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1. Abstract 

This study explores molecular mechanisms of 5-Azacytidine 

response in acute myeloid leukemia (AML) using an integrative 

multi-omics approach, combining data from whole exome 

sequencing (WES), RNA sequencing (RNA-seq), and neoantigen 

profiling. We aimed to characterize genetic mutations, 

transcriptional responses, and immunogenic profiles within AML 

patient clusters to identify potential biomarkers for 

predicting treatment efficacy. Samples were collected from 

patients before and 48 hours after 5-Azacytidine treatment, 

allowing for a comparative analysis of mutation and gene 

expression changes in response to therapy.  

In WES data, we identified distinct mutational landscapes in 

two patient clusters. Cluster A showed genetic patterns 

favoring apoptosis and absence of KIT mutations, indicating a 

possible predisposition to 5-Azacytidine responsiveness. In 

contrast, Cluster B displayed alterations in key oncogenes 

such as KIT, ATM, and GNAS, which may contribute to cellular 

survival mechanisms and potential therapy resistance. 

Transcriptomic analysis revealed enriched metabolic and cell 

survival pathways in Cluster B, suggesting adaptive responses 

that could undermine the efficacy of 5-Azacytidine as a single 

agent. By contrast, Cluster A’s transcriptional profile was 

associated with a more direct apoptotic response, aligning 

with its mutation profile. Neoantigen analysis further 

distinguished these clusters, with Cluster B showing a higher 

neoantigen load, suggesting an immunologically active 

environment that may enhance immune surveillance. This raises 

the potential for immunotherapy applications, particularly in 

Cluster B, where could complement 5-Azacytidine to overcome 

resistance mechanisms. 
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The integration of WES, RNA-seq, and neoantigen data 

underscores the heterogeneity within AML and provides insight 

into stratified therapy. Cluster A, with its apoptotic gene 

signatures and lower neoantigen burden, may respond more 

favorably to 5-Azacytidine alone, while Cluster B could 

benefit from combined targeted and immune therapies to address 

its adaptive resistance profile. This research highlights the 

importance of comprehensive molecular profiling in AML and 

lays the foundation for personalized therapeutic approaches 

based. 
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2. Introduction 

2.1 Overview of Acute Myeloid Leukemia 

Acute Myeloid Leukemia (AML) is a highly heterogeneous clonal 

hematologic malignancy characterized by the uncontrolled 

proliferation of immature myeloid progenitor cells, known as 

blasts. These cells accumulate in the bone marrow and 

peripheral blood, disrupting normal hematopoiesis and leading 

to life-threatening cytopenias, including anemia, neutropenia, 

and thrombocytopenia 1-4. 

Consequently, patients commonly experience clinical symptoms 

such as fatigue, bleeding, and recurrent infections. These 

symptoms arise from the underproduction of normal blood cells; 

for instance, anemia leads to fatigue and weakness, while 

thrombocytopenia results in easy bruising and bleeding 5,6. In 

some cases, organ infiltration may occur, causing abdominal 

fullness due to splenomegaly or hepatomegaly 2,3. The rapid 

progression of AML, in the absence of immediate intervention, 

can lead to severe morbidity and mortality due to the failure 

of normal blood cell production and associated complications 

5,7. 

2.2 Epidemiology and Incidence 

AML is the most common type of acute leukemia in adults, with 

an annual incidence of approximately 4.3 cases per 100,000 

people in the United States, a figure that aligns with global 

incidence rates 8,9. The median age at diagnosis for acute 

myeloid leukemia (AML) is 68 years, with a notable increase in 

incidence as individuals age. This trend underscores the aging 

populations in many developed countries 10,11. Age is a critical 

factor in AML prognosis, as older patients tend to have poorer 

survival outcomes due to a higher prevalence of comorbidities 
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and the presence of adverse genetic mutations 1,3. Although AML 

represents a relatively low percentage of overall cancer 

cases, accounting for roughly 1.1% of all cancers, the burden 

is increasing among older adults, largely attributable to 

increased life expectancy 8. While AML is infrequent in 

children, it occurs more frequently in individuals with 

certain inherited genetic disorders, including Down syndrome, 

Fanconi anemia, and Bloom syndrome 1,5. 

2.3 Classification Systems 

The classification of AML has evolved significantly over the 

past decade, driven by advancements in understanding its 

molecular pathogenesis. Historically, the 

French-American-British (FAB) classification system was widely 

used, relying on morphologic and cytochemical criteria 9. 

However, modern classification systems incorporate genetic and 

molecular markers, providing more accurate prognostic and 

therapeutic guidance. The three major classification 

frameworks currently employed are: 

-​ World Health Organization (WHO) 2022: The latest WHO 

classification integrates genetic mutations and 

chromosomal abnormalities. It eliminates the 20% blast 

threshold in cases with AML-defining genetic 

abnormalities, reflecting a shift toward molecular 

diagnostics 12-14. 

-​ European LeukemiaNet (ELN) 2022: ELN guidelines emphasize 

risk stratification based on specific genetic 

alterations, such as FLT3, NPM1, and TP53 mutations. 

These guidelines also incorporate measurable residual 

disease (MRD) as a monitoring tool 1,3,15. 

-​ International Consensus Classification (ICC) 2022: This 

new classification framework further lowers the blast 
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count threshold to 10% in cases involving recurrent 

genetic abnormalities, underscoring the importance of 

molecular alterations in diagnosing AML 16. 

These classification frameworks aim to tailor treatment based 

on individual patient risk, highlighting the critical role of 

genetics and molecular diagnostics in AML management 17. 

2.4 Pathogenesis and Molecular Basis 

The pathogenesis of AML is a multifactorial process involving 

genetic mutations, epigenetic alterations, and environmental 

exposures. Genomic studies have identified mutations in over 

95% of AML cases, contributing to leukemogenesis 13. Key 

mutations associated with AML include: 

-​ FLT3: Internal tandem duplications (ITDs) and tyrosine 

kinase domain (TKD) mutations are among the most frequent 

genetic alterations in AML. FLT3-ITD mutations are 

especially associated with poor prognosis due to 

increased relapse rates 18. 

-​ NPM1: Mutations in NPM1 are linked to a favorable 

prognosis, particularly when occurring without concurrent 

FLT3-ITD mutations 19. 

-​ TP53: Mutations in the TP53 gene, which is crucial for 

tumor suppression, are more frequently associated with 

therapy-related AML and complex karyotypes, often leading 

to poor outcomes 20,21. 

-​ IDH1/IDH2: Mutations in these genes, which play roles in 

the metabolic reprogramming of AML cells, are present in 

about 20% of cases and have become significant 

therapeutic targets due to the development of targeted 

inhibitors 22. 

-​ CEBPA: Mutations in CEBPA, which encodes a transcription 

factor critical for hematopoiesis, are significant in AML 
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classification and prognosis, and are often associated 

with normal karyotype AML. These mutations are predictive 

of response to standard chemotherapy and are used to 

stratify risk in clinical practice 23. 

These genetic alterations interact with epigenetic changes, 

such as mutations in DNMT3A, TET2, and ASXL1, which impact DNA 

methylation and histone modification, further driving 

leukemogenesis 24. Understanding the complex interplay of these 

genetic and epigenetic factors is crucial for developing 

innovative therapeutic strategies. 

2.5 Diagnosis of AML 

The diagnosis of AML is primarily established by the presence 

of 20% or more myeloid blasts in the bone marrow or peripheral 

blood, as defined by the WHO classification 12. Diagnosis is 

often augmented by morphological, cytogenetic, and molecular 

studies. Cytogenetic analysis, which examines chromosomal 

abnormalities, remains vital for defining prognosis and 

guiding treatment decisions. For example, translocations such 

as t(8;21) and inv(16) are associated with favorable outcomes, 

whereas monosomy 7 and complex karyotypes indicate a poor 

prognosis 7. 

In recent years, next-generation sequencing (NGS) has become a 

cornerstone in AML diagnostics, enabling the identification of 

mutations in key genes, such as IDH1/2, DNMT3A, and RUNX1, 

which have both prognostic and therapeutic implications 25. NGS 

has also facilitated the detection of MRD, allowing clinicians 

to monitor disease progression and relapse at a molecular 

level 26. 

9 



 

2.6 Treatment of AML: Challenges and Advances 

The treatment of AML is complicated by its genetic and 

clinical heterogeneity, as well as the frequent occurrence of 

drug resistance and relapse. Current frontline therapy 

involves a combination of intensive chemotherapy, typically 

with cytarabine and an anthracycline, followed by 

consolidation therapy to achieve long-term remission. However, 

treatment outcomes in AML remain suboptimal, particularly in 

older adults and those with adverse cytogenetic or molecular 

features 27. 

The development of drug resistance is a significant challenge 

in AML treatment with chemotherapy. Mutations in genes like 

FLT3, TP53, and DNMT3A can drive resistance to standard 

therapies, leading to relapse. Additionally, the presence of 

MRD, detected by molecular techniques, is a strong predictor 

of relapse. Approximately 50-60% of AML patients relapse after 

achieving initial remission, with poor prognosis upon relapse 

due to the clonal evolution of leukemic cells and the 

emergence of therapy-resistant subclones 28. 

