is aligned identically with

the glitch discussed in Section 4.5.3, as we have placed the peak of the bell function at a

location analogous to the δ-distribution.

In the bottom panel, the period spacing of the γ-modes as a function of the eigenpe-

riods for this new model. The fiducial model is not displayed in the bottom panel, as it

would be indistinguishable from ∆Pa,Smooth, which represents the ∆Pa of the red model.

As expected, there is a small difference between the two asymptotic period spacings, that

is ∆Pa,Smooth ≈ ∆Pa,Fiducial − 0.86 s. The period spacing shows a periodicity of approxi-
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mately 51 minutes with a decreasing amplitude at increasing eigenperiods. This periodicity

is compatible with the observed ∆n ≈ 12.4 and corresponds to a normalised buoyancy ra-

dius of 0.081, as described in equation 4.1.2. This indicates consistency with the normalised

buoyancy radius of the bell-shaped structure in N , which peaks at Φ ≈ 0.082 and possesses

a FWHM ≈ 0.011. Within this structure, there exist two local maxima of HN that are

significantly smaller than the local wavelength of the g-modes at νmax, further reinforc-

ing the alignment of these findings with the characteristics of the bell-shaped structure.

However, contrary to the case with the δ-distribution, the period spacing reveals visible

beats attributable to the presence of these adjacent maxima in HN , which can be demon-

strated through the application of a Fourier transform on the period spacing data. Finally,

the small glitch explained in Section 4.5.1 adds to the above glitch, generating relative

fluctuations much lower than 1 % around the main behaviour of the period spacing.

A more detailed characterisation of the detectability of the modes and the ability to

differentiate between varying degrees of smoothing of the bell-shape structure is presented

in figure 4.11. In this figure, we compare two simulated power spectral densities corre-

sponding to different levels of smoothings, along with the associated period spacing of the

mixed dipole modes. Notably, even within the observable region of the spectrum, we ob-

serve clear differences in both the period spacing and the detectable modes. This finding

highlights promising directions for interpreting glitch signatures in high-quality asteroseis-

mic data, including the possibility to discern the width of the bell-shaped structure in the

Brunt-Väisälä frequency.

4.6 Discussion and conclusions

In this chapter, we conducted a theoretical analysis of how structural variations ad-

jacent to the convective core and chemical composition gradients within the radiative

core influence the period spacing of mixed dipole modes and γ-modes in low-mass CHeB

stars. These variations are also expected to occur within semiconvective layers, within

the hydrogen-burning shell, and at the base of the convective envelope. Additionally, in

low-mass stars with a degenerate helium core, the transition from RGB to CHeB is char-

acterised by a succession of off-centre helium flashes, which induce chemical composition

gradients in the radiative core. To investigate the impact of density discontinuities and as-

sociated structural glitches on the period spacings of these oscillation modes, we developed

semi-analytical models of low-mass CHeB stars. These models were calibrated using the

evolutionary codes BaSTI-IAC, CLES, and MESA. The distinct physical prescriptions of these
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codes allowed us to identify common relevant features for calibration while enabling control

over the type of structural glitch introduced, all while maintaining a realistic representa-

tion of stellar interiors. We first established a fiducial model based on a solar mass CHeB

star at solar metallicity with Yc ≈ 0.9, featuring a realistic g-cavity. Subsequently, we ex-

plored the effects of various discontinuities in density, non-differentiable points within the

density profile, and bell-shaped glitches in the Brunt–Väisälä frequency on the adiabatic

eigenfrequencies. The key findings from our analysis are summarised as follows:

• Jump discontinuities in the density profile result in distinct glitch signatures in the

period spacings of mixed modes. These glitches exhibit periodic behaviours that are

closely tied to the normalised buoyancy radius associated with the discontinuities.

While certain trapped modes may be observable, their detectability is influenced by

their inertia, with higher inertia modes exhibiting lower amplitudes. Consequently,

this could lead to discrepancies between measured and true values of ∆P if some

modes are missing from observations. Our analysis further highlights that the maxi-

mum measured period spacings are in close agreement with ∆Pa, indicating that the

inferred period spacing from observational data is more likely to reflect this value

rather than the true asymptotic value.

• The comparison between models featuring smooth transitions and those with discon-

tinuities highlighted differences in the periodic behaviours. Specifically, this finding

suggests that smooth transitions can be just as impactful as sharp discontinuities,

leading to the possibility to detect not only position and amplitude of the glitch, but

also its sharpness.

