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Abstract

The corpuscular model describes black holes as leaky bound states of gravitons. To
account for the role of matter, an improved description of nonuniform geometries can
be obtained by employing coherent states of gravitons, which recovers the Newtonian
potential (with necessary departures) from a coherent state for a scalar �eld of gravitons
in �at spacetime.

Given that the majority of black holes in nature are very likely to spin, we study
the quantum hair associated with coherent states describing slowly rotating black holes
and show how it can be naturally related with the Bekenstein-Hawking entropy and with
1-loop quantum corrections of the metric for the (e�ectively) non-rotating case. We also
estimate corrections induced by such quantum hair to the temperature of the Hawking
radiation through the tunnelling method.

We then provide a concise review of the key features of the horizon quantum mechanics
formalism. This formalism is then applied to electrically neutral and spherically symmetric
black hole geometries emerging from coherent quantum states of gravity to compute the
probability that the matter source is inside the horizon. We �nd that quantum corrections
to the classical horizon radius become signi�cant if the matter core has a size comparable
to the Compton length of the constituents and the system is indeed a black hole with
probability very close to one unless the core radius is close to the (classical) gravitational
radius.
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Chapter 1

Introduction

1.1 Motivations and outline

The contemplation and discussion of space and time have run through nearly the entire
history of human thought and civilization. As early as the pre-Qin period of ancient China
(around 300BC), Qu Yuan raised a profound question in �天问� (`Tian Wen' in Chinese,
referring to Heavenly Questions) �Before the formation of heaven and earth, how can their
origins be examined?� During the Warring States period in ancient China, Shi Jiao, in
his work �Shi Zi,� concluded with the statement �The four directions and above and below
are called �宇� (`Yu' in Chinese, referring to the in�nite space), the past and present are
called �宙� (`Zhou' in Chinese, referring to the in�nite time)� suggesting that our universe
(�宇宙� in Chinese) constitutes a holistic entity encompassing all time and space. During
the same period, ancient Greek philosophers such as Parmenides, Heraclitus, and Zeno
began philosophical inquiries into time and space. Parmenides posited that time and
space are immutable, whereas Heraclitus argued for perpetual change in all things. In
the 17th century, Isaac Newton [1] proposed the concept of absolute space and time,
suggesting that the nature of space and time is independent of any object or motion,
thereby postulating the existence of absolute space and absolute time. By the early
20th century, Albert Einstein's theory [2, 3] had profoundly altered our understanding
of spacetime. He proposed that time and space are not absolute but rather relative,
intertwining to form a continuum of spacetime. Simultaneously, research in Quantum
Mechanics (QM) has revealed the peculiar properties of time and space in the microscopic
world, challenging many fundamental notions of classical physics.

General Relativity, formulated by Einstein in 1915, has been widely accepted as a
cornerstone of gravitational theory and it successfully predicted various phenomena, in-
cluding gravitational time dilation, gravitational lensing, and the gravitational redshift
of light. One of the most remarkable predictions is the existence of black holes [4�7]. A
black hole is a region of spacetime, where gravity is so strong that nothing, not even light,
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can escape from it. Black holes are very simple objects, at the classical level, since they
are completely characterized by their mass, their charge, and their angular momentum as
stated by the No Hair Theorem [8�14]. Some remarkable validations has arrived about a
century after the formulation of Einstein's theory. The release of the �rst image of the su-
permassive black hole M87∗ by the Event Horizon Telescope (EHT) Collaboration in 2019
provided direct visual evidence of black holes in our universe [15�20], demonstrating that
black holes are no longer merely theoretical models. The breakthrough in gravitational
wave astronomy from the LIGO and Virgo collaboration opened up another new observa-
tional window [21�23], allowing us to directly learn more about black holes. Gravitational
waves are predicted by General Relativity and described as �ripples� of the gravitational
�eld caused by some of the most violent and energetic processes in the Universes. Those
multiple direct channels provide us access to regions of black hole characterized by previ-
ously unexplored energy scales and spacetime curvature, enabling us to probe the strong
gravity regime for the �rst time. The information obtained may lead to the discovery of
new and unexpected phenomena.

As one of the most important predictions of general relativity, black holes are regions
of spacetime exhibiting an extremely strong gravitationoal �eld such that no light or
other radiation can escape from their interior. The boundary of such a region is called
the event horizon of the black hole. One can easily �nd that the location of the horizon
represents a coordinate singularity [24,25], which can be removed by an appropriate choice
of coordinates. However, the center of the black hole displays a singular behaviour which
cannot be removed by a coordinate transformation, which is referred to as curvature
singularity. The emergence of curvature singularities is the benchmark for the breakdown
of the classical general relativity, and contradicts one of the basic principle of quantum
mechanics, that is, a concentration of a �nite amount of energy in a point-like region
clearly violates the Heisenberg uncertainty principle. One may expect the quantum theory
will �x this inconsistent classical picture of the gravitational interaction. Many quantum
models of black holes have been proposed in the past years (for a very partial list, see Refs.
[26�42]). Some approaches, like the corpuscular picture [43�46], assume that the geometry
should only emerge at suitable (macroscopic) scales from the underlying (microscopic)
quantum �eld theory of gravitons [47�49]. It is demonstrated that attempting to provide
a quantum mechanical description of the background itself could o�er novel insights into
some of the most mysterious aspects of gravitational phenomena. Based on this idea, the
task of this thesis is to explore an improved description of nonuniform geometries, which
can be achieved by employing coherent states of gravitons [50, 51], leading to necessary
departures from the classical Schwarzschild metric [52] (and thermodynamics [53,54]).

This thesis dissertation is organized as follows. In chapter 2, we will introduce the
corpuscular model of a black hole as a bound state of gravitons, and the emerging nature
of the Einstein geometrical view of gravity is presented. In chapter 3 coherent states for
a quantum �eld are brie�y introduced. In chapter 4 presents the coherent state approach
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to the corpuscular model. A coherent state for the scalar graviton �eld is built with the
aim of reproducing the Newtonian con�guration coming from the bound state. In chapter
5, we �rst review the classical solutions of the Klein-Gordon equation and show how
coherent states of a massless scalar �eld on a reference �at spacetime associated to the
vacuum can be used to reproduce a black hole geometry with small angular momentum
in Section 5.1; Section 5.2 is devoted to studying the quantum hair of such coherent
state black holes, whose existence implies that information about the interior state is
present outside the horizon; the relation with the Bekenstein-Hawking entropy is derived
in Section 5.3, where corrections to the Hawking temperature are also estimated using
the semiclassical tunnelling methods. In chapter 6, we will �rst introduce the formalism
of the Horizon Wave Function in Section 6.1; we then reconstruct the state |ψS⟩ from
the e�ective energy density associated with the quantum corrected geometry (4.45) in
Section 6.2; using that result, we will obtain the horizon wavefunction in Section 6.3.
Finally, in chapter 7, we conclude with remarks and hints for future research.
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1.2 Notation and conventions

In this thesis, greek indices run over the values µ = 0, 1, 2, 3, and latin indices over
i = 1, 2, 3.

Repeated upper and lower Greek letters are summerd over,

AµBµ ≡
3∑

µ=0

AµBµ . (1.1)

We will adopt the �mostly plus convention� foe all Lorentzian manifolds, meaning that
the signature of the Minkowski metric is

ηµν = diag(−, +, +.+) . (1.2)

Where otherwise indicated, in this work the speed of light will be set equal to one,
c = 1, while the Planck constant ℏ and the Newton constant G will be left explicit.

The scalar product between two solutions of the Klein-Gordon equation, f1 and f2, is
written as

(f1|f2) = i

∫
d3x (f ∗

1 ∂tf2 − f2 ∂tf
∗
1 ) . (1.3)

Throughout the discussion of this thesis, we shall use the following notation.
RH: event horizon,
Rs: size of the source,
R∞: length associated to the time of collapse,
mp: Planck mass,
ℓp: Planck length,
UV, IR: ultraviolet and infrared.
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Chapter 2

Corpuscular picture

As one of the most fascinating entities in the cosmos predicted by General Relativity,
black holes even point beyond the classical theory, due to the presence of singularities,
which might just signal the breakdown of classical physics in strong �eld regime, and the
intriguing phenomenon of black hole thermodynamics [11, 55�60], which appears when
the predictions of Quantum Mechanics and General Relativity are combined. Moreover,
the evolution of black holes is not completely well understood at present, because it is
conceptually and technically involved. Since establishing a full quantum theory of gravity
remains nowadays a challenge, it is natural to ask if the available mathematical tools
and physical frameworks, can e�ectively describe the classical and semiclassical e�ects
involving black holes. Those e�ects have already been described by General Relativity and
Quantum Field Theory, but a more re�ned quantum description may provide additional
information and insights into the underlying physics.

To better understand classical or quantum gravitational e�ects, it is crucial to de-
termine the scale at which these e�ects become strong and therefore measurable. The
classical General Relativity contains no intrinsic length-scale. The only existing parame-
ter, the Universal gravitational constant GN, determines the intrinsic strength of gravity
and has a dimension of length divided by mass,

[GN] =
[length]

[mass]
. (2.1)

In order to establish a characteristic length of classical gravity, we need multiply GN by a
quantity with the dimension of mass (or energy), such as the energy (mass) of the source,
M . Combining these two quantities yields a length,

RH = 2GNM , (2.2)

known as Schwarzschild radius, which de�nes the distance at which the classical gravi-
tational e�ects of a gravitational source become dominant. As an intrinsically classical
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length, the Schwarzschild radius RH is the most important characteristics of the gravita-
tional properties of the source in classical gravity.

It is important to emphasize that the above length scale is purely classical, but nature
is fundamentally quantum. In order to explore quantum e�ects, we need consider the
Planck constant ℏ, which has dimension

[ℏ] = [length] [mass] . (2.3)

From this constant and the Newtonian constant GN, we can derive another length scale
as

ℓ2p = ℏGN , (2.4)

at which the quantum gravitational �uctuations of the spacetime metric become signi�-
cant and can no longer be ignored. Unlike the schwarzschild radius RH, the length scale
ℓp, called Planck length, is an intrinsically quantum concept. At this distance, any pertur-
bative approach in Quantum Field Theory will break down and fail to produce accurate
physical results.

Analogously, from the Newtonian constant GN and the Planck constant ℏ, it is possible
to �nd a quantity with the dimension of mass, known as the Planck mass,

m2
p =

ℏ
GN

. (2.5)

Other quantum length scales are the well known Compton (or de Broglie) wave-lengths
of the source of mass M,

LC =
ℏ
M

. (2.6)

The physical signi�cance of LC is that it sets the scale at which energy of quantum
�uctuations becomes comparable to the energy of the source.

Notice that both the Planck length ℓp and the Compton wave length LC, as well as the
Planck mass mp, vanish in the limit ℏ → 0 when the massM and the Newtonian constant
GN are kept �xed, which leads that the sizes of black holes can be arbitrarily small in
classical General Relativity (ℏ = 0). In reality, however, ℏ and GN are �xed constants,
with the mass of the source M being the only variable parameter. Consequently, the
criterion for the classicality of the gravitational �led produced by a source can be expressed
as

ℓp ≪ RH . (2.7)

In principle, an e�ective theory of gravity can safely be constructed within this region.
Consider now a gravitating source with rest mass M , for which RH ≫ ℓP. The entire

space can be divided into three di�erent regions for analyzing the interaction: the �rst
one covers the range r ∈ [RH, ∞), where gravity can be considered weak with respect to
the other forces, as it can be seen by comparison of the coupling constants inherent in
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classical laws. The second one stays in the regime r ∈ [ℓp, RH], where gravitational e�ects
become strong. With a certain amount of approximation at distances where Quantum
Mechanics becomes relevant, a complete physical description about this region requires a
semiclassical framework where matter �elds obey quantum �eld theory while spacetime
dynamics remain governed by general relativity under a certain level of approximation:
the classical Newtonian theory requires corrections to take into account the nonlinear
nature of gravity. The last one is sub-Planck length region, where a complete quantum
theory of gravity is required.

As previously mentioned, since formulating quantum general relativity presents signi�-
cant di�culties and remains a challenge, we will exclude the third region. Fortunately, the
other two regions could be modelled within a quantum �eld framework, and it is crucial
to understand how to recover classical physics from a quantum description of the con�gu-
ration. In particular, the corpuscular picture [43�46], proposed by Dvali and Gomez, have
o�ered a new perspective to e�ectively describe the interior of black holes as extended
objects, and drawn more and more attention. The idea is very simple: the black hole is a
leaky bound state in form of a cold Bose-condensate of N weakly interacting soft gravitons
of characteristic Compton-de Broglie wavelength λ ∼ RH. With completely neglecting the
role of the precise quantum composition of the source and other interactions, this theory
recovers classical and semiclassical e�ects arising from black hole mechanics based on the
physics of condensates.

In the weak gravity regime, the General Relativity is viewed as a Quantum Field
Theory that propagates a unique weakly coupled quantum particle, the graviton, with
zero mass and spin-2. At low energies, a dimensionless quantum self-coupling of gravitons
can be de�ned as the ratio of the two length scales

αgr =
ℓ2p
λ2

, (2.8)

where λ is the typical wavelength of the gravitational interacting particles. It is evident
that at large distances (or, in other words, at low energies) the coupling constant becomes
quite small, resulting in very weak interaction among the gravitational quanta composed
the source. Intuitively, this condition of weak interaction should be satis�ed if Eq. (2.7)
holds true, equivalently, for macroscopic black holes. For wavelength RH ≪ ℓp, the above
coupling (2.8) becomes strong, and the theory violates perturbative (in αgr) unitarity in
graviton-graviton scattering. The traditional approach for addressing the issue involv-
ing assuming that Einstein gravity requires a Wilsonian UV-completion. However, the
corpuscular model provided an alternative simple quantum description of non-Wilsonian
UV-self-completion of Einstein gravity. In order to support this view, they consider the
Newtonian potential at a distance r generated by a system with mass M as

VN ∼ −GNM

r
. (2.9)
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From the quantum �eld theory point of view, the above linearized metric perturbation
about the �at space (2.9) represents a superposition of N gravitons, where N denotes
the occupation number, indicating the number of �eld quanta and measure the level of
classicality. In particular, the condition of classicality is typically represented as

N ≫ 1 . (2.10)

The e�ective mass m of each graviton is related to their characteristic quantum me-
chanical size via the Compton-de Broglie wavelength,

λ ≃ ℏ
m

= ℓp
mp

m
. (2.11)

These gravitons can superpose to form a Bose-condensate of radius λ. The corpuscular
theory proposed herein characterises black holes as quantum condensates of gravitons.
According to the physics of condensates, this framework allows for the recovery of classical
and semiclassical e�ects coming from black holes mechanics, while entirely neglecting the
role of matter and other interactions.

Let us now consider a source of radius r ≫ RH. In this regime, General Relativity is
well approximated by the Newtonian theory, and thus the gravitational component of the
energy is

Eg ∼
M RH

r
. (2.12)

The total energy, on the other hand, can be approximated as the sum of the energies of
the individual gravitons with the wavelength λ and the occupation number N ,

Eg ∼
∑
λ

Nλ
ℏ
λ
. (2.13)

Since the dominant contribution arises from the most occupied wavelength of the gravita-
tional source, λ ∼ r, and the contributions from the shorter wavelength are exponentially
suppressed and can be ignored, the gravitons contributing to the energy are of very long
wavelengths and thus interact weakly. The above expression can be further approximated
as

Eg ∼ N
ℏ
r
. (2.14)

Comparing the two expressions given for the energy, we easily obtain the occupation
number of gravitons,

N =
M RH

ℏ
, (2.15)

which is a safe estimation until quantum gravitational e�ects will not become dominant.
However, it is important to note that in the regime r ≫ RH, the gravitational self-

sourcing (the interactions among the gravitons and between any individual graviton and

11



the entire collective gravitational energy) can be ignored. Furthermore, any energetic
contributions coming from matter are also neglected at the beginning. The only available
energy in the con�guration is the gravitational one, which has a negative sign since it
is a binding energy. Therefore the condensate, where only the Newtonian potential is
present, cannot be self-sustained and must necessary collapse. Then it is important to
notice that by continuing ignoring matter contributions, when the size of the condensate
reaches r ∼ RH, although the interactions among the individual gravitons remain to be
negligible, the gravitational energy becomes comparable to the energy of the source. At
this point, the collapse of the condensate can be stopped and the condensate becomes
self-sustained. Moreover, the occupation number of gravitons can still be estimated as
given by (2.15), since the interactions among the individual gravitons are still negligible
for the size r ≫ ℓp. The equation (2.15) can be rewritten in a more useful way as

N =
M2

m2
p

=
λ2

ℓ2p
, (2.16)

a result which reproduces Bekenstein's conjecture for the quantisation of horizon area [51].
Notice that in the classical limit ℏ → 0, the number of gravitons diverges, so this quantity
is �super-classical�. Only when ℏ → 0 does the system becomes truly classical, causing all
possible quantum e�ects to vanish.

As stated before, the occupation number N is considered as the criterion for classi-
cality. For example, an electron will never be regarded as a classical gravitational source,
since for an electron, Ne = (m2

e/M
2
P) ∼ 10−44 ≪ 1 (and thus no gravitons at all), despite

the fact that the electron can exchange gravitons in the scattering processes and does
create a Newtonian gravitational potential.

By keeping λ ∼ RH, we can rewrite the relations between the black hole parameters
and the occupation number N from Eq.(2.16) as

M ∼
√
N Mp , λ ∼

√
N ℓp . (2.17)

Furthermore, with equation (2.8), we immediately arrive at

αgr ∼
1

N
, (2.18)

which means the interaction among the gravitons is extremely weak if the black hole is
composed out of large N gravitons. To gain a better understanding of the self-sustained
Bose-condensate of gravitons, we attempt to form a Bose-condensate of gravitons of char-
acteristic wavelength λ by gradually increasing the occupation number N . Initially, ex-
ternal sources are required to maintain the condensate because gravitons interactions are
negligible when N is small. However, with increasing N , the e�ects of these interactions
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become signi�cant. Individual gravitons feel stronger and stronger collective binding po-
tential and for the critical occupation number

N = Nc =
1

αgr

, (2.19)

the potential is given by

UG ∼ −αgrN
ℏ
r
, (2.20)

and its kinetic energy will be

K ∼ ℏ
λ
. (2.21)

Here we assume that the potential (2.9) becomes negligible for r ≥ λ. For r ∼ λ and
the critical occupation number (2.19), the self-sustainability condition, resulting from the
equilibrium between the collective binding potential and kinetic energies of individual
gravions, is reached, i.e.

K + UG ∼ 0 . (2.22)

Therefore, the graviton condensate becomes self-sustained for the critical value of N
given by Eq.(2.19) [61]. A signi�cant fact is that among all possible sources of some
characteristic physical size λ, the occupation number N is maximized by a black hole. In
other words, this energy balance yields the �maximal packing�

N αgr = 1 . (2.23)

This implies that further increasing N without increasing λ is impossible. Any attempt
to increase N will result in an increase in the size of the black hole, and consequently, in
the particle wavelengths as

√
N .

An important fact about this black hole quantum N -portrait is that for a black hole
with very high center of mass energy M , (or equivalently, the occupation number N ≫ 1
according to Eq. (2.16)), the characteristic radius of its event horizon can be estimated,
from the wavelength expression (2.17) and the expression of N as a function of the mass
M , as

λ ∼ RH . (2.24)

This means that the geometric aspect of General Relativity emerges from the corpuscular
picture by setting the event horizon is nothing but the dominant wavelength of gravitons
composing the black holes. Furthermore, the occupation number N of gravitons does not
change because with increasing the mass of the source M , the event horizon grows and
this means that the wavelengths of the constituent gravitons increase, which lead them to
become softer. This process happens since the coupling constant depends on the energy
of the system and it also plays a key role in making gravity simple at the semiclassical
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level, which means that the physics can be described by few parameters. In particular, for
the corpuscular model, the quantum physics of black holes (such as no-hair, thermality,
and entropy) can be understood in terms of a single quantum quantity, N .