2.7 The Role of 5-Azacytidine in AML Therapy 

5-Azacytidine, a DNA hypomethylating agent, has emerged as a 

vital therapeutic option for AML, particularly in older 

patients or those unfit for intensive chemotherapy. As an 

epigenetic modulator, 5-Azacytidine works by inhibiting DNA 

methyltransferases, thereby reducing the hypermethylation of 

tumor suppressor genes, leading to their reactivation and 

subsequent inhibition of leukemic cell proliferation. It also 

affects RNA metabolism and protein synthesis by incorporating 

it into RNA, further contributing to its anti-leukemic effects 

29. 
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5-Azacytidine has shown meaningful clinical responses in AML, 

particularly in patients with high-risk cytogenetics, 

secondary AML, and TP53 mutations, where conventional 

chemotherapy has limited efficacy 30. Clinical trials exploring 

the combination of 5-Azacytidine with novel agents like 

venetoclax (a BCL-2 inhibitor) have demonstrated enhanced 

therapeutic responses, leading to longer remissions in a 

subset of patients. This combination has been particularly 

beneficial in elderly patients and those with 

treatment-resistant disease 15. 

Despite these advances, the development of resistance to 

5-Azacytidine remains a major challenge, with mechanisms 

involving altered expression of DNA methyltransferase enzymes, 

changes in cellular uptake, and epigenetic reprogramming. 

Ongoing research focuses on understanding these resistance 

pathways and identifying biomarkers to predict response to 

5-Azacytidine therapy 31,32. 

 

3. Integrative Genomic and Transcriptomic Analysis 

3.1 The Need for Multi-Omics Approaches in AML 

AML's complex and variable nature necessitates multi-omics 

approaches that encompass Whole Exome Sequencing (WES) and RNA 

Sequencing (RNA-seq). These methodologies provide a holistic 

view of the tumor’s genetic landscape and the associated gene 

expression changes. Genomic studies have revealed that 

mutations are present in over 95% of AML cases, with key 

mutations, such as those in FLT3 and NPM1, playing critical 

roles in disease progression and therapeutic outcomes 33. The 

integration of WES allows for the identification of somatic 

mutations that are essential for understanding the molecular 
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pathogenesis of AML 13. RNA-seq, on the other hand, elucidates 

the expression profiles linked to different mutational 

backgrounds and therapy responses, revealing how specific 

genetic alterations drive leukemogenesis 7,34. 

3.2 Whole Exome Sequencing in AML 

Whole Exome Sequencing (WES) is a widely utilized technique 

for identifying coding mutations in the genome, particularly 

single nucleotide variants (SNVs) and small insertions or 

deletions (INDELs) that are frequently observed in AML. Key 

mutations in genes such as FLT3, NPM1, IDH1/IDH2, DNMT3A, and 

TP53 have been implicated in the development and progression 

of AML 34,35. WES enables the identification of these driver 

mutations and the discovery of novel variants that may 

influence disease progression or therapeutic resistance. 

Studies have shown that mutations in FLT3 are particularly 

common and are associated with poor prognosis, emphasizing the 

critical role of WES in understanding the mutational landscape 

of AML 36,37. 

3.3 RNA Sequencing and Its Role in AML 

RNA Sequencing (RNA-seq) complements WES by providing both 

quantitative and qualitative data on gene expression levels, 

alternative splicing events, and fusion transcripts. RNA-seq 

is especially valuable in identifying aberrant gene expression 

patterns and transcriptional changes resulting from underlying 

genetic mutations or epigenetic dysregulation 38,39. For 

instance, mutations in NPM1, although detectable at the DNA 

level, can lead to significant transcriptomic alterations that 

promote leukemogenesis 40. Furthermore, RNA-seq can identify 

gene fusions, such as RUNX1-RUNX1T1 and CBFB-MYH11, which 

serve as important diagnostic and prognostic markers in AML 41. 
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One of the key advantages of RNA-seq is its ability to capture 

the dynamic nature of the transcriptome, revealing gene 

expression changes in response to treatment or disease 

progression 42. By integrating RNA-seq data with WES findings, 

researchers can correlate genetic mutations with downstream 

effects on gene expression, offering deeper insights into the 

functional consequences of somatic alterations. This 

integration is essential for understanding the complex biology 

of AML and developing targeted therapeutic strategies 43. 

3.4 Tumor Microenvironment and Neoantigens  

The interplay between leukemic cells, the tumor 

microenvironment, and the immune system is critical in the 

progression of AML and its response to treatment. Integrative 

genomic and transcriptomic analysis is vital for elucidating 

this complex interaction, particularly through the 

identification of immune cell infiltration patterns and immune 

checkpoint expression 44. A significant focus in recent AML 

research has been the detection of neoantigens—novel peptides 

generated by tumor-specific mutations. These neoantigens can 

be recognized by the immune system and serve as potential 

targets for immunotherapy 45,46. 

Neoantigens arise from somatic mutations, such as SNVs and 

small indels, that alter the protein-coding sequence, 

resulting in the presentation of non-self peptides on the 

surface of leukemic cells. By combining WES to identify 

tumor-specific mutations with RNA-seq to determine which 

mutated genes are actively transcribed, researchers can 

predict the presence of neoantigens that may be recognized by 

T cells 47,48. 

Neoantigen detection is crucial for the development of 

personalized immunotherapies, including T-cell receptor (TCR) 
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therapies and cancer vaccines. Recent studies have 

demonstrated that AML patients with higher neoantigen loads 

may exhibit improved responses to immunotherapeutic 

interventions. Moreover, the identification of neoantigens has 

the potential to enhance immune surveillance by improving the 

efficacy of immune checkpoint inhibitors, which can 

reinvigorate T cells targeting these neoantigens 49,50. 

3.5 Advantages of Multi-Omics Integration in AML Research 

Integrating WES and RNA-seq data provides a deeper 

understanding of the molecular and transcriptional landscape 

of AML and offers significant advantages for neoantigen 

discovery and immunotherapy development. 

By combining WES and RNA-seq, researchers can predict which 

somatic mutations lead to the generation of neoantigens. 

Mutations identified through WES, such as those in NPM1, FLT3, 

and IDH1/2, can be evaluated through RNA-seq to assess their 

transcriptional activity and potential to produce neoantigenic 

peptides 39. Neoantigen load is also correlated with better 

immune recognition and may help stratify patients for 

immunotherapy 51. 

Neoantigen analysis has revealed mechanisms of immune evasion 

in AML, such as loss of neoantigen expression or mutations 

that impair antigen presentation. RNA-seq data can be used to 

assess the expression of genes involved in antigen processing 

and presentation, such as HLA molecules, helping to identify 

cases where leukemic cells downregulate neoantigen 

presentation to escape immune surveillance 52. 

Multi-omics data, including neoantigen detection, enables the 

design of personalized immunotherapies tailored to the 

specific mutation profile of each patient. Neoantigens 
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identified through WES-RNA-seq integration provide targets for 

TCR-based therapies and cancer vaccines 53. These therapies can 

potentially improve patient outcomes by specifically targeting 

leukemic cells that present these tumor-specific antigens. 

Neoantigen load, as detected through integrative WES and 

RNA-seq analysis, has been proposed as a biomarker for 

predicting response to immunotherapies such as immune 

checkpoint inhibitors (e.g., PD-1/PD-L1 inhibitors) 54,55. 

Patients with a higher neoantigen burden may be more likely to 

respond favorably to such therapies, as their immune systems 

are more likely to recognize and attack tumor-specific 

antigens. 

Incorporating neoantigen detection into the integrative 

analysis of WES and RNA-seq data enhances our ability to 

understand the immunogenicity of AML and provides a pathway 

for the development of novel immunotherapies. This strategy is 

essential for translating genetic and transcriptomic data into 

clinical applications that improve patient outcomes 56. 

 

4. Material and Methods 

4.1 Patient Recruitment 

Patient recruitment was conducted as a prospective 

observational study involving adult patients diagnosed with 

AML. Recruitment occurred at multiple institutions, including 

Ospedale Santa Maria delle Croci - Ravenna, Ospedale degli 

Infermi - Rimini, ASST Spedali Civili - Brescia, Ospedale 

Policlinico San Martino IRCCS - Genova, Azienda Sanitaria 

Universitaria Friuli Centrale (ASUFC) - SOC Clinica 

Ematologica - Udine, Istituto Scientifico Romagnolo per lo 

Studio dei Tumori (IRST) "Dino Amadori" IRCCS - Meldola (FC), 
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Azienda ULSS 2 Marca Trevigiana - Distretto di Treviso - 

Treviso, IRCCS IOV - Castelfranco Veneto (TV), and AUO 

Maggiore della Carità - Novara. 

Eligible participants included individuals aged 18 years or 

older with a confirmed diagnosis of AML according to WHO 

criteria. Patients scheduled to initiate treatment with 

5-Azacytidine were specifically targeted to ensure a focus on 

treatment-naive individuals. Patients who had previously 

received any form of treatment for AML or had a history of 

other malignancies were excluded to minimize confounding 

factors that could impact the study's outcomes and 

interpretations. This recruitment protocol aligns with recent 

studies that underscore the need for standardized recruitment 

strategies in multi-site studies to enhance comparability and 

data integrity 57. 

Clinical data, including patient demographics, cytogenetic 

abnormalities, and treatment responses, were collected from 

medical records. The study protocol was approved by the 

Institutional Ethics Committee (Comitato Etico della Romagna, 

protocol 983/2018). Informed consent was obtained from all 

participants prior to sample collection, ensuring they 

understood the study's purpose, procedures, potential risks, 

and benefits in accordance with the Declaration of Helsinki. 

Research has shown that clear communication and streamlined 

protocols can significantly enhance patient recruitment 

success by minimizing participant burden 58,59. 

4.2 Sample Collection and Preparation 

Bone marrow aspirates were collected from patients at both 

diagnosis and after treatment to assess changes in the bone 

marrow microenvironment and genetic profile over time. 