• Our simulations of 4-year-long Kepler observations reinforced the necessity of incor-

porating realistic stellar interior models to predict oscillation frequencies accurately.

The resulting PSDs and period spacing patterns closely resemble observed data, pro-

viding a promising avenue for verifying our theoretical models against real-world

observations.

This work establishes a solid foundation for future asteroseismic studies aimed at probing

the internal structures of stars. Our models enable realistic predictions of how each sharp

structural variation impacts the observed power spectral density. This alignment not only

validates our theoretical approach but also suggests promising directions for interpreting

glitches signatures in high-quality asteroseismic data. In the future, we aim to leverage

this tool to explore glitches arising from varying degrees of jump discontinuities in density
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and to study more evolved stellar models, where more pronounced glitches are expected.
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Thesis conclusions

The primary aim of this PhD thesis has been to accurately characterise the internal

structure of low-mass CHeB stars and evaluate non-standard evolutionary models through

the application of advanced asteroseismic and Bayesian techniques. Through a compre-

hensive investigation, this work has delivered novel insights into the physical processes

governing the evolution of these stars, with implications for stellar population studies and

the formation history of the Milky Way.

Chapter 2 provided the identification in the Kepler field of eleven red giant stars with

unusually complex oscillation spectra compared to the average behaviour. The seismic

parameters of these stars are compatible with very low-mass (M . 0.8 M�) CHeB stars

with a helium core of ∼ 0.5 M� and a lighter envelope (0.1−0.2 M�) than typical RC stars

in the Kepler field. Moreover, they display higher couplings (q & 0.4) between the g-cavity

and the p-cavity than typical RC stars (q ∼ 0.25− 0.30). The sample included stars with

low to intermediate metallicity (75%) and solar metallicity. In this chapter I have shown

that the oscillation spectra we expect for this type of stars are entirely consistent with

those observed in our sample. These spectra are clearly different from those of the stars

that, with a similar helium core but a much larger envelope, populate the RC. The main

factor determining these differences is the coupling between the inner and outer regions,

which reflects very different density profiles inside these stars. Here, I have also shown

the ability of asteroseismology to identify these low-mass CHeB stars in the field and in

solar-metallicity environments where, even with high-precision photometry, they would be

hardly distinguishable from other stars in RC or RGB phases. Moreover, I provided cases

where, especially those of solar metallicity, the stars must have followed a non-standard

evolution during which they lost a large amount of mass. This research establishes a strong

foundation for future investigations into these stars and the processes that shaped their

current masses. Understanding these factors is crucial for accurately determining their

impact in the determination of ages of field stars and may provide another piece of the

puzzle in the sequence between RC and subdwarf B stars or other stripped stars.
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Chapter 3 continues the analysis of non-standard evolutionary paths by exploring for-

mation scenarios for such low-mass CHeB stars. In particular, I focused my analysis on

the CHeB star KIC4937011, which is a Li-rich, low-mass, metal-rich star member of the

open cluster NGC 6819. This star has a mass that is approximately 1 M� lower than the

other member stars in the same evolutionary stage within the cluster. Using a Bayesian

approach, my analysis strongly suggests that this star is the product of a CEE phase where

the companion star did not survive. The proposed formation channel involves two ZAMS

stars in a circular orbit, with RLOF occurring while the low-mass companion is still on

the MS. This leads to a CEE phase with the ejection of about 1.1 M� of material and the

merger of the companion with the primary star. The resulting star is a RGB-like star with

a smaller hydrogen-rich envelope than the primary star before the CEE phase. Finally,

after helium flashes, the degenerate helium core steadly burns helium through the 3α re-

action, resulting in the currently observed KIC4937011. While systematic differences were

noted between modelled and observed values (e.g., effective temperatures and luminosi-

ties), these do not hinder the inference of the formation channel. This formation pathway

provides new insights into how mass loss and binary interactions shape the evolution of

stars, and this channel may also apply to the formation of sdB stars or metal-rich RR

Lyrae, suggesting a connection in the evolutionary pathways of these stars.