Applying the semiclassical approach of Quantum Field Theory in curved space time,
Stephen Hawking found that a black hole would emit radiation [55]. This idea is that a
virtual particle-antiparticle pair arises naturally near the event horizon if the Quantum
Mechanics is taken into account and is pulled apart due to the gravitational �eld of
black hole. Then one of them falls into the black hole while the other one escapes to
future null in�nity. However, such evaporation process is understood as scattering process
since black holes are viewed as leaky bound states of weakly interacting gravitons on
�at spacetime and the escape energy is just slightly above the energy of the condensate
quanta. Thus the evaporation spontaneously occurs when one of gravitons gains energy
above the condensation energy during scattering. The �nal state of the scattering process
is another black hole with N − 1 gravitons plus one graviton escaping to in�nity. At �rst
order, reciprocal 2 → 2 scattering inside the condensate will result in a depletion rate

Γ =
1

N2
N2 ℏ√

N ℓp
, (2.25)

where the �rst factor comes from the interaction vertices N−2 ∼ α2
gr, the second factor is

combinatoric (there are about N gravitons scattering with other N − 1 ∼ N gravitons),
and the last factor comes from the typical energy of he process ∆E ∼ m. The number of
black hole constituents will then decrease according to

Ṅ ≃ −Γ ≃ − 1√
N ℓp

. (2.26)

The emission rate of the black hole mass is given by

Ṁ ≃ − ℏ
N ℓ2p

. (2.27)

From this �ux one can read o� the �e�ect� Hawking temperature

TH ≃ ℏ√
N ℓp

≃ mp√
N

. (2.28)

To summarise, in the corpuscular portrait of gravitons, a black hole is modelled as a
Bose condensate of marginally bound, self-interacting gravitons, trapped in a gravitational
well described by the simple potential (2.20). This kind of black hole is characterized by
only one parameter, the occupation number N of the gravitons. This system is at its
quantum critical point, so it continuously depletes and leaks gravitons because of the
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graviton-graviton scattering, as one would expect for an interacting homogeneous Bose
condensate. This leakage behave therefore could be interpreted as the well known Hawking
radiation as a result of the quantum depletion. The black hole quantum N portrait o�ers
us a simple way to understand black hole and leads to very �reasonable� properties,
but its original form lacks some features that might make it even more appealing. For
example, in the above picture, the geometry at suitable (macroscopic) scales emerges as
an e�ective phenomenon from an underlying (microscopic) quantum �eld of gravitons
with respect to a �at spacetime vacuum. From the phenomenological point of view, the
question then arises naturally as whether the causal structure of spacetime indeed contains
a trapping surface. Another issue is that, in the original corpuscular picture [43�45], only
gravitons are considered and baryonic matter that initially collapsed and formed the
black hole is argued to become essentially irrelevant. However, it is well known that,
unless the black hole is formed from a primordial quantum �uctuation of the vacuum
in the very early Universe, the only known mechanism that a black hole could form
is the gravitational collapse of a star or other astrophysical source [62]. The question
then arises whether neglecting the contribution of any matter source in the �nal state
is reliable approximation. This picture can be improved by employing the Quantum
Mechanics theory and reconciled with the usual geometric description of spacetime from
the underlying quantum description of the gravitational �eld. This crucial aspect is the
starting point of the coherent state description [50�54, 63�65]. This picture is based on
identifying the quantum state of gravitational potential as a coherent state of (virtual) soft
gravitons, which establishes a connection between the microscopic dynamics of gravity,
understood in terms of interacting quanta, and the macroscopic description of a curved
background.
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Chapter 3

Coherent states in QFT

The topic of coherent state dates back to the seminal paper of Schrödinger in 1926 [66],
in which he studied the dynamics of the harmonic oscillator to demonstrate how clas-
sical mechanics can be recovered from Quantum Mechanics. Since then, developments
in the �eld of coherent states and their applications have been breathtaking, see e.g.
Refs. [67, 68]. In fact, the term �coherent state� does not appear in the original paper,
but what would convey his intuition better there probably is �semiclassical�. Actually,
the essential breakthrough in the concept of coherent state was achieved through the
pioneering works of Glauber and Sudarshan in the early 1960s [69�72], where the term
�coherent state� was �rst coined. In these seminal papers, they provided the �rst modern
and speci�c applications in the context of quantum optics and launched this fruitful and
important �eld of study. The coherent states for harmonic oscillator by historical de�ni-
tion refer to certain quantum states of the oscillator, in which the motion of particles is
governed by the laws of Quantum Mechanics, and mean values of the dynamical variables
of position and momentum that closely mimics their counterparts in classical mechan-
ics. However, this property can be satis�ed by any time-evolved state [73], as proved
by the Ehrenfest Theorem. Therefore, coherent states are more than that: all coherent
states conform to minimize the uncertainty of given observables, where �minimize� implies
that the Uncertainty Principle involving these observables is saturated with the inequal-
ity. Furthermore, their coherence is maintained despite time dependence, although the
underlying parameters could change with it.

According to Glauber [69�71], the �eld coherent states can be constructed from three
equivalent perspectives. The �rst is the ladder-operator method where coherent states
emerge as the eigenstates of the annihilation operator. The second is displacement-
operator method, in which coherent states are de�ned by the application of a �displace-
ment� operator on the vacuum state. The third is employment of minimum uncertainty
condition where coherent states are considered as quantum states with a minimum Heisen-
berg uncertainty relationship concerning the product of the uncertainties of the canonical
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position and momentum assuming the value of ℏ
2
. The three arguments appear as a �rst

attempt to construct the coherent states and have been the basis of their later develop-
ments. However, as we mentioned above, a state is really called as coherent not just for
the minimized uncertainties that it gives, but also because such quantities are constant in
time. This face has been proven for the harmonic oscillator, owing to the special quadratic
form of its Hamiltonian. It does not apply to arbitrary system: a Gaussian wave-packet
built for a free particle will irrevocably spread with time and looses its initially compact
shape, and with it, its uncertainty will spread as well. From this perspective, there is no
�quasi-classical state� for the free particle. Whereas a coherent wavefunction of the har-
monic oscillator will stay con�ned within a �nite range and even come back periodically
to its initial spreading since there is no irresistible increasing of spreading. The coherent
states are shown to be the only states minimising the Heisenberg uncertainty inequality,
and these states whose spreading in position is constant and minimal. Thus, the de�nition
of coherent state is not only kinematical, but also dynamical, and the harmonic oscillator
was the �rst system for which these states have been built.

It is also noteworthy that the subject of coherent states has a wide range of current
interests. The important emerging �elds in this direction are evident in recent develop-
ments in quantum gravity, which make use of notions rooted in geometry. We will �rst
review the harmonic oscillator coherent states and touch upon their various properties.

3.1 Quantum harmonic oscillator

Let us consider a one-dimensional harmonic oscillator for a particle of mass m and pul-
sation ω, whose time evolution is dictated by the Hamiltonian [67,74]

H =
p̂2

2m
+

1

2
mω2 x̂2 , (3.1)

where the �hat� denotes the position (x̂) and momentum (p̂) operators. The operators x̂
and p̂ are postulated to satisfy the Heisenberg's uncertainty relation

[x̂, p̂] = i ℏ ⇒ ∆x∆p ≥ ℏ
2
. (3.2)

Since x̂ and p̂ cannot be simultaneously diagonalized, we shall choose the Schrödinger
representation, in which x̂ is diagonal and p̂ is given by a �rst-order di�erential operator

x̂ = x I p̂ = −i ℏ d

dx
, (3.3)

where I is the identity operator. With the Dirac's elegant operator method, we obtain
the position eigenkets as [75�77]

x̂|x⟩ = x|x⟩, ⟨x|x′⟩ = δ(x− x′) ,

∫
dx|x⟩⟨x| = I , (3.4)
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and a similar set of relations for the momentum eigenkets

p̂|p⟩ = p|p⟩, ⟨p|p′⟩ = δ(p− p′) ,

∫
dp|p⟩⟨p| = I . (3.5)

The forms of overlaps read as

⟨x|p⟩ = 1√
2π ℏ

ei p x , ⟨p|x⟩ = 1√
2 π ℏ

e−i p x . (3.6)

In order to �nd the eigenvectors and eigenvalues of the time independent Schrödinger
equation,

− ℏ2

2m

d2ψ

dx2
+
mω2 x2

2
ψ = E ψ , (3.7)

it is convenient to de�ne two non-Hermitian operators,

a =
1√

2m ℏω
(mω x̂+ i p̂) , a† =

1√
2m ℏω

(mω x̂− i p̂) , (3.8)

which are known as the annihilation and creation operators acting on a Fock space spanned
by the eigenstates of the Hamiltonian, respectively. Then we have

x̂ =

√
ℏ

2mω

(
a† + a

)
, p̂ = i

√
mω ℏ
2

(
a† − a

)
. (3.9)

It is straightforward to obtain an important relation between the Hamiltonian operator,
annihilation operator, and creation operator

H =
1

2
ℏω
(
a† a+ a a†

)
= ℏω

(
a† a+

1

2

)
= ℏω

(
N +

1

2

)
, (3.10)

where we de�ned the number operator N = a† a. Using the canonical commutation
relations, we obtain[

a, a†
]
= 1 , [H, a] = −ℏω a ,

[
H, a†

]
= ℏω a† . (3.11)

Since the Hamiltonian H is a liner function of the number operator N , N can be diag-
onalized simultaneously with H. It is convenient to �nd the eigenvectors and eigenvalues
of the number operator N . Since the number operator N is a Hermitian operator, we can
denote an energy eigenvector of it by its eigenvalue n as

N |n⟩ = n|n⟩ . (3.12)

Multiplying above formula by ⟨n| on the left, we have

⟨n| a† a |n⟩ =
∣∣∣a|n⟩∣∣∣2 = n ≥ 0 , (3.13)
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which implies that n can never be negative.
Now applying the annihilation operator a to both sides of Eq. (3.12),

a a† a|n⟩ =
(
a† a+ 1

)
a|n⟩ = n a|n⟩ , (3.14)

we have
N (a|n⟩) = (n− 1) (a|n⟩) , (3.15)

which shows that a|n⟩ is also an eigenvector of the number operator N with eigenvalue
decreased by one. Similarly, it is easy to know that a†|n⟩ is an eigenvector of the number
operator N with eigenvalue increased by one, i.e.

N
(
a†|n⟩

)
= (n+ 1)

(
a†|n⟩

)
. (3.16)

Because the decrease (increase) of n by one amounts to annihilation (creation) of one
quantum unit of energy ℏω, it identi�es the operator a and a† as �lowing� and �rasing�
operators between adjacent eigenstates,

a|n⟩ =
√
n|n− 1⟩ , a†|n⟩ =

√
n+ 1|n+ 1⟩ , (3.17)

where numerical constants
√
n and

√
n+ 1 is determined from the requirement that |n−1⟩,

|n−1⟩, and |n+1⟩ are normalized. The creation operator is the adjoint of the annihilation
operator and vice versa. Note that

⟨n| a† a |n⟩ = ⟨n− 1|n|n− 1⟩ = n , (3.18)

and
⟨n| a a† |n⟩ = ⟨n+ 1|n+ 1|n+ 1⟩ = n+ 1 . (3.19)

By applying the annihilation operator a on |n⟩ repeatedly, equation (3.17) shows that
a sequence of eigenvectors are generated as |n − 1⟩, |n − 2⟩, |n − 3⟩, ... Since n ≥ 0 and
since a|0⟩ = 0, this sequence has to terminate at n = 0. The state |0⟩ is de�ned as the
vacuum which is annihilated by the operator a,

a|0⟩ = 0 . (3.20)

Because the smallest possible value of n is zero, the ground state of the quantum
oscillator has

E0 =
1

2
ℏω . (3.21)

Similarly, the repeated applications of a† on the ground state |0⟩ generates the excited
states

|n⟩ = 1√
n!

(
a†
)n |0⟩ . (3.22)
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In this way, we construct the energy spectrum of a harmonic oscillator as

En =

(
n+

1

2

)
ℏω , (n = 0, 1, 2, ...) . (3.23)

It is obversely that the energy levels of the energy spectrum are equally spaced, and the
lowest energy eigenvalue of the oscillator is not zero but is instead equal to E0 = ℏω/2.

3.2 Coherent states for the harmonic oscillator

From Eq.(3.17) and the orthonormality requirement of |n⟩, we derive the matrix elements

⟨n′| a |n⟩ =
√
n δn′,n−1 , ⟨n′| a† |n⟩ =

√
n+ 1 δn′,n+1 . (3.24)

Using these together with Eq.(3.9), we obtain the matrix elements of the position operator
x

⟨n′|x |n⟩ =
√

ℏ
2mω

(√
n δn′,n−1 +

√
n+ 1 δn′,n+1

)
, (3.25)

and the momentum operator p

⟨n′| p̂ |n⟩ = i

√
mω ℏ
2

(
−
√
n δn′,n−1 +

√
n+ 1 δn′,n+1

)
. (3.26)

It is clear that neither x nor p is diagonal in the N -representation. From above equations,
it follows that on the ground state,

⟨x⟩ = ⟨p⟩ = 0 , (3.27)

which also applies for the excited states. Furthermore, this conclusion is valid with time
evolution being considered, i.e.

⟨n|x(t) |n⟩ = ⟨n| p(t) |n⟩ = 0 , (3.28)

which means that the expectation values of position and momentum vanish.
We have observed that the behavior of oscillating expectation values for position x

and momentum p does not resemble that of a classical oscillator, no matter how large n
may be. The question then arises naturally that how can we construct a superposition
of energy eigenstates that most closely imitates the behavior of a classical oscillator? In
wave function language, a wave packet that bounces back and forth without spreading in
shape is needed.

For a one-dimensional classical harmonic oscillator, its motion is described by the
function

xc(t) = x0 cos (ω t+ φ) , (3.29)
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and the potential energy stored in it at position x0 is

Ec =
1

2
mω2 x20 , (3.30)

where x0 is the constant amplitude, ω is the angular frequency, and φ is initial phase. In
order to facilitate comparison with Quantum Mechanics, we can rewritten above equations
as

xc(t) =
1

2

(
x0 e

−i φ e−i ω t + x0 e
i φ ei ω t

)
= λ

(
z e−i ω t + z∗ ei ω t

)
, (3.31)

and
Ec = 2mω2 λ2 |z|2 , (3.32)

where λ z = 1
2
x0 e

−i φ, with z being a complex number and λ being an appropriate real
constant.

In the Schrödinger picture, the normalized coherent state of the harmonic oscillator is
assumed as |z(t)⟩, and we can abbreviate |z(0)⟩ as |z⟩. For the time-developed coherent
state |z⟩, we have

|z(t)⟩ = e−
i
ℏ tH |z⟩ . (3.33)

The condition that mean values for the dynamical variables, position and momentum,
closely mimic their counterparts in classical mechanics then can be expressed as

⟨z(t)| x̂ |z(t)⟩ = xc(t) , (3.34)

and
⟨z(t)|H |z(t)⟩ = Ec . (3.35)

Notice that here the Hamiltonian of quantum harmonic oscillator is set to be H = ℏω a† a,
since the classical energy starts at zero. We can construct the coherent states based on
the above two conditions. From (3.9) and (3.33), the left side of equation (3.34) can be
rewritten as

⟨z(t)| x̂ |z(t)⟩ =
√

ℏ
2mω

(
⟨z| a† |z⟩ ei ω t + ⟨z| a |z⟩ e−i ω t

)
. (3.36)

By Comparing with the classical equation of motion (3.31), we �nd that assuming λ =√
ℏ

2mω
transforms the �rst condition (3.34) into

⟨z| a |z⟩ = z . (3.37)
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Here z is �quantum number� of coherent states, and it is related with the classical ampli-
tude by

|z| =
√
mω

2 ℏ
x0 . (3.38)

However, the condition (3.34) cannot uniquely determine |z⟩. This can be seen from
the following discussion. By performing a unitary transformation D(z), we can transform
a into ã = a+ z, i.e.

a→ ã = D†(z) aD(z) = a+ z ,

a† → ã† = D†(z) a†D(z) = a† + z∗ . (3.39)

The transformation of |z⟩ is
|z⟩ → |z̃⟩ = D†(z)|z⟩ . (3.40)

As a consequence, the equation (3.37)

⟨z̃| ã |z̃⟩ = ⟨z| a |z⟩ = z (3.41)

becomes
⟨z̃| a |z̃⟩ = ⟨z̃| (ã− z) |z̃⟩ = 0 . (3.42)

The left side of above equation shows that equation (3.42) is satis�ed as long as |z̃⟩ is an
eigenstate of the harmonic oscillator. Therefore, the coherent states that satisfy condition
(3.34) are

|z⟩ = D(z)|z̃⟩ = D(z)|n⟩ , (3.43)

which implies that the �rst condition (3.34) is insu�cient to uniquely determine the
coherent state |z⟩ given a classical amplitude x0.

Now we shall consider the second condition (3.35),

⟨H⟩ = ⟨z(t)|H |z(t)⟩ = ⟨z|H |z⟩ = ⟨z̃| H̃ |z̃⟩
= ⟨z̃|D†(z)H D(z)|z̃⟩ = ℏω⟨z̃|

(
a† + z∗

)
(a+ z) |z̃⟩

= ⟨z̃|H |z̃⟩+ ℏω |z|2 , (3.44)

where we have used equation (3.41). From equations (3.30) and (3.9), for the second
condition (3.35) to be satis�ed, we must require ⟨z̃|H |z̃⟩ = 0, i.e.

0 = ⟨z̃|H |z̃⟩ = ℏω⟨z̃| a† z|z̃⟩ . (3.45)

In order to ensure the above equation holds, we must have a|z̃⟩ = 0, i.e. |z̃⟩ = 0, which
shows that |z̃⟩ must be the ground state of harmonic oscillator. Thus the second condition
(3.35) eliminates the arbitrariness in the equation (3.43), and the state |n⟩ on the right
side of equation (3.43) according to the second condition (3.35) must be |0⟩.
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Therefore, the �nal form of the coherent state |z⟩ is

|z⟩ = D(z)|0⟩ , (3.46)

and
|z(t)⟩ = e−i ω t a† a|z⟩ . (3.47)

The apparent form of unitary operator D(z) is easy to obtain from its de�nition (3.39) as

D(z) = ez a
†−z∗ a , (3.48)

and, �nally,
|z⟩ = ez a

†−z∗ a|0⟩ = e−
1
2
|z|2 ez a

† |0⟩ . (3.49)

Furthermore, |z⟩ can be rewritten to another form as

|z⟩ = e−
1
2
|z|2

∞∑
n=0

zn√
n!
|n⟩ . (3.50)

We have obtained a series coherent states of harmonic oscillator. From Eq.(3.31), i.e.
z = 1

λ
x0 e

−i φ, we observe that the value of z is related to both the amplitude and the ini-
tial phase of the classical harmonic oscillator, meaning that z can be any complex number.
{|z⟩} are a series (in�nity) normalized vectors in the Hilbert space of the harmonic oscil-
lator, but they are not orthogonal to each other. The eigenvectors |n⟩ (n = 0, 1, 2, . . . )
of Hamiltonian of the harmonic oscillator form an orthogonal basis {|n⟩}. Note the di�er-
ences between the coherent states {|z⟩} and the orthogonal basis; only the ground state
{|0⟩} is shared between them. The relation between coherent states and orthogonal basis
is shown in Eq.(3.50).

From equations (3.39) and (3.43), we obtain

a|z⟩ = aD(z) |0⟩ = D(z) ã|0⟩ = D(z) (a+ z)|0⟩ = z D(z)|0⟩ , (3.51)

that is
a|z⟩ = z|z⟩ . (3.52)

Above equation demonstrates a signi�cant property about coherent states: the state
|z⟩ is an eigenstate of the annihilation operator a. It can be shown that this equation
is equivalent to the de�nition of coherent states used at the beginning of this section,
therefore, Eq.(3.52) can be served as an alternative de�nition of coherent states.
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3.3 Properties of coherent states

In this section, we �rst study the properties of a single coherent state of the harmonic
oscillator, then discuss some basic properties of the set {|z⟩} of all coherent states.

For the coherent state |z⟩, what we are most concerned with is the probability distri-
bution of various physical quantities of the particle in this state, especially the probability
of its position. For this reason, we use the coordinate representation, with its basis vector
denoted by |x⟩. For convenience, we introduce a new variable ξ =

√
mω
ℏ x, and rewrite

|x⟩ as |ξ⟩; that is, under the condition ξ =
√

mω
ℏ x, we have |x⟩ = |ξ⟩.

