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A.2.3 Extension of the Itô Integral . . . . . . . . . . . . . . . . . . . . . 92
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Abstract

This thesis is the compilation of 3 of mine and my supervisor’s research, that are
present in Chapters 4, 5 and 6 from the corresponding papers [Lanconelli et al., 2023,
Lanconelli and Perçin, 2024a] and [Lanconelli and Perçin, 2024b] respectively. Our work
is centered around the model, which is called the Chemical Diffusion Master Equation
(CDME), which enables us to assign probabilities to different configurations of particles
undergoing in a reaction of interest at time t. Due to this nature of the model, the
model fits into the category of stochastic hybrid systems, where continuous dynamics
and discrete events coexist in the same process, which makes the analysis more realis-
tic and more complex compared to other well known models such as Chemical Master
Equation (CME) (see [Erban and Chapman, 2020, del Razo et al., 2022]). Because the
model is very complex most of the time the research including CDME is only focused at
computer simulations.

However in Chapters 4 and 5 we report a general method to treat the system analytically
for any reaction where the reaction and diffusion are considered to be independent. This
is very important given the low abundance of such solutions. Moreover we believe seeing
an explicit solution gives better insights on how the parameters of the model plays a role.
Moreover as will be seen in Chapter 6, the CDME of a reaction-diffusion system where
the reaction and diffusion are not independent will be reported and solved explicitly
with an approach particular to the process considered.



Introduction and Organization of
the Thesis

In order to describe biochemical dynamics, one has to investigate two main subjects:
diffusion and reaction. The reaction part is well known in general chemistry and
diffusion is a well-known topic in stochastic analysis. In this thesis, these two topics will
be combined to analyze a reaction-diffusion system, which is extremely useful to model
complex biological and chemical phenomena. This analysis will be mainly done via a
mathematical model called the Chemical Diffusion Master Equation (CDME) which is
used to quantify the probability of observing a given configuration of chemical specimens’
locations at a fixed time point in chemical reactions. The nature of the model enables
us to utilize many tools from Stochastic Processes and Malliavin Calculus in order to
tackle the reaction of interest.

To introduce and work on the idea, there should be other series of topics that should
be introduced first. This is why in Chapter 1, we start introducing what are chemical
reactions and what are the common ways of analyzing them as done in chemistry. Then
towards the end of the chapter, we are going to argue that all these deterministic tools
are not sufficient to fully describe the observed deviation from the theory.

Then in Chapter 2 we introduce the so called Chemical Master Equation (CME). This
model is the well-known method to introduce the randomness to the reaction kinetics by
writing a system of ordinary differential equations (ODEs) for the probability densities
for obtaining a given number of particles at time t, while reflecting the dynamics of
the original reaction simultaneously. This way the solution of the system becomes the
probability to obtain a given number of particles at a fixed time and hence the random-
ness element was successfully added to the number of particles. This idea is introduced
based on two simple example reactions in Sections 2.2 and 2.3. However it is worth to
mention that, all the ideas that are introduced can easily be generalized to any reaction.
In the later parts of the aforementioned sections we also provide an analytical approach
for the model that is general enough to solve rather simple reactions. Then in Chapter
2.4, a numerical approach called the Gillespie algorithm is introduced and applied to
the birth-death type of reaction.

In Chapter 3, finally the CDME model, as described in [del Razo et al., 2022], is intro-
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duced and its advantages over the CME are reported. As it will be seen in Chapter 2,
the CME is a way of introducing a source of randomness to the number of particles at
time t. However, the way that it does so is improved to be significantly more realistic in
the CDME. Now in this new model, one can quantify the probability of obtaining any
given configuration of particles at time ”t”. In simpler terms, using this new model, in
addition to be able to quantify the number of particles at any given time, one can also
assign probabilities to observe the particles in different locations and this is the main
advantage of the CDME over the CME. The location dependency introduced in this
new model can be used to model the reactions more realistically because the underlying
dynamics of the chemical reactions actually depends on it. Mostly, chemical specimens
must meet in order to carry out a change in their chemical structure, as one can see in
reactions (2.3.1) and (1.1.2) later in this thesis. The fact that the location information
already being incorporated in the CDME makes it very useful to realistically model
chemical reactions.

Chapters 4, 5 and 6 are original contributions to the literature performed by me and
my supervisor. The corresponding papers can be found in [Lanconelli et al., 2023,
Lanconelli and Perçin, 2024a] and [Lanconelli and Perçin, 2024b] respectively. In chap-
ters 4 and 5 the CDME is introduced for the birth-death type and mutual annihilation
with creation type reactions, followed by the application of the solution methodology
developed in [Lanconelli, 2023] (see Chapter 3.4). In Chapter 4, we were able to find
an explicit solution for the birth-death type reaction (2.2.1), which is quite important
given the low abundance of such results in literature. In Chapter 5 we were able to
reach to a partial differential equation (PDE), which that single equation, fully governs
the dynamics of a mutual annihilation with creation reaction (2.3.1). We were not able
to solve it, nevertheless if it is solved, then using the methodology mentioned in Chap-
ter 3.4 it is possible to explicitly represent the system. In other words, the problem
of solving a coupled system of PDEs were transformed to solve a single PDE by us.
We believe this can be done by other researchers who specialized in PDE theory in the
future, unleashing the dynamics of this reaction. Although an alternative construction
for the CDME is already present in [del Razo et al., 2022], it is worth mentioning in the
Chapter 5 the new derivation of the CDME is carried out from a more mathematical
perspective, very similar to the common derivation for the CME as done in Chapter 2.
The novelty of this derivation is that, by only assuming the following set of assumptions
below, one can directly reach to the CDME by only using the law of total probability,
fully explicitly:

• A single reaction can take place in a sufficiently small time interval.

• The diffusion and reaction of particles are independent.

Where the first assumption is also necessary in the derivation of the CME (see Chapter
2) and the last assumption is expected due to the nature of chemical reactions. With
this new derivation scheme, one can see the current construction for the CDME that is
presented in [del Razo et al., 2022], is the only one that you reach by following this set
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of assumptions. Lastly in Chapter 6, a completely new challenge is pursued, where now
the derivation and the solution of the CDME of a branching Brownian motion (BBM)
process is reported. It is important because as explained in later sections, the key of
writing the CDME is having the reaction and diffusion processes being completely inde-
pendent of each other. However in the BBM the splitting reaction affects the location
of the daughter particles, hence the construction in paper [del Razo et al., 2022] is not
applicable in this case. Instead we follow a new pipeline to first find the expression that
describes the dynamic of the BBM and then see which PDE that it satisfies, correspond-
ing to be the CDME of the branching process. In order to do so, as it will be seen in
great detail in Chapter 6, we utilize the common associated properties of the BBM such
as the F-KPP equation, McKean representation with the not so common Wick Product
to analyze the reaction diffusion systems. Therefore, the resulting PDE is completely
novel to our knowledge and we believe this methodology with new tools will open more
doors in this field.

Lastly, in the Appendix A, the techniques of Stochastic Calculus used in our research
will be provided for the readers to consult when necessary. Due to completeness the
techniques are introduced starting from the preliminaries.
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Chapter 1

Chemical Kinetics and Reaction
Rates

1.1 Deterministic Chemical Kinetics

The main aim of this section, is to systematically describe the chemical reactions as
mathematical systems and if possible also solve them. In order to do so, we should
mention the field of Chemical Kinetics. Chemical Kinetics is the branch of chemistry
where the ”rates” of reactions are investigated. This deterministic approach, called the
chemical kinetics is used by chemists and life scientists to characterize the time evolutions
of chemical reactions in large systems to answer questions like: ”How much of this drug
will be left at time t” or ”How much time do we need to see the affect of the reactions?”

The mathematical system that is introduced should conserve the amount of substances
while no reaction takes place. However the number of concentration of particles can
alter upon reactions. This is why the logic is always:(

Generation− Consumption
)
j
=
∑
i

Rivi,j (1.1.1)

where the difference of generation and consumption of j’th chemcial species is given
as the sum on all possible reaction rates, Ri (explained in next section) and vi,j ∈ R,
where it is the so called stoichiometric coefficient of the j’th species in i’th reaction. The
stoichiometric coefficient explains about the nature of the specimen in the reaction ie.
if it is a reactant (used in the reaction) or a product (produced using the reactants) of
the reaction. As an example in the following chemical reaction:

R1 R2

aA+ bB → cC, ∅ → A,
(1.1.2)

where there are two reactions and the stoichiometric coefficients of this reaction are:
v1,A = −a, v1,B = −b, v1,C = c and v2,A = 1. It is worth to mention that because
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the specimens A and B are getting used in the reaction proportional to the constants
multiplying them, their stoichiometric coefficients are negative and equal in magnitude
to a and b. Using the ideas introduced in expression (1.1.1) on the reaction (1.1.2), one
can write the following system of Ordinary Differential Equations (ODE)s:

dA

dt
= 1R2 − aR1,

dB

dt
= −bR1

dC

dt
= cR1

(1.1.3)

with any set of initial conditions as, A(0) = A0, B(0) = B0 and C(0) = C0 where
A0, B0, C0 ≥ 0. When expressed in words, one can see according to the rate that
reaction 1 happens (which is R1), a many A particles and b many B particles will be
consumed to generate c many C particles in unit time. Similarly we expect to generate
one A particle proportional to how frequent it is for reaction 2 to take place, so R2, in
unit time.

1.1.1 The Rate Law

With the help of the previous section we’re able to formalize the reaction (1.1.2) in
mathematical form in (1.1.3). However we need to define appropriate reaction rates Ri

if we want to make this approach useful. As shown in [Lecca et al., 2013], it is done
using the so called Rate Law. According to it we know the term R should be a function
of the reactants and the products. For the reaction (1.1.2), it is in the form:

R := f(A,B,C). (1.1.4)

This explicit formulation of the reaction rate is generally not known a priori. This
means that for each type reactions, experimentally the reaction rate should be measured
and fitted to a candidate function in the form of (1.1.4), namely with respect to the
concentrations (or numbers if the volume of the environment is known) of chemical
specimens present. Fortunately due to chemistry being well studied for centuries, for
elementary types of reactions in the form

aA+ bB + · · ·+ zZ → pP

the reaction rate is given as:

R = k A|a| B|b| . . . Z |z|. (1.1.5)

Where k ∈ R+ is the rate constant that should be determined empirically and the expo-
nents are the absolute value of the stoichiometric coefficients of the specimens present
in the reaction. The elementary reactions mentioned here stands for reactions:
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1. That happens once the reactants contact with each other.

2. That doesn’t have an intermediary step. Meaning when reactants contact, the
reaction happens and produces the product.

However it is worth to mention that there are more complex reactions in nature such
as enzymatic reactions, where there is a intermediate complex that eases the reaction
process as shown in section 8.3 of [Berg et al., 2015]. Thus in such reactions the observed
reaction rate is higher than the anticipated reaction rate given by formula (1.1.4), even
though the same reactants and products are present. In such cases the formula (1.1.5)
is modified to be:

R = k Aα Bβ . . . Zζ .

Where each positive coefficient α, β, . . . , ζ is fitted experimentally from the data. How-
ever for the sake of this thesis we will only focus on elementary reactions because fitting
the exponents of formula (1.1.4) is not of our concern. Our research can easily be applied
to any reaction, once the exponents are fixed.

1.1.2 Analysis of the Isomerization Reaction

Consider a spontaneous isomerization of a molecule

A
k1−⇀↽−
k2
B (1.1.6)

where k1 is the forward reaction rate constant quantifying the dependence of forward
reaction rate based on the concentration of A and similarly k2 is called the backward
reaction rate constant and quantifying the dependence of backward reaction rate based
on the concentration of B.

As seen in section 33.3 in [Berg et al., 2015] the reaction (1.1.6) is actually present in
our ability to perceive the world already. Because a receptor in our eyes called rhodopsin
is able to convert itself to an isomerized form in the presence of light and generate visual
signals for our nervous system.

Assuming this reaction is an elementary one, we can directly write down the system of
ODEs governing the isomerization reaction using the ideas introduced in the previous
sections.

dA

dt
= k2B − k1A

dB

dt
= k1A− k2B,

(1.1.7)

where A(t) and B(t) denote the concentration of the corresponding particles and we
choose the initial conditions as A(0) = A0 and B(0) = 0. This system can also be
written as in matrix notation:

dc(t)

dt
= Ac(t) where c(0) = c0,
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Figure 1.1: The dynamcis of the isomerization reaction (1.1.6), taken from the book
[Lecca et al., 2013]. The y-axis is the ratios of A(t)/A0 in blue and B(t)/A0 in red.

where

c(t) :=

(
A(t)
B(t)

)
and A :=

(
−k1 k2
k1 −k2

)
.

Because the system is a linear constant coefficient system of ODEs, one can easily
solve it by utilizing Laplace transform (see section 1.4.1 of [Lecca et al., 2013]). Define
C(s) :=

∫∞
0
e−stc(t)dt and it satisfies:

sC(s)− c0 = AC(s).

By rearranging, one gets:

C(s) =
(
sI−A

)−1
c0.

where I is the identity matrix. Now we can go on and evaluate the inverse of the 2× 2
matrix

(
sI−A

)−1
=

(
s+ k2 k2
k1 s+ k1

)
s(s+ k1 + k2)

.

Using this explicit relation we can find out the Laplace transformed concentrations:

C(s) =

(
(s+ k2)A0

k1A0

)
1

s(s+ k1 + k2)
.

This expression can be inversely Laplace transformed to yield the original solutions:

A(t) = A0e
−(k1+k2)t +

k2
k1 + k2

A0

(
1− e−(k1+k2)t

)
B(t) =

k1
k1 + k2

A0

(
1− e−(k1+k2)t

)
.

(1.1.8)

The resulting dynamics can be seen in Figure 1.1 for various coefficients for the readers
to better visualize the dynamics of the reaction.
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1.1.3 Emergence of Randomness, Example of Radioactive De-
cay

Now we are going to investigate a special case of the previous isomerization example.
Consider a radioactive decay reaction:

A
k−→ ∅ (1.1.9)

where the substance A decays with time and with rate constant k ∈ R+. Plugging
B(t) = 1 ∀t ≥ 0, k1 = k and k2 = 0 in isomerization reaction (1.1.6) yields the
radioactive decay reaction (1.1.9) considered above. Likewise plugging the same values
in equations (1.1.7) and (1.1.8) one gets the ODE that governs the dynamics of the
radioactive decay.

dA(t)

dt
= −kA(t), A(0) = A0,

and the solution is:
A(t) = A0e

−kt (1.1.10)

which the solution intuitively makes sense. Due to the radioactive decay we will have an
exponential decay in the number of reactants we have with time. Also in this explicit
formula we see how the reaction rate k plays a role, it determines how fast the reactant A
will be consumed in the reaction. However what we obtain when we take measurements
of an actual radioactive decay is not quite the same:

Figure 1.2: A real experimental result published online of Phosphorus-30 radioactive
decay. The dots are measured the number of counted emissions blue solid line is the
theoretical prediction and red solid line is the fit of expression (1.1.10).

As you can see from Figure 1.2 there will be deviation from the theory and not just
due to measurement errors. Each phosphorus atom has a ”fixed probability” to decay,
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so sometimes more will decay and sometimes less and follow the exponential decay on
average. As stated in [Vlysidis and Kaznessis, 2018], the deterministic chemical kinetics
equations are idealized behavior of these reactions in the thermodynamic limit (i.e.
infinitely many well mixed specimens in an infinitely large volume). However as you
deviate from this idealized case with either low number of specimens or with less mixed
conditions, then you start to observe more randomized behavior in these reactions. This
leads to the question to be addressed in this thesis: How to introduce this randomness
in the theory?
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Chapter 2

Chemical Master Equation (CME)

2.1 Introduction

The Chemical Master Equation (CME) is the most popular way of introducing random-
ness to Chemical Kinetics in the literature. The logic is to write down a deterministic
system of ordinary differential equations (ODEs) according to the dynamics of the re-
action of interest as it is explained in (1.1.1) and shown in examples (1.1.2) and (1.1.6).
However this time, the solution of this system will be P(Nt = n) being the probability
to have ”n” particles at time ”t”. In other words, the randomness is introduced in
this deterministic system due to solution being the probability density of the stochastic
process Nt, the number of particles at time t.

In order to better explain the concept, we start introducing the model on a toy example
that is the CME of a birth-death type of reaction. However it should be noted that the
procedure can easily be generalized to any higher order reaction.

2.2 The Derivation of the CME of Birth-Death Re-

action

Without loss of generality, consider the reaction

A
λd−⇀↽−
λc

∅, (2.2.1)

where λd, λc ∈ R+∪{0} and A stand for the concentration of the specimen. In this reac-
tion the specimen A is being degraded with a rate constant λd and with a constant rate
λc new A molecules are pumped in to our system. In this new setting our understanding
of the reaction rate constants should be modified as ”The real number that quantifies
the probability to have the reaction per unit time”. In the light of this knowledge, the
master equation for this reaction can be written with an assumption that is:
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Assumption 2.2.1. For a sufficiently small time interval [t, t + h) it is assumed that
only a single reaction can take place.

With the assumption 2.2.1, the law of total probability and the nature of the reaction
we can write the following about the birth-death type reaction (2.2.1):

P(NA
t+h = n) =P(NA

t+h = n|NA
t = n− 1)︸ ︷︷ ︸

hλc

P(NA
t = n− 1)

+ P(NA
t+h = n|NA

t = n+ 1)︸ ︷︷ ︸
h(n+1)λd

P(NA
t = n+ 1)

+ P(NA
t+h = n|NA

t = n)︸ ︷︷ ︸
(1−hλc)(1−hnλd)

=1−hλc−hnλd+O(h2)

P(NA
t = n)

+ P{multiple particle reactions}︸ ︷︷ ︸
O(h2)

(2.2.2)

where n ∈ Z+ ∪ {0}. Now each term will be explained:

• P(NA
t+h = n) is the probability to obtain n many particles of specimen A at time

t+ h.

• P(NA
t+h = n|NA

t = n−1) is the probability to obtain n many particles of specimen
A at time t + h, given that there were n − 1 particles at time t. This means a
creation reaction should take place in time window [t, t + h) and this is why this
term is also equal to λch.

• Similarly, P(NA
t+h = n|NA

t = n + 1) is the probability to obtain n many particles
of specimen A at time t+ h, given that there were n+ 1 particles at time t. This
means a degradation reaction should take place in time window [t, t + h) among
any of the n+ 1 particles and this is why this term is also equal to (n+ 1)hλd.

• P(NA
t+h = n|NA

t = n) is the probability to obtain n many particles of specimen
A at time t + h, given that there were already n particles at time t. This means
in no reaction should happen in time window [t, t + h), which is product of the
probabilities of {No creation}×{No degradation}. This identity is given by

(1− hλc)× (1− nhλd) = 1− hλc − nhλd +O(h2).

• P{multiple particle reactions} is the term taking into account of all other possible
reactions. Like P(NA

t+h = n|NA
t = n − 2)P(NA

t = n − 2), which will be possible
only if 2 net creation reactions happens (i.e. 2 creations or 3 creations and 1
degradation, 4 creations and 2 degradation etc.). However because of assumption
2.2.1 all reactions will scale with h so having more than 1 reaction will scale with
O(h2) as shown in expression (2.2.2).
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Bearing all these facts in mind and easing the notation by letting P(Nt = n) := ρn(t)
equation (2.2.2) becomes:

ρn(t+ h) = hλcρn−1(t) + h(n+ 1)λdρn+1(t)

+ (1− hλc − hnλd)ρn(t) +O(h2)

Rearanging the terms and taking the limit h→ 0 yields:

dρn(t)

dt
= λcρn−1(t) + (n+ 1)λdρn+1(t)

− (λc + nλd)ρn(t)
(2.2.3)

for n ∈ {0, 1, 2, ...} and with the initial condition of our choice:

ρ0(0) = 1 and ρn(0) = 0 ∀n, (2.2.4)

so this means initially there were no particles present. The infinite system of ODE’s
in expression (2.2.3) is called the Chemical Master Equation or CME for the reaction
(2.2.1) and the solution ρn(t) is the probability of observing n particles at time t. It is
evident that the expression (2.2.3) resembles the deterministic dynamics since if we just
set focus on the isomerization example in (1.1.6) and make the substitutions k1 = λd,
k2 = λc, B(t) = 1 ∀t ≥ 0 and A0 = 0 one gets the birth-death reaction introduced in
(2.2.1) with the dynamics.

dA(t)

dt
= λc − λdA(t),

where again the degradation term depends on the number of particles through the term
−λdA(t), resembling the term −λdn in (2.2.3) and we see fixed number of particles being
created via the constant λc, similar to the term λcρn−1(t). In the CME version, there
are additional terms such as −λcρn(t) and (n + 1)λdρn+1(t) due to the nature of the
problem. As stated earlier, these terms arise due to the derivation of the model where
instead of the exact number of particles, we are interested in probability densities and
probability flows for each state n.

In other words, one can see from our example starting with the reaction (2.2.1), we were
able to preserve the creation and degradation dynamics of the reaction inside the system
(2.2.3) and still able to introduce randomness in the number of particles Nt. Lastly it is
important to see how self-justified assumption 2.2.1 is. The assumption states that for
a sufficiently short time frame only a single reaction can take place and then one can
see that just before of equation (2.2.3), h is considered to approach 0.

2.2.1 Using Generating Function Method for Analytical Solu-
tion of the CME of Birth-Death Type Reactions

The complexity of solving the CME analytically is apparent from the expression (2.2.3).
It is because the solution of all the states are entangled, that is you need the solution

12



of states ρn−1(t) and ρn+1(t) too in order to solve ρn(t) and this is true for all of the
infinitely many n’s. This means one has to solve the whole system all at once. The most
common way to approach this problem is the so called probability generating function
as explained in detail in [Erban and Chapman, 2020]. Basically one defines a function

G(z, t) :=
∑
n≥0

znρn(t) (2.2.5)

where z ∈ [−1, 1] to prevent the divergence of the series.

Remark 2.2.2. Note that G(1, t) = 1 due to the law of total probability.

It turns out when one multiplies the n’th state of the CME by zn and sum all of the
states, one can express the result as a single partial differential equation (PDE) in terms
of G(z, t). If that resulting PDE is solvable then the CME of interest is solvable as well.
For illustration let’s continue with our previous example, so we consider the reaction
(2.2.1) and we have the CME (2.2.3), then for each state we multiply with corresponding
zn and get:

d(znρn(t))

dt
=λcz

nρn−1(t) + (n+ 1)λdz
nρn+1(t)

− zn(λc + nλd)ρn(t)

which can also be written as:

d(znρn(t))

dt
=zλcz

n−1ρn−1(t) + λd
dzn+1

dz
ρn+1(t)

− zn(λc + nλd)ρn(t)

then when this equation is summed over all the possible values of n, one gets:

∂G(z, t)

∂t
= (z − 1)λcG(z, t) + λd(1− z)

∂G(z, t)

∂z
(2.2.6)

Remark 2.2.3. The partial derivative with respect to z is present due to the degradation
reaction of the particle. So in single particle reactions,when the generating function
methodology is used, the resulting PDE can be at most first order.

As also done in [Lanconelli et al., 2023, McQuarrie, 1967a] considering the initial con-
dition in (2.2.4) with the boundary condition in remark 2.2.2 the solution is:

G(z, t) = exp

{
λc
λd

(
1− e−λdt

)
(z − 1)

}
(2.2.7)

and it can be checked by direct verification. Because the G(z, t) is already present we
can use it to work our way back to ρn(t) due to the relation stated in (2.2.5). As one
can see, due to this relation:

ρn(t) =
1

n!

(
∂nG(z, t)

∂zn

)∣∣∣∣∣
z=0

,
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since now we have the explicit expression of G(z, t) in (2.2.7) the solution of our interest
is:

ρn(t) =

(
λc
λd
(1− e−λdt)

)n
n!

e
− λc

λd
(1−e−λdt)

which we notice as a Poisson distribution with parameter λc
λd
(1 − e−λdt). The whole

pipeline followed for this example of reaction (2.2.1) can be summarized in Figure 2.1.

Moreover we notice that as t→ ∞ the density ρn(t) converges to another function:

ϕ(n) :=
(λc/λd)

n

n!
e−λc/λd , (2.2.8)

which is called the stationary distribution of the birth-death type of reaction (2.2.1)
because it won’t change with time anymore. We also see that it is again a Poisson
density with parameter λc/λd. Another example is provided in the next section.

{ρn}n≥0 solves (2.2.3).
Multiply n’th

equation with zn.

G(t, z) :=
∑

n≥0 z
nρn(t)

G(t, z) solves the PDE:
∂G
∂t

= zλcG+ λd
∂G
∂z

− (λc + λdz
∂
∂z
)G)

ρn(t) =
1
n!
∂nG(z,t)
∂zn

∣∣∣
z=0

Figure 2.1: The figure summarizing the analytical pipeline followed to approach the
system of ODEs in (2.2.3).

2.3 The Derivation of the CME of Mutual Annihi-

lation Reaction

In this section we will reinforce the understanding of the CME and see how to apply it
to another reaction. This time consider the reaction:

A+ A
λd−→ ∅, (2.3.1)

where it means 2 A molecules collide on average with reaction rate constant λd and
annihilate each other. This is an example of a bimolecular reaction that often tends
to be harder to solve analytically. This is because similar to the explanation given in
Remark 2.2.3, reactions involving 2 particles will yield a second order term in z in the
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resulting PDE of the generating function methodology, as will be demonstrated later.
Similar to the previous case we can write the system of equations obeyed by the densities
of the Nt according to our reaction of interest (2.3.1) as.

P(NA
t+h = n) = P(NA

t+h = n|NA
t = n+ 2)︸ ︷︷ ︸

h
(n+2)(n+1)

2
λd

P(NA
t = n+ 2)

+ P(NA
t+h = n|NA

t = n)︸ ︷︷ ︸
1−hn(n−1)

2
λd

P(NA
t = n)

+ P{multiple particle reactions}︸ ︷︷ ︸
O(h2)

,

(2.3.2)

where the first thing to notice is that there is no creation term as before in (2.2.2) due
to the nature of the reaction (2.3.1) being only composed of mutual annihilation. Then
we can argue that, in the small time interval h, the probability to choose 2 particles
among n + 2 particles and annihilate them (P(NA

t+h = n|Nt = n + 2)) is given by the

expression (n+2)(n+1)
2

hλd, this is due to the fact that the degradation reaction should
happen in time frame [t, t+ h] by the term hλd and we need to select 2 particles among
the n + 2 particles to degrade by the term (n + 2)(n + 1)/2. Similarly the probability

of no reaction (P(NA
t+h = n|Nt = n)) is set as: 1 − n(n−1)

2
hλd so that it is 1 minus the

probability of selecting 2 particles among n many and annihilate them in small time
interval h.

When the terms are rearranged and h→ ∞ limit is considered, the result is:

dρn(t)

dt
=

(n+ 2)(n+ 1)

2
λdρn+2(t)−

n(n− 1)

2
λdρn(t) (2.3.3)

2.3.1 Using Generating Function Method for Analytical Solu-
tion of the CME of Mutual Annihilation Type Reactions

When in a similar sense one defines the G(t, z) :=
∑

n≥0 z
nρn(t) for z ∈ [−1, 1] and

multiplies the n’th equation with zn and sum all the system, the equation that G(t, z)
satisfies is:

∂G(t, z)

∂t
=
λd
2
(1− z2)

∂2G(t, z)

∂z2
(2.3.4)

Remark 2.3.1. Due to the same reason explained in Remark 2.2.3, it can be seen that
the terms:

n(n− 1)ρn(t)z
n = z2ρn(t)

d2zn

dz2
and (n+ 2)(n+ 1)ρn+2(t)z

n = ρn+2(t)
dz2zn+2

dz2
,

give rise to the second order derivative with respect to z, which makes it significantly
harder to solve the equation (2.3.4) than (2.2.6).
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Noting the reason of the presence of second order derivative it can be said that bimolecular
reactions result in second order PDEs in generating function method. This is the main
reason of finding analytic solutions to higher order reactions.

Nevertheless this reaction with only a mutual annihilation part can again be solved
analytically by following the steps of [McQuarrie, 1967b] in Section III-b Bimolecular
reactions. One can use the separation of variables methodology to guess a solution in
the form G(t, z) := T (t)C(z) and equate

dT (t)

dt

1

T (t)

2

λd
= (1− z2)

d2C(z)

dz2
1

C(z)
= constant.

Since otherwise two functions that depend on different parameters t and z can’t be equal
to each other. Since the equation is linear any solution’s linear combination is also a
solution. This is why if one chooses the constant as −n(n− 1) for n ∈ N then one can
obtain all the non-exploding solutions T (t) and C(z). Following the results of the book
[McQuarrie, 1967b], same chapter the solution of (2.3.4) is stated as:

G(t, z) =
∑
n≥0

AnCn(z)Tn(t), (2.3.5)

where
Tn(t) = e−

λd
2
n(n−1)t

and Cn(z) is the function so called Gegenbauer polynomial and it is the solution to the
ODE:

(1− z2)
d2Cn(z)

dz2
= −n(n− 1)Cn(z).

Moreover the book also uses the initial condition that at time 0, there are n0 many
particles only so G(0, z) = zn0 ⇒ ∂G(t,z)

∂z
= n0z

n0−1 together with the properties of the
Gegenbauer polynomials, finds the coefficients An too. One can see how demanding it is
to just consider a mutual annihilation itself (without any creation reaction as it will be
investigated in Chapter 5). Since G(t, z) can be expressed using (2.3.5) where everything
on the right hand side is known, similar to what have been explained in Figure 2.1, one
can work their way back to ρn(t) utilizing the analytical solution of G(t, z).

However all this work was to solve a simple mutual annihilation reaction and it gives
an idea on how fast the problem gets complicated with a little change. Imagine another
more complex but still a lot simpler than real life reactions. Imagine

A+ A
k1−→ ∅, A+B

k2−→ ∅,

∅ k3−→ A, ∅ k4−→ B.
(2.3.6)

Where this time similar to the approach in Figure 2.1, one can let ρn,m(t) be the prob-
ability of having n many A particles and m many B particles at time t and write down
the CME. Then similarly define a function:

G(w, z, t) :=
∑

n≥0,m≥0

wmznρn,m(t).
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So the same idea prevails, if one can obtain an explicit representation for G(w, z, t), then
it can be used to reach back to ρn,m(t). However the problem lies in the complexity of the
PDE satisfied by G(w, z, t). As explained in Remark 2.3.1, the result will be 2nd order
in derivatives with respect to w and z. This means the system is very complex to treat
analytically. As you can imagine for more realistic reactions most of the time the PDE
of G(z, t) is not analytically solvable and in literature mostly algorithms like Gillespie
or other numerical simulation techniques are used. This situation makes the analytical
solutions of any reaction be extremely valuable because they are not very abundant and
these analytical solutions can be used to check the accuracy of the numerical methods
as well.

2.4 The Gillespie Algorithm

The most popular algorithm to track down any Chemical Master Equation is the so called
Gillespie Stochastic Simulation Algorithm. Now in this section it will be introduced for
any reaction and the results simulations from the book [Erban and Chapman, 2020] will
be given for the birth-death type of reactions mentioned above in Chapter 2.2. In general
it works as the following, for any reaction of interest:

Sketch of Gillespie Algorithm
1. Given that there are fixed number of specimen(s) at time t. Simulate the time

required for the next reaction to take place (τ).
2. Decide according to the reaction rates which reaction should happen.
3. Repeat the process for the time point t+ τ .

Let’s define τ as the time required to have a reaction. Namely if at time t we have a fixed
number of chemical specimens than at time t+τ due to one of the reactions we consider,
this distribution will change. Surely τ is a random variable and we’re interested in its
density to simulate the dynamics. The following result ensures the pdf of tau.