Chapter 4 focuses to the detailed internal structure of low-mass CHeB stars, examining

the asteroseismic signatures of structural variations near their convective core. By devel-

oping semi-analytical models calibrated with advanced evolutionary codes, I was able to

investigate the effects of structural glitches on the oscillation spectra of these stars. Struc-

tural glitches, such as discontinuities or non-differentiable points in the density profile,

leave distinct signatures on the eigenfrequencies of the oscillation modes, providing a win-

dow into the internal chemical composition and thermal gradients, convective boundaries,

and other key structural features (e.g. amount and position of helium fashes). My analysis

demonstrated that these structural glitches offer deep insights into the internal structure,

which is particularly promising in very low-mass CHeB stars, where mode trapping and

strong coupling between cavities take place. This work establishes a solid foundation for

future asteroseismic studies aimed at probing the internal structures of stars. Our mod-

els enable realistic predictions of how each sharp structural variation impacts the observed

power spectral density. This alignment not only validates our theoretical approach but also

suggests promising directions for interpreting glitches signatures in high-quality asteroseis-

mic data. In future, I plan to pursue comparative studies with hydrodynamical simulations,
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aiming for a more profound physical understanding of these phenomena. Moreover, I aim

to leverage this tool to explore glitches arising from varying degrees of jump discontinuities

in density and to study more evolved stellar models, where more pronounced glitches are

expected.

The implications of this research extend to multiple areas of astrophysics. By enhanc-

ing our understanding of low-mass stellar evolution and the factors that influence it, I can

provide new tools to refine stellar population models and to improve age determinations

for field stars. Furthermore, this work underscores the importance of binary interactions

in the evolutionary histories of stars, suggesting that many seemingly single stars may

have undergone significant interactions that shape their current states. Future research

directions include expanding the sample of low-mass CHeB stars for more comprehensive

statistical analyses and refining models of binary interactions to clarify mass loss mecha-

nisms. Additionally, applying these asteroseismic techniques to other stellar populations

may yield further insights into the broader dynamics of stellar evolution. In summary, this

research work has made significant contributions to the field of stellar astrophysics, par-

ticularly regarding low-mass CHeB stars. By integrating asteroseismology with detailed

evolutionary modeling, it lays a solid foundation for future studies aimed at unraveling

the complexities of stellar evolution and enhancing our understanding of the Milky Way’s

formation and evolution.
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Appendix A

Physical properties of the full sample

In this appendix we give some details concerning the origin of the physical quantities

in Tables 2.1 and A.1. The latter complements the former, providing the properties of the

rest of our sample of rHB candidates (see also the HRD of the whole sample in Fig. A.1).

Table A.1: Physical properties for the rest of our sample of rHB candidates.

KIC L [L�] Teff [K] [Fe/H] [α/Fe] 〈∆ν〉 [µHz] νmax [µHz] q ∆Π1 [s] M [M�]

2555126 41± 4 5320± 20 -0.72 0.26 5.66± 0.03 36.4± 0.6 0.93 280± 20 0.64± 0.06

3428926+ 36± 3 5560± 130 -0.50 0.27 6.72± 0.02 43.0± 0.6 1.15 270± 40 0.58± 0.07

3626807 50± 6 5310± 20 -1.16 0.26 5.276± 0.011 36.5± 0.6 0.69 308± 6 0.79± 0.10

9335415+ 46± 4 5580± 120 -0.50 0.11 5.808± 0.018 34.9± 0.5 0.53 240± 40 0.59± 0.07

9691704 55± 7 5230± 20 -0.88 0.30 4.802± 0.013 32.6± 0.5 0.23 334± 5 0.83± 0.11

11072164 43± 4 5215± 18 -1.01 0.24 4.761± 0.012 32.8± 0.5 1.11 300± 50 0.65± 0.06

11299941∗ 32± 3 4585± 7 0.25 0.05 4.08± 0.09 28.0± 0.8 0.45 300± 20 0.64± 0.08

12504765+ 51± 5 5220± 130 -1.15 0.33 4.817± 0.010 32.4± 0.5 0.65 340± 20 0.76± 0.10

4937011R 37± 4 4707± 8 -0.02 0.03 4.08± 0.10 28.3± 0.4 0.53 224.3± 1.4 0.71± 0.08

Notes. The table also includes the properties of KIC4937011 (under-massive star in NGC 6819, marked with an R), for

which we show the 〈∆ν〉, νmax, and M from Handberg et al. (2017). See Table 2.1 for a description of the symbols.