We now calculate ⟨ξ|z⟩ from Eq.(3.49). First, from Eq.(3.9), we get

a† =
√
2

√
mω

ℏ
x̂− a =

√
2 x̂′ − a . (3.53)

We also know that

x̂′|x⟩ =
√
mω

ℏ
x|x⟩ , (3.54)

that is
x̂′|ξ⟩ = ξ|ξ⟩ , (3.55)

and using Baker-Campbell-Hausdor� formula

eA+B = eA eB e−C/2, where C = [A,B] , (3.56)

we yield

e
√
2 z x̂′−z a = e

√
2 z x̂′

e−z ae−
1
2
z2 . (3.57)

Using above equation and Eq.(3.49), we obtain

⟨ξ|z⟩ = e−
1
2(|z|2+z2)⟨ξ|e

√
2 z x̂′

ez a|0⟩ = e−
1
2(|z|2+z2)e

√
2 z ξ⟨ξ|0⟩

=
(mω

π ℏ

) 1
4
e−

1
2(|z|2−z2)e−

1
2(ξ−

√
2 z)

2

, (3.58)

where we have used

⟨ξ|0⟩ = Ψ0(ξ) =
(mω

π ℏ

) 1
4
e−

1
2
ξ2 . (3.59)

Eq.(3.58) are exactly the state functions of coherent states in the coordinate representa-
tion.

By comparing the coherent state (3.58) with the ground state of the harmonic oscillator
(3.59), we observe that apart from a phase factor exp

[
−1

2
(|z|2 − z2)

]
with a modulus of 1

in Eq. (3.58), the wavefunctions of both states exhibit Gaussian pro�les and have identical
amplitudes. The only di�erence between them is that the center of the ground state of
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the harmonic oscillator is at x = 0, while the coherent state |z⟩ is centered at
√
2 z. (In

fact, note that z now is still a complex number, so such statement is not entirely accurate.
Refer to the following discussion on the probability of position for further clari�cation.)

The position probability of a particle in coherent state |z⟩ is obtained by taking the
modulus squared of Eq. (3.58):

|⟨ξ|z⟩|2 =
√
mω

π ℏ
e−(ξ−

√
2 z cosφ)

2

. (3.60)

By comparing this with the position probability of the harmonic oscillator's ground state
(which is also a coherent state, speci�cally the coherent state with z = 0.), it is found
that the distributions of both probabilities are identical. The only di�erence is that
one center is at x = 0, while the other is centered at ξ =

√
2 z cosφ, or equivalently

x = x0 cosφ, where x0 reprensents the amplitude of a classical harmonic oscillator with
the same energy (see Eq.(3.31)). Furthermore, the shape and amplitude of the position
probability distribution, or probability cloud, remain unchanged for a coherent state,
regardless of the value of z, but the overall position of the entire pro�le shifts.

Now let us brie�y consider the uncertainties associated with coherent states. From
Eq.(3.52),

a|z⟩ = z|z⟩ (3.61)

and
⟨z|a† a|z⟩ = |z|2 (3.62)

we observe that

⟨z|
(
a+ a†

)2 |z⟩ = ⟨z|
(
a+ a†

) (
a+ a†

)
|z⟩ = (z + z∗)2 + 1 , (3.63)

and similarly

⟨z|
(
a− a†

)2 |z⟩ = ⟨z|
(
a− a†

) (
a− a†

)
|z⟩ = (z − z∗)2 − 1 . (3.64)

We then get the following representation of the uncertainty ⟨x̂⟩z

⟨x̂⟩z =
√

ℏ
2mω

⟨a+ a†⟩z =
√

ℏ
2mω

(z + z∗) , (3.65)

where the right side is a real number. Furthermore, we have

⟨x̂2⟩z =
ℏ

2mω
⟨
(
a+ a†

)2⟩z = ℏ
2mω

[
(z + z∗)2 + 1

]
. (3.66)

We therefore obtain

∆x̂ = ⟨x̂2⟩z − (⟨x̂⟩z)2 =
ℏ

2mω
, (3.67)
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where we used the notation ∆Ô = ⟨Ô2⟩−⟨Ô⟩2, with ⟨Ô⟩ corresponding to the expectation
in the state vector |z⟩.

Similarly for ∆p̂, we get

∆p̂ = ⟨p̂2⟩z − (⟨p̂⟩z)2 =
ℏmω

2
. (3.68)

Taking the product of Eq. (3.67) and Eq. (3.68) yields

∆x̂∆p̂ =
ℏ2

4
, (3.69)

which shows that the coherent state |z⟩ satis�es the minimal uncertainty condition. A
coherent state is therefore a state in which the uncertainties in both position and momen-
tum simutaneously take their minimum values, as permitted by the uncertainty principle.
Such state is a state that position and momentum are most localized. The most localized
of position is shown by the probability cloud, which is most compact and smallest, and
the position is most localized, meaning that the possible values of the momentum of the
particle are closest to the mean value. We have now proven that all coherent states possess
this property.

We now turn to the time evolution and classical behaviour of coherent states. In the
Schrödinger picture, the state vector evolves with time but the Hamiltonian does not rely
on time. From Eqs. (3.47) and (3.50), for the time-developed coherent state |z⟩ we know

|z(t)⟩ = e−
i
ℏ tH |z⟩ = e−

1
2
|z|2

∞∑
n=0

zn√
n!
e−i n ω t|n⟩

= e−
1
2 |z e−i ω t|2

∞∑
n=0

1√
n!

(
z e−i ω t

)n |n⟩ = |z e−i ω t⟩ , (3.70)

implying that the time evolution of a coherent state |z⟩ can be obtained by simply replac-
ing z with z e−i ω t in its expression.

Therefore, the time evolution of the state function for a coherent state (the probability
amplitude of position) can be immediately obtained as

⟨ξ|z(t)⟩ =
(mω

π ℏ

) 1
4
e−

1
2(|z|2−z2e−2 i ω t)e−

1
2(ξ−

√
2 z e−i ω t)

2

, (3.71)

where the modulus of the �rst exponential function is 1. Furthemore, the time evolution
of the position probability can be obtained from Eq. (3.60) as

|⟨ξ|z(t)⟩|2 =
√
mω

π ℏ
e−[ξ−

√
2 |z| cos(ω t+φ)]

2

. (3.72)
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From above two equations, we can �nd that the minimal uncertainty characteristic of
the coherent state remains unchanged under time evolution. The size and shape of the
wave packet does not change; only its central position undergoes simple harmonic motion:

√
2 z cos (ω t+ φ) =

√
mω

ℏ
x0 cos (ω t+ φ) , (3.73)

which shows that coherent states, which are truly quantum states, depict a classical
behavior.

We now study some basic properties of the set {|z⟩} of all coherent states of a harmonic
oscillator. Coherent states for the harmonic oscillator are eigenstates of the annihilation
operator acting on a Fock space. However, the annihilation operator is non-Hermitian,
so its eigenstates |z⟩ exhibit properties that di�er signi�cantly from those of a Hermitian
operator. First of all, the eigenvalue z can be any complex number. Coherent states there-
fore belong to a continuum of eigenstates. Despite this, all the eigenstates are normalized,
i.e.

⟨z|z⟩ = 1 , (3.74)

which can be directly proven by taking the modulus squared of Eq. (3.50).
Coherent states have three additional properties.
i) Any two coherent states are non-orthogonal.
This can also be proven from Eq. (3.50),

⟨z|z′⟩ = e−
1
2
|z|2 e−

1
2
|z′|2

∞∑
n=0

∞∑
m=0

z∗n z′m√
n!m!

⟨n|m⟩

= e−
1
2
|z|2− 1

2
|z′|2+z∗ z′ , (3.75)

which is non-zero for any values of z and z′.
ii) All (in�nity many) coherent states are linearly dependent, whereas a �nite number

of coherent states are not linearly dependent.
To prove the �rst part of this property, it su�ces to provide an example where the

sum (integral) of all coherent states, each multiplied by a speci�c constant, equals zero.
By assuming z = r ei θ, and using d2z = r dr dθ for the integral, with m being any non-
vanishing integer, such an integral can be found as∫

zm |z⟩ d2 z =
∞∑
n=0

1√
n!

|n⟩
∫ ∞

0

e−
1
2
r2 rn+m+1 dr

∫ 2π

0

ei(m+n)θdθ . (3.76)

The integral of the right side of above equation is bounded with respect to r and the
integral vanishes with respect to θ, for any value of n. Therefore, we obtain∫

zm |z⟩ d2 z = 0 , (3.77)
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which shows that all the coherent states are linearly dependent.
However, a �nite number of coherent states are linearly independent. For instance,

consider any arbitrary n coherent states |zk⟩, multiply each by a constant ck, and then
sum them all together such that the result is zero

n∑
k=1

ck|zk⟩ = 0 . (3.78)

We now need to determine the constant ck using the above condition. Left-multiplying
the equation (3.78) by ⟨z| yields

n∑
k=1

ck⟨z|zk⟩ = 0 . (3.79)

From Eq.(3.50), we have

⟨z|zk⟩ = e−
1
2
|z|2e−

1
2
|zk|2ez

∗ zk . (3.80)

If we regard ⟨z|zk⟩ as di�erent functions of z, they then are linearly independent, which
means that all of ck in Eq.(3.79) must be zero. Since ck must be zero, it follows from
Eq.(3.78) that a �nite number of coherent states {|zk⟩} are linearly independent.

The linear independence in Eq.(3.80) can be understood as follows. In Eq.(3.80),
for di�erent values of k, they can be considered as various functions of z, with the �rst
exponential functions being the same for all. The second exponential functions can be
viewed as constants. The key point lies in the third exponential functions, which can be
expressed as the product of two real exponential functions, and we already know that the
functions ea1 x, ea2 x, ea3 x, · · · , are linearly independent.

iii) The set of states |z⟩, for z varying, is a complete set of vectors, which means that,
as a consequence of their non-orthogonality, any coherent state can be expanded in terms
of this complete set of states. The mathematical representation of completeness is that
the completeness relation

1

π

∫
|z⟩ ⟨z|d2z = 1 (3.81)

holds. To prove the above expression, it su�ces to demonstrate that Parseval's identity

⟨Ψ|Φ⟩ = 1

π

∫
⟨Ψ|z⟩ ⟨z|Φ⟩d2z (3.82)

holds for arbitrary |Ψ⟩ and |Φ⟩. The right side of above equation is

1

π

∑
n

∑
m

⟨Ψ|n⟩
∫ ∞

0

1√
n!m!

rn+m e−r2
(
1

2

)
d
(
r2
) ∫ 2π

0

ei (m−n) θdθ⟨m|Φ⟩

=
∑
n

⟨Ψ|n⟩⟨n|Φ⟩ = ⟨Ψ|Φ⟩ , (3.83)
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which proves Eq.(3.82), thereby validating Eq.(3.81). In the above calculation, the result
of the integral with respect to θ is 2πδmn, and substituting r2 = t, 2 r dr = dt to rewrite
the integral

2

∫ ∞

0

r dre−r2 r2n =

∫ ∞

0

e−t tn dt = Γ(n+ 1) = n! , (3.84)

we recover the exact de�nition of the Gamma function.
Via the completeness relation, any coherent states can be expanded in terms of all the

other coherent states,

|z⟩ =
1

π

∫
|z′⟩⟨z′|z⟩d2z′

=
1

π

∫
|z′⟩e−

1
2
|z|2− 1

2
|z′|2+z∗ z′d2z′ , (3.85)

which is consistent with the conclusion that the coherent states are not linearly indepen-
dent.

Although the coherent states are not orthogonal, they are completed which means
that it is possible to expand any vector in the Hilbert space of the harmonic oscillator in
terms of a complete set of states. In fact, this property that the coherent states are not
orthogonal but still form a complete set is referred to as �overcompleteness� [68].

3.4 Coherent states for a �eld

Let us now apply the previous considerations of a simple one dimensional harmonic oscil-
lator to a free scalar �eld [52]. Considering a single mode operator, we can write the �eld
as

Φ̂k(x) = âk e
−i k x + â†k e

i k x , (3.86)

and its conjugate momentum as

Πk(x) = − i

2

(
âk e

−i k x − â†k e
i k x
)
. (3.87)

For simpli�cation, the �eld is considered as a general superposition of modes,

Φ̂(x) =

∫
d3k

(2π)
3
2

√
ℏ

2ωk

[
âk e

−i k x + â†k e
i k x
]
. (3.88)

Now we can calculate the Hamiltonian in terms of the Fourier modes:

H =
1

2

∫
d3k ℏωk

(
ak a

†
k + a†k ak

)
. (3.89)
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We then construct the eigenstates of the Hamiltonian to �nd the spectrum of states. We
de�ne the �vacuum� state as follows

ak|0⟩ = 0 . (3.90)

By convention, we call ak an �annihilation � operator. We de�ne a one-particle state via
the �creation� operator a†k

a†k|0⟩ = |k⟩ . (3.91)

Particle number operator is de�ned as

Nk = a†k ak , Nk|nk⟩ = nk|nk⟩ . (3.92)

The operator H commutes with Nk.
By quantizing the �eld, we turn Φ and Π into operators obeying

[Φ(x), Π(y)] = i δ(x− y) , (3.93)

and all other commutators are zero

[Φ(x), Φ(y)] = [Π(x), Π(y)] = 0 . (3.94)

The only non vanishing canonical commutation relation is given by[
âk, â

†
k

]
= 1 , (3.95)

which leads to the same algebra of the harmonic oscillator and the same de�nition of the
coherent state

âk|αk⟩ = αk |αk⟩ . (3.96)

By assuming αk = |αk|ei θk , we get

⟨αk|Φ̂k(x)|αk⟩ = 2 |αk| cos
(
k⃗ · x⃗− ωk t+ θk

)
, (3.97)

which shows that the expectation value of the quantum �eld over a coherent state repro-
duces the classical wave con�guration.

The �eld (3.88) can split into a positive and a negative frequency part

Φ̂(x) = Φ̂(+)(x) + Φ̂(−)(x) , (3.98)

with

Φ̂(+)(x) =

∫
d3k

(2 π)
3
2

√
ℏ

2ωk

âk e
−i k x . (3.99)
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Note that a coherent state can be de�ned as the eigenstate of the positive frequency part
of the �eld

Φ̂(+)|Φ⟩ = Φ|Φ⟩ , (3.100)

which again shows that the dynamics of coherent state closely resemble the behavior of a
classical system

⟨Φ̂(x)|Φ⟩ = Φ(x) . (3.101)

By generalizing Eq. (3.49), the expression for this state can be found, with respect to the
occupation number basis,

|Φ⟩ = e−
1
2

∫
d3k |αk|2e

∫
d3k αk â†k |0⟩ . (3.102)

3.5 Path integrals and coherent state

The concept of coherent states have been applied to various �elds of Quantum Mechanics.
In this section, we will study its application in path integrals [78].

As discussed in the pioneering work of Klauder [74], coherent states are highly useful
in constructing a path-integral representation of quantum dynamics. Before delving into
this, we will �rst revisit the ordinary path integral of Quantum Mechanics developed by
Feynman, which can be obtained from the evolution operator by expressing it as

U (tf , t0) = e−
i
ℏ(tf−t0)H = lim

N→∞

[
exp

{
− i

ℏ
H
tf − t0
N

}]N
(3.103)

and then inserting a resolution of identity in terms of the position states∫
dx |x⟩⟨x| = I (3.104)

between the terms of above product. From this, we get the familiar path integral of
Quantum Mechanics,

⟨x′ (tf ) |x (t0)⟩ = ⟨x′|U (tf , t0) |x⟩

=

∫
[dx(t)] exp

{
i

ℏ

∫ tf

t0

dtL (x(t), ẋ(t))

}
, (3.105)

where L is a classical Lagrangian with a general form

L (x, ẋ) =
1

2

(
dx

dt

)2

− V (x) , (3.106)
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and

[dx(t)] = Πt0≤t≤tfdx(t) (3.107)

is a functional measure of the path integration.
However, instead of inserting a complete set of states (3.104), we will now insert an

overcomplete set of coherent states∫
|z⟩⟨z| dzdz

∗

2 π
= I (3.108)

between the terms of product (3.103). We can then derive a phase space formulation of
path integrals, initially proposed by Klauder,

⟨z′ (tf ) |z (t0)⟩ = ⟨z′|U (tf , t0) |z⟩

=

∫
[dx (t)]

[
dp (t)

2 π

]
exp

{
i

ℏ

∫ tf

t0

dtL (x(t), p(t))

}
, (3.109)

with

L (x, p) = ⟨z|i d
dt
|z⟩ − ⟨z|H|z⟩

=
1

2

(
p
dx

dt
− x

dp

dt

)
−H (x, p) , (3.110)

where z = (x+ i p) /
√
2 and z∗ = (x− i p) /

√
2, with the initial and �nal positions x (t0)

and x (tf ) �xed. This derivation of Feynman's path integral is particularly useful for
obtaining a functional integral of quantum �eld theory.

As an example, let us consider the neutral scalar �eld Φ(x) (3.86) to illustrate how
to derive a functional integral of quantum �eld theory. The corresponding Lagrangian
density of such �eld is given by

L =
1

2

[
(∂ϕ)2 −m2 ϕ2

]
− V (ϕ) , (3.111)

where V (ϕ) is a self-interacting potential.
The canonical momentum density conjugate to ϕ(x, t) is determined by π(x, t) =

∂L/∂ϕ̇(x, t). Then the canonical quantization leads to

[Φ(x, t),Π(x, t)] = iδ3 (x− x′) . (3.112)

Using Eqs. (3.88), we have

Π = −i
∫

d3k

(2 π)
3
2

√
ωk

2

[
âk e

−i k x − â†k e
i k x
]
, (3.113)

32



and the quantum Hamiltonian is given by

H(t) =

∫
d3x :

{
1

2

[
Π2 + (∇Φ)2 +m2Φ2

]
+ V (Φ)

}
: , (3.114)

where : : is the normal ordering with respect to the creation and annihilation operators
a†k and ak. The scalar �eld coherent state now can be de�ned at a given instant time t
over the whole space {x} as

|ϕπ⟩ = exp

{
i

∫
d3x [π(x) Φ(x)− ϕ(x)Π(x)]

}
|0⟩

= exp

{
−1

2

∫
d3k|zk|2

}
exp

{∫
d3k

(
zk a

†
k

)}
|0⟩ , (3.115)

from which a function integral of �eld theory can be obtained explicitly.
Note that the Hamiltonian formalism of the �eld theory is analogous to that in quan-

tum mechanics. We can directly derive the time Green's function den�ned as the matrix
element of the evolution operator in coherent state basis,

G (tf , t0) = ⟨ϕ′π′|U (tf , t0) |ϕπ⟩ = ⟨ϕ′π′|T exp

{
−i
∫ tf

t0

dtH(t)

}
|ϕπ⟩ , (3.116)

where T is the time-ordering operator.
One may break up the time interval from t0 to tf into N equal pieces of duration

ϵ = (tf − t0) /N . In the limit ϵ → 0, the evolution operator can be expressed as a
successive multiplication of the evolution operator over the interval ϵ,

U (tf , t0) = exp {−i ϵH(tn)} exp {−i ϵH(tn−1)}
· · · exp {−i ϵH(t2)} exp {−i ϵH(t1)} . (3.117)

Following the same procedure used in the derivation of Feynman's path integral in quan-
tum mechanics, one should insert a complete set of intermediate states between each of
these factors, in the form

I =

∫
[dϕ (x)] [

dπ (x)

2 π
]|ϕπ⟩⟨ϕπ| , (3.118)

where [dϕ (x)] ≡
∏

−∞<x<∞ dϕ (x), etc. are de�ned over the whole space. Then

G (tf , t0) = lim
N→∞

∫ (N−1∏
i=1

[dϕi (x)] [
dπi (x)

2 π
]

)
N∏
i=1

⟨ϕi πi| exp {−i ϵH (ti)} |ϕi−1 πi−1⟩ .(3.119)
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The �rst order in ϵ can be obtained as

⟨ϕi πi| exp (−i ϵH (ti)) |ϕi−1 πi−1⟩ ≈ ⟨ϕi πi|ϕi−1 πi−1⟩ exp
(
−i ϵ⟨ϕi πi|H (ti) |ϕi−1 πi−1⟩

⟨ϕi πi|ϕi−1 πi−1⟩

)
.

(3.120)

Note that the coherent state |ϕπ⟩ is normalized. In the limit of ϵ→ ∞, we have

⟨ϕi πi|ϕi−1 πi−1⟩ = 1− ⟨ϕi πi| (|ϕi πi⟩ − |ϕi−1 πi−1⟩)

≃ exp

{
i ϵ⟨ϕi πi|i

∆|ϕi πi⟩
ϵ

}
, (3.121)

where ∆|ϕi πi⟩ ≡ |ϕi πi⟩ − |ϕi−1 πi−1⟩. The Green's function then becomes

G (tf , t0) = lim
N→∞

∫ (N−1∏
i=1

[dϕi (x)] [
dπi (x)

2π
]

)

× exp i
N∑
i=1

ϵ

{
⟨ϕi πi|i

∆|ϕi πi⟩
ϵ

− ⟨ϕi πi|H (ti) |ϕi πi⟩
}

=

∫
[dϕ (x)] [

dπ (x)

2π
] exp

{
i

∫ tf

t0

dt

[
⟨ϕπ|i d

dt
|ϕπ⟩ − ⟨ϕπ|H|ϕπ⟩

]}
=

∫
[dϕ (x)] [

dπ (x)

2π
] exp

{
i

∫ tf

t0

dt

∫
d3x

[
1

2

(
π ϕ̇− ϕ π̇

)
−H (x)

]}
,(3.122)

with

H =
1

2

[
π2 + (∇ϕ)2 +m2 ϕ2

]
+ V (ϕ) . (3.123)

This shows that the coherent state gives a natural derivation of path integrals in �eld
theory.