Approximately 10 mL of bone marrow aspirate was obtained using 

16 



 

standard sterile techniques to ensure patient safety and 

sample integrity. The procedure involved trained medical 

professionals using a sterile needle and syringe in a 

controlled clinical setting, with local anesthesia 

administered as appropriate to minimize discomfort. The 

collected samples were immediately placed in sterile tubes for 

subsequent analysis. 

Blood samples were also collected from patients in EDTA-coated 

tubes, each consisting of approximately 10 mL of peripheral 

blood. This collection aimed to isolate peripheral blood 

mononuclear cells (PBMCs) for comprehensive immune profiling 

and gene expression analysis. Following collection, samples 

were processed within 2 hours to maintain cell viability, with 

PBMC isolation achieved through density gradient 

centrifugation using Ficoll-Paque solution. 

For buccal swab collection, two sterile swabs were used to 

obtain DNA samples. Prior to the procedure, subjects were 

instructed to avoid eating, drinking, or using tobacco 

products for at least 30 minutes to ensure optimal sample 

quality. After collection, the swab was placed back into its 

original tube and labeled with patient identifiers, including 

full name and date of birth. This process was repeated using a 

second swab on the opposite side of the mouth to ensure 

adequate sample yield. Both labeled swabs were then 

transported at room temperature to the laboratory for 

processing on the same day as collection. A flow diagram 

illustrating the sample processing steps is depicted in Figure 

1. 
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Figure 1: Sample Processing Steps. This flow diagram illustrates the 

methodology of the study, detailing the steps from patient recruitment to 

data analysis. The process begins with patient recruitment and proceeds to 

informed consent. Following consent, sample collection occurs, which 

includes bone marrow, peripheral blood, and buccal swab. Blast cells are 

isolated from bone marrow and cells are isolated by immunomagnetic 

separation in aun automated system (Automacs Pro, Miltenyi), base on 

expression of CD34 or CD44 with depletion of CD14- positive cells for 

CD34-negative cases. Then, sample are processed, undergo library 

preparation and are sequenced using either Whole Exome Sequencing or RNA 

Sequencing. The final step is data analysis, marking the completion of the 

study's methodology. 

 

Total RNA was extracted using the Direct-Zol™ Mini/Micro 

DNA/RNA Kit, which allows for efficient purification of 

high-quality RNA directly from various sample types without 

phase separation or precipitation steps 60. This method 

effectively isolates total RNA, including small RNAs, ensuring 
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unbiased recovery of all RNA species. Following extraction, 

single-stranded DNA (ssDNA) was obtained through reverse 

transcription. The ssDNA was then converted into 

double-stranded DNA (dsDNA) according to the protocol outlined 

in the Twist Total Nucleic Acids Library Preparation Enzymatic 

Fragmentation Kit 2.0, designed for high-throughput sequencing 

applications 61. 

Tumor DNA was extracted using the Direct-Zol™ Mini/Micro 

DNA/RNA Kit, which allows for efficient purification of 

genomic DNA 59. This method produced single-stranded DNA 

(ssDNA), which was subsequently converted into double-stranded 

DNA (dsDNA) using the Twist Total Nucleic Acids Library 

Preparation Enzimatic Fragmentation Kit 2.0 62. 

For normal samples, saliva was extracted using the Maxwell RSC 

Blood DNA Kit 61, while CD3-sorted cells from bone marrow were 

processed with the Qiagen QIAamp Micro DNA Kit, which utilizes 

column-based extraction techniques 63. After extraction, all 

normal DNA samples were also quantified with Qubit to confirm 

their concentrations. 

4.3 Library Preparation 

The total input of 500 ng of RNA in 11 microliters was used 

during library preparation. RNA-seq was performed on matched 

samples from AML patients, specifically on baseline (t0) bone 

marrow mononuclear cells (BMMC) and PBMCs, and only PBMC 

samples collected at 48 hours post-treatment (t48) with 

5-Azacytidine. The rationale for collecting samples 48 hours 

after treatment is based on feasibility, as it eliminates the 

need for patients to return for additional sample collection. 

Moreover, measurable changes in gene expression resulting from 

DNA demethylation induced by 5-Azacytidine are typically 

observed within 24 to 48 hours after treatment 29. 
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Using the Illumina Stranded Total RNA Prep with Ribo-Zero Plus 

Kit, rRNA was depleted from total RNA samples before reverse 

transcription into complementary DNA (cDNA). This method 

enriches for mRNA by removing ribosomal RNA, which is critical 

for improving the detection of gene expression levels 64. 

Following RNA extraction, library preparation was carried out 

using a Hamilton Microlab STARlet-ivd automated liquid 

handling system which streamlined the workflow and minimized 

manual handling 65. This automation reduced the risk of 

pipetting errors and improved reproducibility across samples. 

Key steps in the library preparation included: 

-​ End Repair: Fragmented RNA underwent an end-repair 

process to create blunt ends. 

-​ A-tailing: Adenine residues were added to the 3' ends to 

facilitate adapter ligation. 

-​ Adapter Ligation: Indexed adapters were ligated to the 

fragments to enable multiplexing and sequencing 

compatibility. 

-​ PCR Amplification: Adapter-ligated fragments were 

amplified to yield sufficient material for sequencing. 

The prepared libraries were assessed using an Agilent 

Bioanalyzer to ensure appropriate size distribution and 

concentration. 

For DNA library preparation, an input of 200 ng of DNA in 30 

microliters was utilized. Genomic DNA was enzymatically 

fragmented into approximately 200-300 base pairs. Enzymatic 

fragmentation is a DNA shearing method used in sequencing and 

library preparation. It employs specific enzymes, 

endonucleases, to cleave DNA at controlled points, producing 

fragments of desired lengths. This method is gentler than 

physical shearing, reducing the risk of DNA damage, making it 
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particularly useful for sensitive or degraded samples. Indexed 

adapters were ligated to the fragments using the Illumina DNA 

Prep with Exome 2.0 Plus Enrichment Kit, specifically designed 

for high-throughput sequencing applications 66. Key steps in 

the library preparation included: 

-​ End Repair: Fragmented DNA underwent an end-repair 

process to create blunt ends. 

-​ A-tailing: Adenine residues were added to the 3' ends to 

facilitate adapter ligation. 

-​ Adapter Ligation: Indexed adapters were ligated to the 

fragments for multiplexing and sequencing compatibility. 

-​ PCR Amplification: Adapter-ligated fragments were 

amplified to yield sufficient material for sequencing. 

-​ Purification: Libraries were purified using magnetic 

bead-based cleanup to remove unligated adapters, enzymes, 

and other contaminants. 

-​ Quality Control: The quality and size distribution of 

libraries were assessed using an Agilent Bioanalyzer. 

The whole library preparation process was automated using 

Hamilton Microlab Starlet-IVD to ensure precision and 

reproducibility 65. 

After purification, libraries were quantified using the Qubit 

dsDNA HS Assay to confirm that they met the required 

concentration for sequencing. Libraries were pooled to achieve 

a final concentration of 1.4 nM for loading onto the 

sequencer. 

4.4 Sequencing 

For RNA samples, the sequencing was conducted on the NovaSeq 

6000 platform with 100 x 2 paired-end reads (Illumina, 2020), 

using a NovaSeq 6000 S2 Reagent Kit v1.5. This sequencing 
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approach ensures high-depth coverage, which is crucial for 

accurately capturing transcript levels and identifying lowly 

expressed genes. For WES, the tumor samples were processed on 

a NovaSeq 6000 S2 Reagent Kit v1.5 flow cell, while the normal 

samples were sequenced on a NovaSeq 6000 S1 Reagent Kit v1.5 

flow cell. The choice of flow cells was based on prior 

sequencing experience to achieve a targeted average coverage 

of approximately 150X for tumor samples and 100X for normal 

samples, and more than 20 million reads for RNA samples. 

We conducted three sequencing runs on the Illumina NovaSeq 

6000, utilizing v1.5 flow cells: two for WES and one for 

RNA-seq. The first WES run focused on normal samples, 

comprising 27 paired-end samples and utilizing an S1 flow 

cell. The second WES run targeted tumor samples, also 

consisting of 27 paired-end samples, and was performed using 

an S2 flow cell. The RNA-seq run included a total of 66 

paired-end samples and was executed on an S2 flow cell as 

well. Table 1 shows all the sequenced samples and their 

relations. 

 

Table 1. List of Sequenced Samples. The following table summarizes the 

presence of various sample types collected from patients involved in this 

study. Each row represents a patient, while each column corresponds to a 

specific sample type. An "X" in a cell indicates that the sample is present 

for that particular patient. 
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patient Tumor 

WES 

Normal 

WES 

BMMC RNA 

t0 

PBMC​

RNA t0 

PBMC​

RNA t48 

01 X X X  X 

02 X X X X X 

03 X X X   
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04 X X X X X 

05 X X X  X 

06 X X X X X 

07 X X X X X 

08 X X X   

09 X X X  X 

10 X X X X X 

11 X X X X X 

12 X X X X X 

13 X X X X  

14   X  X 

15   X   

16 X X X X X 

17   X   

18 X X X   

19   X   

20 X X  X X 

21 X X X X X 

22   X X X 

23   X X X 

24   X X  



 

 

All the runs exhibited high quality, as confirmed by analysis 

using the Sequence Analysis Viewer software from Illumina. The 

WES normal run achieved a Q30 score of 88% with a cluster 

passing filter rate of 83%. In the WES tumor run, we observed 

a Q30 score of 94% and a cluster passing filter rate of 77%. 

For the RNA-seq run, both the Q30 score and cluster passing 

filter rate were commendably high at 94% and 81%, 

respectively. These quality metrics indicate that the 

sequencing data is robust and suitable for subsequent 

analyses. 

