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Abstract

The rapid advancements in in-vehicle computing, communication, and software enable drivers to
access diverse distributed applications and services. Edge Computing and frameworks like the Eu-
ropean Telecommunications Standards Institute (ETSI) Multi-access Edge Computing (MEC)
are intended to be key in standardizing service execution at the network edge. Complementing
this, Vehicular Cloud Computing (VCC) and Vehicular Edge Computing (VEC) augment edge
computational capacity by harnessing vehicle computing, storage, and communication resources.
Together, these technologies create a resource continuum, enabling real-time processing, low la-
tency, and improved service quality. This dissertation presents several solutions to contribute to
the creation of an innovative and powerful vehicular-based support for edge applications in next-
generation networks. Hence, it extensively studies and contributes to enhancing vehicular com-
munication reliability and advancing the vehicular computing paradigm by developing simulat-
ed/emulated platforms for application design in this domain. The key contributions of this PhD
dissertation include: i) a reputation-based system to exclude misbehaving vehicles within Vehicle-
to-Vehicle (V2V) communications, ii) a dataset comprising V2V messages compliant with Euro-
pean standards, iii) an extensive study on the usage of a Time-Sensitive Networking (TSN) mid-
dleware to improve Quality of Service (QoS) and data delivery in Vehicle-to-Everything (V2X)
communications, iv) the design of a vehicular computing architecture based on recognized stan-
dards (e.g., MEC) to promote interoperability and scalability, and v) a novel simulation tool al-
lowing researchers and engineers to design, test, and enhance distributed applications that exploit
vehicular, edge, and cloud computing concepts.
Furthermore, this dissertation explores MEC deployment within 5G networks using Open Ra-
dio Access Network (O-RAN) specifications, establishing a foundation for a real-world vehicular
cloud computing testbed. This led to an openly accessible middleware for developing near real-
time applications following O-RAN standards, essential for integrating MEC and O-RAN. All
proposed solutions have been rigorously tested, demonstrating their effectiveness in advancing
next-generation vehicular and edge computing.
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1 Introduction

The rapid advancement of computing technologies and next-generation wireless communication
networks has revolutionized in-vehicle hardware, turning vehicles into powerful mobile compu-
tation nodes on wheels [1, 2, 3, 4]. New-gen vehicles include Onboard Unit (OBU)s and onboard
radio modules, such as IEEE 802.11p [5] or 5G modules [6], enabling environmental perception,
computational processing, and communication capabilities. As a result, they now play a central
role in Intelligent Transportation Systems (ITSs), which aim to enhance the efficiency and safety
of transportation networks through advanced data exchange and communication technologies.
In this scenario, drivers can tap into an extensive array of distributed applications and services,
often cloud-based, as in other vertical domains, including improved access to information and
entertainment features. This creates a new ecosystem with unique real-time demands, presenting
substantial challenges for the backbone network and cloud infrastructure [7].

Vehicular ad hoc network (VANET) play a key role in such an environment, as they enable the
communication between vehicles (V2V) and infrastructure (V2I) equipment, providing drivers
and traffic authorities with information related to traffic conditions and incidents [8]. Similarly,
edge computing has emerged as a facilitator for this new ecosystem by providing computational
resources closer to the end-users [9, 10]. It extends traditional cloud infrastructure by deploying
resources at the network edge, near data sources, thereby offering a more efficient and scalable ap-
proach to meet the growing demand for computing and storage. To accelerate the adoption of
this paradigm, the European Telecommunications Standards Institute (ETSI) has proposed the
Multi-access Edge Computing (MEC) standard [11]. This standard enables running contextual-
ized MEC-compliant applications near the data sources and/or users and within a virtualized and
multi-tenant environment. Furthermore, the MEC standard facilitates the integration of cloud
resources with those available at the edge, creating a complete cloud continuum of virtualized
resources distributed within the network.

As more businesses begin to leverage the shared edge-cloud environment, new opportunities
and challenges emerge. In contrast to traditional cloud deployments in data centers, the edge has
limited resources and may not always be able to satisfy application demands for resources and asso-
ciated Quality of Service (QoS). Moreover, it is predicted that by 2025, a single connected vehicle
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Figure 1.1: Vehicular Computing Layers Structure

could generate between 1 to 10 exabytes of data traffic per month for cloud-based services [12],
placing significant strain on network infrastructures. For these reasons, there is a pressing need to
dynamically identify and integrate additional resources to support edge and network infrastruc-
ture, thereby ensuring service availability in densely populated and congested deployment scenar-
ios. Vehicular Cloud Computing (VCC) has emerged as a promising paradigm to support dis-
tributed applications designed according to the edge cloud approach [2, 13, 14, 15]. VCC leverages
both cloud resources and the computing, storage, and communication capabilities available in ve-
hicles to create cost-effective mobile clouds at the very edge of the network. This paradigm expects
vehicles to autonomously form vehicular clouds,i.e., aggregation of vehicular resources, through
VANET. Complementing VCC, Vehicular Edge Computing (VEC) [7, 3] introduces edge com-
puting in providing services and resources to vehicles. In this scenario, Road Side Unit (RSU)
are considered off-grid servers (edge nodes) placed close to vehicles, thereby minimizing response
time and the amount of data transmitted on the network.

Given that these paradigms - VCC and VEC - often overlap and may cause confusion, we use
the term Vehicular Computing (VC) in this dissertation to refer to an integrated paradigm that en-
compasses resources available at the cloud, edge, and “far-edge" to support vehicular applications
and services. Additionally, since fog computing is a generalized form of edge computing [16], VC
also incorporates the Vehicular Fog Computing (VFC) paradigm. The layered architecture that
defines this concept is illustrated in Figure 1.1, which synthesizes various existing models [7, 17, 3]
into a unified approach.
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To enable the VC paradigm and, thus, to support the deployment of software components
across different vehicle computer variants, the traditional embedded platform of vehicles needs to
be replaced with a software-defined architecture [2]. This architecture allows vehicles to support
cloud-native technologies and receive Over-The-Air (OTA) updates throughout their life cycle.
A notable effort in this direction is the ARM’s Scalable Open Architecture for Embedded Edge
(SOAFEE) project [18], which offers an open-source reference implementation enabling a cloud-
native architecture hardware agnostic for the vehicular scenario.

This dissertation investigates and proposes novel technologies to support this new ecosystem,
which involves deploying next-generation edge applications within the vehicular context. It fo-
cuses mainly on two areas: vehicular networking, as this system enables the execution of services
in close proximity to the requester, and vehicular computing, to leverage the computational power
of vehicles and improve service availability and resource efficiency in dynamic environments.

Chapter 2 provides essential background on the elements relevant to this dissertation. It begins
with an introduction to vehicular networking concepts and the European standards governing
this technology. Next, it presents an overview of the 3rd Generation Partnership Project (3GPP)
standards that define the 5G Radio Access Network (RAN) and Core. The chapter then covers
the ETSI MEC standard, explaining its components and integration within a 5G network. Ad-
ditionally, it introduces the VC paradigm, offering an overview of the potential layering model in
this context. Finally, it discusses key design aspects of the Open Radio Access Network (O-RAN)
specification, focusing on the elements relevant to this dissertation.

Chapter 3 investigates innovative solutions to enhance the reliability and integrity of vehicular
communications, with a particular focus on standard message formats such as Cooperative Aware-
ness Message (CAM) and Decentralized Environmental Notification Message (DENM) [19, 20].
It introduces a robust solution for identifying malicious messages within vehicular networks us-
ing a reputation-based mechanism. Additionally, it proposes an approach that improves data de-
livery in car platooning (i.e., cooperation among a group of vehicles) scenarios using Vehicle-to-
vehicle (V2V) communications, optimizing message exchange for real-time traffic coordination
and safety.

Chapter 4 explores the design of an architecture that leverages ETSI MEC to enhance edge
node computational capacity by exploiting underutilized vehicular resources. Thus, this chapter
focuses on creating a vehicular computing paradigm that relies on well-established standards, im-
proving service availability within highly mobile networks, and offering a flexible and scalable so-
lution for resource-constrained environments. It also details the implementation of a simulation
tool designed to model and test next-generation vehicular applications, employing the concept of
VC to create a distributed, scalable network of mobile edge resources.

3
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Chapter 5 conducts an in-depth analysis of integrating edge computing into cellular networks,
particularly in the context of 5G. It explores the synergy between ETSI MEC and O-RAN to
enable the deployment of MEC-compliant applications in 5G environments. This research lays
the foundation for the creation of a real-world testbed for the VC paradigm, building upon the
architecture proposed in Chapter 4. Furthermore, it outlines the creation of a framework for
developing near-real-time applications dedicated to RAN monitoring and management, offering
significant improvements in the development process of these applications.

Chapter 6 summarizes the key conclusions of this dissertation, highlighting its contributions
and the advancements made in the field. It also explores promising future research directions
based on the findings, suggesting areas for further development and potential applications of the
proposed approaches.

This dissertation provides both theoretical advancements and practical solutions for enhanc-
ing service continuity in the evolving landscape of vehicular edge applications, bridging the gap
between vehicular networking, computing, and next-generation cellular technologies.

1.1 Challenges and Contributions overview

ETSI has made significant advancements in the field of ITS with the publication of several doc-
uments aiming to constitute a set of standards for the development of Cooperative-Intelligent
Transportation System (C-ITS) [21]. It defines message structures for both periodically exchanged
messages (non-safety messages) [19] and messages exchanged in exceptional situations (safety mes-
sages) [20]. Ensuring the trustworthiness of these messages is crucial, as they play a central role
in maintaining traffic safety. Moreover, the loss or tampering of such messages can disrupt the
correctness of some critical functionality, such as autonomous driving, by significantly increasing
the risk of accidents.

Similarly, VANET scenarios present a multitude of new challenges [22, 23, 24, 25], especially
regarding security and reliability. From a security perspective, attackers may exploit vulnerabili-
ties to forge or alter messages, propagating false or misleading information through the network.
This can result in potentially severe consequences, such as traffic accidents or misrouted vehicles.
On the data delivery side, the transmission of cooperative awareness messages usually occurs at a
given frequency, thus exacerbating the probability of data loss and leading to repeated interference
between nodes [25]. Addressing these challenges requires developing solutions that ensure both
the authenticity and integrity of messages while mitigating interference and preventing data loss.

Furthermore, as vehicles evolve into both data sources and mobile computing nodes, the de-
mand for computational resources near the edge of the network grows. This necessitates the effi-
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1.1 Challenges and Contributions overview

cient allocation and utilization of resources to ensure timely and reliable service delivery. Several
frameworks and models [2, 4] proposed to incorporate/exploit resources included in software-
defined vehicles into/with the cloud infrastructure, ensuring seamless connectivity and resource
utilization. Regarding task allocation, various algorithmic strategies have been suggested to assess
the likelihood of nodes successfully completing computational tasks [26, 27, 28].

Nevertheless, many existing solutions ignore the challenges of multi-vendor and multi-domain
environments, where interoperability and coordination between different systems are critical. Ad-
ditionally, the issue of task migration, transferring ongoing tasks between vehicles or edge nodes to
maintain service continuity, remains underexplored. Finally, there is a lack of comprehensive sim-
ulation tools that provide a unified platform for vehicular networking and computing. Given the
high cost and complexity of real-world vehicular experiments, such a tool is essential for designing
and testing algorithms in this domain.

In light of these challenges, this dissertation makes the following contributions:

1. Reputation-based Mechanism for VANETs Communications: The first contribution
is the design of a reputation-based mechanism that identifies malicious messages within
VANETs. The mechanism works with standardized message formats and securely stores
computed reputation scores using a Direct Acyclic Graph (DAG)-based ledger, ensuring
tamper-resistant and distributed trust management.

2. Creation of ETSI-compliant ITS-Message Dataset: The second contribution involves
generating the first ETSI-compliant dataset that includes both safety and non-safety mes-
sages exchanged in V2V and Vehicle-to-infrastructure (V2I) communications.

3. Leveraging Time-Sensitive Networking (TSN) in Next-Generation Vehicles: The
third contribution relies on the emerging role of TSN as a technology for in-vehicle com-
munications in next-generation vehicles [29]. TSN offers precise timing, synchronization,
and deterministic communication capabilities. The idea is to leverage TSN to orchestrate
coordinated message transmission schedules for out-vehicle communications, reducing the
risk of message collisions and significantly improving the overall reliability of VANET.

4. An ETSI MEC-compliant VC Architecture: The fourth contribution is the proposal
of VC architecture based on the ETSI MEC standard. This approach extends the com-
putational capacity of MEC nodes by integrating resources provided by vehicles and other
far-edge devices, exposed and made available in a standardized way. A custom simulation
tool has been developed to model the volatility of devices in the resource pool, providing
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1 Introduction

a testing platform for engineers and researchers to experiment with applications in a VC
context.

5. Integration of MEC and O-RAN Standards in 5G Networks: The fifth contribu-
tion is the extensive study conducted on the integration of the ETSI MEC standard in a
5G network compliant with the O-RAN specification. This study lays the foundation for
a real testbed that demonstrates the feasibility of the VC paradigm exploiting the MEC
components, as proposed in this dissertation. Additionally, this integration enables the de-
ployment of user-related applications (i.e., MEC app) alongside those related to the RAN
management (i.e., xApps and rApps). The study also enabled the development of a frame-
work for creating near-real-time O-RAN-compliant applications, which play a central role
in this integrated environment.

1.2 Related Publications

Parts of the work described in this dissertation come from following peer-reviewed publications:

• [30] Feraudo, A., Calvio, A., Bujari, A., and Bellavista, P., “A Novel Design for Advanced

5G Deployment Environments with Virtualized Resources at Vehicular and MEC

Nodes." 2023 IEEE Vehicular Networking Conference (VNC). IEEE, 2023.

• [31] Feraudo, A. “PhD Forum Abstract: Vehicular-based Support to Cooperative

Edge Computing based Applications in Next-gen Networks." Proceedings of the 22nd
International Conference on Information Processing in Sensor Networks. 2023.

• [32] Feraudo, A., Calvio, A. and Bellavista, P. “A Novel OMNeT++- Based Simula-

tion Tool for Vehicular Cloud Computing in ETSI MEC-Compliant 5G Environ-

ments." In Proceedings of the 13th International Conference on Simulation and Modeling
Methodologies, Technologies and Applications. 2023.

• [33] Feraudo, A., Calvio, A., and Bellavista, P. “Simulating and Validating Vehicular

Cloud Computing Applications in MEC-enabled 5G Environments." Journal of Sim-
ulation Engineering. 2024.

• [34]Feraudo, A., Romandini, N., Mazzocca, C., Montanari, R., and Bellavista, P. “DIVA:

A DID-based reputation system for secure transmission in VANETs using IOTA."
Computer Networks. 2024.
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1.2 Related Publications

• [35] Feraudo, A., Maxenti S., Lacava A., Bellavista P., Polese M., and Tommaso M. “ xDe-

vSM: Streamlining xApp Development With a Flexible Framework for O-RAN E2

Service Models." Proceedings of the 18th ACM Workshop on Wireless Network Testbeds,
Experimental evaluation & Characterization. 2024.

I have also contributed to the following non-peer-reviewed publication that contributes to the
work of this dissertation:

• [36] Feraudo, A., Andrea G., and Paolo B. “Controlling Communications Quality in

V2V Platooning: a TSN-like Slot-Based Scheduler Approach." Preprint. 2024.

During my PhD, I have also coauthored the following publication, that do not directly and
primarily contribute to the work described in this dissertation:

• [37] Feraudo, A., Popescu, D. A., Yadav, P., Mortier, R., and Bellavista, P. “Mitigating IoT

Botnet DDoS Attacks through MUD and eBPF based Traffic Filtering." In Proceed-
ings of the 25th International Conference on Distributed Computing and Networking.
2024.
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2 Fundamentals

This chapter provides the concepts necessary to understand the architectures, technologies, and
frameworks central to this dissertation. It begins with an overview of networking elements in
vehicular networking environments (section 2.1), emphasizing European standards, and in 5G
technology (section 2.2). The chapter then discusses the primary functional elements of the ETSI
MEC standard (section 2.3) and investigates its integration within 5G-based scenarios. Next, it
describes available vehicular computing paradigms and possible layering models (section 2.4). Fi-
nally, the chapter examines the main components of the O-RAN specification (section 2.5). To-
gether, these concepts form the technological foundation upon which the research and contribu-
tions of this dissertation are built.

2.1 Vehicular Networks

VANETs are self-organizing networks where vehicles serve as mobile nodes or routers, facilitating
communication over extended distances. Each vehicle is equipped with an OBU, allowing it to
connect with nearby vehicles and establish network links dynamically. In such scenarios, RSUs are
strategically placed along roadways to enhance service access and enable broader vehicle commu-
nication. As illustrated in Figure 2.1, VANETs support several communication modes, including
V2V for direct data exchange between cars, V2I for interactions with roadside infrastructure, and
Vehicle-to-everything (V2X), which extends communication to pedestrians, devices, and traffic
systems, enhancing overall traffic management and safety.