Let G(n) (x1, · · · xn) be the connected n-point function,

G(n) (x1, · · · xn) = ⟨0|T (ϕ (x1) · · ·ϕ (xn)) |0⟩ , (3.124)

which can be derived from the generating functional W (J), de�ned as the vacuum-to-
vacuum amplitude in the presence of an external current J(x),

W (J) = ⟨0|U (−∞,∞) |0⟩J . (3.125)

By adding a term in the exponent and then assuming the time variable of integration in
the exponent runs from −T to T , with T → ∞, we can express the generating functional
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in term of the time Green's function G (tf , t0) as

W (J) =

∫
[dϕ (x)] [

dπ (x)

2 π
] exp

{∫
d4x

[
1

2

(
π ϕ̇− ϕ π̇

)
−H (x) + J (x) ϕ (x)

]}
=

∫
[dϕ (x)] exp

{∫
d4x [L (x) + J (x) ϕ (x)]

}
= exp {i Z(J)} , (3.126)

where Z(J) is a functional partition function in quantum �eld theory. The n-point Green's
function, which includes only the connected graphs, is given by

G(n)
c (x1, · · · xn) =

(−i)n

W (J)

δnW (J)

δJ(x1) · · · δJ(xn)

∣∣∣∣
J=0

= (−i)n−1 δnZ(J)

δJ(x1) · · · δJ(xn)

∣∣∣∣
J=0

. (3.127)

The classical equations of motions can be naturally obtained by applying the stationary
phase approximation to W (J) [79, 80]. Additionally, the functional integrals W (J) and
Z(J) become covariant after integrating out the π(x) �eld. Finally, all physical quantities
in �eld theory can, in principle, be derived fromW (J) or Z(J) in a covariant form. Notice
that the results derived above is applicable only to bosonic �elds.
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Chapter 4

Quantum coherent states for the

gravitational �eld

The corpuscular black hole picture has been discussed in detail in Chapter 2. This in-
tuitive model [43�45], which is based on the assumption that black holes are described
as bound states of N identical gravitons, presents various qualities and puts a new light
on gravitation. Such bound state reproduces the classical geometric aspect of gravity as
an emerging feature, where gravitons play the role of spacetime quanta. This black hole
quantum portrait is very simple and considers classical and semiclassical aspects of black
hole physics from a new perspective. However, it does not delve into details and sub-
tleties of some important issues. For example, the connection with the usual geometrical
picture of General Relativity is not immediate, it entirely neglects the role of the matter
from which the black hole formed, and the horizon �emergies� from a classical mechanical
condition rather than from relativistic considerations.

Before presenting another semiclassical approach to the underlying quantum theory
that quantizes a graviton �eld [52,81�83], we �rst aim to review the quantization of a spin
2 graviton �eld emerging from the weak-�eld limit of the Einstein-Hilbert action [84�86],

SEH = − 1

16 π GN

∫
d4x

√
−gR . (4.1)

In the weak �eld limit, where the source of the �eld is small if compared to other
scales, the quantum �uctuations in the gravitational �eld can be expanded about a smooth
background metric, which here is �at space time,

gµν = ηµν + ϵhµν , (4.2)
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with ϵ≪ 1. The action (4.1) then can be rewritten as

SEH = − 1

16π GN

∫
d4x

√
−gR

≃ − 1

32π GN

∫
d4x

(
1

2
∂µhνρ∂

µhνρ − ∂µhνρ∂
νhµρ + ∂µh∂ρh

νρ − 1

2
∂µh∂

µh

)
,(4.3)

where h ≡ ηµνhµν . This implies that the free massless spin 2 theory (linearized approxi-
mation) can be presented by the massless Fierz-Pauli Lagrangian [48,49],

LFP = −1

2
∂µhνρ∂

µhνρ + ∂µhνρ∂
νhµρ − ∂µh∂ρh

νρ +
1

2
∂µh∂

µh , (4.4)

and performing the variation of the action (4.2) with respect to hµν , one obtains the
equations of motion

Gµν ≃ 1

2

(
−□hµν + ηµν □h+ ∂µ∂

ρhρν + ∂ν∂
ρhρµ − ηµν∂

λ∂ρhλρ − ∂µ∂νh
)

= 0 , (4.5)

where we de�ned the d'Alembertian as □ = ∂µ∂
µ. One important aspect of the above

�eld equations is their invariance under a local gauge transformation of the type

h′µν = hµν + ∂µεν + ∂νεµ , (4.6)

involving an arbitrary gauge parameter εµ(x). In the quantum theory, it implies the
existence of Wald identities. Furthermore, to simplify the �eld equations, we can consider
the harmonic (or de Donder) gauge gµνΓα

µν = 0 or equivalently ∂µh
µ
ν − (1/2)∂νh = 0. Now

the equations of motion read

□hµν = 0 . (4.7)

Since the pure gravitational �eld Lagrangian (4.4) only propagates transverse traceless
modes, these correspond quantum mechanically to a particle of zero mass and spin two,
with two helicity states h = ±2. We then �nd that a general plane wave expansion for
hµν

hµν =
∑

λ=+,−

∫
dµ(p)

[
a(p, λ)ϵµν(p, λ)e

ip·x/ℏ + a(p, λ)∗ϵµν(p, λ)e
−ip·x/ℏ] , (4.8)

will satisfy the wave equatoin and the harmonic gauge condition. Here the polarization
tensor ϵµν(p, λ) is normalized as ϵµν(p, λ)ϵ

µν(p, λ′) = δλλ′ . In order to proceed with the
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quantization, we promote a(p, λ) and a(p, λ)∗ to distribution-valued operators a(p, λ)
and a(p, λ)† with canonical commutation relations[

a(p, λ), a(q, λ)†
]
= δ(3)(p− q)δλλ′ . (4.9)

After inverting the kinetic term of the action (4.4), the graviton Feynman propagator is
found to be of the form

iD
(F )
αβµν(p) =

i Pαβµν

p2 − i ε
, (4.10)

where Pαβµν is the projection operator, de�ned as

Pαβµν ≡ 1

2
(ηαµηβν + ηανηβµ − ηαβηµν) . (4.11)

The observables of greatest interest for experimental purposes involve the gravitational
interactions of various types of matter. Therefore, it is useful to generalize the previous
arguments to include the coupling between matter and gravity. Rather than describing
the general case, we will only consider an interaction between a massive scalar �eld Φ and
the graviton. The graviton interacts with matter �elds through their stree-energy tensor,
thus recalling that

T (Φ)
µν = ∂µΦ∂νΦ− 1

2
ηµν
(
∂λΦ∂λΦ +m2

ΦΦ
2
)
, (4.12)

one can introduce the coupling with matter in the action as

S =

∫
d4x

(
1

32π G
LFP +

1

2
hµνT (Φ)

µν

)
. (4.13)

From this action, one can then read o� the Feynman rules for the graviton [87�90].
With the Feynman rules, we can compute the scattering of two scalar particles by a sin-

gle graviton exchange. Considering the non-relativistic limit, pµ ≈ (m, 0), the amplitude
of this process is given by

M = −16 π G
m2

q2
, (4.14)

Performing the Fourier transform, we obtain the non-relativistic potential

V (r) = −Gm
2

r
, (4.15)

which is exactly the Newton's potential [91]. A signi�cant problem arises with this ap-
proach. Pure gravity is �nite at one loop, because the lowest order equation of motion
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is Rµν = 0 for pure gravity, causing the O(R2) terms in the Lagrangian to vanish for all
solutions to the Einstein equation. However, as shown by Goro� and Sagnatti in [92],
even for pure gravity in four dimensions, there is a divergence which remains even after
the renormalization of the Einstein-Hilbert action. This can be concluded by saying that
Einstein's gravity is a non-renormalizable theory, which remains a signi�cant obstacle in
unifying Quantum Field Theory and General Relativity.

The previous quantization of the graviton �eld emerges from the weak �eld limit, where
the metric is expanded around Minkowski space, with hµν representing the dynamical
part of the metric. The vacuum is denoted as |0⟩ and it satis�es the condition that no
matter nor metric are excited. In this regime, the harmonic combined with residual gauge
freedom reduces the polarization vector to two transverse traceless degrees of freedom,
corresponding to a massless spin two degrees of freedom, and at tree level, the gravitational
�eld is linearly coupled to the energy momentum tensor of the matter �elds. This weak
�eld approximation and pertubation method are indeed useful tools in addressing the
di�culties arising from the non linearity of the self interactions and the gauge �xing
problem of the full General Relativity theory.

The weak �eld perturbation theory, however, breaks down in regions of strong gravity,
such as near black holes or in the early universe, particularly close to the event horizon
or singularity. In these regimes, where the curvature of spacetime becomes large, the
perturbation can no longer be treated as a small correction to �at spacetime and nonlinear
terms in the metric perturbation hµν become signi�cant and cannot be ignored. A possible
solution one may consider is to treat the graviton �eld as a perturbation of a non �at
background solution of the �eld equations g

(0)
µν ,

gµν = g(0)µν + ϵhµν , (4.16)

where g
(0)
µν can be any arbitrary known solution, such as the Schwarzschild metric. This

consideration is indeed applicable in certain contexts, such as in gravitational wave
physics. However, it appears concepturally problematic from at least two perspectives.
Firstly, the selection of g

(0)
µν based on the arbitrary background results in ambiguity in

the de�nition of excitations. Secondly, in the corpuscular picture, both the geometrical
Einstein equations and their solutions are understood to emerge from the underlying pure
quantum theory in an appropriate limit. Therefore, a classical solution cannot be assumed
a priori as the basis to quantize the theory.

Solving such problem is challenging. Therefore, instead of seeking the complete non
interacting quantum theory, we will focus on looking for a quantum state built out from
the Fock space of gravitons for the linearized theory that can reproduce classical �eld
con�guraitons. In addition to the conceptural issues, there are also technical challenges
arising from treating metric tensors. It is well known that the computational di�culties in
quantum �eld theory increase with spin of �elds, because higher-spin �elds involve more
components, more complicated propagators, intricate gauge symmetries, and impose more
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challenging consistence conditions. To simplify the calculations, a possible solution is to
replace the metric tensor hµν with a scalar �eld Φ. At �rst glance, this choice of a scalar
may seem strange since graviton is typically described as a massless spin 2 particle in a
quantum �eld theory framework. But it is also true that, in the non relativistic limit,
the gravitational interaction between two masses can be understood as being mediated by
the exchange of a graviton, and the scalar Newtonian potential is recovered from the non
propagating temporal component of the metric tensor [47]. Thus, after recognizing how
the Newtonian potential is embedded in the metric tensor of the Schwarzschild solution at
the classical level, a scalar mean-�eld approach [52] will be employed to extract as much
information as possible by closely examining the characteristics of a metric function that
arise from a quantization procedure. Thus, based on the requirement that the Newtonian
potential (and consequently the Schwarzschild metric function) must be recovered, up to
quantum corrections, by a scalar quantum �eld representing gravity via the expectation
value over the quantum state, this state can be de�ned as

Vq = ⟨g|Φ̂|g⟩ . (4.17)

The geometrical description then is restored with a corrected Schwarzschild metric of the
form

ds2 = − (1 + 2Vq) dt
2 +

dr2

1 + 2Vq
+ r2 dΩ2 , (4.18)

It is important to stress that, from this perspective, the Newtonian con�guration
arises entirely from a quantized theory in Minkowski spacetime. The state |g⟩, if it
exists, should accurately reproduce the gravitational potential Vq, with the expectation
of �nding new features on the nature of gravity through Quantum Mechanics. Through
a non perturbative mean �eld approach, these corpuscular corrections to the Newtonian
potential will enter the metric function.

4.1 Quantum coherent states for classical static con�g-

urations

As we have discussed previously, the expectation value of the quantum �eld over a coherent
state reproduces a semiclassical behaviour, where �semiclassical� means minimum and
constant uncertainty of the �eld con�guration. In our work, the coherent state is in
particular built for a scalar �eld whose expectation value e�ectively describes the geometry
emerging from the (longitudinal or temporal) polarisation of the graviton in the linearised
theory. We shall �nd that the very existence of a quantum coherent state again requires
departures from the classical geometry (at least) near the (would-be) classical central
singularity, which will induce the presence of �quantum hair� [93,94].
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A metric of the form in Eq. (4.18) can be conveniently described as the mean �eld
of the coherent state of a (canonically normalised) free massless scalar �eld

√
GNΦ =

(f − 1)/2 = V (see Refs. [51,52,81] for all the details). We �rst quantise this canonically
normalised �eld

√
GN Φ as a massless �eld satisfying the Klein-Gordon equation in �at

spacetime [
− ∂2

∂t2
+

1

r2
∂

∂r

(
r2

∂

∂r

)]
Φ(t, r) ≡

(
− ∂2

∂t2
+∆

)
Φ(t, r) = 0 . (4.19)

Imposing the expected spherical symmetry of the system, we obtain the (positive fre-
quency) eigenfunctions

uk = e−i k t j0(k r) , (4.20)

where j0 = sin(k r)/k r with k > 0 are spherical Bessel functions, which allow us to write
the �eld operator as

Φ̂ =

∞∫
0

k2 dk

2π2

√
ℏ
2 k

[
uk â(k) + u∗k â

†(k)
]

(4.21)

and its conjugate momentum as

Π̂ = i

∞∫
0

k2 dk

2 π2

√
ℏ k
2

[
uk â(k)− u∗k â

†(k)
]

(4.22)

where â and â† are the usual annihilation and creation operators.
These operators satisfy the equal-time commutation relations,[

Φ̂(t, r), Π̂(t, r′)
]
=
i ℏ
4 π

δ(r − r′)

r2
, (4.23)

provided the creation and annihilation operators obey the commutation rules

[
âk, â

†
p

]
=

2π2

k2
δ(k − p) . (4.24)

The vacuum state is �rst de�ned by âk |0⟩ = 0 for all allowed values of k > 0, and a basis
for the Fock space is constructed by the usual action of creation operators.

Classical con�gurations of the scalar �eld that can be realised in the quantum theory
must correspond to suitable states in this Fock space, and a natural choice is given by
coherent states |g⟩ such that

âk |g⟩ = gk e
i γk(t) |g⟩ . (4.25)
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In particular, we are interested in those |g⟩ for which the expectation value of the quantum
�eld Φ̂ reproduces the classical potential, namely√

ℓp
mp

⟨g| Φ̂(t, r) |g⟩ = V (r) . (4.26)

From the expansion (4.21), we obtain

⟨g| Φ̂(t, r) |g⟩ =
∫ ∞

0

k2 dk

2π2

√
2 ℓpmp

k
gk cos[γk(t)− k t] j0(k r) . (4.27)

By expanding the function V in momentum space, we have

V =

∫ ∞

0

k2 dk

2π2
Ṽ (k) j0(k r) , (4.28)

we immediately obtain

γk = k t (4.29)

and

gk =

√
k

2

Ṽ (k)

ℓp
. (4.30)

The coherent state �nally reads

|g⟩ = e−NG/2 exp

{∫ ∞

0

k2 dk

2 π2
gk â

†
k

}
|0⟩ , (4.31)

where

NG =

∫ ∞

0

k2 dk

2π2
g2k (4.32)

is identi�ed with the graviton number because it is the result of N = a†a on the coherent
state, and thus the value of NG measures the �distance� in the Fock Space of |g⟩ from
the vacuum |0⟩ corresponding to NG = 0. Such a quantity also ensures the proper
normalization for the coherent state itself. We also can de�ne another quantity as

⟨ k ⟩ =
∫ ∞

0

k2 dk

2 π2
k g2k , (4.33)

from which one obtains the �average� wavelength λG = NG/⟨ k ⟩.
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4.2 Quantum Schwarzschild black holes

We will now apply results from the previous section to the Schwarzschild metric (4.18).
This geometry contains only the function VN =

√
GNΦ, and all of the relevant expressions

introduced can be explicitly computed from the coe�cients gk representing the occupation
numbers of the modes uk.

4.2.1 Pointlike source

Let us �rst consider the most simple solution for the spherically symmetric case, which
comes from a point-like source described by a density function

ρ(r) =
M

4 π r2
δ(r) , (4.34)

whereM is the mass of the source. By Fourier transforming the classical Poisson equation

∆VN = 4π GN ρ , (4.35)

we have

ṼN = −4π GN
M

k2
(4.36)

and the coe�cients

gk = − 4 πM√
2 k3mp

. (4.37)

This gives an explicit expression for the graviton number

NG =
4M2

m2
p

∫ ∞

0

dk

k
, (4.38)

and

⟨ k ⟩ = 4M2

m2
p

∫ ∞

0

dk . (4.39)

The number of quanta NG contains a logarithmic divergence both in the infrared (IR)
and the ultraviolet (UV), whereas ⟨ k ⟩ only diverges (linearly) in the UV.

The meaning of such divergences was already explored in details in previous works
[52, 81, 95, 96]. In particular, the UV divergence arises from demanding a Schwarzschild
geometry for all values of r > 0 and can be formally regularised by introducing a cut-o�
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kUV ∼ 1/Rs, where Rs can be interpreted as the �nite radius of a regular matter source. 1

Such a cut-o� is just a mathematically simple way of accounting for the fact that the
very existence of a proper quantum state |g⟩ requires the coe�cients gk to depart from
their purely classical expression (4.37) for k → ∞. Likewise, we introduce a IR cut-o�
kIR = 1/R∞ to account for the necessarily �nite lifetime τ ∼ R∞ of the system, and
�nally write

NG =
4M2

m2
p

∫ kUV

kIR

dk

k
= 4

M2

m2
p

ln

(
R∞

Rs

)
, (4.40)

and

⟨ k ⟩ = 4M2

m2
p

∫ kUV

kIR

dk = 4
M2

m2
p

(
1

Rs

− 1

R∞

)
. (4.41)

We started from the condition in Eq. (4.26), which demands that the coherent state
|g⟩ reproduces the classical potential everywhere. We then found that acceptable occu-
pation numbers gk do not exist which satisfy this requirement for k → 0 and k → ∞.
The above cut-o�s imply that the quantum coherent state for a black hole does not need
to include all possible (high and low) frequency modes. This conclusion is further sup-
ported by the fact that, for a black hole, the mean scalar �eld only needs to reproduce
the classical metric function VN with su�cient accuracy outside the horizon RH to satisfy
experimental constraints. Since the behaviour of the matter content insider the horizon
remains unknown and experimental bounds can only be established in the outer conmu-
nication region beyond the horizon, the focus is on this external region. This means that
the coherent state |gBH⟩ representing a black hole must give√

ℓp
mp

⟨gBH| Φ̂(t, r) |gBH⟩ ≃ VN(r) for r ≳ RH , (4.42)

where we recall that VN(RH) = −1/2 and the approximate equality is subject to exper-
imental precision. In practice, this weaker condition means that |gBH⟩ does not need to
contain the modes of in�nitely short wavelength that are necessary to resolve the classical
singularity at r = 0.

It is important to remark that the expression (4.40) di�ers from the corpuscular scal-
ing (2.16) due to the presence of the logarithmic term involving the pro�les of the source,
which leads to the violation of the no-hair theorem at the level of the occupation number.
The resolution of the divergences explicitly depends on the choice of cut-o�s, which was
arbitrary. However, these cut-o�s provide an indication of what may occur when Quan-
tum Mechanics is used to describe a function within a gravitational framework. Note that

1For a (quantum) black hole, we must have Rs ≲ RH = 2GN M .
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di�erent shapes for the deviation from the classical potential VN would be obtained if one
employed a di�erent UV cut-o� in the integral (4.44). In particular, one could consider a
smooth window function rather than the hard cut-o� k < R−1

s . Assuming such a smooth
function is physically related to the distribution of matter in the black hole interior, one
could in principle detect di�erent matter pro�les from analysing (test particle motion in)
the black hole exterior, whose geometry is going to be described in details next.