24 

25   X X X 

26 X X X   

27 X X X  X 

28 X X  X X 

29   X X  

30 X X X   

31 X X X  X 

32 X X X  X 

33 X X  X X 

34 X X X  X 

35 X X X X X 

36 X X X   

TOT 27 27 33 19 24 



 

A total of 33 BMMC t0 samples, 19 PBMC t0 samples, and 24 PBMC 

t48 samples were subjected to RNA sequencing to investigate 

gene expression changes in response to 5-Azacytidine 

treatment. After quality checks, using a threshold on 

sequenced reads of 20 million, one of the PBMC t0 samples was 

discarded due to a low number of reads.  

WES was conducted on 27 matched tumor-normal samples from 

patients with AML. After quality assessment, two germline 

samples were excluded due to insufficient quality, leaving 25 

samples for further analysis. The quality filtering criteria 

were established based on coverage thresholds for both tumor 

and normal samples. Specifically, germline samples required a 

minimum coverage of 50X in at least 70% of the target regions, 

while tumor samples needed a minimum coverage of 100X in at 

least 70% of their target regions (Figure 2). 
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Figure 2. This figure illustrates the coverage metrics for each sample: the 

y-axis represents the percentage of bases with coverage exceeding 50X for 

normal samples and 100X for tumor samples, while the x-axis shows the total 

reads in millions. Both plots include a threshold line in blue at 70%, 

indicating the minimum acceptable coverage percentage necessary for 

reliable variant analysis. Panel a) displays the coverage metrics of normal 

samples, and panel b) presents the coverage metrics of tumor samples. 

 

 

4.5 RNA-seq Analysis 

The analysis workflow for RNA-seq data begins with the 

demultiplexing process using bcl2fastq Conversion software 

v2.20, a tool developed by Illumina 67. This process converts 

binary base call files (BCL files) into FASTQ files while 

separating multiplexed samples based on their unique index 

sequences, as specified in a sample sheet. 

Following demultiplexing, the raw sequencing reads are 

processed using Kallisto v0.46.2, a fast and efficient tool 

for quantifying gene expression levels 65. Kallisto employs a 

pseudo-alignment method to map RNA-seq reads to a 

transcriptome, providing accurate abundance estimates for each 

transcript. The analysis workflow includes the following key 

steps: 

1.​Read Pseudomapping: In this step, raw sequencing reads 

are pseudomapped to the indexed transcriptome using 

Kallisto. Instead of performing traditional alignments 

that determine the exact positions of reads within 

transcripts, Kallisto identifies which transcripts are 

compatible with each read based on shared k-mers (short 

sequences of nucleotides). 
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-​ K-mer Decomposition: Kallisto breaks down each 

transcript into smaller sequences called k-mers and 

constructs a colored de Bruijn graph (T-DBG) where 

each node corresponds to a k-mer and retains 

information about the transcripts that contain it. 

-​ Pseudomapping Process: During analysis, Kallisto 

decomposes each read into its constituent k-mers and 

uses these to navigate the T-DBG. It identifies 

compatible transcripts by finding intersections 

among the k-compatibility classes of the read's 

k-mers, allowing it to infer which transcripts could 

have generated the read without needing direct 

alignment. 

-​ Efficiency and Speed: This method enables Kallisto 

to process large datasets rapidly. By bypassing the 

computationally intensive alignment step, Kallisto 

provides fast and reliable quantification of 

transcript abundance. 

-​ Equivalence Classes: Kallisto groups reads into 

equivalence classes based on their compatibility 

with sets of transcripts, facilitating efficient 

estimation of transcript abundance. 

2.​Quantification: Kallisto quantifies expression at the 

transcript level, yielding estimates of transcripts per 

million (TPM) for each transcript across samples. This 

metric normalizes raw counts to account for differences 

in sequencing depth and gene length. 

3.​Data Summarization with tximport: After quantification, 

raw counts at the transcript level are collapsed to the 

gene level using tximport v1.12.1 69. This step aggregates 

the transcript-level data into gene-level counts, 
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facilitating downstream analyses such as differential 

expression testing. 

4.​Data Normalization: The normalization process in DESeq2 

is crucial for accurate comparisons of gene expression 

between samples. DESeq2 uses a method known as the median 

of ratios to normalize raw count data for sequencing 

depth and RNA composition differences 70. 

-​ Size Factors Calculation: DESeq2 calculates size 

factors for each sample by taking the median ratio 

of observed counts to geometric means across all 

samples. This approach helps account for differences 

in library sizes, ensuring that samples with higher 

sequencing depths do not skew results. 

-​ Normalization Formula: The normalized counts are 

obtained by dividing the raw counts by their 

respective size factors. This adjustment allows for 

fair comparisons between samples by standardizing 

counts relative to their sequencing depth. 

-​ Importance of Normalization: Normalization is 

essential not only for differential expression 

analysis but also for exploratory data analysis and 

visualization. It ensures that observed differences 

in expression levels are biologically meaningful 

rather than artifacts of varying library sizes or 

sequencing depths. 

5.​Hierarchical Clustering: After these steps, hierarchical 

clustering is performed to identify groups based on 

changes in gene expression between matched PBMC samples 

at t48 and t0: 

-​ Z-Score Calculation: Z-scores provide standardized 

measures of expression level changes, allowing for 

comparisons across genes. 
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-​ Distance Metric: The maximum distance metric 

measures similarity between samples based on their 

gene expression profiles. 

-​ Clustering Algorithm: The Ward D2 algorithm 

minimizes variance within clusters while maximizing 

variance between them 71. This approach results in a 

dendrogram visualization that illustrates 

relationships among samples based on their 

expression profile changes. 

6.​Gene Set Enrichment Analysis (GSEA): GSEA is performed 

using the Python package GSEApy v1.1.3 72 on BMMC t0 

samples matched to PBMC t0 samples, grouped according to 

clusters identified in the PBMC t48/t0 analysis. GSEA 

works through several steps: 

-​ Ranking Genes: A ranked list of genes is generated 

based on a metric reflecting differential 

expression, the fold change, calculated using 

DESeq2, to compare the two sample groups. 

-​ Predefined Gene Sets: GSEA utilizes predefined gene 

sets from databases that group genes involved in 

specific biological pathways or functions. In our 

case, we used Reactome v.2022, as our source for 

gene sets. Reactome is a highly curated and 

comprehensive pathway database that covers many 

biological processes, including signaling pathways, 

metabolism, immune responses, and cell cycle 

regulation, making it particularly suited for 

studying cancer-related pathways relevant to AML. 

Its manually curated, regularly updated pathways 

ensure high accuracy and relevance, which is crucial 

for studying complex diseases like AML. Reactome is 

designed to provide a clear overview of biological 
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processes and interactions, helping to identify 

high-level pathway changes rather than isolated 

gene-level alterations. Compared to broader or more 

generalized databases, Reactome often contains more 

cancer-specific pathways directly linked to AML 

mechanisms and emphasizes pathway interconnections, 

offering insights into how biological processes 

interact and influence AML progression or response 

to treatments like 5-Azacytidine. Finally, focusing 

on a single database like Reactome can simplify 

result interpretation, reducing the redundancy and 

overlap that can arise from using multiple databases 

73. 

-​ Enrichment Score Calculation: For each gene set, 

GSEA calculates an enrichment score by performing a 

running sum statistic as it traverses the ranked 

list. If a gene belongs to the gene set, it adds to 

a running total; if not, it subtracts. The maximum 

value of this running sum indicates how enriched 

that gene set is within the ranked list.  

-​ Statistical Significance: GSEA employs permutation 

testing to assess whether the observed enrichment 

score is significant compared to a null distribution 

generated by randomly permuting class labels. 

-​ Results Interpretation: The output includes 

normalized enrichment scores and p-values, allowing 

researchers to identify pathways significantly 

associated with differentially expressed genes 74. 

4.6 WES Analysis 

Post-sequencing, raw data from both tumor and normal samples 

were processed using the Illumina DRAGEN DNA Pipeline (DRAGEN 
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Host Software Version 4.3.6), a highly optimized computational 

tool designed for NGS analysis. This pipeline was specifically 

configured to take matched tumor-normal samples as input, 

enabling the removal of germline variants and ensuring the 

identification of somatic mutations exclusive to tumor cells 

(Figure 3). 

 

Figure 3. Illumina DRAGEN DNA Pipeline. This overview depicts key steps in 

the bioinformatic workflow from raw read processing to variant calling 75. 

 

The key steps in the analysis are as follows: 

-​ Demultiplexing: Raw sequencing data were demultiplexed 

using Illumina's bcl2fastq tool, assigning pooled reads 

to individual samples based on unique barcodes. 

-​ DNA Mapping: Demultiplexed reads were aligned to the 

human reference genome (GRCh38) using the DRAGEN aligner, 

with its high-speed and precise read mapping. 

-​ Read Trimming: Low-quality bases and adapter sequences 

were trimmed to improve overall data quality and 

eliminate potential biases. 

-​ Quality Control: DRAGEN FastQC was employed to assess 

read quality, evaluating factors such as sequencing 

depth, GC content, and quality score distribution. 
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-​ Sorting and Duplicate Marking: Aligned reads were sorted 

by genomic coordinates, and PCR duplicates were marked to 

avoid inflating variant counts. 

-​ Small Variant Calling: Variants, including SNVs and 

INDELs, were called across exonic regions. The analysis 

used matched normal samples to filter out germline 

variants, leaving only somatic mutations for further 

investigation. 

