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Quando si parte il gioco de la zara, 
colui che perde si riman dolente, 

repetendo le volte, e tristo impara; 
 

con l’altro se ne va tutta la gente; 
qual va dinanzi, e qual di dietro il prende, 

e qual dallato li si reca a mente; 
 

el non s’arresta, e questo e quello intende; 
a cui porge la man, più non fa pressa; 

e così da la calca si difende. 
 

Tal era io in quella turba spessa, 
volgendo a loro, e qua e là, la faccia, 
e promettendo mi sciogliea da essa. 

 
 

[D. Alighieri, Purgatorio - Canto VI, vv. 1—12] 





Abstract

Signal analysis, in all its forms, has proven to be effective in addressing chal-
lenges across modern branches of applied sciences, engineering, data analysis,
medicine, and imaging. A prototypical example is Magnetic Resonance Imaging
(MRI), which exploits electromagnetism to produce anatomical and functional
images safely and without radiation. The numerous Nobel Prizes awarded to
MRI research since its introduction forty years ago underscore its ongoing signif-
icance. However, despite our complete understanding of its mechanisms, medical
advances require refining of the current techniques, improvement of image quality
and reduction of the patient’s scanning time. The modern challenges in this field
are primarily twofold, both stemming from the physical nature of MRI, discussed
in Chapter 1:

• Undersampling below the Nyquist threshold: to reduce acquisition time,
MRI signals are often sampled below the Nyquist rate, necessitating the use
of denoising and artifact removal techniques. Since MRI signals are highly
compressible, Compressed Sensing (CS) techniques enable the reconstruc-
tion of missing information by solving a minimization problem known as the
generalized LASSO. This process involves three parameters, selected based
on mathematical and empirical criteria: the measurement matrix, which
incorporates the sampling trajectory; regularization, which encodes signal
sparsity; and a tuning parameter that balances fidelity and regularization.

• Motion sensitivity: MRI requires the patient to remain motionless during
scanning, complicating the imaging of organs with involuntary and unavoid-
able movements, such as the heart and lungs. These movements also affect
the imaging of nearby organs. Modern techniques introduce separate hard-
ware to track these movements, allowing for the acquisition of data that
can be divided to produce a dynamic sequence following the various phases
of motion.

In this thesis, we explore two prominent aspects of the mathematics involved in
MRI signal analysis. In Chapters 3 and 4, we focus on CS-MRI, and we intro-
duce an iterative algorithm inspired by convex analysis that efficiently determines
the tuning parameter for Total Variation (TV) regularized LASSO (TV-LASSO).
The selection of the tuning parameter is crucial for minimizing noise and arti-
facts in the reconstructed image, and this choice is often made manually, which
is time-consuming. Many of the techniques introduced in recent years suffer from
two flaws: some are overly specific and not easily adaptable, while others involve
learning algorithms that require extensive datasets, which are often unavailable.
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Although tested on TV-LASSO with Cartesian acquisition, our algorithm can be
easily extended to other regularizations and sampling strategies, always converg-
ing within a reasonable number of iterations.

In Chapters 5, 6 and 7, we discuss new time-frequency representations, which
allow for the analysis of time-evolving signals, such as the MRI signal. Despite
this, the application of these techniques to the analysis of time-varying signals
is currently limited to a few examples in the literature, and it remains unclear
how they can be effectively applied to MRI post-processing. However, we believe
that the MRI signal of moving organs can be effectively processed through time-
frequency representations with the appropriate properties. Our work involves the
generalization of the most well-known and widely used time-frequency represen-
tations, the short-time Fourier transform and the Wigner distribution, through
the so-called metaplectic operators. This generalization enables us to explain
the properties of what we called metaplectic Wigner distributions in terms of
the symplectic group, to which they are closely related. Thanks to these tech-
niques it is possible to construct metaplectic Wigner distributions with the right
properties, according to the applications.

In conclusion, we introduce ALMA, a novel algorithm to compute well per-
forming tuning parameters for TV-LASSO problem, and use it to reconstruct
images in a MRI framework. The results show near-optimality of our recon-
structions in terms of multiscale structural similarity, peak signal-to-noise ratio
and coefficient of joint variation. We introduce metaplectic Wigner distributions
as natural generalizations of the most popular time-frequency representations,
through metaplectic operators, and we study their main properties, relating them
to the structure of the related symplectic matrices.



Résumé

L’analyse du signal, sous toutes ses formes, s’est avérée efficace pour relever
des défis dans les branches modernes des sciences appliquées, de l’ingénierie, de
l’analyse de données, de la médecine et de l’imagerie. Un exemple prototypique
est l’Imagerie par Résonance Magnétique (IRM), qui exploite l’électromagnétisme
pour produire des images anatomiques et fonctionnelles de manière sûre et sans
rayonnement. Les nombreux Prix Nobel attribués à la recherche sur l’IRM depuis
son introduction il y a quarante ans soulignent son importance continue. Cepen-
dant, malgré notre compréhension complète de ses mécanismes, les avancées médi-
cales nécessitent un raffinement des techniques actuelles, une amélioration de la
qualité des images et une réduction du temps de scan pour le patient. Les défis
modernes dans ce domaine sont principalement de deux ordres, découlant tous
deux de la nature physique de l’IRM, discutée au Chapitre 1:

• Sous-échantillonnage en dessous du seuil de Nyquist : Pour réduire le temps
d’acquisition, les signaux IRM sont souvent échantillonnés en dessous de
la fréquence de Nyquist, ce qui nécessite l’utilisation de techniques de
débruitage et de suppression des artefacts. Étant donné que les signaux
IRM sont hautement compressibles, les techniques de Compressed Sensing
(CS) permettent de reconstruire les informations manquantes en résolvant
un problème de minimisation connu sous le nom de LASSO généralisé. Ce
processus implique trois paramètres, sélectionnés en fonction de critères
mathématiques et empiriques : la matrice de mesure, qui incorpore la tra-
jectoire d’échantillonnage ; la régularisation, qui encode la parcimonie du
signal ; et un paramètre de réglage qui équilibre la fidélité et la régularisa-
tion.

• Sensibilité au mouvement : L’IRM nécessite que le patient reste immo-
bile pendant le scan, ce qui complique l’imagerie des organes soumis à des
mouvements involontaires et inévitables, comme le cœur et les poumons.
Ces mouvements affectent également l’imagerie des organes adjacents. Les
techniques modernes introduisent du matériel séparé pour suivre ces mou-
vements, permettant l’acquisition de données qui peuvent être divisées pour
produire une séquence dynamique suivant les différentes phases du mouve-
ment.

Dans cette thèse, nous explorons deux aspects importants des mathématiques
impliquées dans l’analyse des signaux IRM. Aux Chapitres 3 et 4, nous nous con-
centrons sur le CS-IRM et introduisons un algorithme itératif inspiré par l’analyse
convexe qui détermine efficacement le paramètre de réglage pour le LASSO régu-
larisé par Variation Totale (TV-LASSO). La sélection du paramètre de réglage
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est cruciale pour minimiser le bruit et les artefacts dans l’image reconstruite, et
ce choix est souvent fait manuellement, ce qui est chronophage. Beaucoup des
techniques introduites ces dernières années souffrent de deux défauts : certaines
sont trop spécifiques et difficilement adaptables, tandis que d’autres impliquent
des algorithmes d’apprentissage nécessitant de vastes ensembles de données, qui
sont souvent indisponibles. Bien que testé sur le TV-LASSO avec acquisition
cartésienne, notre algorithme peut être facilement étendu à d’autres régularisa-
tions et stratégies d’échantillonnage, tout en convergeant toujours en un nombre
raisonnable d’itérations.

Aux Chapitres 5, 6 et 7, nous discutons de nouvelles représentations temps-
fréquence, qui permettent l’analyse des signaux évoluant dans le temps, tels que
le signal IRM. Malgré cela, l’application de ces techniques à l’analyse des signaux
variant dans le temps est actuellement limitée à quelques exemples dans la lit-
térature, et il reste incertain comment elles peuvent être appliquées efficacement
au post-traitement des signaux IRM. Cependant, nous croyons que le signal IRM
d’organes en mouvement peut être traité efficacement à l’aide de représentations
temps-fréquence ayant les propriétés appropriées. Notre travail consiste en la
généralisation des représentations temps-fréquence les plus connues et les plus
largement utilisées, la transformation de Fourier à court terme et la distribu-
tion de Wigner, à travers les opérateurs métraplectiques. Cette généralisation
nous permet d’expliquer les propriétés de ce que nous avons appelé les distri-
butions de Wigner métraplectiques en termes du groupe symplectique, auquel
elles sont étroitement liées. Grâce à ces techniques, il est possible de construire
des distributions de Wigner métraplectiques avec les bonnes propriétés, selon les
applications.

En conclusion, nous introduisons ALMA, un nouvel algorithme pour calculer
des paramètres de réglage performants pour le problème TV-LASSO, et l’utilisons
pour reconstruire des images dans un cadre IRM. Les résultats montrent la quasi-
optimalité de nos reconstructions en termes de similarité structurelle multiscale,
de rapport signal-sur-bruit de crête et de coefficient de variation conjointe. Nous
introduisons les distributions de Wigner métaplectiques comme des généralisa-
tions naturelles des représentations temps-fréquence les plus populaires, via les
opérateurs métaplectiques, et nous étudions leurs principales propriétés, en les
reliant à la structure des matrices symplectiques associées.
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Chapter 1

Introduction

1.1 History of MRI

Magnetic Resonance Imaging (MRI) has emerged as a seminal technology in the
realm of neuroscience, fundamentally transforming our capacity to non-invasively
probe the intricacies of the human brain’s structure, function, and connectivity.
By leveraging the principles of nuclear magnetic resonance (NMR), MRI offers a
non-ionizing radiation method to generate high-resolution images of soft tissues,
particularly the brain.

The inception of MRI can be traced back to the pioneering work in the late
1930s and 1940s. In 1939, Rabi, Millman, Kusch, and Zacharias laid the ground-
work for NMR with their investigations into molecular beams [106]. Their in-
novative work provided the theoretical framework that underpins MRI’s ability
to detect and differentiate between various tissue types based on their magnetic
properties. Recognizing the significance of their contributions, they were awarded
the Nobel Prize in Physics in 1944.

Building on this foundation, 1946 marked another pivotal year with the paral-
lel research efforts of Bloch, Hansen, Packard, Purcell, Torrey, and Pound. Their
studies elucidated the behavior of spins in liquids and solids when subjected to
magnetic fields, paving the way for the development of MRI as a viable imaging
technique [7, 97, 105]. Bloch and Purcell’s seminal contributions were recognized
with the Nobel Prize in Physics in 1952.

The true breakthrough in MRI came in the early 1970s with the work of
Lauterbur. In 1973, Lauterbur demonstrated the feasibility of MRI by producing
the first two-dimensional MR image of water-filled tubes [81]. This ground-
breaking achievement laid the groundwork for the development of modern MRI
techniques. In his subsequent work in 1974, Lauterbur introduced the term zeug-
matograms to describe images obtained through NMR, which later evolved into
the commonly used term MRI. Moreover, he expanded the scope of MRI by
capturing the first MR images of living organisms, including a small Venus mer-
cenaria and the thoracic cavity of a live mouse. For his pioneering contributions
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1. Introduction 2

to the field of MRI, Lauterbur was awarded the Nobel Prize in Physiology or
Medicine in 2003, underscoring the transformative impact of his work on both
scientific research and clinical practice. Today, MRI has evolved into a multi-
faceted imaging modality, encompassing a range of techniques such as functional
MRI (fMRI), diffusion MRI (dMRI), magnetic resonance spectroscopy (MRS),
and magnetic resonance elastography (MRE), each offering unique insights into
the structure and function of the human brain and body.

Despite being such a powerful technique, MRI poses formidable challenges to
modern research, related to both acquisition and processing of the MRI signal.
As explained in the following, the MRI signal is acquired below its Nyquist fre-
quency to reduce the dimensionality of the MRI data, which consists indeed of
a high-dimensional complex vector. To retrieve the missing information due to
undersampling, compressed sensing techniques, such LASSO inverse problems,
are widely used. Another challenge that modern research faces involves the dy-
namic nature of MRI acquisition, particularly when imaging moving organs. The
motion of a patient in the scanner causes artifacts, yielding to blurred regions in
the reconstruction. MRI signal is actually a concrete example of time-evolving
signal, therefore necessitating of robust methodologies to capture and interpret
temporal variations accurately. Time-frequency analysis addresses time-varying
signals by localizing and decomposing them into their frequency content over
time allowing, in principle, to extract local features of time-evolving signals.
Precisely, time-frequency analysis is a branch of Fourier analysis that studies the
phase-space concentration of signals, with applications to operator theory, signal
analysis, engineering, medical sciences, where it is deployed in the processing
of echocardiographic signals, electroencephalograms, evoked potentials and MR
spectroscopy, [6], in fMRI to study the correlation between coupled time-series
functions by their frequencies and phases, [62]. Time-frequency analysis was also
applied to MRI of moving organs, where the frequency information varies in time
as a consequence of motion by M. Sushma et al. in [115]. To build upon the
strengths of time-frequency analysis, a closely related method—wavelet analysis
on graphs—has recently been employed to analyze brain fMRI signals, as demon-
strated by I. M. Bulai and S. Saliani in [13]. Keeping the increasing interest of
researchers in the applications of time-frequency analysis to concrete problems in
MRI, part of this thesis work consists of generalizing classical time-frequency rep-
resentations, such as the short-time Fourier transform (STFT) and the Wigner
distribution, to enable a broader perspective on their properties and limitations,
shedding new light on the nature of these representation and their construction,
according to the necessity.

With this historical context in mind and motivated by the impact that we
believe time-frequency analysis technique may have in MRI, we will now delve into
the fundamental physics that govern MRI and introduce compressed sensing (CS)
as a fundamental tool to processing of MRI signals, both at the acquisition level,
where it deals with designing measurement matrices, and to the reconstruction
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level, where it provides techniques to retrieve partially sampled, noisy and sparse
data.

1.2 The MRI signal

In order to introduce the acquisition process of the MRI signal, understanding
the theoretical principles and physics behind MRI is crucial. This acquisition is
indeed modelled as a sampling operator applied to the MRI signal, which is as a
function in C∞(R3), as detailed below.

MR scanners utilize coils made primarily of superconducting materials, such
as niobium-titanium or niobium-tin alloys, which are cooled to extremely low
temperatures (close to absolute zero) to achieve superconductivity. This su-
perconducting state allows the coils to conduct electricity without resistance,
generating a powerful and uniform magnetic field, denoted by B0, essential for
high-quality MRI images 1. Before illustrating the physical nature of the MRI
signal, let us synthesize how the MRI signal is generated.

1. The patient is placed within the strong static magnetic field of the MRI
machine. This causes the magnetic moments of atomic nuclei (typically
protons) in the body to align with the magnetic field.

2. Additional magnetic field gradients are applied, which encode spatial infor-
mation into the detected signal, allowing the MRI system to determine the
location of the signal origin within the body.

3. A radiofrequency (RF) pulse is applied perpendicular to the static magnetic
field. This pulse perturbs the aligned magnetic moments, causing them to
precess (or spin) around the direction of the magnetic field.

4. The protons absorb energy from the RF pulse, causing them to transition
from a low-energy state to a higher-energy state. This energy is typically
in the radiofrequency range.

5. After the RF pulse is turned off, the protons gradually return to their
original alignment with the magnetic field.

6. During the relaxation processes, the protons release the absorbed RF energy
as they return to their equilibrium states. This emitted energy consists of
RF waves, which induce a weak alternating current in receiver coils of the
MRI scanner.

1The notation employed in MRI physics utilizes bold lettering to signify vectors. The bold
notation will be discontinued shortly to avoid confusion and maintain consistency.
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Loosely speaking, the MRI signal is related to the electromotor force (emf) in-
duced by the variation of a magnetic field B passing though receiving coils. Con-
sider a sample located in a region V ⊆ R3, with magnetization M . The magnetic
field due to to M is given by:

B(r) = rot(V M (r)),

where the curl is computed with respect to the spatial variables r = (x, y, z),

V M (r) =
µ0
4π

∫
V

JM (r′)

|r − r′|
dr′ =

µ0
4π

∮
Idl

|r − r′|

is the potential of the associated to the effective current density JM = rot(M),
and I is the intensity of the current generated in the coils. Here, µ0 denotes the
vacuum permeability constant. The flux generated by the variation of B is given
by:

ΦM (t) =

∫
R3

B(r′) ·M(r′, t)dr′,

where B is the magnetic field per unit of current produced by the coil:

B(r′) = rot
(V M (r′)

I

)
=

B(r′)

I
.

The MRI signal is proportional to the emf induced by ΦM :

s̃(t) ∝ − d

dt

∫
R3

(
Bx(r′)Mx(r

′, t) + By(r′)My(r
′, t) + Bz(r′)Mz(r

′, t)
)
dr′, (1.1)

(the non-bold symbols denote the corresponding components of B and M). Each
tissue of interest has signature relaxation times T1 and T2. In physics terms, T1
is the time it takes for the protons to re-align with the magnetic field B0 after
the RF pulse is turned off, while T2 is the time it takes for the protons to lose
the energy gained from the RF pulse. T1 is usually longer than T2. The Bloch
equations relate relaxation times to the magnetization:

dMx
dt = ω0My − Mx

T2
,

dMy

dt = −ω0Mx − My

T2
,

dMz
dt = M0−Mz

T1
,

(1.2)

where ω0 is the Larmor frequency, and M0 is the equilibrium value of the mag-
netization before the application of the RF pulse. The solution M of (1.2) is
explicitly given by:

Mx(t) = e−t/T2(Mx(0) cos(ω0t) +My(0) sin(ω0t)),

My(t) = e−t/T2(My(0) cos(ω0t) +Mx(0) sin(ω0t)),

Mz(t) =Mz(0)e
−t/T1 +M0(1− e−t/T1).
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To see how Fourier analysis comes into play in the MRI framework, the expression
(1.1) of s̃ undergoes further manipulations and approximations. For simplicity of
exposition, consider the case in which the scanner magnetic field B0 is directed
along the z-axis. In this case, it is useful to decompose the magnetization M
along its longitudinal and orthogonal components, M z = Mzez and M⊥ =
Mxex +Myey, where ex, ey and ez are the unit vectors of the coordinate axes.
Under this notation, the orthogonal component of the solution M(r, t) of (1.2)
can be represented as a complex vector M+(r, t):

M+(r, t) = e−t/T2e−iω0t+iϕ0(r)M⊥(r, 0),

where ϕ0 and M⊥(r, 0) are determined by the initial conditions on the RF pulse.
The next step is differentiating (1.1) and neglecting the exponentials e−t/T1 and
e−t/T2 . This can be done because in the applications ω0T1, ω0T2 ≈ 104. The
obtained approximated signal is:

s̃(t) ∝ ω0

∫
R3

e−t/T2M⊥(r, 0)[Bx(r) sin(ω0t−ϕ0(r))+By(r) cos(ω0t−ϕ0(r))]dr.

Writing Bx = B⊥ cos(ϑB) and By = B⊥ sin(ϑB),

s̃(t) ∝ ω0

∫
R3

e−t/T2M⊥(r, 0)B⊥(r) sin(ω0 + ϑB(r)− ϕ0(r))dr. (1.3)

In 3D MRI, the application of a gradient changes the direction of the scanner
magnetic field B0. In this cae, (1.3) must be modified accordingly, by replacing
ω0 with ω(r) = ω0 + ∆ω(r), and the rapid oscillations due to ω0 are removed
using rotating frames (demodulation). For suitable constant Λ and introducing
a demodulation frequency Ω = ω0 + δω, the resulting demodulated signal is:

s̃(t) = Λω0

∫
R3

e−t/T2M⊥(r, 0)B⊥(r)e
i((Ω−ω0)t+ϕ0(r)−ϑB(r))dr. (1.4)

Assuming that ϑB and ϕ0 to be independent on r, (1.4) becomes:

s̃(t) = ω0Λ

∫
R3

B⊥(r)M⊥(r, 0)e
i(Ωt+ϕ(r,t))dr, (1.5)

where:

ϕ(r, t) = −
∫ t

0
ω(r, t′)dt′ (1.6)

is the accumulated phase. Applying a π/2 RF pulse, the function B⊥(r)M⊥(r, 0)
becomes proportional to the density of proton spins ρ(r). Ignoring this propor-
tionality constant, (1.5) becomes the relation between the density of proton spins
and the MRI signal:

s(t) =

∫
R3

ρ(r)ei(Ω+ϕ(r,t))dr. (1.7)
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The key observation is that the application of a gradient to modify the direction
and the intensity of B, allows to control accumulated phase as follows. Consider
a vector G ∈ R3, which we call gradient and perturb the static magnetic field:
B(r, t) = B0+G. By choosing ω(r, t) = ω0+r ·G in (1.6), and by demodulating
with frequency Ω = ω0 in (1.7), we get:

s(t) = C

∫
R3

ρ(r)e−2πitG·rdr, (1.8)

where the constant C > 0 is chosen properly for 2π to appear in the phase factor.
Neglecting C, (1.8) tells that the signal at time t is equal to the Fourier transform
of the density of proton spins:

s(t) = ρ̂(tG).

Observe that the proton density function ρ vanishes outside a cube of length
L > 0. Therefore, s is a finite-energy signal, i.e., s ∈ L2(R3) and since ρ ∈ L1(R3),
we also have that s ∈ C0(R3), i.e., s is continuous and goes to 0 at infinity. The
function of one real variable s is a function on R3 undercover. This can be stressed
by defining ξ(t) := tG ∈ R3 and writing:

s(t) = s(ξ(t)) = ρ̂(ξ(t)) (1.9)

(the caret denoting the Fourier transform). Assuming that s ∈ L1(R3), the
Fourier transform in (1.9) can be inverted:

ρ(r) =

∫
R3

s(ξ)e2πir·ξdξ. (1.10)

Equation (1.10) is the fundamental relation between the MRI signal s and the
proton density ρ, which outlines the anatomical image. This justifies the abuse
of language:

the MR image of an organ of interest is
the inverse Fourier transform of the MR signal.

1.3 Compressed Sensing MRI

In order to digitally process and reconstruct these anatomical images, the contin-
uous MRI signal must be discretized through a process known as sampling. This
transition from continuous to discrete data through sampling is fundamental, as
computers are unable to process analog signals directly, and it is guided by a
classic principle of signal analysis, which dictates the necessary conditions for
retrieving the analog signal in its digital form.
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Figure 1.1: Full salmpling of 3D MRI signal. (A) The proton density ρ is sup-
ported in a cube of sides L1, L2 and L3 of the image domain, i.e., the Fourier
transform of s is supported in [−L1/2, L1/2]×[−L2/2, L2/2]×[−L3/2, L3/2]. (B)
Every coordinate direction of the k-space is sampled at its Nyquist frequency.

Theorem 1.1 (Shannon, Nyquist, Whittaker, Kotelnikov). Let f ∈ L2(R) be
such that supp(f̂) ⊆ [−A,A] (i.e., f̂(ξ) = 0 if |ξ| > A) for some A > 0. Then,

f(t) =
∞∑

k=−∞
f(kT ) sinc(

t− kT

T
), t ∈ R,

where sinc(x) = sin(πx)
πx and T ≤ TA = 1/2A (TA is called Nyquist frequency).

The 3D MRI signal s enjoys the property that its inverse Fourier transform
ρ is supported in a cube, as illustrated in Fig. 1.1 (A). Full sampling for the
MRI signal corresponds to sampling s across every direction of the k-space (the
domain of the Fourier transform) at the corresponding Nyquist frequency, see
Fig. 1.1 (B). Concretely, the sampling trajectory ξ(t) is controlled by means of
time and gradients, choosing ξ(t) = tG in (1.9), as in formula (1.8). The the-
oretical framework described so far is implemented by approximating the MRI
signals by sampling within a limited cubic neighborhood of the k-space center.
However, even when restricting the sampling to a neighborhood around the ori-
gin, the sampling of MRI signals is in general extremely time-consuming, due
to the large amount of points needed to reach good resolution reaching orders
of magnitude that make MRI post-processing computationally prohibitive. This
extensive data gathering process not only renders MRI signal acquisition eco-
nomically burdensome but also contributes to patient discomfort, necessitating
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prolonged periods of immobility during the procedure. Furthermore, for some pa-
tients with specific conditions, remaining still for even a brief period could even
be impossible. Given the burden posed by the large number of samples required
for conventional MRI post-processing, alternative approaches such as compressed
sensing (CS) have gained prominence. CS is a modern discipline that combines
mathematics, signal processing and computer science to extract essential infor-
mation from data that is sampled below the Nyquist frequency, thereby paving
the way for faster, more efficient, and more economical data acquisition. It finds
applications in image and video processing [9, 50, 41, 104, 100, 126], electrical
engineering [70, 15, 56, 71, 42], geophysics [91, 80, 95], remote sensing [57, 99],
machine learning [10, 84, 113, 98, 77] and medical imaging techniques, such as
computer tomography [67, 125] and, of course, MRI. Notably, the application of
compressed sensing to MRI is known as CS-MRI and it was firstly address in
the celebrated work by M. Lustig, et al., [87]. In CS-MRI, the sparsity or com-
pressibility of MRI signals with respect to several sparsity-promoting transforms
is exploited to enable significant undersampling (sampling below the Nyquist fre-
quency), thereby reducing the number of acquired samples while still allowing for
accurate signal reconstruction. By strategically acquiring a subset of samples in
k-space, CS techniques offer a promising avenue for accelerating MRI acquisition
and overcoming the limitations associated with conventional sampling trajecto-
ries.

Definition 1.2. A vector x ∈ Rd is m-sparse if ∥x∥0 := #{j : xj ̸= 0} ≤ m,
where #S denotes the cardinality of a set S. When m is clear from the context
or irrelevant, we say that x is sparse.

Sparsity is related on constrained optimization by the following result, whose
proof is a slight modification of the proof of [49, Theorem 3.1].

Theorem 1.3. Let A ∈ Rm×n be a measurement matrix and η ≥ 0. If the
minimizer x# of the constrained LASSO:

minimize ∥x∥1 subject to x ∈ Rn, ∥Ax− b∥2 ≤ η (1.11)

is unique, then x# is rank(A)-sparse, where rank(A) denotes the rank of A.

LASSO has many equivalent formulations, where the equivalence notion is
specified in [49, Proposition 3.2]. We limit ourselves to delineate the relationship
between the constrained LASSO (1.11) and its unconstrained counterpart:

minimize
1

2
∥x∥1 +

λ

2
∥Ax− b∥22. (1.12)

Theorem 1.4. Let A ∈ Rm×n, b ∈ Rm and η > 0. Let x# be a minimizer of
the constrained LASSO (1.11). Then, there exists λ′ ≥ 0 such that x# is also
a minimizer of (1.12) with λ = λ′. Conversely, if x# is a minimizer of (1.12),
there exists η′ ≥ 0 such that x# is also a minimizer of (1.11) with η = η′.
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Consequently, solving (4.2) with the corresponding Lagrange multiplier pro-
vides a rank(A)-sparse solution. MRI images and MRI data, however, may not be
sparse themselves, but with respect to so-called sparsity-promoting transforms,
such as discrete Fourier transform, discrete cosine transform, wavelets [87]. That
is, Φx is sparse, where Φ denotes a sparsity-promoting transform. LASSO prob-
lem can be modified to encompass this a-priori information. Specifically, the
generalized LASSO (g-LASSO):

minimize
1

2
∥Ax− b∥22 +

λ

2
∥Φx∥1, (1.13)

allows for the retrieval of vectors that are compressible with respect to Φ. The
rescaling by the factor 1/2 in (1.13) is needed for computational purposes, but it
is irrelevant to the analysis of (4.3). Also, for the purposes of our work, observe
that (1.13) with λ ̸= 0 is equivalent to:

minimize
1

2
∥Φx∥1 +

λ∗

2
∥Ax− b∥22, (1.14)

where the equivalence follows by choosing λ∗ = λ−1.

For the purpose of this introduction, let us focus on the unconstrained form of
g-LASSO expressed in (1.13), a more exhaustive treatment of CS is contained in
Chapter 3. In the MRI framework, the matrix Amodels the acquisition procedure
of the MRI signal, and it is called measurement matrix. Specifically,

A = UFC (1.15)

is the composition of three operators. U encodes the undersampling trajectory
that can be 2D, 3D, 4D, when time evolution is considered, and even 5D, when
respiratory phases are considered. F is the discrete Fourier transform, and C
is the so-called coil sensitivity. The coil sensitivity map corrects the intensity
inhomogeneity of the images across nCh channels, crucial to reconstruct high-
quality images from undersampled k-space data.

The second operator appearing in (1.15) is the discrete Fourier transform
(DFT), which we denoted by F . Sampling the MRI signal over a finite sampling
set results in an approximation, which is effectively described by the DFT. Let
L > 0 play the role of a scale length and fix an integer n > 0, related to number
of samples. The DFT of a vector of x = (x−n, . . . , xn−1)

T ∈ C2n is the vector
Fx ∈ C2n with coordinates2:

Fxk =
n−1∑
j=−n

xje
−2πi jk

2n , k = −n, . . . , n− 1.

2For the sake of simplicity, we will omit the transposition superscript and denote with the
same symbols vectors and covectors. This shall not cause confusion.
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In our context, x is related to samples of the MRI signal, which is a function
over R2, as in our experiments, or in general on a real vector space. Let us
express this relation in dimension 1. Under the notation above, let s ∈ L2(R)
with xk = s(k∆k), and define ∆k := 1/L. Equation Fx reads as:

Fs(k∆k) =
∑
j=−n

s(j∆x)e−2πijk∆x∆k, k = −n, . . . , n− 1,

and the corresponding inversion formula is:

s(j∆x) =
1

2n

n−1∑
k=−n

Fs(k∆k)e2πi
jk
2n , j = −n, . . . , n− 1.

The last operation appearing in (1.15) is represented by the undersampling op-
erator U . This sampling procedure is implemented by a discretization to fit the
reconstructed image to the pixels/voxels. Sampling the MRI signal can be mod-
elled in the framework of tempered distributions. For the sake of simplicity, we
put ourselves in the 1D setting. The sampling function is the distribution given
by:

u = ∆k
∞∑

j=−∞
δj∆k ∈ S ′(R),

where δx0 is the point mass measure in x0. By Poisson’s summation formula, it’s
inverse Fourier transform is

F−1u = ∆k
∞∑

k=−∞
δj/∆k. (1.16)

Since ŝ = ρ is compactly supported, s ∈ C∞(R) and it has moderate growth.
Infinite sampling can be modelled by u as the tempered distribution:

s∞ = s · u (1.17)

and the reconstructed image would be approximated by taking the inverse Fourier
transform, using (1.17) and (1.16), as:

ρ̃∞(x) = ∆k
∞∑

j=−∞
ρ(x− j/∆k), x ∈ R. (1.18)

Since ρ is compactly supported, (1.18) shows that the infinitely-sampled approx-
imated image ρ̃∞ is the juxtaposition of infinitely many copies of ρ. Specifically,
it is a 1/∆k periodic function and the number 1/∆k is called Field Of View
(FOV). In the practice, sampling is limited to a cubic region around the origin
of the k-space, which is in turns automatically defined once the origin in the
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image domain is fixed. IN the 1D framework the truncation is modelled using
the characteristic function:

χ[−1/2,1/2](ξ) =

{
1 if |ξ| ≤ 1/2,

0 if |ξ| > 1/2,

and the sampling distribution becomes:

U(ξ) = u(ξ)χ[−1/2,1/2]

(ξ +∆k/2

2n∆k

)
= ∆k

n−1∑
j=−n

δj∆k(ξ),

where 2n indicates the number of sampled points. The undersampled signal is:

sm(ξ) = s(ξ)U(ξ) = ∆k
n−1∑
j=−n

s(j∆k)δj∆k(ξ),

and the reconstructed spin density is:

ρ̃(x) = F−1sm(x) = ∆k
n−1∑
j=−n

s(j∆k)e2πij∆kx, x ∈ R.

The reconstruction in the image domain undergoes further discretization due to
the voxel resolution, which defines the smallest distinguishable unit of the 3D
space within the MRI scan, ultimately impacting the image’s clarity and detail.
This is modelled by means of the tempered distribution

v = ∆x

∞∑
k=−∞

δk∆x.

Emulating the preceding argument,

ρ̃m(x) = ρ̃(x)v(x)χ[−1/2,1/2]

(x+∆x/2

2n∆x

)
=

n−1∑
k=−n

ρ̃(k∆x)δk∆x(x), x ∈ R,

(1.19)
is a truncated approximation of the MR image. The resolution of the recon-
structed image is related to n by ∆x = L

2n , where L is the pixel/voxel size, and
2n is also the number of pixels/voxels along the considered direction.

The argument above extends naturally to the 3D framework, where sampling
along grids is referred to as Cartesian sampling (fig. 1.2 (A)). However, alterna-
tive patterns such as radial, spiral, or other sampling methods require distinct
approaches for assigning values to each pixel or voxel. In any case, it is a relevant
point in MRI reconstructions that in the case of non-Cartesian trajectories, the
samples are rearranged into a Cartesian grid before reconstruction. This by done
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by assigning a value to each point of the grid, usually obtained as a Gaussian-
weighted average of the sampled signal (the Gaussian centered on the considered
point of the Cartesian grid), mathematically speaking a discrete convolution with
a Gaussian weight. Moreover, according to CS theory, undersampling trajecto-
ries are designed to satisfy incoherence properties while sampling points in the
k-space below the Nyquist frequency, though we will not delve into the specifics
of this topic here, we refer to [49] as an exhaustive source in this direction.

In MRI, we can leverage the a-priori information that the Fourier transform
of the MRI signal is concentrated around the center of the k-space to optimize the
sampling strategy, thereby improving the reconstruction quality and efficiency.
Consequently, the most commonly implemented MRI sampling trajectories in-
volve sampling the center of the k-space, which captures the finer details of the
MR image, at the Nyquist frequency, while sampling the periphery of the k-space,
which captures the coarsest details, less densely. In Cartesian sampling, data is
collected along parallel lines in k-space, with undersampling achieved by selec-
tively omitting some of these lines, or segments. A specified portion of the sam-
pling lines covers a neighborhood of the k-space center at the Nyquist frequency,
while the remaining lines are randomly selected based on a normal distribution,
as depicted in fig. 1.2 (A). In contrast, radial sampling consists of acquiring data
along radial lines extending from the center of k-space outwards towards its pe-
riphery, ensuring wider coverage of the k-space center, while undersampling the
peripheral regions, see fig. 1.2 (B). 3D sampling strategies encompass various
methods, including 3D Cartesian sampling, which extends the principles of 2D
Cartesian sampling into three dimensions for volumetric data acquisition. Ad-
ditionally, spiral sampling, serving as a 3D counterpart to 2D radial sampling,
involves data acquisition along segments radiating from the center of k-space,
following a spiral phyllotaxis pattern. Notably, these spirals rotate by the golden
angle, α = (3−

√
5)π radians, robustly reducing motion artifacts, cf. [82, 61, 52],

preserving a uniform readout distribution, which facilitates simple density com-
pensation, and reducing significantly the impact of eddy current, cf. [101]. In our
research, we only consider 2D Cartesian sampling and, therefore, do not discuss
the methodologies and complexities associated with these other sampling tech-
niques, which are still relevant in many application such as cardiac imaging, eye
imaging, and in general on MRI of moving organs, [47, 101, 12, 39, 88, 51].

1.4 Main contributions

In this work, we address both the two key challenges in modern MRI, reconstruc-
tion and motion correction, from specific perspectives. In Chapter 4, we present
an iterative algorithm designed to compute tuning parameters for the TV-LASSO
problem, that is problem (1.14), where Φ is represented by the discrete gradient.
In Chapter 5, we introduce a new class of time-frequency representations with
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Figure 1.2: MRI 2D sampling trajectories. Cartesian sampling (A) and radial
sampling (B).

potential applications in MRI of moving organs. This section delves into the
specifics of these findings and explains their significance within the context of
MRI.

1.4.1 Tuning parameters

The first major challenge in modern MRI involves performing the reconstruction
of MRI data. When employing the generalized LASSO framework, this challenge
can be approached from three primary angles:

• Designing sampling patterns.

• Defining appropriate regularization functions.

• Automatically selecting optimal tuning parameters.

In this work, we focus on the third aspect.

The equivalence between (1.11) and (1.12) requires the a-priori knowledge
either of the upper-bound η or the Lagrange multiplier λ. To have insights on
this relation, in Chapter 3, we studied it for a weighted LASSO problem, a case
where computations can be performed directly. This information is difficult to
obtain in the practice and these problems are usually interpreted as bi-criterion
optimization problems. Moreover, the question was still open whether Lagrange
multipliers yield to solutions of (1.13) presenting some degree of sparsity. Let us
delve into the bi-criterion interpretation of (1.13). For a given image vector x,
the generalized LASSO consists of minimizing the sum of two terms: the fidelity
∥Ax− b∥2 quantifies the distance between the noisy undersampled measurements
b, acquired across channels, and the model Ax; and the regularization ∥Φx∥1
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Figure 1.3: The choice of λ in (1.13) affects the quality of the reconstructions.
When λ≪ 1, the reconstructions are noisy and exhibit artifact bias. Conversely,
when λ≫ 1, the reconstructions are overly smooth.

measures the sparsity of Φx. Images satisfying Ax = b (i.e., ∥Ax− b∥2 = 0)
tend to be noisy and corrupted by artifacts due to undersampling. Thus, the
fidelity term should be minimized but not to the extent of strictly adhering to the
measurements, to prevent biased reconstructions. Similarly, ∥Φx∥1 is minimized
when x ∈ ker(Φ). For instance, if Φ = D represents the discrete gradient, then
∥Φx∥1 = 0 for any constant vector x. Therefore, the regularization term should
be small enough to promote sparsity, but not too small, to avoid overly smooth
or inaccurate reconstructions. The first main subject of this work involves the
choice of the parameter λ > 0, which acts as a trade-off between fidelity and
regularization (see Fig. 1.3). Namely, when λ is small,

∥Ax− b∥22 + λ ∥Φx∥1 ≈ ∥Ax− b∥22 ,

resulting in a noisy solution to (1.13). Conversely, when λ is large, ∥Φx∥1 must
be small to keep λ ∥Φx∥1 small, leading to a reconstruction with poor resolution.

Therefore, the selection of the tuning parameter λ significantly affects the
denoising and artifact removal effectiveness of (1.14). However, λ is still chosen
manually, despite the extensive literature in this direction, since no effective,
automatic and general procedure has been proposed yet, lengthening the MRI
post-processing. In this work, we formulate ALMA (Algorithm for Lagrange
Multipliers Approximation), synthesised in Figure 1.4, an iterative algorithm to
approximate the Lagrange multipliers of TV-regularized LASSO and we prove
that the obtained approximate Lagrange multipliers can be used to retrieve MR
images.

We evaluate the quality of the retrieved images using three quantitative met-
rics. The multiscale structural similarity index (mSSIM) is employed to assess



1. Introduction 15

Figure 1.4: A schematic representation of ALMA.

reconstruction quality across various scales, approximating human visual percep-
tion [122, 38]. The peak Signal-to-Noise Ratio (pSNR) quantifies noise corruption
in compressed images, independent of human visual quality [1]. Finally, the Coef-
ficient of Joint Variation (CJV) measures the presence of intensity non-uniformity
(INU) artifacts in MRI images [83, 55].

ALMA was tested using the Shepp-Logan brain phantom, (see figure 1.5 be-
low), with its discrete Fourier transform corrupted by artificial noise and sampled
below the Nyquist frequency. For comparison, Figure 1.6 displays an example
of reconstruction using the tuning parameter approximated by ALMA, that we
called Approximate Lagrange Multipliers (ALM), alongside the reconstruction
using the parameter determined by the classical L-curve method. The perfor-
mance of the ALM is comparable to that of the L-curve method. However, the
L-curve method is not iterative and requires reconstructions for numerous tuning
parameters, unlike ALMA.

1.4.2 Time-frequency analysis

As detailed above, motion during MRI acquisition causes artifacts. The main
sources of motion in MRI are gathered into two groups. Bulk motion, consisting
of rototranslations of the organ that is being imaged, and is mostly caused by
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Figure 1.5: The Shepp-Logan brain phantom.

patient movement, and organ motion, such as cardiac, respiratory and eye motion,
[118]. These movements cannot be always modeled as linear transformations and
consequently corrected exploiting the well-known intertwining relation between
the Fourier transform and rescalings.

Consequently, strategies are needed to address time-evolving signals for both
time-wise analysis of MRI signals and correction of motion artifacts. Time-
frequency analysis provides a robust framework for addressing these challenges
by offering tools that can simultaneously represent the temporal and spectral
characteristics of signals. As a branch of Fourier analysis, it stands at the in-
tersection between harmonic analysis, engineering, (audio, video, radar) signal
processing, and medical imaging [8, 96].

The global nature of the Fourier transform limits its ability to localize signals
in time, making it poorly suited for such time-wise analysis of distributions.
Specifically, the inversion formula of the Fourier transform:

f(x) =

∫
Rd

f̂(ξ)e2πiξ·xdξ, f ∈ S(Rd),

tells that (almost) every frequency of f is needed to retrieve the value of the
signal f at time x. This loss of local information highlights the inadequacy of
this operator to describe the evolution of time-varying signals. In fact, the con-
cept of local frequencies remains ambiguous, and the Fourier transform alone is
insufficient for defining what local frequencies should be. This fact is mathemat-
ically quantified by the so-called uncertainty principles, which emerge whenever
a meaningful definition of localization is given. The idea of an instantaneous
frequency, essentially the frequency of a signal at a specific point in time, poses
therefore significant challenges. The uncertainty principles highlight a critical
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Figure 1.6: An example of reconstruction with the approximate Lagrange multi-
plier returned by ALMA, λALM and with the L-curve parameter λL, the quality
of each reconstruction is assessed by means of the mSSIM, the pSNR and the
CJV, and the measurements are reported below the reconstructions.

point: attempting to define or measure instantaneous frequencies without con-
sidering the context of time localization is fundamentally flawed. This is because
the uncertainty principles quantify the inherent trade-offs between the precision
of time and frequency localizations and reveal how it is essential first to localize
the signal in time to gain meaningful insights into the local frequency content
of a signal. This localization allows us to analyze the frequency components
over short intervals, rather than at an instantaneous point, thereby respecting
the constraints imposed by the uncertainty principles. This is the idea behind
the definition of the short-time Fourier transform, hereafter shortened as STFT.
Consider a window function g ∈ L2(Rd) \ {0}, such as a cut-off function centered
at the origin, and a signal f ∈ L2(Rd). To localize f around a specific time
x ∈ Rd, we translate g around x and multiply f by Txḡ, the translation of the
complex conjugate of g, see fig. 1.7. The use of the complex conjugate has an
analytical justification. The resulting function f ·Txḡ represents a localization of
f around x. By taking the Fourier transform F(f ·Txḡ), we obtain the frequency
content of the localization of f . This allows us to interpret these frequencies as
the local frequency components of f at the point x.

Specifically, the STFT of f ∈ L2(Rd) with respect to g ∈ L2(Rd) is the
function:

Vgf(x, ξ) =

∫
Rd

f(t)g(t− x)e−2πiξ·tdt, x, ξ ∈ Rd. (1.20)

The operators g 7→ π(x, ξ)g(t) = e2πiξ·tg(t − x) are called time-frequency shift.
Denoting by ⟨·, ·⟩ the unique extension of the sesquilinear inner product of L2(Rd)
to a duality pairing S ′ × S (antilinear in the second component), (1.20) extends
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Figure 1.7: The localization of the signal f by means of the window g around
the time x.

to (f, g) ∈ S ′(Rd)× S(Rd) as:

Vgf(x, ξ) = ⟨f, π(x, ξ)g⟩, x, ξ ∈ Rd. (1.21)

The main properties of the STFT can be found in any time-frequency analysis
standard reference book, see e.g., [65, 29].

The short-time Fourier transform can be used to measure the local time-
frequency content of signals, i.e., the local Lp integrability of f , the local Lq

integrability of f̂ and their growth - or decay - in the phase space. For fixed
0 < p, q ≤ ∞, g ∈ S(Rd) \ {0} and v-moderate weight m ∈ Mv(R2d) 3, the
weighted mixed Lebesgue (quasi-)norm of Vgf :

∥Vgf∥Lp,q
m

=
∥∥∥y 7→ ∥m(·, y)Vgf(·, y)∥p

∥∥∥
q
,

define (quasi-)norms on subspaces of S ′(Rd), called modulation spaces, see fig.
1.8. Namely,

Mp,q
m (Rd) =

{
f ∈ S ′(Rd) : ∥f∥Mp,q

m
:= ∥Vgf∥Lp,q

m
<∞

}
.

