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“Science cannot tell us a word about why music delights us, of why and how
an old song can move us to tears. Science can, in principle, describe in full
detail all that happens in the latter case in our sensorium and ‘motorium’
from the moment the waves of compression and dilation reach our ear to

the moment when certain glands secrete a salty fluid that emerges
from our eyes.”

Erwin Schrödinger
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Abstract

In the era of big data and machine learning, the fragmentation of musical
datasets and the lack of standardised representations continue to hinder ad-
vancements in Music Information Retrieval (MIR). The multifaceted nature

of music complicates both the representation of content–with small, task-specific
datasets scattered across various formats, and context (metadata), where there
is a lack of a consistent, structured terminology. These challenges increase the
e!ort required for data collection and pre-processing, reduce reproducibility, and
limit the scalability of MIR models. To address these issues, this thesis proposes
a unified semantic model to foster interoperability and advance MIR tasks.

A specific instance of this fragmentation can be found in harmonic annota-
tions, where harmony–an essential musical dimension–is inconsistently represented
across datasets, formats, and notational systems. Taking harmony as a use case
and leveraging the proposed semantic model, this thesis develops a standardised
workflow to harmonise previously disconnected datasets, enabling the creation of
new, large-scale unified corpora. Building on these harmonised datasets, a key
contribution of the thesis is the exploration of harmonic similarity, which is used
to organise, explore, and reveal connections across diverse tracks, historical pe-
riods, and genres. To this end, we implement novel state-of-the-art harmonic
similarity functions, advancing current research in MIR. Moreover, by utilising
the created large, varied data collections, we uncover deeper relationships within
music and explore how diverse stylistic excerpts can be used for generative tasks.

While integrating symbolic data o!ers significant advantages, certain limita-
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tions persist. Primary challenges include the limited diversity of annotated data,
often biased toward a narrow range of musical genres, and the inherent ambiguity
and subjectivity in harmonic annotations. Such challenges have led MIR tasks like
Audio Chord Estimation (ACE) to hit a “glass ceiling,” where neither increasing
computational power nor the volume of data has led to improved results.

To address these issues, this thesis explores a multimodal approach aimed at
enhancing the analysis and understanding of harmonic data by jointly leveraging
audio and chord annotations. We first propose a novel method for enriching the
dataset with audio annotations aligned to the existing symbolic data. Building on
this foundation, we introduce a new model for ACE that embeds formalised music
theory concepts such as consonance and dissonance, addressing both training and
evaluation challenges in the field. This model aims to mitigate the limitations
of chord vocabulary imbalance and annotation subjectivity, ultimately improving
the state-of-the-art in audio-based harmonic analysis.
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CHAPTER1
Introduction

The intersection of music and computer science has changed the way we anal-
yse, understand, and interact with music. Over the past decades, advancements
in computational techniques have provided researchers with powerful tools for
exploring large-scale music collections and analysing the structure of music in un-
precedented ways. These tools have enabled the processing of vast amounts of
musical data – far exceeding human capabilities – enabling novel approaches in
systematic musicology, music discovery, and computer-assisted composition.

This transformation began in the 1950s, when the first computational applica-
tions to music were conceptualised and gradually implemented during the 1960s
[30]. At that time, computational models supported researchers in challenges that
traditional methods could not manage, such as identifying patterns across hun-
dreds of compositions, conducting statistical analyses, and developing formalised
representations of music. By the late 20th century, the digitisation of music and
the rapid growth of digital archives accelerated the demand for intelligent systems
capable of managing and retrieving musical information. This development laid
the foundation for Music Information Retrieval (MIR), a field focused on creating
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Chapter 1. Introduction

models for handling and analysing vast digital music collections.
As music archives expanded in size and complexity, new challenges emerged

around how to represent and access di!erent aspects of music. MIR, which estab-
lished itself as a formal research field in the early 2000s [120], focuses on addressing
these challenges by developing techniques for extracting meaningful information
from diverse music data representations, such as audio recordings, symbolic data,
or music metadata. Central tasks such as retrieval, recommendation, and brows-
ing have become core paradigms of the field, enhancing user interactions and
facilitating seamless access to music collections [221].

Despite these advancements, a consistent and meaningful representation of
both musical content and metadata remains an unresolved problem due to the
complex nature of music itself. Music consists of a variety of structural elements,
such as melody, harmony, and rhythm, that can be represented di!erently in
terms of notation and conceptual model, depending on the task to be addressed
or the available dataset(s). In addition, music is deeply embedded in diverse
cultural and historical contexts, adding further complexity to the metadata that
any retrieval or analysis system should account for [41]. This complexity has led to
the fragmentation of music data into isolated, task-specific formats, notations, and
conceptual models, making it increasingly di"cult to develop unified frameworks
that scale across diverse datasets, styles and genres. We argue that addressing this
fragmentation by establishing standardised approaches to music representation is
essential for advancing MIR models and improving the performances on a broad
range of MIR tasks.

1.1 Problem Definition and Research Questions

1.1.1 Challenges in Representing Music: The Need for Unified Se-
mantic Models

The challenge of understanding and processing the multiple dimensions of music
within MIR is often referred to as the “multifaceted challenge” and these facets
are categorised by Downie [119] into seven distinct categories: pitch, temporal,
harmonic, timbral, editorial, textual, and bibliographic.

While the first six facets primarily address music content, encapsulating the
diverse elements that make up a musical piece, the bibliographic facet extends
beyond the musical content itself, capturing broader contextual information, such

2
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1.1. Problem Definition and Research Questions

as the historical, cultural, and publication data surrounding a musical work. This
facet is also known as knowledge about music [296], or more commonly, music
metadata. The distinction between content and context forms the basis of two
major paradigms within MIR: Content-based MIR, which deals with the intrin-
sic properties of music, usually further categorised into signal and symbolic rep-
resentations, and Context-based MIR, which focuses on external, contextual in-
formation. Both paradigms are widely used for tasks such as music similarity,
recommendation, and browsing, either in isolation or in combination [221].

E!ectively representing both the content and context of music presents one
of the central challenges within MIR. Capturing the context, such as cultural or
historical information, is particularly complex. A significant part of the di"culty
stems from the lack of a consistent and universally accepted terminology for de-
scribing music metadata. For instance, in conventional databases, the “artist” is
typically the central entity, contrasting with the emphasis on the “composer” in
Western classical music and with the concept of “performer” in Western popular
music. Similarly, the concept of a “composition” in the classical tradition diverges
significantly from terms like “track” or “song,” which dominate in most contem-
porary systems. These problems have repercussions on many MIR tasks, both
when searching for data in a database and when integrating data from di!erent
datasets.

Furthermore, musical heritage encompasses a diversity of human expressions
and experiences across di!erent cultural and historical contexts. This diversity is
reflected in the metadata, where multiple sources (e.g., theatres, conservatoires,
instruments) must be connected to their broader social and artistic contexts (e.g.,
scholars, musicians, intellectuals) across di!erent languages and time periods [41].
These issues are exacerbated when the context includes conflicting or incomplete
information, such as varying names for the same artist across genres or historical
periods. For instance, music metadata often lacks a unified structure to account
for oral traditions (common in folk music), where works evolve through verbal
transmission rather than being formally composed and notated.

Semantic models have been proposed to standardise the description of music
metadata (e.g. [324, 64]), however, these models are mostly limited in scope.
They focus on specific historical periods or genres and are tailored to narrow
requirements, limiting their applicability to other styles or broader contexts. As
a result, they are insu"cient for generalising across diverse musical collections,

3
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Chapter 1. Introduction

making it di"cult to create a unified approach for organising and accessing music
across varying genres and traditions.

The problem is further compounded when addressing music content. In fact,
unlike other forms of knowledge, music lacks a consensual, shared meaning [296].
Whereas language or images usually point to specific objects or concepts, mu-
sic consists of abstract elements—such as notes, chords, and sounds—that exist
within their own domain, detached from external reference points. Historically,
music notation has been the primary method for representing these abstract el-
ements in the context of Western music. Originally developed to preserve the
work over time and to allow performers to recreate the composer’s original intent
[25], music notation has evolved over a thousand years [24], reflecting the growing
complexity of Western music and its associated performance practices.

Computationally, music is typically represented in one of two ways: signal
representations and symbolic representations [404]. Signal representations consist
of recordings from sound sources. These representations are content-unaware and
unstructured, making the extraction of information a complex task. In contrast,
symbolic representations denote discrete musical events and provide a structured
format that is context-aware, facilitating easier data extraction and analysis [396].
Depending on the task, di!erent derivations of both audio representations (such as
MFCCs or Chroma Features) and symbolic representations (such as MIDI or Mu-
sicXML) have been proposed [282]. This multiplicity of possible representations,
known as the Multirepresentational challenge [119], has become increasingly sig-
nificant. Each representation has unique implications for computational analysis:
for instance, MIDI [106] representations capture performance details e!ectively
but lack the expressive nuances of score-based formats, like MEI [174]. Selecting
appropriate representations ensures that the data is both relevant and informative,
which in turn enhances accuracy and reduces computational load [252].

The challenges of representing music content have led to a fragmentation in
the field, where di!erent datasets are represented using diverse symbolic represen-
tations, each tailored to serve specific tasks and applications. This fragmentation
poses two major disadvantages: first, it requires significant resources for collect-
ing, harmonising, and pre-processing disconnected and inconsistently represented
data; second, it hampers the comparison and reproducibility of research results,
as results derived from di!erent datasets are not easily aligned [302]. As a conse-
quence, the need for data interoperability has become increasingly critical. Data

4
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integration must address syntactic alignment (i.e., consistent data formats and
structures) as well as semantic consistency, ensuring that the meaning and the
relationships between musical elements are preserved across di!erent representa-
tions. Achieving this requires data conversion as well as the formal modelling of
musical information, such as by means of ontologies. Several ontologies have been
developed to address various aspects of music, but they remain limited in scope.
Most focus on modelling elements of music notation [332, 214, 315, 314], and some
target specific formats, such as MIDI [272], or address a narrow set of audio signal
features [7].

We argue that addressing the fragmentation of music data and the limita-
tions of existing ontologies is essential for advancing MIR. This thesis proposes
the development of a unified semantic model that integrates both music content
and context, supporting interoperability and enhancing the reproducibility of MIR
tasks. By streamlining data collection and pre-processing, such a model would im-
prove the e!ectiveness of various MIR processes and provide a scalable, adaptable
framework for handling diverse musical styles, genres, and formats. Furthermore,
semantic models o!er the advantage of continuous integration, as they can be ex-
tended and adapted to accommodate new, unforeseen use cases while maintaining
interoperability. This adaptability ensures that the model remains relevant and
scalable as the field evolves, supporting a wide range of tasks and musical data
formats. This raises the first research question:

RQ1 Is it possible to design an ontology representing both context- and
content-based music information, by extending and generalizing over
existing models? What features shall this ontology include in order to
account the diversity of musical styles, genres, and formats?

In addressing this fragmentation, we hypothesise that a unified semantic model
can overcome limitations of existing ontologies by extending and generalising them
across diverse musical domains. This model should aim to harmonise disparate
data sources and provide a scalable, adaptable framework for supporting var-
ied MIR tasks – thus setting the foundation for examining additional aspects of
content- and context-based data integration.

5
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Chapter 1. Introduction

1.1.2 Harmonising Symbolic Data: Addressing Fragmentation in Har-
monic Datasets

A significant case where this challenge shows clearly is the case of harmonic an-
notations, where inconsistency across datasets, formats, and notations epitomises
the broader issues within MIR. Harmony is a prominent dimension of music, also
known as its “vertical dimension”. It is informally defined as “combining notes in
music to produce a pleasing e!ect greater than the sum of its parts” [74]. Chords
are the basic constituents of harmony, and sequences of them define the harmonic
structure of a piece. A chord is defined as a simultaneous occurrence of several
music sounds, producing harmony [165]. Depending on the notational system and
the annotation conventions, a chord can be associated, for example, with a name
or label. Chords form the basis of harmonic progressions that underpin much of
Western music, defining its tonal structure and flow. Chord sequences and har-
monic progressions provide a framework for understanding a piece’s key, tension,
and resolution, making harmony an essential aspect for music analysis. Com-
putationally, the automatic analysis of chord progressions has supported several
tasks in information retrieval – from the detection of cadences [215], structures
in music [60], to the introduction of harmonic similarity measures for cover song
detection [227, 104], classification [305], and generation [67].

Available datasets containing chord annotations vary significantly across sev-
eral dimensions. They di!er in terms of data formats, with annotations stored in
formats such as LAB, CSV, TXT, and MXL. The notational systems used for rep-
resenting chords also vary widely, including Harte, Leadsheet, Roman numerals,
and ABC notation. Finally, the datasets di!er in the type of music representa-
tion they annotate, with some focusing on symbolic representation, where time
is expressed in beats and measures, and others on audio data, where time is ex-
pressed in seconds. These variations underscore the need for harmonised data
representations in MIR, highlighting the prominence and challenge of developing
systems that are both syntactically and semantically interoperable in the context
of harmony.

Taking harmony as a use case, this thesis investigates a workflow to har-
monise symbolic data annotated in di!erent formats and syntaxes, addressing
both context- and content-based information about music. The goal is to explore
whether it is possible to create a standardised workflow to unify existing datasets
and to facilitate the creation of new corpora of harmonised data.

6
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1.1. Problem Definition and Research Questions

This leads to a key research question:

RQ2 What strategies can be developed to create a large-scale, unified
symbolic music dataset that standardises diverse digital formats and
annotation practices, enhancing consistency and accessibility for music
analysis?

This pursuit of a harmonised symbolic dataset not only seeks to mitigate the
fragmentation inherent in current music datasets but also aims to improve the
accessibility and utility of harmonic data in music computing. The expected
contributions of this work include the development of methodologies that can
e!ectively unify diverse datasets and the demonstration of how such unified data
can enable more sophisticated analyses and applications in a wide range of MIR
tasks.

1.1.3 Exploring Harmonic Similarity: Leveraging Large-Scale Cor-
pora for Deeper Musical Understanding

The creation of large, harmonised corpora of symbolic harmonic annotations opens
new avenues for more comprehensive and scalable exploration of harmonic similar-
ity at a scale that was previously unattainable. By unifying and standardising di-
verse datasets, we can now study harmonic similarity across a much broader range
of music, encompassing various genres, historical periods, and styles. This un-
precedented scale allows for more meaningful insights and deeper analysis of har-
monic content, which were di"cult to achieve with smaller, fragmented datasets.

Since the advent of MIR, similarity has served as a fundamental paradigm for
organising musical datasets. Large music collections require e!ective organisation
to support meaningful exploration, enabling users to uncover new connections
and insights. As Pampalk notes, “the value of a large music collection is lim-
ited by how e"ciently a user can explore it” [297]. While contextual metadata
is crucial for structuring music collections, content-based similarity provides an
objective framework for comparing pieces independently of metadata, which is
often inconsistent or incomplete in music datasets.

Moreover, by comparing the harmonic structures of many pieces, it becomes
possible to abstract rules and processes that define a particular musical style or
genre. The analysis of these large-scale datasets can also improve our understand-
ing of the generative processes behind music, revealing the evolutionary paths that

7
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Chapter 1. Introduction

have shaped its development over time [394]. This deeper understanding not only
contributes to the study of musicology but also has practical applications, such as
generating new music based on learned patterns or refining algorithms for music
classification and recommendation systems.

Most content-based music similarity research has focused on audio data [362,
124]. However, a significant drawback of these approaches lies in their reliance on
end-to-end algorithms, which often fail to provide interpretable explanations for
why certain tracks are considered similar. This lack of transparency can result in
biased similarity measures and obscure the commonalities between distinct tracks,
leading to challenges in understanding the reasoning behind the outcomes [231].

An alternative to these audio-based methods is symbolic similarity, which o!ers
a more explainable and interpretable approach. Over the past decade, symbolic
music similarity has been applied to a variety of tasks, including cover song detec-
tion [101], genre classification [12], variation recognition [157], music search [84],
and plagiarism detection [409]. While melodic similarity has received substantial
attention in this domain, the study of harmonic similarity has not garnered as
much focus in recent years. To the best of our knowledge, the state-of-the-art
methods in this area include the Tonal Pitch Step Distance (TPSD) [104] and the
Chord Sequence Alignment System (CSAS) [175]. Moreover, available approaches
to harmonic similarity tend to consider tracks as similar only when their global
harmonic profiles align, o!ering limited insights into local harmonic similarities
and hindering the possibility of exploring shared patterns among songs.

A further objective of this thesis is to develop a more nuanced and scalable
approach to harmonic similarity. By leveraging symbolic harmonic annotations,
the aim is to explore methods that account for both global and local harmonic
structures. A key goal is to demonstrate that large corpora can support this type
of research by enabling comprehensive, scalable studies of harmonic similarity that
were previously not possible with fragmented data.

In this perspective, similarity measures, together with access to large cor-
pora of harmonic data, open up new possibilities for creating exploratory tools
that support musicological research and creative applications. Such tools enable
researchers to navigate and analyse extensive harmonic datasets, revealing hid-
den patterns, connections, and trends across diverse musical works, genres, and
historical periods. Additionally, these similarity measures may o!er practical ap-
plications for composers, inspiring them with harmonic ideas drawn from a broad

8
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1.1. Problem Definition and Research Questions

range of genres and styles and sparking creativity through harmonic suggestions
that may not be immediately apparent. This leads to the third research question:

RQ3 How can novel harmonic similarity measures be developed to cap-
ture both global and local harmonic structures? How can these similarity
measures be applied to large corpora to support scalable musicological
research and assist creative applications?

This research aims not only to establish advanced similarity measures that
make full use of harmonised, large-scale corpora but also to demonstrate how
these enriched datasets can drive innovation in both analytical and creative MIR
applications. By exploring these avenues, we aim to validate the potential of
integrated data as a foundational resource for improved musicological analysis
and creative exploration.

1.1.4 Limitations of Symbolic Data Integration: A Multimodal Ap-
proach

Despite significant progress in symbolic data integration, large harmonic corpora
still reveal limitations that hinder the full potential of data-driven approaches.
Two key challenges persist: (i) the scarce diversity and balancing of the avail-
able harmonic datasets and (ii) the inherent ambiguity and subjectivity of chord
annotations [302].

The first challenge refers to the lack of diversity and balance in the available
datasets. For instance, the ChoCo dataset, although being the largest corpus of
chord annotations to date in terms of size and diversity, is heavily skewed towards
mainstream Western genres, with nearly 80% of the data derived from pop and
rock music. This bias towards a few dominant genres is critical because chord vo-
cabulary and harmonic structure can vary widely across musical styles, resulting
in long-tail distributions that are notoriously challenging to model computation-
ally [302], particularly in the context of Deep Learning (DL) applications. This
issue, often referred to as chord vocabulary imbalance, restricts the system’s ability
to accurately handle less frequent chords, further contributing to biased outcomes.

Another critical issue that cannot be addressed via data integration is the am-
biguity and subjectivity inherent in chord annotations. Annotators may interpret
harmonic structures di!erently, leading to significant variation in the labelling of
chord sequences [227]. This problem arises because defining a chord in a musical

9
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Chapter 1. Introduction

context can be highly subjective. For instance, distinguishing between a chord
sequence and a melodic line is often open to interpretation. Additionally, anno-
tators might vary in the level of detail they focus on, such as whether to include
rapid approach chords or arpeggiated chords. They may also be influenced by
the instrument playing the harmonic line, such as piano or guitar, rather than
focusing on the broader harmonic structure of the piece. Furthermore, a specific
set of notes can be labelled di!erently depending on the context and the harmonic
function the annotator identifies within the piece.

A particularly famous case illustrating the subjectivity of chord annotation
is the opening chord of The Beatles’ A Hard Day’s Night, which has generated
decades of debate among musicians and analysts. Various interpretations have
been o!ered, ranging from George Harrison’s description of an F chord with a G
on top to other music theorists proposing G7sus4, G11sus4, or even Dmin11.

These challenges highlight the need for a more comprehensive approach to
analysing harmonic data, that goes beyond the integration of symbolic annotations
alone. To address these issues, this thesis advocates for a multimodal approach, i.e.
combining symbolic annotations and audio signals to capture multiple dimensions
of musical content [66].

Multimodal integration o!ers several key advantages:

1. It enables the exploration of tasks that inherently require audio, such as
Audio Chord Estimation (ACE).

2. It mirrors the human approach to chord transcription by combining both
audio and symbolic data, providing an e!ective means to address inter-
annotator agreement.

3. Audio data provides additional information, such as timbre, dynamics, and
articulation, that symbolic data alone cannot capture.

4. This approach aligns with the growing trend in the MIR community to inte-
grate symbolic and audio data, o!ering a more comprehensive understanding
of musical content [359, 66].

To create a multimodal dataset that integrates symbolic chord annotations
with audio signals, the first step is to retrieve the corresponding audio and align
it with the symbolic data. However, only about 12% of the 20, 000 annotated
tracks in the ChoCo dataset are aligned with audio, highlighting the urgent need
for a more e"cient method to align audio with chord annotations.

10
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An e!ective audio-to-chord alignment method would not only fill this gap but
also enable the creation of new multimodal datasets. A promising approach is
to leverage crowd-sourced chord annotations from platforms such as Ultimate
Guitar1, e-chords2, and Chordie3, which collectively o!er millions of annotated
songs, particularly from underrepresented genres such as electronic, metal, hip
hop, reggae, and country. These platforms present a valuable opportunity to
expand MIR datasets beyond the mainstream Western genres.

However, these repositories typically lack timing and duration information,
making them unsuitable for MIR tasks that rely on temporal alignment between
audio and symbolic data.

Although various approaches in the literature focus on aligning audio with sym-
bolic data—primarily using Dynamic Time Warping (DTW) algorithms [288]—none
are specifically designed for aligning audio with chord annotations. Building on
the case of harmonic annotations discussed in RQ2, this thesis proposes the devel-
opment of a method for aligning symbolic chord annotations with audio, referred
to as audio-to-chord alignment, and leveraging this approach to generate new
multimodal data from crowd-sourced datasets.

We intend to address the following research question:

RQ4 Is it possible to align chord annotations with audio without prior
time information, thus enabling the creation of enriched, multimodal
datasets?

1.1.5 Limitations in Audio Chord Estimation: Chord Imbalance and
Subjectivity

The proposed multimodal dataset, which integrates homogenised symbolic chord
annotations from diverse sources and aligns them with audio signals, holds signif-
icant potential for advancing Audio Chord Estimation (ACE) – a critical task in
MIR. ACE automates the transcription of chords directly from audio recordings,
o!ering a scalable solution for music transcription and analysis. Its applications
are far-reaching, impacting fields such as music analysis, musicology, content-
based retrieval, and music education.

1https://www.ultimate-guitar.com/
2https://www.e-chords.com/
3https://www.chordie.com/

11

https://www.ultimate-guitar.com/
https://www.e-chords.com/
https://www.chordie.com/


!
!

“output” — 2025/2/13 — 2:08 — page 12 — #26 !
!

!
!

!
!

Chapter 1. Introduction

Over the past two decades, research in ACE has made considerable progress,
leading to notable improvements in the accuracy and e"ciency of chord transcrip-
tion [302]. However, despite these advancements, recent performance gains have
stagnated, prompting some researchers to suggest that the task has reached a
“glass ceiling”[56]. Notably, increasing the amount of training data and scaling
computational resources have not resulted in significant improvements in ACE
performance[302]. This plateau is largely due to ongoing challenges such as the
aforementioned chord vocabulary imbalance and inter-annotator disagreement.

This thesis seeks to explore strategies for overcoming these obstacles, with
a focus on improving our understanding of inter-annotator agreement, enhancing
ACE performance, and better capturing harmonic representations from audio [23].

Starting with the evaluation of inter-annotator agreement in chord annota-
tions [97, 227], current metrics often rely on binary comparisons, where a match
between two labels is scored as one, and any mismatch is penalised with a score
of zero. However, as noted by [266], treating all discrepancies with equal sever-
ity can result in unfair assessments. Binary evaluations often fail to account for
shared harmonic features between chords that, while annotated di!erently, exhibit
meaningful similarities. For example, a mismatch between a G7 and a Gsus4 may
be treated as a complete error, despite both chords sharing significant harmonic
tension and resolution characteristics.

To address these issues, we propose leveraging music theory to enhance the
model’s understanding of chord annotations. By formalising the semantics of the-
oretical concepts such as consonance and dissonance and embedding them into our
model, we aim to enable more context-aware interpretations of chord sequences.
This theoretical framework will allow the model to better distinguish between
similar chords and o!er more nuanced interpretations of ambiguous or subjective
harmonic structures.

Finally, we aim at evaluating the e!ectiveness of this approach in improving
ACE and the resulting harmonic representation from the audio signal. By combin-
ing both symbolic and audio data, along with a deeper integration of music theory,
we aim to overcome current limitations and establish a more robust framework
for automatic chord transcription.

12
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This leads to the final research question:

RQ5 How can the integration of formalised music theory concepts into
the training and evaluation of ACE models address chord vocabulary
imbalance and inter-annotator agreement issues, improve overall per-
formance in Audio Chord Estimation, and improve harmonic represen-
tations from audio?

1.2 Thesis Contribution

This thesis addresses several key challenges in MIR and contributes to the fields
of Knowledge Representation (KR) and ontology engineering, aligning its goals
with the broader objectives of the H2020 Polifonia Project4, which funded this re-
search. Polifonia seeks to preserve and reveal European musical heritage by using
computational tools to extract and interlink knowledge from diverse sources. In
this context, the thesis advances the project’s mission by developing multimodal
datasets, algorithms for various MIR tasks, and formalised music-related ontolo-
gies, all directly tied to the Research Questions (RQs) introduced in the previous
section. Moreover, the thesis also examines the limitations of current data inte-
gration approaches, especially in the context of harmonic data, and proposes and
implements strategies to address these challenges.

These contributions target core issues in the field, such as data fragmenta-
tion, interoperability, and scalability, while also supporting Polifonia’s aims to
enable memory institutions, researchers, and the public to explore the cultural
and historical layers of musical artefacts.

The first major contribution responds to RQ1, which seeks to create a unified
semantic model for representing both musical content and context. This contri-
bution is realised through the development of the Polifonia Ontology Network
(PON) [92, 88], a framework of ontologies that formalises the semantics of mu-
sic representation, metadata, annotations, performance mediums, and historical
sources. PON enables the creation of interoperable knowledge graphs from diverse
music datasets, o!ering a solution to the fragmentation problem outlined earlier,
both from a content- and context-based perspective. By extending the eXtreme
Design (XD) methodology and incorporating a comprehensive set of 361 Compe-
tency Questions (CQs), released as the PolifoniaCQ dataset, the ontology design

4https://polifonia-project.eu/
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is rigorously guided to ensure it captures the complexity and richness of musical
knowledge. Moreover, a suite of Ontology Design Patterns (ODPs) specifically
tailored to musical heritage further ensures that the ontologies e!ectively model
di!erent dimensions of music, providing a unified and interoperable framework for
MIR.

The second key contribution addresses RQ2, which focuses on harmonising
symbolic datasets to overcome the fragmentation of chord annotation datasets.
This contribution is exemplified by the creation of ChoCo: the Chord Corpus [90],
the largest existing dataset for musical harmony knowledge graphs. ChoCo inte-
grates over 20, 000 high-quality harmonic annotations from 18 heterogeneous chord
datasets, achieving interoperability across various notation systems and metadata
standards by leveraging the JAMS [203] data structure. The dataset harmonises
symbolic and audio annotations by converting chord labels into three reference
notational systems, with Harte notation [181] serving as the primary bridge. By
standardising diverse chord annotations, ChoCo creates a unified dataset that
enhances the study of harmonic structures and a workflow that enables the auto-
matic generation of music knowledge graphs, thus supporting large-scale symbolic
music analysis.

In response to RQ3, which investigates harmonic similarity, the thesis presents
two methodologies: LHARP and Harmory. Both approaches leverage symbolic
data to explore content-based similarity, addressing limitations in existing meth-
ods that focus mainly on global harmonic structures.

The large, unified harmonic corpus developed in response to RQ2 (ChoCo)
serves as a foundational resource for these methodologies. By standardising di-
verse chord annotations, ChoCo enables comprehensive harmonic comparisons
across datasets, making it possible to apply both LHARP and Harmory for in-
depth analysis of harmonic relationships.

LHARP [93] introduces a novel similarity function based on a variation of the
Longest Common Subsequence (LCS) algorithm, tailored specifically for identi-
fying local harmonic structures within chord progressions. This approach allows
LHARP to capture nuanced, recurring harmonic patterns, which are organised
into a graph-based exploration tool. Through this graph, users can visually trace
harmonic relationships between pieces, enhancing both musicological analysis and
content-based retrieval.

Harmory [91] explores a di!erent approach, using a similarity function based

14
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on Dynamic Time Warping (DTW) and an advanced segmentation algorithm
developed specifically for this task. This combination allows the creation of a
Knowledge Graph (KG) of harmonic patterns, where nodes are patterns linked by
temporal and similarity-based relationships. Moreover, we demonstrate how this
KG can support creative applications by enabling composers to explore harmonic
ideas and variations, assisting in the composition process by suggesting musically
plausible pathways based on established harmonic progressions.

In response to RQ4, which focuses on aligning symbolic and audio data, this
thesis introduces ChordSync [316], a novel methodology for precise chord-to-audio
alignment. ChordSync is designed to overcome the limitations of traditional align-
ment methods that often require pre-existing weak alignment between annotations
and audio.

The method leverages the conformer architecture [170], a powerful neural net-
work framework known for handling audio-based tasks with high temporal preci-
sion. By utilising this architecture, ChordSync enables the alignment of symbolic
chord annotations to audio tracks at scale, providing the accurate timing and du-
ration information necessary for robust analysis. Moreover, this approach opens
up new possibilities for creating large, high-quality, audio-aligned chord datasets
from widely available, crowd-sourced resources that often lack precise temporal
alignment. In addition to supporting symbolic and audio integration, ChordSync
facilitates essential MIR tasks like ACE, enhancing both research capabilities and
practical applications.

Finally, the thesis addresses RQ5 by tackling two significant challenges that
limit symbolic harmonic analysis: inter-annotator agreement and chord vocabulary
imbalance.

First, we perform a comprehensive analysis of inter-annotator agreement in
chord annotations, utilising non-binary metrics to better capture nuanced har-
monic similarities. Specifically, we extend the metrics proposed by McLeod et
al. [266] by introducing perceptual consonance-based distance metrics. This ex-
tension demonstrates that inter-annotator agreement, when measured with these
novel metrics, significantly improves, providing a more accurate reflection of the
harmonic alignment between annotations.

Building on these findings, we propose an innovative ACE model that inte-
grates consonance-based label smoothing [287] and focal loss mechanisms [246].
To further address chord vocabulary imbalance, we implement a chord decomposi-
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tion approach inspired by McFee et al. [263], which decomposes chord predictions
into separate classifications for chord root, bass, and note activations. This flexible
approach allows the model to infer chord labels based on component predictions
rather than relying on a fixed vocabulary, enhancing its capacity to represent
diverse harmonic structures e!ectively.

Finally, we demonstrate how these implemented approaches improve the model’s
ability to capture harmonic descriptors in audio, showing that the learned repre-
sentations yield more robust and accurate harmonic annotation from audio data.

This thesis’ contributions can be summarised as follows:

• Development of the Polifonia Ontology Network (PON) [RQ1]: A
modular, interoperable framework of ontologies to model diverse aspects of
musical heritage, allowing for seamless integration of musical metadata, an-
notations, and KG. With PON we release a set of ODP and CQs to enhance
modularity, reusability, and standardization in musical knowledge engineer-
ing.

• Introduction of the Chord Corpus (ChoCo) [RQ2]: A comprehensive
dataset of over 20, 000 harmonically annotated pieces, integrating 18 distinct
chord collections using the JAMS standard and facilitating symbolic and au-
dio alignment. ChoCo enables standardized chord annotation practices and
data interoperability, making it a pivotal resource for large-scale harmonic
analysis and KG construction.

• Novel Harmonic Similarity Algorithms [RQ3]: Two methodologies –
LHARP and Harmory, which focus on local harmonic similarity. LHARP
introduces a flexible similarity function for analysing patterns within har-
monic sequences, while Harmory provides a cognitive model-inspired KG for
creative applications and compositional support.

• Development of ChordSync for Chord-to-Audio Alignment [RQ4]:
A novel conformer-based alignment method for synchronizing chord anno-
tations with audio data, allowing integration of symbolic annotations into
audio datasets. Furthermore, ChordSync facilitates multimodal dataset cre-
ation from crowdsourced sources, which often lack any timing reference.

• Enhanced ACE Model with Consonance-Based Metrics [RQ5]: An
innovative ACE model that integrates consonance-based label smoothing,

16
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focal loss mechanisms, and a decomposition-based approach to handle chord
vocabulary imbalance and inter-annotator agreement. We demonstrate how
this model better captures harmonic representations from the audio signal
and outperforms state-of-the-art methods in transcribing chords from audio.

1.3 Thesis Structure

This thesis is organised into five main chapters, each addressing key aspects of
music representation, dataset creation, ontology engineering, harmonic similarity,
and multimodal approaches in MIR. Each chapter contains its own related work
section, reflecting the diversity of topics covered.

The first chapter, Background (Chapter 2), introduces foundational concepts in
music representation. Section 2.3 covers music metadata and content representa-
tions, examining both metadata (Section 2.3.1) and music content (Section 2.3.2).
In Section 2.3.3, the focus shifts to signal representations, while the discussion of
symbolic representations follows in Section 2.3.4, where symbolic data formats,
such as MIDI and MusicXML, and their limitations are addressed. The chapter
then explores knowledge representation of music in Section 2.3.5, highlighting the
role of semantic models and ontologies to manage multirepresentational complex-
ity. Finally, multimodal approaches are examined in Section 2.4, providing and
overview relevant to symbolic and audio data integration.

Chapter 3 focuses on ontology engineering and the design of a unified semantic
model for music data representation. Section 3.2 provides a review of existing
ontologies and methods in ontology engineering. Section 3.3 outlines the adopted
methodology, including requirement collection (Section 3.3.1) and the design of
the PON in Section 3.3.2. The PON’s structure and interoperability capabilities
are detailed in Section 3.4, with a focus on the Music Meta Module of PON
in Section 3.5. Section 3.6 discusses the ontology’s application and reuse. The
chapter concludes with a summary and future directions in Section 3.7.

Chapter 4 presents the development of ChoCo: the Chord Corpus. Related
work is reviewed in Section 4.2, and the creation methodology of ChoCo is de-
scribed in Section 4.3. Section 4.3.1 explains the dataset construction steps,
with further details on the incorporated data, unified format conversion, and
the Knowledge Graph generation. Descriptive statistics of ChoCo are provided
in Section 4.3.2, with technical validation presented in Section 4.4. Section 4.5
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discusses usage scenarios and applications, while data availability and licensing
are covered in Section 4.6. The chapter concludes with a summary in Section 4.7.

Chapter 5, Similarity, explores harmonic similarity. Section 5.2 reviews the
state of the art in symbolic harmonic similarity. Section 5.3 introduces LHARP,
an algorithm for harmonic similarity exploration. Harmory is presented in Sec-
tion 5.4, discussing its segmentation and similarity algorithms, Knowledge Graph
construction, and implications for computational creativity. The chapter con-
cludes with a summary in Section 5.5.

Chapter 6 discusses integrating symbolic and audio data. Section 6.2 reviews
audio-to-score alignment and ACE methods. Section 6.3 presents ChordSync, a
novel alignment technique, followed by an analysis of inter-annotator agreement
in Section 6.4. Section 6.5 discusses ACE improvements using consonance-based
label smoothing and focal loss mechanisms. The chapter closes with a summary
in Section 6.6.

Finally, Chapter 7 summarises the contributions of this thesis by revisiting the
research questions presented in Chapter 1, discussing the solutions developed for
each question, and analysing perspectives for future work.

18
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CHAPTER2
Background

This chapter provides the theoretical and methodological foundation for under-
standing the core contributions of this thesis. By drawing on established concepts
in music theory, MIR, and KR, it highlights the challenges of music representa-
tion and retrieval, particularly in the context of harmonic analysis and multimodal
data integration.

The chapter begins by exploring fundamental concepts of music theory in Sec-
tion 2.1, focusing on key concepts and definitions of music and their relevance to
computational music analysis. In Section 2.1.2, the discussion covers the main
musical dimensions (or facets [119]) such as melody, rhythm, and timbre. Har-
mony, a central focus of this thesis, is further detailed in Section 2.1.3, where the
chords and harmonic structures are explored in greater detail.

Following this, the chapter turns to Music Technology in Section 2.2, where
the field’s evolution and key tasks are discussed. This section connects theoret-
ical musical knowledge with computational tasks, laying the groundwork for the
subsequent analysis of data representation.

In Section 2.3, the chapter delves into the core topic of music representa-
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tion, focusing both on the representation of metadata (Section 2.3.1) and music
content (Section 2.3.2). The section then addresses the signal representations of
music in Section 2.3.3, highlighting its strengths and the challenges it presents.
This is followed by a discussion on symbolic representation in Section 2.3.4, which
explores how symbolic music data like MIDI and MusicXML are used in computa-
tional tasks, and the complications introduced by fragmented notational systems.
The final subsection, Section 2.3.5, focuses on KR, introducing semantic models
and ontologies and their potential to address the multirepresentational challenges
identified earlier.

Lastly, in Section 2.4, the chapter covers the emerging field of multimodal
approaches in MIR, with Section 2.4.1 providing a definition of multimodality
and challenges to integrating symbolic and audio data.

Through this exploration, the chapter establishes the necessary background
for the thesis’ contributions, especially in areas concerning music representation,
harmonic analysis, and multimodal integration.

2.1 Music Theory and Structure

The purpose of this section is to provide the foundational music theory concepts
that will serve as a reference throughout the thesis. These concepts are essential
for the analysis and discussion of musical structures, particularly in the context
of MIR.

Music transcends time and cultural boundaries, yet each historic epoch, cul-
ture, and subculture has created its own unique way of expressing itself musically.
This wide variety of expression gives rise to what is referred to as the “Multicul-
tural Challenge” [119]. Music theory endeavours to define and explain what music
is by o!ering a generalized representation, yet the diversity of musical expressions
necessitates a variety of theoretical frameworks. These theories di!er based on
the specific music they aim to describe, the cultural and geographical context of
the theorists, and the purposes for which the theories are intended [177].

This chapter will delve into the music theories used to analyse the Western art-
music tradition. While these theories provide profound insights into this particular
musical repertoire, they o!er limited perspectives on the broader, universal nature
of music.

It is important to note that this section is not intended to be a comprehensive
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reference for music theory. For readers seeking a more detailed and comprehensive
account of the field, we refer to [235, 69, 177, 26]. The main aim of this section is
to provide context for the topics discussed in the thesis, with a focus on the most
explored aspects of music theory, such as harmony, while intentionally overlooking
other topics and concepts that fall outside the scope of this research.

2.1.1 Fundamentals of Music Theory

In this chapter, we delve into theoretical concepts that are rooted in the common-
practice period of Western music, which spans from the Baroque to the Romantic
periods (ca. 1650. 1900). During these three centuries, compositions were often
structured around a gravitational centre, a fundamental phenomenon known as
tonality. This centre, or tonic, is typically a single pitch labelled using letters
from A through G, with possible modifiers such as “flat,” “sharp,” “major,” and
“minor.”

Such centres of gravity in music, providing a point around which all pitches
orbit, have been a part of musical structures since antiquity and continue to res-
onate in contemporary music across various genres, including film scores, popular
and commercial music, folk music, and jazz [235], albeit in evolving forms. While
the strict adherence to tonal centres characterized much of earlier Western mu-
sic, modern compositions often experiment with these foundations, incorporating
atonal structures, polytonality, and microtonal music which challenge the tradi-
tional roles of the tonic [177]. Despite these innovations, the concept of a central
pitch remains influential, adapted and reinterpreted in genres ranging from mini-
malism to progressive rock and modern jazz.

Pitch and Pitch Classes

The term pitch describes the attribute of a sound–such as an individual musical
note–that determines its position on a scale. In Western culture, pitch is percep-
tually recognized as the attribute that allows sounds to be judged as “higher” and
“lower,” in the sense traditionally associated with musical melodies [313].

Pitch is perceived based on what the ear interprets as the fundamental fre-
quency of the sound, even in cases where this frequency is an auditory illusion,
such as with di!erence tones, and not actually present in the sound wave [184].

The frequency of a sound is determined by the rate of vibrations produced by
the sound source, such as the plucked string of a violin or the vibrating reed of
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Figure 2.1: Music score illustrating various enharmonic intervals, highlighting equiv-
alent pitch pairs.

a clarinet in response to airflow. These regular vibrations occur at a speed–often
measured in Hertz (Hz)–which directly influences pitch: higher frequencies yield
higher pitches and lower frequencies result in lower pitches. For example, a sound
at 880Hz is typically perceived as higher than one at 40 Hz.

When two pitches are related by a frequency ratio of 2 : 1, they are separated
by an octave. Despite the di!erence in frequency, pitches separated by an octave
are perceptually similar, leading to the convention of labelling them with the same
letter name (A through G), distinguished only by a number that defines the octave
(e.g., A3, A4 ) [235]. This cyclical nature of pitch perception is foundational in
Western music theory, where the octave serves as a reference point for organizing
pitches.

The concept of pitch class encompasses all pitches that share a specific re-
lationship, such as being separated by one or more octaves. This relationship
is termed an “equivalence” because, within a particular musical context, pitches
within the same class are considered interchangeable or equivalent [339].

Pitches within the same pitch class bear the same letter name irrespective of
their octave designation. For instance, the pitch class “C” includes all Cs across
various octaves (C1, C2, C3, etc.). In Western tonal music, there are twelve
distinct pitch classes within each octave, corresponding to the twelve semitones
of the chromatic scale.

The concept of pitch class simplifies the manipulation and analysis of musical
materials, especially in the study of harmonic progressions. In this context, the
crucial aspect to consider is the relationships between pitches rather than the
specific octaves in which they are played.

Pitches that sound the same but are named di!erently are termed enhar-
monically equivalent. For example, as depicted in Figure 2.1, C# and Db are
enharmonically equivalent, as are Ab and G#. Although C# and Dω sound iden-
tical on a piano, they serve di!erent functions within their respective musical
contexts [69].
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Figure 2.2: Visualization of the C major scale, displayed on both a piano keyboard and
a musical sta!, illustrating the corresponding notes across both representations and
scale degrees.

Scales

A scale is defined as a sequence of pitches arranged in ascending or descending
order [122]. The diatonic scale, predominant in Western music, is a seven-note
sequence where each pitch, denoted by letters A through G, appears once per
octave. The term “diatonic,” meaning “through the tones,” describes the division
of the octave into seven steps, with the cycle completing by repeating the initial
pitch at the octave [235].

The major scale, a primary example of a diatonic scale, adheres to a fixed
pattern of whole steps (tones) and half steps (semitones), specifically arranged as
W → W → H → W → W → W → H (see Figure 2.2). This configuration imparts the
major scale with its characteristic bright and uplifting sound. Conversely, minor
scales, known for their more sombre tone, typically feature a lowered third scale
degree, distinctly altering their emotional e!ect [49].

Each note in the seven-tone diatonic scale is assigned a functional name, re-
flecting its role within the scale. Figure 2.3 shows these names for each degree in
both major and minor scales [26].

The pattern of intervals in the major scale can be transposed to any starting
pitch, a process known as transposition. For instance, transposing the C major
scale to start on G results in the G major scale.
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Figure 2.3: Scale degrees and their corresponding names within both major (C major)
and minor (C minor) scales.

Major and minor scales dominate the landscape of Western classical tonal mu-
sic. However, six other scales, known as modes or Church modes, were prevalent
in Medieval and Renaissance music (pre-1600) and continue to appear in modern
folk and popular music [369].

Additionally, several less common scales also exist in Western music. These
include the pentatonic scale, and nondiatonic scales such as the chromatic scale
and the octatonic scale [235].

Intervals

A fundamental concept in music theory is the interval, which refers to the distance
between two pitches [247]. Intervals are designated by the number of diatonic notes
(notes with distinct letter names) they span. For example, the distance from C

to F is a fourth because it spans four letter names: C, D, E, and F . Intervals
that encompass one octave or less are classified as simple, while those extending
beyond an octave are termed compound.

Intervals possess qualities that further define their musical characteristics [235].
Intervals that include the tonic (keynote) and span to the fourth and fifth scale
degrees of a major scale are termed perfect, as are unison and the octave, typically
denoted with the letter P (e.g., P4 for a perfect fourth). Intervals extending from
the tonic to the second, third, sixth, and seventh degrees are classified as major,
marked by an uppercase M (e.g., M6 for a major sixth).

When a major interval is decreased by one half step, it becomes a minor
interval, achievable by raising the lower note or lowering the upper note, and is
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Figure 2.4: Illustration of various intervals showing diminished, minor, major, aug-
mented, and perfect qualities.

denoted by a lowercase m. Conversely, augmenting a perfect or major interval by
one half step transforms it into an augmented interval, marked by the letter A.
Similarly, diminishing a perfect or minor interval by one half step changes it to
a diminished interval, indicated by the letter d. Figure 2.4 displays examples of
these interval types.

The inversion of an interval involves switching the positions of the tones, with
the lower tone becoming the higher one, or vice versa [247].

Intervals can manifest in two forms: if the tones occur in succession, the inter-
val is considered melodic. If they sound simultaneously, the interval is harmonic.

Harmonic intervals are further categorized as either consonant or dissonant.
Consonant intervals, which sound harmonious and stable, are often utilized by
composers at points of resolution. In contrast, dissonant intervals, characterized
by tension and instability, are used to drive the music forward, demanding reso-
lution and thus are unsuitable for concluding sections [369].

Tonality and Key

The concept of tonality refers to the orientation of melodies and harmonies towards
a referential (or tonic) pitch class. In the broadest possible sense, however, it refers
to systematic arrangements of pitch phenomena and relations between them [205].

Each key is built upon a diatonic scale. In any given key, the tonic is the central
pitch around which other pitches revolve, creating varying levels of tension and
resolution [235]. The structure of the diatonic scale organizes these pitches in a
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pattern of whole and half steps, which gives each scale a unique tonal colour.
Within this scale, several pitches hold special significance in defining the tonal-

ity. Key members include the dominant (a perfect fifth above the tonic), which
generates a strong sense of resolution when moving back to the tonic, and the
subdominant (a perfect fourth below the tonic), which also plays a stabilizing
role. The mediant sits midway between the tonic and the dominant, while other
pitches such as the leading tone (just below the tonic) provide a strong pull back
to the tonic, reinforcing the tonal centre [205].

The tonic is both the foundational pitch of the scale and the reference point
for defining the key. For example, in C major, the note C serves as the tonic,
while the surrounding pitches create a sense of stability and consonance around
this central pitch. Modulations within a key can introduce variations in this tonal
centre, as seen when di!erent modes shift the scale’s orientation [230].

Figure 2.5: Illustration of relative major and minor keys using the circle of fifths,
showing their interrelationships based on key signatures.

Key signatures are crucial for identifying the set of pitches used in a scale,
typically denoted by sharps or flats that modify certain notes [69]. Each key
signature represents both a major key and its relative minor. For example, a key
signature with one sharp denotes G major and its relative minor, E minor.
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Keys are systematically arranged within the circle of fifths, a structure that
illustrates relationships among all major and minor keys based on their key sig-
natures (see Figure 2.5). In this circle, adjacent keys like G major and D major
are separated by a perfect fifth, indicating close tonal relationships. Parallel keys
share the same tonic note but di!er in mode (e.g., C major and C minor), while
relative keys share the same key signature but have di!erent tonic notes. The rel-
ative minor of a major key is determined by the sixth scale degree of that major
key, which becomes the tonic of the relative minor. This systematic arrange-
ment aids in understanding key relationships, providing a basis for composition,
transposition, and music analysis [177].