-​ Copy Number Variant Calling: The pipeline also performed 

copy number variant (CNV) analysis, identifying 

large-scale genomic alterations such as gene 

amplifications or deletions in the tumor samples. 

-​ HLA Typing: Accurate HLA typing is essential for 

predicting which peptides, including neoantigens, can be 

presented by HLA molecules on the surface of cells for 

immune recognition. The DRAGEN DNA Pipeline provides 

high-resolution genotyping of Class I HLA alleles (HLA-A, 

HLA-B, and HLA-C) from WES data. This pipeline is 

optimized for analyzing complex genomic regions like the 

highly polymorphic HLA region. The WES data from tumor 

and normal samples were first aligned to the reference 

genome, and the DRAGEN pipeline's HLA typing module was 

used to compare aligned reads against known HLA reference 

sequences. The pipeline accurately predicted specific 

alleles at a 4-digit resolution (e.g., HLA-A*02:01), 

allowing precise identification of allele subtypes within 

each HLA gene group. This level of precision enhances 

neoantigen prediction by allowing more accurate 

peptide-binding predictions. 

Starting from the variants derived by DRAGEN DNA pipeline 

output, we performed two steps of annotation. At first, we 

used ANNOVAR (version 2019Oct24) for a Gene-based annotation 
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76. It utilizes reference gene databases, particularly Ensembl, 

to classify variants based on their positions relative to 

genes:  

-​ Gene Names and HUGO Gene Symbols: ANNOVAR provides the 

names of the genes associated with each variant, 

including the corresponding HUGO Gene Symbols. 

-​ Exonic Variants: Variants located within coding sequences 

are identified and categorized as synonymous, 

nonsynonymous (missense and nonsense), in-frame, or 

frameshift alterations. 

-​ Intronic Variants: Variants located within introns are 

annotated with special attention given to those that may 

affect splicing or gene regulation. 

-​ UTR Variants: Variants in the 5' and 3' untranslated 

regions (UTRs) are also classified. 

In addition to ANNOVAR, VarSome (version 11.18.0) was employed 

to enhance the clinical interpretation of somatic mutations 

identified in the analysis. VarSome is a comprehensive genomic 

variant database that integrates multiple sources of 

information to provide insights into the potential 

pathogenicity and clinical relevance of genetic variants 77. 

VarSome aggregates data from various databases, including 

gnomAD, ClinVar, and COSMIC, facilitating a thorough 

evaluation of each variant's significance. 

Variants are classified according to the American College of 

Medical Genetics and Genomics (ACMG) guidelines, which 

recommend a structured five-tier classification system: 

a.​Pathogenic: Variants that are known to cause disease. 

b.​Likely Pathogenic: Variants with substantial evidence 

suggesting a disease-causing effect but not yet fully 

confirmed. 
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c.​Variant of Uncertain Significance (VUS): Variants for 

which there is insufficient evidence to determine their 

impact on disease. 

d.​Likely Benign: Variants that are unlikely to be 

associated with disease based on available evidence. 

e.​Benign: Variants that are well-established as not causing 

disease. 

The ACMG guidelines include 28 specific criteria that help 

classify variants based on various types of evidence, such as 

population frequency data, computational predictions, 

functional studies, and segregation analysis 78. These criteria 

are categorized into two main groups: 

-​ Pathogenic Criteria: Sixteen criteria evaluate evidence 

toward a pathogenic interpretation, including: 

a.​Very Strong (PVS1): Evidence indicating that the 

variant is a loss-of-function mutation in a gene 

where loss-of-function is known to cause disease. 

b.​Strong (PS1–4): Multiple types of strong evidence 

supporting pathogenicity. 

c.​Moderate (PM1–6): Evidence that supports 

pathogenicity but is not as robust as strong 

criteria 

d.​Supporting (PP1–5): Additional evidence that 

supports the classification but is less definitive. 

-​ Benign Criteria: Twelve criteria assess evidence toward 

benign classification, including: 

a.​Stand-alone (BA1): Evidence indicating that the 

variant is common in the general population. 

b.​Strong (BS1–4): Robust evidence suggesting that the 

variant does not affect protein function or is not 

associated with disease. 
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c.​Supporting (BP1–7): Additional evidence suggesting 

that the variant is benign. 

This structured approach allows for consistent interpretation 

across studies and supports clinical decision-making by 

providing clear classifications based on established criteria. 

VarSome also incorporates the Association for Molecular 

Pathology (AMP) Tier classification system to evaluate the 

clinical relevance of variants based on the strength of 

evidence supporting their association with disease 79. This 

system provides a structured framework that categorizes 

variants into four distinct tiers, facilitating consistent 

interpretation and aiding clinical decision-making: 

a.​Tier 1 (Strong Clinical Significance): Variants have 

robust evidence supporting their pathogenicity. These 

variants are often linked to established cancer genes and 

have clear implications for diagnosis, prognosis, or 

treatment decisions. 

b.​Tier 2 (Potential Clinical Significance): Variants 

possess moderate evidence suggesting they may be 

clinically relevant. While they may not have definitive 

associations with disease, there is enough data to 

warrant further investigation or consideration in 

clinical contexts. 

c.​Tier 3 (Unknown Clinical Significance): Variants in this 

category lack sufficient evidence to classify them 

definitively as either pathogenic or benign. They may 

represent true unknowns or variants with conflicting 

evidence, making them challenging to interpret in a 

clinical setting.  

d.​Tier 4 (Benign or Likely Benign): Variants that are 

well-established as not causing disease. These variants 

typically have high frequency in the general population 
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and are not associated with any known clinical 

implications. 

The AMP classification system is based on a combination of 

molecular, functional, statistical, and clinical data. Each 

variant is evaluated according to specific criteria that 

consider various types of evidence, such as: population allele 

frequencies, functional studies, clinical correlations, and 

family history data. This multi-faceted approach allows 

clinicians and researchers to assess the potential impact of 

variants on patient care effectively. The AMP Tier 

classification system enhances the interpretation of genetic 

test results by providing clear guidelines that support 

clinical decision-making. By categorizing variants based on 

their clinical significance, it aids in identifying actionable 

mutations that may inform treatment strategies and improve 

patient outcomes. 

Through the integration of ANNOVAR and VarSome, along with 

adherence to ACMG and AMP guidelines, a comprehensive 

understanding of the functional and clinical significance of 

somatic mutations was achieved, allowing for a deeper 

interpretation of the genetic landscape in patients. 

After these annotations, to ensure high-confidence calls and 

relevance of identified somatic mutations, rigorous filtering 

steps were applied: 

-​ Quality Filtering: A minimum sequencing depth of 100X 

across targeted exonic regions was established for 

reliable variant calls. Variants with a variant allele 

frequency (VAF) of ≥5% were retained. 

-​ Germline Variant Removal: Matched tumor-normal pairs were 

utilized to identify and remove germline variants shared 

between normal and tumor samples. 

36 



 

-​ Functional Impact Filtering: Synonymous or intronic 

variants were filtered out unless there was strong 

evidence suggesting an impact on splicing or gene 

regulation. 

-​ ACMG Verdict Filtering: Variants classified as benign or 

likely benign according to ACMG guidelines were removed 

from further analysis. 

To effectively communicate the results of the variant 

analysis, an oncoprint was generated using the ComplexHeatmap 

R package 80. This visualization focuses on AML-related genes, 

providing a comprehensive overview of mutation profiles across 

AML patients. 

4.7 Multi-Omics Integration 

Multi-omics integration was performed to comprehensively 

evaluate the immune landscape and therapeutic potential in AML 

patients. This approach focused on the combined analysis of 

WES and RNA-seq data, and immuno-profiling to identify 

neoantigens and assess the immune response to treatment. 

The identification of neoantigens—novel peptides presented by 

HLA molecules due to tumor-specific mutations—is crucial for 

developing effective cancer immunotherapies. Neoantigens arise 

from non-synonymous mutations in tumor cells, leading to the 

production of unique peptides that can be recognized by the 

immune system 82,83. Their discovery is essential for designing 

personalized vaccines and immunotherapies that target these 

specific tumor-associated antigens 84,85. 

To predict the binding affinities of the identified 

neoantigens to patient-specific HLA molecules, we employed 

NetMHCpan, a robust tool for peptide-MHC binding prediction 

85,86. NetMHCpan is an extension of the NetMHC algorithm, 
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specifically designed to predict binding affinities for a wide 

variety of MHC class I alleles, including both common and rare 

variants. The tool is built upon a sophisticated artificial 

neural network (ANN) that integrates a large dataset of 

experimentally determined peptide-MHC interactions, allowing 

for high accuracy in predicting binding affinities, even for 

peptides not included in the training data. 

NetMHCpan is trained on over 850,000 quantitative binding 

affinity (BA) data points and mass-spectrometry eluted ligands 

(EL) from more than 170 MHC molecules. This extensive training 

enables the model to generalize well across different alleles 

and peptide sequences. The tool employs a unique feature 

extraction method that captures important biochemical 

properties of both the peptide and MHC class I alleles. This 

leads to a refined understanding of peptide-MHC interactions, 

which significantly enhances the prediction accuracy for 

neoantigen identification. By accurately identifying which 

tumor-derived peptides are likely to bind MHC molecules and be 

presented on the cell surface, researchers can better assess 

the potential immunogenicity of these peptides. NetMHCpan can 

accommodate novel or uncharacterized alleles, making it a 

versatile choice for diverse populations. This is particularly 

important in cancer immunotherapy, where individual patient 

HLA types can vary significantly 87. 