Currently, two primary technologies promote VANET communications: IEEE 802.11p [5]
and Cellular-Vehicle-to-everything (C-V2X) [38, 6]. The 802.11p standard operates at the phys-
ical and Medium Access Control (MAC) layers, while it utilizes the 802.11 wireless technology
to enable wireless V2V and V2I communications. However, despite the good performance of
this standard, it does not assure satisfactory reliability of message delivery. In 2019, the Internet
Task Force (ITF) developed a novel V2X communication standard, known as IEEE 802.11bd.
This standard is based on the IEEE 802.11ac (i.e., Wi-Fi 5), which makes it more powerful than
its predecessor IEEE 802.11p. Specifically, it should guarantee twice the performance of IEEE
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Figure 2.1: Vehicular ad hoc Networks Communication Modes

802.11 [39] in terms of throughput, latency, reliability, and communication range while guaran-
teeing backward compatibility with the previous standard. Furthermore, the use of Low-density
Parity-check Coding (LDPC) and Midambles enables IEEE 802.11bd to achieve better reliability
of message delivery compared to IEEE 802.11p, i.e., about 88% vs 75% [40].

On the other hand, C-V2X, developed by the 3GPP, leverages the existing cellular network
infrastructure to offer a unified solution for V2V, V2I, and V2X communications. Initially in-
troduced in Release 14 (Long-Term Evolution V2X) [38], C-V2X supported only broadcast com-
munications. However, with the introduction of New Radio (NR) V2X in Release-16 [6], sup-
port was extended to unicast and groupcast communications. In such a scenario, vehicles exploit
the PC5 interface for direct V2V communications independent of cellular networks, while the
Uu interface is used to facilitate traditional cellular communications, enabling vehicles to receive
information about road and traffic conditions.

The message specification for these technologies may vary across regions. For example, in the
United States V2V communications are governed by the Wireless Access in Vehicular Environ-
ments (WAVE) standard [41], while in Europe, the ETSI group has established the ITS-G5 stan-
dard [42]. Both variants include messages with comparable information but different encodings,
such as the Basic Safety Message (BSM) in WAVE and the CAM in ITS-G5.

ITS-G5: European Protocol Stack for V2XCommunication

The set of standards provided by ETSI [42, 43, 44, 8], defines any vehicle or, more broadly, any
device participating in the ITS system as an ITS station. This includes both road users, such as
vehicles, and RSUs. Each ITS station operates according to the protocols at the various layers, as
depicted in Figure 2.2. The protocol stack defined by ETSI [44] aligns with the Open Systems In-
terconnection (OSI) model, comprising four horizontal protocol layers and two vertical protocol
entities.
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The horizontal layers include the access layer, responsible for internal communications within
the ITS station and external communications with other nodes. The networking and transport
layer involves protocols that handle data delivery between ITS stations and other network nodes,
ensuring reliable data exchange across the network. An instance of Basic Transfer Protocol (BTP)
using the GeoNetworking protocol stack is provided in Figure 2.2. The GeoNetworking Proto-
col [43] leverages geographical positions for data packet distribution, relying on a geographical
routing process to direct messages to specific geographic areas. Figure 2.2 also reports how BTP
can be combined with IPv6. Next to this layer, the facilities layer offers essential functions such
as data aggregation, storage, and message management, supporting the overall application func-
tionality by handling message exchange and maintaining active connections.

The application layer focuses on the specific use cases and applications within an ITS scenario,
such as traffic management or autonomous driving. Two vertical entities also support cross-layer
functions: the ITS management entity, which configures the ITS station and ensures information
exchange between layers, and the ITS security entity, which handles security services such as secure
message transmission, identity management, and platform security.

European StandardMessage Formats for V2XCommunication

As mentioned previously, in Europe, the ETSI has released several standards [8, 19, 20, 45] for ve-
hicular communication message formatting. Among these, the two primary formats are the Co-
operative Awareness Message (CAM) [19] and Decentralized Environmental Notification Mes-
sage(DENM) [20]. CAMs facilitate awareness among ITS stations by enabling both road users
and infrastructure to share information about their position, dynamics, and characteristics. This
information is transmitted periodically, with its management and processing handled by Cooper-
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Table 2.1: CAM and DENM Message Content Examples
CAM Message Content DENM Message Content

Column Name Description Column Name Description

source stationID of the ITS-S generating the message. source stationID of the ITS-S generating the message.
destination Destination of the message (null if broadcast). destination Destination of the message (null if broadcast).
messageID Message type: (2) cam messageID Message type: (1) denm
refPositionLat Latitude of reference point. actionID Event ID: stationID:seqNumber.
refPositionLong Longitude of reference point. situation_infoQ Probability of event’s existence.
refPositionAlt Altitude of reference point. situation_eventType Describes the event type.
genDeltaTime Time of CAM generation. location_heading Heading of the event.
isSpecialVehicle True/False based on vehicle type. detection_time Time event was detected.
causeCodeIfSpecial Describes emergency/safety event type. ref_time Time DENM was generated.
stationType Type of the originating ITS-S. location_speed Speed of detected event.

eventPos_lat Latitude of the event.
eventPos_long Longitude of the event.
eventPos_alt Altitude of the event.
termination Termination:

- Cancellation: By originating ITS-S
- Negation: By another ITS-S

stationType Type of the originating ITS-S.

ative Awareness (CA) basic service. The CA basic service operates at the facilities layer, interacting
with the ITS application layer to gather pertinent data for CAM generation and forward received
CAM content for further processing. The specific content of these messages may vary based on
the type of ITS station, such as whether it is a vehicle or a RSU. A use case demonstrating the
application of CAMs is Cooperative Adaptive Cruise Control [8], an ITS application where con-
tinuous communication between a target vehicle and a subject vehicle enables the subject vehicle
to adjust and maintain a reduced time gap with the target vehicle.

On the other hand, DENMs are used to transmit exceptional events detected by ITS stations,
such as road hazards or abnormal traffic conditions. Upon detection of an event, an ITS station
transmits a DENM to inform nearby ITS stations about the situation. Unlike CAMs, DENMs
are not sent periodically; instead, they are generated and disseminated as long as the event is on-
going. The Decentralized Environmental Notification (DEN) basic service (see Figure 2.2 right
stack) is responsible for constructing and delivering the DENM payload to the ITS networking
and transport layer. These messages can also be initiated by the source of an event, for instance,
in case of electronic brake light malfunctioning. One practical example of DENM application is
in advanced Pre-Crash sensing systems [8], which provide information on detecting critical situa-
tions. Upon receiving a DENM, each vehicle can activate its Pre-Crash measures if it assesses that
it is at risk.

Table 2.1 presents an overview of the message contents discussed in this section. It should be
noted that field names have been adapted to align with the algorithms and solutions described
throughout this dissertation.
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2.2 5GNewRadio RAN and 5GCore

5G, the fifth generation of mobile cellular networks, was formalized in December 2017 by the
3GPP [46], marking it as the successor to 4G networks. This section introduces essential aspects
of the 5G NR RAN and 5G Core, focusing on the elements relevant to this dissertation.

5GNewGeneration-RAN architecture

The primary components of the Next-Generation RAN (hereafter RAN) are the User Equip-
ment (UE) and Next Generation NodeB (gNB). The UE can be various mobile devices, such as
smartphones, vehicles, or Internet of Things (IoT) devices like smart city sensors or cameras. The
UE is responsible for bidirectional data transfer through the 5G network, ensuring correct bearer
allocation and providing security measures like data encryption. On the other hand, gNBs supply
radio coverage and are equipped with enhanced capabilities to meet 5G requirements, including
ultra-low latency, increased bandwidth, and massive IoT support. Additionally, the gNB han-
dles multiple devices and cells, manages radio resources, and schedules uplink and downlink data
transfers over the radio interface.

The radio interface connecting the UE and gNB is the 5G Uu interface. Additional connec-
tivity includes the textitXn reference points that allow inter-gNB communication, while connec-
tivity to the core network is achieved through N reference points. For instance, the N2 interface
supports control plane data flow, while N3 handles user plane traffic and data transmission. Fig-
ure 2.3 provides an overview of these reference points.

5G Cloud RAN

Service providers may deploy 5G base stations using a cloud-native approach named cloud RAN.
This approach virtualizes radio access network functions to enable more flexible, scalable, and
efficient deployments. This method shifts base station computing and storage capabilities to a
centralized Central Unit (CU), responsible for non-time-critical processing activities of gNBs.
The Distributed Unit (DU), located at the gNB side, exchanges traffic with the CU, while an
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additional unit called Radio Unit (RU), responsible for radio transmission, is deployed at cell
sites and connects with the DU.

5G Core

As already demonstrated, 5G architecture follows cloud-native development principles, with the
5G core comprising multiple independent network functions that handle functionalities such as
mobility management, session management, traffic policy, and QoS control. While Figure 2.3
illustrates most of the network functions currently defined by 3GPP, this dissertation provides
details of only three of them: the Access and Mobility Management Function (AMF), Session
Management Function (SMF), and User Plan Function (UPF).

The AMF is responsible for managing the control plane interface from the RAN, including
ciphering and integrity protection of UE registration management messages. Acting as a gate-
keeper, it rejects registrations from UEs with invalid subscriptions and manages their mobility
across base stations and AMF regions.

The SMF manages session creation, modification, and termination. It maintains the tunnel
between the UPF and the gNB, handles UE IP address allocation, and responds to Address Res-
olution Protocol (ARP) and IPv4/6 neighbor solicitation requests based on its local cache. The
SMF selects the UPF that will service the subscriber based on different parameters and provides
traffic steering information to the UPF to route the traffic to the proper destination.

The UPF is the primary data plane network function within the 5G core. It performs packet
routing and forwarding, may inspect packets, and optionally assigns IP prefixes as directed by the
SMF. The UPF enforces redirection and traffic steering policies based on the SMF’s instructions,
ensuring QoS for both uplink and downlink transmissions.
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5GNRDeployments

Mobile network operators will go through a transition phase before transiting completely to the
5G network architecture. Two strategies exist: Non-standalone (NSA) and standalone (SA) de-
ployment. In NSA, the 5G gNB supports dual connectivity with a 4G Evolved Node B (eNB),
allowing UEs to connect to both 4G and 5G networks. This setup provides 5G services to users
while utilizing the 4G Evolved Packet Core (EPC) for control connectivity, as shown in Figure 2.4.
Another NSA approach involves the Next-Generation eNB (ng-eNB) and the 5G Core, where the
gNB communicates with the core via dual connectivity with the ng-eNB.

All experiments in this dissertation are conducted on a 5G SA network, where gNBs connect
directly to the 5G core without dual connectivity across base stations (deployment on the right in
Figure 2.4).

2.3 Multi-access Edge Computing

The MEC standard, developed by the ETSI, responds to the need for a standard for a virtualized,
multi-tenant environment at the network’s edge. It offers a standard way to distribute virtualized
resources throughout the network by supporting the deployment of contextualized MEC Appli-
cations (MEC Apps) near data sources and end-users while also enabling seamless integration with
cloud infrastructure. These applications, which can be provided by vendors, service providers, or
third parties, are deployed across multi-vendor platforms at the edge, creating a distributed cloud
continuum.

Figure 2.5 illustrates the key functional components included in the reference architecture [11].
The architecture is organized into two primary layers: the system and the host layer. Each element
within these layers is linked to the others via reference points, allowing the exchange of standard-
ized information, i.e., management (Mm), external (Mx), and MEC Platform-related (Mp).

The system layer enables interactions between users and the overall infrastructure, handling
the underlying elements and managing MEC-Hosts (MEC-Hs) distributed across the network.
Device Apps (D-App) are components deployed as applications in traditional UE devices like ve-
hicles, which can interact with the MEC infrastructure via the User Application LifeCycle Man-
agement Proxy (UALCMP). The latter helps manage all the procedures to instantiate, delete, and
relocate MEC Apps upon client requests. The core component at this layer is the MEC Orches-
trator (MEC-O), which has a holistic view of all MEC-Hs across the network, including available
resources, services, and topology. The MEC-O selects the most suitable host where to deploy the
MEC-App requested. The choice of the best host can be based on different algorithms favoring
the specific requirements of each requested service. Finally, this layer includes the Customer Fac-
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ing Service (CFS) portal, allowing third parties to select and order a set of MEC Apps that meet
their needs.

The host layer comprises the key functional elements responsible for managing the virtualized
environment and its resources, including storage, computing, and networking. These compo-
nents facilitate the instantiation, deletion, and control of MEC Apps running on the infrastruc-
ture. At the core of this layer is the Virtualization Infrastructure Manager (VIM), which handles
the virtualized resources within the MEC-H’s Virtualization Infrastructure (VI). All operations
required to prepare the infrastructure for a new MEC App deployment are handled by the VIM.
The MEC-H, which serves as edge node hosting MEC Apps, enable these applications to interact
with standard services like Location Service, Radio Network Information (RNI), and Applica-
tion Mobility Service (AMS), through the MEC Platform (MEC-P). The platform maintains a
service registry with information about service endpoints, facilitating integration between sev-
eral MEC-Hs. The MEC Platform Manager (MEC-PM) serves as an intermediary, ensuring that
the MEC-O is updated on MEC Apps’ status by forwarding relevant application events. This
component also acts as an administrator, managing configurations, handling fault reports, and
monitoring performance metrics from the VIM.

Deploy ETSIMEC in 5GNetworks

Within the realm of 3GPP 5G networks [46, 6], MEC deployments are a key focus for optimal
performance [47]. The MEC standard is designed with the intent of providing context-aware
services in 4G/5G deployments, delivering information related to the RAN and UE (e.g., RNI
service). The reference architecture is also compatible with the cloud-native approach on which
the 5G network relies, where network functions consume or produce services.
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A key component in this integration is the UPF, the main data plane network function in the
5G Core (see section 2.2). User data traffic flows from the UE to the gNB, passing through the
user plane before exiting the data network. From a MEC perspective, the UPF functions as a dis-
tributed and configurable data plane. As a result, in certain deployments, the UPF can be directly
integrated into the MEC architecture, facilitating localized data handling at the network edge.

Another 5G Core network function relevant to this integration is the SMF (section 2.2). Given
that MEC services may need to be accessed by other edge nodes, the SMF is crucial in ensuring
traffic steering toward the correct MEC Apps by configuring the UPF rules accordingly.

As mentioned in the previous section, MEC-Hs is logically deployed at the edge of the net-
work, meaning the UPF is responsible for steering the user plane traffic towards the targeted MEC
Apps in the data network. Network operators have multiple options to decide where the MEC-
Hs should be deployed in the network[47]. This dissertation focuses on deployments where the
MEC-H and the local UPF are co-located with a network aggregation point, as depicted in Fig-
ure 2.6.

2.4 Vehicular Computing Paradigm

VCC relies on the principle that future vehicles have enough computation power to serve as com-
putation platforms for edge-based services. The early investigations into this paradigm were led
by [15] and [14], both recognizing the potential of modern vehicles equipped with powerful on-
board computers, heavy storage, and a range of sensors. Olariu et al. [15] defined VCC as a col-
laborative way to share resources among vehicles to solve problems that would otherwise require
a significant amount of time with a more traditional centralized architecture, in particular for
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context-specific applications. Gerla in [14] defined this paradigm as a platoon of vehicles that
keep the information gathered by sensors locally and share it solely with other vehicles. This ap-
proach helps address the significant technical challenges posed by the vast amounts of data gener-
ated within vehicles for network infrastructure. With the proliferation of sensors in vehicles [1],
it is predicted exponential growth in the data traffic generated by vehicles [12]. Therefore, Vehic-
ular Cloud Computing proves to be crucial in mitigating network congestion by facilitating data
pre-processing directly among groups of vehicles [14].

Complementing VCC, VEC paradigm integrates vehicular networks with edge computing in-
frastructure, bringing computational resources closer to vehicles. This proximity reduces latency
and improves application availability through V2I communications [3, 7]. In such an environ-
ment, vehicles can offload computation- or latency-sensitive tasks to edge servers, often hosted by
RSUs, without needing to access the core network, enhancing efficiency and responsiveness.

Both paradigms generally rely on the often-underutilized computational resources included in
vehicles. Resources included in parked or congested vehicles often remain idle for extended pe-
riods, leaving substantial computational power unused. Conversely, there are situations where
a vehicle lacks the necessary resources to execute a task, while nearby vehicles may have surplus
resources that could fulfill the demand. To manage this, vehicular edge architectures typically or-
ganize resources into layers. As detailed in [3], there exist multiple layering models. The two-layer
architectures generally include an edge layer supporting vehicular applications and a vehicular
layer aggregating vehicle computing resources. Three-layer architectures add a cloud/controller
layer, which provides significant computational resources for processing complex data and orches-
trating edge resources. Some architectures even utilize a four-layer model that abstracts resource
orchestration into an independent layer, thus introducing more complexity.

Building on these concepts, this dissertation integrates both VCC and VEC paradigms, en-
compassing all available resources across the cloud continuum—cloud, edge, and far edge—into
a unified framework called VC. Figure 1.1 shows the resources layering at the core of this disserta-
tion.