Rhythm and Meter

In music, rhythm refers to the organization of sounds in time, distinguished by
patterns of durations, beats, and accents. The fundamental unit of rhythm is the
pulse, a series of undi!erentiated and equally spaced clicks or taps. When these
pulses are accentuated, they transform into a structured sequence of accented and
unaccented beats, giving rise to what is understood as meter. Meter organizes
these beats into recurring patterns within a measure, typically categorized as
duple (strong-weak), triple (strong-weak-weak), or quadruple (very strong-weak-
strong-weak) meters [26].

Beat division plays a crucial role in defining the structure of the meter. In
simple meters, each beat is divided into two equal parts, while in compound
meters, each beat is divided into three or more parts. Meter signatures, found at
the beginning of a musical score, indicate the number of beats per measure and
the rhythmic value assigned to each beat. For instance, in simple meters, the top
number of the meter signature reflects the number of beats in a measure, while
the bottom number denotes the type of note that represents one beat [235].

Asymmetrical meters, which do not conform to the regular division by twos or
threes, feature irregular pulse groupings, such as 2 + 3 + 3 + 2. These meters are
common in the folk music of Eastern Europe and the Balkans, where they add a
distinctive rhythmic character. Composers often use specific meter signatures to
indicate how these complex rhythms should be interpreted, aiding performers in
capturing the intended rhythmic feel.
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Figure 2.6: Recurring rhythmic motive from Chopin’s Mazurka in G Minor, Op. 67,
No. 2, illustrating the use of rhythmic patterns to create cohesion across the piece.

2.1.2 Facets of Music

Building on the foundational theory concepts discussed earlier, music can be un-
derstood through multiple dimensions, or facets. Downie [119] identifies seven key
facets of music: (i) pitch, (ii) temporal, (iii) harmonic, (iv) timbral, (v) editorial,
(vi) textual, and (vii) bibliographic.

These facets highlight the multifaceted nature of music and its relevance across
various fields.

However, it’s important to note that these facets are not mutually exclusive
and often overlap in their application and interpretation. The complexity that
arise from the complex interaction of the di!erent facets has been labelled as the
“multifaceted challenge.” For instance, the term “adagio” in a musical score might
be relevant to both the temporal and editorial facets, depending on its use within
the context of the piece [119]. Similarly, the harmonic facet is predominantly in-
fluenced by the interplay between the pitch and temporal dimensions, illustrating
the interconnected nature of these musical aspects.

Pitch Facet

The pitch facet encompasses all aspects related to musical pitches, including scales,
tonality, and key (c.f. Section 2.1.1). Within this domain, intervals are fundamen-
tal components, but they do not function in isolation; they contribute to broader
musical constructs, notably melody.

Melodies are structured as sequences of pitches or intervals and are central to
both the form and expression of music. They organize musical thought similarly
to how written language uses sentences and paragraphs, grouping into coherent
and meaningful units that enhance musical narrative and emotional depth [26].
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Figure 2.7: Illustration of phrasing in Mozart’s Sonata in D Major, K. 284, I, high-
lighting the structural and thematic development across measures 1-4.

A motif, or motive, is a brief, recurring figure that can unify a composition or
a section within it. Motifs are crucial as they form the building blocks from which
larger sections of music are developed. These can be melodic, involving repeated
pitch patterns often paired with similar rhythmic patterns, or purely rhythmic,
independent of melodic content [235].

Sequences further elaborate on motives by repeating them at di!erent pitches,
creating a chain of segments that enhance melodic development. This method
was frequently employed in the eighteenth and nineteenth centuries to enrich
compositions. In tonal music, sequences adhere to the diatonic scale, allowing for
slight variations in transposition to maintain diatonic integrity.

Phrases represent complete musical thoughts and are typically defined by har-
monic, melodic, and rhythmic cadences (see Figure 2.7). Often measuring around
four measures in length, phrases can vary significantly in size. They may con-
tain internal divisions known as phrase members, di!erentiated by breaks such
as longer note values or rests. These members can be repetitive, sequential, or
contrasting, contributing to the overall complexity of musical structure.

Temporal Facet

The temporal facet of music encompasses various elements that determine the
duration and timing of musical events, including tempo indicators, meter, pitch
duration, harmonic duration, and accents. These elements collectively form the
rhythmic structure of a composition. Additionally, rests serve as indicators of
silent durations within the music, providing breaks that contain no pitch infor-
mation [119].

Temporal details in music can be expressed in absolute terms (such as a specific
metronome marking), or using general descriptors (like adagio or presto). Rhyth-
mic expressions can also include temporal distortions such as rubato, accelerando,
and rallentando, which further complicate the rhythmic interpretation.
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Moreover, di!erent performance practices, especially in genres like Baroque
and Jazz, often expect musicians to deviate from notated rhythms, adding an-
other layer of complexity. These variations mean that a single rhythmic pattern
can be represented in multiple ways, all leading to the same auditory outcome.
Consequently, accurately representing and retrieving temporal information for
music poses significant challenges.

Timbral Facet

Timbre, or tone colour, is often used as a “catch-all” term that encompasses all as-
pects of a sound’s quality except for pitch, loudness, and rhythm-related features.
It also includes how changes in pitch, dynamics, and timing can alter the charac-
ter of a sound [252]. Timbre is the key auditory attribute that enables listeners
to distinguish between di!erent musical instruments, such as a violin, an oboe, or
a trumpet, even when they play notes at the same pitch and loudness [282].

Due to its elusive and complex nature, timbre is typically defined indirectly.
It is the quality that allows listeners to perceive di!erences between sounds that
are identical in pitch, loudness, and duration. This characteristic is crucial for
distinguishing between instruments; for instance, it allows us to di!erentiate the
sound of an oboe from a violin under identical pitch and volume conditions [284].

Moreover, performance techniques like pizzicato (plucking strings), muting, us-
ing the pedal, and various bowing methods also profoundly influence timbre. The
application and notation of these techniques often blur the boundaries between
timbral and editorial facets. While the choice of a performance method is an
editorial decision, its audible impact pertains to the realm of timbre. In practice,
e!ectively accessing and analysing timbral information typically requires audio or
signal-based representations, which facilitate a nuanced recognition of tone colours
through advanced signal processing techniques [119].

Editorial Facet

The editorial facet of music encompasses a wide range of performance instruc-
tions that significantly influence the interpretation and realization of a musical
piece. This includes notations for fingerings, ornamentation, dynamics (e.g., ppp
to !f ), slurs, articulations, staccati, and bowings. Editorial information, however,
presents various challenges due to its diverse forms; it can appear as iconic symbols
(e.g., -, 3, !), textual descriptions (e.g., crescendo, diminuendo), or a combination

32



!
!

“output” — 2025/2/13 — 2:08 — page 33 — #47 !
!

!
!

!
!

2.1. Music Theory and Structure

of both [119].
A significant issue within this facet is the absence of explicit editorial informa-

tion, a common practice among composers prior to Beethoven and continuing with
many composers thereafter. These composers typically assumed that performers
would have the requisite knowledge and skill to interpret the music appropri-
ately without detailed instructions [384]. This assumption can lead to discrepan-
cies between di!erent editions of the same work, complicating the selection of a
“definitive” version for inclusion in a MIR system [120].

Textual Facet

The textual facet of music encompasses the written words associated with songs,
arias, chorales, hymns, symphonies, and other forms, including the libretti of op-
eras [191]. This facet highlights an important aspect of music information: the
lyrics or texts can often be quite independent from the melodies and arrange-
ments with which they are typically associated. This independence means that
a specific lyric fragment might not always be su"cient to identify and retrieve a
corresponding melody, and the reverse is also true [381].

Furthermore, many songs undergo translations into various languages, adding
another layer of complexity to the textual facet. This multiplicity of textual
settings for a single melody–or conversely, multiple musical settings for a single
text–necessitates a careful approach when handling music information retrieval
[221]. It is also crucial to acknowledge the vast amount of instrumental music
that exists without any associated text, representing a significant portion of the
musical corpus that relies solely on non-textual elements for its expression.

Bibliographic Facet

The bibliographic facet of music information includes details such as a work’s title,
composer, arranger, editor, lyric author, publisher, edition, catalogue number,
publication date, discography, and performers, among other aspects [119]. This
facet is distinct in that it does not derive directly from the musical content itself
but rather encompasses descriptive metadata about the musical work.

Like traditional bibliographic fields, the music bibliographic facet faces numer-
ous challenges related to description and access. These challenges mirror those
found in other domains of library and information science, where issues such as
consistency and accuracy of metadata are ongoing concerns [296].
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We further discuss the challenges that can be encountered when dealing with
the bibliographic facet in Section 2.3.

Harmonic Facet

The harmonic facet of music, due to its significant relevance in the context of this
thesis, warrants a dedicated section (c.f. Section 2.1.3).

2.1.3 Focus on Harmony

Harmony is a prominent dimension of the Western tonal music, also known as
the “vertical dimension”, which is concerned with “combining notes in music to
produce a pleasing e!ect greater than the sum of its parts” [74]. Harmony is a
widely studied component in music theory [312, 351], and music analysis[188];
where functional harmony provides a set of rules for moving to and from the
tonic – the most stable note in a piece, allowing to relate chords to each other,
and to the main harmony. Moreover, harmony, along with metrical structure is
ubiquitous: roughly speaking, every piece, in fact every moment of every piece,
has a metrical structure and a harmonic structure [380].

The foundations of modern harmony began to take shape during the thirteenth
century with the development of organum, progressing through the medieval pe-
riod into the Renaissance. During the Renaissance (1450–1600), the concept of
harmony evolved through the study and practice of counterpoint, which involved
the interweaving of independent melodic lines [344]. Counterpoint emphasized
the consonant and dissonant relationships between these lines, laying the ground-
work for the vertical (harmonic) perspective of combining notes. This exploration
of consonance and dissonance within multiple melodic layers became a corner-
stone of harmony, as theorists sought to formalize the principles governing these
relationships [70].

The Baroque period (1600–1750) saw the development of accompanying a
melody with chords through the figured bass system [407], where keyboard per-
formers improvised an accompaniment from a given bass line marked with symbols
indicating the chords to be played. This practice was predominant throughout
the Baroque era, not only in keyboard accompaniments but also in solo songs
and ensemble compositions. The seminal work in the theory of harmony was
Jean-Philippe Rameau’s “Traité de l’harmonie”, which introduced and discussed
the inversion of chords, a concept that has significantly influenced theoretical
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Figure 2.8: Examples of triads: augmented, major, minor, and diminished, illustrating
the distinct interval structures that define each type.

perspectives in music [26].

Chords

Chords are the basic constituents of harmony, which jointly define the harmonic
structure of a piece. Individually, a chord is defined as a “simultaneous occurrence
of three or more music sounds, producing harmony” [70]. Depending on the
notational system and the annotation conventions, a chord can be associated
with a name, or label.

A triad, the simplest form of a chord, comprises any three-tone combination.
It is identified by the root note upon which it is built—for example, a “C major
triad” consists of the root C, along with a major third and a perfect fifth above
it. Triads are classified into four types based on their quality: major, minor,
diminished, and augmented. The arrangement of these intervals defines the overall
sound and character of the triad [26]. Figure 2.8 shows examples of each of such
triads.

The position of a triad within a piece, whether it appears in root position or
as an inversion, significantly influences its harmonic function. In root position,
the root note is the lowest pitch, while in inversions, either the third or fifth takes
the lowest position, changing the chord’s texture and perception.

Further complexity is added by extending these triads to form larger chords
such as seventh, ninth, eleventh, and thirteenth chords, each stacking intervals on
top of the original triad [165], as shown in Figure 2.9.

The seventh chord, for instance, adds a note a third above the triad’s fifth,
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Figure 2.9: Examples of chord extensions: Illustration of a major triad and its pro-
gressive extensions to seventh, ninth, eleventh, and thirteenth chords, built on the
same root note.

creating a distinctive interval of a seventh from the root in its root position. The
dominant seventh chord, built on the fifth scale degree of the major and minor
scales, combines a major triad with a minor seventh, contributing to its pivotal
role in tonal harmony. Each type of seventh chord possesses a unique sound,
dictated by the combination of the triad type and the seventh interval [70].

In musical analysis, Roman numerals are employed to identify and di!erentiate
triads and their inversions based on their scale degrees. These analytical symbols
help in understanding the placement and function of chords within the overall key
structure. Additionally, figured bass notation, a system from the Baroque period,
uses figures placed under a bass line to specify the intended harmony, streamlining
the notation process for continuo players and emphasizing key harmonic elements
[312].

Harmony not only structures the musical piece but also deeply influences its
emotional impact. Major triads are often associated with positive emotions, while
minor triads convey negative feelings. Diminished triads suggest tension and sus-
pense, and augmented triads evoke a sense of unease or mystery. These emotional
associations highlight the powerful a!ective role of harmony in music, resonating
with listeners from diverse cultural backgrounds [225, 74].

Harmonic Progression

Harmonic progression refers to the sequence in which chords succeed each other
within a musical composition. Historically, from the Baroque through the Clas-
sical and Romantic periods, composers have utilized harmonic progression as a
primary organizational tool. The transition from one chord to another not only
propels the music forward but also adds a dynamic element that is distinct from
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Figure 2.10: Illustration of a basic I → V → I harmonic progression, showing the
movement from tonic to dominant and back to tonic, creating a sense of resolution.

the contributions of melody or rhythm alone [177]. In tonal harmony, which per-
vades various musical styles, the structure of a piece is largely shaped by its chord
progressions.

In tonal music, the tonic chord represents the pinnacle of stability. Chords that
deviate from the tonic generally introduce tension, while those that return to the
tonic tend to resolve this tension, providing a sense of fulfilment. Consequently,
tonal compositions typically conclude with the tonic triad, and often commence
with it as well.

The relationships between successive chords are governed by two principal
forces, both related to the roots of the chords: (i) the relationship of the chords
to the prevailing tonality, and (ii) the intervals formed by the roots of adjacent
chords. Triads built on each scale degree relate back to the tonic triad, which
serves as both the point of rest and the ultimate goal of harmonic progression. To
fully understand harmonic movement, it is insightful to analyse chord progressions
based on the interval between the roots of consecutive chords [26].

By examining the intervallic relationships between the roots of successive
chords, harmonic progressions can be grouped into meaningful categories.

One of the most fundamental progressions in tonal harmony involves the dom-
inant harmony leading back to the tonic, which establishes a sense of closure.
The I → V → I progression, often written in this standard notation, begins on the
tonic (providing a state of stability), moves to the dominant (which has a strong
tendency to resolve back to the tonic), and finally returns to the tonic, o!ering a
conclusive sense of arrival and completion [369].

Harmonic Cadences A harmonic cadence serves as musical punctuation, pro-
viding closure to a phrase or section of music. Cadences can vary in strength,
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with some signalling the end of a complete musical thought (comparable to a pe-
riod) and others suggesting continuation, akin to a comma [369]. Most cadences
involve either the V or I chord, with the dominant chord frequently appearing as
a seventh chord (V7).

Several types of cadences are commonly encountered in Western tonal mu-
sic [26]:

• Perfect Authentic Cadence (PAC): This is the strongest cadence, con-
sisting of a V → I progression in major keys (or V → i in minor keys), with
both chords in root position and the tonic note as the highest sounding pitch
in the final chord. The PAC provides a powerful sense of finality.

• Imperfect Authentic Cadence (IAC): This is a slightly weaker form of
the PAC. It occurs when one or both chords are inverted, when the highest
tone in the tonic chord is not the tonic itself, or when the diminished seventh
chord (viio6) substitutes for the V chord.

• Half Cadence (HC): The half cadence ends on the dominant (V ) chord,
creating a sense of pause that anticipates continuation. Common forms
include I → V , IV → V , and ii → V , with the Phrygian half cadence (iv6-V)
as a notable variant in minor keys.

• Plagal Cadence: The plagal cadence moves from IV to I in major keys
(or iv to i in minor keys). This cadence provides a softer sense of resolution
than the authentic cadence.

• Deceptive Cadence (DC): In this cadence, the progression begins with
V but resolves to a chord other than I, typically the vi chord in major keys
(V I in minor). This progression provides an unexpected twist, delaying the
sense of finality.

• Rhythmic Cadence: Phrase endings frequently feature characteristic rhyth-
mic patterns that emphasize the cadence. These rhythmic cues add to the
sense of closure or pause in the music.

These cadences, especially the V-I relationship in the PAC, are fundamental
to the experience of resolution in Western tonal music. Cadences help to shape
musical phrases, each resembling a self-contained musical thought, with clear be-
ginnings and endings.
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2.2 Music Technology

2.2.1 Historical Background

The convergence of music and computational sciences has significantly reshaped
the ways we study, interpret, and engage with music. In recent decades, progress
in computational methods has provided researchers with powerful tools to anal-
yse extensive music collections and uncover structural aspects of music with un-
precedented depth. These advancements have enabled the examination of vast
quantities of musical data—surpassing traditional human limitations–and have
transformed fields such as musicology, music analysis, and creative music applica-
tions.

This transformation began in the mid-20th century when the first computa-
tional applications to music were conceptualised in the 1950s and gradually im-
plemented during the 1960s [30]. At that time, computational models enabled
researchers to address challenges in music analysis that traditional methods could
not manage—such as identifying patterns across large datasets, conducting sta-
tistical analyses, and developing formalised representations of music. By the late
20th century, the digitisation of music and the rapid growth of digital archives
accelerated the demand for intelligent systems capable of managing and retrieving
musical information. This development laid the foundation for MIR, a field dedi-
cated to creating models for handling and analysing vast digital music collections.

MIR has developed as a distinct field of research from the 1990s onwards, cul-
minating in the establishment of the International Society for Music Information
Retrieval (ISMIR) 1, a dedicated conference series at the turn of the millennium.
The field addresses unique challenges in music retrieval, adopting since its foun-
dation an interdisciplinary approach:

MIR is a [...] interdisciplinary research area encompassing computer
science and information retrieval, musicology and music theory, audio
engineering and digital signal processing, cognitive science, library sci-
ence, publishing, and law. Its agenda, roughly, is to develop ways of
managing collections of musical material for preservation, access, re-
search, and other uses. [119]

Its goal is to manage and utilize musical materials for various purposes like
preservation, access, and research. Content analysis, which involves the automatic

1https://ismir.net/
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extraction of music descriptors directly from audio, along with the development
of innovative interfaces and infrastructure, are central to MIR’s objectives [221].

2.2.2 Music Information Retrieval Tasks

MIR integrates various paradigms for accessing music information, tailored to suit
di!erent user interactions and needs, as analysed by Knees & Schedl [221]. These
paradigms include:

• Retrieval: This paradigm involves users actively expressing a specific music-
related need through a query, which can be in forms such as text, symbolic
music representation, or audio. The system retrieves and potentially ranks
results—audio clips, scores, or metadata—corresponding to the query. This
method aligns with traditional information retrieval but is specialized to
accommodate the distinctive characteristics of music data.

• Browsing: Unlike retrieval, browsing allows users to explore a music collec-
tion without a predetermined goal. This paradigm supports an interactive
and iterative process facilitated by intuitive user interfaces, enabling users
to discover music items serendipitously.

• Recommendation: In this paradigm, the system proactively filters and
suggests music items based on the user’s past actions or stated preferences,
which may be explicitly provided or inferred through behavioural patterns
such as previous queries or playback history. Recommendations provide a
personalized experience by predicting user preferences and o!ering music
choices accordingly.

These paradigms are applied in various contexts within the field of MIR, rang-
ing from systems that allow queries by humming to sophisticated algorithms for
theme detection using symbolic data representations like Musical Instrument Dig-
ital Interface (MIDI) [282]. Further, technologies such as music fingerprinting
identify songs from brief audio clips, even in noisy environments, and cover song
identification algorithms analyse components like melody and harmonic progres-
sions to find di!erent renditions of the same song [221].

While a single, unified taxonomy for MIR tasks is challenging and beyond the
scope of this work, various resources provide substantial insights and method-
ologies for specific tasks. Textbooks such as [282, 241] and ISMIR conference
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proceedings are instrumental for gaining a deeper understanding of these tasks.
Furthermore, [252] proposes a semi-comprehensive taxonomy of MIR tasks, cate-
gorized broadly as follows:

• Tonality and Harmony: Mode, chord, and key detection.

• Melody and Pitch: Melody estimation, pitch and multi-pitch detection,
note tracking, automatic music transcription.

• Rhythm: Onset detection, beat and downbeat tracking, metre estimation,
tempo estimation.

• Temporal Alignment: Score following, audio-to-score alignment, score
alignment.

• Source Separation: Musical instrument source separation, harmonic-percussive
source separation.

• Timbre-related Tasks: Musical instrument identification, playing tech-
nique detection.

• Clip-level Classification: Music tagging, genre recognition, emotion/-
mood recognition.

• Content-based Audio Retrieval: Audio identification, audio matching,
cover song detection.

• Temporal Segmentation: Music detection, music structure segmentation,
time boundary identification.

• Visual Score Input: Optical music recognition and subtasks, including
sta! line identification and music symbol identification.

• Performance-related Understanding: Technique identification, performer
identification, performance assessment, di"culty estimation.

While a comprehensive overview of all e!orts and tasks within the MIR field
is unfeasible, Ma et al. [252] highlight several methodological trends. They ob-
serve that the bulk of MIR research primarily utilizes audio as the input modality,
with a smaller proportion relying on symbolic representations. The focus is pre-
dominantly on Western tonal music, relegating non-Western cultures and folk or
traditional music to lesser prominence. A key di!erentiator among these tasks lies

41



!
!

“output” — 2025/2/13 — 2:08 — page 42 — #56 !
!

!
!

!
!

Chapter 2. Background

in the required temporal granularity, ranging from clip-level classifications such as
audio tagging to tasks demanding fine temporal resolution, such as pitch detec-
tion and onset detection. This variability in temporal demands, coupled with the
global diversity of musical cultures, presents challenges in developing a universal
music foundation model. Nevertheless, Ma et al. also note that the intrinsic con-
nections among various tasks, such as the relationship between onset detection
and beat tracking, could lead to the development of versatile music representa-
tions and MIR models capable of addressing multiple tasks, albeit potentially at
the cost of reduced musical diversity.

2.2.3 Harmony in MIR

Harmony plays a pivotal role in MIR as it forms the foundation of numerous
analytical tasks that interpret the vertical dimension of music. Key harmony-
related MIR tasks include:

• Audio Chord Estimation (ACE): ACE involves the automatic detection
of chords in audio recordings, returning a symbolic chord sequence that
represents the harmonic structure. It is one of the fundamental tasks in
MIR, with applications in music transcription, similarity, and analysis [259,
146, 411, 267, 412, 343].

• Key Detection: This task identifies the key of a musical piece, which
provides the tonal context for interpreting harmonic progressions and melody
[424, 59, 220, 133].

• Cadence Detection: Cadence detection identifies harmonic cadences, which
mark the ends of musical phrases and are critical for understanding musical
form and structure [33, 215].

• Harmonic Similarity: This task measures the similarity between harmonic
progressions, facilitating tasks such as cover song identification and music
recommendation [104, 3, 100, 175].

• Functional Harmonic Analysis: Functional harmonic analysis seeks to
annotate chords with their functional roles (e.g., tonic, dominant), providing
a deeper layer of harmonic meaning and enhancing the understanding of
chord progressions [289, 61, 76, 331].
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• Harmonic Change Detection: This task detects points in a piece where
significant harmonic changes occur, which can reveal shifts in mood, tension,
or form within the music [329, 108].

• Harmonic Predictive Modelling: In predictive modelling, systems are
trained to anticipate upcoming harmonic structures, often used in generative
applications or music prediction algorithms [82, 403].

These harmony-related MIR tasks are not solely ends in themselves; they also
play a critical role in enhancing broader MIR paradigms, such as retrieval, recom-
mendation, and browsing, by enabling more sophisticated and contextually rich
interactions with music data. Moreover, harmony analysis contributes to improv-
ing other MIR tasks, including version identification [345], genre classification
[201], and music structure segmentation [60], enriching the scope and depth of
computational music analysis.

2.3 Music Representation

A foundational aspect of MIR research is the representation and structured or-
ganisation of music, which serves as the basis for di!erent methods of accessing
and interacting with musical content. Historically, the paradigms in MIR have
revolved around two primary forms of music information access: context-based
MIR and content-based MIR [221].

• Content-Based MIR focuses on the direct analysis of the audio signal itself,
covering elements that can be extracted such as rhythm, timbre, melody,
harmony, and even the mood of the music piece. These aspects represent
the core components of a music piece that contribute to its unique auditory
signature and perceptual impact.

• Context-Based MIR involves aspects of music that cannot be directly derived
from the audio signal. This includes metadata such as reviews, liner notes,
album artwork, country of origin, recording decade, and marketing strategies.
These elements, often termed as cultural features, community metadata, or
context-based features, provide a broader cultural and contextual perspective
on the music, influencing how it is perceived, understood, and valued across
di!erent listener communities.
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This section explores these two dimensions in depth. Section 2.3.1examines
the unique characteristics and challenges of representing musical metadata, while
Section 2.3.2 focuses on approaches to capturing and representing musical content.

2.3.1 Representing Musical Metadata

In today’s increasingly digitized society, the wealth of knowledge surrounding
music–commonly referred to as metadata–has grown exponentially, becoming a
crucial resource for the music industry and beyond. Given the distinct cultural and
perceptual aspects of music, designing suitable representations for this metadata
demands careful and specialised approaches.

The representation of musical metadata involves creating structured descrip-
tions that enhance the understanding, management, and accessibility of music
within digital systems. This approach aligns with the “bibliographic facet” of
music, which emphasises descriptive information about music rather than its di-
rect sonic or notational representation [119].

To make this vast body of musical knowledge easily accessible to listeners and
e"ciently manageable by machines, it is essential to develop systems capable of
interpreting and utilising music metadata e!ectively. As François Pachet [296]
notes, the task of music knowledge management revolves around two key objec-
tives: (i) constructing meaningful and maintainable descriptions of music, and
(ii) leveraging these descriptions to build robust access systems that allow users
to navigate large music collections with ease.

Musical metadata can be classified into three primary categories: editorial, cul-
tural, and acoustic. Each category plays a distinct role in how music is described,
organised, and accessed within digital ecosystems, and together they form the
backbone of modern music information retrieval systems [296].

Editorial Metadata

Editorial metadata refers to information that is manually curated by experts, such
as details about albums, songs, artists, recording dates, and composers. This type
of metadata is provided through deliberate editorial processes, often by authorita-
tive sources. It can range from straightforward administrative information to more
subjective data, such as artist biographies or genre classifications. The challenge
with editorial metadata lies in ensuring consensus on subjective content (e.g., mu-
sical genre taxonomy) and keeping the metadata up-to-date as new music, artists,
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and genres emerge.
Editorial metadata can also be collaboratively produced by users, as seen in

databases like MusicBrainz2. Collaborative e!orts raise di!erent management
challenges compared to prescriptive, expert-driven systems, yet they o!er scalable
solutions for growing music collections.

Cultural Metadata

Cultural metadata emerges from broader social and cultural contexts rather than
being directly input by individuals. It is derived from patterns and associations
observed in large datasets, such as user behaviour, playlists, web searches, and
text sources. Methods like collaborative filtering or co-occurrence analysis extract
relationships between musical items (e.g., artists, songs) based on their proximity
in cultural contexts (e.g., search engine results or playlists).

Cultural metadata can provide insights into the similarity between artists or
the association of words (like genres) with specific artists. This approach helps
in generating automatic music recommendations or genre classifications, although
cultural metadata may di!er from expert-defined editorial metadata.

Acoustic Metadata

Acoustic metadata is generated through direct analysis of the audio signal itself,
independent of any external or manually provided information. It aims to capture
objective musical content such as tempo, rhythm structure, or instrument types.
Techniques for extracting acoustic metadata have made significant progress, espe-
cially in rhythmic and beat detection, but challenges remain in developing robust
extractors for more complex musical features such as mood, energy, or melody.

Some acoustic descriptors apply to an entire track (e.g., tempo), while others,
like melodic contour, depend on specific positions within the track. Advanced
techniques can even infer the structure of a piece of music, leading to applications
like automatic music summarization. Standards like MPEG-7 [229] aim to stan-
dardize the representation of these descriptors, but the reliability of extractors is
still a limiting factor.

2https://musicbrainz.org/
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2.3.2 Representing Musical Content

One of the most significant challenges in the computational study of music is its
representation. This complexity reflects music’s multifaceted nature, as previously
outlined. The core di"culty lies in integrating the empirically measurable aspects
of music with its non-empirical, interpretive dimensions, as Roger Dannenberg
highlights:

If musical information was well-understood and fixed, then music rep-
resentation would be a much simpler problem. In reality, we do not
know all there is to know, and the game is constantly changing. [83]

Historically, the study of music was facilitated by the advent of music notation.
Initially, scores were introduced to record music, enabling musicians to replicate a
piece and thus preserve it across performances [25]. However, notation brought a
host of issues, many of which remain unresolved, as scores symbolise rather than
represent music directly. This symbolic representation has notable limitations:

People don’t play musical rhythms as written, often they don’t play
the pitches as written, and that’s not because they play it wrong but
because the notation is only an approximation. And that’s before we
start thinking about all those dimensions like timbre and texture that
aren’t directly represented in the notation at all. All of these missing
elements have to be supplied by the performer or the musicologist if
you’re to make sense of the score as music. In the absence of that
there’s a real sense in which you’re studying scores and not music, and
there’s also a real sense in which that’s what traditional musicology
was set up to do. [74]

In the 19th century, audio recordings became possible, providing a more de-
tailed and systematic form of music storage than notation. This development
underscored a dichotomy between the symbolic representation level embodied by
printed music and the tangible, non-symbolic level of audio signals [83].

This dichotomy deepened with the arrival of computers. Representing musical
content in a machine-readable format raises numerous questions, addressing both
the digitalisation of audio signals and the structuring of music’s essential features.
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Representation Levels of Music

Analysing music representation means dealing with a long series of issues scholars
have dealt with for decades. Pieces of music are not physical objects, so they
have no single “ground” manifestation. The question about how to represent a
piece of music to be processed by a computer, therefore, does not have a single
answer [255].

Music information can be represented in technical systems through various
types, each designed to capture di!erent aspects of musical content depending on
the needs of the system. Hugues Vinet [396] defined four key categories of music
representations:

1. Physical representations

2. Signal representations

3. Symbolic representations

4. Knowledge representations

These categories span from concrete audio data to abstract knowledge struc-
tures, providing a framework for understanding how music is processed, analysed,
and interacted with in computational environments.

The first and most fundamental type of music representation is the signal rep-
resentation, which captures the raw audio signal either through recording or elec-
tronic synthesis. This representation, as an amplitude function of time, does not
inherently understand the musical content; it is purely a continuous flow of data
that could represent any kind of sound, musical or not. Despite various coding
methods, signal representations–whether analogue or digital–focus on transmit-
ting the auditory signal without direct reference to musical structures, making
them suitable for tasks requiring precise sound transmission and manipulation.

In contrast, symbolic representations are inherently content-aware, encoding
discrete musical events such as notes, chords, and rhythms. These representa-
tions are formalised according to concepts from music theory, allowing systems to
process and interpret musical content at a higher level of abstraction. Symbolic
representations account for discrete time events and event states, making them
appropriate for applications like music notation, transcription, and composition.
However, they do not capture the full complexity of audio signals, such as timbral
nuances or continuous dynamic changes.
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Beyond symbolic and signal representations, physical representations capture
the spatial and physical properties of sound sources and scenes. These representa-
tions are particularly useful for applications involving acoustic models, 3D audio
simulations, and virtual or augmented reality systems. They account for sound
source properties like directivity patterns and radiation, as well as spatial char-
acteristics of sound environments, providing crucial data for synthesising spatial
audio experiences.

Finally, knowledge representations are designed to encode structured formal-
izations of musical knowledge for specific applications, such as digital music li-
braries or music information retrieval systems. Unlike the other levels, knowledge
representations rely on language structures and qualitative descriptions to cap-
ture high-level characteristics of musical works, such as genre, instrumentation, or
performance qualities. These representations are abstract and do not necessarily
have musical specificity, but they are crucial for describing global attributes that
cannot be easily derived from signal or symbolic data alone.

However, Vinet highlights that, typically, di!erent representation types are
self-contained, with limited interoperability. Standard musical applications—such
as sequencers, score editors, audio processing modules, and synthesizers—usually
manage signal and symbolic representations either separately or with minimal
interaction [396].

Furthermore, it is important to outline the desired characteristics of a sym-
bolic music representation system. Wiggins et al. [404] propose to evaluate these
representation systems according to two dimensions: expressive completeness and
structural generality. Expressive completeness refers to the ability of the system
to recreate the original content from the represented data [75]. Structural gener-
ality relates to the ability to represent and manipulate a wide range of high-level
structures. For instance, while raw audio is highly expressive, containing rich
performance details, its structural generality is limited as extracting structured
information such as tempo or chords is challenging. Conversely, MIDI formats,
though less expressive particularly in capturing timbral details, o!er greater struc-
tural generality, facilitating the manipulation of structured musical data.

In this Section we are going to explore audio, symbolic and signal representa-
tions, providing details and examples.
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2.3.3 Audio Representation of Music

The most information-rich representation of music comes from analogue signals,
which capture sound in its rawest form. Digital audio formats, however, are
used to convert these signals into a format that computers can process, with
each format ranked by the information quantity it holds per time unit. This
quantity depends on factors such as sampling rate and bit depth, which together
determine the resolution and entropy of the digital audio signal [396]. While raw
sound waveforms o!er maximal expressive detail, they lack structural information,
making it di"cult to derive meaningful insights without further processing.

Sound originates from the vibrations of an object, which cause air molecules
to oscillate, creating waves of alternating pressure. These waves travel through
the air and can be detected by a listener or captured by a microphone [282]. To
be processed by a computer, recorded sound must be digitised, transforming it
from a continuous to a discrete representation. This digitisation occurs through
sampling, where the amplitude of the sound wave is measured at equidistant time
intervals, creating a discrete-time signal from the continuous waveform.

Despite their high fidelity, waveforms do not inherently reveal frequency in-
formation, which is crucial for many MIR tasks. Various transformations and
algorithms have been developed to extract structured information from these sig-
nals, each with unique advantages and limitations. In the following section, we
outline four commonly used audio representations in the MIR field, each designed
to enhance specific aspects of musical analysis.

Log Mel Spectrogram is a pivotal audio representation technique that merges
signal processing with psychoacoustic principles to closely mimic human auditory
perception [282] (c.f. Figure 2.11a). This process begins by converting audio
signals from the time domain to the frequency domain using the Fast Fourier
Transform (FFT). It then utilizes the Short-Time Fourier Transform (STFT) to
analyse these signals over time, segmenting the audio into overlapping frames and
applying FFT to capture temporal dynamics. Mel band-pass filters are applied
to the STFT outputs to transition to the Mel scale. These filters accommodate
the non-linear nature of human pitch perception by grouping frequencies into
bins that are linearly spaced at lower frequencies and logarithmically at higher
frequencies [282]. The log Mel spectrogram is extensively used in music generation
tasks due to its perceptual relevance [183, 142].
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Mel-Frequency Cepstral Coe!cients (MFCCs) are a critical audio feature
extraction technique that encapsulates the characteristics of human speech per-
ception [65] (c.f. Figure 2.11b). Similarly to Log Mel Spectrograms, the process
initiates with the conversion of audio signals to the frequency domain via FFT,
followed by the application of STFT for analysing temporal changes. Next, Mel
filters are employed to emulate the non-linearity of human ear. The computation
of MFCCs involves taking the logarithm of the energies in each Mel filter, followed
by a Discrete Cosine Transform (DCT). Owing to their e!ectiveness in capturing
the configurations of the vocal tract, MFCCs are predominantly used in speech
recognition and speaker identification applications [386, 253].

Constant-Q Transform (CQT) enhances audio processing in music analysis
by providing a log-frequency spectrogram aligned with the musical scale [1] (c.f.
Figure 2.11c). Unlike the linear Fourier Transform, the CQT operates on a log-
arithmic scale that reflects the exponential nature of musical pitch, facilitating
the extraction of note frequencies. A distinctive feature of CQT is that the ratio
of centre frequency to bandwidth remains constant (denoted by Q), which allows
variable filter lengths that optimize performance. While not as popular as the log
Mel spectrogram, the CQT is beneficial for tasks such as music Representation
Learning (RL) [244], particularly when related to harmony [301, 211].

Furthermore, to better capture harmonic relationships in music audio signal,
the Harmonic Constant-Q Transform (HCQT) was introduced. The HCQT is
a three-dimensional array, indexed by harmonic, frequency, and time: H[h, t, f ],
where it measures the h-th harmonic of frequency f at time t. The index h = 1
represents the fundamental harmonic, and H[h] denotes the h-th harmonic of the
base CQT H[1].

Chroma Features or chromagrams, capture the twelve pitch classes of Western
music, distilling the harmonic essence of a composition regardless of timbre or
instrumentation (see Figure 2.11d). As described in Section 2.1, human perception
of pitch is periodic; pitches di!ering by an octave are perceived as similar in “color”
and play a related harmonic role. This perceptual property allows each pitch to
be divided into two components: tone height (the octave number) and chroma
(the pitch spelling attribute within the set {C, C#, D, . . . , B}). Enumerating
chroma values, this set can be mapped to [0 : 11], where 0 corresponds to chroma
C, 1 to C#, and so forth. A pitch class, then, is the set of all pitches sharing
the same chroma, such as {. . . , C0, C1, C2, C3, . . . }, and for simplicity, the terms
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(a) Mel Spectrogram

(b) MFCCs

(c) Constant-Q Transform (CQT)

(d) Chroma Features

Figure 2.11: Audio features extracted from the first 15 seconds of “Do I Wanna Know?”
by Arctic Monkeys. (a) shows the Mel spectrogram; (b) depicts the MFCCs; (c)
presents the Constant-Q Transform (CQT); and (d) displays the Chroma features.
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chroma and pitch class are often used interchangeably.
Chroma features aggregate spectral information associated with a pitch class

into a single coe"cient. Formally, given a pitch-based log-frequency spectrogram
YLF : Z ↑ [0 : 127] ↓ R→0 as defined in equation (3.4), a chromagram Z ↑ [0 :
11] ↓ R→0 can be derived by summing all pitch coe"cients that share the same
chroma:

C(n, c) :=
∑

{p↑[0:127]:p mod 12=c}
YLF(n, p) (2.1)

where c ↔ [0 : 11] represents each chroma class.
Because of their ability to distil music into pitch class profiles, chroma features

are e!ective in identifying key harmonic elements like chords, key signatures, and
modulations. Their alignment with the equal-tempered scale of Western music
makes them particularly valuable for applications in melodic transcription [22]
and chord recognition [146]. However, chromagrams can exhibit noise in lower-
frequency regions, and harmonic overtones often spread energy across multiple
chroma bands. For instance, when playing C3, the third harmonic resonates in
the G4 chroma band, and the fifth harmonic in E5 [282].

2.3.4 Symbolic Representation of Music

Symbolic music representation encodes musical elements into structured, computer-
readable formats, allowing detailed manipulation and analysis of musical data
[255]. Unlike audio recordings, symbolic representations capture abstract musi-
cal aspects–such as pitch, rhythm, harmony, and structure–independently of any
specific performance, making them versatile tools for analysis and retrieval.

To be e!ective, Music Representation Systems (MRSs) must meet several es-
sential requirements based on the nature of musical data. First, they need to be
multi-dimensional, capturing both quantifiable elements like pitch and tempo,
alongside qualitative elements such as performance instructions. This multi-
dimensionality supports essential MIR tasks like interval detection and rhythmic
grouping while also allowing for nuanced analysis and playback. However, sym-
bolic systems must balance precision with flexibility, as traditional notation often
only approximates the musical experience [74].

Data abstraction is critical in symbolic representation systems, enabling musi-
cal features to be encoded independently of specific units, such as Hertz for pitch
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Figure 2.12: Symbolic formats illustrating a B5 note in the key of Eb with a time sig-
nature of 3/4. Subplots include: (a) score representation, (b) LilyPond, (c) **kern,
(d) ABC, (e) GUIDO, (f) MusicXML, and (g) MEI.

or seconds for time [405]. This abstraction facilitates generalised musical opera-
tions foundational to MIR tasks and ensures that symbolic representations can be
consistently interpreted across applications.

Representing musical time and tempo in symbolic systems also poses chal-
lenges, as these elements need to balance the expressive temporal dynamics es-
sential to music with the consistency required for reliable representation. Typical
approaches use symbolic time abstractions that retain the key relationships among
musical events, though synchronising real-time with metrical time remains an ac-
tive research area [83].

For MIR and musicological applications, MRSs allow e"cient sharing, re-
trieval, and collaborative analysis of music data. These systems range from
general-purpose formats to specialised systems supporting tasks such as record-
ing, analysis, or generative applications [404]. In this work, we examine MRSs
that facilitate computational and analytical approaches, focusing on applications
in MIR, musicology, and Deep Learning (DL) systems. Figure 2.12 presents the
symbolic representations discussed in this work, showcasing diverse syntaxes used
for encoding music data.

Musical Instrument Digital Interface (MIDI) is a protocol developed to fa-
cilitate digital communication between musical instruments and computers [342].
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Initially introduced in the early 1980s, MIDI was conceived as a means to control
electronic musical instruments remotely and in real-time, primarily by encoding
performance information rather than actual sound [342, 13].

This standard is based on two basic messages: note-on and note-o!, which
encode with them details such as pitch, velocity, and timing, thereby functioning
more as a digital score than an audio recording. MIDI files, formalized through
the Standard MIDI File (SMF) format in 1988, allow for the exchange of MIDI
data across di!erent systems, preserving not only musical notes but also tempo
and time signatures, which are vital for synchronization [106].

Despite its widespread use, MIDI faces limitations in its representation capa-
bilities. For instance, MIDI encodes pitch based on a fixed, equal-tempered scale,
and does not accommodate microtonal variations, which can be crucial in non-
Western musical contexts [252]. Moreover, the protocol’s focus on performance
data–such as dynamics and articulations–makes it ideal for applications requiring
control over musical expression but less so for those needing detailed notational in-
formation, like key signatures, chords, or structural details [22]. However, MIDI’s
structure, which organizes data into a series of timed events rather than a con-
tinuous stream, allows for intricate manipulations of musical timing, albeit at the
expense of more nuanced musical descriptions such as phrasing or the subtleties
of harmonic relationships [405, 282, 241].

MusicXML stands as a pivotal format in the digital music domain [159], en-
capsulating the intricacies of musical notation within a universally transferable
XML-based framework. Initially designed to serve as an online sheet music and
music software exchange medium, MusicXML was aimed to do for music nota-
tion what MIDI did for electronic musical instruments. Unlike MIDI, which is
primarily focused on performance data, MusicXML covers a broader spectrum,
including both the visual representation of music scores and detailed encoding of
musical elements like pitch, duration, and dynamics, thus ensuring both human
and machine readability [282].

Rooted in the Extensible Markup Language (XML), MusicXML allows for a
detailed representation of almost every musical element and o!ers flexibility in
terms of data hierarchy, supporting both part-wise and time-wise score represen-
tations. This flexibility is enhanced by the use of XSLT3, which can alternate
between hierarchical representations to simulate the structure of musical scores.

3https://www.w3.org/TR/xslt-30/
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Such capabilities make MusicXML particularly suited for applications that span
musical notation, performance, analysis, and retrieval.

Despite its strengths, MusicXML is not without its limitations. The format
is complex and verbose, which can introduce challenges in data processing and
interpretation. While it excels in notational accuracy and interoperability between
various music software, its application in training DL models for music is limited.
Moreover, encoding or decoding MusicXML can be cumbersome for AI models
that thrive on larger datasets and longer context lengths [252].

Music Encoding Initiative (MEI) is a community-driven, open-source endeav-
our to define a system for encoding musical documents into a machine-readable
format [174]. Developed to preserve and share detailed information about mu-
sical notations, MEI utilizes an XML-based schema to encode both the intellec-
tual and physical properties of music notation documents, thereby facilitating
consistent search, retrieval, display, and exchange of musical data across various
platforms [252].

The core of MEI is structured into 23 modules, each designed to encapsulate
unique characteristics of musical source encoding, expressed in an XML meta-
schema language known as the “One Document Does-it-all” (ODD) format. This
modular and extensible structure supports encoding a diverse range of music no-
tation systems beyond just common Western notation, including mensural (Re-
naissance) and neume (Medieval) notations .

In contrast to MusicXML, which primarily facilitates interchange between no-
tation editors, one of MEI’s primary goals is to create a semantically rich model
for music notation that goes beyond mere visual imitation to preserve the unique
structure and semantics of each notation system. This enables the encoding of
traditional facsimile, critical editions, and performance editions, promoting the
development of extensive and international archives of notated music which serve
as crucial resources for music editions, performances, analyses, and research [174].

However, the complexity, focus on detailed musical notation and emphasis on
visual representation rather than audio features, the large data files, and limited
integration with Machine Learning (ML) tools make MEI less suitable for DL
applications that require more streamlined and uniform data formats [252].

LilyPond is a music notation software that emphasizes the creation of visually
pleasing sheet music via a high-level description file [290]. It is similar to LaTeX
in its approach, allowing users to input musical notation in plain text format
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which is then compiled into professionally engraved scores. Developed with a
comprehensive syntax that allows to cover a wide range of musical symbols and
formatting options, LilyPond is capable of handling complex scores that require
professional-quality output [252].

The software functions by reading and processing files that contain formal
representations of the music, outputting to formats such as PostScript or PDF.
The pitch in LilyPond is indicated using lowercase letters, and octave adjustments
are made with apostrophes (’) or commas (,), with each symbol raising or lowering
the pitch by one octave respectively. Alterations to pitch such as sharps and
flats are added by appending ↓

is
↓ for sharps and ↓

es
↓ for flats to the note name.

Durations are noted by their reciprocal values; for example, a quarter note is
represented as ↓4↓ and a half note as ↓2↓ [290].

While it o!ers extensive control over musical notation, LilyPond’s complexity
and focus on visual presentation can introduce challenges when being employed
for MIR tasks, particularly in tasks like automatic transcription of music [252].

**kern is a symbolic music representation system developed as part of the Hum-
drum Toolkit, created by David Huron in the 1980s [204]. This system is designed
to encode Western music notation e"ciently, focusing on common practice music
notation and is used for computational music analysis. The format represents
pitch, rhythm, meter, and articulation in a clear and straightforward syntax that
is both human-readable and easily processed by computers.

The **kern format is notable for its extensibility and flexibility, enabling users
to include detailed musical parameters and metadata, which is crucial for sym-
bolic music analysis, pattern recognition, and music generation. Models using
**kern can analyse musical structures, recognize stylistic features, and generate
compositions that comply with specific musical conventions [2].

In **kern, pitch information is represented using a combination of upper and
lowercase letters that denote octaves: for instance, the lowercase ’c’ represents
Middle C (C4), while multiple ’c’s (e.g., ’ccc’) indicate higher octaves, and up-
percase ’C’ denotes lower octaves (e.g., ’C’ for C3). Accidental symbols are also
incorporated, with ’#’ indicating a sharp, ’-’ a flat, and ’n’ a natural note. Du-
rations are marked numerically, with ’4’ for a quarter note and ’8’ for an eighth,
among others [204].

While **kern is highly e!ective for notational accuracy and computational
analyses, its focus on the notational aspect may omit some expressive details
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found in performance data, such as dynamics and exact timing nuances [252].