If p = q, we write Mp =Mp,p, and if m = 1 we write Mp,q =Mp,q
1 .

Different windows g define equivalent (quasi-)norms. Modulation spaces were
first introduced by Feichtinger in [44] for 1 ≤ p, q ≤ ∞ and later extended to the
quasi-Banach setting by Galperin and Samarah in [54]. A large part of this work
involves metaplectic operators. In time-frequency analysis, metaplectic operators
play a crucial role as they are unitary operators on the Hilbert space L2(Rd) that
generalize the Fourier transform and preserve the structure of modulation spaces.

3A weight function v : R2d → [0,+∞) is submultiplicative if v(x + y) ≤ v(x)v(y) for every
x, y ∈ R2d. A weight function m : R2d → [0,+∞) is v-moderate, and we write m ∈ Mv(R2d)
if m(x + y) ≲ v(x)m(y). We refer to [64] as an exhaustive source about weight functions and
their deployment in time-frequency analysis.
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Figure 1.8: Using weighted mixed-norm Lebesgue spaces to measure local time-
frequency content of signals. The local Lp integrability of f and the local Lq

integrability of f̂ is measured by the global Lp,q integrability of Vgf , the weight
m measures the growth, or decay, of Vgf .

These operators are closely related to the symplectic group Sp(2n,R), which
consists of matrices S ∈ R2d×2d with block decompositions

S =

(
A B
C D

)
, A,B,C,D ∈ Rd×d

satisfying: 
ATC = CTA,

BTD = DTB,

ATD − CTB = Id×d.

We write S ∈ Sp(d,R). For a given symplectic matrix S ∈ Sp(d,R) there exists
a unitary operator Ŝ : L2(Rd) → L2(Rd) such that:

Ŝπ(x, ξ)Ŝ−1 = cSπ(S(x, ξ)), x, ξ ∈ Rd,

for cS ∈ C, |cS | = 1. The matrix S does not determine the metaplectic operator
Ŝ uniquely, however {Ŝ : S ∈ Sp(d,R)} has a subgroup, denoted by Mp(d,R),
containing precisely two such operators for every S ∈ Sp(d,R). The projection
πMp(Ŝ) := S is a group homomorphism with kernel ker(πMp) = {±IL2} and the
symplectic projection of certain metaplectic operators is known, see table 1.9.

The restrictions of metaplectic operators to S(Rd) are homeomorphisms of
S(Rd), and the extension of any Ŝ ∈ Mp(d,R) to S ′(Rd), given by

⟨Ŝf, g⟩ = ⟨f, Ŝ−1g⟩, f, g ∈ S ′(Rd),
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Metaplectic operator Associated symplectic projection

Fourier transform, F = i−d/2(·)∧ J =

(
0d×d Id×d
−Id×d 0d×d

)
Chirp-products, pQf(t) = eiπQt·tf(t), QT = Q VQ =

(
Id×d 0d×d
Q Id×d

)
Rescalings, TLf(t) = im|det(L)|1/2f(Lt), L ∈ GL(d,R) DL =

(
L−1 0d×d
0d×d LT

)
Multipliers, mP f = F−1(eiπPu·uf̂), P T = P UP = V T

P =

(
Id×d P
0d×d Id×d

)
Figure 1.9: The symplectic projections of certain metaplectic operators. Ob-
serve that the projection of the Fourier transform is the matrix of the canonical
symplectic form of Cd.

defines a homeomorphism of S ′(Rd).

Formulas (1.20) and (1.21) can be further generalized by means of metaplectic
operators to allow f, g ∈ S ′(Rd). Let us consider the partial Fourier transform
with respect to the frequency variables:

F2F (x, ξ) =

∫
Rd

F (x, y)e−2πiy·ξdy, F ∈ S(R2d),

and the rescaling TLst , where

LST =

(
0d×d Id×d
−Id×d Id×d

)
,

then:
Vgf = F2TLst(f ⊗ ḡ), f, g ∈ S ′(Rd)

is the unique extension of the STFT to S ′(Rd)×S ′(Rd). Since F2 is a metaplectic
operator in Sp(2d,R) with projection:

AFT2 =


Id×d 0d×d 0d×d 0d×d
0d×d 0d×d 0d×d Id×d
0d×d 0d×d Id×d 0d×d
0d×d −Id×d 0d×d 0d×d

 ,

F2TLST
is a metaplectic operator in Mp(2d,R) with symplectic projection having

d× d block decomposition:

AST =


Id×d −Id×d 0d×d 0d×d
0d×d 0d×d Id×d Id×d
0d×d 0d×d 0d×d −Id×d
−Id×d 0d×d 0d×d 0d×d

 .
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Along the STFT, other time-frequency representations can be found in the liter-
ature. The (cross-)τ -Wigner distributions, defined for τ ∈ R as

Wτ (f, g) = F2TLτ (f ⊗ ḡ), f, g ∈ S ′(Rd),

where

Lτ =

(
Id×d τId×d
Id×d −(1− τ)Id×d

)
,

generalize both the classical (cross-)Wigner distribution, given for f, g ∈ L2(Rd)
by:

W (f, g)(x, ξ) =W1/2(f, g)(x, ξ) =

∫
Rd

f(x+ t/2)g(x− t/2)e−2πiξ·tdt, (1.22)

x, ξ ∈ Rd, and the (cross-)Rihacek distribution, defined for f, g ∈ S(Rd) by:

W0(f, g)(x, ξ) = f(x)ĝ(ξ)e−2πiξ·x, x, ξ ∈ Rd,

corresponding to the cases τ = 1/2 and τ = 0 respectively. The associated
projections define a one-parameter family of symplectic matrices:

Aτ =


(1− τ)Id×d τId×d 0d×d 0d×d

0d×d 0d×d τId×d −(1− τ)Id×d
0d×d 0d×d Id×d Id×d
−Id×d Id×d 0d×d 0d×d

 .

The idea of employ metaplectic operators in the generalization of time-frequency
representations such as the STFT and the Wigner distribution stemmed in 2012.
In [3], the authors propose to replace the factor e−2πiξ·t in (1.22) with the kernel
of metaplectic operators with free symplectic projections. A wider generalization
was obtained in [128]. Parallel to these works, matrix Wigner distributions (that
in this work are called totally Wigner-decomposable metaplectic Wigner distribu-
tions) were defined in [32]. Carried to extremes, a possible generalization of all
of these distributions can be defined by means of metaplectic operators:

Definition 1.5. Let Â ∈ Mp(2d,R). The metaplectic Wigner distribution asso-
ciated to Â is the time-frequency representation:

WA(f, g) = Â(f ⊗ ḡ), f, g ∈ L2(Rd).

A fascinating question that arises naturally when defining a time-frequency
representations WA by letting the metapletic operator Â act on tensor products
is how the properties of WA are related to the symplectic projection

A =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 , Ai,j ∈ Rd×d, i, j = 1, . . . , 4. (1.23)
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In our works, we studied which metaplectic Wigner distributions can be used
to measure local time-frequency content and which are generalized spectrograms.
Modulation spaces are classically defined using the STFT, but every τ -Wigner
distribution (τ ̸= 0, 1) satisfies:

∥Wτ (f, g)∥Lp,q
m

≍ ∥f∥Mp,q
m
, f ∈Mp,q

m (Rd),

for g ∈ S(Rd) \ {0} fixed. For τ = 0, 1 this property fails, for instance:

∥W0(f, g)∥p = ∥f∥p ∥ĝ∥p ̸≍ ∥f∥Mp .

The question arises which metaplectic Wigner distributions can be used to mea-
sure local time-frequency concentration of signals or, stated differently, which
metaplectic Wigner distributions satisfy:

∥WA(f, g)∥Lp,q
m

≍ ∥f∥Mp,q
m
, f ∈Mp,q

m (Rd). (1.24)

The following inequalities, that can be found in [31, Theorem 2.22], tell that
if EA ∈ GL(d,R), then:

∥f∥Mp ≲ ∥|WA(f, g1) ∗WA(g1, g2)|(−EA·)|∥p ≤ ∥WA(f, g1)∥p ∥WA(g1, g2)∥1 .

That is,
∥f∥Mp ≲ ∥WA(f, g1)∥p ,

one of the two inequalities of the equivalence ∥f∥Mp ≍ ∥WA(f, g1)∥p.
Therefore, Cordero and Rodino conjecture that the condition EA ∈ GL(d,R)

is fundamental in describing modulation spaces by means of metaplectic Wigner
distributions, and they formulate the definition of shift-invertibility.

Definition 1.6. A metaplectic Wigner distribution WA is shift-invertible if the
submatrix:

EA =

(
A11 A13

A21 A23

)
(1.25)

is invertible.

With an abuse of notation, we say that A or Â are shift-invertible if WA is
shift-invertible.

Theorem 1.7. Let 0 < p, q ≤ ∞, WA be a metaplectic Wigner distribution. WA
is shift-invertible if and only if there exist E ∈ GL(2d,R), C ∈ Sym(2d,R) and
δ̂ ∈ Mp(d,R) so that:

WA(f, g)(z) = |det(E)|1/2eiπETCEz·zVδ̂gf(Ez), z ∈ R2d, (1.26)

for every f, g ∈ L2(Rd). Moreover, E = E−1
A .

Consequently,
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(i) If WA is shift-invertible, A21 = 0d×d and m ≍ m ◦ EA, then (1.24) holds for
every 0 < p, q ≤ ∞. If p = q the condition on A21 can be dropped.
(ii) If WA is not shift-invertible, then:

Mp(Rd) ̸=
{
f ∈ S ′(Rd) : ∥WA(f, g)∥p <∞

}
for every 0 < p ≤ ∞, p ̸= 2.

In this thesis, we trace the story of Theorem 1.7, that was proved between
2022 and 2023 in a series of works with Cordero and Rodino. Namely, Chapter 5
contains [23], where we started considering the particular case of what we called
metaplectic Wigner distributions of the classic type. These distributions are in
the form:

WA(f, g) = F2TL(f ⊗ ḡ), f, g ∈ L2(Rd),

for some L ∈ GL(2d,R).

Thanks to the rsults in [53], where the boundedness of linear rescalings f 7→
f ◦ L on Lp,qm is characterized by means of a block-diagonality condition on E,
we were able to prove Theorem 1.7 without knowing (1.26), in the Banach case
1 ≤ p, q ≤ ∞, as outlined in Chapter 6, which contains [19].

Incidentally, while studying metaplectic Gabor frames in [20], we ran into the
characterization of shift-invertible metaplectic Wigner distributions by means of
the STFT, which yield to a straighforward proof of Theorem 1.7 covering the
entire quasi-Banach setting 0 < p, q ≤ ∞, see Chapter 7 for the details.

Theorem 1.7 can be interpreted as a relation between the property of being
shift-invertible, related to the blocks (1.23) of the projection A, and the property
of measuring local time-frequency content. Similar statements can be formulated
in a similar fashion for covariance, for the Cohen’s class and for the class of
generalized spectrograms, as pointed out in [30, 31, 22].

1.5 Thesis outline

The remainder of this thesis is organized as follows. We gathered in Chapter 2 the
main notation and prerequisites. Chapter 3 is dedicated to the theoretical study
of tuning parameters for LASSO problems. We use convex analysis techniques
to gain insights into the relationship between these parameters and concrete
estimates, such as noise energy estimates. Specifically, we examine the framework
of the weighted LASSO, where explicit computations can be performed. However,
when more general regularizations are considered, numerical methods are required
to determine the tuning parameters explicitly. While asymptotic estimates of
tuning parameters are available for cases involving significant noise corruption,
this is not the situation in MRI, where the contaminating noise is only a small
fraction of the total energy content.
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In Chapter 4, we study our algorithm designed to approximate tuning param-
eters in a MRI framework. We test it on TV-LASSO, retrieving the 2D Shepp-
Logan brain phantom, which is piecewise constant and, therefore, sparse with
respect to total variation. We retrace the creation of the dataset, obtained by
adding artificial white noise to the undersampled Fourier transform of the phan-
tom. We assess the performance of ALMA quantitatively via mSSIM, pSNR and
CJV and draw our conclusions. In particular, we observe that ALMA has the
potential to be applied to different sampling patterns, such as radial, spiral, and
higher noise levels.

The following chapters retrace the history of the research on shift-invertibility.
In Chapter 5 we study decomposable metaplectic Wigner distribution, character-
izing which of these representations is suited for measuring local time-frequency
content of signals, this chapter is immersed in the framework of Wigner analysis
of operators, a topic that we developed in subsequent works with Cordero, Pucci,
Rodino and Valenzano. In Chapter 6, we use standard analysis to prove that
shift-invertible distributions do characterize modulation spaces (and some Wiener
amalgam space) in the Banach framework, and provide concrete non-trivial exam-
ples of metaplectic Wigner distributions having this property. Finally, in Chapter
7, we characterize definitively all the metaplectic Wigner distributions that de-
fine modulation spaces, from two different aspects: the form of the corresponding
symplectic projection and the form of the distribution itself, which is revealed
to be a rescaled short-time Fourier transform. Metaplectic Gabor frames are
analyzed and the discrete representation of modulation spaces is retrieved.

Finally, we draw the conclusions and discuss further research directions in
Chapter 8.





Chapter 2

Prerequisites and notation

In this chapter, we introduce the main notation that will be used throughout this
work. Minor notation will be introduced across each chapter. The content of this
chapter can be found in [5, 44, 43, 65, 54, 79, 49, 11, 112, 45, 107].

2.1 Linear algebra

2.1.1 Vector notation

We denote by Rd the real vector space of dimension d, endowed with the canonical
basis e1, . . . , ed, unless stated otherwise.If x, y ∈ Rd, x · y = ⟨x, y⟩ =

∑d
j=1 xjyj

denotes the inner product between x and y. If L ⊆ Rd is a linear subspace of
Rd, L⊥ denotes its orthogonal complement. Moreover, we write x ⪯ y if xj ≤ yj
for every j = 1, . . . , d. The symbol ⪰ is used similarly. If x ∈ Rd, we denote by
xj (j = 1, . . . , d) the j-th coordinate of x. Also, x+ is the positive part of x, i.e.,
the vector with coordinates (x+)j = max{0, xj}. We denote with Md the family
of all the signature matrices, that are the diagonal matrices

S =

λ1 . . . 0
...

. . .
...

0 . . . λd


with |λj | = 1 for every j = 1, . . . , d. Moreover, sgn(x) = {S ∈ Md : Sx ⪰ 0}.
Observe that if S ∈ Md, then S2 = Id×d, and consequently S−1 = S.

For 0 < p <∞,

∥x∥p :=

 d∑
j=1

|xj |p
1/p

, x ∈ Rd,

is the p-norm of x. Moreover,

∥x∥∞ = max
j=1,...,d

|xj |.

26
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Similar notation will be used for the d-dimensional complex space Cd, with
standard inner product zw =

∑d
j=1 zjwj , the bar denoting the complex conjuga-

tion.

2.1.2 Matrix notation

We denote by Rr×d the space of r × d matrices with real entries. Id×d and 0r×d
denote the d × d identity matrix and the r × d matrix with all zero entries,
respectively.

If M ∈ Rr×d, MT denotes its conjugate, ker(M) denotes its kernel, ℑ(M)
denotes its range, and rank(M) denotes its rank. If M ∈ Rd×d, det(M) denotes
the determinant of M .

We denote by GL(d,R) the space of d× d invertible matrices. We denote by
Sym(d,R) the space of d×d symmetric matrices, i.e., M ∈ Sym(d,R) ifMT =M .

If M ∈ R2d×2d has block decomposition:

M =

(
A B
C D

)
,

A,B,C,D ∈ Rd×d, we say that M is upper block triangular if C = 0d×d, lower
block triangular if B = 0d×d, and block diagonal if B = C = 0d×d.

2.1.3 Topological notation

We always consider the Euclidean topology on Rd. If Ω ⊆ Rd, Ω̊ denotes the set
of the interior points of Ω, whereas ∂Ω denotes its boundary.

2.1.4 Multi-indices

For α ∈ Nd and x ∈ Rd, xα =
∏d
j=1 x

αj

j . We denote by |α| =
∑d

j=1 αj . If
f : Rd → C,

Dαf(x) =
∂|α|

∂xα1
1 . . . ∂xαd

d

f(x).

2.2 Function and distribution spaces

We always consider measurable (with respect to the Lebesgue measure) complex-
valued functions on Rd. If g is a function and Ω is a subset of its domain, g|Ω
denotes the restriction of g to Ω. Finally, if Ω ⊆ Rn, χΩ denotes the character-
istic function of Ω. We denote by C∞

0 (Rd) the space of complex-valued smooth
functions on Rd. If f, g are functions on Rd, the notation f ≲ g means that there
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exists C > 0 such that f(x) ≤ Cg(x) for every x ∈ Rd, whereas f ≍ g means
that C1f ≤ g ≤ C2f for some C1, C2 > 0.

2.2.1 Lebesgue spaces

We always consider the Lebesgue measure on Rd, and if f : Rd → C is measurable,
and 0 < p <∞,

∥f∥p :=
(∫

Rd

|f(x)|pdx
)1/p

,

were dx denotes the Lebesgue measure on Rd, and

∥f∥∞ = ess sup
x∈Rd

|f(x)|.

We denote by Lp(Rd) the space of p-integrable functions. We denote by

⟨f, g⟩ =
∫
Rd

f(x)g(x)dx, f, g ∈ L2(Rd),

the sesquilinear inner product of L2(Rd).

2.2.2 Test functions and distributions

We denote by S(Rd) the Schwartz space of rapidly decreasing functions, and its
topological dual S ′(Rd) is the space of tempered distributions. We endow S(Rd)
with the initial topology associated to the seminorms

ρα,β(f) = sup
x∈Rd

|xαDβf(x)|,

whereas S ′(Rd) is endowed with the weak-∗ topology.

The inner product ⟨·, ·⟩ of L2(Rd) defined above extends uniquely to a duality
pairing S ′ × S, antilinear in its second component: if f ∈ S ′(Rd),

⟨f, φ⟩ = f(φ̄), φ ∈ S(Rd).

We have:
S(Rd) ↪→ Lp(Rd) ↪→ S ′(Rd)

for every 0 < p ≤ ∞, and the inclusions are dense if p ̸= ∞.

For t ∈ Rd, we denote by δt the Dirac delta distribution centered in t, i.e.,

⟨δt, φ⟩ = φ(t), φ ∈ S(Rd).
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2.2.3 Tensor products

If f, g are complex-valued Lebesgue-measurable functions on Rd, we denote with
f ⊗ g the function

(f ⊗ g)(x, y) = f(x)g(y), x, y ∈ Rd.

We have that span{f ⊗ g : f, g ∈ S(Rd)} is dense in S(R2d), and span{f ⊗ g :
f, g ∈ Lp(Rd)} is dense in Lp(Rd), 1 ≤ p <∞.

If f, g ∈ S ′(Rd), f ⊗ g is defined as the tempered distribution on R2d such
that

⟨f ⊗ g,Φ⟩ = ⟨f, ⟨g,Φx⟩⟩ = ⟨g, ⟨f,Φy⟩⟩, Φ ∈ S(R2d),

where Φx = Φ(x, ·), x ∈ Rd, and Φy = Φ(·, y), y ∈ Rd, are the sections of Φ.
Again, span{f ⊗ g : f, g ∈ S ′(Rd)} is dense in S ′(R2d).

2.2.4 Weights

In this work, v is a continuous, positive, submultiplicative weight function on
Rd, i.e., v(z1 + z2) ≤ v(z1)v(z2), for all z1, z2 ∈ Rd. A weight function m is
in Mv(Rd) if m is a positive, continuous weight function on Rd and it is v-
moderate: m(z1 + z2) ≲ v(z1)m(z2). This notation means that there exists a
universal constant C > 0 such that the inequality m(z1 + z2) ≤ Cv(z1)m(z2)
holds for all z1, z2 ∈ Rd.

In the following, we will work with weights on R2d of the type

vs(z) = ⟨z⟩s = (1 + |z|2)s/2, z ∈ Rd.

For s < 0, vs is v|s|-moderate.

In particular, we shall use the weight functions on R4d:

(vs ⊗ 1)(z, ζ) = (1 + |z|2)s/2, (1⊗ vs)(z, ζ) = (1 + |ζ|2)s/2, z, ζ ∈ R2d.

Two weights m1,m2 are equivalent if m1 ≍ m2. For example, vs(z) ≍ (1 +
|z|2)s/2. We refer to [64] for a comprehensive source about weight functions in
time-frequency analysis.

2.2.5 Weighted mixed norm spaces

If m ∈ Mv(R2d), 0 < p, q ≤ ∞ and f : R2d → C measurable, we set

∥f∥Lp,q
m

:=

(∫
Rd

(∫
Rd

|f(x, y)|pm(x, y)p
)q/p

dy

)1/q

=
∥∥∥y 7→ ∥f(·, y)m(·, y)∥p

∥∥∥
q
,

with the obvious adjustments when min{p, q} = ∞. The space of measurable
functions f having ∥f∥Lp,q

m
< ∞ is denoted by Lp,qm (R2d). If m ∈ Mv(R2d) and

1 ≤ p, q ≤ ∞, then Lp,qm (R2d) ∗ L1
v(R2d) ↪→ Lp,qm (R2d).
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2.3 Fourier transforms

The Fourier transform of a function f ∈ S(Rd) is

f̂(ξ) =

∫
Rd

f(x)e−2πiξ·xdx, ξ ∈ Rd.

The operator (also called Fourier transform) F : f ∈ S(Rd) → f̂ ∈ S(Rd) is a
homeomorphism, and it extends to a unitary operator on L2(Rd), meaning that
it is surjective and

⟨f̂ , ĝ⟩ = ⟨f, g⟩, f, g ∈ L2(Rd).

The Fourier transform of f ∈ S ′(Rd) is the tempered distribution f̂ defined by
its action on S(Rd) by

⟨f̂ , φ⟩ = ⟨f,F−1φ⟩, φ ∈ S(Rd).

The operator F : f ∈ S ′(Rd) → S ′(Rd) is a homeomorphism.

If 1 ≤ j ≤ d, the partial Fourier transform with respect to the jth coordinate
is defined as

Fjf(t1, . . . , tj−1, ξj , tj+1 . . . , td) =

∫ ∞

−∞
f(t1, . . . , td)e

−2πitjξjdtj , f ∈ L1(Rd).

(2.1)
Analogously, the definition is transported on S ′(Rd) in terms of antilinear duality
pairing: for all f ∈ S ′(Rd),

⟨Fjf, φ⟩ := ⟨f,F−1
j φ⟩, φ ∈ S(Rd).

Observe that FjFk = FkFj for all 1 ≤ j, k ≤ d. In particular,

F = Fσ(1) ◦ . . . ◦ Fσ(d)

holds that for all permutation σ : {1, . . . , d} → {1, . . . , d}. Finally, for all 1 ≤
j ≤ d,

F2
j f(x1, . . . , xd) = f(x1, . . . , xj−1,−xj , xj+1, . . . , xd).

Moreover, for F ∈ S(R2d), the partial Fourier transform with respect to the
frequency variables is

F2F (x, ξ) =

∫
Rd

F (x, t)e−2πiξ·tdt, ξ ∈ Rd.

The choice of denoting with the symbol F2 both the partial Fourier transform
with respect to the second variable and the partial Fourier transform with respect
to the frequency variables shall not cause confusion in this work.
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2.4 Tools from time-frequency analysis

For x, ξ ∈ Rd, we denote with Tx and Mξ the translation and the modulation
operators respectively, i.e., the unitary operators on L2(Rd) defined as

Txg(t) = g(t− x), Mξg(t) = e2πiξ·tg(t), g ∈ L2(Rd).

These operators extend to S ′(Rd) by setting for f ∈ S ′(Rd),

⟨Txf, g⟩ = ⟨f, T−xg⟩, and ⟨Mξf, g⟩ = ⟨f,M−ξg⟩, g ∈ S(Rd).

If z = (x, ξ) ∈ R2d, the operator

π(x, ξ)f(t) =MξTxf(t) = e2πiξ·tf(t− x), f ∈ L2(Rd) (2.2)

is called time-frequency shift. Observe that:

π(z)π(w) = e−2πix·ηπ(z + w),

and
π(z)−1 = π(z)∗ = e−2πix·ξπ(−z). (2.3)

for every z = (x, ξ), w = (y, η) ∈ R2d.

2.4.1 The short-time Fourier transform

For a fixed g ∈ S(Rd) \ {0}, the short-time Fourier transform (STFT) of f ∈
L2(Rd) is defined as

Vgf(x, ξ) =

∫
Rd

f(t)g(t− x)e−2πiξ·tdt, x, ξ ∈ Rd.

The definition of STFT can be extended to all tempered distributions: fixed
g ∈ S(Rd) \ {0}, f ∈ S ′(Rd)

Vgf(x, ξ) = ⟨f, π(x, ξ)g⟩.

Defined as above, the STFT is a uniformly continuous function on R2d that grows
at most polynomially. In particular Vgf ∈ S ′(R2d). Finally, it is easy to see that
if

TLST
F (x, t) = F (t, t− x), F ∈ S(R2d), x, t ∈ Rd,

then,
Vgf = F2TLST

(f ⊗ ḡ),

defines a tempered distribution, which extends the STFT to (f, g) ∈ S ′(Rd) ×
S ′(Rd). Here, TLST

of a tempered distribution f is defined as

⟨TLST
f, g⟩ = ⟨f,T−1

LST
g⟩, g ∈ S(Rd).
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Similar notation will be used in the up-coming sections.

We will use the fundamental identity of time-frequency analysis: for f ∈
S ′(Rd) and g ∈ S(Rd),

Vgf(x, ξ) = e−2πiξ·xVĝf̂(ξ,−x), x, ξ ∈ Rd. (2.4)

Moreover, if f ∈ L2(Rd), and g, γ ∈ L2(Rd) are such that ⟨γ, g⟩ ̸= 0, the
following inversion formula holds:

f =
1

⟨γ, g⟩

∫
R2d

Vgf(x, ξ)π(x, ξ)γdxdξ,

where the integral must be interpreted in the weak sense of distributions.

2.4.2 Other time-frequency representations

We will also consider the (cross-)Wigner distribution, which is defined as

W (f, g)(x, ξ) =

∫
Rd

f

(
x+

t

2

)
g

(
x− t

2

)
dt, f, g ∈ L2(Rd).

If f = g, we write Wf = W (f, f), the Wigner distribution of f . Similarly, for
τ ∈ R, we will consider the (cross-)τ -Wigner distribution

Wτ (f, g)(x, ξ) =

∫
Rd

f(x+ τt)g(x− (1− τ)t)dt, f, g ∈ L2(Rd). (2.5)

In particular, we retrieve for τ = 0 the (cross-)RIhacek distribution

W0(f, g)(x, ξ) = f(x)ĝ(ξ)e−2πiξ·x, f, g ∈ S(Rd), x, ξ ∈ Rd, (2.6)

and for τ = 1 the (cross-)conjugate RIhacek distribution

W1(f, g)(x, ξ) = f̂(ξ)g(x)e2πiξ·x, f, g ∈ S(Rd), x, ξ ∈ Rd. (2.7)

If f = g, we write Wτf = Wτ (f, f), the τ -Wigner distribution of f . Observe
that the case τ = 1/2 corresponds to the Wigner distribution.

Similarly to the STFT, the τ -Wigner distributions extend to (f, g) ∈ S ′(Rd)×
S ′(Rd) by setting:

Wτ (f, g) = F2TLτ (f ⊗ ḡ),

where

TLτF (x, t) = F (x+ τt, x− (1− τ)t), F ∈ S(R2d), x, t ∈ Rd.
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2.4.3 Modulation spaces

Fix 0 < p, q ≤ ∞, m ∈ Mv(R2d), and g ∈ S(Rd) \ {0}. The modulation space
Mp,q
m (Rd) is classically defined as the space of tempered distributions f ∈ S ′(Rd)

such that
∥f∥Mp,q

m
:= ∥Vgf∥Lp,q

m
<∞.

If p = q, we write Mp,p
m = Mp

m, and if m = 1, we write Mp,q
m = Mp,q. The space

M1 is known as Feichtinger’s algebra, and the spaces M∞,1
1⊗vs are known as Sjös-

trand classes. If min{p, q} ≥ 1, the quantity ∥·∥Mp,q
m

defines a norm, otherwise a
quasi-norm. Different windows give rise to equivalent (quasi-)norms. Modulation
spaces are (quasi-)Banach spaces and the following continuous inclusions hold: if
0 < p1 ≤ p2 ≤ ∞, 0 < q1 ≤ q2 ≤ ∞ and m1,m2 ∈ Mv(R2d) satisfy m2 ≲ m1:

S(Rd) ↪→Mp1,q1
m1

(Rd) ↪→Mp2,q2
m2

(Rd) ↪→ S ′(Rd).

In particular, M1
v (Rd) ↪→ Mp,q

m (Rd) whenever m ∈ Mv(R2d) and min{p, q} ≥ 1.
We will also use the inclusionM1

m⊗1(R2d) ↪→ L1
m(R2d). We denote with Mp,q

m (Rd)
the closure of S(Rd) in Mp,q

m (Rd), which coincides with the latter whenever p, q <
∞. Moreover, if 1 ≤ p, q <∞, (Mp,q

m (Rd))′ =Mp′,q′

1/m (Rd), where p′ and q′ denote
the Lebesgue conjugate exponents of p and q respectively. Finally, if m1 ≍ m2,
then Mp,q

m1(Rd) =Mp,q
m2(Rd) for all p, q.

2.4.4 Wiener amalgam spaces

For 0 < p, q ≤ ∞, and m1,m2 ∈ Mv(R2d), W (FLpm1 , L
q
m2)(Rd) is the space

of tempered distributions f ∈ S ′(Rd) such that for some (hence, all) window
g ∈ S(Rd) \ {0},

∥f∥W (FLp
m1

,Lq
m2

) :=
∥∥∥x 7→ m2(x) ∥Vgf(x, ·)m1∥p

∥∥∥
q
<∞.

Using (2.4), we have that ∥f∥W (FLp
m1

,Lq
m2

) =
∥∥∥f̂∥∥∥

Mp,q
m1⊗m2

, so that

FMp,q
m1⊗m2

(Rd) =W (FLpm2
, Lqm1

)(Rd).

Also, for p = q,
W (FLpm1

, Lpm2
)(Rd) =Mp

m1⊗m2
(Rd). (2.8)

2.4.5 Gabor frames

For a fixed Λ ⊆ R2d and g ∈ L2(Rd), the system G(g,Λ) = {π(λ)g}λ∈Λ is a Gabor
frame if there exist A,B > 0 such that

A ∥f∥22 ≤
∑
λ∈Λ

|⟨f, π(λ)g|2 ≤ B ∥f∥22 , f ∈ L2(Rd).
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Theorem 2.1. If G(g,Λ), with g ∈ S(Rd), is a Gabor frame, there exists γ ∈
S(Rd) such that for every f ∈Mp,q

m (Rd),

f =
∑
λ∈Λ

⟨f, π(λ)g⟩π(λ)γ,

where the series is unconditionally convergent in the Mp,q
m quasi-norm if p, q ̸= ∞,

and weak-∗ convergent otherwise. If p, q ≥ 1, the window can be taken in M1
v (Rd).

Proof. See [46].

2.5 Symplectic group and metaplectic operators

2.5.1 The Lie group of symplectic matrices

We denote by

J =

(
0d×d Id×d
−Id×d 0d×d

)
(2.9)

the matrix that defines the standard symplectic form of Cd. Consider a matrix
S ∈ R2d×2d with block decomposition:

S =

(
A B
C D

)
, A,B,C,D ∈ Rd×d.

We say that S is symplectic, and we write S ∈ Sp(d,R) if one of these equivalent
conditions holds:
(1) S satisfies

STJS = J,

(2) The blocks of S satisfy 
ATC = CTA,

BTD = DTB,

ATD − CTB = Id×d,

(2.10)

(3) The inverse of S has block decomposition

S−1 =

(
DT −BT

−CT AT

)
.

(4) The blocks of S satisfy 
DCT = CDT ,

ABT = BAT ,

DAT − CBT = Id×d.

The Lie algebra of Sp(d,R) is denoted by sp(d,R).
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Example 2.2. (i) The matrix J is trivially symplectic. Observe that J−1 = −J .
(ii) The matrices

VC =

(
Id×d 0d×d
C Id×d

)
and DL =

(
L−1 0d×d
0d×d LT

)
, (2.11)

for C ∈ Sym(d,R) and L ∈ GL(d,R) are symplectic. Observe that V −1
C = V−C

and D−1
L = DL−1

(iii) If S ∈ Sp(d,R), also ST ∈ Sp(d,R), and in particular every

UC = V T
C =

(
Id×d C
0d×d Id×d

)
, C ∈ Sym(d,R),

is symplectic. Also, S−1 is symplectic.
(iv) For a subset of indices J ⊆ {1, . . . , d}, consider IJ the diagonal matrix with
diagonal entries

(IJ )jj =

{
1 if j ∈ J ,
0 otherwise.

If J = {j}, we write ΠJ = Πj . Observe that
∏
j Πj = J . The matrix

ΠJ =

(
Id×d − IJ IJ

−IJ Id×d − IJ

)
is symplectic. In particular,

AFT2 =


Id×d 0d×d 0d×d 0d×d
0d×d 0d×d 0d×d Id×d
0d×d 0d×d Id×d 0d×d
0d×d −Id×d 0d×d 0d×d

 (2.12)

is symplectic.

Definition 2.3. A symplectic matrix S with block decomposition (7.3) is free if
B ∈ GL(d,R).

Lemma 2.4. Let S ∈ Sp(d,R). There exist S1, S2 free such that S = S1S2.

Proof. See [35, Theorem 60].

For the next result we refer the reader to [48, Proposition 4.10].

Proposition 2.5. The symplectic group is generated by J , and by matrices of the
form VC and DL, for C ∈ Sym(d,R) and L ∈ GL(d,R).
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2.5.2 Metaplectic operators

Let ρ be the Schrödinger representation of the Heisenberg group, that is

ρ(x, ξ; τ) = e2πiτe−πiξ·xπ(x, ξ),

for all x, ξ ∈ Rd, τ ∈ R. We will use the following tensor product property: for
all f, g ∈ L2(Rd), z = (z1, z2), w = (w1, w2) ∈ R2d,

ρ(z; τ)f ⊗ ρ(w; τ)g = e2πiτρ(z1, w1, z2, w2; τ)(f ⊗ g).

For all S ∈ Sp(d,R), ρS(x, ξ; τ) := ρ(S(x, ξ); τ) defines another representation of
the Heisenberg group that is equivalent to ρ, i.e., there exists a unitary operator
Ŝ : L2(Rd) → L2(Rd) such that

Ŝρ(x, ξ; τ)Ŝ−1 = ρ(S(x, ξ); τ), x, ξ ∈ Rd, τ ∈ R. (2.13)

This operator is not unique, but if Ŝ′ is another unitary operator satisfying (2.13),
then Ŝ′ = cŜ, for some constant c ∈ C, |c| = 1. The set {Ŝ : S ∈ Sp(d,R)} is
a group under composition and it admits a subgroup that contains exactly two
operators for each S ∈ Sp(d,R). This subgroup is called metaplectic group,
denoted by Mp(d,R). It is a realization of the two-fold cover of Sp(d,R) and the
projection

πMp : Mp(d,R) → Sp(d,R)

is a group homomorphism with kernel ker(πMp) = {−idL2 , idL2}.
Throughout this work, if Ŝ ∈ Mp(d,R), the matrix S (without the caret) will

always be the unique symplectic matrix such that πMp(Ŝ) = S. The next result
is proved in [48, Proposition 4.27].

Proposition 2.6. Every operator Ŝ ∈ Mp(d,R) maps S(Rd) homeomorphically to
S(Rd). Moreover, for every f ∈ S ′(Rd), the tempered distribution Ŝf ∈ S ′(Rd)
defined by

⟨Ŝf, g⟩ = ⟨f, Ŝ−1g⟩, g ∈ S(Rd)

is the unique extension of Ŝ to an operator on S ′(Rd), which is a homeomorphism
of S ′(Rd).

Example 2.7. (i) The Fourier transform is a metaplectic operator, and

πMp(F) = J.

(ii) For every L ∈ GL(d,R), the rescaling operator

TLf(t) = |det(L)|1/2f(Lt), f ∈ L2(Rd),

is a metaplectic operator, and

πMp(TL) = DL.
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(iii) For every C ∈ Sym(d,R), the corresponding chirp function is

ΦC(t) = eiπCt·t, t ∈ Rd. (2.14)

The product operator

pCf(t) = ΦC(t)f(t), f ∈ L2(Rd) (2.15)

is a metaplectic operator with projection

πMp(pC) = VC .

(iv) For every C ∈ Sym(d,R), the operator

mCf = F−1(ΦC f̂) = F−1ΦC ∗ f, f ∈ L2(Rd) (2.16)

is metaplectic, with
πMp(mC) = UC = V T

C .

Observe that, if C ∈ GL(d,R),

F−1ΦC = |det(C)|Φ−C−1 ,

and consequently,

mCf = | det(C)|Φ−C−1 ∗ f, f ∈ L2(Rd).

(v) Let Fj , 1 ≤ j ≤ d, be the partial Fourier transform with respect to the jth
coordinate defined in (2.1). Then

Fjρ(x, ξ, τ)F−1
j = ρ(Πj(x, ξ), τ), x, ξ ∈ Rd, τ ∈ R.

In fact, take any f ∈ L1(Rd) and compute Fjρ(x, ξ, τ)F−1
j f as follows:

Fjρ(x, ξ, τ)F−1
j f(t1, . . . , td)e

−2πiτeiπx·ξ

= e2πi
∑

k ̸=j tk·ξk
∫
R
e−2πtjζje2πiζjξjF−1

j f(t1 − x1, . . . , ζj − xj , . . . , td − xd) dζj

= e2πi
∑

k ̸=j tk·ξk
∫
R
e−2πi(uj+xj)(tj−ξj)F−1

j f(t1 − x1, . . . , uj , . . . , td − xd) duj

= e2πi
∑

k ̸=j tk·ξke2πitj(−xj)e2πixjξj
∫
R
e−2πuj(ξj−ζj)

× F−1
j f(t1 − x1, . . . , uj , . . . , td − xd) duj

= e−2πiτeiπx·ξρ(Πj(x, ξ), τ)f(t1, . . . , td).

Consequently, Fj is a metaplectic operator, and πMp(Fj) = Πj . More generally,
if J = {j1, . . . , jr} ⊆ {1, . . . , d}, the partial Fourier transform with respect to
the variables indexed by J is

FJ = Fj1 ◦ . . . ◦ Fjr .
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We have
πMp(FJ ) = ΠJ .

In particular, the partial Fourier transform with respect to the frequency variables
F2 is a metaplectic operator and

πMp(F2) = AFT2.

Remark 2.8. With an abuse of notation, if Ŝ is a metaplectic operator on L2(Rd),
we write Ŝ ∈ Mp(d,R). Stated otherwise, we write Ŝ ∈ Mp(d,R) if there exists
c ∈ C with |c| = 1 so that cŜ ∈ Mp(d,R). The reason is that all the properties
treated in this work are independent on c.
Proposition 2.9. The operators F , pC and TL generate the group of metaplectic
operators.

Proof. It is a straightforward restatement of Proposition 2.5, together with the
fact that πMp is a homomorphism.

For the next result is contained in [48, Theorems 4.51 and 4.53].

Lemma 2.10. If Ŝ ∈ Mp(d,R) and S = πMp(Ŝ) is free, then for every f ∈
S(Rd),

Ŝf(x) = |det(B)|−1/2Φ−DB−1(x)

∫
Rd

f(t)e2πiB
−1x·te−iπB

−1At·tdt,

and, if Ŝ ∈ Mp(d,R) and S = πMp(Ŝ) has A ∈ GL(d,R), then

Ŝf(x) = | det(A)|−1/2ΦCA−1(x)

∫
Rd

Φ−A−1B(ξ)f̂(ξ)e
2πiA−1x·ξdξ

for every f ∈ S(Rd).

2.6 Metaplectic Wigner distributions

Let Â ∈ Mp(2d,R).

Definition 2.11. The metaplectic Wigner distribution associated to Â is
defined for all f, g ∈ L2(Rd) as

WA(f, g) = Â(f ⊗ ḡ).

The most popular time-frequency representations are metaplectic Wigner dis-
tributions. Namely, Vgf = ÂST (f ⊗ ḡ) and Wτ (f, g) = Âτ (f ⊗ ḡ), where:

AST =


Id×d −Id×d 0d×d 0d×d
0d×d 0d×d Id×d Id×d
0d×d 0d×d 0d×d −Id×d
−Id×d 0d×d 0d×d 0d×d

 (2.17)
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and

Aτ,2d =


(1− τ)Id×d τId×d 0d×d 0d×d

0d×d 0d×d τId×d −(1− τ)Id×d
0d×d 0d×d Id×d Id×d
−Id×d Id×d 0d×d 0d×d

 , (2.18)

when d is clear from the context, we limit to write Aτ .

We recall the following continuity properties.

Proposition 2.12. Let WA be a metaplectic Wigner distribution. Then,
(i) WA : L2(Rd)× L2(Rd) → L2(R2d) is continuous;
(ii) WA : S(Rd)× S(Rd) → S(R2d) is continuous;
(iii) WA : S ′(Rd)× S ′(Rd) → S ′(R2d) is continuous.

Proof. See [31, Proposition 2.3].

Lemma 2.13. For every f1, f2, g1, g2 ∈ L2(Rd),

⟨WA(f1, f2),WA(g1, g2)⟩ = ⟨f1, g1⟩⟨f2, g2⟩. (2.19)

Proof. See [31, Proposition 2.9].

The projection of a metaplectic operator Â ∈ Mp(2d,R) is a symplectic ma-
trix A ∈ Sp(2d,R) with block decomposition

A =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 . (2.20)

For a 4d×4d symplectic matrix with block decomposition (2.20), relations (2.10)
read as: 

(R1a) AT11A31 +AT21A41 = AT31A11 +AT41A21,

(R1b) AT11A32 +AT21A42 = AT31A12 +AT41A22,

(R1c) AT12A32 +AT22A42 = AT32A12 +AT42A22,
(R2a) AT13A33 +AT23A43 = AT33A13 +AT43A23,

(R2b) AT13A34 +AT23A44 = AT33A14 +AT43A24,

(R2c) AT14A34 +AT24A44 = AT34A14 +AT44A24,
(R3a) AT11A33 +AT21A43 − (AT31A13 +AT41A23) = Id×d,

(R3b) AT11A34 +AT21A44 = AT31A14 +AT41A24,

(R3c) AT12A33 +AT22A43 = AT32A13 +AT42A23,

(R3d) AT12A34 +AT22A44 − (AT32A14 +AT42A24) = Id×d.
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We identify four 2d× 2d submatrices of 4d× 4d symplectic matrices. Namely, if
A ∈ Sp(2d,R) has block decomposition (2.20), we set:

EA =

(
A11 A13

A21 A23

)
, FA =

(
A31 A33

A41 A43

)
, (2.21)

and

EA =

(
A12 A14

A22 A24

)
, FA =

(
A32 A34

A42 A44

)
. (2.22)

A simple comparison shows that relationships (R1a) − (R3d) read, in terms of
these four submatrices, as

ETAFA − F TAEA = J,

ETAFA −FT
AEA = J,

ETAFA − F TAEA = 0d×d.

(2.23)

We will also consider

BA =

(
A13

1
2Id×d −A11

1
2Id×d −AT11 −A21

)
. (2.24)

Finally, the following matrices will appear ubiquitously throughout this work:

L =

(
0d×d Id×d
Id×d 0d×d

)
and P =

(
0d×d Id×d
0d×d 0d×d

)
. (2.25)

In this work, we often denote by L also a general invertible matrix. However,
this shall not cause confusion.

Lemma 2.14. Let A ∈ Sp(2d,R) have block decomposition (2.20) and EA, FA,
EA, and FA be defined as in (2.21) and (2.22). Let L be defined as in (2.25).
If EA ∈ GL(2d,R), then,
(i) FA = E−T

A F TAEA;
(ii) the matrix GA := LE−1

A EA is symplectic;
(iii) EA ∈ GL(2d,R) and det(EA) = (−1)d det(EA).
If EA ∈ GL(2d,R), then,
(iv) FA = E−T

A FT
AEA;

(v) the matrix GA = LE−1
A EA is symplectic;

(vi) EA ∈ GL(2d,R) and det(EA) = (−1)d det(EA).
In particular, EA is invertible if and only if EA is invertible.