The global seismic parameters, νmax and 〈∆ν〉, of targets tagged with an asterisk in

Tables 2.1 and A.1 are taken from Yu et al. (2018), while those for the NGC 6819 cluster

member (KIC 4937011, tagged with R) are from Handberg et al. (2017). For the rest

of the sample, we employ the approach of Davies et al. (2016), and the value of 〈∆ν〉
is computed using individual frequencies and the weighted fit of the asymptotic relation

for radial modes. As discussed in Handberg et al. (2017), this method gives results in

good agreement with the values of 〈∆ν〉 derived by Yu et al. (2018) and allows a forward

comparison with model-based values. The asymptotic period spacing of the dipole modes,

∆Π1, and the coupling factor, q, are derived using the stretched-period method (see e.g.
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Vrard et al. 2016).

The atmospheric parameters, Teff , and chemical composition come from APOGEE-

DR17, except for four targets with a STAR_BAD flag in that release. For them (marked with

a plus symbol in Tables 2.1 and A.1) we adopt the available values in APOGEE-DR16.

To check the reliability of these atmospheric parameters and of the quoted uncertainties,

we perform an independent analysis for the three stars of Table 2.1. We use MOOG-synth1

with the assumption of local thermodynamic equilibrium and the APOGEE-DR17 linelist

(Shetrone et al. 2015; Smith et al. 2021) implemented with lines from the VALD database2

and MARCS model atmospheres (Gustafsson et al. 2008). We get results in good agreement

with those in APOGEE DR16 and DR17, except for the Teff uncertainties. Even for the

best situation in which log g is fixed to the seismic values (e.g. Valentini et al. 2019), the

uncertainty on Teff is σTeff
∼ 50 K. Therefore, although in Tables 2.1 and A.1 we keep the

values from APOGEE, we assume a minimum value of σTeff
= 50 K when deriving the

stellar mass and its uncertainty.

Bolometric luminosities, L, are estimated by combining astrometry data fromGaiaDR3

(Babusiaux et al. 2023) with 2MASS photometry (Skrutskie et al. 2006) in the Ks band

and bolometric correction from Casagrande et al. (2014) and Casagrande et al. (2018). We

apply the Gaia-DR3 parallax zero-point correction of Lindegren et al. (2021) and estimate

reddening and extinction from the three-dimensional maps of Green et al. (2019). The

errors in L are calculated with a Markov chain Monte Carlo method and considering the

extinction and the value of Mbol,� to be fixed (Mbol,� = 4.75; Casagrande et al. 2014).

Stellar masses, as described in Sect. 2.2, are estimated using the scaling relation

Eq. 2.2.1 and the values of L, Teff , and νmax just described. In the following we present

the results obtained with an alternative scaling relation.

A.1 Stellar mass from the scaling relation involving 〈∆ν〉 and
νmax

In order to test the mass estimations made with Eq. 2.2.1 of Sect. 2.2, we employ the

model-based corrected scaling relation (see e.g. Kjeldsen et al. 1995; Gai et al. 2011)

M

M�
= f4

∆ν

(
Teff

Teff,�

)1.5( νmax

νmax,�

)3(〈∆ν〉�
〈∆ν〉

)4

(A.1.1)

1https://www.as.utexas.edu/ chris/moog.html
2http://vald.astro.uu.se
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Figure A.1: Same as Fig. 2.2, but including all the CHeB stars in our sample. These stars are colour-

coded according to increasing [Fe/H].

for two metal-rich stars (KIC5271626 and KIC4937011) and for two metal-poor stars

(KIC6032981 and KIC11072164) of our sample. Here we use the solar reference values

of Sect. 2.2 and 〈∆ν〉� = 135.1 µHz (Huber et al. 2011). The correction factor, f∆ν , on

the 〈∆ν〉 scaling law (Ulrich 1986) is derived with the procedure described in Rodrigues

et al. (2017), that is, by using the theoretical radial mode frequencies of stellar models to

compute 〈∆ν〉 from the weighted linear fit of the asymptotic relation (see also Miglio et al.