In fact, Eq. (4.42) can be satis�ed by building the coherent state |gBH⟩ according to
Eq. (4.31) with modes of wavelength k−1 larger than some fraction of the size of the
gravitational radius RH of the source, which we can further identify with the UV cut-o�
Rs. By momentarily considering also the IR scale kIR, we thus have that only the modes
k satisfying

R−1
∞ ∼ kIR ≲ k ≲ kUV ∼ R−1

s (4.43)

are signi�cantly populated in the quantum state |gBH⟩. This yields an e�ective quantum
potential

VQN ≃
∫ kUV

kIR

k2 dk

2π2
ṼN(k) j0(k r)

≃ −2 ℓpM

πmp r

∫ r/Rs

0

dz
sin z

z
, (4.44)

where we de�ned z = k r and let kIR = 1/R∞ → 0 as mentioned above. We thus �nd

VQN ≃ −2GNM

π r
Si

(
r

Rs

)
≃ VN

{
1−

[
1− 2

π
Si

(
r

Rs

)]}
, (4.45)

where Si denotes the sine integral function (see Fig. 4.1 for an example).
Therefore, inserting the cut-o�s brings quantum corrections to the classical metric

function through VQN, and the reconstructed Schwarzschild solution is

ds2 = − (1 + 2VQN) dt
2 +

dr2

1 + 2VQN

+ r2 dΩ2 , (4.46)

where the dependence of VQN on Rs therefore results in a quantum violation of the no-hair
theorem [93].

Besides the presence of an event horizon even in this mean �eld metric tensor, it is
interesting to look at the classical spacetime singularity of the Schwarzschild solution.
The quantum corrected function VQN is regular near the origin

VQN ≃ −2GNM

πRs

[
1− π r2

18R2
s

]
, (4.47)
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Figure 4.1: Quantum metric function VQN in Eq. (4.45) (solid line) compared to VN
(dashed line) for Rs = RH/20. The horizontal thin line marks the location of the horizon
for V = −1/2.

so that it is bounded and its derivative vanishes for r = 0 (see Fig. 4.1). This suggests
that gravitational tidal forces will not show any singular behaviour, as we shall show in
more details next.

In the classical Schwarzschild spacetime (4.18), the Kretschmann scalar Rαβµν R
αβµν ∼

R2 ∼ r−6 for r → 0, whereas for the above quantum corrected metric we have

Rαβµν R
αβµν ≃ R2 ≃ 64G2

NM
2

π R2
s r

4
. (4.48)

This ensures that tidal forces remain �nite all the way to the centre, as can be seen more
explicitly from the relative acceleration of radial geodesics approaching r = 0, to wit

δ̈r

δr
= −R1

010 ≃
8G2

NM
2

9 π2R4
s

(
1− π Rs

4GNM

)
, (4.49)

where δr is the separation between two nearby radial geodesics and a dot denotes again the
derivative with respect to the proper time. We recall that, in the Schwarzschild spacetime,
δ̈r/δr ∼ r−4, which causes the so-called �spaghetti�cation� of matter approaching the
central singularity. One can say that r = 0 is now an integrable singularity [97], where
some geometric invariants still diverge but no harmful e�ects occur to matter.

The corpuscular scaling (2.16) for the number NG with the square of the energy M of
the system already appears at this stage, whereas the second crucial result

λG =
NG

⟨ k ⟩
∼ ℓp

M

mp

, (4.50)
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Figure 4.2: Oscillations of the quantum potential VQN in Eq. (4.45) around the
Schwarzschild expression VN for Rs = GNM = RH/2 (dashed line) and Rs = RH/20
(solid line) in the region outside the horizon RH = 2GNM .

is obtained from Eqs. (4.40) and (4.41) only provided the cut-o�s satisfy

ln

(
R∞

Rs

)
≃ RH

Rs

. (4.51)

Assuming Rs ≲ RH ≪ R∞, the above yields

Rs ≃
RH

ln (R∞/RH)
, (4.52)

so that the size of the inner source and the radius of the outer region containing a gravi-
tational �eld are actually connected at the quantum level.

4.2.2 Gaussian source

Let us consider the case of a Gaussian source by replacing the density function (4.34)
with

ρ(r) =
M

(2 π δ2)
3
2

e−
r2

2 δ2 , (4.53)

where δ is the width of the source, and

M = 4π

∫ ∞

0

dr r2 ρ(r) (4.54)
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is the total mass of the source. Let us remark that the above density is essentially zero
for r ≳ R ≡ 3 δ, which allows us to make contact with previous case. We immediately
�nd the Fourier transform for the matter distribution ρ(r)

ρ̃(k) =M e−
δ2 k2

4 (4.55)

from which the coe�cients building the state |g⟩ are obtained by the general formula

gk = − 4 π ρ̃(k)√
2 k3mp

= −4 πM e−
k2 δ2

4

√
2 k3mp

(4.56)

The coherent state |VM⟩ so de�ned corresponds to a quantum-corrected metric function
[81]

VqM =
√
GN ⟨VM | Φ̂ |VM⟩ = −GNM

r
erf
(r
δ

)
, (4.57)

where erf denotes the error function and we let R−1
∞ → 0. For a comparison with the

analogous potential generated by a point-like source with the same mass M , see Fig. 4.3.
For r ≳ R ≡ 3 δ = 3RH/2, the two potentials are clearly indistinguishable.

The total occupation number is obtained as

NM = 4
M2

m2
p

∞∫
R−1

∞

dk

k
e−

k2 δ2

2

= 2
M2

m2
p

Γ

(
0,

δ2

2R2
∞

)
≃ 4

M2

m2
p

ln

(
R∞

δ

)
, (4.58)

where Γ = Γ(a, x) is the incomplete gamma function and we assumed δ ≪ R∞.
It is important to note that the number NM presents an IR divergence if the source

contains modes of vanishing momenta (which would only be physically consistent with
an eternal source). Therefore, the state |VM⟩ and the number are not mathematically
well-de�ned in general. In complete analogy with the point-like source, we have also
introduced an IR cut-o� kIR ∼ R−1

∞ that can cure the IR divergence. Furthermore, this
divergence can be eliminated if the scalar �eld is massive.
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Figure 4.3: Newtonian potential (solid line) for Gaussian matter density with δ = 2GNM
(dashed line) vs Newtonian potential (dotted line) for point-like source of mass M .

49



Chapter 5

Quantum hair and entropy for slowly

rotating quantum black holes

So far we have discussed how the static and spherically symmetric Schwarzschild geometry
can be reproduced by employing coherent states of a massless scalar �eld on a reference
�at spacetime, which then leads to necessary departures from the classical Schwarzschild
metric [52]. In particular, the central singularity of the Schwarzschild black hole is replaced
by an integrable singularity [97]. The coherent state is built for a scalar �eld whose
expectation value e�ectively describes the geometry emerging from the (longitudinal or
temporal) polarisation of the graviton in the linearised theory.

It is well known that stellar black holes are formed from the collapse of astrophys-
ically signi�cant bodies under suitable conditions. Since the generator of black hole is
considered as a typically rotating body, the resulting black hole is also expected to rotate.
Additionally, infalling accreting material, black hole mergers, and the feedback from rela-
tivistic jets provide futher mechanisms to either create or maintain a spinning black hole.
Therefore, the majority of black holes in nature are very likely to spin, which motivates
investigating quantum descriptions of black holes with non-vanishing speci�c angular mo-
mentum a = J/M [98]. A complete description of axisymmetric Kerr black holes [99]
remains beyond our scope, but this (conceptually and phenomenologically) important is-
sue can be addressed for slow rotation by considering coherent states of gravitons similarly
to the spherically symmetric case. In particular, we will focus on the quantum description
of the approximate Kerr metric for |a| ≪ GNM , which can be written as [100]

ds2 ≃ − (1 + 2V ) dt2 +
dr2

1 + 2V
− 4GNM a

r
sin2 θ dt dϕ+ r2 dΩ2 , (5.1)

where dΩ2 = dθ2 + sin2 θ dϕ2. In the above, the metric function

V = VM +Wa , (5.2)
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where

VM = −GNM

r
(5.3)

corresponds to the Schwarzschild metric [101] for a = 0, and

Wa =
a2

2 r2
. (5.4)

In the above stationary geometry, the possible event horizon is a sphere located at r = rH
de�ned as the largest (real) solution of 1+2V = 0. We shall �nd that the very existence of
a quantum coherent state again requires departures from the classical geometry (at least)
near the (would-be) classical central singularity. This induces the presence of �quantum
hair�,which we will further connect with the Bekenstein-Hawking entropy [57], 1-loop
quantum corrections to the metric (see [102] and references therein for earlier works), and
the Hawking evaporation [55].

5.1 Coherent quantum states for slowly rotating geom-

etry

Like in Ref. [52], the quantum vacuum is here assumed to correspond to a spacetime
devoid of matter and gravitational excitations. Any classical metric should then emerge
from a suitable (highly excited) quantum state. A standard approach for recovering clas-
sical behaviours employs coherent states, which is generically motivated by their property
of minimising the quantum uncertainty, and is further supported by studies of electrody-
namics [51, 103], linearised gravity [104,105], and the de Sitter spacetime [83,106].

In particular, we can again obtain the potential function in Eq. (5.1) as the expectation
value of a free massless scalar �eld

√
GN Φ = V satisfying the Klein-Gordon equation

□Φ = 0 . (5.5)

It is convenient to employ spherical coordinates in which a complete (normalised) set of
positive frequency solutions is given by

uωℓm =
e−i ω t

√
2ω

jℓ(ω r)Yℓm(θ, φ) , (5.6)

where jℓ are spherical Bessel functions of the �rst kind, and

Y m
ℓ = (−1)m

√
(2 ℓ+ 1)(ℓ−m)!

4 π (ℓ+m)!
Pm
ℓ (cos θ) eimφ , (5.7)
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are spherical harmonics of degree ℓ and order m, Pm
ℓ being associated Legendre polyno-

mials. We recall that these solutions are orthonormal, 1

(uωℓm|uω′ℓ′m′) =
π

2ω2
δ(ω − ω′) δℓℓ′ δmm′ , (uωℓm|u∗ω′ℓ′m′) = 0 , (5.8)

in the Klein-Gordon scalar product

(f1|f2) = i

∫
d3x (f ∗

1 ∂tf2 − f2 ∂tf
∗
1 ) . (5.9)

The quantum theory is built by mapping the �eld Φ into an operator expanded in
terms of the normal modes (5.6),

Φ̂ =
∑
ℓ

ℓ∑
m=−ℓ

2

π

∞∫
0

ω2 dω
√
ℏ
[
uωℓm âℓm(ω) + u∗ωℓm â

†
ℓm(ω)

]
. (5.10)

Likewise, its conjugate momentum reads

Π̂ = i
∑
ℓ

ℓ∑
m=−ℓ

2

π

∞∫
0

ω3 dω
√
ℏ
[
uωℓm âℓm(ω)− u∗ωℓm â

†
ℓm(ω)

]
. (5.11)

These operators satisfy the equal-time commutation relations,[
Φ̂(t, r, θ, φ), Π̂(t, r′, θ′, φ′)

]
= i ℏ

δ(r − r′)

r2
δ(θ − θ′)

sin θ
δ(φ− φ′) , (5.12)

provided the creation and annihilation operators obey the commutation rules[
âℓm(ω), â

†
ℓ′m′(ω

′)
]
=

π

2ω2
δ(ω − ω′) δℓℓ′ δmm′ . (5.13)

The vacuum state is �rst de�ned by âℓm(ω) |0⟩ = 0 for all allowed values of ω, ℓ and m,
and a basis for the Fock space is constructed by the usual action of creation operators.

5.1.1 Semiclassical metric function

We seek a quantum state of Φ which e�ectively reproduces (as closely as possible) the
expected slow-rotation limit of the Kerr geometry (5.1), that is√

GN ⟨V | Φ̂(t, r, θ, φ) |V ⟩ ≃ V (r) . (5.14)

1See Appendix A for more details about the notation.
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We can build |V ⟩ as a superposition of coherent states satisfying

âℓm(ω) |gℓm(ω)⟩ = gℓm(ω) e
i γℓm(ω) |gℓm(ω)⟩ , (5.15)

where gℓm = g∗ℓm and γℓm = γ∗ℓm, so that

√
GN ⟨V | Φ̂ |V ⟩ = ℓp

∑
ℓ

ℓ∑
m=−ℓ

2

π

∞∫
0

ω2 dω jℓ(ω r)
(−1)m√

2ω

√
(2 ℓ+ 1)(ℓ−m)!

4 π (ℓ+m)!

× 2 cos(ω t− γℓm +mφ)Pm
ℓ (cos θ) gℓm(ω) .(5.16)

Since the Kerr metric is stationary and axially symmetric, we impose that the phases
γℓm ≃ ω t+mφ. Indeed, one could argue that recovering exact spacetime symmetries with
such a limiting procedure re�ects the fact that no perfect isometries exist in nature [52].

The coe�cients gℓm can be determined by expanding the metric �eld V on the spatial
part of the normal modes (5.6),

V (r, θ) =
∑
ℓ

ℓ∑
m=−ℓ

2

π

∞∫
0

ω2 dω jℓ(ωr) (−1)m

√
(2 ℓ+ 1) (ℓ−m)!

4π (ℓ+m)!
Pm
ℓ (cos θ) Ṽℓm(ω) .(5.17)

By comparing the expansions (5.16) and (5.17), we obtain

gℓm =

√
ω

2

Ṽℓm(ω)

ℓp
. (5.18)

The coherent state �nally reads

|V ⟩ =
∏
ℓ

ℓ∏
m=−ℓ

e−Nℓm/2 exp

 2

π

∞∫
0

ω2 dω gℓm(ω) â
†
ℓm(ω)

 |0⟩ , (5.19)

where

Nℓm =
2

π

∞∫
0

ω2 dω |gℓm(ω)|2 , (5.20)

is the occupation number for the state |gℓm(ω)⟩. We note in particular thatNV =
∑

ℓmNℓm

measures the �distance� of |V ⟩ from the vacuum |0⟩ in the Fock space and should be
�nite [52].
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5.1.2 Schwarzschild geometry

For zero angular momentum, hence a = Wa = 0, the metric function (5.3) is obtained
from

Ṽ00 = −2
√
π

ω2
GNM , (5.21)

so that the only contributions to the coherent state |VM⟩ are given by the eigenvalues [52]

g00 = −
√

2 π

ω3

M

mp

, (5.22)

yielding the total occupation number

NM = N00 = 4
M2

m2
p

∞∫
0

dω

ω
. (5.23)

The number NM diverges logarithmically both in the infrared (IR) and in the ultraviolet
(UV). In particular, the UV divergence arises from demanding a Schwarzschild geometry
for all values of r > 0 and can be formally regularised by introducing a cut-o� ωUV ∼ 1/Rs,
where Rs can be interpreted as the �nite radius of a regular matter source [81]. 2 Such
a cut-o� is just a mathematically simple way of accounting for the fact that the very
existence of a proper quantum state |VM⟩ requires the coe�cients g00 = g00(ω) to depart
from their purely classical expression (5.22) for ω → ∞. Likewise, we introduce a IR
cut-o� ωIR = 1/R∞ to account for the necessarily �nite lifetime τ ∼ R∞ of the system,
and �nally write

NM = 4
M2

m2
p

ln

(
R∞

Rs

)
. (5.24)

Note that the boundaries Rs and R∞ act as endpoints of the spacetime manifold which
induce geodesic incompleteness, since their presence prevent geodesic from extending to
arbitrarily small and large values of the a�ne parameter.

The coherent state |VM⟩ so de�ned corresponds to a quantum-corrected metric function

VqM ≃
√
GN ⟨VM | Φ̂ |VM⟩ = 1

π3/2

ωUV∫
ωIR

ω2 dω j0(ωr) Ṽ00(ω)

≃ −2GNM

π r

∫ R−1
s

R−1
∞

dω
sin(ω r)

ω

≃ −GNM

r

{
1−

[
1− 2

π
Si

(
r

Rs

)]}
, (5.25)

2For a (quantum) black hole, we must have Rs ≲ RH = 2GN M [52, 95].
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where we let ωIR = 1/R∞ → 0 and Si denotes the sine integral function. 3 This result
was already analysed in Ref. [52], to which we refer for further details.

5.1.3 Slowly rotating black hole

The classical metric (5.1) is characterised by an angular momentum of modulus ℏ ≪ J =
|a|M ≪ GNM

2 oriented along the axis of symmetry, so that Jz = J for a > 0, and
by the metric function Wa in Eq. (5.4). We can now show that a quantum state that
reproduces such a metric can be obtained by linearly combining the coherent state |VM⟩
of the Schwarzschild geometry with a suitable coherent state |Wa⟩.

The normal modes (5.6) are eigenfunctions of the angular momentum operators L̂2

and L̂z (in Minkowski spacetime) with eigenvalues ℏ2 ℓ (ℓ+ 1) and ℏm, respectively. The
expectation values of the angular momentum operators on the coherent state |gℓm(ω)⟩ are
therefore given by (see Appendix B)

Jℓm = ⟨gℓm(ω)|
√
L̂2 |gℓm(ω)⟩ = ℏ

√
ℓ (ℓ+ 1) |gℓm(ω)|2 , (5.26)

and

Jz
ℓm = ⟨gℓm(ω)| L̂z |gℓm(ω)⟩ = ℏm |gℓm(ω)|2 . (5.27)

The total angular momentum for a superposition |W ⟩ of states |gℓm(ω)⟩ can be obtained
as

J ≡ ⟨W |
√
L̂2 |W ⟩ =

∑
ℓ>0

ℓ∑
m=−ℓ

2

π

∞∫
0

ω2 dω Jℓm(ω) =
∑
ℓ>0

ℏ
√
ℓ (ℓ+ 1)

ℓ∑
m=−ℓ

Nℓm . (5.28)

Likewise,

Jz ≡ ⟨W | L̂z |W ⟩ =
∑
ℓ>0

ℓ∑
m=−ℓ

2

π

∞∫
0

ω2 dω Jz
ℓm(ω) =

∑
ℓ>0

ℓ∑
m=−ℓ

ℏmNℓm . (5.29)

Let us next consider coherent states de�ned by the eigenvalues

gℓm = Cℓm

√
2 π ℓαp M

ω3/2−αmp

, (5.30)

3For Rs → 0, the term in square brackets vanishes at any r > 0 and the Schwarzschild metric is
formally recovered.
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where Cℓm are numerical coe�cients that do not depend on ω and ℓ ≥ 1. The correspond-
ing occupation numbers (5.20) are given by

Nℓm ≃


C2

ℓmNM for α = 0

4C2
ℓm

M2

m2
p

[(
ℓp
Rs

)2α

−
(
ℓp
R∞

)2α
]

for α ̸= 0 ,
(5.31)

where NM ∼ M2/m2
p is given in Eq. (5.24). Note that the IR limit R∞ → ∞ is regular

only for α > 0, for which Nℓm ≪ NM if Rs ≫ ℓp. In this case, we can further approximate

Nℓm ≃ 4C2
ℓm

M2

m2
p

(
ℓp
Rs

)2α

∼ C2
ℓm , (5.32)

where we considered Rs ∼ RH for a black hole. 4 Moreover, the modi�cation (5.17) to the
metric function is given by

Wℓm ≃ ℓp
2

π

ωUV∫
ωIR

ω2 dω jℓ(ω r)
(−1)m√

2ω

√
(2 ℓ+ 1) (ℓ−m)!

π (ℓ+m)!
Pm
ℓ (cos θ) gℓm(ω)

≃ GNM

r

(
ℓp
r

)α
[
Cℓm (−1)m

√
(2 ℓ+ 1) (ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ)

2

π

∫ r/Rs

0

zα dz jℓ(z)

]
,(5.33)

where the integral in square brackets can be expressed in terms of regularised hyperge-
ometric functions [see Eq. (A.11)]. We then see that the leading terms in the correc-
tion (5.33) are of the classical form Wa ∼ r−2 in Eq. (5.4) if α = 1.

Finally, the contribution to the angular momentum satis�es the classicality conditions

ℏ ≪ Jℓm ≃ ℏ
√
ℓ (ℓ+ 1)Nℓm ≃ ℏmNℓm ≃ Jz

ℓm , (5.34)

provided m ≃ ℓ and ℓNℓm ∼ ℓ C2
ℓm ≫ 1. We can build a coherent state |Wa⟩ that

reproduces the geometry (5.1) by including di�erent coherent states (5.30) with α = 1
and angular momentum numbers satisfying these conditions. The rotation coe�cient will
then be given by

mp

M
≪ a

GNM
∼
m2

p

M2

ℓc∑
ℓ=1

√
ℓ (ℓ+ 1)Nℓℓ ∼

1

NM

ℓc∑
ℓ=1

√
ℓ (ℓ+ 1)Nℓℓ ≲ δJ ≪ 1 , (5.35)

where we introduced a parameter δJ > 0 to de�ne the slow rotation regime in terms of a
maximum value of ℓ, denoted by ℓc.