Proof. Relation (i) follows directly from the third equation in (2.23), using the
invertibility of EA.
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Item (ii) is a consequence of (2.23) and (i). For, observe that LJL = −J , so
that:

GTAJGA = (LE−1
A EA)TJ(LE−1

A EA) = ETAE−T
A (LJL)E−1

A EA
= −ETAE−T

A JE−1
A EA = ETAE−T

A (F TAEA − ETAFA)E
−1
A EA

= ETA(E−T
A F TA − FAE

−1
A )EA = ETA(E−T

A F TAEA)− (ETAFAE
−1
A )EA

= ETAFA −FT
AEA = J.

Finally, (iii) follows directly from (ii). Items (iv)-(vi) are proved analogously.

Definition 2.15. We say that WA or, by extension, A and Â, is shift-invertible
if EA ∈ GL(d,R).



Chapter 3

Tuning parameters for LASSO
problems

In Section 3.1, we establish the notation we use in this work. In Section 3.2 we
compute the deterministic relationships between the parameters λj ’s and the τj ’s
in order for problems

minimize ∥Ax− b∥22 , x ∈ Rn, |xj | ≤ τj , j = 1, . . . , n. (3.1)

and

minimize ∥Ax− b∥22 +
n∑
j=1

λj |xj |, (3.2)

to be equivalent, under the following specific assumptions: e.g., A is a subsam-
pling matrix (i.e., the k-th row of A, ak,∗ is either the k-th vector of the canonical
basis of Rn, or the null vector), A is the matrix of the discrete Fourier transform,
or simply the identity matrix. In those cases A is such that ATA is diagonal, and
the Lagrange multipliers are explicitly given by:

λ#j = 2 ∥a∗,j∥22
( |⟨b, a∗,j⟩|

∥a∗,j∥22
− τj

)
χ[

0,
|⟨b,a∗,j⟩|

∥a∗,j∥2

2

](τj), (3.3)

where a∗,j denotes the j-th column of A and χ[
0,

|⟨b,a∗,j⟩|

∥a∗,j∥2

2

] is the characteristic

function on
[
0,

|⟨b,a∗,j⟩|
∥a∗,j∥22

]
, j = 1, ..., n. We also provide deterministic results under

assumptions on the sign of the gradient of ∥Ax− b∥22. Specifically, we provide
the explicit expression of the Lagrange multipliers when ∂

∂xj
(∥Ax− b∥22) ≤ 0, for

every j = 1, . . . , n in {|xj | ≤ τj : j = 1, . . . , n}.
We point out that our result is interesting for two main reasons: to the best

of our knowledge, the analytic dependence that we investigate was never fully
understood, neither computed. Formula (3.3) can be applied directly for de-
noising in some transform domain, i.e., if A is orthogonal or the identity itself.

42
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Furthermore, if A is the matrix of an undersampling pattern, ATA is diagonal
and (3.3) can be exploited to control the Lagrange multipliers of the weighted
LASSO problem (3.2) in terms of voxel-wise estimates. We presume that such
estimates are relatively easy to obtain. For example, one may first reconstruct
a highly undersampled image, apply filters using convolution techniques and es-
timate the tuning parameters λ from the filtered image, therefore obtaining a
denoised image.

This chapter is part of an article published in Applied Mathematics and Op-
timization in 2024, cf. [60].

3.1 Convex analysis of LASSO problems

3.1.1 Lagrange duality

Consider a constrained optimization problem in the form

minimize F0(x), Ψx = y, Fl(x) ≤ bl, l = 1, . . . ,M, (3.4)

where Ψ ∈ Rm×n, y ∈ Rm and F0, F1, . . . , FM : Rn → (−∞,+∞] are convex. We
always assume that a minimizer of (3.4) exists.

A point x ∈ Rn is called feasible if it belongs to the constraints, that is if:

x ∈ K :=
{
ζ ∈ Rn : Ψζ = y and Fl(ζ) ≤ bl, l = 1, . . . ,M

}
and K is called the set of feasible points. To avoid triviality, we always assume
K ̸= ∅, in which case problem (3.4) is called feasible. In view of the definition of
K, problem (3.4) can be implicitly written as:

minimize F0(x), x ∈ K.

Convex problems such as (1.11) and (3.1) can be approached by considering
their Lagrange formulation, see Subsection 3.1.3 below. The Lagrange function
related to (3.4) is the function L : Rn × Rm × [0,+∞)M → (−∞,+∞] defined
as:

L(x, ξ, λ) := F0(x) + ⟨ξ,Ψx− y⟩+
M∑
l=1

λl(Fl(x)− bl).

Observe that for all ξ, λ and x ∈ K:

L(x, ξ, λ) = F0(x) + ⟨ξ,Ψx− y⟩︸ ︷︷ ︸
= 0

+
M∑
l=1

λl︸︷︷︸
≥ 0

(Fl(x)− bl︸ ︷︷ ︸
≤ 0

) ≤ F0(x),

so that:
inf
x∈Rn

L(x, ξ, λ) ≤ inf
x∈K

L(x, ξ, λ) ≤ inf
x∈K

F0(x). (3.5)
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Definition 3.1. The function H : Rm × [0,+∞)M → [−∞,+∞] defined as:

H(ξ, λ) := inf
x∈Rn

L(x, ξ, λ)

is called Lagrange dual function.

Inequalities (3.5) read as:

H(ξ, λ) ≤ inf
x∈K

F0(x) (3.6)

for all ξ ∈ Rm and all λ ∈ [0,+∞)M . Stating (3.6) differently, we have the weak
duality inequality :

sup
ξ∈Rm

λ⪰0

H(ξ, λ) ≤ inf
x∈K

F0(x). (3.7)

We point out that (3.7) is equivalent to:

sup
ξ,λ

inf
x
L(x, ξ, λ) ≤ inf

x
sup
ξ,λ

L(x, ξ, λ) (3.8)

(see [11, Subsection 5.4.1]).

We are interested in computing the parameters (ξ, λ) such that (3.7) is an
equality, in which case (3.7) becomes:

sup
ξ∈Rm

λ⪰0

H(ξ, λ) = inf
x∈K

F0(x), (3.9)

so that strong duality (3.9) holds for problem (3.4).

3.1.2 Subdifferential

Definition 3.2 (Subdifferential). Let Ω ⊆ Rn be open and g : Ω → R. Let
x0 ∈ Ω. The subdifferential of g at x0 is the set:

∂g(x0) := {v ∈ Rn : g(x) ≥ g(x0) + vT (x− x0) ∀x ∈ Ω}.

We refer to any v ∈ ∂g(x0) as a subgradient of g at x0.

We will use the following standard result of convex analysis.

Proposition 3.3. Let Ω ⊆ Rn be open and convex, and g : Ω → R be convex and
continuous on Ω. Let x0 ∈ Ω. Then, ∂g(x0) ̸= ∅.

Proof. See e.g. [110, Theorem 23.4].
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3.1.3 Lagrange formulation of constrained problems

Under the notation above, let F (x) := (F1(x), ..., FM (x)). In the convex frame-
work, if the constraint F (x) ⪯ b does not reduce to F (x) = b, namely if for all
l = 1, . . . ,M the inequality Fl(x) < bl holds for some x ∈ Rn, then strong duality
holds.

Theorem 3.4 (Cf. [11], Section 5.3.2). Assume that F0, F1, . . . , FM are convex
functions defined on Rn. Let x# be such that F0(x

#) = infx∈Rn F0(x). If:

(i) there exists x̃ ∈ Rn such that Ψx̃ = y and F (x̃) ≺ b or,

(ii) in absence of inequality constraints, if K ̸= ∅ (i.e., if there exists x̃ ∈ Rn
such that Ψx̃ = y),

then, there exists (ξ#, λ#) ∈ Rm × [0,+∞)M such that

H(ξ#, λ#) = sup
ξ,λ

H(ξ, λ)

and H(ξ#, λ#) = F0(x
#).

The proof of Theorem 3.4 contains the fundamental construction we will use
in the next sections and we report it for this reason. We refer to [11, Subsection
5.3.2] for the complete proof. First, we need a result from functional analysis,
which is well-known as (geometrical) Hahn-Banach theorem.

Definition 3.5 (Separating hyperplane). Consider two subsets A,B ⊆ Rn. A
hyperplane Γ := {x ∈ Rn : ⟨ξ, x⟩ = α} satisfying:

⟨ξ, x⟩ ≤ α < ⟨ξ, y⟩, x ∈ A, y ∈ B, (3.10)

is a separating hyperplane between A and B.

Theorem 3.6 (Cf. [112] Theorem 3.4). Let A,B ⊂ Rn be two convex and disjoint
subsets. If B is open, there exists ξ ∈ Rn and α ∈ R such that (3.10) holds for
all x ∈ A and all y ∈ B.

Idea of the proof of Theorem 3.4. First, one assumes that A has full row-rank.
Moreover, one reduces to consider the situation in which p∗ := infx∈K F0(x) >
−∞, otherwise the assertion is trivial.

Consider the set:

G :=
{
(F (x)− b,Ψx− y, F0(x)) ∈ RM × Rm × R : x ∈ Rn

}
,
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where, with an abuse of notation, Ψx− y denotes the row vector with the same
(ordered) entries of Ψx− y, and A be defined as the epigraph:

A := G + ((R≥0)
M × Rm × R≥0)

=
{
(u, v, t) ∈ RM × Rm × R : u ⪰ F (x)− b,

v = Ψx− y, t ≥ F0(x) for some x ∈ Rn
}
.

It is easy to verify that if F0, F1, . . . , FM are convex, than A is convex. Then,
consider the set:

B :=
{
(0, 0, s) ∈ RM × Rm × R : s < p∗

}
.

A and B are clearly disjoint, B (which is an open half-line) being trivially con-
vex and open. Therefore, the assumptions of Theorem 3.6 are satisfied and we
conclude that there exists a triple of parameters (λ̃, ξ̃, µ) ̸= 0 and α ∈ R such
that:

(u, v, t) ∈ A =⇒ λ̃Tu+ ⟨ξ̃, v⟩+ µt ≥ α, (3.11)

(u, v, t) ∈ B =⇒ λ̃Tu+ ⟨ξ̃, v⟩+ µt ≤ α. (3.12)

It is easy to see that the definition of A, together with (3.11), imply that λ̃l ≥ 0
for all l = 1, . . . ,M and µ ≥ 0. Also, applying the definition of B to (3.12), one
finds that µt ≤ α for all t < p∗, which implies that µp∗ ≤ α. Therefore, for all
x ∈ Rn,

M∑
l=1

λ̃l(Fl(x)− bl) + ⟨ξ̃,Ψx− y⟩+ µF0(x) ≥ α ≥ µp∗. (3.13)

If µ > 0, then (3.13) gives that L(x, ξ̃/µ, λ̃/µ) ≥ p∗ for all x ∈ Rn, which
implies that H(ξ̃/µ, λ̃/µ) ≥ p∗. Since the other inequality holds trivially by the
weak duality inequality, we conclude that H(ξ̃/µ, λ̃/µ) = p∗. Finally, using the
assumptions on the rank of Ψ and on the existence of a point satisfying the strict
inequality constraint, one proves by contradiction that it must be µ > 0.

Definition 3.7 (Lagrange Multipliers). We refer to a couple (ξ#, λ#) ∈ Rm ×
[0,+∞)M as to Lagrange multipliers for the problem (3.4) if (ξ#, λ#) attend the
supremum in (3.9).

As a consequence of Theorem 3.4, we have the following result, which relates
the minimizers of (3.4) and those of the dual problem maxξ,λH(ξ, λ), providing
also the Lagrange multipliers, that may not be unique.

Corollary 3.8 (Cf. [49] Theorem B.28). Let F0 : Rn → [0,+∞) and ϕ :
[0,+∞) → R be such that ϕ is monotonically increasing and ϕ◦F0 is convex. Let
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τj > 0 (j = 1, . . . ,M) and ψj : Rn → R (j = 1, . . . ,M) be convex functions such
that ψ−1

j ([0, τj)) ̸= ∅ for all j = 1, . . . ,M . Let x# be a minimizer of the problem:

minimize F0(x), x ∈ Rn ψ(x) ⪯ τ, (3.14)

where τ = (τ1, . . . , τM ). Then, there exist λj ≥ 0 (j = 1, . . . ,M) such that x# is
a minimizer of:

minimize ϕ(F0(x)) +

M∑
j=1

λjψj(x).

Proof. Since ϕ is monotonically increasing, (3.14) is obviously equivalent to:

minimize ϕ(F0(x)), x ∈ Rn ψj(x) ≤ τj ,

(j = 1, . . . ,M) whose Lagrangian is given by:

L(x, λ) = ϕ(F0(x)) +
M∑
j=1

λj(ψj(x)− τj). (3.15)

By the assumption, ϕ◦F0 and each ψj are convex and the inequalities ψj(x̃) < τj
are satisfied by some x̃ ∈ Rn (observe that here we need τj > 0), so we can apply
Theorem 3.4 to get H(λ#) = ϕ(F0(x

#)) for some λ# ∈ [0,+∞)M . By (3.8), for
all x ∈ Rn:

L(x#, λ#) ≤ L(x, λ#),

so that x# is also a minimizer of the function x ∈ Rn 7→ L(x, λ#). Since the
constant terms −λjτj in (3.15) do not affect the set of minimizers, we have that
x# is a minimizer of:

minimize ϕ(F0(x)) +

M∑
j=1

λ#j (ψj(x)− τ), x ∈ Rn.

Remark 3.9. Theorem 3.6 has a complex version that holds with ℜ⟨z, w⟩ =

ℜ
(∑n

j=1 zjwj

)
(ℜ denotes the real part of a complex number) instead of ⟨·, ·⟩. In

particular, the entire theory presented in this work is applicable in the complex
framework as well. This extension involves replacing the canonical real inner
product of Rn with the real inner product on Cn defined above. Therefore, we
do not need to study the complex case separately, as only the structure of Cn as
a real vector space is involved.

Remark 3.10. To sum up, Theorem 3.4 and Corollary 3.8 together tell that, up
to the sign, the coefficients of any hyperplane separating the two sets:

A =
{
(u, t) ∈ RM+1 : u ⪰ F (x)− b, t ≥ F0(x) for x ∈ Rn

}
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and
B =

{
(0, t) ∈ RM+1 : t < inf

x∈K
F0(x)

}
define Lagrange multipliers for problem (3.4), in absence of equality constraints,
i.e., if y = 0 and Ψ = 0 in (3.4). This is the geometric idea that we will apply in
the following sections to the weighted LASSO.

3.1.4 Existence of solutions for LASSO problems

Since we did not find a direct proof in the existing literature, we provide a formal
proof of the existence of the minimizer of the generalized LASSO problem:

arg min
x∈Rn

∥Ax− b∥22 + λ ∥Φx∥1 , (3.16)

where b ∈ Rm, A ∈ Rm×n and Φ ∈ RN×n.

We state the result in the general framework of finite-dimensional vector
spaces: we denote by X,Y, Z three finite-dimension real vector spaces. We denote
by ⟨·, ·⟩X an inner product on X and with ∥·∥X the induced norm. Analogous
notation will be used for Y , whereas we set:

∥z∥p =

dim(Z)∑
j=1

|zj |p
1/p

, z ∈ Z

for 0 < p ≤ ∞. Recall that ∥·∥p is a Banach quasi-norm (meaning that there
exists Cp ≥ 1 such that ∥x+ y∥p ≤ Cp(∥x∥p+ ∥y∥p) for all x, y ∈ Z) replaces the
triangular inequality for 0 < p < 1, and it is a norm for 1 ≤ p ≤ ∞.

Then, for given λ ≥ 0, b ∈ Y , A : X → Y and Φ : X → Z linear, we define
for all x ∈ X,

f(x) = ∥Ax− b∥2Y + λ ∥Φx∥p .

Theorem 3.11. For all 0 < p ≤ ∞, λ ≥ 0 there exists x# ∈ X such that

inf
x∈X

f(x) = f(x#).

In particular, the generalized LASSO problem (3.16) has at least one solution.

Proof. Clearly, the function f(x) = ∥b∥2Y +λ ∥Φx∥p attains its minimum in x# =
0. Hence, we may assume that

ℑ(A) ̸= {0}.
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Since ℑ(A) is a vector subspace of Y , for all b ∈ Y there exists a unique y# ∈ ℑ(A)
such that infy∈Y ∥y − b∥2Y =

∥∥y# − b
∥∥2
Y

. By definition, y# = Ax# for some
x# ∈ X. Hence,

inf
x∈X

∥Ax− b∥2Y = inf
y∈ℑ(A)

∥y − b∥2Y = min
y∈Y

∥y − b∥22 =
∥∥∥Ax# − b

∥∥∥2
Y

and the assertion follows also for the case in which λ = 0 or ℑ(B) = {0}. We
will thereby assume that ℑ(A) ̸= {0}, ℑ(B) ̸= {0} and λ > 0. Let L :=
ker(A) ∩ ker(B) = {x ∈ X : Ax = 0,Φx = 0} and denote the closed ball of X of
center 0 and radius r > 0 by BX(0, r) = {x ∈ X : ∥x∥X ≤ r}. The rest of the
proof is devided into three graded steps.

Step 1. We prove that if L = {0}, then lim∥x∥X→+∞ f(x) = +∞.

By convexity of ∥·∥Y ,

∥y1∥2Y ≤ 2(∥y1 − y2∥2Y + ∥y2∥2Y )

for all y1, y2 ∈ Y . Therefore,

∥Ax− b∥22 ≥
1

2
∥Ax∥2Y − ∥b∥2Y ,

so that:
∥Ax− b∥2Y + λ ∥Φx∥p ≥

1

2
∥Ax∥2Y + λ ∥Φx∥p − ∥b∥2Y .

Let
SX := {x ∈ X : ∥x∥X = 1}

denote the unit sphere of X and set η := minx∈SX
1
2 ∥Ax∥

2
Y + λ ∥Φx∥p. If η = 0,

then,

min
x∈SX

1

2
∥Ax∥2Y + λ ∥Φx∥p = 0,

together with the assumptions on ℑ(A), ℑ(B) and λ, yields to the existence of
x# ∈ SX such that 1

2

∥∥Ax#∥∥2
Y
+ λ

∥∥Φx#∥∥
p
= 0. But ∥·∥Y and ∥·∥p are (quasi-

)norms, so x# = 0 /∈ SX . This is a contradiction. Hence, η > 0.

Next, for ∥x∥X > 1, we have:

1

2
∥Ax∥2Y + λ ∥ϕx∥p − ∥b∥2Y =

1

2
∥x∥2X

∥∥∥∥A x

∥x∥X

∥∥∥∥2
Y

+ λ ∥x∥X

∥∥∥∥Φ x

∥x∥X

∥∥∥∥
p

− ∥b∥2Y

> ∥x∥X

(
1

2

∥∥∥∥A x

∥x∥X

∥∥∥∥2
Y

+ λ

∥∥∥∥B x

∥x∥X

∥∥∥∥
p

)
− ∥b∥2Y

≥ η ∥x∥X − ∥b∥2Y .
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Therefore, for all x ∈ X such that ∥x∥X > 1,

f(x) = ∥Ax− b∥2Y + λ ∥Φx∥p > η ∥x∥X + ∥b∥2Y
and the assertion follows, since η > 0 implies that the right hand-side goes to
+∞ as ∥x∥X → +∞.

Step 2. We prove the assertion for L = {0}.
Let m := infx∈X f(x). By Step 1, there exist R > 0 such that f(x) >

m + 1 for ∥x∥X > R. BX(0, R) is compact and convex, and infx∈X f(x) =
infx∈BX(0,R) f(x) by definition of R. Let (xj)j ⊆ BX(0, R) be a minimizing
sequence. By compactness, it admits a converging subsequence and, without loss
of generality, we may assume that limj→+∞ xj = x# ∈ BX(0, R). By continuity,
f(x#) = limj→+∞ f(xj) = m.

Step 3. We prove the assertion for L ̸= {0}.
Recall that X = L ⊕ L⊥, where the orthogonality is defined with respect to

the inner product ⟨·, ·⟩X . By definition of direct sum, for all x ∈ X there exist
unique x1 ∈ L and x2 ∈ L⊥ such that x = x1 + x2. Observe that since x1 ∈ L,

f(x) = ∥Ax2 − b∥2Y + λ ∥Φx2∥p = f(x2).

In particular,
inf
x∈X

f(x) = inf
x∈L⊥

f(x).

The restrictions of A and Φ to L⊥ are linear mappings between vector spaces.
We denote them with A|L⊥L⊥ → Y and Φ|L⊥ : L⊥ → Z respectively and set
f |L⊥ : L⊥ → Y as the restriction of f to L⊥. Obviously,

f |L⊥(x) = ∥A|L⊥x− b∥2Y + λ ∥Φ|L⊥x∥p = f(x)

for all x ∈ L⊥, so that:

inf
x∈X

f(x) = inf
x∈L⊥

f(x) = inf
x∈L⊥

f |L⊥(x).

Obviously,

L⊥ := ker(A|L⊥) ∩ ker(Φ|L⊥) = ker(A) ∩ ker(B) ∩ L⊥ = L ∩ L⊥ = {0}.

Therefore, by Step 2, it follows that there exists x# ∈ L⊥ such that:

inf
x∈L⊥

f |L⊥(x) = f |L⊥(x#).

This implies that:
inf
x∈X

f(x) = f |L⊥(x#) = f(x#),

since x# ∈ L⊥.
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3.2 The weighted LASSO

Let A ∈ Rm×n, b ∈ Rm and τ1, . . . , τn ≥ 0. We denote with a∗,j the j-th column
of A and set b = (b1, . . . , bm). We consider the constrained minimization problem:

minimize ∥Ax− b∥22 , x ∈ Rn, |xj | ≤ τj , j = 1, . . . , n. (3.17)

We also assume that τj ̸= 0 for all j = 1, . . . , n. In fact, if τj = 0 for some
j = 1, . . . , n, then the solution x = (x1, . . . , xn) has xj = 0. In this case, problem
(3.17) reduces to

minimize
∥∥∥Ãy − b

∥∥∥2
2
, y ∈ Rn−r, |yij | ≤ τij , j = 1, . . . , n− r,

where r = card{j : τj = 0} ≤ m, J = {1 ≤ i1 < . . . < in−r ≤ n} := {j : τj ̸= 0}
and Ã = (a∗,j)j∈J ∈ Rm×(n−r).

Let K denote the set of the feasible points of problem (3.17), that is:

K = {x ∈ Rn : |xj | ≤ τj ∀j = 1, . . . , n}

and consider the Lagrange function associated to (3.17), i.e.

L(x, λ1, . . . , λn) = ∥Ax− b∥22 +
n∑
j=1

λj(|xj | − τj).

We are interested in a vector of Lagrange multipliers λ# ⪰ 0 for (3.17). Based on
the proofs of Theorem 3.4 and Corollary 3.8, λ# can be chosen as the direction
of any hyperplane separating the sets:

A =
{
(u, t) ∈ Rn × R : ul ≥ |xl| − τl (l = 1, . . . , n),

t ≥ ∥Ax− b∥22 for some x ∈ Rn
} (3.18)

and
B =

{
(0, t) ∈ Rn × R : t < p∗

}
(3.19)

where p∗ := infx∈K ∥Ax− b∥22.

3.2.1 The scalar case

To clarify the general procedure, we focus on the simple case m = n = 1 first, in
which (3.17) becomes:

minimize (Ax− b)2, x ∈ R, |x| ≤ τ, (3.20)
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where A ∈ R \ {0} and b ∈ R. To find the Lagrange multipliers, we consider the
set G of points (u, t) ∈ R2 that satisfy:{

u = |x| − τ,

t = (Ax− b)2,

which give a curve of the half-plane U = {(u, t) ∈ R2 : u ≥ −τ, t ≥ 0}
parametrized by x ∈ R. More precisely:

• if x ≥ 0, {
x = u+ τ,

t =
(
A(u+ τ)− b

)2
= (Au+ (Aτ − b))2,

which is a branch of parabola in U with vertex in ( bA − τ, 0).

• If x < 0 {
x = −u− τ,

t =
(
−A(u+ τ)− b

)2
= (Au+ (Aτ + b))2,

which is, again, a branch of parabola in U , having its vertex in (− b
A − τ, 0).

Proposition 3.12. Let τ > 0, A ∈ R\{0}, b ∈ R. A Lagrange multiplier for (3.20)
is given by:

λ# =

{
2A2(|b/A| − τ) if 0 < τ < |b/A|,
0 if τ ≥ |b/A|

= 2A2(|b/A| − τ)+.

Namely, if x# is a minimizer of (3.20), then it is also a minimizer for the problem:

minimize (Ax− b)2 + λ#|x|, x ∈ R.

3.2.2 Properties of A

Consider A ∈ Rm×n and b = (b1, ..., bm) ∈ Rm, with:

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn

 .

We consider the problem (3.17) and the associated Lagrange function:

L(x, λ) := ∥Ax− b∥22 +
n∑
j=1

λj(|xj | − τj).
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Recall that p∗ was defined as p∗ := minx∈K ∥Ax− b∥22, being K the set of the
points x ∈ Rn such that |xj | ≤ τj for all j = 1, . . . , n. It is not difficult to verify
that:

p∗ = inf
{
t ∈ R : (u, t) ∈ G, uj ≤ 0 ∀j = 1, . . . , n

}
. (3.21)

Let Mn be the set of the n-dimensional signature matrices, that are the
diagonal matrices S = (sij)

n
i,j=1 ∈ Rn×n such that |sjj | = 1 for all j = 1, . . . , n.

Observe that if S ∈ Mn, then S2 = In×n, where In×n denotes the identity matrix
in Rn×n, in particular S is invertible with S−1 = S. If x ∈ Rn and S ∈ Mn is
such that Sx ∈

∏n
j=1[0,+∞), we write S ∈ sgn(x).

Lemma 3.13. Let A ∈ Rm×n, b ∈ Rm and τj > 0 for j = 1, . . . , n. Let S ∈ Mn.
There exists u ∈

∏n
j=1[−τj , 0] such that ASu + ASτ − b = 0 if and only if

S ∈ sgn(x) for some x ∈ Rn such that Ax = b and |xj | ≤ τj.

Proof. Assume that there exists u ∈
∏n
j=1[−τj , 0] such that ASu+ASτ − b = 0

and let x := S(u + τ). Then, Sx = u + τ ∈
∏n
j=1[0, τj ], so that S ∈ sgn(x),

|xj | ≤ τj for all j = 1, . . . , n and

0 = AS(u+ τ)− b = Ax− b.

Vice versa, assume that Ax = b for some x ∈
∏n
j=1[0, τj ]. Let S ∈ sgn(x) and

u := Sx− τ . Then, u ∈
∏n
j=1[−τj , 0] and

0 = Ax− b = A(Su+ τ)− b = ASu+ASτ − b.

Recall the definitions of the two sets A and B given in (3.18) and (3.19)
respectively. First, if G is the set of the points (u, t) ∈ Rn+1 such that:{

uj = |xj | − τj j = 1, . . . , n,

t = ∥Ax− b∥22 ,
(3.22)

for some x ∈ Rn, then
A = G + [0,+∞)n+1,

that is, (u, t) ∈ A if and only if{
uj ≥ |xj | − τj j = 1, . . . , n,

t ≥ ∥Ax− b∥22 ,
(3.23)

for some x ∈ Rn. Finally, (u, t) ∈ B if and only if t < p∗ = minxj≤τj ∥Ax− b∥22.

We will prove that the equations (3.22) defining G can be written in terms of
Mn.
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Lemma 3.14. Let τ1, . . . , τn > 0 and let G be the set of points satisfying (3.22).
Then,

(i) G is closed.

(ii) (u, p∗) ∈ G for some u ∈ Rn such that −τj ≤ uj ≤ 0 for all j = 1, . . . , n.
Moreover, p∗ = min

{
t ∈ R : (u, t) ∈ G, uj ≤ 0 ∀j = 1, . . . , n

}
.

(iii) For every (u, t) ∈ G there exists S ∈ Mn such that

t = ∥ASu+ (ASτ − b)∥22 .

Vice versa, if t = ∥ASu+ (ASτ − b)∥22 for some u ∈ Rn such that uj ≥ −τj
and some S ∈ Mn, then (u, t) ∈ G.

Proof. We prove that G is closed. For, let (uk, tk) ∈ G converge to (u, t) ∈ Rn+1.
We prove that (u, t) ∈ G. Let xk ∈ Rn be such that (3.22) is satisfied for (uk, tk).
Then, |xkj | = ukj − τj ≤ uj + 1 − τj for j sufficiently large. In particular, the
sequence {xk}k is bounded and, thus, it converges up to subsequences. Without
loss of generality, we may assume that (xk)k converges to x := limk→+∞ xk in
Rn. Then, for all j = 1, . . . , n,

|xj | = lim
k→+∞

|xkj | = lim
k→+∞

ukj + τj = uj + τj

and, by continuity,

∥Ax− b∥22 = lim
k→+∞

∥∥∥Axk − b
∥∥∥2
2
= lim

k→+∞
tk = t.

This proves that (u, t) ∈ G and, thus, that G is closed. (ii) follows by (i) and
(3.21).

It remains to check (iii). If (u, t) ∈ G, there exists x ∈ Rn satisfying (3.22).
Let S ∈ Mn be such that |x| = Sx, where |x| := (|x1|, . . . , |xn|). Then, using the
fact that S−1 = S,

|x| = u+ τ =⇒ Sx = (u+ τ) =⇒ x = S(u+ τ).

By the last equation of (3.22), we have:

t = ∥Ax− b∥22 = ∥ASu+ (ASτ − b)∥22 .

Viceversa, assume that t = ∥ASu+ (ASτ − b)∥22 for some S ∈ Mn and u ∈ Rn
is such that u ⪰ −τ . Let x := S(u + τ), then |xj | = |uj + τj | = uj + τj for all
j = 1, . . . , n and t = ∥Ax− b∥22. This proves that (u, t) ∈ G and the proof of (iii)
is concluded.



3. Tuning parameters for LASSO problems 55

Lemma 3.15. Let u ∈
∏n
j=1[−τj ,+∞),

hG(u) := min
S∈Mn

∥ASu+ASτ − b∥22 (3.24)

and
gG(u) := min

(u,s)∈G
s.

Then, hG(u) = gG(u).

Proof. By Lemma 3.14 (iii), if (u, s) ∈ G, then s = ∥AS0u+AS0τ − b∥22 for some
S0 ∈ Mn. Hence,

hG(u) = min
S∈Mn

∥ASu+ASτ − b∥22 ≤ ∥AS0u+AS0τ − b∥22 = s

for all s such that (u, s) ∈ G. Taking the minimum, we get hG(u) ≤ gG(u). On
the other hand, (u, hG(u)) ∈ G by Lemma 3.14 (iii). Therefore, gG(u) ≤ hG(u)
by definition of gG.

Lemma 3.16. Let G be the set of points satisfying (3.22) and A be the set of
points satisfying (3.23). Then,

(i) G ⊆ A;

(ii) A is closed.

Proof. (i) is obvious. We prove (ii).

Let (uk, tk) ∈ A be a sequence such that (uk, tk) −−−−→
k→+∞

(u, t) in Rn+1. We

need to prove that (u, t) ∈ A. For all k, let xk ∈ Rn be such that:
uk1 ≥ |xk1| − τ1,
...
ukn ≥ |xkn| − τn,

tk ≥
∥∥Axk − b

∥∥2
2
.

The sequence {xk}k is bounded, in fact for all j = 1, . . . , n, |xkj | ≤ ukj + τj ≤
uj +1+ τj for k sufficiently large. Therefore, up to subsequences, we can assume
xk −−−−→

k→+∞
x in Rn. For all j = 1, . . . , n,

|xj | = lim
k→+∞

|xkj | ≤ lim
k→+∞

ukj + τj = uj + τj .

Moreover, by continuity,

∥Ax− b∥22 = lim
k→+∞

∥∥∥Axk − b
∥∥∥2
2
≤ lim

k→+∞
tk = t.
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Lemma 3.17. Let A be the set of points satisfying (3.23).

(i) A is the epigraph of a convex non-negative function function

g :
n∏
j=1

[−τj ,+∞) → R

which is continuous in
∏n
j=1(−τj ,+∞);

(ii) ∂g(0) ̸= ∅;

(iii) g(u) = 0 if and only if (u, t) ∈ A for all t ≥ 0.

Proof. First, observe that A ⊆ {(u, t) : t ≥ 0} since t ≥ ∥Ax− b∥22 ≥ 0 for some
x ∈ Rn whenever (u, t) ∈ A.

For the sake of completeness, we check that A is the epigraph of the function:

g(u) = min
(u,s)∈A

s, u ∈
∏
j

[−τj ,+∞), (3.25)

which is well defined by Lemma 3.16.

By the observation at the beginning of the proof, g(u) ≥ 0. Let

epi(g) := {(u, t) : t ≥ g(u)}

be the epigraph of g. If (u, t) ∈ A, then t ≥ min(u,s)∈A s = g(u), this means
that (u, t) ∈ epi(g). On the other hand, if (u, t) ∈ epi(g), then t ≥ s for some
(u, s) ∈ A. But, if t ≥ s (and (u, s) ∈ A), then (u, t) ∈ A as well, since
A contains the vertical upper half-lines having their origins in (u, s), namely
(u, s) + ({0} × [0,+∞)).

This proves that A is an epigraph. Moreover, g is convex because A is convex
(see [111] Proposition 2.4). The continuity of g on

∏
j(−τj ,+∞) follows from

[110], Theorem 10.1. This proves (i).

Moreover, since τj > 0 for all j = 1, . . . , n, 0 ∈ Rn is an interior point of∏
j [−τj ,+∞). Since g is continuous and convex in

∏
j(−τj ,+∞), the subdiffer-

ential of g in 0 is non-empty and (ii) follows.

To prove (iii), assume that g(u) = 0. Then, min(u,s)∈A s = 0 implies (u, 0) ∈
A. Since for all t ≥ 0, (u, 0) + ({0} × [0,+∞)) ∈ A, we have that (u, t) ∈ A for
all t ≥ 0. For the converse, assume that (u, t) ∈ A for all t ≥ 0. Then, (u, 0) ∈ A,
so that (by the non-negativity of g) 0 ≤ g(u) ≤ 0. This proves the equivalence
in (iii).

Remark 3.18. As we observed in the general theory situation, (0, s) ∈ A if and
only if s ≥ p∗. This tells that g(0) = p∗ and (0, p∗) ∈ A.
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We want to prove formally that g(u) defines the boundary ∂A of A in a
neighborhood of u = 0 and, then, find an explicit formula for g(u). Observe that,
A = ∂A∪ Å, where Å denotes the topologic interior of A. Since A is closed and
convex in Rn, Å coincides with the algebraic interior of A, which is defined as
follows:

Definition 3.19. Let X be a vector space and A ⊆ X be a subset. The algebraic
interior of A is defined as:

a-int(A) := {a ∈ A : ∀x ∈ X ∃εx > 0 s.t. a+ tx ∈ A ∀t ∈ (−εx, εx)}.

Lemma 3.20. Let A be as in Lemma 3.16. Then,

∂A ={(u, t) ∈ A : t = g(u), uj > −τj ∀j = 1, . . . , n}∪
∪ {(u, t) ∈ A : uj = −τj for some j = 1, . . . , n}

(3.26)

and the union is disjoint. Moreover,

{(u, t) ∈ A : ∃j = 1, . . . , n, uj = −τj} = {(u, t) ∈ ∂A : (u, t+α) ∈ ∂A ∀α ≥ 0}.

Proof. Observe that the union in (3.26) is clearly disjoint. We first prove (3.26).

(⊇) None of the sets on the RHS of (3.26) is contained in Å. In fact,

• the definition of g(u) implies that for all ε > 0, −ε < t < ε, (u, t) ∈ A
if and only if t ≥ 0, so that (u, g(u)) /∈ a-int(A) = Å. This proves
that the graph of g in

∏
j(−τj ,+∞) is a subset of ∂A.

• Analogously, assume that uj = −τj for some j = 1, . . . , n, and for
all ε > 0 consider the point (uε, t), where (uε)l = ul for all l ̸= j
and (uε)j = −τj − ε. But g is defined on

∏
j [−τj ,+∞) and A is its

epigraph, hence all the points of A must be in the form (u, g(u) + α)
for some u ∈

∏
j [−τj ,+∞), t = g(u) + α (α ≥ 0), hence (uε, t) /∈ A

and this proves that (u, t) /∈ a-int(A).

The fact that ∂A = A \ Å proves the first inclusion.

(⊆) We prove that the complementary of the RHS of (3.26) in Rn+1 is contained
in Å. Let (u, t) be such that u > −τj for all j and t > g(u) (as it is easy to
check, these are the conditions for (u, t) to belong to the complementary of
the union of the two set at the LHS of (3.26)).

Let d := t− g(u) > 0. Since g is continuous on
∏
j(−τj ,+∞), there exists

δ > 0 such that |g(u) − g(v)| < d/4 for all v ∈ Bδ(u) := {w ∈ Rn :
|w − u| < δ}. In particular, for all v ∈ Bδ(u), g(v) < t − 3

4d < t. Then,
Bδ(u) × (t − 3

4d,+∞) is all contained in A (because A is the epigraph of
g) and it is an open neighborhood of (u, t). Hence, (u, t) ∈ Å = A \ ∂A.
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Next, we check the second part of the lemma:

(⊆) assume (u, t) ∈ A is such that uj = −τj for some j. Then, by the first part
of this Lemma, (u, t + α) ∈ ∂A for all α ≥ 0, since (3.26) is a partition of
∂A.

(⊇) Assume that (u, t+ α) ∈ ∂A for all α ≥ 0. Then, (u, t) ∈ ∂A. Assume by
contradiction that uj > −τj for all j. Then, since (3.26) is a partition of
∂A, g(u) = t+ α for all α ≥ 0, which cannot be the case.

The function g, defined in Lemma 3.17, is expressed in terms of the function
hG, as shown in the following result.

Theorem 3.21. Let A be the set of points satisfying (3.23), hG and g be the
functions defined in (3.24) and (3.25), respectively. For u ∈

∏n
j=1[−τj ,+∞),

u = (u1, . . . , un), let Q(u) :=
∏n
j=1[−τj , uj ] and

h(u) := min
S∈Mn, v∈Q(u)

∥AS(v + τ)− b∥22 = min
v∈Q(u)

hG(v). (3.27)

Then, h(u) = g(u) for all u ∈
∏
j [−τj ,+∞).

Proof. We first prove that g(u) ≤ h(u). For, it is enough to prove that (u, h(u)) ∈
A, so that g(u) ≤ h(u) would follow by the definition of g. By definition of h,
there exist S0 ∈ Mn and v ∈ Q(u) so that:

h(u) = ∥AS0v +AS0τ − b∥22 .

By Lemma 3.14 (iii), (v, h(u)) ∈ G. Since uj ≥ vj for all j = 1, . . . , n, it follows
that (u, h(u)) ∈ A by definition of A.

For the converse, since (u, g(u)) ∈ A, there exists (v′, t) ∈ G such that v′j ≤ uj
for all j = 1, . . . , n and g(u) ≥ t. In particular, v′ ∈ Q(u). By Lemma 3.14 (iii),
t = ∥AS1v′ +ASτ − b∥22 for some S1 ∈ Mn. Therefore,

g(u) ≥
∥∥AS1v′ +AS1τ − b

∥∥2
2
≥ min

S∈Mn, v∈Q(u)
∥ASv +ASτ − b∥22 = h(u).

This concludes the proof.

Even if g = h, in what follows we still distinguish h and g when we want to
stress the explicit definitions of both. Namely, we write g(u) when we refer to
min(u,s)∈A s and h(u) when we refer to (3.27).
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Corollary 3.22. Under the same notation as above,

g(u) = min
−u−τ⪯v⪯u+τ

∥Av − b∥22 .

Proof. Using the second expression in (3.27),

g(u) = min
S∈Mn

min
v∈Q(u)

∥AS(v + τ)− b∥22 .

But,
fS(v) = ∥AS(v + τ)− b∥22 = f(S(v + τ)),

for f(v) = ∥Av − b∥22, that gives:

min
−τ⪯v⪯u

fS(v) = min
v∈Q(u)

f(S(v + τ)) = min
v∈S(Q(u)+τ)

∥Av − b∥22 ,

so that:
min
S∈Mn

min
−τ⪯v⪯u

fS(v) = min⋃
S∈Mn

S(Q(u)+τ)
∥Av − b∥22

and the assertion follows by observing that⋃
S∈Mn

S(Q(u) + τ) = {v ∈ Rn : −u− τ ⪯ v ⪯ u+ τ}.

3.2.3 A result under conditions on the gradient of the fidelity

In general, the geometry of A is so complicated that expressing g explicitly may
turn into a tough task. Nevertheless, it is obvious that if u is itself one of the
minimizers of (3.27), then g(u) = hG(u) = minS∈Mn ∥ASu+ASτ − b∥22. So,
under further assumptions on ∇(∥ASu− b∥22) granting the equality g(u) = hG(u)
holds in a neighborhood of 0, we can compute explicitly the Lagrange multipliers.

Theorem 3.23. Let f(v) = ∥Av − b∥22 and assume that for all k = 1, . . . , n the
condition:

n∑
j=1

uj⟨a∗,j , a∗,k⟩ ≤ ⟨b, a∗,k⟩ (−τ ⪯ u ⪯ τ) (3.28)

holds. Then, g(u) = f(u+ τ) for all u ∈ Q(0) and λ# = AT (b− Aτ) is a set of
Lagrange multipliers for problem (3.17).

Proof. The set of conditions (3.28) is equivalent to (Au− b)TA ⪯ 0 for all −τ ⪯
u ⪯ τ , that is ∇f(u) ⪯ 0 for −τ ⪯ u ⪯ τ . We prove that, under this further
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condition, g(u) = f(u + τ) for all u ∈ Q(0). Let u ∈ Q(0) and n ≻ 0 be a unit
vector. For all t ∈ R, define:

fn(t) := f(u+ τ + tn) = ∥A(u+ τ + tn)− b∥22
= ∥An∥22 t

2 + 2⟨A(u+ τ)− b, An⟩t+ ∥A(u+ τ)− b∥22 ,

which is the restriction of f to the line {u+tn : t ∈ R}. If n ∈ ker(A), then fn ≡ 0
and it has a global minimum in t = 0. Assume n /∈ ker(A). The intersection of
this line with {−τ ⪯ v ⪯ τ} is contained in (−∞, 0]. If we prove that, for all
n ≻ 0, fn has a constrained minimum in t = 0, we get the first assertion. For,
it’s enough to observe that

f ′n(0) = ∇f(u+ τ) · n ≤ 0,

because if u ∈ Q(0), then {−u − τ ⪯ v ⪯ u + τ} ⊆ {−τ ⪯ v ⪯ τ}. This proves
that g(u) = f(u+ τ) for all u ∈ Q(0). In particular,

−∇g(0) = −∇f(τ) = (b−Aτ)TA ⪰ 0

is a set of Lagrange multipliers for (3.17).

Remark 3.24. It is not difficult to generalize Theorem 3.23 a bit further. If the
hyperparallelogram {−τ ⪯ u ⪯ τ} is all contained in the region {u ∈ Rn :
S∇f(u) ⪯ 0} for some S ∈ Mn, then g(u) = f(S(u+ τ)) for all u ∈ Q(0) and

λ# = −∇g(0) = −S∇f(S(u+ τ))T

defines a vector of Lagrange multipliers for (3.17). The proof goes exactly as in
Theorem 3.23.

3.2.4 Decoupling the variables

In this subsection, we focus on the situation in which ATA is a diagonal matrix.
Since:

ATA =


∥a∗,1∥22 ⟨a∗,1, a∗,2⟩ . . . ⟨a∗,1, a∗,n⟩

⟨a∗,2, a∗,1⟩ ∥a∗,2∥22 . . . ⟨a∗,2, a∗,n⟩
...

...
. . .