Our neoantigen analysis workflow integrates various data 

sources to comprehensively predict potential neoantigen 

candidates. Here’s an overview of the approach: 

-​ Input Data Collection: We used non-synonymous variants 

identified and annotated from WES data as the starting 

point, selecting these mutations due to their potential 

to alter amino acid sequences in a way that could produce 

immunogenic peptides. Simultaneously, gene expression 
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levels were quantified from RNA-seq data using TPM to 

prioritize mutations in actively expressed genes, as 

these are more likely to generate immune-recognized 

neoantigens. HLA Class I typing was performed on each 

sample using the DRAGEN pipeline, allowing for the 

identification of patient-specific HLA alleles that play 

a critical role in determining which peptides could 

potentially bind to HLA molecules. 

-​ Peptide Generation and Prediction: In this step, all 

possible 8- to 11-mer peptides containing each variant 

were generated from the WES data, creating a 

comprehensive set of candidate peptides.  

-​ Binding Affinity Prediction and Filtering: The ANN model, 

refined through extensive datasets of experimentally 

validated peptide-MHC interactions, offers a significant 

advantage in precision. By predicting the binding 

affinity of each peptide-HLA pair, we gain insight into 

which peptides are most likely to be presented on the 

cell surface and thus recognized by T-cells, while 

peptides that did not meet established binding affinity 

thresholds were filtered out, ensuring that only those 

with significant binding potential were retained. This 

step is crucial as only peptides with strong or moderate 

binding affinities to HLA molecules are prioritized, as 

they have the highest likelihood of functioning as true 

neoantigens in AML. 

-​ High-Confidence Candidate Selection: The final list was 

refined by retaining peptides that exhibited both high 

expression (TPM ≥ 1) and strong binding affinities, 

maximizing the likelihood of selecting immunogenic 

neoantigens. 
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5. Results 

5.1 Transcriptomic Profiling 

Hierarchical clustering was performed on the 15 matched PBMC 

samples to discern distinct groups based on gene expression 

profiles between t0 and t48. Z-scores were computed for each 

gene to standardize the expression levels across samples, 

facilitating comparative analysis. The maximum distance metric 

was employed to assess the similarity between samples, and the 

Ward D2 clustering algorithm was utilized to minimize variance 

within clusters while maximizing variance between them. The 

clustering analysis yielded two main distinct clusters: 

Cluster A, which included 7 samples, and Cluster B, which 

comprised 8 samples (Figure 4). 
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Figure 4: Hierarchical clustering dendrogram. This figures illustrates the 

relationships among samples based on their similarity. The vertical axis 

represents the distance at which clusters merge, with shorter links 

indicating greater similarity between samples. This dendrogram provides 

insights into the clustering structure, highlighting how samples group 

together, which is essential for understanding their underlying biological 

relationships. Samples of cluster A are circled in fuchsiam while samples 

of cluster B in yellow 

 

To further explore the biological significance of the gene 

expression changes, GSEA was performed using BMMC t0 samples 
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matched with PBMC t0-t48 samples on the Reactome 2022 

database. A total of 12 BMMC samples were analyzed in the 

GSEA, consisting of 6 samples from Cluster A and 6 from 

Cluster B, finding 36 significant gene sets identified with a 

p-value < 0.05 and an absolute normalized enrichment score 

(NES) > 1.5, summarized in Table 2. 

 

Table 2. GSEA significant gene sets. The following table summarizes the 

significant gene sets identified through GSEA using data from the Reactome 

2022 database. Each gene set is associated with its NES and p-value, 

indicating the strength and significance of the association. 

Pathway Name NES p-value 

TP53 Regulates Transcription Of Genes 

Involved In G2 Cell Cycle Arrest 

R-HSA-6804114 

-1.85 8.2E-3 

XBP1(S) Activates Chaperone Genes 

R-HSA-381038 
-1.84 6.1E-3 

TYSND1 Cleaves Peroxisomal Proteins 

R-HSA-9033500 
-1.83 6.2E-3 

Translation Of Structural Proteins 

R-HSA-9683701 
-1.81 1.6E-2 
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NOTCH3 Activation And Transmission Of 

Signal To Nucleus R-HSA-9013507 
-1.79 1.7E-2 

IRE1alpha Activates Chaperones R-HSA-381070 -1.79 1.0E-2 

Deactivation Of Beta-Catenin 

Transactivating Complex R-HSA-3769402 
-1.76 1.0E-2 

Maturation Of Spike Protein R-HSA-9683686 -1.72 8.0E-3 

Inhibition Of DNA Recombination At Telomere 

R-HSA-9670095 
-1.68 2.8E-2 

Regulation Of TP53 Activity Thru 

Association With Co-factors R-HSA-6804759 
-1.67 2.9E-2 

Synthesis Of PG R-HSA-1483148 -1.67 2.7E-2 

Sulfur Amino Acid Metabolism R-HSA-1614635 -1.65 3.1E-2 

Late SARS-CoV-2 Infection Events 

R-HSA-9772573 
-1.65 4.4E-2 

Alpha-Linolenic (Omega3) And Linoleic 

(Omega6) Acid Metabolism R-HSA-2046104 
-1.64 2.8E-2 
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Interleukin-9 Signaling R-HSA-8985947 -1.64 4.7E-2 

Signaling By NTRK3 (TRKC) R-HSA-9034015 -1.60 1.7E-2 

Formation Of Senescence-Associated 

Heterochromatin Foci (SAHF) R-HSA-2559584 
-1.60 3.5E-2 

Role Of Phospholipids In Phagocytosis 

R-HSA-2029485 
-1.58 1.7E-2 

Regulation Of PTEN Gene Transcription 

R-HSA-8943724 
-1.57 2.8E-2 

FGFR1b Ligand Binding And Activation 

R-HSA-190370 
-1.57 2.7E-2 

Signal Attenuation R-HSA-74749 -1.56 4.2E-2 

Eicosanoid Ligand-Binding Receptors 

R-HSA-391903 
-1.56 2.3E-2 

Release Of Apoptotic Factors From 

Mitochondria R-HSA-111457 
-1.56 4.9E-2 
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AKT Phosphorylates Targets In Cytosol 

R-HSA-198323 
-1.55 4.3E-2 

Transport Of RCbl Within Body R-HSA-9758890 -1.52 3.5E-2 

RUNX2 Regulates Osteoblast Differentiation 

R-HSA-8940973 
-1.52 4.9E-2 

Prolactin Receptor Signaling R-HSA-1170546 -1.51 5.0E-2 

Synthesis Of PA R-HSA-1483166 -1.50 2.3E-2 

Free Fatty Acids Regulate Insulin Secretion 

R-HSA-400451 
1.50 3.9E-2 

Defective C1GALT1C1 Causes TNPS 

R-HSA-5083632 
1.53 2.0E-2 

SMAC (DIABLO) Binds To IAPs R-HSA-111463 1.57 3.4E-2 

SMAC, XIAP-regulated Apoptotic Response 

R-HSA-111469 
1.57 3.4E-2 
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RUNX1 Regulates Transcription Of Genes 

Involved In Differentiation Of Myeloid 

Cells R-HSA-8939246 

1.61 4.4E-2 

Fertilization R-HSA-1187000 1.63 2.1E-2 

Activated NTRK2 Signals Thru PI3K 

R-HSA-9028335 
1.70 2.1E-3 

MET Activates PI3K/AKT Signaling 

R-HSA-8851907 
1.84 6.5E-2 

 

Among them, the most relevant are summarized in Figure 5. The 

TP53 pathway is crucial for regulating cell cycle progression 

and apoptosis (R-HSA-6804114). In AML, TP53 mutations are 

prevalent and associated with poor outcomes and treatment 

resistance. This pathway can induce G1 and G2 cell cycle 

arrest through various mechanisms, including the activation of 

CDKN1A (p21), which inhibits cyclin-dependent kinases 88. The 

XBP1 pathway (R-HSA-381038) is involved in the unfolded 

protein response (UPR), which helps cells to manage 

endoplasmic reticulum stress. This pathway is activated in 

response to 5-Azacytidine treatment and may influence both 

survival and apoptosis in AML cells 89,90. IRE1alpha 

(R-HSA-381070), also part of the UPR, helps maintain cellular 

homeostasis during stress by activating chaperone proteins 

that assist in proper protein folding.  In AML, the activation 

of IRE1alpha has been shown to support cell survival under 

stress conditions, which is particularly relevant when 
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considering treatment with 5-Azacytidine. This drug can induce 

ER stress, leading to the activation of IRE1α pathways that 

promote cell survival through the upregulation of chaperone 

proteins 91. Research indicates that 5-Azacytidine treatment 

can activate IRE1alpha signaling pathways in AML cells, 

contributing to their adaptive response to the drug. 

Inhibition of IRE1alpha has been proposed as a therapeutic 

strategy in AML, as targeting this pathway may enhance the 

sensitivity of leukemic cells to 5-Azacytidine. Studies have 

shown that inhibiting IRE1alpha can lead to increased 

apoptosis in AML cells treated with hypomethylating agents, 

suggesting a potential for combination therapies that exploit 

this vulnerability 92. 