Proposition 2.4.1. The length of time without a reaction, in other words the τ is an
exponential random variable with parameter λ being the sum of every rate of reaction we
consider.

Proof. Let N(t) be the vector of all the number of specimen(s) considered in reaction(s)
of interest. For example Nt = NA

t in (2.2.2) and (2.3.2) since there is only a single

specimen, which is A. However if one considers a reaction such as A+B
λ−→ C, then Nt

becomes (NA
t , N

B
t , N

C
t )

T . Define the density of τ as:

f(Nt, s)ds =

Probability that the number of
particles at time t is Nt and next
reaction will take place in interval

[t+ s, t+ s+ ds).
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similarly define:

g(Nt, s) =

Probability that the number of
particles at time t is Nt and no
reaction will happen in interval

[t, t+ s)

.

This means, one can also express f(Nt, s)ds as:

f(Nt, s)ds = g(Nt, s)λ(t)ds (2.4.1)

where λ(t) is the sum of all the rates of the reactions considered at time t. For example
for the birth death reaction considered in (2.2.1) λ(t) = λc + NA

t λd and similarly for
the mutual annihilation reaction (2.3.1) λ(t) = NA

t (N
A
t − 1)λd/2. Moreover because we

assume no reaction will take place in interval [t, t + s), note that λ(t) = λ(t + s).The
expression (2.4.1) makes sense because the probability that one reaction will take place
in the interval [t+ s, t+ s+ ds) means for the interval [t, t+ s) it shouldn’t happen (the
function g(Nt, s) takes care of that) times the probability to have one of the reactions
in that infinitesimal time interval, λ(t)ds.

Now we will focus on expression what g(Nt, s) looks like explicitly. Note that the
following relation is true:

g(Nt, s+∆s) = g(Nt, s)(1− λ(t)∆s).

What is written above is nothing but simply the probability for no reaction to take place
for the interval [t, t+s+∆s) is prodcut of the probability to have no reaction in interval
[t, t+ s) times [t+ s, t+ s+∆s). When the terms are rearranged and lim δs goes to 0
is considered:

lim
∆s→0

g(Nt, s+∆s)− g(Nt, s)

∆s
=
dg(Nt, s)

ds
= −g(Nt, s)λ(t),

and this ODE can be solved uniquely using the initial condition that g(Nt, 0) = 1 so
that

g(Nt, s) = e−λ(t)s. (2.4.2)

Substituting equation (2.4.2) to (2.4.1) one gets:

f(Nt, s)ds = λ(t)e−λ(t)sds (2.4.3)

which for a fixed t, is the exponential distribution with parameter λ(t).

The Lemma 2.4.1 enables us to simulate τ on computer and perform the 1’st step of the
Gillespie Algorithm. The only need is to generate a random number that is exponentially
distributed.
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2.4.1 Case Study for Birth-Death Type of Reactions

In the book [Erban and Chapman, 2020] the algorithm is applied on birth-death type
reactions and the explicit algorithm and results are given below in Figure 2.2:

The Gillespie Algorithm for bdCME in (2.2.1)
1. For the state at time t. Generate 2 random numbers, r1 and r2, uniformly dis-

tributed in [0, 1].
2. Compute when the next reaction will take place by

τ =
1

λ(t)
ln

[
1

r1

]
where λ(t) = λc+N

A
t λd. This way τ will be a random number generated according

to an exponential distribution with parameter λ(t).
3. Decide which reaction to take place, based on the relative magnitude of the reac-

tions

NA
t+τ =

{
NA
t + 1 if r2 < λc/λ(t)

NA
t − 1 if r2 ≥ λc/λ(t)

4. Apply the first step for the state at time t+ τ .

(a) (b)

Figure 2.2: The simulation results of the birth-death type of reactions by the Gillespie
algorithm with parameters NA

0 = 0, λd = 0.1 and λc = 1. In Figure 2.2a we see
many sample paths simulated via the algorithm and the mean of simulations reported in
dashed black line. Figure 2.2b is the histogram generated by the numerical distribution
of simulation results of Figure 2.2a for 105 reactions to take place and then normalized.
The red line is the stationary distribution (2.2.8) for comparison.

It is worth showing how the CME, to some extend, preserves the dynamics of the de-
terministic chemical kinetics. The black dashed line in Figure 2.2a is the mean of the
simulations where it clearly reflects the overall dynamics of the deterministic isomeriza-
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tion reaction shown in Figure 1.1 under the substitutions: k2 = λd, k1 = λc, A(t) = 1
∀t > 0, yields the same birth-death type of reaction for particle B.

As one can see this algorithm is very handy since it can be applied to any reaction. In
the book [Erban and Chapman, 2020] one can see that in section 1.5 it is applied to the
reaction (2.3.6), which we emphasized on how demanding it is to approach analytically.
In the same section of the book there are also the results of the simulation reported in
Figure 1.5.

It is very impressive to have a method that can be applied to any reaction without
restriction, still without an analytic solution at hand, one can’t tell how good or bad
the simulation results are which is why the red line in Figure 2.2b is reported.
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Chapter 3

Chemical Diffusion Master Equation
(CDME)

3.1 Introduction

As stated in [del Razo et al., 2022], in real life most of the biological and chemical phe-
nomena one observes is a combination of reaction and diffusion of particles. Some
examples are already provided in [Fisher, 1937, Kolmogorov et al., 1937, Fradin, 2017].
Because CME simply misses the location information of the specimens the model can
be improved further by utilizing the same principles we already used but also including
the location of the particles and therefore also incorporating the diffusion concept in
our reaction equations. This way, the resulting model becomes the Chemical Diffusion
Master Equation (CDME).

The CDME is first described in [del Razo et al., 2022] as a family of Fokker-Planck
equations where each equation describes the diffusion processes for a given n-particle
probability densities, also reflecting the dynamics of the reaction that it models, in a
similar way to CME. In this chapter basically the approach of [del Razo et al., 2022] will
be summarized, then on Chapter 4 the model will be applied to a birth-death type of
reaction (as in (2.2.1)) and in Chapter 5, first the model will be derived and then applied
on a mutual annihilation (reaction (2.3.1)) with a constant creation reaction and then
analyzed. This is why instead of the actual derivation that is present in Chapter 5, in
this chapter the intuitive description of the model will be present. Lastly in Chapter
6, we will see how to write down and solve CDME of a branching Brownian motion.
A reaction where the reaction and diffusion processes are not independent, hence the
remark 3.2.1 won’t be true for that example, which is the main obstacle.
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3.2 Description of the Chemical Diffusion Master

Equation (CDME)

The main objective of this section is to propose a system of PDEs and explain their
connection with the reaction diffusion systems such as chemical reactions. In the light
of the paper [del Razo et al., 2022] we propose the system:

∂tρ(t) =

(
D +

S∑
r=1

Rr

)
ρ(t),

∂vρn(t,xn) = 0, ∀n ≥ 1, xn ∈ ∂Xn

(3.2.1)

where each element will be now explained in detail:

• ρ(t) is the vector of probability densities for all number of particles:

ρ(t) := (ρ0(t), ρ1(·, t), . . . , ρn(·, t), . . . )T .

In this setting ρn(xn, t) is read as the probability to obtain a total of n particles
reported in the vector n = (n,m, . . . )T depending on how many specimens are
considered, at time t around the location vector xn. One can see the length of the
vector ρ(t) can be infinite because the nature of the chemical reactions the number
of particles are unbounded. As an example consider a case of pure creation by
setting λd = 0 in reaction (2.2.1). One important thing to highlight is that, because
the particles belonging to the same chemical specimen are indistinguishable, the
densities ρn(xn, t) are required to be symmetric in the location variables. If there
is a single chemical specimen, then there is no need to vectorize the model and
hence:

ρn(x1, x2, . . . , xn, t) = ρn(xσ1 , xσ2 , . . . , xσn),

where σj, j ∈ {1, 2, . . . , n} are the permutations of the set {1, 2, . . . , n}.

• The vector D is a collection of operators Dn that are describing the movement
of the particles, meaning the the operator making n particles move in the space
without any reactions. If one separates ρn(xn, t) as:

ρn(xn, t) = pn(xn, t|Nt = n)P[Nt = n].

Meaning the pn(xn, t|Nt = n) is the probability to obtain the n particles around
location xn at time t if it is given that there are specified number of particles (n)
for all chemical specimens. So in some sense, because the number of particles are
given, the reaction nature of the dynamics can be ignored and only the particle
movements can be described by pn(xn, t|Nt = n).

Then explicit form of the operator Dn is:

Dnpn = −
n∑
i=1

▽i · (Aipn) +
n∑
i,j

▽i · (Dij▽ipn),
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where Ai(xn, t) describes the drift of the particles and the Dij is the element in the
ith row and jth column of the 3×3 diffusion matrix if a 3D diffusion is considered.

As an example when the movement of the particles are sourced by a potential
U(xn), then the operator Ai has the explicit form:

Ai = −
n∑
j=1

Dij▽jU.

However for the sake of this thesis we will always assume pure diffusion for the
particles without any deterministic drift. This assumption simplifies the operator
Dn:

Dnρn = D∆ρn,

where D is the diffusion coefficient and ∆ is the Laplacian operator. This assump-
tion makes the particles diffuse as the regular Brownian motion.

• The space that only one particle freely diffuses is denoted as X and X ⊆ R or
X ⊆ R3, depending on if the particles are considered to diffuse only in 1 dimension
or in 3 dimensions respectively. Then one can express the space of n particles
diffusing as the tensor space Xn := X⊗n, in words it is the tensor product of n
many single particle spaces.

• ∂v is denoting the unit normal vector along the surface of Xn, which is also denoted
as ∂Xn. The boundary conditions in equation (3.2.1) is the reflective boundary
conditions enabling there is no probability flux at the boundaries of the diffusive
space. In other terms the probability is conserved inside the space Xn ∀n > 0.

• Lastly, Rr is the r’th reaction among the S ones considered. Which is parametrized
by the r’th reaction rate λr. If one collects all reactions into

R =
S∑
r=1

Rr

then one can utilize the simplified matrix notation (3.2.2).

Now 2 remarks will be introduced about the model in general

Remark 3.2.1. A pure movement process without any reaction would look like,

∂ρ(t)

∂t
= Dρ(t).

Similarly if you consider a process with pure S many reactions without any diffusion,
one can express this dynamic by the following equation:

∂ρ(t)

∂t
=

S∑
r=1

Rrρ(t).
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Which is analogous to the equation in (1.1.1). Note that the fact that we can combine
both of these operators linearly on ρ(t) in the expression (3.2.1), is the assumption of
independence between the reaction and diffusion processes. This is the core of the as-
sumption for writing the CDME of any reaction. If the reaction and diffusion are not
assumed to be independent than the explicit form of expression is not straightforward (as
it will be seen in Chapter 6).

Remark 3.2.2. Due to how the boundary conditions of expression (3.2.1) are chosen,
when the spatial parameters of the CDME (3.2.1) are integrated out one can obtain the
pure reaction process. Which is nothing but the CME of the related reaction.

Proof. Fix n, then integrate out the location parameters of the following equation:

∂ρn(t,xn)

∂t
= Dnρn(t,xn) +Rρn(t,xn),

∂ρn(t,xn)

∂t
= D∆ρn(t,xn) +Rρn(t,xn),

to obtain:∫
X

∂ρn(t,xn)

∂t
dxn =

∫
X
D∆ρn(t,xn)ρn(t,xn)dxn +

∫
X
Rρn(t,xn)dxn,

∂ρn(t)

∂t
=

∫
∂X

D▽∂vρn(t,xn)ds+Rρn(t),

∂ρn(t)

∂t
= Rρn(t).

where the divergence theorem is utilized in the second line. As one can see the result
of this operation is a pure reaction process without any notion of diffusion or location
inside the model. Which is also called the CME, where marginal density, ρn(t) is the
probability to obtain n many particles at time t. In other words, it can be said that,
truly the CDME is the generalization of CME.

Now in order to explain better the formulation of the CDME we express equation (3.2.1)
in matrix notation.

∂

∂t


ρ0
ρ1
...
ρn
...


︸ ︷︷ ︸

ρ

=


D0ρ0
D1ρ1
...

Dnρn
...


︸ ︷︷ ︸

Dρ

+


Q0,0 Q0,1 . . . Q0,n . . .
Q1,0 Q1,1 . . . Q1,n . . .
...

... . . .
... . . .

Qn,0 Qn,1 . . . Qn,n . . .
...

... . . .
... . . .


︸ ︷︷ ︸

R


ρ0
ρ1
...
ρn
...


︸ ︷︷ ︸

ρ

, (3.2.2)

where Qn,m is the transition operator from a state with m particles to a state with n
particles. It will yield non-zero result when applied on ρm if one of the S many reactions
we consider in R permits such a transition.
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3.3 CDME of the Birth-Death Reaction-Diffusion

Process (2.2.1)

For example as done in [del Razo et al., 2022], if we consider the birth-death reaction
(2.2.1), the matrix R can be written with only tridiagonal elements such as:

Q0,0 Q0,1 0 . . .
Q1,0 Q1,1 Q1,2 0 . . .

...
0 . . . Qn−1n Qn,n Qnn+1 0 . . .

...

 ,

because the reactions can only create or destroy one particle at a time and we ignore
reactions that scale withO(h2), as done in Chapter 2. As one can see the equation (3.2.2)
is a model that has continuous diffusion in its location variables (due to the diffusion
operator D) but a regular discrete jump process in its number of parameters. This way
the model fits into the category of stochastic hybrid systems, where continuous dynamics
and discrete events coexist in the same process. However, a particular challenge for
the mathematical formalization is the change of dimensionality that is induced by the
discrete jumps. Then one can imagine the process as in Figure 3.1

∅ X1
X2

X3 · · ·

Q1,0

Q0,1

Q2,1

Q1,2

Q3,2

Q2,3

Q1,1Q0,0

Q2,2
Q3,3

Number of particles
0 1 2 3

Figure 3.1: The illustration of the reaction-diffusion dynamics of the birth-death reaction
(2.2.1). One can see the probability of jumping from nth state to m’th state as Qmn.
Due to the nature of these jumpings can only cover 1 state at a time. The spaces Xn

is the space where n particles are diffusing. One can also see while each creation of a
particle necessarily creates another space where it can diffuse, each degradation removes
the space of the corresponding particle.

Moreover because we have a reaction of interest in mind we can do more and express
each Qn,m in terms of the reaction rate functions λd(x) and λc(x).

Remark 3.3.1. It is worth noting that because the location information is considered in
CDME, the reaction rate constants in CME can be modified to be functions of location
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of particles. This feature of CDME adds additional realistic behaviour and complexity to
the CDME compared to CME, as also mentioned in the beginning of this chapter. In the
rest of the text the birth and death rates will be assumed to be functions of space variable
x.

Similar to the calculations done in equation (2.2.2) is we’re assessing these Qn,m’s to be:

• The degradation of a particle happens via the operatorQn,n+1 acting on ρn+1(t,xn+1)
to yield a system of n-particles. The explicit relation is:

(Qn,n+1ρn+1)(t,xn) = (n+ 1)

∫
X
λd(y)ρn+1 (t, y,xn) dy.

• A new particle is being created via the operator Qn,n−1 acting on ρn−1(t,xn−1) to
yield a system of n-particles. The explicit relation is:

(Qn,n−1ρn−1)(t,xn) =
1

n

n∑
i=1

λc (xi) ρn−1(t, x1, . . . , xi−1, xi+1, . . . , xn).

which also yields a symmetrized density ρn.

• The operator Qn,n, unlike of the previous two, when applied on ρn(t,xn), ensures
that no reaction will take place and the system will remain to have n particles.
The explicit relation is:

(Qn,nρn)(t,xn)−

[
n∑
i=1

λd(xi) +

∫
X
λc(x)dx

]
ρn(t, x1, . . . , xn).

• For n = 0, the special cases that are presented above is:

Q0,1ρ1(t, x1) =

∫
X
λd(x)ρ1(t, x)dx,

Q0,0ρ0(t) = −
∫
X
λc(x)ρ0(t)dx.

Using all these assigned operations above, if they are substituted to the expression
(3.2.2), also assuming the diffusion is isotropic so without any deterministic drift, one
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gets:

∂tρn(t, x1, ..., xn) =
n∑
i=1

D∆iρn(t, x1, ..., xn)

+ (n+ 1)

∫
X
λd(y)ρn+1(t, x1, ..., xn, y)dy

−
n∑
i=1

λd(xi)ρn(t, x1, ..., xn)

+
1

n

n∑
i=1

λc(xi)ρn−1(t, x1, ..., xi−1, xi+1, ..., xn)

−
∫
X
λc(y)dy · ρn(t, x1, ..., xn),

for n > 0, t > 0, (x1, ..., xn) ∈ Xn with the boundary condition:

(3.3.1)

For the special case n = 0 of the system of equations shown in (3.3.1) can be simply
written as below:

∂tρ0(t) =

∫
X
λd(x)ρ1(t, x)dx−

∫
X
λc(x)ρ0(t)dx. (3.3.2)

So system of equations consisting of (3.3.1) together with (3.3.2) and with boundary con-
ditions (3.2.1) with an initial condition that the researcher is free to choose, establishes
the Chemical Diffusion Master Equation for the birth-death reaction. One important
aspect is that similar to Remark 3.2.2, one can check when the reaction rates are as-
sumed to be constants and the location parameters are integrated out one obtains the
birth death CME (2.2.3) as shown in equation (1.6) of the paper [Lanconelli, 2023].

One can easily apply the same logic to other reactions by choosing the non-zero elements
of the R matrix and expressing them in terms of the reaction rates of the considered
reactions.

In system (3.3.1) and (3.3.2), we see that unlike of CME, the CDME is an infinite system
of PDEs, with the solution ρn(t,xn) being the probability to obtain n many particles
at time t around the location vector xn of all the considered specimens. The derivation
and analysis for various reactions will be the main focus in chapters 4, 5 and 6.

3.4 A Pipeline to Solve CDMEs: Infinite Dimen-

sional Generating Function Method

In this section the methodology developed in [Lanconelli, 2023] will be summarized. The
readers are encouraged to read the whole paper for any details. It turns out, for solving
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CDME analytically, one can use an analogous approach similar to generating function
methodology introduced in 2.2.1 and summarized in Figure 2.1.

The idea is to transform the system of CDME equations into an equivalent stochastic
one by using iterated Itô integrals with respect to a one dimensional Brownian motion
and the Wiener-Itô chaos expansion theorem. Then, exploiting the well known tools
from stochastic calculus, we’re able to reach to a single partial differential equation
of Ornstein-Uhlenbeck type in infinitely many variables which will be connected to the
solution of the CDME of interest via the so-called Stroock-Taylor formula. This approach
provides an analytical representation for the solution of the original system.

Without loss of generality this approach can be applied on the CDME of birth-death
type of reaction reported in (3.3.1) with initial and Neumann boundary conditions

ρ0(0) = 0;

ρ1(0, x1) = ζ(x1), x1 ∈ [0, 1];

ρn(0, x1, ..., xn) = 0, n > 1, (x1, ..., xn) ∈ [0, 1]n;

∂νρn(t, x1, ..., xn) = 0, n ≥ 1, t ≥ 0, (x1, ..., xn) ∈ ∂[0, 1]n.

(3.4.1)

The initial condition above states that there are no molecules in the system at time
zero while the Neumann boundary conditions prevents flux through the boundary of
X := [0, 1], thus forcing the diffusion of the molecules inside [0, 1]. The symbol ∂ν
in (3.4.1) stands for the directional derivative along the outer normal vector at the
boundary of [0, 1]n.

The main steps of the infinite dimensional generating function approach are summarized
as follows:

1. Assume the existence of a classical solution {ρn}n≥0 for (3.3.1)-(3.4.1); the con-
tinuity of ρn(t, ·) together with its symmetry in the spatial variables imply the
membership of ρn(t, ·) to L2

s([0, 1]
n), the space of symmetric square integrable

functions. Then using first order contraction and symmetrized tensor product,
which are explained in Appendix A.8, we express the equation (3.3.1) as:

∂tρ0(t) =λd ⊗1 ρ1(t, ·)− γρ0(t);

∂tρn(t, x1, ..., xn) =−
n∑
i=1

Aiρn(t, x1, ..., xn) + (n+ 1)(λd ⊗1 ρn+1(t, ·))(x1, ..., xn)

+ (λc⊗̂ρ(t, ·))(x1, ..., xn)− γρn(t, x1, ..., xn).

(3.4.2)

Where we define the operator A := −∂2x + λd(x) ∀x ∈ [0, 1] and γ :=
∫ 1

0
λc(y)dy

and make the following assumption:

Assumption 3.4.1. There exists an orthonormal basis {ξk}k≥1 of L2([0, 1]) that
diagonalizes the operator

A := −∂2x + λd(x), x ∈ [0, 1], (3.4.3)
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with homogenous Neumann boundary conditions. This means that for all j, k ≥ 1
we have ∫ 1

0

ξk(y)ξj(y)dy = δkj, ξ′k(0) = ξ′k(1) = 0,

and there exists a sequence of non negative real numbers {αk}k≥1 such that

Aξk = αkξk, for all k ≥ 1.

2. Itô-integrate all the space variables of ρn(t, ·) in (3.4.2) with respect to a one
dimensional Brownian motion {Bx}x∈[0,1]; this produces a sequence of multiple Itô
integrals {In(ρn(t, ·))}n≥0, as described in Appendix A.4. It will serve as a tag for
the solution of each state n, analogous to multiplying each state with zn as done
in Chapter 2.2.1. This new system solves a new set of equations, namely:

∂tIn(ρn(t, ·)) =dΓ(−A)In(ρn(t, ·)) +DλdIn+1 (ρn+1(t, ·))
+D⋆

λcIn−1 (ρn−1(t, ·))− γIn(ρn(t, ·)), t > 0, n ≥ 0;

I1(ρ1(0, ·)) =I1(ζ);
In(ρn(0, ·)) =0, for all n ̸= 1,

(3.4.4)

with probability one. Here, we agree on setting I−1(·) ≡ 0. The system (3.4.4)
is equivalent to (3.3.1) but expressed in terms of differential second quantization
operators, Malliavin derivatives and their adjoints as introduced in Appendix A.8.

3. Define Φ(t) :=
∑

n≥0 In(ρn(t; ·)); this is a generalized stochastic process, solution
to a single infinite dimensional differential equation,

∂tΦ(t) =dΓ(−A)Φ(t) +DλdΦ(t) +D⋆
λcΦ(t)− γΦ(t), t > 0,

Φ(0) =I1(ζ).
(3.4.5)

Whose kernels (from its Wiener-Itô chaos expansion) are by construction the ele-
ments of the sequence {ρn}n≥1. The summation Φ(t) :=

∑
n≥0 In(ρn(t; ·)) basically

serves for the same purpose of the generating function G(t, z) and similarly trans-
forms the original coupled infinite system of equations to a single PDE.

4. For the sake of simplicity, we will skip some intermediary steps but for the full for-
mal derivation we direct the readers to the paper itself [Lanconelli, 2023]. Because
one can express an iterated Itô integral as:

In(ρn(t, ·)) = φn (t, I1(ξ1), I1(ξ2), ...) ,

where φn is a polynomial of degree n in the variables {I1(ξ1), I1(ξ2), . . . }, which are
defined in the assumption 3.4.1, similarly one can apply the Malliavin operators
on the Φ(t) too. It is due to the relation:

Φ(t) :=
∑
n≥1

In(ρn(t, ·)) =
∑
n≥1

φn (t, I1(ξ1), I1(ξ2), . . . )
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= u(t, I1(ξ1), I1(ξ2), . . . )

Then one gets the PDE:

∂tu(t, z) =
∑
k≥1

αk∂
2
zk
u(t, z) +

∑
k≥1

(dk − ck − αkzk) ∂zku(t, z)

+

(∑
k≥1

ckzk − γ

)
u(t, z)

u(0, z) =
∑
k≥1

ζkzk, t ≥ 0, z ∈ RN ,

(3.4.6)

where, dk := ⟨λd, ξk⟩L2([0,1]), ck := ⟨λc, ξk⟩L2([0,1]) and ζk := ⟨ζ, ξk⟩L2([0,1]).

So what this pipeline ables you to do is, now one can map their problem of an infinite
entangled system of PDEs to a single PDE (entangled being in the sense used in Chapter
2.2.1), as seen from the example of mapping from (3.3.1)-(3.4.1) to (3.4.6). It should be
highlighted again that this methodology can be applied to any reaction and the birth-
death type of reaction is focused in this section only for better explaining the technique.
For example, in Chapter 5, it will be applied to mutual annihilation reaction with an
additional creation term as well. This general method is the stochastic analogue of the
Generating Function methodology explained in Chapter 2.2.1 and will be called infinite
dimensional generating function method from now on.

It is worth to mention that the equation (3.4.6) will be fully solved in Chapter 4. In
general, once the PDE is solved, by the generalized Stroock-Taylor formula described
in Appendix A.9 in expression (A.9.1), an analytic representation for the corresponding
{ρn(t,x)}n≥0 where x ∈ [0, 1]n for each n, will be obtained. So that one will get a
quantitative answer to what is the probability to obtain n particles around location
vector x at time t.

The summary of the pipeline can be found in Figure 3.2.

{ρn}n≥0 solves (3.3.1)-(3.4.1) {In(ρn(t, ·))}n≥0 solves (3.4.4)

Φ(t) :=
∑

n≥0 In(ρn(t, ·)) solves (3.4.5)ρn(t, x1, ..., xn) =
1
n!
E[Dx1,...,xnu(t)]

Φ(t) = u(t, I1(ξ1), I1(ξ2), ...) with u from (3.4.6)

Figure 3.2: Solution pipeline of any CDME. Note the resemblence of the Figure 2.1.
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Chapter 4

Solution Formula for the General
Birth-Death CDME

Abstract

We propose a solution formula for chemical diffusion master equations of birth and death
type. These equations, proposed and formalized in the recent paper [del Razo et al., 2022],
aim at incorporating the spatial diffusion of molecules into the description provided by
the classical chemical master equation. We start from the general approach developed
in [Lanconelli, 2023] and perform a more detailed analysis of the representation found
there. This leads to a solution formula for birth-death chemical diffusion master equa-
tions which is expressed in terms of the solution to the reaction-diffusion partial differ-
ential equation associated with the system under investigation. Such representation also
reveals a striking analogy with the solution to the classical birth-death chemical master
equations. The solutions of our findings are also illustrated for several examples.

4.1 Introduction and Statement of the Main Result

The CDME is the theoretical backbone of reaction-diffusion processes, and thus, it
is fundamental to model and understand biochemical processes in living cells, as well
as to develop multiscale numerical methods [del Razo et al., 2018, Flegg et al., 2012,
Kostré et al., 2021, Smith and Yates, 2018] and hybrid algorithms [Chen et al., 2014,
Dibak et al., 2018, del Razo et al., 2021]. The stochastic trajectories of the CDME can
be often integrated using particle–based reaction–diffusion simulations [Andrews, 2017,
Hoffmann et al., 2019]. However, analytic and approximate solutions have not yet been
explored in detail. In this work, we work out a method to obtain an analytic solution
of the CDME for a simple birth-death reaction system, with the aim to bring insight of
the CDME solution of more complex systems.

We consider a system of indistinguishable molecules of a chemical species S which un-
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dergo

• diffusion in the bounded open region X of R3;

• degradation and creation chemical reactions

(I) S
λd(x)−−−→ ∅ (II) ∅ λc(x)−−−→ S,

where λd(x) denotes the propensity for reaction (I) to occur for a particle located at
position x ∈ X (i.e., the probability per unit of time for this particle to disappear)
while λc(x) is the propensity for a new particle to be created at position x ∈ X by
reaction (II).

To describe the evolution in time of such system the authors in [del Razo et al., 2022,
del Razo et al., 2023] proposed a set of equations for the number and position of the
molecules. Namely, for t ≥ 0, n ≥ 1 and A ∈ B(Xn) they set

N (t) := number of molecules at time t,

ρ0(t) := P(N (t) = 0)∫
A

ρn(t, x1, ..., xn)dx1 · · · dxn := P ({N (t) = n} ∩ {(X1(t), ..., Xn(t)) ∈ A}) ;

here, dxi stands for the three dimensional integration volume dx
(1)
i dx

(2)
i dx

(3)
i . Then, ac-

cording to [del Razo et al., 2022, del Razo et al., 2023], the time evolution of the reaction-
diffusion process described above is governed by the following infinite system of equations
we have in the expression (3.3.1) from the previous chapter with D = 1 for simplicity:

∂tρn(t, x1, ..., xn) =
n∑
i=1

∆iρn(t, x1, ..., xn)

+ (n+ 1)

∫
X
λd(y)ρn+1(t, x1, ..., xn, y)dy

−
n∑
i=1

λd(xi)ρn(t, x1, ..., xn)

+
1

n

n∑
i=1

λc(xi)ρn−1(t, x1, ..., xi−1, xi+1, ..., xn)

−
∫
X
λc(y)dy · ρn(t, x1, ..., xn), n ≥ 0, t > 0, (x1, ..., xn) ∈ Xn;

(4.1.1)

where we agree on assigning value zero to the three sums above when n = 0. The term

n∑
i=1

∆iρn(t, x1, ..., xn)
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in (4.1.1) refers to spatial diffusion of the particles: here,

∆i := ∂2
x
(1)
i

+ ∂2
x
(2)
i

+ ∂2
x
(3)
i

stands for the three dimensional Laplace operator. We remark that to ease the notation
we choose a driftless isotropic diffusion but the extension to the divergence-form second
order partial differential operator

Lxiv :=
3∑

l,m=1

∂
x
(l)
i

(
alm(xi)∂x(m)

i
v
)
−

3∑
l=1

∂
x
(l)
i
(bl(xi)v) ,

which models a general anisotropic diffusion with drift on R3, is readily obtained. The
terms

(n+ 1)

∫
X
λd(y)ρn+1(t, x1, ..., xn, y)dy −

n∑
i=1

λd(xi)ρn(t, x1, ..., xn)

formalize gain and loss, respectively, due to reaction (I), while

1

n

n∑
i=1

λc(xi)ρn−1(t, x1, ..., xi−1, xi+1, ..., xn)−
∫
X
λc(y)dy · ρn(t, x1, ..., xn)

relate to reaction (II). System (4.1.1) is combined with initial and Neumann boundary
conditions 

ρ0(0) = 1;
ρn(0, x1, ..., xn) = 0, n ≥ 1, (x1, ..., xn) ∈ Xn;

∂νρn(t, x1, ..., xn) = 0, n ≥ 1, t ≥ 0, (x1, ..., xn) ∈ ∂Xn.
(4.1.2)

The initial condition above states that there are no molecules in the system at time zero
while the Neumann condition prevents flux through the boundary of X, thus forcing the
diffusion of the molecules inside X. The symbol ∂ν in (4.1.2) stands for the directional
derivative along the outer normal vector at the boundary of Xn.

Aim of this note is to present the following solution formula for (4.1.1)-(4.1.2).

Theorem 4.1.1. Let v be a classical solution of the problem
∂tv(t, x) = ∆v(t, x)− λd(x)v(t, x) + λc(x), t > 0, x ∈ X;
v(0, x) = 0, x ∈ X̄;
∂νv(t, x) = 0, t ≥ 0, x ∈ ∂X.

(4.1.3)

Then, the chemical diffusion master equation (4.1.1) with initial and boundary conditions
(4.1.2) has a classical solution given by

ρ0(t) = P(N (t) = 0) = exp

{
−
∫
X
v(t, x)dx

}
, t ≥ 0, (4.1.4)
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and for n ≥ 1

ρn(t, x1, ..., xn) = exp

{
−
∫
X
v(t, x)dx

}
1

n!
v(t, x1) · · · v(t, xn), t ≥ 0, (x1, ..., xn) ∈ Xn.