...
⟨a∗,n, a∗,1⟩ ⟨a∗,n, a∗,2⟩ . . . ∥a∗,n∥22


and the rank of ATA is equal to that of A, it follows that in this case:

ATA = diag(∥a∗,1∥22 , ..., ∥a∗,n∥
2
2). (3.29)

Remark 3.25. If m ≤ n and ATA is diagonal, n−m of the norms in (3.29) above
vanish. In this case, we assume that a∗,m+1 = ... = a∗,n = 0, so that A can be
written in terms of its columns as:

A =
(
A′|0m×(n−m)

)
,
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where A′ = (a∗,1|...|a∗,m) ∈ GL(m,R). Observe that:

∥Ax− b∥22 =
∥∥A′x′ − b

∥∥2
2
,

where x′ = (x1, ..., xm)
T , so that x# is a mimizer of (3.17) if and only if (x#)′ =

(x#1 , . . . , x
#
m) is a minimizer of the problem:

minimize
∥∥A′y − b

∥∥2
2
, y ∈ Rm, |yj | ≤ τj , j = 1, . . . ,m, (3.30)

under the further condition that the remaining coordinates of x vanish.

For this reason, for the rest of this subsection, we focus on (3.30), both for
the cases n ≤ m and m ≤ n, and provide the Lagrange multipliers.
Remark 3.26. We point out that in this situation the Lagrange multipliers can
be computed directly from Proposition 3.12. Indeed, under the orthogonality
assumption on A, the target function in problem (3.30) becomes:

m∑
j=1

(∥a∗,j∥22 y
2
j − 2y⟨a∗,j , n⟩yj) + ∥b∥22 .

Since the variables of all the addenda are decoupled, and the addenda are non-
negative,

min
y

m∑
j=1

(∥a∗,j∥22y
2
j − 2y⟨a∗,j , n⟩yj) + ∥b∥22

=
m∑
j=1

min
yj

(
∥a∗,j∥22 y

2
j − 2y⟨a∗,j , n⟩yj +

∥b∥22
m

)
and a minimizer of (3.30) is also a minimizer of the problem:

minimize ∥a∗,j∥22 y
2
j − 2y⟨a∗,j , n⟩yj +

∥b∥22
m

, |yj | ≤ τj

for all j = 1, ...,m. In other words, it is enough to treat (3.30) as m 1-dimensional
constrained minimization problems. However, our interest is testing the tools
presented in the previous section, computing the function g and the separating
hyperplane.

To exhibit a vector of Lagrange multipliers, we start by the set

G := {(u, t) ∈ Rm+1 : ∃y ∈ Rm, uj = |yj | − τj (j = 1, . . . ,m), t =
∥∥A′y − b

∥∥2
2
}.

By Lemma 3.14 (iii), (u, t) ∈ G if and only if u ⪰ −τ and t = ∥A′S(u+ τ)− b∥22
for some S ∈ Mm. Let fS(u) = ∥A′S(u+ τ)− b∥22 and observe that:

fS(u) =

m∑
j=1

∥a∗,j∥22 (uj + τj)
2 − 2

m∑
j=1

sjj⟨b, a∗,j⟩(uj + τj) + ∥b∥22 .
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The functions fS are the equivalent of the parabolas in the 1-dimensional case
and they describe elliptic paraboloids. As it clear by Subsection 3.2.1, we need
to understand what is hG(u) := minS∈Mm fS(u). Observe that for all S ∈ Mn,

fS(u) ≥
m∑
j=1

∥a∗,j∥22 (uj + τj)
2 − 2

m∑
j=1

|⟨b, a∗,j⟩|(uj + τj) + ∥b∥22 = fSβ
(u),

where Sβ = (sβj )
m
j=1 ∈ Mm is a diagonal matrix such that sβj ⟨b, a∗,j⟩ ≥ 0.

Lemma 3.27. Under the notation and the assumptions of this subsection,

hG(u) = fSβ
(u) =

m∑
j=1

∥a∗,j∥22 (uj + τj)
2 − 2

m∑
j=1

|⟨b, a∗,j⟩|(uj + τj) + ∥b∥22 .

hG defines an elliptic paraboloid whose vertex V = (c, 0) ∈ Rm+1 is characterized
both by c = −τ + Sβ(A

′)−1b and

cj = −τj +
|⟨b, a∗,j⟩|
∥a∗,j∥22

(j = 1, . . . ,m). Moreover,

hG(u) =
m∑
j=1

∥a∗,j∥22 (uj − cj)
2.

Proof. We already proved the first part of the Lemma. We only need to compute
the vertex of fSβ

. For, observe that the minimum of fSβ
is (c, 0), where c satisfies

fS(c) = 0. This equation is satisfied if and only if c = −τ+Sβ(A′)−1b. Moreover,
the minimum of fSβ

is also characterized by ∇fSβ
(c) = 0, that is:

cj + τj −
|⟨b, a∗,j⟩|
∥a∗,j∥22

= 0

(j = 1, . . . ,m). Finally, using the first characterization of c,

hG(u) = ∥ASβ(u+ τ)− b∥22 = ∥ASβ(u− c) +ASβ(c+ τ)− b∥22

= ∥ASβ(u− c)∥22 =
m∑
j=1

∥a∗,j∥22 (uj − cj)
2.

This concludes the proof.

In order to compute the Lagrange multipliers for the decoupled problem, we
observe that A + [0,+∞)m+1 is the epigraph of the function g(u) whose first
properties are proved in Lemma 3.17. Hence, this function describes the lower
boundary of A, that is the part of A we need to compute a separating hyperplane.
By (3.27), g(u) = minv∈Q(u) hG(v), where Q(u) =

∏m
j=1[−τj , uj ].
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Theorem 3.28. Under the notation and the assumptions of this subsection,

g(u) = hG(Pu),

where P :
∏m
j=1[−τj ,+∞) → Q(c) is the projection defined by

(Pu)j =

{
uj if −τj ≤ uj ≤ cj ,

cj if uj > cj
= min{cj , uj}, j = 1, . . . ,m,

u ∈
∏m
j=1[−τj ,+∞). Explicitly, under the assumptions of this subsection,

g(u) =

m∑
j=1

∥a∗,j∥22 (uj − cj)
2χ[−τj ,cj ](uj). (3.31)

In particular, g ∈ C1(
∏n
j=1(−τj ,+∞)) with:

∂g

∂uj
(u) = 2 ∥a∗,j∥22 (uj − cj)χ[−τj ,cj ](uj) (3.32)

for all u ∈
∏n
j=1(−τj ,+∞).

Proof. Obviously, P is a projection of
∏n
j=1[−τj ,+∞) onto Q(c). For all j =

1, . . . ,m,

argmin−τj≤vj≤uj ∥a∗,j∥
2
2 (vj − cj)

2 =

{
uj if −τj ≤ uj ≤ cj ,

cj otherwise
= (Pu)j .

Hence,

g(u) = min
v∈Q(u)

hG(v) =

m∑
j=1

min
−τj≤vj≤uj

∥a∗,j∥22 (vj − cj)
2 =

=
m∑
j=1

∥a∗,j∥22 ((Pu)j − cj)
2 = hG(Pu).

The explicit definition of Pu gives (3.31) and (3.32). The differentiability and
formula (3.32) are obvious by the expression (3.31) of g.

Remark 3.29. As a consequence of Theorem 3.28,

p∗ = g(0) =

m∑
j=1

∥a∗,j∥22
(
− τj +

|⟨b, a∗,j⟩|
∥a∗,j∥22

)2
χ[−τj ,cj ](0).

Then, observe that:

−τj ≤ 0 ≤ −τj +
|⟨b, a∗,j⟩|
∥a∗,j∥22

⇐⇒ 0 ≤ τj ≤
|⟨b, a∗,j⟩|
∥a∗,j∥22

, (3.33)
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so that:

p∗ =

m∑
j=1

∥a∗,j∥22
(
− τj +

|⟨b, a∗,j⟩|
∥a∗,j∥22

)2
χ[

0,
|⟨b,a∗,j⟩|

∥a∗,j∥2

2

](τj).
Theorem 3.30. Under the notation of this subsection, the vector λ# ∈ [0,+∞)m

given by

λ#j = 2 ∥a∗,j∥22
( |⟨b, a∗,j⟩|

∥a∗,j∥22
− τj

)+
defines a vector of Lagrange multipliers for (3.30).

Proof. We apply (3.32) to u = 0 and use (3.33). Namely,

t = p∗ + ⟨∇g(0), u⟩

is the tangent hyperplane of g in u = 0, which is also the hyperplane that
separates A and B. The direction of this hyperplane is (∇g(0),−1), so that:

λ# = −∇g(0),

i.e., the assertion.

Remark 3.31. As far as the original problem (3.17) with m ≤ n is concerned,
we get the Lagrange multipliers for free by Theorem 3.30 simply observing that
if A = (a∗1| . . . |a∗m|0| . . . |0) ∈ Rm×n, A′ = (a∗1| . . . |a∗m) and x = (x′, x′′) ∈
Rm × Rn−m, then

min
x∈Rn

∥Ax− b∥22 +
n∑
j=1

λj(|xj | − τj) = min
x′∈Rm

∥∥A′x′ − b
∥∥2
2
+

m∑
j=1

λj(|x′j | − τj)+

+ min
x′′∈Rn−m

n∑
j=m+1

λj(|xj | − τj)︸ ︷︷ ︸
= −

∑n
j=m+1 λjτj

,

so that, if λ# ∈ Rm defines a vector of Lagrange multipliers for (3.30), then
(λ#|0) ∈ Rm × Rn−m defines a vector of Lagrange multipliers for (3.17).

3.2.5 Explicit solution

The conditions |xj | ≤ τj are equivalent to x2j ≤ τ2j . Under this point of view,
(3.17) can be restated as:

minimize ∥Ax− b∥22 , x2j ≤ τ2j , (3.34)
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that can be interpreted as a weighted Tikhonov problem. Assume that λ# is
a vector of Lagrange multipliers for (3.17) or, equivalently, for (3.34). We are
interested in computing

x# = argmin
x
L(x, λ),

where L is the Lagrange function associated to (3.34), i.e.

L(x, λ#) = ∥Ax− b∥22 +
n∑
j=1

λ#j (x
2
j − τ2j ).

Since L ∈ C∞(Rn) and it is convex, they satisfy ∇L(x, λ#) = 0, that is:

(ATA+∆λ)x = AT b,

where ∆λ = diag(λ#1 , ..., λ
#
n ). Hence, x# satisfies:

(ATA+∆λ)x
# = AT b, (3.35)

that is, x# ∈ (ATA+∆λ)
−1AT b.

Remark 3.32. Another way to compute the Lagrange multipliers associated to
(3.17), or equivalently to (3.34), can be by means of strong duality condition,
namely using:

λ# = argmax
λ⪰0

min
x
L(x, λ).

However, we stress that the explicit value of minx L(x, λ) is still hard to compute
since the implicit relation (3.35) satisfied by x# cannot be made explicit by means
of Dini’s theorem.

3.3 Applications

Despite the apparently heavy assumptions on A, Theorem 3.30 has itself inter-
esting applications. For instance, it can be applied to denoising problems, where
A = In×n, i.e., problems in the form:

minimize ∥x− b∥22 , x ∈ Rn, |xj | ≤ τj , j = 1, . . . , n. (3.36)

By Theorem 3.30, λ# = (λ#j )
n
j=1 is a vector of Lagrange multipliers for (3.36),

where:
λ#j = 2(|bj | − τj)

+. (3.37)

We can also apply Theorem 3.30 to the discrete Fourier transform, i.e., given
a noisy fully-sampled signal b ∈ Cn, we want to find a vector z ∈ Cn such that
∥Φz − b∥22 is minimized under the constrains |zj | ≤ τj , where Φ ∈ Cn×n denotes
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the (complex) DFT matrix. Since Φ∗Φ = In×n, we can apply Theorem 3.30 to
deduce that a set of Lagrange multipliers for this problem is:

λ#j = 2
(
|⟨b, ϕ∗,j⟩| − τj

)+
,

(j = 1, . . . , n), being ϕ∗,j the j-th column of Φ.

The question that naturally arises in the applications is whether the depen-
dence of λ1, . . . , λn on τ1, . . . , τn can be a critical issue in the applicability of the
theory. Indeed, τ1, . . . , τn are upper bounds for |x1|, ..., |xn| respectively, which
are not available in the practice. However, whenever it is possible to estimate
these local upper bounds, our result may lead to high-quality imaging perfo-
mances. For instance, for denoising, (3.37) may be approximated by replacing
τ1, . . . , τn with the voxel values obtained by applying a Gaussian filter (or other
types of filtering) to the noisy image. This opens the question of which filtering
technique could lead to optimal approximations of the τ1, . . . , τn depending on
the field of research in which (3.17) can be implemented. We intend to investigate
this topic in the immediate future.





Chapter 4

An iterative algorithm to
compute tuning parameters

In Section 4.1, we discuss the theoretical model underlying the approximation of
Lagrange multipliers, outline the main challenges, and describe the MRI model
used in our experiments. In Section 4.2, we present our experiment and ALMA,
detailing the metrics employed for data analysis. Section 4.3 presents the results,
while Section 4.4 provides a comprehensive discussion.

This chapter has been published on arXiv in 2024, cf. [59].

4.1 Theoretical model

4.1.1 Mathematical rationale

Within the domain of MRI, Lustig and colleagues [87, 86, 34, 120, 119] pioneered
the applications of both LASSO and g-LASSO. The purpose of this section is
to motivate our conjecture that Lagrange multipliers could be used as effective
tuning parameters for imaging reconstruction with g-LASSO.

As we discussed in Chapter 3, the constrained LASSO problem

minimize ∥x∥1 subject to x ∈ Rn, ∥Ax− b∥2 ≤ η (4.1)

has many equivalent formulations, where the equivalence notion is specified in
[49, Proposition 3.2]. We limit ourselves to delineate the relationship between
the constrained LASSO (4.1) and its unconstrained counterpart:

minimize
1

2
∥x∥1 +

λ

2
∥Ax− b∥22. (4.2)

Theorem 4.1. Let A ∈ Rm×n, b ∈ Rm and η > 0. Let x# be a minimizer of
the constrained LASSO (4.1). Then, there exists λ′ ≥ 0 such that x# is also a
minimizer of (4.2) with λ = λ′. Conversely, if x# is a minimizer of (4.2), there
exists η′ ≥ 0 such that x# is also a minimizer of (4.1) with η = η′.

68
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Consequently, solving (4.2) with the corresponding Lagrange multiplier pro-
vides a rank(A)-sparse solution. Theorem 4.1 holds also for g-LASSO:

minimize
1

2
∥Ax− b∥22 +

λ

2
∥Φx∥1, (4.3)

the rescaling by the factor 1/2 is needed for computational purposes, but it is
irrelevant to the analysis of (4.3). Also, observe that (4.3) with λ ̸= 0 is equivalent
to:

minimize
1

2
∥Φx∥1 +

λ

2
∥Ax− b∥22, (4.4)

where the equivalence follows by choosing λ∗ = λ−1.

4.1.2 Construction of Lagrange multipliers

The construction of a Lagrange multiplier is detailed in the proof of [11, Theorem
4.8], which uses Hahn-Banach theorem to find a hyperplane that separates two
convex sets, which for (4.4) read as: the epigraph A =

{
(u, t) ∈ R2 : u ≥

1
2∥Ax − b∥22 −

η2

2 , t ≥
1
2∥Φx∥1 for some x ∈ Rn

}
and the lower half-line B ={

(0, t) ∈ R2 : t < p∗
}

, where p∗ = min{∥Φx∥1 : ∥Ax− b∥2 ≤ η} (see fig. 4.1).

Figure 4.1: A graphic representation of the sets A and B, and the separating
hyperplane (dashed line). Observe that A is an epigraph and B is an open lower
half-line. The closure of B intersects the boundary of A.
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In the particular case of g-LASSO, separating hyperplanes are lines, and if
t = mu + q is any separating line, then a Lagrange multiplier can be chosen
as λ∗ = −m or, equivalently, λ = −1/m. Let us observe that set B serves no
essential purpose in determining a separating line, as it merely constitutes a lower
half-line intersecting A at its boundary. Additionally, when the lower boundary
of A is C1 regular in a neighborhood of u = 0, a numerical approach enables the
identification of a separating line by delineating A and computing the tangent at
0 along the graph of its boundary.

4.1.3 Main challenges

A direct application of the theory described so far for deriving tuning parameters
poses three main challenges.

• Necessity of numerical methods: in the vast majority of convex opti-
mization problems, the expression of the dependence λ = λ(x#) or even
λ = λ(η), is a challenging task. We refer to [60] for examples of weighted
LASSO problems where this relation is instead explicit. Hence, finding a
Lagrange multiplier with the construction in [11] requires a separating line
to be found numerically.

• Unknown constraints: theoretically, the numerical machinery described
above necessitates prior knowledge of η = ∥Ax# − b∥2, where x# is the
solution of g-LASSO. Consequently, the cylinder Γη = {x : ∥Ax− b∥2 ≤ η}
is not only unknown, but it depends heavily on the outcome of g-LASSO.

• Dimensionality: outlining A or its boundary necessitates plotting ∞n

points in R2, rendering it an impractical endeavor.

While acknowledging the necessity of numerical analysis, we may resort to
an escamotage to overcome the two remaining challenges. However, this entails
abandoning the pursuit of exact Lagrange multipliers in favor of approximations.
The constraint bound η depends intrinsically on the solution x# of g-LASSO,
which in general differs from the ground truth f which, in the case of our exper-
imental setting, consists of the Shepp-Logan phantom (see fig. 4.3 (A)).

Defining a constrained bound η induces a solution x# and reversely, a given
solution x# sets the constraint bound η. In practice the solution x# is of course
unknown and it is a subtle task to choose η appropriately so that the solution x#

is, hopefully, as close as possible to the ground truth. Choosing η is equivalent
to choosing the allowed amount of error on the raw data. It follows that η must
be at least as large as the noise amplitude. Other sources of error can also add
to the noise so that in general η may be larger than the noise amplitude. This
being said, in the present study, we chose to set η to be equal to the norm of the
added noise
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η = ∥Af − b∥2 = ∥ε∥2.

This situation is still far from concrete, since ∥ε∥2 is not known in the practice.
However, we note that the purpose of the present study is to present an ideal
situation to test if it is possible to use approximations of Lagrange multipliers as
well-performing tuning parameters for generalized LASSO problems, shifting the
focus from selecting the tuning parameter to estimating the noise energy.

Consequently, the tuning parameter returned by ALMA serves as an approx-
imate Lagrange multiplier, rather than the exact one. Achieving this approxi-
mation involves outlining the corresponding epigraph A. The essence of ALMA
lies in a technicality allowing for the approximation of A by sketching infinitely
many of its points simultaneously, as outlined below.

4.1.4 The MRI model

For the sake of concreteness, we simulate the reconstruction of a MR signal. Let
us spend a few words about how g-LASSO is used, and why the correct choice
of λ is fundamental, in the context of MRI. Roughly speaking, the (inverse)
spatial Fourier transform of the MR signal is the anatomical image of a tissue,
which is supported in a cube [−Lx/2, Lx/2] × [−Ly/2, Ly/2] × [−Lz/2, Lz/2].
By Shannon’s theorem full Cartesian (uniform) sampling consists of sampling nx
points in the kx direction, ny points along the ky direction and nz points along
the kz direction of the k-space, where:

∆x =
Lx
nx
, ∆y =

Ly
ny
, ∆z =

Ly
nz
,

and

∆kx =
1

Lx
, ∆ky =

1

Ly
, ∆kz =

1

Lz
,

we mention [90] as reference therein.

For various reasons, sampling the MRI signal at its Nyquist frequency poses
several challenges, necessitating techniques that can accurately reconstruct the
MRI signal from samples taken below the Nyquist frequency. First, in our 2D
experiments the dimensionality of the problem is of the order of n = nxny =
3842 ∼ 105. For a 3D image, it increases to n = nxnynz ∼ 108, making the
processing of the MRI signal extremely time-consuming and computationally
expensive. Secondly, MRI requires patients to remain still throughout the entire
acquisition process, making it challenging to image moving organs and to perform
scans on patients with conditions such as movement disorders. Furthermore, MRI
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is extremely expensive, and reducing the amount of information to be acquired
can lead to significant cost savings.

In light of these reasons, CS offers a valuable solution for reducing both ac-
quisition time and computational costs. However, there are situations where CS
transcends being merely advantageous: it becomes imperative. Take, for exam-
ple, 3D-CINE MRI, where sampling a full-Cartesian grid would be excessively
time-consuming to the extent that achieving full sampling becomes practically
infeasible. The application of CS to MRI is called CS-MRI. Since the MR signal
is known to be sparse with respect to the DFT, DWT, and other sparsity pro-
moting transforms, cf. [87], g-LASSO is used for the purpose. In this work, we
use the Shepp-Logan phantom and corrupt the data with artificial noise. The
Shepp-Logan phantom is piecewise constant and, therefore, its gradient is sparse.
For this reason, we use the discrete gradient as sparsity promoting transform:

D =


−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −1 1

 ,

and we set TV (x) = ∥Dx∥1 (discrete anisotropic spatial total variation).

4.2 Experimental design

The experiments were conducted using MATLAB_R2023b. The Monalisa tool-
box was used for MRI reconstructions.

4.2.1 The simulated MR signal

To simulate the acquisition of an MR signal, we considered the Shepp-Logan brain
phantom f ∈ R384×384, simulate coil sensitivity, undersampling, and Gaussian
noise. MR data is sampled by a certain number nCh of coils simultaneously
(parallel imaging). Let us delve into a detailed exposition of the data simulation,
briefly summarized in the previous lines.

1. Channel extension and acquisition across coils: by juxtaposition, f
is replicated nCh = 8 times and each replica fj ∈ R384×384, j = 1, . . . , nCh,
is pointwise multiplied by a simulated coil sensitivity matrix Cj ∈ C384×384:

fk(i, j) = Ck(i, j)f(i, j),

k = 1, . . . , nCh, i, j = 1, . . . , 384 (fig. 4.2).

2. Fourier transform: the spatial discrete Fourier transform of each fj is
computed (see fig. 9B).
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Figure 4.2: Simulated channel extension and acquisition across coils.

3. Undersampling: full Cartesian sampling consists of sampling nLines =
384 lines evenly spaced, whereas undersampling entails sampling only a
certain fraction of these 384 lines, which we denote by UR%. In our study,
we tested undersampling rates of 10%, 15% and 20%, that is UR% ∈
{10/100, 15/100, 20/100}. For a fixed UR%, the sampling trajectory com-
prises n(UR%) = ⌈nLines · UP%⌉ lines. The 30% of the n(UR%) lines are
used to sample the center of the k-space at the Nyquist frequency. Specif-
ically, ⌈n(UR%) · 30/100⌉ lines sample the center of the k-space, while the
remaining lines sample the periphery of the k-space following a normal
distribution N (µ, σ2) with µ = nLines/2 + 1 and σ2 = nLines · UR%

(see fig. 9C). The Fourier transform of each coil-image is sampled accord-
ing to the Cartesian undersampled trajectory established before. Conse-
quently, the resulting simulated MR data consists of a tensor y ∈ Y =
C(nLines·n(UR%))×nCh (see fig. 9D).

4. Noise corruption: we tested ALMA under three distinct noise levels.
Specifically, the simulated MR data is given by: b = y + ε, where ε ∈
Y and ℜ(εi,j),ℑ(εi,j) ∼ N (0, σ2) (i = 1, . . . , nLines · n(UR%) and j =
1, . . . , nCh). We refer to σ2 as to noise level, which is computed as σ2 =
∥y∥ · NL%, where in our experiments NL% ∈ {3/100, 5/100, 7/100}. For
instance, the terminology 3% noise means that we are considering NL% =
3/100.
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4.2.2 ALMA

ALMA is synthesised in fig. 1.4 and schematized in Algorithm 1, here we limit to
comment how ALMA computes an ALM. Note that the scalar product aT b, a, b ∈
Rn, must be replaced with ℜ(aT b) when a, b ∈ Cn. Moreover, for non-Cartesian
MRI trajectories, the scalar product that shall be considered is ⟨a, b⟩ = ℜ(aTHb),
with H Hermitian positive-definite matrix encoding the non-Cartesian gridding
of the k-space.

In the previous paragraphs we observed that finding an ALM is a matter of
tracing the tangent line in 0 to the epigraph A = {(u, t) ∈ R2 : u ≥ ∥Ax −
b∥22/2 − η2/2, t ≥ TV (x)/2 for some x ∈ Rn}, where η = ∥Af − b∥2, being
f ∈ R384×384 the 384×384 Shepp-Logan phantom. We pointed out that outlining
A is technically difficult due to the unfeasible dimensionality: in principle, for
every x ∈ Rn (n = 3842), once the point (u, t) = (u(x), t(x)) = 1/2 · (∥Ax− b∥22−
η2, TV (x)) is computed, one has that all the points of the first quadrant centered
in (u(x), t(x)) belong to A. Clearly, it would be enough to compute (u(x), t(x))
only for x ∈ Rn such that (u(x), t(x)) belongs to the boundary ∂A of A, but
we do not have access to those points. On top of that, computing (u(x), t(x))
for a fixed x is computationally expensive, because of the measurement operator
A. However, a meaningful family of points (u(x), t(x)) that would be enough to
approximate the tangent line in 0 to its boundary can be found as follows:

1. Choose x ∈ Rn so that the corresponding (u(x), t(x)) is as far to the left
of A as possible. Clearly, this task is accomplished by any minimizer of
ϕ(x) = ∥Ax − b∥22, which consists of iterative reconstructions. Let us call
this point x#.

2. Choose another point, for instance, the reconstructed image obtained by
the gridded reconstruction of the noisy undersampled data, b. Let us call
this point x(0).

3. Consider the segment that joins x# to x(0) in the image domain and sample
it at a rate decided a priori, e.g. 201 uniformly spaced samples.

4. Let x be one of this samples. Compute ∥Ax∥22, bTAx and TV (x).

5. The curve γx parametrized by α ∈ R as:

γx(α) = (u(αx), t(αx)) =
1

2

(
α∥Ax∥22 − 2αbTAx+ ∥b∥22 − η2, |α|TV (x)

)
consists of a couple of branches of parabolas. The parameters α1 and α2

such that γx(α1) and γx(α2) are the vertices of these parabolas can be
computed explicitly by the expression of γx(α).

6. Let αmax = max{|α1|, |α2|}. Compute and plot γx(α) for αmax ≤ α ≤
αmax. Since ∥Ax∥22, bTAx and TV (x) have been computed in 4., the com-
putational cost of this operation is low.
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Algorithm 1 ALMA
Require: : maximal number of iterations: nmax.
Require: : A ∈ Cm×n and b ∈ Cm.
Require: : x# ground-truth and set η = ∥Ax# − b∥2.
Require: : x(0) = argminx∈Cn ∥Ax− b∥2.

while n ≤ nmax do
1. Project x(n−1) onto the solution set of the least-square problem, call x(n−1)

proj

the projection.
2. Consider the convex combination x(n)τ = τx(n−1)+(1−τ)x(n−1)

proj (0 ≤ τ ≤ 1).

3. Consider a partition τ1 = 0, . . . , τ200 = 1 of [0, 1] and the related x(n)τj .

while 1 ≤ j ≤ 200 do Plot the set A of points (u, t) ∈ C2 in the form{
u = 1

2∥A(αkx
(n)
τj )− b∥22 −

η2

2 ,

t = 1
2TV (αkx

(n)
τj ),

where αk ∈ [−αmax, αmax] is an equally spaced sequence (k = 1, . . . , kmax),

αmax =
|bTAx(n)τj |
∥Ax(n)τj ∥22

.

end while
4. Compute the slope m(n) of the tangent to the lower boundary of A, in u = 0.
Set λ(n) = −1/m(n).
5. Solve

arg min
x∈Cn

1

2
∥Ax− b∥22 +

λ(n)

2
TV (x)

with the ADMM algorithm. Call x(n) the solution.

if n > 1 and λ(n) = λ(n−1) then Break
end if

end while
Result: xout = x(r), where r is the number of iterations at the end of while.
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7. Repeat the procedure for every x belonging to the segment that joins x#

to x(0).

8. Since A is known to be convex, compute the convex hull of the outlined
points.

The convex hull at the end of 8. is the approximation of A at iteration 1.

9. Choose λ(1) = −1/m(1), where m(1) is the slope of the tangent and recon-
struct an image using λ(1) as tuning parameter for TV-LASSO. Call this
image x(1).

Indicatively, x(1) has the advantage of being more regular than x(0), that is
TV (x(1)) ≤ TV (x(0)).

10. Repeat steps 1-9. replacing x(0) with x(1), to outline points of A that are
narrower with respect to the points outlined in steps 1)-7). Overlaying these
new points to the ones already outlined in 7), improves the approximation
of A.

11. Compute the slope m(2) of the new tangent in 0 to the convex boundary of
A and define λ(2) = −1/m(2).

4.2.3 Image quality metrics

We measured quantitatively the quality of the output of ALMA by means of
three metrics: the mSSIM, the pSNR and the CJV.

• The mSSIM is an extension of the structural similarity index, designed to
assess the quality of reconstructions across various scales in a manner that
approximates human perception, cf. [122, 38]. It compares the brightness,
contrast, and structural details of reconstructions with ground truth im-
ages, assigning values on a scale from 0 to 1, where a score of 1 indicates
optimal similarity. Good quality reconstructions typically correspond to
mSSIM values of ≥ 0.9. In the present work, the mSSIM is computed via
the command multissim(I,Iref), where Iref is the reference image (the
Shepp-Logan brain phantom) and I is the image to be assessed.

• The pSNR quantifies noise corruption of compressed images, independently
on the quality as perceived by human vision and good visual quality requires
pSNR to be at least 30dB, cf. [1].

• CJV measures the presence of intensity non-uniformity (INU) artifacts in
MRI, cf. [83, 55]. In the current paper, we use it as a measure of artifact
bias in reconstructions. Lower values of CJV indicate better quality of
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A B

Figure 4.3: Grey matter (A) and white matter (B) masks for CJV computation.

MR images in terms of artifacts. CJV is defined based on the intensity
difference between grey and white matter. Fig. 4.3 illustrates the masks
corresponding to grey matter (A) and white matter (B) in the Shepp-Logan
phantom, used for the computation of the CJV, as inspired by [75].

The notation mSSIM(λ) stands for the mSSIM of the reconstruction ob-
tained by solving:

arg min
x∈Cn

1

2
∥Ax− b∥22 +

λ

2
TV (x).

Analogous notations for pSNR(λ) and CJV (λ). The mSSIM takes values in
[0, 1] and optimality corresponds to mSSIM(λ) = 1 (maximum). The pSNR
and the CJV take values in [0,+∞) and are optimized in correspondence of their
maxima and their minima respectively. Good quality with respect to mSSIM
corresponds to mSSIM ≥ 0.9, good quality with respect to pSNR corresponds
to pSNR ≥ 30dB. Assessing good quality for CJV is harder, since, differently
from the mSSIM and the pSNR, the CJV is optimized in correspondence of its
minima argmin(CJV (λ)), whereas max(CJV (λ)) potentially grows to infinity.
For these reasons, we considered good quality with respect to CJV as:

CJV (λ) ≤ min(CJV ) +
max(CJV )−min(CJV )

10
= 0.0493 ≈ 0.05,

where
max(CJV ) = max{CJV (λ) : λ ≥ 0}

and
min(CJV ) = min{CJV (λ) : λ ≥ 0},
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analogous notations are used for the minima and the maxima of mSSIM and
pSNR.

4.2.4 Data analysis

The mSSIM, pSNR, and CJV, along with their respective relative versions, serve
as quantitative measures for assessing the quality of reconstructions. Addition-
ally, the (unique, in our experiments) tuning parameters λmSSIM , λpSNR and
λCJV which optimize each metric can be considered. Specifically, λmSSIM =
argmax{mSSIM(λ) : λ ≥ 0}, λpSNR = argmax{pSNR(λ) : λ ≥ 0} and
λCJV = argmin{CJV (λ) : λ ≥ 0}. The ratios λmSSIM/λALM , λpSNR/λALM
and λCJV /λALM express the distance between optimal tuning parameters (with
respect to the metrics) and ALM in terms of the orders of magnitude of the
corresponding ratios. We term the ratio λmSSIM/λ the magnitude ratio cor-
responding to λ (with respect to mSSIM), and similar notations are reserved
for the other metrics. For every pair (UR%, NL%) and every reconstruction,
we calculate the mSSIM, pSNR and CJV, alongside their corresponding mag-
nitude rations. Within each fixed pair (UR%, NL%), we employ violin plots to
illustrate the distributions of mSSIM, pSNR and CJV across the 50 runs, for
analysis. Additionally, shaded error bars for the functions mSSIM(λ/λALM ),
pSNR(λ/λALM ) and CJV (λ/λALM ) are incorporated to evaluate the optimality
of ALM as tuning parameters. A value of λmSSIM/λALM = 1 signifies that λALM
is the optimal tuning parameter with respect to mSSIM. Similar interpretations
apply for the other magnitude ratios. For a comparison, we compute the L-curve
tuning parameter λL, and execute reconstructions using TV-LASSO with this
parameter. Subsequently, we compute mSSIM(λL), pSNR(λL) and CJV (λL),
along with the corresponding magnitude ratios pertaining to λL with respect to
these three metrics.

4.2.5 The dataset

The dataset is obtained reconstructing an image for a fixed pair (UR%, NL%)
50 times (number of runs), to ensure statistical robustness with respect to the
sampling randomisation. The dataset consists of 3× 3× 50 reconstructions.

4.3 Results

4.3.1 Analysis of convergence

For fixed noise level and undersampling rate, ALMA approximates an ALM by
conducting reconstructions, updating the ALM approximation at each iteration.
We have selected two stopping criteria:
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Figure 4.4: Violin plots of the three metrics across noise levels and undersampling
rates. Yellow violins correspond to mSSIM, green violins correspond to pSNR
and purple violins correspond to CJV. The black lines correspond to the means
and the red lines correspond to the medians.
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A B

Figure 4.5: Convergence analysis. Histograms of the number of iterations needed
for ALMA’s convergence across undersampling rates (A) and noise levels (B).
The number of bins for each histogram is the ceiling of the square root of the
number of points, i.e., ⌈

√
150⌉ = 13. Observe that the number of iterations for

ALMA to stop is mostly concentrated in the interval [0, 10] independently of the
noise level and the undersampling rate, while the standard deviations increase
with the undersampling rate and the noise percentage. This demonstrates that
the number of iterations required for ALMA to converge is relatively low even
when processing larger amounts of information (20% undersampling) and higher
noise percentages (7% noise).

• The number of iterations k reaches a predefined maximum (set to kmax =
100).

• At iteration k0 + 1, λ(k0+1) = λ(k0), in which case λ(k) = λ(k0) for every
k ≥ k0.

Note that the second criterion serves as a convergence criterion for ALMA. This
means that if it is satisfied, ALMA not only stops but actually converges (i.e.,
the sequence (λ(k))k of ALM at step k converges). Observe that in all of our
experiments, the sequence of the ALM is eventually constant. Therefore, in what
follows, the term convergence will refer to ALMA stopping due to the fulfillment
of the second stopping criterion.

Through empirical analysis, we investigated the convergence of ALMA across
various noise levels and undersampling rates. As aforementioned, ALMA con-
verges in a finite time for every undersampling rate and noise level.

The histograms in fig. 4.5 (A) illustrates the number of iterations required for
the convergence of ALMA across different noise levels and undersampling rates.
Both histograms follow Gaussian distributions that become less concentrated
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around 0 as the undersampling rate increases (fig. 4.5 (A)) or as the noise level
rises (fig. 4.5 (B)). In both scenarios, the increase in the number of iterations can
be attributed to the amount of information processed by ALMA, which grows
with the number of sampling points and the noise level. Let us delve deeper into
these cases. On average, ALMA stops after 7.2089 ± 2.9773 iterations (see fig.
4.9). For the 10% sampling rate, both the average number of iterations and the
standard deviation increase with the noise level. A similar trend is observed for
the 15% undersampling rate, as detailed in fig. 4.9. However, the 20% sampling
rate exhibits a distinct pattern: the average number of iterations increases from
3% to 5% noise levels and reaches its minimum at a noise level of 7%.

4.3.2 Performance of ALMA with respect to mSSIM

Figure 4.6: Shaded error bars of the mSSIM, the shades representing the corre-
sponding standard deviations. The values 1 on the horizontal axes correspond
to λ = λALM. Observe that the corresponding mSSIM values lie on the plateau
of the mSSIM graph, just to the right of the maximum. This indicates that the
ALM performs nearly optimally with respect to the mSSIM metric.

Images reconstructed utilizing the ALM computed by ALMA consistently
exhibit an average mSSIM ≥ 0.99, irrespective of the noise level or the under-
sampling rate (see fig. 4.9). The violin plots for the mSSIM are displayed in
figure 4.4 (color yellow).

Across noise levels and undersampling rates, the tuning parameter that opti-
mizes the mSSIM (λmSSIM ) is around half of the ALM (λALM ), i.e., λmSSIM ≈
0.52 ·λALM (see fig. 4.9). However, even if λALM does not maximize the mSSIM,
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the points (1,mSSIM(1)), which correspond to the mSSIM of the reconstruc-
tions obtained with ALM, always lie on the plateau of the graph of the function
mSSIM(λ/λALM ), indicating that λALM is in the range of tuning parameters
corresponding to almost-optimal mSSIM values (see fig. 4.6).

4.3.3 Performance of ALMA with respect to pSNR

Figure 4.7: Shaded error bars of the pSNR, the shades representing the corre-
sponding standard deviations. The values 1 on the horizontal axes correspond
to λ = λALM. Observe that the corresponding mSSIM values lie on the plateau
of the mSSIM graph, just to the right of the maximum. This indicates that the
ALM performs nearly optimally with respect to the mSSIM metric.

Reconstructions obtained using ALMA exhibit high pSNR for every noise level
and undersampling rate. As expected the pSNR decreases across noise levels. On
average, the pSNR is ≥ 40dB for reconstructions of images corresponding to 15%
and 20% undersampling rates, whereas the average pSNR of reconstructions with
10% undersampling rate is at least 35dB (see fig. 4.9). Other than demonstrat-
ing the quality of reconstructions obtained via ALMA in terms of pSNR, this
reflects the fact that solving TV-LASSO with ALM as tuning parameters tend
to produce highly regularized images. Again, across noise levels and undersam-
pling rates, the tuning parameter that optimizes the pSNR (λpSNR) tends to
be approximately 0.47 times the corresponding ALM, i.e., λpSNR ≈ 0.47 · λALM
(see fig. 4.9). Compared to the graphs mSSIM(λ/λALM ), the plateau of the
functions pSNR(λ/λpSNR) near their maxima is less pronounced, and the points
(1, pSNR(1)), corresponding to the pSNR of reconstructions obtained with ALM,
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are shifted to the right of their peaks (see fig. 4.7). In conclusion, ALM perform
almost-optimally with respect to pSNR.

4.3.4 Performance of ALMA with respect to CJV

Figure 4.8: Shaded error bars of the CJV, the shades representing the corre-
sponding standard deviations. The values 1 on the horizontal axes correspond
to λ = λALM. Observe that the corresponding mSSIM values lie on the plateau
of the mSSIM graph, just to the right of the maximum. This indicates that the
ALM performs nearly optimally with respect to the mSSIM metric.

Except for the worst-case scenario UR% = 10%, NL% = 7%, the reconstruc-
tions obtained by ALMA display CJV values no larger than 0.05, showing that
ALMA performs well with respect to CJV as well (see fig. 4.9). The tuning pa-
rameter that minimizes the CJV (λCJV ) is on average 0.45 times the correspond-
ing ALM, i.e., λCJV ≈ 0.45 · λALM (see fig. 4.9). However, ALM still perform
almost optimally with respect to CJV, and the points (1, CJV (1)), correspond-
ing to the CJV of reconstructions obtained with ALM, are shifted to the right
of their minima, in accordance with the behavior of the graphs pSNR(λ/λCJV )
(see fig. 4.8).

4.3.5 Comparison with the L-curve parameter

For a comparison, we report on the quantitative measurement regarding the re-
constructions obtained utilizing the parameter λL, computed by L−curve. These
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Figure 4.9: Means and standard deviations of the number of iterations, the three
metrics, and the magnitude ratios across undersampling rate and noise level, for
the reconstructions obtained using the ALM. Observe that the average number
of iterations is 7, and the three metrics exhibit average values of approximately
0.9951, 42.2401 dB, and 0.0367, respectively, indicating optimal performance of
ALMA.

raconstructions exhibit an average mSSIM ≥ 0.99, across noise levels and un-
dersampling rates (see fig. 4.11), they also exhibit an average pSNR of 42.6351
and an average CJV of 0.035. Therefore, they perform well regarding the metrics
criterion. Moreover, the tuning parameter that minimizes the mSSIM (λmSSIM )
is on average 0.6 times the corresponding λL, i.e., λmSSIM ≈ 0.6 · λL, while the
tuning parameters optimizing the pSNR and the CJV (λpSNR and λCJV , resp.)
are on average 0.5 times λL (see fig. 4.11). All these data together show that the
performance of the L-curve parameter is slightly better compared to the perfor-
mance of the ALM. However, the difference is marginal and amounts to only a
matter of decimals. Moreover, ALMA is an iterative procedure to compute tuning
parameters and, consequently, solving TV-LASSO, whereas the L-curve method
is heuristic and does not involve an iterative process. Despite yielding similar re-
sults, ALMA’s iterative nature ensures a more robust and accurate determination
of tuning parameters for solving TV-LASSO, offering a superior alternative to
the heuristic approach of the L-curve method. Therefore, both methods perform
similarly overall, indicating that the ALM is a reliable parameter, performing on
par with the well-established L-curve method.
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4.4 Discussion

We introduced ALMA for TV-LASSO, which demonstrated promising results
in reconstructing undersampled and noisy MRI phantom data, achieving high-
quality reconstructions without extensive manual tuning. We assessed the quality
of the reconstructions quantitatively by means of mSSIM, pSNR and CJV.

As illustrated in fig. 4.10, the reconstruction quality using ALMA, even in
the worst case scenario (UR% = 10% and NL% = 7%), is notably superior when
compared to parameter choices as powers of ten (see fig. 4.10). The reconstructed
image via ALMA exhibits finer structural details and improved contrast, which
are crucial for accurate diagnosis and analysis in clinical radiology.

To further validate ALMA’s robustness, we compared its reconstructions to
those obtained using parameters optimized for the three metrics (mSSIM, pSNR,
and CJV). Figure 4.9 encapsulates this comparison, while fig. 4.10 provides a
visual example of the reconstructions. The results indicate that ALMA’s per-
formance is nearly optimal, matching closely with the parameters that optimize
each metric.

We also compared the performance of ALMA against the well-established L-
curve method. As presented in fig. 4.9 and 4.11, and exemplified in fig. 4.10,
both methods show comparable performance across the metrics. However, ALMA
stands out as the first iterative algorithm to compute the parameter dynamically
during reconstruction. This active, iterative approach grants ALMA significant
advantages in computational efficiency and ease of implementation, which are
particularly beneficial in clinical settings where a rapid and optimized recon-
struction is essential.

Qualitatively, ALMA-reconstructed images maintain the anatomical integrity
and structural fidelity necessary for clinical interpretation. This is evident in
fig. 4.10, where even under severe noise and undersampling, the critical features
are preserved. Quantitatively, ALMA achieves high mSSIM, pSNR, and low
CJV values, closely approximating the optimal values for these metrics obtained
through extensive parameter optimization.



4. An iterative algorithm to compute tuning parameters 86

Figure 4.10: Example of reconstruction of simulated MRI data (NL% = 7/100,
UR% = 10/100) with different tuning parameters: the ALM and the tuning
parameter computed with the L-curve method, the tuning parameters that opti-
mize each metric and tuning parameters that are powers of 10. The corresponding
quantitative quality assessments are reported below each reconstruction. Observe
that the quality of the reconstructions obtained using the ALM and the L-curve
parameter are nearly indistinguishable, and close to the quality of the images
reconstructed with the tuning parameters that optimize the metrics.



Figure 4.11: Means and standard deviations of the number of iterations, the three
metrics, and the magnitude ratios across undersampling rate and noise level, for
the reconstructions obtained using λL, the tuning parameter of the L-curve.



