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Chapter 1

Introduction

1.1 Motivation

There are up to 450 Hematological Diseases (HDs), generally classified in six
large groups of oncological and non-oncological diseases. HDs result from ab-
normalities of blood cells; lymphoid organs; and coagulation factors, and a!ect
a substantial number of patients. For example, HDs account for about 5% of
Cancers [1]. Most HDs can cause chronic health problems and many of them are
life-threatening conditions requiring numerous resources for correct diagnosis,
management and treatment. Recently, the European Hematology Association
(EHA) evaluated the financial burden of blood disorders on European society
at !22.5 billion per year [1].

Personalized or precision medicine is a medical model in which conventional
medicine is combined with advanced genetic profiling, leveraging Artificial In-
telligence (AI) and Machine Learning (ML). This results in tailored diagnostic,
prognostic and therapeutic strategies. Personalized medicine can revolutionize
hematology, improving patients’ quality of life and reducing the overall finan-
cial burden of HDs. Unfortunately, this is currently underexplored: existing AI
models for HDs lack patient-centricity and personalization. Furthermore, the
vast amounts of relevant data produced are often inaccessible and di!used.

AI and advanced genomics on other ”-omics” research has enabled the study
of personalized biomarkers in many fields of medicine, including cardiology [2];
endocrinology [3]; and oncology [4, 5]. In hematology, the analysis of ge-
nomics information recently garnered success in establishing genetic bases for
myelodysplastic syndromes [6, 7]; myeloid and lymphoid neoplasms [8]; and
hematopoiesis [9].

13



14 CHAPTER 1. INTRODUCTION

1.2 Research Objectives

1.2.1 Research Objective 1

Map the hematology data landscape, including the AI and omics opportunities;
the data repositories in the European Union; and the relevant laws, regulations,
and ethical guidelines.

Hematological data is di!used over multiple institutions. This makes it di”cult
for researchers to gain access to required information in su”cient volumes. This
disproportionally a!ects rare diseases, which is scarce by its very nature. Our
first research objective is to provide a clear overview of hematology data in the
European Union and related nations, highlighting which data are collected; what
institutions house them; and what data mobility protocols these institutions
implement. This includes a detailed account of the data used in the remainder
of the thesis.

1.2.2 Research Objective 2

Leverage increased data availability to validate existing prognostic models for
hematological diseases at scale

A plethora of prognostic models has been proposed, often limited by the afore-
mentioned data availability problems. Leveraging the substantial database
amassed in addressing Research Objective 1, we will test these models at scale.
This casts light on the models’ statistical robustness and the scope of their
applicability.

1.2.3 Research Objective 3

Develop novel precision medicine artificial intelligence models for prognosis in
hematological diseases

Artificial intelligence (AI) o!ers novel approaches to classification, regression,
and prediction. In healthcare, AI prognostic models o!er a new degree of per-
sonalization. Our third research objective is to develop such models. By com-
paring results to those of existing models, we subsequently provide insight into
the performance of the developed AI models.

1.2.4 Research Objective 4

Show that hematological disease models can be ethically and securely trained
and integrated for analysis and application, without breaching patients’ rights
and trust.
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While greater information availability fosters more advanced insights, technol-
ogy, and superb models, the fundamental rights of patients should not be vi-
olated. Our fourth research objective is therefore to reconcile (AI) model de-
velopment with data privacy. This is achieved by leveraging interoperability
standards and a novel Privacy Enhancing Technologies (PET): synthetic data
generation.

1.3 Relation to the GenoMed4All Project

The research documented in this thesis was part of the GenoMed4All project [10].
GenoMed4All is the European initiative to transform the response to Haemato-
logical Diseases by seizing the power of Artificial Intelligence. The GenoMed4All
project facilitated access to data, expertise, collaboration, and European Union
funding. GenoMed4All is a pan-European collaboration of 23 partners from
the whole value chain, including healthcare professionals, regulatory and ethics
research, academia, disruptive tech and digital service provision.

1.4 Structure of the Thesis

The remainder of the thesis is structured as follows: In Chapter 2, we address
Research Objective 1. This includes a background on omics and AI-based pre-
cision medicine. We also delve into the potential of these fields in hematology.
We then study the European hematology data landscape. In doing so, we delve
deeper into the GenoMed4All partners that facilitate most of the remaining re-
search in this thesis. Finally, we address data privacy and ethics. In particular,
we provide an in-depth discussion of the concepts of privacy and personal data,
including contemporary legal frameworks. We then describe the ethical frame-
work adhered to in this thesis.

In Chapter 3, we address Research Objective 2, leveraging the available
data to study existing prognostic frameworks. In particular, we validate the
recently proposed Molecular International Prognostic Scoring System (IPSS-M)
for myelodysplastic syndromes (MDS). In doing so, we also compare it the the
older Revised International Prognostic Scoring System (IPSS-R). This research
casts light on how wider data availability leads to more accurate and e!ective
prognostic models, even without the use of AI.

In Chapter 4, we study the potential impact of AI and omics data for pre-
cision medicine in hematology. In particular, we use Bayesian networks and
Dirichlet processes, combining mutations in 47 genes with cytogenetic abnor-
malities to identify genetic associations and subgroups. This allows us to identify
eight MDS groups (clusters) according to specific genomic features. Each group
has distinct and specific clinical features and patterns of evolution. As such, the
study shows that the use of omics-based AI is highly promising in hematology
disease classification and prognosis.

In Chapter 5, we show that omics-based AI research in hematology can be
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conducted in a safe, privacy-respectful manner. This can be achieved through a
novel privacy enhancing technology (PET): synthetic data generation. Synthetic
data is not collected empirically. Instead, it is algorithmically generated. This
means that records in a synthetic dataset do not correspond to real patients. As
such, real patients’ right to privacy is protecte when synthetic data substitutes
real data in studies. Recent advances in generative AI have made it possible
to generate highly realistic synthetic data, combining privacy protection with
analytic accuracy.

Our study is essentially a proof-of-concept of such synthetic data in hematol-
ogy. We develop synthetic data through a generative AI framework (generative
adversarial network, or GAN). We then describe metrics to measure how well
such data preserves relevant information (fidelity), and how well it protects real
patients’ privacy. Applying these metrics, we find that synthetic data form a
promising tool for omics-based AI and precision medicine research in hematol-
ogy.

The thesis is concluded with a discussion of the obtained findings and sug-
gestions for future research in Chapter 6.



Chapter 2

The Hematology Data and
AI Landscape

Access to reliable, accurate, and current data is crucial when engaging in omics
and AI research. Unfortunately, in the context of the life sciences, such data
is often scarce; distributed over multiple centers; and subject to stringent pri-
vacy policies. When aiming to conduct AI-based omics studies in hematology,
researchers therefore typically hindered. In this chapter, we outline the op-
portunities of omics data in hematology, as well as the di”culties in obtaining
them. In particular, we provide a theoretical background for omics data and AI
in hematology. We then outline how relevant data is collected and stored within
the European Union. Subsequently, we discuss the data protection frameworks
a!ecting the data’s use. The chapter is concluded with an overview of the steps
taken throughout this thesis to ensure data is treated in a responsible, secure,
and ethical manner. In doing so, we address our first research objective: Map
the hematology data landscape, including the AI and omics opportunities; the
data repositories in the European Union; and the relevant laws, regulations, and
ethical guidelines.
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2.1 AI and Omics-Based Precision Medicine and
its potential in Hematology

2.1.1 Definitions

Personalized or precision medicine is a medical model that combines already es-
tablished clinical–pathological results with advanced profiling. This helps prac-
titioners take individuals’ properties into account at key stages of their patient
journeys. So-called “(multi-)omics” data plays an increasing role in personal-
ized medicine. Omics is an umbrella term for biological domains whose name
ends in “omics” (for instance, genomics, proteonics, transcriptomics).

2.1.2 Impact on Life Sciences

Analysis of omics data has led to important insights, particularly when ana-
lyzed through AI methods. In a recent survey, Stanojevic et al. [11] note that
computational methods for omics data o!er revolutionary insights into cellular
states and biological processes. Unfortunately, they note that the integration of
the multiple omics data assets is computationally di”cult.

Lorkowski et al. [12] further confirm the huge potential of AI for precision
medicine, particularly when pooling omics data. In surveying 1572 articles on
the matter, they conclude that this approach is ushering in a Fourth Industrial
Revolution in medicine and healthcare. They highlight its potential for drug
repurposing and new therapeutical modalities in particular.

He et al. [13] note that omics data and AI, when combined, facilitate a new
degree of personalization in medicine. They prove this by pooling epigenome,
transciptome, proteome, metabolome and other data. They then use AI algo-
rithms to improve early cancer screening, diagnosis, response assessment, and
prognosis prediction. Like Stanjovic at al. [11] and Lorkowski et al. [12], they ex-
pect the combination of omics data and AI to cause a paradigm shift in precision
medicine.

Arjman et al. [14] provide an overview of use cases of AI paired with omics
data in cancer research. For each use case, they propose a suitable AI method.
Their survey shows that the approach can overcome key problems in medical
research that extend beyond just oncology. These include the high dimension-
ality of omics data; possible data heterogeneity; class imbalance; missing data;
and more. The authors conclude that ML is a promising tool in discovering
e!ective diagnostic and therapeutic approaches to cancer growth.

2.1.3 Potential in Hematology

Shouval et al. [15] remark that machine learing (ML) and AI in general have
considerable potential in hematology as well. They state that is particularly
true if it can leverage both electronic health records (EHRs) and genomic data.
Shouval et al. [15] also list the obstacles to successful application of AI in hemat-
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logy. In particular, they list lack of available data as the main obstacle. Other
obstacles include insu”cient data quality and data ethics.

Haferlach and Wencke [16] study the e”cacy of AI-based next-gen sequenc-
ing and whole genome sequencing (WGS) in hematology diagnostics. They
expect that ML-based sequencing will soon outperform human diagnosis. They
advocate for AI-based genome profiling in routine standard care.

An extensive review of AI in hematology was conducted by El Alaoui et
al. [17]. They find that AI is highly e!ective in screening, diagnosis, and treat-
ment stages of HDs. However, they note that the role of patients’ data in AI
use should be further explored.

These views are echoed by Lin et al. [18], who find that AI o!ers a clear
potential for breakthroughs in hematopathology. Specific use cases they list
include diagnosis, classification and treatment guidelines for HDs. They also
investigate the role of bone marrow analysis. They stress that AI can reduce
the turnaround time in HD diagnosis.

2.2 Hematology Data in the European Union

As outlined, AI and omics have the potential to revolutionize hematology. Un-
fortunately, data scarcity and ethical concerns severly limit its scope. National
approaches for HDs clinical management and research are often ine!ective, es-
pecially for rare conditions.

Development of infrastructures that can support collection and use of ge-
nomic information in the health-care community is therefore a research priority
for HDs, as repositories of genomic and clinical information in Europe are un-
connected. The number of distinct HDs is large. For individual diseases, the
number of data samples is therefore typically small. This hinders the implemen-
tation and maintenance of central big data repositories as exist in other areas.
for genomic profiling of HDs, researchers therefore need to acquire su”cient
patient data through clinical networks.

Within the EU, information on rare diseases is managed by European Ref-
erence Networks (ERNs). These are networks of life science experts working
with diseases that are rare and/or complex. EuroBloodNet (see [19]) is the
ERN for Rare Hematological Diseases (RHD). It was approved by the Euro-
pean Commission (EC) in December 2016, and started its activities in March
2017. EuroBloodNet encompasses oncological and non-oncological RHDs. It
brings together unique talent pool of 66 highly sophisticated and multidisci-
plinary healthcare teams in 15 Member States, and advanced specialized medical
equipment and infrastructures [19].

This thesis will make use of the existing infrastructures and initiatives, in-
cluding powerful High Performance Computing facilities, hospital registries,
data processing tools, and pre-existing repositories. Data is provided by Eu-
roBloodNet, as well as ten clinical partners (names confidential).
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2.3 Privacy and Data Protection

2.3.1 The Evolution of Privacy as a Concept

The concept of privacy is multifaceted and dynamic, initially articulated as the
’right to be let alone’[20]. It has since broadened to include various dimen-
sions such as physical, proprietary, decisional, and informational elements[21].
These dimensions collectively embody di!erent principles of privacy, encom-
passing anonymity, solitude, secrecy, and the ability to control access to one’s
personal information[22]. Despite its diverse interpretations, privacy is univer-
sally recognized as a fundamental human right that reinforces human dignity
and forms the foundation for other constitutional protections.

In our digital society, characterized by rapid information exchange [23], the
boundary between public and private domains has substantially evolved [24].
These developments have reshaped our comprehension of privacy. Current un-
derstandings of privacy go beyond the notion of ’the right to be let alone’,
encompassing rights to control personal data, preserve confidentiality, uphold
personal dignity, and safeguard intimacy [25].