Despite its potential benefits, the VC paradigm also introduces several challenges that must
be addressed. One key issue is distributed ownership, where each vehicle is owned individually,
leaving resource-sharing decisions to the vehicle’s owner. Another challenge is high node mobility,
which makes it difficult to predict the vehicular residency times in the cloud even when clouds
are formed using resources of stationary cars within a parking lot [17]. Device heterogeneity, as
vehicles are manufactured by different companies [2]. Finally, due to the sensitive information
shared among cars, security, authentication, and privacy represent critical open issues in such a
context [17, 3, 2].
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2.5 Open Radio Access Network

The O-RAN Alliance [48] introduces a new RAN paradigm based on the concept of openness,
marking a significant shift in how networks are deployed and optimized. This approach enables
gNBs to expose data and analytics, facilitating closed-loop control and automation. As illustrated
in Figure 2.7, the gNB is disaggregated into different functional units: the CU, DU, and RU.
The CU is further split into two logical components—one for the control plane (CP) and the
other for the user plane (UP)—which can be deployed at different locations within the network,
offering flexibility in resource management. In this direction, the O-RAN Alliance detailed Fron-
thaul specifications, defining open interfaces that support the 7.2x split configuration, chosen
from those specified by 3GPP. This configuration divides the physical layer between the RU and
DU, with the RU handling phy-low functions and the DU handling phy-high functions. Fur-
thermore, O-RAN extends the 3GPP-standardized gNBs by supporting RAN Intelligent Con-
trollers (RICs) through open interfaces that stream telemetry from the RAN and apply dynamic
configurations in real-time.

The current O-RAN specifications include two instances of the RIC, operating at different
time scales and on different parameters. The Non-Real-Time (RT) RIC, hosted in the network
Service Management and Orchestration (SMO), supports control loops with a time scale higher
than 1 s, and enforces policies or high-level configurations on the system. The Near-RT RIC per-
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forms radio resource management by directly tuning the configuration parameters of the RAN
at a time scale between 10 ms and 1 s. These RICs host custom applications known as rApps and
xApps, respectively, which implement the closed-loop control logic.

The O-RAN alliance has also defined technical specifications describing the open interfaces
connecting the O-RAN components. These interfaces make the RAN open, as they facilitate the
exposure of data analytics and telemetry and enable several control and automation procedures
through the RICs. As illustrated in Figure 2.7, the E2 interface connects the Near-RT RIC to
the RAN nodes, enabling near real-time closed-loop control. Meanwhile, the A1 interface links
the Non-RT RIC and Near-RT RIC, enabling control, policy enforcement, orchestration, and
deployment of intelligent models at non-real-time scales. The O1 interface allows the Non-RT
RIC to manage and orchestrate other RAN components’ network functions.

To ensure vendor interoperability across RAN and Near-RT RIC implementations, the O-
RAN Alliance Working Group (WG) 3 has developed specifications for multiple protocols that
define E2 interface [49]. The first specification is the E2 Application Protocol (E2AP) [50], which
governs general management operations, such as establishing or disconnecting a gNB from the
Near-RT RIC, and provides a list of supported RAN functions. The E2 Service Model (E2SM)
specifications [51] define the semantics of interactions between xApps and gNBs. Each service
model is featured in a document extending the general specification of the E2SM with parame-
ters related to the use case of interest. Examples of these extensions are the E2SM Key Performance
Measurement (KPM) [52], for data collection, and the E2SM RAN Control (RC) [53], which
defines the protocol to perform Radio Resource Management (RRM) actions such as traffic steer-
ing through handover management.

This dissertation focuses on the Near-RT RIC and its associated xApps, as they play a critical
role in radio resource management and provide real-time access to radio-related metrics. The fol-
lowing chapters will explore how this component of the O-RAN architecture can be leveraged
to integrate ETSI MEC in a 5G network and build a testbed that supports advanced application
scenarios for next-generation networks.

Near-RT RIC implementations

The RIC platform itself has been subject to several development efforts, primarily for scaled-down
versions of the Near-RT RIC [54], such as the O-RAN Software Community (OSC) reference
implementation [55] and the Open Air Interface (OAI) FlexRIC [56]. The OSC reference im-
plementation provides a micro-service-based architecture for the Near-RT RIC, including various
components, such as internal message routing via RIC Message Router (RMR), E2 termination,
a subscription manager, a network information base database, and a shared data layer API, among
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others. Each of these components operates within a Kubernetes cluster, ensuring scalability and
efficient resource management. Besides the Near-RT RIC implementation, the OSC project also
offers an xApp framework [57] that uses the RIC RMR to manage the message exchange with
the remaining components of the RIC platform.

Another significant development is OAI FlexRIC, a Software Development Kit (SDK) for
software-defined RAN controllers that supports an E2-compatible protocol. FlexRIC includes an
iApp component that implements E2SMs, exposing data to xApps, along with a server library that
manages connections between xApps and dispatches E2AP messages to E2 Nodes. The FlexRIC
approach relies on a monolithic architecture, where all Near-RT RIC operations are included in
a single component, decreasing the flexibility of the RIC platform.

This dissertation uses the O-RAN components from the OSC project, as they provide a refer-
ence implementation closely aligned with the O-RAN Alliance’s architecture and specifications.
This ensures greater compatibility and consistency with ongoing industry developments in the
O-RAN ecosystem.
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Reliability

As described in section 2.1, the content of vehicular messages can differ due to varying specifica-
tions in different regions [41, 42]. This Chapter, more broadly, this dissertation, focuses exclu-
sively on the European message formats as defined by ETSI, focusing on ensuring the integrity
of the transmitted data. Maintaining the trustworthiness of this information is critical, as the
content of these messages is vital for upholding traffic safety in vehicular scenarios. Additionally,
it is essential to mitigate interference and data loss, which could compromise the safety of these
environments.

In response to these challenges, this Chapter investigates two solutions. First, it provides the
design and implementation of a reputation-based system to reliably identify malicious messages
within VANET environments while safeguarding vehicle owners’ privacy. Second, it introduces a
solution that extends modern in-vehicle communication systems, leveraging TSN [29], to exter-
nal vehicular communications (V2X). This extension aims to bring the benefits of TSN’s deter-
ministic networking, low latency, and high reliability to V2X scenarios, enhancing data delivery
and reducing packet collisions in vehicular networks. The Chapter also provides the results ob-
tained during the experimentation of these solutions to validate their effectiveness in simulated
yet realistic settings.

3.1 Securing V2X Transmissionwith Reputation Systems

VANET scenarios present a multitude of new security challenges [22, 23, 24, 3]. According to
[23], two categories of attack surfaces can be identified in VANET:

1. VANET attacks. These comprise messages exchanged between vehicles and between vehi-
cles and infrastructure, including environmental information (speed, direction, abnormal
road events, etc.). For example, an attacker may exploit vulnerabilities to forge messages
containing false or misleading information, potentially leading to severe consequences such
as car accidents or misrouted vehicles. Additionally, passive attacks, such as packet eaves-
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dropping, can be carried out to gather sensitive information about vehicles and traffic in
specific areas.

2. In-Vehicle attacks.These attacks target the communication between in-vehicle hardware
components, potentially compromising critical systems. For instance, they can remotely
unlock vehicle doors, disable the braking system, or impair sensors essential for autonomous
driving, posing significant safety risks.

This dissertation focuses on addressing VANET attacks, proposing a solution called Decen-
tralized Identifiers (DID)-based reputation system for secure transmission in VAnets (DIVA), de-
signed to offer a reliable solution to identify malicious messages. DIVA requires every vehicle
to have a unique identifier and share road information with other entities within the network.
Vehicles are identified with Decentralized Identifiers (DIDs), while their participation is regu-
lated using Verifiable Credentials (VCreds). A DID consists of three parts: a Uniform Resource
Identifier (URI), a specific DID method identifier, and a method-specific DID identifier. DIDs
eliminate the need for identity providers and centralized authorities, allowing entities to prove
ownership by using private keys corresponding to the embedded public keys in the DID docu-
ment. Verification is achieved by accessing the public DID Document, typically shared through a
verifiable data registry often implemented via Distributed Ledger Technologys (DLTs). DLTs are
decentralized systems that replicate data across multiple nodes, ensuring tamper-proof records
without a central authority. They rely on Peer-to-Peer networks and cryptographic consensus to
prevent single points of failure. The two main types of DLTs are blockchain, which links blocks
of data using hash pointers to detect tampering, and DAG, a directed graph structure without
cycles that provides a more flexible alternative to traditional blockchains.

On the other hand, VCred [58] is a standardized data structure for representing cryptographi-
cally verifiable and tamper-proof claims. In the VCred ecosystem, holders manage VCreds, issuers
(e.g., the Ministry of Transport) create them, and verifiers use them to establish trust, such as when
an RSU collects vehicle data.

In the proposed system, each DID starts with a default reputation score, which is then adjusted
based on the history of exchanged message contents and their truthfulness. Reputation scores are
stored in the IOTA Tangle [59], a DAG-based ledger spread across multiple edge nodes covering a
specific geographical area, e.g., a city. The computation of reputation scores occurs at edge nodes
avoiding computation overhead and delays on the participating vehicles.

To evaluate the effectiveness of the proposed reputation system, this dissertation provides a
dataset including safety and non-safety V2X messages compliant with the ETSI standard. The
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dataset has been further augmented by introducing controlled instances of malicious messages,
allowing for testing how DIVA responds to misbehaving vehicles.

The contributions of this section are as follows:

• It provides design and implementation details of a novel reputation scheme for VANET,
with full compliance with ETSI standards;

• It describes an extensive ETSI-compliant communication dataset generated to measure the
performance of the proposed reputation scheme.

Additionally, this section surveys the state-of-the-art reputation systems for VANET, focusing
on blockchain-based approaches. It also reviews existing datasets on VANET communications to
provide context and relevance for the proposed solution.

3.1.1 RelatedWork

This section aims to provide a literature review of reputation schemes based on blockchain and
DAG - the two main types of DLT employed in vehicular scenarios. In addition to exploring
these reputation schemes, this section also provides a comprehensive overview of existing datasets
related to vehicular communications, highlighting their use in such a context.

DLT-based Reputation Systems

This state-of-the-art analysis distinguishes between blockchain-based and DAG-based reputation
schemes in vehicular communication networks.

Reputation schemes based on blockchain have been widely explored in the context of vehicular
communication networks. Li et al. [60] introduced a mechanism named BDRA to secure regis-
tration and authentication using a double-layer blockchain and DIDs. The first layer includes
authorized RSUs, while the second one categorizes vehicles considering the corresponding RSU
coverage area. The RSU and the vehicles collaborate to form a consortium blockchain in each area.
DIDs are leveraged to reduce reliance on third-party intermediaries for the registration phase and
implement the reputation feedback mechanism. This mechanism updates reputations relying on
messages sent by vehicles. However, there is no indication of how the truthfulness of these mes-
sages is verified.

Similarly, Fernandes et al. [61] introduced BRS4VANET, a decentralized reputation system
leveraging a consortium blockchain and smart contracts. In this system, RSUs calculate and store
vehicles’ reputations blockchain based on feedback from other vehicles. To ensure privacy, ve-
hicles utilize pseudo-anonymous certificates, which are revoked if their reputation falls below a
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predefined threshold. However, the authors do not outline the certificate revocation process in
this work.

Lu et al. [62] proposed BARS, a blockchain-based anonymous reputation system, to increase
the security of VANETs by preventing the propagation of malicious messages. BARS safeguards
user privacy through pseudonyms generated from public keys. The proposed reputation system
evaluates both direct and indirect interactions among vehicles, leveraging blockchain technology
to securely and immutably store vehicle reputation certificates alongside their public keys. In this
work, the authors do not address how the system verifies the truthfulness of messages.

Yang et al. [63] proposed a blockchain-based trust management system for VANETs. Each ve-
hicle generates a reputation score for each received message based on a Bayesian Inference Model.
In this approach, each vehicle evaluates received messages using a Bayesian Inference Model to
generate a reputation score. These scores are then sent to the RSU, which aggregates reputation
values from nearby vehicles and constructs blocks for the blockchain. RSUs are responsible for
maintaining the blockchain and competing to append new blocks. The authors use vehicle iden-
tity numbers for identification, potentially compromising privacy.

Reputation schemes based on DAG represent an emerging research direction, offering advan-
tages such as scalability, fast transactions, and low fees. Li et al. [64] proposed a partitioned DAG-
based ledger for managing vehicular reputation in VANETs, focusing on local interactions where
information remains relevant only to nearby vehicles for a limited duration. To establish trust, a
node extracts interaction information from transactions and uses it to calculate the reputation of
other nodes according to the situation. However, as the number of transactions increased, the ap-
proach became impractical. To mitigate this, the authors introduced a data structure for interme-
diate reputation calculations, which, while addressing the issue, introduced additional overhead
and impacted scalability. Their approach primarily focuses on estimating and updating vehicle
reputations but overlooks vehicle identification and communication, which are critical concerns
to enhance communication security in VANETs.

Li et al. [65] presented a DAG-based reputation mechanism designed to realize the authenticity,
immutability, and accessibility of all vehicle reputations while preserving their privacy. In the
proposed system, the reputations of vehicles are used to determine the degree of protection of
their privacy when a peer captures and uploads an image of a traffic accident on the DAG for
mutual supervision. Although reputation is intended to be the core aspect of their proposal, the
authors primarily focus on privacy concerns, providing limited details on how reputation scores
are calculated and updated.

To extend the tamper-proof capability of blockchain to large-scale vehicle networks, Du et
al. [66] proposed an information-sharing approach based on a DAG. To mitigate chain attacks,
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they designed a reputation-based rate control strategy, where reputation is used to identify reli-
able vehicles that participate in voting to reach consensus and regulate the number of published
transactions.

A Review of Data Collection in Vehicular Networks and Sensor Systems

Publicly available datasets are crucial for validating and benchmarking innovative solutions across
real-world scenarios. This analysis focuses on datasets capturing data from vehicular systems, in-
cluding in-vehicle and external-vehicle networks. The former primarily includes datasets provid-
ing data from the Controller Area Network (CAN) bus, a robust in-vehicle communication pro-
tocol that enables real-time communication between vehicles Electronic Control Units (ECUs).
On the other hand, external-vehicle datasets regard wireless communication parameters, particu-
larly in the context of V2X communications.

In-vehicle data collection offers insight into how vehicles communicate internally, making it a
key area for security testing and anomaly detection. For instance, Song et al. [67] created a fully
labeled in-vehicle dataset to demonstrate their intrusion detection algorithm for in-vehicle net-
works. They used two Raspberry Pi devices: one for logging CAN traffic via the OBD-II port
and the other for injecting fabricated messages to simulate attacks. Four types of attacks were in-
troduced: Denial of Service (DoS), Fuzzy attack, Gear Spoofing, and RPM Spoofing. Recently,
Jeong et al.[68] generated seven CAN datasets by reading CAN bus data using a Kvaser Memo-
rator Pro 2xHS device connected through the OBD-II port of a Hyundai LF Sonata 2017. Six
of these datasets were collected during urban driving in Seoul, South Korea, and one was cap-
tured while the vehicle was stationary. In another study, Han et al. [69] collected CAN messages
from three different vehicle models. The collected data were categorized into two types: normal
driving data without attacks and abnormal driving data collected during an attack. In [70], the
authors surveyed existing datasets and introduced the ROAD dataset, which features advanced
attack types like stealthy fabrication attacks, providing more sophisticated testing scenarios for
CAN intrusion detection system.

One of the early efforts to gather real-world V2X data was the European iTETRIS project [71].
The dataset included mobility data and IEEE 802.11p V2I communication traces. Cruz et al. [72]
collected V2V communication data, GPS, inertial, and WiFi data over a 12 km road trip under
typical traffic conditions to enhance vehicle localization accuracy.

Focusing on the U.S. standard, Malebary in [73] provided a dataset including BSM messages
exchanged in V2V and V2I communications based on IEEE 802.11p, in regular and jammed con-
dition. Similarly, the data provided in [74]captured complex-baseband samples of V2V commu-
nication in the presence of jamming signals, including the broadcasting of BSMs. Additionally,
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Boban et al. [75] collected data on two V2X use-cases: teleoperated driving and local dynamic map
update. Their dataset includes uplink and downlink throughput, location data, vehicle speed, and
interference information to evaluate their solution enhancing QoS in V2X applications. Her-
nangómez et al. [76] expanded on these efforts by providing data collected in mixed urban and
highway environments, including cellular and sidelink communications. Their dataset followed
CAM regimes, covering packet size, transmission rate, and modulation and coding schemes, fur-
ther enhancing the study of communication between vehicles in various real-world scenarios.

Discussion

Most existing reputation-based solutions for VANETs do not consider the accuracy of the infor-
mation embedded within standard-defined message structures. Moreover, these systems often
calculate reputation scores directly on vehicles, which requires processing message contents dur-
ing exchanges, leading to notable delays.

Besides these limitations, reputation-based schemes face technical challenges due to the dy-
namic nature of VANET environments. The use of temporary identifiers (such as pseudonyms,
as referenced in [77]) for vehicle identification, combined with the frequent changes in network
topology within a VANET, pose challenges in the definition of reputation scores and the collec-
tion of adequate vehicle information. Furthermore, the computation and propagation of reputa-
tion scores require time, which can be a significant concern for VANET-based applications with
latency-sensitive requirements [3].

Assessing reputation systems in a VANET scenario requires evaluating the information ex-
changed during communication. However, most existing datasets focus on radio-related data or
non-standard content rather than message specifics [73, 75, 76]. Even previous works in this do-
main, such as [78], provide analysis related to message length and transmission frequency but lack
actual message content.