Chapter 5

Wigner analysis and metaplectic
Wigner distributions

We open this chapter with Section 5.1, where we provide the main definitions and
discuss Wigner analysis of Schrödinger equations, the reason that yield Cordero
and Rodino in defining metaplectic Wigner distributions. In Section 5.2 we
present the main properties of metaplectic Wigner distributions and introduce
their related pseudodifferential operators. Different symplectic matrices give rise
to different quantizations: we show the link between different quantizations and
generalize the equality in (5.1) to any metaplectic Wigner distribution and meta-
plectic pseudodifferential operator. This is a valuable result of its own, we believe
it could be useful in the framework of operator theory and quantum mechanics.
Section 5.3 is devoted to study subclasses of metaplectic Wigner distributions
and pseudodifferential operators: covariant, totally Wigner-decomposable and
Wigner-decomposable. The last ones provide a new characterization of modula-
tion spaces. Next, we show that covariant matrices belong to the Cohen class
and compute the related kernel. As for the Wigner case, we are able to give an
explicit expression of the metaplectic Wigner when A is covariant. Section 5.4
contains a deep study of metaplectic pseudodifferential operators on modulation
spaces, which will be used in the applications to Schrödinger equations (Section
5.6). Section 5.5 introduces new algebras of generalized metaplectic operators
and their main properties. Finally, Sections 5.6 and 5.7 exhibit some applica-
tion of the theory developed so far to Schrödinger equations and wavefront sets,
respectively.

This chapter is part of an article published in Communications in Mathemat-
ical Physics in 2024, cf. [23].

5.1 Schrödinger equations and Wigner analysis

Cauchy problems for Schrödinger equations have been studied by a variety of au-
thors in many different frameworks. Limiting attention to the microlocal analysis

88
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context, let us mention as a partial list of contributions [2, 33, 69, 73, 74, 93, 94,
109, 124].

As more recent issues, under the influence of the new time-frequency methods,
we may refer to [5, 14, 25, 27, 28, 30, 29, 31, 40, 35, 37, 78, 103, 102, 121].

In this chapter, we propose a new approach, in terms of phase-space con-
centration of suitable time-frequency distributions. The basic idea in terms of
Wigner distribution is not new, though. It goes back to Wigner 1932 [123] (later
developed by Cohen and many other authors, see e.g. [16, 17]). For a given
linear operator P acting on L2(Rd) (or a more general functional space), Wigner
considered an operator K on L2(R2d) such that

W (Pf) = KWf (5.1)

and its kernel k

W (Pf)(x, ξ) =

∫
R2d

k(x, ξ, y, η)Wf(y, η) dydη. (5.2)

We continue the development of a theory started in the Part I [30], addressed
to P pseudodifferential operators with W replaced by the more general τ -Wigner
distributions. Here the main concern is the study of Cauchy propagators for
linear Schrödinger equations i

∂u

∂t
+Hu = 0

u(0, x) = u0(x),
(5.3)

with t ∈ R and the initial condition u0 ∈ S(Rd) (Schwartz class) or in some
modulation space as explained below. The Hamiltonian has the form

H = Opw(a) +Opw(σ), (5.4)

where Opw(a) is the Weyl quantization of a real homogeneous quadratic poly-
nomial on R2d and Opw(σ) is a pseudodifferential operator with a symbol σ in
suitable modulation spaces, namely σ ∈ M∞,q

1⊗vs(R
2d), s ≥ 0, 0 < q ≤ 1 (see Sec-

tion 2.2 below for the definitions) which guarantee that Opw(σ) is bounded on
L2(Rd) (and in more general spaces). This implies that the operator H in (5.4)
is a bounded perturbation of the generator H0 = Opw(a) of a unitary group (cf.
[108] for details).

As special instances of the Hamiltonian above we find the Schrödinger equa-
tion H = ∆ − V (x) and the perturbation of the harmonic oscillator H =
∆ − |x|2 − V (x) with a potential V ∈ M∞,q(Rd). Observe that V is bounded,
but not necessarily smooth.
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The unperturbed case σ = 0, was already considered in [31]i
∂u

∂t
+Opw(a)u = 0

u(0, x) = u0(x).
(5.5)

The solution is given by the metaplectic operators u = χ̂tu0, for a suitable sym-
plectic matrix χt, see for example the textbooks [48, 35]. Precisely, if a(x, ξ) =
1
2xAx+ ξBx+

1
2ξCξ, with A,C symmetric and B invertible, we can consider the

classical evolution, given by the linear Hamiltonian system{
2πẋ = ∇ξa = Bx+ Cξ

2πξ̇ = −∇xa = −Ax−BT ξ

(the factor 2π is due to our normalization of the Fourier transform) with Hamil-

tonian matrix D :=

(
B C
−A −BT

)
∈ sp(d,R). Then we have χt = etD ∈ Sp(d,R).

The solution to (5.5) is the Schrödinger propagator

u(t, x) = eitOpw(a)u0(x) = χ̂tu0, (5.6)

and the Wigner transform with respect to the space variable x is given by

Wu(t, z) =Wu0(χ
−1
t z), z = (x, ξ),

as already observed in the works of Wigner [123] and Moyal-Bartlett [92]. Hence
(5.2) reads in this case

W (eitOpw(a)u0)(z) =

∫
R2d

k(t, z, w)Wu0(w) dw, (5.7)

with k(t, z, w) given by the delta density δz=χtw.

The aim of [31] was to reconsider (5.6) and (5.7) in the functional frame
of the modulation spaces, in terms of the general metaplectic Wigner transform
introduced in [30]. The propagator of the perturbed problem (5.3) is a generalized
metaplectic operator, as already exhibited in Theorem 4.1 [25] for symbols in the
Sjöstrand class.

Here, to deal with further non-smooth potentials Opw(σ) in (5.4), where we
consider σ ∈ M∞,q

1⊗vs(R
2d), and we expand the class of generalized metaplectic

operators, including quasi-algebras of operators, which allow faster decay at in-
finity than the original Sjöstrand class. To quantify the decay we use the Wiener
amalgam spaces W (C,Lpvs)(R2d), which consist of the continuous functions F on
R2d such that

∥F∥W (C,Lp) :=

 ∑
k∈Z2d

( sup
z∈[0,1]2d

|F (z + k)|)pvs(k)p
 1

p

<∞ (5.8)

(obvious changes for p = ∞), where vs(k) = (1 + |k|2)1/2.
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Definition 5.1. Given χ ∈ Sp(d,R), g ∈ S(Rd), 0 < q ≤ 1, we say that a linear
operator T : S(Rd) → S ′(Rd) is a generalized metaplectic operator in the class
FIO(χ, q, vs) if there exists a function H ∈W (C,Lqvs)(R2d), such that the kernel
of T with respect to time-frequency shifts satisfies the decay condition

|⟨Tπ(z)g, π(w)g⟩| ≤ H(w − χz), ∀w, z ∈ R2d (5.9)

(where the time-frequency shifts π(z), π(w) are defined in Subsection 2.2).

We infer boundedness, quasi-algebras and spectral properties of the previ-
ous operators, see Section 6 below. Moreover, we shall show that they can be
represented as

T = Opw(σ1)χ̂ or T = χ̂Opw(σ1),

that is, they can be viewed as composition of metaplectic operators with Weyl
operators with symbols in the modulation spaces M∞,q

1⊗vs(R
2d).

The solution eitHu0 to (5.3) is a generalized metaplectic operator of this type
for every t ∈ R, so that it enjoys the phase-space concentration of this class.

The main work of this paper relies in preparing all the instruments we need
to study the Wigner kernel of eitH , namely k(t, z, w), w, z ∈ R2d, such that

W (eitHu0)(z) =

∫
k(t, z, w)Wu0(w) dw

and possible generalizations to metaplectic Wigner distributions, defined as fol-
lows.

We shall focus on A shift-invertible, covariant symplectic matrices, see Defi-
nitions 4.5 and Subsection 4.1 and 4.2 below for definitions and properties. Fur-
thermore we limit to A shift-invertible, covariant symplectic matrices such that
the related metaplectic Wigner distribution WA is in the Cohen class QΣ, namely
it can be written as

WA(f, g) =W (f, g) ∗ ΣA

where the kernel ΣA is related to A by (5.43), (5.41) below.

Let us define ΣA,t(z) = ΣA(χt(z)) and denote by At the covariant matrix
such that

WAt =Wf ∗ ΣAt,t.

Then from the results of [31] we have from the unperturbed equation (5.5), as
counterpart of (5.7)

WA(e
itOpw(a)u0)(z) =

∫
R2d

δz=χtw(WAtu0)(w) dw.

So we keep the action of the classical Hamiltonian flow according to the original
idea of Wigner [123], provided the matrix At is defined as before.
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We prove that the result does not change so much for the perturbed equation.
Namely, under the stronger assumption σ ∈ S0

0,0(R2d), we prove (see Proposition
5.50 below)

WA(e
itHu0)(z) =

∫
R2d

kA(t, z, w)(WAtu0)(w) dw

where, for every N ≥ 0,

kA(t, z, w)⟨z − χt(w)⟩2N

is the kernel of an operator bounded on L2(Rd).

Starting from this, we may obtain the propagation result for the Wigner wave
front set

WFA(e
itHu0) = χt(WFAu0),

see Definition 5.52 in the sequel. In particular, for WA = W = Wt, defining as
in [30, 31] z0 /∈ WFf , z0 ̸= 0, if there exists a conic neighbourhood Γz0 ⊂ R2d of
z0 such that for all N ≥ 0,∫

Γz0

⟨z⟩N |Wf(z)|2 dz <∞,

we obtain
WF(eitHu0) = χt(WFu0).

5.2 Metaplectic analysis of pseudodifferential opera-
tors

In this section we study several properties of metaplectic pseudodifferential oper-
ators in the context of time-frequency analysis. Integrals that must be intended
in the weak sense are clear by the context.

First, we recall their definition, cf. [30, Section 4].

If A ∈ Sp(2d,R) is a general symplectic matrix, we can write explicitly
WA(f, g) as a FIO of type II, using Lemma 2.10.
Proposition 5.2. Let A ∈ Sp(2d,R) have factorization A = A1A2 with Aj , j =
1, 2, free with block decomposition

Aj =

(
Aj Bj
Cj Dj

)
.

Then, up to a unitary factor, for every F ∈ S(R2d),

ÂF (x, ξ) =
∣∣∣∣det(B1)

det(B2)

∣∣∣∣1/2Φ−D1B
−1
1
(x, ξ)

×
∫
R4d

F (z, ζ)e−2πi[ΦA(z,ζ,y,η)−(x,ξ)·(y,η)]τA(z, ζ, y, η)dzdζdydη,

(5.10)
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where the phase is given by

ΦA(z, ζ, y, η) =
1

2
[B−1

2 A2(z, ζ) · (z, ζ) +B1(B
−1
1 A1 +D2B

−1
2 )BT

1 (y, η) · (y, η)]

and the symbol is given by the tempered distribution

τA(z, ζ, y, η) = e2πiB
−1
2 BT

1 (y,η)·(z,ζ).

In particular, for every f, g ∈ S(Rd),

WA(f, g)(x, ξ) =

∣∣∣∣det(B1)

det(B2)

∣∣∣∣1/2Φ−D1B
−1
1
(x, ξ)

×
∫
R4d

f(z)g(ζ)e−2πi[ΦA(z,ζ,y,η)−(x,ξ)·(y,η)]τA(z, ζ, y, η)dzdζdydη.

(5.11)

Proof. Let Â1, Â2 ∈ Mp(2d,R) having free projections be such that Â = Â1Â2.
We can write, for every F ∈ S(R2d), and up to a unitary factor,

ÂF (x, ξ) = Â1Â2F (x, ξ).

For the rest of the proof, we write

X = (x, ξ), Y = (y, η), Z = (z, ζ),

while dY = dydη and dZ = dzdζ.
Applying Lemma 2.10 and changing variables, up to a unitary constant,

ÂF (X) = |det(B1)|−1/2e−iπD1B
−1
1 X·X

∫
R2d

(Â2F )(Z)e
2πi[B−1

1 X·Y− 1
2
B−1

1 A1Y ·Y ]dY

= |det(B1B2)|−1/2e−iπD1B
−1
1 X·X

∫
R2d

e−iπD2B
−1
2 Y ·Y

×
∫
R2d

F (Z)e2πi[B
−1
2 Y ·Z− 1

2
B−1

2 A2Z·Z]dZe2πi[B
−1
1 X·Y− 1

2
B−1

1 A1Y ·Y ]dY

=

∣∣∣∣det(B1)

det(B2)

∣∣∣∣1/2Φ−D1B
−1
1
(X)∫

R4d

F (Z)e2πi[−
1
2
(B1(B

−1
1 A1+D2B

−1
2 )BT

1 Y ·Y+B−1
2 A2Z·Z)+X·Y ]e2πiB

−1
2 BT

1 Y ·ZdY dZ.

This proves (5.10) and (5.11) follows plugging F = f ⊗ ḡ in (5.10).

Moreover, we also have explicit integral formulas for metaplectic Wigner dis-
tributions in terms of their factorization via free symplectic matrices.
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Corollary 5.3. Under the same notation of Lemma 5.2, up to a unitary factor
and for every f, g ∈ S(Rd),

WA(f, g)(x, ξ) = |det(B1B2)|−1/2Φ−D1B
−1
1
(x, ξ)

∫
R2d

f(y)g(η)Φ−B−1
2 A2

(y, η)

×F−1(Φ−(B−1
1 A1+D2B

−1
2 ))(B

−1
1 (x, ξ) +B−T

2 (y, η))dydη

= |det(B1B2)|−1/2Φ−D1B
−1
1
(x, ξ)

× [((f ⊗ ḡ)Φ−B−1
2 A2

) ∗ (F−1Φ−(B−1
1 A1+D2B

−1
2 ) ◦ (−B

−T
2 ))] ◦ (−BT

2 B
−1
1 )(x, ξ),

where the chirp Φ is defined in (2.14). In particular, if B−1
1 A1 + D2B

−1
2 is

invertible, then, up to a phase factor,

WA(f, g)(x, ξ) = | det(B1B2)|−1/2| det(B−1
1 A1 +D2B

−1
2 )|−1Φ−D1B

−1
1
(x, ξ)

×
∫
R2d

f(y)g(η)Φ−B−1
2 A2

(y, η)Φ(B−1
1 A1+D2B

−1
2 )−1(B

−1
1 (x, ξ) +B−T

2 (y, η))dydη.

Proof. Using (5.10), we can write, for every F ∈ S(R2d), and up to a unitary
factor,

ÂF (x, ξ) = Â1Â2F (x, ξ).

Applying Lemma 2.10, up to a unitary constant,

ÂF (x, ξ) = | det(B1B2)|−1/2e−iπD1B
−1
1 (x,ξ)·(x,ξ)

∫
R2d

F (y, η)e−πiB
−1
2 A2(y,η)·(y,η)

×
∫
R2d

e2πi[B
−1
1 (x,ξ)·(z,ζ)− 1

2
B−1

1 A1(z,ζ)·(z,ζ)− 1
2
D2B

−1
2 (z,ζ)·(z,ζ)+B−1

2 (z,ζ)·(y,η)]dzdζdydη

= |det(B1B2)|−1/2Φ−D1B
−1
1
(x, ξ)

∫
R2d

F (y, η)Φ−B−1
2 A2

(y, η)

×
∫
R2d

e2πi[(B
−1
1 (x,ξ)+B−T

2 (y,η))·(z,ζ)− 1
2
(B−1

1 A1+D2B
−1
2 )(z,ζ)·(z,ζ)]dzdζ.

(5.12)

The inner integral is worked out as∫
R2d

e2πi[(B
−1
1 (x,ξ)+B−T

2 (y,η))·(z,ζ)− 1
2
(B−1

1 A1−D2B
−1
2 )(z,ζ)·(z,ζ)]dzdζ

=

∫
R2d

Φ−(B−1
1 A1−D2B

−1
2 )(z, ζ)e

2πi[B−1
1 (x,ξ)+B−T

2 (y,η)]·(z,ζ)dzdζ

= F−1(Φ−(B−1
1 A1+D2B

−1
2 ))(B

−1
1 (x, ξ) +B−T

2 (y, η)).

(5.13)

Observe that if B−1
1 A1 +D2B

−1
2 is invertible, then

F−1(Φ−(B−1
1 A1+D2B

−1
2 )) =

1

|det(B−1
1 A1 +D2B

−1
2 )|

Φ(B−1
1 A1+D2B

−1
2 )−1 .

Plugging (5.13) into (5.11) with F = f ⊗ ḡ the assertion follows.
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The integral expression of WA provided by Corollary 5.3 is useful to establish
continuity properties for WA(f, g). In practice an explicit factorization of A via
free matrices may be unknown.

Definition 5.4. Let a ∈ S ′(R2d). The metaplectic pseudodifferential operator
with symbol a and symplectic matrix A is the operator OpA(a) : S(Rd) → S ′(Rd)
such that

⟨OpA(a)f, g⟩ = ⟨a,WA(g, f)⟩, g ∈ S(Rd).

Observe that this operator is well defined by Proposition 2.12, item (iii).
Moreover, when the context requires to stress the matrix A that defines OpA, we
refer to OpA to as the metaplectic pseudodifferential operator with symbol a.

Remark 5.5. In principle, the full generality of metaplectic framework provides a
wide variety of unexplored time-frequency representations that fit many different
contexts. Namely, in Definition 5.4, the symplectic matrix A plays the role of
a quantization and the quantization of a pseudodifferential operator is typically
chosen depending on the the properties that must be satisfied in a given setting.

Example 5.6. Definition 5.4 in the case of A1/2,2d ∈ Sp(2d,R) in (2.18), pro-
vides the well-known Weyl quantization for pseudodifferential operators, that we
denote with Opw,2d(a), i.e., for a ∈ S(R2d),

Opw,2d(a)f(x) =

∫
R2d

a

(
x+ y

2
, ξ

)
f(y)e2πi(x−y)·ξdydξ, f ∈ S(Rd).

When d is clear from the context or irrelevant, we write Opw instead of Opw,2d.

In the following result, we see how the symbols of metaplectic pseudodiffer-
ential operators change when we modify the symplectic matrix.

Lemma 5.7. Consider A,B ∈ Sp(2d,R) and a, b ∈ S ′(R2d). Then,

OpA(a) = OpB(b) ⇐⇒ b = B̂A−1(a). (5.14)

Proof. Let f, g ∈ S(Rd). Then,

⟨OpA(a)f, g⟩ = ⟨a, Â(f ⊗ ḡ)⟩ = ⟨Â−1a, f ⊗ ḡ⟩,

⟨OpB(b)f, g⟩ = ⟨b, B̂(f ⊗ ḡ)⟩ = ⟨B̂−1b, f ⊗ ḡ⟩.

Since the span of S(Rd)⊗S(Rd) is dense in S(R2d), we deduce that the equality
between the two lines holds if and only if

Â−1a = B̂−1b,

which is the same as (5.14).
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As a direct consequence of Lemma 5.7 we get two corollaries. The first one
provides the distributional kernel of OpA.

Corollary 5.8. Consider A ∈ Sp(2d,R), a ∈ S ′(R2d). Then, for all f, g ∈
S(Rd),

⟨OpA(a)f, g⟩ = ⟨kA(a), g ⊗ f̄⟩, (5.15)

where the kernel is given by kA(a) = Â−1a.

Proof. Plug B = I4d×4d into (5.14) to get (5.15).

Corollary 5.9 is a generalization of (5.1) for metaplectic Wigner distributions
and pseudodifferential operators. For its statement, we introduce the following
notation: if a ∈ S ′(R2d), a ⊗ 1 denotes the tempered distribution of S ′(R4d)
defined via tensor product as

(a⊗ 1)(r, y, ρ, η) := a(r, ρ), r, y, ρ, η ∈ Rd. (5.16)

Corollary 5.9. Consider A ∈ Sp(4d,R), B ∈ Sp(2d,R) and a ∈ S ′(R2d). Then,
for all B0 ∈ Sp(4d,R), f, g ∈ S(Rd),

WA(OpB(a)f, g) = OpB0(
̂B0A−1

1/2,4d((
̂A1/2,2dB−1a)⊗ 1) ◦ A−1)×

× WA(f, g).
(5.17)

In particular,
(i) if B0 = A1/2,4d, then

WA(OpB(a)f, g) = Opw,4d((( ̂A1/2,2dB−1a)⊗ 1) ◦ A−1)WA(f, g); (5.18)

(ii) if B0 = A1/2,4d and B = A1/2,2d, then

WA(Opw,2d(a)f, g) = Opw,4d((a⊗ 1) ◦ A−1)WA(f, g). (5.19)

Proof. By [30, Lemma 4.1], for all f, g ∈ S(Rd) and a ∈ S ′(R2d),

(Opw,2d(a)f)⊗ ḡ = Opw,4d(σ)(f ⊗ ḡ). (5.20)

Moreover, for all A ∈ Sp(4d,R),

ÂOpw,4d(σ)Â−1 = Opw,4d(σ ◦ A−1). (5.21)

Therefore, using Lemma 5.7, (5.20) and (5.21) respectively,

WA(OpB(a)f, g) = Â(OpB(a)f ⊗ ḡ) = Â(Opw,2d( ̂A1/2,2dB−1a)f ⊗ ḡ)

= Â(Opw,4d(( ̂A1/2,2dB−1a)⊗ 1)(f ⊗ ḡ))

= Opw,4d((( ̂A1/2,2dB−1a)⊗ 1) ◦ A−1)Â(f ⊗ ḡ)

= Opw,4d((( ̂A1/2,2dB−1a)⊗ 1) ◦ A−1)WA(f, g).
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Then, by Lemma 5.7,

WA(OpB(a)f, g) = OpB0(
̂B0A−1

1/2,4d((
̂A1/2,2dB−1a)⊗ 1) ◦ A−1)WA(f, g)

and we are done.

Remark 5.10. Formula (5.17) will be used in the form of (5.19) to deduce bound-
edness properties on modulation spaces for metaplectic pseudodifferential oper-
ators. However, the strength of Corollary 5.9 relies on its generality: the matrix
B0 in (5.17) can be chosen in Sp(4d,R) arbitrarily, depending on the context.

5.3 Decomposability and covariance

In this section, we focus on metaplectic Wigner distributions that are defined in
terms of symplectic matrices that satisfy decomposability and covariance prop-
erties. Explicit expressions for WA and OpA are derived from A in terms of its
blocks.

5.3.1 Decomposability and shift-invertibility

We define decomposable metaplectic Wigner distributions directly in terms of
their factorization, as follows. Let A be a symplectic matrix that factorizes as

A = AFT2DL, (5.22)

where DL is defined in (2.11) and

AFT2 =


Id×d 0d×d 0d×d 0d×d
0d×d 0d×d 0d×d Id×d
0d×d 0d×d Id×d 0d×d
0d×d −Id×d 0d×d 0d×d

 . (5.23)

Up to a phase factor,
ÂFT2 = F2.

Definition 5.11. We say that A ∈ Sp(2d,R) is a totally Wigner-decomposable
(symplectic) matrix if (5.22) holds for some L ∈ GL(2d,R). If A is totally
Wigner-decomposable, we say that WA is of the classic type.

Example 5.12. The matrices (2.18) and (2.17) are totally Wigner-decomposable
with

Lτ =

(
Id×d τId×d
Id×d −(1− τ)Id×d

)
and

LST =

(
0d×d Id×d
−Id×d Id×d

)
respectively.
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Wigner distributions of classic type are immediate generalizations of the clas-
sical time-frequency representations, such as the (cross)-Wigner distribution W
and the STFT.

The following result characterizes totally Wigner-decomposable symplectic
matrices in terms of their block decomposition.
Proposition 5.13. Let A ∈ Sp(2d,R) be a totally Wigner-decomposable matrix
having block decomposition

A =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 , (5.24)

with Aij ∈ Rd×d (i, j = 1, . . . , 4). Then,
(i) A has the block decomposition

A =


A11 A12 0d×d 0d×d
0d×d 0d×d A23 A24

0d×d 0d×d A33 A34

A41 A42 0d×d 0d×d

 ; (5.25)

(ii) L and its inverse are related to A by:

L =

(
AT33 AT23
AT34 AT24

)
, L−1 =

(
A11 A12

−A41 −A42

)
. (5.26)

Proof. Let

L =

(
L11 L12

L21 L22

)
and L−1 =

(
L′
11 L′

12

L′
21 L′

22

)
(5.27)

be the block decompositions of L and L−1 respectively, where Lij , L′
ij ∈ Rd×d

(i, j = 1, 2). Then, the identity (5.22) reads as
A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 =


L′
11 L′

12 0d×d 0d×d
0d×d 0d×d LT12 LT22
0d×d 0d×d LT11 LT21
−L′

21 −L′
22 0d×d 0d×d

 .

Thus the expressions for the matrices in (i) and (ii) easily follow.

Remark 5.14. Under the hypothesis of Proposition 5.13, it is easy to check that
the identities LL−1 = L−1L = I2d×2d read in terms of the blocks of L and L−1

as
AT33A11 −AT23A41 = Id×d,

AT33A12 = AT23A42,

AT34A11 = AT24A41,

AT34A12 −AT24A42 = Id×d

and


A11A

T
33 +A12A

T
34 = Id×d,

A11A
T
23 = −A12A

T
24,

A41A
T
33 = −A42A

T
34,

A41A
T
23 +A42A

T
24 = −Id×d.

(5.28)
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These are exactly the block relations that A and

A−1 = D−1
L A−1

FT2 =


AT33 0d×d 0d×d −AT23
AT34 0d×d 0d×d −AT24
0d×d −AT41 AT11 0d×d
0d×d −AT42 AT12 0d×d

 (5.29)

satisfy as symplectic matrices.

As pointed out in [31], shift-invertibility of symplectic matrices appears to be
the fundamental property that a metaplectic Wigner distribution shall satisfy in
order for WA(·, g) to replace the STFT in the definition of modulation spaces.

Lemma 5.15. Let A ∈ Sp(2d,R) be a totally Wigner-decomposable as in (5.22)
and (5.24). The following statements are equivalent:
(i) L is right-regular;
(ii) the matrix

EA :=

(
A11 0d×d
0d×d A23

)
(5.30)

is invertible;
(iii) WA is shift-invertible with EA given as in (5.30).

Proof. The equivalence between (ii) and (iii) is proved in [31]. We prove that
(i) and (ii) are equivalent.

(i) ⇒ (ii). Assume that L is right-regular. We have to prove that both A23

and A11 are invertible. The right-regularity of L is equivalent to the invertibility
of A23 and A24, hence it remains to check that A11 is invertible.

It is easy to verify that L is right-regular if and only if L−T is left-regular.
By Proposition 5.13 (ii),

L−T =

(
AT11 −AT41
AT12 −AT42

)
,

so that L−T is left-regular if and only if A11 and A12 are invertible, which gives
the invertibility of A11.

(i) ⇐ (ii). If EA is invertible, then A11 and A23 are invertible. By the
identity A11A

T
23 = −A12A

T
24 in (5.28), we also have the invertibility of A12 and

A24. Hence, A23 and A24 are invertible.

Corollary 5.16. Let A satisfy (5.22) with block decomposition as in (5.25). The
following statements are equivalent:
(i) L is right-regular;
(ii) A11, A12, A23 and A24 are invertible.
Moreover, if L is right-regular,
(iii) A33 is invertible if and only if A42 is invertible;
(iv) A34 is invertible if and only if A41 is invertible.
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Proof. The equivalence between (i) and (ii) is just a restatement of Lemma 5.15.
(iii) and (iv) follow directly from (ii) and the equalities in (5.28).

Remark 5.17. Assume that L is right-regular with block decomposition as in
(5.27). Since L is also invertible by its definition, all the assumptions of Theorem
2.1 (ii) and Theorem 2.2 (i) of [85] are verified. Thus, we can write a Wigner-
decomposable matrix A, with L right-regular, explicitly in terms of the blocks of
L both as

A =


A11 A12 0d×d 0d×d
0d×d 0d×d LT12 LT22
0d×d 0d×d LT11 LT21
A41 A42 0d×d 0d×d


with

A11 = (L11 − L12L
−1
22 L21)

−1,

A12 = −(L11 − L12L
−1
22 L21)

−1L12L
−1
22 ,

A41 = L−1
22 L21(L11 − L12L

−1
22 L21)

−1,

A42 = −L−1
22 − L−1

22 L21(L11 − L12L
−1
22 L21)

−1L12L
−1
22 ;

or, equivalently, as

A =


A11 A12 0d×d 0d×d
0d×d 0d×d LT12 LT22
0d×d 0d×d LT11 LT21
A41 A42 0d×d 0d×d

 ,

where

A11 = −(L21 − L22L
−1
12 L11)

−1L22L
−1
12 ,

A12 = (L21 − L22L
−1
12 L11)

−1,

A41 = −L−1
12 − L−1

12 L11(L21 − L22L
−1
12 L11)

−1L22L
−1
12

A42 = −L−1
12 L11(L21 − L22L

−1
12 L11)

−1L22L
−1
12 .

Theorem 5.18. Let L be right-regular and A be as in (5.25). Then, for all
f, g ∈ L2(Rd) and for all x, ξ ∈ Rd,

WA(f, g)(x, ξ) =
√

|det(L)||det(A23)|−1e2πiA
−1
23 ξ·AT

33xVg̃f(c(x), d(ξ)), (5.31)

where

g̃(t) := g(AT24A
−T
23 t), c(x) = (AT33 −AT23A

−T
24 A

T
34)x and d(ξ) = A−1

23 ξ. (5.32)

Observe that all the inverses that appear in (5.31) exist if L is right-regular
by Corollary 5.16 (ii) and Theorem 2.1 (ii) of [85].
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Proof. The proof is a straightforward consequence of [32, Theorem 3.8].

Theorem 5.19. Let 0 < p, q ≤ ∞, L be right-regular and A be as in (5.25). Let
m ∈ Mv be such that

m((AT33 −AT23A
−T
24 A

T
34)·, A−1

23 ·) ≍ m(·, ·). (5.33)

Then, for all g ∈ S(Rd),

f ∈Mp,q
m (Rd) ⇐⇒ WA(f, g) ∈ Lp,qm (R2d). (5.34)

Moreover, if 1 ≤ p, q ≤ ∞ and there exist 0 < C1(L) ≤ C2(L) such that

C1(L)v(x, ξ) ≤ v((AT23(A
T
24)

−1)x,A−1
23 A24ξ) ≤ C2(L)v(x, ξ), (x, ξ) ∈ R2d,

(5.35)
then g can be chosen in the larger class M1

v (Rd).

Proof. The proof is a straightforward consequence of Theorem 5.18. In fact, for
g ∈ S(Rd) and L right-regular, the function g̃ defined as in (5.32) is in S(Rd)
and by (5.31),

∥f∥Mp,q
m

≍ ∥Vg̃f∥Lp,q
m

≍ ∥WA(f, g)((A
T
33 −AT23(A

T
24)

−1AT34)
−1·, A23·)∥Lp,q

m

≍ ∥WA(f, g)∥Lp,q
m
,

by assumption (5.33).

Assume that φ ∈ S(Rd). Then,

Vφg̃(x, ξ) =

∫
Rd

g(Ct)e−2πiξ·tφ(t− x)dt

≍
∫
Rd

g(s)e−2πi((C−1)T ξ)·sφ(C−1(s− Cx))ds

= Vφ̃g(B(x, ξ)),

where

C = AT24A
−T
23 , B =

(
C 0d×d

0d×d C−T

)
= DA−T

24
DAT

23

and φ̃(t) = φ(C−1t). Condition (5.35) implies that g ∈M1
v if and only if g̃ ∈M1

v :

∥g̃∥M1
v
≍ ∥Vφg̃∥L1

v
≍ ∥Vφ̃g(B·)v(·)∥L1

≍ ∥Vφ̃g(·)v(B−1·)∥L1 ≍ ∥Vφ̃g(·)v(·)∥L1 ≍ ∥g∥M1
v
.

Hence, for 1 ≤ p, q ≤ ∞, we can choose g in M1
v (Rd).

Next, we generalize the metaplectic Wigner distributions associated to Wigner
-decomposable matrices in order to include multiplications by chirps. These
Wigner distributions, along with the right-regularity condition on L, characterize
modulation spaces.
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Definition 5.20. We say that a matrix A ∈ Sp(d,R) is Wigner-decomposable if
A = VCAFT2DL for some C ∈ Rd symmetric and L ∈ GL(d,R).

Theorem 5.21. Let A ∈ Sp(2d,R) be a Wigner-decomposable matrix with de-
composition A = VCAFT2DL (where VC ,AFT2,DL are defined in (2.11), (5.23),
and (2.11), respectively)

C =

(
C11 C12

CT12 C22,

)
CT11 = C11 and CT22 = C22. Then, for all f, g ∈ L2(Rd), up to a phase factor,

WA(f, g)(x, ξ) = Φ̃C(x, ξ)

∫
Rd

f(x+ (Id×d −A11)y)g(x−A11y)e
−2πiξ·ydy,

(5.36)

with
Φ̃C(x, ξ) = e2πiC

T
12x·ξΦC11(x)ΦC22(ξ)

and the chirp functions ΦC11, ΦC22 are defined in (2.14). If the matrix L is
right-regular,

WA(f, g)(x, ξ) = |det(Id×d −A11)|−1Φ̃′
C(x, ξ)Vg̃f(A

−1
11 x, (I −AT11)

−1ξ), (5.37)

where
Φ̃′
C(x, ξ) = ΦC11(x)ΦC22(ξ)e

2πi(CT
12+(I−A11)−1)x·ξ,

and g̃(t) = g(−A11(Id×d −A11)
−1t).

Proof. Formula (5.36) is proved using the explicit definitions of the operators
associated to VC , AFT2 and DL. In fact, up to a phase factor,

̂AFT2DL(f ⊗ ḡ)(x, ξ) = F2TL(f ⊗ ḡ)(x, ξ) =

∫
Rd

(f ⊗ g)(L(x, y))e−2πiξ·ydy

=

∫
Rd

f(x+ (Id×d −A11)y)g(x−A11y)e
−2πiξ·ydy.

For z = (x, ξ) and VC as in the statement, we have by (2.15)

V̂CF (z) = eπiCz·zF (z) = eiπ[(C11x+C12ξ)·x+(CT
12x+C22ξ)·ξ]F (z), F ∈ L2(R2d).

Furthermore, formula (5.31) applied to the symplectic matrix AFT2DL (L as in
the statement, see [31, Theorem 2.27], where the formula was obtained in this
particular case) tells that, up to a unitary constant,

WA(f, g)(z) = eπi(Cz)·z| det(Id×d −A11)|−1e2πi((Id×d−AT
11)

−1ξ)·x

× Vg̃f(A
−1
11 x, (Id×d −AT11)

−1ξ),

for f, g ∈ L2(Rd) and g̃ being as in the statement.
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As a consequence, we extend [31, Theorem 2.28] to all Wigner-decomposable
matrices.

Corollary 5.22. Under the notation of Theorem 5.25, the following statements
are equivalent:
(i) A = VCAFT2DL is shift-invertible,
(ii) A = AFT2DL is shift-invertible,
(iii) L is right-regular.

Proof. The equivalence (i) ⇔ (ii) is proved in Corollary 5.16. The equivalence
(ii) ⇔ (iii) follows from Theorem 5.21, which gives:

WA(f, g)(x, ξ) = eiπ[(C11x+C12ξ)·x+(CT
12x+C22ξ)·ξ]WAFT2DL

(f, g)(x, ξ),

so that:
|WA(f, g)(x, ξ)| = |WAFT2DL

(f, g)(x, ξ)|. (5.38)

This gives

|WA(π(w)f, g)| = |WAFT2DL
(π(w)f, g)|, ∀w ∈ R2d,

which proves the claim.

Corollary 5.23. Let A ∈ Sp(2d,R) be Wigner-decomposable, with matrix L
right-regular. Then, for any g ∈ S(Rd), 0 < p, q ≤ ∞,

f ∈Mp,q
vs (Rd) ⇐⇒ WA(f, g) ∈ Lp,qvs (R

2d).

For 1 ≤ p, q ≤ ∞, the window g can be chosen in M1
vs(R

d).

Proof. With the same notations as Theorem 5.21, write A = VCAFT2DL, with
L is right-invertible. By (5.38),

WA(f, g) ∈ Lp,qvs (R
2d) ⇐⇒ WAFT2DL

(f, g) ∈ Lp,qvs (R
2d).

By Corollary 5.22, AFT2DL is a covariant (see Subsection 5.3.2 below), shift-
invertible matrix. Then the claim follows from [31, Theorem 2.28].

5.3.2 Covariance

According to [31, Proposition 2.10], for a given symplectic matrix A, the meta-
plectic Wigner distribution WA satisfies

WA(π(z)f, π(z)g) = TzWA(f, g), (f, g ∈ S(Rd)), z ∈ Rd, (5.39)



5. Wigner analysis and metaplectic Wigner distributions 104

if and only if A has block decomposition

A =


A11 Id×d −A11 A13 A13

A21 −A21 Id×d −AT11 −AT11
0d×d 0d×d Id×d Id×d
−Id×d Id×d 0d×d 0d×d

 , (5.40)

with A13 = AT13 and A21 = AT21. We refer to such matrices as to covariant
matrices and to property (5.39) as to the covariance property of WA. It was
proved in [31] that a covariant matrix with block decomposition (5.40) is totally
Wigner-decomposable if and only if A21 = A13 = 0d×d. Moreover, if

BA :=

(
A13

1
2Id×d −A11

1
2Id×d −A21

)
, (5.41)

and W is the classical Wigner distribution, the following result holds:

Theorem 5.24. Let A ∈ Sp(2d,R) be a covariant matrix in the form (5.40).
Then,

WA(f, g) =W (f, g) ∗ ΣA, f, g ∈ S(Rd), (5.42)

where
ΣA = F−1(e−πiζ·BAζ) ∈ S ′(R2d), (5.43)

and BA defined as in (5.41).

Recalling our chirp function in (2.14), the equality in (5.43) can be rewritten
as

ΣA = F−1Φ−BA . (5.44)

If a time-frequency representation Q(f, g) satisfies

Q(f, g) =W (f, g) ∗ Σ, f, g ∈ S(Rd),

for some Σ ∈ S ′(R2d), we say that Q belongs to the Cohen class.

Theorem 5.24 sheds light on the importance of covariant matrices in the
context of time-frequency analysis, stating that A ∈ Sp(2d,R) is covariant if and
only if WA belongs to the Cohen class. The following result shows that covariant
matrices are exactly those that decompose as the product of symplectic matrices
V T
C , AFT2 and DL for some d× d symmetric matrix C and L ∈ GL(2d,Rd).

Theorem 5.25. Let A ∈ Sp(2d,R) be covariant with block decomposition (5.40).
Then,

A = V T
C AFT2DL, (5.45)

where

C =

(
A13 0d×d
0d×d −A21

)
and L =

(
Id×d Id×d −A11

Id×d −A11

)
. (5.46)
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As a consequence, up to a phase factor, for all f, g ∈ S(Rd),

WA(f, g)(x, ξ) =

∫
Rd

[F(Φ−A13) ∗ (f ⊗ ḡ)(L(·, η))](x)ΦA21(η)e
−2πiξ·ηdη. (5.47)

In particular, if A13 = 0d×d, then

WA(f, g)(x, ξ) =

∫
Rd

f(x+(Id×d−A11)η)g(x−A11η)ΦA21(η)e
−2πiξ·ηdη. (5.48)

Proof. Equality (5.45) is a straightforward computation. Then,

WA(f, g)(x, ξ) = Â(f ⊗ ḡ)(x, ξ) = V̂ T
C ÂFT2D̂L(f ⊗ ḡ)(x, ξ)

= F(Φ−C) ∗
(∫

Rd

(f ⊗ ḡ)(L(·, η))e−2πiη·(•)dη
)
(x, ξ)

=

∫
R2d

F(Φ−C)(x− y, ξ − ω)
(∫

Rd

(f ⊗ ḡ)(L(y, η))e−2πiη·ωdη
)
dydω

=

∫
R2d

(∫
R2d

e−iπ[A13u·u−A21v·v]e−2πi[(x−y)·u+(ξ−ω)·v]dudv
)

×
(∫

Rd

(f ⊗ ḡ)(L(y, η))e−2πiη·ωdη
)
dydω.

Observe that∫
R2d

eiπA21v·ve−2πiξ·ve2πiω·(v−η)dvdω = eπiA21η·ηe−2πiξ·η,

so that

WA(f, g)(x, ξ)

=

∫
Rd

(∫
R2d

e−iπA13u·ue2πiu·(x−y)(f ⊗ ḡ)(L(y, η))dudy
)
eπiA21η·ηe−2πiξ·ηdη.

Next, we apply∫
R2d

φ1(u)φ2(y)e
2πiu·xe−2πiu·ydudy =

∫
Rd

(∫
Rd

φ2(y)e
−2πiu·ydy

)
φ1(u)e

2πiu·xdu

=

∫
Rd

φ̂2(u)φ1(u)e
2πix·udu = F−1(φ1φ̂2)(x)

= (F−1(φ1) ∗ φ2)(x)

to the inner integral, to get (5.47).

Remark 5.26. Theorem 5.25 states that the class of covariant symplectic matrices
is invariant with respect to left-multiplication by matrices V T

C . Equivalently,
the class of metaplectic Wigner distributions associated to covariant matrices is
invariant with respect to convolutions by kernels in the form ΦC , C d × d real
symmetric matrix.
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Remark 5.27. Theorem 5.25 clarifies the roles that the blocks A13 and A21 have
in Wigner metaplectic operators associated to covariant matrices. The block
A13 appears in the convolution factor F(Φ−A13)(·) and acts on (f ⊗ ḡ) ◦ L(·, η),
whereas A21 produces the phase factor ΦA21 .

As we pointed out, covariant matrices play a key part in the theory of pseu-
dodifferential operators, as they belong to the Cohen class. In the following result
we prove an explicit integral formula for metaplectic pseudodifferential operators
associated to covariant matrices.

Proposition 5.28. Let A ∈ Sp(2d,R) be a covariant matrix with decomposition
in (5.45). Then, for every f ∈ S(Rd) and a ∈ S(R2d), up to a phase factor,

OpA(a)f(x) =

∫
R2d

(F(ΦC) ∗ a)(A11x+ (Id×d −A11)y, ξ)f(y)e
2πiξ·(x−y)dydξ,

(5.49)

where the chirp function ΦC is defined in (2.14).

Proof. We use the expression of WA and Theorem 5.25. Namely, for every f, g ∈
S(Rd), a ∈ S ′(R2d), up to a unitary factor,

⟨OpA(a)f, g⟩ = ⟨a,WA(g, f)⟩ = ⟨a, (V T
C AFT2DL)

∧(g ⊗ f̄)⟩

= ⟨TL−1F−1
2 V̂ −T

C a, g ⊗ f̄⟩,

where we used V̂ T
C

∗
= V̂ −T

C . Since | det(L)| = 1, we can write

⟨OpA(a)f, g⟩ =
∫
R2d

F−1
2 V̂ −T

C a(L−1(x, y))g(x)f(y)dxdy

=

∫
Rd

(∫
Rd

F−1
2 V̂ −T

C a(L−1(x, y))f(y)dy

)
g(x)dx

=

〈∫
Rd

F−1
2 V̂ −T

C a(L−1(x, y))f(y)dy, g

〉
,

where the integrals must be interpreted in the weak sense. Hence,

OpAf(x) =

∫
Rd

((F−1
2 V̂ −T

C )a)(L−1(x, y))f(y)dy. (5.50)

Using

L−1 =

(
A11 Id×d −A11

Id×d −Id×d

)
, (5.51)
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we compute

OpAf(x) =

∫
Rd

(∫
Rd

(V̂ −T
C a)(A11x+ (Id×d −A11)y, ξ)e

2πiξ·(x−y)dξ

)
f(y)dy

=

∫
R2d

(V̂ −T
C a)(A11x+ (Id×d −A11)y, ξ)e

2πiξ·(x−y)f(y)dydξ

=

∫
R2d

(F(ΦC) ∗ a)(A11x+ (Id×d −A11)y, ξ)e
2πiξ·(x−y)f(y)dydξ

where in the last step we used the expression of V̂ −T
C computed in (2.16).

Remark 5.29. As in Remark 5.27, we stress that (5.49) sheds light on the role of
the matrix V T

C , in the decomposition of a covariant matrix A, on the pseudodif-
ferential operator with quantization given by A. Basically, it produces the chirp
FΦC which acts on the symbol a via convolution.

To study the solution u = u(x, t) to the Schrödinger equation in (5.5) we need
to know information about his projection χt in (5.6).

Lemma 5.30. Consider a covariant matrix A ∈ Sp(2d,R) having block decom-
position (5.40) and related matrix BA in (5.41). For χt, t ∈ R, in (5.6), assume
that its inverse χ−1

t ∈ Sp(d,R), has the d× d block decomposition

χ−1
t =

(
Xt Yt
Wt Zt

)
.