ABC Notation was developed by Chris Walshaw in 1997 and is the de facto
standard for folk and traditional music notation, o!ering a simple, text-based
approach to represent music4. It is written using ASCII characters including
letters, digits, and punctuation marks, which makes it highly accessible and
widely adopted for sharing music online. ABC notation consists of two parts:
a header that contains metadata such as the tune’s title, meter, default note
length, key, and reference numbers, and a body that describes the actual musical
content—notes, rests, bars, and other musical symbols.

The notes in ABC are denoted using the English note names, with uppercase
letters (A–G) representing the lower octave and lowercase letters (a–g) for the
higher octave. Octave modifiers include the comma (,) to indicate lower octaves
and the apostrophe (’) for higher octaves. For instance, “C,” represents a low C,
while “c”’ indicates a high C. Rests are denoted by ’z’ or ’x’, and their duration can
be modified similarly to notes. Musical nuances such as dynamics, articulations,
and decorations are expressed using textual expressions enclosed in exclamation
marks (e.g., !trill!) .

ABC’s structure allows for straightforward conversion between ABC and other
music notation formats, notably MIDI. This facilitates its use in a wide range
of applications, from educational tools to software that performs complex tasks
like automatic transcription and music generation. For example, the software
package ABC Music includes tools like abc2midi, which converts ABC files to
MIDI, supporting features such as multivoiced files, guitar chord expansion, voice
transposition, and percussion accompaniment.

Despite its simplicity, ABC notation’s ability to encode detailed musical in-
formation makes it suitable for computational musicology and the development
of music Artificial Intelligence (AI) models. It’s particularly valued in projects
that require converting textual descriptions into symbolic music notation, owing
to its compatibility with natural language notations. This compatibility enhances
the potential of ABC notation in training text-to-symbolic music models, such as
those aimed at generating music from textual descriptions [252].

GUIDO Music Notation (GMN) is designed to be a robust, yet straightfor-
ward format for encoding musical scores. Developed with simplicity and compu-
tational e"ciency in mind, GMN o!ers a flexible method for representing a wide

4https://abcnotation.com/
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range of musical styles and complexities [196, 195]. It uses a clear and concise
syntax to denote pitches, durations, dynamics, articulations, and other musical
elements. The hierarchical structure of GUIDO allows for well-organized musical
information, making it accessible for various digital music applications.

The main advantage of GMN is its balance between human readability and ma-
chine processability. This balance facilitates tasks such as symbolic music analysis,
composition, and pattern recognition in ML models. These models can leverage
GUIDO’s structured format to explore musical structures, generate new compo-
sitions, and identify stylistic patterns across genres. Moreover, the readability of
GMN aids in debugging and data interpretation during model development and
evaluation phases.

However, GMN’s simplicity might come at the cost of omitting detailed ex-
pressive nuances, which are often necessary for complex performance analysis and
intricate compositions, making it potentially less detailed than formats like Mu-
sicXML or MEI.

2.3.5 Knowledge Representation of Music

Given the complex and multifaceted nature of music, knowledge representation
o!ers a structured approach to capture and model its conceptual and relational el-
ements. These approaches go beyond simple data encoding, which focuses on tech-
nically structuring music data into formats that are readable and analysable by
computer systems. While data encoding aids retrieval and basic analysis, knowl-
edge representation seeks to model deeper, conceptual aspects of music, such as
genre, instrumentation, and notation, in a structured format [75]. This distinction
underscores that data encoding primarily deals with technical readability, while
knowledge representation addresses the complexity of musical interpretation, rela-
tional structures, and high-level descriptions that cannot be derived directly from
raw audio or symbolic data alone.

The field of knowledge representation has its origins in mid-20th-century logic
and artificial intelligence, with early developments like semantic networks and
symbolic logic [210]. Today, the Semantic Web represents a prominent tool for
advancing these ideas, o!ering a framework for creating machine-interpretable
data on a global scale.

Semantic Web technologies, including ontologies and linked data, play a pivotal
role in representing and linking music-related knowledge. Ontologies provide for-
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mal definitions of the concepts and relationships within a given domain, allowing
data to be tied to its meaning in a standardized way [324]. This approach enables
diverse data sources–ranging from manually annotated music scores and editorial
data to social and automatically generated content–to be logically interconnected,
moving beyond simple text-based searches to context-aware, semantically driven
queries [135].

In the field of MIR, these representations are crucial. By enabling the in-
tegration of heterogeneous datasets and allowing for sophisticated, context-rich
queries, Semantic Web technologies bring new depth to music research, o!ering
a distributed knowledge environment that fosters interoperability and enriches
musical analysis [52].

Fundamentals of Semantic Web Technologies

The Semantic Web, pioneered by Tim Berners-Lee, aims to transform the Web
from a collection of documents into an interconnected web of data, enabling ma-
chines to process and interpret information in ways that enhance interoperabil-
ity, data integration, and automated reasoning [29]. This transformation relies
on standardized frameworks for structuring, linking, and querying data, with
Resource Description Framework (RDF), Web Ontology Language (OWL), and
SPARQL forming the core technologies essential for creating and managing knowl-
edge graphs and ontologies.

Knowledge Graphs The term KG has a long history, with origins dating back to
at least 1972 [350]. However, its modern usage gained traction following Google’s
2012 announcement of the Google Knowledge Graph [363], which was subse-
quently adopted by major tech companies, including Amazon [233], IBM [112],
Microsoft [356], Uber [173], and others.

At the core of KGs is the idea of using graph-based structures to represent
and integrate diverse data sources, with the goal of accumulating and conveying
knowledge about the world [293]. In KGs, nodes represent entities, while edges
represent relationships between these entities, o!ering an intuitive and flexible
abstraction for complex, interconnected data. KGs are particularly advantageous
for tasks that require integrating, managing, and extracting value from diverse
data sources, as they allow flexible schema design, support handling incomplete
data, and are well-suited for domains with intricate relationships, such as social
networks, biological data, bibliographic records, and transport systems [11].
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Compared to relational databases and some NoSQL alternatives, graph-based
data models enable advanced data retrieval and analysis. Graph-specific query
languages, such as SPARQL and Cypher, allow not only traditional relational
operations but also navigational queries that explore complex, multi-step con-
nections among entities [10]. Standard knowledge representation tools–such as
ontologies [193]–can be incorporated into KGs to formalize and reason about the
semantics of entities and their relationships, further enhancing their interpretabil-
ity.

A KG can serve as an evolving, centralized repository of knowledge within
organizations or communities [293], with applications spanning between open and
enterprise contexts. Open knowledge graphs–such as DBpedia [240] and Wiki-
data [398]–are accessible for public use, covering broad domains or specialized
areas like media [325], government [186], and life sciences [50]. Conversely, en-
terprise KGs are proprietary, optimized for commercial use cases such as search
optimization (e.g., Google Knowledge Graph [363]), recommendation engines (e.g.,
LinkedIn [185]) and business analytics.

Ontologies: The Foundation of Structured Knowledge To enable precise in-
ference and automated reasoning within a KG, it is essential to define terms
explicitly. For example, when considering events within a dataset, questions arise
about the exact meaning of “event”: does an event occur only once, or can it
recur? Can an event take place in multiple venues, or should each location be
treated as a separate event? Such questions highlight the need for conventions
that formalize what entities and relationships mean within a particular context,
ensuring consistency and interpretability.

In computing, an ontology is a structured, formal representation of knowl-
edge that defines entities, their attributes, and their relationships within a given
domain[194]. Originating from the field of philosophy, ontology is concerned with
categorizing and understanding the nature of entities. In practical terms, an on-
tology in the context of computer science serves as a blueprint that defines how
data should be structured and understood within a specific domain. Going back
to the previous example, an ontology might define an “event” as something with
exactly one venue and start date, while another might allow multiple venues and
start times, capturing di!erent conventions and perspectives [194].

Ontologies are useful for guiding how data is modelled within knowledge graphs.
For example, if we choose a strict interpretation of “event” (e.g., one venue, one
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date), we may need to split certain occurrences into multiple entries to conform to
this definition. In contrast, a more flexible ontology might allow events to encom-
pass multiple occurrences and venues, enabling a di!erent modelling approach.
By formalizing these conventions, ontologies allow automated systems to infer ad-
ditional knowledge based on the relationships and constraints defined within the
ontology.

The e!ectiveness of an ontology largely depends on its level of adoption and
how well it aligns with the needs of users and data applications. Consistent
adoption within a single knowledge graph can streamline data use and integration,
while broad agreement across multiple systems enhances interoperability, allowing
knowledge to be shared and reused e!ectively.

2.4 Multimodality in Music Information Retrieval

Multimodality and Multimodal Deep Learning (MMDL) are gaining significant
attention across diverse AI fields, including natural language processing, computer
vision, and music information retrieval. In particular, MMDL has been applied
to several domains including including biometrics [365], self-driving cars [308],
robotics [14] and healthcare [413].

However, while the foundation of multimodality is conceptually similar across
these domains, it di!ers in a fundamental way: in most areas, multimodality
is closely associated with human communication–such as spoken language, visual
expressions, or written text–aiming to capture and interpret the nuances of human
interaction.

In MIR, by contrast, multimodality is not about reproducing human commu-
nication but rather encompasses a diverse set of representations of music, each
o!ering unique insights into its structure, performance, and content.

MIR has been inherently multimodal since its inception, as stated by Downie
in his foundational paper:

MIR is concerned with the extraction, analysis, and usage of informa-
tion about any kind of music entity (e.g., a song or a music artist)
on any representation level (for example, audio signal, symbolic MIDI
representation of a piece of music, or name of a music artist). [119]

However, despite its widespread adoption, the concept of multimodality re-
mains ambiguous, particularly in the context of music data. In this section, we
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begin by examining the meaning of multimodality, exploring various definitions
and o!ering a brief overview of its applications in the MIR field.

2.4.1 Towards a Definition of Multimodality in MIR

In the evolving field of Multimodal Learning, a clear understanding of multi-
modality is essential. However, before examining the specifics of multimodality,
it is essential to distinguish it from the concept of multimedia, as these terms are
frequently misinterpreted.

According to the Oxford Advanced Learner’s Dictionary, “medium” refers to a
conduit for communicating information (e.g., text, images, and sounds), whereas
“modality” signifies the particular way something is experienced or executed.
While multimedia might involve multiple types of media used simultaneously,
multimodality focuses on the nature of the experiences these media induce.

Existing definitions of multimodality typically hinge on human sensory expe-
riences, presupposing that humans interact with the world through a multimodal
lens—seeing, hearing, feeling, smelling, and tasting [15]. However, this human-
centred view presents several limitations:

• Input Types: The sensory capabilities of machines can exceed those of hu-
mans, who are confined to their natural senses.

• Input Range: Human sensors are limited to a specific range of signals,
whereas machines can potentially detect an expansive spectrum, bounded
only by current technological advancements.

• Interpretation: Humans naturally interpret sensory data, whereas machines
require specific programming to derive meaning from the signals they pro-
cess.

Alternatively, a machine-centred perspective might define multimodality in
terms of multiple data representations. However, this definition is problematic
as it could lead us to mistakenly categorize di!erent file formats like PNG and
JPEG as distinct modalities when they are simply di!erent methods of encoding
information. Thus, a more refined, task-relative definition is proposed:

Definition. A machine learning task is deemed multimodal when its inputs or
outputs are represented di!erently or consist of distinct types of atomic units of
information. [15]
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This definition underscores that multimodality is pertinent when it provides
information unattainable through extensive amounts of unimodal data. For in-
stance, if a task transforms spoken language into text and does not require the
nuances specific to spoken forms—like intonation or pauses—then it is not con-
sidered multimodal under this task-dependent framework.

Adopting the foundational insights from [298], Christodoulou et al. propose a
new definition specifically tailored for multimodal music datasets:

Definition. A multimodal music dataset can be defined as diverse data types that
o!er complementary insights for a specific music processing task, regardless of
source, format, or perceptual characteristics.

This definition emphasises the utility of data diversity in enhancing music anal-
ysis, focusing on the synergy of various data forms to provide a holistic under-
standing of music phenomena. By decoupling the concept of modality from human
sensory modalities and specific data formats, this definition broadens the scope of
what can be considered multimodal in music information tasks, facilitating more
innovative approaches to dataset construction and usage in computational music
analysis.

In a related examination, Simonetta et al. [359] present a detailed analysis
of multimodality in MIR. In this context, a modality is defined as a specific
method for digitising music information. Di!erent modalities arise from various
transducers, various locations or times, and can be tied to di!erent media. For
example, a single piece of music may have several associated modalities, such as
audio recordings, lyrics, symbolic scores, and album artwork.

Under this definition, multimodal music information processing refers to an
MIR approach that takes multiple modalities of the same piece of music as input.
This definition is valuable for technical applications in MIR, where it underscores
the importance of processing data in various forms and through diverse digitisation
methods.

However, while this last definition o!ers a strong foundation for the technical
processing of music data, it can be limiting when applied to broader MIR tasks.
As noted in [66], focusing exclusively on the technical aspects of digitisation and
multiple modalities overlooks the need for a flexible and integrated approach that
considers the specific musical task at hand. Therefore, for multimodal analysis in
MIR to be fully e!ective, it is essential to balance the technical aspects of modality
with the functional requirements of the task, allowing for greater adaptability in
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handling di!erent types of musical data.
This need for balance is echoed in a previous survey on multimodal MIR, in

which Essid et al. [130] introduce the term cross-modal processing, a concept that
has since been adopted in other works, such as [283]. According to [130], cross-
modal processing is defined as “the e!ort of characterising the ‘relationships’ be-
tween the di!erent modalities reflecting the content being analysed”. This stands
in contrast to multimodal fusion, which is described as “the problem of e"ciently
combining the information conveyed by the di!erent modalities to perform a more
thorough analysis of the content.”

These definitions suggest that certain synchronisation algorithms, such as
audio-to-score alignment, should be categorised as cross-modal processing.

Of all the definitions presented, we align most closely with those of [66] and
[298]. Consequently, we will use the term “multimodal” under the perspectives
outlined in these definitions throughout this work, emphasizing the importance
of balancing technical aspects with functional requirements and recognizing the
complementary insights o!ered by diverse data types for specific music processing
tasks.

2.4.2 Challenges of Multimodal Deep Learning for MIR

MMDL research focuses on developing neural architectures that can e!ectively in-
tegrate diverse modalities by managing both view-specific and cross-view dynam-
ics [327]. View-specific dynamics occur within a single modality independently
of others, while cross-view dynamics involve interactions among modalities. For
instance, the activation of facial muscles during a smile exemplifies view-specific
dynamics, whereas the co-occurrence of a smile with a positive utterance repre-
sents a cross-view dynamic [421]. An e!ective MMDL model in MIR must address
several challenges inherent to handling these dynamics [15]:

• Representation: Learning machine-interpretable representations for each
modality is essential for compatibility with machine-learning models. In
MIR, this requires encoding audio, symbolic music data, lyrics, and metadata
features in ways that maximize interpretability and relevance for the task at
hand [252].

• Translation: This involves transforming data from one modality to another,
such as converting audio to symbolic representations in music transcription
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tasks [22, 360].

• Alignment: Recognizing relationships across modalities is critical. In MIR,
this could involve aligning lyrics to specific audio segments [145] or synchro-
nizing symbolic notation with corresponding audio excerpts [279], thereby
enhancing interpretability through cross-modal connections.

• Fusion: Aggregating information from multiple modalities is essential for
tasks involving classification or decision-making in MIR. By integrating in-
sights from lyrics, audio, and symbolic representations, systems can achieve
greater robustness and accuracy [359].

• Co-Learning: This refers to the transfer of knowledge across modalities,
enabling models to generalize more e!ectively. In MIR, co-learning may
facilitate shared representations across audio and symbolic data, potentially
reducing the need for extensive labeled data and enhancing performance in
low-resource environments [154].

In this thesis, we contribute to the field of multimodal learning in two key
areas: alignment (6.3) and translation (6.5), addressing essential aspects of cross-
modal integration for exploring possible solution to tackle limits of symbolic music
data integration.
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CHAPTER3
Representing Musical Knowledge

3.1 Introduction

Musical heritage encompasses a diversity of human expressions and experiences,
leaving heterogeneous traces that are di"cult to describe, connect, and pre-
serve [178]. Western music cultural heritage developed through varied sources:
musical contents and objects (such as tunes, scores, melodies, notations, record-
ings, etc.) linked to tangible objects (theatres, conservatoires, instruments, etc.)
but also to their cultural and historical contexts, opinions and stories told by peo-
ple with diverse social and artistic roles (scholars, writers, students, intellectuals,
musicians, politicians, journalists, etc.), and facts expressed in di!erent styles and
perspectives (memoire, reportage, news, biographies, reviews) in di!erent lan-
guages (English, Italian, French, Spanish, and German) and across centuries [41].
This diversity creates unique opportunities as well as challenges for researchers
and practitioners attempting to study and preserve music heritage.

However, the fragmented nature of the data limits our ability to fully under-
stand the cultural significance and historical trajectory of musical works. As such,
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there is a pressing need for frameworks that can integrate both musical content
and context, enabling better preservation, study, and dissemination of music in
its full richness.

3.1.1 Challenges and Requirements for Interoperability

Music data can describe two main musical dimensions: content, which encom-
passes intrinsic elements like pitch, harmony, and rhythm, and context, which
includes broader information such as cultural, historical, and publication meta-
data.

Music metadata – also known as contextual, bibliographic, or documentary
data – plays a crucial role in identifying and describing musical works, their cre-
ators, recordings, and performances. For the music industry, metadata is vital
for e"ciently managing and distributing music, supporting tasks such as search,
recommendation, and cataloguing [296]. Accurate metadata ensures that artists
are properly credited and compensated [364], and for musical heritage, metadata
facilitates the preservation and dissemination of works across di!erent cultural
and historical contexts [156].

In this regard, metadata also promotes diversity and inclusivity by highlighting
lesser-known genres and artists, thereby fostering a more comprehensive under-
standing of global musical traditions [105]. However, challenges arise due to the
inconsistency and fragmentation of metadata across various systems and musical
traditions, each with unique conventions for describing elements like composers,
performers, or works. For example, the term “composition” in classical music
may diverge from the concept of “track” or “song” in popular music, leading to
fragmentation that hampers interoperability between systems and datasets.

Alongside metadata, musical content itself – whether in the form of symbolic
data (such as music scores, or MIDI files) or audio recordings – poses its own
challenges for computational representation (see Section 2.3). Audio data is un-
structured and requires extensive feature extraction, while symbolic data is more
structured but often not as expressive as audio signal [396]. Moreover, numerous
audio and symbolic representations have been proposed, each tailored to specific
tasks or genres. However, interoperability among these representations is often
limited. This has led to significant data fragmentation issues in the MIR field,
with small datasets structured in varied formats to suit specific tasks and applica-
tions. This fragmentation poses two main challenges: first, it demands substantial
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resources for collecting, harmonising, and preprocessing disparate data; second, it
hinders comparison and reproducibility, as findings from di!erent datasets are of-
ten misaligned. As a result, achieving data interoperability is increasingly critical.
E!ective data integration must go beyond syntactic alignment (i.e., standardised
formats and structures) to also ensure semantic consistency, preserving the mean-
ing and relationships of musical elements across representations.

Domain specificity hampers interoperability

Existing ontologies for music data are typically tailored to specific use cases and
requirements, limiting their general applicability.

For metadata, Music Ontology (MO) [324] leans towards modelling disco-
graphic data with a focus on contemporary music, whereas DOREMUS [64] is in-
herently rooted in classical music. Nevertheless, when drifting from discographic
data and classical music, or attempting to reuse both models, addressing e.g.
cultural heritage requirements while fostering interoperability becomes di"cult.
Indeed, a model reflecting the view and the interpretations ascribable to a mu-
sical genre, stakeholder, or dataset type may be di"cult to reuse and extend to
other domains. For instance, a music artefact may originate from oral trans-
mission or be the result of a creative process that does not necessarily entail a
formal composition process. The latter is common in songwriting, but also in folk
music whenever a set of tunes (collected from di!erent manuscripts) allows for
the identification of a tune family [392]. Similarly, when expressing relationships
between musical artefacts (alias derivations), it is important not to impose any
modelling bias that may constrain possible interpretations (e.g. an arrangement
having proper musical identity vs simply providing a di!erent instrumentation).
This is commonly referred to as “dominance of concept” [64], whose definition
should be left to users depending on their data and domain expertise.

The same limitations apply to ontologies designed for music content data,
which are often created to represent specific types of musical information. For
example, some ontologies focus on the semantics of music notation [213], while
others target data from particular representation systems, such as MIDI [272].
These focused approaches hinder interoperability between systems and formats,
as they lack a flexible structure for integrating diverse types of musical content.

Rather than attempting to achieve consensus on musical concepts and jargon,
accounting for the interoperability calls for an abstraction layer for music data
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(“zoom-out”) that can then be specialised, extended, and adapted to address
domain-specific requirements (“zoom-in”).

Expressivity is needed at di"erent levels

Another requirement for interoperability and reuse across various data sources
is providing expressivity at di!erent degrees, i.e. the possibility to conveniently
describe music data at the right level of detail. For example, one data source
may have granular/detailed information that requires high semantic expressivity
(a composition process spread over di!erent time, places, and involving more
artists); whereas others may have basic (only the name of an artist is known) or
even incomplete and uncertain information (a composition tentatively attributed
to an artist).

For metadata, the WikiProject Music1 has been successful in providing expres-
sivity to represent music metadata from di!erent sources. As an extreme case of
ontological flexibility, the schema underlying Wikidata – an open-ended, multi-
domain KG built collaboratively like Wikipedia – is not specified in a previously
agreed ontology, and the high expressivity overly adds complexity to the model.
This is due to Wikidata’s scope being the most general.

Provenance is fundamental for data integration

Accounting for provenance is a central requirement for both cultural heritage and
music industry. This becomes fundamental when integrating KGs from di!erent
datasets and stakeholders – as every single bit of data (each triple) should be at-
tributable to a dataset/KGs. Furthermore, integrating provenance is also needed
within the context of a single dataset, at least for claims and links.

Claims-Interpretations Cultural heritage applications often require represent-
ing debatable statements or claims [86, 87]. These are usually the result of an
interpretation process based on factual or documentary evidence (a dataset, a
manuscript, etc.), and following a methodology and/or theory. Examples include
personal information (e.g. the year/place of birth of a composer), and authorship
claims (e.g. a composition being attributed to an artist).

Links and identifiers These includes links to artists’ o"cial websites, fan pages,
discussion forums, music reviews, record shops; as well as identifiers from mu-

1https://en.wikipedia.org/wiki/Wikipedia:WikiProject_Music
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sic databases (e.g. MusicBrainz, Discogs, AllMusic), streaming platforms (e.g.
Deezer, Spotify), and authoritative sources (e.g. ISNI, ISWC, ISRC). As most
links and identifiers are crowdsourced or automatically inferred by entity linking
algorithms, modelling provenance here promotes traceability and accountability
of data sources.

3.1.2 Towards a Unified Model for Music Representation

The ontology engineering e!orts described in this chapter have been conducted
within the framework of the H2020 Polifonia project2. The Polifonia project brings
together memory institutions, museums, music archives, scholars, commercial or-
ganisations, and citizens who ask complex questions (e.g. “Which tunes share
melodic patterns and geographical origin?”; “How do libretto and music relate,
e.g. in describing an emotion?”; “Can we trace the evolution of tonality and
transition from modal to tonal?”) across these multi-perspective and multi-modal
sources. This demands the integration of musicological (notes, chords, modes,
theories), historical (events, persons, places, objects) and archival/preservation
(metadata, descriptors) data and perspectives. The project comprises 4 cultural
institutions (CNAM, NISV, MiC, KNAW) and 10 pilots with a large variety and
number of requirements. Ontologies and KGs have the potential to overcome
these challenges, and shed light on this wealth of resources by extracting, mate-
rialising and linking new music history knowledge that was previously overlooked
and therefore missing [277, 43].

Although various ontologies have been proposed to model some aspects of mu-
sical heritage interest, they are individually insu"cient to overcome the challenge
of integrating the notation, metadata, and historical contexts needed for multi-
perspective cultural analyses; thus leaving questions about the relationship be-
tween musical theory (melodies, tonalities, chords) and culture (historical events,
architecture, geography) unanswered. To date, no available ontological frame-
work integrates music metadata, notation, annotation, source provenance, and
cultural heritage object descriptions. To the best of our knowledge, no toolkits
exist to support knowledge engineering tasks around the lifecycle of competency
questions, which is a central project requirement given the large number of variety
of stakeholders, pilots and questions.

2https://polifonia-project.eu/
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3.1.3 Our contribution

In this chapter, we describe the Polifonia Ontology Network (PON), a set of
new ontologies formalising the semantics of music representation, metadata, an-
notation, analysis, mediums of performance (instruments), and historical sources
(provenance), enabling the creation of interoperable knowledge graphs from music
datasets. These ontologies address RQ1 (c.f. Section 1.1.1) by establishing a uni-
fied framework for representing music-related data, enhancing interoperability and
paving the way to the creation of harmonised KGs of musical data. The contri-
butions detailed in this chapter have been published across several peer-reviewed
works [94, 88, 52, 27].

To achieve this, we apply and extend XD [36], a well-known ontology design
methodology where ontological requirements are gathered from a comprehensive
inventory of CQs, and modularity is fostered through the reuse of ODPs [151, 192].
We also release the PolifoniaCQ dataset, a collection of 361 competency questions
on musical heritage. Further, we validate PON and provide evidence of its current
and planned (re)use by three di!erent types of users: (i) the Polifonia pilots,
using them to generate musical culture KGs; (ii) a number of industrial and
institutional stakeholders and early adopters, planning to use PON to annotate
their in-house datasets; and (iii) a survey run in the Semantic Web and Music
Technology communities showing intentions of use.

More specifically, the contributions of this chapter are as follows:

• Extensions to XD centred around CQ extraction and enhancement, including
both methodological (a CQ-elicitation framework to mirror use cases from
domain experts) and technological (a toolkit for assisted design and iterative
improvement of CQs through language models) aspects (Section 3.3).

• PolifoniaCQ, a new dataset of competency questions driving the design and
the evaluation of PON, with associated stories and personas (Section 3.3.1).

• The Polifonia Ontology Network (PON v1.0) resources, available on GitHub3

and including 15 (CC-BY 4.0) ontology modules (Section 3.4).

• Evidence of reuse and impact from music stakeholders, applications within
Polifonia, and interest from various research communities (Section 3.6).

3https://github.com/polifonia-project/ontology-network
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• Example-driven validation of the model, focused on the data elicited from
four di!erent stakeholders.

• Code support to create Music Meta KGs without expert knowledge of the
model, with automatic alignments to the MO, DOREMUS, and Wikidata.

3.1.4 Chapter Structure

The chapter begins with a review of related works in the field of knowledge engi-
neering for music, also including a discussion on methodologies and workflows for
ontology engineering (Section 3.2).

Section 3.3 outlines the methodology adopted for this work, which encom-
passes two key processes. First, requirement collection (Section 3.3.1) details the
process of gathering the needs and expectations of various stakeholders involved in
the Polifonia project. Second, Ontology Network Design and Development (Sec-
tion 3.3.2) describes the design choices and development processes for creating a
robust and scalable ontology network (PON) that integrates both music content
and metadata.

Section 3.4 provides an in-depth description of the Polifonia Ontology Network,
focusing on its structure, the modules it incorporates, and how it supports the
integration of diverse types of music data.

A dedicated focus is given to the Music Meta Module (Section 3.5), which is
specifically designed to handle the diverse and complex metadata requirements of
musical heritage.

Section 3.6 reviews the adoption and reuse of PON within and beyond the Po-
lifonia project. Evidence of its use in Polifonia pilots is presented in Section 3.6.1,
while Section 3.6.2 summarises interest in PON reuse based on a survey of the
Semantic Web and Music Technology communities. Section 3.6.3 describes early
PON adoption by Polifonia Stakeholder Network members and resulting synergies
for validating and annotating cultural and industrial datasets.

The chapter concludes with Section 3.7, which summarises ontology engineer-
ing achievements, discusses ongoing challenges, and outlines future directions for
PON.
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3.2 Related Work

Ontologies play a fundamental role in the representation and management of
knowledge, by providing common vocabularies to describe resources and queries.

Several ontologies exist in the music domain for addressing diverse applications,
dealing with both music content and metadata at di!erent levels of specificity.
MusoW [85] is a catalogue indexing online music resources, including ontologies
and KGs. Here, we focus on music ontologies and categorise them according to
their reference domain: (i) metadata; (ii) music theory; (iii) music notation; and
(iv) audio features.

In this section, we explore the key areas of ontology engineering in music,
beginning with ontologies for describing both the context and content of music.
Table 3.1 presents a taxonomy of music ontologies, categorised by their domain,
scope, and the year of the latest release, providing an overview of the diverse
landscape of existing models. Next, we examine the primary methodologies that
have been developed for ontology engineering, focusing on their evolution from
early frameworks to more collaborative and agile approaches.

3.2.1 Ontologies for Describing Music Context

Ontologies such as the Music Ontology (MO) [324] and DOREMUS [249] play
a foundational role in describing high-level metadata about musical works, com-
posers, and performances. When looking at these ontologies, MO leans towards
modelling discographic data with a focus on contemporary music, whereas DORE-
MUS is inherently rooted in classical music. These ontologies have been demon-
strated to model metadata from MusicBrainz and BBC Music [326], and from
classical music libraries and radio broadcasts for concerts programming [64], re-
spectively. Their specificity makes them appealing when downstream applications
show considerable overlap in terms of requirements and data. Examples include
the reuse of MO in the WASABI project [45], to support the semantic annotation
of audio music (emotions, lyrics, structures), but also for music recommendation
[337] and listening [4]; and the adoption of DOREMUS by Philarmonie de Paris,
Biblioteque National de France, and Radio France. Nevertheless, when drifting
from discographic data and classical music, or attempting to reuse both mod-
els, addressing e.g. cultural heritage requirements while fostering interoperability
becomes di"cult.
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More specialised ontologies like the OMAC Ontology [347] provide an in-depth
description of musical claims and interpretations, which are essential for musi-
cological research. Other ontologies focus on modelling emotional responses to
music. For instance, the COMUS Ontology [334] captures emotional states by
integrating both contextual factors and user preferences, while UniEmotion [216]
classifies tags into positive emotions, negative emotions, and factual descriptors,
o!ering a structured approach to emotion-based music categorisation.

Additionally, the Performed Music Ontology focuses on capturing detailed in-
formation about live performances, while the OnVIE Ontology [377] extends this
to the mediums used in musical performances. The Musical Instrument Tax-
onomies [224] and the Smart Music Instrument Ontology [389] further contribute
by providing conceptual models for the classification and description of instru-
ments, especially in the context of the Internet of Musical Things [388].

Ontologies like the ArCo ontology [54] are also crucial for connecting music with
its cultural and historical significance. By situating music within broader contexts
of cultural heritage, such frameworks allow researchers to examine how di!erent
periods and styles influence musical creation and perception. Other related e!orts
include [43, 206], which aim to integrate music data into larger heritage databases.

Despite their contributions, existing context-related ontologies face challenges
in terms of scalability and interoperability. Many models, while rich in meta-
data, struggle to integrate with other ontologies due to a lack of standardised
alignment practices. The Polifonia Ontology Network addresses these issues by
aligning context models with existing web resources while ensuring that prove-
nance information is consistently maintained across datasets [52].

3.2.2 Ontologies for Describing Music Content

In addition to context, other ontologies were modelled to capture intrinsic mu-
sical properties like music theory, audio signal features, and notation, serving as
essential tools for computational analysis, musicology, and creative applications
in MIR.

Some ontologies describe di!erent elements ascribable to music theory. The
Music Theory Ontology (MTO) [332] provides a detailed framework for encod-
ing theoretical music concepts, allowing researchers to model elements such as
harmony, tonality, and rhythm. More specific ontologies, like the Functional Har-
mony Ontology [214], take this further by reasoning about harmonic sequences
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and their relationships, while the Chord Ontology and Tonality Ontology [135]
focus on particular aspects such as chords and tonalities, respectively. In addi-
tion, the Segment Ontology [138] supports musicological analysis by providing an
ontological framework to annotate and analyse musical segments, while the Tem-
perament Ontology [385] facilitates the description of musical temperament and
its associated parameters. The Diatonic-Chromatic System Ontology [169] uses
reasoning to infer if a score can be classified within the analytical framework of
Michael Praetorious (1571–1621).

Ontologies have also attempted to describe musical notation and symbolic rep-
resentations. For instance, the MIDI Linked Data Cloud [272] proposes a way
to connect symbolic music descriptions that are encoded in the MIDI format.
Meanwhile, the CHARM ontology [176] is focused on representing musical struc-
tures. The Music Theory Ontology (MTO) [332] aims to capture the theoretical
concepts related to music compositions, while the Music Score Ontology (Music
OWL) [213] and the Music Annotation Ontology [62] represent the content of
a music score. Additionally, the CHARM Ontology [176] provides a hierarchi-
cal structure for representing symbolic music, aiding in the analysis of complex
musical forms.

Other works focus on audio signals or the procedures used to produce them.
For example, The Audio Features Ontology [7], The Studio Ontology [134], and
The Audio E!ects Ontology [408] are dedicated to describing di!erent aspects
of audio production. The Computational Analysis of the Live Music Archive
(CALMA) [18] project aims to link metadata of music tracks with computational
analyses of recordings, through feature extraction, clustering, and classification.
Additionally, ontologies have been used to model listeners’ habits and music tastes,
as well as similarities between di!erent musical pieces [334, 216, 208, 382]. The
Mobile Audio Ontology [382] extends this work by o!ering a semantic audio frame-
work designed for novel music consumption experiences on mobile devices.

Other ontologies, such as the HaMSE Ontology [314] and the Music Note On-
tology [315], focus on linking symbolic music representations with audio data,
reflecting recent advancements in multimodal music data processing. These ini-
tiatives tackle the persistent challenge of unifying symbolic and audio content,
o!ering a more holistic approach to music analysis [91].

Despite the numerous contributions, the scope of these ontologies is often too
specific or ingrained in a genre, style, historical period–often addressing individ-
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ual music stakeholders and/or datasets. Several ontologies were also developed
independently, with little coordination across relevant contributions. In turn, this
often hampers reuse and extension, while jeopardising interoperability–an essen-
tial requirement for the integration of music datasets [52].

3.2.3 Ontology Engineering Methodologies

Various methodologies have been proposed for ontology engineering over the years,
with a recent shift towards collaborative ontology development [361]. This section
provides an overview of the key methodologies in ontology engineering.

Early works, such as those by Uschold and King [391], introduced a founda-
tional framework for ontology construction, including steps for defining the pur-
pose, capturing and coding the ontology, integrating existing ontologies, evalua-
tion, and documentation. However, they did not emphasise the use of Competency
Question – a tool for collecting requirements that the ontology must address.

METHONTOLOGY [137] expanded on these early e!orts by introducing a
more structured process involving specification, conceptualisation, formalisation,
implementation, and maintenance. While built on existing methods, this approach
did not provide any best practices for reuse and integration of existing ontologies.

The DILIGENT methodology [311] introduced a collaborative approach by
involving domain experts, users, and ontology engineers throughout the ontology
lifecycle. This approach introduced iterative feedback and updates but lacked
specific design guidelines and was not test-driven. The process starts with building
an initial ontology, which users can locally adapt. Feedback is collected and
reviewed by a control board before releasing a new version. The local ontologies
are then updated accordingly.

More recent methodologies, such as NEON [372], o!er more flexibility by
supporting iterative and agile development. NEON proposes nine scenarios for
ontology development, covering various combinations of reusing, re-engineering,
merging, and localising existing resources. It introduces two ontology network life
cycle models to manage the development of interconnected ontologies.

SAMOD (Simplified Agile Methodology for Ontology Development) [306] is
another agile methodology, which promotes iterative development through small,
manageable steps. The process consists of three phases: 1. developing a “mod-
elet” that formalises a subdomain based on a motivation scenario, 2. merging
the new modelet with the existing ontology, and 3. refactoring the model. New
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milestones are released once all tests are successfully passed. SAMOD emphasises
self-explanatory entity names and reusing existing ontologies but lacks explicit
guidelines for requirements elicitation and testing.

The most relevant approach to our work is the eXtreme Design (XD) [36, 35],
which focuses on reusing Ontology Design Patterns (ODPs) – small, reusable solu-
tions to recurring modelling problems. This agile, iterative methodology involves
multiple teams and is heavily test-driven.

3.3 The eXtreme Design Methodology in Polifonia

The Polifonia Ontology Network (PON) addresses the aforementioned challenges
to music data representation and integration by integrating heterogeneous re-
quirements related to musical content and contexts into a modular yet unified
architecture. To develop PON, we rely on, and extend, the eXtreme Design
(XD) [36, 35] ontology engineering methodology. XD fosters the reuse of On-
tology Design Patterns (ODPs) [151, 192] and provides support to incrementally
address small sets of requirements formalised as Competency Questions (CQs).
This minimises the impact of changes in future releases, which is beneficial to Po-
lifonia (heterogeneous project requirements and participants). Moreover, XD has
been successfully applied to the cultural heritage domain [55], and our ontology
designers have relevant experience in using this methodology.

The application of XD iterates over a series of steps, for which we detail their
process while highlighting our main extensions (see Figure 3.1).

3.3.1 Requirements collection

Ontological requirements are collected from customers in the form of user sto-
ries (e.g. “Tosca was performed in Rome on 14 January 2000”), which are then
translated as CQ – the natural language counterpart of structured queries that
the resulting KG should answer [167]. For instance, the previous story example
may become “Where was a musical piece performed?”.

We borrow techniques from User eXperience design [166] to extend this frame-
work with 3 new sections in the story template: persona, goal, and scenario. The
persona is a research-based description of a typical user: name, age, occupation,
skills and interests. The goal is a short textual description of what the persona
aims to achieve in the story, complemented by a list of keywords (maximum 5)
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PERSONA

GOAL

SCENARIO

STORIES

Linka, 34yo researcher in computer science

finding/describing music-related data of multiple
formats from different sources

keywords: music data, multi-modal data, knowledge
discovery

before: the analytical and manual process to find
music data on the Web from different sources is
unmanageable and time-consuming
during/after: possibility to perform all the
operations in an automatic manner and with litt le
supervision

- "Penny Lane" is a musical work by "The Beat les"
- The first recording of "Penny Lane" was released in
February 1967
- "Penny Lane" was covered by "Kai Warner" in 1976
    ...

requirements collection CQs analysis and refinement
DATASET OF CQS automatically generated from the stories

AUTOMATIC DETECTION
OF INCONSISTENCIES PERSONA | STORY | ID | CQ | ISSUES 

CQ: Did musician X and performer
Y ever met? Where, when, why?

TO-SPLIT: this CQ
contains multiple questions!
[human in the loop]

e.g.

clustering-based ontology modules definition

to each CQ corresponds a sentence-level embedding
SENTENCE-LEVEL EMBEDDING SPACE OF CQS

cluster of
embeddings
(similar CQs)

possible ontology
module of the

network

Figure 3.1: Summary of the main Polifonia extensions to the eXtreme Design method-
ology [318].

provided by the customers. The scenario describes how the persona’s goals are
currently solved, to contextualise the gap with the resource being developed.

In cooperation with the domain experts in Polifonia (music historians, librari-
ans, computational musicologists, music analysts, archivists, data engineers, etc.),
22 personas have been created4 from this step.

Iterative refinement of CQs. Competency questions were then analysed to
identify any inconsistencies that could create obstacles for ontology design. Com-
mon inconsistencies were due to vague concepts, for instance, the assertion of two
compositions being connected without any specific context (in terms of the prop-
erty) on which the connection can be established (e.g. similar melodies, rhythm).
Other CQs were found to be overly complex or nested – entailing more than a
single requirement as a result of nested logical operators articulating the question
(e.g. “How is track B connected to C to conclude D?”). Such CQs needed to be
conceptually simplified before being processed further.

To e"ciently address these inconsistencies, we developed the Infer, DEsign,
CreAte (IDEA) framework: analytical tools for CQ-driven ontology design based
on language models5. IDEA automatically extrapolates and organises CQs from
a source repository, analyses them to find inconsistencies and similarities, and
visually projects them to a sentence-level embedding space [366]. The framework

4https://github.com/polifonia-project/stories
5https://github.com/polifonia-project/idea
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Figure 3.2: Visualisation of the Polifonia CQ embeddings using TensorBoard.

has enabled the iterative refinement and improvement of CQs through human-
machine collaboration: questions are first extracted and preliminary validated by
tagging them (complex, nested, ill-formed, passing), then brought to the attention
of the corresponding ontology designer whenever their intervention is needed. To
date, 3 cycles of CQs improvement have been completed with IDEA. Instead,
the analysis of CQs embeddings through similarity facilitated the identification
of overlapping requirements from the pilots (beyond the syntactic level); which
in turn enabled and fuelled discussion from various experts and pilots during our
ontology design meetings (e.g. 2 CQs may have similar interpretation or semantics
for ontology design, but entail di!erent semantics across pilots).

The PolifoniaCQ dataset. At the end of this process, we obtained 361 CQs,
which are systematically collected in the PolifoniaCQ dataset with pointers to
their personas and stories. We make this dataset available under CC-BY 4.06.

3.3.2 Ontology Network Design and Development

Clustering CQs as ontology modules. The refined CQs could then be trans-
lated in clear, atomic and consistent ontological requirements. Given the wide
diversity of CQs – ranging from general events to musicological interpretations of
specific passages in compositions, the first step was to achieve a meaningful cat-
egorisation into thematic clusters. This step led to the definition of the ontology

6https://github.com/polifonia-project/polifoniacq-dataset
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modules shaping the architecture of the Polifonia Ontology Network.
To streamline this process, we analysed the CQ embedding space generated

and projected by IDEA. This is done by computing the sentence-level embeddings
(a feature vector of fixed size) for each CQ in the PolifoniaCQ dataset. The latter
can be considered as a point in a high dimensional space – providing a numerical
summary of the question’s meaning [68]. Embeddings are computed via Sentence-
BERT [333] due to its state of the art performance on a number of question-related
tasks, including multi-lingual search and paraphrase detection.

An interactive visualisation of the PolifoniaCQ embeddings is available from a
live Tensorboard Projector [366] which is set up and synchronised via IDEA7. The
qualitative analysis of the embedding space, in addition to density-based cluster-
ing analysis under various parametrisations, have jointly facilitated the identifi-
cation of common requirements (as nested clusters) and enabled the interactive
exploration of the PolifoniaCQ dataset via similarity (c.f. Figure 3.2).

Matching CQs to ODPs. For each module/ontology, an XD iteration starts
from selecting a coherent set of CQs. To address those requirements, existing
solutions (ODPs) from ontologies or online catalogues of patterns are considered
for reuse, extension, and specialisation. For instance, a CQ such as “Where and
when a situation took place?” can be matched to the TimeIndexedSituation8

ODP, which represents temporal situations.
Here, IDEA supports the identification of “the CQ set” via the multi-lingual

search feature. For example, an ontology designer looking for CQs related to
places may express a search query as shown below in Listing 3.1.

Listing 3.1: Search results for query “questions related to places” with similarity score.

1 0.377 Where were the places in which musicians played ?
2 0.368 Which are all organs near to geographic coordinates x, y?
3 0.341 What are geographically distinct features of organs from a region ?
4 0.287 Where is the church /bell tower ?
5 0.285 What is the provenance of the event attendees ?
6 0.275 Which tunes which share melodic patterns or geographical origin ?
7 0.265 What places did a musician visited in her career ?
8 0.263 Where is the Bell Tower ?
9 0.246 Where was a musical composition performed ?

10 0.238 In which buildings was a musical composition performed ?

7https://polifonia-project.github.io/idea/category/competency-questions
8http://ontologydesignpatterns.org/wiki/Submissions:TimeIndexedSituation
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Direct/indirect ontology reuse. Depending on the project’s requirements, reuse
of ontologies and ODPs is direct and/or indirect [53]. The former approach di-
rectly includes/imports ontologies or part of them (e.g. individual entities, re-
lations) thus introducing a dependency to any possible changes and availability.
In indirect reuse, relevant entities and patterns from other ontologies are used
as templates (replicated and extended) while being aligned to ensure interoper-
ability. In Polifonia, we follow a hybrid approach: ArCo ontology [54] is directly
reused since its development and maintenance involves one of the project’s part-
ners (MiC), while others (such as DOREMUS) are indirectly reused and aligned.

Validation and testing. Ontology modules have been developed in close collab-
oration with domain experts and pilot leaders throughout the whole development
cycle. This has allowed the ontology design team to leverage the domain expertise
in Polifonia to technically validate our modules at di!erent stages: from the col-
lection and analysis of requirements, to iterations of ontology designs. Validation
was facilitated by IDEA (at the CQ-level), and, at the modelling level, by the
Graphical Framework For OWL Ontologies (Gra!oo) notation [132] – providing a
powerful visual language for coproduction activities. This has also been achieved
through data snippets provided by the pilots, which have been modelled by our
ontologies and triggered further iterations of improvements.

Overall, the involvement of domain experts from di!erent institutions and
background (complementary views and notions), the 10 pilots in the Polifonia
project (reasonable diversity of application domains), and the use of collaborative
workflows have also contributed to mitigate bias in the development of PON.

3.4 The Polifonia Ontology Network (PON)

The Polifonia Ontology Network (PON) provides a modular backbone of music
ontologies to address both cultural heritage and more general queries in the music
domain. As illustrated in Figure 3.3, PON v1.0 comprises 15 ontology modules
that are organised thematically (colours, horizontal view) and hierarchically, to
highlight their dependencies (vertical view). At the bottom of the architecture
lies our Core module (providing general-purpose elements of design, ODPs, and
alignments) and the reused ontologies. Four foundational models provide interop-
erability across PON through their abstract design: Source, Instrument, Music

Meta, and Music Representation. These are specialised and extended in the
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Chapter 3. Representing Musical Knowledge

Figure 3.3: Overview of the main modules in the Polifonia Ontology Network, with
Polifonia’s pilots as early adopters (grey circles). Foundational models (Source,
Instrument, Music Meta, Music Representation) provide the backbone of PON,
built on top of the Core module while leveraging the main ontologies reused directly
or indirectly.

upper levels to add functionalities and contextualise specific domains.
A summary of PON modules is given in Table 3.2, with links to the reposito-

ries storing the modules with documentation, diagrams, and examples. Through
our foundational models, PON ontologies can be applied to a wide set of music
projects, and the modular design simplifies extensibility and maintenance. To
facilitate this process, further documentation and tutorials are also being made
available at https://polifonia-project.github.io/ontology-network/. An
example of use involving 5 PON modules (besides Core) is shown in Figure 3.4.

3.4.1 Foundational models and their extensions and specialisations

The Music Meta module provides a rich and flexible ontology to describe music
metadata related to artists, compositions, performances, recordings, broadcasts,
and links. Music Meta focuses on provenance and interoperability – essential
requirements for the integration of music datasets, which is currently hampered
by the specificity of existent ontologies. The model is based on the Information-
Realisation ODP [150], allowing to reduce the complexity of FRBR-based models,
whose application in the music domain has raised concerns [335]. Given the rele-
vance of this module, we will explore it in greater detail in Section 3.5.
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Module Prefix Outline Repository

Core core: Elements of general reuse and ontology design patterns /core-ontology
Music Meta mm: Achieving interoperability of music metadata /music-meta-ontology
Music Representation mr: Foundational model to describe arbitrary musical content /music-representation-ontology
Music Instrument mop: Instruments and their evolution through time and space /music-instrument-ontology
Source src: Musical sources and their context of production /source-ontology

Tunes tunes: A specialisation of Music Meta for folk music /tunes-ontology
CoMeta com: An extension of Music Meta to represent music corpora /cometa-ontology
Music Projection mp: Achieving interoperability of music notation systems /music-projection-ontology
Organs organ: A rich descriptive model of organs and building methods /organs-ontology
Bells bell: Describing bells, bell towers and bell ringers /bell-ontology

Music Algorithm mx: Computational methods for music and their parametrisation /music-algorithm-ontology
Music Analysis ma: Music analysis through reasoning using modal-tonal theories /music-analysis-ontology
Music Annotation ann: A wrapper of ontologies for music annotations (audio, symbolic) /music-annotation-ontology

PON (full) pon: The whole Polifonia Ontology Network (imports all modules). /ontology-network

Table 3.2: Overview of the modules in the Polifonia Ontology Network.
All URIs are also accessible from https: // github. com/ polifonia-project/
ontology-network .