4All numerical factors can be included in Cℓm.
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5.2 Quantum hair

Black hole solutions in general relativity are determined only by the total mass, angular
momentum, and electric charge (if present). These uniqueness theorems [107] strongly
limit the information about the internal state of a black hole that can be obtained by
outside observers. However, the situation changes when we consider the quantum de-
scription of black holes given by coherent states already for the spherically symmetric
case of Section 5.1.2. In fact, the coherent states from which the geometry emerges as a
mean �eld e�ect cannot accommodate for perfect Schwarzschild spacetimes [52], but they
instead depend on the internal structure of the matter sources (classically) hidden inside
the horizon.

The classical case of slow rotation was considered in Section 5.1.3, where we assumed
that the quantum states of the geometry only include speci�c coherent states (5.30) with
α = 1 satisfying the relations in Eq. (5.34) for the angular momentum. However, the
possibility that other states contribute can only be limited from the condition of recovering
the classical metric (5.1) within the experimental bounds. Their presence, on the other
hand, will constitute a further example of quantum hair [93,94,108�111], with departures
from the classical geometry.

Instead of attempting a general analysis, we shall only consider states that violate
one of the classicality conditions de�ned in Section 5.1.3 at a time. In particular, we will
study a) quantum contributions with Jz ≃ J but α > 1 inducing departures from VM
smaller than Wa at large r in Section 5.2.1 and b) modes with α = 1 and a > 0 given by
Eq. (5.35) but such that |Jz| ≪ J in Section 5.2.2.

5.2.1 Quantum metric corrections

An explicit example of a coherent state which satis�es the classical conditions Jz ≃ J for
the angular momentum but leads to a geometry with terms that fall o� at r ≫ RH =
2GNM faster than Wa in Eq. (5.4) is built from

gℓ̄ℓ̄ = Cℓ̄

√
2 π ℓαp M

ω3/2−αmp

, (5.36)

where α > 1 and ℓ̄ is a �xed integer value. The hairy geometry can now be obtained from

Wℓ̄ℓ̄ ≃
ℓp
π2

ωUV∫
ωIR

ω3/2 dω jℓ̄(ω r)
2 ℓ̄+ 1

2ℓ̄−1/2 ℓ̄!
(sin θ)ℓ̄ gℓ̄ℓ̄(ω) , (5.37)
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where we used Eq. (A.8). We thus �nd

Wℓ̄ℓ̄ ≃ Cℓ̄

ℓαp GNM

π3/2

2 ℓ̄+ 1

2ℓ̄−1 ℓ̄!
(sin θ)ℓ̄

ωUV∫
ωIR

ωα dω jℓ̄(ω r)

≃ Cℓ̄

GNM

π3/2 r

(
ℓp
r

)α
2 ℓ̄+ 1

2ℓ̄−1 ℓ̄!
(sin θ)ℓ̄

∫ r/Rs

0

zα dz jℓ̄(z)

∼ GNM

r

(
ℓp
r

)α

, (5.38)

where the integral is given in Eq. (A.11).
We can in particular estimate the correction on the (unperturbed) Schwarzschild hori-

zon at r = RH,

Wℓ̄ℓ̄(RH) ∼
(mp

M

)α
(sin θ)ℓ̄ . (5.39)

Such corrections with di�erent ℓ̄ represent purely axial perturbations on the horizon,
with vanishingly small amplitude for macroscopically large black holes of mass M ≫ mp

provided α ≳ 1.

5.2.2 Quantum angular momentum

States that lead to metric functions of the classical form Wa in Eq. (5.4) with a given by
Eq. (5.35) but satisfy

Jz ∼
ℓc∑
ℓ=1

ℓ∑
m=−ℓ

mNℓm ≃ 0 (5.40)

can be simply obtained by assuming |gℓm| = |gℓ−m| so that Nℓm = Nℓ−m. As an example,
we consider

gℓ̄ℓ̄ = gℓ̄−ℓ̄ = Cℓ̄

√
2 π

ω

M

mp

, (5.41)

where ℓ̄ is again a �xed integer value and ℓ̄ C2
ℓ̄
is of the correct size to yield a rotation

parameter a > 0 satisfying the bounds in Eq. (5.35). The metric correction is now given
by

Wℓ̄ℓ̄ ≃
ℓp
π2

ωUV∫
ωIR

ω2 dω jℓ̄(ω r)
(−1)ℓ̄ + 1√

2ω

2 ℓ̄+ 1

2ℓ̄−1 ℓ̄!
(sin θ)ℓ̄ gℓ̄ℓ̄(ω) , (5.42)
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where we used the known relation (A.9). For ℓ̄ odd the above expression vanishes, whereas
for ℓ̄ even we �nd twice the value in Eq. (5.38) with α = 1, that is

Wℓ̄ℓ̄ ∼
ℓpGNM

r2
. (5.43)

From the above few examples, it should be clear that one can engineer many di�er-
ent axially symmetric con�gurations, all of which di�er from the (slowly-rotating) Kerr
geometry only by terms of order (ℓp/r)

α for α ≥ 1. Of course, this ambiguity would be
removed by computing the coherent state generated by a given matter source, which is
however supposedly hidden behind the horizon. Moreover, we remark that such terms
would result in a (slight) shift in the position rH of the event horizon with respect to the
classical value RH.

5.3 Entropy and evaporation

In the previous Sections, for simplicity, we have modelled the dependence of the geometry
from the internal structure of the black hole by introducing cut-o�s ωIR ∼ 1/R∞ and
ωUV ∼ 1/Rs in momentum space and allowing for contributions of angular momentum
that have no classical counterpart. Were we able to test the gravitational �eld with
su�cient accuracy, for instance from the motion of test particles and light in the outer
region to the horizon, we could remove these uncertainties and gather information about
the interior of the black hole.

5.3.1 Bekenstein-Hawking entropy

A common way to measure our ignorance about the actual state of a system is provided
by the thermodynamic entropy, which is obtained by counting the possible microstates
corresponding to a given macroscopic con�guration. For a Schwarzschild black hole, the
Bekenstein-Hawking entropy [57]

SBH =
π R2

H

ℓ2p
=

4 πM2

m2
p

(5.44)

can be obtained [53] by supplementing a pure coherent state of the Schwarzschild geom-
etry (5.22) with the Planckian distribution of Hawking quanta at the temperature [55]

TH =
m2

p

8 πM
. (5.45)

Given a black hole of massM , instead of one pure coherent state, we could consider all
possible states giving rise to (practically) indistinguishable semiclassical geometries with
the mass M . We can employ the total occupation number (5.24) 5 of the correspond-

5We just mention that the same quantisation law is obtained for the ground state of a dust ball [112].
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ing coherent state to estimate the total number of microstates available to build such
con�gurations as

NM ∼
NM∑
n=0

(
NM

n

)
=

NM∑
n=0

NM !

(NM − n)!n!
= 2NM . (5.46)

The thermodynamic entropy is thus

SM ∝ ln(NM) ∼
(
M

mp

)2

, (5.47)

which is clearly proportional to the Bekenstein-Hawking entropy (5.44). One can therefore
envisage that the coherent states giving rise to Schwarzschild black hole geometries con-
tain the precursors (or proxies) of the Hawking particles, like in the original corpuscular
picture [43�46].

5.3.2 Entropy and angular momentum

We can also estimate the number of quantum states with angular momentum correspond-
ing to geometric con�gurations that cannot be observationally distinguished from a non-
rotating Schwarzschild black hole. For this purpose, we can consider again a maximum
angular momentum parameter δJ ≪ 1 such that con�gurations with

J

M RH

≃ a

GNM
≲ δJ , (5.48)

cannot be distinguished from the coherent state reproducing the quantum-corrected Schwarzschild
geometry (5.25). Furthermore, we shall include in this count only those contributions of
the form in Eq. (5.30),

gℓm ∼ Cℓm

ωα ℓαp M

ω3/2mp

, (5.49)

that violate both of the classicality conditions considered in Sections 5.2.1 and 5.2.2, that
is α ≳ 1 and 0 ≤ |m| ≪ ℓ.

In particular, the contribution of modes with m ≃ 0 to the angular momentum (5.28)
is approximately given by

aℓ
GNM

≃ ℓ
m2

p

M2
Nℓ0 ∼ ℓ

(
ℓp
Rs

)2α

, (5.50)

in which we assumed Nℓ0 ∼ C2
ℓ0 ∼ 1 and ℓ ≫ 1. Imposing the constraint (5.48) on the

total angular momentum,

ℓc∑
ℓ=1

aℓ
GNM

∼ ℓ2c

(
ℓp
Rs

)2α

≲ δJ , (5.51)
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yields

ℓc ≲

(
Rs

ℓp

)α√
δJ ∼

(
M

mp

)α√
δJ , (5.52)

where we again set Rs ∼ RH for a black hole. Upon allowing for the inclusion of modes
|gℓ0⟩ with 1 ≤ ℓ ≤ ℓc, we can estimate the degeneracy of the quantum black hole given by
the total number of possible combinations in angular momentum, that is

Nc =
ℓc∑
ℓ=0

(
ℓc
ℓ

)
=

ℓc∑
ℓ=0

ℓc!

(ℓc − ℓ)! ℓ!
= 2ℓc . (5.53)

The corresponding thermodynamic entropy,

S ∝ ln(Nc) ∼
(
M

mp

)α√
δJ , (5.54)

is also proportional to the Bekenstein-Hawking entropy (5.44) for α = 2.
It is then interesting to notice that the metric corrections for α = 2 are of the same

order in ℓp and 1/r as those obtained from 1-loop corrections to the Schwarzschild met-
ric [102], that is

Wqa ≃
ℓc∑
ℓ=1

Wℓ0 ≃
GNM

r

(
ℓp
r

)2 ℓc∑
ℓ=1

[
Cℓ0

√
2 ℓ+ 1Pℓ(cos θ)

2

π

∫ r/Rs

0

z2 dz jℓ(z)

]

∼ GNM

r

(
ℓp
r

)2

, (5.55)

where Pℓ = P 0
ℓ are Legendre polynomials.

Finally, we can check that the condition (5.52) guarantees that the horizon does not
shift signi�cantly from the unperturbed Schwarzschild radius. In fact, for α = 2, we can
write

V ≃ VM + ϵ
ℓ2pGNM

r3
, (5.56)

where ϵ ∼
√
δJ now contains all the parameters (and angular dependence) shown in the

�rst line of Eq. (5.55). The largest solution to V = −1/2 is then given by

rH ≃ 2GNM − ϵ ℓp , (5.57)

which represents a negligible correction to RH = 2GNM . Given the fast fall-o� of the
metric correction in Eq. (5.55), one could interpret these perturbations as being �con-
�ned� about the horizon RH, like in the membrane approach [113] and in derivation of
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the entropy (5.44) based on conformal symmetry [114]. In both approaches the essential
physics is argued to reside very close to the horizon. Both approaches rely on a slight
positional adjustment of the event horizon. This adjustment not only regularizes physical
quantities (rendering entropy, temperature, etc., �nite) but also provides a clear and op-
erable boundary for describing the interactions between the black hole and external �elds.
The membrane paradigm and the conformal �eld theory approach, respectively from the
perspectives of macroscopic physical description and microscopic statistical description,
reveal the important role of black hole horizon regularization (or positional correction).

5.3.3 Hawking radiation

The Hawking evaporation has been studied with several methods since its discovery [55].
In particular, semiclassical approaches describe this e�ect as particles that tunnel out
from within the event horizon on classically forbidden paths [115�124]. We will employ
the WKB approach to compute corrections to the Hawking temperature for slowly ro-
tating black holes described by the quantum-corrected Schwarzschild metric (5.25) with
the metric modi�cation in Eq. (5.55) that we showed can contribute to the Bekenstein-
Hawking entropy.

We start by noting that, replacing the WKB ansatz

Φ ≃ exp

[
i

ℏ
S(t, r, θ, ϕ)

]
(5.58)

in the Klein-Gordon Eq. (5.5) at leading order in ℏ, yields the Hamilton-Jacobi equation

gµν ∂µS ∂νS ≃ 0 . (5.59)

Solutions can be written in the form

S = −E t+W(r) + J(θ, ϕ) +K , (5.60)

where E represents the energy of the emitted boson and K is a complex constant that will
be �xed later. The ratio E/M regulates the magnitude of the backreaction of the emission
on the black hole, which can alter the thermal nature of the Hawking radiation [115]. We
only consider large black holes with mass M ≫ mp, hence this e�ect can be neglected for
E ≪M .

Given the inverse of the metric (5.1), Eq. (5.59) can be written as

(1 + 2V )

[(
∂W

∂r

)2

+
r2

w sin θ

(
∂J

∂ϕ

)2
]
+

1

r2

(
∂J

∂θ

)2

+
4 aGNM r

w
E
∂J

∂ϕ
≃ r4

w
E2 ,(5.61)

where we used the form (5.60) for S and de�ned

w ≡ r4 (1 + 2V ) + 4 a2G2
NM

2 sin2 θ . (5.62)
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For Hawking particles in a quantum corrected Schwarzschild geometry, we can just con-
sider purely radial trajectories [121�124], along which J is constant, and further approxi-
mate w ≃ r4 (1 + 2V ). In this case, Eq. (5.61) is solved by

W± ≃ ±E
∫ r dr̄

1 + 2V
, (5.63)

with + (−) for outgoing (ingoing) particles.
Imaginary terms in the action S correspond to the Boltzmann factor for emission

and absorption across the event horizon. Such terms can only arise due to the pole at
r = rH ≃ RH, where 1+2V = 0, and from the imaginary part of K in Eq. (5.60), resulting
in the probabilities

P± ∝ exp

[
−2

ℏ
(ℑW± + ℑK)

]
, (5.64)

where ℑ denotes the imaginary part. Assuming that ingoing particles necessarily cross
the event horizon, that is P− ≃ 1, one must set ℑK = −ℑW−. Since W+ = −W−, the
probability of a particle tunnelling out then reads

P+ ≃ exp

(
−4

ℏ
ℑW+

)
. (5.65)

The integral (5.63) around the pole at r ≃ RH with the Feynman prescription for the
propagator [121�124] yields

ℑW+ ≃ lim
r→RH

π E

2 ℏV ′(r)
, (5.66)

where V ′ = ∂rV . Finally,

P+ ≃ exp

[
− 2 π E

V ′(RH)

]
(5.67)

which implies that the temperature must be given by

TM ≃ ℏ
2 π

V ′(RH) =
ℏ
2 π

[
V ′
qM(RH) +W ′

qa(RH)
]
. (5.68)

This expression with the metric function (5.25) and the contribution (5.55) with α = 2
for the case of Section 5.3.1 gives

TM ≃ TH
2

π

Si(RH

Rs

)
− sin

(
RH

Rs

)
−

3m2
p

4 πM2

ℓc∑
ℓ=1

Cℓ0

√
2 ℓ+ 1Pℓ(cos θ)

RH/Rs∫
0

z2 dz jℓ(z)

 ,(5.69)
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where TH is the standard Hawking temperature (5.45), which is therefore recovered asymp-
totically for M ≫ mp and Rs ≪ RH.

Using the metric function in Eq. (5.56), one analogously �nds

TM ≃ TH

(
1−

3 ϵm2
p

4M2

)
. (5.70)

On equating the two corrections of order m2
p/M

2, we obtain

ϵ ≃ 1√
π3

ℓc∑
ℓ=1

Cℓ0

√
2 ℓ+ 1Γ(ℓ/2 + 3/2)Pℓ(cos θ)

2ℓ Γ (ℓ+ 3/2) Γ(ℓ/2 + 5/2)
1F2

(
ℓ+ 3

2
, ℓ+

3

2
,
ℓ+ 5

2
,−1

4

)
, (5.71)

where we used Eq. (A.11) with α = 2.

5.4 Conclusions

In this Chapter, the semiclassical metric function reproducing a Kerr geometry in the
slow-rotation regime was shown to arise from suitable highly-excited coherent states, thus
generalising previous results obtained for spherically symmetric geometries [52, 106, 125].
Quantum hair naturally emerges in this context, since the existence of the quantum
coherent state does not allow for any possible IR and UV divergences in general.

An additional source of quantum hair was then identi�ed in angular momentum modes
that do not satisfy the conditions for giving rise to a classical rotating geometry described
in Section 5.1.3. Such modes were further associated with the Bekenstein-Hawking entropy
of Schwarzschild black holes and are therefore expected to play the role of precursors of the
Hawking radiation, at least for very massive black holes. The Hawking evaporation was
then studied with the Hamilton-Jacobi method, from which modes representing quantum
hair in the geometry were related to metric corrections of the form that one expects from
1-loop quantum corrections [102].
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Chapter 6

Horizon quantum mechanics for

coherent quantum black holes

The general relativistic description of gravitational collapse, leading to the formation of
black holes, was �rst investigated in the seminal papers by Oppenheimer and his co-
workers [126, 127]. However, a fully understanding of the physics underlying these pro-
cesses remains one of the most intriguing challenges in contemporary theoretical physics.
What is unanimously accepted is that gravity becomes signi�cant whenever a large enough
amount of matter is �compacted� into a su�ciently small volume, and the e�ects of grav-
itational interaction on the causal structure of spacetime cannot be neglected. K. Thorne
formulated this idea in the hoop conjecture [128]: A black holes forms when the impace
parameter b of two colliding objects (for simplicity, of negligible spatial extension and
total angular momentum) is shorter than the Schwarzschild radius of the system, that is
for

b ≲ 2 ℓp
E

mp

≡ RH , (6.1)

where E is total energy in the centre-mass frame.
This hoop conjecture has been theoretically checked and veri�ed in various situations,

but it was initially formulated for black holes of astrophysical size [129�131], whose energy
is orders of magnitude above the scale of quantum gravity, and can, therefore, be reason-
ably described by classical General Relativity. One of the most important questions then
arises is whether the concepts underlying this conclusion can also be trusted for masses
approaching the Planck scale. As previously discussed, at very short scales, i.e, lengths
on the order of the Planck length or less, the spacetime description in terms of General
Relativity breaks down, and a quantum theory of gravity must be invoked. A quantum
gravitational theory would allow us to predict the behaviour of gravity at all scales, but,
as of now, this goal has not yet been fully realized. In fact, the horizon wave function [132]
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raises as an e�ective approach to give us hints on what would be expected from black
hole physics near the Planck scale. The main idea is to extend the fundamental principles
of gravity and quantum mechanics beyond our current experimental limits. In doing so,
one encounters the conceptual challenge of consistently describing classical and quantum
objects, such as horizons and particles, within the same framework. This is achieved by
assigning wave functions to the quantum black hole horizon. The horizon wave function
is de�ned to be associated with any localised quantum mechanical particle, which makes
it easy to formulate in a quantitative way a condition for distinguishing black holes from
regular particles. This auxiliary wave function yields the probability of �nding a hori-
zon of a certain radius centred around the source, and one can therefore determine the
probability that a quantum mechanical particle is a black hole depending on its mass.