To address these issues, the proposed solution, DIVA, leverages DID for managing vehicle iden-
tities and VCred to regulate participation. Unlike existing systems, in DIVA, the computation of
reputation scores occurs at edge nodes without incurring computation overhead and delays on the
participating vehicles. The system’s performance has been rigorously tested using a novel dataset
generated from a simulated scenario [79]. It includes safety and non-safety messages exchanged
in V2V communications, representing the first attempt to create an ETSI-compliant dataset fo-
cused on message content. To test DIVA under realistic conditions, the dataset has been carefully
manipulated by introducing controlled malicious messages, enabling the system to be evaluated
on its ability to detect and respond to vehicle misbehavior effectively.
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Figure 3.1: DIVA Deployment Scenario

3.1.2 DIVADeployment Scenario

The scenario in which DIVA operates involves a network of edge nodes interconnected via a 5G
core network, utilizing the IEEE 802.11p standard for both V2V and V2I communications. In
this context, reputation-based information on IOTA is maintained across multiple edge nodes.
An edge node serves as the entity providing computational resources in the form of a small data
center located at the network edge, i.e., close to car drivers [80, 11, 30]. The placement of these
nodes is determined by network operators according to their existing infrastructure, as outlined
in section 2.3.

In a VANET scenario, edge nodes may act as collection points for messages from vehicles and
perform computations to determine the trustworthiness of each participant. Edge nodes update
the vehicle reputations through transactions stored in the ledger. Furthermore, it is assumed that
they are designed to be resilient against tampering or unauthorized access.

Each edge node also maintains an internal table that holds the reputation associated with the
vehicles, enabling them to respond quickly to reputation requests without querying the ledger.
This organization minimizes the computation overhead on the vehicle side since participants in
the VANET can directly leverage these data to assess the trustworthiness of other vehicles.

As previously noted, vehicles are uniquely identified using DIDs, assigned and registered on a
ledger by a Trusted Authority (TA). As illustrated in Figure 3.1, the TA consists of an Identity
Provider, such as the Ministry of Transport in Italy or an authorized inspection center, respon-
sible for periodically verifying vehicles’ compliance with legal standards by detecting any physical
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Figure 3.2: DIVA workflow

tampering or modifications. Upon completing these inspections, the Identity Provider issues a
VCred for the vehicle’s DID, certifying its eligibility.

Finally, RSUs are considered integral and trusted components of the infrastructure and, thus,
play a central role in verifying message reliability. The presence of an RSU, providing road-related
data, can assist in identifying malicious vehicles when their contributions inherently deviate from
that of the RSU. However, it is worth noting that not all RSUs are equipped with sensors for
monitoring road-related events; some may function as relay nodes, extending vehicles’ communi-
cation range and facilitating communication with infrastructure components. Therefore, RSUs
providing trusted road data are not uniformly distributed across all roadways. In situations where
RSU sensors are absent, and the RSUs operate as relay nodes, the system assumes that most vehi-
cles are benign.

3.1.3 DIVA: A DID-based Reputation System for secure VANETs

As illustrated in Figure 3.2, the DIVA operations defined in the current version of the system can
be classified into registration, V2X communication, and reputation update.
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Registration

Each vehicle must first register a DID on the ledger and have a VCred issued by a TA, which is
responsible for verifying that the vehicle is compliant with the law and has not been stolen or al-
tered. Upon completing the necessary checks, the vehicle generates a DID and submits it to the
TA. This process guarantees that only the holder of the DID maintains complete control over its
associated information. The TA interacts with the ledger to record the DID and the correspond-
ing DID document. Next, the TA issues a VCred that verifies the successful registration of the
DID and returns it to the vehicle. With the VCred in hand, the vehicle can create a Verifiable Pre-
sentation (VP), which will be included in each communication. The VP is proof of the vehicle’s
identity and ownership of the issued VCred.

V2X Communications

This system adheres to the ETSI message formats outlined in section 2.1 for V2X communica-
tions. Additionally, the system relies on the GeoNetworking Protocol [43] for message dissemi-
nation. For CA basic service message forwarding occurs through Single-Hop Broadcasting, where
messages are sent only to one-hop neighborhoods. In contrast, the DEN basic service employs
GeoBroadcasting for packet forwarding. In this approach, packets are transmitted hop-by-hop
until they reach the designated destination area specified in the packet. Once the packet reaches
the destination area, nodes within that region begin rebroadcasting it to ensure its effective dis-
semination.

Reputation Update

As section 3.1.2 mentions, the scenario assumes that each edge node receives the transmitted mes-
sages within the VANET. As shown in Figure 3.2, upon receiving a DENM, the edge node ver-
ifies the VP, evaluates the received information, and proceeds with the reputation update of the
involved vehicles.

This process can be structured into three key steps: reputation score computation, reputation
score update, and reputation score storage.
Reputation Score Computation. Information from RSUs equipped with traffic monitoring
sensors serves as the ground truth in the DIVA system. These RSUs validate the authenticity of
vehicle-generated messages and help assign reputation scores. As discussed in section 3.1.2, not all
RSUs are equipped with sensors; some function solely as relay nodes to enhance communication,
rendering them incapable of providing traffic condition data. To overcome this limitation, DIVA
incorporates an outlier detection algorithm to identify vehicle-generated messages, safety-related,
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Algorithm 1 Reputation Computation
Input: τeventType, τsitQuality, τcam, ωrsu, ωmsg,
defScore,m
Output: repScores

Require: mage ≥ τeventType;msitQuality ≥ τsitQuality

rsuScore← (ωrsu ∗ defScore)
msgCohScore← (ωmsg ∗ defScore)

if initialReputationExists(msource) then

repScore← loadInitalRepScore(msource)
else

repScore← defaultRepScore
end if

if not messageInsideEdgeArea(m) then

return

end if

if not messageCoherentWithRSU(m) then

repScore← repScore− rsuScore
end if

camCoh← computeCAMCoherency(m, τcam)
if camCoh < 10 then

repScore← repScore−msgCohScore
else

if 10 ≤ cam_coh ≤ 30 then

repScore← repScore
else

repScore← repScore + msgCohScore
end if

end if

similarEvents← findSimilarEvents(m, τeventType,
δeventType)

if len(similarEvents) > 2 then

repScore← repScore−msgCohScore
else

repScore← repScore + msgCohScore
end if

updateRepScore(didm, repScore) ▷ Applying eq.(3.1)

Algorithm 2 CAM coherency
Input: denm, τcam
Output: camCoherency
function computeCAMCoherency(denm, τcam)

cams← loadCam(denmsource, τcam)
camCoh← 0
for all cam in cams do

distance← getDistance(denmevPos, camrefPos)
if distance ≤ δeventType then

camCoh← camCoh + 1
end if

end for

return

return ( camCoh
len(cams)

)× 100

end function

Algorithm 3 DENM coherency
1: Input: denm, τeventType, δeventType

2: Output: similarEvents

3: function findSimilarEvents(denm, τeventType,
δeventType)

4: centroidsDenms← loadCentroids()

5: for all el in centroidsDenms do

6: eventType← el[eventType]

7: τcentroid ← el[time]

8: δcentroid ← el[space]

9: if eventType = denmeventType and abs(τcentroid −
denmdetTime) ≤ τeventType and distance(δcentroid −
denmeventPos) ≤ δeventType then

10: el[time]← τcentroid+denmdetTime
2

11: el[space]← centroid(δcentroid, denmeventPos)

12: return element[denms]

13: end if

14: end for

15: end function

that deviate significantly from the average. Following this evaluation, a reputation score is assigned
to the DID responsible for generating that message.

Each DID is linked to a reputation value rDID ∈ [0, 1], representing the vehicle’s overall trust-
worthiness. The outlier detection algorithm, defined in Algorithm 1, requires the freshness of the
messages τeventType, which depends on the type of event leading to its dissemination and the situ-
ation information quality above a certain threshold, τsitQuality . These data are extracted directly
from the message content, specifically from the fields situation_infoQ and situation_eventType,
as detailed in the DENM column of Table 2.1. For example, in the DENM structure, the situa-
tion_infoQ field ranges from 0 to 7, indicating the quality level of information vehicles provide.
This may be influenced by the condition of the sensor that gathers that information. Moreover,
the message’s generation time is also encoded in the CAM and DENM structures, which helps
identify outdated messages. Messages that are too old or of low quality are excluded from the
reputation calculation, as they are typically ignored by other vehicles within the VANET.

After verifying message quality and freshness, the algorithm checks whether the event’s loca-
tion (eventPos_lat/long/alt Table 2.1), indicated in the messagem, falls within the area managed by
the edge node using the function messageInsideEdgeArea(m). Next, it compares the con-
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tent of the message with the information provided by the RSU and assesses its coherence with the
CAMs generated by the same source. Only CAMs within a time window, defined by a threshold
τcam, are considered. This time window can be adjusted according to the dynamic nature of the
VANET. For instance, in a highway scenario where vehicles move faster, older CAMs might not
reflect the current conditions, making a smaller time window more appropriate. As shown in Al-
gorithm 2, the coherency assessment relies on the Euclidean distance between the event location
indicated in the DENM and the vehicle positions specified in the corresponding CAMs.

Furthermore, the algorithm evaluates the similarity of the event provided in the DENM with
those already received using a centroid-based approach, as outlined in Algorithm 3. This approach
computes two centroids: a time centroid (τcentroid) and a distance centroid (δcentroid).These
centroids are initialized with the detection time and position of the first DENM. Subsequent
DENMs trigger updates to the centroids by averaging the old centroids with the detection time
and position in the newly received message. The time centroid is used to create a time window,
|τcentroid − cadDendetT ime| ≤ τeventType, within which a detection time is considered similar
in temporal terms. From a spatial point of view, δcentroid and a specified radius δeventType de-
fine an expected area for the event’s position similarity assessment. This process produces a list of
similar DENMs employed to assess the current DENM accuracy.

The resulting reputation score (repScore) is then applied to update the reputation of the ve-
hicle responsible for generating the DENM.

Reputation Score Update. The edge node updates the reputation of the vehicles according to
the following equation:

(rDID)t = α× (rDID)t−1 + β × ((rDID)t−1 + repScore) (3.1)

where (rDID)t represents the updated reputation score of the source DID, while (rDID)t−1

refers to the reputation score from the previous time step t − 1. The parameters α and β define
the respective contributions of past reputation and the new computed score. Their sum equals
1, ensuring a balanced contribution to the updated reputation score. The new reputation score
combines the previous reputation and the score calculated via Algorithm 1. Reputation score
is contingent on the type of misbehavior exhibited by the vehicle. Each misbehavior results in
a degradation of the reputation score determined by the corresponding weight (e.g., ωmsg for
message coherency). These weights are adaptable and can vary depending on the geographical
area overseen by the edge node.

Reputation Score Storage. The final reputation score is stored in the Tangle through a zero-
value transaction. For this to succeed, there must be no conflicts, such as two edge nodes updating
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Table 3.1: Summary of ETSI Dataset Characteristics

Dataset Name Description Illustrative Features

DENM dataset Comprises a subset of the information
contained in DEN messages exchanged
during the execution of the simulated sce-
nario detailed in [79].

source; situation_eventType; detec-
tion_time; simulation_time; event-
Pos_lat; eventPos_long; eventPos_alt.

CAM dataset Includes a selection of data extracted from
CAMs exchanged within the context of
the simulated scenario outlined in [79].

source; referencePositionLat; reference-
PositionLong; referencePositionAlt; sim-
ulationTime.

the same vehicle’s reputation. In VANETs, it can be assumed that edge nodes are typically spaced
far enough apart to prevent a vehicle from communicating with two nodes simultaneously. In real-
world deployments, edge nodes are located either at the network edge, near the radio node (e.g.,
RSU), or at network aggregation points where they manage multiple radio nodes[47]. Hence,
by defining the area managed by edge nodes as the coverage provided by their associated radio
network nodes, the overlap between areas handled by different edge nodes becomes negligible.
Furthermore, the time needed for a vehicle to move from one node’s coverage to another exceeds
the time required to update the vehicle’s reputation.

Vehicles can request reputation data relevant to the area managed by a specific edge node. To
access the most recent reputation scores, a vehicle must submit its VP. This ensures that only
authorized users can retrieve this information and prevents malicious vehicles from accessing or
influencing the reputation data.

3.1.4 ETSI-Compliant V2XDataset

To evaluate the effectiveness of the DIVA system, a custom dataset1 was generated, containing
selected fields of V2X messages compliant with ETSI standard formats (section 2.1).

This dataset is based on the scenario described in [79], where the authors extended the Artery
tool [81] to create dynamic VANET scenarios and present a DEN use case. Artery is a VANET
simulator [82] integrated into the Objective Modular Network Testbed in C++ (OMNeT++)
environment and incorporates SUMO [83] for road traffic modeling. It supports both safety and
non-safety message formats defined by ETSI [20, 19] for VANET communications. Message ex-
changes were recorded using a custom OMNeT++ module, able to record all messages exchanged
within the scenario.

The region of interest from [79] focuses on a highway junction, Ingolstadt Nord, in Ingol-
stadt, Germany. In this area, a vehicle performs an emergency stop at the intersection, creating

1https://github.com/MMw-Unibo/ETSI-V2V-Dataset
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a collision risk and triggering the broadcasting of DENMs. Vehicles detecting such critical situ-
ations broadcast DENMs, which contain essential event data, such as detection time, cause code,
and event position. These messages were included in the generated dataset, as they are crucial for
detecting malicious behavior in the DIVA system.

Moreover, the custom OMNeT++ module collected CAMs generated within the same area,
forming a crucial part of verifying the reliability of DENMs. This includes identifying any incon-
sistencies in detection time and vehicle positions. Table 3.1 provides an overview of the critical
components of the DENM and CAM datasets with their relative features.

The dataset was further manipulated by introducing malicious instances into the DENM con-
tent. This involved injecting noise into critical fields, such as detection time, longitude, latitude,
and altitude generated by sources randomly selected from the initial dataset. However, this might
lead to nonsensical alterations for the respective columns. Hence, a normal distribution is cre-
ated for each column, centered in zero, with a standard deviation tailored to match the specific
deviation of that column. To ensure that the modified values remained realistic, independent dis-
tortions were applied even to messages from the same source, adding complexity to identifying
malicious actors. This approach created a robust testbed for evaluating the DIVA system’s ability
to detect and handle misbehavior effectively.

3.1.5 Measuring DIVA Performance

This section explores DIVA threshold selection and its performance in detecting malicious mes-
sages by using the dataset presented previously and its manipulation. The algorithm has been im-
plemented through a Python script2 that processes every single message characterizing the DEN-
based dataset. All experiments were conducted on a Linux virtual machine with 16 CPUs and 32
GB of RAM.

Threshold Selection

To enable DIVA to distinguish between malicious and non-malicious messages effectively, careful
selection of the thresholds outlined in section 3.1.3 is essential. Thus, three distinct aggregation
metrics, namely mode, median, and mean, are analyzed. These metrics measure the distances
between the vehicle generating the event and the event location, derived by combining CAMs
content with the information provided in the corresponding DENM.

The computation of these thresholds relies on the benign sample of the datasets. For message
age, thresholds were taken from relevant reference documents (e.g., [84]). To determine which

2https://github.com/MMw-Unibo/DIVA
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Table 3.2: Threshold Study with 20% of malicious vehicles.
Threshold Event Type α = β TPR TNR FPR FNR

Mode

dangerousEndOfQueue 0.5 100 49.51 50.49 0
collisionRisk 0.5 87.23 92.8 7.20 12.77

trafficCondition 0.5 100 78.48 21.52 0
Total 0.5 99.93 78.14 21.86 0.07

Median

dangerousEndOfQueue 0.5 100 49.51 50.49 0
collisionRisk 0.5 78.72 92.80 7.20 21.28

trafficCondition 0.5 100 78.48 21.52 0
Total 0.5 99.89 78.14 21.86 0.11

Mean

dangerousEndOfQueue 0.5 100 100 0 0
collisionRisk 0.5 61.70 100 0 38.30

trafficCondition 0.5 100 100 0 0
Total 0.5 99.80 100 0 0.20

CAMs are considered for coherency computation (Algorithm 2), a predefined τcam value of 600
seconds was used, specifically chosen to address the scenario discussed in this section. However, as
mentioned previously, the outlier detection algorithm allows flexibility in fine-tuning this value
for different geographical regions.

To ensure consistent threshold evaluation, this analysis applied the same values for α and β

(Equation 3.1). Table 3.2 shows the results obtained for each event type within the DENM dataset
whenα andβ are both 0.5. It highlights the percentage of accurately classified messages, i.e., True
Positive Rate (TPR) for malicious messages and True Negative Rate (TNR) for non-malicious
ones. Misclassifications, including the False Positive Rate (FPR) and False Negative Rate (FNR)
for malicious and non-malicious messages, are also shown. For brevity, metrics are reported for
cases where 20% of the sources in the dataset are malicious. Most events fall under the traffic con-
dition category, as it is the most commonly transmitted event in DENMs. Therefore, the event
type Total, aggregating results regardless of the situation contained in the message, is notably in-
fluenced by their outcomes.