Set BAt = χ−T
t BAχ

−1
t and let At ∈ Sp(2d,R) be the symplectic matrix associated

to BAt. Then, At is the covariant matrix having block decomposition

At =


At,11 Id×d −At,11 At,13 At,13
At,21 −At,21 Id×d −ATt,11 −ATt,11
0d×d 0d×d Id×d Id×d
−Id×d Id×d 0d×d 0d×d

 , (5.52)

with

At,11 = −W T
t Yt −XT

t [A13Yt −A11Zt] +W T
t [A

T
11Yt +A21Zt],

At,13 = XT
t Wt +XT

t [A13Xt −A11Wt]−W T
t [A

T
11Xt +A21Wt],

At,21 = −ZTt Yt − Y T
t [A13Yt −A11Zt] + ZTt [A

T
11Yt +A21Zt].

Proof. Plugging BAt = χ−T
t BAχ

−1
t into the block decomposition (5.41) for BA

and using the symplectic properties

W T
t Xt = XT

t Wt,

ZTt Yt = Y T
t Zt,

ZTt Xt − Y T
t Wt = Id×d
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of χ−1
t we get

BAt =

(
At,13

1
2Id×d −At,11

1
2Id×d −ATt,11 −At,21

)
, (5.53)

where At,11, At,13 and At,21 are defined as in the assertion. Since the covariance
of A is inherited by At, we have that these blocks are exactly the ones defining
the block decomposition of At as a covariant matrix.

We can now express the phase-space concentration of the solution u(x, t) to
the free particle equation in terms of metaplectic Wigner distribution.

Example 5.31 (The free particle). We shall prove the formula originally an-
nounced in Part I, see Example 4.9 in [30], formula (126) therein (see also formula
(108) in [31]).

In Example 4.9 in [30] we computed the τ -Wigner of the solution u(t, x) to
the Cauchy problem of the free particle equation:{

i∂tu+∆u = 0,

u(0, x) = u0(x),
(5.54)

with (t, x) ∈ R× Rd, d ≥ 1. Namely, we obtained that

Wτu(t, x, ξ) =WAτ,tu0(x− 4πtξ, ξ), (5.55)

where the representation WAτ,t is of Cohen class:

WAτ,tf =Wf ∗ Στ,t, (5.56)

with kernel
Στ,t(x, ξ) = Στ (x+ 4πtξ, ξ),

where, for τ ̸= 1/2, the τ -kernel is given by

Στ (x, ξ) =
2d

|2τ − 1|d
e2πiρ(τ)xξ,

where ρ(τ) = 2
2τ−1 . The matrix BAτ in (5.41) cab be computed as

BAτ =

(
0d×d (τ − 1

2)Id×d
(τ − 1

2)Id×d 0d×d

)
, (5.57)

and by (5.53) (see also Proposition 4.4 in [31]),

BAτ,t = χ−T
t BAτχ

−1
t =

(
0d×d (τ − 1

2)Id×d
(τ − 1

2)Id×d (4πt)(1− 2τ)Id×d

)
.

The representation (5.56) can be equivalently written as (cf. (5.44))

WAτ,tf =Wf ∗ F−1ΦAτ,t .
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Hence, the Aτ,t-Wigner representation computed in (5.48) with

At,13 = 0d×d, At,11 = (1− τ)Id×d, At,21 = −(4πt)(1− 2τ)Id×d

becomes

WAτ,t(f, g)(x, ξ) =

∫
Rd

f(x+ τη)g(x− (1− τ)η)e−2πi(ξ·η+2πt(1−2τ)η2)dη,

as desired.

5.4 Continuity on modulation spaces

For many quantizations, OpA is an integral superposition of time-frequency shifts.
Stated differently, these fundamental operators of time-frequency analysis repre-
sent the building blocks of pseudodifferential operators. Concretely, the Weyl
quantization of a pseudodifferential operator with symbol a ∈ S ′(R2d) is given
by

Opw(a) =

∫
R2d

â(η,−z)e−iπη·zπ(z, η)dzdη.

On the other hand, if f ∈ Mp,q
m for some m ∈ Mvs and 0 < p, q ≤ ∞, then

π(z, η)f ∈ Mp,q
m for all z, η ∈ Rd. This turns out to be one of the main reasons

why modulation spaces appear in the theory of pseudodifferential operators.

In this section, we use the results in the first part of this paper to inves-
tigate the continuity properties of metaplectic pseudodifferential operators on
modulation spaces. Since weighted modulation spaces measure the phase-space
concentration of signals, as well as their decay properties, an investigation of
their continuity on these spaces reveals how the time-frequency concentration of
signals changes when a pseudodifferential operator is applied.

The first result we present involves the explicit expression of the symbol
b := (a ⊗ 1) ◦ A−1, as in the equality (5.19) above, when A is totally Wigner-
decomposable or covariant.

Proposition 5.32. Consider A ∈ Sp(2d,R), a ∈ S ′(R2d) and b = σ ◦ A−1, with
σ = a⊗ 1 as defined in (5.16). For every x, ξ, u, v ∈ Rd we can state:
(i) if A is totally Wigner-decomposable with block decomposition as in Proposi-
tion 5.13, then

b(x, ξ, u, v) = a(AT33x−AT23v,−AT41ξ +AT11u); (5.58)

(ii) if A is covariant with block decomposition as in (5.40), then

b(x, ξ, u, v) = a(x−A13u+ (A11 − I)v, ξ +AT11u+A21v). (5.59)
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Proof. The proof follows by the straightforward calculation of

A−1(x, ξ, u, v)T . (5.60)

Namely, to get (5.58) one applies (5.60) with A−1 as in (5.29), whereas (5.59) is
obtained applying (5.60) with

A−1 =


Id×d 0d×d −A13 A11 − Id×d
Id×d 0d×d −A13 A11

0d×d Id×d AT11 A21

0d×d −Id×d Id×d −AT11 −A21

 .

For a ∈ S(R2d), define σ := a⊗ 1 as in (5.16), and

σ̃(r, y, ρ, η) = 1(r,ρ) ⊗ ā(y,−η).

For A ∈ Sp(2d,R) we set

b(x, ξ, u, v) = (σ ◦ A−1)(x, ξ, u, v), (5.61)

b̃(x, ξ, u, v) = (σ̃ ⊗A−1)(x, ξ, u, v), (5.62)

c(x, ξ, u, v) = b(x, ξ, u, v)b̃(x, ξ, u, v). (5.63)

The following result extends Lemma 5.1 in [30] to general symplectic matrices.

Lemma 5.33. Let A ∈ Sp(2d,R), a ∈ M∞,q
1⊗vs(R

2d), 0 < q ≤ ∞ and s ≥ 0. Let
b, b̃ and c be defined as in (5.61), (5.62) and (5.63), respectively. Then b, b̃, c are
in M∞,q

1⊗vs(R
4d).

Proof. The proof that b and b̃ are in M∞,q
1⊗vs(R

2d) is analogous to that of [30,
Lemma 5.1]. In fact, observe 1(y,η) is in M∞,q

1⊗vs(R
2d) for every 0 < q ≤ ∞ and

s ≥ 0. For c = bb̃, if q ≥ 1 we use the product properties for modulation spaces in
[29, Proposition 2.4.23], the quasi-Banach case 0 < q < 1 is contained in [68].

Recall the following boundedness result for Weyl quantization, see [65, The-
orem 14.5.6], [116] and [117, Theorem 3.1].
Proposition 5.34. Assume that 0 < p, q, r ≤ ∞ with r = min{1, p, q}, s ∈ R,
and σ ∈ M∞,r

1⊗v|s|(R
2d). Then, Opw(σ) : S(Rd) → S ′(Rd) extends to a bounded

operator on Mp,q
vs (Rd).

We generalize Proposition 5.34 to metaplectic pseudodifferential operators:

Theorem 5.35. Let A ∈ Sp(2d,R) be covariant and such that BA in (5.41) is
invertible. For 0 < p, q ≤ ∞, set r = min{1, p, q}. If a ∈ M∞,r

1⊗vs(R
2d), s ≥ 0,

then OpA(a) : S(Rd) → S ′(Rd) extends to a bounded operator on Mp,q
vs (Rd).
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Proof. By [31, Proposition 3.3], F−1ΦBA ∈ M r,∞
vs⊗1 for every s ≥ 0, 0 < r ≤ ∞.

Since WA belongs to the Cohen class, for every f, g ∈ S(Rd),

⟨OpA(a)f, g⟩ = ⟨a,WA(g, f)⟩ = ⟨a,W (g, f) ∗ F−1Φ−BA⟩
= ⟨â,F(W (g, f))e−iπζ·BAζ⟩ = ⟨âeiπζ·BAζ ,F(W (g, f))⟩
= ⟨a ∗ F−1ΦBA ,W (g, f)⟩ = ⟨Opw(a ∗ F−1ΦBA)f, g⟩.

By [4, Proposition 3.1]

∥a ∗ F−1ΦBA∥M∞,r
1⊗vs

≲ ∥a∥M∞,r
1⊗vs

∥F−1ΦBA∥Mr,∞
vs⊗1

.

The assertion follows from [117, Theorem 3.1].

We conclude this section by showing the validity of relations (5.18) on mod-
ulation spaces.

Theorem 5.36. Consider A ∈ Sp(2d,R), 0 < p ≤ ∞, a ∈ M∞,r
1⊗vs(R

2d), s ≥ 0,
r = min{1, p}, and b, b̃, c defined as in (5.61), (5.62) and (5.63), respectively.
For f, g ∈ Mp

vs(Rd), the following identities hold in Mp
vs(R2d):

WA(Opw,2d(a)f, g) = Opw,4d(b)WA(f, g), (5.64)

WA(f,Opw,2d(a)g) = Opw,4d(b̃)WA(f, g), (5.65)
WA(Opw,2d(a)f) = Opw,4d(c)WA(f). (5.66)

Proof. If f ∈ Mp
vs(Rd), then Opw(a)f ∈ Mp

vs(Rd) by [117, Theorem 3.1]. Hence,
[31, Theorem 2.15] says that the distributionsWA(f), WA(f, g), WA(Opw(a)f, g),
WA(f,Opw(a)g), WA(Opw(a)f) belong to Mp

vs(R2d). Similarly, by Lemma 5.33,
the symbols b, b̃ and c are in M∞,q

1⊗vs(R
4d) and the right-hand sides of formulas

(5.64), (5.65) and (5.66) are in Mp
vs(R2d). The equalities (5.64), (5.65) and (5.66)

are obtained by using the same pattern as in the proof of [30, Theorem 5.1],
namely replacing the symplectic matrix Aτ with a general A ∈ Sp(2d,R).

Remark 5.37. Observe that the previous result extends [30, Theorem 5.1] to the
quasi-Banach setting 0 < p < 1.

5.5 Algebras of generalized metaplectic operators

In this section we introduce (quasi-)algebras of FIOs which extend the ones in
[24, 25].

Given a Gabor frame G(g,Λ), the Gabor matrix of a linear continuous oper-
ator T from S(Rd) to S ′(Rd) is

⟨Tπ(z)g, π(u)g⟩, z, u ∈ R2d. (5.67)
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Our goal : controlling the Gabor matrix of a metaplectic operator T (or more
general one) related to the symplectic matrix χ ∈ Sp(d,R) by

h(µ− χλ), λ, µ ∈ Λ,

where h is a sequence leaving in a suitable (quasi-)algebra with respect to con-
volution.

The algebras already studied in [24, 25] where ℓ1(Λ) and ℓ∞vs (Λ), s > 2d.
Here we extend to the quasi-algebras ℓqvs(Λ), 0 < q < 1, s ≥ 0, enjoying the
convolution property:

ℓqvs(Λ) ∗ ℓ
q
vs(Λ) ↪→ ℓqvs(Λ), 0 < q < 1.

Recall that the Wiener amalgam spaces W (C,Lpvs)(R2d) is defined in (5.8)
and the class FIO(χ, q, vs) is defined in Definition 5.1.

The union

FIO(Sp(d,R), q, vs) =
⋃

χ∈Sp(d,R)

FIO(χ, q, vs)

is called the class of generalized metaplectic operators. Similarly to [25, Proposi-
tion 3.1] one can show:

Proposition 5.38. The definition of the class FIO(χ, q, vs) is independent of the
window function g ∈ S(Rd).
Remark 5.39. (i) For q = 1 the original definition of FIO(χ, vs) in [25] was
formulated in terms of a function H ∈ L1

vs(R
2d) instead of the more restrictive

condition H ∈W (C,L1
vs)(R

2d). Though, it turns out that the two definitions are
equivalent, see [25, Proposition 3.1].
(ii) Similarly to q = 1, one could consider the algebra of FIO(χ,∞, vs), s > 2d
such that

|⟨Tπ(z)g, π(w)g⟩| ≤ ⟨w − χz⟩−s, ∀w, z ∈ R2d. (5.68)

We shall not treat this case explicitly, but we remark that it enjoys similar prop-
erties to those we are going to establish for the cases above.

Theorem 5.40. Consider T a continuous linear operator S(Rd) → S ′(Rd), χ ∈
Sp(d,R), 0 < q ≤ 1, s ≥ 0. Let G(g,Λ) be a Gabor frame with g ∈ S(Rd). Then
the following properties are equivalent:

(i) there exists a function H ∈W (C,Lqvs)(R2d), such that the kernel of T with
respect to time-frequency shifts satisfies the decay condition (5.9);

(ii) there exists a sequence h ∈ ℓqvs(Λ), such that

|⟨Tπ(λ)g, π(µ)g⟩| ≤ h(µ− χ(λ)), ∀λ, µ ∈ Λ. (5.69)
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Proof. It is a straightforward modification of the proof [24, Theorem 3.1].

We list a series of issues which follow by easy modifications of the earlier
results contained in [24, 25], for a detailed proof we refer to [18].

Theorem 5.41. (i) Boundedness. Fix χ ∈ Sp(d,R), 0 < q ≤ 1, s ≥ 0, m ∈ Mvs

and let T be generalized metaplectic operator in FIO(χ, q, vs). Then T is bounded
from Mp

m(Rd) to Mp
m◦χ−1(Rd), q ≤ p ≤ ∞.

(ii) Algebra property. Let χi ∈ Sp(d,R), s ≥ 0 and Ti ∈ FIO(χi, q, vs), i = 1, 2.
Then T1T2 ∈ FIO(χ1χ2, q, vs).

For the invertibility property, the algebra cases corresponding to the spaces
of sequences ℓ1vs where treated in [63] and [66] (see also earlier references therein).
We extend those arguments to the quasi-Banach setting as follows.

Definition 5.42. Consider B = ℓqvs(Λ), 0 < q ≤ 1, s ≥ 0. Let A be a matrix on
Λ with entries aλ,µ, for λ, µ ∈ Λ, and let dA be the sequence with entries dA(µ)
defined by

dA(µ) = sup
λ∈Λ

|aλ,λ−µ|. (5.70)

We say that the matrix A belongs to CB if dA belongs to B. The (quasi-)norm in
CB is given by

∥A∥CB = ∥d∥B.

The value dA(µ) is the supremum of the entries in the µ− th diagonal of A,
thus the CB-norm describes a form of the off-diagonal decay of a matrix.

Theorem 5.43. Consider the (quasi-)algebra B above. Then the following are
equivalent:
(i) B is inverse-closed in B(ℓ2).
(ii) CB is inverse-closed in B(ℓ2).
(iii) The spectrum B̂ ≃ Td.

Proof. The algebra case is already proved in [66]. The quasi-algebra case follows
by a similar pattern, since, for 0 < q < 1, it is easy to check that ℓqvs(Λ) is a solid
convolution quasi-algebra of sequences.

As a consequence, we can state:

Theorem 5.44. The class of Weyl operators with symbols in M∞,q
1⊗vs(R

2d), 0 <
q ≤ 1, is inverse-closed in B(L2(Rd)). In other words, if σ ∈ M∞,q

1⊗vs(R
2d)

and Opw(σ) is invertible on L2(Rd), then (Opw(σ))
−1 = Opw(b) for some b ∈

M∞,q
1⊗vs(R

2d).

Proof. It follows the pattern of Theorem 5.5 in [66], using Theorem 5.43 in place
of the corresponding Theorem 3.5 in the above-mentioned paper.



5. Wigner analysis and metaplectic Wigner distributions 114

Theorem 5.45 (Invertibility in the class FIO(χ, q, vs)). Let T ∈ FIO(χ, q, vs)
be invertible on L2(Rd), then T−1 ∈ FIO(χ−1, q, vs).

Proof. The pattern is similar to Theorem 3.7 in [24]. We detail the differences.
We first show that the adjoint operator T ∗ belongs to the class FIO(χ−1, q, vs).
By Definition 5.1:

|⟨T ∗π(z)g, π(w)g⟩| = |⟨π(z)g, T (π(w)g)⟩| = |⟨T (π(w)g, π(z)g)⟩|
≤ H(z − χ(w)) = I(H ◦ χ)(w − χ−1z).

It is easy to check that I(H ◦χ) ∈W (C,Lqvs) for H ∈W (C,Lqvs), since vs◦χ−1 ≍
vs, and the claim follows. Hence, by Theorem 5.41 (ii), the operator P := T ∗T
is in FIO(Id, q, vs) and satisfies the estimate (5.69), that is:

|⟨Pπ(λ)g, π(µ)g⟩| ≤ h(λ− µ), ∀λ, µ ∈ Λ,

and a suitable sequence h ∈ ℓqvs(Λ). The characterization for pseudodifferential
operators in Theorem 3.2 [4] says that P is a Weyl operator P = Opw(σ) with a
symbol σ in M∞,q

1⊗vs(R
2d). Since T and therefore T ∗ are invertible on L2(Rd), P

is also invertible on L2(Rd). Now we apply Theorem 5.44 and conclude that the
inverse P−1 = Opw(τ) is a Weyl operator with symbol in τ ∈M∞,q

1⊗vs(R
2d). Hence

P−1 is in FIO(Id, q, vs). Eventually, using the algebra property of Theorem 5.41
(ii), we obtain that T−1 = P−1T ∗ is in FIO(χ−1, q, vs).

Theorem 5.46. Fix 0 < q ≤ 1, χ ∈ Sp(d,R). A linear continuous operator
T : S(Rd) → S ′(Rd) is in FIO(χ, q, vs) if and only if there exist symbols σ1, σ2 ∈
M∞,q

1⊗vs(R
2d), such that

T = Opw(σ1)χ̂ and T = χ̂Opw(σ2). (5.71)

The symbols σ1 and σ2 are related by

σ2 = σ1 ◦ χ. (5.72)

Proof. It follows the same pattern of the proof of [25, Theorem 3.8]. The main
tool is the characterization in Theorem 3.2 of [4] which extends Theorem 4.6 in
[66] to the case 0 < q < 1. We recall the main steps for the benefit of the reader.

Assume T ∈ FIO(χ, q, vs) and fix g ∈ S(Rd). We first prove the factorization
T = σw1 χ̂. For every χ ∈ Sp(d,R), the kernel of χ̂ with respect to time-frequency
shifts can be written as

|⟨χ̂π(z)g, π(w)g⟩| = |Vg
(
χ̂g
)(
w − χz

)
|.

Since both g ∈ S(Rd) and χ̂g ∈ S(Rd), we have Vg(χ̂g) ∈ S(R2d) (see e.g., [29]).
Consequently, we have found a function H = |Vg

(
χ̂g
)
| ∈ S(R2d) ⊂ W (C,Lqvs)

such that
|⟨χ̂π(z)g, π(w)g⟩| ≤ H(w − χz) w, z ∈ R2d. (5.73)
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Since χ̂−1 = χ̂−1 is in FIO(χ−1, q, vs) by Theorem 5.45, the algebra property of
Theorem 5.41 (ii) implies that T χ̂−1 ∈ FIO(Id, q, vs). Now Theorem 3.2 in [4]
implies the existence of a symbol σ1 ∈ M∞,q

1⊗vs(R
2d), such that T χ̂−1 = Opw(σ1),

as claimed. The rest goes exactly as in [25, Theorem 3.8].

5.6 Applications to Schrödinger Equations

The theory developed in the previous sections finds a natural application in quan-
tum mechanics. In particular, we focus on the Cauchy problems for Schrödinger
equations announced in the introduction, cf. (5.3), with Hamiltonian of the form
(5.4):

H = Opw(a) +Opw(σ),

where Opw(a) is the Weyl quantization of a real homogeneous quadratic poly-
nomial on R2d and Opw(σ) is a pseudodifferential operator with a symbol σ ∈
M∞,q

1⊗vs(R
2d).

Proposition 5.34 (see also Theorem 5.41 (i) with χ = Id or [117, Theorem
3.1]) gives

Corollary 5.47. If σ ∈M∞,q
1⊗vs(R

2d), s ≥ 0, 0 < q ≤ 1, then the operator Opw(σ)
is bounded on all modulation spaces Mp

vs(Rd), for q ≤ p ≤ ∞. In particular,
Opw(σ) is bounded on L2(Rd).

This implies that the operator H in (5.4) is a bounded perturbation of the
generator H0 = Opw(a) of a unitary group (cf. [108]), and H is the generator of
a well-defined (semi-)group.

Theorem 5.48. Let H be the Hamiltonian in (5.4) with homogeneous polynomial
a and σ ∈ M∞,q

1⊗vs(R
2d), 0 < q ≤ 1, s ≥ 0. Let U(t) = eitH be the corresponding

propagator. Then U(t) is a generalized metaplectic operator for each t ∈ R.
Namely, the solution of the homogenous problem iut + Opw(a)u = 0 is given by
a metaplectic operator χ̂t in (5.6), and eitH is of the from

eitH = χ̂tOpw(bt)

for some symbol bt ∈M∞,q
1⊗vs(R

2d).

Proof. The proof of the above result was shown for q = 1 in [25] and it easily
extends to any 0 < q < 1. In fact, the main ingredients to use are the invariance
of M∞,q

1⊗vs(R
2d) under metaplectic operators, plus the properties of that symbol

class: the boundedness on modulation spaces and the algebra property of the
corresponding Weyl operators.
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Corollary 5.49. Assume σ ∈ M∞,q
1⊗vs(R

2d), 0 < q ≤ 1, s ≥ 0, m ∈ Mvs. If the
initial condition u0 is in Mp

m(Rd), with q ≤ p ≤ ∞, then u(t, ·) ∈ Mp
m◦χ−1(Rd)

for every t ∈ R. In particular, if m ◦ χ−1 ≍ m for every χ ∈ Sp(d,R) (as for vs)
the time evolution leaves Mp

m(Rd) invariant: the Schrödinger evolution preserves
the phase space concentration of the initial condition.

Proof of Corollary 5.49. It follows from Theorem 5.48 and the representation in
Theorem 5.46 that eitH ∈ FIO(χ, q, vs), so that the claim is direct consequence
of Theorem 5.41 (i).

We can now study the Wigner kernel of eitH , namely k(z, w), w, z ∈ R2d,
such that

W (eitHu0)(z) =

∫
k(t, z, w)Wu0(w) dw,

and possible generalizations to A-Wigner transforms.

For sake of clarity, we start with a symbol σ in the Hörmander class S0
0,0(R2d),

that is σ ∈ C∞(R2d) such that for every α ∈ Nd there exists a Cα > 0 for which

|∂ασ(z)| ≤ Cα, ∀z ∈ R2d.

We recall that S0
0,0(R2d) can be viewed as the intersection of modulation spaces

[4]
S0
0,0(R2d) =

⋂
s≥0

M∞,q
1⊗vs(R

2d), 0 < q ≤ ∞.

Let A be a covariant, shift-invertible matrix. Actually, when working in the L2

setting, the assumption of shift-invertibility will be not essential in the sequel.
We may argue in terms of the Cohen class QΣ in Theorem 5.24:

WA(f) =W (f) ∗ Σ = QΣ(f)

where Σ is related to A by (5.43), (5.41).

Let us define Σt(z) = Σ(χt(z)) and denote by At the corresponding covariant
matrix, such that WAt = QΣt , see Proposition 4.4 in [31] for details. Note that
in the case of the standard Wigner transform we have W =WA =WAt for every
t, since Σ = δ.

The following proposition is the Wigner counterpart for eitH of the almost-
diagonalization in Definition 5.1.
Proposition 5.50. Under the assumptions above, for z ∈ R2d, t ∈ R,

WA(e
itHu0)(z) =

∫
R2d

kA(t, z, w)(WAtu0)(w) dw, (5.74)

where for every N ≥ 0,

kA(t, z, w)⟨w − χ−1
t (z)⟩2N

is the kernel of an operator bounded on L2(R2d).



5. Wigner analysis and metaplectic Wigner distributions 117

We need the following preliminary result, cf. Proposition 4.1, formula (96) in
[31]. To benefit the reader, we report here the proof.

Lemma 5.51. Under the assumptions above,

WA(χ̂tf)(z) =WAtf(χ
−1
t z).

Proof. From [29, Proposition 1.3.7] we have

W (χ̂tf)(z) =Wf(χ−1
t z), f ∈ S(Rd),

so that for any Σ ∈ S(R2d), f ∈ S(Rd),

QΣ(χ̂tf)(z) = [Σ ∗W (χ̂tf)](z)

=

∫
R2d

W (χ̂tf)(u)Σ(z − u) du

=

∫
R2d

Wf(χ−1
t u)Σ(χt(χ

−1
t z − χ−1

t u)) du

=

∫
R2d

Wf(ζ)Σ(χt(χ
−1
t z − ζ)) dζ

= (Wf ∗ Σt)(χ−1
t z) = QΣtf(χ

−1
t z).

For Σ ∈ S ′(R2d) we may use standard approximation arguments. Since in our
case QΣ(χ̂tf) = WA(χ̂tf) and QΣtf(χ

−1
t z) = WAtf(χ

−1
t z), this concludes the

proof.

Proof of Proposition 5.50. From Theorem 5.48 we have

WA(e
itHu0) =WA(χ̂tOpw(bt)u0).

In view of Lemma 5.51

WA(e
itHu0)(z) =WAt(Opw(bt)u0)(χ

−1
t z).

We now apply formula (5.66) to obtain

WAt(Opw(bt)u0) = Opw(ct)(WAtu0)

where the symbol ct ∈ S0
0,0(R4d) is given by (5.63). Summing up

WA(e
itHu0)(z) = Opw(ct)(WAtu0)(χ

−1
t z). (5.75)

Writing h(t, z, w) for the kernel of Opw(c),

WA(e
itHu0)(z) =

∫
h(t, χ−1(z), w)(WAtu0)(w) dw,
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that is
kA(t, z, w) = h(t, χ−1z, w).

Now, observe that for every N ≥ 0,

hN (t, z, w) = ⟨z − w⟩2Nh(z, w)

is the kernel of bounded operator on L2(Rd), see [30, Lemma 5.3]. Hence the
operator with kernel

kA(t, z, w)⟨χ−1(z)− w⟩2N = hN (t, χ
−1(z), w)

is bounded as well.

Definition 5.52. Fix A ∈ Sp(2d,R) covariant and shift-invertible. For f ∈
L2(Rd) we define WFA(f), the metaplectic Wigner wave front set of f , as fol-
lows. A point z0 = (x0, ξ0) ̸= 0 is not in WFA(f) if there exists a conic open
neighbourhood Γz0 ⊂ R2d of z0 such that for every integer N ≥ 0∫

Γz0

⟨z⟩2N |WAf(z)|2dz <∞.

In the case of the standard Wigner transform WA = W , we write for short
WFA(f) = WF(f). Note that WFA(f) is a closed cone in R2d \ {0}. We
have WFA(f) = ∅ if and only if f ∈ S(Rd), cf. Proposition 4.7 in [31] and the
arguments in the sequel.

First, we shall give the following extension of Theorem 1.6 in [30] concerning
the τ -Wigner case.

Theorem 5.53. Consider a ∈ S0
0,0(R2d). Then, for every f ∈ L2(Rd),

WFA(Opw(a)f) ⊂ WFA(f).

Proof. Arguing exactly as in the proof of Theorem 1.6 in [30] and replacing τ -
Wigner with metaplectic Wigner distributions, we apply the identity

WA(Opw(a)f) = Opw(c)WAf

with the symbol c as in (5.63) and using (5.66) in Theorem 5.36 we obtain the
inclusion.

Theorem 5.54. For u0 ∈ L2(Rd) we have

WFA(e
itHu0) = χt(WFAt(u0)).

The proof follows the lines of the corresponding one in Theorem 1.6 [30],
basing on the preceding Proposition 5.50, in particular on the identity in (5.75),
see the sketch below. For the Wigner distribution the previous result reads as
follows:
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Corollary 5.55. For u0 ∈ L2(Rd),

WF(eitHu0) = χt(WF(u0)).

Proof of Theorem 5.54. Fix t ∈ R, z0 ∈ R2d \{0}, Γz0 small conic neighbourhood
of z0, ζ0 = χt(z0), Λζ0 = χt(Γz0) corresponding conic neighbourhood of ζ0.
Assume ζ0 /∈ WFAt(u0), that is, for every N ≥ 0,∫

Λζ0

⟨ζ⟩2N |WAtu0(ζ)|2dζ <∞.

We want to prove that z0 /∈ WFA(e
itHu0), that is, for every N ≥ 0,

I :=

∫
Γz0

⟨z⟩2N |WA(e
itHu0)(z)|2dz <∞.

By applying the basic identity (5.75) in the proof of Proposition 5.50 we obtain

I =

∫
Γz0

⟨z⟩2N |[Opw(ct)WAtu0](χ
−1
t z)|2dz

and after the change of variables z = χtζ, observing that ⟨χtζ⟩ ≍ ⟨ζ⟩:

I ≍
∫
Λζ0

⟨ζ⟩2N |Opw(ct)WAtu0|2 dζ.

We are therefore reduced to the pseudodifferential case, cf. the preceding The-
orem 5.53. Arguing again as in the proof of Theorem 1.6 in [30] and using the
assumption, we obtain WFA(e

itHu0) ⊂ χt(WFAt(u0)). Similarly, one can prove
the opposite inclusion.

5.7 Comparison with the Hörmander wave front set

Corollary 5.55 is similar to other results in the literature, concerning propagation
of micro-singularities for the Schrödinger equation, cf. [14, 24, 25, 27, 28, 29, 33,
69, 73, 74, 89, 93, 94, 109, 103, 102, 121, 124]. They mainly concern the global
wave front set WFG(f) of Hörmander [72]. It is interesting to compare the
different microlocal contents of WFA(f) and WFG(f). We recall the definition
of WFG(f), following the notation and the equivalent time-frequency setting in
[29].

Definition 5.56. Consider f ∈ L2(Rd) and z0 ∈ R2d \ {0}. We say that z0 /∈
WFG(f) if there exists a conic neighbourhood Γz0 ⊂ R2d of z0 such that for every
integer N ≥ 0 ∫

Γz0

⟨z⟩2N |Vgf(z)|2 dz <∞, (5.76)

where we fix g ∈ S(Rd) \ {0} in the definition of the STFT Vgf .
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As before, we assume A ∈ Sp(2d,R) covariant and shift-invertible, then:

Theorem 5.57. For all f ∈ L2(Rd) we have

WFG(f) ⊂ WFA(f). (5.77)

The proof requires the following preliminary issue.

Lemma 5.58. Fix g ∈ S(Rd) \ {0} and consider A ∈ Sp(2d,R) covariant and
shift-invertible. There exists ΨA ∈ S(R2d), depending on A and g such that for
every f ∈ L2(Rd)

|Vgf |2 = ΨA ∗WAf. (5.78)

Proof. We start with the well-known identity

|Vgf |2 = IWg ∗Wf, (5.79)

where IWg(z) = Wg(−z), see for example (156) in [30]. If A is covariant, we
have from (5.42)

WAf = σA ∗Wf (5.80)

with σA given by (5.43) σA(z) = F−1(e−πiζ·BAζ). If we define

τA(z) = F−1(eπiζ·BAζ)

we then have, for all h ∈ L2(R2d),

τA ∗ σA ∗ h = h,

hence from (5.79)

|Vgf |2 = IWg ∗ τA ∗ σA ∗Wf = ΨA ∗Wf,

with ΨA = IWg ∗ τA.

To prove that ΨA ∈ S(R2d), we observe IWg ∈ S(R2d), in view of the
regularity property of the Wigner distribution, and τ∗ : S(R2d) → S(R2d), since
for every h ∈ S(R2d) we have

eπiζ·BAζh(ζ) ∈ S(R2d).

This concludes the proof.

Proof of Theorem 5.57. The pattern is similar to the the proof of Theorem 5.5
in [30], after replacing Lemma 5.4 in [30] with our present Lemma 5.58.

Corollary 5.59. Let A ∈ Sp(2d,R) as before and f ∈ L2(Rd). We have f ∈
S(Rd) if and only if WFA(f) = ∅.
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Proof. If f ∈ S(Rd), then WA(f) ∈ S(R2d) in view of Proposition 2.12 (ii). The
estimates in Definition 5.52 are obviously satisfied for any z0 ∈ R2d \ {0}, hence
WFA(f) = ∅. In the opposite direction, assume WFA(f) = ∅. Theorem 5.57
yields WFG(f) = ∅ and this implies f ∈ S(R2d), cf. [29]. Alternatively, one can
follow the pattern of Theorem 5.4 in [30], using again Lemma 5.58.

Comparing now WFG(f) and WFA(f), we first observe that the definition of
WFG(f) can be extended to f ∈ S ′(Rd) , cf. [29], whereas Definition 5.52 refers
to f ∈ L2(Rd). With some more technicalities the definition of WFA(f) can
be extended to f ∈ S ′(Rd) as well. The substantial difference between WFG(f)
and WFA(f) is that the inclusion in (5.77) is strict in general, since WFA(f)
includes a ghost part depending on A, as already observed in [30].

To better understand this issue, we will use the Shubin class of symbols Hm,
m ∈ R, defined by the estimates

|∂αa(z)| ≤ cα⟨z⟩m−α, z = (x, ξ) ∈ R2d. (5.81)

Further, assume a ∈ Hm
cl , that is a(z) has the homogeneous principal part am(z):

am(λz) = λmam(z), λ > 0,

such that, cutting off am(z) for small |z|, we have for some ϵ > 0, a−am ∈ Hm−ϵ.

Define the characteristic manifold

Σ = {z ∈ R2d, am(z) = 0, z ̸= 0}.

Theorem 5.60. Assume that a ∈ Hm
cl is globally elliptic, i.e., Σ = ∅. Then for

all f ∈ L2(Rd),
WFA(Opw(a)f) = WFA(f).

Proof. The inclusion WFA(Opw(a)f) ⊂ WFA(f) follows from the easy variant
of Theorem 5.53 for the class Hm. To obtain the opposite inclusion under the
assumption of global ellipticity, we construct as in [114] a parametrix of Opw(a).
Namely, there exists a b ∈ H−m

cl such that

Opw(b)Opw(a) = I +Opw(r),

where I is the identity operator and the symbol r is in S(R2d), hence Opw(r) :
S ′(Rd) → S(Rd) is a regularizing operator. Therefore,

f = Opw(b)Opw(a)f −Opw(r)f, ∀f ∈ L2(Rd),

with Opw(r)f ∈ S(Rd). Invoking Theorem 5.53

WFA(f) = WFA(Opw(b)Opw(a)f) ⊂ WFA(Opw(a)f).

This completes the proof.
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Theorem 5.60 shows a similarity of WFA(f) with WFG(f). Though, in the
non-elliptic case the classical microlocal inclusion

WFG(u) ⊂ WFG(Opw(a)u) ∪ Σ, u ∈ S ′(Rd),

fails for WFA(u). Consider for simplicity the case v = Opw(a)u ∈ S(Rd), so that
for the solutions of Opw(a)u = v we have

WFG(u) ⊂ Σ (5.82)

and test the same inclusion for WFA(u), u ∈ L2(Rd), as follows. For simplicity,
we will consider only the Wigner wave front WF(u) and consider in dimension
d = 1 the operator

Pu = xD2xu = Opw(a)u

where the homogeneous principal part of a ∈ H4
cl is given by

a4(x, ξ) = x2ξ2

so that Σ is the union of the x and ξ axes

Σ = {(x, ξ) ∈ R2, x = 0 or ξ = 0, (x, ξ) ̸= (0, 0)}. (5.83)

We now address to the example at the end of [30], where f, g ∈ L2(Rd) are defined
such that

Df = iδ − if ′ (5.84)
xg = −i− ih, (5.85)

with f ′ ∈ S(R), h ∈ S(R) and

WFf = WFGf = {(x, ξ) ∈ R2, x = 0, ξ ̸= 0},

WFg = WFGg = {(x, ξ) ∈ R2, ξ = 0, x ̸= 0}.

By using (5.84), (5.85), a simple calculation shows that Pf ∈ S(R), Pg ∈ S(R)
and therefore for u = f + g we have Pu ∈ S(R). Then for Σ as in (5.83) we
obtain WFGu = Σ as expected from (5.82). Instead, the non-linearity of the
Wigner transform (see [30]) gives

WFu = R2 \ {0}.

To sum up, the appearance of ghost frequencies in the Wigner wave front is
natural in Quantum Mechanics, but it contradicts Hörmander’s result for micro-
ellipticity.



Chapter 6

Symplectic analysis of
time-frequency spaces

The main results are exposed in Section 6.1 whereas Section 6.2 exhibits the most
relevant examples. In the Appendix A we extend some of the results in [53] to
general invertible matrices and to the quasi-Banach setting. In the Appendix B
we compute the matrices associated to tensor products of metaplectic operators.

This chapter is part of an article published in Journal de Mathématiques Pures
et Appliquées in 2023, cf. [19].

6.1 Shift-invertibility and modulation spaces

In this section we present the features of metaplectic operators that guarantee
the representations of modulation and Wiener amalgam spaces by metaplectic
operators.

Corollary 6.1. Let Â ∈ Mp(2d,R). Consider g1 ∈ S ′(Rd), g2, g3 ∈ S(Rd) with
⟨g1, g2⟩ ≠ 0. For any f ∈ S ′(Rd),

Vg3f(w) =
1

⟨g2, g1⟩
⟨WA(f, g1),WA(π(w)g3, g2)⟩, w ∈ R2d,

where ⟨·, ·⟩ is the antilinear duality paring between S ′(R2d) and S(R2d).

Proof. It is a straightforward consequence of the definition and main properties
of metaplectic operators. Since g2, g3 ∈ S(Rd), WA(g2, g3) ∈ S(R2d), whereas
WA(f, g1) ∈ S ′(R2d) since f, g1 ∈ S ′(Rd). Consequently,

⟨WA(f, g1),WA(π(w)g3, g2)⟩ = ⟨Â(f ⊗ g1), Â(π(w)g3 ⊗ g2))

= ⟨f ⊗ g1, π(w)g3 ⊗ g2⟩
= ⟨f, π(w)g3⟩⟨g1, g2⟩.

123
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This concludes the proof.

If Â ∈ Mp(2d,R), with A ∈ Sp(2d,R) having block decomposition (2.20)
then it was shown in [31] that

|WA(π(w)f, g)| = |π(EAw,FAw)WA(f, g)|, w ∈ R2d, ∀ f, g ∈ L2(Rd),

where the matrices EA and FA are given as in (2.21).

We need the following representation formula.

Lemma 6.2. Let Â ∈ Mp(2d,R), γ, g ∈ S(Rd) be such that ⟨γ, g⟩ ≠ 0 and
f ∈ S ′(Rd). Then,

WA(f, g) =
1

⟨γ, g⟩

∫
R2d

Vgf(w)WA(π(w)γ, g)dw

with equality in S ′(R2d), the integral being intended in the weak sense.

Proof. Take any φ ∈ S(R2d) and use the definition of vector-valued integral in a
weak sense which entails

⟨WA(f, g)(z), φ⟩ = ⟨f ⊗ ḡ, Â−1φ⟩

= ⟨ 1

⟨γ, g⟩

∫
R2d

Vgf(w)[(π(w)γ)⊗ ḡ]dw, Â−1φ⟩

=
1

⟨γ, g⟩

∫
R2d

Vgf(w)⟨[(π(w)γ)⊗ ḡ], Â−1φ⟩dw

=
1

⟨γ, g⟩

∫
R2d

Vgf(w)⟨Â(π(w)γ ⊗ ḡ), φ⟩dw

=
1

⟨γ, g⟩

∫
R2d

Vgf(w)⟨WA(π(w)γ, g)(z), φ⟩dw.

Therefore,

WA(f, g) =
1

⟨γ, g⟩

∫
R2d

Vgf(w)WA(π(w)γ, g)dw

with equality in S ′(R2d).

Theorem 6.3. Let WA be shift-invertible with EA upper-triangular. Fix a non-
zero window function g ∈ S(Rd). For m ∈ Mv(R2d) with m ≍ m ◦ E−1

A , 1 ≤
p, q ≤ ∞,

f ∈Mp,q
m (Rd) ⇔ WA(f, g) ∈ Lp,qm (R2d),

with equivalence of norms.
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Proof. ⇒. Assume f ∈ Mp,q
m (Rd). For any γ ∈ S(Rd) such that ⟨γ, g⟩ ̸= 0, the

inversion formula for the STFT (cf. Theorem 2.3.7 in [29]) reads

f =
1

⟨γ, g⟩

∫
R2d

Vgf(w)π(w)γdw.

Multiplying both sides of the above equality by ḡ(z2), for any z = (z1, z2) ∈ R2d,
we can write

f(z1)ḡ(z2) = (f ⊗ ḡ)(z) =
1

⟨γ, g⟩

∫
R2d

Vgf(w)[(π(w)γ)⊗ ḡ](z)dw.

Applying Â to (f ⊗ ḡ) we obtain Â(f ⊗ ḡ) =WA(f, g) ∈ S ′(R2d). Using Lemma
6.2, we get:

WA(f, g) =
1

⟨γ, g⟩

∫
R2d

Vgf(w)WA(π(w)γ, g)dw,

with equality holding in S ′(R2d).

Now, if f ∈ Mp,q
m (Rd), the integral on the right-hand side is absolutely con-

vergent as we shall see presently. For any z ∈ R2d,

|WA(f, g)(z)| ≤
1

|⟨γ, g⟩|

∫
R2d

|Vgf(w)||WA(γ, g)(z − EAw)|dw

=
| det(EA)|−1

|⟨γ, g⟩|

∫
R2d

|Vgf(E−1
A u)||WA(γ, g)(z − u)|du

=
| det(EA)|−1

|⟨γ, g⟩|
|Vgf ◦ E−1

A | ∗ |WA(γ, g)|(z). (6.1)

Since γ, g ∈ S(Rd), WA(γ, g) ∈ S(R2d) ⊂ L1
v(R2d). Moreover, by Theorem

6.14 and Theorem 6.15 both applied with S = E−1
A , we have that Vgf ◦ E−1

A ∈
Lp,qm (R2d). Young’s convolution inequality applied to (6.1) entails

∥WA(f, g)∥Lp,q
m

≲ ∥Vgf∥Lp,q
m

∥WA(γ, g)∥L1
v
<∞.

⇐ . Assume that WA(f, g) ∈ Lp,qm (R2d). Using Corollary 6.1 with g3 = g1 = g,
g2 = γ, for any w ∈ R2d,

|Vgf(w)| ≲
1

|⟨γ, g⟩|
|⟨WA(f, g),WA(π(w)g, γ)⟩|

≲
∫
R2d

|WA(f, g)(u)||WA(π(w)g, γ)(u)|du

≲
∫
R2d

|WA(f, g)(u)||WA(g, γ)(u− EAw)|du

≲
∫
R2d

|WA(f, g)(u)||[WA(g, γ)]
∗(EAw − u)|du

= |WA(f, g)| ∗ |[WA(g, γ)]
∗|(EAw). (6.2)
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Applying Theorem 6.14 and Theorem 6.15 with S = EA, we obtain

∥f∥Mp,q
m

≍ ∥Vgf∥Lp,q
m

≲ ∥|WA(f, g)| ∗ |[WA(g, γ)]
∗|∥Lp,q

m

≲ ∥WA(f, g)∥Lp,q
m

∥WA(g, γ)∥L1
v
<∞,

since we considered an even submultiplicative weight v.