2.3.2 The Concept of Personal Data

The concept of personal data varies with time and location. In the European
Union (EU), the General Data Protection Regulation (GDPR) [26] was imple-
mented in 2018. In Article 4.1, it defines personal data as “any information
relating to an identified or identifiable natural person (‘data subject’); an iden-
tifiable natural person is one who can be identified, directly or indirectly, in
particular by reference to an identifier. Regulation EU 2016/679 further details
these twelve categories of such classifiers: name; identification number; location
data; online identifier; and specific physical; physiological; genetic; biometric;
mental; economic; cultural; and social identity information. This places hema-
tology and omics data well within the scope of the GDPR.

Another influential data privacy legislation a!ecting the life sciences is the
Health Insurance Portability and Accountability Act (HIPAA, [27]), its jurisdic-
tion being the United States of America. HIPAA follows EU framework in re-
quiring protection of attribute categories. Its seventeen categories span roughly
the same information as those of Regulation EU2106/679. However, Genertic
information is interpreted more broadly. As it is hereditary and shared between
biological family members, a genetic data specimen may be personal to more
than one individual. Genetic test results of family members (including embryos),
manifestations of genetic diseases or disorders in family members, requests for,
or receipt of genetic services on the individual or family member are therefore
classified as one’s personal data under HIPAA [28]. Naturally, this classification
limits the options for omics research.
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2.3.3 Data Anonymization Techniques

A selection of data anonymization techniques has been widely adopted in the
industry [29]. These technologies typically rely on pseudonymization; the statis-
tical distortion of data; and/or generalization of data properties. For example,
an individual’s location data may be generalized from their city to their wider
region of residence, o!ering an added degree of plausible deniability [30]. Un-
fortunately, these methods reduce the accuracy and specificity of the data. In a
2013 lawsuit, the degree of privacy protection of these techniques was assessed.
The involved parties concluded that data was only su”ciently protected once
the distortion of the data was so significant, that it rendered further analysis
useless [31].

More innovative approaches to reconcile data protection with analytic util-
ity have emerged. Synthetic data [32] is entirely artificial, hence void of real
patients’ personal information. Through generative AI, synthetic data can pre-
serve the patterns relevant for omics research. Importantly, the proposed AI
Act [33] equates synthetic data to anonymous and non-personal data (see Ar-
ticle 54, point 1b). Federated learning [34] is a method used to tain overall
machine learning models on multiple distinct databases. The model then lever-
ages the complete information of the combined databases. However, the data
does not have to be exchanged between centers. These techniques are discussed
in detail in Chapter 5.

2.4 Ethical Approach to Data and their Use

The author acknowledges the importance of ethics, privacy and data protection
and other relevant fundamental rights, societal acceptance and other regula-
tory requirements regarding the development, implementation and the use of
technology. Participants in all studies signed informed consent forms. We con-
sistently adhered to the EC Ethics guidelines for trustworthy AI throughout the
research. This means we ensured our methods respect all applicable laws and
regulations; respect ethical principles and values; and are robust with minimal
bias from a technical perspective [35].

Along with demonstrating novel PETs, we take several precautions are taken
to ensure: (a) the overall ethical use of AI, including its appropriate applica-
tion to patient stratification and to personalized decision making, which need
to uphold ethical principles such as those published by the European Commis-
sion (EC) Expert Group; (b) the ethical development and validation of the AI
algorithms, so that these are trustworthy in clinical/patient use; (c) the ethical
deployment and adoption of the solutions with embedded AI, so that clinical
judgment and decision making retains its appropriate role in care management.

Key elements of this thesis’ ethical approach include: a) an Impact As-
sessment framework of ethics, privacy and data protection and other relevant
fundamental rights and societal acceptance; and b) continuous monitoring of
ethical issues during the entire duration of the research. This includes explicit
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mention of the selection basis and biases in the data used for AI training and
validation, on the assumption that it is most important to have transparency
about bias that is perhaps impossible to fully eliminate.

Throughout the research, Transport Layer Security (TLS) cryptographic
protocols with symmetric and asymmetric encryption. Besides, data flows be-
tween cluster nodes are subject to TLS cryptographic protocols to prevent ac-
cess by operational resources. Once data is ingested, data at rest is encrypted
at multiple-levels including storage level encryption, and if required field-level
hashing, and AES/RSA encryption during ingestion together with access con-
trol policy. Data stored is subject to Strict Role-based Access Control (RBAC)
mechanisms that govern access to the whole ingested dataset. This RBAC im-
plements a model that supports both cluster level (operations) privileges and
index level (table/field) privileges.

2.5 conclusion

Many authors note the revolutionary potential of AI and omics data in hema-
tology. Unfortunately, this potential is not su”ciently realized due to a number
of obstacles. Most notably among these are data scarcity and data ethics.

As such, privacy and data protection play a central role in AI-based hematol-
ogy research. In the EU, privacy is safeguarded under the GDPR. A comparable
law in the healthcare sector in the USA is the HIPAA. Both documents play a
crucial role in formalizing concepts like personal data and privacy. Oftentimes,
traditional data anonymization methods fail to meet the guidelines this puts
forward. More innovative technological approaches to data protection can o!er
more ethically and legally sound results. These include the use of synthetic data
and federated learning.

In Chapter 5, these innovative approaches are explored in detail. Addi-
tionally, we adhere to strict data ethics guidelines throughout the presented
research. This includes approval by ethics committees; use of written consent
forms; impact assessments; continuous monitoring of ethical issues that may
arise; and top-tier cybersecurity measures.



Chapter 3

Real-World Validation of
Existing Prognostic
Hematology Models

In this chapter, we address the second research objective, namely: Leverage in-
creased data availability to validate existing prognostic models for hematological
diseases at scale. To do so, we will first provide a brief introduction to the
two most common such models: the Revised-International Prognostic Scoring
System (IPSS-R) and the Molecular International Prognostic Scoring System
(IPSS-M). We then validate the novel IPSS-M and compares it to the IPSS-
R in the context of myelodysplastic syndromes. The research was previously
published as [36].

23
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3.1 Introduction

Myelodysplastic syndromes (MDS) are heterogeneous neoplasms ranging from
indolent conditions to cases rapidly progressing into acute myeloid leukemia and
therefore a risk-adapted treatment strategy is needed [37]. Disease-related risk
is currently assessed by the Revised International Prognostic Scoring System
(IPSS-R), on the basis of bone marrow blasts, blood cytopenias, and cytogenetic
abnormalities [38].2 Although IPSS-R is an excellent tool for clinical decision
making, this scoring system has its weaknesses and may fail to capture reliable
prognostic information at individual patient level [39, 40].

In MDS, conventional prognostic tools on the basis of clinical and hemato-
logic features are being complemented by introducing somatic gene mutations
that were shown to be valuable prognostic markers [40, 7, 41, 42, 43]. Recently,
the International Working Group for Prognosis in MDS (IWG-PM) proposed a
clinical-molecular prognostic model (Molecular IPSS, IPSS-M) that was devel-
oped using hematologic parameters, cytogenetic abnormalities, and mutations of
31 MDS-related genes [44]. IPSS-M improved prognostic discrimination across
all clinical end points compared with IPSS-R.

In this chapter, we address the issue of clinical implementation of IPSS-M
by: (i) providing an extensive validation of its prognostic value (also focusing
on patients without detectable mutations); (ii) investigating the predictive and
prognostic power of IPSS-M in patients receiving disease-modifying treatment
(hypomethylating agents [HMA] and hematopoietic stem cell transplantation
[HSCT]); and (iii) testing the accuracy in predicting IPSS-M when molecular
information was missed to define a minimum set of relevant genes associated
with high performance of the score.

3.2 Methods

3.2.1 Study Populations and Procedures

The study was conducted by GenoMed4All consortium [45] and supported by
EuroBloodNET, the European Reference Network on rare hematologic dis-
eases [19]. The Humanitas Ethics Committee approved the study. Written
informed consent was obtained from each participant. This study was regis-
tered at ClinicalTrials.gov (ClinicalTrials.gov identifier: NCT04889729).

Inclusion criteria were age → 18 years, a diagnosis of primary MDS according
to WHO 2016 criteria [46], and available information on IPSS-M related vari-
ables collected at diagnosis and before starting disease-modifying treatments
(if any). Patients a!ected with therapy-related myeloid neoplasms or incom-
plete information on IPSS-M variables were excluded. A total of 2,876 patients
matched study criteria. A Data supplement is available with the online edition
of the study, see [36].

Karyotypes were classified using the International System for Cytogenetic
Nomenclature Criteria. Mutation screening of MDS-related genes was per-
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formed on DNA bone marrow mononuclear cells or peripheral blood granulo-
cytes (Data Supplement). Patients were reclassified according to WHO 2022 and
International Consensus Classification of Myeloid Neoplasms criteria [47, 48].
IPSS-M score was calculated according to the original publication [44].

3.2.2 Statistical Analysis

Survival curves were estimated with the Kaplan-Meier method and di!erences
among groups were evaluated by log-rank test. Overall survival (OS) and
leukemia-free survival (LFS) were defined as the time between diagnosis and
death (from any cause) or last follow-up (for censored observations) and the
time between diagnosis and acute myeloid leukemia evolution (if any) or last
follow-up (for censored observations), respectively. When focusing on patient
populations receiving a specific treatment, OS was calculated as the time be-
tween start of treatment and death/last follow-up. The probability of relapse
after treatment was estimated according to standardized criteria.15 For patients
treated with HSCT, when estimating nonrelapse mortality (NRM), any death
in the absence of disease relapse was considered an event. The cumulative inci-
dence of relapse and NRM was estimated by competing risk approach [49].

Multivariable survival analyses were performed by Cox’s proportional haz-
ards regression models (IPSS-M was incorporated as ordinal variable in the
models). The discriminatory power of the models and the relative goodness of
fit for the predictive score were evaluated using Harrell’s concordance index [50].
To compare di!erent statistical models, we used in addition the Akaike informa-
tion criterion (AIC) [51], which allows the evaluation of a model by combining
goodness of fit and complexity, with a lower AIC indicating a better trade-o!
between fit and complexity.

The impact of single IPSS-M factors on the prediction of clinical outcomes
was evaluated by fitting a random-e!ects Cox’s model [52, 53]. The percentage
of variation of the logarithmic hazard explained by each set of variables was
estimated (see Data Supplement of [36]).

The accuracy of IPSS-M in predicting the probability of survival in the
presence of missing molecular data was calculated as the number of correctly
classified patients divided by the size of patient’s cohort. The accuracy loss was
calculated as the fraction of wrongly classified patients divided by the population
size.

3.3 Results

3.3.1 Clinical Characteristics of Patients and Gene Muta-
tions

Clinical features at diagnosis of the 2,876 patients with MDS enrolled in the
study are reported in Tables 3.1 through 3.5. Study participants included 1,743
men (61%) and 1,133 women (39%). Date range of diagnosis was from 1999 to
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2018. Median age at diagnosis was 68 years (range, 18-96 years). Follow-up was
updated on December, 2020. Median duration of follow-up was 37.5 months
(95% CI, 36.2 to 38.8 months).

Demographic No./No. (%)/(range)

Patients, No. 2,876
Female/male, No. (%) 1,122/1,743 (39/61)
Age, years (range) 68 (18-96)

Table 3.1: Demographic features of 2,876 patients with MDS from the
GenoMed4All cohort collected at the time of diagnosis

2016 WHO Category No. (%) 2022 WHO Category No. (%) 2022 ICC Category No. (%)

MDS-5q- 142 (5) MDS-LB5q- 133 (4.6) MDS-SF3B1 398 (13.8)
MDS-SLD 175 (6) MDS-LB-SF3B1 398 (13.8) MDS-del(5q) 133 (4.6)
MDS-MLD 649 (22.6) MDS-biTP53 153 (5.3) MDS, NOS without dusplasia 15 (0.5)
MDS-RS-SLD 132 (4.6) MDS-LB 867 (30.2) MDS, NOS with SLD 173 (6)
MDS-RS-MLD 325 (11.3) MDS-IB1 531 (18.5) MDS, NOSS, with MLD 679 (23.6)
MDS-EB1 572 (20) MDS-IB2 794 (27.6) MDS-EB 531 (18.5)
MDS-EB2 864 (30) MDS/AML 794 (27.6)
MDS-U 17 (0.6) MDS with mutated TP53 83 (2.9)

MDS/AML with mutated TP53 70 (2.4)

Table 3.2: Hematopathologic features of 2,876 patients with MDS from the
GenoMed4All cohort collected at the time of diagnosis

Hematologic Feature Median (range)

Hemoglobin, g/dL 10.0 (2.2 - 16.3)
Neutrophils, ↑109/L 1.7 (0 - 11.7)
Platelets, ↑109/L 110 (2 - 491)

Table 3.3: Hematologic features of 2,876 patients with MDS from the
GenoMed4All cohort collected at the time of diagnosis
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Clinical Feature No. (%)

Cytogenetic risk according to IPSS-R criteria
Very good 31 (1.1)
Good 1,909 (66.4)
Intermediate 351 (12.2)
Poor 236 (8.2)
Very poor 349 (12.1)

IPSS-R risk group No.
Very low 293 (10)
Low 806 (28)
Moderate low 610 (21)
Moderate high 595 (21)
Very high 572 (20)