Regulation of PTEN gene transcription (R-HSA-8943724) is 

significant as PTEN is a tumor suppressor that negatively 

regulates the PI3K/AKT signaling pathway. Its regulation 

influences cell growth and survival pathways, potentially 

affecting responses to treatments like 5-Azacytidine 93. The 

deactivation of the beta-catenin transactivating complex 

(R-HSA-3769402) is important in cancer biology, including AML, 

as this pathway is frequently implicated in various cancers, 

including AML. When the beta-catenin destruction complex is 

deactivated, beta-catenin accumulates and translocates to the 

nucleus, where it regulates gene expression related to cell 

proliferation and survival. This accumulation can 

significantly impact how cancer cells respond to therapies, 

including hypomethylating agents like 5-Azacytidine, which can 

lead to changes in the expression levels of beta-catenin and 

its target genes, thereby influencing cell survival and 

proliferation. This modulation may enhance the therapeutic 

effects of 5-Azacytidine by altering the cellular response to 

treatment 94,95. The formation of senescence-associated 
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heterochromatin foci (SAHF) (R-HSA-2559584) is involved in 

cellular senescence, which can be induced by DNA damage and 

stress. 5-Azacytidine has been shown to induce cellular 

senescence in AML cells. It acts as a hypomethylating agent 

that can lead to the reactivation of silenced tumor suppressor 

genes, promoting senescence and apoptosis in leukemic cells. 

The induction of SAHF in response to 5-Azacytidine treatment 

suggests that this drug may enhance the senescence program, 

contributing to its therapeutic efficacy 96-98. 

The AKT signaling pathway (R-HSA-198323) is often activated in 

cancers, including AML, and plays a significant role in cell 

survival and proliferation.  This activation can result from 

various genetic alterations, such as mutations in the PI3K 

pathway or loss of tumor suppressor genes like PTEN. In the 

context of AML, studies have shown that the activation of the 

AKT signaling pathway can influence the effectiveness of 

treatments like 5-Azacytidine. For instance, AKT signaling has 

been implicated in mediating cellular responses to 

hypomethylating agents, where its inhibition may enhance the 

sensitivity of leukemic cells to these therapies. Its role in 

promoting cell survival and growth makes it critical when 

evaluating responses to hypomethylating agents like 

5-Azacytidine 99-101. 

SMAC proteins (R-HSA-111463 and R-HSA-111469) promotes 

apoptosis by binding to IAPs, thereby relieving their 

inhibition on caspases. This interaction is crucial for the 

apoptotic process, particularly in cancer cells where IAPs are 

often overexpressed. The combination of SMAC mimetics with 

5-Azacytidine has been shown to enhance apoptotic signaling in 

AML cells. By antagonizing IAPs, SMAC proteins can potentiate 

the effects of 5-Azacytidine, leading to increased cell death 

in leukemic cells promote apoptosis by antagonizing inhibitors 
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of apoptosis proteins (IAPs), enhancing the effects of 

5-Azacytidine treatment 102,103. 

 

 

Figure 5. Key GSEA plots. This figure illustrates the most relevant GSEA 

plots derived from RNA-seq data, highlighting gene sets notably associated 

with the therapeutic response to 5-Azacytidine in AML patients.  

 

5.2 Genomic Profiling 

After applying quality filters, variants were further analyzed 

based on depth threshold and allele frequency. A minimum depth 

of 100X coverage was required for SNVs and INDELs, with a 

minimum VAF of 5% in tumor samples. Synonymous or intronic 

variants were excluded, retaining only missense, nonsense, 

frameshift, in-frame, and splicing variants for further 

analysis. Variants were classified following ACMG guidelines, 

considering only VUS, Likely Pathogenic, and Pathogenic 

variants for further investigation. 

After applying the filtering criteria, we identified a total 

of 257 variants: 94 INDELs, 90 missense variants, 42 splicing 
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variants, and 31 stop-gain mutations across the samples. These 

variants were classified into categories based on ACMG 

classification guidelines: 87 were deemed as VUS, 120 were 

classified as Likely Pathogenic, and 50 as Pathogenic. 

Additionally, variants were stratified by clinical relevance 

into Tier I (18 variants), Tier II (106 variants), Tier III 

(92 variants), and Tier IV (41 variants), according to 

established criteria for prioritizing actionable mutations. 

For CNVs, filtering was conducted with specific criteria. Only 

CNVs with a copy number ratio between 0.5 and 2 were retained 

for analysis. After filtering, a total of 40 CNVs were kept 

for further investigation. 

Subsequently, we generated an oncoprint that illustrates the 

most frequently mutated genes along with the specific types of 

variants identified, categorized by cluster (Figure 6). This 

visualization effectively conveys the distribution of 

mutations across the different clusters, providing valuable 

insights into the molecular landscape of the samples. 

The WES samples were stratified into two clusters based on 

gene expression changes observed between t48 and t0 RNA-seq 

samples. Cluster A included 5 samples while Cluster B included 

8 samples. Notably, 12 samples did not match either cluster 

due to the absence of corresponding RNA-seq data from t0 or 

t48 time points. 

 

50 



 

 

Figure 6. Oncoprint of most frequently altered genes. It shows genomic 

alterations across samples from patients with AML. Each row represents a 

specific gene, while each column corresponds to an individual patient 

sample. Color-coded boxes indicate the types of mutations for each gene, 

including missense variants, nonsense variants, INDELs, splicing variants, 

and CNVs. Additionally, the bottom of the plot provides information on the 

number of variants per sample, the count of neoantigens at time point t0 

for each sample, and sample clusters.  

 

The analysis of mutations across the clusters revealed varying 

frequencies of specific gene mutations in patients (Table 3). 

Notably, mutations in CUX1 and KMT2D were exclusive to Cluster 

A and not found in Cluster B. Conversely, mutations in ATM, 

GNAS, KDM6A, and NPM1 were absent in Cluster A but present in 

Cluster B. 
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Table 3. Most altered genes in each cluster. This table shows the 

percentages of mutated samples for the most altered genes in each cluster. 

Gene % Mutated Cluster 1 % Mutated Cluster 2 

ATM 0 38 

CREBBP 60 62 

CUX1 40 0 

DHX15 60 12 

ELANE 40 25 

ETV6 20 38 

FLT3 40 12 

GNAS 0 38 

GNB1 40 25 

JAK2 40 12 

KDM6A 0 38 

KMT2D 40 0 

NF1 20 38 

NPM1 0 38 

RPS19 20 38 

SF3B1 40 12 

SMC1A 60 12 

TP53 40 25 
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In the CNV analysis, the most frequently altered genes across 

all samples were CALR (69%), CSF3R (62%), and KIT (46%). These 

alterations were similarly distributed between the two 

clusters for CALR and CSF3R, with CALR showing alterations in 

40% of Cluster A samples and 38% in Cluster B, while CSF3R was 

altered in 20% of Cluster A and 38% of Cluster B. However, 

alterations in KIT were notably different between the 

clusters: it was absent in Cluster A but altered in 25% of 

Cluster B, contrasting with its global alteration frequency of 

46% across all samples. 

The consistent alterations in CALR and CSF3R suggest these 

genes play a role in AML across both patient groups, 

potentially influencing common disease mechanisms. These 

mutations can contribute to aberrant signaling pathways that 

promote cell survival and proliferation, thereby affecting how 

patients respond to therapies. The mechanism of 5-Azacytidine 

involves inducing DNA demethylation, which can reactivate 

silenced tumor suppressor genes. The presence of CALR and 

CSF3R mutations may influence the effectiveness of 

5-Azacytidine by modulating the cellular response to 

treatment. For instance, studies have shown that these 

mutations can lead to altered expression of genes involved in 

apoptosis and cell cycle regulation, potentially affecting how 

leukemic cells respond to 5-Azacytidine treatment 104-106. 

Conversely, the absence of KIT alterations in Cluster A 

compared to their presence in Cluster B suggests a distinct 

role for KIT CNVs in shaping the oncogenic pathways and 

possibly the immune environment specific to Cluster B in AML. 

KIT alterations have been linked to poorer survival outcomes 

in AML, as shown in studies with AML1-ETO patients, 

underscoring KIT's impact on prognosis and cellular signaling 
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in AML subsets 107. Studies have shown that specific AML 

mutations, including those in genes related to splicing 

factors and metabolic pathways, can influence therapeutic 

sensitivity to 5-Azacytidine and other epigenetic drugs. For 

example, a synergistic effect with 5-Azacytidine was observed 

in AML cells harboring SF3B1 mutations, underscoring the 

impact of mutation profiles on treatment outcomes with 

azacytidine-based regimens 108. The differential presence of 

KIT mutations between clusters may reflect unique molecular 

characteristics, possibly pointing to alternative signaling 

cascades or immune modulations unique to each cluster. This 

supports the hypothesis that KIT alterations contribute to 

specific molecular signatures that define AML subtypes and 

influence patient response to treatment 109. 

5.3 Immune Profiling 

The integration of 10 matched WES and RNA-seq samples enabled 

a comprehensive analysis of neoantigens, which are critical 

for understanding the immune response to tumors. Notably, none 

of the neoantigen sequences were shared across patients. 

Furthermore, each patient was evaluated for the number of 

somatic variants and neoantigens (Table 4 and Figure 7). 

 

Patient Cluster nr. Variants nr. Neoantigens 

02 A 21 302 

04 A 108 196 

06 B 25 342 

07 B 32 724 
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10 B 42 181 

11 B 93 188 

12 B 66 547 

16 B 150 531 

21 A 12 75 

35 A 34 237 

Table 4.  Summary of patient multi-omics approach data. This table includes 

cluster assignments, number of somatic variants, and counts of neoantigens 

identified in patients with AML. Each patient is categorized into either 

Cluster A or Cluster B, highlighting the diversity of genomic alterations 

and potential immunogenic profiles across the cohort. 