2021; Tailo et al. 2022). We base the iterative search for the correct f∆ν on evolutionary

tracks with the same metallicity (within the errors) as the four stars: solar composition

for the metal-rich ones; and [Fe/H] = −1.00 with [α/Fe] = 0.2 and [α/Fe] = 0.4 for

the two metal-poor ones (see Appendix B for details on the models). To correct the

model-predicted 〈∆ν〉 for the surface effects, we include the 〈∆ν〉� = 135.3 µHz of our

solar-calibrated model to the correction factor f∆ν (e.g. White et al. 2011). Finally, we

compute the theoretical radial oscillations with the tool GYRE. The f∆ν we find are nearly

equal to 1.03 and 1.01 for the metal-poor and for the metal-rich stars, respectively. In

deriving the masses with Eq. A.1.1, we consider a minimum error of 50 K in Teff (as noted

in Appendix A) and an error of 0.01 on f∆ν due to the impossibility of knowing the exact

position, at fixed νmax, of our observed stars along the evolutionary tracks. Therefore,
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these masses are compatible within the errors with those derived from Eq. 2.2.1. We also

note that it is difficult to have a very precise 〈∆ν〉 estimate for these stars because the

radial modes are located in crowded regions (see Appendix C). This leads to systematic

errors in the measurement of individual radial modes that can be of the order of 4% by

mass.
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Grids of stellar models

As mentioned in Sect. 2.3, we choose three sets of stellar parameters to represent a

rHB star, a metal-rich low-mass CHeB star, and a RC star. The stellar models at the

base of this work belong to a grid of stellar evolutionary models computed with the code

MESA-r11532 (Modules for Experiments in Stellar Astrophysics; Paxton et al. 2011; Paxton

et al. 2013; Paxton et al. 2015; Paxton et al. 2016; Paxton et al. 2018; Paxton et al. 2019).

In the computation we follow the evolution from the pre-main-sequence phase until the first

thermal pulse in the asymptotic giant branch for stellar masses from 0.6 M� to 2.00 M�,

with a step of 0.05 M�. We consider 36 different chemical compositions, with 12 values of

[Fe/H] (from -2.5 to 0.25) and three values of alpha-element enhancement: [α/Fe] = 0.0,

0.2, and 0.4. We adopt as a reference solar mixture that from Asplund et al. (2009),

and high- and low-temperature radiative opacity tables are computed for these specific

metal mixtures, the solar and alpha-enhanced ones. Envelope convection is described by

the mixing length theory (Cox et al. 1968); the corresponding αMLT parameter, the same

for all the grid, is derived from the solar calibration with the same physics. Below the

convective envelope, we add a diffusive undershooting (Herwig 2000) with a size parameter

f = 0.02 (see Khan et al. 2018). Extra mixing over the convective core limit during the

central-He-burning phase is treated following the formalism by Bossini et al. (2017).
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Appendix C

Contribution of individual

eigenmodes to the PSDs of CHeB

stars

In this section we break down the PSDs of our reference models (Fig. 2.5) into the

contributions from the modes of different angular degrees. The smoothed PSDs for ` =

0, 1, 2, 3 are shown in Fig. C.1. The smoothing is chosen just for illustration purposes,

that is, to resemble a Lorentzian fit of each eigenmode. The modulation around the p-like

mode in the dipole modes of the RC star and the higher number of observed mixed modes

in the rHB model are evident. Furthermore, the quadrupole modes of the rHB model are

less visible than those of the RC model, and its octupole modes resemble a continuous

background with small peaks almost coinciding with the radial modes. Finally, we note

that the presence, in rHB stars, of ` = 1, 2, 3 modes very close to the radial ones (in some

cases almost coinciding; e.g. Fig. C.1) could introduce a non-negligible influence on the

analysis of the heights and the linewidths of the ` = 0 modes.
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Figure C.1: Smoothed version of the PSDs presented in Sect. 2.4.3. Here we show the individual degrees

for the simulated rHB (top) and RC (bottom) stars. The dashed cyan line is the corresponding νmax.
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Likelihood and prior functions

As discussed in Section 3.3.2, we calculate the likelihood function given the current

evolutionary phase (CHeB stage), mass (M1, obs ± σ1, obs = 0.71 ± 0.08 M�) and age

(tage, obs± σage, obs = 2.38± 0.27 Gyr) of KIC4937011. We employ the multivariate normal

likelihood

N(x|µ,C) = max
tage,mod

1

2π
√
|C|

exp

[
−1

2
(x− µ)T C−1 (x− µ)

]
(D.0.1)

with x = [tage, obs;M1, obs], µ = [tage,mod;M1,mod], and C = diag(σ2
age, obs;σ

2
1, obs). It

is not possible to univocally associate an age with the CHeB stage, because several ages

(tage,mod and the corresponding mass M1,mod are not scalars) correspond to the same

evolutionary phase. Therefore, for each evolutionary track we calculate the likelihood

corresponding to all ages in the same evolutionary phase and we keep the age that leads

to the highest likelihood as a characteristic age to associate at the CHeB stage of that

evolutionary track.