Remark 6.4. Theorem 6.3 is sharp. Namely, if either EA is not shift-invertible
or EA is not upper triangular, WA may not characterize modulation spaces. We
provide two counterexamples.
(a) If EA is not shift-invertible, thenWA may not characterize modulation spaces.
LetW0 be the (cross-)Ryhaczek distribution defined in (2.6). Obviously, for every
f ∈ Lp(Rd) and g ∈ S(Rd), we obtain ∥W0(f, g)∥Lp,q = ∥f∥p ∥ĝ∥q. This means
that the Lp,q-norm of W0 is not equivalent to the modulation norm in general.
Observe that the corresponding matrix EA0 is not shift-invertible. In fact,

EA0 =

(
Id×d 0d×d
0d×d 0d×d

)
is not invertible. Similarly, the (cross-)conjugate-Ryhaczek distribution W1 in
(2.7) is not shift-invertible and does not characterize modulation spaces [30, Re-
mark 3.7].
(b) If EA is not upper-triangular, then WA may not characterize modulation
spaces. Let C ∈ R2d×2d \ {02d×2d} be any symmetric matrix. Then, up to a sign,

Vg(V̂Cf) = ÂST (V̂Cf ⊗ ḡ) = ÂSTVC̃(f ⊗ ḡ),

where

VC̃ =


Id×d 0d×d 0d×d 0d×d
0d×d Id×d 0d×d 0d×d
C 0d×d Id×d 0d×d

0d×d 0d×d 0d×d Id×d

 ,

see formula (6.8) in the Appendix B. Let A := ASTVC̃ It is easy to verify that

EA =

(
Id×d 0d×d
C Id×d

)
,

which is always invertible and lower-triangular. The metaplectic operator V̂C is
unbounded on Mp,q(Rd), 1 ≤ p, q ≤ ∞, p ̸= q, cf. [26, Proposition 7.1]. Namely,
if f ∈ Mp,q(Rd), V̂Cf /∈ Mp,q(Rd) for p ̸= q and, consequently, Â(f ⊗ ḡ) /∈
Lp,q(R2d). Observe that a similar result with different methods is obtained in
[53, Theorem 3.3].

As byproduct of the previous theorem we obtain new properties for shift-
invertible representations WA, see ahead.
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Corollary 6.5. Let Â ∈ Mp(2d,R) with WA shift-invertible. Then, for all f, g ∈
L2(Rd), we have WA(f, g) ∈ L∞(R2d) and it is everywhere defined.

Proof. If f ∈ L2(Rd) and g, γ ∈ S(Rd), the inequality (6.1) holds pointwise (take
p = q = 2, m = 1). Also, if g ∈ L2(Rd) the right hand-side of (6.1) is also well
defined for all z ∈ R2d, since WA maps L2(Rd)×L2(Rd) to L2(R2d). By Young’s
inequality,

∥WA(f, g)∥L∞(R2d) ≲
∥∥Vgf ◦ E−1

A
∥∥
L2(R2d)

∥WA(γ, g)∥L2(R2d)

= ∥f∥2 ∥g∥
2
2 ∥γ∥2 <∞.

Hence, WA(f, g) ∈ L∞(R2d) and WA(f, g)(z) is well defined for all z ∈ R2d.

If we limit to the case p = q, then TS : Lp(R2d) → Lp(R2d) is bounded for all
S ∈ GL(2d,R), without any further assumption on its triangularity. In this case,
arguing as above, but using Theorem 6.13, we obtain the following result.

Theorem 6.6. Let WA be shift-invertible and m ∈ Mv(R2d) with m ≍ m ◦E−1
A .

For 1 ≤ p ≤ ∞ and g ∈ S(Rd) \ {0}, we have

∥f∥Mp
m
≍ ∥WA(f, g)∥Lp

m
.

Corollary 6.7. Under the assumptions of Theorem 6.3, assume that (v ⊗ v) ◦
A−1 ≍ v ⊗ v, then the window class can be enlarged to M1

v (Rd).

Proof. By Theorem 6.6, if γ ∈ S(Rd) and g ∈ M1
v (Rd), WA(g, γ) ∈ L1

v(R2d), so
that

|WA(f, g)(z)| ≲
1

|⟨γ, g⟩|
|det(EA)|−1|Vgf ◦ E−1

A | ∗ |WA(γ, g)|(z) (6.3)

is well defined by (6.1) provided that WA(γ, g) ∈ L1
v(R2d).

By [31, Proposition 2.4],

WA(γ, g) =WÃ(ḡ, γ̄) = ÂD̂L(ḡ ⊗ γ),

with Ã = ADL. Now, ḡ ⊗ γ ∈ M1
v (Rd)⊗ S(Rd) ⊂ M1

v⊗v(R2d) and D̂L(ḡ ⊗ γ) =

γ ⊗ ḡ, so that D̂L :M1
v⊗v(R2d) →M1

v⊗v(R2d). Indeed,∥∥∥D̂L(ḡ ⊗ γ)
∥∥∥
M1

v⊗v

≍ ∥γ∥M1
v
∥g∥M1

v
.

On the other hand, Â : M1
v⊗v(R2d) → M1

v⊗v(R2d) by [53, Theorem 3.2] and [53,
Corollary 4.5]. Moreover, M1

v⊗v(R2d) ↪→M1
v⊗1(R2d) ↪→ L1

v(R2d), since

v(z) ≤ v(z)v(w)
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for all z, w ∈ R2d. Hence,

∥WA(γ, g)∥L1
v
=
∥∥WÃ(ḡ, γ̄)

∥∥
L1
v
≤
∥∥WÃ(ḡ, γ̄)

∥∥
M1

v⊗1
≤
∥∥WÃ(ḡ, γ̄)

∥∥
M1

v⊗v

≲A

∥∥∥D̂Lḡ ⊗ γ
∥∥∥
M1

v⊗v

≍ ∥ḡ∥M1
v
∥γ∥M1

v
≍A,γ ∥g∥M1

v
<∞.

Going back to (6.3), we obtain

∥WA(f, g)∥Lp,q
m

≲ ∥Vgf∥Lp,q
m

∥WA(γ, g)∥L1
v
≍A,γ,g ∥f∥Mp,q

m
.

Whence, if g ∈ M1
v (Rd) and f ∈ Mp,q

m (Rd), the metaplectic Wigner WA(f, g) is
in Lp,qm (R2d), with ∥WA(f, g)∥Lp,q

m
≲ ∥f∥Mp,q

m
.

Vice versa, we have shown that if g ∈ M1
v (Rd) and f ∈ Mp,q

m (Rd), the meta-
plectic Wigner WA(f, g) is in Lp,qm (R2d). By (6.2), for all w ∈ R2d,

|Vgf(w)| ≲ |WA(f, g)| ∗ |[WA(g, γ)]
∗|(EAw),

and Young’s inequality gives

∥f∥Mp,q
m

≲A,g,γ ∥WA(f, g)∥Lp,q
m
.

In conclusion, ∥f∥Mp,q
m

≍ ∥WA(f, g)∥Lp,q
m

, with g ∈M1
v (Rd).

Another consequence of Theorem 6.3 is the characterization of Wiener amal-
gam spaces W (FLpm1 , L

q
m2)(Rd).

Corollary 6.8. Let Â ∈ Mp(2d,R) be such that WA is shift-invertible and 1 ≤
p, q ≤ ∞. Let m1,m2 ∈ Mv(Rd) be such that m2 ≍ Im2, being Im2(x) =
m2(−x), and A = πMp(Â) having block decomposition in (2.20). Fix g ∈ S(Rd)\
{0} and define

ẼA = JEAJ. (6.4)

If m1 ⊗m2 ≍ (m1 ⊗m2) ◦ Ẽ−1
A and EA is lower triangular, then

∥f∥W (FLp
m1

,Lq
m2

) ≍
(∫

Rd

(∫
Rd

|WA(f, g)(x, ξ)|pm1(ξ)
pdξ
)q/p

m2(x)
qdx
)1/q

,

with the analogous for max{p, q} = ∞.

Proof. Assume that max{p, q} < ∞. We use (2.4). Let f ∈ S ′(Rd), g ∈ S(Rd) \
{0}. Then,(∫

Rd

(∫
Rd

|WA(f, g)(x, ξ)|pm1(ξ)
pdξ
)q/p

m2(x)
qdx
)1/q

=

(∫
Rd

(∫
Rd

|WA(f, g)(J
−1(ξ,−x))|pm1(ξ)

pdξ

)q/p
m2(x)

qdx

)1/q

.
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Now, |WA(f, g) ◦ J−1| = |D̂J−1Â(f ⊗ ḡ)| = |Â0(f ⊗ ḡ)| = |WA0(f, g)|, where

πMp(Â0) = A0 := DJ−1A =


A21 A22 A23 A24

−A11 −A12 −A13 −A14

A41 A42 A43 A44

−A31 −A32 −A33 −A34

 .

By [31, Proposition 2.7], |WA0(f, g)| = |WÃ0
(f̂ , ĝ)|, where

Ã0 =


−A23 A24 A21 −A22

A13 −A14 −A11 A12

−A43 A44 A41 −A42

A33 −A34 −A31 A32

 .

Hence, using that Im2 ≍ m2,(∫
Rd

(∫
Rd

|WA(f, g)(x, ξ)|pm1(ξ)
pdξ
)q/p

m2(x)
qdx
)1/q

≍

(∫
Rd

(∫
Rd

|WÃ0
(f̂ , ĝ)(ξ,−x)|pm1(ξ)

pdξ

)q/p
m2(x)

qdx

)1/q

=

(∫
Rd

(∫
Rd

|WÃ0
(f̂ , ĝ)(ξ, x)|pm1(ξ)

pdξ

)q/p
Im2(x)

qdx

)1/q

≍
∥∥∥WÃ0

(f̂ , ĝ)
∥∥∥
Lp,q
m1⊗m2

.

Observe that ẼA = EÃ0
. Since EA is invertible and lower triangular the matrix

ẼA in (6.4) is obviously invertible (and upper triangular). Hence, using the
assumption m1 ⊗m2 ≍ (m1 ⊗m2) ◦ E−1

Ã0
, we have∥∥∥WÃ0

(f̂ , ĝ)
∥∥∥
Lp,q
m1⊗m2

≍
∥∥∥f̂∥∥∥

Mp,q
m1⊗m2

= ∥f∥W (FLp
m1

,Lq
m2

) .

The same argument also proves the case max{p, q} = ∞, simply replacing the
corresponding integrals with the essential supremums.

Remark 6.9. Because of (2.8), Corollary 6.8 is significant only for p ̸= q. For
p = q we refer to Theorem 6.6 with m = m1 ⊗m2.

6.2 Examples

We exhibit a manifold of new metaplectic Wigner distributions which may find
application in time-frequency analysis, signal processing, quantum mechanics and
pseudodifferential theory.
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Example 6.10. This example generalizes the STFT by applying a metaplectic
operator either on the window function g or on the function f as follows. First,
consider the matrix

L =

(
0d×d Id×d
−Id×d Id×d

)
.

which allows to rewrite the STFT Vgf as composition of the metaplectic operators
Vgf(x, ξ) = F2TL(f ⊗ ḡ)(x, ξ).

(i) We may act on the window g by replacing ḡ with Â′g, Â′ ∈ Mp(d,R).
Namely, we consider the time-frequency representation

Ugf(x, ξ) = F2TL(f ⊗ Â′ḡ)(x, ξ).

Denoting

A′ =

(
A′ B′

C ′ D′

)
, (6.5)

by (6.8),
f ⊗ Â′ḡ = Â′′(f ⊗ ḡ),

with

A′′ =


Id×d 0d×d 0d×d 0d×d
0d×d A′ 0d×d B′

0d×d 0d×d Id×d 0d×d
0d×d C ′ 0d×d D′

 ,

so that Ugf =WA(f, g) with

A =


Id×d −A′ 0d×d −B′

0d×d C ′ Id×d D′

0d×d −C ′ 0d×d −D′

−Id×d 0d×d 0d×d 0d×d

 ,

which is always shift-invertible with EA diagonal. This is not surprising, since
Â′ḡ ∈ S(Rd) for g ∈ S(Rd) and different windows in S(Rd) yield equivalent
norms.

(ii) A more interesting example comes out by applying Â′, with A′ ∈ Sp(d,R)
having block decomposition in (6.5), to the function f . Namely, we consider

Ũgf(x, ξ) = F2TL(Â′f ⊗ ḡ)(x, ξ).

Then Ũgf =WA(f, g) with

A =


A′ −Id×d B′ 0d×d
C ′ 0d×d D′ Id×d
0d×d 0d×d 0d×d −Id×d
−A′ 0d×d −B′ 0d×d

 ,
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and

EA = A′ =

(
A′ B′

C ′ D′

)
,

in (6.5). This WA characterizes modulation spaces if and only if the symplectic
matrix A′ is upper triangular, since Â′ : Mp,q(Rd) → Mp,q(Rd), p ̸= q, if and
only if A′ is an upper block triangular matrix [53].

Observe that these time-frequency representations find applications in signal
processing, see Zhang et al. [127, 129].

Example 6.11. (i). For z = (x, ξ) ∈ R2d, the time-frequency shift π(z) can be
written as follows: π(z)g(t) = ΦĨ(ξ, t)Txg(t), where Ĩ ∈ R2d×2d is the symmetric
matrix

Ĩ =

(
0d×d Id×d
Id×d 0d×d

)
.

Thus, we can define a generalized STFT replacing the time-frequency atoms
π(z)g with the more general atoms ς(x, ξ) := ΦC(ξ, ·)Tx, x, ξ ∈ Rd, where ΦC is
the chirp function related to the symmetric matrix

C =

(
C11 C12

CT12 C22

)
(hence CT11 = C11, CT22 = C22). Namely, we may define the generalized STFT
Vg,Cf as

Vg,Cf(x, ξ) = | det(C12)|1/2e−iπC11ξ·ξ
∫
Rd

f(t)g(t− x)e−iπC22t·te−2πiCT
12ξ·tdt

= ⟨f, ς(x, ξ)g⟩,

f, g ∈ L2(Rd). Observe that, if C12 ∈ GL(d,R), then Vg,Cf =WA(f, g), with

A =


Id×d −Id×d 0d×d 0d×d

−C−T
12 C22 0d×d C−T

12 C−T
12

0d×d 0d×d 0d×d −Id×d
−C12 + C11C

−T
12 C22 0d×d −C11C

−T
12 −C11C

−T
12

 ,

which is always shift-invertible, but unless C22 ̸= 0d×d, EA is lower triangular.
(ii) For τ ∈ R consider the τ -Wigner distribution defined in (2.5) and replace
the Gabor atoms π(x, ξ) with the more general chirp functions ΦC as before to
obtain

Wτ,C(f, g)(x, ξ) = |det(C12)|1/2e−iπC11ξ·ξ

×
∫
Rd

f(x+ τt)g(x− (1− τ)t)e−iπC22t·te−2πiCT
12ξ·tdt,
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f, g ∈ L2(Rd). Again, if C12 ∈ GL(d,R), then Wτ,C(f, g) =WA(f, g) with

A =


(1− τ)Id×d τId×d 0d×d 0d×d
−C−T

12 C22 −C−T
12 C22 τC−T

12 −(1− τ)C−T
12

0d×d 0d×d Id×d Id×d
C11C

−T
12 C22 − C12 C11C

−T
12 C22 − C12 −τC11C

−T
12 (1− τ)C11C

−T
12

 .

This matrix is shift-invertible if and only if τ ̸= 0, 1, and in this case EA is
upper-triangular if and only if C22 = 0d×d.

Example 6.12. Every A ∈ Sp(2d,R) can be written as ΠJ VQDLV
T
−P , where

L ∈ GL(2d,R), the matrices Q,P ∈ R2d×2d are symmetric and, if 1 ≤ k ≤
2d, 1 ≤ j1, . . . , jk ≤ 2d and J = {j1, . . . , jk}, ΠJ = Πj1 . . .Πjk is the matrix
associated to the partial Fourier transform FJ := Fj1 . . .Fjk , cf. Example 2.7
(v). Set

Q =

(
Q11 Q12

QT12 Q22

)
, P =

(
P11 P12

P T12 P22

)
, L =

(
L11 L12

L21 L22

)
and

L−1 =

(
L′
11 L′

12

L′
21 L′

22

)
.

A direct computation shows

VQDLV
T
−P =


L′
11 L′

12 −L′
11P

T
11 − L′

12P
T
12 −L′

11P12 − L′
12P

T
22

L′
21 L′

22 −L′
21P

T
11 − L′

22P
T
12 −L′

21P12 − L′
22P

T
22

M11 M12 N11 N12

M21 M22 N21 N22

 .

In what follows the explicit expressions of M11,M12,M21,M22,N11,N12,N21,N22 ∈
Rd×d are irrelevant. We consider the case J = {d + 1, . . . , 2d}, i.e., FJ = F2.
The effect of left-multiplying VQDLV

T
−P by AFT2 is to swap the second column

blocks of VQDLV
T
−P with the fourth, up to change the sign of the latter. Hence,

the matrix EA associated to

WA(f, g) = F2(ΦQ · (F−1ΦP ∗ (f ⊗ ḡ)))

is

EA =

(
L′
11 −L′

11P
T
11 − L′

12P
T
12

L′
21 −L′

21P
T
11 − L′

22P
T
12

)
.

This matrix is upper triangular if and only if L′
21 = 0d×d or, equivalently, if and

only if L is upper triangular. In this case, we also can compute explicitly L−1 in
terms of the blocks of L. Namely,

L =

(
L11 L12

0d×d L22

)
∈ GL(2d,R) ⇒ L−1 =

(
L−1
11 −L−1

11 L12L
−1
22

0d×d L−1
22

)
.
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So, the corresponding EA is invertible if and only if L−1
22 P

T
12 ∈ GL(d,R), i.e., if

and only if P12 ∈ GL(d,R). In conclusion, any metaplectic Wigner distribution
of the form

WA(f, g)(x, ξ) = F2(ΦQ · (F−1ΦP ∗ (f ⊗ ḡ)))(x, ξ)

with P,Q ∈ R2d×2d symmetric, P12 ∈ GL(d,R), and L ∈ GL(2d,R) upper trian-
gular, can be used to define modulation spaces.

6.3 Appendix A

In Appendix 6.3 we generalize the results in [53] to the quasi-Banach setting.
Also, we observe that [53, Corollary 4.2] holds for general invertible matrices.
For S ∈ GL(2d,R), recall the definition of the metaplectic operator

TSf(z) = | det(S)|
1
2 f(Sz), z ∈ R2d,

defined in Example 2.7 (ii).

Theorem 6.13. Let S ∈ GL(2d,R) and 0 < p ≤ ∞. The mapping TS :
Lp(R2d) → Lp(R2d) is everywhere defined and bounded with

∥TS∥Lp→Lp = |det(S)|
1
2
− 1

p .

We use the convention 1/∞ = 0.

Proof. Trivially, if 0 < p <∞ and f ∈ Lp(R2d),

∥TSf∥Lp(R2d) = ∥f ◦ S∥Lp(R2d) = |det(S)|
1
2
− 1

p ∥f∥Lp(R2d) .

Also, ∥TSf∥L∞(R2d) = | det(S)|1/2 ∥f∥L∞(R2d).

Theorem 6.14. Consider A,D ∈ GL(d,R), B ∈ Rd×d and 0 < p, q ≤ ∞. Define

S =

(
A B

0d×d D

)
.

The mapping TS : Lp,q(R2d) → Lp,q(R2d) is an isomorphism with bounded inverse
TS−1.
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Proof. Let f ∈ Lp,q(R2d). Then,

∥TSf∥Lp,q(R2d) =
∥∥∥ξ 7→ |det(S)|1/2 ∥f(A ·+Bξ,Dξ)∥Lp(Rd)

∥∥∥
Lq(Rd)

=
∥∥∥ξ 7→ |det(S)|1/2 ∥f(A·, Dξ)∥Lp(Rd)

∥∥∥
Lq(Rd)

=
∥∥∥ξ 7→ |det(S)|1/2| det(A)|−1/p ∥f(·, Dξ)∥Lp(Rd)

∥∥∥
Lq(Rd)

= | det(S)|1/2| det(A)|−1/p| det(D)|−1/q
∥∥∥ξ 7→ ∥f(·, ξ)∥Lp(Rd)

∥∥∥
Lq(Rd)

= | det(A)|
1
2
− 1

p | det(D)|
1
2
− 1

q ∥f∥Lp,q(R2d) ,

where 1/∞ = 0. Observe that T−1
S = TS−1 . It remains to prove that TS−1 is also

bounded. Since A (or, equivalently, D) is invertible, this follows by

S−1 =

(
A−1 −A−1BD−1

0d×d D−1

)
and by the first part of the statement.

Theorem 6.15. Let m ∈ Mv(R2d), S ∈ GL(2d,R) and 0 < p, q ≤ ∞. Consider
the operator

(TS)m : f ∈ Lp,qm (R2d) 7→ |det(S)|1/2f ◦ S.

If m ◦ S ≍ m, then TS : Lp,q(R2d) → Lp,q(R2d) is bounded if and only if (TS)m :
Lp,qm (R2d) → Lp,qm (R2d) is bounded.

Proof. Observe that the condition m ◦ S ≍ m is equivalent to m ◦ S−1 ≍ m.
Assume that TS is bounded on Lp,q(R2d) and consider f ∈ Lp,qm (R2d). Then,
fm ∈ Lp,q(R2d) and

∥TSf∥Lp,q
m (R2d) = ∥TSf ·m∥Lp,q(R2d) =

∥∥TS(f · (m ◦ S−1))
∥∥
Lp,q(R2d)

≲
∥∥f · (m ◦ S−1)

∥∥
Lp,q(R2d)

=

∥∥∥∥(f m ◦ S−1

m

)
m

∥∥∥∥
Lp,q(R2d)

=

∥∥∥∥f m ◦ S−1

m

∥∥∥∥
Lp,q
m (R2d)

≲ ∥f∥Lp,q
m (R2d) .

For the converse, assume that (TS)m : Lp,qm (R2d) → Lp,qm (R2d) is bounded and
take f ∈ Lp,q(R2d). Then, f/m ∈ Lp,qm (R2d) and

∥TSf∥Lp,q(R2d) ≲
∥∥∥TSf ( m

m ◦ S

)∥∥∥
Lp,q(R2d)

≍
∥∥∥∥TS ( fm

)∥∥∥∥
Lp,q(R2d)

=

∥∥∥∥TS ( fm
)∥∥∥∥

Lp,q
m (R2d)

≲ ∥f/m∥Lp,q
m (R2d) = ∥f∥Lp,q(R2d) .
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6.4 Appendix B

In this Appendix we study tensor products of metaplectic operators and refer
to [76] for the theory of tensor products of HIlbert spaces. We are interested in
proving the following result.

Theorem 6.16. Let Â, B̂ ∈ Mp(d,R) with A = πMp(Â) and B = πMp(B̂) having
block decompositions

A =

(
A B
C D

)
, and B =

(
E F
G H

)
.

Then, the bilinear operator S : L2(Rd)×L2(Rd) → L2(R2d) defined for all f, g ∈
L2(Rd) as

S(f, g) = Âf ⊗ B̂g

extends uniquely to a metaplectic operator Ĉ ∈ Mp(2d,R) with C = πMp(Ĉ) having
block decomposition

C =


A 0d×d B 0d×d

0d×d E 0d×d F
C 0d×d D 0d×d

0d×d G 0d×d H

 .

Proof. By [76, Proposition 2.6.6], there exists a unique linear mapping T :
L2(Rd)⊗ L2(Rd) = L2(R2d) → L2(R2d) satisfying

T (f ⊗ g) = Âf ⊗ B̂g, f, g ∈ L2(Rd).

By [76, Proposition 2.6.12], this extension is also bounded. Moreover, T is in-
vertible because Â and B̂ are. In particular, T is surjective. To prove that T is a
metaplectic operator, it remains to check that T preserves the L2 inner product
and that

Tρ(z, τ) = ρ(Cz, τ)T, z ∈ R4d, τ ∈ R. (6.6)

For all f, g, φ, ψ ∈ L2(Rd),

⟨T (f ⊗ g), T (φ⊗ ψ)⟩ = ⟨Âf, Âφ⟩⟨B̂g, B̂ψ⟩ = ⟨f, φ⟩⟨g, ψ⟩
= ⟨f ⊗ g, φ⊗ ψ⟩.

If Φ ∈ L2(R2d), Φ =
∑∞

j=1 cjφj ⊗ ψj , with the sequence (cj)j ⊆ C vanishing
definitely,

⟨T (f ⊗ g), TΦ⟩ =
∑
j

c̄j⟨T (f ⊗ g), T (φj ⊗ ψj)⟩ =
∑
j

c̄j⟨f ⊗ g, φj ⊗ ψj⟩

= ⟨f ⊗ g,Φ⟩.
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Now, consider Φ ∈ L2(R2d) and (Φj)j ⊆ span{φ ⊗ ψ : φ,ψ ∈ L2(Rd)} satisfy
limj→+∞ ∥Φ− Φj∥L2(R2d) = 0. Then, by the continuity of T and of the inner
product,

⟨T (f ⊗ g), TΦ⟩ = ⟨T (f ⊗ g), T ( lim
j→+∞

Φj)⟩ = lim
j→+∞

⟨T (f ⊗ g), TΦj⟩

= lim
j→+∞

⟨f ⊗ g,Φj⟩ = ⟨f ⊗ g,Φ⟩.

So, we proved that
⟨TF, TΦ⟩ = ⟨F,Φ⟩ (6.7)

holds for all F = f ⊗ g, f, g ∈ L2(Rd) and all Φ ∈ L2(R2d). The same argument
applied to the first component of the inner product shows that (6.7) holds for
all F ∈ L2(R2d) as well. So, T is surjective and preserves the inner product,
hence it is unitary. It remains to prove (6.6), which states that T is a metaplectic
operator with πMp(T ) = C.

For, consider f, g ∈ L2(Rd), τ ∈ R, z = (x1, x2, ξ1, ξ2) ∈ R4d and zj =
(xj , ξj) ∈ R2d (j = 1, 2). First, observe that

ρ(z, τ)(f ⊗ g) = e−2πiτρ(z1, τ)f ⊗ ρ(z2, τ)g

and
π(Cz)(f ⊗ g) = π(Az1)f ⊗ π(Bz2)g,

so that

ρ(Cz, τ)T (f ⊗ g) = e2πiτe−iπ(Ax1+Bξ1)(Cx1+Dξ1)e−iπ(Ex2+Fξ2)(Gx2+Hξ2)

× π(Cz)(Âf ⊗ B̂g)
= e2πiτe−iπ(Ax1+Bξ1)(Cx1+Dξ1)e−iπ(Ex2+Fξ2)(Gx2+Hξ2)

× π(Az1)Âf ⊗ π(Bz2)B̂g

= e−2πiτρ(Az1, τ)Âf ⊗ ρ(Bz2, τ)B̂g

= e−2πiτ Âρ(z1, τ)f ⊗ B̂ρ(z2, τ)g
= e−2πiτT (ρ(z1, τ)f ⊗ ρ(z2, τ)g)

= Tρ(z, τ)(f ⊗ g)

and (6.6) follows for tensor products. Next, if F =
∑∞

j=1 cjfj ⊗ gj , (cj)j ⊆ C
definitely zero, fj , gj ∈ L2(Rd) (j = 1, 2, . . .),

ρ(Cz, τ)TF = ρ(Cz, τ)T (
∑
j

cjfj ⊗ gj) = ρ(Cz, τ)
∑
j

cjT (fj ⊗ gj)

=
∑
j

cjρ(Cz, τ)T (fj ⊗ gj) =
∑
j

cjTρ(z, τ)(fj ⊗ gj) = Tρ(z, τ)F,

and the assertion follows by a standard density argument.
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Remark 6.17. Under the same notation as in Theorem 6.16, if A = Id×d, then

f ⊗ B̂g = Ĉ1(f ⊗ g), (6.8)

where

C1 =


Id×d 0d×d 0d×d 0d×d
0d×d E 0d×d F
0d×d 0d×d Id×d 0d×d
0d×d G 0d×d H

 .

If B = Id×d, we infer
Âf ⊗ g = Ĉ2(f ⊗ g),

where

C2 =


A 0d×d B 0d×d

0d×d Id×d 0d×d 0d×d
C 0d×d D 0d×d

0d×d 0d×d 0d×d Id×d

 .

Observe that C = C1C2 = C2C1.



Chapter 7

Metaplectic Gabor frames

Section 7.1 is devoted to metaplectic atoms, defined implicitly as

⟨f, φ⟩ = 1

⟨γ, g⟩

∫
R2d

WA(f, g)(z)WA(φ, γ)(z)dz. (7.1)

and to an equivalent of inversion formula of the STFT

f =
1

⟨γ, g⟩

∫
R2d

Vgf(x, ξ)π(x, ξ)γdxdξ, f ∈ L2(Rd), (7.2)

for metaplectic Wigner distributions. In Section 7.2, we characterize shift-invertible
Wigner distributions in terms of the STFT. We compute the metaplectic atoms
of the distributions which belong to the Cohen’s class in Section 7.3. In Section
7.4 we define metaplectic Gabor frames, characterizing those related to shift-
invertible distributions. In Section 7.5 we complete the characterization of mod-
ulation spaces and Wiener amalgams in terms of shift-invertibility. We devote the
Appendix to the proof of an intertwining formula between metaplectic operators
and complex conjugation, which is used to obtain the expression of the adjoint
of metaplectic atoms in Section 7.1.

This chapter is part of an article published in Applied and Computational
Harmonic Analysis in 2024, cf. [20].

7.1 Metaplectic atoms

We start by generalizing the definition of time-frequency shifts. Differently from
the classical theory, where time-frequency shifts are defined in terms of trans-
lations and modulations, and then used to define the STFT, we define them
implicitly from metaplectic Wigner distributions.

Definition 7.1. Let WA be a metaplectic Wigner distribution and z ∈ R2d. The
metaplectic atom πA(z) is the operator defined by its action on all f ∈ S(Rd)
as

⟨φ, πA(z)f⟩ :=WA(φ, f)(z), φ ∈ S(Rd).

138
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Observe that if f, φ ∈ S(Rd), WA(φ, f)(z) is well-defined for all z ∈ R2d, by
Proposition 2.12.

Remark 7.2. Definition 7.1 says that metaplectic atoms play the game of time-
frequency shifts for the STFT.

Metaplectic atoms map S(Rd) to S ′(Rd), see Proposition 7.8 below. We put
this detail aside and take it for granted in favour of some prior example.

Example 7.3. The metaplectic atoms associated to the STFT are the time-
frequency shifts. In fact, for all f, φ ∈ S(Rd) and all z ∈ R2d

⟨φ, πAST
(z)f⟩ = Vfφ(z) = ⟨φ, π(z)f⟩.

This implies that πAST
(z)f and π(z)f are tempered distributions with the same

action on S(Rd), i.e., πAST
(z)f = π(z)f .

Example 7.4. For ℏ > 0 and f, g ∈ L2(Rd), we consider

V ℏ
g f(x, ξ) = ⟨f, (2πℏ)−d/2πℏ(x, ξ)g⟩, (x, ξ) ∈ R2d,

where πℏ(x, ξ)g(t) := ei(ξt−x·ξ/2)/ℏg(t−x). These time-frequency representations
were considered by M. de Gosson in [36]. For all ℏ > 0, up to a sign,

V ℏ
g f(x, ξ) = (2πℏ)−d/2e2πi

x·ξ
4πℏVgf

(
x,

ξ

2πℏ

)
, (x, ξ) ∈ Rd, f, g ∈ L2(Rd),

so that V ℏ
g f =WAℏ(f, g), where

Aℏ =


Id×d −Id×d 0d×d 0d×d
0d×d 0d×d 2πℏId×d 2πℏId×d
0d×d 0d×d

1
2Id×d −1

2Id×d
− 1

4πℏId×d − 1
4πℏId×d 0d×d 0d×d

 .

In this case, we observe that

EAℏ =

(
Id×d 0d×d
0d×d 2πℏId×d

)
.

The metaplectic atoms associated to V ℏ are

πAℏ(x, ξ)g = (2πℏ)−d/2e−i
x·ξ
2ℏ π

(
x,

ξ

2πℏ

)
g

= | det(EAℏ)|
−1/2e−i

x·ξ
ℏ π(E−1

Aℏ
(x, ξ))g,

(x, ξ) ∈ R2d, g ∈ S(Rd).
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Example 7.5. We compute the metaplectic atoms associated to the τ -Wigner
distribution Wτ (0 < τ < 1). For, let z = (x, ξ) ∈ R2d and f, φ ∈ S(Rd). Then,

Wτ (φ, f)(x, ξ) =

∫
Rd

φ(x+ τt)f(x− (1− τ)t)e−2πiξ·tdt

=
1

τd

∫
Rd

φ(s)f

(
x− (1− τ)

(
s− x

τ

))
e−2πiξ·( s−x

τ
)ds

=

∫
Rd

φ(s)f

(
1

τ
x− 1− τ

τ
s

)
e−2πiξ· s

τ e2πiξ·
x
τ
ds

τd

= ⟨φ, πAτ (x, ξ)f⟩,

where, if Tτf(t) =
(1−τ)d/2
τd/2

f
(
−1−τ

τ t
)
,

πAτ (x, ξ)f(t) =
1

τd
e−2πi ξ·x

τ e2πit·
ξ
τ f

((
−1− τ

τ

)(
t− 1

1− τ
x

))
=

1

τd/2(1− τ)d/2
e−2πix·ξ

τ M ξ
τ
T x

1−τ
Tτf(t).

Observe that 1
τd/2|τ−1|d/2 = |det(EAτ )|−1/2, so

πAτ (x, ξ)f = | det(EAτ )|−1/2e−2πix·ξ
τ π
( 1

1− τ
x,

1

τ
ξ
)
Tτf

= | det(EAτ )|−1/2e−2πix·ξ
τ π(E−1

Aτ
(x, ξ))Tτf.

Example 7.6. Consider the (cross)-Rihacek distribution W0, defined for all
f, g ∈ L2(Rd) as

W0(f, g)(x, ξ) = f(x)ĝ(ξ)e−2πiξ·x, (x, ξ) ∈ R2d.

Then, if z = (x, ξ) ∈ R2d, f, g ∈ S(Rd),

⟨φ, πA0(z)f⟩ = φ(x)f̂(ξ)e−2πiξ·x = ⟨φ, f̂(ξ)e2πiξ·xTxδ0⟩.

Observe that πA0(x, ξ)f = f̂(ξ)e2πiξ·xTxδ0 is a tempered distribution that does
not define a function.

Example 7.7. Let Ŝ ∈ Sp(d,R) with S = πMp(Ŝ) having block decomposition

S =

(
A B
C D

)
(7.3)

and consider the metaplectic Wigner distribution defined in [19, Example 4.1 (ii)]
as

Ũgf(z) = Vg(Ŝf)(z) =WA(f, g)(z) = ⟨f, Ŝ−1π(z)g⟩ = ⟨f, π(S−1z)Ŝ−1g⟩,
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f, g ∈ L2(Rd), x, ξ ∈ Rd, where

A =


A −Id×d B 0d×d
C 0d×d D Id×d

0d×d 0d×d 0d×d −Id×d
−A 0d×d −B 0d×d

 .

Clearly, EA = S and πA(z)g = π(S−1z)Ŝ−1g for all z ∈ R2d.

As aforementioned, in the previous examples we took on trust that metaplec-
tic atoms map S(Rd) to S ′(Rd). This technicality, along with the linearity of
metaplecitc atoms, is proved in the proposition that follows. Nevertheless, Ex-
ample 7.6 shows that in general πA(z)f , f ∈ S(Rd), is a tempered distribution
that is not induced by any locally integrable function.

Proposition 7.8. Let WA be a metaplectic Wigner distribution. For all z ∈ R2d,
πA(z) is a well-defined linear operator that maps S(Rd) to S ′(Rd).

Proof. Let f ∈ S(Rd). By definition, for any φ,ψ ∈ S(Rd) and α ∈ C,

⟨αφ+ ψ, πA(z)f⟩ =WA(αφ+ ψ, f)(z) = Â((αφ+ ψ)⊗ f̄)(z)

= Â(αφ⊗ f̄ + ψ ⊗ f̄)(z) = αÂ(φ⊗ f̄)(z) + Â(ψ ⊗ f̄)(z)

= αWA(φ, f)(z) +WA(ψ, f)(z)

= α⟨φ, πA(z)f⟩+ ⟨ψ, πA(z)f⟩.

Then, we need to prove that πA(z)f : φ ∈ S(Rd) 7→ ⟨φ, πA(z)f⟩ ∈ C is continu-
ous. Using the boundedness of WA : S(Rd)× S(Rd) → S(R2d),

|⟨φ, πA(z)f⟩| = |WA(φ, f)(z)| ≤ ∥WA(φ, f)∥L∞(R2d) = ρ0,0(WA(φ, f))

≤ C
N∑
j=1

ραj ,βj (φ)
M∑
j=1

ργjδj (f) = C̃
N∑
j=1

ραj ,βj (φ).

Thus, it remains to check the linearity of πA(z). For, let α ∈ C, f, g ∈ S(Rd).
For every φ ∈ S(Rd),

⟨φ, πA(z)(αf + g)⟩ =WA(φ, αf + g)(z) = Â(φ⊗ (αf + g))(z)

= ᾱÂ(φ⊗ f̄)(z) + Â(φ⊗ ḡ)(z)

= ᾱWA(φ, f)(z) +WA(φ, g)(z)

= ᾱ⟨φ, πA(z)f⟩+ ⟨φ, πA(z)g⟩
= ⟨φ, απA(z)f + πA(z)g⟩.

This concludes the proof.
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The first question that we address is the validity of an equivalent of the
inversion formula (7.2) for metaplectic Wigner distributions.

Theorem 7.9. Let WA be a metaplectic Wigner distribution and f, g ∈ L2(Rd).
If γ ∈ S(Rd) satisfies ⟨γ, g⟩ ≠ 0, then

f =
1

⟨γ, g⟩

∫
R2d

WA(f, g)(z)πA(z)γdz (7.4)

where the integral must be interpreted in the weak sense of vector-valued integra-
tion.

Proof. We use the definition of vector-valued integral. For φ ∈ L2(Rd), using
(2.19),

⟨ 1

⟨γ, g⟩

∫
R2d

WA(f, g)(z)πA(z)γdz, φ⟩ =
1

⟨γ, g⟩

∫
R2d

WA(f, g)(z)⟨πA(z)γ, φ⟩dz

=
1

⟨γ, g⟩

∫
R2d

WA(f, g)(z)WA(φ, γ)(z)dz =
1

⟨γ, g⟩
⟨WA(f, g),WA(φ, γ)⟩

=
1

⟨γ, g⟩
⟨f, φ⟩⟨g, γ⟩ = ⟨f, φ⟩.

This shows (7.4).

In what follows, we use the definitions of the submatrices EA, FA, EA and
FA given in (2.21) and (2.22).

Lemma 7.10. Let WA be a metaplectic Wigner distribution. Then, for z ∈ R2d,
f, g ∈ L2(Rd), we have

WA(π(z)f, g) = Φ−MA(z)π(EAz, FAz)WA(f, g),

where, if A = πMp(Â) has block decomposition (2.20), MA is the symmetric
matrix

MA =

(
AT11A31 +AT21A41 AT31A13 +AT41A23

AT13A31 +AT23A41 AT13A33 +AT23A43

)
. (7.5)

Proof. We use formula (41) in [19]. By definition of metaplectic operator, for all
τ ∈ R, z = (x, ξ) ∈ R2d,

Â(ρ(z; τ)f ⊗ ḡ) = Â(ρ(x, 0, ξ, 0; τ)f ⊗ ḡ)

= ρ(A(x, 0, ξ, 0); τ)Â(f ⊗ ḡ)

= ρ(EAz, FAz; τ)WA(f, g).
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The assertion follows using that π(x, ξ) = eiπx·ξρ(x, ξ; 0):

WA(π(x, ξ)f, g) =WA(e
iπx·ξρ(x, ξ; 0)f, g)

= eiπx·ξρ(EA(x, ξ), FA(x, ξ); 0)WA(f, g)

= eiπx·ξe−iπE
T
AFA(x,ξ)·(x,ξ)π(EA(x, ξ), FA(x, ξ))WA(f, g).

Using the definitions of EA and FA, as well as the matrix L in (2.25), so that we
rewrite the scalar product as

x · ξ = L(x, ξ) · (x, ξ),

we infer
eiπx·ξe−iπE

T
AFA(x,ξ)·(x,ξ) = e−iπMA(x,ξ)·(x,ξ),

where

MA =

(
AT11A31 +AT21A41 AT11A33 +AT21A43 − Id×d
AT13A31 +AT23A41 AT13A33 +AT23A43

)
.

The relations (R1a), (R2a) and (R3a) imply that MA is symmetric and it can
be written as in (7.5).

Remark 7.11. We stress that (7.5) introduces a new matrix associated to WA.
Throughout this work, if EA and FA are defined as in (2.21), whereas P is the
matrix given in (2.25), MA denotes the symmetric 2d × 2d matrix defined as
MA = ETAFA − P .

Theorem 7.12. Let Â ∈ Mp(2d,R), A = πMp(Â) and WA be the associated
metaplectic Wigner distribution. Consider the matrix A∗ ∈ Sp(2d,R) defined in
(7.26) below. Then, for every z ∈ R2d,

⟨πA(z)f, g⟩ = ⟨f, πA∗(z)g⟩, ∀ f, g ∈ S(Rd).

In particular, if πA(z) extends to a bounded operator on L2(Rd), then

πA(z)
∗ = πA∗(z), z ∈ R2d.

Proof. It is an immediate consequence of Corollary 7.34 below. In fact, for all
f, g ∈ S(Rd),

⟨πA(z)f, g⟩ =WA(g, f)(z) =WA∗(f, g)(z) = ⟨πA∗(z)g, f⟩ = ⟨f, πA∗(z)g⟩.
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7.2 Shift-invertibility unmasked

Among all metaplectic Wigner distributions, shift-invertible Wigner distributions
are known to play a fundamental role in time-frequency analysis. It was proved in
[31, 19] that they can be used to replace the STFT in the definition of modulation
spaces Mp,q

m (Rd), for 1 ≤ p, q ≤ ∞ and m ∈ Mv(R2d) satisfying some inoffensive
symmetry condition. In [19] it is observed that shift-invertibility is necessary
for this characterization to hold, otherwise not even the Mp(Rd) spaces can be
defined in terms of shift-invertible Wigner distributions. In this section, we inves-
tigate the properties of metaplectic atoms related to shift-invertible metaplectic
Wigner distributions and characterize them in terms of the matrices EA, FA, EA,
FA and MA defined in (2.21), (2.22) and (7.5), respectively.

Take any metaplectic Wigner distribution WA, and z, w ∈ R2d. Then Lemma
7.10 entails the equality

WA(π(w)f, g)(z) = Φ−MA(w)π(EAw,FAw)WA(f, g)(z), f, g ∈ L2(R2d),

so that |WA(π(w)f, g)(z)| = |WA(f, g)(z − EAw)|.

Definition 7.13. A metaplectic Wigner distribution WA is shift-invertible if
EA ∈ GL(2d,R).

We shall need the following lifting-type result, proved in [19, Theorem B1]:

Lemma 7.14. Let Ŝ1, Ŝ2 ∈ Mp(d,R) have block decompositions

Sj =

(
Aj Bj
Cj Dj

)
(j = 1, 2). Then, the bilinear operator

T (f, g) = Ŝ1f ⊗ Ŝ2g

extends to a metaplectic operator Ŝ ∈ Mp(2d,R), where

S =


A1 0d×d B1 0d×d
0d×d A2 0d×d B2

C1 0d×d D1 0d×d
0d×d C2 0d×d D2

 . (7.6)

If Ŝ ∈ Mp(d,R) and T̂ (f ⊗ g) = f ⊗ Ŝg, we set

Lift(S) = πMp(T̂ ) ∈ Sp(2d,R), (7.7)

the corresponding matrix in (7.6).
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Theorem 7.15. Let WA be a shift-invertible metaplectic Wigner distribution and
GA = LE−1

A EA be the matrix of Lemma 2.14, with L as in (2.25). Then,

A = DE−1
A
VMAV

T
L Lift(GA),

where Lift(GA) is defined in (7.7).

Proof. We use the matrix

K :=


Id×d 0d×d 0d×d 0d×d
0d×d 0d×d Id×d 0d×d
0d×d Id×d 0d×d 0d×d
0d×d 0d×d 0d×d Id×d

 ,

that permutes the central columns of 4d× 4d matrices. This yields the following
block decomposition of A:

A =

(
EA EA
FA FA

)
K.

Since EA ∈ GL(2d,R), we can write

A =

(
EA 02d×2d

02d×2d E−T
A

)(
I2d×2d E−1

A EA
ETAFA ETAFA

)
K = DE−1

A

(
I2d×2d E−1

A EA
ETAFA ETAFA

)
K.