IPSS-M risk group No.
Very low 275 (9.6)
Low 797 (27.7)
Moderate low 306 (10.6)
Moderate high 319 (11.1)
high 555 (19.3)
Very high 624 (21.7)

Table 3.4: Clinical features of 2,876 patients with MDS from the GenoMed4All
cohort collected at the time of diagnosis

Treatment No. (%)

Erythroid stimulating agents 356 (12.3)
Hypomethylating agents 673 (23.4)
AML-like chemotherapy 301 (10.4)
Transplantation 964 (34.0)
Other 89 (3.1)

Table 3.5: Treatment features of 2,876 patients with MDS from the
GenoMed4All cohort collected at the time of diagnosis

Considering IPSS-M–related genomic features, we identified 6,749 genomic le-
sions at diagnosis (median, 3; range, 0-12). 2,421 patients (84.1%) presented
one or more genomic alterations (mutations and/or chromosomal abnormali-
ties). 2,369 patients (82.4%) had one or more somatic mutations on 31 IPSS-
M–related genes, whereas 1,297 showed abnormal karyotype (see Figure 3.1).
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Figure 3.1: Molecular landscape of patients with MDS from the GenoMed4all cohort. (A)
Frequency of mutations of the 31 genes included into IPSS-M score in 2,876 patients from the
GenoMed4All cohort. Colors linked to the bars represent the gene function. (B) Frequency of
mutations on genomic features grouped according to IPSS-M criteria. (C and D) Frequency of
gene mutations and chromosomal abnormalities broken down by MDS subtypes according to 2016
WHO criteria and IPSS-R risk category, respectively. Mutations on genes are grouped according to
IPSS-M criteria as main e!ect genes (gene labels are highlighted in blue) and residual genes (gene
labels are highlighted in dark green). (E) Kaplan-Meier probability estimates of OS across numbers
of oncogenic alterations per patient (gene mutations and cytogenetic abnormalities). P value is
from log-rank test. Frequency of IPSS-M–related gene mutations and chromosomal abnormalities
broken down by MDS subtypes according to 2022 WHO criteria and ICC criteria is available in the
Data Supplement. ICC, International Consensus Classification of Myeloid Neoplasms and Acute
Leukemia; MDS, myelodysplastic syndromes; MDS 5q-, MDS with isolated deletion of long arm
of chromosome five; MDS-EB1, MDS with excess of blasts, type 1; MDS-EB2, MDS with excess
of blasts, type 2; MDS-MLD, MDS with multilineage dysplasia; MDS-RS-MLD, MDS with ring
sideroblasts and multilineage dysplasia; (continued on following page)
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Figure 3.1 (cont.): (Continued). MDS-RS-SLD, MDS with ring sideroblasts and single-lineage
dysplasia; MDS-SLD, MDS with single-lineage dysplasia; MDSU, MDS unclassifiable; IPSS-R, Re-
vised International Prognostic Scoring System; IPSS-M, Molecular International Prognostic Scoring
System; OS, overall survival.
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3.3.2 Validation of the Prognostic Power of IPSS-M and
Comparison With IPSS-R

We calculated IPSS-M in the study cohort at diagnosis [44]. Cytogenetic ab-
normalities were classified according the IPSS-R criteria [38]. Gene mutations
were considered as binary variables with the exception of TP53 (not mutated,
monoallelic mutation, multihit mutations) and SF3B1 (SF3B15q [SF3B1 muta-
tion in the presence of isolated del(5q) only or with one additional aberration
excluding -7/del(7q)], and SF3B1ω [SF3B1 mutation without comutations in
BCOR, BCORL1, RUNX1, NRAS, STAG2, SRSF2, and del(5q)]9).

Accordingly, 9.6% of patients (n = 275) were classified as very low risk,
27.7% (n = 797) as low risk, 10.6% (n = 306) as moderate low risk, 11.1% (n
= 319) as moderate high, 19.3% (n = 555) as high risk, and 21.7% (n = 624)
as very high risk.

We analyzed the probability of OS and LFS for all IPSS-M categories. Pa-
tients who received HSCT were censored at the time of the procedure. IPSS-M
categories showed significantly di!erent probabilities of both OS and LFS (both
p < .001; see Figure 3.2 ). The independent e!ect of IPSS-M on clinical outcome
was maintained in a multivariable model including age and sex as covariates
(HR, 1.67; 95% CI, 1.61 to 1.73; p < .001 OS; and HR, 1.79; 95% CI, 1.73 to
1.86; p <.001 for LFS).

IPSS-M showed superior performance with respect to conventional IPSS-R
scoring system: concordance was 0.81 (95% CI, 0.79 to 0.82) versus 0.74 (95%
CI, 0.73 to 0.76) for OS and 0.89 (95% CI, 0.87 to 0.91) versus 0.76 (95% CI,
0.73 to 0.79) for LFS, respectively. In addition, to evaluate the e!ect of IPSS-
M versus IPSS-R, we fitted two separate multivariable Cox’s models including
age and sex as covariates, comparing them by the AIC. AIC for the model
with IPSS-M versus IPSS-R was 17,455.43 versus 17,469.33 for OS and 3,973.26
versus 4,011.64 for LFS, thus confirming the importance of accounting for gene
mutations in the prognostic model.

The five-to-five comparison of IPSS-R and IPSS-M patients’ distribution (in
which we merged moderate low and moderate high to moderate in IPSS-M) re-
sulted in the restratification of 46% of patients (1,324 of 2,876). Of these, 23.6%
(n = 679) were upstaged and 22.4% (n = 645) were downstaged (Figure 3.2). A
total of 115 patients (4%) were reclassified by more than one risk strata. High-
lighting the implications of this restratification, marked di!erences in survival
were observed between IPSS-M categories within each IPSS-R risk category;
by contrast, the IPSS-R did not stratify patient outcomes within IPSS-M risk
strata (Data Supplement).

We specifically studied the prognostic impact of gene mutations on main
e!ect IPSS-M genes that were associated with adverse prognosis9 and their
contribution on patients restratification from IPSS-R to IPSS-M risk categories
(Data Supplement). Among restratified patients, 193 (26%) had one mutated
adverse IPSS-M main e!ect gene, whereas 275 (37%) had two or more mutated
genes. In details, in the very low + low IPSS-R category (n = 1,099), 214
patients (19.5%) were upstaged, of which 198 (93%) have more than one mu-
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Figure 3.2: Clinical assessment of IPSS-R and IPSS-M in the GenoMed4All MDS cohort. Kaplan-
Meier probability estimates of (A and B) OS and (C and D) LFS for 2,876 patients with MDS from
the GenoMed4All cohort stratified by IPSS-R and IPSS-M risk categories, respectively. P values
are from log-rank test. (E) Restratification of IPSS-R to IPSS-M risk groups in the MDS cohort.
Each bar represents an IPSS-R category and shows the percentage of patients that is restratified in
the IPSS-M categories (indicated with di!erent colors). (F) Distribution of the restratified patients
in each IPSS-R category, counting the proportion of patients who are downstaged (highlighted in
blue) and upstaged (highlighted in red) with the IPSS-M classification. (G) Distribution of the
restratified patients in each IPSS-R category, counting the proportion of patients with more than
one shift in IPSS-M risk category (downstaged and (continued on following page)
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Figure 3.2 (cont.): (Continued). upstaged cases are highlighted in blue and in red, respec-
tively). (H-I) Fraction of explained variation related to the IPSS-M prognostic factors for OS and
LFS, respectively. IPSS-R, Revised International Prognostic Scoring System; IPSS-M, Molecular
International Prognostic Scoring System; LFS, leukemia-free survival; MDS, myelodysplastic syn-
dromes; OS, overall survival.
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tated IPSS-M genes. Considering patients classified in the intermediate IPSS-R
category (n = 610), 180 (29%) were downstaged, the majority of them had no
mutations (67%); by contrast, 159 subjects (26%) were upstaged, and 69% of
these patients carried two or more main e!ect IPSS-M mutated genes. In the
very high + high IPSS-R category (n = 1,167), instead, 189 patients (16%) were
reclassified in lower-risk classes and only 33% of these presented more than one
mutated gene. Thus, patient restratification was not a single gene e!ect, but
the cumulative contribution of the prognostic mutations for each subject.

Then, we addressed the issue of the prognostic value of IPSS-M in those
patients without detectable mutations in the 31 IPSS-M–related genes. 507
subjects entered the analysis. IPSS-M categories maintained a significant e!ect
on probability of both OS and LFS (both p < .001; Data Supplement). IPSS-
M maintained superior performance to conventional IPSS-R scoring system in
this patient setting: concordance was 0.89 [0.86-0.91] versus 0.73 [0.69-0.77]
for OS and 0.91 [0.90-0.92] versus 0.81 [0.75-0.87] for LFS, respectively. By
comparing two multivariable models including IPSS-M versus IPSS-R, AIC was
1,573.04 versus 1,590.11 for OS, respectively, and 491.91 versus 498.61 for LFS,
respectively, thus confirming the best prognostic performance of IPSS-M in this
population.

Finally, we evaluated the prognostic impact of IPSS-M–related variables in
terms of percentage of explained variation for clinical outcomes (OS and LFS;
Figure 3.2). Clinical features had a high predictive power for both OS (bone
marrow blasts and cytopenias) and LFS (bone marrow blasts). IPSS-M–related
genomic variables had a strong predictive power, that is increased for the LFS
outcome, highlighting the impact of genomic landscape on the prediction of the
risk of disease evolution.

3.3.3 Predictive and Prognostic E!ect of IPSS-M in Pa-
tients Receiving Specific Treatments

In MDS, an increasing proportion of patients undergo to disease-modifying ther-
apies, including HSCT and HMA (for high-risk subjects who are not eligible to
HSCT). Therefore, it is relevant to know if IPSS-M may provide information
on the probability of response to specific treatments (predictive value) and the
probability of survival after treatment (prognostic value).

We therefore analyzed the predictive/prognostic value of IPSS-M in two pop-
ulations treated with HSCT and HMA according to currently available guide-
lines on the basis of IPSS-R, age, performance stats, and donor avaialbility.1 To
investigate the predictive value of IPSS-M, the risk of disease relapse in patients
treated with HSCT and the overall response rate (including the achievement
of complete response (CR), partial response, marrow CR, and stable disease
with hematologic improvement according to 2006 IWG criteria)15 for patients
treated with HMA were used as primary end points, while the prognostic value
of IPSS-M was tested on the probability of OS since the start of treatment in
both cases.
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Nine hundred sixty-four patients receiving HSCT entered the analysis, in
which clinical and genomic information for IPSS-M calculation was available at
the time of transplant in patients who were transplanted upfront and before
chemotherapy/HMA in those receiving treatment before transplantation (Data
Supplement). Patients receiving HSCT were reclassified according to IPSS-M
criteria: 126 (13.1%) patients were classified as low-risk, 108 (11.2%) patients as
moderate low, 136 (14.1%) as moderate high, and 290 (30.1%) and 304 (31.5%)
as high and very high risk, respectively. As illustrated in Figure 3.3, the 5-year
OS probability was 61% in low-, 55% in moderate low-, 46% in moderate high-,
33% in high-, and 27% in very high-risk patients (p < .0001). In these risk
groups, by competing risk analysis, the 5-year cumulative incidence of relapse
was 14%, 14%, 15%, 20% and 29%, respectively (p < .001; Fig Fig3).3). A
five-to-five mapping between the IPSS-R and IPSS-M categories resulted in the
restratification of 45% (n = 433) of the patients. Of these, 21% (n = 204) were
upstaged and 24% (n = 229) were downstaged (Figure 3.3).

We analyzed the prognostic e!ect of the IPSS-M score by a multivariable
model, including recipient age and sex, time from diagnosis to transplantation,
source of hematopoietic stem cells, type of donor, disease status at transplant
(active/progressive disease v complete remission), and conditioning regimen
(reduced-intensity v standard conditioning). The IPSS-M score was significantly
associated with OS (HR, 1.18 [95% CI, 1.08 to 1.27]; p < .001) and probability
of relapse (HR, 1.38 [95% CI, 1.21 to 1.56]; p < .001)

IPSS-M showed superior performance to conventional IPSS-R in predicting
both OS and probability of relapse after HSCT (concordance was 0.76 [95% CI,
0.73 to 0.78] v 0.60 [95% CI, 0.57 to 0.64] for OS, and 0.89 [95% CI, 0.87 to
0.91] v 0.70 [95% CI, 0.65 to 0.74] for probability of relapse, respectively). By
comparing two multivariable models including IPSS-M versus IPSS-R, AIC was
6,545.87 versus 6,559.96 for OS, respectively, and 2,404.97 versus 2,416.78 for
probability of relapse, respectively, thus confirming the best prognostic perfor-
mance of IPSS-M in predicting post-transplantation outcomes.