The table also demonstrates that using the mode, representing the most frequent distance value
as δeventType, results in the highest performance for detecting malicious messages, achieving a
TPR of 99.93%. In contrast, the median threshold causes the algorithm to be overly conservative,
leading to the rejection of approximately 20% of non-malicious messages. Meanwhile, using the
mean ensures perfect identification of non-malicious messages, with a TNR of 100%, but leaves
certain events, such as collision risk (TPR 61.70%), inadequately protected.

Based on this analysis, the subsequent section explores the performance of DIVA using both
the mean and mode as δeventType, while varying the values of α and β, as well as the proportion
of malicious sources.
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Figure 3.3: Performance of DIVA using mean as threshold

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Beta values

0

20

40

60

80

100

Pe
rc

en
ta

ge
of

m
es

sa
ge

s(
%)

Accuracy
Wrongly identified
Total Disc

(a) 20% of malicious sources

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Beta values

0

20

40

60

80

100

Pe
rc

en
ta

ge
of

m
es

sa
ge

s(
%)

Accuracy
Wrongly identified
Total Disc

(b) 30% of malicious sources

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Beta values

0

20

40

60

80

100

Pe
rc

en
ta

ge
of

m
es

sa
ge

s(
%)

Accuracy
Wrongly identified
Total Disc

(c) 40% of malicious sources

Figure 3.4: Performance of DIVA using mode as threshold

Performance Evaluation

Several experiments were conducted to determine the optimal combination of parameters α and
β, with variations in the percentage of malicious sources within the DENM dataset. These exper-
iments aimed to evaluate the performance of the DIVA system under different configurations.

Initially, DIVA was used to compute the reputation scores of sources from the manipulated
versions of the DENM dataset. The dataset was then reprocessed to assess the reputation scores
obtained in the previous step, with malicious messages identified as those generated by sources
whose reputation score fell below a predefined threshold, τrepScore.

Figures 3.3 and 3.4 show the system’s performance in identifying malicious and non-malicious
vehicles, using mean and mode as thresholds. By comparing the graphs, DIVA performs better
when using the mean as the threshold. This is particularly evident in Figure 3.3a, for values of
β ranging from 0.2 to 0.6: the incidence of incorrectly identified messages approaches zero. For
lower values of β, the performance of DIVA degrades as the influence of the new reputation score
in Equation 3.1 is minimal. Indeed, the percentage of incorrectly identified messages increases
to approximately 20% for these values of β in all the scenarios considered. On the other hand,
when increasing the number of malicious sources, DIVA maintains a high accuracy for values of
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β above 0.3, achieving around 94% with 30% of malicious sources (Fig. 3.3b), and 89% with 40%
of malicious sources (Fig. 3.3c).

When mode is used as the spatial threshold, DIVA adopts a more conservative approach. While
it accurately detects malicious messages, it also discards around 40% of the total received messages,
including non-malicious ones. As shown in Figure 3.4c, this percentage rises to approximately
50% with the highest number of malicious sources.

These results demonstrate DIVA’s effectiveness in identifying malicious sources, particularly
with β values ranging from 0.4 to 0.6. By assigning them low reputation values, DIVA enables
vehicles with benign intent to filter out these potentially harmful sources from V2X communica-
tions. This capability enhances the overall security and trustworthiness of the VANET environ-
ment, creating a safer network for all participating vehicles.

3.1.6 Security Evaluation of DIVA

To evaluate DIVA security, this section employs the Dolev-Yao adversarial model [85] and analyzes
specific attacks related to VANET security [86, 87]. This analysis thoroughly assesses the system’s
resilience by assuming an attacker can intercept any message on the network, initiate communi-
cation with any entity, and even impersonate the intended recipient of any transmission.

Dolev-Yao adversarial model

Resistance to Eavesdropping Attack. In an eavesdropping attack, an adversary gains unau-
thorized access to sensitive information, such as location information, personal details, or mes-
sages exchanged between vehicles, by passively monitoring network traffic. It should be noted
that V2V/V2I communications involve either public information (e.g., road conditions) or sen-
sitive data, such as the location and direction of the vehicles (refer to Table 2.1). While listening to
public information does not directly benefit potential attackers, in case of sensitive data transmis-
sion, the communication should be secured through end-to-end encryption using the receiver’s
public key. In DIVA, this key is shared directly in the DID Document. Along with vehicular
information, a vehicle attaches its VP to prove the trustworthiness of the provided data. This ap-
proach mitigates the risk of adversaries intercepting valid VPs to transmit deceptive information,
as DIVA relies on digital signatures requiring the attacker to have the sender’s private key, making
it nearly impossible to falsify data without detection.
Resistance to Replay Attack. Replay attacks occur when an adversary intercepts and retrans-
mits previously recorded messages, creating misleading information that could lead to hazardous
conditions. In the DIVA architecture, presented in section 3.1.3, edge nodes check message times-
tamps, discarding messages if they lack sufficient freshness to prevent outdated or reused data.
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Furthermore, a unique random string or challenge is embedded in each VP, which protects against
attempts to reuse the VP with a different verifier. As the VP’s primary role is to verify the sender’s
authorization, any attacker without access to the sender’s private key would find it nearly impos-
sible to spoof the sender’s identity or inject tampered data.
Resistance to Forgery Attack. In a forgery attack, a malicious entity attempts to impersonate
legitimate vehicles or network entities to mislead nearby vehicles and manipulate their responses.
In DIVA, each vehicle is assigned a unique DID linked to a cryptographic key pair. To inject
malicious data into the system, the adversary would need to gain access to the private key of an
authorized vehicle, which is highly unlikely given the system’s reliance on secure, asymmetric cryp-
tographic mechanisms.
Resistance to Sybil Attack. A Sybil attack is an extension of forgery, wherein an adversary cre-
ates multiple fake identities or vehicles to deceive network participants, disrupting routing proto-
cols, manipulating traffic, or spreading misinformation. In DIVA, each vehicle is associated with
a single, unique DID, meaning the adversary would need as many physical vehicles as identities
to register multiple times. Purchasing multiple vehicles to compromise a cooperative awareness
system is impractical for most attackers. Furthermore, once the reputations of the vehicles drop
under a given threshold, other participants automatically discard all their messages. Therefore, in
extreme cases where the adversary may own or be able to control many vehicles, its attack window
is extremely narrowed to the time needed to go under the chosen threshold.

Vehicular Network-Oriented Attacks

Resistance to Global Positioning System (GPS) Spoofing Attack. In a GPS spoofing attack,
an attacker transmits falsified location data to mislead vehicles. Despite DIVA cannot directly
prevent this attack on an individual vehicle, it leverages messages locality to mitigate its impact.
Specifically, DIVA reduces the reputation of a compromised vehicle based on inconsistencies de-
tected in CAM messages from other vehicles. Once the reputation drops below a threshold, the
vehicle is excluded from the VANET. For example, consider a fleet of five vehicles, two of which
are under attack. By analyzing CAM messages from the three uncompromised vehicles, DIVA
detects anomalies and lowers the reputation of the affected vehicles until they are removed from
the network. This mechanism is further reinforced in environments equipped with RSUs, which
can verify vehicle positions using cameras and radio sensing.
Resistance to Free-Riding Attacks. Free-riding attacks occur when malicious vehicles evade
the authentication process while impersonating legitimate participants by embedding fake au-
thentication tags obtained from neighboring vehicles. Within the VANET context, such attack-
ers can exploit safety-related information without contributing to message forwarding, leading
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to network fragmentation and degraded communication reliability. Moreover, in a reputation-
based system, an attacker may leverage the reputation of other vehicles without establishing its
own. In DIVA-based scenarios, a free-rider lacking authentication—without a valid DID—is au-
tomatically excluded from communications, as vehicles interact only with peers having a VP and
a high reputation score. Furthermore, VPs includes nonces, ensuring uniqueness and preventing
replay or identity reuse. As a result, free-riders cannot gain access to the reputation table since
only vehicles with a valid VP are permitted to retrieve reputation data.
Resistance to Illusion Attacks. In VANET, illusion attacks exploit human psychological intu-
ition through scene-aligned false message distribution [88]. Attackers create virtual traffic events
by identifying the traffic condition and then broadcasting false warning messages. Unlike forgery
attacks, which rely solely on false information, illusion attacks reinforce disinformation with real-
world environmental signals, making them harder to detect. As mentioned in the context of
forgery attacks, in DIVA, each vehicle is assigned a unique DID linked to a cryptographic key pair,
ensuring authenticated communication within the VANET. Thus, an attacker must first gain ac-
cess to the network to inject false messages. If the attacker gains access, DIVA can detect malicious
activity by aggregating data from other vehicles in the vicinity or, if available, from RSUs. As a
result, in DIVA-based scenarios, an illusion attack may only be effective for a limited time, after
which the attacker’s reputation score will fall below the threshold, leading to exclusion from the
network.

3.2 V2V Platooning Quality Control: A TSN Slot-Based
Scheduler

Despite the significant advancements in V2V communication protocols (see section 2.1), emerg-
ing applications such as remote and autonomous driving require more precise resource coordi-
nation and control among vehicles [89, 25, 90]. As mentioned in other sections, these scenarios
heavily rely on broadcasting cooperative awareness and safety messages, often without acknowl-
edgments [19, 20]. The loss of such messages could disrupt the correctness of some critical func-
tionality by significantly increasing the risk of accidents. Moreover, since cooperative awareness
messages are transmitted at fixed intervals, the likelihood of data loss rises, intensifying interfer-
ence between nodes [25]. Addressing these challenges is crucial, necessitating the development
of robust collision avoidance mechanisms specifically designed for vehicular communication en-
vironments.

To meet these demands, the next generation of V2V communication solutions will likely be
driven by the integration of TSN [91, 92] in VANET. TSN comprises a suite of standards de-
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signed to ensure deterministic Ethernet networks, particularly for real-time traffic. A fundamen-
tal element of TSN is time synchronization, accomplished through IEEE 802.1AS, an extension
of the IEEE 1588 Precision Time Protocol (PTP) known as generic PTP (gPTP) [93]. This pro-
tocol relies on a grandmaster clock, typically a GPS receiver, to synchronize all devices within a
gPTP domain. Clock Masters distribute time information to Clock Slaves, which adjust their
clocks to maintain synchronized, cohesive communication. To ensure QoS, TSN employs traf-
fic shaping techniques [91] like the Time-Aware Shaper (TAS), outlined in IEEE 802.1Qbv. TAS
schedules frames for time-critical flows [94] using time-aware communication windows and cyclic
time slots managed by a Gate Control List (GCL). This ensures low latency, minimal jitter, and
high reliability, with PTP synchronization crucial for TAS’s functionality.

In automotive Ethernet communications, TSN includes the IEEE 802.1DG profile, which en-
sures high reliability and low latency for in-vehicle networks. The profile prioritizes the timely
delivery of crucial control and security messages. Thus, thanks to its characteristics, such as deter-
minism, low latency, high reliability, and large bandwidth, TSN represents a promising technol-
ogy for the next-generation in-vehicle networks [29]. This dissertation expands these TSN-based
networks to enhance QoS in V2X communications. By integrating TSN with VANET as well as
broader V2X frameworks [95], it is possible to exploit slotted protocols and time synchronization
mechanisms to coordinate message transmission, reduce collisions, and improve overall commu-
nication reliability.

Hence, this section introduces a TSN-like Controller, TSNCtl, developed as part of the dis-
sertation to enhance data delivery in vehicle platooning scenarios. TSNCtl orchestrates message
dissemination over VANET by employing a Finite State Machine (FSM) to help in platoon forma-
tion and message dissemination for intra-platoon communications. Creating or joining a platoon
is triggered by receiving ITS service-related messages or detecting proximity to an existing platoon.
Once a vehicle becomes part of a platoon, TSNCtl intercepts each message generated by the ITS
service running on the vehicle, determining the priority queue for its storage. Next, it propagates
the messages based on the vehicle-associated time slots and the priority of each message. Further-
more, TSNCtl continuously adjusts slot allocation in response to nodes joining or leaving the
platoon, maintaining stable and reliable communication despite the evolving topology.

This solution provides valuable insights into how TSN can be integrated into VANET commu-
nications to avoid message collisions and enhance overall QoS in dynamic vehicular environments.
Additionally, this research demonstrates the feasibility of using a TSN-like approach to form and
synchronize car platoons, thereby improving reliability and coordination in these complex sys-
tems.
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3.2.1 RelatedWork

In multi-user communication networks such as VANET, users must contend for access to the
shared communication medium. Traditionally, Carrier-Sensing Multiple Access Collision Avoid-
ance (CSMA/CA) has been the go-to MAC protocol designed to reduce the probability of colli-
sions in wireless communications. This protocol relies on nodes sensing the channel before trans-
mitting data. Nevertheless, CSMA/CA has proven inadequate in meeting the stringent QoS re-
quirements of VANETs, particularly in terms of latency and reliability [96].

This section discusses state-of-the-art approaches to improving data delivery and minimizing
packet collisions in vehicular networks. It begins by examining early approaches based on ran-
dom access techniques, then shifts to more advanced methods that leverage vehicle platooning to
enhance network performance.

RandomAccess Techniques in VANET: Early Solutions

ALOHA is one of the earliest protocols designed to address collisions in multi-user networks,
which operates on the principle that devices transmit data without checking whether the chan-
nel is busy. Any collisions require all stations to resend their data. Slotted-ALOHA improved
pure ALOHA by introducing time slots within communications to enhance channel utilization.
Reservation-ALOHA (R-ALOHA) further extended Slotted-ALOHA by adding a slot reserva-
tion mechanism that allows a device to temporarily "own" a slot after successfully using it. Bor-
gonovo et al. [97] addressed the hidden terminal problem by proposing a Reliable Reservation
ALOHA (RR-ALOHA) protocol, which adds additional information during message exchanges
to reserve time slots and avoid collisions. The authors in [98] extended an improved version of
RR-ALOHA [99], enhancing slot-reuse to increase the scalability in mobility-based scenarios.

More recent advancements in ALOHA-based MAC protocols include the works in [100, 101,
102]. Kim et al. [100] introduced a coordinate multichannel MAC providing contention-free
broadcasting for safety messages, where vehicles reserve channels during the Service Channel In-
terval (SCHI) using Dynamic Frame-Slotted ALOHA, and the RSU coordinates the transmission
order. The authors in [101] proposed an improved version of Slotted-ALOHA that disseminates
access times over the Control Channel (CCH) period to reduce the risk of message collisions. In
a recent work, Lai et al. [102] introduced a Framed Slotted Aloha (FSA) MAC protocol that
leverages the capture effect, enabling successful access despite time slot conflicts to improve com-
munication efficiency further.
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Platooning-based VANET communications

Platooning represents a structured and cooperative approach to vehicular communication, where
vehicles work together to achieve common goals, such as optimizing traffic flow and providing in-
fotainment services [103, 104]. A platoon typically consists of a leader vehicle and several follower
vehicles that drive closely together in coordination.

Many platoon-based proposals assume that the platoon leader allocates communication time
slots to the followers, similar to Time Division Multiple Access (TDMA), defining specific time
windows for communication activities [105, 106, 107]. For instance, in [105] Fernandes et al.
provided a system that divides the control channel of the IEEE 802.11p into slots to ensure stable
intra-platoon communications. Similarly, Segata et al. proposed a beacon dissemination strategy
based on TDMA in [106] developed a TDMA-based beacon dissemination strategy, where the
platoon leader initiates beacon transmissions followed by the other platoon members in a sched-
uled manner.

From a message collision avoidance perspective, Zang et al. [89] proposed a collision detection
approach where transmitting nodes employ full-duplex channel sensing to detect simultaneous
transmissions. In C-V2X, researchers are exploring methods to enhance scheduling algorithms,
aiming to reduce or detect packet collisions in scenarios where vehicles are out of base station
coverage like V2V [90, 25, 108].

Discussion

Despite these advancements, vehicular networks still face significant challenges related to scala-
bility and reliability in dynamic environments. Many solutions focus on technology-specific ap-
proaches (e.g., WiFi or cellular networks), leaving space for technology-agnostic strategies that
perform well regardless of the wireless technology. Moreover, many current proposals rely heavily
on mathematical models and lack validation in large-scale, real-world scenarios.

The solution proposed in this section, TSNCtl, operates independently of the specific wireless
technology utilized in the vehicle. It is designed to enhance the packet delivery ratio in intra-
platoon V2V communications by establishing platoons, wherein each vehicle has a dedicated slot
for message dissemination. Compared to ALOHA-based solutions, TSNCtl offers better scala-
bility and is particularly suited for dense environments. Additionally, including priority queues
ensures that critical messages are transmitted promptly, which is crucial for vehicular networks
dealing with time-sensitive data.

Hence, this solution holds the potential to profoundly change the landscape of message dissem-
ination within VANETs. For instance, combining cellular networks and TSN is seen as a promis-

43



3 Supporting V2X Communications Reliability

Networking and Transport

Access

M
an
ag
em
en
t

Se
cu
ri
ty

Application

ITS-Service TSNCtl

Figure 3.5: Integration of TSNCtl in ITS Stack

INIT

SLAVE

1 2

3 4
5

6 78

JOINING_PLATOON

SLAVE

JOINING_PLATOON

MASTER

IN_PLATOON

SLAVE

IN_PLATOON

MASTER

Figure 3.6: TSNCtl FSM Diagram

Window Duration

slot
length New

Window

Controller
Msg Slots ITS-Service Msg Slots

Controller
Msg Slots

Figure 3.7: TSNCtl Slot-based Scheduling

ing path to support time-sensitive and low-latency applications, especially in conjunction with
emerging 5G infrastructures [95]. Similarly, recent developments in IEEE 802.11 are working
towards the full integration of TSN capabilities, enabling low-latency and ultra-reliable commu-
nications [92]. These advancements further highlight the growing importance of TSN in future
vehicular communication systems.