We proved in Lemma 7.10 that the matrix MA = ETAFA−P is symmetric, where
P is defined as in (2.25). Therefore, VMA is a symplectic matrix and we have:

A = DE−1
A

(
I2d×2d 02d×2d

MA I2d×2d

)(
I2d×2d E−1

A EA
P ETAFA −MAE

−1
A EA

)
K

= DE−1
A
VMA

(
I2d×2d E−1

A EA
P ETAFA −MAE

−1
A EA

)
K︸ ︷︷ ︸

=: A′

.

The matrix A′ is symplectic, since A′ = V−MADEAA is the product of symplectic
matrices. Getting rid of K, we obtain

A′ =


Id×d A′

12 0d×d A′
14

0d×d A′
22 Id×d A′

24

0d×d A′
32 Id×d A′

34

0d×d A′
42 0d×d A′

44

 ,

for suitable matrices A′
ij , i = 1, 2, 3, 4, j = 2, 4. Observe that

E−1
A EA =

(
A′

12 A′
14

A′
22 A′

24

)
.
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The symplectic relations (R1b), (R1c), (R2b), (R2c), (R3b), (R3c) and (R3d) for
A′ ∈ Sp(2d,R) read respectively as

(S1) A′
32 = 0d×d,

(S2) A′
12
T
A′

32 +A′
22
T
A′

42 = A′
32
T
A′

12 +A′
42
T
A′

22,

(S3) A′
44,= A′

14,

(S4) A′
14
T
A′

34 +A′
24
T
A44 = A′

34
T
A14 +A′

44
T
A24

(S5) A′
34 = 0d×d,

(S6) A′
12 = A′

42

(S7) A′
12
T
A′

34 +A′
22
T
A′

44 − (A′
32
T
A′

14 +A′
42
T
A24) = Id×d.

The others being trivially satisfied. This yields:

A′ =


Id×d A′

12 0d×d A′
14

0d×d A′
22 Id×d A′

24

0d×d 0d×d Id×d 0d×d
0d×d A′

12 0d×d A′
14

 .

Observe that (
A′

22 A′
24

A′
12 A′

14

)
= LE−1

A EA = GA,

which is symplectic by Lemma 2.14. A simple computation shows that A′ =
V T
L Lift(GA), as desired.

The characterization of shift-invertible Wigner distributions is straightfor-
ward.

Corollary 7.16. Let WA be a metaplectic Wigner distribution. Then, WA is
shift-invertible if and only if, up to a sign,

WA(f, g) = TE−1
A
ΦMA+LVδ̂Ag

f, f, g ∈ L2(Rd), (7.8)

where
δ̂Ag := FĜAg, (7.9)

and ĜA is the metaplectic operator defined in Proposition 7.33 below. In partic-
ular, if WA is shift-invertible then, up to a sign,

πA(z) = |det(EA)|−1/2Φ−MA−L(E
−1
A z)π(E−1

A z)δ̂A, z ∈ R2d, (7.10)

and
(i) πA(z) is a surjective quasi-isometry of L2(Rd) with

∥πA(z)f∥2 = | det(EA)|−1/2 ∥f∥2 , f ∈ L2(Rd);

(ii) πA(z) is a topological isomorphism on S(Rd);
(iii) πA(z) is a topological isomorphism on S ′(Rd).
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Proof. By Theorem 7.15, A is shift-invertible if and only if

A = DE−1
A
VMAV

T
L Lift(GA).

Let AST be the symplectic matrix associated to the STFT, cf. (2.17). Observe
that

AST = V−LV
T
L AFT2,

where AFT2 is the symplectic matrix associated to the partial Fourier transform
with respect to the second variable defined in (2.12). Then,

A = DE−1
A
VMA(VLV−L)V

T
L (AFT2A−1

FT2) Lift(GA)

= DE−1
A
VMA+LASTA−1

FT2 Lift(GA).

Therefore, up to a sign,

WA(f, g)(z) = Â(f ⊗ ḡ)(z) = D̂E−1
A
V̂MA V̂

T
L

̂Lift(GA)(f ⊗ ḡ)(z)

= D̂E−1
A
V̂MA+LÂSTF−1

2
̂Lift(GA)(f ⊗ ḡ)(z)

= |det(EA)|−1/2ΦMA+L(E
−1
A z)ÂST (f ⊗ (F−1ĜAḡ))(E

−1
A z).

Let ĜA be the symplectic operator such that ĜAḡ = ĜAg, cf. Proposition 7.33.
Then,

F−1ĜAḡ = F−1ĜAg = FĜAg =: δ̂Ag.

Therefore,

WA(f, g)(z) = |det(EA)|−1/2ΦMA+L(E
−1
A z)V

δ̂Ag
f(E−1

A z),

which can also be restated as:

WA(f, g)(z) = ⟨f, πA(z)g⟩,

where πA(z) is the operator in (7.10). Items (i) - (iii) are trivial consequences
of (7.10).

The metaplectic operator defined in (7.9) plays a crucial role in the char-
acterization of metaplectic Gabor frames for shift-invertible metaplectic Wigner
distributions. For this reason, it is worth giving it a name, in the spirit of the
terminology used by M. de Gosson in [36]:

Definition 7.17. We call the metaplectic operator δ̂A in (7.9) the deformation
operator associated to WA.
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Example 7.18. τ -Wigner distributions can be rephrased as rescaled STFT, up
to chirps, as in (7.8). Precisely, for 0 < τ < 1, set Tτg(t) =

(1−τ)d/2
τd/2

g(−1−τ
τ t) as

in Example 7.5. We proved in the same Example that

Wτ (f, g)(x, ξ) =

〈
f,

1

τd/2(1− τ)d/2
e−2πix·ξ

τ π

(
x

1− τ
,
ξ

τ

)
Tτg

〉
(7.11)

for all f, g ∈ L2(Rd) and x, ξ ∈ Rd. Consequently, we retrieve the expression of
Wτ as a rescaled STFT:

Wτ (f, g)(x, ξ) =
1

τd/2(1− τ)d/2
e2πi

x·ξ
τ VTτgf

(
x

1− τ
,
ξ

τ

)
.

We proved that metaplectic atoms of shift-invertible Wigner distributions are
surjective isometries of L2(Rd) and their adjoints are the atoms associated to
WA∗ , where A∗ is the matrix defined in the statement of the Theorem 7.12.

We conclude this section with the explicit computation of πA(z)−1 and πA(z)∗

for shift-invertible Wigner distributions.

Theorem 7.19. Let WA be a shift-invertible Wigner distribution and δ̂A the
related deformation operator, cf. (7.9). Consider the matrices L and P defined
as in (2.25) and the following matrices:

Q =

(
Id×d 0d×d
0d×d −Id×d

)
= −LJ,

δA = −E−1
A EAQ. (7.12)

Then, for every z ∈ R2d, up to a sign, the inverse πA(z)−1 and the adjoint
πA(z)

∗ operators can be explicitly computed as

πA(z)
−1 = | det(EA)|1/2ΦMA+L/2(E

−1
A z)ΦL/2(E−1

A z)π(QE−1
A z)δ̂A

−1
, (7.13)

and
πA(z)

∗ = | det(EA)|−1πA(z)
−1. (7.14)

Proof. We use the explicit expression of metaplectic Gabor atoms for shift-
invertible WA in (7.10), which yields

πA(z)
−1 = | det(EA)|1/2ΦMA+L(E

−1
A z)δ̂A

−1
π(E−1

A z)−1. (7.15)

By (2.3), if E−1
A z = ((E−1

A z)1, (E
−1
A z)2),

π(E−1
A z)−1 = e−2πi(E−1

A z)1·(E−1
A z)2π(−E−1

A z) = Φ−L(E
−1
A z)π(−E−1

A z).
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Also, by (2.13), for all z ∈ R2d and τ ∈ R,

δ̂A
−1
ρ(−E−1

A z; τ)δ̂A = ρ(−δ−1
A E−1

A z; τ).

Using the definition of ρ, for τ = 0 this is equivalent to

δ̂A
−1
π(−E−1

A z) = eiπ(E
−1
A z)1·(E−1

A z)2e−iπ(δ
−1
A E−1

A z)1·(δ−1
A E−1

A z)2π(−δ−1
A E−1

A z)δ̂A
−1
,

where δ−1
A E−1

A z = ((δ−1
A E−1

A z)1, (δ
−1
A E−1

A z)2). We compute explicitly the matrix
δ−1
A E−1

A . For, let us denote with

GA =

(
A B
C D

)
the block decomposition of the symplectic matrix GA, so that

G−1
A =

(
DT −BT

−CT AT

)
, GA =

(
A −B
−C D

)
and

GTA = GA
T
=

(
AT −CT
−BT DT

)
.

By definition, δA = πMp(δ̂A) = πMp(FĜA), so that

δA = JGA.

This, together with GAJGA
T
= J and GA = LE−1

A EA, yields to:

δ−1
A E−1

A = (−GA
−1
J)(LGAE−1

A ) = (−JGA
T
)(LGAE−1

A ),

where the invertibility of EA is guaranteed by Lemma 2.14. We use the block
decompositions of the matrices at stake to get:

δ−1
A E−1

A =

(
0d×d −Id×d
Id×d 0d×d

)(
AT −CT
−BT DT

)(
0d×d Id×d
Id×d 0d×d

)
GAE−1

A

=

(
BT −DT

AT −CT
)(

0d×d Id×d
Id×d 0d×d

)
GAE−1

A

=

(
−DT BT

−CT AT

)
GAE−1

A

=

(
−Id×d 0d×d
0d×d Id×d

)
G−1

A GAE−1
A = −QE−1

A .

This proves (7.12). A simple computation shows that

(δ−1
A E−1

A z)1 · (δ−1
A E−1

A z)2 = (QE−1
A z)1 · (QE−1

A z)2 = −(E−1
A z)1 · (E−1

A z)2,
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that entails

e−iπ(δ
−1
A E−1

A z)1·(δ−1
A E−1

A z)2 = eiπ(E
−1
A z)1·(E−1

A z)2 = ΦL/2(E−1
A z).

Plugging all the information in (7.15), we find

πA(z)
−1 = |det(EA)|1/2ΦMA+L(E

−1
A z)Φ−L/2(E

−1
A z)ΦL/2(E−1

A z)π(QE−1
A z)δ̂A

−1
.

This proves (i).

To prove (ii), we prove that πA(z)∗ is expressed by (7.15), up to the deter-
minant factor. For, let f, g ∈ L2(Rd) and z ∈ R2d. By (7.10),

⟨πA(z)∗f, g⟩ = ⟨f, πA(z)g⟩

= ⟨f, |det(EA)|−1/2Φ−MA−L(E
−1
A z)π(E−1

A z)δ̂Ag⟩

= ⟨|det(EA)|−1/2ΦMA+L(E
−1
A z)δ̂A

−1
π(E−1

A z)−1f, g⟩
= ⟨|det(EA)|−1πA(z)

−1f, g⟩

and the assertion follows.

7.3 Atoms of Covariant Metaplectic Wigner distribu-
tions

In this section we derive the expression of metaplectic atoms of covariant meta-
plectic Wigner distributions. We recall their definition, cf. [31]

Definition 7.20. A metaplectic Wigner distribution WA is covariant if

WA(π(z)f, π(z)g) = TzWA(f, g)

holds for every z ∈ R2d and all f, g ∈ L2(Rd).

The following result summarizes [31, Proposition 2.10 and Theorem 2.11]
and states that covariance characterises the Cohen’s class of metaplectic Wigner
distributions.

Proposition 7.21. Let Â ∈ Mp(2d,R) and WA be the associated metaplectic
Wigner distribution. The following statements are equivalent:
(i) WA is covariant.
(ii) The matrix A = πMp(Â) has block decomposition

A =


A11 Id×d −A11 A13 A13

A21 −A21 Id×d −AT11 −AT11
0d×d 0d×d Id×d Id×d
−Id×d Id×d 0d×d 0d×d

 , (7.16)
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with A13 = AT13 and A21 = AT21.
(iii) WA belongs to the Cohen’s class, namely

WA(f, g) = ΣA ∗W (f, g), f, g ∈ L2(Rd),

where ΣA = F−1Φ−BA , with BA defined as in (2.24).

Theorem 7.22. Let WA be a covariant metaplectic Wigner distribution, A and
BA be as in (7.16) and (2.24), respectively. Then,
(i) for every z ∈ R2d,

πA(z)g
S′
= 2d

∫
R2d

FΦBA(z − w)Φ−2L(w)π(2w)Igdw, (7.17)

where Ig(t) = g(−t) and the integral must be interpreted in the weak sense of
vector-valued integration.
(ii) If also BA ∈ GL(2d,R), then, for every z ∈ R2d,

πA(z)g
S′
= 2d

∫
R2d

Φ−B−1
A
(z − w)Φ−2L(w)π(2w)Igdw, g ∈ S(Rd) (7.18)

holds in the weak sense of vector-valued integration.
(iii) If A∗ is the matrix defined in (7.26), then WA∗ is covariant with BA∗ = −BA
and, consequently,

πA(z)
∗g

S′
= 2d

∫
R2d

FΦ−BA(z − w)Φ−2L(w)π(2w)Igdw,

for all g ∈ S(Rd) and every z ∈ R2d. If BA is invertible, then

πA(z)
∗g

S′
= 2d

∫
R2d

ΦB−1
A
(z − w)Φ−2L(w)π(2w)Igdw,

for every g ∈ S(Rd) and z ∈ R2d.

Proof. (i) By Proposition 7.21, for all φ, g ∈ S(Rd) and all z ∈ R2d,

⟨φ, πA(z)g⟩ =WA(φ, g)(z)

= ΣA ∗W (φ, g)(z)

=

∫
R2d

ΣA(z − w)W (φ, g)(w)dw

=

∫
R2d

FΦBA(z − w)⟨φ, πA1/2
(w)g⟩dw

=

〈
φ,

∫
R2d

FΦBA(z − w)πA1/2
(w)gdw

〉
,
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where we used that F−1Φ−BA = FΦBA . Consequently,

πA(z)g =

∫
R2d

FΦBA(z − w)πA1/2
(w)gdw.

Plugging τ = 1/2 in (7.11), we infer the explicit metaplectic atom of the Wigner
distribution: for w = (x, ξ) ∈ R2d,

πA1/2
(x, ξ)g(t) = 2de−4πix·ξπ(2x, 2ξ)Ig(t) = 2dΦ−2L(w)π(2w)Ig(t).

Expression (7.17) follows consequently.

(ii) If BA is invertible, then FΦBA = Φ−B−1
A

, and (7.18) holds in the weak
sense of vector-valued integration.

(iii) By (7.26) and (7.16), it follows that

A∗ =


Id×d −A11 A11 −A13 −A13

−A21 A21 AT11 AT11 − Id×d
0d×d 0d×d Id×d Id×d
−Id×d Id×d 0d×d 0d×d

 .

Therefore, WA∗ is covariant by Proposition 7.21 (ii), with

BA∗ =

(
−A13

1
2Id×d − (Id×d −A11)

1
2Id×d − (Id×d −A11)

T A21

)
=

(
−A13 A11 − 1

2Id×d
AT11 − 1

2Id×d A21

)
= −BA.

So, (iii) follows by (i) and (ii).

7.4 Metaplectic Gabor frames

Definition 7.23. Let WA be a metaplectic Wigner distribution such that every
πA(z) extends to a bounded operator on L2(Rd) (z ∈ R2d). Let g ∈ L2(Rd) and
Λ ⊂ R2d be a discrete subset. We call the set

GA(g,Λ) = {πA(λ)g}λ∈Λ

a metaplectic Gabor system. We call metaplectic Gabor frame of L2(Rd)
any metaplectic Gabor system GA(g,Λ) such that the following property holds:
there exist A,B > 0 such that

A ∥f∥22 ≤
∑
λ∈Λ

|WA(f, g)(λ)|2 ≤ B ∥f∥22 , (7.19)

for all f ∈ L2(Rd).
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Remark 7.24. By Definition 7.1, (7.19) is equivalent to

A ∥f∥22 ≤
∑
λ∈Λ

|⟨f, πA(λ)g⟩|2 ≤ B ∥f∥22 , ∀f ∈ L2(Rd).

Stated differently, a metaplectic Gabor frame is a frame for L2(Rd).

Example 7.25. In [36], M. de Gosson introduced ℏ-Gabor frames as follows.
Consider g ∈ L2(Rd) and Λ a discrete subset of R2d. Under the same notation of
Example 7.4, a family Gℏ(g,Λ) = {πℏ(λ)g}λ∈Λ is a ℏ-Gabor frame if

A ∥f∥22 ≤
∑
λ∈Λ

|⟨f, πℏ(λ)g⟩|2 ≤ B ∥f∥22 , ∀f ∈ L2(Rd),

for A,B > 0. The time-frequency representation z 7→ ⟨f, πℏ(z)g⟩ is, up to the
constant (2πℏ)−d/2 (which is necessary to obtain a metaplectic operator in Ex-
ample 7.4), the metaplectic Wigner distribution V ℏ, as defined in Example 7.4.
Hence, metaplectic Gabor frames GAℏ and ℏ-Gabor frames are basically the same
objects. Namely, Gℏ(g,Λ) is a ℏ-Gabor frame with frame bounds A,B if and
only if GAℏ(g,Λ) is a metaplectic Gabor frame with frame bounds (2πℏ)−dA and
(2πℏ)−dB.

Metaplectic Gabor frames associated to shift-invertible Wigner distributions
are completely characterized by the following consequence of Corollary 7.16.

Theorem 7.26. Let WA be shift-invertible and δ̂A be the corresponding defor-
mation operator (see Definition 7.17). Let g ∈ L2(Rd) and Λ ⊆ R2d be a discrete
subset. The following statements are equivalent:
(i) GA(g,Λ) is a metaplectic Gabor frame with bounds A,B;
(ii) G(δ̂Ag,E−1

A Λ) is a Gabor frame with bounds | det(EA)|A, |det(EA)|B;
(iii) G(g,−QE−1

A Λ) is a Gabor frame with bounds | det(EA)|A, |det(EA)|B.

Proof. Consider f ∈ L2(Rd). We use the representation of πA in (7.10):∑
λ∈Λ

|⟨f, πA(λ)g⟩|2 =
∑
λ∈Λ

|⟨f, |det(EA)|−1/2π(E−1
A λ)δ̂Ag⟩|2

= | det(EA)|−1
∑

µ∈E−1
A Λ

|⟨f, π(µ)δ̂Ag|2.

This proves the equivalence (i) ⇔ (ii). Now, using (2.13), we can write

|det(EA)|−1
∑

µ∈E−1
A Λ

|⟨f, π(µ)δ̂Ag|2 = |det(EA)|−1
∑

µ∈E−1
A Λ

|⟨f, δ̂Aπ(δ−1
A µ)g⟩|2

= |det(EA)|−1
∑

µ∈E−1
A Λ

|⟨δ̂A
−1
f, π(δA

−1µ)g⟩|2

= |det(EA)|−1
∑

ν∈δA−1E−1
A Λ

|⟨δ̂A
−1
f, π(ν)g⟩|2.
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Observing that δ−1
A E−1

A = −QE−1
A ,

|det(EA)|−1
∑

µ∈E−1
A Λ

|⟨f, π(µ)δ̂Ag|2 = |det(EA)|−1
∑

ν∈−QE−1
A Λ

|⟨δ−1
A f, π(ν)g⟩|2.

Therefore, GA(g,Λ) is a metaplectic Gabor frame with frame bounds A and B if
and only if

A ∥f∥22 ≤ |det(EA)|−1
∑

µ∈−QE−1
A Λ

|⟨δ−1
A f, π(µ)g⟩|2 ≤ B ∥f∥22 , f ∈ L2(Rd).

(7.20)
Since δ̂A

−1
is a unitary operator on L2(Rd), it follows that (7.20) holds for all

f ∈ L2(Rd) if and only if

| det(EA)|A ∥f∥22 ≤
∑

µ∈−QE−1
A Λ

|⟨f, π(µ)g⟩|2 ≤ |det(EA)|B ∥f∥22

holds for every f ∈ L2(Rd). This proves the equivalence (i) ⇔ (iii).

Remark 7.27. For ℏ-Gabor frames, Example 7.25 shows that Theorem 7.26 ap-
plied to the metaplectic Wigner distributions of Example 7.4 recovers [36, Propo-
sition 7].

We now introduce the metaplectic Gabor frame operator and related proper-
ties.

First, consider a lattice Λ ⊂ R2d and a metaplectic Gabor frame GA(g,Λ) =
{πA(λ)g}λ∈Λ for L2(Rd). We compute the expressions of coefficient, reconstruc-
tion and frame operators, see, e.g., [29, Definitions 3.1.8 and 3.1.13]. The coeffi-
cient (or analysis) operator CA : L2(Rd) → ℓ2(Λ) is given by

CAf = (⟨f, πA(λ)g⟩)λ∈Λ = (WA(f, g)(λ))λ∈Λ, f ∈ L2(Rd).

Its adjoint DA = C∗
A : ℓ2(Λ) → L2(Rd) is called the reconstruction (or synthesis)

operator: for any sequence c = (cλ)λ∈Λ ∈ ℓ2(Λ),

DAc =
∑
λ∈Λ

cλπA(λ)g.

The frame operator is defined as SA = DACA : L2(Rd) → L2(Rd):

SAf =
∑
λ∈Λ

⟨f, πA(λ)g⟩πA(λ)g =
∑
λ∈Λ

WA(f, g)(λ)πA(λ)g.
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Let us compute πA(µ)−1SAπA(µ), for µ ∈ Λ. We make use of the explicit
expression of the inverse and the adjoint of the metaplectic atom (7.10) in (7.13),
and (7.14), respectively. Observing that the phase factors cancel, we obtain

πA(µ)
−1SAπA(µ)f =

∑
λ∈Λ

⟨πA(µ)f, πA(λ)g⟩πA(µ)−1πA(λ)g

=
∑
λ∈Λ

⟨f, πA(µ)∗πA(λ)g⟩πA(µ)−1πA(λ)g

= |det(EA)|−1
∑
λ∈Λ

⟨f, πA(µ)−1πA(λ)g⟩πA(µ)−1πA(λ)g

= |det(EA)|−1
∑
λ∈Λ

⟨f, δ̂A
−1
π(E−1

A µ)−1π(E−1
A λ)δ̂Ag⟩

× δ̂A
−1
π(E−1

A µ)−1π(E−1
A λ)δ̂Ag

= |det(EA)|−1
∑
λ∈Λ

⟨f, δ̂A
−1
π(E−1

A (λ− µ))δ̂Ag⟩δ̂A
−1
π(E−1

A (λ− µ))δ̂Ag

= |det(EA)|−1
∑
λ∈Λ

⟨f, δ̂A
−1
π(E−1

A λ)δ̂Ag⟩δ̂A
−1
π(E−1

A λ)δ̂Ag

=
∑
λ∈Λ

⟨f, δ̂A
−1
πA(λ)g⟩δ̂A

−1
πA(λ)g

=
∑
λ∈Λ

⟨δ̂Af, πA(λ)g⟩δ̂A
−1
πA(λ)g

= δ̂A
−1
SAδ̂Af,

since δ̂A
−∗

= δ̂A.

The equality
πA(µ)

−1SA = δ̂A
−1
SAδ̂AπA(µ)

−1

yields
S−1
A πA(µ) = πA(µ)δ̂A

−1
S−1
A δ̂A.

Hence the canonical dual frame of GA(g,Λ) is still a metaplectic Gabor frame

GA(γA,Λ) = {πA(λ)γA}λ∈Λ

with canonical dual window

γA = δ̂A
−1
S−1
A δ̂Ag. (7.21)

Consequently, if GA(g,Λ) is a frame with bounds 0 < A ≤ B, then every
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f ∈ L2(Rd) possesses the expansions

f =
∑
λ∈Λ

⟨f, πA(λ)g⟩πA(λ)γA (7.22)

=
∑
λ∈Λ

⟨f, πA(λ)γA⟩πA(λ)g (7.23)

with unconditional convergence in L2(Rd). Besides, we have the norm equiva-
lences

A∥f∥22 ≤
∑
λ∈Λ

|⟨f, πA(λ)g⟩|2 ≤ B∥f∥2

B−1∥f∥2 ≤
∑
λ∈Λ

|⟨f, πA(λ)γA⟩|2 ≤ A−1∥f∥22.

7.5 Characterization of Time-frequency spaces

A direct application of the theory developed so far is the whole characterization of
modulation spaces. Namely, the issue below generalizes Theorem 1.1 in [19] to the
quasi-Banach space setting, extending the indices p, q ∈ [1,∞] to 0 < p, q ≤ ∞.
Whenever p ̸= q we need the assumption EA upper-triangular, that is, the 2× 1
block of EA in (2.21) satisfies A21 = 0d×d. This requirement is needed for the
use of Theorem 6.15.

Theorem 7.28. Fix a non-zero window function g ∈ S(Rd). Consider 0 < p, q ≤
∞, WA shift-invertible and a weight m ∈ Mv(R2d) with m ≍ m ◦ E−1

A . Then
(i) For 0 < p ≤ ∞ and we have

f ∈Mp
m(Rd) ⇔ WA(f, g) ∈ Lpm(R2d),

with equivalence of norms.
(ii) If we add the assumption that EA is upper-triangular, then

f ∈Mp,q
m (Rd) ⇔ WA(f, g) ∈ Lp,qm (R2d),

with equivalence of norms.

Proof. Take f ∈Mp,q
m (Rd). From the equality (7.8) we infer

|WA(f, g)|(z) = |TE−1
A
ΦMA+LVδ̂Ag

f |(z) = |TE−1
A
V
δ̂Ag

f |(z)

= | det(EA)|−1/2|V
δ̂Ag

f |(E−1
A z).

Since δ̂A : S(Rd) → S(Rd), we can choose the window δ̂Ag ∈ S(Rd) to compute
the modulation space norm so that

∥WA(f, g)∥Lp,q
m

≍ ∥V
δ̂Ag

f(E−1
A ·)∥Lp,q

m
.

The conclusion follows from Theorem 6.15.
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In what follows we generalize [19, Corollary 3.12] to the quasi-Banach space
setting 0 < p, q ≤ ∞.

Theorem 7.29. Fix a non-zero window function g ∈ S(Rd). Consider 0 <
p, q ≤ ∞, WA shift-invertible and m1,m2 ∈ Mv(Rd) such that m2 ≍ Im2, with
Im2(x) = m2(−x). Fix g ∈ S(Rd) \ {0} and define

ẼA = JEAJ,

with the symplectic matrix J defined in (2.9). (Observe that E−1
A is lower trian-

gular if and only if ẼA is upper triangular). If m1 ⊗m2 ≍ (m1 ⊗m2) ◦ Ẽ−1
A and

EA is lower triangular, then

∥f∥W (FLp
m1

,Lq
m2

) ≍
(∫

Rd

(∫
Rd

|WA(f, g)(x, ξ)|pm1(ξ)
pdξ
)q/p

m2(x)
qdx
)1/q

,

with the analogous for max{p, q} = ∞.

Proof. As in the proof of Corollary 3.12 in [19], assuming m2(−x) = m2(x), we
can write(∫

Rd

(∫
Rd

|WA(f, g)(x, ξ)|pm1(ξ)
pdξ
)q/p

m2(x)
qdx
)1/q

≍
∥∥∥WÃ0

(f̂ , ĝ)
∥∥∥
Lp,q
m1⊗m2

,

Ã0 =


−A23 A24 A21 −A22

A13 −A14 −A11 A12

−A43 A44 A41 −A42

A33 −A34 −A31 A32

 ,

so that ẼA = EÃ0
. The conclusion is due to Theorem 7.28

If p = q the additional assumption E−1
A lower triangular is not needed. Ob-

serve that in this case ∥f∥W (FLp
m1

,Lp
m2

) ≍ ∥f∥Mp
m2⊗m1

, and the norm equivalence
follows from Theorem 7.28 above. In fact, notice that

(m1 ⊗m2) ◦ E−1
A ≍ (Im2 ⊗m1)⊗ Ẽ−1

A .

Consider a metaplectic Gabor frame GA(g,Λ) and assume

m ≍ m ◦ E−1
A , (7.24)

then, for any f ∈Mp,q
m (Rd) we can use (7.10) to express the coefficient operator’s

entries

|CAf(λ)| = |⟨f, πA(λ)g⟩| = | det(EA)|−1/2|⟨f, π(E−1
A λ)δ̂Ag⟩|.
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Observe that δ̂Ag ∈ S(Rd) for g ∈ S(Rd), by Theorem 7.26 (ii); further-
more, G(δ̂Ag,E−1

A Λ) is a Gabor frame with coefficient operator C satisfying
∥Cf∥ℓp,qm (E−1

A Λ) ≲ ∥f∥Mp,q
m

, so that the equivalence of weights in (7.24) gives

∥CAf∥ℓp,qm (Λ) = |det(EA)|−1/2∥Cf∥ℓp,qm (E−1
A Λ) ≲ ∥f∥Mp,q

m
,

that is the boundedness of CA :Mp,q
m (Rd) → ℓp,qm (Λ).

Using the relation between πA(λ) and the time-frequency shift π(E−1
A λ)

displayed in (7.10), and the equivalence of weights in (7.24), for any sequence
cλ ∈ ℓp,qm (Λ), the sequence c̃µ := cEAµΦMA+L(µ) ∈ ℓp,qm (E−1

A Λ) so that

∥DAcλ∥Mp,q
m (Rd) =

∥∥∥∥∥∑
λ∈Λ

cλπA(λ)g

∥∥∥∥∥
Mp,q

m (Rd)

≍

∥∥∥∥∥∥∥
∑

µ∈E−1
A Λ

c̃µπ(E
−1
A λ)δ̂Ag

∥∥∥∥∥∥∥
Mp,q

m (Rd)

≲ ∥(c̃µ)∥ℓp,qm (E−1
A Λ) ≍ ∥(cλ)∥ℓp,qm (Λ).

For the Banach space case p, q ∈ [1,+∞], the window class can be extended
from S(Rd) to M1

v (Rd). In fact, under the assumption (7.24), the metaplectic
operator δ̂A and its inverse are bounded on M1

v (Rd), cf. [53, Theorem 4.6].
Hence, g ∈M1

v (Rd) ⇐⇒ δ̂Ag ∈M1
v (Rd) . Arguing as for the Schwartz class and

using the results for Gabor frames [65, Chapter 12] we infer that the coefficient
operator CA is bounded from Mp,q

m (Rd) to ℓp,qm (Λ) and the other way round for
the reconstruction operator DA.

The observations above, together with the characterization of modulation
spaces via Gabor frames (see, e.g., [29, Theorem 3.2.37] and [54]) yield an equiv-
alent discrete norm for modulation spaces in terms of metaplectic Gabor frames.
Namely,

Theorem 7.30. Consider GA(g,Λ) a metaplectic Gabor frame for L2(Rd) with
bounds 0 < A ≤ B, with g ∈ S(Rd) and canonical dual window γA in (7.21).
Assume WA shift-invertible and m ∈ Mv(R2d), with m ≍ m ◦ E−1

A . Then,
(i) For every 0 < p, q ≤ ∞, CA : Mp,q

m (Rd) → ℓp,qm (Λ) and DA : ℓp,qm (Λ) →
Mp,q
m (Rd) continuously. If f ∈Mp,q

m (Rd), then the expansions in (7.22) converge
unconditionally in Mp,q

m for 0 < p, q < ∞, and weak∗-M∞
1/v unconditionally if

p = ∞ or q = ∞.
(ii) The following (quasi-)norms are equivalent on Mp,q

m (Rd)

A∥f∥Mp,q
m (Rd) ≤ ∥(⟨f, πA(λ)g⟩)λ∈Λ∥ℓp,qm (Λ) ≤ B∥f∥Mp,q

m (Rd),

B−1∥f∥Mp,q
m (Rd) ≤ ∥(⟨f, πA(λ)γA⟩)λ∈Λ∥ℓp,qm (Λ) ≤ A−1∥f∥Mp,q

m (Rd).

Remark 7.31. Assume g, γ ∈M1
v (Rd) with v satisfying (7.24) and such that

SA,g,γ = DA,γCA,g = I, on L2(Rd).

For p, q ∈ [1,∞], the statements of the previous theorem hold in the larger
window class M1

v (Rd), with the canonical dual window γA replaced by γ.
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7.6 Appendix C

In [31], the authors proved the following result, cf. [31, Proposition 2.6]:

Proposition 7.32. Let Â ∈ Mp(2d,R) and WA be the corresponding metaplectic
Wigner distribution. Then, there exists Â∗ ∈ Mp(2d,R) such that for all f, g ∈
L2(Rd),

WA(g, f) =WA∗(f, g) (7.25)

up to a sign.

In what follows we shall improve Proposition 7.32, carrying over the explicit
expression of the projection A∗ in (7.25). First, we need to compute the inter-
twining relation between complex conjugation and metaplectic operators.

Proposition 7.33. Let Ŝ ∈ Mp(d,R) be a metaplectic operator and S = πMp(Ŝ)
have block decomposition (7.3). Define

S̄ :=

(
A −B
−C D

)
.

Then, for all f ∈ L2(Rd),
Ŝf̄ = ˆ̄Sf.

Proof. Let T the operator defined by

Tf = Ŝf̄ , f ∈ L2(Rd).

Since Ŝ is a unitary operator on L2(Rd), T is a unitary operator on L2(Rd). We
have to prove that T satisfies the intertwining relation in (2.13) for A = S̄. For,
let z = (x, ξ) ∈ R2d and take τ ∈ R. Then,

Tρ(z; τ)f = Ŝρ(z; τ)f

= Ŝρ(x,−ξ;−τ)f̄

= ρ(S(x,−ξ);−τ)Ŝf̄

= e−2πiτe−iπ(Ax−Bξ)·(Cx−Dξ)π(Ax−Bξ,Cx−Dξ)Ŝf̄

= e2πiτe−iπ(Ax−Bξ)·(−Cx+Dξ)π(Ax−Bξ,−Cx+Dξ)Ŝf̄

= ρ(S̄(x, ξ); τ)Tf,

as desired.

Corollary 7.34. Under the assumptions of Proposition 7.32, we have

A∗ = ADL



7. Metaplectic Gabor frames 160

with the matrix L defined in (2.25). Namely, if A has block decomposition (2.20),
A∗ is given by

A∗ =


A12 A11 −A14 −A13

A22 A21 −A24 −A23

−A32 −A31 A34 A33

−A42 −A41 A44 A43

 . (7.26)

Proof. Observe that D̂LF (x, y) = F (y, x), so that, for every f, g ∈ L2(Rd),

g ⊗ f(x, y) = f(y)g(x) = f ⊗ g(y, x) = f ⊗ g(DL(x, y)) = D̂L(f ⊗ g)(x, y).

By Proposition 7.33, it follows that, up to a sign,

WA(f, g) = Â(f ⊗ ḡ) = Â(f̄ ⊗ g) = Â(f̄ ⊗ g) = ÂDL(g ⊗ f̄) =WA∗(g, f).

Assuming that A exhibits the block decomposition (2.20), a straightforward com-
putation yields (7.26). This concludes the proof.

Remark 7.35. A straightforward computation shows that ST = ST . In fact, if S
has block decomposition (7.3),

S
T
=

(
AT −CT
−BT DT

)
,

whereas

ST =

(
AT CT

BT DT

)
, so that ST =

(
AT −CT
−BT DT

)
= S

T
.



Chapter 8

Conclusions and future directions

8.1 Tuning parameters selection

We discussed the selection of tuning parameters for weighted and generalized
LASSO problems in Chapters 3 and 4.

8.1.1 The weighted LASSO

In Chapter 3 we studied the equivalent of Lagrange multipliers for minimization
problems with inequality constrains in the framework of weighted LASSO:

minimize ∥Ax− b∥22 +
n∑
j=1

λj |xj |, for x ∈ Rn.

The relation between λ1, . . . , λn and the constraints of the corresponding con-
strained problem

minimize ∥Ax− b∥22 subject to |xj | ≤ τj , j = 1, . . . , n

is computed in the following settings:

• ATA diagonal,

• the derivatives of ∥Ax− b∥22 have constant sign in
∏n
j=1[−τj , τj ],

with the purpose of getting insights about the relation λ = λ(τ) in this particular
scenario, where λ = (λ1, . . . , λn) and τ = (τ1, . . . , τn).

As long as ATA is not a diagonal matrix, the geometries of the sets G and
A of the points satisfying (3.22) and (3.23) respectively, become more involved,
along with the possible casuistry. However, the general case in which ATA is not
diagonal would be of great importance in applications. Indeed, as long as the
approximate Lagrange multipliers are proved to act as effective tuning parame-
ters, the behavior of approximate Lagrange multipliers for the weighted LASSO

161
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problem (3.4) in terms of voxel-wise estimates would provide a way to control
the tuning parameters via estimates of the τj .

Another open problem is whether it is possible to apply the same procedure
to compute the Lagrange multipliers for (1.13). Clearly, the corresponding sets G
and A lie in R2 so that the function describing the boundary of A, that we called
g, maps R to itself. Despite this simplifying fact, the set G is characterized by:{

u = s(x)Tx− τ,

t = ∥Ax− b∥22
for some x ∈ Rn,

where s(x) ∈ Rn is a vector such that diag(s(x)j) ∈ sgn(x) and, in this case,
u and x belong to different spaces and a closed form for t = t(u) is even more
difficult to provide.

Finally, we stress that it would be important to generalize (3.17) up to con-
sider different inner products on Rn. Namely, this is the situation that occurs
in MRI when the undersampling pattern is non-Cartesian. Problem (3.4) in this
case becomes:

min
x

∥Ax− b∥2W +
∑
j

λj |xj |,

where
∥x∥W = xTW TWx (x ∈ Rn),

for a definite positive diagonal matrix W . Since this topic falls beyond the
purpose of this work, we limit ourselves to mention the very mathematical reason
why the weighted norm shall definitely replace the Euclidean norm over Rn when
sampling is not performed on a cartesian grid. Indeed, non-Cartesian sampling
patterns require appropriate discretizations of the Fourier transform integral.
Roughly speaking,

f̂(ξ) ≈
∑
j

f(xj)e
−2πiξ·xj∆xj = ⟨f, e2πiξ·⟩W ,

where ∆xj is the Lebesgue measure of an adequate neighborhood of xj , weighting
the contribution of the sample xj , and W is the diagonal matrix whose entries
are

√
∆xj . The inversion formula of the Fourier transform shall be modified

accordingly. For instance, if the sampling follows a radial/spiral trajectory, ∆xj
shall be bigger the further xj is from the origin, since this value serves as an
avarage of f on a portion of sphere that is larger as xj is far from the origin.

8.1.2 ALMA for tuning and reconstruction

In Chapter 4, we achieved our three main objectives:

• We defined an iterative procedure to approximate Lagrange multipliers.
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A B

Figure 8.1: Reconstructions of the Shepp-Logan brain phantom under radial
sampling, with NL% = 15/100 and UR% = 15%. The reconstruction obtained
with the ALM is displayed on the left. The reconstruction obtained with the
parameter that maximizes the mSSIM is displayed on the right. Observe that
the two images are almost indistinguishable.

• We demonstrated the efficiency of ALM as tuning parameters for TV-
weighted g-LASSO in the context of MRI.

• We assessed the quality of the reconstructions using image quality metrics,
including mSSIM, pSNR, and CJV.

Our results show that ALMA performs almost optimally across varying levels
of noise and undersampling, consistently yielding high-quality reconstructions
in terms of image quality metrics. This iterative algorithm offers significant
advantages by actively computing the tuning parameter during reconstruction,
which enhances computational efficiency and ease of implementation.

The strength of ALMA, however, does not limit to TV based LASSO denois-
ing, or to Cartesian undersampling. For example, we repeated our experimental
framework in extreme conditions (NL% = 15/100 and UR% = 15%), but with
radial sampling. The quality of the reconstruction is undoubtedly comparable to
the best reconstruction in terms of mSSIM, as displayed in fig. 8.1.

Therefore, while our focus was on TV-LASSO, the principles underlying
ALMA can be adapted to other models, paving the way for broader applica-
tions. For practical MRI applications, however, accurate estimates of the norm
of the noise remain a fundamental challenge for the implementation of ALMA.
Indeed, to apply ALMA concretely to MRI, an efficient way to estimate the pa-
rameter η, estimating

∥∥Ax# − b
∥∥
2

from above, where x# is the reconstruction
and b is the sampled data, has to be found. Moreover, it is still unclear whether
a small perturbations of η correspond to small variations of the estimated ALM.
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8.2 Metaplectic Wigner distributions

We proved that shift-invertibility is really the key property that metaplectic
Wigner distributions must satisfy to characterize modulation spaces quasi-norms.
Nevertheless, the research on metaplectic Wigner distributions does not limit to
the results detailed in the previous chapters. The question of whether

Mp,q
m (Rd) = {f ∈ S ′(Rd) : ∥WA(f, g)∥Lp,q

m
<∞}

for some WA not shift-invertible, was not approached in this thesis. Nevertheless,
this was proved in [58]. To be precise, we proved that for every 0 < p ≤ ∞ and
for every WA not shift-invertible,

Mp(Rd) ̸= {f ∈ S ′(Rd) : ∥WA(f, g)∥Lp <∞}.

Consequently, a metaplectic Wigner distribution WA defines the quasi-norms of
(all) modulation spaces if and only if WA is shift-invertible, in addition to further
compatibility conditions on the submatrix EA of the projection A with respect
to the weight m. As far as other properties of metaplectic Wigner distributions
are concerned, it is easy to verify (sneak peek) that WAf is a real-valued func-
tion if and only if WA is a rescaled (classical) Wigner distribution. In [22], the
metaplectic Wigner distributions WA having the property that

WA(f, g) = VφfVψg, f, g ∈ S(Rd),

for some φ,ψ ∈ S ′(Rd), are characterized. Time-frequency representations of
this form are called generalized spectrograms. Let us mention that to expand the
class of metaplectic generalized spectrograms, so that it encompasses Gaussians,
metaplectic Wigner distributions with complex symplectic projection are needed.
Indeed, the chirp eiπCt·t, C symmetric and t ∈ Rd, becomes a Gaussian when
C = iId×d.

After studying metaplectic Wigner distributions, along with Cordero, Rodino,
Pucci and Valenzano, we introduced Wigner analysis of operators. This analy-
sis was briefly introduced at the end of Chapter 5 and roughly speaking, it is
about providing an implicit way of representing globally Fourier integral opera-
tors (FIO), with suitable phases, avoiding the so-called caustics. Wigner analysis
and metaplectic Wigner distributions are not separate: let us mention that the
approach of metaplectic Wigner distributions allowed to prove the following result
in [21]:

kT ∈Mp
m(R2d) ⇐⇒ kW ∈Mp

m(R4d),

when either m = 1⊗vs or m = vs (s ≥ 0, vs = (1+ | · |2)s/2), for every 0 < p ≤ ∞,
where KT is the Schwartz kernel of a linear operator T , and kW is its Wigner
kernel. To conclude, an open project with prof. Cordero and Rodino consists of
studying wavefront sets and Wigner kernels corresponding to metaplectic Wigner
distributions, other than the classical τ -Wigner distributions and the STFT. In
short, Wigner analysis of operators by means of metaplectic Wigner distributions.
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8.3 Conclusions

Despite being widely studied and seemingly well understood, tuning parameters
remain a challenging issue in practical applications. Numerous studies address
their approximation, yet their use in MRI frameworks remains limited. More
recently, machine learning approaches have been adopted to bypass traditional
parameter estimation methods. However, in medical imaging, the lack of available
data often limits the use of such learning algorithms. Compressed sensing, which
does not rely on extensive datasets, and LASSO problems are still widely used for
MRI reconstructions. Our work provides a solid foundation for further research
aimed at improving parameter estimation and advancing MRI reconstruction
techniques.

On the other hand, time-frequency analysis offers valuable tools to examine
local frequencies in signals that evolve over time, though its potential is still
poorly explored in the context of medical imaging. MRI of moving organs, such
as the heart and eyes, requires techniques to segment data in the k-space accord-
ing to motion phases, enabling the capture of clear images or footage. Current
methods rely heavily on specialized hardware during scans to track motion. In
principle, time-frequency analysis could automate the identification of motion
phases by selecting appropriate time-frequency representations. Representations
such as fractional Fourier transforms, Wigner distributions, and the ambiguity
function, as well as metaplectic generalized spectrograms, hold significant poten-
tial for application in MRI of moving organs.

Looking forward, time-frequency analysis on graphs, which is currently be-
ing developed in collaboration with Professors Bulai, Cordero, and Saliani, may
further advance this field. While there is still much work to be done, this ap-
proach could play a key role in realizing the full potential of MRI, setting us on
a promising path in the search for its Holy Grail.
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