(4.1.5)

To prove the validity of the representations (4.1.4)-(4.1.5) one can trivially differentiate
the right hand sides with respect to t and verify using (4.1.3) that they indeed solve
(4.1.1)-(4.1.2). We will however provide in the next section a constructive derivation
of the expressions (4.1.4)-(4.1.5) which is based on the general approach proposed in
[Lanconelli, 2023]; here, an infinite dimensional version of the moment generating func-
tion method, which is commonly utilized to solve analytically some chemical master
equations (see for details [McQuarrie, 1967b]), is developed. These techniques are also
employed in an ongoing work which consider chemical diffusion master equations with
higher order reactions.

Remark 4.1.2. It is important to highlight the striking similarities between the repre-
sentation formulas (4.1.4)-(4.1.5) for the solution of the CDME (4.1.1)-(4.1.2) and the
solution

φn(t) =

(
c
d
(1− e−dt)

)n
n!

e−
c
d
(1−e−dt), t ≥ 0, n ≥ 0, (4.1.6)

of the corresponding (diffusion-free) birth-death chemical master equation

φ̇n(t) = d(n+ 1)φn+1(t) + cφn−1(t)− dnφn(t)− cφn(t), (4.1.7)

with initial condition

φn(0) = δ0n, for all n ≥ 0. (4.1.8)

Equation (4.1.7)-(4.1.8) describes the evolution in time of the probability

φn(t) := P(number of molecules at time t = n)

for the reactions

(I) S
d−→ ∅ (II) ∅ c−→ S,

with no molecules at time zero. Here, d and c are the stochastic rate constants for
degradation and creation reactions, respectively. (To see how (4.1.6) is derived from
(4.1.7)-(4.1.8) one can for instance use the moment generating function method: see
[McQuarrie, 1967b] for details). We note that the function

t 7→ c

d
(1− e−dt),
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appearing in (4.1.6) solves the deterministic rate equation{
d
dt
v(t) = −dv(t) + c, t > 0

v(0) = 0 .
(4.1.9)

This establishes a perfect agreement between (4.1.3),(4.1.4),(4.1.5), i.e. representation of
the solution for (4.1.1)-(4.1.2) and reaction-diffusion PDE, on one side and (4.1.6),(4.1.9),
i.e. representation of the solution for (4.1.7)-(4.1.8) and rate equation, on the other side.

Corollary 4.1.3. In the reaction-diffusion model described by the CDME (4.1.1)-(4.1.2),
conditioned on the event {N (t) = n} the positions of the molecules at time t are inde-
pendent and identically distributed with probability density function

p(t, x) :=
v(t, x)∫

X v(t, x)dx
, x ∈ X.

Moreover,

P(N (t) = n) =

(∫
X v(t, x)dx

)n
n!

exp

{
−
∫
X
v(t, x)dx

}
.

Proof. Let A ∈ B(Xn); then,

P((X1(t), ..., Xn(t)) ∈ A|N (t) = n)

=
P({(X1(t), ..., Xn(t)) ∈ A} ∩ {N (t) = n})

P(N (t) = n)

=

∫
A
ρn(t, x1, ..., xn)dx1 · · · dxn∫

Xn ρn(t, x1, ..., xn)dx1 · · · dxn

=

∫
A
exp

{
−
∫
X v(t, x)dx

}
1
n!
v(t, x1) · · · v(t, xn)dx1 · · · dxn∫

Xn exp
{
−
∫
X v(t, x)dx

}
1
n!
v(t, x1) · · · v(t, xn)dx1 · · · dxn

=

∫
A

v(t, x1)∫
X v(t, x)dx

· · · v(t, xn)∫
X v(t, x)dx

dx1 · · · dxn.

The second part of the statement is proved as follows:

P(N (t) = n) =

∫
Xn

ρn(t, x1, ..., xn)dx1 · · · dxn

=

∫
Xn

exp

{
−
∫
X
v(t, x)dx

}
1

n!
v(t, x1) · · · v(t, xn)dx1 · · · dxn

=

(∫
X v(t, x)dx

)n
n!

exp

{
−
∫
X
v(t, x)dx

}
.
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The paper is organized as follows: in Chapter 4.2 we propose a constructive proof of
Theorem 4.1.1 which is based on the approach described in [Lanconelli, 2023] while in
Chapter 4.3 we show graphical illustrations of our findings for some particular cases
of physical interest that allow for explicit computations in the reaction diffusion PDE
(4.1.3).

4.2 Constructive Proof of Theorem 4.1.1

In this section we propose a constructive method to derive the representation formu-
las (4.1.4)-(4.1.5) of Theorem 4.1.1. The method we propose steams from a further
development of the ideas and results presented in Section 3.4, which is adapted from
[Lanconelli, 2023].

For notational purposes we assume X =]0, 1[. Consider the birth-death CDME

∂tρn(t, x1, ..., xn) =
n∑
i=1

∂2xiρn(t, x1, ..., xn)

+ (n+ 1)

∫ 1

0

λd(y)ρn+1(t, x1, ..., xn, y)dy

−
n∑
i=1

λd(xi)ρn(t, x1, ..., xn)

+
1

n

n∑
i=1

λc(xi)ρn−1(t, x1, ..., xi−1, xi+1, ..., xn)

−
∫ 1

0

λc(y)dy · ρn(t, x1, ..., xn), n ≥ 0, t > 0, (x1, ..., xn) ∈]0, 1[n,

(4.2.1)

with the usual agreement of assigning value zero to the three sums above when n = 0,
together with initial and Neumann boundary conditions

ρ0(0) = 1;
ρn(0, x1, ..., xn) = 0, n ≥ 1, (x1, ..., xn) ∈ [0, 1]n;

∂νρn(t, x1, ..., xn) = 0, n ≥ 1, t ≥ 0, (x1, ..., xn) ∈ ∂[0, 1]n.
(4.2.2)

We set

A := −∂2x + λd(x), x ∈ [0, 1], (4.2.3)

with homogenous Neumann boundary conditions and write {ξk}k≥1 for the orthonormal
basis of L2([0, 1]) that diagonalizes the operator A; this means that for all j, k ≥ 1 we
have ∫ 1

0

ξk(y)ξj(y)dy = δkj, ξ′k(0) = ξ′k(1) = 0,
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and there exists a sequence of non negative real numbers {αk}k≥1 such that

Aξk = αkξk, for all k ≥ 1.

We observe that A is an unbounded, non negative self-adjoint operator.

Assumption 4.2.1. The sequence of eigenvalues {αk}k≥1 is strictly positive.

We now denote by ΠN : L2([0, 1]) → L2([0, 1]) the orthogonal projection onto the finite
dimensional space spanned by {ξ1, ..., ξN}, i.e.

ΠNf(x) :=
N∑
k=1

⟨f, ξk⟩L2([0,1])ξk(x), x ∈ [0, 1];

we also set

dk := ⟨λd, ξk⟩L2([0,1]), ck := ⟨λc, ξk⟩L2([0,1]), γ :=

∫ 1

0

λc(y)dy. (4.2.4)

Assumption 4.2.2. There exists N0 ≥ 1 such that ΠN0λd = λd; this is equivalent to
say ΠNλd = λd for all N ≥ N0.

In the sequel we set Π⊗n
N to be the orthogonal projection from L2([0, 1]n) to the linear

space generated by the functions {ξi1 ⊗ · · · ⊗ ξin , 1 ≤ i1, ..., in ≤ N}. The next theorem
was proved in [Lanconelli, 2023].

Theorem 4.2.3. Let Assumptions 4.2.1-4.2.2 be in force and denote by {ρn}n≥0 a clas-
sical solution of equation (4.1.1)-(4.1.2). Then, for any N ≥ N0 and t ≥ 0 we have the
representation

ρ
(N)
0 (t) = E[uN(t, Z)], (4.2.5)

and for any n ≥ 1 and (x1, ..., xn) ∈ [0, 1]n,

Π⊗n
N ρn(t, x1, ..., xn) =

1

n!

N∑
j1,...jn=1

E
[(
∂zj1 · · · ∂zjnuN

)
(t, Z)

]
ξj1(x1) · · · ξjn(xn). (4.2.6)

Here,

E
[(
∂zj1 · · · ∂zjnuN

)
(t, Z)

]
=

∫
RN

(
∂zj1 · · · ∂zjnuN

)
(t, z)(2π)−N/2e−

|z|2
2 dz, (4.2.7)

while uN : [0,+∞[×RN → R is a classical solution of the partial differential equation

∂tuN(t, z) =
N∑
k=1

αk∂
2
zk
uN(t, z) +

N∑
k=1

(dk − ck − αkzk) ∂zkuN(t, z)

+

(
N∑
k=1

ckzk − γ

)
uN(t, z)

uN(0, z) =1, t ≥ 0, z ∈ RN .

(4.2.8)
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We now start working out the details of formulas (4.2.5)-(4.2.6).

Lemma 4.2.4. The solution to the Cauchy problem (4.2.8) can be represented as

uN(t, z) = exp

{
− γt+

N∑
k=1

(
ckzkgk(t) + ck(dk − ck)

∫ t

0

gk(s)ds

+ c2kαk

∫ t

0

gk(s)
2ds

)}
,

(4.2.9)

where

gk(t) :=
1− e−αkt

αk
, t ≥ 0, k = 1, ..., N. (4.2.10)

Proof. The solution to the Cauchy problem (4.2.8) admits the following Feynman-Kac
representation (see for instance [Karatzas and Shreve, 1991])

uN(t, z) = E

[
exp

{∫ t

0

(
N∑
k=1

ckZzk
k (s)− γ

)
ds

}]
, t ≥ 0, z = (z1, ..., zN) ∈ RN .

(4.2.11)

Here, for k ∈ {1, ..., N}, the stochastic process {Zzk
k (t)}t≥0 is the unique strong solution

of the mean-reverting Ornstein-Uhlenbeck stochastic differential equation

dZzk
k (t) = (dk − ck − αkZzk

k (t)) dt+
√
2αkdWk(t), Zzk

k (0) = zk, (4.2.12)

with {W1(t)}t≥0,...,{WN(t)}t≥0 being independent one dimensional Brownian motions.
Using the independence of the processes Zz1

1 ,...., ZzN
N we can rewrite (4.2.11) as

uN(t, z) = e−γtE

[
exp

{
N∑
k=1

ck

∫ t

0

Zzk
k (s)ds

}]
= e−γtE

[
N∏
k=1

exp

{
ck

∫ t

0

Zzk
k (s)ds

}]

= e−γt
N∏
k=1

E
[
exp

{
ck

∫ t

0

Zzk
k (s)ds

}]
. (4.2.13)

We now want to compute the last expectation explicitly: first of all, we observe that
equation (4.2.12) admits the unique strong solution

Zzk
k (t) = zke

−αkt +
dk − ck
αk

(
1− e−αkt

)
+

∫ t

0

e−αk(t−s)
√
2αkdWk(s),

(recall Assumption 4.2.1). Therefore,∫ t

0

Zzk
k (s)ds
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= zk
1− e−αkt

αk
+ (dk − ck)

∫ t

0

1− e−αks

αk
ds+

∫ t

0

∫ s

0

e−αk(s−u)
√
2αkdWk(u)ds

= zk
1− e−αkt

αk
+ (dk − ck)

∫ t

0

1− e−αks

αk
ds+

√
2αk

∫ t

0

1− e−αk(t−s)

αk
dWk(s);

in the last equality we employed Fubini theorem for Lebesgue-Wiener integrals. The
identity above yields

E
[
exp

{
ck

∫ t

0

Zzk
k (s)ds

}]
=exp

{
ck

(
zk
1− e−αkt

αk
+ (dk − ck)

∫ t

0

1− e−αks

αk
ds

)}
× E

[
exp

{
ck
√
2αk

∫ t

0

1− e−αk(t−s)

αk
dWk(s)

}]
=exp

{
ck

(
zk
1− e−αkt

αk
+ (dk − ck)

∫ t

0

1− e−αks

αk
ds

)}
× exp

{
c2kαk

∫ t

0

(
1− e−αk(t−s)

αk

)2

ds

}
,

where in last equality we used the fact that
∫ t
0

1−e−αk(t−s)

αk
dWk(s) is a Gaussian random

variable with mean zero and variance
∫ t
0

(
1−e−αk(t−s)

αk

)2
ds. This, together with (4.2.13),

gives

uN(t, z) =e
−γt

N∏
k=1

exp

{
ck

(
zk
1− e−αkt

αk
+ (dk − ck)

∫ t

0

1− e−αks

αk
ds

)}

×
N∏
k=1

exp

{
c2kαk

∫ t

0

(
1− e−αk(t−s)

αk

)2

ds

}

=exp

{
−γt+

N∑
k=1

(
ckzkgk(t) + ck(dk − ck)

∫ t

0

gk(s)ds+ c2kαk

∫ t

0

gk(s)
2ds

)}
,

(recall definition (4.2.10)). The proof is complete.

Lemma 4.2.5. Expectation (4.2.5) can be written as

ρ
(N)
0 (t) = exp

{
t

(
N∑
k=1

ckdk
αk

− γ

)
+

N∑
k=1

ckdk
e−αkt − 1

α2
k

}
.

In particular,

ρ0(t) = lim
N→+∞

ρ
(N)
0 (t) = exp

{∑
k≥1

ckdk
e−αkt − 1

α2
k

}
. (4.2.14)
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Proof. Let Z = (Z1, ..., ZN) be an N -dimensional vector of i.i.d. standard Gaussian
random variables; then,

ρ
(N)
0 (t) =E[uN(t, Z)]

=E

[
exp

{
−γt+

N∑
k=1

(
ckZigk(t) + ck(dk − ck)

∫ t

0

gk(s)ds+ c2kαk

∫ t

0

gk(s)
2ds

)}]

=exp

{
−γt+

N∑
k=1

(
ck(dk − ck)

∫ t

0

gk(s)ds+ c2kαk

∫ t

0

gk(s)
2ds

)}

· E

[
exp

{
N∑
k=1

ckZigk(t)

}]

=exp

{
−γt+

N∑
k=1

(
c2kgk(t)

2

2
+ ck(dk − ck)

∫ t

0

gk(s)ds+ c2kαk

∫ t

0

gk(s)
2ds

)}

=exp

{
− γt+

N∑
k=1

[
c2k

(
gk(t)

2

2
−
∫ t

0

gk(s)ds+ αk

∫ t

0

gk(s)
2ds

)

+ ckdk

∫ t

0

gk(s)ds
]}

=exp

{
−γt+

N∑
k=1

ckdk

∫ t

0

gk(s)ds

}
.

The fourth equality follows from the expression of the exponential generating function
of a Gaussian vector while the last equality is due to identity

gk(t)
2

2
−
∫ t

0

gk(s)ds+ αk

∫ t

0

gk(s)
2ds = 0, t ≥ 0

which follows from a direct verification (recall definition (4.2.10)). On the other hand,
we have ∫ t

0

gk(s)ds =
t

αk
+
e−αkt − 1

α2
k

,

and hence

ρ
(N)
0 (t) = exp

{
t

(
N∑
k=1

ckdk
αk

− γ

)
+

N∑
k=1

ckdk
e−αkt − 1

α2
k

}
.

Moreover, letting N to infinity we get

ρ0(t) = lim
N→+∞

ρ
(N)
0 (t)
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= lim
N→+∞

exp

{
t

(
N∑
k=1

ckdk
αk

− γ

)
+

N∑
k=1

ckdk
e−αkt − 1

α2
k

}

=exp

{
t

(∑
k≥1

ckdk
αk

− γ

)
+
∑
k≥1

ckdk
e−αkt − 1

α2
k

}

=exp

{∑
k≥1

ckdk
e−αkt − 1

α2
k

}
.

Here, we employed the identity ∑
k≥1

ckdk
αk

= γ,

which follows from∑
k≥1

ckdk
αk

=⟨A−1λc, λd⟩L2([0,1]) = ⟨A−1λc,A1⟩L2([0,1]) = ⟨λc,A−1A1⟩L2([0,1])

=⟨λc, 1⟩L2([0,1]) =

∫ 1

0

λc(x)1(x)dx = γ.

We also denoted 1(x) = 1, x ∈ [0, 1] and exploited the identity A1 = λd.

Lemma 4.2.6. Expectation (4.2.6) can be written as

Π⊗n
N ρn(t, x1, ..., xn) = ρ

(N)
0 (t)

1

n!

(
N∑
j=1

cjgj(t)ξj(x1)

)
· · ·

(
N∑
j=1

cjgj(t)ξj(xn)

)
.

In particular,

ρn(t, x1, ..., xn) = lim
N→+∞

Π⊗n
N ρn(t, x1, ..., xn)

= exp

{
−
∑
k≥1

ckdk
1− e−αkt

α2
k

}
1

n!

(∑
j≥1

cj
1− e−αjt

αj
ξj

)⊗n

(x1, ..., xn).

(4.2.15)

Proof. We note that according to (4.2.9) we have(
∂zj1 · · · ∂zjnuN

)
(t, z) = uN(t, z)cj1gj1(t) · · · cjngjn(t),

and hence

E
[(
∂zj1 · · · ∂zjnuN

)
(t, Z)

]
= ρ

(N)
0 (t)cj1gj1(t) · · · cjngjn(t).
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Therefore,

Π⊗n
N ρn(t, x1, ..., xn) =

1

n!

N∑
j1,...jn=1

E
[(
∂zj1 · · · ∂zjnuN

)
(t, Z)

]
ξj1(x1) · · · ξjn(xn)

=
1

n!

N∑
j1,...jn=1

ρ
(N)
0 (t)cj1gj1(t) · · · cjngjn(t)ξj1(x1) · · · ξjn(xn)

= ρ
(N)
0 (t)

1

n!

(
N∑
j=1

cjgj(t)ξj(x1)

)
· · ·

(
N∑
j=1

cjgj(t)ξj(xn)

)
.

Moreover, letting N to infinity we obtain

ρn(t, x1, ..., xn) = exp

{
−
∑
k≥1

ckdk
1− e−αkt

α2
k

}
1

n!

(∑
j≥1

cjgj(t)ξj(x1)

)

. . .

(∑
j≥1

cjgj(t)ξj(xn)

)

=exp

{
−
∑
k≥1

ckdk
1− e−αkt

α2
k

}
1

n!

(∑
j≥1

cj
1− e−αjt

αj
ξj

)⊗n

(x1, ..., xn).

We are now in a position to show the equivalence between (4.2.14)-(4.2.15) and (4.1.4)-
(4.1.5).
We start observing that

dk := ⟨λd, ξk⟩ = ⟨A1, ξk⟩ = ⟨1,Aξk⟩ = αk⟨1, ξk⟩ = αk

∫ 1

0

ξk(x)dx.

Therefore, from formula (4.2.14) we can write

ρ0(t) = P(N (t) = 0) = exp

{
−
∑
k≥1

ckdk
1− e−αkt

α2
k

}

= exp

{
−
∑
k≥1

ck

∫ 1

0

ξk(x)dx
1− e−αkt

αk

}

= exp

{
−
∫ 1

0

(∑
k≥1

ck
1− e−αkt

αk
ξk(x)

)
dx

}

= exp

{
−
∫ 1

0

v(t, x)dx

}
,
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where we set

v(t, x) :=
∑
k≥1

ck
1− e−αkt

αk
ξk(x). (4.2.16)

Note that with this notation we can also write according to (4.2.15) that

ρn(t, x1, ..., xn) = exp

{
−
∫
X
v(t, x)dx

}
1

n!
v(t, x1) · · · v(t, xn), t ≥ 0, (x1, ..., xn) ∈ Xn.

If we now prove that the function v defined in (4.2.16) solves (4.1.3), then the equivalence
between (4.2.14)-(4.2.15) and (4.1.4)-(4.1.5) will be established. Since

∂tv(t, x) = ∂t

(∑
k≥1

ck
1− e−αkt

αk
ξk(x)

)
=
∑
k≥1

cke
−αktξk(x),

we can conclude that

∂2xv(t, x)− λd(x)v(t, x) = −Av(t, x) = −A

(∑
k≥1

ck
1− e−αkt

αk
ξk(x)

)
=
∑
k≥1

ck(e
−αkt − 1)ξk(x) =

∑
k≥1

cke
−αktξk(x)− λc(x)

= ∂tv(t, x)− λc(x),

proving the desired property (the initial and boundary conditions in (4.1.3) are readily
satisfied).

4.3 Case Study: One Dimensional Motion with Con-

stant Degradation Function

In this section we illustrate through several plots our theoretical findings for some con-
crete models. According to formulas (4.1.4)-(4.1.5) the solution to the chemical diffusion
master equation (4.1.1)-(4.1.2) is completely determined by the solution of equation
(4.1.3). To solve this problem explicitly we decided to focus on the one dimensional
case X =]0, 1[ with driftless isotropic diffusion (i.e. the framework of Chapter 4.2) and
constant degradation function λd. This last restriction yields the advantage of knowing
the explicit form of the eigenfunctions and eigenvalues of the operator A in (4.2.3) and
hence the possibility of working with (4.2.14)-(4.2.15), which we recall to be equivalent
to (4.1.4)-(4.1.5).
When λd(x) = λd, x ∈ [0, 1] for some positive constant λd, we get

Af(x) = −f ′′(x) + λdf(x), ξk(x) = cos((k − 1)πx), k ≥ 1,
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and

αk = (k − 1)2π2 + λd, k ≥ 1. (4.3.1)

Therefore, the degradation function λd(x) = λd is proportional to the first eigenfunction
ξ1(x) = 1(x) and hence orthogonal to all the other eigenfunctions ξk(x) for k ≥ 2; this
gives

d1 = ⟨λd, ξ1⟩ = λd and dk = ⟨λd, ξk⟩ = 0 for all k ≥ 2;

note also that (4.3.1) implies α1 = λd. Combining these facts in (4.2.14) and (4.2.15)
we obtain

ρ0(t) = P(N (t) = 0) = exp

{
−c1

1− e−λdt

λd

}
, t ≥ 0, (4.3.2)

and, for n ≥ 1, t ≥ 0 and (x1, ..., xn) ∈ [0, 1]n,

ρn(t, x1, ..., xn) = exp

{
−c1

1− e−λdt

λd

}
1

n!

(∑
j≥1

cj
1− e−αjt

αj
ξj

)⊗n

(x1, ..., xn). (4.3.3)

We now specify some interesting choices of the creation function λc.

4.3.1 Constant creation function

In the case λc(x) = λc, x ∈ [0, 1] for some positive constant λc, in other words the
creation is uniform in the whole interval just like the degradation, we get from (4.3.2)
and (4.3.3)

ρ0(t) = P(N (t) = 0) = exp

{
−λc

1− e−λdt

λd

}
, t ≥ 0,

and for n ≥ 1

ρn(t, x1, ..., xn) = exp

{
−λc

1− e−λdt

λd

}
1

n!

(
λc

1− e−λdt

λd
ξ1

)⊗n

(x1, ..., xn)

= exp

{
−λc

1− e−λdt

λd

}
1

n!

(
λc

1− e−λdt

λd

)n
1(x1) · · · 1(xn).

This shows that for any n ≥ 1 the function ρn is constant in x1, ..., xn with height given
by the n-th component of the solution to the birth-death chemical master equation with
stochastic rate constants λd and λc (compare with (4.1.6)).

Figure 4.1 shows the solutions for ρ0 and ρ1 as a function of time. Figure 4.1a shows
the the exponential decay of the probability of having 0 particles due to the constant
creation of particles, and 4.1b shows the probability distribution of having 1 particle is
uniform in space for all times, as well as its convergence to the stationary distribution.
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(a) (b)

Figure 4.1: Solutions plots of the bdCDME generated with constant creation and degra-
dation rates with λc = λd = 0.5. a. The solution of ρ0(t) as a function of time. b. The
solution of ρ1(t, x1) as a function of position and time.

4.3.2 Dirac delta creation function at x = 0

In this case we take λc(x) = λcδ0(x), x ∈ [0, 1] for some positive constant λc, so the
creation takes place only in the leftmost point of the interval while degradation happens
uniformly. This way one yields

cj =

∫ 1

0

λc(x)ξj(x)dx =

∫ 1

0

λcδ0(x)ξj(x)dx = λcξj(0) = λc, for all j ≥ 1.

and formulas (4.3.2) and (4.3.3) now read

ρ0(t) = P(N (t) = 0) = exp

{
−λc

1− e−λdt

λd

}
, t ≥ 0,

and for n ≥ 1

ρn(t, x1, ..., xn) = exp

{
−λc

1− e−λdt

λd

}
1

n!

(∑
j≥1

λc
1− e−αjt

αj
ξj

)⊗n

(x1, ..., xn)

= exp

{
−λc

1− e−λdt

λd

}
λnc
n!

(∑
j≥1

1− e−αjt

αj
ξj

)⊗n

(x1, ..., xn).

We note that even though λc(x) is a generalized function the series∑
j≥1

cj
1− e−αjt

αj
ξj = λc

∑
j≥1

1− e−αjt

αj
ξj (4.3.4)

appearing above converges in L2([0, 1]).
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In Figure 4.2 we plot solution of the bdCDME for this example. Figure 4.2a shows the
exponential decay of the probability of having 0 particles due to the constant creation
of particles. In contrast with Figure 4.1, in Figures 4.2b and 4.2c, one can see the effect
of the creation happening only at x = 0 due to the peaks at the origin, while the highest
peak is when x2 = x1 = 0. With increasing time the peaks at the origin smooth out
due to diffusion and probability being distributed through the different particle number
densities. Similar to before, the curves converge to their stationary distribution as time
increases. Lastly, Figure 4.2d shows the solution of the bdCDME for 2 particles as a
surface on x1, x2 axes, when time is fixed at t = 0.25.

4.3.3 Dirac delta creation function at x = 1/2

We now choose λc(x) = λcδ1/2(x), x ∈ [0, 1] for some positive constant λc, so the creation
takes place only on the middle of the interval and degradation happens uniformly. This
way one obtains

cj =

∫ 1

0

λc(x)ξj(x)dx =

∫ 1

0

λcδ1/2(x)ξj(x)dx = λcξj(1/2) = λc cos((j − 1)π/2),

for all j ≥ 1.

Therefore, equations (4.3.2) and (4.3.3) take now the form

ρ0(t) = P(N (t) = 0) = exp

{
−λc

1− e−λdt

λd

}
, t ≥ 0,

and for n ≥ 1

ρn(t, x1, ..., xn) = exp

{
−λc

1− e−λdt

λd

}
1

n!

(∑
j≥1

λc cos((j − 1)π/2)
1− e−αjt

αj
ξj

)⊗n

· (x1, ..., xn)

= exp

{
−λc

1− e−λdt

λd

}
λnc
n!

(∑
k≥1

(−1)k−11− e−α2k−1t

α2k−1

ξ2k−1

)⊗n

· (x1, ..., xn)

Figure 4.3 shows plots of the solution of the bdCDME for this example. Figure 4.3a
shows the exponential decay of the probability of having 0 particles due to the constant
creation of particles. However, in conrast with figures 4.1 and 4.2, in this case, the effect
of creation in the middle of the interval can be seen in the peaks in the Figures 4.3b and
4.3c, while the highest peak is at x1 = x2 = 0.5, as expected. Similar to the previous
example the effect of the location of the creation of particles on the distribution becomes
less important with increasing time due to diffusion. Once again, the curves converge
to their stationary distribution. Lastly, Figure 4.3d plots the solution of bdCDME as a
surface for 2 particle case at fixed time t = 0.25, as a function of x1 and x2.
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(a) (b)

(c) (d)

Figure 4.2: Solutions plots of the bdCDME generated with creation of particles at
x = 0 and constant degradation in the whole domain, namely with λc(x) = 0.5δ0(x)
and λd(x) = 0.5. The first 1000 terms of the sum in eq. (4.3.4) are considered. a. The
solution of the 0 particle density (ρ0(t)) as a function of time. b. The solution of the 1
particle density (ρ1(t, x1)) for given position and time. c. The solution of the 2 particle
density (ρ2(t, x1, x2)) with respect to x1 and t for three values of x2. Time points as
indicated in the color bar. d. The solution of the two particle density for fixed time,
ρ2(t = 0.25, x1, x2), as a function of x1 and x2.
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(a) (b)

(c) (d)

Figure 4.3: Solutions plots of the bdCDME generated with creation of particles at
x = 0.5 and constant degradation in the whole domain, namely λc = 0.5δ1/2(x) and
λd = 0.5. The first 1000 terms of the sum in eq. (4.3.4) are considered. a. The
solution of the 0 particle density (ρ0(t)) as a function of time. b. The solution of the 1
particle density (ρ1(t, x1)) for given position and time. c. The solution of the 2 particle
density (ρ2(t, x1, x2)) with respect to x1 and t for three values of x2. Time points as
indicated in the color bar. d. The solution of the two particle density for fixed time,
ρ2(t = 0.25, x1, x2), as a function of x1 and x2.
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Chapter 5

Solving the CDME With Mutual
Annihilation and Creation

Abstract

We propose an infinite dimensional generating function method for finding the analytical
solution of the so-called chemical diffusion master equation (CDME) for creation and
mutual annihilation chemical reactions. CDMEs model by means of an infinite system of
coupled Fokker-Planck equations the probabilistic evolution of chemical reaction kinetics
associated with spatial diffusion of individual particles; here, we focus an creation and
mutual annihilation chemical reactions combined with Brownian diffusion of the single
particles. Using our method we are able to link certain finite dimensional projections
of the solution of the CDME to the solution of a single linear fourth order partial
differential equation containing as many variables as the dimension of the aforementioned
projection space. Our technique extends the one presented in [Lanconelli, 2023] and
[Lanconelli et al., 2023] which allowed for an explicit representation for the solution of
birth-death type CDMEs.

5.1 Introduction

We consider a system of indistinguishable molecules of a chemical species S which un-
dergo

• drift-less isotropic diffusion in the interval [0, 1];

• creation and mutual annihilation chemical reactions

(I) ∅ λc(x)−−−→ S (II) S + S
λd(x,y)−−−−→ ∅,

where we consider an additional creation reaction unlike of the reaction (2.3.1) presented
earlier, making the model model complex. Here, the function [0, 1] ∋ x 7→ λc(x) repre-
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sents the stochastic rate function for reaction (I); it can be thought of being of the form
λc(x) = γπc(x) with γ being a positive constant representing the probability per unit
of time for a new particle to be created while πc is a probability density on [0, 1] which
describes the random location for the birth of the new particle. Similarly, the function
[0, 1]2 ∋ (x, y) 7→ λd(x, y) is the stochastic rate function for reaction (II) to occur be-
tween two particles located at (x, y); for instance, when λd is constant then the location
of the two particles is not relevant for reaction (II) to take place; on the contrary, if
λd(x, y) = δ(x− y) (here δ stands for the Dirac delta function with mass at zero) then
reaction (II) occurs (with rate one) only for particles having the same location.