3.2.2 TSNCtl for Time-Sensitive Applications in Vehicular Networks

As previously mentioned, the future of in-vehicle communications is increasingly focused on
exploiting TSN to ensure low latency, reliability, and determinism for critical vehicular services
[29]. The proposed solution assumes that TSN-enabled vehicles could leverage Radio and GPS
technologies [109, 110, 111, 112] to synchronize themselves, facilitating synchronized and time-
sensitive communications over wireless connectivity.

Figure 3.5 illustrates the integration of TSNCtl within the ETSI vehicular communications
stack, introduced in section 2.1. TSNCtl operates as FSM that assists vehicles in platoon for-
mation by determining which vehicles partake in network communications. The FSM initiates
platoon creation or joining procedures upon receiving ITS service-related messages or detecting
the proximity of an existing platoon. During this process, a platoon master is elected from among
the vehicles, and this master is responsible for allocating communication slots to each platoon
member. Vehicles utilize these slots to communicate at designated times, minimizing the risk of
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collisions during communications with other vehicles within the platoon. In such a context, if a
vehicle supports multiple safety-related applications, it may request additional slot allocations.

Once the platoon has been formed, TSNCtl intercepts messages generated by the ITS Service
running on the vehicle and uses the pre-assigned communication slot to determine the optimal
timing for message transmission across the network. To manage this process, TSNCtl maintains
a series of queues, each assigned with a distinct priority level, wherein these messages are stored
before transmission. Depending on the nature of the message, TSNCtl determines the appro-
priate queue for its placement and subsequent dispatching. Furthermore, TSNCtl deals with the
dynamic topology of VANET environments by ensuring platoon stability as vehicles join or leave.

3.2.3 TSNCtl: FSMApproach to Enable TSN-like Slot-Based Scheduling

Platoon Formation and Initialization

As illustrated in Figure 3.6, the states that the FSM can assume are defined by a combination of
node status, including init, joining_platoon and in_platoon, and a node role, slave and master,
defining vehicle responsibilities within the platoon.

Initially, each vehicle configures parameters like communication window duration and slot
length. The communication window establishes the interval for coordinated interactions among
vehicles in the platoon. Slot length, on the other hand, specifies the timing for message transmis-
sions, determining precise intervals when each vehicle can send data.

In the init state, the internal TSNCtl component remains idle until the specified window du-
ration elapses. Referring to Figure 3.7, if the communication window duration is set to 100 ms
(e.g., CAM), control-based messages are exchanged at multiples of this interval. The number of
slots available per window depends on the slot length; for instance, a 100 ms window with 10 ms
slots provides 10 slots.

Once the window elapses, the first two slots are designated for controlling operations, specifi-
cally to form or join a platoon (red slots in Figure 3.7). During the initial control slot, TSNCtl-
related messages are sent, including node information and the message generation timestamp. In
this phase, nodes compete for the master role by randomly generating messages within the slot’s
time frame to avoid collisions.

In the second control slot, TSNCtl processes the messages from the previous slot, transition-
ing to the joining_platoon state. As illustrated in Figure 3.6, in steps 1⃝ and 2⃝, the node’s role is
determined by timestamps: the node with the earliest timestamp becomes the master, while the
others take on the slave role. Within this slot, the master node dispatches a message containing
details about slot allocations. These allocations can be determined using various policies, poten-
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tially influenced by factors such as the number of slots requested by a node and the node type
(e.g., emergency vehicle or standard car).

The master requires at least one nearby node to create a platoon. If no other node is detected,
the master maintains the current status and restarts the procedure to form the platoon (step 4⃝).
A master node persisting in this state may become slave at the next controller slots(step 5⃝). Con-
versely, in the presence of other nodes, its state transits in in_platoon (step 7⃝).

Meanwhile, slave nodes await their slot allocation from the master, preparing to transmit data
in their assigned slots. Once triggered, they confirm their role and transition to in_platoon (step
6⃝). If no allocation is received, they restart the joining process in the next cycle (step 3⃝).

In the in_platoon state, slave nodes transmit only during their designated slots. At the same
time, masters also use the second control slot to handle communications, such as integrating new
nodes into the platoon. For this integration, unaware of the platoon’s presence, the latest node
transmits a control message containing its timestamp during the first control slot. During the
second control slot, the master responds with an updated slot allocation message, integrating the
new node into the platoon’s schedule.

Following platoon formation, each message generated by the ITS service is categorized based
on priority and inserted into one of the available queues within the controller. The TSNCtl then
disseminates these messages according to the allocated slots and priorities.

Platoon Stability andDynamic Adaptation

To ensure platoon stability in dynamic environments where vehicles may join or leave the platoon
unexpectedly, each TSNCtl instance monitors the successful transmission of messages within as-
signed time slots. If a vehicle fails to transmit within its allocated slot, it is excluded from the
platoon, and its slot is reassigned. The reorganization procedure differs based on whether the de-
parting vehicle is a slave or the master.

When a slave node leaves the platoon, the master handles slot reallocation by compacting the
schedule during the next available “first” controller slot. It shifts all subsequent allocations to close
the gap left by the departing node. The updated schedule is broadcast to the remaining nodes
in the following controller slot, ensuring an efficient slot structure and preventing unnecessary
communication delays.

If the node leaving the platoon is the master, different strategies are employed to maintain con-
tinuity. One approach is to trigger a new platoon formation, resetting the system and initiating
a master re-election. Alternatively, the master role can be transferred directly to the next node in
the current slot allocation (shift method), eliminating the need for re-election. The latter strategy
avoids the needing a new master election, reducing message overhead and reorganization time.
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This approach minimizes message overhead and reorganization time, ensuring a seamless transi-
tion while preserving the existing platoon structure.

Vehicles, however, may leave the platoon after successfully transmitting a message in their des-
ignated time slot. Their departure is only detected when they fail to participate in the subsequent
time window. This delayed detection requires careful handling to prevent communication gaps
and enable efficient resource reallocation.

TSNCtl primarily employs the shift method for master reassignment, ensuring robust and ef-
ficient platoon management even in highly dynamic scenarios.

3.2.4 Measuring TSNCtl Performance

To evaluate the effectiveness of TSNCtl, the controller was developed using the OMNeT++ sim-
ulation framework. Specifically, INET 4.5, an OMNeT++ library for simulating network com-
munications, was utilized to model ad-hoc V2V communications following the IEEE-802.11p
standard. Two OMNeT++ simple modules were implemented: a mock service, which sends mes-
sages to the TSNCtl components (see Figure 3.5), and a mock application, which sends messages
directly through the socket. Both modules generate UDP packets with a regular interval of 100
ms by following the CAM format defined by the ETSI standard. Packet sizes rely on the analy-
sis conducted by the CAR2CAR Communication Consortium [113] in real-world scenarios. A
spawner module was also introduced to generate and destroy vehicle modules in a defined area
and at specified frequencies. The platoon formation area in this simulation corresponds to the
V2V communication range (100 to 300 meters), with vehicle spawning intervals set to 1 ms or
100 µs.

Two sets of experiments were conducted to evaluate the feasibility of the proposed solution.
The experiments examined the system’s behavior under varying platoon sizes and vehicle entry
frequencies, as well as the resilience of the solution under different packet sizes. The simulations
were performed on a Linux virtual machine running OMNeT++ with 16 CPUs and 32 GB of
RAM. The duration of each experiment was set to 1 minute simulation time, and each was re-
peated 10 times for statistical validity. This testing phase did not consider signal attenuation caused
by obstacles such as roadside objects and foliage.

Packet Collision Analysis

Platoon Sizes. This set of experiments evaluated the impact of platoon size while maintaining a
fixed packet size of 800 bytes [113, 114]. The communication window was set to 100ms, and slot
lengths of 1, 2, and 4 ms were analyzed. Figure 3.8 presents a comparison of intra-platoon packet
collision rates between the CSMA/CA scenario (Baseline) and those using TSNCtl.
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Figure 3.8: Collisions in Packet Transmission with Different Platoon Size

Figure 3.8a shows the percentage of packet collisions obtained when vehicles attempt to form
a platoon with an interval of 100µs between their request, while Figure 3.8b with an interval of
1ms. In both scenarios, TSNCtl correctly avoids packet collisions and helps in platoon formation
with slot length above 1ms. However, when the slot length is too short, TSNCtl’s performance
degrades significantly due to the increased likelihood of vehicle control messages being lost during
the master election phase, thereby compromising platoon formation. This effect becomes particu-
larly evident as the number of nodes increases: beyond 10 vehicles, TSNCtl performance degrades
by reaching over 40% with 20 nodes in both scenarios analyzed in Figure 3.8. Conversely, when
the slot length is set above 1ms, TSNCtl achieves near-zero collision rates, ensuring robust and
reliable platoon coordination. Indeed, in these cases the average percentage of collisions remains
low, with values of 0.09% for a 2ms slot length and 0.035% for 4ms in the 100µs scenario (Fig-
ure 3.8a), maintaining similar performance in the 1ms scenario (Figure 3.8b).

This analysis highlights how slot lengths shorter than 2ms were insufficient for reliable mes-
sage propagation within the platoon, leading to increased packet interference. Moreover, signal
attenuation due to obstacles and foliage could exacerbate this issue —an aspect not yet explored
in this study. These findings highlight the importance of selecting an appropriate slot length to
optimize the performance of our solution.

Packet Sizes. In a second set of experiments, a platoon of 20 vehicles was generated at 1 ms

intervals. As for previous experiments, window duration was fixed to 100 ms, while different slot
lengths were analyzed. Figure 3.9 illustrates the percentage of collisions observed while varying
packet dimensions in this scenario. The chosen packet dimensions for this analysis are derived
from the data provided [113].
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Figure 3.9: Collisions in Packet Transmission with Different Packet Size

The Baseline bar in the figure reveals a clear trend: collision rates increase as packet sizes grow,
with an approximate 12% rise in collisions for each incremental increase in packet size. In contrast,
when using the TSNCtl controller, the collision rate remains consistently below 1% for slot lengths
above 1ms. It should be noted that even with a slot length of 1ms and small packet sizes (< 650
bytes), TSNCtl effectively maintains a collision rate below 1%. This suggests that packet size is
crucial in determining the optimal slot length. Hence, the potential for the platoon master to
dynamically adjust the slot length based on real-time network conditions is evident; however, this
aspect has not been analyzed in this study.
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4 ANovel Design for Vehicular
Computing in 5GDeployments

The VC paradigm, introduced in this dissertation, defines a cloud continuum of resources by in-
tegrating resources distributed across cloud, edge, and far-edge layers (Figure 1.1). This Chapter
extensively studies the challenges involved in realizing the VC paradigm, including managing re-
source volatility, creating adaptable and dynamic environments, and ensuring the reproducibility
of experimental results.

A novel architectural design is provided within the context of 5G networks, leveraging the ETSI
MEC reference framework. This design integrates stationary far-edge/vehicular resources into the
cloud continuum, ensuring low-latency, high-bandwidth connectivity. In addition, this Chapter
details the implementation of a simulation tool that replicates this environment, providing a stan-
dardized platform for researchers and engineers where they can design and test their algorithms
and applications while exploiting at the same time a standard enabled VC paradigm.

4.1 Virtualizing Vehicular Resources to EmpowerMEC
Nodes

Edge computing ensures optimal performance for latency-sensitive 5G applications such as meta-
verse and real-time control systems. Beyond its impact on entertainment and responsive control,
edge computing also supports applications critical for safety and security, particularly in ITS and
the landscape of fully integrated smart cities [115]. As the digital infrastructure of cities evolves,
the convergence of edge and cloud environments is set to become even more integral to modern
urban ecosystems.

New opportunities and challenges emerge as many businesses leverage this shared edge-cloud
environment. Unlike traditional cloud deployments in data centers, edge infrastructures face sig-
nificant resource limitations and may struggle to meet specific applications’ resource demands and
associated QoS requirements [16]. Moreover, the technical challenges associated with advanced
edge infrastructures are exacerbated by the convergence trends, which aim to provide end-users
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with seamless access to a wide range of services, regardless of where these services are hosted within
the edge-cloud continuum. For these reasons, the need has emerged to identify new resources that
can support the edge infrastructure dynamically, thus enabling service availability in dense and
congested deployment scenarios.

This dissertation proposes an extension of the ETSI MEC standard, introduced in section 2.3,
to leverage resources at the far-edge layer, exposed and made available in a standardized way. The
extension defines for each MEC-H (edge node) an Area of Interest (AoI) within which far-edge
node resources are collected. Once these resources join the MEC-H resources pool, they are avail-
able for allocating MEC-compliant applications. This design allows the handling of node mobil-
ity by utilizing MEC standard services, thereby supporting the application migration when nodes
leave the AoI.

This section provides design details and technical examples of how vehicles can fit into this
architecture by contributing with their resources. The proposed architecture marks the develop-
ment of a VC-enabled solution that supports multi-vendor and multi-operator scenarios, leverag-
ing a well-established standard to ensure interoperability and scalability.

4.1.1 RelatedWork

Extensive research has been dedicated to exploring the use of vehicular resources to enhance ser-
vice delivery at the network edge [4, 3]. Opportunistic vehicular resources can be leveraged for
various tasks to support the increasing demands of applications in vehicular networks. For in-
stance, vehicles can function as relay nodes [116, 117, 118] improving network connectivity, or as
computing nodes [119, 120, 26, 118, 27], reducing the impact on edge node performance.

In centralized approaches, Huang et al. [120] proposed an architecture where the central node
at the network edge receives task requests and distributes them as sub-tasks to selected parked
vehicles. To utilize vehicles as part of the storage and networking infrastructure while parked,
Dressler et al. [118] suggested augmenting RSUs capacity with the resources of parked vehicles.

Other works focused on dynamically forming micro-datacenters using in-vehicle resources with-
out infrastructure requirements [119, 121, 122]. For example, Kamakshi et al.[121] considered
vehicles’ relative mobility (i.e., relative speed and distance) to aggregate vehicles in communities,
while the authors in [122] designed an algorithm using the fuzzy logic for vehicular cluster forma-
tion. Feng et al. [119] presented a workflow for the autonomous formation of groups of vehicles,
utilizing an algorithm based on ant colony optimization to schedule job distribution. Similarly,
the authors in [27] introduced a decentralized approach, offloading task execution to parked ve-
hicle resources available nearby.
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In these environments, it is crucial to incentivize vehicle owners to contribute their resources.
To tackle this challenge, Li et al. [123] defined a contract-based incentive mechanism to persuade
vehicle owners to rent out their resources. Similarly, the authors in [117] propose an auction-
based model where participating nodes compete to lend their resources in an extended vehicular
resource pool.

Discussion

Due to the inherent mobility of vehicles, the capacity of the vehicular resource pool is subject to
continuous fluctuations, making task offloading decisions more complex. The necessity for this
might also arise due to an inaccurate estimate of residual resource availability. In this context, most
of the works propose algorithmic strategies used to evaluate the probability of nodes to complete
task execution [120, 26, 27, 124, 28]. These approaches are probabilistic, neglecting practical
considerations such as nodes refusing to partake in the resource pool or leaving during task exe-
cution. Furthermore, existing proposals do not consider the complications of multi-vendor and
multi-domain environments.

The architecture proposed in this section builds on the ETSI MEC standard, incorporating
far-edge resources provided by parked vehicles. By leveraging standardized ETSI MEC interfaces,
vehicle resources can be transparently accessed and made available for task offloading. The ar-
chitecture integrates mechanisms to deploy and distribute applications across the resource pool
while addressing resource volatility through a transparent migration process that utilizes existing
constructs. Thus, it considers the dynamic nature of these resources, such as vehicles leaving the
parking lot while executing tasks.

As an extension of the ETSI MEC standard, this architecture addresses the earlier challenges
by enabling better integration with cloud resources and facilitating interoperability across hetero-
geneous technologies. This provides a more robust solution for managing vehicular resources in
dynamic, multi-vendor, and multi-domain environments.

4.1.2 Extending ETSIMEC toDynamically Exploit Vehicle Resources

As illustrated in Figure 4.1, the proposal turns the MEC-H into a logical entity that can dynami-
cally include and release computational resources from multiple VIs. The architecture enables the
deployment of applications on MEC-H (local) and vehicular/far-edge node (remote) resources,
all while actively addressing concerns related to resource volatility.

Each MEC-H defines an AoI (dashed circle in Figure 4.1) where remote resources are collected
and integrated into its resource pool. The AoI can overlap with the coverage of one or multiple
base stations, depending on the MEC-H’s location, whether at the network edge (close to base
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Figure 4.1: Proposal: Extending MEC Host Resource Pool

stations) or in central network aggregation points [47]. In the scenario considered in this disser-
tation, the AoI aligns with a parking area where the MEC-H operates.