Recipient age was a significant risk factor for OS and NRM (HR, 1.01 [95%
CI, 1.00 to 1.02]; P = .028, and HR, 1.01 [95% CI, 1.01 to 1.02]; p < .001,
respectively). Lack of complete remission after pretransplantation treatment
(induction chemotherapy/HMA) showed an independent e!ect on relapse (HR,
1.78 [95% CI, 1.32 to 2.41]; p < .001). Patients receiving standard conditioning
regimens showed a reduced probability of relapse (HR, 0.63 [95% CI, 0.49 to
0.82]; p < .001). With respect to donor-recipient HLA match, patients receiving
transplant from mismatched unrelated donors showed a significantly reduced OS
(HR, 1.2 [95% CI, 1.082 to 1.33]; p = .012) and a significantly increased NRM
(HR, 1.33 [95% CI, 1.08 to 1.63]; p = .007) than those transplanted from a
HLA-matched donor.

We then investigated the predictive/prognostic e!ect of IPSS-M in a cohort
of high-risk patients with MDS ineligible for HSCT who received HMA. Inclusion
criteria were bone marrow blasts → 10% and availability of clinical and genomic
information before starting treatment. 268 patients entered the analysis.

Patients were reclassified according to IPSS-M criteria: 39 patients (15%)
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Figure 3.3: Clinical assessment of IPSS-R and IPSS-M in 964 MDS patients from the
GenoMed4All cohort who received allogeneic stem-cell transplantation (HSCT). (A) Kaplan-Meier
probability estimates of OS and (B) cumulative (continued on following page)
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Figure 3.3 (cont.): (Continued). incidence of disease relapse (estimated with a competing
risk approach including NRM) for 964 patients from the GenoMed4All cohort who received HSCT,
stratified by IPSS-M risk categories. P values are from log-rank test. (C) Restratification of IPSS-R
to IPSS-M risk groups in the MDS cohort. Each bar represents an IPSS-R category and shows the
percentage of patients that is restratified in the IPSS-M categories (indicated with di!erent colors).
HSCT, hematopoietic stem-cell transplantation; IPSS-M, Molecular International Prognostic Scor-
ing System; IPSS-R, Revised International Prognostic Scoring System; LFS, leukemia-free survival;
MDS, myelodysplastic syndromes; NRM, nonrelapse mortality; OS, overall survival.

had moderate high, 87 (32%) had high, and 142 (53%) had very high risk.
Median duration of MDS before the onset of HMA was 5 months (range, 1-
11 months). Patients received HMA for a median of six cycles (range, 1-32
cycles) without significant di!erence among IPSS-M categories (p = .41). The
probability of overall response (CR, marrow CR, partial response, and stable
disease with hematologic improvement) evaluated after 4-6 cycles of treatment
was 42%, without significant di!erence among IPSS-M categories (p = .19).

Median OS in the whole population treated by HMA was 13.9 months. As
illustrated in Figure 3.4, the estimated median OS was 20.7 months in moderate
high-, 17.9 months in high-, and 12.7 in very high-risk patients (p < .001; HR,
1.34 [95% CI, 1.08 to 1.65]; p = .006 in a multivariable model adjusted by age
and sex).

3.3.4 Accuracy of IPSS-M Prediction when Molecular In-
formation was Missed

We analyzed the loss of accuracy of IPSS-M prediction when one or more IPSS-
M–related molecular features are missing.

GenoMed4all and IWG-PM9 populations were used as learning and valida-
tion cohorts, respectively. We first evaluated the impact of a missing infor-
mation from each of the IPSS-M genomic features [44]. Figure 3.5 shows the
accuracy loss of IPSS-M prediction for each missing genomic variable. Then, we
evaluated the IPSS-M prediction accuracy in the presence of a combination of
missing genomic features (starting from missing information on residual genes
and then considering the main e!ect genes ordered by their prognostic weights
estimated on probability of LFS; Figure 3.5) [46]. Information on mutational
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status of a set of 15 genes (ASXL1, CBL, DNMT3A, ETV6, EZH2, FLT3, IDH2,
MLLPTD, NPM1, NRAS, RUNX1, SF3B1, SRSF2, TP53multihit, and U2AF1)
was required to have an accuracy of IPSS-M prediction of 80% and 70% in the
GenoMed4all and IWG-PM cohorts, respectively, while considering a set of 10
and seven genes, the accuracy of IPSS-M prediction decreased to < 70% versus
< 60%, respectively, and to < 60% versus < 50%, respectively (Figure 3.5).

3.4 Discussion

A more precise risk score is essential to improve precision medicine strategies
for patients with MDS. These in turn can identify patient groups that may
respond better versus do not benefit from current treatment approaches[37, 38,
39, 40, 7, 41, 42, 43, 44]. In this study, we provided an extensive validation of
the recently developed IPSS-M [44] and we confirmed that the molecular score
performed better than the conventional IPSS-R. This was also true in patients
without detectable mutations, thus suggesting that the statistical model used
to develop IPSS-M is more e”cient per se in capturing prognostic information
with respect to conventional Cox’s model [44].

The precise definition of the probability of leukemic evolution is particularly
important in the lower-risk groups, which represent the majority of patients
with MDS, and in whom new treatment approaches, including HSCT, may be
addressed in a refined manner [37, 54]. In this context, our findings confirmed
that in the very low-low intermediate IPSS-R risk group, 20% of patients were
reclassified into a less favorable prognostic category, > 90% of which had one
or more mutated main e!ect IPSS-M genes. Thus, the clinical implementation
of IPSS-M is expected to result in a more e!ective selection of candidates to
disease-modifying therapies (including HSCT) among patients with early-stage
disesase [54, 55, 56]. Transplantation performed early after the diagnosis is asso-
ciated with the most favorable outcome [54], and therefore, patients with higher
risk according to IPSS-M should be considered to receive a transplant procedure
earlier than the conventional scoring system (IPSS-R) would dictate [57, 58]. We
observed in addition that, in patients with MDS treated with HSCT, IPSS-M
significantly improved the prediction of the probability of OS with respect to
IPSS-R. In particular, IPSS-M was able to e”ciently capture the probability of
relapse, thus potentially refining the choice of the optimal conditioning regimen
at individual patient level [59] (a myeloablative conditioning should be prefer-
able in eligible subjects who are at higher risk of relapse according to genomic
features) and improving the identification of patients with high risk of trans-
plantation failure that can be considered for preemptive treatments of disease
recurrence [55, 56].

HMA are the only class of drugs approved for the treatment of higher-risk
MDS not eligible for HSCT. However, only 40%-50% of patients experience
hematologic improvement, and CR occurs in 10%-15% of cases [37, 60]. E!ective
methods for identifying patients who are most likely to respond to HMA would
be of immediate clinical utility. Models on the basis of clinical features are not
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su”ciently conclusive to deny eligible patients a trial of HMA based on their
predictions alone [61, 62].

In our study, IPSS-M failed to stratify individual probability of response;
however, response duration and probability of OS were inversely related to IPSS-
M risk. This is in line with observation that the IPSS-M is a very good tool to
reflect the disease biology and the aggressiveness of MDS subtypes [61, 62, 63].
Additional factors other than gene mutations can be involved in determining
sensitivity to HMA [64, 65].

Molecular testing is not yet routine globally because of cost, infrastructure,
and reimbursement considerations [37, 44]. We analyzed the accuracy of IPSS-
M prediction in both GenoMed4All and IWG-PM cohorts when one or more
molecular features are missing. Considering a minimum data set of 15 relevant
genes, the accuracy of IPSS-M prediction was 80% and 70%, respectively, while
reducing the number of available genes to 10 or less, the accuracy of IPSS-M
prediction was significantly lower in both cohorts. These findings may facilitate
the clinical implementation of the score into a real-world clinical setting and may
help clinicians to define the robustness of the prognosis prediction according to
the amount of available information.

Our study may present some limitations, mainly because of the retrospec-
tive nature of the data. However, we were able to analyze a large population of
patients with MDS, and the collection of DNA for genomic screening was pro-
vided independently from disease diagnosis, risk category, and treatment, thus
limiting the risk of a selection bias e!ect and improving the generalizability of
the results.

Despite the improved prognostication provided by IPSS-M, we observed that
demographic features have a high predictive prognostic power, and clinical pa-
rameters (bone marrow blasts and anemia) still retain a strong predictive e!ect
on survival, suggesting that these variables reflect important features of the dis-
ease state that are not captured by genomic landscape.4 Accordingly, including
sex and age information and combining gene mutation with gene expression
data33 might further improve outcome prediction in MDS in next future.
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Figure 3.4: Clinical assessment of IPSS-R and IPSS-M in patients with MDS from the
GenoMed4All cohort who received HMA. (A) Kaplan-Meier probability estimates of OS of patients
with MDS from the GenoMed4All cohort who received HMA (n 5 268) stratified by IPSS-M risk
categories. P values are from log-rank test. (B) Restratification of IPSS-R to IPSS-M risk groups in
the HMA-treated MDS patients. Each bar represents an IPSS-R category and shows the percentage
of patients that is restratified in the IPSS-M categories (indicated with di!erent colors). HMA,
hypomethylating agents; IPSS-M, Molecular International Prognostic Scoring System; IPSS-R, Re-
vised International Prognostic Scoring System; LFS, leukemia-free survival; MDS, myelodysplastic
syndromes; OS, overall survival.
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Figure 3.5: Accuracy of IPSS-M prediction when molecular information was missed. (A) Impact
of a missing information from each of the IPSS-M genomic feature on the accuracy of IPSS-M risk
prediction in GenoMed4all (n = 2,876) and IWG-PM cohorts (n = 2,957). The height of the bar
is proportional to the accuracy loss in IPSS-M prediction in the presence of a missing genomic
feature, estimated as the percentage of patients classified in the wrong risk category. (B) Prediction
of IPSS-M accuracy in the presence of a combination of missing genomic features in the GenoMed4all
and IWG-PM cohorts (starting from missing information on residual genes and then considering
the main e!ect genes ordered by their prognostic weights estimated on probability of LFS). The
accuracy was estimated as the number of patients classified in the correct risk category divided by
the patient population’s size. IPSS-M, Molecular International Prognostic Scoring System; IPSS-
R, Revised International Prognostic Scoring System; IWG-PM, International Working Group for
Prognosis in MDS; LFS, leukemia-free survival.



Chapter 4

Artificial Intelligence for
Precision Medicine
Prognostic Modeling in
Hematology

In preceding chapters, we established the potential of omics and AI in hema-
tology. We also studied existing prognostic hematology models that do not
leverage these novel fields. In this chapter, we address the third research ob-
jective, namely: Develop novel precision medicine artificial intelligence models
for prognosis in hematological diseases. In particular, we develop computational
approaches to define genotype-phenotype correlations in MDS and to measure
combined prognostic information of gene mutations and clinical variables. By
comparing these methods to (age-adjusted) IPSS-R risk groups, we obtain a nu-
anced understanding of omics and AI in hematology. This study was previously
published as [40].

41
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4.1 Introduction

Myelodysplastic syndromes (MDS) are heterogeneous clonal hematopoietic dis-
orders characterized by peripheral blood cytopenia and increased risk of evo-
lution into acute myeloid leukemia (AML) [66]. Current disease classification
provided by WHO mainly uses morphological features to define MDS categories,
leading to a clinical overlap between subtypes and to low interobserver repro-
ducibility in the evaluation of marrow dysplasia [46, 67, 68].

MDS range from indolent conditions to cases rapidly progressing into AML [37,
69]. Disease-related risk is assessed by International Prognostic Scoring System
(IPSS) on the basis of percentage of bone marrow blasts, number of peripheral
blood cytopenias, and presence of specific clonal cytogenetic abnormalities [38].
In 2012, a revised version of IPSS (IPSS-R) was proposed by introducing five
cytogenetic risk groups together with refined categories for bone marrow blasts
and cytopenias [38]. Although IPSS and IPSS-R are excellent tools for clinical
decision making, these scoring systems have their own weaknesses and may fail
to capture reliable prognostic information at individual patient level. In par-
ticular, cytogenetics (which is the only biological parameter included in these
scores) is not informative in a large proportion of patients and chromosomal
abnormalities mostly refer to secondary, late genomic events occurring in the
natural history of the disease [39].

The development of MDS is driven by mutations on genes involved in RNA
splicing, DNA methylation, chromatin modification, transcriptional regulation,
and signal transduction [7, 70, 71, 41]. Chromosomal abnormalities also con-
tribute to MDS pathophysiology.13 Despite recent progress in understanding the
disease biology, MDS with isolated 5q deletion is the only category defined by a
specific genomic abnormality in the WHO classification2 and only few genotype-
phenotype associations have been reported until now, mainly referring to the
close relationship between mutations in SF3B1 gene and MDS subtypes with
ring sideroblasts [46, 7, 70, 71, 41]

In myeloid malignancies, classifications on the basis of clinical and morpho-
logical criteria are being complemented by introducing genomic features that
are closer to the disease biology and better capture clinical-pathological en-
tities [46, 72, 52, 73].2,14-16 In this study, we aim to define a new genomic
classification of MDS and to improve individual prognostic assessment moving
from systems on the basis of clinical parameters to models including genomic
information.