 

The distinct neoantigen profiles observed in Clusters A and B 

not only point to differences in immunogenicity but may also 

be linked to varied responses to treatments like 

5-Azacytidine. In Cluster B, the higher neoantigen 

counts—peaking at 724—suggest an environment potentially more 

responsive to immune-modulatory effects, which could enhance 

the efficacy of 5-Azacytidine. As a DNA methyltransferase 

inhibitor, 5-Azacytidine acts by reactivating silenced tumor 

suppressor genes through demethylation, and this epigenetic 

reprogramming can increase the expression of neoantigens on 

tumor cells. In tumors with a higher neoantigen load, such as 

those in Cluster B, the reactivation of additional neoantigens 

may intensify immune recognition, potentially leading to 

enhanced responses to immunotherapies when combined with 
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5-Azacytidine.

 

Figure 7. Variants and Neoantigen Boxplots. This figure illustrates the 

distribution of data among patients in Cluster A and Cluster B. The boxplot 

on the left shows the distribution of the number of somatic variants, while 

the boxplot on the right depicts the distribution of neoantigen counts. The 

differences in these distributions provide insights into the mutational 

landscape and potential immunogenic profiles associated with each cluster. 

 

Moreover, the variability in neoantigen burden within Cluster 

A, with counts ranging widely from 75 to 302, could indicate 

differential sensitivity to 5-Azacytidine within this cluster. 

Tumors with lower neoantigen loads may respond less robustly 

to the immune-stimulatory effects of 5-Azacytidine, as fewer 

neoantigens are available to elicit a significant immune 

response. For these patients, the therapeutic benefits of 

5-Azacytidine might be limited to its direct anti-leukemic 

effects without the added benefit of heightened immune 

recognition. Conversely, those within Cluster A with 

relatively higher neoantigen counts might experience a 
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stronger immune-mediated response to 5-Azacytidine, though 

still potentially less pronounced than in Cluster B. 

These findings imply that neoantigen profiling could serve as 

a predictive biomarker for 5-Azacytidine response. Patients in 

Cluster B, with their inherently higher neoantigen counts, 

might benefit more from combination strategies that 

incorporate 5-Azacytidine with immune checkpoint inhibitors or 

neoantigen-targeted vaccines, taking advantage of the 

immune-stimulating properties of 5-Azacytidine. In Cluster A, 

patients with lower neoantigen levels may require additional 

adjunctive therapies beyond 5-Azacytidine to enhance immune 

recognition or to directly target leukemia cell survival 

pathways. 

 

6. Discussion 

The WES analysis revealed significant mutational differences 

between the two primary AML clusters. The exclusive presence 

of mutations in CUX1 and KMT2D in Cluster A, alongside their 

absence in Cluster B, points to unique oncogenic pathways 

potentially contributing to disease progression and 

therapeutic response within this cluster. CUX1, a known 

transcription factor, has been linked to tumor suppressive 

functions, with mutations contributing to genomic instability, 

an aspect that could influence the response to hypomethylating 

agents like 5-Azacytidine 110. Similarly, KMT2D is involved in 

histone methylation and chromatin remodeling, and its 

mutations may lead to transcriptional dysregulation, 

suggesting that patients in Cluster A could experience 

differential transcriptional activity that impacts treatment 

outcomes 111,112. Conversely, Cluster B’s unique mutation profile 

in ATM, GNAS, KDM6A, and NPM1 provides a contrasting molecular 
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landscape. The absence of ATM and KDM6A mutations in Cluster A 

may indicate lower genomic instability and a potentially less 

responsive immune microenvironment, given ATM’s role in DNA 

repair and immune response 113,114. The presence of NPM1 

mutations in Cluster B, however, is clinically significant, as 

NPM1 mutations are frequently associated with AML and linked 

to specific responses to chemotherapy and hypomethylating 

agents 117. This cluster-specific mutation profile may help 

explain differences in immune-related pathways and neoantigen 

presentation seen in the neoantigen analysis, with higher 

neoantigen counts in Cluster B potentially attributable to 

these distinctive mutations. The CNV analysis across both 

clusters further highlighted key genes with consistent 

alterations, such as CALR and CSF3R, known to drive myeloid 

proliferation through JAK-STAT pathway activation 104-106. 

Interestingly, the presence of KIT alterations in Cluster B 

and their absence in Cluster A could suggest divergent 

oncogenic pathways or distinct immunogenic characteristics 

influencing response patterns. KIT mutations, known for their 

association with poor prognosis and chemoresistance in AML, 

underscore the potential need for combination therapies in 

Cluster B to enhance treatment efficacy 107. 

RNA-seq analysis allowed us to explore transcriptional 

responses to 5-Azacytidine, specifically through clustering 

based on gene expression shifts between t0 and t48. The 

expression profiles revealed divergent transcriptional 

programs associated with immune responses, metabolic pathways, 

and stress responses, contributing to an understanding of 

response heterogeneity in AML. Differentially expressed genes 

in Cluster A were primarily enriched in pathways such as 

caffeine metabolism, alpha-linolenic acid metabolism, and 

pyruvate metabolism, which have been linked to cellular stress 
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and metabolic reprogramming in cancer. These pathways are 

known to influence cancer cell proliferation and survival, 

potentially affecting sensitivity to 5-Azacytidine 117,118. 

Conversely, Cluster B exhibited significant enrichment in 

pathways involved in cell signaling and immune regulation, 

such as the JAK-STAT and MAPK pathways. These findings are in 

line with recent studies that underscore the role of immune 

signaling in AML progression and treatment response, 

particularly in relation to 5-Azacytidine, which has been 

shown to influence immune-modulating pathways 119,120. The 

enhanced expression of genes within these immune-regulatory 

pathways may contribute to improved antigen presentation and 

immune recognition, suggesting that Cluster B patients could 

exhibit distinct immunogenic profiles potentially responsive 

to combination therapies involving immunotherapy. 

Neoantigen analysis revealed differences in the immune 

response potential between clusters, with Cluster B exhibiting 

a higher median neoantigen count, suggesting a more 

immunogenic tumor environment. Although not statistically 

significant, this increased neoantigen load might enhance 

recognition by T cells, aligning with the hypothesis that a 

greater neoantigen burden could stimulate anti-tumor immunity, 

as described in various cancers, including AML 52,120,121. The 

findings support an immunologically distinct profile for 

Cluster B, which may influence the effectiveness of 

immune-based therapies. Interestingly, the discrepancy between 

neoantigen load and mutational burden indicates that 

neoantigen formation involves factors beyond mutation rate 

alone, such as variant expression levels and peptide-MHC 

binding affinities, both crucial for effective immune 

recognition 83,124,125. This insight is relevant for immunotherapy 

approaches, particularly in Cluster B, where higher neoantigen 
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loads might improve the engagement of immune responses. This 

cluster-specific neoantigen profile suggests that the efficacy 

of therapies combining immune modulation with agents like 

5-Azacytidine may differ by cluster, potentially enhancing 

outcomes in patients with a higher neoantigen load. 

This multi-omic approach which integrates data from WES, 

RNA-seq, and neoantigen analyses provides a comprehensive view 

of the molecular and immunological landscapes within AML 

clusters. The data suggest that Cluster A and Cluster B 

exhibit distinct genetic and transcriptional signatures, 

alongside varied neoantigen profiles, which collectively 

influence their response to the hypomethylating agent 

5-Azacytidine. Cluster A, with its transcriptional activation 

of apoptotic pathways and lack of survival-associated 

alterations (e.g., KIT), indicates a predisposition to undergo 

cell death in response to 5-Azacytidine, aligning with prior 

evidence that suggests hypomethylating agents are effective in 

AML subtypes marked by pro-apoptotic gene expression profiles 

125-127. Conversely, Cluster B’s unique mutational landscape, 

featuring mutations in genes such as KIT and pathways 

promoting survival and immune evasion, implies a more 

resistant phenotype. Previous research has indicated that KIT 

mutations in AML may contribute to survival and therapy 

resistance, emphasizing the need for combined treatment 

strategies to target these pathways effectively 128,129. 

Neoantigen analysis further differentiates the clusters, with 

Cluster B demonstrating a higher median neoantigen load. This 

immunologically distinct profile aligns with findings in solid 

tumors, where increased neoantigen loads correlate with 

enhanced T-cell response and immunotherapy sensitivity, 

suggesting a potential benefit of checkpoint inhibitors or 

neoantigen-based vaccines for Cluster B patients 53,130. Thus, 
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multi-omic integration enables the identification of 

actionable targets in Cluster B, where resistance to 

5-Azacytidine could be mitigated through combined targeted and 

immunotherapy approaches. 

 

7. Conclusion and Future Perspectives 

This study emphasizes the potential of a multi-omic approach 

to understand the molecular mechanisms driving response to 

5-Azacytidine in AML. The integration of WES, RNA-seq, and 

neoantigen analysis offers a more comprehensive view of the 

genetic, transcriptional, and immunogenic variations in AML, 

allowing for a stratified analysis of cluster-specific 

behaviors. These insights suggest the need for developing 

personalized therapeutic strategies, potentially incorporating 

targeted therapy, immune modulation, and hypomethylating 

agents in accordance with the unique molecular profiles 

identified in each AML cluster. Further studies leveraging 

expanded patient datasets can build on these findings to 

validate biomarkers that may predict response to 

5-Azacytidine, as well as inform novel combination strategies 

that can enhance treatment efficacy and overcome resistance. 

Despite the robust multi-omic data analysis, the study has 

several limitations. Foremost is the absence of clinical 

information, which has not been provided by all the 

participant-enrolling centers. This lack of clinical context 

limits our ability to correlate molecular findings with 

patient outcomes, treatment histories, or clinical 

characteristics, which would offer invaluable validation of 

the predictive biomarkers identified. Future studies 

incorporating comprehensive clinical data will be critical for 

translating these findings into clinical practice, enabling 
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correlations that link specific molecular profiles with 

therapeutic outcomes, disease progression, and overall 

survival. 
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