6.1 The horizon wave functions formalism

The horizon quantum mechanics was introduced in Refs. [35,132] (see also Ref. [133] for a
review) to compute the probability of the presence of horizons associated with static and
spherically symmetric matter sources in a given quantum state |ψS⟩. Now we introduce
the horizon wave function in the standard way. From classical General Relativity, we
know that the horizons of black holes are described by trapping surfaces, whose locations
are determined by [134]

0 = gij∇ir∇jr = 1− 2m(r)

r
, (6.2)

where ∇ir is the covector perpendicular to the surfaces of constant area A = 4π r2. The
function m(r) is the active gravitational (or Misner-Sharp) [135,136] mass, representing
the total energy enclosed within a sphere of radius r, and is given by

m(r) = 4 π

∫ r

0

ρ(x)x2 dx . (6.3)

An horizon then exists if there are values of r = rH such that 2GNm(rH) = rH. A
quantum mechanical description is obtained by replacing the classical energy density
with the energy decomposition of the source wavefunction,

|ψS⟩ =
∑
E

C(E) |ψE⟩ , (6.4)

where the sum represents the spectral decomposition in Hamiltonian eigenmodes,

Ĥ |ψE⟩ = E |ψE⟩ , (6.5)
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and H will depend on the model we wish to consider. Upon expressing E in terms of the
gravitational Schwarzschild radius, 1 E = rH/2GN, we obtain the horizon wavefunction

ψH(rH) ≡ ⟨ rH | ψH ⟩ = NH

∑
E=rH/2GN

C(E) , (6.6)

whose normalisation NH is �xed in the Schrödinger scalar product

⟨ψH | ϕH ⟩ = 4π

∫ ∞

0

ψ∗
H(rH)ϕH(rH) r

2
H drH . (6.7)

The normalised wavefunction yields the probability density for the values of the grav-
itational radius rH associated with the source in the quantum state |ψS⟩, namely

PH(rH) = 4 π r2H |ψH(rH)|2 . (6.8)

Moreover, the probability density that the source lies inside its own gravitational radius
will be given by

P<(rH) = PS(rH)PH(rH) , (6.9)

where

PS(rH) = 4 π

∫ rH

0

|ψS(r)|2 r2 dr (6.10)

is the probability that the source is found inside a sphere of radius r = rH. Finally, the
probability that the object described by the state |ψS⟩ is a black hole will be obtained by
integrating Eq. (6.9) over all possible values of the gravitational radius, namely

PBH =

∫ ∞

0

P<(rH) drH . (6.11)

6.2 Coherent quantum states for Schwarzschild geom-

etry

As presented in the previous Chapters, coherent quantum states can be employed to
describe the static and spherically symmetric Schwarzschild black holes as emergent
(semi)classical geometries [52]. 2 It is important to remark that this approach implies

1For the local version of the formalism, see Ref. [137].
2For studies of their thermodynamics and con�gurational entropy, see Refs. [53,64,138] and, for more

phenomenological consequences, see Ref. [139].
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the removal of the central singularities by the presence of a quantum matter core that
could therefore lead to phenomenological signatures of the kinds analysed in Ref. [140].
It appears natural to apply the horizon quantum mechanics to black hole geometries de-
scribed by coherent states and to verify under which conditions there exists a horizon
with probability close to one.

The presence of horizons in the above approach can only be established from semi-
classical arguments, that is by considering the quantum corrected metric

ds2 = −f(r) dt2 + dr2

f(r)
+ r2 dΩ2 , (6.12)

where dΩ2 = dθ2 + sin2 θ dϕ2 and

f = 1 + 2Vq(r) . (6.13)

In the above, the function Vq = ⟨V | V̂ (r) |V ⟩ is the expectation value of the relevant
metric �eld on the coherent quantum state |V ⟩. The locations of horizons are then given
by solutions r = rH of the classical equation f(r) = 0.

We now �rst reconstruct the state |ψS⟩ from the e�ective energy density associated
with the quantum corrected geometry (6.13); using that result, we will obtain the horizon
wavefunction in next Section. A metric of the form in Eq. (6.12) can be conveniently
described as the mean �eld of the coherent state of a (canonically normalised) free massless
scalar �eld

√
GNΦ = (f − 1)/2 = V (see Ref. [52] for all the details). From the Klein-

Gordon equation [
− ∂2

∂t2
+

1

r2
∂

∂r

(
r2

∂

∂r

)]
Φ(t, r) = 0 , (6.14)

we obtain the (positive frequency) eigenfunctions

uk = e−i k t j0(k r) , (6.15)

where j0 = sin(k r)/k r with k > 0 are spherical Bessel functions, which allow us to write
the �eld operator as

Φ̂ =

∞∫
0

k2 dk

2π2

√
ℏ
2 k

[
uk â(k) + u∗k â

†(k)
]

(6.16)

and its conjugate momentum as

Π̂ = i

∞∫
0

k2 dk

2 π2

√
ℏ k
2

[
uk â(k)− u∗k â

†(k)
]

(6.17)
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where â and â† are the usual annihilation and creation operators.
In particular, we are interested in a coherent state

|VM⟩ = e−NM/2 exp

{∫ ∞

0

k2 dk

2π2
gk â

†(k)

}
|0⟩ , (6.18)

which e�ectively reproduces (as closely as possible) the Schwarzschild geometry, that is√
GN ⟨VM | Φ̂(t, r) |VM⟩ ≃ VM(r) = −2GNM

r
. (6.19)

From

⟨VM | Φ̂ |VM⟩ =

∞∫
0

k2 dk

2π2

√
2 ℓpmp

k
gk cos(k t− γk) j0(k r) , (6.20)

we impose γk = k t for staticity and the coe�cients gk can be determined by expanding
the metric function VM = VM(r) on the spatial part of the normal modes (6.15), to obtain

gk = − 4 πM√
2 k3mp

. (6.21)

However, the corresponding normalisation factor

NM = 4
M2

m2
p

∞∫
0

dk

k
(6.22)

diverges both in the infrared and in the ultraviolet. The infrared divergence can be
eliminated by embedding the geometry in a universe of �nite Hubble radius r = R∞,
whereas the ultraviolet divergence could be removed by assuming the existence of a matter
core of �nite size r = Rs.

For the present work, it is convenient to regularise the ultraviolet divergence by re-
placing the coe�cients in Eq. (6.21) with

gk = −4 πM e−
k2 R2

s
4

√
2 k3mp

. (6.23)

This adjustment ensures that the e�ective energy density remains positive, as will be
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demonstrated below, and yields the total occupation number

NM = 4
M2

m2
p

∞∫
R−1

∞

dk

k
e−

k2 R2
s

2

= 2
M2

m2
p

Γ

(
0,

R2
s

2R2
∞

)
≃ 4

M2

m2
p

ln

(
R∞

Rs

)
, (6.24)

where Γ = Γ(a, x) is the incomplete gamma function and we assumed Rs ≪ R∞. The
coherent state |VM⟩ so de�ned corresponds to a quantum-corrected metric function

VqM =
√
GN ⟨VM | Φ̂ |VM⟩ = −GNM

r
erf

(
r

Rs

)
, (6.25)

where erf denotes the error function and we let R−1
∞ → 0.

6.2.1 E�ective energy density

From the de�nition of the mass function in Eq. (6.3) and

1 + 2VqM = 1− 2GNm

r
, (6.26)

we easily obtain

ρ(r) = − VqM
4π GN r2

(
1 + r

V ′
qM

VqM

)
. (6.27)

We next note that the quantum corrected potential (6.25) is of the form

VqM = VM(r) v(r) , (6.28)

where the function v has the asymptotic behaviours

v(r → 0) → 0 and v(r ≫ Rs) → 1 . (6.29)

The e�ective energy density therefore reads

ρ =
M v′

4π r2
, (6.30)
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so that Eq. (6.29) implies

m(r → ∞) =M

∫ ∞

0

v′(x) dx =M , (6.31)

as expected.
In particular, we have v = erf(r/Rs) and

ρ =
M e

− r2

R2
s

2 π
3
2 Rs r2

, (6.32)

which is the same result one would obtain from the Einstein �eld equations Gµ
ν =

8π GN T
µ
ν , where Gµ

ν is the Einstein tensor for the quantum corrected metric from
Eq. (6.25).

6.3 Horizon quantum mechanics

We are interested in a matter source with energy density (6.32) made of a very large
number N of particles. For simplicity, we assume that all particles are identical and have
a mass µ =M/N .

The (normalised) wavefunction of each particle in position space can be estimated as

ψS(ri) ∝ ρ1/2 ∝ e
− r2i

2R2
s

√
2π

3
4 R

1
2
s ri

, (6.33)

where i = 1, . . . , N . In momentum space, we then have

ψS(ki) =
2π

3
4 R

1
2
s

ki
erfi

(
kiRs√

2

)
e−

k2i R2
s

2 , (6.34)

where erfi is the imaginary error function. Notice that the wavefunction (6.34) peaks
around k = R−1

∞ , and the imaginary error function can be approximated for kiRs ≪ 1 as

erfi

(
kiRs√

2

)
≃
√

2

π
kiRs . (6.35)

Each particle can therefore be assumed in a state described by 3

|ψ(i)
s ⟩ ≃ Nk

∞∫
R−1

∞

dki e
− k2i R2

s
2 |ki⟩ , (6.36)

3Given the approximation (6.35), the expression (6.36) �underestimates� the exact wavefunction at
large k ∼ R−1

s . The related error can be reduced by decreasing the value of Rs with respect to the
(unknown) actual size of the core.
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where Nk is a suitable normalisation factor.
The dynamics of each particle is determined by a Hamiltonian Hi with spectrum

Ĥi |Ei⟩ = Ei |Ei⟩ , (6.37)

where

E2
i = µ2 + ℏ2 k2i . (6.38)

Thus, we can rewrite the state (6.36) of each particle as

|ψ(i)
s ⟩ ≃ NE

∞∫
µ

dEi e
−
(E2

i −µ2)R2
s

2m2
p ℓ2p |Ei⟩ , (6.39)

where NE is also a normalisation factor.
The total wavefunction of the source will be given by the symmetrised product of N

such states,

|ψN⟩ ≃
1

N !

N∑
{σi}

[
N⊗
i=1

|ψ(i)
s ⟩

]
, (6.40)

where the sum is over all the permutations {σi} of the N states.

6.3.1 Source spectral decomposition

The above |ψN⟩ can be decomposed into eigenstates |E⟩ of the total Hamiltonian 4

H =
N∑
i=1

Hi =
N∑
i=1

(
µ2 + ℏ2 k2i

)1/2
. (6.41)

The details of the (approximate analytical) calculation are shown in Appendix C, where
we �nd that C(E) ≡ ⟨E |ψN⟩ ≃ 0, for E < M , and

C(E) ≃ Nc

(
E −M

mp

)M/µ

e
−R2

s µ (E−M)

ℓ2p m2
p , (6.42)

for E > M , with the normalisation constant Nc = N+ given in Eq. (C.19). This result
means that we can describe the quantum state |ψN⟩ of our N -particle system by means
of the e�ective one-particle state

|ΨS⟩ ≃ NS

∞∫
M

dE

(
E −M

mp

)M/µ

e
−R2

s µ (E−M)

ℓ2p m2
p |E⟩ , (6.43)

4Notice that we are assuming that the total energy is just the sum of individual particle energies to
parallel the expression (6.3) of the classical mass function.
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with E2 = M2 + ℏ2 k2 and NS is a normalisation constant. For example, the expecta-
tion value of the total energy can be approximated with its upper bound computed in
Eq. (C.27) and reads

⟨ Ĥ ⟩ ≃M

(
1 +

m2
p ℓ

2
p

µ2R2
s

)
=M

(
1 +

λ2µ
R2

s

)
, (6.44)

where λµ is the Compton length of the constituent particles of mass µ. We notice that the
relative correction becomes negligibly small for Rs ≫ λµ and diverges for Rs → 0. This
is another indication that no well-de�ned coherent state exists for a pure Schwarzschild
geometry [52].

6.3.2 Horizon wavefunction

We can now obtain the horizon wavefunction from the e�ective single-particle wave-
function (6.43) by setting rH = 2GNE and de�ning |rH⟩ ∝ |2 ℓpE/mp⟩. This yields
ΨH(rH) ≃ 0, for rH < RH = 2GNM , and

ΨH(rH) ≃ NH

(
rH −RH

ℓp

)mp RH
2µ ℓp

e
−µ(rH−RH)R2

s

2mp ℓ3p , (6.45)

for rH ≥ RH, where the normalisation constant NH is given in Eq. (D.2).
The expectation value of the gravitational radius is computed in Eq. (D.3) and can

be written as

⟨ r̂H ⟩ ≃ RH

(
1 +

λ2µ
R2

s

)
, (6.46)

which is in perfect agreement with the expression of the energy given in Eq. (6.44).
It is again noteworthy that ⟨ r̂H ⟩ > RH, although the correction with respect to the
classical expression is negligible for an astrophysical black hole unless the core is of a size
comparable to the Compton length λµ. It is also important to recall that ⟨ r̂H ⟩ is the
horizon radius only if the core is su�ciently smaller, as we will determine next.

By means of the e�ective single-particle wavefunction (6.43) and the horizon wave-
function (6.45), we can numerically compute the probability PBH de�ned in Eq. (6.11)
that the system lies inside its own gravitational radius and is a black hole, as reviewed in
Section 6.1. More details of the calculation are given in Appendix D, where we show that
the �nal expression of PBH can only be estimated numerically. Some cases are displayed
in Figs. 6.1-6.3, with values of RH, Rs and µ chosen for clarity, albeit they fall far from
any astrophysical regimes. From those graphs, it appears that the probability increases
for decreasing size Rs of the core and for increasing (decreasing) mass M (µ) (equivalent

73



RH = 4 lp

RH = 10 lp

20 40 60 80 100

Rs

lp0.0

0.2

0.4

0.6

0.8

1.0

PBH

Figure 6.1: Probability that the coherent state is a black hole as a function of Rs for
di�erent values of RH (and same value of µ = 0.2mp).

to increasing RH = 2GNM or the number N =M/µ of matter particles). For example, a
core of size Rs = 10 ℓp can be a black hole of radius RH = 10 ℓp with probability PBH ≳ 0.9
but this probability drops to PBH ≲ 0.5 if RH = 4 ℓp. This result is in qualitative agree-
ment with the expectation (6.46) for very massive black holes with cores larger than λµ,
but smaller than the classical gravitational radius RH.

6.4 Conclusions

We have here employed the formalism of the horizon quantum mechanics [132] in order
to verify that coherent state black hole geometries of the Schwarzschild type sourced by
a core of large mass M and with a size Rs larger than Planckian are very likely to display
an outer horizon and be black holes in the usual sense. For that purpose, we needed to
�nd an explicit description of the (electrically neutral and spherically symmetric) matter
core in terms of a many-particle state that was then expressed as a superposition of total
energy eigenstates. Our analysis supports the conclusion that the system is indeed a black
hole of mass M ≫ mp if its core made of particles of mass µ has a size Rs ≳ λµ ≫ ℓp but
(su�ciently) smaller than the classical gravitational radius RH = 2GNM .

74



Rs = 7 lp

Rs = 10 lp

5 10 15 20

RH

lp

0.2

0.4

0.6

0.8

1.0

PBH

Figure 6.2: Probability that the coherent state is a black hole as a function of RH for
di�erent values of Rs (and same value of µ = 0.2mp).
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Figure 6.3: Probability that the coherent state is a black hole as a function of RH for
di�erent values of µ (and same value of Rs = 10 ℓp).
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Chapter 7

Conclusions and outlook

Among the various gravitational systems described by solutions to the Einstein �eld equa-
tions, black holes are the most intriguing. However, as one of the most outstanding pre-
dictions of General Relativity, these spacetimes contain singularities, which might indicate
the breakdown of classical physics in the strong �eld regime, where physical quantities be-
come in�nite. Therefore, it is unavoidable to pursue a theory that resolves this singularity
problem. It is widely believed that a theory of quantum gravity for the gravitational inter-
action will provide a mechanism to �x this inconsistency and enhance our understanding
of the fundamental mechanisms governing the universe. Although many candidate theo-
ries of quantum gravity have been proposed, developing a fully ultraviolet-complete theory
remains a signi�cant challenge. Indeed, one could argue that if we could formulate an
e�ective quantum theory of gravity that uni�es all experimental evidence into a single
consistent framework, then such a theory would carry a �avour of quantum gravity.

The so called corpuscular black hole model assumes that the geometrical description
emerges at suitable scales from the underlying quantum �eld theory of gravitons. This
picture regards black holes as bound states of gravitons. In this context, the number of
gravitons N is the only parameter of the theory, which can be considered as a measure of
the �classicality� of the system. The original proposal, however, totally neglects the role
of matter, whose e�ects are argued to be unimportant, and views a black hole as a quan-
tum state made of only gravitons with one typical wavelength, which cannot reproduce
the gravitational �eld in the accessible outer spacetime, even in the simple Newtonian
approximation. By following this perspective, an improved description of nonuniform ge-
ometries can be obtained by employing coherent states of gravitons, which recovers the
Newtonian potential (with necessary departures) from a coherent state for a scalar �eld
of gravitons in �at spacetime. The Newton potential could then used to reconstruct the
full Schwarzschild metric function through a mean �eld approach.

In this thesis, we presented the coherent quantum black hole models and the horizon
quantum mechanics formalism. Let us now summarise the main points addressed in this
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work.
First, in Chapter 2 we have reviewed the corpuscular pitcure which views a black

hole as a self-sustained quantum state by means of an e�ective scalar theory for the toy
gravitons that gives back the Einstein geometrical theory as emerging. In particular, it is
demonstrated that a black hole is modellde as a Bose-Einstein condensate of marginally
bound, self-interacting gravitons, whose size is given by the characteristic Compton-de
Brogle wavelength λG ∼ RH and whose depth is proportional to the very large number
N of soft quanta in this condensate. The classical description of a Schwarzschild black
hole is recovered when the number of constituents N is large. Furthernore, this picture
o�ers a natural way to reproduce Hawking radiation as a quantum depletion of the gravi-
ton Bose-condensate, which reproduces a thermal spectrum of temperature T = 1/

√
N .

Bekenstein's conjecture for the horizon area quantisation naturally follows for the occu-
pation number of gravitons is proportional to the square of the ADM mass of the black
hole in units of the Planck mass mp.

In Chapter 3, following the historical development of coherent states, we introduced
their unique properties that are fundamental to �eld theory. These coherent states statisfy
the Heisenberg uncertainty relation with equality and the set of coherent states is an
over-complete set of states. Since coherent states remain coherent under time evolution,
mean values of the dynamical variables of position and momentum satisfy the equations
of motion for the classical harmonic oscillator that closely mimics their counterparts in
classical mechanics. Given the unique properties of coherent behaviour, coherent states
may bring us some new lights to the context of the e�ective quantum theory of gravity.

Since the corpuscular pitcure is rather qualitative, and neglects the role of matter in
the condensate formation, in Chapter 4, we employed the coherent state of a massless
scalar �eld on a reference �at spacetime to describe the static and spherically sysmmetric
Schwarzschild geometry. The expected behaviour in the weak �eld region outside the
horizon is recovered, with quantum corrections to the Newtonian potential, and conse-
quently, to the Schwarzschild metric function. In particular, the expectation value of the
gravitational potential displays oscillations around the classical VN. Besacse of the nec-
essary departures from the classical Schwarzschild metric, the central singularity of the
Schwarzschild black hole is relaced by an integrable singularity without Cauchy horizons.
These deviations from the classical black hole geometry can be viewed as quantum hair
and lead to a quantum corrected horizon radius.

Given that the majority of black holes in nature are very likely to spin, we investigated
quantum descriptions of black holes with non-vanishing speci�c angular momentum in
Chapter 5. In particular, we study the quantum hair associated with coherent states
describing slowly rotating black holes and show how it can be naturally related with the
Bekenstein-Hawking entropy and with 1-loop quantum corrections of the metric for the
(e�ectively) non-rotating case. We also estimate corrections induced by such quantum
hair to the temperature of the Hawking radiation through the tunnelling method.
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In Chapter 6, we have provided a concise review of the key features of the horizon
quantum mechanics formalism. This formalism is then applied to electrically neutral and
spherically symmetric black hole geometries emerging from coherent quantum states of
gravity to compute the probability that the matter source is inside the horizon. We �nd
that quantum corrections to the classical horizon radius become signi�cant if the matter
core has a size comparable to the Compton length of the constituents and the system is
indeed a black hole with probability very close to one unless the core radius is close to
the (classical) gravitational radius.

Finally, we want to give some hints for future developments. There are di�erent
directions along which the results in Chapter 5 could be improved and developed. First
of all, results regarding the Hawking evaporation can be straightforwardly generalised
to massive bosons and fermions [124]. One could furthermore study other black hole
solutions that can emerge from coherent quantum states and eventually attempt at a
quantum description of black holes with arbitrary angular momentum [98]. It would
also be interesting to generalise the analysis in Chapter 6 to include electric charge and
rotation. Whereas the former case should be rather straightforward, including rotation is
going to be much more problematic since it will require extending the horizon quantum
mechanics beyond the perturbative regime considered in Ref. [141].
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Appendix A

Normalisations and conventions

We summarise here the convention we use in the main text. Projections on the spatial
part of the normal modes (5.6) are de�ned as

f̃ℓm(ω) =

+1∫
−1

d cos θ

2π∫
0

dφ

∞∫
0

r2 dr jℓ(ω r) [Y
m
ℓ (θ, φ)]∗ f(r, θ, φ) . (A.1)

The orthonormality relations (5.8) then follow from the orthonormality of spherical Bessel
functions,

∞∫
0

r2 dr jℓ(ω r) jℓ′(ω
′ r) =

π

2ω2
δ(ω − ω′) δℓℓ′ , (A.2)

as well as the orthonormality of spherical harmonics,

+1∫
−1

d cos θ

2π∫
0

dφY m
ℓ (θ, φ)

[
Y m′

ℓ′ (θ, φ)
]∗

= δℓℓ′ δmm′ . (A.3)

The commutation relations (5.12) and (5.13) follow from the completeness relations

2

π

∞∫
0

ω2 dω jℓ(ω r) jℓ(ω r
′) =

δ(r − r′)

r2
(A.4)

and ∑
ℓ

ℓ∑
m=−ℓ

Y m
ℓ (θ, φ) [Y m

ℓ (θ′, φ′)]
∗
=
δ(θ − θ′)

sin θ
δ(φ− φ′) . (A.5)
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Other useful properties of spherical harmonics are given by

[Y m
ℓ ]∗ = (−1)m Y −m

ℓ (A.6)

and

P−m
ℓ = (−1)m

(ℓ−m)!