To analyze the probabilistic evolution of such system the authors in [del Razo et al., 2022]
(see also [del Razo et al., 2023] for a further discussion of the model) proposed a set of
equations which describe how the number of molecules and their positions change with
time. Namely, for t ≥ 0, n ≥ 1 and A ∈ B([0, 1]n) they set

N (t) := number of molecules at time t,

ρ0(t) := P(N (t) = 0),∫
A

ρn(t, x1, ..., xn)dx1 · · · dxn := P ({N (t) = n} ∩ {(X1(t), ..., Xn(t)) ∈ A}) ;

here (X1(t), ..., Xn(t)) is the vector collecting the positions at time t of the n particles
constituting the system (we are also assuming that the stochastic processes under inves-
tigation are defined on a common probability space with reference measure P). Then,
following the steps in Chapter 3, they write the following infinite system of equations:

∂tρn(t, x1, ..., xn) =
n∑
i=1

∂2xiρn(t, x1, ..., xn)

+
(n+ 2)(n+ 1)

2

∫
[0,1]2

λd(x, y)ρn+2(t, x1, ..., xn, x, y)dxdy

−
∑
i<j

λd(xi, xj) · ρn(t, x1, ..., xn)

+
1

n

n∑
i=1

λc(xi)ρn−1(t, x1, ..., xi−1, xi+1, ..., xn)

−
∫
[0,1]

λc(y)dy · ρn(t, x1, ..., xn),

for all n ≥ 0, t > 0, (x1, ..., xn) ∈ [0, 1]n,

(5.1.1)

where we agree on assigning value zero to the three sums above when n = 0. The term

n∑
i=1

∂2xiρn(t, x1, ..., xn)

50



in (5.1.1) refers to spatial diffusion of the particles; the terms

(n+ 2)(n+ 1)

2

∫
[0,1]2

λd(x, y)ρn+2(t, x1, ..., xn, x, y)dxdy

and ∑
i<j

λd(xi, xj) · ρn(t, x1, ..., xn)

formalize gain and loss, respectively, due to reaction (II), while

1

n

n∑
i=1

λc(xi)ρn−1(t, x1, ..., xi−1, xi+1, ..., xn)

and

−
∫
[0,1]

λc(y)dy · ρn(t, x1, ..., xn)

represent gain and loss, respectively, associated to reaction (I). System (5.1.1) is com-
bined with initial and Neumann boundary conditions

ρ0(0) = 1;
ρn(0, x1, ..., xn) = 0, n ≥ 1, (x1, ..., xn) ∈ [0, 1]n;

∂νρn(t, x1, ..., xn) = 0, n ≥ 1, t ≥ 0, (x1, ..., xn) ∈ ∂[0, 1]n.
(5.1.2)

The initial condition (first two equations in (5.1.2)) states that there are no molecules
in the system at time zero while the Neumann condition prevents flux through the
boundary of [0, 1], thus forcing the diffusion of the molecules inside [0, 1]. The symbol
∂ν in (5.1.2) stands for the directional derivative along the outer normal vector at the
boundary of [0, 1]n.

5.2 Statement of the Main Result and Structure of

the Section

Our main result links certain finite dimensional projections of the solution of (5.1.1) to
a single linear partial differential equation thus providing a tool for finding analytical
solutions to (5.1.1). Our techniques applies to the case where the function λd : [0, 1]

2 →
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[0,+∞[ is constant. This means that the CDME in (5.1.1) simplifies to

∂tρn(t, x1, ..., xn) =
n∑
i=1

∂2xiρn(t, x1, ..., xn)

+ λd
(n+ 2)(n+ 1)

2

∫
[0,1]2

ρn+2(t, x1, ..., xn, x, y)dxdy

− λd
n(n− 1)

2
ρn(t, x1, ..., xn)

+
1

n

n∑
i=1

λc(xi)ρn−1(t, x1, ..., xi−1, xi+1, ..., xn)

− γρn(t, x1, ..., xn), n ≥ 0, t > 0, (x1, ..., xn) ∈ [0, 1]n,

(5.2.1)

We are now going to state our main result and we refer the reader to the next sections
for a detailed discussion of our assumptions and for the proof.

Theorem 5.2.1. For k ≥ 1 let

ξk(x) :=
√
2 cos((k − 1)πx), x ∈ [0, 1] and αk := (k − 1)2π2,

i.e. the eigenfunctions with corresponding eigenvalues of the differential operator −A =
∂2x with homogeneous Neumann boundary conditions (as prescribed in (5.1.2)). We also
write ΠN for the orthogonal projection onto the linear span of {ξ1, ..., ξN}.
If {ρn}n≥0 solves (5.2.1)-(5.1.2), then we have the representation

Π⊗n
N ρn(t, x1, ..., xn) =

1

n!

N∑
j1,...,jn=1

(∫
RN

(∂zj1 · · · ∂zjnuN)(t, z)(2π)
−N/2e−

|z|2
2 dz

)
· ξj1(x1) . . . ξjn(xn),

(5.2.2)

where uN is the solution to the following fourth order Cauchy problem
∂tuN(t, z) = −

∑N
k=1 αk(zk − ∂zk)∂zkuN(t, z) +

λd
2
∂2z1uN(t, z)

−λd
2

∑N
j,k=1(zj − ∂zj)(zk − ∂zk)∂zj∂zkuN(t, z)

+
∑N

k=1 ck(zk − ∂zk)uN(t, z)− γuN(t, z); t > 0, z ∈ RN ;

uN(0, z) = 1, z ∈ RN .

and ck := ⟨λc, ξk⟩L2([0,1]) for k ≥ 1.

The paper is organized as follows: In Chapter 5.3, we propose an alternative derivation of
equation (5.1.1) than the one presented in Chapter 3 and in papers [del Razo et al., 2022]
and also in [del Razo et al., 2023]. We mimic the classical approach utilized to obtain
the chemical master equation through an adaptation that includes diffusion of the single
particles. Even though the computation is pretty standard, we believe that such deriva-
tion helps for a better understanding of the ingredients that describe the problem under
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investigation. To this aim we will fix a set of transition probabilities (see Assumption
5.3.3 below) and derive through a limit argument the desired equation. We remark
that our approach can be readily generalized to include higher order chemical reactions
and more complex descriptions of the diffusive motion of the particles (i.e. anisotropic
diffusion with drift).

In Chapter 5.2.1 we employ the general method proposed in [Lanconelli, 2023] and sum-
marized in Chapter 3.4 to analytically solve equation (5.2.1)-(5.1.2). This requires the
use of Gaussian Malliavin calculus’s techniques (summarized in the appendix sections
A.8 and A.9 below) and provides a link between the solution to (5.2.1)-(5.1.2) and the
solution of a single fourth order linear PDE which describes certain finite dimensional
projections of the solution to the original problem. At the end, some comments on
the Gaussian features introduced in our problem by the proposed approach are also
discussed.

5.3 Alternative Derivation of Equation (5.1.1)

In this section we present a derivation of equation (5.1.1) (here we do not need to confine
ourselves to the case of a constant λd function as prescribed in the Theorem 5.2.1). We
recall that the particles of the system under investigation are subject to the chemical
reactions

(I) ∅ λc(x)−−−→ S (II) S + S
λd(x,y)−−−−→ ∅, (5.3.1)

and diffuse in space, between successive reactions, as independent Brownian motions on
the interval [0, 1] with reflecting boundary conditions (compare with (5.1.2)). In the
sequel we will be dealing with probabilities of the form P(N (t) = n,X(t) ∈ A): this
represents the probability that the system at time t is made of n many particles and that
such particles are located in the region A ⊆ [0, 1]n. We are not going to use an extra
index in X(t) to stress that it is an n-dimensional vector; this vector will always come
with an event of the type {N (t) = n} and hence the number of components of X(t)
will be uniquely determined. We mention that an analogous derivation for the chemical
master equation with mutual annihilation and creation (without diffusion) can be found
in [Erban and Chapman, 2020], Section 1.4.
Now we list a couple of technical assumptions which are necessary for our derivation:

Assumption 5.3.1. For any n ≥ 1, A ∈ B([0, 1]n) (the Borel sets of [0, 1]n) and t > 0
there exists a symmetric function ρn(t, x1, ..., xn) such that

P(N (t) = n,X(t) ∈ A) =

∫
A

ρn(t, x1, ..., xn)dx1 · · · dxn;

we also set

ρ0(t) := P(N (t) = 0).
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Notice that the symmetry of the functions ρn models the indistinguishability of the parti-
cles in the system; moreover, by construction the sequence {ρn}n≥0 fulfils the constraint∑

n≥0

∫
[0,1]n

ρn(t, x1, ..., xn)dx1 · · · dxn = 1. (5.3.2)

Assumption 5.3.2. The functions λc and λd appearing in (5.3.1) are non negative,
bounded and continuous. Moreover, λd(x, y) = λd(y, x) for all x, y ∈ [0, 1].

We are now ready to describe the probabilistic structure to be imposed on our system
for the formal derivation of equation (5.1.1).

Assumption 5.3.3. The system under investigation possesses the following properties:

• Diffusion of particles: in absence of chemical reactions, particles diffuse in [0, 1] like
independent Brownian motions with variance 2t and reflecting boundary conditions;
more precisely, the transition density {pt(x|y)}t≥0,x,y∈[0,1]n for the motion of n many
particles solves

∂tpt(x|y) =
∑n

j=1 ∂
2
xi
pt(t, x|y), t > 0, x, y ∈ [0, 1]n;

p0(x|y) = δy(x), x, y ∈ [0, 1]n;

∂νpt(x|y) = 0, t ≥ 0, x ∈ ∂[0, 1]n, y ∈ [0, 1]n.

• Reaction (I) + diffusion of particles: for any n ≥ 1, A ∈ B([0, 1]n) and t, h > 0 we
have

P(N (t+ h) = n,X(t+ h) ∈ A|N (t) = n− 1, X(t) = y)

= h
1

n

n∑
j=1

∫
A

∫
[0,1]

ph(x|y ∪j z)λc(z)dzdx+O(h2), (5.3.3)

with y ∪j z := (y1, ..., yj−1, z, yj+1, ..., yn) ∈ [0, 1]n and ph(x|y ∪j z) being the tran-
sition density between y ∪j z and x during the time interval h. To explain the
contribution of each single term of the identity above, we imagine to split the func-
tion λc as γ · πc where γ :=

∫
[0,1]

λc(z)dz while πc is a probability density function

supported on [0, 1]. The chemical reaction (I) adds a new particle, here denoted
with z, to the system: the rate at which this happens is γ while the location for the
birth of the particle is distributed according to πc. Moreover, once the creation takes
place the outer integral

∫
A
...dx in (5.3.3) describes the diffusion of the n particles

of the system from the location y∪j z to the set A during the time frame h. Lastly,
to make particles indistinguishable we symmetrize over the possible positions of z
in the vector y ∪j z with the term 1

n

∑n
j=1.
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• Reaction (II) + diffusion of particles: for any n ≥ 0, A ∈ B([0, 1]n) and t, h > 0
we have

P(N (t+ h) = n,X(t+ h) ∈ A|N (t) = n+ 2, X(t) = y)

= h
∑
j<k

λd(yj, yk)

∫
A

ph(x|ŷj,k)dx+O(h2), (5.3.4)

with ŷj,k := (y1, ..., yj−1, yj+1, ..., yk−1, yk+1, ..., yn) ∈ [0, 1]n. The chemical reaction
(II) removes two particles from the system while the others diffuse: this is the con-
tribution of

∫
A
ph(x|ŷj,k)dx where the particles labelled j and k are those undergoing

the chemical reaction through the term h
∑

j<k λd(yj, yk). This term is mediated
over all the possible couples of particles in the system: the weights of this average,
represented by the sum above, are provided by λd which measures the likelihood for
two particles to react depending on their locations. We also mention that for n = 0
the right hand side of (5.3.4) simplifies to hλd(x1, x2) +O(h2).

• No reactions + diffusion of particles: for any n ≥ 1, A ∈ B([0, 1]n) and t, h > 0
we have

P(N (t+ h) = n,X(t+ h) ∈ A|N (t) = n,X(t) = y)

=

(
1− h

∫
[0,1]

λc(z)dz − h
∑
j<k

λd(yj, yk)

)∫
A

ph(x|y)dx+O(h2). (5.3.5)

The term inside parenthesis reflects the probability of no reaction happening while
the integral formalizes the diffusion of particles.

• Multiple reactions: for any n ≥ 1, A ∈ B([0, 1]n) and t, h > 0 we have

P(N (t+ h) = n,X(t+ h) ∈ A|N (t) = k,X(t) = y) = O(h2), (5.3.6)

whenever k /∈ {n− 1, n, n+ 2}.

We now show how to use Assumption 5.3.1-5.3.2-5.3.3 to get the CDME (5.1.1). Let
n ≥ 1 and A ∈ B([0, 1]n); then, according to the law of total probability we can write∫

A

ρn(t+ h, x)dx =P(N (t+ h) = n,X(t+ h) ∈ A)

=
∑
k≥0

∫
[0,1]k

[P(N (t+ h) = n,X(t+ h) ∈ A|N (t) = k,X(t) = y)

P(N (t) = k,X(t) ∈ dy)]

=
∑
k≥0

∫
[0,1]k

P(N (t+ h) = n,X(t+ h) ∈ A|N (t) = k,X(t) = y)
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· ρk(t, y)dy. (5.3.7)

Notice that for k = 0 the corresponding term in the sum above should be interpreted as

P(N (t+ h) = n,X(t+ h) ∈ A|N (t) = 0)ρ0(t).

Now, in view of Assumption 5.3.3 the only transitions of order one in h are those with
k = n+ 2, k = n− 1 and k = n while the others are of order at least two; therefore, we
can rewrite (5.3.7) as∫

A

ρn(t+ h, x)dx

=
∑
k≥0

∫
[0,1]k

P(N (t+ h) = n,X(t+ h) ∈ A|N (t) = k,X(t) = y)ρk(t, y)dy

=

∫
[0,1]n+2

P(N (t+ h) = n,X(t+ h) ∈ A|N (t) = n+ 2, X(t) = y)ρn+2(t, y)dy

+

∫
[0,1]n−1

P(N (t+ h) = n,X(t+ h) ∈ A|N (t) = n− 1, X(t) = y)ρn−1(t, y)dy

+

∫
[0,1]n

P(N (t+ h) = n,X(t+ h) ∈ A|N (t) = n,X(t) = y)ρn(t, y)dy +O(h2)

=

∫
[0,1]n+2

(∫
A

h
∑
j<k

λd(yj, yk)ph(x|ŷj,k)dx

)
ρn+2(t, y)dy

+

∫
[0,1]n−1

(∫
A

h

n

n∑
j=1

∫
[0,1]

λc(z)ph(x|y ∪j z)dzdx

)
ρn−1(t, y)dy

+

∫
[0,1]n

(∫
A

(
1− h

∫
[0,1]

λc(z)dz − h
∑
j<k

λd(yj, yk)

)
ph(x|y)dx

)
ρn(t, y)dy +O(h2)

=h

∫
A

(∑
j<k

∫
[0,1]n+2

λd(yj, yk)ph(x|ŷj,k)ρn+2(t, y)dy

)
dx

+ h

∫
A

(
1

n

n∑
j=1

∫
[0,1]n−1

∫
[0,1]

λc(z)ph(x|y ∪j z)ρn−1(t, y)dzdy

)
dx

+

∫
A

(∫
[0,1]n

(
1− h

∫
[0,1]

λc(z)dz − h
∑
j<k

λd(yj, yk)

)
ph(x|y)ρn(t, y)dy

)
dx+O(h2)
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=h

∫
A

(∑
j<k

∫
[0,1]2

λd(yj, yk)

(∫
[0,1]n

ph(x|ŷj,k)ρn+2(t, y)dŷj,k

)
dyjdyk

)
dx

+ h

∫
A

(
1

n

n∑
j=1

∫
[0,1]n−1

∫
[0,1]

λc(z)ph(x|y ∪j z)ρn−1(t, y)dzdy

)
dx

+

∫
A

(∫
[0,1]n

(
1− h

∫
[0,1]

λc(z)dz − h
∑
j<k

λd(yj, yk)

)
ph(x|y)ρn(t, y)dy

)
dx

+O(h2).

(5.3.8)

To ease the notation we now introduce the following:

Thf(x) :=

∫
[0,1]n

ph(x|y)f(y)dy, f ∈ C0([0, 1]
n),

and recall that for suitably regular f we have

lim
h→0

Thf(x) = f(x), x ∈ [0, 1]n, (5.3.9)

and

lim
h→0

Thf(x)− f(x)

h
=

n∑
i=1

∂2xif(x) x ∈ [0, 1]n; (5.3.10)

we refer to [Kallenberg, 2021] for a precise formulation of those statements. With this
notation at hand we can rewrite (5.3.8) as∫

A

ρn(t+ h, x)dx =h

∫
A

(∑
j<k

∫
[0,1]2

λd(yj, yk)(Thρn+2(t, ·, yj, yk))(x)dyjdyk

)
dx

+ h

∫
A

1

n

n∑
j=1

Th(λc ⊗j ρn−1(t, ·))(x)dx

+

∫
A

(Thρn(t, ·))(x)dx− h

∫
[0,1]

λc(z)dz

∫
A

(Thρn(t, ·))(x)dx

− h
∑
j<k

(Thλd(·j, ·k)ρn(t, ·))(x)dx+O(h2).

Here, the symbol ⊗j denotes the tensor product that locates the variable of λc in the
j-th position. We now subtract the quantity

∫
A
ρn(t, x)dx from both sides of the last

equality, divide by h and take the limit as h tends to zero. This gives∫
A

∂tρn(t, x)dx = lim
h→0

∫
A

ρn(t+ h, x)− ρn(t, x)

h
dx

= lim
h→0

∫
A

(∑
j<k

∫
[0,1]2

λd(yj, yk)(Thρn+2(t, ·, yj, yk))(x)dyjdyk

)
dx
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+ lim
h→0

∫
A

1

n

n∑
j=1

Th(λc ⊗j ρn−1(t, ·))(x)dx

+ lim
h→0

∫
A

(Thρn(t, ·))(x)− ρn(t, x)

h
dx

− lim
h→0

∫
[0,1]

λc(z)dz

∫
A

(Thρn(t, ·))(x)dx

− lim
h→0

∫
A

∑
j<k

(Thλd(·j, ·k)ρn(t, ·))(x)dx.

Now, using (5.3.9) we get

lim
h→0

∫
A

(∑
j<k

∫
[0,1]2

λd(yj, yk)(Thρn+2(t, ·, yj, yk))(x)dyjdyk

)
dx

=

∫
A

(∑
j<k

∫
[0,1]2

λd(yj, yk)ρn+2(t, x, yj, yk)dyjdyk

)
dx

=

∫
A

(
(n+ 2)(n+ 1)

2

∫
[0,1]2

λd(yj, yk)ρn+2(t, x, yj, yk)dyjdyk

)
dx,

and

lim
h→0

∫
A

1

n

n∑
j=1

Th(λc ⊗j ρn−1(t, ·))(x)dx

=

∫
A

(
1

n

n∑
j=1

λc(xj)ρn−1(t, x1, ..., xj−1, xj+1, ..., xn)

)
dx.

Moreover, formula (5.3.10) yields

lim
h→0

∫
A

(Thρn(t, ·))(x)− ρn(t, x)

h
dx =

∫
A

(
n∑
i=1

∂2xiρn(t, x)

)
dx,

while formula (5.3.9) gives

lim
h→0

∫
[0,1]

λc(z)dz

∫
A

(Thρn(t, ·))(x)dx =

∫
[0,1]

λc(z)dz

∫
A

ρn(t, x)dx

and

lim
h→0

∫
A

∑
j<k

(Thλd(·j, ·k)ρn(t, ·))(x)dx =

∫
A

∑
j<k

λd(xj, xk)ρn(t, x)dx.

If we combine all the preceding equalities we can conclude that∫
A

∂tρn(t, x)dx =

∫
A

(
(n+ 2)(n+ 1)

2

∫
[0,1]2

λd(yj, yk)ρn+2(t, x, yj, yk)dyjdyk

)
dx
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+

∫
A

(
1

n

n∑
j=1

λc(xj)ρn−1(t, x1, ..., xj−1, xj+1, ..., xn)

)
dx

+

∫
A

(
n∑
i=1

∂2xiρn(t, x)

)
dx

−
∫
[0,1]

λc(z)dz

∫
A

ρn(t, x)dx

−
∫
A

∑
j<k

λd(xj, xk)ρn(t, x)dx.

Since A ∈ B([0, 1]n) is arbitrary, this is equivalent to (5.1.1). This derivation method-
ology is not specific to the mutual annihilation reaction so the readers are welcomed to
derive the CDME of birth-death reaction (2.2.1) and check with expression (3.3.1).

5.4 Analysis of Equation (5.2.1)-(5.1.2) Through an

Infinite Dimensional Generating Function Method

In this section we employ the general method proposed in [Lanconelli, 2023] to solve ana-
lytically the CDME (5.1.1)-(5.1.2). We mention that this method has lead to an explicit
representation for the solution to the general birth-death CDME [Lanconelli et al., 2023].
For the application of that approach in the current framework we need to impose the
following technical condition.

Assumption 5.4.1. The function λd : [0, 1]2 → [0,+∞[ is constant; this means that
equation (5.1.1) simplifies to

∂tρn(t, x1, ..., xn) =
n∑
i=1

∂2xiρn(t, x1, ..., xn)

+ λd
(n+ 2)(n+ 1)

2

∫
[0,1]2

ρn+2(t, x1, ..., xn, x, y)dxdy

− λd
n(n− 1)

2
ρn(t, x1, ..., xn)

+
1

n

n∑
i=1

λc(xi)ρn−1(t, x1, ..., xi−1, xi+1, ..., xn)

− γρn(t, x1, ..., xn), n ≥ 0, t > 0, (x1, ..., xn) ∈ [0, 1]n,

(5.4.1)

The need for such assumption is related to some technical features of the method used
to solve (5.4.1). We refer to Remark 5.4.6 below for details.

Remark 5.4.2. As pointed out in [del Razo et al., 2022], if we fix the reaction rates to
be positive constants so γ, λd ∈ R+ and integrate equation (5.4.1)-(5.1.2) with respect to
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all degrees of freedom, then this reduces to the classical chemical master equation for the
reactions as also shown in Remark 3.2.2.

(I) ∅ γ−→ S (II) S + S
λd−→ ∅.

In fact, identity

P(N (t) = n) =

∫
[0,1]n

ρn(t, x1, ..., xn)dx1 · · · dxn,

(compare with Assumption 5.3.1) together with the boundary conditions in (5.1.2) yield

∂tP(N (t) = n) =λd
(n+ 2)(n+ 1)

2
P(N (t) = n+ 2)− λd

n(n− 1)

2
P(N (t) = n)

+ γP(N (t) = n− 1)− γP(N (t) = n), (5.4.2)

which is indeed the desired chemical master equation (see equation (1.28) in the book
[Erban and Chapman, 2020]: here, the authors employ the standard generating function
method for solving equation (5.4.2)). We also mention that such computation, and hence
the link between chemical diffusion master equations and their corresponding chemical
master equations, is far from being obvious.

The scheme for solving (5.4.1), as presented in detail in [Lanconelli, 2023] and sum-
marized in Chapter 3.4, is made of several steps that we now discuss in the following
preparatory results. Before doing that, we introduce the notation −A := ∂2x and we re-
call that in the Appendix A below, one can find a quick review of the Malliavin calculus’s
tools utilized in the sequel.

Lemma 5.4.3. If {ρn}n≥0 is a classical solution to equation (5.4.1)-(5.1.2), then

Φ(t) :=
∑
n≥0

In(ρn(t, ·)) (5.4.3)

solves {
∂tΦ = dΓ(−A)Φ + λd

2
D2

1Φ− λd
2
N(N− I)Φ +D⋆

λc
Φ− γΦ;

Φ(0) = 1,
(5.4.4)

in F⋆.

Proof. Using the definitions made in sections A.8 and A.9, let {ρn}n≥0 be a classical
solution to equation (5.4.1)-(5.1.2); this means in particular that ρ0 ∈ C1([0,+∞[) and
ρn ∈ C1,2([0,+∞[×[0, 1]n) for all n ≥ 1. Recall also that according to Assumption 5.3.1,
for any n ≥ 2 and t ≥ 0 the function ρn(t, ·) is symmetric in its arguments. This allows
us to consider the multiple Itô integrals In(ρn(t, ·)), formally defined in Appendix A.4,
and to interchange the partial derivative ∂t with the iterated integrals. Furthermore,
employing the operators dΓ(−A), D1, N and D⋆

λc
, whose definitions and properties can
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be found in the Appendix A.8 below, and equation (5.4.1), we can write for all n ≥ 1
and t ≥ 0 that

∂tIn(ρn(t, ·)) =In(∂tρn(t, ·))

=dΓ(−A)In(ρn(t, ·)) +
λd
2
D2

1In+2(ρn+2(t, ·))−
λd
2
N(N− I)In(ρn(t, ·))

+D⋆
λcIn−1(ρn−1(t, ·))− γIn(ρn(t, ·)).

If we now sum over n ≥ 0 and recall that ρ−1 ≡ 0 while D2
1 maps to zero any multiple

Itô integral of order less than two, we obtain equation (5.4.4) for the stochastic process
defined in (5.4.3).

Remark 5.4.4. It is worth to point out that condition (5.3.2) is already encoded in
equation (5.4.4). In fact, using the tools introduced in Appendix A.5, A.8.1 and A.9, if
{Φ(t)}t≥0 solves (5.4.4), then

∂t⟨⟨Φ, E(1)⟩⟩ =⟨⟨∂tΦ, E(1)⟩⟩
=⟨⟨dΓ(−A)Φ, E(1)⟩⟩

+
λd
2
⟨⟨D2

1Φ, E(1)⟩⟩ −
λd
2
⟨⟨N(N− I)Φ, E(1)⟩⟩

+ ⟨⟨D⋆
λcΦ, E(1)⟩⟩ − γ⟨⟨Φ, E(1)⟩⟩.

Now,

⟨⟨dΓ(−A)Φ, E(1)⟩⟩ = ⟨⟨Φ, dΓ(−A)E(1)⟩⟩ = ⟨⟨Φ, E(1) ⋄ δ(−A1)⟩⟩ = 0,

while

⟨⟨D2
1Φ, E(1)⟩⟩ − ⟨⟨N(N− I)Φ, E(1)⟩⟩ =⟨⟨Φ, D⋆

1D
⋆
1E(1)⟩⟩ − ⟨⟨Φ, N(N− I)E(1)⟩⟩

=⟨⟨Φ, E(1) ⋄ δ(1) ⋄ δ(1)⟩⟩ − ⟨⟨Φ, N2E(1)− NE(1)⟩⟩
=⟨⟨Φ, E(1) ⋄ δ(1) ⋄ δ(1)⟩⟩ − ⟨⟨Φ, E(1) ⋄ δ(1) ⋄ δ(1)⟩⟩
=0.

Here, in the last equality we utilized the identities

NE(1) = E(1) ⋄ δ(1) and N2E(1) = E(1) ⋄ δ(1) ⋄ δ(1) + E(1) ⋄ δ(1).

Lastly,

⟨⟨D⋆
λcΦ, E(1)⟩⟩ − γ⟨⟨Φ, E(1)⟩⟩ =⟨⟨Φ, DλcE(1)⟩⟩ − γ⟨⟨Φ, E(1)⟩⟩

=

∫
[0,1]

λc(x)dx · ⟨⟨Φ, E(1)⟩⟩ − γ⟨⟨Φ, E(1)⟩⟩

=0.
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This proves that ∂t⟨⟨Φ(t), E(1)⟩⟩ = 0; since Φ(0) = 1 (recall the initial condition in
(5.4.4) which in turn follows from (5.1.2)) we deduce that ⟨⟨Φ(0), E(1)⟩⟩ = 1 and hence

⟨⟨Φ(t), E(1)⟩⟩ = 1, for all t ≥ 0. (5.4.5)

On the other hand, by definition of dual pairing we can write

⟨⟨Φ(t), E(1)⟩⟩ =
∑
n≥0

∫
[0,1]n

ρn(t, x1, ..., xn)dx1 · · · dxn,

which together with (5.4.5) implies (5.3.2). Notice that a similar calculation can be
carried also when λd is not constant; in this case the operator Φ 7→ N(N− I)Φ should be
replaced with Φ 7→ δ2(λ(·, ·)D2Φ). This shows that condition (5.3.2) is part of equation
(5.4.1) also in the absence of Assumption 5.4.1.

The usefulness of transforming the CDME (5.4.1)-(5.1.2) into the abstract problem
(5.4.4) becomes apparent when we consider suitable finite dimensional projections of
the stochastic process {Φ(t)}t≥0. To this aim, we set for k ≥ 1

ξk(x) =
√
2 cos((k − 1)πx), x ∈ [0, 1] and αk = (k − 1)2π2 (5.4.6)

to be the eigenfunctions with corresponding eigenvalues of the differential operator A
defined as: −A := ∂2x with homogeneous Neumann boundary conditions (as prescribed
in (5.1.2)). As also done in Chapter 4, we also write ΠN for the orthogonal projection
onto the linear span of {ξ1, ..., ξN}.

Lemma 5.4.5. If {Φ(t)}t≥0 solves (5.4.4) in F⋆, then

ΦN(t) := Γ(ΠN)Φ(t), t ≥ 0 (5.4.7)

solves{
∂tΦN = dΓ(−A)ΦN + λd

2
D2

1ΦN − λd
2
N(N− I)ΦN +D⋆

ΠNλc
ΦN − γΦN ;

ΦN(0) = 1,
(5.4.8)

in F⋆.

Proof. First of all note we direct the readers to Chapter A.9 for the definition of gener-
alized random variables F ∗ and other tools utilized. Bearing this in mind, using (5.4.7)
and (5.4.4) we can write

∂tΦN = ∂tΓ(ΠN)Φ = Γ(ΠN)∂tΦ

= Γ(ΠN)

(
dΓ(−A)Φ +

λd
2
D2

1Φ− λd
2
N(N− I)Φ +D⋆

λcΦ− γΦ

)
. (5.4.9)

The proof consists in showing that our assumptions allow for the commutation between
the operator Γ(ΠN) and each of the following: dΓ(−A), D2

1, N(N − I) and D⋆
λd
. Let us

62



start with the commutation between Γ(ΠN) and dΓ(−A): for any smooth h ∈ L2([0, 1])
we have

⟨⟨Γ(ΠN)dΓ(−A)Φ, E(h)⟩⟩ =⟨⟨dΓ(−A)Φ, E(ΠNh)⟩⟩
=⟨⟨Φ, dΓ(−A)E(ΠNh)⟩⟩
=⟨⟨Φ, E(ΠNh) ⋄ δ(−AΠNh)⟩⟩
=⟨⟨Φ, E(ΠNh) ⋄ δ(ΠN(−A)h)⟩⟩
=⟨⟨Φ,Γ(ΠN)(E(h) ⋄ δ(−Ah))⟩⟩
=⟨⟨Γ(ΠN)Φ, E(h) ⋄ δ(−Ah)⟩⟩
=⟨⟨dΓ(−A)Γ(ΠN)Φ, E(h)⟩⟩
=⟨⟨dΓ(−A)ΦN , E(h)⟩⟩.

Comparing the first and last members of this chain of equalities we deduce that

Γ(ΠN)dΓ(−A)Φ = dΓ(−A)ΦN , in F⋆.

It is important to observe how in the fourth equality above the commutation between
−A and ΠN is made possible by having chosen to project onto the space generated by
the eigenfunctions of −A.
We now study the commutation between Γ(ΠN) and D

2
1:

⟨⟨Γ(ΠN)D
2
1Φ, E(h)⟩⟩ =⟨⟨D2

1Φ, E(ΠNh)⟩⟩
=⟨⟨D1D1Φ, E(ΠNh)⟩⟩
=⟨⟨Φ, D⋆

1D
⋆
1E(ΠNh)⟩⟩

=⟨⟨Φ, E(ΠNh) ⋄ δ(1) ⋄ δ(1)⟩⟩
=⟨⟨Φ,Γ(ΠN)(E(h) ⋄ δ(1) ⋄ δ(1))⟩⟩
=⟨⟨Γ(ΠN)Φ, E(h) ⋄ δ(1) ⋄ δ(1)⟩⟩
=⟨⟨D1D1Γ(ΠN)Φ, E(h)⟩⟩
=⟨⟨D2

1Γ(ΠN)Φ, E(h)⟩⟩.