In Table D.1 the intervals of the priors. From a comparison with Table 3.2 and 3.3 we

can note that three free parameters are well constrained within the intervals. This suggests

Table D.1: Intervals of the priors used in Section 3.3.2. A comparison with Table 3.2 and 3.3 shows that

only qZAMS has a lower bound of the posterior distribution that touches the prior.

Parameter prior interval

αce · λce Uniform [0.0, 100.0]

log (P0/days) Uniform [−10.0, 10.0]

qZAMS Uniform [0.08 M�/M1,ZAMS, 1.0]

M1,ZAMS [M�] Chabrier (2003) [0.08,∞)
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that it is not necessary to widen these ranges because we explore the free-parameters space

thoroughly. However, qZAMS has a lower bound of the posterior distribution that touches

our chosen prior (see discussion in Section 3.4.1 and 3.4.2).

We also explore the posterior distributions using the same priors and likelihood, but

with the Markov Chain Monte Carlo algorithm (MCMC) present in the emcee Python

package (Foreman-Mackey et al. 2013). We obtain results consistent with Section 3.4.
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Appendix E

Taylor series solutions near the

centre of barotropic stars

In Section 4.2.2 we discuss the set of differential equations we use to solve the internal

structure of a barotropic star knowing the initial conditions. However, we cannot solve the

differential equations numerically from the exact centre, because there the term ψ/ξ2 would

lead the Runge-Kutta method to errors. To avoid this problem, we can begin the numerical

evaluation of the equations near the centre using Taylor expansions. For simplicity, let us

assume for now that γ(θ) = γc(θ/θc)
B near the centre of the star. We then obtain

θ(ξ) = θc −
θ3
cξ

2

6βcγc
+

θ5
cξ

4

360β2
cγ

2
c

[13− 5(B + γc)] + o(ξ6)

dθ(ξ)

dξ
= − θ3

cξ

3βcγc
+

θ5
cξ

3

90β2
cγ

2
c

[13− 5(B + γc)] + o(ξ5)

ψ(ξ) =
θcξ

3

3
− θ3

cξ
5

30βcγc
+

θ5
cξ

7

2520β2
cγ

2
c

[13− 5(B + γc)] + o(ξ9),

(E.0.1)

with which we completely solve the numerical issue. Moreover, it can be inferred from

equation E.0.1 that, in close proximity to the centre of a barotropic star, γ(r) can be

regarded as approximately constant. Therefore, very near the centre, the star can be

effectively modelled as a polytrope.
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Appendix F

Differential equations near the

surface of barotropic stars

The set of differential equations we use in Section 4.2.2 creates numerical issues at both

the centre of the star (as discussed in Appendix E) and at its surface. The issue observed

at the surface arises from the ratio θ2/β, where both θ and β approach zero. Therefore,

it is essential to formulate an alternative set of differential equations that avoids the issue

associated with θ2/β in this region. To achieve this, we introduce a Lane-Emden like

variable (ω) defined as
∂ω(θ)

∂θ
:=

β(θ)

θ2
(F.0.1)

or, equivalently,

ω(θ) := ωc +

∫ θ

θc

β(t)

t2
dt . (F.0.2)

The new differential equation we obtain by combining equation 4.2.7 with equation F.0.1

(or equation F.0.2) is

d2ω

dξ2
+

(
dω

dξ

)2 1

γ(ω)

∂γ(ω)

∂ω
+

2

ξ

dω

dξ
+
θ(ω)

γ(ω)
= 0, (F.0.3)

where the new initial conditions are ω(ξ = 0) = ωc and dω
dξ

∣∣∣
ξ=0

= 0. This new equation

overcomes the mentioned numerical issue, provided that γ 6= 0, because as θ approaches

zero we do not have to deal with an indeterminate form.

Equation F.0.3 simplifies when γ(ω) is a constant equal to γc, because we obtain the

Lane-Emden-alike equation
d2ω

dξ2
+

2

ξ

dω

dξ
+
θ(ω)

γc
= 0, (F.0.4)

with

β(θ) = βc

(
θ

θc

)γc
, (F.0.5)
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and

θ(ω) =


[

(γc − 1)θγcc
βc

ω

] 1
γc−1

:= φ
1

γc−1 , for γc 6= 1

θc exp

(
θc
βc
ω

)
, for γc = 1.