The Tunes module extends and specialises Music Meta for folk music. The main
novelty consists in grouping and describing tunes into “tune families” depending
on their melodic similarity (an association requiring rich provenance description
of the musicological analysis on the source); which also extends to lyrics families.

CoMeta reuses and extends Music Meta to describe arbitrary music collections,
corpora, and datasets. Here, metadata is described at the collection-level (data cu-
rator, annotations provided, availability of audio music, etc.), and at the content-
level, (e.g., the title, artist, release of each piece in a dataset). The design of
CoMeta is informed by a survey of Music Information Retrieval datasets [271].

The Music Representation module provides a comprehensive schema to de-
scribe the analysis of musical objects (a score, an audio track, etc.) interpreted
according to a theory. Fragments of a musical object (elements of a music object
whose temporal location is uniquely identifiable) are described by annotations
provided by an agent (e.g. expert annotator, algorithm). An annotation is either
the subjective result of an analysis (e.g. a chord played in a specific section) or
objective in nature (e.g. a note in a digital score). Each annotation describes
some music content (e.g. notes, chords, etc.), which we refer to as a musical pro-
jection [256]. Annotations are formalised via our Music Annotation Pattern [89].
whereas the definition of music projections is delegated to the Music Projection

module. The generality of the module and its abstraction over the represented
content enables the interoperability of di!erent music annotation schemas. The
module is aligned to MusicOWL [213], Music Notation Ontology [62], Music Note
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Ontology [315], and our JAMS ontology (c.f. Section3.4.2).

The Music Projection module formalises musical entities that can be subject of
an annotation. This ranges from traditional musical notation (e.g. note, chords)
to informal annotations (e.g. mood, danceability). The module is aligned with
MusicOWL, Music Notation Ontology, Music Note Ontology, Music Theory On-
tology [332], Chord Ontology [135], and Roman Chord Ontology 9. This allows to
integrate existing domain ontologies. Notably, we also harmonise di!erent chord
representations (Chord Ontology, the Roman Chord Ontology and the Tonality
Ontology) based on the Unified Model of Chords in Western Harmony [187].

The Instrument Module describes musical instruments as mediums of perfor-
mance and their technical properties. Given that numerous taxonomies of instru-
ments into groups and families exist (e.g. Hornbostel-Sachs, MIMO, MusicBrainz)
and finding common categorisations is an open problem [224], our module pro-
vides an abstraction capable to express arbitrary classifications. This is achieved
by leveraging the Information-Realisation and the Collection ODPs. Overall, the
module allows to: (i) refer to instruments as entities (an instrumentation of a
piece for “piano” and “viola”) as well as conceptually (e.g. a viola has 4 strings);
(ii) support the integration with di!erent taxonomies and vocabularies, such as
[248]; (iii) describe the evolution of instruments in time and space (e.g. a viola
as a cultural heritage object being relocated). This provides a foundational level
where contributors can “plug” their instrument-specific ontologies [422].

The Bells module extends Instrument to describe bells by means of measur-
able, intrinsic aspects such as weight, materials, conservation status. The main
entities contextualising bells are: (i) the author(s), such as the foundry who built
the bell; (ii) the agencies that played some role e.g. the agency that took care of
cataloguing the bell; (iii) the place(s) where it has been located; (iv) the tower(s)
where the bell has been included; (v) the tools that the set of bells is played with;
(vi) documents related to the bells, e.g. bibliographies, protective measures.

The Organs module extends Instrument to describe organs as (i) a musical
instrument consisting of parts; and (ii) as a focal point of projects detailing its
changes throughout time. To address the former, we used the Parthood pattern
from the DOLCE ontology 10. The entities of the ODP, Whole and Part make

9https://github.com/polifonia-project/roman-chord-ontology
10http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
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possible the specification of the whole instrument and its parts. In the ontology,
the Whole entity refers to the organ instrument, and the Part entity refers to the
parts of the organ that are Console, WindSystem, Case, Division, and Action.

The Source module represents various sources of music-related information.
These include manuscripts, textbooks, articles, interviews, reviews, comments,
memoirs, etc. of di!erent scope and format (physical, digital). The module aims
to provide general support to describe information related to the creator and type
of the source, the time and place when/where it was created, the context of pro-
duction and usage, and the subject and goals. Although this conceptualisation
leans towards bibliographical sources, the module provides expressivity to indi-
cate multimedia documents (e.g. images of scores, audio recording, video). For
example, a video recording of a performance can be considered as a musical source
– providing documentary evidence of a composition e.g. during an event.

The Meetups module describes encounters between people in the musical world
in Europe from c. 1800 to c. 1945. Historical meetups, which are the main subject
of this module, are described by means of four main components: the people
involved in the meetup, for instance, the person that is the subject of interest and
the people interacting in the event, the place where the encounter took place (e.g.,
city, country, venue), the type of event, the reason (e.g., music making, personal
life, business, among others) and the date when it took place.

The MusicBO module is developed by following a KG-to-ontology process [269].
Ontological axioms, grouped into patterns, are empirically generated from the
MusicBO knowledge graph – which is built from a textual corpus on music per-
formances and encounters between music-related agents in Bologna since the 17th
century. Such patterns include information about the probability of axioms to
happen (as they are derived from the data). For instance, the probability of in-
stances of the pattern compose situation (the process of creating art) to have
NaturalPerson as range of the artist property, is higher than the probability
of having an Organisation as a composer. In sum, the content of the ontology
module is highly dependent on the KG, and the most populated and described
entities are: persons, places, organisations, works of art, theatres, and books.
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3.4. The Polifonia Ontology Network (PON)

3.4.2 Modules for analysis and annotation of music

The Music Algorithm module formalises algorithms that can operate on music
metadata (using the Meta module), and musical content (via the representation
module). The module commitments are similar to those defined by Diamantini et
al. in [117]. Indeed, an algorithm is characterised by three main components: a
formalisation, which can be theoretical (e.g. pseudocode) or executable (e.g. using
a programming language); a parametrisation (e.g. input data); and the kind of
task it solves. The latter defines a set of entities that are processed alongside
the input and output data requirements and the final goal achieved. The module
allows theoretical and quantitative performances to be represented in the context
of the algorithm’s parametrisation. Through an abstract and general definition,
the formalisation in Music Algorithm can be seen as a general pattern, capable
of representing any algorithm regardless of the domain of application. In the
context of music, the output of the algorithm is considered an analysis, which is
then represented via the Representation module.

The Music Analysis module allows for the analysis of musical pieces using his-
torical and present-day established musical theories: the modal and tonal theories.
Through the use of this framework, di!erent subjective analyses can be unified –
overcoming the limitations imposed by a “global” theoretical perspective. Di!er-
ent theoretical viewpoints can be used for the interpretation of the same piece.
Currently, two historical theories are implemented: Zarlino (1558) and Praeto-
rius (1619) [168, 169]. Through the use of formal reasoning and a comprehensive
axiomatisation, the ontology is able to automatically infer the theoretical inter-
pretations of a musical piece and its evolution in time and space.

The Music Annotation module provides di!erent music annotation models
to accommodate musicological and information retrieval use cases. The primary
objective of this module is to enhance support for other descriptional systems,
thus increasing interoperability and conversion possibilities from various music
annotation formats. Indeed, all our models are logically interconnected through
Music Representation. A fully fledged annotation model here is the JAMS On-
tology [90] 11, which is detailed in Dataset 4 (c.f. Section 4.3.1). This ontology
mimics the structure of a JAMS (JSON Annotated Music Specification for Repro-
ducible MIR Research) document [203]. It semantically describes and connects

11https://github.com/polifonia-project/jams-ontology
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Chapter 3. Representing Musical Knowledge

all the elements of the JAMS specification (Annotation, Observation, etc.), in-
cluding the music metadata and the annotation contents using the Music Meta

and Representation modules, respectively.

3.5 The Music Meta Ontology

Music Meta is part of Polifonia Ontology Network (PON), from which it imports
the CORE module (c.f. Section 3.4). The ontology (prefixed as mm) is available at
the following URI: https://w3id.org/polifonia/ontology/music-meta/, and
is released as open source project under the CC-BY 4.0 on GitHub12.

From FRBR to Information Objects/Realisations

At the core of Music Meta lies the use of the Information-Realisation (IR) ODP
[150]. An information object is a non-physical social object carrying information
that can have one or multiple materialisations (information realisations). Each
realisation is a particular physical object, or event, realising the information object,
or involving the latter as a participant. Both information object and realisation
are intended as Information Entities (IEs), i.e. (social) objects created and/or
used to communicate, reason, and specify new entities. This allows to distinguish
between a piece of information (e.g. the content of a composition) from how it is
materialised (e.g. as a performance).

On the other hand, both the Music Ontology [324] and DOREMUS [64] are
built on top of di!erent flavours of FRBR13 (FRBRer and FRBRoo, respectively).
FRBR is a conceptual model describing bibliographic resources at four levels:
Work, Expression, Manifestation, and Item. In contrast, the two levels of the
IR pattern map to Expression and Item, since Work and Manifestation are said
to provide non-informative conceptualisations [150]. Moreover, [335] argues that
FRBR’s Works – intended as “entities that pre-exist expressions”, cannot rep-
resent improvisations or traditional music, as they do not derive from a formal
composition process leading to a realisation. FRBR’s Work is often ambiguously
intended as an entity retrospectively created for grouping multiple expressions
for cataloguing needs. As for the Manifestation level, while its representation is
straightforward in the bibliographic domain (e.g. the printed version of a book),
its correspondence in the music domain is not fully intuitive, as it may relate to

12https://github.com/polifonia-project/music-meta-ontology
13https://www.ifla.org
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mm:MusicArtist core:AgentRole

core:Role

core:involvesAgent

core:involvesRole

rdfs:subClassOf
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mm:MusicAlgorithm
core:isMemberOf
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mm:MusicGenre

mm:hasGenre

mm:Award

mm:nominatedForAward
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core:Personcore:Place

mm:wasFormedIn
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core:activityEndDate
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core:Alias
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core:name
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mm:hasCollaboratedWith
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Figure 3.5: Describing music artists as musicians, music ensembles, and algorithms
using the Gra!oo notation (yellow boxes are classes, blue/green arrows are object/-
datatype properties, purple circles are individuals, green polygons are datatypes).

either a recording, a score, a compact disc, or all the above – thereby introducing
complexity and ambiguity.

Nevertheless, being aligned to two levels of FRBR, the IR ODP makes our
model leaner and flexible, while still achieving interoperability with FRBR-based
(music) ontologies. In fact, IE patterns are meant to boost the semantic integra-
tion of contents, tools, platforms, resources that are silo-ed or non-interoperable
[150].

3.5.1 Main elements of design

From Polifonia’s CQs14, we identified those related to metadata, and aimed for a
model capable of addressing the requirements in Section 3.1.1. Music Meta follows
a hierarchical design (where each level extends the former to add expressiveness)
and is complemented by data transformation rules to conveniently translate one
level into another.

To enable data integration from existing knowledge bases and datasets, we
align Music Meta to other ontologies: the Music Ontology, DOREMUS, and Wiki-
data, after having identified common/similar classes and properties.

Music artists

To represent music creatives the class mm:MusicArtist generalises over musi-
cians (mm:Musician), ensembles (mm:MusicEnsemble), and computational meth-
ods (mm:MusicAlgorithm), as illustrated in Figure 3.5. Musicians are seen as a

14https://github.com/polifonia-project/stories
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specialisation of persons who can optionally be associated to a medium of perfor-
mance (e.g. voice, guitar), and be part of a music ensemble (e.g. MusicGroup,
Orchestra, Choir). Depending on the data available, the latter can be expressed
either through a membership relationship (core:isMemberOf), a specialisation of
the former, such as mm:isSingerOf, or through a mm:MusicEnsembleMembership

when the period of participation of the musician is available.
All music artists can be associated to (one or more) mm:MusicGenre(s), express

influences or collaborations, and share a period of activity. Here, the start date
refers to the foundation for music ensembles, whereas the end date is used for
discontinued projects for algorithms.

Music inception

mm:CreativeProcess mm:CreativeActionmm:involves
CreativeAction

core:hasPlace
core:hasTime

Interval

rdfs:subClassOf

core:executes
Task

mm:LyricsWriting

mm:MusicWriting

mm:Instrumentation

mm:Orchestration

mm:MusicArtistcore:AgentRole

core:Role

core:involvesRole

core:has
AgentRole

core:isInvolvedIn

core:TimeIndexed
Situation rdfs:subClassOf

core:hasTime
Interval

core:involvesAgent

mm:MusicEntity

mm:creates

core:Placecore:TimeInterval

core:CreativeTask

core:Task

mm:Remix

mm:Rearrangement

rdf:type

Figure 3.6: Abstracting music inception as an product of a creative process, involving
music artists in activities (music writing, instrumentation, etc.), defined in time and
space and according to di!erent roles.

The focal point of Music Meta is the mm:MusicEntity class (Figures 3.6 and
3.7). This class represents an Information Object, which is defined as the sum
of all the elements that make up a piece of music. A Music Entity is composed
of several components, including lyrics (generalised through mm:Text to also ac-
count for mm:Libretto), the entailed musical content (mm:AbstractScore) and
its instrumentation (mm:Instrumentation).

A mm:AbstractScore provides an abstraction to describe the musical proper-
ties of an entity, such as the form of a piece (mm:FormType), its constituent parts
(e.g. mm:Movement or mm:Section), and its key (mm:Key). Datatype properties
also describe the composition tempo (mm:tempo) and its order (mm:orderNumber).
A mm:Instrumentation can instead be formalised in a mm:Score, which can be
either digital or paper. Through the score, the instrumentation describes one or
more mm:MediumOfPerformance, each of which has a cardinality (e.g. 3 violins).
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It is also possible to describe relationships between di!erent Music Entities,
defined by parthood (mm:hasPart) and derivation (mm:isDerivedFrom). Deriva-
tions are used at the user’s discretion, based on the dominance of concept [64]
(whose criteria attribute proper identity to a musical entity) and can be of dif-
ferent types: revision, transposition, cover, reconstruction, reduction, etc. This
makes it possible to describe di!erent types of compositions, rearrangements and
modifications of an original piece, as well as influences and more complex types
of derivations. For example, the production of a cover song (e.g. in a di!erent
musical genre) may keep the lyrics and introduce a new composition and instru-
mentation, hence resulting in a new mm:MusicEntity. In addition, Music Entities
can be organised in mm:Collection, according to a mm:CollectionConcept that
binds them together.

In sum, the model provides flexibility across periods and genres as the proposed
classes allow generalisations to be made about the text, the musical composition
and its arrangement. Through the specialisation of classes, depending on the
target domain/application, specificity can easily be achieved (c.f. Section 3.1.1).
For example, a tune family can be seen as a mm:Collection encompassing several
tunes (as music entities) based on specific criteria (e.g. similarity, provenance).

mm:Lyrics

mm:MusicEntity

core:hasPart

mm:hasOpus
Statement

mm:hasDedication
Statement

mm:Text

mm:Instrumentation
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mm:TextFragment

mm:Score

mm:MusicSheet

rdfs:subClassOf
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m
m
:h
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:h
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xsd:string
mm:orderNumber
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mm:Key
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mm:Collection
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core:isDerivedFrom
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mm:ScorePart
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mm:hasMedium mm:medium
Cardinality

mm:isRealisedIn

mm:isRealisedIn
mm:opusNumber

mm:opusSubNumber

Figure 3.7: Describing a music entity and the elements it contains: Text, AbstractScore
and Instrumentation.

From performance to recording and broadcast

The realisation of a mm:MusicEntity is exemplified by mm:MusicalPerformance,
which can be either live or in a studio. As illustrated in Figure 3.8, the place and
time intervals are described by core:Place and core:TimeInterval classes – in-
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rdfs:subClassOf
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Recording
mm:Releasemm:isPartOf

Release

core:title
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core:titlemm:isBroadcastedIn

mm:Broadcasting
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mm:Publishermm:hasPublisher
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mm:hasEquipment
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mm:hasLicense

rdfs:subClassOf

rdfs:subClassOfcore:Agent

mm:isRecordedBy

Figure 3.8: Describing performance, recording, broadcasting, publication, and licens-
ing.

volving one or more music artists (optionally, with a specific role). A performance
may also create a new mm:MusicEntity if, e.g., the execution di!ers significantly
from the original version.

A Music Entity can also be recorded by means of a mm:RecordingProcess,
which is a subclass of a mm:CreativeProcess. This makes it possible to describe
information about both the production (e.g., producers) and the technical aspects
of it (e.g., sound engineer, equipment used). The recording process produces a
mm:Recording, which is contained in a mm:Release.

Information about the broadcasting of a recording is modelled through the
mm:BroadcastingSituation class (an instance of the Situation ODP [148]), which
describes when and where the song was broadcast, and by which broadcaster
(mm:Broadcaster).

Publishing and licensing information

The mm:PublicationSituation class describes information about the publication
of a release, which is common to the publication of a mm:Score (c.f. Figure 3.8).
For both a release and a score, it describes when and where they were published,
and by a mm:Publisher.

Licence information is described by the mm:License class, which applies to
records, releases and scores.

Modelling links and integrating provenance

We propose a pattern based on RDF* [182] to describe the provenance at di!erent
levels (Figure 3.9). The use of RDF* is particularly useful for this purpose, as
it allows to embed provenance information to every triple in the dataset. This
simplifies and streamlines the model, eliminating the need for n-ary relations or
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reification for each triple.
The proposed pattern is straightforward and comprises the core:Reference

class, which describes the source of the reference (using the class core:Source)
and the method used to obtain the annotation (using core:SourceMethod). Ad-
ditionally, the datatype properties core:confidence and core:retrievedOn de-
scribe the confidence of the annotation and the date it was produced, respectively.

owl:Thing owl:Thing

xsd:decimal

core:Reference

mm:hasReference

mm:Annotation
Method

mm:collectedBy

core:Source

mm:hasSource

xsd:Datemm:retrievedOn

A source can be a dataset,
a document, an annotation, etc.

Crowdsourced,
computationally inferred

mm:confidence

disputableRelation

Figure 3.9: Our pattern to describe provenance with RDF*.

3.5.2 Conversion rules and code support

To facilitate the reuse of Music Meta and its data conversion into OWL/RDF
Knowledge Graphs, we developed PyMusicMeta – a library to map arbitrary mu-
sic metadata into RDF triples. This enables a practical and scalable workflows
for data lifting to create Music KGs without expert knowledge of our ontolog-
ical model. The library is developed in Python as an extension of RDF-Lib
[40]. With each triple, PyMusicMeta adds alignments to the supported schema
whenever possible. For example, the pseudo triple <DavidBowieURI, rdf:type,

mm:Musician> in Music Meta will be complemented with:

• <DavidBowieURI, rdf:type, http://purl.org/ontology/mo/MusicArtist>

for Music Ontology;

• <DavidBowieURI, rdf:type, http://erlangen-crm.org/E21_Person> for
DOREMUS (via the Erlangen Conceptual Reference Model [270]); and

• <DavidBowieURI, rdf:type, https://www.wikidata.org/wiki/Q639669>

for Wikidata;

to achieve interoperability of the Music KG.
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3.6 Adoption and impact

We provide evidence of PON use by Polifonia pilots (Interlink, Tonalities, Mee-
tups, Bells, and MusicBO), which have contributed 6 musical heritage KGs (Sec-
tion 3.6.1); potential interest of reuse and opportunities for the Semantic Web and
Music Technology communities collected from an online survey (Section 3.6.2);
early adopters and ongoing synergies from the Polifonia Stakeholder Network for
PON validation and annotation of cultural and industrial datasets (Section 3.6.3).

3.6.1 Current use by Polifonia pilots

Interlink has released ChoCo and Harmory KGs. Choco [90] provides 20K+
harmonic annotations of scores and tracks, that were integrated from 18
chord datasets15. The KG uses the JAMS ontology in Music Annotation,
and the Roman ontology from the Music Projection module. Harmory [92]
is a KG of interconnected harmonic patterns derived from ChoCo, and aimed
at human-machine creativity (pattern discovery, chord generation, harmonic
similarity).

Tonalities KG includes data16 from 377 MEI scores and their annotations w.r.t.
theoretical concepts (roots, harmonic progressions, dissonant patterns, ca-
dences, etc.), using the 2 theoretical models in the Music Analysis module.

Meetups KG describes 74K+ historical meetups from c.1800 to 1945, mention-
ing 51K+ people from 5K+ places in Europe 17. It uses the Meetups ontology
and is extracted from 1K artists’ biographies on open-access digital sources.

Bells KG describes 88 bells catalogued by the Italian Ministry of Culture18. It
relies on the Bells module and is part of the ArCo KG – the largest Ital-
ian cultural heritage KG from the Italian General Catalogue of Cultural
Heritage.

MusicBO KG is built via text-to-KG methods [269] on a collection of 137 doc-
uments19 on performances and encounters between musicians, composers,
and critics happened in Bologna from the 17th century. As mentioned in

15https://polifonia.disi.unibo.it/choco/
16https://data-iremus.huma-num.fr/sparql
17http://data.open.ac.uk/context/meetups
18https://dati.cultura.gov.it/sparql
19https://doi.org/10.5281/zenodo.6672165
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3.6. Adoption and impact

Section 3.4, the KG20 is used as input to the bottom-up modelling of the
MusicBO ontology.

3.6.2 Survey of interest for future applications

To gather interest of adoption, we conducted an online survey in which we ask
potential adopters 14 questions regarding their background, relevance, and interest
in using music ontologies. The survey was conducted via Google Forms, and
distributed in the Semantic Web (SW), MIR, and Digital Humanities mailing
lists – gathering a total of N = 61 responses. Among our respondents, 25 work
in SW, 23 in MIR, 26 in Musicology. Most of them have encountered the need
for modelling music related data and resources with ontologies (65.6%), focusing
primarily on music metadata (45) theory and notation (29), annotations (25) and
instruments (28); with 75% doing research or project work related to music data
with multiple stakeholders.

Participants were asked to quantify the agreement with statements from 1 (ab-
solutely disagree) to 5 (absolutely agree), 3 being a neutral response (NR; neither
agree nor disagree). Results are illustrated in Figure 3.10. From questions 6-14
we found that: 49.2% find the reuse of existing music ontologies to be challeng-
ing (with 42.6% NR), and the same can be said about the interoperoperability
of existing ontologies (57%; 36% NR), their lack of coverage of concepts related
to music history and music cultural heritage (57.3%; 32.8% NR); and the lack
of large datasets of competency questions for this domain (63%; 34% NR). We
also find strong evidence for potential reuse of PON, as participants would be
interested in using ontologies for music metadata (78.7%), sources (80.3%), musi-
cal instruments (70.5%), and music content (57.4%; 21.3% NR), as well as a CQ
dataset for musical heritage (65%; 26.7% NR).

20https://polifonia.disi.unibo.it/musicbo/
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Figure 3.10: Selection of questions 4, 6, 7-14 from the online survey, where responses
are expressed on a Likert scale ranging from 1 (strongly disagree) to 5 (strongly
agree).
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3.7. Conclusions

3.6.3 Adoption by Polifonia Stakeholders

In addition to internal and potential adopters, industrial and institutional stake-
holders in the Polifonia Stakeholder Network have also expressed interest to use
PON resources. These include the Digital Music Observatory, concerning
the use of Music Meta and Source to annotate the numerous music resources
of the consortium; and the Université Catholique de Louvain where Anne-
Emmanuelle Ceulemans uses the Music Anlysis module for studying the anno-
tation of cadences in Josquin des Prez (composer of High Renaissance music).

We have also planned work with Deezer, Songfacts, and MusicID for the
evaluation, extension, and reuse of Music Meta driven by their resources; and
collaborations with the EU H2020 MuseIT21 project to extend the ChoCo KG.

3.6.4 Availability, sustainability, and FAIRness

PON namespaces are introduced in Section 3.4, and permanent Uniform Resource
Identifiers (URIs) were created with the W3C Permanent Identifier Community
Group. PON is under version control on public GitHub repositories (c.f. Ta-
ble 3.2), and all repositories are also published on Zenodo (with associated DOIs)
under the CC-BY 4.0 licence. The storage of all resources on GitHub guarantees
their persistence beyond the project, with the University of Bologna and the Ital-
ian Ministry of Culture (MiC) committed to host and maintain PON on the long
term. We also remark that PON is reused as a sibling ontology project of ArCo
by MiC [54].

3.7 Conclusions

This chapter presented the creation and development of the Polifonia Ontology
Network (PON), a collection of expressive ontologies aimed at addressing the
challenges of interoperability in musical cultural heritage. Through the Polifonia
project, we applied and extended the XD methodology for ontology engineering,
incorporating multidisciplinary and domain-specific requirements. Our method-
ological innovations, such as the IDEA framework for NLP-assisted ontology co-
design, helped ensure that the design of PON was grounded in real-world needs
and technological advancements.

21https://www.muse-it.eu/
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PON (v1.0) comprises 15 new ontologies, along with the release of the Poli-
foniaCQ dataset containing 361 competency questions, all made available under
an open license (CC-BY 4.0). Furthermore, we provide evidence of current and
potential reuse by institutional and industrial stakeholders, demonstrating the
practical relevance and impact of PON.

As a next step, we plan to perform an extensive competency question-driven
evaluation of PON’s modules to further refine the ontologies. Additionally, we
will continue to support stakeholders and early adopters in reusing, extending,
and maintaining the ontologies and knowledge graphs over the long term. This
includes ongoing work to specialise the Music Meta model for the integration and
release of new music knowledge graphs, both in the cultural heritage and music
industry domains. Furthermore, we plan to extend PON modules by incorporating
novel music theories, for instance through the Music Analysis Module, to broaden
the scope and applicability of the ontology.

100



!
!

“output” — 2025/2/13 — 2:08 — page 101 — #115 !
!

!
!

!
!



!
!

“output” — 2025/2/13 — 2:08 — page 102 — #116 !
!

!
!

!
!



!
!

“output” — 2025/2/13 — 2:08 — page 103 — #117 !
!

!
!

!
!

CHAPTER4
Harmonising Fragmented Data: A Comprehensive

Workflow for Symbolic Data Integration

4.1 Introduction

As discussed in Chapter 3, music data is fragmented across numerous datasets,
each using its own conventions, tailored to address specific tasks or applications.
This fragmentation arises from representational issues in both metadata and music
content, addressed in RQ1 (Section 1.1.1). While the metadata representation often
lacks standardization and interoperability, making it di"cult to integrate di!erent
datasets, the content representation is scattered across a multitude of formats and
notational systems (c.f. Section 2.3).

This fragmentation is well exemplified by datasets containing harmonic data.
As discussed in Chapter 2.1.3, harmony is a widely studied dimension in music
theory [312, 351] and music analysis [188]; where functional harmony provides a
set of rules for moving to and from the tonic – the most stable note in a piece,
allowing to relate chords to each other, and to the main harmony.

Chords are the basic constituents of harmony, which jointly define the harmonic
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structure of a piece. Individually, a chord is defined as a simultaneous occurrence
of several music sounds, producing harmony [165]. Depending on the notational
system and the annotation conventions, a chord can be associated with a name, or
label. For example, the chord G7 (typically read as “G dominant seventh”) in the
key of C major, contains the notes G → B → D → F and may create tension partly
due to the tritone relation between B (leading tone) and F (the seventh of the
chord). These intervals to the root characterise the intrinsic harmonic properties
of chords, as well as the relationships with other chords in the same harmonic
progression [32].

Perceptually, some chords sound more stable, final and resolved, while others
sound unstable and tense – a phenomenon that is salient both to young children
and to adults, even from diverse cultures. However, the definition of harmony
di!ers vastly across time, genre, and individuals [225], reflecting a great hetero-
geneity in terms of harmony perception [189, 265]; and in this work, we focus on
Western tonal music tradition. In this regard, harmony exerts an a!ective role:
major harmonies tend to represent positive emotions (happiness, joy, triumph,
etc.); minor triads express “negative” emotions (sadness, anger, etc.); diminished
triads (chains of minor thirds) indicate suspense and other disorienting senti-
ments, while augmented triads (all major third intervals) tend to create senses of
spookiness, extreme dark emotions, and mystery [74].

Computationally, the automatic analysis of chord progressions has addressed
several tasks in information retrieval – from the detection of cadences, patterns,
structures in music, to the introduction of harmonic similarity measures for cover
song detection, symbolic search, and content-based music linking. Progress in ma-
chine learning research has also sparked interest in computational creativity ap-
plications, such as arrangement generation, continuation, infilling, and automatic
music composition with harmonic conditioning [128] (e.g. generating melodies
from a given harmonic template) to name a few.

To account for the evolution of harmony and explain its subjective and genre-
specific di!erences, while enabling the aforementioned applications, the availabil-
ity of large, diverse, and reliable chord data is fundamental. However, several
di!erent chord notations exist (Harte, Roman, ABC, Leadsheet, etc.), each with
di!erent levels of expressiveness, in a large number of disconnected chord datasets
that are hard to combine [52]. This poses a challenge for combining existing chord
datasets into larger ones. Existing approaches address this issue by focusing on
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4.1. Introduction

scale, and publishing large numbers of chord annotations. For example, Ulti-
mateGuitar1 o!ers a collection of 1.1M+ songs annotated by a community of
12M+ musicians. Chordify2 addresses the challenge of scalable chord annotation
by applying methods for automated chord estimation. However, none of these
approaches solves the problem of integrating chord datasets complying with the
following desiderata: (a) high quality of the data; (b) precise timing information;
(c) release through open licences; (d) use of di!erent chord notations; (e) diver-
sity of music genres; and (f) large scale. The problem is exacerbated by the little
reuse of standard formats for music annotation. In the context of this thesis, music
annotation is defined, in a broad sense, as the outcome of a music analysis carried
out by a domain expert on the musical surface (a score, a recording) to identify
and locate elements of interest (e.g. chords, segments, patterns, etc.), following
an established methodology. For example, if the goal of a harmonic analysis is to
identify chords from a composition, a music annotation may correspond to a list
of chords together with a reference to their onset and o!set (i.e. when they occur
in the piece).

4.1.1 Our contribution

In this chapter, we introduce the Chord Corpus (ChoCo), a comprehensive KG
of harmonic annotations and a workflow designed to facilitate the development
of musical harmony Knowledge Graphs leveraging PON (c.f. Section 3). These
contributions, published in [90], directly address RQ2 (Section 1.1.2) by focusing
on strategies for unifying symbolic music datasets to standardize diverse digital
formats and annotation practices, thereby tackling the fragmentation challenges
within existing chord datasets.

The workflow we present encompasses the curation, transformation, and inte-
gration of over 20, 000 human-made, high-quality harmonic annotations from 18
highly heterogeneous chord datasets (desiderata a, b, f ), following the JAMS data
structure as annotation model. The resulting annotations are rich in provenance
data (e.g. metadata of the annotated work, authors of annotations, identifiers,
etc.) and refer to both symbolic music notation and audio recordings, while en-
compassing di!erent notation systems (desideratum d). After semantically enrich-
ing, extending, and standardising these annotations under the JAMS definition,

1https://www.ultimate-guitar.com/
2https://chordify.net
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we use the PON ontologies described in Chapter 3 to release the ChoCo Knowledge
Graph – providing fine-grained semantic descriptions of chords, opportunities for
chord interoperability, and 4K+ links to external datasets. All data and code are
released using open data licences (desideratum c). We also show evidence of inter-
est and use of ChoCo, and postulate its value for the SW and MIR communities
at enabling the study of harmony through large scale data.

Specifically, the main contributions are summarised as follows:

• A generalised data curation framework to semantically integrate MIR har-
monic datasets and represent chords from a large variety of formats (JSON,
CSV, LAB, TXT, SQL, MusicXML, iReal, mgu, sku, ABC, etc.) as JAMS
annotations.

• A large dataset and KG standardising, enriching, and integrating 18 existing
chord collections in the literature. ChoCo is released both as a JAMS dataset
and an RDF Knowledge Graph, to accommodate the requirements and needs
of di!erent communities (MIR, Musicology, SW, etc.).

• Demonstrations of the utility of both the workflow and the resulting chord
corpus. These examples illustrate its relevance to both MIR and SW fields,
including the use of the workflow to describe other musical elements, such
as melodic patterns [353].

• Evidence of potential adoption and community interest, by conducting a
survey targeting potential users, asking ten questions related to the relevance
of chord data in their work, and their interest in adopting the dataset and
workflow.

ChoCo achieves interoperability of harmonic datasets at three levels: meta-
data, annotation format, and chord notation. The interoperability at metadata
and annotation format levels is implemented by integrating metadata from di!er-
ent sources, at the parsing level, and by leveraging the JAMS annotation standard
to store harmonic annotations, consistently. Chord notation interoperability is
achieved by converting chords to three reference notational systems (desideratum
d) – bridging them via the Harte notation [181]. The outcome of this approach en-
ables the use of these integrated collections as if they belonged to the same dataset
and underpins the automatic generation of Music Knowledge Graphs. In addition
to the conversions, ChoCo provides the original annotations in each JAMS file,
along with rich provenance descriptions that keep track of the original sources.
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4.2. Related Work

4.1.2 Chapter Structure

This chapter is organized as follows: we begin with a review of the related work
in Section 4.2, providing context for the challenges and existing approaches to
harmonizing and integrating chord datasets in MIR.

The development of ChoCo is detailed in Section 4.3, where we present the
methodology used for creating the dataset. This includes an overview of the data
incorporated into ChoCo, the process of converting the data into a unified format,
the conversion of chord annotations, and the creation of the resulting KG.

We then provide descriptive statistics in Section 4.3.2, o!ering an overview of
ChoCo data at two di!erent levels: the metadata associated with the music tracks,
including their identifiers and links, and the content of the music annotations.

In Section 4.4, we present the technical validation of the dataset, demonstrating
the reliability and completeness of ChoCo.

The chapter continues with usage notes in Section 4.5, where we discuss how
both the dataset and the workflow have been employed, along with potential
future applications.

Data availability and licensing information are outlined in Section 4.6, provid-
ing details on how ChoCo can be accessed and used under open licenses.

Finally, we present the conclusions in Section 4.7, summarizing the main con-
tributions and future directions for the workflow and its applications.

4.2 Related Work

In the last decade, numerous systems and formats have been proposed for repre-
senting and storing musical annotations [187]. Some have been more successful
than others, but no system has prevailed as a reference standard. Some systems
are focused on symbolic music and are domain-specific (e.g. DCMLab, Roman-
Text for harmonic analyses), embed annotations in the score (MusicXML, ABC,
etc.), or propose variations of tabular formats to account for audio and symbolic
music (LAB and xLAB). In the audio domain, JAMS (JSON Annotated Music
Specification) [203] has emerged as a system to uniformly represent music annota-
tions of di!erent types and granularity, that is e"ciently built on top of the JSON
serialisation standard. JAMS is also supported by software libraries for dataset
manipulation [34] and for the evaluation of MIR methods [323].

However, combined e!orts of MIR and SW researchers to address (chord) anno-
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tation data interoperability have been scarce. While MIR has contributed a great
deal of music datasets, predominantly containing music annotations to train and
evaluate computational methods for music analysis, SW technologies and princi-
ples can easily address the data integration problem at scale [52]. Nevertheless,
the scarcity of semantic models for music annotations has hampered this vision,
and more research e!orts are hence necessary to devise domain-specific ontolo-
gies that can e"caciously address the interoperability issue through reuse and
alignment. In addition, this kind of musical knowledge is also underrepresented in
Knowledge Graphs [194], which are usually built from other knowledge archetypes
such as logic statements or textual corpora. The lack of musical knowledge in the
Semantic Web also limits our understanding of knowledge expressed in modalities
other than text (e.g. images, music) and its challenges: semantic relations that
have not been formalised yet, integration of multimodal datasets, etc.

Specifically for harmonic data, various chord collections have been published
(see Table 4.1) making harmony annotations available, albeit through highly het-
erogeneous and non-interoperable notations (Harte, Leadsheet, Roman, ABC)
and formats (JAMS, JSON, MusicXML, LAB, etc.). Other databases, such as
UltimateGuitar and Chordify [98], focus on automation and scalability. These are
achieved by annotating millions of songs via crowdsourcing or chord recognition
algorithms, but have an inherent cost in annotation quality. Therefore, none of
these approaches solves the problem of semantically integrating chord annotation
datasets while meeting all the aforementioned desiderata (a-f ).

The challenge of supporting interoperability of music content-related data has
been the subject of relevant e!orts in the last decade, especially supporting their
evolution, reuse, and sustainability [401, 160, 209] according to FAIR data prin-
ciples [406] and through Semantic Web technologies.

In Section 3.2, it is possible to find a comprehensive list of ontologies specifically
developed for describing musical data.

Some of these ontologies are the backbone of large music notation knowl-
edge graphs. For example, the MIDI Ontology [272] has been used to generate
the MIDI Linked Data Cloud3, a large knowledge graph interconnecting 300K+
MIDI files through 10B+ triples of music-related linked data addressing music
content rather than metadata. This misses, however, explicit chord information
that could be useful for the symbolic analysis of harmony. MusicOWL [213] has

3https://midi-ld.github.io/
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dataset

JAMifier

.jams

annotationN

.jams

annotation1

JAMifier provides ad-hoc mapping scripts to produce

JAMS annotation files from the supported collection. Any

new dataset in ChoCo will only need to extend JAMifier or

comply with the source formats already supported.

jams2rdf

namespaces: chord, key

Music Knowledge Graph

Ontology module

JAMS2RDF allows to transform any JAMS file, providing

annotations of symbolic or audio music, into a KG -- given

the specific namespaces and ontologies associated.

. . . Chonverter

.jams

choco_annotationN

choco_annotation1

. . .

JAMS are created JAMS are interoperable

Chonverter reduces the complexity of the original

chord annotation by casting it to the 3 reference

notations in ChoCo when possible.

Figure 4.1: Overview of our data transformation workflow, generalised for arbitrary
music annotations, and used here for chord and key annotations prior to the genera-
tion of the ChoCo Knowledge Graph. The JAMifier ingests chord collections (where
metadata and music annotations follow collection-specific conventions and formats)
to generate a JAMS dataset. This achieves two integration levels, as all metadata are
consistently re-organised, and the music annotations (i.e. chord progressions, in this
case) are all encoded and stored in separate JAMS files – one per track/score. The
Chonverter achieves notational interoperability among collections by converting the
original annotations to the same notational families. Finally, jams2rdf leverages
notation-specific ontologies to generate RDF triples and create a Music Knowledge
Graph.

been used for producing the Linked Music Score Dataset4 knowledge graph, repre-
senting elements of 43 historical scores from the Münster University Library. Yet,
none of these previous e!orts successfully addresses the challenges a-f ); especially
providing representations that meet the standards and the needs of di!erent com-
munities (e.g. JAMS for MIR, Musicology, and RDF for Semantic Web, Digital
Humanities, etc).

4.3 ChoCo: a Chord Corpus and a Data Transformation
Workflow for Musical Harmony Knowledge Graphs

4.3.1 Methods

The general workflow to produce ChoCo is illustrated in Figure 4.1. We describe
the resources contained in ChoCo (Section 4.3.1), and the data transformation

4https://linkeddata.uni-muenster.de/datasets/opendata/ulb/musicscores/
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Collection Type Notation Original format Annotations Genres Ref
Isophonics A Harte LAB 300 pop, rock [258]
JAAH A Harte JSON 113 jazz [129]
Schubert-Winterreise A, S Harte csv 25 (S), 25*9 (A) classical [402]
Billboard A Harte LAB, txt 890 (740) pop [48]
Chordify A Harte JAMS 50*4 pop [225]
Robbie Williams A Harte LAB, txt 61 pop [116]
The Real Book S Harte LAB 2486 jazz [260]
Uspop 2002 A Harte LAB 195 pop [28]
RWC-Pop A Harte LAB 100 pop [161]
Weimar Jazz Database A Leadsheet SQL 456 jazz [309]
Wikifonia S Leadsheet mxl 6500+ various -
iReal Pro S Leadsheet iReal 2000+ various -
Band-in-a-Box S Leadsheet mgu, sku 5000+ various [99]
When in Rome S Roman RomanText 450 classical [273]
Rock Corpus S Roman har 200 rock [97]
Mozart Piano Sonata S Roman DCMLab 54 (18) classical [188]
Jazz Corpus S Hybrid txt 76 jazz [163]
Nottingham S ABC ABC 1000+ folk [292]

Table 4.1: Overview of the 18 chord datasets currently included in ChoCo. Letters “A”
and “S” are used to denote audio and symbolic (or score) music subsets, respectively
– from which harmonic annotations are collected.

workflow to: produce JAMS datasets (Jamifier, Section 4.3.1), integrate the dif-
ferent chord notations (Chonverter, Section 4.3.1), and create a music knowledge
graph (Section 4.3.1).

Chordal data in ChoCo

Table 4.1 summarises the source chord datasets (alias subsets, collections) that
are integrated in our framework. ChoCo v1.0 integrates 18 high-quality chord
datasets providing timed annotations of chord progressions in di!erent formats
(e.g. LAB, CSV, txt, mxl), notations (e.g. Harte, Leadsheet, Roman, ABC), and
types (audio, symbolic). The rich and diversified nature of this resource, encom-
passing several genres/styles and periods, makes it the largest chord collection
of its kind – with more than 20K annotated progressions. ChoCo’s collections
can be categorised according to their generalised chord notation system: Harte,
Polychord, Leadsheet, and Roman. An example of notation systems for the same
chord progression is given in Figure 4.2.

Harte collections. Gather all collections with chords expressed in Harte nota-
tion [181]. The majority of these datasets are focused on pop/rock music, released
in LAB format, and collected from audio music. Among them, Isophonics [258]
provides chord, key, and structural annotations of a selection of albums by The
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Beatles, Queen, Michael Jackson, and Carole King; Billboard [48] contributes sim-
ilar annotations for a collection of songs sampled from the Billboard “Hot 100”
chart in the United States between 1958 and 1991; Chordify Annotator Subjectivity
Dataset (CASD) [225] augments a subset of Billboard with 4 expert annotators
per song – to demonstrate the highly subjective nature of the chord identifica-
tion/labelling task; Robbie Williams [116] contains key and chord annotations
for 5 albums from this artist; Uspop2002 [28] is a large scale dataset for music
similarity, providing audio features, style tags, artist similarity ratings, as well
as harmonic annotations for a smaller subset; RWC-Pop is a subset of the the
Real World Computing (RWC) database [161], a cornerstone collection in MIR
containing a great deal of instrumental and performance annotations, in addi-
tion to chordal information that was contributed by LabROSA. Among the other
(non-pop) collections, we find the Real Book [260], providing chord annotations
of several jazz standards from the homonymous book [383]; the Audio-Aligned
Jazz Harmony (JAAH) dataset [129] contributing time-aligned harmony tran-
scriptions from “The Smithsonian Collection of Classic Jazz” and “Jazz: The
Smithsonian Anthology”; and finally, the Schubert Winterreise [402] multi-modal
dataset, containing harmony and segment information of Franz Schubert’s song
cycle “Winterreise” which were separately annotated from the score and from the
audio (9 performances per score).

Leadsheet collections. Include four ChoCo collections using di!erent flavours
of the Leadsheet notation [136] for a variety of genres. These include the Weimar
Jazz Database [309], providing rich cataloguing information, scores, YouTube
links, and harmonic/melodic annotations of a selection of jazz solo transcriptions;
Wikifonia, a copyright-free online publisher of sheet music in MusicXML format

GS
Harte

Polychord

Leadsheet

Roman [C major]

A:min/b3

C4,E4,A4

Am/C

vi6

¯¯¯
D:min

D4,F4,A4

Dm

ii

¯¯¯
B:min7(*5)

B3,D4,A4

Bmin7 no5

viio7[no5]

¯¯¯
C:maj

C4,E4,G4

C

I

¯¯¯

Figure 4.2: Example of a harmonic progression annotated using di!erent notation
systems, namely (i) Harte, (ii) Polychord (or decomposed chords), (iii) Leadsheet,
and (iv) Roman Numerals.
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which was discontinued in 2013; the Band-in-a-Box (BiaB) Internet corpus [99],
containing human-generated chord annotations for BiaB – a commercial software5

that is used to generate accompaniment for musical practice; the iReal pro collec-
tion, a newly contributed chord dataset of various genres (jazz, blues, brazilian,
latin, country, pop) that was created from the public playlists of iReal Pro6 – a
commercial app with similar functionalities to BiaB.

Roman collections. Contain chord datasets providing harmonic annotations in
Roman notation [9], and with more emphasis on classical music. A central dataset
here is When in Rome [273], which already contains harmonic analyses from
the TAVERN collection [111] (theme and variations for piano by Mozart and
Beethoven), and the BPS-FH dataset [61] (Beethoven piano sonata); but also
harmonic annotations from Monteverdi madrigals, Bach chorales and preludes,
Haydn Op. 20 String Quartets, and a subset of nineteenth-century songs from the
OpenScore Lieder corpus (Winterreise and Schwanengesang cycles from Schubert,
Dichterliebe from Schumann, and several pieces by female composers). Notably,
When in Rome is an actively maintained corpus where new harmonic annotations
(in RomanText format) are also contributed and internally validated by experts.
As a growing corpus of functional harmonic analyses, we plan to support the in-
tegration of future releases within ChoCo. Other Roman collections include the
Rock Corpus [97], providing harmonic analyses, melodic transcriptions and lyrics
information produced from a sample of Rolling Stone magazine’s list of the “500
Greatest Songs of All Time” in 2004 (pages 65 - 165); and Mozart Piano Sonata
[188], featuring harmonic, phrase, and cadence analyses of all piano sonatas by
Mozart.

Other collections. Include Nottingham [292], a dataset of British and American
folk tunes, (hornpipe, jigs, etc.) released in ABC format; and the Jazz Corpus
[163], providing harmonic analyses of jazz standards using both Harte-like and
functional notations, the latter of which is akin, in purpose, to Roman numerals.

Chord datasets not included in ChoCo. Although other collections providing
harmonic information exist in the literature, some of them were currently dis-
carded for the reasons explained below. The Leadsheet dataset [417] separately
annotates chord progressions for each segment (e.g. intro, chorus) but does not
provide information on how structures are laid out in the piece. GuitarSet [414]

5https://www.pgmusic.com
6https://www.irealpro.com
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Resource Link
ChoCo dataset http://w3id.org/polifonia/resource/choco/
Portal page https://smashub.github.io
JAMS Vocabulary names-

pace

http://w3id.org/polifonia/ontology/choco/ (prefix jams)

JAMS Resource namespace http://w3id.org/polifonia/resource/choco/ (prefix pon-res)

Roman Chord Vocabulary

namespace

http://w3id.org/polifonia/ontology/roman-chord/ (prefix roman)

GitHub organization & code https://github.com/smashub/
Dataset generation code https://github.com/smashub/choco
Documentation and tutori-

als

https://smashub.github.io/docs/category/choco-the-chord-corpus

Example data story https://projects.dharc.unibo.it/melody/choco/chord_corpus_statistics
VoID description https://github.com/smashub/choco/blob/main/void.ttl
SPARQL endopint https://polifonia.disi.unibo.it/choco/sparql
Zenodo https://zenodo.org/badge/latestdoi/462698362

Table 4.2: Links to key ChoCo resources: ontology, datasets, and knowledge graph.

only provides 3 unique (and short) chord progressions. UMA-Piano [16] only con-
tains audio recordings of chords, played independently. Finally, POP909 [400]
and the Kostka-Payne corpus [379] provide computationally-extracted chords and
keys, whereas the first release of ChoCo focuses on high-quality annotations for
time being.