In the fifth equality above we employed the identity ΠN1 = Π11 = 1 since the first
eigenfunction of −A is precisely 1. We therefore can conclude that

Γ(ΠN)D
2
1Φ = D2

1ΦN , in F⋆.

We proceed with the commutation between Γ(ΠN) and N(N− I):

⟨⟨Γ(ΠN)N(N− I)Φ, E(h)⟩⟩ = ⟨⟨N(N− I)Φ, E(ΠNh)⟩⟩
= ⟨⟨Φ, E(ΠNh) ⋄ δ(ΠNh) ⋄ δ(ΠNh)⟩⟩
= ⟨⟨Φ,Γ(ΠN)(E(h) ⋄ δ(h) ⋄ δ(h))⟩⟩
= ⟨⟨ΦN , E(h) ⋄ δ(h) ⋄ δ(h)⟩⟩
= ⟨⟨ΦN , N(N− I)E(h)⟩⟩
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= ⟨⟨N(N− I)ΦN , E(h)⟩⟩.

This yields

Γ(ΠN)N(N− I)Φ = N(N− I)ΦN , in F⋆.

Lastly,

⟨⟨Γ(ΠN)D
⋆
λcΦ, E(h)⟩⟩ =⟨⟨D⋆

λcΦ, E(ΠNh)⟩⟩

=⟨⟨Φ, E(ΠNh)⟩⟩
∫ 1

0

ΠNh(x)λc(x)dx

=⟨⟨Γ(ΠN)Φ, E(h)⟩⟩
∫ 1

0

h(x)ΠNλc(x)dx

=⟨⟨ΦN , DΠNλcE(h)⟩⟩
=⟨⟨D⋆

ΠNλc
ΦN , E(h)⟩⟩,

and hence

Γ(ΠN)D
⋆
λcΦ = D⋆

ΠNλc
ΦN , in F⋆.

An implementation of all derived identities in (5.4.9) leads directly to (5.4.8).

Remark 5.4.6. The previous lemma is a key ingredient of our method since it allows
for finite dimensional projections of the solution to equation (5.4.4). In particular, it is
the possibility of commuting dΓ(−A) and N(N − I) with Γ(ΠN) that implies the desired
result. It is worth to mention that such possibility exists because of assumption 5.4.1,
thus motivating this strong simplification. In fact, without such assumption we would not
be able to commute Γ(ΠN) with the operator Φ 7→ δ2(λ(·, ·)D2Φ) which is what one should
work with, in the place of N(N− I), for non constant λd. One may also wonder whether
changing the projection space related to ΠN could solve this issue (maybe defining a finite
dimensional space described by the function λd): however, this modification would imply
the loss of commutativity between Γ(ΠN) and dΓ(−A).

Lemma 5.4.7. For any N ≥ 1 there exists a function uN : [0 +∞[×RN such that

ΦN(t) = uN(t, I1(ξ1), ..., I1(ξN)), P-a.s.

Furthermore, the function uN solves (weakly) the following fourth order linear problem:
∂tuN(t, z) = −

∑N
k=1 αk∂

⋆
k∂kuN(t, z) +

λd
2
∂21uN(t, z)

−λd
2

∑N
j,k=1 ∂

⋆
j ∂

⋆
k∂j∂kuN(t, z)

+
∑N

k=1 ck∂
⋆
kuN(t, z)− γuN(t, z); t > 0, z ∈ RN ;

uN(0, z) = 1, z ∈ RN .

(5.4.10)

Here, for any k ∈ {1, ..., N} the symbol ∂k is a shorthand notation for ∂zk while ∂⋆k
stands for the differential operator −∂k + zk (which is nothing else that the Gaussian
divergence). Moreover, ck := ⟨λc, ξk⟩L2([0,1]).
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Proof. It is well known (see for instance Theorem 4.9 in [Janson, 1997]) that the second
quantization operator Γ(ΠN) corresponds to the conditional expectation with respect
to the sigma-algebra generated by the random variables I1(ξ1),..., I1(ξN); therefore,
according to (5.4.7) we can write

ΦN(t) = Γ(ΠN)Φ(t) = E[Φ(t)|σ(I1(ξ1), ..., I1(ξN))] = uN(t, I1(ξ1), ..., I1(ξN)).

Here, the function uN : [0 + ∞[×RN is measurable and its existence in guaranteed
by Doob’s lemma (see Lemma 1.13 in [Kallenberg, 2021]). We now replace ΦN(t) with
uN(t, I1(ξ1), ..., I1(ξN)) in (5.4.8) and decompose the Malliavin calculus’s operators along
the orthonormal bases {ξk}k≥1. More precisely:

dΓ(−A)[uN(t, I1(ξ1), ..., I1(ξN))] =δ (−AD[uN(t, I1(ξ1), ..., I1(ξN))])

=δ

(
−A

∑
k≥1

DξkuN(t, I1(ξ1), ..., I1(ξN))ξk

)

=δ

(
−A

N∑
k=1

∂kuN(t, I1(ξ1), ..., I1(ξN))ξk

)

=δ

(
−

N∑
k=1

αk∂kuN(t, I1(ξ1), ..., I1(ξN))ξk

)

=−
N∑
k=1

αk∂kuN(t, I1(ξ1), ..., I1(ξN))I1(ξk)

+
N∑
k=1

αk∂
2
kuN(t, I1(ξ1), ..., I1(ξN))

=−
N∑
k=1

αk∂
⋆
k∂kuN(t, I1(ξ1), ..., I1(ξN));

Here, in the second-to-last equality we employed identity (1.56) from [Nualart, 2006].
We proceed now with

D2
1uN(t, I1(ξ1), ..., I1(ξN)) = ∂21uN(t, I1(ξ1), ..., I1(ξN)),

and

N(N− I)uN(t, I1(ξ1), ..., I1(ξN)) =(N2 − N)uN(t, I1(ξ1), ..., I1(ξN))

=
N∑
j=1

∂⋆j ∂j

(
N∑
k=1

∂⋆k∂kuN(t, I1(ξ1), ..., I1(ξN))

)

−
N∑
k=1

∂⋆k∂kuN(t, I1(ξ1), ..., I1(ξN))
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=
N∑

j,k=1

∂⋆j ∂
⋆
k∂j∂kuN(t, I1(ξ1), ..., I1(ξN)).

In the last equality we employed the commutation relation ∂j∂
⋆
k = ∂⋆k∂j + δjkI where δjk

stands for the Kronecker symbol. Lastly,

D⋆
ΠNλc

uN(t, I1(ξ1), ..., I1(ξN)) =
∑
k≥1

D⋆
ξk
uN(t, I1(ξ1), ..., I1(ξN))⟨ΠNλc, ξk⟩L2([0,1])

=
N∑
k=1

∂⋆kuN(t, I1(ξ1), ..., I1(ξN))⟨ΠNλc, ξk⟩L2([0,1])

=
N∑
k=1

∂⋆kuN(t, I1(ξ1), ..., I1(ξN))ck.

Collecting all identities derived above we see how equation (5.4.8) is equivalent to
(5.4.10).

We are now ready to state the main result of the present section.

Theorem 5.4.8. Let {ρn}n≥0 be a classical solution to the CDME (5.4.1)-(5.1.2). Then,
for any N ≥ 1 we have the representation

Π⊗n
N ρn(t, x1, ..., xn) =

1

n!

N∑
j1,...,jn=1

E[(∂j1 · · · ∂jnuN)(t, I1(ξ1), ..., I1(ξn))]ξj1(x1) · · · ξjn(xn),

(5.4.11)

for all n ≥ 1, t ≥ 0, (x1, ..., xn) ∈ [0, 1]n and with uN solution to the Cauchy problem
(5.4.10).

Proof. If {ρn}n≥0 is a classical solution to the CDME (5.4.1)-(5.1.2), then according to
Lemma 5.4.3 the stochastic process {Φ(t)}t≥0 defined in (5.4.3) solves equation (5.4.4)
in F⋆. Moreover, Lemma 5.4.5 shows that the finite dimensional projection of {Φ(t)}t≥0

introduced in (5.4.7) solves the auxiliary problem (5.4.8). Notice that by construction
the kernels of the Wiener Itô chaos expansion of {ΦN(t)}t≥0 are {Π⊗

Nρn}n≥0 (since this
is the action of Γ(ΠN) on {Φ(t)}t≥0).
On the other hand, according to the Stroock-Taylor formula (see Exercise 1.2.6 in
[Nualart, 2006] and Chapter A.9) the Wiener Itô chaos expansion of {ΦN(t)}t≥0 can
also be represented as

Π⊗
Nρn(t, x1, ..., xn) =

1

n!
E[Dx1 · · ·DxnΦN(t)]. (5.4.12)

From Lemma 5.4.7 the process {ΦN(t)}t≥0 can be written as {uN(t, I1(ξ1), ..., I1(ξn))}t≥0

where uN solution to the Cauchy problem (5.4.10). Therefore, substituting this into
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(5.4.12) and computing the Malliavin derivatives yields

Π⊗
Nρn(t, x1, ..., xn) =

1

n!
E[Dx1 · · ·DxnuN(t, I1(ξ1), ..., I1(ξn))]

=
1

n!

N∑
j1,...,jn=1

E[(∂j1 · · · ∂jnuN)(t, I1(ξ1), ..., I1(ξn))]ξj1(x1) · · · ξjn(xn),

which is the formula we wanted to prove.

5.5 Some Comments on the PDE (5.4.10)

The generalization of the generating function method utilized in this section has intro-
duced some new Gaussian features to the original problem (5.4.1)-(5.1.2). At a formal
level, the infinite dimensional nature of the system of Fokker-Planck equations under
investigation combined with the Fock space structure of the sequence {ρn}n≥0 leads nat-
urally to the use of Gaussian stochastic analysis’s techniques.
We now try to rewrite the representation formula (5.4.11) in a Gaussian-free manner.
To this aim, we present the following technical result.

Lemma 5.5.1. Let f ∈ C1(RN) be, together with all its first order partial derivatives,
polynomially bounded at infinity. Then, setting

f̃(z) :=

∫
RN

f(y)(2π)−N/2e−|z−y|2/2dy, z ∈ RN ,

we have for all k ∈ {1, ..., N} and z ∈ RN that

∂̃kf(z) = ∂kf̃(z) and ∂̃⋆kf(z) = zkf̃(z) (5.5.1)

Proof. It is a direct verification.

Proposition 5.5.2. If uN solves the PDE (5.4.10), then vN := ũN solves
∂tvN(t, z) = −

∑N
k=1 αkzk∂kvN(t, z) +

λd
2
∂21vN(t, z)

−λd
2

∑N
j,k=1 zjzk∂j∂kvN(t, z)

+
∑N

k=1 ckzkvN(t, z)− γvN(t, z); t > 0, z ∈ RN ;

vN(0, z) = 1, z ∈ RN .

(5.5.2)

Proof. Follows immediately from (5.5.1).

The PDE (5.5.2) represents a version of (5.4.10) in which the Gaussian features inherited
from our approach have been removed. Equation (5.5.2) has certainly the advantage over
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(5.4.10) of being of second order (contrary to the fourth order of the latter); moreover,
if we consider the case N = 1 and remember that ξ1 ≡ 1 and α1 = 0 we obtain{

∂tv1(t, z) =
λd
2
(1− z21)∂

2
1v1(t, z) + γ(z1 − 1)v1(t, z); t > 0, z ∈ R;

v1(0, z) = 1, z ∈ R.
(5.5.3)

This is exactly the equation you obtain via the classical generating function method
applied to the CME (5.4.2), which is the diffusion-free analogue of our system (5.4.1)-
(5.1.2). See [Erban and Chapman, 2020] for a detailed study of (5.5.3). Therefore, from
this point of view equation (5.5.2) is the natural extension of (5.5.3) to a model that
includes diffusion of the particles.
Even though equation (5.5.2) possesses some desirable properties, its investigation from
both analytical and numerical points of view presents some important obstacles. First
of all, if we use the function vN solution to (5.5.2) in the place of uN solution to (5.4.10),
then the representation formula (5.4.11) takes the form

Π⊗n
N ρn(t, x1, ..., xn) =

1

n!

N∑
j1,...,jn=1

(∂j1 · · · ∂jnvN)(t, 0, ..., 0)ξj1(x1) · · · ξjn(xn), (5.5.4)

as it follows immediately by the definition of vN and Lemma 5.5.1. This means that the
natural domain for solving (5.5.2) would be a neighborhood of the origin instead of the
whole space; this can be seen already in the case N = 1, i.e. equation (5.5.3), where z1
should be taken in [−1, 1] in order to avoid a sign change in the leading second order
term. However, it is very hard to find a reasonable argument for assigning a boundary
value to the problem (5.5.2) (this issue is also discussed in [McQuarrie, 1967b]).
A second main difficulty in analyzing equation (5.5.2) is due to its intrinsic ill-posedness.
In fact, if for simplicity we take N = 2 and focus on the second order (i.e. leading) term
of the differential operator appearing in the right hand side of (5.5.2), we see that the
matrix describing its coefficients is a multiple of

A(z1, z2) =

[
1− z21 −z1z2
−z1z2 −z22

]
.

Checking the positive semi-definiteness of the matrix A (recall that where have an initial
condition for solving equation (5.5.2)) we see that

⟨A(z1, z2)θ, θ⟩ =(1− z21)θ
2
1 − 2z1z2θ1θ2 − z22θ

2
2

=θ21 − (z1θ1 + z2θ2)
2

and the last quantity cannot be non negative for any choice of (θ1, θ2) ∈ R2 unless z2 = 0
(to see this take θ1 = 0). Therefore, there is no open neighborhood of the origin for
the space variable z where the matrix A is positive semi-definiteness. This entails the
ill-posedness of the PDE (5.5.2).

The discussion presented above highlights some potential advantages in embedding the
CDME (5.4.1)-(5.1.2) into the Gaussian framework utilized in this section for deriving
the representation formula (5.4.11).
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Chapter 6

Branching Brownian Motion from a
CDME Perspective

Abstract

Aim of this note is to analyse branching Brownian motion within the class of models in-
troduced in the recent paper [del Razo et al., 2022] and called chemical diffusion master
equations. These models provide a description for the probabilistic evolution of chemi-
cal reaction kinetics associated with spatial diffusion of individual particles. We derive
an infinite system of Fokker-Planck equations that rules the probabilistic evolution of
the single particles generated by the branching mechanism and analyse its properties
using Malliavin Calculus techniques, following the ideas proposed in [Lanconelli, 2023].
Another key ingredient of our approach is the McKean representation for the solution
of the Fisher-Kolmogorov-Petrovskii-Piskunov equation and a stochastic counterpart of
that equation. We also derive the reaction-diffusion partial differential equation solved
by the average concentration field of the branching Brownian system of particles.

6.1 Introduction and Statement of the Main Results

Let {Xk(t), k ∈ {1, ..., n(t)}}t≥0 be a (binary) branching Brownian motion. That means,
at time zero a single particle {X(t)}t≥0 starting at the origin begins to perform Brownian
motion in R; after an exponential time τ of parameter one, the particle splits into two
identical, independent copies of itself that start Brownian motion at X(τ). This process
is repeated ad infinitum, producing a collection of n(t) particles {X1(t), X2(t), ..., Xn(t)(t)}t≥0

(we refer the reader to [Bovier, 2015] and the references quoted there for more details
on the subject). For t ≥ 0, n ≥ 1 and A ∈ B(Rn) we set∫

A

ρn(t, y1, ..., yn)dy1 · · · dyn := P ({n(t) = n} ∩ {(X1(t), ..., Xn(t)) ∈ A}) ; (6.1.1)
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notice that by construction the sequence {ρn}n≥1 fulfils the constraint∑
n≥1

∫
Rn

ρn(t, y1, ..., yn)dy1 · · · dyn = 1. (6.1.2)

Furthermore, for all n ≥ 2 and t ≥ 0 the functions

(y1, ..., yn) 7→ ρn(t, y1, ..., yn)

are symmetric in their arguments: this formalizes the indistinguishability of the different
Brownian particles generated by the branching mechanism.
Our first main result reads as follows.

Theorem 6.1.1. The sequence {ρn}n≥1 solves the system of equations
∂tρn(t, y1, ..., yn) =

1
2

∑n
k,l=1 ∂

2
ykyl

ρn(t, y1, ..., yn) +
∑n−1

k=1 ρk⊗̂ρn−k(t, y1, ..., yn)
-ρn(t, y1, ..., yn), for n ≥ 1, t > 0, y1, ..., yn ∈ R;

ρ1(0, y1) = δ0(y1), y1 ∈ R;
ρn(0, y1, ..., yn) = 0, y1, ..., yn ∈ R;

(6.1.3)

here, δ0 stands for the Dirac delta function concentrated at the origin while ⊗̂ denotes
symmetric tensor product with respect to the variables (y1, ..., yn). Moreover, we have
the representation

ρn(t, y1, ..., yn) = gn(t, x;x− y1, ..., x− yn), t ≥ 0, x, y1, ..., yn ∈ R (6.1.4)

where {gn}n≥1 is a sequence of functions with

gn : [0,+∞[×R× Rn → R
(t, x, y1, ..., yn) 7→ gn(t, x; y1, ..., yn)

and defined recursively as
g1(t, x; y1) := e−tpt(x− y1), t ≥ 0, x, y1 ∈ R;
gn(t, x; y1, ..., yn) := e−t

∫ t
0

∫
R pt−s(x− z)es

∑n−1
k=1 gk⊗̂gn−k(s, z; y1, ..., yn)dzds,

n ≥ 2, t ≥ 0 and x, y1, ..., yn ∈ R.

The symbol pt(x− z) stands for the one dimensional heat kernel (2πt)−
1
2 e−

(x−z)2

2t .

Remark 6.1.2. If we view branching Brownian motion as a system of particles un-
dergoing Brownian diffusion and splitting chemical reactions (as described above), then
following [del Razo et al., 2022],[del Razo et al., 2023] (see also [Doi, 1976]) we can in-
terpret system (6.1.3) within the class of chemical diffusion master equations. Equation
(6.1.3) has been previously derived in [Adke and Moyal, 1963] and further developed in
[Adke, 1964] but not treated as presented here.
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Now, let {ρn}n≥1 be solution to (6.1.3) and consider for 0 ≤ k ≤ n the quantity

pεk,n−k(t, x) :=

(
n

k

)∫
Bε(x)k×Bc

ε(x)
n−k

ρn(t, y1, ..., yn)dy1...dyn. (6.1.5)

This represents the probability of having n particles at time t with exactly k of the them
in the ball centred at x ∈ R and radius ε > 0; moreover, writing

X ε(t, x) :=
∑
n≥1

n∑
k=0

kpεk,n−k(t, x) (6.1.6)

we obtain the average number of particles that are located at time t in the ball Bε(x).
Lastly, the average concentration of particles at x is obtained through the limit

c(t, x) := lim
ε→0

X ε(t, x)

vol(Bε(x))
,

and combining (6.1.5) with (6.1.6) one finds that {c(t, x)}t≥0,x∈R, which we call average
concentration field, can be directly related to the sequence {ρn}n≥1 via the formula

c(t, x) =
∑
n≥1

n

∫
Rn−1

ρn(t, y1, ..., yn−1, x)dy1...dyn−1, t ≥ 0, x ∈ R; (6.1.7)

(for such derivation we refer to [del Razo et al., 2022]). We are now ready to state our
second main result.

Theorem 6.1.3. The average concentration field (6.1.7) associated with the system
(6.1.3) solves the reaction-diffusion partial differential equation{

∂tc(t, x) =
1
2
∂2xc(t, x) + c(t, x), t > 0, x ∈ R;

c(0, x) = δ0(x), x ∈ R.
(6.1.8)

The paper is organized as follows: Chapter 6.1.1 contains the proof of Theorem 6.1.1
which is essentially based on the McKean representation for the solution to the Fisher-
Kolmogorov-Petrovskii-Piskunov equation and its connection to a certain stochastic par-
tial differential equation. Here, we also collect some notions and results from Malliavin
Calculus needed for the proof of our main theorems: the implementation of these tech-
niques represents one of the principal novelties of our contribution; then, in Chapter
6.1.2 we describe the proof of Theorem 6.1.3 which is inspired by some ideas from
[Lanconelli, 2023].

6.1.1 Proof of Theorem 6.1.1

It is well known [McKean, 1975, Bovier, 2015] that, for a continuous function f : R →
[0, 1] and branching Brownian motion {Xk(t) : k ≤ n(t)}t≥0, the function

(t, x) 7→ u(t, x) := E

n(t)∏
k=1

f(x−Xk(t))

 (6.1.9)
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is solution to the Fisher-Kolmogorov-Petrovskii-Piskunov equation as seen in [Fisher, 1937]
and [Kolmogorov et al., 1937].{

∂tu(t, x) =
1
2
∂xxu(t, x) + u(t, x)2 − u(t, x), t > 0, x ∈ R;

u(0, x) = f(x), x ∈ R.
(6.1.10)

According to such representation and in view of (6.1.1) we can write by means of the
Law of Total Probability that

u(t, x) =E

n(t)∏
k=1

f(x−Xk(t))


=
∑
n≥1

∫
Rn

E

n(t)∏
k=1

f(x−Xk(t))

∣∣∣∣∣n(t) = n,X(t) = y

 ρn(t, y)dy
=
∑
n≥1

∫
Rn

n∏
k=1

f(x− yk)ρn(t, y)dy

=
∑
n≥1

∫
Rn

n∏
k=1

f(yk)ρn(t, x1n − y)dy

=
∑
n≥1

∫
Rn

f⊗n(y)ρn(t, x1n − y)dy

=⟨⟨Û(t, x), E(f)⟩⟩, (6.1.11)

where for n ≥ 1 we used the notation 1n := (1, 1, ..., 1) ∈ Rn and set

Û(t, x) :=
∑
n≥1

In(ρn(t, x1n − ·)), t ≥ 0, x ∈ R. (6.1.12)

In (6.1.12) the notation In stands for n-th order multiple Itô integral with respect to
an auxiliary two sided Brownian motion, say {By}y∈R as also defined in Chapter A.4.
Moreover, in (6.1.11) the brackets ⟨⟨·, ·⟩⟩ denote dual pairing between the generalized
random variable Û(t, x) and the stochastic exponential E(f), which is the smooth random
variable defined by in expression (A.8.1). For more details on smooth and generalized
random variables we refer the reader to [Holden et al., 1996] and [Kuo, 1996].

We now want to relate the expression in (6.1.12) with the solution to a Wick-type
stochastic partial differential equation investigated in [Levajković et al., 2018]. In the
sequel, the symbol ⋄ will denote the so-called Wick product defined in Chapter A.9.

The transformation

X 7→ S(X)(f) := ⟨⟨X, E(f)⟩⟩ =
∑
n≥0

∫
Rn

hn(x)f
⊗n(x)dx, f ∈ C∞

0 (R),

is injective and called S-transform of X for X ∈ F∗ as described in Appendix A.9.
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Lemma 6.1.4. Let {U(t, x)}t≥0,x∈R be the unique solution to{
∂tU(t, x) =

1
2
∂2xU(t, x) + U(t, x)⋄2 − U(t, x), t > 0, x ∈ R;

U(0, x) = Wx, x ∈ R;
(6.1.13)

here, Wx denotes the white noise at x, i.e. Wx = I1(δ0(x− ·)) (see (A.5.11)). Then,

U(t, x) =
∑
n≥1

In(gn(t, x; ·)), t ≥ 0, x ∈ R

where {gn}n≥1 is the sequence of functions

gn : [0,+∞[×R× Rn → R
(t, x, y1, ..., yn) 7→ gn(t, x; y1, ..., yn)

solving the system of partial differential equations
∂tgn(t, x; y) =

1
2
∂2xgn(t, x; y) +

∑n−1
k=1 gk⊗̂gn−k(t, x; y)

−gn(t, x; y), n ≥ 1, t > 0, x ∈ R, y ∈ Rn;

g1(0, x; y1) = δ0(x− y1), x, y1 ∈ R;
gn(0, x; y) = 0, n ≥ 2, x ∈ R, y ∈ Rn.

(6.1.14)

Moreover, for f ∈ C∞
0 (R) the function

(t, x) 7→ (SU(t, x))(f) = ⟨⟨U(t, x), E(f)⟩⟩

solves equation (6.1.10).

Proof. For the notion of solution to the problem (6.1.13) we refer the reader to the paper
of [Levajković et al., 2018]. Projecting equation (6.1.13) onto chaos spaces of different
orders yields a system of partial differential equations solved by the sequence of kernels
{gn}n≥1 of U(t, x); more precisely, recalling the definition of Wick product and the fact
that the initial condition in (6.1.13) is made of a first order Wiener chaos one easily see
that (6.1.14) corresponds to the aforementioned system of partial differential equations.
On the other hand, thanks to the interplay between Wick product and S-transform, i.e.

⟨⟨U(t, x)⋄2, E(f)⟩⟩ = ⟨⟨U(t, x), E(f)⟩⟩2, t ≥ 0, x ∈ R, f ∈ C∞
0 (R),

and the identity

⟨⟨Wx, E(f)⟩⟩ = f(x), x ∈ R, f ∈ C∞
0 (R),

we see that an application of the S-transform to both sides of (6.1.13) reduces this
problem to (6.1.10).
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Remark 6.1.5. The triangular structure of system (6.1.14) allows for an explicit recur-
sive representation of its solution; namely,

g1(t, x; y1) := e−tpt(x− y1), t ≥ 0, x, y1 ∈ R;
gn(t, x; y1, ..., yn) := e−t

∫ t
0

∫
R pt−s(x− z)es

∑n−1
k=1 gk⊗̂gn−k(s, z; y1, ..., yn)dzds,

n ≥ 2, t ≥ 0 and x, y1, ..., yn ∈ R.

Now, employing the conclusion of Lemma 6.1.4 in combination with (6.1.11) we can
affirm that

⟨⟨Û(t, x), E(f)⟩⟩ = ⟨⟨U(t, x), E(f)⟩⟩ for all t ≥ 0, x ∈ R and f ∈ C∞
0 (R);

from the invertibility of the S-transform and uniqueness of chaos expansion’s kernels we
then deduce

ρn(t, x1n − y) = gn(t, x; y), for all n ≥ 1, t ≥ 0, x ∈ R, y ∈ Rn

and thus

ρn(t, y1, ..., yn) =ρn(t, x− (x− y1), ..., x− (x− yn))

=gn(t, x;x− y1, ..., x− yn), n ≥ 1, t ≥ 0, x, y1, ..., yn ∈ R,

which corresponds to (6.1.4). Lastly, recalling that the sequence {gn}n≥1 solves the
system of equations (6.1.14) we have

∂tρn(t, x1n − y) =∂tgn(t, x; y)

=
1

2
∂2xgn(t, x; y) +

n−1∑
k=1

gk⊗̂gn−k(t, x; y)− gn(t, x; y)

=
1

2
∂2x(ρn(t, x1n − y)) +

n−1∑
k=1

ρk⊗̂ρn−k(t, x1n − y)− ρn(t, x1n − y)

=
1

2

n∑
j,k=1

∂2yjykρn(t, x1n − y) +
n−1∑
k=1

ρk⊗̂ρn−k(t, x1n − y)− ρn(t, x1n − y);

if we now replace x1n − y with y we obtain the desired system (6.1.3), completing the
proof of Theorem 6.1.1.

Remark 6.1.6. One can see the interplay between the different Brownian particles gen-
erated by the branching mechanism in the diffusion term

1

2

n∑
k,l=1

∂2ykylρn(t, y1, ..., yn).

This is due to the fact that the newly created particles do not emerge at an independent
random location but enter to the system at the same exact location of the parent particle.
Such feature is in contrast with the models considered in chapters 4 and 5, which are
also investigated in [del Razo et al., 2022] and [del Razo et al., 2023] where diffusion is
described by a simple Laplace operator.
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6.1.2 Proof of Theorem 6.1.3

Inspired by the ideas presented in [Lanconelli, 2023] and further developed in the paper
[Lanconelli et al., 2023] and [Lanconelli and Perçin, 2024a] we now rewrite the system of
equations (6.1.3) as a single abstract equation containing Malliavin Calculus operators.
For details on the subject the reader is referred to Appendix A.5, A.6, A.7 and A.8. For
even more detailed information one can refer to the books [Hu, 2017], [Janson, 1997] and
[Nualart, 2006]; here, we recall few basic definitions and properties needed for proving
our result. In the sequel, we denote by {DxΦ}x∈R the Malliavin derivative of Φ =∑

n≥0 In(hn) defined as

DxΦ :=
∑
n≥1

nIn−1(hn(·, x)), x ∈ R;

notice that

DxE(f) = f(x)E(f), for all f ∈ C∞
0 (R).

where E(f) being the stochastic exponential as defined in expression (A.8.1). More-
over, for a possibly unbounded A : L2(R) → L2(R) we define its differential second
quantization operator as

dΓ(A)Φ :=
∑
n≥1

In

(
n∑
i=1

Aihn

)
,

where Ai stands for the operator A acting on the i-th variable of hn as explained in
Chapter A.8.1. The following useful identities hold true as also explained in sections
A.5, A.8 and A.9:

⟨⟨dΓ(A)Φ, 1⟩⟩ = 0; ⟨⟨dΓ(A)Φ,Ψ⟩⟩ = ⟨⟨Φ, dΓ(A⋆)Ψ⟩⟩;
dΓ(A)E(f) = E(f) ⋄ I1(Af); Dx(Φ ⋄Ψ) = DxΦ ⋄Ψ+ Φ ⋄DxΨ.

Lemma 6.1.7. Let {ρn}n≥1 be solution to (6.1.3). Then, the generalized stochastic
process

Φ(t) :=
∑
n≥0

In(ρn(t, ·)), t ≥ 0, (6.1.15)

solves the abstract equation{
∂tΦ(t) =

1
2
dΓ(∂)2Φ(t) + Φ(t)⋄2 − Φ(t), t > 0;

Φ(0) = W0.
(6.1.16)

Proof. We have

∂tΦ(t) =∂t
∑
n≥0

In(ρn(t, ·))
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=
∑
n≥0

In(∂tρn(t, ·))

=
∑
n≥0

In

(
1

2

n∑
k,l=1

∂2ykylρn(t, ·)

)
+
∑
n≥0

In

(
n−1∑
k=1

ρk⊗̂ρn−k(t, ·)

)
−
∑
n≥0

In(ρn(t, ·))

=
1

2

∑
n≥0

dΓ(∂)2In (ρn(t, ·)) +
∑
n≥0

In(ρn(t, ·)) ⋄
∑
n≥0

In(ρn(t, ·))

−
∑
n≥0

In(ρn(t, ·))

=
1

2
dΓ(∂)2Φ(t) + Φ(t)⋄2 − Φ(t).

Here, we utilized (6.1.3) and the definitions of differential second quantization operator
and Wick product. Moreover,

Φ(0) =
∑
n≥0

In(ρn(0, ·)) = I1(δ0) = W0.

Remark 6.1.8. Notice that using the notation introduced in the previous lemma condi-
tion (6.1.2) reads

⟨⟨Φ(t), E(1)⟩⟩ = 1, for all t ≥ 0.

The usefulness of switching from system (6.1.3) to equation (6.1.16) becomes evident in
the following result where a compact representation for the average concentration field
is proposed.