The extended MEC architecture introduces a Broker, an external entity running at the MEC
system level to model the resource acquisition procedure. The Broker enables a publish-subscribe
system, allowing MEC-H subscriptions to the AoI and managing their notification whenever a
new vehicle enters or leaves the area. The links and interactions within this extended architecture
are highlighted in Figure 4.1, highlighting the Broker’s role in coordinating these processes.

Upon entering the AoI, vehicles use a device-initiated scheme to request available rewards con-
textualized to the AoI (step 1⃝). When a vehicle agrees to participate, it publishes the resources it
is willing to contribute (step 2⃝). Conversely, when a vehicle leaves, the MEC-H is notified, and
the vehicle’s resources are removed from the pool (step 5⃝). Next, the mobility procedure, which
extends the AMS API provided by the ETSI standard, takes place (step 6⃝ Figure 4.1), ensuring
seamless intra-host migration from a vehicle leaving the parking area to the local resources of the
MEC-H. However, if the vehicle does not provide a departure notification, the broker cannot
detect the change autonomously. In such cases, the client running the application on the depart-
ing vehicle will identify the unresponsiveness and trigger re-instantiation, indirectly signaling the
vehicle’s exit (step 4⃝).

Resource allocation is primarily managed by the VIM component of the ETSI MEC architec-
ture, which oversees the MEC-H resources (section 2.3). The VIM handles a heterogeneous pool
of distributed resources and is aware of the single contributions that each host brings in terms of
capacity. Once registered to the MEC-O, the VIM specifies the content of interest to the Broker
corresponding to the AoI parameters (e.g., circle center and diameter). Upon new resource acqui-
sition, the VIM records the endpoint and capacity information, making these resources available
for MEC-compliant application deployment.
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Figure 4.2: Sequence Diagram Device-initiated Scheme

The following sections provide a detailed explanation of the remote resource management
scheme, emphasizing essential interactions within this framework.

4.1.3 Remote ResourceManagement in ExtendedMECNodes

This subsection outlines the sequence of operations involved in acquiring, allocating, and releas-
ing dynamic resources in extended MEC-Hs. Specifically, the following sequence diagrams il-
lustrate the interactions between vehicles and the MEC resource pool, focusing on the resource
acquisition, allocation, and release lifecycle as vehicles enter or leave the AoI.

Resource Acquisition

Figure 4.2a outlines the steps involved in the process of a vehicle joining the MEC-H resource
pool as it enters the AoI. The initial phase employs an incentive-based approach, where vehicles
receive a set of available rewards for contributing their resources. After evaluating the available
options, the vehicle selects its preferred reward, signaling its willingness to contribute resources to
the pool (steps (1) - (3)). In the second phase, the interaction shifts towards the resource Broker,
enabling the integration of new resources. The Broker gathers the vehicle’s resource details and
communicates them to the MEC-H associated with the AoI (steps (3) - (6)). This ensures the
MEC-H is aware of the newly available resources and can manage them accordingly.

Resource Allocation

Figure 4.3 demonstrates the interaction flow in instantiating an application on remote resources.
As indicated by the standard (section 2.3), the process is initiated by the Device App, which sends
a request for a new MEC App instantiation. This request is forwarded through a service chain
from the UALCMP up to the VIM (steps (1) - (6) in Figures 4.3a and 4.3b), where the actual
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allocation of the app is performed. The VIM manages all the information related to the vehi-
cles within the pool, maintaining a comprehensive dataset for each vehicle to facilitate efficient
resource scheduling.

Based on the scheduling algorithm, app requirements, and the available contributions from
each vehicle, the VIM selects the most appropriate remote host for deploying the application (step
(7)), finally relaying the selected node information back to the UALCMP.

Resource Leaving

Figure 4.2b shows the interactions needed when devices leave the resource pool. Upon receiving a
departure notification, the MEC-H removes the concerned resources from those available in the
pool. This triggers the mobility management process for applications running on the departing
vehicle, ensuring they are either gracefully terminated or migrated to other available hosts in the
pool. The details of this process are outlined in section 4.1.4.

4.1.4 MigratingMECApps in ExtendedMECNodes

The version of AMS included in this architecture supports intra-host migration for applications
running on nodes leaving the resource pool, ensuring service continuity transparently to the client
actors. This is achieved by extending the AMS [125] API provided by the standard, structured
as a publish-subscribe system that coordinates migration events across all related modules. Each
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migration procedure outlines the specific operations that MEC Apps must perform to support
these scenarios effectively.

Subscription Process

To enable migration, it is essential for the AMS to systematically recognize and manage each new
MEC App. Figure 4.4 delineates the operations executed by involved MEC components upon
the instantiation of a new MEC App.

Upon startup, the MEC App registers with the AMS and receives a unique registration iden-
tifier. Next, it subscribes to the INTERHOST_MOVEOUT_TRIGGERED event to ensure it is notified when
migration is initiated, triggering the necessary context transfer process.

The MEC-PM subscribes to INTERHOST_MOVEOUT_TRIGGERED and INTERHOST_MOVEOUT_COMPLETED

events to receive notifications when a vehicle/far-edge node leaves the MEC-H resource pool and
when migration is completed. These notifications are necessary to start the migration and update
the app information. Similarly, the UALCMP subscribes to the INTERHOST_MOVEOUT_COMPLETED

event to collect new MEC App location, ensuring to update the requester user accordingly.

Unsubscription Process

When a MEC App is deleted or migrated, the relevant MEC components must unsubscribe from
associated events, as shown in Figure 4.5. The UALCMP, MEC-PM, and related MEC App
unsubscribe from all INTERHOST_MOVEOUT events. Once unsubscribed, the application is properly
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unregistered and removed from the system, ensuring resource cleanup and preventing redundant
notifications.

Migration Context Trigger

Figure 4.6 (steps A and B) describes the interactions triggered when the migration process starts.
This trigger prompts the instantiation of a replica of the migrating MEC App within the central
MEC infrastructure, i.e., MEC-H handling the remote resources. It should be noted that this
process is designed to allow future enhancements, such as selecting an alternative host based on
scheduling algorithms.

When a participating vehicle/far-edge node leaves the AoI, the Broker notifies the VIM, which
triggers the resource-release process (Figure 4.2b). At the same time, the VIM checks for any MEC
Apps running on the leaving remote host and triggers migration as needed.

The ParkMigrationTrigger message, generated by the VIM when MEC Apps are running on
a node preparing to exit the resource pool, is sent to the MEC-PM. This, in turn, forwards the
INTERHOST_MOVEOUT_TRIGGERED event to the AMS (Figure 4.6 A). The AMS then informs all sub-
scribed modules about the event. The MEC-PM sends a ServiceMobilityRequest to the VIM,
requesting that the MEC application be moved to another host. While this may seem redundant,
as the VIM receives the notification twice, it remains necessary. In typical migrations between dif-
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ferent MEC-Hs, the ParkMigrationTrigger is not used, meaning the VIM would not receive the
event twice.

As shown in Figure 4.6 step B, in the final step MEC-PM confirms the successful instantiation
of the application on a new host and issues a new INTERHOST_MOVEOUT_TRIGGEREDnotification. This
updated notification includes the location of the newly deployed application, making it available
to all relevant system actors.

Migration Context Transfer

The context transfer procedure ensures synchronization between the migrating MEC application
and its newly instantiated counterpart, minimizing service disruption for client applications.

After initialization, the new MEC App registers with the AMS and waits for the migrating
MEC App to transfer the operational state. This is triggered by the INTERHOST_MOVEOUT_TRIGGERED
notification on the migrating app, including all the information related to the location of the new
instance (Figure 4.7), as mentioned earlier in this section.

Figure4.7 illustrates an example of context transfer of a MEC App migrating from the far-edge
node to the MEC-H resources. The migrating MEC App establishes a communication channel
with the new instance to transfer the necessary service state. Once the state is moved, the new
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MEC App notifies the AMS, which then updates the UALCMP with the new location. The
final step involves propagating the new location through the Device App to the user application,
ensuring it is fully aware of the new service instance. The UALCMP receives a notification from
the AMS, triggered by the INTERHOST_MOVEOUT_COMPLETED event, to complete this process.

4.2 Simulating and Validating Vehicular Computing
Applications

As discussed earlier, most research in vehicular computing does not adhere to a standard for in-
tegrating mobile resources. Much of the existing work also focuses on algorithmic strategies that
calculate the probability of task completion for each mobile node before task allocation, often
overlooking migration. This section introduces a simulation model that implements the extended
ETSI MEC standard described previously. The model is built on the OMNeT++ network sim-
ulator, incorporating the Simu5G library to model the 5G network and communication compo-
nents.

OMNeT++ [126] is a widely used discrete-event simulation framework that models various
network types and communications. It uses modules as its core elements, which exchange mes-
sages through gates and connections. Module behavior is defined in C++, while their structure,
including gates and parameters, is described using Network Description Language (NED). On
top of OMNeT++, Simu5G[127] models both the core network and the RAN of a 5G network
by implementing 3GPP-compliant protocols and a customizable physical transmission system. It
also supports advanced 5G network features like handover and inter-cell interference coordina-
tion, allowing simulations that include heterogeneous gNB base stations.

The simulation model presented in this section implements the architecture introduced in
the previous section, specifically considering its deployment in a 5G environment (refer to sec-
tion 2.3). This model improves the ETSI MEC standard by incorporating resources from parked
vehicles within an AoI into the edge resource pool, making them accessible through standardized
interfaces. The modeled architecture allows dealing with some of the primary challenges arising
in vehicular computing environments, such as integrating cloud resources and enabling the co-
existence of heterogeneous technologies. It also tackles resource volatility—nodes dynamically
joining or leaving during service provisioning—through a migration mechanism compliant with
the ETSI standard (see section 4.1.4).

This section highlights the solution’s contribution to advancing the current state-of-the-art.
It then introduces simulation model modules designed to create the extended ETSI MEC archi-
tecture presented in section 4.1, and it validates the feasibility of this architecture by providing
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Table 4.1: Difference Between Existing Solutions and Proposal

Work Comm. Model Mobility Control Resources Standard
Compliant Open Source Infrastructure

support

Proposal 5G SA and mode 1 AMS API Relatively Static
√ √

Needed
[128] 802.11p N.A. Static X X Needed
[123] N.A. N.A. Static X X Needed
[27] N.A. N.A. Static X X Needed
[118] 802.11p N.A. Static X X Not Needed
[28] N.A. N.A. Static and Mobile X X Needed
[124] 802.11p N.A. Static and Mobile X X Not Needed
[119] 802.11p N.A. Static and Mobile X X Not Needed
[122] LTE mode 4 N.A. Mobile X X Not Needed
[129] N.A. N.A. Mobile X X Not Needed
[130] 5G (N.A.) Custom Static and Mobile X

√
Needed

[131] N.A. N.A. Static and Mobile X
√

Needed

extensive experiments on the simulation model. Furthermore, it offers a practical use case to illus-
trate how this simulation tool can support researchers and engineers in developing and evaluating
innovative algorithms, applications, and protocols within the vehicular computing domain.

The simulation framework is publicly accessible to the researchers through the GitHub repos-
itory1.

4.2.1 RelatedWork

Table 4.1 summarizes the key characteristics of existing solutions that provide a Vehicular Com-
puting model. The Table highlights various aspects, such as the communication model consid-
ered during experimentation, how each solution handles the high dynamism of VANET envi-
ronments, the types of resources used to create dynamic computing nodes (i.e., mobile or static),
adherence to standardized edge computing documents, the provision of an open-source platform
for designing and testing other proposals, and whether infrastructure support is required to ex-
ploit vehicular resources.

In [128], the authors proposed the Vehicular Static Cloud-VANET model, which aims to estab-
lish a cohesive infrastructure for hosting ITS services. This model uses a centralized controller to
integrate resources from parked vehicles equipped with IEEE 802.11p-enabled OBU with cloud
resources and manages requests from on-road vehicles. Job assignment is based on vehicle resi-
dency time, i.e., the duration a vehicle remains part of the vehicular cloud, avoiding the need for
task migration when a vehicle leaves the parking lot. Similarly, in [123], the authors use residency
time for task allocation on parked vehicles, defining predefined contracts to incentivize vehicle
owners to provide in-vehicle resources. Also focusing on parked nodes, the authors in [27] in-

1https://github.com/aferaudo/Simu5G/tree/feat/vim-extension
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troduced a parking edge computing paradigm that pools computational resources from parked
vehicles in urban areas to assist edge servers in offloading tasks. They presented a task scheduling
algorithm and trajectory prediction model, showing improved offloading performance in urban
environments. Dressler et al. [118] extended an existing routing algorithm to dynamically create
distributed storage and improve network connectivity by exploiting resources from vehicles as
they enter and leave parking lots without requiring RSUs. Extensive simulations were conducted
using OMNeT++ and SUMO [83].

In [124], the authors presented an autonomous vehicle cloud formation algorithm, utilizing a
predictive metric called companion time—the period vehicles stay in proximity to each other—to
enable the formation of vehicle clouds in parking scenarios and in slow-moving traffic. Similarly,
Fan et al. [28] proposed a joint task offloading and resource allocation strategy for clouds of vehi-
cles covered by a base station. Feng et al. [119] designed a framework that uses beaconing to form
vehicle clouds dynamically. Bute et al. [122] explored a solution that sees vehicles dynamically
forming clusters on highways to create a collaborative computing platform with cloud infrastruc-
ture. The cluster head is selected using a fuzzy logic algorithm that ensures stable connectivity be-
tween nodes, supporting reliable communication. Hayawi et al. [129] explored a similar scenario,
using Unmanned Aerial Vehicles (UAVs) as computing nodes in the solution named Skywalker,
where UAVs provide radio coverage in dead zones.

Discussion

The solutions proposed in the above works do not adhere to a standard for integrating vehicular
resources into the cloud continuum. Instead, most of them introduce new architectures or work-
flows for acquiring in-vehicle resources. Additionally, as outlined in Table 4.1, Mobility Control
column, most works propose algorithmic strategies to evaluate the probability of nodes complet-
ing task execution. However, they do not deal with application migration when a node executing
tasks leaves the cloud. Although the authors in [132] formalize the service migration process for
parked vehicles as they leave the parking lot or refuse to continue providing services, it primarily
focuses on a mathematical formulation of the migration problem, overlooking real-world chal-
lenges in VC. These include procedures for vehicle resources, such as join and leave procedures,
incentive mechanisms to motivate vehicle owners and standardization.

One solution supporting migration in this context is VFogSim, proposed by Akgül et al.[130].
This open-source simulator adopts a data-driven approach, relying on real-world input data for ac-
curate modeling. However, obtaining such data can be challenging, potentially limiting its usabil-
ity in specific research scenarios. Additionally, the simulator supports only V2I-based communi-
cations and lacks an incentive mechanism for vehicle owners. Similarly, Wei et al.[131] introduced
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Figure 4.8: Simulation Tool Modules Structure

AirFogSim, a modular simulation platform enabling computation offloading in UAV-integrated
VFC.

Current state-of-the-art simulation tools lack a comprehensive vehicular computing platform
that enables researchers to design and test their algorithms and applications within a standard-
compliant environment. The simulation tool presented in this dissertation fills this gap by pro-
viding a versatile platform for running simulations with either generated or real-world input data,
producing meaningful results.

Moreover, compared to other solutions, this simulation tool incorporates a MEC-assisted mi-
gration procedure for tasks assigned to vehicles that either leave the parking lot or decline to con-
tinue providing services (see section 4.1.4). Currently, the tool supports quasi-mobile vehicles,
i.e., those exiting the parking lot. Still, by supporting ETSI-compliant APIs for service migration,
the platform is also adaptable to acquiring resources from moving vehicles.

4.2.2 SimulationModel: OMNeT++Modules

Figure 4.8 illustrates the structure and deployment of the main components of the simulation
model. From a structural perspective, the model includes a set of physical machines that host the
key entities of the extended MEC architecture, developed as applications. This design allows each
MEC component to be abstracted from the machine on which it operates.

The core of the MEC-H consists of components, including the Resource Infrastructure Host,
the MEC-PM, and the MEC-P, which manage the life cycle of MEC Apps and provide MEC
services in compliance with established specifications.

As mentioned earlier, the proposed architecture leverages vehicle resources to enable the exe-
cution of MEC-compliant applications at the far-edge layer. To enable this, the simulation model
defines the MEC car module, which extends the NR UE (NRUE) defined in Simu5G. This mod-
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ule wraps any 5G-enabled device and provides computational resources (e.g., CPU, RAM, and
storage) necessary to run applications orchestrated by the MEC-H. The capabilities of this mod-
ule are two-fold. First, it runs a ClientResApp initiating joining procedures to the resource pool
of a specific MEC-H, receives a list of rewards, and selects one based on whether the vehicle can
join. At the same time, this application manages resource release procedures when the vehicle exits
the AoI(see section 4.1.3). Second, it executes the VI application, which manages local resources
according to instructions from the central MEC-H and is responsible for deploying or deleting
any MEC Apps. The VI module is designed to execute on any host with resource infrastructure,
enabling the integration of any 5G-enabled device into the MEC-H resource pool. This could be
a daemon that virtualizes and makes the device’s resources available in an actual deployment.