(ℓ+m)!
Pm
ℓ . (A.7)

From

P ℓ
ℓ =

(−1)ℓ

2ℓ ℓ!

√
(2 ℓ+ 1)!

4π
(sin θ)ℓ , (A.8)

we then obtain

P−ℓ
ℓ =

1

2ℓ ℓ! (2 ℓ)!

√
(2 ℓ+ 1)!

4π
(sin θ)ℓ . (A.9)

In all of the above expressions, the Kronecker delta is de�ned by δij = 1 for i = j and
δij = 0 for i ̸= j. The Dirac delta is de�ned by∫

dz δ(z − z0) f(z) = f(z0) , (A.10)

where integration is assumed on the natural domain of the variable z.
Relevant integrals of the spherical Bessel functions are given by∫ x

0

zα dz jℓ(z) =

√
π

2ℓ+2

Γ((1 + α + ℓ)/2)

Γ(3/2 + ℓ) Γ((3 + α + ℓ)/2)

×1F2((1 + α + ℓ)/2, ℓ+ 3/2, (3 + α + ℓ)/2,−x2/4) , (A.11)

where 1F2 is the generalised hypergeometric function. In particular, for α = 1, we have∫ x

0

z dz jℓ(z) =

√
π

2ℓ+2

Γ(1 + ℓ/2)

Γ(3/2 + ℓ) Γ(2 + ℓ/2)
1F2(1 + ℓ/2, ℓ+ 3/2, 2 + ℓ/2,−x2/4) .(A.12)
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Appendix B

Angular momentum

The normal modes (5.6) are eigenfunctions of the angular momentum, that is

L̂2 uωℓm = ℏ2 ℓ (ℓ+ 1)uωℓm and L̂z uωℓm = ℏmuωℓm . (B.1)

It then follows that

L̂2 |1ℓm(ω)⟩ = ℏ2 ℓ (ℓ+ 1) |1ℓm(ω)⟩ and L̂z |1ℓm(ω)⟩ = ℏm |1ℓm(ω)⟩ , (B.2)

where |1ℓm(ω)⟩ = â†ℓm(ω) |0⟩. We can also write the �rst relation as de�ning the operator√
L̂2 |1ℓm(ω)⟩ = ℏ

√
ℓ (ℓ+ 1) |1ℓm(ω)⟩ . (B.3)

Likewise, we have√
L̂2 |nℓm(ω)⟩ = ℏ

√
ℓ (ℓ+ 1)nℓm |nℓm(ω)⟩ and L̂z |nℓm(ω)⟩ = ℏmnℓm |nℓm(ω)⟩ ,(B.4)

where |nℓm(ω)⟩ = (n!)−1/2
[
â†ℓm(ω)

]n
|0⟩ (with n = nℓm for brevity).

Let us consider a coherent state of �xed ω (which we omit for simplicity), ℓ and m,

|gℓm⟩ = e−Nℓm/2 exp
{
gℓm â

†
ℓm

}
|0⟩

= e−Nℓm/2
∑
n

(
gℓm â

†
ℓm

)n
n!

|0⟩

= e−Nℓm/2
∑
n

gnℓm√
n!

|nℓm⟩ . (B.5)

From ⟨nℓm | n′
ℓm ⟩ = δnn′ , the normalisation

⟨ gℓm | gℓm ⟩ = e−Nℓm

∑
n

g2nℓm

n!
= 1 (B.6)
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implies Nℓm = g2ℓm. From Eq. (B.4), we then �nd

⟨gℓm|
√
L̂2 |gℓm⟩ = e−g2ℓm

∑
n,s

gsℓm√
s!

gnℓm√
n!

⟨sℓm|
√
L̂2 |nℓm⟩

= e−g2ℓm
∑
nℓm

g2nℓm
ℓm

nℓm!
ℏ
√
ℓ (ℓ+ 1)nℓm

= e−g2ℓm ℏ
√
ℓ (ℓ+ 1)

∑
nℓm

g2nℓm
ℓm

(nℓm − 1)!

= ℏ
√
ℓ (ℓ+ 1) g2ℓm e

−g2ℓm
∑
n

g2nℓm

n!

= ℏ
√
ℓ (ℓ+ 1)Nℓm , (B.7)

which is Eq. (5.26) with Nℓm = g2ℓm(ω). Likewise,

⟨gℓm| L̂z |gℓm⟩ = ℏmNℓm (B.8)

which is Eq. (5.27).
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Appendix C

Spectral decomposition and total

energy

Here we show how the total wavefunction (6.40), that is

|ψN⟩ ≃
1

N !

N∑
{σi}

 N⊗
i=1

NE

∞∫
µ

dEi e
−
(E2

i −µ2)R2
s

2m2
p ℓ2p |Ei⟩

 , (C.1)

can be decomposed in terms of the total energy eigenstates |E⟩ by computing the spectral
coe�cients C(E) ≡ ⟨E | ψN ⟩. From Eq. (C.1), we �rst �nd

C(E) =
1

N !
⟨E|

N∑
{σi}

 N⊗
i=1

NE

∞∫
µ

dEi e
−
(E2

i −µ2)R2
s

2m2
p ℓ2p |Ei⟩


=

NN
E

N !

∞∫
µ

dE1 · · ·
∞∫
µ

dEN

 N∏
i=1

e
−
(E2

i −µ2)R2
s

2m2
p ℓ2p

 δ(E −
N∑
i=1

Ei

)
. (C.2)

Since
∑N

i=1Ei ≥ N µ = M , it follows that C(E < M) = 0. For E ≥ M , we can use

EN =
∑N−1

i=1 Ei and write

C(E) ∝
∞∫
µ

dE1 · · ·
∞∫
µ

dEN−1 exp

−
N−1∑
i=1

(E2
i − µ2)R2

s

2m2
p ℓ

2
p

−

[(
E −

N−1∑
i=1

Ei

)2

− µ2

]
R2

s

2m2
p ℓ

2
p

 . (C.3)
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It is now convenient to de�ne the function

F (E,Ei) ≡
N−1∑
i=1

(
E2

i − µ2
)
+

(
E −

N−1∑
i=1

Ei

)2

− µ2

=
N−1∑
i=1

(Ei + µ)2 −N µ2 +

[
E −

N−1∑
i=1

Ei − (N − 1)µ

]2
, (C.4)

where Ei = Ei − µ. By recalling that M = N µ, we then obtain

F (E,Ei) =
N−1∑
i=1

(Ei + µ)2 − µM +

[
(E −M)−

N−1∑
i=1

Ei + µ

]2

= (E −M)2 +

(
N−1∑
i=1

Ei

)2

+ µ2 − 2 (E −M)
N−1∑
i=1

Ei + 2µ (E −M)− 2µ
N−1∑
i=1

Ei

+
N−1∑
i=1

E2
i + 2µ

N−1∑
i=1

Ei + (N − 1)µ2 − µM

= (E −M)2 + 2µ (E −M)− 2 (E −M)
N−1∑
i=1

Ei +

(
N−1∑
i=1

Ei

)2

+
N−1∑
i=1

E2
i

= [E − (M − µ)]2 − µ2 − 2 (E −M)
N−1∑
i=1

Ei +

(
N−1∑
i=1

Ei

)2

+
N−1∑
i=1

E2
i . (C.5)

Plugging this result into Eq. (C.3) yields

C(E) ∝ e
− R2

s
2 ℓ2p m2

p
{[E−(M−µ)]2−µ2}

∞∫
0

dE1 · · ·
∞∫
0

dEN−1

× exp

 R2
s

2 ℓ2pm
2
p

2 (E −M)
N−1∑
i=1

Ei −

(
N−1∑
i=1

Ei

)2

−
N−1∑
i=1

E2
i


≡ e

− R2
s

2 ℓ2p m2
p
{[E−(M−µ)]2−µ2}

I(E,M) . (C.6)

We next note that, since Ei ≥ 0 for i = 1, . . . , N − 1, we have

0 ≤
N−1∑
i=1

E2
i ≤

(
N−1∑
i=1

Ei

)2

. (C.7)
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A lower bound I− ≤ I is obtained from the upper bound
∑

i E
2
i = (

∑
i Ei)

2 in Eq. (C.7)
and is given by

I− =

∞∫
0

dE1 · · ·
∞∫
0

dEN−1 exp

[
R2

s (E −M)

ℓ2pm
2
p

N−1∑
i=1

Ei

]
exp

− R2
s

ℓ2pm
2
p

(
N−1∑
i=1

Ei

)2


∝
∞∫
0

EN−2dE exp

[
−R

2
s E

2

ℓ2pm
2
p

+
R2

s (E −M)E

ℓ2pm
2
p

]

=
1

2

(
Rs

mp ℓp

)1−N

Γ

(
N − 1

2

)
1F1

[
N − 1

2
,
1

2
,
(E −M)2 R2

s

4m2
p ℓ

2
p

]

+
1

2

(
Rs

mp ℓp

)1−N
(E −M) Rs

mp ℓp
Γ

(
N

2

)
1F1

[
N

2
,
3

2
,
(E −M)2 R2

s

4m2
p ℓ

2
p

]
, (C.8)

where Γ is the Euler gamma function and 1F1 the Kummer con�uent hypergeometric
function. An upper bound I ≤ I+ is likewise obtained from the lower bound

∑
i E

2
i = 0

in Eq. (C.7) and is given by

I+ =

∞∫
0

dE1 · · ·
∞∫
0

dEN−1 exp

[
R2

s (E −M)

ℓ2pm
2
p

N−1∑
i=1

Ei

]
exp

− R2
s

2 ℓ2pm
2
p

(
N−1∑
i=1

Ei

)2


∝
∞∫
0

EN−2dE exp

[
− R2

s E
2

2 ℓ2pm
2
p

+
R2

s (E −M)E

ℓ2pm
2
p

]

=
1

2
N
2
− 3

2

(
Rs

mp ℓp

)1−N

Γ

(
N − 1

2

)
1F1

[
N − 1

2
,
1

2
,
(E −M)2 R2

s

2m2
p ℓ

2
p

]

+
1

2
N
2
−1

(
Rs

mp ℓp

)1−N
(E −M) Rs

mp ℓp
Γ

(
N

2

)
1F1

[
N

2
,
3

2
,
(E −M)2 R2

s

2m2
p ℓ

2
p

]
. (C.9)

For Rs ≫ ℓp and (E −M) ≳ mp, we can employ the asymptotic behaviour of the
Kummer con�uent hypergeometric function,

1F1 (a, b, x) ∼ xa−b ex , (C.10)

for x ∼ (E −M)2R2
s/ℓ

2
pm

2
p ≫ 1, which leads to

I− ≃ 1

2N−2

mp ℓp
Rs

(E −M)N−2 e
(E−M)2R2

s
4m2

p ℓ2p

[
2 Γ

(
N − 1

2

)
+ Γ

(
N

2

)]
≃ Γ

(
N − 1

2

)
mp ℓp
2N−1Rs

(E −M)N−2 e
(E−M)2R2

s
4m2

p ℓ2p , (C.11)
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where we also used 2 Γ ((N − 1)/2) > Γ (N/2) for N ≫ 1 in the last step. Likewise,

I+ ≃ mp ℓp√
2Rs

(E −M)N−2 e
(E−M)2R2

s
2m2

p ℓ2p

[
Γ

(
N − 1

2

)
+ 2Γ

(
N

2

)]
≃

√
2 Γ

(
N

2

)
mp ℓp
Rs

(E −M)N−2 e
(E−M)2R2

s
2m2

p ℓ2p , (C.12)

where we used 2 Γ(N/2) > Γ((N − 1)/2) for N ≫ 1.
Therefore, we have

Γ

(
N − 1

2

)
mp ℓp
2N−1Rs

(E −M)N−2 e
(E−M)2R2

s
4m2

p ℓ2p ≲ I ≲
√
2 Γ

(
N

2

)
mp ℓp
Rs

(E −M)N−2 e
(E−M)2R2

s
2m2

p ℓ2p .(C.13)

We might note that the above approximation fails for 0 < (E −M) ≲ mp at �xed value
of Rs ≳ ℓp, for which we instead �nd the Taylor expansion

I+ ∼ I− ∝ 1 + O

(
E −M

mp

)
. (C.14)

However, for an astrophysical system of mass M ≫ mp, this regime can be discarded
overall.

By recalling that N =M/µ≫ 1, we �nally obtain the bounding functions

C−(E) = N−

(
E −M

mp

)M/µ

e
−R2

s µ (E−M)

ℓ2p m2
p e

−R2
s (E−M)2

4m2
p ℓ2p (C.15)

and

C+(E) = N+

(
E −M

mp

)M/µ

e
−R2

s µ (E−M)

ℓ2p m2
p . (C.16)

The normalizations N± can be obtained from the condition

1 =

∞∫
M

C2
±(E) dE , (C.17)

yielding

N−2
− =

(
ℓp√
2Rs

) 2M
µ

Γ

(
1 +

2M

µ

)
U

(
1 +

M

µ
,
3

2
,
2µ2R2

s

m2
p ℓ

2
p

)
≃
(

ℓp√
2Rs

) 2M
µ

Γ

(
2M

µ

)
U

(
M

µ
,
3

2
,
2µ2R2

s

m2
p ℓ

2
p

)
, (C.18)
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where U = U(a, b, x) is the Tricomi con�uent hypergeometric function, and

N−2
+ = mp

(
mp ℓ

2
p

2µR2
s

)1+ 2M
µ

Γ

(
1 +

2M

µ

)
≃ mp

(
mp ℓ

2
p

2µR2
s

) 2M
µ

Γ

(
2M

µ

)
. (C.19)

In Section 6.3.1, we use the upper bounding function (C.16) in order to estimate the
maximum corrections to the total energy. In fact, the bounds from the spectral coe�cients
can be used to bound the expectation value of the total energy as

M +H− ≲ ⟨ Ĥ ⟩ ≲M +H+ , (C.20)

where

H+ =

∞∫
M

C2
+(E)E dE −M

=

∞∫
0

C2
+(E)E dE

=
ℓ2pm

2
p (2M + µ)

2µ2R2
s

≃ M
m2

p ℓ
2
p

µ2R2
s

(C.21)

and

H− =

∞∫
0

C2
−(E)E dE =

ℓ2pm
2
p (2M + µ)U

(
1 + M

µ
, 1
2
, 2µ

2 R2
s

m2
p ℓ2p

)
2µ2R2

s U
(
1 + M

µ
, 3
2
, 2µ

2 R2
s

m2
p ℓ2p

) . (C.22)

Employing the de�nition of the Tricomi con�uent hypergeometric function,

U(a, b, x) =
Γ (1− b)

Γ (a+ 1− b)
1F1 (a, b, x) +

Γ (b− 1)

Γ (a)
x1−b

1F1 (a+ 1− b, 2− b, x) , (C.23)

and the asymptotic behaviour of the Kummer con�uent hypergeometric function (C.10),
we �nd

U

(
1 +

M

µ
,
1

2
,
2µ2R2

s

m2
p ℓ

2
p

)
≃

 1

Γ
(

M
µ
+ 3

2

) − 2

Γ
(

M
µ
+ 1
)
Γ

(
1

2

)(√
2µRs

mp ℓp

)1+2 M
µ

e
2µ2 R2

s
m2

p ℓ2p(C.24)
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and

U

(
1 +

M

µ
,
3

2
,
2µ2R2

s

m2
p ℓ

2
p

)
≃

 1

Γ
(

M
µ
+ 1
) − 2

Γ
(

M
µ
+ 1

2

)
Γ

(
1

2

)(√
2µRs

mp ℓp

)2 M
µ
−1

e
2µ2 R2

s
m2

p ℓ2p ,(C.25)

from which

H− ≃ (2M + µ)
Γ
(

M
µ
+ 1

2

) [
Γ
(

M
µ
+ 1
)
− 2 Γ

(
M
µ
+ 3

2

)]
Γ
(

M
µ
+ 3

2

) [
Γ
(

M
µ
+ 1

2

)
− 2 Γ

(
M
µ
+ 1
)]

≃ 2µ

(
M

µ

) 1
2

. (C.26)

Putting the above bounds together, we obtain

M

[
1 + 2

( µ
M

) 1
2

]
≲ ⟨ Ĥ ⟩ ≲M

(
1 +

λ2µ
R2

s

)
, (C.27)

which shows that ⟨ Ĥ ⟩ cannot be smaller than the classical ADMmass and the (maximum)
relative correction is proportional to the Compton length λµ = ℓpmp/µ.
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Appendix D

Horizon wavefunction and black hole

probability

In Section 6.3.2, we continue to employ the upper bound on the spectral decomposition
to obtain the horizon wavefunction in Eq. (6.45) and estimate the maximum possible
correction to the gravitational radius and minimum probability PBH. Its normalisation is
given by

1 = 4 π

∞∫
RH

|ΨH(rH)|2 r2H drH = 4πN2
H

∞∫
0

(
r̃H
ℓp

)mp RH
µ ℓp

e
−µ r̃H R2

s
mp ℓ3p (r̃H +RH)

2 dr̃H , (D.1)

where r̃H = rH −RH. The above expression yields

N−2
H =

8 π ℓ9pm
3
p

µ3R6
s

(
mp ℓ

2
p

µR2
s

)mp RH
µ ℓp

[(
1 +

mpRH

µ ℓp

)(
1 +

mpRH

2µ ℓp
+
µRHR

2
s

mp ℓ3p

)
+
µ2R2

HR
4
s

2 ℓ6pm
2
p

]
×Γ

(
1 +

mpRH

µ ℓp

)

≃
4 π ℓ3pmpR

2
H

µR2
s

(
mp ℓ

2
p

µR2
s

)mp RH
µ ℓp

Γ

(
mpRH

µ ℓp

)
, (D.2)

where we again used Rs ∼ RH ≫ ℓp in the last approximation.
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The expectation value of the gravitational radius is given by

⟨ΨH| r̂H |ΨH⟩ = 4 π

∞∫
0

|ΨH(rH)|2 r3H drH

= RH +RH

m2
p ℓ

2
p

µ2R2
s

(
1 +

3 ℓp µ

mpRH

)

−RH

(
1 + mp RH

µ ℓp

)
+ µRH R2

s

ℓ3p mp(
1 + mp RH

µ ℓp

)(
1 + mp RH

2 ℓp µ

)
+ µRH R2

s

ℓ3p mp

(
1 + mp RH

ℓp µ

)
+

µ2 R2
H R4

s

2 ℓ6p m2
p

≃ RH

[
1 +

λ2µ
R2

s

(
1−

2 ℓ2p
RH λµ

)]
≃ RH

(
1 +

λ2µ
R2

s

)
, (D.3)

with RH = 2GNM ≫ λµ the classical Schwarzschild radius and λµ ≫ ℓp the Compton
length of the matter costituents.

The probability density (6.8) for the horizon to be located on the sphere of radius
r = rH vanishes for 0 ≤ rH < RH, else is given by

PH(rH) ≃ 4πN2
H r

2
H

(
rH −RH

ℓp

)mp RH
µ ℓp

e
−µ(rH−RH)R2

s

mp ℓ3p . (D.4)

The probability density (6.9) can be explicitly computed from the wavefunction (6.33)
with ri = r and the horizon probability density (D.4),

P<(r < rH) =

4π

rH∫
RH

|ψS(r)|2 r2 dr

PH(rH)

= erf

(
rH
Rs

)
PH(rH) , (D.5)

where erf denotes the error function. The black hole probability (6.11) now reads

PBH =

∞∫
RH

P<(r < rH) drH , (D.6)

which however can only be computed numerically for speci�c values of RH, Rs and µ (see
Figs. 6.1-6.3).
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