4.2 Methods

4.2.1 Study Populations

The Humanitas Research Hospital Ethics Committee approved the study. Writ-
ten informed consent was obtained from each participant. The study was con-
ducted by EuroMDS consortium (ClinicalTrials.gov identifier: NCT04174547).
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We analyzed an international retrospective cohort of 2,043 patients a!ected with
primary MDS according to 2016 WHO criteria [46] and an independent cohort
of 318 patients prospectively diagnosed at Humanitas Research Hospital, Milan,
Italy (see Data Supplement 1 of [40]).

4.2.2 Genomic Screening

At diagnosis, cytogenetic analysis was performed using standard G-banding
and karyotypes were classified using the International System for Cytogenetic
Nomenclature Criteria. Mutation screening of 47 genes related to myeloid neo-
plasms was performed on DNA from peripheral blood granulocytes or bone
marrow mononuclear cells (Data Supplement 1 of [40]).

4.2.3 Statistical Methods

Detailed methods are reported in the Data Supplement 1 of [40]. Bradley-Terry
models are used to estimate timing of mutation acquisition and to assess the
prognostic value of clonal versus subclonal mutations [41].

Bayesian network analysis and hierarchical Dirichlet processes are used to
identify genomic associations and subgroups as a basis to define a molecular
classification of MDS [52, 72, 73]. Bayesian networks allow to infer the struc-
ture of conditional dependencies among mutations, that is, how the presence of
a given mutation influences the probability of the others (causality). Dirichlet
processes are applied to define clusters capturing broad dependencies among
all gene mutations and cytogenetic abnormalities [41, 52, 72, 73]. Patients are
clustered based on genomic components identified by Dirichlet processes. Mul-
tivariate logistic regression analysis is applied to compare clinical and hemato-
logical characteristics among di!erent groups. Survival analyses are performed
with Kaplan-Meier method, and di!erences between groups are evaluated by
log-rank test. To carry out the analysis, R package available online [74] is used.

Random-e!ects Cox proportional hazards multistate modeling was used for
developing innovative prognostic tools including clinical parameters and ge-
nomics [75, 76]. With the aim to help clinicians to be familiar with such a
next-generation prognostic tool, we have created a prototype Web portal that
allows outcome predictions to be generated based on this data set for user-
defined constellations of genomic features and clinical variables.

All the analyses were carried out on EuroMDS cohort. The Humanitas
cohort was used to independently validate models for patient prognostication.

4.3 Results

4.3.1 Genomic Landscape in Myelodysplastic Syndromes

For more detailed results, figures, and supplementary materials, we refer to the
sata supplement and appendix of [40] throughout. We studied 2,043 patients
with MDS from EuroMDS consortium (Data Supplement 1). Normal karyotype
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is reported in 1,195 patients (59%), whereas 651 (32%) showed chromosomal
abnormalities. Mutations are identified in 45 of 47 genes. A total of 1,630
patients (80%) present one or more mutations (median, 2; range, 1-17). Only
six genes are mutated in >10% of patients, with five additional genes mutated
in 5%-10%, and 36 mutated in <5% of patients. This is visualized in Figure 4.1.

4.3.2 Mutation Acquisition Order and Prognostic Value
of Clonal Versus Subclonal Mutations

By using Bradley-Terry modeling, we calculate a global ranking of MDS genes
reflecting how early in disease natural history they are mutated. Mutations
in genes involved in RNA splicing and DNA methylation occur early, whereas
mutations in genes involved in chromatin modification and signaling often occur
later.

A total of 14 genes are associated with worse prognosis if mutated, whereas
one gene (SF3B1) is associated with better outcome. Variant allele fractions
are used to estimate the proportion of tumor cells carrying a given mutation
and identify clonal or subclonal mutations. Accordingly, 58% of patients show
only clonal mutations, whereas 42% have evidence for both clonal and subclonal
mutations. No significant di!erences in survival between clonal and subclonal
mutations for the majority of the investigated genes are observed, highlighting
the importance of including information on subclonal mutations in the predictive
model.

4.3.3 Identification of Genomic Associations and Subgroups
in Myelodysplastic Syndromes

Pairwise associations among genes and cytogenetic abnormalities reveal a com-
plex landscape of positive and negative associations. Bayesian networks are ap-
plied to define in a more comprehensive way the relationships between genomic
abnormalities. Accordingly, mutations of splicing genes are mutually exclusive.
SF3B1 mutations are mutually exclusive with TP53 mutations, whereas they
co-occur with JAK/STAT pathway mutations. SRSF2 mutations co-occur with
TET2, ASXL1, CBL, IDH1/2, RUNX1, and STAG2 mutations. U2AF1 muta-
tions co-occur with abnormalities of chromosome 7 and 20 and NRAS mutations.
TET2 mutations co-occur with SRSF2 and ZRSR2 mutations. DNMT3A mu-
tations are mutually exclusive with ASXL1 mutations, whereas they co-occur
with BCOR, IDH1, and NPM1 mutations. 5q deletion is frequently present as a
single genomic abnormality, whereas a co-occurrence with TP53 mutations and
with several single cytogenetic components of complex karyotype is observed.

4.3.4 Definition of a Genomic Classification of Myelodys-
plastic Syndromes

Dirichlet processes are used to identify genomic subgroups among MDS. We
identify six components, each describing a specific distribution of variables in-
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cluded in the model (ie, cytogenetic abnormalities and gene mutations). Each
patient is characterized by a weight vector indicating the contribution of each
component to its genome. By performing hierarchical agglomerative clustering,
we obtain eight groups (clusters) defined according to specific genomic features.

One group includes patients without specific genomic profiles (ie, without
recurrent mutations in the study genes and/or chromosomal abnormalities);
strikingly, all the remaining groups are deeply characterized by a single (in
some cases two) component of Dirichlet processes. In many groups, dominant
genomic features include splicing gene mutations. We identify two groups (1
and 6) in which dominant features are SF3B1 mutations, presence of ring sider-
oblasts, and transfusion-dependent anemia. Group 6 includes patients with ring
sideroblasts and isolated SF3B1 mutations (except for co-mutation patterns in-
cluding TET2, DNMT3A, and JAK/STAT pathway genes) characterized by
isolated anemia, normal or high platelet count, single or multilineage dysplasia,
and low percentage of marrow blasts (median, 2%). Group 1 includes patients
with SF3B1 with co-existing mutations in other genes (ASXL1 and RUNX1)
characterized by anemia associated with mild neutropenia and thrombocytope-
nia, multilineage dysplasia, and higher marrow blast percentage with respect to
group 6 (7% v 2%, P < .0001).

In two groups (3 and 5), dominant genomic features are represented by
SRSF2 mutations. In these groups, the most frequently reported chromosomal
abnormality is trisomy 8. Group 3 includes patients with SRSF2 and con-
comitant TET2 mutations. Patients present single cytopenia (anemia in most
cases) and higher monocyte absolute count with respect to the other groups (P
¡ .0001). Bone marrow features include multilineage dysplasia and excess blasts
(median, 8%). Group 5 is characterized by SRSF2 mutations with co-existing
mutations in other genes (ASXL1, RUNX1, IDH2, and EZH2). Patients present
two or more cytopenias, multilineage dysplasia, and excess blasts (median, 11%;
significantly higher with respect to group 3; P = .0031).

Group 4 dominant features include U2AF1 mutations associated with 20q
deletion and chromosome 7 abnormalities (Appendix, Data Supplement 1). Pa-
tients present a higher rate of transfusion-dependent anemia with respect to the
other groups (P from .023 to ¡ .0001). Marrow features include multilineage
dysplasia and excess blasts in most cases.

Group 2 is characterized by TP53 mutations and/or complex karyotype. In
most patients, two or more cytopenias (with high rate of transfusion depen-
dency) and excess blasts are present (Appendix, Data Supplement 1).

Group 7 includes patients with AML-like mutation patterns (DNMT3A,
NPM1, FLT3, IDH1, and RUNX1 genes). Patients are characterized by two or
more cytopenias (with high rate of transfusion dependency) and excess blasts,
in most cases (83%) ranging from 15% to 19%.

Finally, group 0 includes MDS without specific genomic profiles. These
patients are characterized by younger age, isolated anemia, normal or reduced
marrow cellularity (with respect to age-adjusted normal ranges), absence of ring
sideroblasts, and low percentage of marrow blasts (median, 2%).

A heterogeneous distribution of 2016 WHO disease subtypes is observed
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through the new groups defined by genomic features (P < .0001, Appendix).
Interestingly, this new classification accounts for genomic heterogeneity of pa-
tients stratified according to WHO criteria. This is evident for MDS with iso-
lated 5q deletion. Patients with none or one mutation (mainly including SF3B1
gene) are clustered into group 6, whereas those with two or more mutations or
TP53 mutations are classified into group 1 (Appendix). MDS with 5q deletion
included into group 6 show lower rate of transfusion dependency and lower per-
centage of marrow blasts with respect to patients classified into group 1 (P =
.0043 and P < .0001).

These findings provide the proof of concept for a new classification of MDS
on the basis of entities defined according to specific genomic features. In the
Appendix, we define a diagram to classify patients in the appropriate category
on the basis of individual genomic profile.

4.3.5 Clinical Relevance of Genomic Classification of Mye-
lodysplastic Syndromes in Predicting Survival and
Response to Specific Treatments

Genomic-based MDS groups present di!erent probability of survival (Appendix,
P < .0001), suggesting that the integration of genomic features may improve the
capability to capture prognostic information. Groups 1 and 6 characterized by
SF3B1 mutations show better survival with respect to groups 2, 3, 4, 5, and 7 (P
from < .0001 to .0093), isolated SF3B1 (group 6) being associated with better
outcome with respect to SF3B1 with co-mutated patterns (group 1, P = .0304).
Group 0 including patients without specific genomic abnormalities is associated
with good prognosis as well (P from < .0001 to .012 with respect to groups 2, 3,
4, 5, and 7). Groups defined by splicing mutations other than SF3B1 show worse
survival; among them, group 5 (SRSF2 mutations with co-existing mutations
in other genes) is associated with dismal outcome (P from < .0001 to .0177
with respect to groups 0, 1, 4, and 6). Group 2 including patients with TP53
mutations and complex karyotype shows the poorest outcome (P from < .0001
to .0473). Group 7 including patients with AML-like mutations shows high rate
of leukemic evolution and worse prognosis as well (P < .0001 with respect to
groups 1, 3, and 6). Finally, among patients with isolated 5q deletion, cases with
none or single mutation are associated with a better prognosis with respect to
those with two or more mutations or TP53 mutations (P = .0432).

Then, we tested whether grouping MDS patients according to genomic fea-
tures may provide information about response to specific treatments. We fo-
cused on 424 cases who underwent allogeneic transplantation and on 221 cases
treated with hypomethylating agents. With the limit to analyze a retrospective
cohort of selected patients, MDS groups on the basis of genomic features do
not identify di!erent probability of survival after hypomethylating agents (not
shown), whereas they are able to significantly stratify post-transplantation out-
come. This is visualized in Figure 4.2. SF3B1-related groups (groups 1 and 6),
MDS with AML-like mutations (group 7), and MDS without specific genomic
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abnormalities (group 0) show a better outcome after transplant, whereas groups
defined by TP53 mutation and/or complex karyotype (group 2) and by U2AF1
mutations (group 4) are associated with a high rate of transplantation failure
(Fig 4.2).

4.3.6 Personalized Prognostic Assessment on the Basis of
Clinical and Genomic Features

Random-e!ects Cox multistate model incorporating 63 clinical and genomic
variables are developed to estimate personalized probability of survival.

First, we determined the fraction of explained variation for clinical outcome
that was attributable to di!erent prognostic factors. This is visualized in Fig-
ure 4.3. Demographic features (age and sex) have a high predictive prognostic
power. Gene mutations and co-mutation patterns increase the prognostic power
of cytogenetics. Clinical features (percentage of marrow blasts and anemia) still
retain a strong independent predictive power for survival, suggesting that these
variables reflect important features of the disease state that are not captured
by genomic landscape (Fig 4.3).

We then explored whether Random-e!ects Cox multistate model could gen-
erate accurate survival predictions for individual patients and if the obtained
predictions are more informative than conventional age-adjusted IPSS-R.

Random-e!ects Cox multistate model is able to generate a prediction for
survival that correlated well with the observed outcomes in EuroMDS cohort
(Tables 4.1 and 4.2). Internal cross-validation shows a concordance of 0.74 and
0.71 for survival in training (67% of patients) and test (33% of patients) subsets,
respectively. This model shows superior performance to conventional scoring
systems (age-adjusted IPSS-R concordance is 0.62 and 0.65 in training and test
subsets of EuroMDS cohort, respectively). Interestingly, the concordance of
Dirichlet process components is similar to that of age-adjusted IPSS-R (0.65
and 0.62, respectively), thus underlying the relevance of accounting for genomic
features into the prognostic model.