From chordal data to JAMS datasets

The first challenge of bringing together existing chord datasets into a coherent,
uniform corpus is the variety of formats in which chord annotations, and other
related information, are encoded. In order to address this issue, we use JAMS
data structure [203] as a simple, content-agnostic wrapper for expressing music
annotations in general, and chord annotations in particular. JAMS relies on the
popular Web data exchange JSON format, and enforces the following structure
based on three basic properties7:

• file_metadata, describing the music piece these annotations refer to. More
precisely, it contains these properties: identifiers, optionally providing
explicit links to external resources, mostly relating to cataloguing informa-
tion from online music databases, e.g., MusicBrainz8; artist, referring to
a performer or a band; title of the musical work; release, intended as a
more general definition of album; and duration, defining a temporal span
within which annotations can fall.

• annotations, a container of annotation objects, each describing a specific
7https://jams.readthedocs.io/
8https://musicbrainz.org
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namespace (the term namespace in JAMS has a di!erent sense than a Web
namespace) that identifies the type of the annotation’s subject (e.g., chords,
structural segments, emotions, patterns, keys, etc.). These annotations also
include metadata to document the annotation process (e.g. whether the
annotation is manually produced or inferred by an algorithmic method, the
name of the annotator or software, information about the annotation tools,
rules and validation).

• sandbox, described as an unrestricted place to store any additional data.

Listings 4.1 and 4.2 show excerpts of an example JAMS file from the Isophonics
collection [258] annotating chords for Queen’s Bohemian Rhapsody, taken from the
Isophonics collection.

Although JAMS has an implicit focus for audio-based annotations, its defi-
nition and structure are flexible enough to be easily extendable to the symbolic
domain. This is also confirmed by the modular design of the codebase, where
additional namespaces can be registered by a user, by simply providing regular
expressions to validate the annotation content (e.g. a new chord notation). In
other words, any arbitrary music annotation can be described within JAMS as
long as the atomic observations (e.g. the individual occurrences of chords making
up the progression) are described in terms of: time, a temporal anchor specifying
the onset of the observation; duration, value (e.g. Bb:maj7 ), and confidence,
a scalar in [0, 1] expressing a level of certainty by the annotator (or algorithm).
Therefore, the only elements distinguishing audio from symbolic annotations, are
the temporal specifications (time and duration), which are described in absolute
(seconds) or metrical (measure and beat/o!set) terms, respectively. For symbolic
annotations, we number measures and beats from 1 for convenience, without at-
tempting to emulate exact musical (editorial) practice for cases like anacrustic
openings.

JAMification of datasets

Considering the diversity of annotation formats and conventions for data organ-
isation (the way content is scattered across folders, files, database tables, etc.),
each chord dataset in ChoCo (c.f. Table 4.1) undergoes a standardisation process
lending to the creation of a JAMS dataset. This is needed to aggregate all rele-
vant annotations of a piece (chord, key, etc.) in a single JAMS file, and to extract
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content metadata from the relevant sources.
The content metadata of a (music) dataset is indeed crucial to identify, describe

and retrieve the actual musical content being annotated. This typically includes
the title of each piece, artists (composers and/or performers), and cataloguing
information (album/release or collected work), ideally with the provision of iden-
tifiers (e.g. MusicBrainz IDs). Nevertheless, only the Mozart Piano Sonata col-
lection [188] provides complete content metadata in a csv file, as usually expected
from a music dataset. When content metadata is missing, this may be found online
(HTML pages, supplementary material), from articles/reports documenting the
collection, by resolving any cross-reference among files and dataset-specific identi-
fiers, extracted from the actual score (or better, the dataset-specific representation
of the score). Alternatively metadata can be derived from the organisation of files
in folders. For example, Michael Jackson/Essential Michael Jackson [Disc

01]/1-16_Beat_it.lab indicates author, album, disc, track number and title,
respectively. This organisation varies as the datasets vary – a consequence of the
lack of a standard “datasheet for datasets” in the music domain [152].

1 {
2 " sandbox ": {},
3 " annotations ": [
4 {
5 "data ": [
6 {
7 " duration ": 0.459 ,
8 " confidence ": 1.0 ,
9 " value ": "N",

10 "time ": 0.0
11 },
12 {
13 " duration ": 3.663 ,
14 " confidence ": 1.0 ,
15 " value ": "Bb:maj6",
16 "time ": 0.459
17 },
18 {
19 " duration ": 0.789 ,
20 " confidence ": 1.0 ,
21 " value ": "C:7" ,
22 "time ": 4.122
23 },
24 ...
25 ],

Listing 4.1: Excerpt of the three first
chords in a JAMS file annotating
Queen’s Bohemian Rhapsody.

1 " annotation_metadata ": {
2 " annotation_tools ": "",
3 " curator ": {
4 "name ": " Matthias Mauch ",
5 " email ": "m. mauch@qmul .uk"
6 },
7 " annotator ": {},
8 " version ": 1.0 ,
9 " corpus ": " Isophonics ",

10 " annotation_rules ": "",
11 " validation ": "",
12 " data_source ": ""
13 },
14 " namespace ": " chord ",
15 " sandbox ": {}
16 }, ... ],
17 " file_metadata ": {
18 " jams_version ": "0.2.0" ,
19 " title ": " Bohemian Rhapsody ",
20 " identifiers ": {},
21 " release ": "",
22 " duration ": 358.293 ,
23 " artist ": " Queen "
24 }
25 }

Listing 4.2: Annotation and file
metadata in a JAMS file annotating
Queen’s Bohemian Rhapsody.
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The same issue applies to the extraction, pre-processing, and standardisation
of harmonic annotations from these collections, some of which were never released
as chord datasets (Weimar Jazz Database, Wikifonia, iReal Pro, Nottingham).
Harmonic annotations can be encoded in di!erent formats (LAB, XLAB, Ro-
manText, CSV, DCMLab, JSON, SQL, TXT), or extracted from symbolic music
(MusicXML, ABC) and backing tracks in proprietary encodings (iReal, MGU).
As each collection shows a specific combination of the mentioned issues (di!erent
organisation of content and metadata, di!erent annotation formats and conven-
tions), this step required considerable e!ort. The result of this standardisation
process may improve the usability of these resources for music researchers, and
simplifies the KG construction process. In addition, for the symbolic subsets,
we also include time signatures (initial time signature and subsequent metrical
changes) as annotations in each JAMS file (using a dedicated timesig names-
pace); which makes it easier to interpret the temporality of each chord (onset and
duration) at hand.

Following the standardisation process, each of these 18 JAMS datasets repre-
sents a novel contribution per se, due to the heterogeneity of annotation formats
and practices, and the limited availability of content metadata in their original
version. This also includes CASD, a collection that provides chords in JAMS
format, but lacks local key annotations, which were retrieved from Billboard (we
remind that CASD is already a subset of Billboard).

Conversion of chord notations

As shown in Table 4.1, the third element of divergence besides annotation for-
mats and provision of content metadata, is the notation system used to represent
chords. To address this issue we perform the following actions: (i) decomposition
of domain-specific notations to chord constituting elements; (ii) conversion of the
decomposed chord to the Harte framework; (iii) conversion of chord progressions
by iteratively applying steps (i) and (ii) to all the chords in a sequence/progres-
sion. This yields a new JAMS file with the converted chord annotations.

For all the above steps, specific software was developed for processing the dif-
ferent annotation types contained in the original datasets. There are three main
types of chords that are processed: Roman Numerals chords (e.g. C min:viio7/V),
Polychords (e.g. E4,G#4,B4), Leadsheet chords (e.g. Gm7/F). With Leadsheet
chords we refer to a broader category, although each dataset using this format
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encoding output

ABC Notation

Nottingham  

decompositionLeadsheet Notation

Wikifonia  

Jazz-corpus  

Ireal-Pro  

Weimar  

Polychords

Wikifonia  

validation

decomposition

Roman Numerals Notation

Mozart-piano- 
sonatas

When-in- 
Rome Rock-corpus   

Lark Grammar
Parsing

music21 Parsing

Harte Encoder

INPUT: JAMS File OUTPUT: JAMS FileChonverter

 Harte Notation

Figure 4.3: Overview of the Chonverter workflow, describing how di!erent chord no-
tations are converted to the Harte notation.

proposes a di!erent flavour of this notation. For example, a G minor chord in
Wikifonia is annotated as G min, whereas the same chord is annotated as G- in
the Jazz-corpus.

As outlined in Table 4.1, each dataset uses a flavour of the same notation
to represent chords, with the exception of Wikifonia, where some annotations
use both Leadsheet and Polychords even for the same progression; and the Jazz
Corpus, providing chords encoded in both Roman Numerals and Leadsheet. Fig-
ure 4.3 provides a taxonomy of the di!erent notational flavours, together with a
schematic overview of the conversion workflow.

In step (i), a chord is first decomposed into its components (e.g. C major ↓
C, E, G). For this purpose, the Chonverter uses a family of tools depending on
the source notation. Roman numerals are decomposed using the roman module of
music21 [79], a Python library for computational musicology. As Polychords al-
ready provide note constituents by definition, this step is limited to preprocessing
the symbols associated to the di!erent pitches in a chord. Polychords are usually
mixed with chords annotated in other notations (e.g. Leadsheet), so it is neces-
sary to di!erentiate the type of chords when parsing. Finally, for each Leadsheet
flavour, a context free grammar was created to parse the original annotation of
the chord. A di!erent grammar was created for each dataset containing annota-
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tions in leadsheet format, namely Weimar Jazz Database, Wikifonia, and iReal
Pro, using the Lark library9. Notably, the ABC notation used in Nottingham is
similar to the Leadsheet notation and was therefore processed in the same way.
This process is more intuitive for all collections natively using the Harte notation,
as the latter already accounts for the description of chord pitches [181].

After all chords are decomposed as lists of pitches, it is then possible to as-
sociate a shorthand (a string) to each list according to the Harte notation (Step
(ii)). The Chonverter achieves this via music21 and defines rules for composing
Harte chords.

New JAMS files are produced after the last step, each providing a new an-
notation (with chord_harte as namespace). Whenever an original annotation
uses Leadsheet or Polychord notations, the new annotation replaces the original,
since the conversion provides a generalisation of the di!erent flavours via a syntac-
tic transformation. Instead, if the original annotation contains Roman Numerals
chords, the new (converted) annotation is added to the existing one, since the Ro-
man Numerals contain information that would otherwise be lost, i.e. the harmonic
functions that the chords hold within the piece.

The Chonverter module performs a syntactic conversion of chord labels. How-
ever, converting Roman Numeral also requires taking into account the key of the
song. Moreover, a distinction has to be made between key-relative and absolute
chords. Some music is always played in the same key, while other pieces are fre-
quently transposed. For example, symphonies are often performed in a fixed key,
while lieder are typically performed in multiple keys depending on the singer’s vo-
cal range. Datasets like When in Rome contain transcriptions of these key-flexible
works. Even in these cases, chords in ChoCo are always converted by taking into
account the tonality provided by the original dataset for that piece. However,
whenever this happens, the generated conversion, although correct, may only be
one of several possible conversions.

The JAMS Ontology and the ChoCo Knowledge Graph

To represent JAMS annotations as Linked Data (LD) we designed an ontology
that formally represents the JAMS data model. The JAMS Ontology is part of
the Polifonia Ontology Network (c.f. Chapter 3), from which we reused 4 ontology
modules (Core, Music Meta, Music Representation and Music Projection). More

9https://github.com/lark-parser/lark
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specifically, the JAMS Ontology is part of the Music Annotation module, which
directly imports it. Table 4.2 provides links to ChoCo’s resources, including the
JAMS Ontology and KG.

The JAMS Ontology formally defines the semantics of music annotations that
are encoded using JAMS. To improve compliance with the ontology and facilitate
the generation of LD, we have established conventions for including relevant infor-
mation in the creation phase of the JAMS files. In essence, the JAMS Ontology
tackles the limitations of the current JAMS model, mainly on two fronts: (i) at
the level of metadata, enabling the alignment and linking of tracks belonging to
di!erent datasets, and also, with external resources available on the Web; (ii) at
the annotation level, allowing to describe data (e.g. a chord) by semantically an-
notating its components (e.g. root, quality, inversions, etc.) rather than using a
label.

Concerning the first level, the JAMS Ontology inherits all the benefit of the
proposed PON and Music Meta module, as docuented in Section 3.5. Moreover,
the proposed model also allows to correctly interpret the content of the annotation
with great level of detail, for example, modelling temporal information both in
real time (seconds) and in beats, depending on the type of annotation at hand.

To achieve this, additional data is dumped by the JAMifier in the Sandbox
of each JAMS file, and new annotation types were created by contributing new
namespaces. The JAMS Ontology provides a common conceptual, formal model
to interpret JAMS annotations and is available online at the following URI:

https://w3id.org/polifonia/ontology/jams/

Our ontological requirements can be summarised as follows:

• the resulting KG must represent JAMS files and JAMS annotations as such,
including their provenance and process-related information: e.g. source
dataset, annotator, confidence of each observation, etc;

• temporal information must be expressed according to the type of the anno-
tation’s subject, i.e. audio or score;

• chords must be represented according to the data model of these notation
families: Harte and Roman Numerals.

To model this ontology, we reused the Music Annotation Pattern [94], an ODP
[147] for modelling di!erent types of music annotations and their related time
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ID Competency question
CQ1 What is the content of the observations contained in a JAMS Annotation?
CQ2 Who is the composer of a musical object?
CQ3 Who is the performer of a musical object?
CQ4 Who/what is the annotator of an annotation/observation, and what is its type?
CQ5 What is the time frame addressed by an annotation, within a musical object?
CQ6 What is its start time (i.e. the starting time of the time frame)?
CQ7 Which are the observations included in an annotation?
CQ8 Given an observation, what is the starting point of the time frame it addresses, within its target musical object?
CQ9 Given an observation, what is its addressed time frame, within its target musical object?
CQ10 What is the key of a composition/performance?
CQ11 What is the value of an observation?
CQ12 What is the confidence of an observation?
CQ13 What are the chords of a composition/performance?

Table 4.3: Competency questions (CQs) addressed by the JAMS Ontology.

references. We remark that the terminology used in the JAMS documentation10

is adopted to define the JAMS Ontology vocabulary. In particular, the following
terms are (re-)used:

• Annotation: an annotation is defined as a group of Observations (see
below) that share certain elements, such as the method used and the type
of annotation’s subject (e.g. chords, notes, patterns);

• Observation: an observation is defined as the content of an annotation,
and includes all the elements that characterise the observation. For example,
in the case of an annotation containing chords, each observation corresponds
to a chord, and specifies, in addition to the chord value, the temporal infor-
mation and its confidence.

We also apply the same methodology described in Section 3.3: the CQs defined
for the ontology are listed in Table 4.3, while the corresponding SPARQL queries
are available in the JAMS Ontology repository11.

Figure 4.4 shows a fragment of the JAMS Ontology modelling a JAMS Anno-
tation. On the left (box A), we define the classes and properties for representing
the song’s metadata, by reusing the Music Meta module from PON. Main classes
and properties of this ontology are detailed in Section 3.5.

The connection between the Music Meta ontology and the JAMS Ontology
happens at the level of mm:Recording, mm:Score, and mm:AbstractScore, where
the union of the three form a mr:MusicContent, which can be annotated by a
jams:JAMSAnnotation.

A core class of the JAMS Ontology is jams:JAMSAnnotation. It captures the
10https://jams.readthedocs.io/en/stable/
11https://github.com/polifonia-project/jams-ontology
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Prefixes

core:
jams:
mm:
mr:

prov:

https://w3id.org/polifonia/ontology/core/
https://w3id.org/polifonia/ontology/jams/
https://w3id.org/polifonia/ontology/music-meta/
https://w3id.org/polifonia/ontology/music-representation/
http://www.w3.org/ns/prov#

jams:JAMSAnnotation

jams:JAMSFile

prov:wasDerivedFrom

jams:Annotator

jams:AnnotatorType

jams-res:program

jams:hasAnnotator

jams:hasAnnotatorType

jams-res:expert_human

jams-res:crowd

prov:wasDerivedFrom
prov:wasMemberOf

jams:Dataset

rdf:type

jams:MusicTimeInterval

jams:hasMusic
TimeInterval

B

jams:JAMSObservation
jams:includes
Observation

jams:AnnotationType

jams:hasAnnotation
Type

mm:CreativeProcess

mm:MusicEntity

mm:creates

core:AgentRole

core:has
AgentRole

mm:MusicArtist core:involvesAgent

mr:MusicContent

mm:AbstractScore

mm:hasMusic
EntityPart

mm:Score

mm:isRealisedIn

mm:Recording
Process

mm:Recording

mm:produces
Recording

mm:isRecordedBy

core:hasTime
Intervalcore:TimeInterval

owl:unionOf

jams:hasJAMS
Annotation
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co
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:in

vo
lv
es
A
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nt

Figure 4.4: Fragment of the JAMS ontology describing JAMS files and their prove-
nance, musical objects and JAMS annotations.

annotation, from a file encoded with the JAMS format, on a musical object (its
target): either a recording or a score. A JAMS annotation entity and its musical
object are put in relation by means of the property jams:hasJAMSAnnotation.
An annotation is performed by an annotator jams:Annotator, has a time va-
lidity jams:hasMusicTimeInterval, and contains information of a certain type
jams:AnnotationType (e.g. chords, keys, etc.). The validity indicates to which
time frame, within a musical object, the annotation refers. For example, if an
annotation reports the observation of a certain key, that key refers to a segment
of the target musical object. Annotators may be of di!erent types (e.g. expert
annotator, software program), and are defined by the class jams:AnnotatorType.
Finally, a jams:JAMSAnnotation is composed of a set of jams:JAMSObservation.
Figure 4.5 depicts the JAMS Ontology fragment that models JAMS observations.

The Provenance Ontology [238] is reused to model the provenance of JAMS
annotations (Figure 4.4, box B). Each JAMS annotation derives from a JAMS file
(jams:JAMSFile) which is either taken or derived (for example, translated from
a file in a di!erent format to the JAMS format) from a dataset jams:Dataset.

A key aspect of observations and annotations is the identification of the musical
object fragment they refer to. We model musical object fragments as musical time
intervals core:MusicTimeInterval. Musical time intervals can be expressed in
di!erent ways, depending on the type of musical object. For example, if the
subject of an observation (and in turn of an annotation) is a recording, then we
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mp:MusicProjection

rdfs:subClassOf

jams:JAMSObservationjams:JAMSAnnotation

mp:Chord

core:MusicTimeInterval

core:MusicTimeDurationcore:MusicTimeIndex
core:hasEndMusic

TimeIndex

core:hasMusicTimeDuration

core:MusicTime
IndexComponent

core:hasMusicTime
IndexComponent

rdfs:Literal

core:hasValue

core:MusicTime
ValueTypecore:hasValueType

core:hasValueType

core:hasValue

jams:hasMusicTimeInterval jams:hasMusicTimeInterval C

Prefixes

rdfs:
jams:
mr:
mp:

http://www.w3.org/2000/01/rdf-schema#
https://w3id.org/polifonia/ontology/jams/
https://w3id.org/polifonia/ontology/music-representation/
https://w3id.org/polifonia/ontology/music-projection/

jams:includesObservation jams:hasSubject

jams:hasChordSubject

core:hasStartMusic
TimeIndex

core:hasMusic
TimeIndex

xsd:int

jams:hasConfidence

Figure 4.5: Fragment of the JAMS Ontology describing JAMS annotations and JAMS
observations. The red block C highlights how the time information has been modelled
for handling di!erent types of formats and standards.

most probably identify its fragments in terms of seconds. If we deal with scores,
we may want to use a combination of measures and beats. To make the ontology
as flexible as possible for expressing musical time intervals, we model them as
being defined by musical time indexes (core:MusicTimeIndex). Each musical
time interval has a start time index and an end time index (plus potentially
infinite internal time indexes). A musical time index is defined by one or more
components (core:MusicTimeIndexComponent), each substantiated by a value
(core:hasValue) and a value type (core:MusicTimeValueType). A musical time
interval also has a duration (core:MusicTimeDuration) which is expressed by
means of a value and a value type (usually seconds for recordings and beats for
scores).

Figure 4.6 shows an example of data from the Wikifonia subset (wikifonia_39 )
annotated using the JAMS Ontology. Starting from the individual highlighted
by the red box (pon-res:AutumnInRomeComposition) we can trace information
related to the piece entitled "Autumn in Rome". The file includes two annotations
(Wikifonia39KeyAnnotation and Wikifonia39ChordAnnotation), derived from
a score, hence their temporal information is expressed as a combination of beats

and measures. The chord annotation (pon-res:Wikifonia39ChordAnnotation)
contains two observations, the first starting at the beginning of the first measure
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Figure 4.6: Example of data modelled using JAMS Ontology, extracted from a track
from the Wikifonia dataset. The track is annotated from a score, therefore annota-
tions and observations contain time references expressed in beat and measure.
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(measure 1, beat 1), while the second starts at the beginning of the second measure
(measure 2, beat 1). They both have a duration of 3 beats.

We remark that the music time interval of an annotation is di!erent, though de-
pendent on, the time interval of its observations: it must include all of them. In the
example of Figure 4.6, the time interval of pon-res:Wikifonia39ChordAnnotation

starts from the beginning of the first measure (measure 1, beat 1) and has a du-
ration of 108 beats.

A JAMS observation, according to the JAMS data model, can only have one
subject (jams:hasSubject), which is a music projection (mp:MusicProjection)
e.g. chord, key mode, pitch. The main musical feature currently treated in
ChoCo is the chord. A chord (mp:Chord) is indeed modelled as a special type
of mp:MusicProjection.

As presented in Section 4.3.1, ChoCo focuses on two chord notations: Harte
and Roman Numerals. In the JAMS Ontology, the Harte notation is addressed
by reusing and adapting the Music Projection module of PON, which casses were
further aligned to the Chord ontology [374]. For modelling Roman Numerals,
we developed the Roman Chord Ontology12, which is part of the Music Analysis
module in PON. Figure 4.7 shows the main features of the ontology, which is
available at the following URI:

https://w3id.org/polifonia/ontology/roman-chord/

The core class roman:Chord defines roman numeral chords. A chord is a com-
plex structure, therefore it is described by means of several properties. The classes
roman:BasicFunction and roman:Quality describe the chord from a functional
harmony perspective and the quality of the chord (e.g. major, minor, augmented),
respectively. The class roman:Note describes the absolute pitch of the bass note,
while the class roman:Interval is used to describe the bass, the internal inter-
vals of the chord and any missing intervals. Each interval is described by the
datatype properties roman:hasDegree, which describes the degree of the interval,
and roman:hasModifier, which describes any alterations to the interval. Finally,
the datatype property roman:inversionType defines the possible type of inver-
sion of the chord.

To streamline this process and simplify its reuse, we also release service APIs
allowing to generate knowledge graphs of roman numeral chords – starting from
their symbol and a reference key. The API service can be queried as follows:

12https://github.com/polifonia-project/roman-chord-ontology

124

https://w3id.org/polifonia/ontology/roman-chord/
https://github.com/polifonia-project/roman-chord-ontology


!
!

“output” — 2025/2/13 — 2:08 — page 125 — #139 !
!

!
!

!
!

4.3. ChoCo: a Chord Corpus and a Data Transformation Workflow for Musical
Harmony Knowledge Graphs

roman:Chordroman:BasicFunction roman:hasBasic
Function

Prefixes

owl:
xsd:
rdfs:
chord:
roman:
pon-res:

http://www.w3.org/2002/07/owl#
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/2000/01/rdf-schema#
http://purl.org/ontology/chord/
https://w3id.org/polifonia/ontology/roman-chord/
https://w3id.org/polifonia/resource/jams/

roman:Quality

roman-res:half-diminished

roman-res:minor

roman-res:augmented

roman-res:major

roman-res:diminished
rdf:type

roman-res:other

roman:hasQuality

roman:Note

roman:has
Interval

roman:Interval

roman:hasMissing
Interval

chord:ScaleInterval owl:equivalentClass

xsd:int xsd:string

roman:hasDegree
roman:hasModifier

xsd:int

roman:hasInversion
Type

roman:hasRootNote

chord:Note owl:equivalentClass

roman:hasBass

Figure 4.7: The Roman Chord Ontology describing Roman Numeral Chords and their
constituting elements.

https://w3id.org/polifonia/resource/roman-chord/[romanChord]_[key]

For example, an API call where the IV53[no3]_C is requested, will return the
knowledge graph illustrated in Figure 4.8.

Knowledge Graph construction. To build the ChoCo Knowledge Graph
(ChoCo KG) we propose jams2rdf, an open-source tool to convert any JAMS file
to RDF, with the following usage:

jams2rdf.py <input_jams_file> [<outout_rdf_file>].

jams2rdf relies on SPARQL Anything [81], a tool supporting querying with
SPARQL any data from any file format. We use SPARQL Anything’s JSON
module to define a SPARQL CONSTRUCT query template that generates ChoCo
triples according to the JAMS Ontology (Figure 4.4). This allows for a modular
design, as di!erent conceptualisations, ontologies and triplifications for JAMS can
be added in separate, independent SPARQL queries. We also publish additional
queries to facilitate the extract and the manipulation of specific JAMS fields from
the KG.

To build the ChoCo KG, we iteratively run jams2rdf using the query template
over our entire collection of curated JAMS files. This yielded ↗ 30 milion RDF
triples.
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Figure 4.8: Example of a Knowledge Graph generated using the Roman Chord Ontology
on a IV53[no3] chord.

More statistics on the ChoCo KG can be found in the Melody portal of the
Polifonia Project13.

4.3.2 Data Records

The descriptive statistics reported in this section provide an overview of ChoCo
at two di!erent levels: the metadata associated to the music tracks and scores in
the dataset (the musical content being annotated), including their identifiers and
links; and the actual content of the music annotations.

In ChoCo v1.0 [90] (from now on, ChoCo), the dataset contains 20,086 JAMS
files: 2,283 from the audio collections, and 17,803 collected from symbolic mu-
sic. In turn, these JAMS files provide 60,263 di!erent annotations: 20,530 chord
annotations in the Harte notation (c.f. Section 4.3.1), and 20,029 annotations
of tonality and modulations – hence spanning both local and global keys, when
available. Besides the harmonic content, ChoCo also provides 554 structural anno-
tations (structural segmentations related to music form) and 286 beat annotations
(temporal onsets of beats) for the audio subsets.

13https://projects.dharc.unibo.it/melody/choco/chord_corpus_statistics
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Metadata and external links

The average duration of the annotated music pieces is 191.29 ± 85.04 seconds
for (audio) tracks; with a median of 104 measures for symbolic music, and In-
terquartile range IQR = Q3→Q1 = 168→42 = 126 (Q1, Q3 denote first and third
quartiles, respectively). As illustrated in Figure 4.9, this provides a heterogeneous
corpus with a large extent of variability in the duration of pieces, which also con-
firms the diversity of musical genres in ChoCo (Table 4.1). For instance, a folk
tune can span a few measures and still possess a musical identity with respect to
the genre; in contrast, a sonata can cover hundreds of measures.

Figure 4.9: Distribution of audio track (left) and score (right, log-x scale) durations,
measured in seconds and measures, respectively.

From the metadata extraction of the JAMification step (c.f. Section 4.3.1), it
was possible to disambiguate 2421 artists as performers – which represent 12.05%
of the dataset, and a total of 7,304 as composers (36.36% of ChoCo). This implies
that the remaining 51.59% of JAMS files only provide generic artist information
(with no distinction between composers and performers), whereas another small
portion of the dataset – corresponding to the JazzCorpus (0.37% of ChoCo), does
not provide any metadata. An overview of the ten most common performers and
composers is reported in Figure 4.10, with “The Beatles” and “Franz Schubert”
being the most recurring names, respectively.

Figure 4.10: Overview of the ten most common performers (left) and composers (right)
in the dataset, when explicitly distinguishable from their generic “artist” attribution
in the metadata.
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The JAMS files in ChoCo also contain 771 links to other resources, representing
about 3.8% of the dataset. These were extracted from the original collections,
and automatically verified and corrected for validity (link/identifier working) and
consistency (disambiguation of the resource pointed, e.g., musical work, recording,
and release). Most links point to MusicBrainz (78%), whereas a few of them link
to Wikidata (6%), IMSLP (6%), YouTube (5%), and to other datasets (5%).

In addition to these explicit links, which can already be found in the JAMS
files, we also link the resources in the ChoCo KG to two other large-scale music
datasets on the Web:

1. MIDI Linked Data Cloud [272]. The ChoCo chord annotations can be
useful for harmonic analyses of existing scores and symbolic music represen-
tations, e.g. MIDI. To link MIDI URIs with ChoCo URIs, we compare the
string similarity of the original MIDI filename and the JAMS file_metadata

name, both typically containing the band/artist and song names, and link
them through midi:midiOf if their similarity is >.80. This yields 2,411
links. However, we do not inspect the musical content to establish this link-
age, meaning that the harmonic annotation of a sonata in C minor would be
linked to the same sonata in D minor, as long as their titles are highly sim-
ilar. Therefore, the verification and the provision of links that are musically
plausible (beyond the metadata) are currently under investigation.

2. Listening Experience Database (LED) [4]. Relating harmonic proper-
ties of pieces and their evolution to music listening experiences throughout
history is also another promising direction. For those listening experiences
that are explicitly associated to a musical work through dc:subject and
mo:performance_of (where dc and mo prefix Dublin Core and Music Ontol-
ogy, respectively), we extract links with ChoCo’s resources via text similarity
of work titles (using the same criteria as before). Links can be further fil-
tered whenever a musical work in LED also provides a reference to the artist
(via mo:composer or mo:performer). Overall, this yields 1996 links.

These additional links open up new research directions, as they allow to relate
harmonic content (chord changes, harmonic complexity, tension, etc.) to other
musical properties that are inherently present in the music (melodic contour,
expressive variations, instrumental changes, etc.), or that may have been elicited
certain emotions, memories, and feelings in listeners. Here we report an example
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of a listening experience of “So What” in LED14, which was linked to 8 chord
annotations in ChoCo.

«What do you mean by playing "without harmony"? Using a pedal tone,
which Coltrane got into after a period of very dense harmonic playing.
He would use one or two harmonic references throughout a song, as he
did on “So What” [from Miles Davis’s Kind of Blue, on Columbia]. It
was basically D for sixteen bars, E flat for eight bars, and then back to
D. Ultimately, he worked with only one harmonic reference point, and
then in "Ascension" [from Best of John Coltrane: His Greatest Years,
on Impulse] there was nothing harmonically.» (Steve Kuhn in “The
Great Jazz Pianists: Speaking of Their Lives and Music”)

Overview of chordal annotations

This section provides statistics on the content of chord annotations in ChoCo,
their observations and temporal onsets; similar statistics can also be extracted for
tonality annotations (local and global keys), but are excluded here to focus on
chordal content.

Overall, and without any simplification/collapsing of chords, there are 1, 575, 409
chord occurrences/observations in ChoCo, with an average annotation having 76
chords (Figure 4.11, left). When looking at the unique chord occurrences in the
harmonic progressions (chord classes) – measuring the chordal diversity of the
annotations, the dataset counts 306,407 chords, which are drawn from a set of
7,281 possible classes. An annotation, on average, uses 14.92±11.10 chord classes
(Figure 4.11, right). The median duration of chord observations in audio and
score JAMS is 1.6 (Q1 = 1.12, Q3 = 2.15) seconds and 3.06 (Q1 = 2.33, Q3 = 4)
beats, respectively (Figure 4.12). For most statistics reported in this section, we
observe right skewed distributions (long tails on the right side) as negative values
(e.g. negative durations) cannot occur; and we report log-x plots for convenience.

The fifteen most common chords in ChoCo, based on their absolute and relative
occurrences, are reported in Figure 4.13 (left). Absolute counts are obtained by
accumulating the chord counts for each annotation/progression across the dataset
(as if all annotations refer to the same piece). Instead, relative counts are com-
puted by first normalising the absolute counts of each annotation by the number

14https://data.open.ac.uk/page/led/lexp/1431335026178
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Figure 4.11: Distribution of the number of chord observations per annotation (left,
linear scale) and their distinct chord classes (right, log-x scale). The latter can also
be considered as the cardinality of the chord set used by each annotation.

Figure 4.12: Distribution of chord durations for audio (left, seconds) and symbolic
(right, beats) annotations on log-x scale.

of chord observations in the progression; then averaging the resulting chord fre-
quencies across all annotations. Analogously, Figure 4.13 (right) reports the same
statistics after removal of consecutively repeated chords. This pre-processing step
aims to mitigate consecutive repetitions (which may arise due to the di!erent
temporal granularity of chord observations, or possess a harmonic function) from
inflating the chord count. Regardless of the counting method, the three most
common chords in the dataset are: C:maj, G:maj, and F:maj.

A similar analysis is also reported for chord n-grams, which are typically used

Figure 4.13: Absolute and relative occurrences of chord classes in the original anno-
tations (left, centre-left), and after removal of consecutively repeated chords (right,
centre-right). Absolute occurrences are counted and accumulated throughout the cor-
pus, whereas relative occurrences are first aggregated per annotation, as frequencies,
then averaged across the whole dataset. Note that the “N” chord class denotes the
“silent chord” as per the Harte notation (obtained for all subsets).
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to find harmonic patterns in songs. To avoid trivial n-grams, these are com-
puted after removal of consecutive repetitions (e.g. G:7, G:7, C:maj becoming
G:7, C:maj). Table 4.4 ranks the first 10 n-grams based on their relative count
(frequency).

To conclude, the number of chord annotations for which the identity of the
annotators is known is 796 (3.9% of the dataset).

Order Rank Chord 1 Chord 2 Chord 3 Chord 4 Frequency Occurrences

2

1 G:maj C:maj - - 9.894371e-07 11560
2 C:maj G:maj - - 9.314316e-07 9968
3 C:maj F:maj - - 8.578674e-07 9837
4 D:maj G:maj - - 8.447899e-07 11229
5 G:7 C:maj - - 8.270923e-07 12590
6 G:maj D:maj - - 8.236944e-07 9591
7 F:maj C:maj - - 7.588854e-07 8547
8 D:7 G:maj - - 7.092709e-07 10673
9 A:maj D:maj - - 6.319998e-07 6925
10 C:7 F:maj - - 6.247398e-07 10362

3

1 G:maj C:maj G:maj - 4.156081e-07 4487
2 C:maj F:maj C:maj - 4.022300e-07 4167
3 D:maj G:maj D:maj - 3.518498e-07 4473
4 C:maj G:maj C:maj - 3.210295e-07 3209
5 G:maj D:7 G:maj - 2.757892e-07 3411
6 G:maj D:maj G:maj - 2.755515e-07 3483
7 C:maj G:7 C:maj - 2.685492e-07 3371
8 F:maj C:maj F:maj - 2.601499e-07 2660
9 A:maj E:maj A:maj - 2.201239e-07 1767
10 A:maj D:maj A:maj - 2.151695e-07 2450

4

1 G:maj C:maj G:maj C:maj 1.984606e-07 1933
2 C:maj G:maj C:maj G:maj 1.897574e-07 1746
3 C:maj F:maj C:maj F:maj 1.840459e-07 1693
4 F:maj C:maj F:maj C:maj 1.759950e-07 1509
5 D:maj G:maj D:maj G:maj 1.647309e-07 2256
6 G:maj D:maj G:maj D:maj 1.609514e-07 2105
7 D:7 G:maj D:7 G:maj 1.587393e-07 1873
8 A:maj E:maj A:maj E:maj 1.497483e-07 998
9 E:maj A:maj E:maj A:maj 1.453102e-07 1067
10 G:7 C:maj G:7 C:maj 1.338413e-07 1593

Table 4.4: Summary of the most common chord n-grams (n = 2, 3, 4), ranked by their
relative occurrence (frequency) per chord annotation. The last column reports the
corresponding total number of n-gram occurrences in the dataset (no aggregation).
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4.4 Technical Validation

To validate the data transformation workflow presented in Section 4.3.1 (Fig-
ure 4.1), focusing on the output of the JAMifier (generation of JAMS files from
arbitrary chord collections) and the Chonverter (chord alignment and conversion)
modules, we conducted two separate analyses: a groundtruth evaluation of JAMS
files, and an expert validation of chord conversions.

4.4.1 Validation of the JAMifier

As the goal of the JAMifier is to automatically generate a JAMS dataset given a
music collection providing chord annotations and metadata in di!erent formats,
notations, and conventions, this first evaluation addresses the following question.

How complete and accurate are ChoCo’s JAMS files – for metadata
and harmonic annotations, after the JAMification?

To answer this question, we carried out a series of tests to compare a sample of
generated JAMS files with those that are expected from this process. This required
the creation of a groundtruth dataset of JAMS files that were manually produced
by two human annotators from a given template (the backbone of a JAMS file),
and through manual inspection of the original collections. For example, given
a sample of the Wikifonia subset, the validator was expected to fill the JAMS
template by: opening the MusicXML file of each assigned piece; inserting the
relevant metadata (title, composer, duration, etc.) into the appropriate fields; and
finding the (Leadsheet) chord labels annotated on the score – to create a JAMS
Observation out of each of them. Annotators were first instructed on the task,
and a preliminary annotation trial was performed to assess their reliability. After
the trial, annotators received 4 templates for each subset and produced 72 gold
JAMS files in total. The corresponding JAMification output is then compared to
the groundtruth to measure: (i) the coverage and the accuracy of the metadata;
and (ii) the coverage and error of chord and key annotations.

For the metadata, coverage is computed as the proportion of metadata fields
in the gold JAMS that can also be found in the generated JAMS, regardless of
their values. For example, if title, composers, genre, and duration are the expected
metadata fields for a given JAMS file, and the generated counterpart only provides
records for title and duration, coverage would account for 0.5 (even if both title and
duration are incorrect). To provide a complementary view, metadata accuracy

132



!
!

“output” — 2025/2/13 — 2:08 — page 133 — #147 !
!

!
!

!
!

4.4. Technical Validation

of common fields is computed as the normalised Levenshtein similarity among
the generated and expected values for strings; or as the relative variance from
the expected value for numerical fields (e.g. duration). The accuracies are then
averaged for each JAMS file.

The results of this evaluation are reported in Table 4.5, aggregated for each sub-
set and separated from the identifiers that were extracted from the JAMification
(e.g. MusicBrainz, Wikidata – c.f. Section 4.3.2). Overall, maximum accuracy
and coverage are attained for most collections, and all the possible identifiers are
always extracted with no errors.

metadatametadata identifiersidentifiers
coverage ↘ accuracy ↘ coverage ↘ accuracy ↘

subset
biab-internet-corpus 0.95 ± 0.1 0.9243 ± 0.0835 - -
billboard 1.0 ± 0.0 1.0 ± 0.0 - -
chordify 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
ireal-pro 1.0 ± 0.0 1.0 ± 0.0 - -
isophonics 1.0 ± 0.0 1.0 ± 0.0 - -
jaah 0.8036 ± 0.0595 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
jazz-corpus 1.0 ± 0.0 1.0 ± 0.0 - -
mozart-piano-sonatas 0.875 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
nottingham 1.0 ± 0.0 1.0 ± 0.0 - -
real-book 1.0 ± 0.0 1.0 ± 0.0 - -
robbie-williams 1.0 ± 0.0 1.0 ± 0.0 - -
rock-corpus 1.0 ± 0.0 1.0 ± 0.0 - -
rwc-pop 1.0 ± 0.0 0.9999 ± 0.0001 - -
schubert-winterreise 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
uspop2002 1.0 ± 0.0 0.9661 ± 0.062 - -
weimar 1.0 ± 0.0 0.9878 ± 0.0243 1.0 ± 0.0 1.0 ± 0.0
when-in-rome 0.7976 ± 0.0558 0.9608 ± 0.0694 - -
wikifonia 0.95 ± 0.1 0.95 ± 0.1 - -

Table 4.5: Average coverage and accuracy of metadata and identifiers in the generated
JAMS files, per ChoCo subset. The dash symbol denotes a subset that does not
provide any identifiers.

For the harmonic annotations in the JAMS files, comparison with the gold
counterparts is focused on coverage and error – reported independently for times
(e.g. the onset of a chord occurrence), durations (e.g. how long a chord occurrence
spans), and labels (e.g. a C:maj chord) of the observations in each annotation.
The evaluation is thus in line with the structure of an observation in JAMS’ an-
notations (see Section 4.3.1 and Listings 4.1, 4.2). In this case, coverage measures
the amount of the overlap between the generated and the expected observation
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fields, without taking order into account (this is because an extra observation
may have been inserted by the annotator, thus breaking the desired alignment for
comparison). For example, if (C:maj, G:maj, D:7, F:maj) and (N, C:maj, G:maj,
D:7) are the labels of a generated chord annotation and the corresponding gold,
respectively, the silent chord “N” breaks the alignment of those sequences. In
this case, coverage would still be 3/4, as all the other chord labels are included in
generated annotation. Instead, errors are computed from a 1-to-1 comparison of
fields – which are assumed to be aligned. The latter can be reported according to
the unit of measure of each field: seconds and beats for time and duration, and
normalised Levenshtein distance for labels (string values).

Key coverages ↘Key coverages ↘ Key errors ≃Key errors ≃ Chord coverages ↘Chord coverages ↘ Chord errors ≃Chord errors ≃

subset type time duration label time duration label time duration label time duration label

billboard audio 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
chordify audio 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
isophonics audio 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
jaah audio 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.95 ± 0.1 0.95 ± 0.1 1.0 ± 0.0 0.06 ± 0.13 0.06 ± 0.13 0.0 ± 0.0
robbie-williams audio 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
rwc-pop audio - - - - - - 1.0 ± 0.0 0.53 ± 0.45 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
schubert-winterreise audio 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
uspop2002 audio - - - - - - 1.0 ± 0.0 0.3 ± 0.26 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
weimar audio 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
biab-internet-corpus score 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.95 ± 0.1 1.0 ± 0.0 1.0 ± 0.0 0.05 ± 0.1 0.0 ± 0.0 0.0 ± 0.0
ireal-pro score 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.00 0.0 ± 0.0 0.0 ± 0.0
jazz-corpus score 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
mozart-piano-sonatas score 0.5 ± 0.58 0.0 ± 0.0 0.5 ± 0.58 62.55 ± 125.03 139.75 ± 83.75 0.25 ± 0.29 0.85 ± 0.3 0.88 ± 0.25 0.75 ± 0.5 0.25 ± 0.5 0.15 ± 0.19 0.15 ± 0.3
nottingham score 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.75 ± 0.25 1.0 ± 0.0 1.0 ± 0.0 0.85 ± 0.6 0.0 ± 0.0 0.0 ± 0.0
real-book score 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
rock-corpus score 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
schubert-winterreise score 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
when-in-rome score 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
wikifonia score 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0 0.92 ± 0.17 0.75 ± 0.35 0.0 ± 0.0 0.1 ± 0.2 0.11 ± 0.18

Table 4.6: Evaluation of chord and key annotations in the generated JAMS files on
the test samples, reported for times, durations, and labels of their observations, and
averaged for each subset. Coverage of observation values ranges from 0 (all the
expected values are not found in the generated annotation) to 1 (all the expected
values are included). Errors are given as seconds (audio) or beats (symbolic) for
times and durations, respectively; and as normalised text similarities for labels.

Table 4.6 reports the results of this last evaluation for both key and chord
annotations, where each metric is averaged by subset (mean and standard devi-
ation). Results show good coverage and minimum error for most subsets, thus
confirming the quality of the JAMification output. An exception is the Mozart Pi-
ano Sonata collection, for which low coverage and high errors are reported for key
annotations. After having manually compared the JAMS sample for this subset,
we found that the observations annotated by our validators in the gold set used
a di!erent temporal granularity (e.g. merging two consecutively repeated obser-
vations and aggregating their time and duration), compared to the JAMification
output. Although this a!ected the evaluation results, both these annotations can
be deemed equivalent.
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4.4.2 Validation of the Chonverter

Following the data transformation workflow illustrated in Figure 4.1, we recall that
the output of the JAMification step that does not natively provide Harte chord
labels undergoes an alignment/conversion process through the Chonverter. First,
the Chonverter aligns chord labels to one of the three chord families introduced
in Section 4.3.1, namely: Leadsheet (Harte), Roman, and Polychord. Then, a
syntactic conversion is performed on each chord class, independently, to infer the
corresponding Harte label. Evaluating the output of the Chonverter can thus be
formulated as follows.

How accurate and musically plausible are the chord alignment and
chord conversion steps?

Conversely to the previous evaluation, addressing this question requires mu-
sical expertise and familiarity with di!erent chord notations. Therefore, we per-
formed a 2-step evaluation with music experts to validate the alignment and the
conversion rules. Four participants with at least 5 years of musical training were
recruited for this experiment. Participants were first introduced to the task, and
asked to express their level of familiarity with the di!erent chord notations, and
the validation methodology. Given the nature of the validation, no personal record
was recorded from participants and minimal risk clearance was granted from the
Research Ethics O"ce of King’s College London (registration number: MRSP-
21/22-32842).

Step 1 The first step focused on validating the context-free grammars used to
parse chords in the original formats and aligning them to the correspond-
ing chord families. Participants were presented with 3 di!erent grammars,
including 250 mapping rules to validate. Whenever a rule was deemed
incorrect, participants were asked to provide the expected mapping.

Step 2 Once chords were converted, the final result of the conversion was val-
idated. This step also allowed for the validation of other conversion types
that were not validated in Step 1, such as Roman numerals and Polychords.
In addition, even for annotations originally provided in Leadsheet, this step
allows for the validation of added/removed notes and inversions.

The first step allowed to validate all the grammar rules used for decomposing
leadsheet chords into their constituting degrees. Each grammar consists of a set
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Subset Validated chords Chord type Correct conversions Incorrect conversions Accuracy ↘

ireal-pro 39 leadsheet 37 2 0.949
rock-corpus 40 roman 40 0 1.000
weimar 37 leadsheet 37 0 1.000
when-in-rome 40 roman 40 0 1.000
wikifonia 40 leadsheet 39 1 0.975

average 196 all 193 3 0.985

Table 4.7: Evaluation of chord conversions performed by music experts on a selection
of ChoCo subsets.

of shorthands grouped into classes. For example, the class referring to minor
chords is composed of the shorthands "m" and "min". Each class is then mapped
to the degrees that compose that type of chord: for minor chords, the degrees
associated with that class are 1, b3, 5. This type of validation was required due
to the limited musical background of the dataset’s curators. All grammar rules
reported incorrect by the experts were corrected and revised. A total of 27 rules
within the validated grammars were updated. The corrections were of two main
types: i) correct shorthands but incorrect degrees: the group of shorthands assigned
to degrees was correct, but the degrees into which the chord was decomposed
had one or more errors; ii) inconsistent group of shorthands: the grouping of
shorthands in classes was incorrect. In this case, the shorthand(s) not belonging
to the class was moved to the correct class if it existed, otherwise a new class was
created. This implies that the preliminary chord alignment of the Chonverter is
potentially error free.