Lemma 6.1.9. The average concentration field (6.1.7) enjoys the representation

c(t, x) = ⟨⟨DxΦ(t), E(1)⟩⟩, t ≥ 0, x ∈ R. (6.1.17)

Proof. From (6.1.15) we can write

DxΦ(t) = Dx

∑
n≥0

In(ρn(t, ·)) =
∑
n≥1

nIn−1(ρn(t, ·, x));

therefore,

⟨⟨DxΦ(t), E(1)⟩⟩ =
∑
n≥1

n

∫
Rn−1

ρn(t, y1, ..., yn−1, x)dy1...dyn−1,

and since the last member above agrees with (6.1.7) the validity of formula (6.1.17) is
proven.
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We are now ready to prove Theorem 6.1.3. By means of the two previous lemmas we
get

∂tc(t, x) =∂t⟨⟨DxΦ(t), E(1)⟩⟩
=⟨⟨∂tDxΦ(t), E(1)⟩⟩
=⟨⟨Dx∂tΦ(t), E(1)⟩⟩

=⟨⟨Dx

(
1

2
dΓ(∂)2Φ(t) + Φ(t)⋄2 − Φ(t)

)
, E(1)⟩⟩

=
1

2
⟨⟨DxdΓ(∂)

2Φ(t), E(1)⟩⟩+ ⟨⟨DxΦ(t)
⋄2, E(1)⟩⟩ − ⟨⟨DxΦ(t), E(1)⟩⟩. (6.1.18)

Moreover,

• the following commutation relation holds:

DxdΓ(∂) =

(
dΓ(∂) +

d

dx

)
Dx. (6.1.19)

In fact, checking its validity on stochastic exponentials we get

dΓ(∂)DxE(h) = dΓ(∂)E(h)h(x) = h(x)E(h) ⋄ I1(h′)

and

DxdΓ(∂)E(h) = DxE(h) ⋄ I1(h′) = E(h)h(x) ⋄ I1(h′) + E(h)h′;

thus,

DxdΓ(∂)E(h) = dΓ(∂)DxE(h) + E(h)h′

= dΓ(∂)DxE(h) +
d

dx
DxE(h);

• iterating (6.1.19) twice one gets

DxdΓ(∂)
2 =

(
dΓ(∂)2 + 2dΓ(∂)

d

dx
+

d2

dx2

)
Dx; (6.1.20)

• for all Φ =
∑

n≥0 In(hn) we have

⟨⟨dΓ(∂)Φ, E(1)⟩⟩ = 0. (6.1.21)

In fact, using the properties of differential second quantization operators we can
write

⟨⟨dΓ(∂)Φ, E(1)⟩⟩ = ⟨⟨Φ, dΓ(−∂)E(1)⟩⟩ = ⟨⟨Φ, E(1) ⋄ I1(0)⟩⟩ = 0.
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By virtue of (6.1.20) and (6.1.21) the first term in (6.1.18) can be simplified to

1

2
⟨⟨DxdΓ(∂)

2Φ(t), E(1)⟩⟩ = 1

2
⟨⟨ d

2

dx2
DxΦ(t), E(1)⟩⟩

=
1

2

d2

dx2
⟨⟨DxΦ(t), E(1)⟩⟩

=
1

2

d2

dx2
c(t, x).

The second term in (6.1.18), exploiting the chain rule for the Malliavin derivative and
Wick product, becomes

⟨⟨DxΦ(t)
⋄2, E(1)⟩⟩ = 2⟨⟨Φ(t) ⋄DxΦ(t), E(1)⟩⟩

= 2⟨⟨Φ(t), E(1)⟩⟩⟨⟨DxΦ(t), E(1)⟩⟩
= 2⟨⟨DxΦ(t), E(1)⟩⟩
= 2c(t, x),

where we also utilized the observation in Remark 6.1.8. Combining those identities in
(6.1.18) we conclude that

∂tc(t, x) =
1

2
∂2xc(t, x) + c(t, x).

Moreover,

c(0, x) = ⟨⟨DxΦ(0), E(1)⟩⟩ = ⟨⟨DxW0, E(1)⟩⟩ = δ0(x).

The proof of Theorem 6.1.3 is now complete.
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Appendix A

Stochastic Processes and Malliavin
Calculus

Before introducing the main tools of our research, first it is necessary to start with
introducing preliminaries of stochastic calculus:

A.1 Stochastic Processes and Brownian Motion

In this section, the main concepts of the stochastic calculus will be introduced from the
beginning, because the sections 4, 5 and 6 use these concepts thoroughly.

A.1.1 Stochastic Processes

A continuous-time stochastic process {Xt}t≥0 is a collection of random variables defined
within a common probability space (Ω,F ,P). These random variables are indexed by
the non-negative real number t, which represents time. Our understanding is, Xt is the
value of a system at time t, where the system’s evolution is random. Note that:

• for each fixed t ≥ 0, the mapping ω 7→ Xt(ω) is a random variable, and

• for each fixed ω ∈ Ω, the mapping t 7→ Xt(ω) represents a possible path or
trajectory of the stochastic process {Xt}t≥0.

A.1.2 Brownian Motion

The most famous stochastic process in the literature is the Brownian motion.

Definition A.1.1. As defined in [Karatzas and Shreve, 1991], a continuous-time stochas-
tic process {Bt}t≥0, defined on a probability space (Ω,F ,P), is termed (standard) Brow-
nian motion or a Wiener process if it meets the following criteria:

79



1. The process starts at zero almost surely: P(B0 = 0) = 1.

2. For any 0 ≤ s < t, the increments Bt−Bs are normally distributed with mean zero
and variance t− s: Bt −Bs ∼ N(0, t− s). This implies the process has stationary
increments, as the distribution of Bt−Bs depends only on the time difference t−s.

3. For any 0 ≤ t1 < t2 < · · · < tn, the increments

Bt1 , Bt2 −Bt1 , . . . , Btn −Btn−1

are mutually independent, indicating that the process has independent increments.

4. The process has continuous paths almost surely: P(t 7→ Bt is continuous) = 1.

Remark A.1.2. From the definition of Brownian motion, we can derive the following
properties:

• For any t > 0, the random variable Bt = Bt−B0 is normally distributed with mean
0 and variance t (i.e., Bt ∼ N(0, t)). Additionally, for any s, t > 0, the covariance
between Bs and Bt is cov(Bs, Bt) = min(s, t).

• Translation invariance: If t0 > 0 is fixed, then the process defined by B̃t := Bt+t0 −
Bt0 for t ≥ 0 is also a Brownian motion.

• Scaling invariance: For any λ > 0, the process defined by B̂t :=
Bλt√
λ

for t ≥ 0 is
still a Brownian motion.

A.1.3 Measurability, Martingale Property and Filtrations

A fundamental concept in probability theory is the measurability of random variables.
This concept ensures that a random variable is compatible with the underlying proba-
bility space and allows us to assign probabilities to events in a meaningful way.

Definition A.1.3. Let (Ω,F ,P) be a probability space, where Ω is the sample space, F
is a sigma-algebra on Ω, and P is a probability measure. A function X : Ω → R is called
a random variable (or F -measurable) if it satisfies the following condition:

X−1(B) ∈ F for every B ∈ B(R)

where B(R) stands for the Borel σ-algebra of the real line, which is countable intersection,
union and complement of all open intervals. This definition implies that for any Borel
set B ∈ B(R), the preimage of B under X, denoted by X−1(B), is an event in F . In
other words, we can measure the probability of X taking values in B using the measure
P that is already assigned for events in F .

A filtration {Ft}t≥0 on the probability space (Ω,F ,P) is a sequence of σ-algebras that
are increasing and contained within F . In other words, we have:

Fs ⊆ Ft ⊆ F for all 0 ≤ s < t.
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A continuous-time stochastic process {Xt}t≥0 is said to be adapted to the filtration
{Ft}t≥0 if each Xt is measurable with respect to Ft for every t ≥ 0 in the sense of
definition A.1.3.

Definition A.1.4. The natural filtration {FB
t }t≥0 associated with a Brownian motion

{Bt}t≥0 is defined as:

FB
t := σ (Bs | 0 ≤ s ≤ t) , t ≥ 0.

This means that FB
t is the smallest σ-algebra generated by the events of the form {Bs ∈

A}, where A is an interval in R and s ∈ [0, t]. By construction, this definition leads that
the Brownian motion {Bt}t≥0 is measurable with respect to its natural filtration FB

t and
therefore it is adapted.

In the field Stochastic Differential Equations (SDEs), it is common to work with larger σ-
algebras than FB

t . If they also preserve the features listed below of the natural filtration
of the Brownian motion, then we call it admissible filtration.

Definition A.1.5. Consider a Brownian motion {Bt}t≥0. A filtration {Ft}t≥0 is deemed
admissible for this Brownian motion if it satisfies the following conditions:

1. For every t ≥ 0, the sigma-algebra FB
t ⊆ Ft.

2. The increment Bt −Bs is independent of the sigma-algebra Fs for all 0 ≤ s ≤ t.

Because the term measurability is already introduced, it is wise to spend some words on
the conditional expectation:

Definition A.1.6. Consider a random variable X in L2(Ω,F ,P) and G being a sub-
sigma-algebra of F , the conditional expectation of X given G, denoted E[X | G], is
defined as the unique element in L2(Ω,G,P) such that

E[|X − E[X | G]|2] ≤ E[|X − Y |2], for all Y ∈ L2(Ω,G,P).

In words, with all the information available in G, the element in space L2(Ω,G,P) that
approximates X the best is E[X | G]. We say it approximates because: L2(Ω,G,P) ⊆
L2(Ω,F ,P). This leads to being G-measurable imposes stricter conditions than being
F -measurable. So E[X | G] will act most similar to X in G in the sense that it will
minimize the quadratic distance from X. In the following, we will denote the space
L2(Ω,F ,P) simply as L2(Ω).

Remark A.1.7. Here some important properties of conditional expectation are listed:

1. If G is the trivial sigma-algebra {∅,Ω}, then E[X | G] = E[X].

2. For constants α, β, γ ∈ R, we have E[αX+βY +γ | G] = αE[X | G]+βE[Y | G]+γ.

3. If X is already G-measurable, then E[X | G] = X.

4. If X is independent of G, then E[X | G] = E[X].
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5. If H is a sub-sigma-algebra of G, then E[E[X | G] | H] = E[X | H].

6. If X is G-measurable, then E[XY | G] = XE[Y | G].

A.2 The Itô Integral

Before introducing the formal definition of the Itô integral and Itô Calculus, one should
spend some words on why a new formal definition is necessary.

A.2.1 The Stieltjes Integral and
∫ b

a XtdBt

The aim of this section is to introduce the idea to formalize the integrals in the form∫ b
a
XtdBt where {Xt}t∈[a,b] is a continuous time stochastic process and {Bt}t∈[a,b] is the

Brownian motion.

First, it will be shown that why the Stieltjes integral definition can’t be used. Consider
the following case:

N−1∑
j=0

f(t⋆j)(F (tj+1)− F (tj)), (A.2.1)

where F : [a, b] → R is a specified function. The formula (A.2.1) serves as the founda-

tion for defining the Stieltjes integral
∫ b
a
f(t)dF (t), which is properly defined when the

function F : [a, b] → R has bounded variation, meaning

lim
n→+∞

Nn−1∑
j=0

|F (t(n)j+1)− F (t
(n)
j )| < +∞.

where the limit is taken along a partition of the interval [a, b] {πn}n≥1, with the property
that:

lim
n→+∞

|πn| = 0;

the positive number

|πn| := max
j∈{0,...,Nn−1}

(t
(n)
j+1 − t

(n)
j )

is called the mesh of the partition πn, and it measures how finely the partition πn divides
the interval [a, b] because we didn’t constrain ourselves to divide the interval equally. In
corollary A.2.2, it will be obvious why we can’t utilize the Stieltjes integral theory but
in order to demonstrate this fact, we go on with the procedure.

To fit
∫ b
a
XtdBt within the sense of Stieltjes integral, one would fix the random element

ω ∈ Ω and interpret the path t 7→ Xt(ω) as the function t 7→ f(t) and the path t 7→ Bt(ω)
as the function t 7→ F (t).
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Theorem A.2.1. Let {Bt}t≥0 be a Brownian motion and {πn}n≥1 be any sequence of
finite partitions of the interval [a, b] satisfying

lim
n→+∞

|πn| = 0.

Then,

lim
n→+∞

Nn∑
j=1

(
B
t
(n)
j

−B
t
(n)
j−1

)2
= b− a in L2(Ω). (A.2.2)

Which in words state that the quadratic variation of Brownian motion {Bt}t≥0 defined
in interval [a, b] is: b− a. If, in addition,∑

n≥1

|πn| < +∞, (A.2.3)

then the convergence in (A.2.2) holds almost surely.

Proof. For simplicity, let us denote

Sπn2 (B, [a, b]) :=
Nn∑
j=1

(
B
t
(n)
j

−B
t
(n)
j−1

)2
,

and recall that to prove convergence in L2(Ω), we must verify that

lim
n→+∞

E
[
(Sπn2 (B, [a, b])− (b− a))2

]
= 0.

Observe that

E [Sπn2 (B, [a, b])] =E

[
Nn∑
j=1

(
B
t
(n)
j

−B
t
(n)
j−1

)2]

=
Nn∑
j=1

E
[(
B
t
(n)
j

−B
t
(n)
j−1

)2]

=
Nn∑
j=1

(t
(n)
j − t

(n)
j−1)

=b− a.

Therefore,

E
[
(Sπn2 (B, [a, b])− (b− a))2

]
= E

[
(Sπn2 (B, [a, b])− E [Sπn2 (B, [a, b])])2

]
= V [Sπn2 (B, [a, b])]
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= V

[
Nn∑
j=1

(
B
t
(n)
j

−B
t
(n)
j−1

)2]

=
Nn∑
j=1

V
[(
B
t
(n)
j

−B
t
(n)
j−1

)2]

=
Nn∑
j=1

E
[(
B
t
(n)
j

−B
t
(n)
j−1

)4]
− E

[(
B
t
(n)
j

−B
t
(n)
j−1

)2]2

=
Nn∑
j=1

3
(
t
(n)
j − t

(n)
j−1

)2
−
(
t
(n)
j − t

(n)
j−1

)2
= 2

Nn∑
j=1

(
t
(n)
j − t

(n)
j−1

)2
≤ 2|πn|(b− a).

Hence,

lim
n→+∞

E
[
(Sπn2 (B, [a, b])− (b− a))2

]
≤ lim

n→+∞
2|πn|(b− a) = 0.

This proves the convergence in L2(Ω). Moreover, if we assume (A.2.3), then by the
Chebyshev-Markov inequality we can write, for any ε > 0, that

P (|Sπn2 (B, [a, b])− (b− a)| > ε) ≤
E
[
(Sπn2 (B, [a, b])− (b− a))2

]
ε2

≤2|πn|(b− a)

ε2
.

Therefore, ∑
n≥1

P (|Sπn2 (B, [a, b])− (b− a)| > ε) ≤ 2(b− a)

ε2

∑
n≥1

|πn|,

and the right hand side is finite by assumption. Hence, the Borel-Cantelli lemma implies
that

P
(
lim sup

n
{|Sπn2 (B, [a, b])− (b− a)| > ε}

)
= 0.

The last equality holds for any ε > 0, implying that Sπn2 (B, [a, b]) converges to b − a
almost surely, as n tends to infinity.

Corollary A.2.2. For any a < b we have,

P (t 7→ Bt is of bounded variation on [a, b]) = 0.
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Proof. Let {πn}n≥1 be any sequence of finite partitions of the interval [a, b] satisfying∑
n≥1

|πn| < +∞,

and consider the inequality

Nn∑
j=1

(
B
t
(n)
j

−B
t
(n)
j−1

)2
≤ max

1≤j≤Nn

∣∣∣B
t
(n)
j

−B
t
(n)
j−1

∣∣∣ · Nn∑
j=1

∣∣∣B
t
(n)
j

−B
t
(n)
j−1

∣∣∣ . (A.2.4)

According to the previous theorem, we know that the left hand side of (A.2.4) converges
to b− a, almost surely. On the other hand, the term

max
1≤j≤Nn

∣∣∣B
t
(n)
j

−B
t
(n)
j−1

∣∣∣
goes to zero almost surely, as n tends to infinity, since the Brownian paths are continuous
and hence uniformly continuous on any compact interval [a, b]. Since b − a is positive,
passing to the limit as n goes to infinity in (A.2.4), we necessarily get

lim
n→+∞

Nn∑
j=1

∣∣∣B
t
(n)
j

−B
t
(n)
j−1

∣∣∣ = +∞, almost surely.

This is equivalent to saying that Brownian paths are of unbounded variation with prob-
ability one and due to this reason the Stieltjes integral theory can’t be applied to it.

Intiuitively this shows how wild the Brownian motion is oscillating. From the previous
corollary we deduce that, with probability one, the integral∫ b

a

XtdBt

cannot be formalized as a Stieltjes integral (due to the unbounded variation of the
Brownian paths). Moreover due to Brownian motion’s wild behaviour, it should also be
mentioned that:

Remark A.2.3. Let {Bt}t≥0 be a Brownian motion. Then,

P(t 7→ Bt is nowhere differentiable) = 1.

Therefore in order to define this integral type we will use another formalization is nec-
essary.
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A.2.2 The Itô Integral

In this section, one possible new way to define rigorously integrals of the type
∫ T
0
XtdBt

will be introduced. Consider {Bt}t≥0 as a Brownian motion defined on the probability
space (Ω,F ,P) with admissible filtration {Ft}t≥0.

Definition A.2.4. We define S(Ω× [0, T ]) as the set of simple processes and the class
of stochastic processes {Xt}t∈[0,T ] of the form

Xt :=
N−1∑
j=0

ηj1[tj ,tj+1)(t) =


η0, if t ∈ [0, t1);

η1, if t ∈ [t1, t2);
...

ηN−1, if t ∈ [tN−1, T ],

(A.2.5)

where 0 = t0 < t1 < · · · < tn−1 < tN = T and, for all j ∈ {0, . . . , N − 1}, the random
variable ηj belongs to L2(Ω) and is Ftj -measurable.

The stochastic process Xt is called simple because it takes values of N many discrete
random variables {η0, . . . , ηN−1} where N is the number of partitioned subintervals of
interval [0, T ]. Observe that the elements of S(Ω× [0, T ]) are stochastic processes which
are {Ft}t≥0 adapted. This is due to the fact that, according to (A.2.5), if t ∈ [tj, tj+1),
then Xt = ηj; therefore, Xt is Ftj -measurable and to greater reason Ft-measurable,
since tj ≤ t and Ftj ⊆ Ft. Moreover, because if {Xt}t∈[0,T ] and {Yt}t∈[0,T ] belong to
S(Ω× [0, T ]), then {αXt+ βYt}t∈[0,T ] is also a member of S(Ω× [0, T ]), for all α, β ∈ R,
therefore it can be said that S(Ω× [0, T ]) is a vector space.

We now define the Itô integral of a simple stochastic process . Let {Xt}t∈[0,T ] be an
element of S(Ω× [0, T ]) of the form (A.2.5). For such stochastic process we define:∫ T

0

XtdBt :=
N−1∑
j=0

ηj
(
Btj+1

−Btj

)
(A.2.6)

and call the random variable
∫ T
0
XtdBt the Itô integral of {Xt}t∈[0,T ].

Proposition A.2.5. The random variable
∫ T
0
XtdBt belongs to L2(Ω) with the moments:

E
[∫ T

0

XtdBt

]
= 0

and

E

[(∫ T

0

XtdBt

)2
]
= E

[∫ T

0

X2
t dt

]
. (A.2.7)

Moreover, if {Xt}t∈[0,T ] and {Yt}t∈[0,T ] belong to S(Ω× [0, T ]), then∫ T

0

(αXt + βYt)dBt = α

∫ T

0

XtdBt + β

∫ T

0

YtdBt,
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for all α, β ∈ R.

Proof. First the membership of
∫ T
0
XtdBt to L2(Ω) should be proven by checking that

its second moment is finite. By definition of Itô integral we can write

E

[(∫ T

0

XtdBt

)2
]
=E

(N−1∑
j=0

ηj
(
Btj+1

−Btj

))2


=E

[(
N−1∑
j=0

ηj
(
Btj+1

−Btj

))
·

(
N−1∑
k=0

ηk
(
Btk+1

−Btk

))]

=E

[
N−1∑
j,k=0

ηjηk
(
Btj+1

−Btj

) (
Btk+1

−Btk

)]

=E

[
N−1∑
j=0

η2j
(
Btj+1

−Btj

)2]

+ 2E

[∑
j<k

ηjηk
(
Btj+1

−Btj

) (
Btk+1

−Btk

)]

=
N−1∑
j=0

E
[
η2j
(
Btj+1

−Btj

)2]
+ 2

∑
j<k

E
[
ηjηk

(
Btj+1

−Btj

) (
Btk+1

−Btk

)]
=

N−1∑
j=0

E
[
E
[
η2j
(
Btj+1

−Btj

)2 ∣∣∣∣Ftj

]]
+ 2

∑
j<k

E
[
E
[
ηjηk

(
Btj+1

−Btj

) (
Btk+1

−Btk

) ∣∣∣∣Ftk

]]

=
N−1∑
j=0

E
[
η2jE

[(
Btj+1

−Btj

)2 ∣∣∣∣Ftj

]]

+ 2E

[∑
j<k

ηjηk
(
Btj+1

−Btj

)
E
[
Btk+1

−Btk

∣∣∣∣Ftk

]]

=
N−1∑
j=0

E
[
η2jE

[(
Btj+1

−Btj

)2]]
+ 2E

[∑
j<k

ηjηk
(
Btj+1

−Btj

)
E
[
Btk+1

−Btk

]]
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=
N−1∑
j=0

E
[
η2j
]
(tj+1 − tj) .

Here, we utilized the properties 5 ,3 and 4 of conditional expectations in remark A.1.7
together with the fact that the random variable Btj+1

− Btj is independent of the σ-
algebra Ftj , for all j ∈ {0, ..., N − 1}. Comparing the first and last members of the
previous chain of equalities we get

E

[(∫ T

0

XtdBt

)2
]
=

N−1∑
j=0

E
[
η2j
]
(tj+1 − tj) , (A.2.8)

which proves the membership of
∫ T
0
XtdBt to L2(Ω), since from the start all ηj’s are

assumed to be in L2(Ω) as well, then the last sum is finite. Moreover,

E
[∫ T

0

X2
t dt

]
=E

∫ T

0

(
N−1∑
j=0

ηj1[tj ,tj+1[(t)

)2

dt


=E

[∫ T

0

N−1∑
j,k=0

ηjηk1[tj ,tj+1[(t)1[tk,tk+1[(t)dt

]

=
N−1∑
j,k=0

E[ηjηk]
∫ T

0

1[tj ,tj+1[(t)1[tk,tk+1[(t)dt

=
N−1∑
j=0

E[η2j ] (tj+1 − tj) .

(A.2.9)

This yields, together with (A.2.8), identity (A.2.7). The expectation is computed as
follows:

E
[∫ T

0

XtdBt

]
=E

[
N−1∑
j=0

ηj
(
Btj+1

−Btj

)]

=
N−1∑
j=0

E
[
ηj
(
Btj+1

−Btj

)]
=

N−1∑
j=0

E[ηj]E
[
Btj+1

−Btj

]
=0,

since ηj and Btj+1
− Btj are independent and Brownian increments has 0 expactation.

Lastly, the linearity of the Itô integral is an immediate consequence of the definition.

We now want to extend the definition of Itô integral to a wider class of integrands than
S(Ω× [0, T ]). Inspired by identity (A.2.7) we introduce the following family of stochastic
processes.
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Definition A.2.6. We define

L2
ad(Ω× [0, T ]) :=

{
{Xt}t∈[0,T ] is an {Ft}t∈[0,T ]-adapted stochastic process

such that E
[∫ T

0

X2
t dt

]
< +∞

}
Example A.2.7. One key example is the stochastic process {Bt}t∈[0,T ]. That belongs to
L2
ad(Ω× [0, T ]), since, it is {Ft}t∈[0,T ]-adapted and

E
[∫ T

0

B2
t dt

]
=

∫ T

0

E
[
B2
t

]
dt =

∫ T

0

tdt = T 2/2.

It should also be noted that the space L2
ad(Ω× [0, T ]) is a vector space because of (A.2.9)

and it contains S(Ω× [0, T ]).

Theorem A.2.8. Any element of L2
ad(Ω × [0, T ]) can be approximated by a sequence

of elements of S(Ω × [0, T ]). This means, ∀ {Xt}t∈[0,T ] ∈ L2
ad(Ω × [0, T ]) ∃ a sequence

{X(n)
t }t∈[0,T ] of elements of S(Ω× [0, T ]) such that

lim
n→+∞

E
[∫ T

0

|X(n)
t −Xt|2dt

]
= 0. (A.2.10)

In addition, if {Xt}t∈[0,T ] ∈ L2
ad(Ω× [0, T ]) is such that the function

(s, t) ∈ [0, T ]2 7→ E[XsXt]

is continuous, then one can directly find the X
(n)
t as:

X
(n)
t :=

Nn−1∑
j=0

X
t
(n)
j
1[

t
(n)
j ,t

(n)
j+1

)(t), t ∈ [0, T ],

where πn := {t(n)0 , t
(n)
1 , · · ·, t(n)Nn

} is a sequence of partitions of the interval [0, T ] such that
|πn| → 0, as n→ +∞.

Proof. See Lemma 4.3.3 in [Kuo, 2006].

Example A.2.9. As shown in example A.2.7, the stochastic process {Bt}t∈[0,T ] belongs
to L2

ad(Ω× [0, T ]); moreover from 1’st property listed in remark A.1.2 it is known that:

(s, t) ∈ [0, T ]2 7→ E[BsBt] = min{s, t}

which is a continuous function. Therefore, according to the previous theorem we may
take

X
(n)
t :=

Nn−1∑
j=0

B
t
(n)
j
1[
t
(n)
j ,t

(n)
j+1

[(t), t ∈ [0, T ],

as sequence of simple processes approximating {Bt}t∈[0,T ].

89



With all that has been introduced up to know, we are ready to define the Itô integral of
a stochastic process from the class L2

ad(Ω× [0, T ]). Let {Xt}t∈[0,T ] ∈ L2
ad(Ω× [0, T ]) and

consider a sequence {{X(n)
t }t∈[0,T ]}n≥1 of elements of S(Ω× [0, T ]) such that

lim
n→+∞

E
[∫ T

0

|X(n)
t −Xt|2dt

]
= 0. (A.2.11)

For each n ≥ 1 the Itô integral ∫ T

0

X
(n)
t dBt

is a well defined element in L2(Ω), since {X(n)
t }t∈[0,T ] is a simple process. We now prove

that the sequence of random variables
{∫ T

0
X

(n)
t dBt

}
n≥1

converges in L2(Ω), as n tends

to infinity. First of all we observe that, for n,m ∈ N, we have

E

[(∫ T

0

X
(n)
t dBt −

∫ T

0

X
(m)
t dBt

)2
]
=E

[(∫ T

0

X
(n)
t −X

(m)
t dBt

)2
]

=E
[∫ T

0

(
X

(n)
t −X

(m)
t

)2
dt

]
, (A.2.12)

as a consequence of Proposition A.2.5. Moreover, the convergence of {{X(n)
t }t∈[0,T ]}n≥1

to {Xt}t∈[0,T ] in the sense (A.2.11) implies that {{X(n)
t }t∈[0,T ]}n≥1 is a Cauchy sequence,

i.e.

lim
n,m→+∞

E
[∫ T

0

|X(n)
t −X

(m)
t |2dt

]
= 0.

Therefore, from (A.2.12) we get that

lim
n,m→+∞

E

[(∫ T

0

X
(n)
t dBt −

∫ T

0

X
(m)
t dBt

)2
]

= lim
n,m→+∞

E
[∫ T

0

(
X

(n)
t −X

(m)
t

)2
dt

]
= 0,

entailing that
{∫ T

0
X

(n)
t dBt

}
n≥1

is a Cauchy sequence in L2(Ω). The completeness of

this space yields the convergence of the sequence
{∫ T

0
X

(n)
t dBt

}
n≥1

towards a unique

element in L2(Ω).

Definition A.2.10. Let {Xt}t∈[0,T ] be a stochastic process in L2
ad(Ω× [0, T ]). Then, the

Itô integral of {Xt}t∈[0,T ] is defined as∫ T

0

XtdBt := lim
n→+∞

∫ T

0

X
(n)
t dBt, in L2(Ω),
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where {{X(n)
t }t∈[0,T ]}n≥1 is a sequence of simple stochastic processes converging to {Xt}t∈[0,T ]

in the sense (A.2.11).

Remark A.2.11. The value of the Itô integral
∫ T
0
XtdBt does not depend on the par-

ticular sequence {{X(n)
t }t∈[0,T ]}n≥1 of simple stochastic processes utilized to approximate

{Xt}t∈[0,T ]. More precisely: if {{X̂(n)
t }t∈[0,T ]}n≥1 is another sequence of simple stochastic

processes approximating {Xt}t∈[0,T ], then

lim
n→+∞

∫ T

0

X̂
(n)
t dBt = lim

n→+∞

∫ T

0

X
(n)
t dBt =

∫ T

0

XtdBt, in L2(Ω).

The properties of Itô integrals with integrands in the class L2
ad(Ω× [0, T ]) coincide with

those proved for integrands in the class S(Ω × [0, T ]) due to their relation as shown
below:

Theorem A.2.12. Let {Xt}t∈[0,T ] and {Yt}t∈[0,T ] be stochastic processes in L2
ad(Ω ×

[0, T ]). Then:

•
∫ T
0
XtdBt ∈ L2(Ω),

E
[∫ T

0

XtdBt

]
= 0

and

E

[(∫ T

0

XtdBt

)2
]
= E

[∫ T

0

X2
t dt

]
. Itô isometry (A.2.13)

More generally,

E
[∫ T

0

XtdBt

∫ T

0

YtdBt

]
= E

[∫ T

0

XtYtdt

]
. (A.2.14)

•
∫ T
0
(αXt + βYt)dBt = α

∫ T
0
XtdBt + β

∫ T
0
YtdBt, for all α, β ∈ R.

Corollary A.2.13. Let f ∈ L2([0, T ]), i.e. f : [0, T ] → R is a deterministic function

such that
∫ T
0
f 2(t)dt is finite. Then, f ∈ L2

ad(Ω × [0, T ]) and
∫ T
0
f(t)dBt is a Gaussian

random variable with mean zero and variance
∫ T
0
f 2(t)dt. If g is another function from

L2([0, T ]), then
∫ T
0
f(t)dBt and

∫ T
0
g(t)dBt are independent if and only if

∫ T
0
f(t)g(t)dt =

0.

Proof. Because the function f is a deterministic function, it is certainly adapted. More-

over, the membership of f to L2([0, T ]) guarantees the finiteness of E
[∫ T

0
f(t)2dt

]
=
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∫ T
0
f(t)2dt. This proves that f ∈ L2

ad(Ω × [0, T ]). We now take a sequence a determin-
istic simple functions

f (n)(t) :=
Nn−1∑
j=0

a
(n)
j 1[

t
(n)
j ,t

(n)
j+1

)(t), t ∈ [0, T ],

approximating f in the sense

lim
n→+∞

E
[∫ T

0

|f (n)(t)− f(t)|2dt
]
= lim

n→+∞

∫ T

0

|f (n)(t)− f(t)|2(t)dt = 0,

and define∫ T

0

f(t)dBt := lim
n→∞

∫ T

0

f (n)(t)dBt = lim
n→∞

Nn−1∑
j=0

a
(n)
j

(
B
t
(n)
j+1

−B
t
(n)
j+1

)
, in L2(Ω).

Observe that, for each n ≥ 1, the random variable∫ T

0

f (n)(t)dBt =
Nn−1∑
j=0

a
(n)
j

(
B
t
(n)
j+1

−B
t
(n)
j+1

)
is Gaussian, being a linear combination of independent Gaussian random variables. Be-
cause in L2(Ω) the limits of sequences of Gaussian random variables are also Gaussian,

we conclude that
∫ T
0
f(t)dBt is Gaussian. The statement concerning its mean and vari-

ance is a consequence of Theorem A.2.12. Moreover, the Gaussian random variables∫ T
0
f(t)dBt and

∫ T
0
g(t)dBt are independent if and only if their covariance is zero; for-

mula (A.2.14) completes the proof.