Training (66% of EuroMDS Patients) Test (33% of EuroMDS Patients)
Statistical Model and Variable Selection Concordance SD Concordance SD

Cytogenetics IPSS-R risk groups 0.576 0.012 0.567 0.016
Age-adjusted IPSS-R risk groups 0.620 0.015 0.659 0.019
Dirichlet processes 0.649 0.014 0.629 0.020
CoxRFX Clinical, demographics, Dirichlet 0.729 0.015 0.713 0.021
CoxRFX Clinical, demographics, genomics 0.742 0.015 0.709 0.021

Table 4.1: Concordance Comparison Between Random-E!ects Cox Proportional
Hazards Multistate Models (CoxRFX) and IPSS-R on Training-Test Approach.

In Figure 4.4, we illustrate an example of the calculations to obtain a per-
sonalized prediction of survival by using patients from EuroMDS cohort; in two
patients with same clinical phenotype and similar predicted prognosis according
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Training (66% of EuroMDS Patients) Test (33% of EuroMDS Patients)
Statistical Model and Variable Selection Concordance SD Concordance SD

CoxRFX Clinical, demographics, Dirichlet 0.715 0.012 NA NA
CoxRFX Clinical, demographics, genomics 0.737 0.012 0.753 0.037

Table 4.2: Concordance of CoxRFX Models and Age-Adjusted IPSS-R on
Training-Validation Approach

to age-adjusted IPSS-R, Random-e!ects Cox multistate model is able to capture
additional prognostic information and e”ciently predicts clinical outcome.

Because the underlying survival model is complex, specific information tech-
nology support is needed to combine all the information at individual patient
level and to translate it into a personalized outcome prediction. With the aim
to help clinicians to be familiar with such a next-generation prognostic tool,
we have created a prototype Web portal [77] that allows outcome predictions
to be generated based on EuroMDS data set for user-defined constellations of
genomic features and clinical variables.

4.3.7 Independent Validation of Personalized Prognostic
Assessment

An independent validation of Random-e!ects Cox multistate model is performed
on Humanitas cohort (a single-center prospective population of 318 patients
showing significantly di!erent hematological features with respect to EuroMDS
cohort). Concordance for survival in Humanitas cohort was similar to that
observed in EuroMDS cohort (0.75 and 0.74, respectively), suggesting that the
model provides considerable discriminatory power that accurately generalizes
to other real-world populations (Tables 4.1 and 4.2).

4.4 Discussion

We developed computational approaches to define genotype-phenotype correla-
tions in MDS and to measure combined prognostic information of gene muta-
tions and clinical variables.

RNA splicing is the most commonly mutated pathway in MDS [70, 71, 41]
and occurs early in disease evolution. These mutations play a major role in
determining the disease phenotype, with di!erences in morphological features
and survival [41]. Splicing mutations may also influence the subsequent ge-
nomic evolution of the disease because the patterns of cooperating mutations
are di!erent between SF3B1, SRSF2, and U2AF1 genes [41, 78]. Overall, these
findings suggest that a genomic classification in MDS is advisable.

We identify eight subgroups of MDS based on specific genomic features.
WHO subtypes are heterogeneously distributed across these new genomic cat-
egories, suggesting that the current classification is unable to capture distinct
MDS biological features.
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SF3B1 mutations define a specific MDS subtype characterized by ring sider-
oblasts, low blast count, and favorable outcome [46, 41, 70, 71, 79]. Among
SF3B1-mutated patients, JAK/STAT pathway coexisting mutations can induce
the acquisition of a myeloproliferative phenotype [80]. A distinct disease sub-
type includes patients with SF3B1 mutations and co-existing mutations in other
genes (RUNX1 and ASXL1), characterized by multilineage dysplasia [79]. This
disease subgroup is associated with poorer outcome. SRSF2 and U2AF1 mu-
tations identify distinct disease subtypes with specific co-mutation patterns,
hematological phenotype, and reduced probability of survival with respect to
SF3B1-defined categories [81, 82, 83, 84, 85].

The subgroup with TP53 mutations and complex karyotype has very poor
outcomes [86]; this same subgroup has been identified in AML and myeloprolif-
erative neoplasms [52, 72, 73]. We identify an MDS subtype including cases with
mutations that are recurrently described in de novo AML [46, 72]; this category
shows a very high risk of leukemic transformation and poor outcome, suggest-
ing that the current threshold of 20% marrow blasts might be not suitable to
recognize di!erent disease entities from a biological point of view. Moreover, we
notice a high percentage of patients with marrow hypocellularity in the group
without specific genomic features; these MDS show overlapping clinical features
with aplastic anemia [46, 87]. Overall, these findings suggest that a genomic
classification could transcend the boundaries of MDS and help categorization
of cases bordering with other myeloid conditions where current morphological
criteria are often inadequate.

Moving to prognostication, we have built statistical models that can gener-
ate personally tailored survival prediction using information from both clinical
and genomic features [52]. We show that the inclusion of gene mutations and co-
mutational patterns significantly improves patient prognostication with respect
to IPSS-R, which considers only cytogenetics abnormalities. Although conven-
tional prognostic systems provide an outcome prediction based on the median
survival of patients with similar clinical features, our new prognostic model is
based on individual patient genotype and phenotype, thus improving the capa-
bility of capturing prognostic information in such a heterogeneous disease. Fi-
nally, genomic features are relevant for predicting survival after transplantation,
supporting the rationale to include this information to support transplantation
decision making in MDS [55, 56].

The most critical issue for this novel prognostic model is sample size, which
is particularly relevant in MDS showing a long tail of genes mutated in a low
proportion of cases. According to previous data, for a gene mutated in 5%-
10% of patients, a training set of 500-1,000 patients would su”ce, but for a
gene mutated in < 1% of patients, a cohort of > 5,000 would be needed [52].
Additional cooperative e!orts are therefore needed to improve the reliability
and generalizability of these models.

The integration of clinical data with diagnostic genome profiling in MDS
may provide prognostic predictions that are personally tailored to individual
patients. Such information will empower the clinician and support complex
decision-making process in these patients.
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Figure 4.1: (A) Frequency of mutations and chromosomal abnormalities in the EuroMDS cohort
(n = 2,043), stratified according to the type of mutation (missense, nonsense, a!ecting a splice site,
or other). Insertions and deletions (del) were categorized according to whether they resulted in a
shift in the codon reading frame (by either 1 or 2 base pairs [bp]) or were in frame. Splicing factor
genes were the most frequently mutated (49%), followed by DNA methylation–related genes (37.9%),
chromatin and histone modifier genes (31.3%), signaling genes (28.5%), transcription regulation
genes (24%), tumor suppressor genes (11.1%), and cohesin complex genes (7.6%). (B) Frequency
of recurrently mutated genes and chromosomal abnormalities in the EuroMDS cohort, broken down
by MDS subtype according to 2016 WHO criteria. (C) VAF of driver mutations in the EuroMDS
cohort, broken down by gene and gene function (boxplots reporting median, 25-75 percentiles, and
ranges); VAF of X-linked genes (ATRX, BCOR, BCORL1, PHF6, PIGA, SMC1A, STAG2, UTX,
and ZRSR2, highlighted by asterisk in the figure plot) was halved in male patients. (D) Relationship
between the number of genomic abnormalities (mutations and chromosomal abnormalities) and
outcome (overall survival). MDS, myelodysplastic syndromes; MDS 5q-, MDS with isolated deletion
of long arm of chromosome 5; MDS-EB1, MDS with excess of blasts, type 1; MDS-EB2, MDS with
excess of blasts, type 2; MDS-MLD, MDS with multilineage dysplasia; MDS-RS-MLD, MDS with
ring sideroblasts and multilineage dysplasia; MDS-RS-SLD, MDS with ring sideroblasts and single-
lineage dysplasia; MDS-SLD, MDS with single-lineage dysplasia; VAF, variant allele frequencies.
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Figure 4.2: (A) Probability of overall survival after allogeneic transplantation in the EuroMDS
cohort. Patients were stratified according to specific genomic features. A total of 424 cases with
complete information about transplant procedures and clinical outcome entered the analysis. (B)
Comparison of probability of survival among di!erent genomic-based MDS groups (P values of log-
rank test were reported). AML, acute myeloid leukemia; MDS, myelodysplastic syndromes.
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Figure 4.3: (A) Probability of overall survival after allogeneic transplantation in the EuroMDS
cohort. Patients were stratified according to specific genomic features. A total of 424 cases with
complete information about transplant procedures and clinical outcome entered the analysis. (B)
Comparison of probability of survival among di!erent genomic-based MDS groups (P values of log-
rank test were reported). AML, acute myeloid leukemia; MDS, myelodysplastic syndromes.
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Figure 4.4: Personalized prediction of overall survival using a multistate prognostic model in-
cluding clinical and genomic features and their interactions in two patients from the EuroMDS
cohort (labeled as patient A and patient B), both classified as MDS with multilineage dysplasia
according to 2016 WHO classification and belonging to low-risk group according to age-adjusted
revised version of International Prognostic Scoring System (IPSS-R). Using currently available prog-
nostication, both patients are predicted to have an indolent clinical course without significant risk
of disease evolution and death (in the EuroMDS cohort, Kaplan-Meier curves show a median sur-
vival of 79 months for low-risk age-adjusted IPSS-R). When looking at mutational profile, driver
mutations involved di!erent splicing factor genes in these patients: patient A carries SF3B1 muta-
tion, whereas patient B presents SRSF2 mutation. We then calculated expected survival by using
the novel genomic-based prognostic model (exponential survival curves are reported in the figure).
Patient A was classified into genomic-based group 6, and patient B was classified into group 5.
Accordingly, the estimation of life expectancy is now significantly di!erent in these two patients,
as underlined by the slope of the two exponential curves. The model predicts a better probability
of survival for patient A (with SF3B1 mutation) with respect to patient B (with SRSF2 mutation),
thus reflecting more precisely the observed clinical outcome. In fact, patient B died 16 months after
the diagnosis as a result of leukemic evolution, whereas patient A was still alive without evidence of
disease progression after 60 months of follow-up. IPSS-R fails to capture such a di!erence in clinical
outcome. The interpretation of the predicted survival curves by genomic-based predictive model is
meaningful also considering that we are in the context of a cohort of elderly patients: patient A
(age 78 years) has a 30% survival probability at the age of 80, whereas patient B (age 73 years) has
a 30% survival probability at the age of 74.
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Chapter 5

Privacy Enhancement
through Synthetic Data in
Hematology Research

In the preceding chapters, we have established that omics data and AI have a
considerable potential in hematology model development. What remains is to
show that this potential can be realized in a manner that respects individuals’
privacy. In this chapter, we study ML-based synthetic data, a new paradigm
in data protection. In doing so, we address research question four: Show that
hematological disease models can be ethically and securely trained and integrated
for analysis and application, without breaching patients’ rights and trust. We
find that synthetic data mimic real clinical-genomic features and outcomes, and
anonymize patient information. The implementation of this technology allows
to increase the scientific use and value of real data, thus accelerating precision
medicine in hematology and the conduction of clinical trials. This study was
previously published as [88].
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5.1 Introduction

Personalized medicine combines established clinical-pathologic parameters with
advanced genomic profiling to develop innovative diagnostic, prognostic, and
therapeutic strategies [89]. Hematology has been rapidly transformed by genome
characterization and is the forefront to reap the benefits of personalized medicine
for patient management [89].

The clinical implementation of personalized medicine requires the availabil-
ity of a great amount of real-world data, including clinical features, genomics,
treatments, and outcomes [90, 91, 92]. Collecting such information in large pa-
tient populations is challenging, especially when facing rare diseases with het-
erogeneous clinical/molecular background. Additionally, real data often have
imbalances or lack/incomplete information [93, 94]. Finally, there are many
issues concerning patient privacy that may prevent use of data outside specific
contexts and that are to be accounted for [95].

One approach that can circumvent these issues is the creation of synthetic
data. Synthetic data are artificial data generated by a model trained to learn the
essential characteristics of a real source data set [96, 97]. Synthetic data build-
ing techniques attempt to ensure that the generated data are neither a copy nor
a representation of the real data, setting the grounds to data sharing without
violating the current legislation on privacy [96, 97]. Moreover, synthetic data
allow to increase insu”cient information obtained from real patients by data
augmentation and data integration, thus potentially solving issues related with
small sample size and clinical/molecular class imbalance [98].

Overall, synthetic data may overcome many of the pitfalls of real data, al-
lowing for faster, less expensive, and more scalable access to information that
is representative of the underlying source and privacy-preserving.8-11 Synthetic
data is a growing technology [96] and it is expected that in the next 2-3 years,
>60% of the data used in research and development process across di!erent
domains (including life sciences) will be synthetically generated [99].

In this project, we addressed the issue of clinical validation and research
utility of synthetic data in hematology. To this purpose, we aimed to (1) apply
innovative synthetic data generation methods to real-world data sets of di!erent
hematologic malignancies including comprehensive clinical and genomic infor-
mation; (2) develop a synthetic validation framework (SVF) to evaluate data
fidelity and privacy preservability; and (3) test the capability of synthetic data
to accelerate translational and clinical research.