The second validation step consisted in distributing spreadsheets in which the
original chords were shown in the first column whereas the second column showed
the chords converted by the Chonverter module. Before starting this validation
phase, all participants were provided with a thorough documentation of all types
of annotation used, including Harte. Furthermore, chords annotated in the Roman
Numeral format, which had not been validated in the previous step, were tested
for the first time. Experts were asked to mark whether the conversion to the
Harte format was correct or not. The evaluation results are as the percentage of
corrected chords out of the total (Table 4.7).

4.5 Usage Notes

The availability of a large chord dataset, providing high-quality harmonic an-
notations with temporal information, content metadata, and links to external
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resources, is of considerable interest to several research communities. In the field
of MIR, chord datasets are a fundamental prerequisite for training and evaluat-
ing content-based music algorithms that can accommodate a variety of tasks –
from chord recognition and cover song detection, to automatic composition sys-
tems. For musicology and computational music analysis, the scale and diversity of
ChoCo [90] would enable large scale cross-corpus studies across di!erent musical
periods, genres, and artists (e.g. uncovering potential influences), and the KG can
also be leveraged to run complex queries entailing certain musicological properties
of chords, rather than relying exclusively on their notation-specific label. Also the
SW community would benefit from the introduction of high quality chord data
that can be linked to existing Web resources. In turn, this opens up new scenarios
and research opportunities for the aforementioned communities.

4.5.1 Applications and tasks

Given the diversity, size, and quality of the corpus, we expect ChoCo to enable
novel applications in Music Technology, other than supporting the design and
the evaluation of methods addressing specific tasks in both MIR and computa-
tional music analysis. Besides the aforementioned applications in music listening
and recommendation, another case study involves the advancement of systems
for machine creativity. In the context of our work, these include automatic (or
semi-automatic) composition, with particular focus on arrangement generation
[358] (generating a chord progression, possibly given a melody to accompany);
and melody generation through harmonic conditioning [128] (generating a melody
to play along with a chord progression that is provided as a harmonic template).
In ChoCo v1.0, this is enabled by the integrated Wikifonia and Nottingham col-
lections; and in future versions, with melodic data from Rock Corpus, Weimar,
and the Band-in-a-Box collections.

Not only does ChoCo support the creative capabilities of such systems – by
providing a considerable amount of quality training data, but it also contributes
to their automatic evaluation. In fact, the evaluation of music generation sys-
tems has recently attracted a growing interest in the field, due to the concerning
ethical implications these tools are raising [370]. On one hand, this involves the
extraction of statistical features quantifying the degree of alignment between a
generated repertoire and the training material, with respect to certain musical
properties [415]; on the other hand, it concerns the detection of potential sources
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of plagiarism in generated music within and beyond the training set [419].
Another application domain that can benefit from the Chord Corpus is that

of music pedagogy. For example, TheoryTab15 allows users to choose from a
repertoire of popular songs and visualise their harmonic/melodic structure during
playback – with chords encoded in both Leadsheet and Roman notations, and
projected in such a way as to facilitate the theoretical understanding of the song.
Chordify uses chord recognition systems to infer and align chord progressions from
audio recordings, and provides support for practising them with guitar, piano, and
ukulele. Despite their value, both the technology and the data powering these
commercial tools are not openly available, thereby decreasing their overall wider
use. In contrast, ChoCo provides an attractive open and linked solution, with
its modular architecture enabling the semantic description of chords according
to the desired level of complexity and granularity (e.g. an educational ontology
for chords might provide a simpler vocabulary). This makes it more suitable for
educational purposes.

In the context of MIR, the use of ChoCo can support a multitude of tasks.
The nature of its contribution is twofold: (i) it provides an unprecedented amount
of training data, which is often essential for the e!ectiveness of supervised meth-
ods; (ii) it contributes to the development of graph-based methodologies for music
analysis that can leverage the semantic representation of chord progressions. For
instance, a central research area in MIR is music similarity, which in turn encom-
passes a number of interrelated tasks, including cover song detection – useful for
music cataloguing and to support court decisions in music plagiarism [281]; and
content-based music retrieval, aiming to search scores or performances from mu-
sical repositories using either symbolic queries, singing (alias query-by-humming),
or by playing a smart instrument [390]. Another example of a MIR task that
would benefit from ChoCo is music structure analysis [96], which is concerned
with the detection and labelling of structural segments related to musical form –
a task that strongly relies on the use of harmonic/melodic features [17]. Other
tasks of interest include music tagging [31], such as music genre/style classification
and composer/artist identification. Finally, examples of tasks of musicological in-
terest that would benefit from ChoCo include pattern mining, cadence detection,
and local key identification.

15https://www.hooktheory.com/theorytab
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Figure 4.14: Overview of responses to Questions 2 (music domains, left), and 3 (data
types, right) in the survey.

4.5.2 Online survey

Since ChoCo is a new resource for the SW, MIR and Musicology communities,
we discuss here evidence for potential adoption. To gather such evidence, we
performed an online survey in which we directly ask potential adopters 10 ques-
tions regarding their background, relevance, and interest in working with chord
data. The online survey was distributed in the SW, International Society for MIR
(ISMIR), and Digital Musicology mailing lists, gathering a total of N = 53 re-
sponses. The survey was conducted via Google Forms – without recording any
personal data from participants or any contact information.

Results are illustrated in Figures 4.14 and 4.15. Except for questions 1-3 and
12 (multiple choices), all questions ask participants to quantify the agreement with
the statement made from 1 (absolutely disagree) to 5 (absolutely agree), 3 being a
neutral response (neither agree nor disagree). In the first three questions we assess
the background of the respondents, finding that 38 work in MIR, 27 in Musicol-
ogy, 13 in SW, and 5 are also involved in other fields (AI, Music Theory, Music
Interaction). Most respondents do research or industrial practice using audio (29)
or symbolic music (33), or both (18), focusing primarily on structured data when
conducting content-based music studies (Figure 4.14). Nevertheless, music re-
searchers also make extensive use of unstructured data and music databases, and
13 of them (24% of respondents), utilise RDF data.

From questions 4-11 we found that: 64% of respondents have encountered the
need for chord datasets providing high-quality timed annotations of harmonic pro-
gressions, covering one or more genres/styles; 47% believe that currently existing
chord datasets are not of su"cient size for their practise (whereas 41.5% have a
neutral position); about 60.3% argue that such datasets do not provide content
metadata su"ciently rich and informative to their needs (with another 35.8% be-
ing neutral); and 51% believe that links to external resources (e.g. MusicBrainz,
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Figure 4.15: Questions and overview of responses for Questions 4-11 from the online
survey.

Wikidata, etc.) are rarely provided (40% are neutral). Each research commu-
nity strongly recognises the value of a dataset like ChoCo as a key resource for
their field: MIR ( 91.3%), SW (71.4%), Musicology (92.7%), and overall, 75.4%
of respondents expressed their interest in using such a dataset.
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4.6 Data Availability

The ChoCo dataset and Knowledge Graph, together with the ontological ecosys-
tem and code, are publicly available from several repositories (c.f. Table 4.2). As
detailed in Section 4.3.1, ChoCo is currently released in 2 modalities:

• As a JAMS dataset, where audio and score annotations are distinguished
by the type attribute in their Sandbox; and temporal/metrical information
is expressed in seconds (for audio) and measure:beat (for scores) (c.f. Sec-
tion 4.3.1);

• As a Knowledge Graph, based on our JAMS ontology to model music an-
notations (c.f. Section 4.3.1), and on the Chord and Roman ontologies to
semantically describe chords; Table 4.2 also provides links to a live SPARQL
endpoint.

We have implemented a number of actions to ensure that these outputs are
in compliance with the FAIR Guiding Principles for scientific data management
and stewardship [406]. A GitHub repository hosts data, code, and instructions16,
to fully reproduce the corpus creation from the original collections. To improve
reproducibility, the repository also provides a Docker image for the project (plat-
form agnostic). To improve data consistency, both the latest versions of ChoCo
(JAMS file and RDF triples) are available on Zenodo, in synchronisation with
GitHub releases.

Via GitHub and Zenodo, the ChoCo project has a unique and persistent iden-
tifier and is registered in a searchable source. Additionally, via our integration
framework, ChoCo contains fine-grained provenance descriptions that allow to
keep track of the original source of each harmonic annotation – both in terms of
annotators (the person who contributed the harmonic analysis) and data curator
(the maintainer of the original collection).

Finally, to comply with the original collections, all data and code in ChoCo is
released under the Creative Commons Attribution 4.0 licence (CC-BY 4.0), with
the exception of the JAAH, CASD, and Mozart Piano Sonata subsets – which
follow the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 inter-
national licence (CC-BY-NC-SA 4.0). This required an in-depth analysis of the
licensing policies of the integrated collections (see Table 4.8). Indeed, for 7 collec-
tions, we could not find any specific licensing information from related scientific

16https://github.com/smashub/choco
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ChoCo subset Original licence ChoCo licence

Isophonics Not specified CC BY 4.0
JAAH CC BY-NC-SA 4.0 CC BY-NC-SA 4.0
Schubert-Winterreise CC BY 3.0 CC BY 4.0
Billboard CC0 CC BY 4.0
Chordify Annotator Subjectivity Dataset CC BY-NC-SA 4.0 CC BY-NC-SA 4.0
Robbie Williams Not specified CC BY 4.0
Uspop-2002 Not specified CC BY 4.0
RWC-Pop Not specified CC BY 4.0
Real Book Not specified CC BY 4.0
Weimar Jazz Database ODbL CC BY 4.0
Wikifonia public domain CC BY 4.0
iReal Pro public domain CC BY 4.0
Band-in-a-box Not specified CC BY 4.0
When in Rome CC BY-SA 3.0 CC BY 4.0
Rock Corpus CC BY 4.0 CC BY 4.0
Mozart Piano Sonata CC BY-NC-SA 4.0 CC BY-NC-SA 4.0
Jazz Corpus Not specified CC BY 4.0
Nottingham Not specified CC BY 4.0

Table 4.8: Licensing per ChoCo subset. The second column details the licence de-
clared by the data curator of the corresponding subset; it indicates “not specified”
whenever this information was not made explicit in articles, web-pages, collection
metadata, repositories, etc. The last column refers to the licence attributed to the
standardisation-integration output for each subset within ChoCo – which is made
compliant to the original licence, as derivative work. Please, note that all the au-
thors of the “not specified” subsets were contacted to verify whether the use of a
CC-BY licence was compliant to their data publishing policies.

articles, technical reports, online resources, repositories, dataset metadata, and
so forth. For these cases, the authors of these collections were contacted and con-
firmed whether the use of the CC-BY 4.0 licence – on our derivative integration
work – was compatible with their original releasing strategies.

4.7 Conclusion

In this chapter, we presented the Chord Corpus (ChoCo) as both a resource and
a structured workflow for standardising and integrating symbolic datasets. This
dual contribution directly addresses fragmentation issues in chord datasets by
o!ering a scalable approach for unifying diverse digital formats and annotation
practices. The proposed workflow, employed on the use case of harmonic data,
guided the curation, transformation, and integration of over 20, 000 high-quality
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harmonic annotations from 18 di!erent chord datasets, leveraging the JAMS data
structure as a unifying annotation model.

The resulting ChoCo KG, generated through this workflow, achieves three lev-
els of interoperability – metadata, annotation format, and chord notation – by
using a standardised framework for parsing and representing diverse notational
systems. This not only enhances data accessibility but also creates opportunities
for advanced semantic analysis, as evidenced by the inclusion of 4, 000+ links
to external datasets, as well as for large-scale musicological and computational
studies. Furthermore, the relevance of ChoCo was further underscored by a sur-
vey conducted with potential users from the MIR and SW communities, which
demonstrated substantial interest in adopting the dataset and workflow.

For future work, we plan to expand ChoCo by incorporating additional har-
monic data, further broadening its scope and application. Beyond harmonic data,
the standardised workflow proposed in this chapter could be employed to pro-
duce new corpora containing various types of music annotations. In this regard,
ChoCo’s workflow and the JAMS ontology have already been applied to represent
a corpus of melodic pattern data [353]. Building on this approach, the workflow
could be adapted to generate additional corpora focused on melodic, structural, or
rhythmic annotations, enriching the resources available for diverse musicological
and computational studies.
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CHAPTER5
Uncovering Harmonic Similarity: From
Musicological to Creative Exploration

5.1 Introduction

The creation of large, harmonized corpora of symbolic harmonic annotations opens
up new opportunities for exploring harmonic data on an unprecedented scale, as
discussed in Section 4.5. The integration of diverse datasets facilitates analy-
ses across a broader range of musical genres, styles, and total number of artists
and tracks in general, o!ering deeper insights into harmonic content that were
previously hindered due to the fragmentation of the data sources.

Since the inception of MIR, similarity has been a fundamental paradigm guid-
ing the exploration and the organisation of musical datasets. While contextual
metadata plays an important role in organizing datasets and collections, content-
based similarity o!ers several key advantages, as described in [221]: (i) it provides
an objective method for comparing pieces; (ii) it does not rely on the availabil-
ity of metadata, which can often be incomplete or inconsistent; (iii) it helps to
overcome issues with improperly labelled pieces and ambiguous identifiers [222];
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and (iv) it mitigates problems related to the long-tail in music recommendation
systems, such as the “popularity bias” or the “cold-start” problems [262].

Traditionally, most content-based music similarity research has focused on au-
dio data [109]. However, these approaches often rely on end-to-end algorithms
that lack interpretability, making it di"cult to understand why certain tracks are
considered similar. This lack of transparency can introduce biases into similar-
ity measures and obscure the commonalities between distinct tracks, resulting in
challenges when attempting to explain the reasoning behind the system’s out-
comes [231].

An alternative to audio-based methods is symbolic music similarity, which by
design o!ers a more explainable approach. Over the past decade, symbolic sim-
ilarity has been applied to various tasks, including cover song detection [101],
genre classification [12], variation recognition [157], music search [84], and plagia-
rism detection [409]. While melodic similarity has received substantial attention,
the study of harmonic similarity has not garnered as much focus in recent years.
To date, state-of-the-art methods include the TPSD method [104] and the CSAS
approach [175]. However, these methods often rely on global harmonic align-
ment, limiting their ability to detect local harmonic similarities and restricting
the exploration of shared harmonic patterns among di!erent musical works.

By utilizing symbolic harmonic annotations, this research proposes novel simi-
larity measures that account for both global and local harmonic structures. A core
objective is to demonstrate that large, unified corpora enable scalable, in-depth
studies of harmonic similarity that were previously hindered by fragmented data.

In this chapter, we explore how the large-scale, harmonized corpora of sym-
bolic annotations developed in Chapters 3 and 4 can be leveraged, alongside new
similarity measures, to support both musicological exploration and music compo-
sition. In particular, we investigate how these similarity measures can empower
researchers to navigate and analyse vast harmonic datasets, uncovering hidden
patterns and connections across genres, musical works, and historical periods.
For composers, we explore how these tools o!er harmonic inspiration drawn from
diverse genres and styles, sparking creativity through harmonic ideas and sugges-
tions that may not be immediately apparent.

To achieve this, we present two main contributions: LHARP and Harmory,
each implementing distinct similarity functions and tested in two di!erent con-
texts—musicological analysis and assisted creativity, respectively.
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5.1.1 Harmonic Similarity for Musicological Exploration

Musicological exploration enhances our ability to organize and navigate large
repositories of musical data, making meaningful browsing possible for researchers
and users alike. As Pampalk notes, “The value of a large music collection is lim-
ited by how e"ciently a user can explore it” [297]. With access to extensive,
harmonized corpora of symbolic harmonic annotations, coupled with advanced
similarity measures, researchers can systematically investigate harmonic struc-
tures across genres, historical periods, and stylistic practices.

Moreover, by comparing harmonic structures at scale, we can extract underly-
ing rules and stylistic patterns that help define specific musical genres. As Velardo
observes, such large-scale analysis allows us to uncover generative patterns and
evolutionary paths in music that may be challenging to identify through individ-
ual works or smaller datasets [394]. For example, the prevalence of certain chord
progressions or harmonic sequences within a genre can highlight defining features
of that genre.

In addition, this approach enables a quantitative study of stylistic evolution
within and across genres. By tracking changes in harmonic language over time,
researchers can identify shifts in genre-specific conventions and explore how certain
harmonic techniques spread between genres, illustrating broader trends in musical
development.

5.1.2 Supporting Music Creativity

Creativity has been defined as the ability to come up with new, surprising, and
valuable ideas or artifacts [37]. These can be abstract concepts, scientific theo-
ries, solutions to real-world problems, but also new designs and artworks. As such,
creativity initiates and fuels scientific discovery, knowledge creation, enables artis-
tic expression, and on larger scale, contributes to human evolution [276]. In her
seminal work, [37] categorised creativity into three types: (i) exploratory, where
new ideas are generated by exploration of a space of concepts; (ii) combinational,
which enables the creation of new ideas through the combination of familiar ones;
and (iii) transformational, where the “the rules” governing a space are challenged
and transformed, to generate new kinds of ideas.

A computational creativity theory was also formulated by [72], to describe
creative and generative acts (FACE model) and their potential for impact (IDEA
model).
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Attempts at formalising human creativity date back to the ancient Greeks, and
remained up to and beyond Mozart with the “Dice Game” and Ada Lovelace –
speculating that the “calculating engine” might compose elaborate and scientific
pieces of music of any degree of complexity. Since then, creativity, creative rea-
soning and creative problem solving have been extensively researched in cognitive
[38] and computational sciences [126]. A simple definition of a computationally
creative system is that of a model capable to perform “generative acts” that create
artefacts, concepts, or provide an aesthetic evaluation for the generated outputs
[125, 236]. By harnessing recent advancements in machine learning, a variety of
systems have already been implemented across several domains. Examples in-
clude computational systems for material discovery [47], molecular design [373],
and more broadly, for virtual laboratories [218]; but also models for generating
textual artefacts [295], images [328, 341], and even recipes [346] from a variety of
prompts.

In the music domain, data-driven generative systems based on deep learning
methods have achieved impressive results on symbolic music [42], and they can
also produce realistic outputs when trained on the raw audio [115]. The variety of
computationally creative methods for music is quite broad and diversified, and has
already enabled the exploration of novel forms of artistic co-creation [198]. These
range from the automatic generation, completion, and alteration of chord progres-
sions and melodies, to the creation of mashups, and audio snippets from textual
prompts [6]. Due to their success, some of these systems have already been inte-
grated into commercial software, such as Aiva1, Amper 2, Suno3, and beatoven.ai4

– allowing users to generate full music pieces based on their desiderata.

Fundamental concerns of music AI systems

Nonetheless, having a system that can fully generate realistic music raises ethical
concerns – especially when those systems are made commercial and can poten-
tially replace artists, rather than augmenting their possibilities [370]. Indeed,
research can open highly lucrative business opportunities given the low cost of
non-human musicians and “their inability to organise in unions to protest against
unfair treatment” [278].

1https://www.aiva.ai
2https://www.ampermusic.com
3https://suno.com/
4https://www.beatoven.ai/

148

https://www.aiva.ai
https://www.ampermusic.com
https://suno.com/
https://www.beatoven.ai/


!
!

“output” — 2025/2/13 — 2:08 — page 149 — #163 !
!

!
!

!
!

5.1. Introduction

In addition, computationally creative models that fully learn music represen-
tations from the data by maximising a learning objective (e.g. autoregressive,
masked prediction, generative modelling) are often criticised for lacking account-
ability, explainability, and musical plausibility. The former is related to the chal-
lenge of keeping track of where the model picks up while generating new musical
content. As the model is unaware of its influences while composing, this may
prevent giving recognition to real artists, which has direct implication on copy-
right and revenue sharing [123]. Similarly, the lack of explainability represents a
technological barrier for users, as there is little or no understanding of the creative
process underneath. Explainability is a desirable component for computationally
creative systems, as it facilitates the interaction with artists, and particularly,
the ability to control/steer the system based on domain knowledge [44, 39]. Fi-
nally, the “creative space” learned by data-driven systems is often criticised by
musicologists and music experts in regard to musical plausibility [171], meaning
that, solutions generated from these models may violate common notions of music
theory. This fundamentally hampers a potential dialogue and synergies between
music experts and AI researchers.

In sum, most music AI systems cannot yet be deemed trustworthy by design
(accountability, explainability, ethics, etc.) [140], which raises serious concerns
related to their large scale adoption.

5.1.3 Our contribution

To address these gaps, we propose two novel methods harmonic similarity methods
and we employ them for diverse applications, aligning with CQ3: LHARP (Local
Harmonic Agreement based on Recurring Patterns), in which we explore similarity
at support of musicological analysis, and Harmory (the Harmonic Memory), where
we apply similarity to explore new directions in computational creativity. These
contributions, which build on the heterogeneous corpus created in Chapter 4,
provide unique resources for studying harmonic relationships across genres, styles,
and historical periods, supporting both academic and creative applications. These
methods were detailed in two publications [93, 91].

LHARP: Local Harmonic Similarity

To overcome the limitations of global similarity measures and facilitate musicolog-
ical exploration, we introduce LHARP, a new harmonic similarity function that
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extends the widely used Longest Common Subsequence (LCS) into the harmonic
domain. LHARP focuses on local harmonic structures, enabling the identification
of recurring harmonic patterns within sequences, providing a more flexible and
nuanced similarity measure. This function accommodates both exploratory and
creative applications, capturing genre- and artist-specific harmonic information
while maintaining generalizability across di!erent corpora.

Additionally, we provide an interactive tool based on the induced harmonic
network, allowing users to visualize and navigate harmonic relationships between
chord sequences within our corpus.

Harmory: A Knowledge Graph for Harmonic Patterns

As a second contribution, we propose a novel DTW-based similarity function,
and we leverage it for supporting the creation of a generative system that aims
at augmenting and enhancing the creative potential of human composers, rather
than replacing them [57]. Inspired by music psychology evidences [223], we present
Harmory, a Knowledge Graph of harmonic patterns designed to support creative
applications in a transparent, accountable, and musically plausible way.

We propose a model that leverages a cognitive model of Western tonal harmony
to project chord progressions into a musically meaningful space. Using signal
processing methods, we segment harmonic sequences into significant structures,
which are then compared via harmonic similarity to reveal common and recurring
patterns. The resulting KG establishes relationships between patterns through:
(i) Temporal links, connecting two patterns that occur consecutively in the same
progression; and (ii) Similarity links, connecting patterns that are highly similar
in structure.

Our main contributions can be summarised as follows.

• We propose two novel algorithms for local harmonic similarity, designed to
capture nuanced harmonic relationships and support creative applications.

• We introduce an interactive tool for visualizing harmonic similarities across
pieces, enabling musicological exploration and discovery of harmonic rela-
tionships in large corpora.

• We contribute a novel method for harmonic structure analysis in the symbolic
domain, leveraging cognitive and musicological models of tonal harmony.
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• We release the Harmonic Memory (Harmory), a large, diversified, and mu-
sically meaningful KG of harmonic patterns aimed to support applications
of trustworthy machine creativity.

• We provide examples of possible applications for trustworthy machine cre-
ativity implemented on top of Harmory, focusing on knowledge discovery
and human-machine chord generation.

5.1.4 Chapter Structure

This chapter is structured as follows. Section 5.2 presents the state of the art for
similarity in the symbolic domain, with a particular focus on harmonic similarity,
as well as computational tools designed to assist creativity. In Section 5.3, we
introduce LHARP, describing both the algorithm and the interactive tool devel-
oped for exploring harmonic similarities within a subset of the ChoCo dataset.
Section 5.4 provides a detailed explanation of Harmory, including the segmenta-
tion process, the novel similarity algorithms, the KG creation, and the avenues
it opens for computational creativity. Finally, Section 5.5 concludes the chapter,
summarizing the main contributions, their limitations and future work.

5.2 Related Work

5.2.1 Content-based Similarity in the Symbolic Domain

A significant portion of content-based similarity research in the symbolic domain
focuses on melodic similarity. Velardo et al. [394] present a taxonomy categorising
algorithms for melodic similarity detection into four main strategies: cognition,
music theory, mathematics, and hybrid approaches.

Cognitive approaches emphasize human perception by using metrics and pat-
tern recognition inspired by auditory processing, such as the combination of pitch
and rhythm features [395, 340]. Music theory-based methods draw from estab-
lished theoretical models, like the Generative Theory of Tonal Music (GTTM)
[243], with algorithms by Grachten et al. [162] and Orio et al. [294] comparing
melodic structures through annotated segments. Mathematical approaches often
employ geometric and statistical methods, as in [8], where melodies are repre-
sented as polygonal chains within a pitch-time space. Hybrid systems combine
various techniques from the aforementioned categories for improved accuracy and
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e"ciency, such as the SIMILE toolbox [144], integrating around 50 algorithms,
and Fanimae [375], which blends pitch and duration metrics.

Velardo’s survey also emphasizes, as a prominent issue in the field, that there is
no universally accepted concept of similarity, which presents significant challenges
for algorithm development and impacts the outcomes of competitive evaluations
in melodic similarity detection. The lack of a shared definition similarity creates
variability in algorithmic approaches and their benchmarks, as di!erent systems
may interpret and quantify similarity based on distinct criteria.

In recent years, deep learning techniques have emerged as prominent tools
for deriving measures of similarity, ranging from Convolutional Neural Network
(CNN) [355] to self-supervised models [320]. These approaches focus on capturing
complex relationships within the data, yet the underlying concept of similarity
remains ambiguous. This ambiguity is particularly pronounced given that many
deep learning models are geared towards recommendation tasks [109] rather than
analytical or musicological applications.

5.2.2 Harmonic Similarity in the Symbolic Domain

To the best of our knowledge, the most referential methods for harmonic simi-
larity are the Tonal Pitch Step Distance (TPSD) [102] and the Chord Sequence
Alignment System (CSAS) [175].

TPSD is a perceptually and musicologically-grounded distance function gen-
eralising Lerdahl’s Tonal Pitch Space (TPS) [242] – a model of tonality that fits
musicological intuitions and correlates well with empirical findings from music
cognition [99]. Given two chords, the function considers the number of steps on
the circle of fifths between their roots, and the amount of overlap between the
corresponding chord structures in relation to the global key. When generalised
to full chord progression – an ordered sequence of chords, the TPS distance is
computed between every chord and the key of the sequence. This yield a step
function profiling the harmonic properties of a piece. The distance between two
progressions is thus defined as the minimal area between their step functions over
all possible horizontal circular shifts.

CSAS uses string matching techniques to compute similarity scores between
strings representing chords or distances between chords and key. It uses the local
alignment algorithm by [367] to locate and extract a pair of areas/regions from
two given strings (generally defined as sequences of arbitrary symbols) that exhibit

152



!
!

“output” — 2025/2/13 — 2:08 — page 153 — #167 !
!

!
!

!
!

5.2. Related Work

the highest similarity with each other. Thereafter, using a dynamic programming
method, a similarity score for the two progressions is calculated based on the
minimum number of elementary operations (deletion, insertion or substitution of
a symbol) needed to transform one sub-string into the other.

In the systematic comparison by [99], CSAS was found to perform better than
TPSD on a cover detection task. Nevertheless, TPSD has stronger and more in-
tuitive musicological interpretation, and is computationally more e"cient (CSAS
has quadratic time complexity).

In addition, [101] proposed a system using a generative grammar of tonal har-
mony to formally describe chord sequences. A parser defined from the grammar
produces syntactic trees representing harmonic analyses of a given chord pro-
gression. Comparison of two di!erent pieces is achieved by constructing a tree
containing all the structures shared by their corresponding parse trees. This im-
plements a form of tree similarity. Despite its musicological utility, the authors
point out that grammar may not be expressive enough to parse certain chord se-
quence. In other words, chord sequence that are deemed as ungrammatical cannot
be parsed, hence their similarity cannot be computed.

5.2.3 Computational Models for assisting Creativity

To the best of our knowledge, most machine learning systems are explorative.
Starting from di!erent prompts, such as a priming music to continue, an incom-
plete passage, or a textual query, these models can generate convincing outputs by
sampling from the learned distribution. These include methods based on recur-
rent [371], self-attention [199], and convolutional neural networks [197]. Instead,
current combinational systems are dominated by variational autoencoders, which
can create new ideas by interpolating between two musical passages in a latent
space [336]. Transformative approaches for music have been implemented by
“hacking” the former methods based on the idea of brain transplant, to provide
additional artistic stimulation [71]. These range from gentler interventions mix-
ing up corpora, to splicing neural networks, jointly training with interference, and
Frankensteinian hybrid models [387].

As pointed out before, most of these works lack trustworthy features to support
and protect creative professionals. Recently, Explainable Computational Creativ-
ity (XCC) systems have been proposed, to promote a bidirectional interaction
between system and user [251]. This interaction is communicative, enabling the
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exchange of decisions and ideas in a format that can be understood by both
humans and machines. Examples of explainable systems also include [73] – pre-
senting a real-time human-machine interaction for artwork creation: the system
provides explanations for its decisions, while users can guide the creative process.

SW technologies have also been used to make creative systems more explain-
able. An example is [310], which proposes a system for creating innovative food
combinations using a knowledge graph that describes compounds and ingredients.
However, to the best of our knowledge, no such systems have been proposed in the
musical domain. A notable exception is the work by [268], enabling the generation
of mashups by leveraging SW technologies for machine creativity [236]. Our work
di!ers substantially in the broader intent and creative applications it enables,
the musicological and cognitive basis, the scope/granularity of the interconnected
musical content (patterns vs full pieces).

5.3 LHARP: A Local Harmonic Similarity Function Based
on Shared Repeated Chord Structures

Local Harmonic Agreement based on Recurring Patterns (LHARP) is a harmonic
similarity function that emphasises shared repeated patterns among two arbitrary
symbolic sequences. An example covering all the main steps explained below is
reported in Figure 5.1 for two pop/rock pieces: “Crazy Little Thing Called Love”
by Queen and “P.S. I Love You” by The Beatles.

5.3.1 Encoding of symbolic chord sequences

Before harmonic progressions can be considered for similarity, chord sequences are
first pre-processed to make them comparable, and encoded in a numerical format.

The process starts with the harmonic reduction, where arbitrarily represented
chord progression are simplified, so that only the most harmonically meaningful
information is retained. For this purpose, the bass note is first discarded (e.g. C/6
simply becomes C). As empirically demonstrated in [99], this operation improves
the generalisation capabilities of the next steps, thereby producing more consis-
tent similarity scores. In addition, consecutively repeated chords are removed.
This provides a “bird’s eye view” on the global harmonic properties of each piece.
To conclude the pre-processing step, chord sequences undergo key-based normal-
isation – meaning that they are all transposed to the same key (i.e. C major).
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Polifonia | 2020

Harmonic Similarity

Progression A Progression B
Crazy Little Thing Called Love P.S. I Love You

D, G, C, G, D, G, C, G, D, Bb, C, D, G, C, G, D, 
. . . D, Bb, C, D, Bb, C, D, Bb, C, D, Bb, C, D

G, C#:7, D, G, C#:7, D, G, C#:7, D, A, D, E:min, D, 
. . . D, A, B:min, A, Bb, C, D, Bb, C, D, Bb, C, D

C, F, Bb, F, C, F, Bb, F, C, Ab, Bb, C, F, Bb, F, 
. . . Ab, Bb, C, Ab, Bb, C, Ab, Bb, C, Ab, Bb, C

F, Cb:7, C, F, Cb:7, C, F, Cb:7, C, G, C, D:min, 
. . . G, A:min, G, Ab, Bb, C, Ab, Bb, C, Ab, Bb, C

Normalisation

106, 227, 96, 227, 106, 227, 96, 227, 106, 145,  
. . . 145, 96, 106, 145, 96, 106, 145, 96, 106

Decomposition
& Encoding

227, 172, 106, 227, 172, 106, 227, 172, 106, 10,  
. . . 10, 145, 96, 106, 145, 96, 106, 145, 96, 106

Pattern EXT
(227, 106, 227, 96, 227, 106, 145, 96, 106, 227),
(10, 106, 227, 96, 227) . . . (227, 106, 145, 96)

(238, 106, 10, 131, 10, 145, 96, 106, 227, 106), 
. . . (145, 96, 106, 227, 106, 227, 106, 227)

Harmonic similarity

Similarity score: 0.23
(min 0 – max 1)

Longest pattern in common
Ab, Bb, C, Ab, Bb, C

Figure 5.1: A working example of LHARP’s workflow starting from two given har-
monic progressions: “Crazy Little Thing Called Love” by Queen (left) and “P.S. I
Love You” by The Beatles (right).

This last step is crucial, as chords labels/classes in a progression need to be con-
textualised according to the key of the piece (defined by the tonic and the scale)
before any comparison is possible.

The normalised harmonic sequences are then prepared for the encoding step,
so that they can be used as input to any computational procedure. Rather than
further simplifying the symbolic musical content, a new encoding procedure was
designed to retain the fundamental internal structure of each chord. More pre-
cisely, every chord is decomposed into its pitch constituents–the individual pitches
it is made of (e.g. a C major is encoded as the following set of pitches {C, E, G}).
This intermediate transformation – the decomposition of chords, is in line with
the chord encoding systems overviewed in Section 5.2.2. Finally, to reduce the
complexity of any potential polyphonic model using such sparse local represen-
tations of chords, each unique decomposition is then assigned to an index (an
integer value).

As it can be observed, this approach – the enumeration of pitch simultaneities,
is akin to the common encoding methods used in natural language processing for
word tokens. Nonetheless, enumerating the decomposition of chords rather than
their actual labels, is expected to drastically reduce the vocabulary size. Indeed, if
two distinct chord labels have the same decompositions, they will be associated to
the same token/index. In sum, for each harmonic progression, the output of this
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last step is a sequence of chord tokens defined over the vocabulary of all possible
chord decompositions.

5.3.2 Pattern extraction and matching

Once two given chord sequences have been encoded, the next step is to extract
all their internal repetitions and compute a similarity score based on their shared
structures.

The first step is carried out independently on each chord sequence. To identify
the regions of chord progressions that can expected to be “harmonically memo-
rable”, we extract the n-grams of all possible orders – starting from n ⇐ 3 (i.e.
from tri-grams), that repeat at least once within the progression. The result-
ing set of “harmonic thumbnails”, representing potentially memorable harmonic
structures in each progression, is denoted as Bag of Recurring Patterns (BRPs).

Chord progressions are then compared for similarity based on the agreement
between their BRPs. In particular, the longest harmonic structures they share
is compared to the order of the longest thumbnail that occurs within each pro-
gression, independently. Depending on the harmonic patterns the two chord pro-
gressions have in common – in relation to their internal structures, the similarity
function will return a value between 0 and 1 (the higher the value, the stronger the
similarity), together with the longest harmonic patterns they share. For example,
if the longest harmonic thumbnail two chord sequences share has order 5, whereas
the longest recurring patterns in their BRPs has order 10, the similarity function
will return a value of 0.5.

Formalisation

For a more detailed understanding of the similarity function, here we provide a
generalised formalisation, which applies to any uni-modal symbolic sequence. To
explain our method, we first introduce some basic notation and definitions. Let
C denote a sequence of tokens drawn from a vocabulary V and belonging to a
dataset of chord sequences D = {C1, . . . , Cl}, defined as:

C ↔ Zm↔n
s.t. m = |V |, n = max({|C| for C ↔ D}) (5.1)

C = c(1)
, c(2)

, . . . , c(n)
s.t. c(i) ⇒= c(i+1) ⇑i ↔ [1, n) (5.2)
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where l is the size of the dataset (the number of chord sequences it provides)
and n corresponds to the size of the longest chord sequence in D. This allows to
homogeneously represent the dataset as a tensor D ↔ Zl↔m↔n. With this notation,
we now define the recurring patterns (or harmonic thumbnails) pk(C) of order k

for the sequence C as follows:

pk(C) = {(c(i)
, c(i+1)

, . . . , c(k))

| ⇓ j ⇒= i s.t. (c(j)
, c(j+1)

, . . . , c(k)) = (c(i)
, c(i+1)

, . . . , c(k))}.

(5.3)

Note that from this formulation we are assuming that an n-gram will be con-
sidered a recurring pattern only if it repeats at least once in the sequence. Never-
theless, this assumption can be easily parametrised if more control is needed (e.g.
we can require more repetitions to occur in order to characterise a pattern). An
example of bi-gram recurring pattern is given below.

p2(C) = {(c(i)
, c(i+1)) | ⇓ j ⇒= i s.t. (c(j)

, c(j+1)) = (c(i)
, c(i+1))}

For a sequence C there can be an arbitrary number of recurring patterns of any
possible order k, but the maximum order will trivially be n̂ = n

2
in the extreme

case that the second half of C fully repeats the first half. Therefore, we define the
bag of recurring patterns P (C) that can be extracted in C as follows:

P (C) =
n̂⋃

k=K

p(C) (5.4)

where K ⇔ n̂ is a hyper-parameter expressing the minimum order of the recur-
ring patterns. This function can be particularly expensive to compute, as the
complexity is at least quadratic for each n-gram to extract. However, extracting
the recurring patterns of order k already “repeats a lot of computation" for the
more granular orders (< k). This consideration can thus be used to speed up
computation and mitigate the complexity of this procedure.

The bag of recurring patterns P (C) is thus defined as the set containing all
the recurring patterns of k ⇐ K order in the given sequence, and forms the basis
of our similarity function. For convenience, we define a function measuring the
degree of maximal repetition.

d(P (C)) = max(k) s.t. ⇓ pk ↔ P (C). (5.5)
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From these concepts, we can finally define our measure of similarity between
two sequences A and B (both analogous to C in our notation above) as follows.

Similarity ranges in [0, 1] and is minimum when A and B do not have any
recurring pattern in common; it is maximum when the the longest recurring pat-
tern in common has the same length to both the longest patterns that appear
internally in each sequence (dA,B = d(P (A)) = d(P (B))).

A limitation of this formulation is its inability to handle cases where one or
more sequences lack internal repetitions. This also includes the situation in which
a pattern appears repeated only across the sequences, rather than in each of them
in the first place. An extreme case is when the sequences are identical but have
no patterns:

A = B ↖ P (A) = P (B) = { }.

An example of this particular case could be a rondo form, where the degree of
internal repetition could be little or none. To account for this, at the expense of
computational complexity, we define a correction term:

hcross = d(P (A ↙ B) → P (A) → P (B))
min(|A|, |B|) (5.6)

where the A ↙ B denotes the concatenation of the corresponding sequences – as
if they describe the same process. This allows to detect patterns where A repeats
something from B or B repeats something from A, but these n-grams are never
repeated in A and/or in B. Our next step is to combine hsim and hcross within
the same formula, which can be simply done as follows.

hglobal(A, B) = max(hsim(A, B), hcross(A, B)) (5.7)

5.3.3 Preliminary experiments

To evaluate LHARP as a method for harmonic similarity, we perform a graph
analysis methods to encode harmonic dependencies (edges) between music pieces
(nodes) based on their similarity values. This was done to test whether network
structures that can be statistically attributed to di!erent genres/styles emerge
from the network.

For this experiment, all similarities were computed using the first term of the
hglobal function in Equation 5.7 – meaning that only hsim is retained for extracting
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similarity scores. This last decision was motivated by type of music contained in
our dataset, which already exhibits a great deal of internal repetition. Moreover,
the minimum order of recurring patterns was set to trigrams (K = 3 in Equa-
tion 5.4), to avoid inflating the number of resulting harmonic dependencies from
potentially uninformative structures (bi-grams).

The dataset used for this analysis was a subset of ChoCo 4, specifically three
representative partitions: Isophonics [258], JAAH [129], and Schubert Winter-
reise [402]. These partitions collectively represent the range of musical genres
within ChoCo, providing a balanced sample for evaluating harmonic similarity
across di!erent styles.

In total, 525 tracks were used in the experiment. Although this dataset size
is relatively modest, it supports e!ective musicological exploration and simplifies
the proposed graph exploration in Section 5.3.4, allowing for clear insights into
genre-specific harmonic dependencies and facilitating focused analysis on network
structure.

5.3.4 Analysis of genre-specific harmonic dependencies

The goal of this experiment is to test whether LHARP can capture genre-specific
harmonic properties when computed across di!erent datasets. In particular, af-
ter representing musical pieces as nodes and non-negative harmonic similarities
(among pieces) as edges, our hypothesis is that the graph structures emerging from
the induced network (node properties, clusters, etc.) already encode genre infor-
mation. This is done in two di!erent ways: (i) by computing a set of node-specific
metrics encoding structural properties of nodes, and analysing their distribution
for each dataset/group; (ii) by performing community detection on the graph to
verify if any alignment between network communities/clusters and (genre-specific)
chord datasets can be found. Both these methods are of unsupervised nature.

Common to both studies is the creation of the harmonic network – a graph
representing harmonic dependencies among tracks. Formally, the graph is defined
as G = (V, E), where V denotes the set of all chord progressions (identified by the
name of each track) as nodes, and E is the set of edges connecting pairs of nodes if
and only if their harmonic similarity is strictly positive. The weight of each edge
corresponds to the similarity between the associated tracks, thus ranging in (0, 1].
Since harmonic similarities are symmetric, the resulting network is an undirected
graph with no self-loops and at most one edge between any two nodes.
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(a) Degree

(b) Clustering Coe!cient

(c) Closeness Centrality

Figure 5.2: Distribution of each group/dataset on the three node-specific network met-
rics: degree (a), clustering coe"cient (b), and closeness centrality (c). This is ac-
companied with the results of the post-hoc statistical analysis in Table 5.1.
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The harmonic network for this experiment is constructed by computing LHARP
(c.f. Section 5.3) on each pair of chord progressions from the three datasets out-
lined in Section 5.3.3. This results in an adjacency matrix encoding the non-null
pair-wise harmonic similarities among all tracks in the datasets; in sum, the out-
put of this process is a suitable representation of E.

Statistical analysis of network metrics

From the resulting graph, the following metrics were computed for each node:
degree, clustering coe"cient, and closeness centrality. The degree of a node v ↔
V is defined as the number of edges adjacent to v. Given that the graph in
undirected, with one edge at max per node couple, this corresponds to the number
of tracks sharing harmonic similarities with v. The clustering coe"cient of v is
the fraction of possible triangles through v that exist – a measure expressing the
propensity of a node to form cluster with its neighbours. Finally, the closeness
centrality of v is formulated as the reciprocal of the average shortest path distance
to v over all the other reachable nodes in the graph [143].

To analyse if genre-specific network properties exist, each metric was stud-
ied independently with respect to the dataset each node/track belongs to. The
resulting distributions are illustrated in Figure 5.2. From the results of a Kruskal-
Wallis H-test, we found that the distributions of each metric associated to the three
datasets di!er significantly (ε2 = 67.43, ε

2 = 34.13, ε
2 = 44.92 for node degree,

clustering coe"cient, and closeness centrality respectively), with p-value less than
0.0001. Post-hoc multiple comparisons (Kolmogorov-Smirnov tests) were then
performed to detect significant di!erences between each pair of groups/datasets
in relation to each metric (Bonferroni corrections were applied to account for
multiple comparisons). The results of this analysis are reported in Table 5.1,
demonstrating that all these groups are statistically di!erent from each other,
with the exception of the clustering coe"cient for Isophonics and JAAH.

degreedegree clustering coe!cientclustering coe!cient closeness centralitycloseness centrality

isophonicsisophonics jaahjaah schubertschubert isophonicsisophonics jaahjaah schubertschubert isophonicsisophonics jaahjaah schubertschubert

isophonicsisophonics – **** ** – nsns *** – **** ***

jaahjaah **** – ** nsns – *** **** – ***

schubertschubert ****** **** - ****** ****** - ****** ****** -

Table 5.1: Summary of the Kolmogorov-Smirnov tests used to detect statistically sig-
nificant di!erences between the groups/datasets on each metric. Conventions: ns
denotes non-significance (p ⇐ 0.05); * denotes p ⇔ 0.05; ** p ⇔ 0.01; *** p ⇔ 0.001.
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Tracing genres as network communities

To complement our analysis, we used community detection methods to assess
whether nodes/tracks can be clustered into genre-specific clusters directly from
their harmonic relationships. A number of algorithms were cross-validated on the
graph , based on two unsupervised clustering descriptors measuring the quality of
a partition: coverage and performance. The former is the ratio of intra-community
edges to the total number of edges in the graph, whereas the latter adds the inter-
community edges to the ratio, now in relation to the total number of potential
edges. The community detection method that maximised these metrics on the
harmonic network was the Fluid Communities algorithm [299]. As illustrated
in Figure 5.3, we found a consistent overlap between communities and datasets:
approximately 80% of the nodes in Isophonics (pop/rock music) falls within the
C0 community, 70% of JAAH (jazz music) in C1, and 90% of Schubert-Winterreise
(classical music) in C3. Therefore, we have enough evidence to conclude that the
structural properties of the harmonic network encodes genre-specific information.

5.3.5 The interactive harmonic network

We designed a Web interface allowing users to inspect the harmonic network and
interact with its components for a granular control. Figure 5.4 reports the main
visualisation panel of the tool for the harmonic network constructed from the
three chord datasets in our first experiment (Section 5.3.4). An online version
of the interative tool is available at https://polifonia-project.github.io/

musilar-preview/ with a video demo at https://youtu.be/NW_9z_fL7uI.

Figure 5.3: Illustration of how node/tracks are spread across the three communities.
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Chord Structures

Figure 5.4: Illustration of the harmonic graph, encoding all the harmonic dependencies
between tracks in the three music collections, using LHARP.

To facilitate the exploration of the network, a grey-scale colourmap visualises
the harmonic similarity expressed by the edge weights: from light grey (low simi-
larity) to plain black (high similarity). Nodes are sized according to their degree,
whereas their border colour uniquely identifies the music dataset they belong to.
In this case, a yellow border is used for nodes/tracks in the Schubert-Winterreise
dataset, a black contour for Isophonics, and red for JAAH.

To interact with the network, users can first zoom in/out the main panel – fo-
cusing on specific regions of the graph, and display information about nodes and
edges. By hoovering over nodes they can visualise the title and artist of the corre-
sponding track, together with its degree and community class (c.f. Section 5.3.4).
Analogously, hoovering over edges shows the value of harmonic similarity between
the corresponding tracks, and the longest recurring pattern they have in common.
Another feature useful for the inspection of highly connected regions is the node
selection, isolating a node/track in such a way as to emphasise all the connections
(harmonic matches) associated to it. Finally, a slider allows to perform a dynamic
filtration of the graph, by discarding all edges with harmonic similarity outside a
predefined range.

Overall, the tool provides a computational infrastructure to interpret the re-
sults of our experiments, and also to perform validation studies for music similar-
ity methods. In addition, the interface can be used to discover new relationships
among artists, composers, tracks, but also to test musicological hypotheses. For
instance, users may discover that two authors use similar but not identical har-
monic structures, even though there is no direct and strong connections between
them, but possibly through the influence of a third entity. The harmonic network

163



!
!

“output” — 2025/2/13 — 2:08 — page 164 — #178 !
!

!
!

!
!

Chapter 5. Uncovering Harmonic Similarity: From Musicological to Creative
Exploration

also o!ers a valuable resource for educational purposes, providing an engaging
tested for teaching network analysis concepts using music as an applied domain.
For instance, MSc Computer Science students at King’s College London have
utilised the harmonic network within their Network Data Analysis module. This
real-world dataset allowed students to apply and test their understanding of graph
analysis metrics, as well as model musical influence through epidemic models, en-
hancing their grasp of theoretical concepts through practical application.

5.4 Harmory: The Harmonic Memory

The main steps for the creation of Harmory are illustrated in Figure 5.5, and
encompass four stages: (i) projection of harmonic sequences in the Tonal Pitch
Space; (ii) novelty-based segmentation of harmonic sequences; (iii) pattern iden-
tification through similarity-based linking of harmonic segments; and (iii) KG
creation.