A.2.3 Extension of the Itô Integral

This section aims to extend the definition of Itô integral to a larger class of integrands.
The next definition introduces this new family of stochastic processes.

Definition A.2.14. We set

Lad(Ω;L2([0, T ])) :=

{
{Xt}t∈[0,T ] is an {Ft}t∈[0,T ]-adapted stochastic process

such that P
(∫ T

0

X2
t dt < +∞

)
= 1

}
In words: an adapted stochastic process belongs to Lad(Ω;L2([0, T ])) if the path t ∈
[0, T ] 7→ Xt is square integrable, almost surely.
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Remark A.2.15. Any adapted stochastic process with almost surely continuous paths
belongs to Lad(Ω;L2([0, T ])); in fact, continuous functions on the compact interval [0, T ]
are bounded and hence square integrable:∫ T

0

X2
t dt ≤

∫ T

0

sup
t∈[0,T ]

|Xt|2dt = T sup
t∈[0,T ]

|Xt|2 < +∞,

almost surely.

Example A.2.16. In particular, the stochastic process
{
eB

2
t /2T

}
t∈[0,T ]

doesn’t belong

to L2
ad(Ω × [0, T ]) since it fails the condition E

[∫ T
0
(eB

2
t /2T )2dt

]
< ∞ but belongs to

Lad(Ω;L2([0, T ])) since it has continuous sample paths.

We have

L2
ad(Ω× [0, T ]) ⊂ Lad(Ω;L2([0, T ])).

Because, the condition

E
[∫ T

0

X2
t dt

]
< +∞

means that the non negative random variable
∫ T
0
X2
t dt has finite expectation and hence

it is necessarily finite almost surely, i.e.

P
(∫ T

0

X2
t dt < +∞

)
= 1.

Remark A.2.17. It is usually easier to check the membership of a stochastic process to
Lad(Ω;L2([0, T ])) than to L2

ad(Ω× [0, T ]).

Theorem A.2.18. Any element of Lad(Ω;L2([0, T ])) can be approximated by a sequence
of elements of S(Ω×[0, T ]). More precisely, for any {Xt}t∈[0,T ] ∈ Lad(Ω;L2([0, T ])) there

exists a sequence {X(n)
t }t∈[0,T ] of elements of S(Ω× [0, T ]) such that

lim
n→+∞

∫ T

0

|X(n)
t −Xt|2dt = 0 in probability, (A.2.15)

i.e. for any ε > 0 we have

lim
n→+∞

P
(∫ T

0

|X(n)
t −Xt|2dt > ε

)
= 0.

Proof. See Lemma 5.3.1 in [Kuo, 2006].
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We are now ready to define the Itô integral of a stochastic process from the class
Lad(Ω;L2([0, T ])). Namely, let {Xt}t∈[0,T ] ∈ Lad(Ω;L2([0, T ])) and consider a sequence

{{X(n)
t }t∈[0,T ]}n≥1 of elements of S(Ω × [0, T ]) such that (A.2.15) holds true. For each

n ≥ 1 the Itô integral ∫ T

0

X
(n)
t dBt

is a well defined element of L2(Ω). Similar to what has been done for the space L2
ad(Ω×

[0, T ]), one can prove that the sequence of random variables
{∫ T

0
X

(n)
t dBt

}
n≥1

converges

in probability; this limit will be the Itô integral of {Xt}t∈[0,T ].

Definition A.2.19. Let {Xt}t∈[0,T ] be a stochastic process in Lad(Ω;L2([0, T ])). Then,
the Itô integral of {Xt}t∈[0,T ] is defined as∫ T

0

XtdBt := lim
n→+∞

∫ T

0

X
(n)
t dBt, in probability,

where {{X(n)
t }t∈[0,T ]}n≥1 is a sequence of simple stochastic processes converging to {Xt}t∈[0,T ]

in the sense (A.2.15).

Remark A.2.20. The Itô integral of a stochastic process from the class Lad(Ω;L2([0, T ]))
doesn’t in general possess those nice properties we proved for Itô integrals of processes
from L2

ad(Ω × [0, T ]). In particular, the expectations E[
∫ T
0
XsdBs] and E[(

∫ T
0
XsdBs)

2]
are not defined when the integrand belongs to Lad(Ω;L2([0, T ])).

A.3 Itô Formula

The Fundamental Theorem of Calculus (FTC) states that, if F : [0, T ] → R and φ :
R → R are continuously differentiable functions, then for any 0 ≤ a < b ≤ T we have

φ(F (b))− φ(F (a)) =

∫ b

a

φ′(F (t))F ′(t)dt.

Moreover, if F : [0, T ] → R is a function of bounded variation, then

φ(F (b))− φ(F (a)) =

∫ b

a

φ′(F (t))dF (t),

where the integral is interpreted in the Stieltjes’ sense.

It is natural to wonder whether the FTC holds for F being a Brownian motion and
integral interpreted in the Itô’s sense. More precisely, given a continuously differentiable
function φ : R → R, does identity

φ(Bb)− φ(Ba) =

∫ b

a

φ′(Bt)dBt (A.3.1)
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hold true, almost surely?

Let us check the validity of formula (A.3.1) for φ(x) = x2; in this case, we would get

B2
b −B2

a =

∫ b

a

2BtdBt. (A.3.2)

But when we take the expectation of both sides, what happens is:

b− a = E
[
B2
b −B2

a

]
̸= E

[∫ b

a

2BtdBt

]
= 0.

(note that the integrand {2Bt1[a,b](t)}t∈[0,T ] belongs to L2
ad(Ω × [0, T ]) which implies∫ b

a
2BtdBt ∈ L2(Ω) and E

[∫ b
a
2BtdBt

]
= 0). This entails the fallacy of formula (A.3.2)

and hence of (A.3.1), which is expected because like stated earlier in order to define the
Stieltjes’ integral above the F function was assumed to have bounded variation but we
already know this is not the case for Bt via corollary A.2.2. Then the next question is, if
there is a similar identity to the FTC but for Itô calculus? The answer to this question
is the theorem A.3.2 below. First we define Itô processes:

Definition A.3.1. We say {Xt}t∈[a,b] is an Itô process when it has the form:

Xt = x+

∫ t

0

µsds+

∫ t

0

σsdBs, t ∈ [0, T ],

or

dXt = µtdt+ σtdBt, X0 = x.

(A.3.3)

in differential notation. Where x ∈ R, {µt}t∈[0,T ] is an adapted stochastic process such

that P
(∫ T

0
|µt|dt < +∞

)
= 1, and {σt}t∈[0,T ] belongs to Lad(Ω;L2([0, T ])).

Theorem A.3.2 (Itô formula for Itô processes). Let Xt be an Itô process as explained
above and φ : [0, T ] × R → R be continuously differentiable in the first variable t and
twice continuously differentiable in the second variable x. Then, for any 0 ≤ a < b ≤ T
we have

φ(b,Xb)− φ(a,Xa) =

∫ b

a

(∂xφ)(t,Xt)σtdBt

+

∫ b

a

[
(∂tφ)(t,Xt) +

1

2
(∂xxφ)(t,Xt)σ

2
t + (∂xφ)(t,Xt)µt

]
dt, (A.3.4)

or, in the equivalent differential form,

dφ(t,Xt) = (∂xφ)(t,Xt)σtdBt

+

[
(∂tφ)(t,Xt) +

1

2
(∂xxφ)(t,Xt)σ

2
t + (∂xφ)(t,Xt)µt

]
dt. (A.3.5)
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Proof. See section 7 of [Kuo, 2006].

Remark A.3.3. It is customary, and very convenient, to rewrite equation (A.3.5) as
the symbolic expression

dφ(t,Xt) = (∂tφ)(t,Xt)dt+ (∂xφ)(t,Xt)dXt +
1

2
(∂xxφ)(t,Xt) (dXt)

2 . (A.3.6)

This shows the equivalence between (A.3.5) and (A.3.6). The heuristic reason behind
identities, which is given in table A.1 can be described as follows: the quadratic variation
of the Brownian motion {Bt}t∈[0,T ] on the interval [a, b] ⊂ [0, T ] is b − a; hence, for an
infinitesimal intervals of time dt we can write

(dBt)
2 := (Bt+dt −Bt)

2 ≈ dt.

This formally gives dBt ≈ (dt)1/2; moreover, since all the terms of the type (dt)α, with
α > 1, are negligible compared to dt, we get dBtdt = 0.

× dt dBt

dt 0 0
dBt 0 dt

Table A.1: Product rules for dt and dBt in Itô calculus in differential form.

A.4 Iterated Itô Integrals

In the previous section we were able to define the Itô integral for a stochastic process
Xt ∈ Lad(Ω;L2([0, T ])), where if one fixes the chance parameter ω ∈ Ω the mapping
is t → Xt(ω) is a function only depending on t. In this section we will improve the
definition of the Itô integral so that we will able to define iterated integrals for the
processes that has the mapping (x1, . . . , xn) → Xx1,...,xn(ω), when the chance parameter
is fixed. In other words, the question is: how to define the Iterated Itô integrals when the
integrand depends on multiple variables (x1, . . . , xn)? The answer to this question and
properties of iterated Itô integrals will be given based on the article [Lanconelli, 2023].

Definition A.4.1. For a function hn ∈ L2
s([0, T ]

n) for n ≥ 1, namely for a function
hn that is symmetric in its variables and square integrable along the domain [0, T ]n, the
iterated Itô integral is defined as:

In(hn) := n!

∫ T

0

∫ x1

0

· · ·
∫ xn−1

0

hn(x1, . . . , xn)dBxn . . . dBx2dBx1 . (A.4.1)

Remark A.4.2. One can easily see if n = 1, then we are in the setting of Corollary
A.2.13. So indeed this iterated Itô integral definition is a generalizaiton of the previous
section.
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Corollary A.4.3. The properties of the iterated Itô integral are given below:

• Since in definition A.4.1 n is assumed to be greater or equal than 1, it should also
be pointed out that for h0 ∈ R, I0(h0) := h0 for convention.

• for n ≥ 1, E[In(hn)] = 0.

• n ̸= m, E[In(hn)Im(hm)] = 0, also called the orthogonality of the iterated Itô
integrals.

• for n ≥ 1, E [(In(hn))
2] = n!|hn|2L2([0,T ]n).

A.5 TheWiener-Itô Chaos Expansion andWick Prod-

uct

Because they will be utilized later in the following sections the Wiener-Itô chaos ex-
pansion and the Wick Product will be introduced in this section. The introduction will
follow the steps as in book [Nunno et al., 2009] in section 5.

A.5.1 The White Noise Probability Space

In this section we will formally define the white noise probability space, which is the
backbone in introducing the idea of Wiener-Itô chaos expansion. Let S = S(Rd) be the
Schwartz space of rapidly decreasing smooth C∞(Rd) real functions on Rd. This space
is characterized to be extremely regular so that the functions that belongs to the space
and their derivatives will go to 0 faster than any order of polynomial. Namely if f ∈ S,
then:

||f ||K,α := sup
x∈Rd

{
(1 + |x|K)

∣∣∣∣∣ ∂|α|

∂α1
x1 . . . ∂

αd
xd

f(x)

∣∣∣∣∣
}
<∞

for all K ∈ R and any set of multi-indexes α := (α1, . . . , αd) with αj = 0, 1, . . . (j =
1, . . . , d)). Lastly |α| := α1 + · · ·+ αd.

Then we define the dual space of S, so called the space of tempered distributions, Ω :=
S ′(Rd). This space will instead be composed of wilder functions, of those properties we
are interested in. Since we already have the Ω, it makes sense to define the σ-algebra
as: F := B(S ′(Rd)) and the probability measure P .

Theorem A.5.1. The Bochner-Minlos theorem

There exists a unique probability measure P on B(S ′(Rd)) with the following property:∫
Ω=S′

ei⟨ω,ϕ⟩P(dω) = e
−1
2
||ϕ||2 , ϕ ∈ S.

where ||ϕ||2 :=
∫
R |ϕ(x)|

2dx and ⟨ω, ϕ⟩ = ω(ϕ) is the action of ω ∈ S ′(Rd) on ϕ ∈ S(Rd).
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Proof. See the reference in the book [Nunno et al., 2009] for the Bochner-Minlos-Sazonov
theorem in the beginning of section 5.1.

with the aid of the The Bochner-Minlos theorem, now the triplet (S ′(Rd),B(S ′(Rd)),P)
is called the white noise probability space.

Definition A.5.2. The (smoothed) white noise process is the measurable mapping

Ŵ : S(Rd)× S ′(Rd) −→ R

given by:
Ŵ(ϕ, ω) = Ŵϕ(ω) = ⟨ω, ϕ⟩, ϕ ∈ S(Rd), ω ∈ S ′(Rd).

As seen from the same book [Nunno et al., 2009], just before section 5.2, one can define
the d-parameter Wiener process W (t), t ∈ R starting from the smothed white noise as:

Ŵϕ(ω) = ⟨ω, ϕ⟩ =
∫
Rd

ϕ(x)dB(x, ω); ω ∈ S ′(Rd).

A.5.2 Chaos Expansion in Terms of Hermite Polynomials

Our aim in this section is to introduce a way to expand any square integrable random
variable, namely for any X ∈ L2(Ω), in terms of, linear combination of some functions
Hαs which are constructed by Hermite functions.

In order to do so, we start with introducing the Hermite polynomials hn(x) are defined
by:

hn(x) := (−1)nex
2/2 d

n

dxn
(
e−x

2/2
)
, n = 0, 1, 2, . . . .

The explicit representations of first few terms are given by

h0(x) = 1, h1(x) = x, h2(x) = x2 − 1, h3(x) = x3 − 3x (A.5.1)

Definition A.5.3. The Hermite functions, which should not be confused with the Her-
mite polynomials, are defined by:

ξn(x) =
π−1/4√
(n− 1)!

e−x
2/2hn−1(

√
2x), n = 1, 2, . . . . (A.5.2)

Remark A.5.4. Some important properties of the Hermite functions are provided below:

• It is a known fact that the collection {ξn}∞n=1 constitutes an orthonormal basis for
L2(R).

• Due to the term e−x
2/2 present in expression (A.5.2), ξn ∈ (S(R)) for all n. This

states that both S(R) ⊆ L2(R) and S(R) is dense in L2(R).

98



• It is another fact that supx∈R |ξn(x)| = O(n−1/12).

Since our aim is to expand any random variable in L2(Ω), first we should define an
orthogonal basis for it. Recall ⟨ω, ξn⟩ := Ŵξn(ω) =

∫
R ξn(x)dB(x, ω), ω ∈ Ω. Let J

denote the set of all finite multi-indices α = (α1, . . . , αm), m = 1, 2, . . . of non-negative
integers αi. If α ∈ J and α ̸= 0, we define

Hα(ω) :=
m∏
j=1

hαj
(⟨ω, ξj⟩) = Im(ξ

⊗α1
1 ⊗̂ . . . ⊗̂ξ⊗αm

m ) = Im(ξ
⊗̂α), ω ∈ Ω. (A.5.3)

where the last equality is proven by Itô in [ITO, 1951]. By convention H0 := 1, moreover
it should be noted that:

E [Hα] = E
[
Im(ξ

⊗̂α)
]
= 0 for α = 0. (A.5.4)

The symbols ⊗ and ⊗̂ denote the regular and symmetrized tensor product respectively.
Namely:

f(x1)⊗ g(x2) := f(x1)g(x2) = (f ⊗ g)(x1, x2)

and
f(x1)⊗̂g(x2) := 1/2[f(x1)g(x2) + f(x2)g(x1)] = (f⊗̂g)(x1, x2).

It turns out, the family {Hα}α∈J is an orthogonal basis for L2(Ω). So we are ready to
introduce the main theorem of this section:

Theorem A.5.5. The Wiener-Itô chaos expansion theorem

Because the family {Hα}α∈J is an orthogonal basis for L2(Ω). For all measurable X ∈
L2(Ω), there exists a unique set of constants cα ∈ R such that:

X =
∑
αinJ

cαHα (A.5.5)

Moreover the isometry holds:

||X||2L2(Ω) =
∑
α∈J

α!c2α

As an example take one dimensional B(x, ω), we know Brownian motion ∈ L2(Ω) since
its second moment exists. Therefore by the above theorem there should be an unique
expansion. Using the definition of smoothed white noise, the brownian motion can be
defined as:

B(x, ω) := ⟨ω, ψ⟩
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where ψ := 1[0,x](y). Because ψ(y) ∈ L2(R), one can expand it using the Hermite
functions:

B(x, ω) := ⟨ω, ψ⟩

=

∫
R
1[0,x](y)dB(y)

=

∫
R

∑
n≥1

(
1[0,x], ξn

)
L2(R)

ξn(y)dB(y)

=
∑
n≥1

(∫ x

0

ξn(y)dy

)∫
R
ξn(y)dB(y)

=
∑
n≥1

(∫ x

0

ξn(y)dy

)
Hϵ(n) , let cn :=

∫ x

0

ξn(y)dy

=
∑
n≥1

cnHϵ(n)

(A.5.6)

where ϵ(n) := (0, 0, . . . , 0, 1, 0, . . . , 0) where the n’th entry is 1 and the rest is zero. Due
to the intrinsic relation of iterated Itô integrals and the Hermite polynomials the chaos
expansion theorem stated above can be reformulated. This new formulation will be the
main tool utilized in this thesis.

Theorem A.5.6. The Wiener-Itô chaos expansion theorem, with iterated Itô integrals

Let (Ω,B,P) be the Wiener space of the interval [0, T ] and X be an element in L2(Ω),
then as stated in [Lanconelli, 2023], X can be uniquely expressed by

X :=
∑
n≥0

In(fn), for some fn s.t. fn ∈ L2
s([0, T ]

n) ∀n. (A.5.7)

Moreover there is the isometry:

||X||2L2(Ω) =
∑
n≥0

n!||fn||2L2(R)

Proof. See section 9.7 in [Karatzas and Shreve, 1991] for the main theorem. For the
isometry part, it is evident from the corollary A.4.3.

Remark A.5.7. The two chaos expansion theorems are actually the same. Their con-
nection can be explained by the following reasoning:

• Because Hermite functions {ξn(x)}n≥1 is an orthonormal basis for L2(R).

• This means that for a set of multi-indices α = (α1, . . . , αm) ∈ J which satisfy
that: |α| := α1 + · · ·+ αm = n, then ξ⊗α1

1 ⊗̂ξ⊗α2
2 ⊗̂ . . . ⊗̂ξ⊗αm

m forms and orthogonal
basis for the space L2(Rn).

100



• In other words, one can expand any function f ∈  L2
s(R) as:

fn =
∑

α∈J , s.t. |α|=n

cαξ
⊗α1
1 ⊗̂ξ⊗α2

2 ⊗̂ . . . ⊗̂ξ⊗αm
m , n = 0, 1, 2, . . .

• Due to the definition provided in expression (A.5.3), Hα := Im(ξ
⊗̂α). Which en-

sures the connection between two theorems.

A.5.3 The Hida Spaces of Stochastic Test Functions and Stochas-
tic Distributions

In this section we will define analogous spaces of S(Rd) and S ′(Rd) that we have defined
in the previous section in relation with L2(Rd). Now we need the stochastic versions of
these two spaces.

Definition A.5.8. For a f :=
∑

α∈J cαHα ∈ L2(Ω) belongs to the so called Hida test
function Hilbert space (S)k if:

||f ||2k :=
∑
α∈J

α!c2α

( m∏
j=1

(2j)αj

)k
, ∀ k ∈ R <∞.

Based on this result, the Hida test function space (S) as the space

(S) =
⋂
k∈R

(S)k,

where fn −→ f as n→ ∞ in (S) if and only if ||fn − f ||k −→ 0 as n→ ∞, for all k.

Definition A.5.9. The Hida distribution space (S)∗

i. Let q ∈ R. The formal sum F =
∑

α∈J bαHα belongs to the Hida distribution
Hilbert space (S)−q if:

||F ||2−q :=
∑
α∈J

α!b2α

( m∏
j=1

(2j)αj

)−q
<∞.

We define the Hida distribution space (S)∗ as:

(S)∗ =
⋃
q∈R

(S)−q,

where Fn −→ F as n → ∞ in (S)∗ if and only if there exists q, such that ||Fn −
F ||−q −→ 0 as n→ ∞.
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ii. For F =
∑

α∈J bαHα ∈ (S)∗, the generalized expectation is defined as:

E [F ] = b0.

Note that if F ∈ L2(Ω) then the generalized expectation coincides with the usual
expectation due to the fact that E [Hα] = 0 for all α ̸= 0.

Remark A.5.10. Due to the definitions above note the relation holds true:

(S) ⊆ (S)k ⊆ L2(Ω) ⊆ (S)−q ⊆ (S)∗

Proof. It is direct verification from the definitions.

The usage of Hida test spaces and Hida distributions in stochastic analysis are similar
to Schwartz space and tempered distributions space in functional analysis. The logic is
to see define a more generalized feature of derivative and see how the elements of the
wilder set will behave, when they are acted on the regular set elements. One example is
given below:

Consider the step function

1[t≥0] =

{
0, if t < 0,

1, if t ≥ 0.

that the derivative can’t be defined in the normal sense because of the discontinuity at
t = 0. However we can define the action of 1[t≥0] on any regular function belongs to
S(R) as ⟨1[t≥0], ϕ⟩ for any ϕ ∈ S(R):

⟨1[t≥0], ϕ⟩ :=
∫
R
1[t≥0]ϕ(t)dt,

so that 1[t≥0] ∈ S ′(R). Because the actual derivative of 1[t≥0] does not exists we go on
to define the so called distributional derivative as follows:

⟨ d
dt
1[t≥0], ϕ⟩ := −⟨1[t≥0],

d

dt
ϕ⟩ (A.5.8)

Note that if 1[t≥0] was also differentiable then the expression (A.5.8) is again valid, but
because now we define it for functions that can’t be differentiated traditionally, it is a
generalization of traditional derivative. We use identity (A.5.8) to go on as:∫

R

d

dt
1[t≥0]ϕ(t)dt = −

∫
R
1[t≥0]ϕ

′(t)dt

= −
∫ ∞

0

ϕ′(t)dt

= ϕ(0)

=

∫
R
δ0(t)ϕ(t)dt

(A.5.9)
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So we see that d
dt
1[t≥0] behaves as δ0(t) when applied on a function belonging to a

Schwartz space. This is why although the derivative of 1[t≥0] is not defined at t = 0, its
distributional derivative is a dirac delta function centered around 0.

One of our aims in this section with the Hida test function space and the family of
hida distributions is doing the same for Brownian motion. Although it is known by
remark A.2.3 that Brownian motion is nowhere differentiable, we will be able to define
a distributional derivative of it in the following sense. Define the singular white noise
process as:

Ŵ(x) :=
∑
n≥1

ξn(x)Hϵ(n) , (A.5.10)

where the function Ŵ(x) ∈ (S)∗ and bearing in mind the remark A.5.4, it can be checked
via,

||Ŵ(x)||2−q :=
∑
n≥1

ξ2n(x) (2n)
−q ≤

∑
n≥1

sup
x∈R

|ξ2n(x)|(2n)−q ≤ C
∑
n≥1

1

nq+1/6
<∞.

for any q ≥ 2.

Note the relation of this definition to the definition of Brownian motion in the white
noise probability space in (A.5.6). The explicit relation is given by:

Ŵ(x) =
∑
n≥1

d

dx

∫ x

0

ξn(y)dyHϵ(n) =
d

dx
B(x, ω)

So white noise really acts like a form of derivative of Brownian motion. An equal way
of defining it is by realizing:

Ŵ(x) =
∑
n≥1

d

dx

∫ x

0

ξn(y)dyHϵ(n)

=
∑
n≥1

d

dx

∫
R
1[0,x](y)ξn(y)dyHϵ(n)

=
∑
n≥1

∫
R

d

dx
1[0,x](y)ξn(y)dyHϵ(n)

=
∑
n≥1

∫
R
− d

dx
1[0,∞)(y − x)ξn(y)dyHϵ(n) since 1[0,x] = 1[0,∞) − 1[x,∞)

=
∑
n≥1

∫
R

d

dy
1[y−x≥0]ξn(y)dyHϵ(n)

=
∑
n≥1

∫
R
δx(y)ξn(y)dyHϵ(n) as done in (A.5.9)

= Wδx(ω) = ⟨ω, δx⟩

103



using the definition of white noise in A.5.10. Note that an alternative expression for the
singular white noise Ŵ(x) can be given using the last identity above, using the smothed
white noise with limn→∞ ϕn = δx where ϕn ∈ (S) ∀n so that

Ŵ(x) = ⟨ω, δx⟩ = lim
n→∞

⟨ω, ϕn⟩ = lim
n→∞

∫
R
ϕn(x)dBx =

∫
R
δxdBx. (A.5.11)

So this is how you singularize the smothed white noise.

A.5.4 The Wick Product

One key advantage of working in spaces (S) and (S)∗ is, the existence of a well defined
product operator unlike of spaces S(Rd) and S ′(Rd). This natural product is called the
Wick product and it is a fundamental study of stochastic differential equations, both
ODE and PDE. In the following we formally let d = 1 for simplicity but any idea can
be further generalized to d-dimensions.

Definition A.5.11. If X :=
∑

α cαHα ∈ (S)∗ and Y :=
∑

β bβHβ ∈ (S)∗, then the
Wick product, X ⋄ Y of X and Y is defined by:

X ⋄ Y :=
∑
α,β

cαbβHα+β =
∑
γ

( ∑
α+β=γ

cαbβ

)
Hγ

when one refers zγ :=
(∑

α+β=γ cαbβ

)
it is easy to see that

If X, Y ∈ (S)∗ ⇒ X ⋄ Y :=
∑
γ

zγHγ ∈ (S)∗

If X, Y ∈ (S) ⇒ X ⋄ Y :=
∑
γ

zγHγ ∈ (S)∗.

However as also explained in the book [Nunno et al., 2009], if X, Y ∈ L2(Ω) ⇏ X ⋄
Y ∈ L2(Ω) in general. One key example of Wick product is the wick product of 2
smooth white noises. Let X = Ŵϕ(ω) and Y = Ŵψ(ω) in the above definition where
ϕ, ψ ∈ S(Rx). Then

Ŵϕ(ω) ⋄ Ŵψ(ω) =
∑
k,l

ckblHϵ(k)+ϵ(l)

because

Hϵ(k)+ϵ(l) =

{
Hϵ(k) ·Hϵ(l) , if k ̸= l,

H2
ϵ(k)

− 1, if k = l.

due to the definition of Hα from expression (A.5.3).

Corollary A.5.12. Here some properties of the Wick product will be listed:

• If X and Y are deterministic, then X ⋄ Y = X · Y .
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• X ⋄ Y = Y ⋄X. (commutative law).

• X ⋄ (Y ⋄ Z) = (X ⋄ Y ) ⋄ Z (associative law).

• X ⋄ (Y + Z) = (X ⋄ Y ) + (X ⋄ Z) (distirbutive law).

• In general X · (Y ⋄ Z) ̸= (X · Y ) ⋄ Z.

• When X :=
∑

α cαHα ∈ L2(Ω) and Y :=
∑

β bβHβ ∈ L2(Ω), then

E[X ⋄ Y ] = cαbβ = E[X]E[Y ],

due to the fact that E[Hα] = 0 as explained in equation (A.5.4). Note that this
identity does not assume independence of X and Y .

Due to the commutation relation, one can define the Wick powers as

X⋄n := X ⋄ · · · ⋄X (n times) for X ∈ (S)∗, n ∈ {1, 2, . . . }

and by convention X⋄0 = 1. Going on with the same mentality, The Wick exponential
of X ∈ (S)∗ is defined as:

exp⋄(X) :=
∑
n≥0

1

n!
X⋄n. (A.5.12)

Proposition A.5.13. It should be noted that, the wick exponential can be represented
fully analytically without using any Wick product at all as:

exp⋄{Bt} := exp

{
Bt −

t

2

}
Proof. Using the definition of Wick exponential given in expression (A.5.12) and letting
X := Bt one can write:

exp⋄{Bt} =
∞∑
n=0

1

n!
B⋄n
t =

∞∑
n=0

1

n!
(I1(1))

⋄n

=
∞∑
n=0

1

n!

(
h1(I1(1))

)⋄n
=

∞∑
n=0

1

n!
H⋄n

ϵ1

=
∞∑
n=0

1

n!
Hnϵ1 =

∞∑
n=0

1

n!
hn
(
I1(1)

)
= exp{I1(1)−

t

2
} = exp

{
Bt −

t

2

}
where the first equality in the last line is given by the generating formula for Hermite
polynomials :

exp

{
tx− t2

2

}
:=

∞∑
n=0

tn

n!
hn(x).
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It turns out the Proposition A.5.13 can be further generalized to cases other than Bt.
The theorem below explains it:

Theorem A.5.14. Let ϕ ∈ L2(Rd). Then

exp⋄
{∫

Rd

ϕ(x)dBx

}
= exp

{∫
Rd

ϕ(x)dBx −
1

2

∫
Rd

ϕ2(x)dx

}
Proof. See section 5.3.4 in [Nunno et al., 2009] for the derivation.

Most of the time the Wick product acts similar to a regular algebra, for example

(X + Y )⋄2 = X⋄2 + 2X ⋄ Y + Y ⋄2,

and similarly:
exp⋄(X + Y ) = exp⋄(X) ⋄ exp⋄(Y ).

Lastly another crucial property of Wick product is called the chain rule of Wick product:

d

dt
f ⋄(X(t)) = (f ′)⋄(X(t)) ⋄ d

dt
X(t)

Using all these properties, the main advantage of Wick product in stochastic calculus is
how it regularizes the stochastic calculus to classic calculus once you know the properties
of it.

Theorem A.5.15. Let Xt be an Itô integrable process. Then:∫
Rd

XtdBt =

∫
Rd

Xt ⋄ Ŵ(t)dt

where Ŵ is the White noise process defined in expression (A.5.10).

By the theorem A.5.15 one can see how the usage of Wick product and the white
noise process can be utilized to transform an Itô integral to a Lebesgue integral of
Xt ⋄ Ŵ(t) ∈ (S)∗. One example where theorem A.5.15 is very useful is the following:
Consider d = 1 and Xt = Bt, then∫ T

0

BtdBt =
1

2

(
B2(T )− T

)
when one applies Itô formula as given in expression (A.3.2) to the function φ(t, Bt) := B2

t .
However one can also utilize the wick product to reach to the correct outcome as:∫ T

0

BtdBt =

∫ T

0

Bt ⋄B′
tdt =

1

2
B⋄2(T ) =

1

2

(
B2(T )− T

)
Since the natural emergence and usefulness of Wick product is already mentioned lastly
it needs to eb said that. Due to the connections of theorems A.5.5 and A.5.6, for any
X ∈ L(Ω) we can already define the Wick product in terms of iterated Itô integrals.
However it is more useful to define it in full generality in the following section:
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A.5.5 Wick Product for Iterated Itô Integrals Defined in Spaces
G and G∗

Definition A.5.16. Let k ∈ R. Then the space Gk consists of all expansions as:

X =
∑
n≥0

In(fn),

such that:

||X||Gk
=

(∑
n≥0

n!e2kn||fn||2L2(Rn)

)1/2

<∞. (A.5.13)

∀k ∈ R and for every:

X =
∑
n≥0

In(fn), Y =
∑
n≥0

In(gn),

the space Gk is a Hilbert space with the inner product defined as:

(X, Y )Gk
:=
∑
n≥0

n!e2kn(fn, gn)L2(Rn).