As a paradigmatic use case, we focused on myeloid malignancies, which
are rare neoplasms with high clinical heterogeneity and complex genomic back-
ground and that include patients with unmet clinical needs [48].
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5.2 Methods

5.2.1 Study Populations

The study was conducted by GenoMed4All and Synthema European consortia
and supported by EuroBloodNET, the European Reference Network on rare
hematologic diseases. Written informed consent was obtained from each partic-
ipant. The Humanitas Ethics Committee approved the study. This study was
registered at ClinicalTrials.gov (identifier: NCT04889729).

All the study procedures were compliant with the 2021 WHO guidance on
ethics and governance of artificial intelligence for health [100].

Inclusion criteria were age →18 years, a diagnosis of myeloid neoplasm (ei-
ther myelodysplastic syndromes [MDS] or AML) according to WHO 2016 crite-
ria [46], and information available on demographics, clinical features, mutational
screening/chromosomal abnormalities, treatment, and survival. Overall, 7,133
patients were included.

5.2.2 Generative Model for Synthetic Data

Artificial intelligence (AI)–based generative models are characterized by multi-
layer neural networks that are able to generate samples (patients) by learning
the distribution of a set of real data [101].16 In this context, generative ad-
versarial networks (GANs) [102] create simulation scenarios where models and
processes interact to create completely new data sets of events. GANs consist
of two networks: the generator and the discriminator. These two networks are
trained adversarially. The generator creates artificial outputs that are passed
to the discriminator along with real data, while the discriminator is tasked to
identify which outputs were real and which were fake. The final goal here is to
reach equilibrium, in which the generated samples follow the same distribution
as the real data. When this happens, the discriminator can do no better than
random guessing.16 Conditional GANs are variants of GANs where a label is
added as a parameter to the input of the models to create more realistic data by
learning specific correlations [103]. In this study, we implemented a conditional
Wasserstein’s tabular GAN18 with gradient penalty [104] that ensures high per-
formance in modeling large data sets with complex distribution and interactions
among di!erent features. We adopted di!erent preprocessing steps and training
strategies to properly prepare the input data and optimize the training steps.

5.2.3 Development of a Synthetic Validation Framework

A SVF was developed to evaluate fidelity and privacy preservability of the newly
generated synthetic data.

We assessed the quality of the following data types: demographics, clinical
features, genomics (evaluated as categorical variables), and clinical outcomes
(probability of overall survival and leukemia-free survival). Distribution, corre-
lation, and principal component analysis evaluation were then assessed on all
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data types. Descriptive statistics and pairwise association analyses were carried
out. We calculated a clinical synthetic fidelity (CSF) and a genomic synthetic
fidelity (GSF) as the average of multiple metric tests adopted; optimal threshold
was considered →85% in both systems.

Real and synthetic patients were stratified by hierarchical Dirichlet cluster-
ing [105] to identify genomic associations and subgroups. Survival analyses were
performed with Kaplan-Meier curves. We implemented Cox proportional haz-
ard and L1-penalized Cox regression models to define features with significant
impact on survival probability [38, 105]. Model discrimination was assessed
using Harrell’s concordance index [106].

To assess the privacy preservability and evaluate the risk associated with
synthetic datasets of resampling a patient from a synthetic record, we first mea-
sured the exact matches between synthetic and original data (identical match
share [IMS]). Moreover, we calculated the distance to closest record that mea-
sures the absolute distances between synthetic records to their nearest original
records, and we then calculated the nearest neighbor distance ratio (NNDR),
that is, the ratio of the distances of each synthetic record to the nearest and to
the second nearest neighbors, that allows to compare inliers and outliers in the
population on an equal base [107]. Optimal range for NNDR was considered
from 0.60 to 0.85 (value closer to 0.50 indicating a significant loss of similarity
of the synthetic patients compared with the real ones that can a!ect the fidelity
of synthetic data; value closer to 1.00 indicating an excess of similarity of syn-
thetic data with respect to the real ones, thus possibly a!ecting the privacy
preservability) [107].

Explainability of AI algorithms was assessed by Shapley Additive Explana-
tions (SHAP), a method to explain individual predictions on the basis of the
game theoretically optimal Shapley values [108].

5.2.4 Experimental Setup

We tested synthetic data generation process in di!erent experimental settings,
summarized in Figure 5.1.

In setting A, we investigated the capability of the generative model to cre-
ate a synthetic reproduction of real data with high grade of fidelity on clini-
cal/genomic features, clinical outcomes, and with high privacy preservability.
We used 2043 patients with MDS from GenoMed4All cohort [105] to train and
test the model.

In setting B, we tested the capability of the model to overcome lack/incomplete
information in real data and to allow data augmentation; moreover, we assessed
the generalizability of the model’s performances across di!erent clinical settings.
We considered three di!erent populations: 2,043 MDS from GenoMed4All co-
hort [105]; 2,957 MDS from the International Working Group for Prognosis in
MDS (IWG-PM) cohort [44], and 1,002 AML from GenoMed4All cohort [105].
In all experiments, we calculated fidelity and privacy metrics.

In setting C, we investigated if the generation of synthetic data can accelerate
translational research. Starting from a MDS cohort available in 2014 (n =
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Figure 5.1: Overview of experimental settings to validate synthetic data. Setting A: Create a
synthetic reliable and private copy of the real data. Setting B: Assessment of generated patients,
data augmentation, privacy preservability, and generalizability of the generative model across di!er-
ent clinical settings. Setting C: Accelerating translational research. Setting D: Accelerating clinical
research and design/conduction of clinical trials. IPSS-M, Molecular International Prognostic Scor-
ing System; MDS, myelodysplastic syndromes.
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944) [109], we generated a 300% augmented synthetic data set. We aimed to
recapitulate and anticipate in this cohort of synthetic patients the most relevant
and recent insights in personalized medicine (ie, the definition of a new molecular
MDS classification and of a molecular scoring system, developed on 2,043 and
2,957 real patients in 2022, respectively) [44, 105].

In setting D, we generated synthetic patients to be used as a control arm in
clinical trials, thus possibly accelerating clinical development of new drugs/new
indications of existing drugs. Starting from 187 MDS treated with luspatercept
into a multicenter clinical trial [110], we generated a new synthetic cohort of the
same size. Then, we tested the capability of newly generated synthetic patients
to recapitulate all the clinical end points of the original study.

5.3 Results

5.3.1 Creation of a Synthetic, Reliable, and Private Re-
production of Real Data (Setting A)

We used 2,043 real MDS from GenoMed4All cohort [105] to generate a new
cohort of 2,043 synthetic patients. The model showed high-fidelity performances
for both clinical and genomic features (CSF = 93%; GSF = 90%; see Figure 5.2).
We then applied Dirichlet processes to compare complex interactions and broad
dependencies among genomic features in real versus synthetic patients and we
obtained highly comparable results; explainability analysis (SHAP) showed that
similar features drive patients’ classification in both data sets.

Synthetic patients had comparable survival outcomes with respect to the
real ones. When applying the reference scoring system for MDS prognostication
(Revised International Prognostic Scoring System), the probability of survival
of the five risk categories between synthetic and real patients was comparable
(Figure 5.3).

We build a CoxPH model including all features of prognostic relevance with
a unique binary covariate (indicating the belonging of the patient to the real or
the synthetic data set) that obtained a P value of .742, suggesting that there
is no significant di!erence in the survival probability between the two cohorts
in a multivariable setting (Figure 5.3). Concordances obtained for the di!erent
category included in the model (demographics, clinical, and genomics) were
comparable in both cohorts. Considering the global concordance of the model,
we obtained similar results with the model fitted on real versus synthetic data
(0.736 ± 0.012 v 0.769 ± 0.012; Figure 5.3).

In terms of privacy metrics, the IMS analysis showed that none of the real
patients were copied in the synthetic dataset; moreover, we obtained good results
for NNDR (0.64), indicating adequate distance to real data and poor privacy
risk [107].
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Figure 5.2: SVF on synthetic MDS cohort (n = 2,043), as performed in setting A. (A) Distri-
butions for clinical, demographic, and survival features. Blue illustrates the real data, while red
illustrates the synthetic data. (B) Frequency of recurrently mutated genes and chromosomal ab-
normalities. (C) Pairwise association among genes and/or cytogenetics abnormalities. In the upper
triangle, for each couple of genomic abnormalities, the numbers of patients showing mutation co-
occurrences are illustrated using a blue and white color scale. In the lower triangle, the gene-gene
co-occurrence and mutual exclusivity is assessed using odds ratio, illustrated using a green and
yellow color scale according to odds ratio values. All results in (A), (B), and (C) are referring to
one MDS synthetic data set of 2,043 patients generated. Detailed results are reported in the Data
Supplement. (D) Synthetic data fidelity calculated by SVF on clinical, demographic, and genomic
features and patient survival. Average over three training and sampling replications on MDS cohort
of 2,043 patients. MDS, myelodysplastic syndromes; SVF, synthetic validation framework.
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Figure 5.2 (cont.)
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Figure 5.2 (cont.)
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Figure 5.3: Patient classification and survival analysis on the synthetic MDS cohort (n = 2,043),
as performed in setting A. (A) Kaplan-Meier survival probability curves obtained from the real (left)
and synthetic (right) populations, stratified according to IPSS-R risk categories. The P values of
the log-rank test are calculated, confirming the hypothesis of no di!erence in survival probabilities
between real and synthetic patients for every IPSS-R risk group. (B) Partial concordance and
standard error for each category of variables obtained from the mixed-e!ect CoxPH models fitted
on the real and synthetic cohorts. CNA, copy number alteration; IPSS-R, Revised International
Prognostic Scoring System; MDS, myelodysplastic syndromes.
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5.3.2 Resolution of Lack/Incomplete Information, Data
Augmentation, Privacy Preservability, and General-
izability of the Model Across Di!erent Clinical Set-
tings (Setting B)

Starting from the MDS GenoMed4all cohort (n = 2,043) [105], we trained the
model with a set of a smaller size (including 70% of the patients) and then
with a set with 30% of missing information across all features. We obtained
the same high-fidelity performances as in setting A, in which synthetic patients
were generated form the whole real data set (CSF and GSF were >90% in both
experiments).

Then we generated a 200% augmented data set of synthetic MDS patients,
resulting into a high fidelity of the model (CSF = 91%; GSF = 89%) that was
maintained when comparing the synthetic data sets with the real test set never
seen by the model during the training phase (CSF = 90%; GSF = 88%).

When considering a more complex data set (IWG-PM MDS cohort, N =
2,604) including a higher number of genomic features (245 v 65), we obtained
comparable fidelity performances to the previous experiments (CSF = 93%;
GSF = 93%).

Importantly, a similar trend was noted by replicating all these experiments in
a cohort of 1,002 synthetic patients with AML generated form an equal number
of real subjects (CSF > 90%; GSF ¿ 88% in all cases), thus providing evidence
for a generalizability of the generative model across di!erent clinical settings.

In terms of privacy metrics, in all experiments on the three di!erent synthetic
patient populations, the IMS analysis showed that none of the real patients were
copied in the synthetic data sets; moreover, we obtained similar good distance
results in all experiments for NNDR (values from 0.60 to 0.71).

5.3.3 Accelerating Translational Research by Synthetic Data
(Setting C)

Starting from a MDS cohort available in 2014 (N = 944) [109], we generated
a 300% augmented synthetic data set of 2,832 patients. Fidelity and privacy
performances were comparable with previous experiments (CSF = 92%; GSF =
89%; NNDR = 0.62). We aimed to recapitulate and anticipate in this cohort of
synthetic patients the most relevant insights in the field of personalized medicine
(ie, the definition of new molecular MDS classification provided on a cohort of
2,043 real patients20 and the definition of the Molecular International Prognos-
tic Scoring Systems [IPSS-M], defined on a cohort 2,897 real patients [44]).

First, Dirichlet processes were applied to synthetic data to define genomic-
based clinical entities, resulting in the identification of the same eight disease
categories described in a real cohort of 2,043 patients in 2022. Patients’ clas-
sification into clinical groups followed a similar distribution as the real cohort,
and explainability analysis (SHAP) also showed that similar features drive the
patients’ classification in both data sets. This is visualized in Figure 5.4.
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Figure 5.4: Definition of a molecular classification on augmented synthetic MDS cohort starting
from 944 patients available in 2014, as performed in setting C. (A) Evaluation of the real (blue) and
synthetic (red) patients’ distribution considering genomic groups classification. (B) Genomic group
definition according to Bersanelli et al [105]. (C) SHAP summary plot analysis on the top 10 most
important features for a real test set, a synthetic test set, and a complete augmented synthetic data
set for the genomic group 6. Below is the force plot showing the importance of the most relevant
features in assigning a synthetic patient to genomic group 2. MDS, myelodysplastic syndromes;
SHAP, Shapley Additive Explanations.
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As a second experiment, we applied a L1-penalized Cox regression model
to the synthetic data set of 2,832 patients to generate a molecular prognostic
score (synthetic IPSS-M). After feature selection, we developed a prognostic
tool on the synthetic cohort and compared it with IPSS-M developed on real
patients. The comparison of the two scores reveals the same feature extraction
and the identification of six risk categories with comparable probability of overall
survival and leukemia-free survival (see Figure 5.5).