Our workflow is defined from the harmonic analysis of a piece, which contains
a sequence of chords in Harte notation [181], their onsets, and the associated
local keys. Formally, let c = {c1, . . . , cN} denote a chord sequence of length N ,
where each chord figure ci is drawn from the Harte chordal set H. Similarly,
k = {k1, . . . , kN} denotes the corresponding local keys of c, s.t. each ki is a tonic-
mode tuple defined from T ↑ M, where T = {Ab, A, A#, Bb, . . . , G#} is the set
of all possible tonic notes, and M = {major, dorian, . . . , locrian} is the set of all
possible modes in Western tonal music.

For simplicity, chords are expected to be temporally aligned with their onsets,
meaning that ci ends when ci+1 starts, ⇑i ↔ N → 1. Hence, onsets are defined

TPS Projectionchords 
keys

Harmonic SSM

Harmonic Profile

Harmonic Printonsets

Novelty
detection

Peak picking

Segmentation

Harmonic 
Structures

add

N
or
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...
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All structures
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Figure 5.5: Overview of the main steps for the creation of Harmory, from the encoding
of chord progressions in the Tonal Pitch Space (TPS) and their segmentation, to the
emergence of harmonic patterns through similarity and the creation of the KG.
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as a (N + 1)-th dimensional vector t ↔ RN+1 to compensate for the end time of
the last chord (tN+1 is the end of cN). Onsets are given in seconds for harmonic
analyses on audio music; or as global beats for symbolic music. For example,
c = [G, B:min, E:min7, . . . ], k = [(G, major), (G, major), (G, major), . . . ], and t =
[1, 3, 5, . . . ] are the first three occurrences of such vectors for a “A Day in the Life”
by The Beatles.

Encoding chords in the Tonal Pitch Space

Given a harmonic analysis H = {c, k, t}, the first step is to encode c and k as a
numerical stream, so as to allow the processing of similarity/distance operations.
This is necessary because chords (c) and tonalities (k) are complex elements
to process, and come in symbolic format. More specifically, a chord label is a
convention for describing intervals built on a root note. For example, the label
of a C major seventh chord (C:maj7) represents the intervals of a major quadriad
with a minor seventh built on the note C, which is equivalent to the note set
{C, E, G, Bb}. Also, the harmonic function of a chord is contextual to the global
(and local) key [5].

One option here is to leverage Representation Learning methods on symbolic
music to learn harmonic embeddings from a large corpus of chord sequences
[234, 237]. These include static embedding methods, such as Word2Vec [275] and
Glove [304], as well as sequence models for contextualised representations, such
as ELMo [307] and BERT [114] – which have proved their e"cacy on a variety of
natural language processing tasks. Nonetheless, in the music domain, representa-
tion learning methods have recently started to gain success for audio music [217],
whereas little attention has been given to symbolic music. This is exacerbated by
the challenge of finding musicological interpretability of the resulting embeddings,
requiring new probing and evaluation methods for music [171].

We aim for an encoding of harmony that is well established, perceptually and
musicologically plausible, and explainable by design. Hence, we rely on the Tonal
Pitch Space [242] – a cognitive model of tonality used in music psychology and
computational musicology.

The tonal pitch space

The Tonal Pitch Space (TPS) model [242] provides a scoring mechanism that
predicts the proximity between musical chords. It is based on the Generative
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Theory of Tonal Music [243] and designed to make explicit music theoretical and
cognitive intuitions about tonal organisation. The model works by comparing
any possible chord to an arbitrary key, by means of the basic space. The basic
space is constituted by five di!erent levels, ordered from the most stable to the
least stable: (i) the Root level; (ii) the Fifths level; (iii) the Triadic level; (iv) the
Diatonic level; and (v) the Chromatic level.

Each level holds one or more notes, indexed from 0 (C) to 11 (B). The Root
level holds the root of a chord (0 for C-major), while the Fifths level adds the fifth
(0, 7 for C-major). The Triadic level has all the notes in the chord (0, 4, 7 for C
major). The Diatonic level depends on the chord’s key as it holds all the notes of
the diatonic scale of the key (0, 2, 4, 5, 7, 9, 11 for the C major key). Finally, the
Chromatic level holds the chromatic scale (0-11).

The distance between two chords ci, cj in keys ki, kj is calculated using the
basic spaces of the chords. The basic space is set to match the key of the pieces
(level iv), and their levels (i-iii) are adapted to match the chords to be compared.
The Chord distance rule is applied to calculate the distance. The Chord distance
rule is defined as d(x, y) = j + k, where d(x, y) is the distance between chord
x and chord y; j is the minimum number of Circle-of-Fifths rule applications to
shift x into y, and k is the number of non-common pitch classes divided by 2 in
the levels (i-iv) of the basic spaces of x and y. The Circle-of-Fifths rule consists
in moving the levels (i-iii) four steps to the right or left on level iv.

For each comparison between two chords, the TPS returns a value in [0, 13].
TPS has been demonstrated to be sound both musicologically and perceptually
[103, 104], and in this work, it is used to encode and compare chord-key pairs.

Novelty-based harmonic segmentation

The projection of chord-key pairs (ci, ki) in the TPS is a fundamental requirement
to perform harmonic segmentation. First, the given harmonic annotation H is
used to sample a signal X of length d = tN+1 · fs, where harmonic observation
(ci, ki) is consecutively repeated ti ·fs times (its duration), according to a sampling
rate fs. Each element xi ↔ X now encodes an input for the TPS model, containing
the harmonic content at the i-th sample.

The resulting signal allows for the computation of two harmonic descriptors,
i.e., the Harmonic Profile (or TPS time series), and the Harmonic Self Similarity
Matrix (SSM) – the entry point for segmentation. The former is defined as a
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Figure 5.6: Example of Harmonic SSM resulting from the application of Equation 5.8
on the TPS signal of “Crazy Little Things Called Love” by Queen, using a sampling
rate fs = 1. Four main block-like structures are visible, correlating with the musical
form of the piece. Smaller, nested harmonic structures of lower granularity are ob-
served withing these blocks.

vector q ↔ Rd
s.t. qi = tps(xi, k1), holding the TPS distance between each har-

monic observation xi and the global key k1 of the piece (assumed as the first key
occurrence). Similarly, the Harmonic SSM is a matrix S ↔ Rd↔d s.t.

S(n, m) = 1 → tps(xn, xm)
13 , (5.8)

where xi ↔ X is a column vector; n, m ↔ [0 : d→1]; 13 is a normalisation factor (the
maximum TPS value); and the subtraction from 1 is used to obtain a similarity
score from a distance measure.

Self-similarity matrices have been extensively used for structure analysis, due
to their ability to reveal nested structural elements [141, 96]. As can be seen from
Figure 5.6, block-like structures are observed when the underlying sequence shows
homogeneous features over the duration of the corresponding segment. Often, such
a homogeneous segment is followed by another homogeneous segment that stands
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in contrast to the previous one.
To identify the boundary between two homogeneous but contrasting segments

(2D corner points), we slide a checkerboard kernel K along the main diagonal of
the SSM and sum up the element-wise product of K and S. A checkerboard kernel
can be simply defined as a box kernel KB ↔ ZM↔M where M = 2L + 1 is the size
of the kernel, defined by KB = sgn(k) · sgn(l) ⇑k, l ↔ [→L, L], where sgn is the
sign function. This yields a novelty function !kernel(n) for each index n ↔ [1 : d]
of X as follows:

!kernel(n) =
∑

k,l↑[↗L,L]

K(k, l) · S(n + k, n + l) (5.9)

for n ↔ [L + 1 : d → L]. When K is located within a relatively uniform region
of S, the positive and negative values of the product tend to sum to zero (small
novelty). Conversely, when K is at the crux of a checkerboard-like structure of
S, the values of the product are all positive and sum up to a large value (high
novelty) [282].

Local maxima of the novelty curve are then used to detect the boundaries of
neighbouring segments that correspond to contrasting harmonic parts. For this,
we use a pick peaking method that applies a smoothing filter to the novelty func-
tion (to reduce the e!ect of noise-like fluctuations) and uses adaptive thresholding
to select a peak when novelty exceeds a local average [291]. The detected segment
boundaries are used to split X and the corresponding q into a number of non-
overlapping harmonic structures. This yields q̄ = q̄1

, . . . , q̄P , where P denotes
the number of structures.

Linking harmonic segments via similarity

Each harmonic structure q̄i is then considered for harmonic similarity. Since q̄i is
still a time series (a partition of q, the Harmonic Profile), we formulate the har-
monic similarity between two harmonic structures by comparing their time series.
This is done using Dynamic Time Warping (DTW) – an algorithm for comparing
time series, which has been widely used across various domains, including speech
recognition [280], pattern recognition [348], and bioinformatics [420]. In our case,
DTW has desirable properties, as it is invariant to time shifts, and robust to local
variations.

Vanilla DTW compares two time series by calculating the cumulative distances
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between each point/observation. It allows for non-linear alignment between the
time series by considering the local warping path. The cost matrix, holding the
cumulative distance between each corresponding point, is constructed using the
Euclidean distance, and is formalised as:

dDT W (q̄i
, p̄j) =

√ ∑

(v,w)ωε

||q̄i
v + p̄i

w||2 (5.10)

where ϑ is the optimal warping path – the shortest cumulative distance between
the time series (found via dynamic programming).

As the computational complexity of vanilla DTW is quadratic in the sequence
length, here we use the Sakoe-Chiba variant. The latter achieves linear complexity
O(N ·w), by constraining the warping path within a window of size w, rather than
using all points (N).

Prior to the computation of similarities, time series are normalised are resam-
pled to meet the same length, and standardised to zero mean and unit variance.
This has the e!ect of comparing time series by looking at their shapes in an
amplitude-invariant manner – which brings us closer to the identification of har-
monic patterns.

The latter emerge after retrieving the k most similar structures for each seg-
ment q̄i, and applying a filter to retain only those structures p̄i whose dDT W (q̄i

, p̄j)
is below a given threshold. Structures sharing the same (normalised) TPS time
series (dDT W = 0) define a distinct harmonic pattern; whereas segments with
similar time series can be grouped within the same pattern family/cluster.

5.4.1 Knowledge graph creation

An ontology, called Harmory Ontology, was developed for the creation of the
KG. The ontology re-uses the Core module from the Polifonia Ontology Network
(PON) [88] (see Chapter 3). This allows to link Harmory to ChoCo5 [95]. We also
align to the Music Ontology [324] – a widely used ontology model in the music
domain.

For each piece, the ontology allows to: (i) store its metadata, such as title,
genre, and artist; (ii) hold the harmonic segmentation (see Section 5.4); and (iii)
relate similar segments (see Section 5.4). This enables semantic access to the
aforementioned data via SPARQL.

5ChoCo SPARQL endpoint: https://polifonia.disi.unibo.it/choco/sparql
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Figure 5.7: Gra!oo diagram illustrating the Harmory Ontology.

The model is illustrated in Figure 5.7, using the Grafoo notation6. A piece of
music is described by means of the class mm:MusicEntity which is imported from
the Music Meta module of PON. Leveraging this core class from the Music Meta
module enables seamless linkage of the music track–and consequently its similarity
data–with the extensive range of information that can be described across all PON
modules.

A musical work has a har:SegmentationSituation – a specialisation of the
Situation Pattern [149] describing a segmentation performed by a specific
har:SegmentationAlgorithm that produces one or more has:Segments. In this
context, a harmonic sequence is split/partitioned into a number of segments,
with their ordering allowing for reconstruction. Each sequence also holds its
chords, using the class mf:Chord. Each segment is linked to its corresponding
har:SegmentPattern – an abstraction of the TPS pattern normalised on the tem-
poral axis. Hence, several har:Patterns may have the same har:SegmentPattern.
Similarity relations are expressed via the class har:SegmentPatternSimilarity,
which relates two Segment Patterns and holds their similarity value via the datatype
property har:hasSimilarityValue.

5.4.2 Experiments

To validate Harmory, we tested the e"cacy of the two central components un-
derpinning its creation: the DTW harmonic similarity (Section 5.4), and the
harmonic segmentation (Section 5.4).

6Gra!o Notation: https://essepuntato.it/graffoo/
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Evaluation of harmonic similarity

We evaluated the DTW harmonic similarity by comparing our implementation
with other algorithms for the cover song detection task – a common benchmark
for similarity algorithms in the symbolic music domain [103, 104].

In this comparison, performance is evaluated using two standard metrics: First
Tier and Second Tier. The former measures the ratio of correctly retrieved songs
within the top (Ct → 1) matches to (Ct → 1), where Ct is the size of the song class
(e.g. the same composition, or performance) for track t. The First Tier can be
formalised as:

FirstT ier(D) = 1
N

N∑

t=0

||L|(Ct↗1)| ∝ Ct||
||(Ct → 1)|| , (5.11)

where N is the set of all tracks in the dataset having at least a “cover”, and L(Ct↗1)

denotes the list of matches for track t ranked by similarity – where only the first
(Ct → 1) occurrences are considered. Similarly, the Second Tier is defined as the
ratio of correctly retrieved songs within the best (2Ct → 1) matches to (Ct → 1).

SecondT ier(D) = 1
N

N∑

t=0

||L|(2Ct↗1)| ∝ Ct||
||(Ct → 1)|| (5.12)

Methods. We compare our DTW similarity (c.f. Section 5.4) with the following
algorithms for harmonic and time series similarity:

• Tonal Pitch Step Distance (TPSD) [103, 104], a state of the art method
that measures the di!erence between the Harmonic Profiles (see q in Sec-
tion 5.4) of the given harmonic sequences. The di!erence is determined as
the minimal area between the two time series, after considering all possible
horizontal shifts. TPSD can handle sequences of di!erent length, and has a
time complexity of O(nm log(n + m)), where n and m denote the length of
the compared chord sequences [8];

• Longest Common Subsequence (LCS) [397], a method expressing time
series similarity based on their longest common subsequence. Similarity is
calculated as the relative length of the longest common subsequence com-
pared to the length of the shortest time series, thus ranging in [0, 1]. Using
dynamic programming, LCS is bounded in O(n2);

• Soft Dynamic Time Warping (Soft DTW) [80], a variant of DTW
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SchubertSchubert CASDCASD Schubert+CASDSchubert+CASD

Algorithm TPS Mode Stretch Constraint Normalise First Tier Second Tier First Tier Second Tier First Tier Second Tier
TPSD o!set - - - 0.49 0.63 0.62 0.68 0.58 0.67
TPSD profile - - - 0.53 0.74 0.76 0.83 0.69 0.8
DTW o!set stretch - - 0.94 0.98 0.53 0.67 0.66 0.76
DTW profile stretch - - 0.97 0.99 0.6 0.69 0.71 0.78
DTW o!set stretch sakoe_chiba - 0.96 0.99 0.62 0.7 0.72 0.79
DTW profile stretch sakoe_chiba - 0.97 0.99 0.69 0.77 0.77 0.84
DTW o!set stretch itakura - 0.96 0.99 0.55 0.65 0.68 0.75
DTW profile stretch sakoe_chiba yes 0.97 0.99 0.7 0.76 0.79 0.83
LCSS o!set - sakoe_chiba - 0.38 0.61 0.03 0.07 0.14 0.24
LCSS o!set - itakura - 0.7 0.8 0.14 0.23 0.31 0.41

SoftDTW o!set stretch - - 0.93 0.97 0.55 0.69 0.67 0.77
SoftDTW profile stretch sakoe_chiba - 0.98 0.99 0.62 0.73 0.73 0.81

Table 5.2: Performance of similarity algorithms on cover song detection. The high-
lighted lines denote the best performing algorithms, while results in bold indicate the
best performance obtained for the First Tier and Second Tier, respectively.

that allows for non-binary (fuzzy) alignments between time series, by using
a soft-constraint. Soft DTW can be computed with quadratic time/space
complexity.

All experiments are performed on the Harmonic Profile, in addition to an alter-
native formulation of the TPS time series, called o!sets, where qi = tps(xi, xi↗1)
(chord o!set distance).

For DTW, LCSS and Soft DTW, two types of constraints were also tested:
Sakoe-Chiba and Itakura. Analogously to Sakoe-Chiba, the Itakura constraint
sets a maximum distance for each point in the time series, making the algorithm
more e"cient, and reducing the risk of being trapped in local minima. Several
parameter settings for the Sakoe-Chiba radius and Itakura band were tested, and
the best results were obtained by setting them to 5 and 4, respectively. This
parametrisation turned out to be optimal across all our experiments.

Each method was tested on sequences of original length (no-stretch) and after
resampling to the shortest sequence. We also experimented with normalised time
series (Section 5.4).

Dataset. We use two subsets of ChoCo (see Chapter 4) containing cover tracks:
Schubert Winterreise [402] and Chordify Annotator Subjectivity Dataset (CASD)
[227]. The former provides harmonic annotations for each of the 9 di!erent per-
formances of the same musical piece by Schubert. Similarly, CASD contains four
annotations of the same performance, contributed by four di!erent annotators.
Chords from Isophonics Dataset [258] and Jazz Audio-Aligned Harmony (JAAH)
[129] are also added to the reference dataset in order to add heterogeneity (di!er-
ent genres) and increase the complexity of the task.

172



!
!

“output” — 2025/2/13 — 2:08 — page 173 — #187 !
!

!
!

!
!

5.4. Harmory: The Harmonic Memory

Figure 5.8: Structural coverage of known patterns for each segmentation method, using
Equation 5.11 (left), and Equation 5.12 (right). Results are reported as distances
averaged per pattern group (a group contains known harmonic patterns of the same
length).

Results. Table 5.2 shows the results of this comparison and highlights the best
performing algorithms. Results are presented for Schubert and CASD separately,
and also in a third merged setup (Schubert+CASD). Notably, the performance
of the DTW algorithm is significantly better for Schubert (one piece, multiple
performances), while for CASD (one performance, multiple annotations), TPSD
performs slightly better. The best results for the third setup are obtained using
the Sakoe-Chiba DTW, using normalisation and resampling on the shortest se-
quence. It is also worth remarking that our implementation, besides being the
most accurate overall, is also the most e"cient approach, due to its linear com-
plexity.

Structural coverage of known patterns

To validate our harmonic segmentation (Section 5.4), we measure the overlap
between the resulting structures with a collection of well-known chordal patterns.
This exemplifies the hypothesis that a good segmentation would maximise the
“reuse” of harmonic patterns – as building blocks that can be found in other
pieces.

Given a segmentation q̄ = q̄1
, . . . , q̄P of a piece, with each q̄i containing a

TPS time series, the overlap of q̄ with a dataset of known harmonic patterns P
is computed as:

oM(q̄) = 1
T

T∑

i=1

min
p↑P

dDTW(q̄i
, p), (5.13)

oB(q̄) = min
q̄i↑q̄

min
p↑P

dDTW(q̄i
, p), (5.14)
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which di!er in the aggregation function. The former measures the average
pattern distance contributed by each structure in the segmentation; the latter,
instead, only retains the distance of the most similar pattern that was matched
to one of the structures. When oM = 0, all segments are fully matched/found in
P ; whereas oM is minimal when at least a segment matches a pattern in P .

Methods. We compare our method (denoted as harmov) to fast low-cost unipo-
tent semantic segmentation (FLUSS) [153] – a state of the art algorithm for time
series segmentation defined on the Matrix Profile [416]. FLUSS annotates the
time series with information about the likelihood of a regime change (a segment
boundary); and is parameterised by a fixed window size m, and the number of
segments to detect r. We also include a baseline splitting a time series in r uniform
segments. Both methods operates on the TPS Profile of h, and are optimised via
grid search.

Datasets. We compute and evaluate the harmonic segmentations on a dataset
comprising 320 chord progressions, obtained from randomly sampling 40 pieces
per audio partition in ChoCo (see Chapter 4) (isophonics, billboard, casd,
schubert-winterreise, rwc-pop, uspop-2002, jaah, robbie-williams). This
yields a diversified (several genres, durations, etc.) yet representative sample of
Harmory (↗ 2% of ChoCo); which prevents larger partitions from biasing the
overall results. For P , we assembled a dataset of known harmonic patterns from
Impro-Visor [321], which is available on GitHub7. After filtration of trivial occur-
rences (e.g. chord uni-grams, sequences with repeated chord occurrences, etc.),
the dataset counts 300 unique patterns spanning from 3 to 10 chord occurrences
per pattern (the length of a chordal pattern).

Results. The structural coverage, computed for each segmentation method and
aggregated for all known harmonic patterns of the same length, is reported in
Figure 5.8. For both measures oM , oB, the segmentations produced by our method
(harmov) produce the lowest distances – meaning that they show the highest
overlap with the known harmonic patterns in P . This behaviour is preserved for
all pattern groups (the x-axis), and the gap with the other methods increases
with pattern’s length. The second performing method is FLUSS, using r = 14
split regions and a window size of m = 3. However, for longer patterns, the latter
performs comparably with a fixed sequence split (the other baseline). Finally, it is

7https://github.com/Impro-Visor/Impro-Visor
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5.4. Harmory: The Harmonic Memory

Figure 5.9: Example of a generated chord progression using a pattern-based prompt.
Given a first segment, each segment is chosen according to similarity to the subsequent
one in the original sequence, and filtered according to arbitrary criteria. The second
segment is taken from a song that has “hip-hop” as genre, while the next two segments
are chosen by artist.

worth remarking that results for all baselines are first optimised on a grid search;
whereas we use the default parameterisation for harmov.

5.4.3 Avenues for machine creativity

We envisage various applications of Harmory across di!erent tasks and use cases,
ranging from music information retrieval and computational musicology, to cre-
ativity support for artistic workflows. The latter is the main focus of this work.
However, we do not aim at improving the state of the art in music generation,
but rather to provide a transparent system to support creative workflows [57].

Here, we show examples of trustworthy applications for pattern discovery,
human-machine chord generation, and harmonic similarity. The latter is more
of musicological interest, whereas the former are both creative use cases. Each
application is demonstrated through a set of Prompts, expressed in natural lan-
guage, which correspond to SPARQL query templates to interrogate the KG (Sec-
tion 5.4). The latter are fully available on our repository8.

Pattern discovery

The traversal of the Harmonic Memory makes it possible to obtain granular in-
formation of the harmonic structure of songs. In particular, it possible to explore
the harmonic segments of each song, the patterns related to each segment, and
the similarities with other patterns/segments found in other pieces.

8SPARQL queries: https://github.com/smashub/harmory/tree/main/queries
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A composer may start with a harmonic pattern mind, and initiate a creative
exploration of the KG by leveraging music and metadata.

Prompt 1 For a given pattern, which are the tracks (titles, artists and genres)
in which the pattern can be found?

Prompt 2 Given a music genre, what are the most frequent patterns?

To support creative exploration, more complex prompts can be formulated in
order to narrow down the search, and eventually discover surprising or unexpected
outputs, if present.

Prompt 3 Which harmonic patterns are used in “Michelle” by The Beatles, but
also in a classical composition?

Prompt 4 Which patterns used by The Beatles in “Michelle” but not in “Hey
Jude” contain at least a B flat major seventh chord?

In the Harmory KG, we have included known patterns (as described in Sec-
tion 5.4.2), which are labelled in such a way as to indicate their origin, mood,
or harmonic function within the progression. These labelled harmonic fragments
can be used as input for a query, e.g. for searching songs that contain them:

Prompt 5 Which tracks include a dominant cycle in seven steps?

Human-machine chord generation

Harmory also enables combinational creativity use cases. New progressions are
generated by moving across patterns through temporal and similarity links, based
on the given creative requirements. At generation time, this has the advantage of
giving recognition to all artists that contributed to the new creation, as shown in
Figure 5.9.

First, it can provide statistical information regarding variations of a given
harmonic sequence. As these variations come from real pieces, it is also possible
to leverage metadata for controlling the generation. To do this, a prompt can be
formulated from a given (possibly new) harmonic sequence (or a part of it), to
retrieve all the all harmonic sequences using the same pattern.

Prompt 6 Given a chord sequence, which are its variations, and which tracks
these variations belong to?
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5.4. Harmory: The Harmonic Memory

Similarly, it is also possible to query the most similar (or most distant) har-
monic sequences to a given one:

Prompt 7 Given a chord sequence, which are its most similar chord sequences,
sorted by similarity?

These simple constructs already allow to generate new harmonic sequences,
starting from either a known harmonic idea/pattern, or a full progression. If
starting from a full progression, one way is to identify the first harmonic segment
that makes it up. From this point, transitions can be made using similarity
relations, while taking into account the order of the di!erent segments (temporal
connections) and their tonality. For example, starting from the first harmonic
segment of a song (a priming sequence), one can then generate a continuation
by identifying similar sequences to the next sequence, filtering them by tonality
(or/and by artist, genre, title) and repeat this process recursively for a number of
steps, criteria, or with the supervision/control of the user.

Prompt 8 Create a progression starting with “Michelle” by The Beatles, contin-
uing with a segment found in a classical piece of music, and then continuing
with another by Chet Baker.

Harmonic similarity

From a musicological perspective, the KG can also be used to analyse similarity
relations between tracks – by leveraging the local information relating harmonic
structures. This also allows for the formal definition of similarity functions (de-
pending on a genre- or task- specific notions) by using logical operators (SPARQL
syntax) over harmonic segments/patterns. An example is given below.

Prompt 9 Given a track, which tracks contain patterns with a distance of less
than 0.2, each having the same order?

As expected, the results of this query are almost exclusively cover songs of the
given track. Nevertheless, a similarity function can be defined to be less strict,
and hence more explorative. For instance, the similarity function below uses a
higher similarity threshold for patterns, and does not constrain on the order of
segments.

Prompt 10 Given a track, which tracks contain patterns with a distance of less
than 0.5, regardless of their order?
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5.5 Conclusion

The creation of large, harmonized corpora of symbolic harmonic annotations opens
up unprecedented opportunities for exploring harmonic data at scale, as discussed
in Section 4.5. Integrating diverse datasets enables analyses across a broad spec-
trum of musical genres, styles, and artist collections, providing insights into har-
monic content that were previously limited by fragmented data sources.

To fully leverage these harmonized corpora, a structured approach to similar-
ity is essential for analyzing and interpreting harmonic content across extensive
datasets. Unlike traditional methods that rely on general metadata or surface-
level features, content-based harmonic similarity o!ers a deeper layer of analysis
by identifying intrinsic musical patterns and relationships. This approach enables
the detection of nuanced harmonic structures and recurring patterns that define
genres, stylistic shifts, and even the idiosyncrasies of particular artists or historical
periods.

In this chapter, we investigate how the large-scale, harmonized corpora in-
troduced in Chapters 3 and 4, alongside novel similarity measures, can support
both musicological research and creative generation. To this end, we propose and
evaluate two key contributions: LHARP and Harmory.

LHARP is a method developed to capture local harmonic similarities across
pieces. Unlike traditional global similarity measures, LHARP focuses on detecting
recurring harmonic patterns within musical sequences, allowing researchers to
explore harmonic nuances that are often genre- or artist-specific. This approach
o!ers a more flexible and interpretable similarity measure, particularly suited
for musicological tasks that require detailed comparisons of harmonic structures
across di!erent works (Section 5.3).

Harmory, or the Harmonic Memory, is a knowledge graph designed to support
computational creativity by organizing harmonic patterns within a structured,
musically meaningful space. Leveraging cognitive and musicological models, Har-
mory captures both temporal relationships and structural similarities between
harmonic sequences, linking them within a broader harmonic landscape. By facil-
itating transparent and accountable access to diverse harmonic structures, Har-
mory provides a valuable resource for compositional assistance, allowing musicians
to explore and experiment with harmonic ideas across di!erent genres and styles
(Section 5.4).
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5.5.1 Limitations and Future Work

While LHARP demonstrates potential for generalizing to arbitrary symbolic se-
quences with structural similarities to music, several limitations remain, which de-
fine directions for future work. A primary concern lies in the data pre-processing
and encoding steps. Specifically, transposing all pieces to a common key, though
practical for similarity calculations, may raise objections among music experts who
argue that it could alter the musical texture, compromising the integrity of the
original (non-transposed) version. Additionally, the encoding method, which de-
composes chords into individual pitches, may overlook context-specific nuances.
For example, two distinct chord labels producing the same sound might have
unique harmonic functions that are flattened by pitch-based encoding. These
limitations represent simplifying assumptions, yet we are still actively gathering
feedback to validate their applicability and explore possible refinements.

These challenges are partially addressed in Harmory’s similarity function,
which leverages the TPS for encoding chords. While e!ective and musicologi-
cally grounded, this approach remains an incomplete and context-unaware repre-
sentation of musical harmony. Future research could involve exploring advanced
representation learning techniques to encode harmonic sequences more contextu-
ally and robustly [275, 113].

Moreover, as LHARP and Harmory currently provide single measures of simi-
larity, their e!ectiveness is naturally limited to the tasks and use cases tested (e.g.
cover song detection). Expanding the experimental framework to new tasks will
be essential for assessing the broader applicability of these methods. Additionally,
future work will involve developing novel similarity functions that can adapt to
a wider range of musicological and creative applications, thereby enhancing the
versatility and depth of both LHARP and Harmory in supporting diverse aspects
of music analysis.
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CHAPTER6
Exploring Symbolic Limitations: Multimodal
Strategies for Enhanced Harmonic Analysis

6.1 Introduction

In the previous chapters, we discussed how the large corpora of musical data
proposed in Chapters 3 and 4 can be leveraged in standard MIR tasks. Specifically,
in Chapter 5, we explored the task of harmonic similarity and its applications,
demonstrating the potential of these corpora to tackle new challenges in MIR.

However, despite the strides made, the data integration process finalised at
the creation of large datasets also exposes several limitations. While large music
corpora can serve as powerful tools for advancing harmonic analysis and other
MIR tasks, they incorporate important gaps that still need to be addressed to
unlock the full potential of data-driven approaches in music research.

These limitations manifest particularly in two critical areas: the inherent im-
balance in chord distributions, and the subjective nature of harmonic annotations.
As we will explore in this chapter, these challenges impact the development of ro-
bust MIR systems, especially in tasks like ACE and harmonic analysis.
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6.1.1 Limits and Challenges to Harmonic Data Integration

Recently, a comprehensive survey [302] discussed the advancements and challenges
encountered throughout twenty years of research in harmonic analysis. Among
the array of challenges identified, two emerge as particularly significant, both
intimately tied to the intricate nature of harmonic content and its representation
within audio signals: (i) the scarce diversity and balancing of the available datasets
and (ii) the inherent ambiguity and subjectivity of chord annotations.

In this chapter, we will explore these challenges in depth, as they present
critical barriers to the further advancement of MIR systems.

Diversity and Balancing of Available Datasets

One of the most significant challenges in current MIR systems is the lack of diver-
sity in the datasets available for tasks such as harmonic similarity and chord anal-
ysis. The Chord Corpus (ChoCo), introduced in Chapter 4, represents the largest
and most comprehensive dataset of its kind, integrating over 20, 000 harmonic
annotations. It includes annotations from a four diverse main musical styles, such
as pop, rock, jazz, and classical, making it one of the most diverse datasets in the
field. However, despite its breadth, the majority of the data skews heavily toward
mainstream Western genres, leaving significant gaps in the representation of other
musical traditions and styles.

For instance, the majority of the dataset – nearly 80%–comes from pop and
rock music, while jazz and classical account for a much smaller portion. This lack
of diversity has a direct impact over the distribution of chords within the dataset.
In Western popular music, certain chord types—such as major, minor, dominant
seventh, and major seventh – are disproportionately frequent. Meanwhile, more
complex or extended chord types, which are prominent for example in jazz music,
are under-represented. This imbalance in chord distribution, often referred to as
chord vocabulary imbalance in literature [227], limits the model’s ability to cor-
rectly handle infrequent chords, posing a strong bias towards the most represented
ones.

For instance, in ChoCo approximately 74.9% of the distribution of the 8064
distinct chord classes is dominated by just 5 chord types, as illustrated in Fig-
ure 6.1. These limitations are especially relevant when this data is used for ML and
DL applications, where algorithms notoriously struggle dealing with unbalanced
distributions [352].
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6.1. Introduction

Figure 6.1: Distribution of chord types in the ChoCo dataset.

Ambiguity and Subjectivity in Chord Annotations

Another critical challenge is inter-annotator agreement, which arises from the in-
herent ambiguity in what constitutes a chord from a musical perspective and the
subjective nature of human annotation processes. For example, a clear distinction
between a chord sequence and a melodic line can be subject to individual inter-
pretation. Moreover, there is significant variance among annotators regarding the
level of detail in annotating chord sequences [227].

The issue of inter-annotator agreement arises from the inherent ambiguity in
what constitutes a chord from a musical perspective and the subjective nature of
human annotation processes. For example, a clear distinction between a chord
sequence and a melodic line can be subject to individual interpretation. Moreover,
there is significant variance among annotators regarding the level of detail in
annotating chord sequences, such as the inclusion of rapid approach chords or
arpeggiated chords. Furthermore, annotators might be biased towards the melodic
and harmonic line played by a specific instrument, such as piano or guitar, rather
than considering the broader harmonic profile of the piece [227].

One particularly famous example of subjectivity in chord annotation is the
opening chord of The Beatles’ “A Hard Day’s Night” [227]. This chord has gen-
erated decades of debate among music theorists and musicians, with no single
definitive answer, bringing Beatles experts like Pedler [303] to observe that this
chord has taken on a “holy grail” status in popular music analysis. George Har-
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rison once described it as an “F with a G on top,” played on his 12-string guitar,
but left the interpretation of the bass note to Paul McCartney. Gary Moore sug-
gested it was a G7sus4, to which Harrison disagreed and demonstrated a di!erent
fingering. Other music theorists have o!ered varying analyses, including G11sus4,
Gsus4/D, and even D minor 11th.

Despite these ambiguities, single reference annotations are often used as the de
facto ground truth in computational studies of harmony [227]. These annotations
are treated as objective labels, against which algorithmic outputs are evaluated.
Yet, relying on a single reference ignores the inherent variability in human per-
ception and the possibility of valid alternative interpretations.

Various studies have investigated inter-annotator agreement in chord annota-
tion, aiming to measure the magnitude of the agreement in datasets specifically
created for this purpose. Clercq et al. [97] observe an inter-annotator agreement
rate of 94% for the root note between two di!erent annotations of the top 20
tracks from Rolling Stone magazine’s list of the 500 Greatest Songs of All Time.
In contrast, Koops et al. [227] report an inter-annotator agreement rate of 76%
for the root note on four di!erent annotations of a 50-song subset of the Billboard
dataset [48], while the agreement for more complex chords lowers to 52%.

6.1.2 The Need for Multimodality

The challenges discussed above, particularly the limitations of symbolic chord
annotations and the issue of inter-annotator agreement, highlight a critical need
for a more robust and flexible approach to analysing harmonic data. In this
thesis, we propose a multimodal approach that integrates both symbolic harmonic
annotations and audio signals to overcome these limitations.

Multimodal integration of audio and symbolic data o!ers several advantages
that make it a powerful solution for addressing the problems inherent in chord
annotation:

1. A multimodal approach enables us to tackle tasks that inherently require
audio data, such as Audio Chord Estimation (ACE);

2. Multimodal systems replicate the process human annotators follow when
transcribing chords. Human annotators typically rely on both the audio
signal and their musical knowledge to determine harmonic structures. By
incorporating audio data, multimodal systems can more closely reflect this
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human approach, improving performance in tasks such as resolving inter-
annotator disagreement by considering the auditory context in which chords
are perceived;

3. Audio complements symbolic annotations by providing information that is
di"cult or impossible to capture symbolically. For example, features like
timbre, dynamics, and articulation are essential aspects of music that con-
tribute significantly to its harmonic character, yet they are often left out of
purely symbolic representations [396];

4. This approach is aligned with growing advocacy within the MIR community
for integrating symbolic data into audio analysis. As symbolic and subsym-
bolic methods each o!er distinct advantages, balancing these approaches in
multimodal systems provides a more holistic view of musical content [66].

Audio-to-Chord Alignment

To create a multimodal dataset that integrates both symbolic chord annotations
and audio signals, the first critical step is retrieving the corresponding audio for
the existing chord annotations. Once the audio is obtained, it is necessary to align
audio and symbolic representations.

However, the availability of audio-aligned annotations within current corpora
is highly limited. In the case of ChoCo, less than 12% of the 20, 000 annotated
tracks are aligned with audio. This highlights the need for an e"cient method to
align audio with chord annotations.

An e!ective audio-to-chord alignment approach would not only bridge the gap
for existing annotations but also enable the generation of new multimodal data.
One promising avenue is to leverage the vast repositories of crowd-sourced chord
annotations available online. Platforms such as Ultimate Guitar1, e-chords2, and
Chordie3 collectively house millions of annotated songs, o!ering a wide variety
of genres that are currently underrepresented in existing MIR datasets. These
genres include electronic, metal, hip hop, reggae, and country, among others,
providing an opportunity to broaden the scope of the dataset beyond the current
mainstream genres.

Moreover, these repositories often contain multiple versions of the same song,
1https://www.ultimate-guitar.com/
2https://www.e-chords.com/
3https://www.chordie.com/
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each with slightly di!erent interpretations. This abundance of versions could
be invaluable for analysing the subjectivity in chord annotations, as suggested in
works like [226, 227]. However, a significant limitation is that these crowd-sourced
chord annotations typically lack any timing or duration information, o!ering only
chord lists and sometimes lyrics. This deficiency severely restricts their use for
MIR-related tasks that rely on temporal alignment between audio and symbolic
data.

These challenges underscore the need for a system capable of aligning chord
annotations with audio recordings. Currently, no model has been explicitly devel-
oped for this purpose. While existing audio-to-score alignment techniques, such
as those based on MIR algorithms [288], usually provide good quality alignments,
they typically require some preliminary weak alignment between the score and
audio, which is often not available in the case of chord annotations, especially
when dealing with crowd-sourced data. These methods struggle to handle chord
annotations with no temporal information, rendering them insu"cient for the
large-scale, automated alignment of chord lists with audio.

Audio Chord Estimation (ACE)

The proposed multimodal dataset, which integrates homogenised symbolic chord
annotations from diverse sources and aligns them with audio signals, holds signif-
icant potential for advancing ACE – a critical task in MIR. ACE automates the
transcription of chords directly from audio recordings, o!ering a scalable solution
for music transcription and analysis. Its applications are far-reaching, impact-
ing fields such as music analysis, musicology, content-based retrieval, and music
education.

Over the past two decades, research in ACE has made considerable progress,
leading to notable improvements in the accuracy and e"ciency of chord transcrip-
tion [302]. However, despite these advancements, recent performance gains have
stagnated, prompting some researchers to suggest that the task has reached a
“glass ceiling” [56]. Notably, increasing the amount of training data and scaling
computational resources have not resulted in significant improvements in ACE
performance [302]. This plateau is largely due to ongoing challenges such as the
aforementioned chord vocabulary imbalance and inter-annotator disagreement.

This thesis seeks to explore strategies for overcoming these obstacles, with
a focus on improving our understanding of inter-annotator agreement, enhancing
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ACE performance, and better capturing harmonic representations from audio [23].
We begin by evaluating existing metrics for inter-annotator agreement in chord

annotations [97, 227]. Current evaluations typically rely on binary metrics, where
a match between two labels is scored as one and any mismatch is penalised with
a score of zero. However, as noted by [266], treating all discrepancies with equal
severity can result in unfair assessments. Binary evaluations often fail to account
for shared harmonic features between chords that, while annotated di!erently,
exhibit meaningful similarities. For example, a mismatch between a G7 and a
Gsus4 may be treated as a complete error, despite both chords sharing significant
harmonic tension and resolution characteristics.

To address these issues, we propose leveraging music theory to enhance the
model’s understanding of chord annotations. By embedding theoretical concepts
such as consonance and dissonance, we aim to provide more context-aware inter-
pretations of chord sequences. This theoretical framework will allow the model to
better distinguish between similar chords and o!er more nuanced interpretations
of ambiguous or subjective harmonic structures.

Finally, we will evaluate the e!ectiveness of this approach in improving ACE
and the resulting harmonic representation from the audio signal. By combining
both symbolic and audio data, along with a deeper integration of music theory,
we aim to overcome current limitations and establish a more robust framework
for automatic chord transcription.

6.1.3 Our Contribution

In this chapter, we introduce two significant contributions aimed at addressing
the limitations in chord annotation alignment and ACE through multimodal ap-
proaches, in response to RQ4 (Section 1.1.4) and RQ5 (Section 1.1.5) respectively.
These contributions were published in [316] and are further expanded in a paper
currently under review [317].

First, we present ChordSync, a novel method for aligning chord annotations
to audio tracks without the need for preliminary weak alignment. By leveraging
the power of the conformer architecture [170], ChordSync enables the seamless
synchronization of chord annotations with audio signals from large-scale datasets.
This approach opens up the possibility of expanding audio-aligned chord datasets
using existing resources that lack timing and duration information, such as those
found on crowd-sourced platforms like UltimateGuitar. We provide a pre-trained
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model and a user-friendly library to help users e!ortlessly align chord annotations
with audio recordings. This advancement is particularly valuable for MIR tasks
that rely on multimodal data, such as music structure analysis, and o!ers en-
hanced opportunities for music learning experiences by aligning harmonic content
with auditory cues.

Additionally, we contribute a comprehensive analysis of inter-annotator agree-
ment in chord annotations using non-binary metrics, building upon the work of
McLeod et al. [266]. Traditional binary metrics often penalize disagreements too
harshly, without accounting for harmonic similarities between annotations. Our
analysis demonstrates that incorporating distance metrics based on perceptual
consonance significantly improves agreement scores. This insight provides a deeper
understanding of how subjective harmonic interpretations can be better captured
and evaluated in MIR systems.

Building upon these findings, we propose a novel approach to ACE that inte-
grates consonance-based label smoothing [287] and focal loss mechanisms [246].
To address the persistent issue of chord vocabulary imbalance, we introduce a
method inspired by McFee et al. [263], where chord root, bass, and note ac-
tivations are classified separately, allowing the final predicted chord label to be
derived from decoding these components rather than imposing a fixed vocabulary.
This approach provides greater flexibility and adaptability, enabling the model to
capture a wider range of harmonic structures beyond common chord types.

Our proposed ACE model is built upon the conformer architecture[170], that
has been recently adopted for di!erent audio-based tasks [378, 410]. By leveraging
this architecture, we demonstrate that our model learns more e!ective represen-
tations of harmonic content and outperforms state-of-the-art ACE methods when
evaluated using consonance-based distance metrics.

In summary, our contributions in this chapter are twofold: we introduce a
robust solution for chord-to-audio alignment with ChordSync, and we propose
an enhanced method for Chord Estimation that addresses key challenges such as
chord vocabulary imbalance and inter-annotator agreement through a multimodal,
theory-informed approach.

6.1.4 Chapter Structure

This chapter is structured as follows. In Section 6.2, we review the state of the
art for both audio-to-score alignment techniques and Audio Chord Estimation.
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Section 6.3 introduces our novel alignment method, ChordSync, and provides ex-
amples of how it can be used to integrate the ChoCo dataset with crowd-sourced
chord annotations. Next, in Section 6.4, we analyse inter-annotator agreement
using di!erent non-binary metrics, emphasizing the role of consonance and disso-
nance in improving agreement analysis. Section 6.5 presents our proposed ACE
approach, including the use of consonance-based label smoothing and focal loss
mechanisms to address challenges such as chord vocabulary imbalance. Finally,
Section 6.6 concludes the chapter, summarizing the main contributions and in-
sights.

6.2 Related Work

6.2.1 Alignment Techniques

Audio-to-Score Alignment

The task of aligning audio to symbolic music, commonly known as audio-to-
score alignment (A2SA), has been primarily addressed by Dynamic Time Warping
(DTW) algorithms [279], as they are particularly e!ective for sequence alignment
tasks. Thus, various DTW-based alignment methods have been proposed to align
audio with di!erent symbolic music formats, such as MIDI [322], often integrat-
ing additional techniques and diverse signal representations to improve alignment
accuracy [51, 338].

A di!erentiable variant of DTW, SoftDTW, has been recently used as the loss
function within neural network architectures, mainly for multi-pitch estimation
tasks [232, 423]. However, a general limitation of the DTW-based approaches is
their reliance on weak-aligned data to perform the alignment. This requirement
renders them unsuitable for contexts without prior alignment information.

Other deep-learning methods have been investigated for audio-to-score align-
ment, including leveraging automatic transcription techniques [360] and training
audio features tailored explicitly for alignment tasks [212].

The only previously proposed approach for aligning audio with chord annota-
tions uses Hidden Markov Models (HMM) and is part of an ACR workflow [411].
Also related to our work is the Harmonic Change Detector (HCD), introduced in
[180] and subsequently revisited and improved in [108, 329], for detecting harmonic
changes within the audio signal, including chord changes. However, the number
of harmonic changes within the audio signal often exceeds the number of chord
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changes, posing challenges for using these algorithms directly for audio-to-chord
alignment.

Lyrics-to-Audio Alignment

Another form of alignment pertinent to our work is the audio-to-lyrics alignment
task, which seeks to determine the corresponding locations in a song recording of
its lyrics at various levels such as line, word, or phoneme [354]. Existing methods
for this task are commonly adapted from automatic speech recognition (ASR) [172,
368], despite the inherent complexity of singing voices compared to speech [200],
and typically make use of acoustic models trained to recognise the phonetic content
of the audio signal at various levels of granularity. Some recent works have adopted
the Connectionist Temporal Classification (CTC) loss [164], training the acoustic
model in an end-to-end fashion [368].

6.2.2 Audio Chord Estimation (ACE)

Since the seminal work by Fujishima from 1999 [146], most chord recognition
systems applied a knowledge-driven approach [267], involving the extraction of
acoustic features, such as chroma [259] or Tonnentz [202], followed by classification
or template matching techniques, such as HMMs [21], Dynamic Bayesian Networks
(DBNs) [259], or Conditional Random Fields (CRFs) [228].

With the emergence of deep learning, various architectures have been explored
for the task, including CNNs [263, 228], Recurrent Neural Networks (RNNs) [357],
Convolutional Recurrent Neural Networks (CRNNs) [211], and Transformers [301].
While deep-learning approaches have surpassed traditional knowledge-driven ones,
several challenges must be tackled.

Most of the proposed approaches to addressing the chord class imbalance chal-
lenge can be divided into two categories: chord simplification and chord decompo-
sition. The former reduces the size of the chord vocabulary by converting complex
chord labels into simpler representations. Notably, the vast majority of studies
have adopted restricted vocabularies of approximately 25 symbols, encompassing
major-minor chords along with placeholders for other chord types X and silence
N [146, 267]. Chord decomposition strategies focus on predicting the chord con-
stituting components separately, typically the bass, root, and note activations
(often also 7th, 9th, 11th, and 13th), and then map them to templates to predict
the final chord [263, 412, 211]. Some additional approaches do not fall into these
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two categories, like addressing the unequal distribution of chords through a bal-
anced learning process [110], or using a curriculum learning training scheme to
begin with simple chord qualities and then move to more complex and less com-
mon ones [343]. The inter-annotator agreement in chord annotation continues to
pose a significant challenge. Despite existing diagnoses and quantification of this
phenomenon in the literature [227, 97], definitive solutions have yet to emerge.
Clercq et al. [97] observe an inter-annotator agreement rate of 94% for the root
note between two di!erent annotations of the top 20 tracks from Rolling Stone
magazine’s list of the 500 Greatest Songs of All Time. In contrast, Koops et al.
[227] report an inter-annotator agreement rate of 76% for the root note on four
di!erent annotations of a 50-song subset of the Billboard dataset [48]. To address
this challenge, Koops et al. [226, 227] propose a novel approach based on chord
label personalisation. Instead of employing a uniform set of chord labels for all
users of an ACE system, this method advocates for the customisation of chord
labels to suit individual preferences and vocabulary. The process starts with the
calculation of Shared Harmonic Interval Profiles (SHIP) representations derived
from multiple chord label reference annotations corresponding to the Constant-Q
Transform (CQT) frames. Then, a deep neural network is trained to learn these
features from audio. Finally, personalised chord labels are generated, tailored to
each annotator’s specific vocabulary and preferences.