(F.0.6)

Therefore, equation F.0.4 can be divided into the two differential equations
d2φ

dξ2
+

2

ξ

dφ

dξ
+

(γc − 1)θγcc
βcγc

φ
1

γc−1 = 0, φ ∈ [θγc−1
c , 0], γc 6= 1

d2ω

dξ2
+

2

ξ

dω

dξ
+ θc exp

(
θc
βc
ω

)
= 0, ω ∈ [0,−∞), γc = 1,

(F.0.7)

and from (φ, dφdξ ) or (ω, dωdξ ) we can a posteriori evaluate

ψ(ξ) =


βcγc

(γc − 1)θγcc

(
−ξ2dφ

dξ

)
, γc 6= 1

−ξ2dω

dξ
, γc = 1,

(F.0.8)

and

N2(ξ) =


4πGρ1

βc
θγcc φ(ξ)

(
γc

γc − 1

dφ

dξ

)2( 1

γc
− 1

Γ1

)
, γc 6= 1

4πGρ1
θc
βc

(
dω

dξ

)2(Γ1 − 1

Γ1

)
, γc = 1.

(F.0.9)
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Appendix G

Numerical solver verification

We validate the numerical solver thanks to known analytical solutions to equation 4.2.7

when γ(ρ) = γc is a constant. One solution is the Plummer sphere (i.e. γc = 6/5), which

is 

θ(ξ) = θc

(
1 +

θ2
cξ

2

18βc

)− 5
2

β(θ) = βc

(
θ

θc

) 6
5

= βc

(
1 +

θ2
cξ

2

18βc

)−3

ψ(ξ) =
θcξ

3

3

(
1 +

θ2
cξ

2

18βc

)− 3
2

.

(G.0.1)

Another solution is for γc = 2, which is

θ(ξ) =

√
2βc
ξ

sin

(
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2βc
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(
θ
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c
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2
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(
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ψ(ξ) =
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3
2
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−
(
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cos

(
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(G.0.2)
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Appendix H

List of publications and

co-authorships

The following publications are the result of work conducted during the PhD, but not

presented in this thesis:

• Matteuzzi et al. 2022: Newcomers and suburbanites can drive the evolution of the

size-stellar mass relation of early type galaxies in galaxy clusters, MNRAS, 513,

3893–3905. At the beginning of my PhD I completed the paper regarding the research

done during my master thesis.

• Casali et al. 2023: Time evolution of Ce as traced by APOGEE using giant stars

observed with the Kepler, TESS and K2 missions, A&A, 677, A60. As a co-author,

I helped Giada Casali with the statistical framework of the paper.

• Grisoni et al., 2024: K2 results for "young" α-rich stars in the Galaxy, A&A, 683,

A111. As a co-author, I helped Valeria Grisoni in developing a statistical framework

to start with for the paper, and I helped her in writing the introduction.

• Mucciarelli et al., 2024: The true nature of HE0057-5959, the most metal-poor Li-

rich star, A&A, 689, A89. As a co-author, I helped Alessio Mucciarelli by analysing

the asteroseismic observations of metal-poor Li-rich stars.

• Thomsen et al., submitted to A&A: Advancing accuracy in age determinations of

old-disk stars using an oscillating red giant in an eclipsing binary. As a co-author, I

helped Jeppe S. Thomsen by computing mock observations of power spectral densities

of RGB, CHeB and E-AGB stars.
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• Casali et al., submitted to MNRAS: Mapping the Milky Way: Calibrating chemical

ages with high-precision Kepler data. As a co-author, I helped Giada Casali with the

observations of red giant stars at the TNG, La Palma.

• Briganti et al., submitted to A&A: Inferring the efficiency of convective-envelope

overshooting in Red Giant Branch stars. As a co-author, I helped Lorenzo Briganti

in developing a statistical framework to start with for the paper.

• Mosser et al., in prep.: Extra trees in the mixed-mode forest. As a co-author, I am

helping Benoît Mosser by implementing semi-analytical models of low-mass CHeB

stars.

• Panier et al., in prep.: CLES models of core helium burning stars. As a co-author, I

am helping Lucy Panier by implementing semi-analytical models of low-mass CHeB

stars.
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