5.3.4 Accelerating Clinical Research and Conduction of
Clinical Trials by Using Synthetic Data (Setting D)

We investigated the possibility to use a synthetic data set as a comparison group
in a clinical trial. We therefore aimed to replicate a real patient cohort from
a multicenter study including 187 patients with MDS who were treated with
luspatercept [110].

Eligible patients were age 18 years or older and had an MDS with ring sider-
oblasts; were receiving regular red blood cells transfusions; and were refractory
to erythropoiesis-stimulating agent therapy. Primary end point was transfusion
independence (TI) for →8 weeks during weeks 1-24; key secondary end point
was TI for →12 weeks during both weeks 1-24 and 1-48.

We generated a synthetic cohort (n = 187) from the patients included in
the study using all data for training, and we compared the synthetic end points
with the original study results. All the characteristics and metrics of the syn-
thetic cohort were comparable with respect to the original data set, as shown
in Figure 5.6, with high e”cient coe”cient of privacy preservability (NNDR =
0.71).

5.3.5 Generator of Synthetic Data

To help clinicians to be familiar with generative AI to build synthetic data, we
have created a prototype web portal [111] that allows to generate synthetic pa-
tients starting from 2,957 real MDS of IWG-PM cohort [44]. This portal allows
to generate synthetic cohorts with di!erent sizes, to verify the performance of
the newly generated data (fidelity and privacy preservability), and to download
the synthetic data set for research use.

5.4 Discussion

In this study, we showed that synthetic data may (1) e”ciently recapitulate
statistical properties and complex interactions between clinical and genomic
features in hematologic malignancies; (2) replicate reliable estimates of survival
and e!ectiveness of specific treatments; (3) overcome lack/imbalance of infor-
mation of real data; and (4) allow e!ective data augmentation.

The implementation of this technology may allow to increase the scientific
use and value of real data, and it is expected to accelerate precision medicine
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Figure 5.5: Survival analysis on synthetic molecular prognostic score generated (synthetic IPSS-
M) performed in setting C. (A) Kaplan-Meier probability estimates of OS for synthetic patients
with MDS are represented and stratified by IPSS-M risk categories as defined by Bernard et al.21
P value is from log-rank test. (B) Kaplan-Meier probability estimates of OS for synthetic patients
with MDS are represented and stratified by synthetic IPSS-M risk categories. P value is from log-
rank test. (C) Percentage of patients in each IPSS-M risk category (both synthetic and original)
with the HRs for each outcome, and the median survival for each patient class, where values could
be calculated. HR, hazard ratio; IPSS-M, Molecular International Prognostic Scoring System; LFS,
leukemia-free survival; MDS, myelodysplastic syndromes; OS, overall survival.
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Figure 5.6: Comparison of clinical trial end points between real and synthetic patients, as per-
formed in setting D. (A) Kaplan-Meier survival probability curves compared for real and synthetic
patients’ overall survival. (B) Kaplan-Meier curves of longest transfusion independence period for
real and synthetic patients. The P values of the log-rank test are calculated, confirming the hy-
pothesis of no di!erence in survival probabilities between real and synthetic cohorts. (C) Study end
point comparison between real and synthetic cohorts. RBC-TI, rate of red blood cell transfusion
independence.
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in hematology and the conduction of clinical trials.
To help clinicians to be familiar with this new technology, we created a

prototype web portal that allows to generate synthetic data from a real data set
of patients with clinical and genomic information, and that provides a report of
the quality of the newly generated synthetic patients.

The implementability of synthetic data in translational and clinical research
depends on two main properties: (1) fidelity, ie, the newly generated data should
be plausible and preserve structural properties of the real data; (2) privacy, that
is, it should be possible to precisely quantify how much information about the
original data is revealed through the releasing of the synthetic sample [112, 113].

The use of generative AI rapidly increased the implementation of synthetic
data in life sciences in past years [96, 97, 98]. As an example, Synthetic-
Mass hosts over one million synthetic patient records from the state of Mas-
sachusetts [114]. In Europe, synthetic data sets that mimic a part of the Nether-
lands Cancer Registry and Public Health England’s Cancer Registration are
now available for research purposes [115, 116]. The creation of a synthetic data
bank makes the information accessible while also streamlining the data sets that
medical research teams have to work with. But, there are limitations: the more
complex the data query, the more approximate the results; in particular, the
generation of high-fidelity synthetic patients with comprehensive clinical and ge-
nomic information reproducing complex interactions among di!erent data layers
is still a challenge [96, 97, 98].

In this study, we used an optimized method (conditional GAN) [102, 103,
104] to recapitulate clinical and genomic properties of real patients with myeloid
neoplasms, which are rare diseases characterized by large clinical and biologi-
cal heterogeneity [46, 117]. The methodologic advantage of conditional GAN
allowed us to face specific challenges in research on rare diseases (such as
lack/imbalance of data) and we provided evidence for a high generalizability
of the performances of the model across di!erent clinical settings.

Synthetic data require an extensive validation of their reliability in recapitu-
lating properties of real patients [96, 97, 98, 112, 113, 114]. We therefore created
a SVF to perform a clear fidelity analysis of clinical, survival, and genomic in-
formation and that may represent a solid basis to define the quality of a newly
generated synthetic data set. Moreover, we implemented a comprehensive ap-
proach for data explainability [108], thus facilitating the clinical interpretation
of the results of deep learning analysis on synthetic data.

Sharing data has the potential to improve decision making and accelerate re-
search and innovation [90, 91, 92, 118]. At the same time, many data are highly
sensitive and sharing them may violate fundamental rights guarded by mod-
ern privacy regulations [95, 118]. Anonymization (where potentially identifiable
variables are removed) is one way to make data available; however, intensive
anonymization can degrade the data to the extent that they are no longer fit for
purpose. Moreover, several reidentification attempts on anonymized data have
been successful and have harmed public and regulators’ trust in such meth-
ods [119, 120]. We showed that generative AI can guarantee a high privacy
preservability of newly generated synthetic data. We focused on analyzing the
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distance between the real and synthetic patients and we showed that there was
enough distance between the real and synthetic patients to avoid the risk of
revealing sensitive information from the training data and not too far away to
maintain correlations of the source real population [107].

We provided evidence that synthetic data can accelerate translational re-
search in hematology. Since the first publication on clinical relevance of gene
mutations in MDS, it took several years to collect real large patient populations
for defining a molecular classification and molecular prognostic score [44, 105].
By generating synthetic data from a relative small cohort of patients available
in 2014 [109], we were able to recapitulate the definition of genomic-based sub-
groups and of a molecular prognostic score as described in real cohorts many
years later [44, 105].

Finally, synthetic patients could be used in the future to improve the conduc-
tion of clinical trials. The use of synthetic control arms may reduce clinical trial
costs and duration. Moreover, using a synthetic control arm may ensure that
all participants receive the active treatment, thus eliminating patient concerns
about treatment assignment [121].

Secondary analyses of data from clinical trials can provide new insights com-
pared with the original publications [122]. In this context, our findings suggest
that generative AI can create synthetic patients that e”ciently reproduce clini-
cal characteristics and e”cacy end points of the original study and that can be
promptly available for secondary analyses.

As a possible improvement of our approach, recently, GAN technology was
optimized to generate synthetic patients with time-series records and longitudi-
nal evaluation of treatment response (multilabel time-series GAN [MTGAN]) [?
]. MTGAN can preserve temporal information by developing a temporally cor-
related generation process, thus finally increasing the generation quality of un-
common diseases and the performance of predictive models.

To maximize the impact of this technology in accelerating precision medicine
in hematology, it will be relevant to develop regulatory frameworks involving
synthetic data and to define standards for synthetic data quality and privacy
preservability [96, 99].



72 CHAPTER 5. PRIVACY ENHANCING SYNTHETIC DATA



Chapter 6

Conclusion and Future
Research

6.1 Conclusion

In this thesis, we presented an all-encompassing approach to the use of omics
data and artificial intelligence (AI) in hematology. In doing so, we first mapped
the hematology data landscape, outlining AI and omics opportunities; data
repositories in the European Union; and relevant laws, regulations, and ethical
guidelines. We concluded that AI has considerable potential to lead to person-
alization in hematology prognostics, diagnostics, and treatment. Unfortunately,
this potential is currently not realized due to data scarcity and ethics limita-
tions. We also identified synthetic data generation and federated learning as
potential solutions to these limitations.

Through the GenoMed4All partners, we obtained a hematology database.
Leveraging this, we turned to the validation of existing (non-AI-based) hematol-
ogy models. In particular, we validated the Molecular International Prognostic
Scoring System (IPSS-M) with a dataset of 2,876 patients. We also compared
the model’s performance to that of the Revised International Prognostic Scoring
System (IPSS-R). We found that IPSS-M improves Myelodysplastic syndromes
(MDS) prognostication and might result in a more e!ective selection of can-
didates to hematopoietic stem cell transplantation (HSCT). Additional factors
other than gene mutations can be involved in determining hypomethylating
agents (HMA) sensitivity. The definition of a minimum set of relevant genes
may facilitate the clinical implementation of the score.

Next, we focused on the use of AI and omics data for precision MDS prognos-
tication, comparing novel AI-based methods to traditional models (e.g. IPSS).
In particular, recurrently mutated genes and chromosomal abnormalities have
been identified in myelodysplastic syndromes (MDS). We aim to integrate these
genomic features into disease classification and prognostication. To do so, we
retrospectively enrolled 2,043 patients. Using Bayesian networks and Dirichlet
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processes, we combined mutations in 47 genes with cytogenetic abnormalities to
identify genetic associations and subgroups. Random-e!ects Cox proportional
hazards multistate modeling was used for developing prognostic models. An
independent validation on 318 cases was performed. We found that genomic
landscape in MDS reveals distinct subgroups associated with specific clinical
features and discrete patterns of evolution, providing a proof of concept for
next-generation disease classification and prognosis.

Having shown that the use of omics data and AI models can refine and per-
sonalize prognostication in hematological diseases, we turned to data privacy
and ethics. Collecting the information needed for AI in large patient popula-
tions is challenging and there are many issues concerning patient privacy that
need to be accounted for. One approach that can circumvent these issues is the
creation of synthetic data that captures the complexities of the original data set
(distributions, non-linear relationships, and noise) without including any real
patient information. We therefore aimed to: 1) Apply advanced synthetic data
generation methods to real-world datasets of di!erent hematological malignan-
cies. 2) Develop a Synthetic Validation Framework to evaluate the quality of
synthetic data and perform data augmentation. 3) Test the capability of syn-
thetic data to accelerate translational research.

To achieve these aims, we implemented a Conditional Tabular Wasserstein
Generative Adversarial Networks (GAN) architecture with Gradient Penalty
to generate synthetic data. Use cases were di!erent cohorts of patients with
myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) with
available clinical and molecular features. We created a Synthetic Validation
Framework to evaluate the quality of generated synthetic data: Clinical Syn-
thetic Fitness (CSF) and Genomic Synthetic Fitness (GSF) scores were calcu-
lated as the average of multiple metric tests adopted. Patients were stratified by
Hierarchical Dirichlet (HD) clustering. Explainability analysis was carried out
by SHapley Additive exPlanations approach (SHAP). Survival analyses were
performed by Kaplan-Meier curves and CoxPH models.

We found that GAN-generated synthetic data recapitulate statistical prop-
erties and complexity of clinical and genomic features in di!erent hematological
malignancies, replicate reliable survival estimates and allow e!ective data aug-
mentation. The implementation of this technology seems to accelerate precision
medicine research in hematology.

Combined, these findings show: 1) the excess demand for omics-based AI
in hematology; 2) where and how the required data is stored; 3) the practi-
cal and ethical limitations of wider AI adoption in the field; 4) that already
gathered data can be integrated into existing prognostic frameworks (IPSS); 5)
That omics-based AI outperforms such existing frameworks; and 6) that syn-
thetic data facilitates safe, privacy-respecting use of the information required
for next-level hematology prognostics; diagnostics; and treatment analysis.
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6.2 Future Research

More research is required to integrate and standardize existing hematology
databases. Currently, the hematology data landscape is fragmented, with many
organizations leveraging small databases. This translates to a consistent need
for advanced data (pre)processing when studies are conducted.

The fields of data ethics and privacy protection are constantly evolving. Re-
search should continuously address the practical impact of recent developments.
This allows practitioners to operate in an ethical manner, leveraging the latest
concepts, findings, and privacy protecting technologies.

We have shown that omics-based AI has tremendous potential for precision
medicine in hematology. More research is required to solidify this finding. Fu-
ture research should leverage larger volumes of omics-data, integrating more
dynamic data types. More advanced AI frameworks should be developed to
find genomic markers for a wider range of hematological diseases.

We have shown that synthetic data reconciles data privacy with analytic
utility. As the involved technology is highly novel, more research is needed to
corroborate these findings. In particular, existing studies using real data can
be replicated with synthetic data. Possible limitations should also be explored.
Additionally, other emerging PETs should be investigated, such as federated
learning.
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