As one can see from the expression (A.5.13), as the k value increases, the space Gk
includes more regular random variables and with smaller or even negative k values, the
included random variables become wilder.

Definition A.5.17. Because of the relation k1 ≤ k2 ⇒ Gk2 ⊆ Gk1 (which is evident from
expression (A.5.13) above). We define:

G :=
⋂
k>0

Gk

Now we are going to define the so called dual space of G, the G∗. Because the space G is
made of highly regular random variables in the sense of the norm in expression (A.5.13),
the dual space will include all kinds of irregular random variables in the following sense:

Definition A.5.18. G∗ is defined as:

G∗ :=
⋃
k<0

Gk.

Note that due to the union present, the set G∗ will include wilder and wilder random
variables with each increasing k. All these facts will be summarized in the remark below:

Remark A.5.19. Note that for an element Y ∈ G∗, it can be represented as the formal
sum:

Y =
∑
n≥0

In(gn),

where gn ∈ L2
s(Rn) and we know for some k ∈ R, ||Y ||Gk

<∞ whereas a random variable
X ∈ G satisfies ||X||Gk

for all k ∈ R.
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The following relation can be proven:

(S) ⊂ G ⊂ L(Ω) ⊂ G∗ ⊂ (S)∗.

and similarly again spaces G and G∗ are closed under Wick product.

Although the space G∗ is not big enough to include the singular white noise Ŵ , still it
is very useful to include solutions to stochastic differential equations.

In these new spaces the Wick product is defined as:

Definition A.5.20. Consider X :=
∑

n≥0 In(fn) ∈ G∗ and Y :=
∑

m≥0 Im(gm) ∈ G.
Then the Wick product can be alternatively defined as:

X ⋄ Y :=
∞∑

n+m=0

In+m(fn⊗̂gm)

A.6 The Malliavin Derivative

The Malliavin derivative is a way of taking the derivative of a stochastic process with
respect to the chance parameter ω. After a series of definitions it will be more apparent.

A.6.1 The Brownian Functional

Definition A.6.1. A random variable F is called a Brownian functional if F ∈ FB
T .

This alternatively means that the random variable F is a measurable function of Brown-
ian sample paths. So if the entire Brownian path is known, then the value of this random
variable F is also known. Some examples of Brownian functionals are given below:

• F1 := ϕ(Bt1 , . . . , Btn), where 0 ≤ t1 ≤ . . . ≤ tn ≤ T and ϕ : Rn → R is a
measurable function;

• F2 :=
∫ T
0
ψ(s, Bs)ds, where ψ : [0, T ]× R → R is a measurable function such that

P(
∫ T
0
|ψ(s, Bs)|ds < +∞) = 1;

• F3 :=
∫ T
0
χ(s, Bs)dBs, where χ : [0, T ]×R → R is a measurable function such that

P(
∫ T
0
|χ(s, Bs)|2ds < +∞) = 1;

• F4 := supt∈[0,T ] |Bt|.

The most important Brownian functionals for our purposes are the strong solutions of
stochastic differential equations (SDEs) with deterministic initial condition:

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, 0 < t ≤ T,

X0 = x ∈ R.
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This is due to the fact that, a strong solution of an SDE {Xt}t∈[0,T ] is by definition an
{FB

t }t≥0 adapted stochastic process ∀t ∈ [0, T ]. Because FB
t ⊆ FB

T , we have for any
fixed t ∈ [0, T ], Xt is a Brownian functional.

Definition A.6.2. A smooth Brownian functional is defined as:

F := φ(I(h1), . . . , I(hn)),

where h1, . . . , hn ∈ L2([0, T ]), I(hi) :=
∫ T
0
hi(t)dBt and φ : Rn → R is a C∞(Rn)

function having all its partial derivatives and its growth at infinity is at most polynomial.

The family of these smooth Brownian functionals are denoted by M.

We will see that the space M is a toy space for us to prove some properties for the
Brownian functionals, because it turns out that you can generalize all the properties
you have in this space to larger spaces like Lp(Ω) since M ⊂ Lp(Ω) for any p ≥ 1 using
theorem A.6.3 that will be introduced later in this section. Lastly note that the space
M is closed under multiplication and addition.

Considering t ∈ [0, T ] and h ∈ L2([0, T ]) the following random variables are examples of
smooth Brownian functionals.

1. I(h) ⇒ φ(x) = I(x) where I(x) := x is defined as the identity function.

2. B2
t ⇒ φ(x) = x2 and h := 1[0,t].

3. sin(I(h))BT ⇒ φ(x1, x2) = sin(x1)x2, moreover h1(x) = h and h2(x) = 1[0,T ].

However note that the Brownian functionals

|Bt| and eBt (A.6.1)

are not smooth Brownian functionals.

Theorem A.6.3. Let p ≥ 1. If F is a Brownian functional in Lp(Ω), then ∃ a sequence
{Fn}n≥1 in space M such that:

Fn → F in Lp(Ω).

So by theorem A.6.3, we can generalize the findings regarding space M to the more
general one Lp(Ω). For example the 2 previous examples in expression (A.6.1) are
elements in Lp(Ω), then due to theorem A.6.3 there must be sequences for which will
converge to them. Indeed they are:(

B2
t −

1

n

)1/2
Lp(Ω)−−−→ |Bt|(

1 +
Bt

n

)n
Lp(Ω)−−−→ eBt

as n→ ∞. As one can see the objects on the LHS are all elements in M∀n ≥ 1.
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A.6.2 The Malliavin Derivative for Smooth Brownian Func-
tionals

The main aim in defining a derivative is to see how function depends on its variables.
In order to see how a Brownian functional depends based on the Brownian path, one
thing that can be done is to use variational calculus and perturb the Brownian path a
little and then to check how does the function behave. One example will be given below
in this section.

Let F := φ(I(h1), . . . , I(hn)) ∈ M then, for h ∈ L2([0, T ]) and ϵ > 0 we consider the
following perturbation to the Brownian path:{

B̃t

}
t∈[0,T ]

→
{
Bt + ϵ

∫ t

0

h(s)ds

}
t∈[0,T ]

.

Now we will see how does the Brownian functional of our interest F will change according
to this perturbation to the path. Note that the differential dB̃t can easily be found using
Itô formula (A.3.6). In the light of all that, we note that, under this perturbation:

I(hi) =

∫ T

0

hi(t)dB̃t →
∫ T

0

hi(t)(dBt + ϵh(t)dt)

=

∫ T

0

hi(t)dBt + ϵ

∫ T

0

hi(t)h(t)dt

= I(hi) + ϵ⟨hi, h⟩L2([0,T ]),

where ⟨hi, h⟩L2([0,T ]) denotes the inner product of hi(t) and h(t) functions and for the
sake of simplicity from now on it will be denoted by ⟨hi, h⟩. So from the above expression
we see how a perturbation to the Brownian path affects the related Itô integral. Using
this fact we see how the Brownian function F is affected:

F := φ(I(h1), . . . , I(hn)) → φ(I(h1) + ϵ⟨h1, h⟩, . . . , I(hn) + ϵ⟨hn, h⟩) := Fϵ.

Now in order to see the change in F as a result of this perturbation, we differentiate Fϵ
with respect to ϵ and let ϵ = 0 since we don’t actually care about Fϵ but rather see the
dependence of the original F .

dFϵ
dϵ

∣∣∣
ϵ=0

=
d

dϵ
φ
(
I(h1) + ϵ⟨h1, h⟩, . . . , I(hn) + ϵ⟨hn, h⟩

)∣∣∣
ϵ=0

=
n∑
i=1

∂xiφ
(
I(h1), . . . , I(hn)

)
⟨hi, h⟩

=

∫ T

0

(
n∑
i=1

∂xiφ
(
I(h1), . . . , I(hn)

)
hi(t)

)
h(t)dt

=
〈 n∑

i=1

∂xiφ
(
I(h1), . . . , I(hn)

)
hi(t), h

〉
.

(A.6.2)
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where the last two lines can also be interpreted as the directional derivative of the
Brownian functional along the function h(t). In line with this define the Malliavin
derivative of a smooth Brownian functional.

Definition A.6.4. The Malliavin derivative of a smooth Brownian functional in the
form

F := φ
(
I(h1), . . . , I(hn)

)
,

is the stochastic process denoted as {DtF}t∈[0,T ] and it is defined as:

DtF :=
n∑
i=1

∂xiφ
(
I(h1), . . . , I(hn)

)
hi(t), t ∈ [0, T ].

Similarly, the directional derivative of F along the function h(t) is defined as the pro-
jection of DtF along h(t) as:

DhF := ⟨DtF, h⟩.

Lemma A.6.5. For F ∈ M and h ∈ L2([0, T ]) one can say that:

E[⟨DF, h⟩] = E[FI(h)]

.

Proof. Due to the expression (A.6.2), we know that

dFϵ
dϵ

∣∣∣
ϵ=0

= ⟨DF, h⟩.

So it can be said that:

E[⟨DF, h⟩] = E
[
dFϵ
dϵ

∣∣∣
ϵ=0

]
= lim

ϵ→0

E[Fϵ]− E[F ]
ϵ

.

By the celebrated Girsanov theorem, the one can say that there exists a measure Q, such

that in this measure, the process
{
Bt + ϵ

∫ t
0
h(s)ds

}
t∈[0,T ]

is translated to {Bt}t∈[0,T ]. The
explicit relation is given below:

dQ
dP

= exp

{
ϵI(h)− ϵ2

2
||h||2

}
.

where the symbol ||h||2 :=
(∫ T

0
h2(t)dt

)1/2
. So now we can use this fact to transfer the

expectation of Fϵ in measure P to an expectation of F in measure Q.

EP[Fϵ] = EQ[F ] = EP

[
F · dQ

dP

]
,
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so now we drop the subscript P under the expectations since we understand them with
respect to measure P.

E[Fϵ] = E
[
F exp

{
ϵI(h)− ϵ2

2
||h||2

}]
.

Substituting this identity to the expression before:

E[⟨DF, h⟩] = lim
ϵ→0

E[Fϵ]− E[F ]
ϵ

= lim
ϵ→0

E
[
F exp

{
ϵI(h)− ϵ2

2
||h||2

}]
− E[F ]

ϵ

= E

F lim
ϵ→0

exp
{
ϵI(h)− ϵ2

2
||h||2

}
− 1

ϵ


= E[FI(h)].

(A.6.3)

Lemma A.6.5 can be used to prove a more general and important result, that is:

Proposition A.6.6. Let F,G ∈ M and h ∈ L2([0, T ]), then:

E[⟨DF, h⟩G] = −E[F ⟨DG, h⟩] + E[FGI(h)].

Proof. The proof is essentially the same of Lemma A.6.5 once you notice

d

dϵ
FϵGϵ

∣∣∣
ϵ=0

= Gϵ
dFϵ
dϵ

∣∣∣
ϵ=0

+ Fϵ
dGϵ

dϵ

∣∣∣
ϵ=0
.

A.6.3 Malliavin Derivative of a More General Set of Functions

The next proposition will state the closability of the Malliavin operator D.

Proposition A.6.7. Let p ≥ 1. If we have a sequence {Fn}n≥1 such that Fn ∈ M∀n ≥
1, which is a sequence converging to 0 in Lp(Ω) and the sequence {DFn}n≥1 converges
to a random variable η in Lp(Ω;L2([0, T ])), then η = 0, P × dt-almost surely. In other
words it is said that the operator D is closable from Lp(Ω) to L(Ω;L2([0, T ])), for all
p ≥ 1.

Proof. The statement in the proposition, {DFn}n≥1 converges to η in L(Ω;L2([0, T ]))
means that:

lim
n→∞

E(||DFn − η||p) = 0.
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This implies that ⟨DFn, h⟩ → ⟨η, h⟩ in Lp(Ω;L2([0, T ])). Similarly:

lim
n→∞

E[⟨DFn, h⟩G] = E[⟨η, h⟩G],

for all G in a dense set of Lq(Ω) such that 1
p
+ 1

q
= 1.

Define Mb := {G ∈ M : G and GI(h) are bounded for all h ∈ L2([0, T ])} and note that
Mb is dense in Lq(Ω) for all q ∈ [1,∞]. Now use the Proposition A.6.6 to show that:

E[⟨η, h⟩G] = lim
n→∞

E[⟨DFn, h⟩G]

= lim
n→∞

(
− E[Fn⟨DG, h⟩] + E[FnGI(h)]

)
= 0.

Due to the fact that Fn converges to 0. Now, because G ∈ Mb which is a dense subset
of Lq(Ω) for all q ∈ [1,∞], having E[⟨η, h⟩G] = 0 for all G ∈ Mb implies ⟨η, h⟩ = 0
P-a.s. (recall to prove P(F = 0) = 1 for F ∈ Lp, one can just show E[FG] = 0 for all G
in a dense subset of Lq with 1

p
+ 1

q
= 1). Moreover since ⟨η, h⟩ = 0 for all h ∈ L2([0, T ]),

similarly this implies η = 0 dt-a.s. In total this means η = 0, P× dt-a.s.

Now the space of Malliavin differentiable Brownian functionals will be defined.

Definition A.6.8. For p ≥ 1, a Brownian functional F belongs to the space D1,p, if it
satisfies 2 conditions: if ∃ a sequence {Fn}n≥1 of smooth Brownian functionals such that

1. Fn
Lp(Ω)−−−→ F .

2. {DFn}n≥1 converges to a limit in Lp(Ω;L2([0, T ])).

In this case we call
DF := lim

n→∞
DFn in Lp(Ω;L2([0, T ])),

where DF is called the Malliavin derivative of F . Also note that F ∈ D1,p satisfies that:

||F ||1,p :=
(
E[|F |p] + E[||DF ||p]

)1/p
<∞

.

One example would be the following:

Example A.6.9. Note that F := |Bt| and G := eBt belongs to D1,p for any p ≥ 1. It
should be apparent that F ;G /∈ M and that for any p ≥ 1 we have

M ∋ Fn =

(
1

n
+B2

t

)1/2
Lp(Ω)−−−→ F,

and

S ∋ Gn :=

(
1 +

Bt

n

)n
Lp(Ω)−−−→ G.

113



Then we can carry on the Malliavin derivatives of smooth Brownian functionals:

DFn :=
Bt1[0,t]√
1
n
+B2

t

Lp(Ω;L2([0,T ]))−−−−−−−−−→ sgn(Bt)1[0,t],

and

DGn :=

(
1 +

Bt

n

)n−1

1[0,t]
Lp(Ω;L2([0,T ]))−−−−−−−−−→ eBt1[0,t].

This way in the light of Definition A.6.8, it can be said that the Malliavin derivative of
non-smooth Brownian functionals F and G are defined as:

DF := D|Bt| = sgn(Bt)1[0,t], DG := DeBt = eBt1[0,t].

Due to this relation we see explicitly one can generalize it as in Proposition A.6.10 below.

Proposition A.6.10. Let ψ : Rm → R is a continuously differentiable function with
bounded partial derivatives and F = (F1, . . . , Fm) is a random vector with components
in D1,p, then ψ(F ) ∈ D1,p and

D(ψ(F )) =
m∑
i=1

(∂xiψ)(F )DFi.

Where this definition of Malliavin derivative makes it more apparent why it is called a
derivative.

One can also define higher order Malliavin derivatives.

Definition A.6.11. Let p ≥ 1 and k ∈ N; a Brownian functional F belongs to the space
Dk,p is there exists a sequence {Fn}n≥1 of smooth Brownian functionals such that:

1. Fn
Lp(Ω)−−−→ F .

2. {DjFn}n≥1 converges to a limit in Lp(Ω;L2([0, T ]j)), for all j ∈ {1, . . . , k}.

If so, for j ∈ {1, . . . , k} we define

DjF := lim
n→∞

DjFn in Lp(Ω;L2([0, T ])),

and the term DjF is called the j’th order Malliavin derivative of F . The random vari-
ables belonging to the space Dk,p satisfy the condition:

||F ||k,p :=

(
E[|F |p] +

k∑
j=1

E
[
||DjF ||p

L2([0,T ]j)

])1/p

<∞,

where due to convention we set D0,p := Lp(Ω) which results in the identity ||F ||0,p :=
E[|F |p]1/p.
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The technical definition of Dk,p is the closure of M with respect to the norm || · ||k,p.
From the definition above the following inclusions can be deducted:

Dl,q ⊆ Dk,p ⊆ Lp(Ω) for q ≥ p and l ≥ k.

A.7 The Divergence Operator

In this section we’re going to represent the adjoint operator of the Malliavin derivative
operator D.

Definition A.7.1. We plan to define the adjoint operator of D using the virtue of the
inner product. For this purpose, let Dom(δ) be the collection of stochastic processes
u ∈ L(Ω;L2([0, T ])) such that

| E[⟨DG, u⟩] |≤ Cu||G||2 for all G ∈ D1,2,

where Cu is a positive constant depending on u. If u ∈ Dom(δ), we define δ(u) to be the
unique element in L2(Ω) characterized by the identity

E[Gδ(u)] = E[⟨DG, u⟩], for all G ∈ D1,2. (A.7.1)

The random variable δ(u) is called divergence of u and Dom(δ) is the domain of the
divergence operator δ.

First it should be noted that the expression (A.7.1) is the generalziation of the Lemma
A.6.5 from smooth Brownian functionals to D1,2. Because this relation will be useful in
the proofs of first two properties in A.7.2.

Proposition A.7.2. Now we list properties of the divergence operator:

1. L2([0, T ]) ⊂ Dom(δ) and δ(h) = I(h), for all h ∈ L2([0, T ]);

2. If F ∈ M and h ∈ L2([0, T ]), then Fh ∈ Dom(δ) and

δ(Fh) = Fδ(h)− ⟨DF, h⟩. (A.7.2)

3. For u, v ∈ Dom(δ) and α, β ∈ R, then αu+ βv ∈ Dom(δ) and

δ(αu+ βv) = αδ(u) + βδ(v)

4. If u ∈ Dom(δ), then E[δ(u)] = 0.

5. δ is a closed operator. Namely if {un}n≥1 ⊆ Dom(δ) such that un
L2(Ω;L2([0,T ]))−−−−−−−−→ u

and δ(un)
L(Ω−−→ U , then we can say that u ∈ Dom(δ) and δ(u) = U .

Proof. Here the proofs will be provided of the Proposition A.7.2.

115



1. The proof is the same with the integration by parts formula in (A.6.6).

2. First, it should be verified that Fh ∈ Dom(δ) and then the rest will be proven.
Let G ∈ D1,2, then the equation (A.6.6) gives

E[⟨DG,Fh⟩] = E[⟨DG, h⟩F ]
= −E[G⟨DF, h⟩] + E[GFδ(h)]
= E[G

(
Fδ(h)− ⟨DF, h⟩

)
] (A.7.3)

≤ ||G||2 ||Fδ(h)− ⟨DF, h⟩||2.

Which in turn, yields:

| E[⟨DG,Fh⟩] |≤ CFh||G||2, for all G ∈ D1,2,

It can be seen this inequality proves that Fh ∈ Dom(δ). In addition to this,
another consequence of expression (A.7.3), can be used to directly verify:

E[⟨DG,Fh⟩] = E[⟨G, δ(Fh)⟩] = E[G
(
Fδ(h)− ⟨DF, h⟩

)
], ∀G ∈ D1,2

⇒ δ(Fh) = Fδ(h)− ⟨DF, h⟩

3. If u, v ∈ Dom(δ), then for all G ∈ D1,2, it is true that

| E[⟨DG, u⟩] |≤ Cu||G||2 and | E[⟨DG, v⟩] |≤ Cv||G||2.

Thus,

| E[⟨DG,αu+ βv⟩] | ≤ |α| | E[⟨DG, u⟩] | +|β| | E[⟨DG, v⟩] |
≤
(
|α|Cu + |β|Cv

)
||G||2

proving that αu+ βv ∈ Dom(δ). Moreover,

E[DG, δ(αu+ βv)] = E[⟨DG,αu+ βv⟩] = αE[⟨DG, u⟩] + βE[⟨DG, v⟩]
= αE[Gδ(u)] + βE[Gδ(v)] = E[G

(
αδ(u) + βδ(v)

)
],

for any G ∈ D1,2. This gives δ(αu+ βv) = αδ(u) + βδ(u).

4. The property is proven once G = 1 in expression (A.7.1).

5. By assumption

E[⟨DG, un⟩] = E[Gδ(un)], for all G ∈ D1,2.

The left hand side converges, as n tends to infinity, to E[⟨DG, un⟩] and the right
hand side converges to E[GU ]. Therefore,

E[⟨DG, u⟩] = E[GU ], for all G ∈ D1,2,

which gives u ∈ Dom(δ) and δ(u) = U .
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Remark A.7.3. It is worth to mention that, the divergence operator is a generalization
of the Itô integral to non adapted processes. This means all Itô integrable stochastic
processes is included in Dom(δ).

Namely if vt is an Itô integrable process, then:

δ(v) :=

∫ T

0

vtdBt,

where the right hand side is the Itô integral of vt, interpreted as in Chapter A.2.2.

However if a stochastic process u is not adapted, we utilize the symbol

δ(u) =

∫ T

0

utδBt.

The divergence operator δ coincides with an extension of the Itô integral to non adapted
stochastic processes introduced by Skorohod in 1975. This is why the divergence operator
δ is also called Skorohod integral.

This result is something intuitive since the adjoint operator of the Malliavin derivative
was expected to be in some form of integral.

Proposition A.7.4. Define ut be a stochastic process in the form

ut :=
n∑
j=1

Fjhj(t), t ∈ [0, T ], (A.7.4)

where Fj ∈ M and hj ∈ L2([0, T ]), for all j ∈ {1, . . . , n}. Then,

Dtδ(u) = ut + δ(Dtu), t ∈ [0, T ]. (A.7.5)

Proof. By using the expression (A.7.2) one gets:

δ(u) = δ

(
n∑
j=1

Fjhj

)
=

n∑
j=1

δ(Fjhj)

=
n∑
j=1

Fjδ(hj)−
n∑
j=1

⟨DFj, hj⟩.

In addition to that, note the expression:

Dtus =
n∑
j=1

DtFjhj(s),
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is also in the form of expression (A.7.4), since DtF ∈ M. Therefore:

Dtδ(u) = Dt

(
n∑
j=1

Fjδ(hj)−
n∑
j=1

⟨DFj, hj⟩

)

=
n∑
j=1

DtFjδ(hj) +
n∑
j=1

Fjhj −
n∑
j=1

⟨DtDFj, hj⟩

=
n∑
j=1

Fjhj(t) +
n∑
j=1

DtFjδ(hj)−
n∑
j=1

⟨DDtFj, hj⟩

= ut +
n∑
j=1

DtFjδ(hj)−
n∑
j=1

(
δ(DtFjhj) +DtFjδ(hj)

)
by (A.7.2)

= ut + δ(Dtu).

Remark A.7.5. The formula (A.7.5) can be extended to a wider class of processes while
the identity is preserved. Essentally, when u is an Itô integrable process, formula (A.7.5)
shows how to Malliavin-differentiate an Itô integral:

Dt

∫ T

0

usdBs = Dtδ(u) = ut + δ(Dtu)

= ut +

∫ T

0

DtusdBs = ut +

∫ T

t

DtusdBs.

due to Itô integrable processes being adapted to FB
t .

Where this remark is basically showing us how to take the Malliavin derivative of an Itô
integral analogous to the Leibniz rule of regular calculus. So with the help of this final
remark we report all the necessary tools of stochastic calculus which are required in the
thesis.

A.8 Malliavin Derivative and Divergence Operator

of Iterated Itô Integrals

First we mention the two notable dense subsets of L2(Ω):

F :=

{
M∑
n=0

In(hn), for some M ∈ N ∪ {0}, h0 ∈ R and hn ∈ L2
s([0, 1]

n), n = 1, ...,M

}
,

where the term In(hn) is the n-iterated Itô integral of function hn, as defined in Chapter
A.4. This set collects the random variables with a finite order chaos expansion, and

E :=

{
E(f) :=

∑
n≥0

In

(
f⊗n

n!

)
, for some f ∈ L2([0, 1])

}
, (A.8.1)
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which is the family of the so-called stochastic exponentials. We saw in the previous
section that the Malliavin derivative acts analogously to Itô integrals as regular deriva-
tives act to regular integrals. In this section we’re going to explain how they will affect
the multiple Itô integrals. The Malliavin derivative of Φ =

∑M
n=0 In(hn) ∈ F, denoted

{DxΦ}x∈[0,1], is the element of L2([0, 1]; F) defined by

DxΦ :=
M−1∑
n=0

(n+ 1)In(hn+1(·, x)), x ∈ [0, 1].

For l ∈ L2([0, 1]) and Φ =
∑M

n=0 In(hn) ∈ F, we also write

DlΦ := ⟨DΦ, l⟩L2([0,1]) =
M−1∑
n=0

(n+ 1)In

(∫ 1

0

hn+1(·, y)l(y)dy
)

=
M−1∑
n=0

(n+ 1)In (hn+1 ⊗1 l)

for the directional Malliavin derivative of Φ along l. Here, we denote the r-th order
contraction of hn and hm by hn ⊗r hm, i.e.

(hn ⊗r hm)(x1, ...., xn+m−2r)

:=

∫
[0,1]r

hn(x1, ..., xn−r, y1, ..., yr)hm(y1, ..., yr, xn−r+1, ..., xn+m−2r)dy1 · · · dyr.

We have:

DxE(f) = f(x)E(f), x ∈ [0, 1] and DlE(f) = ⟨f, l⟩L2([0,1])E(f).

where E(f) is the stochastic exponential of function f as introduced in expression (A.8.1).
If we now take l ∈ L2([0, 1]), Φ =

∑M
n=0 In(hn) ∈ F and Ψ =

∑K
n=0 In(gn) ∈ F, we can

write

E[DlΦ ·Ψ] = E[Φ ·D⋆
lΨ],

where

D⋆
lΨ :=

K+1∑
n=1

In(l⊗̂gn−1)

is the adjoint operator of Malliavin derivative, which we called the divergence operator
in Chapter A.7. Moreover

(l⊗̂gn−1)(x1, ..., xn) :=
1

n

n∑
i=1

f(xi)gn−1(x1, ..., xi−1, xi+1, ..., xn).
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The following identity holds:

D⋆
lΨ+DlΨ = Ψ · I1(l)

which is essentially a direct result of the expression (A.7.2) given that l is a deterministic
function. Carrying on, we also introduce the act of the adjoint of Dx, denoted δ on Φ(·):

δ(Φ(·)) :=
M∑
n=0

In+1(h̃n) ∈ F,

where h̃n stands for the symmetrization of hn with respect to the n + 1 variables
x1, ..., xn, x. It is also worth to mention that D⋆

lΨ it is sometimes written as Φ ⋄ δ(l).

A.8.1 Second Quantization Operators

Let A : L2([0, 1]) → L2([0, 1]) be a bounded linear operator; for Φ =
∑M

n=0 In(hn) ∈ F

we define the second quantization operator of A as

Γ(A)Φ :=
M∑
n=0

In
(
A⊗nhn

)
,

and the differential second quantization operator of A as

dΓ(A)Φ :=
M∑
n=1

In

(
n∑
i=1

Aihn

)
,

where Ai stands for the operator A acting on the i-th variable of hn. Notice in addition
that for A being the identity, we recover from dΓ(A) the well known number operator :

NΦ =
M∑
n=1

nIn (hn) .

The following identities hold true:

E[Γ(A)Φ] = E[Φ]; E[dΓ(A)Φ] = 0;

E[Γ(A)Φ ·Ψ] = E[Φ · Γ(A⋆)Ψ]; E[dΓ(A)Φ ·Ψ] = E[Φ · dΓ(A⋆)Ψ];

Γ(A)E(f) = E(Af); dΓ(A)E(f) = D⋆
AfE(f); dΓ(A)Φ = δ (AD·Φ) .

A.9 A Space of Generalized Random Variables

Let

F⋆ :=

{∑
n≥0

In(hn), for some h0 ∈ R and hn ∈ L2
s([0, 1]

n), n ≥ 1

}
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be a family of generalized random variables. The action of T =
∑

n≥0 In(hn) ∈ F⋆ on

φ =
∑M

n=0 In(gn) ∈ F is defined as

⟨⟨T, φ⟩⟩ :=
M∑
n=0

n!⟨hn, gn⟩L2([0,1]n).

By construction, we have the inclusions

F ⊂ L2(Ω) ⊂ F⋆

with

⟨⟨T, φ⟩⟩ = E[Tφ],

whenever T ∈ L2(Ω). We will say that T = U in F⋆ if

⟨⟨T, φ⟩⟩ = ⟨⟨U,φ⟩⟩, for all φ ∈ F.

Let

F⋆ :=

{∑
n≥0

In(hn), for some h0 ∈ R and hn ∈ L2
s([0, 1]

n), n ≥ 1

}

be a family of generalized random variables. The action of T =
∑

n≥0 In(hn) ∈ F⋆ on

φ =
∑M

n=0 In(gn) ∈ F is defined as

⟨⟨T, φ⟩⟩ :=
M∑
n=0

n!⟨hn, gn⟩L2([0,1]n).

By construction, we have the inclusions

F ⊂ L2(Ω) ⊂ F⋆

with

⟨⟨T, φ⟩⟩ = E[Tφ],

whenever T ∈ L2(Ω). We will say that T = U in F⋆ if

⟨⟨T, φ⟩⟩ = ⟨⟨U,φ⟩⟩, for all φ ∈ F.

Wick Product Property for Generalized Random Variables

Given two generalized random variables X and Y , their Wick product is defined to be
the unique element X ⋄ Y such that

⟨⟨X ⋄ Y, E(f)⟩⟩ = ⟨⟨X, E(f)⟩⟩⟨⟨Y, E(f)⟩⟩, for all f ∈ C∞
0 (R).

Where E(f) is the stochastic exponential as defined in expression (A.8.1).
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Stroock-Taylor Formula

Lastly, we recall a generalized version of the so-called Stroock-Taylor formula: if T =∑
n≥0 In(hn) ∈ F⋆, then

hn(x1, ..., xn) =
1

n!
E[Dx1 ...DxnT ], (x1, ..., xn) ∈ [0, 1]n. (A.9.1)

122



Bibliography

[Adke, 1964] Adke, S. R. (1964). The generalized birth and death process and Gaussian
diffusion. J. Math. Anal. Appl., 9:336–340.

[Adke and Moyal, 1963] Adke, S. R. and Moyal, J. E. (1963). A birth, death, and
diffusion process. J. Math. Anal. Appl., 7:209–224.

[Andrews, 2017] Andrews, S. S. (2017). Smoldyn: particle-based simulation with rule-
based modeling, improved molecular interaction and a library interface. Bioinformat-
ics, 33(5):710–717.

[Berg et al., 2015] Berg, J., Stryer, L., Tymoczko, J., and Gatto, G. (2015). Biochem-
istry. Macmillan Learning.

[Bovier, 2015] Bovier, A. (2015). From spin glasses to branching Brownian motion - and
back?, volume 2144.

[Chen et al., 2014] Chen, W., Erban, R., and Chapman, S. J. (2014). From Brown-
ian dynamics to Markov chain: An ion channel example. SIAM Journal of Applied
Mathematics, 74(1):208–235.

[del Razo et al., 2021] del Razo, M. J., Dibak, M., Schütte, C., and Noé, F. (2021).
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Fast and flexible software framework for interacting-particle reaction dynamics. PLoS
computational biology, 15(2):e1006830.

[Holden et al., 1996] Holden, H., Ø ksendal, B., Ubø e, J., and Zhang, T. (1996).
Stochastic partial differential equations. Probability and its Applications. Birkhäuser
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Etude de l’ équation de la diffusion avec croissance de la quantité de matière et son
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