While this approach o!ers valuable insights, it requires multiple annotations
of individual tracks, which restricts its applicability due to the scarcity of such
datasets [225]. In contrast, the method proposed in this thesis endeavours to de-
velop generalised harmonic representations by leveraging principles derived from
music theory, thus circumventing the need for datasets with multiple annotations.
Our method applies Label Smoothing (LS), a technique employed to enhance
the generalisation and learning speed of multi-class neural networks. Originally
proposed in [376], LS redistributes a portion of the probability mass from the
observed class to other classes, thereby softening the distribution and generat-
ing what is referred to as soft targets. This regularisation method has found
widespread application in various state-of-the-art models across domains such as
image classification, language translation, and speech recognition. LS has also
been tested for music classification tasks [46], proving to improve performance
and reduce overfitting in small network training. While LS primarily serves as
a regularisation technique, numerous studies have delved into its potential for
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encoding meaningful relationships among di!erent categories. For instance, in
[250], authors propose an impactful method for generating more reliable soft la-
bels that explicitly consider the relationships among various categories. Similarly,
in [245], a novel approach known as label relaxation is introduced, which involves
replacing a degenerate probability distribution associated with an observed class
label, not by a single smoothed distribution but rather by a larger set of candidate
distributions.

6.2.3 Conformer-based Approaches

The conformer architecture [170] has recently emerged in Automatic Speech Recog-
nition (ASR) as a novel architecture to e!ectively model global and local audio
dependencies by leveraging a combination of CNNs and Transformer architectures.
It has showcased remarkable success across various tasks not only in speech [63]
but also in music [410], including melodic transcription [378], representation learn-
ing [127], and music audio enhancement [58].

6.3 ChordSync: Conformer-Based Alignment of Chord An-
notations to Music Audio

Figure 6.2: Basic schema of ChordSync: The model processes a list of chords alongside
the audio signal, producing time-aligned chords as output.

This section describes ChordSync, our proposed conformer-based model for
audio-to-chord alignment. It implements an acoustic model for estimating the
frame-wise probabilities of chord labels, which are then fed to a forced-alignment
decoder, along with the list of chord labels to align, as illustrated in Figure 6.2.
Figure 6.3 illustrates the three primary steps implemented by the model: pre-
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Figure 6.3: Architecture of ChordSync: (i) The audio signal undergoes preprocessing
to Constant-Q Transform (yellow box); (ii) The preprocessed audio serves as in-
put for training the conformer-based acoustic model (blue box); and (iii) The model
output probabilities, along with the list of chord labels for alignment, is fed into a
Connectionist Temporal Classification (CTC) forced alignment module (green box),
which outputs the aligned chord labels.

processing and data augmentation (Section 6.3.2), the acoustic model used during
training, and the forced alignment decoder (Section 6.3.3). The software imple-
mentation and a pre-trained model are available on a GitHub repository4.

6.3.1 Problem Statement

Let X = {x1, ..., xN} be a frame-level sequence of acoustic features extracted from
the input audio, where xn ↔ RD represents a D-dimensional feature vector, and
N indicates the total number of frames within the sequence. Let C = {c1, ..., cM}
be the input list of chord labels encoded into integer values, where cm ↔ ZK ,
K denotes the size of the chord vocabulary, and M is the length of the chord
sequence. The list of chord labels is upsampled to match the length of the audio
sequence N . This upsampling is performed uniformly, assuming each chord has
a duration approximately equal to N/M . Specifically, each chord label cm is
repeated for approximately N/M frames to produce the sequence Z = {z1, ..., zN},
where zm ↔ ZK . Thus, we train an acoustic model to optimise the following
equation:

Z
↘ = argmax

z
p(Z|X), (6.1)

4https://github.com/andreamust/ChordSync
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where Z
↘ represents the optimal sequence of chord labels that maximises the

posterior probability p(Z|X), given the input sequence X. Note that X and Z

are aligned at the frame level, and p(X|Z) is evaluated by estimating the frame-
wise posterior probability p(xn|zn).

The output probabilities p(X|Z) from the acoustic model are then fed to a
CTC forced alignment decoder, which estimates the best alignment between the
sequence of acoustic features X and the list of chord labels C:

A
↘ = argmax

a
p(A|X, C), (6.2)

where A
↘ represents the optimal alignment between X and C that maximises the

posterior probability p(A|X, C).
In this way, the decoder generates the aligned chord labels with respect to the

audio signal.

Figure 6.4: Data augmentation policies used for ChordSync, all adapted from [300].
The CQT used as input for the model is randomly masked either: (i) along the time
axis (second image); (ii) along the frequency axis (third image); or (iii) both time
and frequency axis (fourth image).
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6.3.2 Preprocessing

For the input audio data, a standard pre-processing pipeline is implemented. The
audio is first resampled to a sampling rate of 22050 Hz, and a hop size of 2048
is applied. Then, the Constant-Q Transform (CQT) features are calculated on 6
octaves starting from C1, with 24 bins per octave, resulting in a total of 144 bins.

The audio data used for training undergoes data augmentation by applying
(i) time masking and (ii) frequency masking directly to the audio features, as
proposed in SpecAugment for end-to-end ASR [300]. Frequency masking involves
masking a random number of consecutive mel frequency channels along the fre-
quency axis, whilst time masking involves masking a random number of frames
along the time axis. Figure 6.4 shows examples of the implemented augmentation
strategies.

During training, each audio excerpt in the training set undergoes augmenta-
tion, where either one of the transformations (frequency masking or time masking)
or both are applied, and the choice of augmentation technique is determined ran-
domly with equal probability.

Chord labels are numerically encoded into integer values and upsampled to
match the length of the audio sequence N . The upsampling is performed us-
ing the pumpp library5. Figure 6.5 shows how chord labels are converted and
sampled. The size of the chord vocabulary K results from the linear combi-
nation of the 12 pitches, representing the chromatic scale, with chord qualities
such as {maj, min, 7, dim, dim7, hdim7, aug, min7, maj7, maj6, min6,

minmaj7, sus2, sus4}, plus an additional chord symbol N representing silence
or no chord.

6.3.3 Conformer-based Acoustic Model

The acoustic model we adopt is an adaptation of the original Conformer architec-
ture [170], where the audio encoder processes the input through a convolutional
module followed by a series of Conformer blocks.

The convolutional module comprises a convolution layer, a fully connected
layer, and a dropout layer. The convolutional module serves as the initial feature
extractor, capturing local patterns within the input CQT. Dropout regularisation
is applied by randomly deactivating units during training to reduce overfitting.
Additionally, we incorporate positional encoding, as proposed in the original trans-

5https://github.com/bmcfee/pumpp.
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Figure 6.5: Workflow of the pre-processing applied to the chord labels. Chord labels
are numerically encoded and upsampled to match the length of the CQT.

former architecture paper [393].
A Conformer block is composed of four modules stacked together: a feed-

forward module, a self-attention module, a convolution module, and a second feed-
forward module at the end. In the original Conformer paper, the authors explore
three di!erent sizes of the Conformer architecture: S (small), M (medium), and
L (large), with di!erent numbers of layers, hidden units, and other parameters.
For our implementation, we opt for the M architecture, which comprises a 16
encoder layer with a dimension of 256, 4 attention heads, and a convolutional
kernel size of 32. While the original paper observed significant improvements
when transitioning from the S to the M variant, our experimentation yielded
little improvements from M to L.

To handle the large dimensionality of the vocabulary, we use an architecture
similar to that proposed by [263], in which root notes, bass notes, and all pitch
activations of the chord are predicted. Subsequently, these probabilities are passed
to a feed-forward layer, which converts these three probabilities into the likelihood
of the chord with respect to the vocabulary K, similarly to what was proposed
by [343].

For training, we employ cross-entropy loss and optimise using the AdamW
optimiser. We utilise a cosine annealed warm restart learning scheduler to manage
learning rates. Learning rate schedulers proved e!ective in training audio data,
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especially with augmented data [300]. Finally, we applied early stopping by halting
the training if the loss failed to decrease for over 20 epochs to prevent overfitting.

The output of the trained acoustic model is shown in Figure 6.6.

Figure 6.6: Example of the chord classes predicted by the conformer-based acoustic
model. The upper panel displays the target labels, while the lower panel showcases
the probabilities predicted by the model.

Forced Alignment

To estimate the best alignment between the acoustic features X and the chord
labels C, we utilise the Connectionist Temporal Classification (CTC) objective
function [164], which computes the probability of a given alignment between the
input features and output labels. The CTC objective function is defined as follows:

p(C|X) =
∑

A↑AX,C

p(at|X), (6.3)

where AX,C denotes the set of all possible alignments that produce the label
sequence C, and p(at|X) represents the probability of alignment at given the
input sequence X.

The probability of alignment at given X is computed as the sum of probabilities
of all paths a

↓
t that correspond to at after collapsing repeated labels and blank

symbols:
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p(at|X) =
T∏

t=1

pt(ϑt|X), (6.4)

where T is the length of the alignment, and p(ϑt|X) is the probability of the t-th
symbol in the alignment path ϑ given the input sequence X.

6.3.4 Evaluation

Due to the lack of established methodologies to address the chord-to-score align-
ment task, conducting a comparative evaluation with existing state-of-the-art
techniques presents some challenges. Therefore, to gauge the e!ectiveness of
the proposed methodologies, we use alternative approaches performing analogous
albeit slightly dissimilar methods for comparison and conduct two di!erent ex-
periments. The first aims to evaluate the model’s capability in detecting chord
boundaries, while the second compares it to a traditional DTW-based alignment.

All experiments were carried out using a subset of ChoCo (c.f. Chapter 4),
for which we select only partitions annotated on audio, i.e. expressing temporal
information such as onsets and duration in seconds. Table 6.1 presents a summary
of all ChoCo partitions employed for training and evaluation.

Audio files corresponding to each ChoCo annotation were obtained automat-
ically from the available metadata in the original datasets. This was necessary
as only a small portion of the datasets o!er external links to the original audio
sources used for chord annotation. Since the automatic retrieval process depends
on sometimes sparse and incomplete metadata, the validity of the audio files was
manually verified on randomly selected samples. The complete dataset consists

DatasetDataset Genre #Tracks Reference
Isophonics pop, rock 300 [258]
Billboard pop 740 [48]
Chordify pop 50 [225]
Robbie Williams pop 61 [116]
Uspop 2002 pop 195 [28]
RWC-Pop pop 100 [161]
Schubert-Winterreise classical 225 [402]
Weimar Jazz Database jazz 456 [309]
JAAH jazz 113 [129]
Total 2240

Table 6.1: ChoCo partitions used for training and evaluating ChordSync.
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MethodMethod Genre Precision ↘ Recall ↘ F1 Score ↘
HCDF pop/rock 0.4999 0.6334 0.5269
HCDF classical 0.4454 0.6220 0.5191
HCDF jazz 0.4911 0.7749 0.5857
HCDF all 0.4953 0.6508 0.5323
ChordSync pop/rock 0.8847 0.8335 0.8553
ChordSync classical 0.6008 0.5917 0.5951
ChordSync jazz 0.4663 0.4129 0.4350
ChordSync all 0.8895 0.8420 0.8621

Table 6.2: Precision, Recall, and F1 Score for the HCDF method [329] and the proposed
ChordSync model.

of 2240 audio tracks, encompassing four distinct music genres: pop, rock, classi-
cal, and jazz. However, it is noteworthy to observe a significant imbalance in the
dataset, with the pop/rock genre comprising over 65% of the total tracks.

Audio data is segmented into intervals of 15 seconds duration, with a 3-second
overlap between each segment and the preceding one, yielding a corpus of 31909
segments. We split these segments into train, validation, and test sets with pro-
portions of 65 → 20 → 15. Importantly, when a segment from a particular song
is included in the train set, we ensure that no segments from the same song are
included in either the validation or test sets.

Chord Changes Detection Evaluation

The first comparison is conducted with the Harmonic Change Detection (HCD)
algorithm [180], which specialises in detecting harmonic changes on an audio sig-
nal. These algorithms are typically evaluated by assessing their capacity to detect
the onsets of annotated chords within the identified harmonic changes, often em-
ploying standard metrics such as Precision, Recall, and F1 Score.

However, by their intrinsic design, HCD algorithms extract every harmonic
variation present in the audio signal. [180] and [329] provide two distinct imple-
mentations of this algorithm, each optimising either the F1 score or precision.
The number of harmonic changes varies significantly depending on the chosen
algorithm implementation, but in general, it far exceeds that of chord changes.

In contrast, ChordSync extracts the number of chord changes of the list of
chords passed to the CTC decoder. Table 6.2 presents a comparative analysis
between the HCD algorithm in [329] and ChordSync. A harmonic change match
is defined in a 0.3 seconds window between the predicted and the ground-truth
onsets.
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Our method demonstrates notable e"cacy in chord change extraction, sub-
stantially increasing all the performance measures considered. This performance
improvement stems from the model’s inherent design, which optimises the align-
ment between the audio signal and the provided sequence of chords. However,
performance decreases in the less represented genres within the dataset, such as
jazz and classical.

Alignment Evaluation

MethodMethod DatasetDataset Percentage Correct ↘ Median Absolute Error ≃ Average Absolute Error ≃ Perceptual ↘
DTW schubert-winterreise 0.8621 0.0661 0.2088 0.7895
ChordSync schubert-winterreise 0.8245 0.2641 0.2512 0.7230
ChordSync all 0.8664 0.4224 0.5001 0.7900

Table 6.3: Performance of ChordSync on the Schubert-Winterreise dataset [402] com-
pared to a standard DTW approach performed using the SyncToolbox library (first
two rows). Additionally, performance metrics of the ChordSync method applied
across all datasets are presented. Metrics are computed with the alignment met-
rics from the mir_eval library.

Evaluating audio-to-score or audio-to-lyrics alignment entails comparing pre-
dicted and ground truth timestamps to measure their temporal di!erences [261,
145]. This comparison typically occurs pairwise and involves calculating metrics
such as the median absolute error in seconds and the percentage of overlapping
segments. This approach o!ers a straightforward means of assessing alignment
accuracy and determining the e!ectiveness of alignment methods for practical
applications.

Furthermore, perceptually-grounded metrics for evaluating lyrics-to-audio align-
ment systems have been recently introduced [257]. These metrics were fine-tuned
on data collected through a user Karaoke-like experiment, reflecting human judge-
ment of how “synchronous” lyrics and audio stimuli are perceived in that setup.

All the metrics described above are implemented in the mir_eval library [323],
providing a standardised and accessible means for conducting evaluations in audio
alignment. Given its similarities with other alignment tasks and the perceptual
considerations involved, the same metrics are suitable for evaluating audio-to-
chord alignment.

We compare the performance of ChordSync and a conventional DTW-based
approach using the SyncToolbox library [288], which o!ers a diverse array of DTW-
based implementations. The evaluation of this type of approach requires both
symbolic sequences weakly aligned to audio, which are a prerequisite for the align-
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ment, and ground truth annotations strong aligned to audio for evaluation. To
our current knowledge, such annotations are exclusively found within the Schu-
bert Winterreise dataset [402]. Consequently, the evaluation of this approach is
constrained to a limited number of pieces and to the classical genre.

To perform the alignment between audio and chord annotations, the chord
annotations were first decomposed into their constituent notes, each of which was
then associated with the chord’s symbolic onsets. The audio data underwent
pre-processing using chroma and DLNCO features, known for their e!ectiveness
in alignment tasks [131]. Finally, alignment was carried out utilising memory-
restricted multi-scale DTW (MrMsDTW) [285, 319].

Table 6.3 shows the performance of the proposed model on the Schubert Win-
terreise dataset compared to a standard DTW approach, along with the broader
performance metrics of the ChordSync method applied across all datasets (c.f.
Table 6.1). This evaluation demonstrates that the proposed model accurately de-
tects chord changes and achieves alignment performance comparable to that of a
DTW-based approach. Conversely, the evaluation conducted solely on a subset
of the Winterreise dataset demonstrates performance comparable to DTW, albeit
slightly lower. However, this data highlights the model’s strong generalisation
capabilities, as it e!ectively aligns songs from a genre that was statistically rare
in the training data due to its limited size.

Even so, it is worth noting that the proposed model achieves these results
without relying on weak-aligned data, which is a requirement for DTW-based
approaches.

6.4 Inter-annotator Agreement Analysis

As outlined in the introduction to this chapter, the metrics employed to evaluate
inter-annotator agreement in chord datasets are constrained to binary distances
[302]. The binary distance Bdist(C1, C2) between two chords C1 and C2 equals 1
if C1 = C2, and equals 0 if C1 ⇒= C2.

Usually, the binary distance measure is weighted across by the duration of the
annotation. This metric takes the name of Chord Symbol Recall (CSR) [179],
and consists of weighting each distance (or similarity) by the duration of the
corresponding segment:

CSR = | Sa ∝ Se |
| Sa | . (6.5)
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That is, the summed duration of time periods where the correct chord Se has been
identified, normalised by the total duration of the evaluation data Sa.

These evaluations are usually performed at di!erent levels of granularity, such
as root note, triads, inverted triads, tetrads, inverted tetrads, sevenths, inverted
sevenths, and mirex chord metrics. An illustrative implementation of such evalua-
tion metrics can be found in the chord module of mir_eval [323], a widely utilised
toolkit for music information retrieval research.

However, assessing the musical content using a binary evaluation approach
can potentially lead to misleading conclusions. In order to overcome this, new
metrics have recently been introduced. One notable contribution in this regard
is presented in [266], where the authors introduce three novel metrics designed to
o!er a more nuanced assessment of chord annotation performance: Spectral Pitch
Similarity, Tone-by-Tone distance, and Mechanical Distance. Spectral Pitch Sim-
ilarity is a measurement of the perceived pitch content of chords, grounded on
psychoacoustic assumptions. On the other hand, Tone-by-Tone Distance consid-
ers each chord as a set of pitch classes, categorised as either tonal or neutral. This
metric computes the proportion of pitch classes shared between each chord pair,
culminating in a distance measure that reflects the overall similarity in pitch con-
tent. Lastly, Mechanical Distance o!ers a granular evaluation by treating chords
as pitch class sets and approximating the physical distance between two chord
labels as they would be played on an instrument. This metric extends the con-
cept of Tone-by-Tone Distance by not only considering the proportion of incorrect
pitches but also quantifying the magnitude of deviation for each erroneous note
from the target chord, which by default is measured in semitones.

Additionally, we extend our study by combining the mechanical distance with
a consonance-based distance. We use the consonance vector presented in [155],
which is informed by perceptual studies tailored to Western tonal music analysis,
and is defined as follows:

vt = [0, 7, 5, 1, 1, 2, 3, 1, 2, 2, 4, 6]. (6.6)

Intervals such as perfect fifths and thirds (P5, m3, and M3) are regarded as the
most consonant and are assigned the lowest value (value 1). Complementary
intervals such as perfect fourths and sixths are deemed to be of intermediate
consonance (value 2). Conversely, intervals ranked higher in dissonance, including
major and minor sevenths, major seconds, major sevenths, and minor seconds, are
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Figure 6.7: Evaluation of Inter-Annotator Agreement using Chord Symbol Recall met-
rics across various distances: Binary (MIREX metrics), Tone-by-Tone, Mechanical,
and Mechanical Consonance distances.

assigned higher values (3, 4, 5, 6, and 7, respectively).
In this study, we compare our inter-annotator agreement analysis with the

approach proposed in [227]. For the experiments, we use the same dataset as
in the original evaluation: the Chordify Annotator Subjectivity Dataset [225],
which is composed of 50 songs, each of which is annotated by four di!erent music
experts. In order to compare the metrics, they are normalised as follows: Tone-by-
Tone distance Tdist is by design normalised between 0 and 1; hence the agreement
measure is 1→Tdist. Conversely, mechanical distance Mdist returns non-normalised
values, that we normalise by the maximum distance value obtainable with the
distance vector being used (12 for semitone distance and 16 for the consonance
distance):

agreementMdist = 1 → Mdist

max(Mdist)
(6.7)

We compute the CSR for each of the metrics at di!erent granularity levels,
encompassing the metrics normally used in ACE evaluation. Table 1 reports the
results of the evaluation as the average for all the combinations for all of the 50
song of the dataset, while Figure 6.7 depicts the distributions of all experiments
on complete chords.
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Binary TbT MD MDC

Root 0.757 0.757 0.929 0.960
Majmin 0.734 0.952 0.987 0.990
Thirds 0.741 0.945 0.981 0.986
Triads 0.712 0.940 0.980 0.983
Tetrads 0.572 0.942 0.972 0.979
Sevenths 0.592 0.950 0.979 0.984
MIREX 0.744 0.794 0.831 0.879

Table 6.4: Comparison of Inter-Annotator Agreement Evaluation Metrics. The table
presents the evaluation results of inter-annotator agreement using various metrics,
including binary metrics proposed in [227], Tone-by-Tone distance (TbT), Mechanical
Distance (MD), and Mechanical Distance with Consonance (MDC). The MIREX row
computes the MIREX metric for binary distance and chord-to-chord distances for all
the other metrics.

The results of our evaluation reveal a notable improvement in agreement
when employing Tone-by-Tone and Mechanical distances compared to binary dis-
tance. Specifically, mechanical consonance-based scores demonstrate higher levels
of agreement overall and tends to yield lower agreement scores than its semitone-
based counterpart. This observation suggests that annotators converge more con-
sistently on the fundamental harmonically consonant structures when transcribing
chords.

6.5 From Dissonance to Harmony

6.5.1 Methods

As a main contribution of this section, we propose a novel model for ACE. The
novelty encompasses three key aspects: (i) we present a novel architecture based
on the conformer architecture tailored specifically for ACE; (ii) we introduce a
consonance-based smoothing technique applied to the target labels, improving the

Figure 6.8: Overview of the Model Architecture, which comprises the preprocessing
stage, the conformer-based model, and the symbolic chord decoder.
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model’s training by integrating perceptual characteristics of harmony; and (iii) we
present an enhanced version of the chord label encoding/decoding methodology
initially introduced in [263].

Proposed Model

The proposed model, illustrated in Figure 6.8, leverages the conformer architecture
[170], which, combining the strengths of CNNs and self-attention mechanisms,
captures local and global dependencies within sequences.

The audio is first resampled to a sampling rate of 22050 Hz, and a hop size of
2048 is applied. Then, the CQT features are calculated on 6 octaves starting from
C1, with 24 bins per octave, resulting in a total of 144 bins. The CQT features are
fed to a convolutional block, which includes batch normalisation, convolutional
and dropout layers. The output of the convolutional block is forwarded to a
conformer encoder consisting of 16 blocks [170] before being passed to the decoder
layers.

Label encoding follows a similar approach as [263]. Specifically, root and bass
notes are encoded as a 13-dimensional one-hot vector, with the first 12 positions
representing the 12 semitones from C to B, and the thirteenth position indi-
cating silence (denoted as N). Conversely, chord pitches are encoded using a
12-dimensional multi-hot encoding scheme. Each dimension corresponds to a mu-
sical pitch, and the values range between 0 and 1, representing the activation of
individual notes within the chord.

The output of the conformer layers is fed into three distinct fully-connected
layers dedicated to predicting bass, root, and pitch activations, respectively. These
fully-connected layers transform the high-dimensional representations learned by
the conformer into probability distributions over the possible values for each label
component. The output layer for predicting bass and root notes uses a softmax
activation function, while the output layer for predicting chord pitches uses a
sigmoid activation function.

Consonance-based Label Smoothing

We present a novel consonance-based smoothing of the target labels to train the
network according to the formalised concepts of consonance discussed in Section
6.4.

Label smoothing is commonly formulated using the cross-entropy loss function
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with soft targets. Let’s denote the ground truth label for a given example as
yi, where yi is a one-hot encoded vector representing the true class, and let ŷi

denote the predicted probability distribution outputted by the model for the same
example. The cross-entropy loss function L can be expressed as:

L(yi, ŷi) = →
C∑

j=1

yij log(ŷij) (6.8)

where C is the total number of classes, yij is the j-th element of the ground truth
label vector yi, and ŷij is the predicted probability of the j-th class by the model.

With label smoothing, instead of using hard targets (one-hot encoded vectors),
soft targets ỹi are introduced as a combination of the ground truth label yi and a
uniform distribution over the classes, which are calculated as:

ỹij = (1 → ϖ) · yij + ϖ

C
(6.9)

where ϖ is a smoothing parameter (typically a small value), and ỹij is the j-th
element of the soft target vector ỹi.

The smoothing is calculated in the LS paradigm according to the consonance
vector vt presented in Equation 6.6. Let us denote the smoothing value for the
i-th index as si. We can calculate si as follows:

Once we obtained the smoothing values, we can normalise them to obtain the
soft labels. Let ỹ represent the soft label vector, and s represent the smoothed
values vector. Then, the soft label ỹi for the i-th index can be calculated as:

ỹi = si
∑C

j=1
sj

(6.10)

C being the total number of classes.

Figure 6.9: Comparison of the one-hot encoding of the root note (left) with the root
note encoding after applying the proposed consonance-based smoothing (right).
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Figure 6.9 exemplifies the smoothing proposed, comparing it to hard labels.
Consonance-based smoothing is applied to all targets, ensuring the soft labels
reflect the consonance relationships among di!erent chord components.

We use binary cross-entropy loss for chord activations, which is well-suited for
binary classification tasks. Conversely, to maximise the e!ect of the smoothing
for root and bass classification, we use focal loss [246], a specialised loss function
designed to address class imbalance by down-weighting well-classified examples
during training.

Chord Decoding

Figure 6.10: Example of chord label decoding for a D:maj7/3 chord using the archi-
tecture from [263].

The predicted probabilities are decoded as follows. First, we identify the root
note by selecting the highest probability and then decode its numerical represen-
tation into the corresponding pitch class symbol. A threshold is set for the pitch
activation probabilities (by default, at 0.5), and only activations surpassing this
threshold are considered. To maximise the recognition of complete chords, we iter-
atively lower the threshold by 0.1 until a chord with at least 2 notes is recognised,
while we lower it by 0.1 only once if the chord is composed of only two notes.
Subsequently, pitches are converted to intervals by calculating the distance from
the predicted root note to each predicted pitch. The same procedure is applied
for the bass note, enabling the reconstruction of the chord, as depicted in Fig-
ure 6.10. Ultimately, the reconstructed chord is passed to the harte_library

6,
which o!ers utilities for converting the predicted chord label into the respective
shorthand notation.

6.5.2 Evaluation

In this section, compare the performance of the proposed ACE model with a
state-of-the-art method [301], using both standard metrics and mechanical dis-

6harte_library: https://github.com/andreamust/harte-library
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tances. We also explore the learned representations to assess the e!ectiveness of
the proposed consonance-based smoothing.

For all the experiments we use a subset of ChoCo [90], filtering the partitions
contained in the corpus and selecting the ones that contain time information ex-
pressed in real time (seconds), and that are of genre pop or rock. All datasets used
are listed in Table 6.5. We split each track into 15-second excerpts with a 2-second
overlap. We also ensure that excerpts from the same track are not shared among
di!erent sets. We employ data augmentation by transposing both audio and tar-
gets from →5 to +6 semitones. During training, we use the AdamW optimiser and
cosine annealing with warm restart learning rate scheduler to dynamically adjust
the learning rate during training cycles. Additionally, we adopted mixed precision
training [274] to accelerate training. To prevent overfitting, we implement early
stopping, terminating training when performance on a validation set ceased to
improve after 5 epochs.

Evaluation of the ACE Model

We evaluate our model using mechanical distance and mechanical distance with
consonance, as detailed in Section 6.4, alongside standard mir_eval binary met-
rics. The experimental results, as summarised in Table 6.6, reveal that our model
demonstrates comparable performance to the BTC model [301], widely regarded
as state-of-the-art in audio chord estimation. As documented in [211], minimal
di!erences exist among models when using standard metrics. However, our pro-
posed model demonstrates consistent improvements in performance compared to
state-of-the-art models across mir_eval metrics. Moreover, our model performs
better than the BTC model in predicting complex chords, such as tetrads and
sevenths. Most notably, our model significantly outperforms the BTC model in
terms of mechanical consonance, highlighting its e!ectiveness in capturing har-

DatasetDataset Genre #Tracks#Tracks Reference
Isophonics pop, rock 300 [258]
Billboard pop 740 [48]
Chordify pop 50 [225]
Robbie Williams pop 61 [116]
Uspop 2002 pop 195 [28]
RWC-Pop pop 100 [161]
Total 1446

Table 6.5: ChoCo partitions used for training the Audio Chord Estimation model.
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Model Smoothing Root MajMin Triads Tetrads 7th MIREX MD MD-C

Ours None 0.869 0.811 0.798 0.681 0.699 0.842 1.690 1.454
Ours Linear 0.871 0.819 0.803 0.703 0.683 0.812 1.357 1.241
Ours Consonance 0.863 0.837 0.823 0.755 0.730 0.872 1.264 1.065

BTC [301] None 0.827 0.848 0.786 0.663 0.655 0.808 2.176 1.991

Table 6.6: Performance comparison between the Conformer architecture proposed,
evaluated using di!erent types of label smoothing. Moreover, performances are com-
pared with the bi-directional transformer architecture proposed in [301].

monic relationships. Furthermore, consonance-based smoothing proves to perform
generally better than linear smoothing, tested with ϱ = 0.1. Finally, both mechan-
ical distance and mechanical distance with consonance exhibited notably superior
performance on the model trained with consonance-based smoothing.

Penultimate Layer Representation

Figure 6.11: Penultimate layer representation [287] of notes C, C#, and D training
without smoothing (left) and with consonance-based smoothing (right).

In [287], authors demonstrate that label smoothing encourages activations in
the penultimate layer to align closely with the template of the correct class while
maintaining equidistance from templates of incorrect classes. Inspired by these
findings, we conduct similar experiments on the penultimate layer of our proposed
conformer model. Specifically, we compared the penultimate layer representations
of the conformer model both without and with consonance smoothing. Our vi-
sualisation experiment follows the same approach of [287]: 1. Selection of three
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classes of interest; 2. Determination of an orthonormal basis for the plane inter-
secting the templates of these three classes; and 3. Projection of penultimate layer
activations from examples of these three classes onto this plane. Using UMAP
[264] for dimensionality reduction of the penultimate layer features, our visualisa-
tion depicts how activations cluster around the templates in a 2-D representation
and demonstrates how label smoothing enforces a structured distance relationship
between examples and clusters from other classes.

This analysis, depicted in Figure 6.11, provides insights into how consonance
smoothing influences the representation of chord classes in the penultimate layer,
shedding light on the model’s ability to capture harmonic relationships. Notably,
the visualisation reveals significantly tighter clusters, indicating that consonance-
based smoothing promotes equidistance of each example in the training set from
all templates of other classes.

6.6 Conclusion

In this chapter, we introduced two major contributions aimed at addressing central
challenges in harmonic data analysis through multimodal approaches.

First, we presented ChordSync (Section 6.3), a novel model for audio-to-chord
alignment based on the Conformer architecture [170]. ChordSync achieves per-
formance comparable to traditional Dynamic Time Warping (DTW) algorithms
but eliminates the need for pre-existing weak alignment, streamlining the process
of synchronizing chord annotations with audio. By leveraging resources such as
crowd-sourced chord annotations, which often lack timing information, ChordSync
supports the creation of diverse and comprehensive audio-aligned chord datasets,
with demonstrated practical utility. To encourage reuse, we provide a pre-trained
model and a user-friendly library, enabling easy synchronization of chord annota-
tions with audio.

Building on this multimodal dataset, we proposed an innovative Audio Chord
Estimation (ACE) model, also utilizing the Conformer architecture, and incorpo-
rating a consonance-based label smoothing approach. This method was inspired
by our analysis of inter-annotator agreement, which underscored the importance of
consonance and dissonance concepts in managing discrepancies between annota-
tors. By embedding consonance-informed labels into the model’s learning process,
we enhanced its capacity to capture subtle harmonic relationships, particularly in
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cases where traditional binary metrics fall short.
To address chord vocabulary imbalance, we introduced a chord decoder that

separately predicts root note, bass note, and chord notes activations, reducing
reliance on extensive vocabularies and improving accuracy for uncommon chords.
The proposed approaches demonstrate improvements in the learned harmonic
representation, opening new pathways for refined harmonic analysis and further
applications in MIR.

6.6.1 Limitations and Future Work

While the contributions of this chapter represent substantial advancements, both
ChordSync and the proposed Audio Chord Estimation (ACE) model have certain
limitations that o!er directions for future research.

ChordSync. Despite its e!ectiveness, ChordSync relies on a simplified chord
vocabulary, which constrains its performance. Chords that are absent from the
model’s vocabulary are approximated by the nearest available chord, which may
result in inaccuracies, particularly in scenarios where consecutive chord symbols
are identical. This limitation can hinder the CTC decoder’s ability to maintain
precise alignment. Additionally, ChordSync’s model is not key-agnostic, introduc-
ing potential alignment discrepancies when there are key di!erences between the
chord labels and the audio signal. Future work should consider exploring alterna-
tive chord encodings and methods for achieving key independence, which would
enhance the model’s flexibility and accuracy. Another avenue for improvement is
exploring novel architectures that extend beyond the acoustic model paradigm,
such as utilizing CTC as a loss function within a semi-supervised learning frame-
work, which could further enhance model generalizability and e"ciency.

ACE Model. The proposed ACE model was trained on a subset of the ChoCo
dataset due to limitations in available GPU resources, which restricted the scale
of training. Expanding this model to incorporate the full ChoCo dataset in fu-
ture work would likely yield more robust harmonic representations. Addition-
ally, we demonstrated that the representations learned by the model benefit from
consonance-based label smoothing, o!ering an improvement over standard ACE
models that do not incorporate this nuanced approach to harmonic relationships.

Future work may explore the application of this model to a variety of tasks
beyond audio chord estimation. For instance, the model could be employed to
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refine and harmonize existing chord annotations across di!erent corpora, reduc-
ing annotator subjectivity and creating more consistent chord representations.
Furthermore, the learned representations could support tasks such as cover song
detection and version identification from audio, areas where symbolic-informed
models have shown promise [418]. Unlike previous methods that only consider
root notes, our model’s detailed harmonic profile suggests it could perform well in
these contexts, leveraging its comprehensive harmonic understanding to enhance
accuracy and consistency across tasks.
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CHAPTER7
Conclusion

This thesis addresses fundamental challenges in MIR by advancing KR and ontol-
ogy engineering, specifically tackling issues of data fragmentation, interoperabil-
ity, and scalability in music data. Through the development of a unified semantic
model (c.f. Chapter 3), we respond to the need for consistent and flexible frame-
works that can integrate diverse musical representations and datasets across the
field.

Building on this model, we create a workflow for integrating symbolic datasets
and apply it to produce a large, harmonized corpus of harmonic annotations
(c.f. Chapter 4). This corpus exemplifies the utility of data integration and the
potential for more structured and interconnected music datasets within MIR.

Moreover, we demonstrate how data integration can enrich both musicological
exploration and creative processes (c.f. Chapter 5). Using the large, harmonised
corpus and developing novel local similarity functions, we uncover new insights
into musical structure, style, and evolution, providing a robust foundation for
analysis across diverse genres and historical periods. This integrated data also
supports creative applications, enabling tools that assist musicians and composers
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by o!ering inspiration drawn from a broad spectrum of harmonic structures and
styles.

Finally, we address the limitations of data integration in harmonic analysis,
especially regarding the inherent subjectivity in symbolic harmonic annotations
(c.f. Chapter 6). To address this challenge, we embrace a multimodal approach
by enhancing our dataset with aligned audio. By integrating audio and symbolic
data, we aim to create harmonic representations from audio that transcend the
subjectivity inherent in individual human annotations.

7.1 Summary of Contributions

In this section, we summarise the contributions of this thesis by reviewing the
research questions presented in Chapter 1 and discussing the solutions formulated
for each question.

RQ1

The first challenge addressed in this thesis is the fragmentation and lack of interop-
erability in music data, which impedes the integration of diverse musical datasets
and complicates the replicability of research outcomes, as identified in RQ1 (c.f.
Section 1.1.1). This fragmentation results from the absence of a unified approach
to music representation, as music data involves various dimensions that require
flexible descriptions. These dimensions encompass metadata (context) and con-
tent, such as symbolic annotations and audio, each presenting unique challenges
in standardisation and interoperability.

To address these issues, this thesis introduces the Polifonia Ontology Network
(PON), an ontology framework which comprises 15 new ontologies, designed to
unify representations of metadata, annotations, performance mediums, and his-
torical sources (c.f. Chapter 3). By formalising the semantics of both musical
content and context, PON enables the creation of interoperable KGs from diverse
music datasets, addressing core fragmentation challenges in MIR.

Furthermore, this work contributes to the field of Knowledge Engineering (KE)
by releasing an extension of the eXtreme Design (XD) methodology and a com-
prehensive dataset of Competency Question (CQ) that guide music ontology de-
velopment and testing.

Finally, we provide evidence of current and potential reuse by institutional
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and industrial stakeholders, demonstrating the practical relevance and impact of
PON.

RQ2

This thesis directly addresses RQ2 (c.f. Section 1.1.2) by tackling the specific
fragmentation challenges within harmonic data–a domain that exemplifies issues
of data diversity due to its varied notational conventions and formats. To tackle
these complexities, we developed the Chord Corpus (ChoCo) (c.f. Chapter 4),
which serves both as a comprehensive resource and a structured workflow aimed
at standardising and integrating symbolic datasets with heterogeneous formats
and annotation practices.

The ChoCo workflow applies the ontology model proposed in RQ1 to harmonise
over 20, 000 high-quality harmonic annotations from 18 distinct chord datasets.
By using the JAMS data structure as a unified annotation model, ChoCo achieves
interoperability across three levels: metadata, annotation format, and chord no-
tation.

The resulting ChoCo KG, with its ↗ 30 million RDF triples and 4, 000+ links
to external datasets, supports advanced semantic analysis and facilitates large-
scale musicological and computational studies. This resource not only promotes
accessibility across various musical traditions and genres but also exemplifies how
the ontology model developed in RQ1 can be applied to resolve fragmentation in a
complex use case. A survey conducted with potential users from the MIR and SW
communities also highlighted strong interest in adopting both the ChoCo dataset
and workflow, underscoring its relevance and potential impact.

RQ3

The creation of large, harmonized corpora of symbolic harmonic annotations in-
troduces unprecedented opportunities to explore harmonic data at scale, directly
addressing RQ3 (c.f. Section 1.1.3). By integrating a variety of datasets, this
work enables detailed analysis across a broad spectrum of musical genres, styles,
and artist collections, providing new insights into harmonic content previously
constrained by fragmented data sources.

A structured approach to similarity is essential for fully leveraging these harmo-
nized corpora, enabling in-depth analysis and interpretation of harmonic content
across large datasets. Unlike traditional methods that rely on general metadata
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or surface-level features, content-based harmonic similarity delves into the core
of musical patterns and relationships. This deeper analysis reveals nuanced har-
monic structures and recurring patterns that help define genres, trace stylistic
shifts, and capture the distinctive characteristics of individual artists or historical
periods.

To this end, we propose and evaluate two key contributions in this area:
LHARP and Harmory.

LHARP is a novel method that identifies local harmonic similarities across
pieces, focusing on detecting recurring harmonic patterns within musical sequences.
Unlike traditional global similarity measures, which capture broad stylistic or
structural similarities, LHARP provides a more flexible and interpretable sim-
ilarity measure tailored for musicological tasks that require detailed harmonic
comparisons across works (c.f. Section 5.3).

Harmory, the Harmonic Memory, is a KG designed to assist computational
creativity by organizing harmonic patterns within a structured, musically mean-
ingful space. Built on cognitive and musicological principles, Harmory captures
both temporal relationships and structural similarities between harmonic sequences,
linking them within a broader harmonic landscape. To do this, we propose and
evaluate two novel state-of-the-art algorithms for both harmonic segmentation
and harmonic similarity. This resource enables transparent and accountable ac-
cess to diverse harmonic structures, o!ering musicians and composers a valuable
foundation for compositional assistance, where they can explore and experiment
with harmonic ideas across genres and styles (c.f. Section 5.4).

Through these contributions, this thesis demonstrates the potential of harmo-
nized corpora in advancing both musicological research and creative applications,
underscoring the value of large-scale data integration in supporting complex mu-
sical inquiries and enhancing creative workflows.

RQ4 and RQ5

While in Chapters 5 we demonstrate how symbolic data integration can advance
standard MIR tasks, particularly in the domain of harmonic similarity, the pro-
cess of data integration and corpus creation also brings to light several limitations
that still impede the full realization of data-driven approaches in music analysis,
as highlighted in RQ4 and RQ5. These limitations underscore the inherent chal-
lenges of working with diverse and subjective harmonic annotations, as well as
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the imbalance across harmonic datasets.
To address these issues, we first make our dataset multimodal by introducing

ChordSync (Section 6.3), a novel audio-to-chord alignment approach that lever-
ages the Conformer architecture [170], hence addressing RQ4 (c.f. Section 1.1.4).
ChordSync provides an e"cient solution for synchronizing symbolic chord annota-
tions with audio by eliminating the requirement for pre-existing weak alignments,
achieving performance comparable to traditional Dynamic Time Warping (DTW)
algorithms. This model enables the transformation of crowd-sourced chord an-
notations, which often lack precise timing information, into cohesive multimodal
datasets. To promote accessibility and reproducibility, we release a pre-trained
model along with an easy-to-use library, allowing researchers and practitioners to
synchronize chord annotations with audio across varied datasets.

Building on this multimodal dataset, we introduce an advanced Audio Chord
Estimation (ACE) model, also based on the Conformer architecture, to address the
challenges outlined in RQ5 (c.f. Section 1.1.5). This model integrates a consonance-
based label smoothing technique, developed to handle the inconsistencies com-
monly observed in inter-annotator agreements. By embedding consonance-informed
labels into the training process, the model enhances its ability to capture nuanced
harmonic relationships, e!ectively accommodating the subjectivity and diversity
of chord annotations. Additionally, our model includes a chord decoder that sepa-
rately predicts root note, bass note, and chord note activations, which enhances its
adaptability and accuracy, particularly for uncommon chords. These innovations
not only improve transcription accuracy but also pave the way for applications
that harmonize and refine symbolic chord annotations, reducing dependence on
the annotators’ subjective interpretations.

7.2 Discussion and Future Work

We conclude this thesis with a discussion of potential directions for future work,
some of which are already in progress.

7.2.1 Ontology Engineering and Data Integration

As a next step in ontology engineering, we plan to conduct a comprehensive
competency question-driven evaluation of PON’s modules to further refine and
validate the ontology’s structure and content. This evaluation will help ensure that
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PON e!ectively addresses the practical requirements of diverse musicological and
computational use cases. Additionally, we aim to support stakeholders and early
adopters in reusing, extending, and maintaining the ontologies and knowledge
graphs over the long term.

Furthermore, we plan to extend PON modules, for instance by incorporating
novel music theories in the Music Analysis Module. Lastly, we aim to enhance
interoperability by aligning PON with other relevant ontologies, such as those
discussed in Section 3.2.

7.2.2 Dataset Expansion and Workflow Adaptation

Future work on dataset development will focus on expanding Chord Corpus (ChoCo)
by integrating additional harmonic data, thereby increasing its scope and enhanc-
ing its utility for a wider range of applications. Beyond harmonic data, the stan-
dardized workflow introduced in this thesis can be applied to create new corpora
encompassing various types of music annotations. In fact, ChoCo’s workflow and
the JAMS ontology have already been applied to represent a corpus of melodic
pattern data [353]. Building on this initial success, the workflow could be adapted
to generate additional corpora that focus on melodic, structural, or rhythmic an-
notations, thereby enriching the resources available for musicological research and
computational analysis.

7.2.3 Symbolic Harmonic Similarity and Exploration

While LHARP demonstrates promising potential for generalizing to various sym-
bolic sequences with structural similarities to music, several limitations remain,
suggesting directions for future work. A primary concern involves the data pre-
processing and encoding steps. Specifically, the method of transposing all pieces
to a common key, while practical for similarity calculations, may raise concerns
among music experts who argue that it could alter musical texture, potentially
compromising the integrity of the original (non-transposed) version. Additionally,
the encoding method, which decomposes chords into individual pitches, may over-
look context-specific nuances—such as when two distinct chord labels produce the
same sound but possess unique harmonic functions that are lost in pitch-based
encoding. Although these simplifications o!er practical advantages, gathering
expert feedback remains essential for validating their e!ectiveness and exploring
further refinements.
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Some of these challenges are partially addressed by Harmory’s similarity func-
tion, which leverages DTW to enhance sequence alignment. However, Harmory’s
encoding still depends on TPS–a method that, despite its e!ectiveness and mu-
sicological foundation, lacks context-awareness in representing musical harmony.
Future research could investigate advanced representation learning techniques to
achieve more contextually aware and robust harmonic encodings [275, 113]. Such
techniques could capture harmonic nuances that current encodings overlook, re-
sulting in a more expressive and precise measure of similarity.

Currently, LHARP and Harmory provide single measures of similarity, and
their e!ectiveness is therefore naturally limited to the specific tasks and use cases
evaluated. Expanding the experimental framework to include a broader set of
tasks will be essential for assessing the general applicability of these methods.
Furthermore, future work will involve developing new similarity functions that can
better adapt to diverse musicological and creative applications, thereby enhancing
the versatility of both LHARP and Harmory in supporting a wider array of music
analysis and composition tasks.

7.2.4 Multimodality

While the contributions of this thesis mark substantial advancements in multi-
modal approaches for MIR, both ChordSync and the proposed Audio Chord Esti-
mation (ACE) model exhibit certain limitations, which open pathways for future
research and development.

ChordSync. Although ChordSync proves e!ective in aligning chord annotations
with audio, it relies on a simplified chord vocabulary, which can restrict its per-
formance. Chords absent from the model’s vocabulary are approximated to the
nearest chord available, which can lead to inaccuracies, especially in cases where
consecutive identical chord symbols pose alignment challenges. This limitation
can impede the CTC decoder’s ability to achieve precise synchronization. Fur-
thermore, the current model is not key-agnostic, which can introduce alignment
discrepancies when the key of the chord labels di!ers from that of the audio signal.
Future research could explore alternative chord encodings and develop methods for
achieving key independence, enhancing both model flexibility and alignment preci-
sion. Another promising direction involves exploring architectures that transcend
the acoustic model paradigm; for instance, utilising CTC loss function within a
semi-supervised framework, which may improve model e"ciency.
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ACE Model. The ACE model, due to limited GPU resources, was trained on
only a subset of the ChoCo dataset, thereby restricting the scale of training.
Future work should involve expanding this model to incorporate the full ChoCo
dataset, potentially resulting in even more robust harmonic representations. The
consonance-based label smoothing used in this model demonstrated improvements
over traditional ACE models by capturing subtleties in harmonic relationships
that standard methods often overlook.

Further explorations could examine the application of this model to a range
of tasks beyond audio chord estimation. For instance, it may be employed to
refine and harmonize existing chord annotations, reducing annotator subjectivity
and yielding more consistent harmonic representations across corpora. Addition-
ally, the model’s learned representations could support tasks such as cover song
detection and version identification, domains in which symbolic-informed models
have shown considerable promise [418]. Unlike previous methods that primarily
consider root notes, the detailed harmonic profile of our model positions it as
a potentially e!ective tool for such tasks, o!ering an advanced harmonic under-
standing that enhances accuracy and consistency across diverse applications.
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