In this extended architecture, MEC-Hs can support local and remote resources. Consequently,
the VIM module must handle the scheduling, preparation, and release of both local and remote
resources (see section 4.1.3). Scheduling is accomplished through an extensible algorithm system
that selects the optimal host for application deployment based on specific semantics that may favor
certain behaviors. Once a host is chosen, the VIM interacts with the remote hosts through the VI
deployed on top of them to handle remote commands for allocating, relocating, and terminating
MEC Apps.

Given the characteristics of the extended MEC architecture proposed in this dissertation, a ve-
hicle may leave the resource pool at any moment, potentially causing service disruption for the ap-
plications it hosts. To mitigate this risk, a migration service is essential to ensure service availability
and minimize delays. The simulation model addresses this requirement by custom implementing
the AMS, described in section 4.1.4. This version extends the standard version to support MEC-
assisted intra-host migrations and address volatility issues transparently. Specifically, each MEC
App can be relocated from a remote host to the central infrastructure while also managing context
synchronization between the two applications.

4.2.3 Measuring ExtendedMECNodes Performance through a
SimulationModel

The simulation model presented in this section serves two primary purposes: first, it is designed to
validate the architecture described in section 4.1, and second, it provides a platform for researchers
and engineers to test and develop applications leveraging the vehicular computing paradigm. This
section presents the performance evaluation of the simulation model. The first analysis compares
network-induced delays across three service delivery modes to validate the model. Following that,
resource management performance is evaluated using real-world data from a parking lot in Arn-
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Figure 4.9: OMNeT++ Simulation Environment

hem2. Finally, this dataset is used in an experimental analysis to assess the model’s performance
under dynamic conditions, i.e., vehicles leaving the parking lot when running MEC Apps.

Figure 4.9 illustrates an example of the vehicular computing environment, which might be
created using this simulation model in OMNeT++. The experiments were conducted using a 5G
standalone network environment with a numerology index ofµ = 2. The network setup includes
a single MEC-H connected to a gNB, simulating a scenario in a parking area near the gNB. A basic
reward scheme was implemented for resource acquisition, where participating vehicles received
integer values to represent the reward for joining. The MEC App deployed in each simulated
scenario is the MECWarningAlertApp provided in the Simu5G library, designed to notify users
when their vehicle enters a hazardous area (e.g., dense fog, icy roads, etc.). Users requesting the
MEC App follow a linear mobility model from the INET library, moving at a constant speed of
10 m/s. The experiments were executed on a Linux Virtual Machine running OMNeT++ with
16 CPUs and 64 GB of RAM.

Model Validation

To validate the effectiveness of the proposed model, the network-induced delays across three ser-
vice delivery schemes, namely at the cloud, edge of the network, and vehicle-based (far-edge), are
evaluated. In the cloud scheme, the MEC Apps are hosted on a simulated cloud data center,
which requires data transmission across the 5G RAN, the core network, and the edge. The sec-
ond scheme assesses delays when MEC Apps run directly on the MEC-H, thus those due to 5G
RAN and MEC local UPF co-located with the gNB (Figure 2.6). The last scheme involves host-

2https://parkeerdata.nl/opendata/arnhem/parkeergarages/transactiedata-parkeergarages
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Figure 4.10: Round Trip Time variation with varying number of UE requests in the considered service
delivery scenarios

ing MEC Apps on onboard vehicle resources, represented by the far-edge node in the extended
architecture (see Figure 4.1). In this case, delays include data transmission between the network
(gNBs) and devices (i.e., vehicle running MEC Apps and UE requesting their execution).

Figure 4.10 shows Round Trip Time (RTT) for each scheme. The x-axis represents the number
of clients (UEs) requesting the execution of a MEC App to assess various load scenarios. In this
experimental setup, each UE requests the execution of a single MEC App upon entering gNB’s
coverage area, with all UEs spawning simultaneously to mimic a flash-crowd scenario. To ensure
accurate results, each experiment was repeated five times.

For the third scheme (vehicle-based), different quantities of vehicles participating in the MEC-
H resource pool were tested, specifically 50, 100, 150, and 200 vehicles. In this scenario, the MEC
App execution triggered by the UEs requests is executed onboard the vehicle. This allows the
analysis of system scalability and how RTT correlates with the number of applications deployed
on each vehicle. The results show that latency remains stable, even with more than 500 devices
(i.e., 350 UEs and 200 vehicles) within the coverage of the MEC-H associated gNB, and is almost
independent of the number of vehicles within the range of practical interest (note that computing-
related delays are not considered in the reported simulations). Deploying MEC Apps on vehicles
significantly reduces RTT by approximately 50% compared to cloud-based deployment. On the
other hand, the far-edge scheme increases the RTT by 3ms compared to the edge mode, as it
fully exploits wireless communications via the 5G network infrastructure. However, it should be
noted that Simu5G handles V2V communications through the gNB base station, thus employing
a network-mediated communication model also in V2V scenarios (5G Mode 1). Adopting 5G’s
sidelink mode (5G Mode 2), which allows direct V2V communication without gNB involvement,
is expected to reduce RTT in future implementations.
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Figure 4.11: Resources management times and vehicle distribution in a parking lot

ResourceManagement

As described in section 4.1.3, resource management involves the operations for acquiring, allocat-
ing, and releasing remote resources.

Figure 4.11a illustrates the time required by the protocols to collect and release resources from
vehicles as they enter/leave the parking lot within the MEC-H AoI. The joining time represents
the interval during which the MEC-H detects the availability of a new vehicle for MEC App
allocation (step (1)-(6) in Figure 4.2a). On the other hand, the release time measures the period
needed for the MEC-H to remove the vehicle from the resource pool (steps (1)-(4) in Figure 4.2b).
The data reveals that the joining time increases progressively from 13 to 40 ms as more vehicles
participate in the resource acquisition process, while the release time remains relatively stable at
around 7 ms. This difference in performance can be attributed to the distinct communication
overheads between the two protocols. The resource release process is straightforward, requiring
only a few messages to remove a vehicle from the pool. In contrast, resource acquisition involves
multiple request/response messages, as the device-initiated reward scheme requires the vehicle to
request and negotiate available rewards.

While the simultaneous arrival of many vehicles in a parking lot is unlikely under typical condi-
tions, such a scenario may occur during special events like festivals or football matches. To support
this claim, data from three parking garages in the city of Arnhem, available on the Open Parkeer-
data portal, were analyzed. Figure 4.11b shows the average number of vehicles entering and leaving
the most frequented garage during rush hours. The data reveals that the number of parked vehi-
cles reaches nearly the maximum considered in the test setup between 17:30 and 18:30. However,
it is important to note that the peak of vehicle participation does not occur simultaneously, as the
data were sampled at 30-minute intervals.
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Figure 4.12: Resource Allocation Time

For resource allocation analysis, the time required to deploy MEC Apps on remote resources
was measured based on the interactions between the VI and the VIM during steps (7)-(8) of the
process shown in Figure 4.3. The simulation involves multiple UEs requesting MEC App exe-
cution and various numbers of parked cars belonging to the MEC-H resource pool. MEC Apps
were distributed across remote nodes using a Round Robin scheduler. The simulation was re-
peated 10 times, varying the number of UEs and parked cars.

Figure 4.12 demonstrates that resource allocation delays follow an exponential growth pattern,
influenced primarily by the number of MEC Apps deployed on parked vehicles. This is confirmed
by the overlapping curves, which indicate that the delay values remain relatively constant even
when the number of parked cars varies. It is worth mentioning that the simulation modeled a
worst-case scenario in which all UEs requested MEC App execution simultaneously, thus leading
to a substantial increase in network traffic. Despite this, the delay caused by these interactions
remained negligible, with a delay of approximately 40 ms, even when the number of requests
exceeded 300.

Migration Study

As previously mentioned, vehicles may leave the resource pool while their resources are still al-
located, leading to potential service disruptions. The proposed architecture initiates a migration
procedure to address this issue using the extended AMS described in section 4.1.4. In this con-
text, the MEC-H transfers running MEC Apps from the departing vehicle to another available
host. However, migrating stateful MEC Apps may result in a downtime period, during which
the application becomes temporarily unavailable.

A realistic scenario involving vehicle volatility and UE activities within a parking area was de-
veloped to evaluate the performance of this migration process. The scenario requires data on ve-
hicle activity (i.e., vehicles entering and leaving the AoI) and UE usage of network services in the
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Figure 4.13: Migration related metrics

surrounding area. However, no datasets directly capture the required information for this spe-
cific context. Therefore, two real-world datasets were used: the first is the Arnhem parking garage
dataset employed in the resource management analysis, and the second is the Bologna public WiFi
network dataset3, which records the number of users connecting to the WiFi network each hour.

To simulate the desired dynamics, the two datasets were analyzed to identify correlations be-
tween parking garage activity and network usage. As for the previous analysis, the “Central Garage"
was chosen due to its capacity to host over 1,000 vehicles and its proximity to Arnhem’s train sta-
tion. Data from Bologna’s WiFi networks near the city’s train station were then filtered to match
this context. After pre-processing the data, key metrics were extracted, including vehicle occu-
pancy time (i.e., the duration a vehicle remains parked), the average number of vehicles entering
the garage per hour, and the average number of UEs connecting to the network per hour. Oc-
cupancy time was modeled using a normal distribution with a mean µ = 202.80 minutes and a
standard deviationσ = 135.07. The number of vehicles entering the garage and UEs connecting
to the network was modeled using a Poisson distribution, with the Poisson interval set to 3,600
seconds. The average rate (λ) was adjusted based on the hour of the day.

The obtained distributions have been included in the simulation model to generate realistic ve-
hicle entries and UE requests for MEC App execution. The stateful MEC used in the simulation,
provided by the Simu5G library, defines a circular geographic warning zone and notifies the user
whenever their vehicle enters or exits this zone.

Figure 4.13a illustrates the number of migrations triggered by adopting the described distribu-
tions. Four parking lot capacities (50, 100, 150, and 200 vehicles) were considered to scale the
Poisson-distributed data from the original dataset. As MEC Apps were distributed across parked
vehicles using a Round Robin algorithm, lower parking capacities led to a higher number of mi-

3https://opendata.comune.bologna.it/explore/dataset/iperbole-wifi-affluenza/information/
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Figure 4.14: Scheduling Algorithms Comparison

grations, particularly during peak hours at 15:00 and 20:00. It is important to note that the num-
ber of migrations is also influenced by user activity and the number of vehicles present at different
times of the day. These factors, generated through probability distributions, result in varying mi-
gration events depending on the number of UE requests and available vehicle resources, which are
not detailed in this paper. The analysis focused on the interval from 13:00 to 21:00, corresponding
to peak network activity hours.

The downtime has been measured as the time interval between the shutdown of the app on the
leaving host and the end-user receiving the new MEC App location (refer to section 4.1.4 for each
step details). Generally speaking, the downtime could be affected by the latency between the two
involved entities, i.e., remote and local VI, and bandwidth [133]. In the experiments, latency was
primarily affected by the distance between the MEC-H and the gNB, as well as 5G radio delays.
Bandwidth did not significantly impact service interruption times, as the state data transmitted
by the MEC Apps was smaller than 30 bytes.

As shown in Figure 4.13b, the downtime remains stable at around 7 ms. Overall, despite the
number of MEC App relocations (Figure 4.13a) and the network activity increase, the downtime
remains stable when migrating MEC Apps from remote host to local MEC-H resources.

4.2.4 SimulationModel Use Case: Minimize TaskMigration

A custom scheduling algorithm was developed and tested using the simulation tool presented in
this section. This algorithm aims to minimize the number of application migrations caused by
vehicles leaving the parking lot while running MEC Apps.
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To simulate vehicle and user behaviors, the scenario from the Migration Study in the previous
section was recreated. This involved generating a series of Poisson and Gaussian distributions
based on the two real-world datasets introduced earlier.

The simulation replicated vehicle and user activity over a 24-hour period, with a parking lot
capacity of 150 vehicles. Three scheduling algorithms were tested: Best First, Round Robin, and
the custom algorithm. The performance of each algorithm was evaluated based on the number of
migrations it generated, as a lower number of migrations indicates improved reliability of MEC
Apps. For clarity, the results were focused on periods of highest activity.

Figure 4.14 reports the associated performance results by referring to the most challenging case
of the day hours with the highest user and vehicle activity levels. The Best First algorithm selects
the first available vehicle in the pool with sufficient resources to run the application. This ap-
proach often leads to many migrations, as the selected vehicles may leave the parking lot while still
executing applications. For instance, at the 12th hour of the simulation, the number of migra-
tions exceeded 60. In contrast, the Round Robin algorithm distributes applications evenly across
vehicles in the MEC-H resource pool, resulting in a more stable number of migrations, averaging
around 7.42 throughout the simulation.

A custom scheduler was developed using the simulation platform, leveraging multiple Gaus-
sian distributions derived from the Arnhem dataset after a pre-processing phase. This generated
average vehicle occupancy times based on 10-minute interval samples. For each vehicle in the re-
source pool, the custom scheduler predicts its remaining time using these distributions and the
time the vehicle joined. MEC Apps are assigned to vehicles with the longest predicted residency
times.

As shown in the figure, the results indicate that the custom algorithm significantly outperforms
the others in this scenario. While the algorithm could be further optimized using more advanced
machine learning techniques, even in its current form, it reduces the number of migrations to
around 20 by the 18th hour of the simulation. This demonstrates its effectiveness in improving
application reliability by minimizing unnecessary migrations.
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throughMEC andO-RAN
integration

As mentioned in section 2.5, the O-RAN Alliance defined a series of standards to make the RAN
open. It extends the 3GPP standardized base stations to make them able to support two distinct
RICs, programmable platforms designed to execute optimization algorithms and enable closed-
loop control of the RAN [48, 54].

This Chapter examines how the synergies between ETSI MEC and O-RAN can be exploited to
create a highly programmable, edge-computing-enabled ecosystem, all while maintaining compli-
ance with both telecommunications standards. The discussion emphasizes how this convergence
can significantly enhance the practical implementation of the vehicular computing paradigm in-
troduced in Chapter 4.

Furthermore, this Chapter places particular emphasis on the edge layer, highlighting the cen-
tral role of xApps in this integration. To address the current challenges in the xApp development
process, the Chapter presents a detailed design and implementation framework that reduces the
complexity of xApp development, streamlines the process, and encourages innovation in the pro-
grammable RAN environment.

5.1 Leveraging O-RAN networks to supportMEC
implementations

The integration of ETSI MEC with 5G networks has been widely researched over time, yielding
significant benefits for both the academic community and the advancement of emerging technolo-
gies [47, 134, 135]. This synergy drives innovation across key sectors such as autonomous vehicles,
innovative city applications, healthcare solutions, and the augmented/virtual reality market while
contributing to broader industry growth [134].
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Both ETSI and 3GPP entities play a central role in enabling the integration of MEC within the
5G infrastructure, particularly in areas such as traffic routing, local breakout, and policy control
operations. As described in section 2.3, these alliances define enablers that facilitate the interaction
between the two technologies. Xavier et al. [136] presented an integration of MEC and the 5G
core through their proposed communication API. They developed a MEC App that exploits these
APIs to demonstrate their approach’s feasibility, highlighting how the MEC system can interact
dynamically with the 5G core network to optimize application performance and user experience.

Similarly, Tomaszewski et al.[135] explored the challenges of managing network slices in a MEC-
compliant 5G environment, a critical aspect for ensuring that different applications receive appro-
priate resources in line with their service-level agreements. The dynamic allocation and manage-
ment of network slices is crucial, especially for latency-sensitive applications such as V2X com-
munications. Wadatkar et al. [137] emphasized how V2X could benefit from integrating edge
computing and 5G, showcasing how real-time data processing at the edge can improve vehicular
communications by reducing latency and enhancing safety-critical functions.

While integrating MEC with 5G has tremendous potential to transform industries and en-
hance next-generation applications, it also poses significant challenges in terms of resource man-
agement, security, heterogeneous traffic coexistence, and advanced technology integration. Huang
et al. [138] made early contributions by developing a framework for traffic redirection in MEC
within 5G environments. Still, their work lacked attention to the fine details of standardization,
especially about ETSI compliance.

A promising approach to addressing these challenges involves leveraging O-RAN standards.
O-RAN offers a more flexible and programmable framework, which can be exploited for inte-
grating MEC with 5G, especially by enabling greater control over the RAN. The authors in [139]
showed a first draft of an O-RAN-centric integration of ETSI MEC in 5G networks. However,
their work was limited by the lack of full O-RAN specifications availability at the time and thus
only presented a preliminary indication of what such an integration could achieve. The following
sections of this dissertation provide a design overview of how these two standards can be inte-
grated, highlighting their mutual benefits and the challenges this integration presents.

5.1.1 Design Overview

Figure 5.1 illustrates the integration of the ETSI and O-RAN standards presented in this disser-
tation. Starting at the MEC system layer, the O-RAN SMO framework manages orchestration
and monitoring of the RAN controller, hosting the Non-RT RIC and providing interfaces to
support interaction with various network components. On the ETSI MEC side, the MEC-O
acts as a resource orchestrator, maintaining a global view of the MEC system, including deployed
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Figure 5.1: Integration ETSI MEC and O-RAN standards

MEC-Hs, available resources, services, and network topology. It selects the appropriate MEC-H
for application instantiation based on specific constraints. Both the SMO and MEC-O operate
at the same layer, having a comprehensive view of the network infrastructure and managing their
respective components. Therefore, they may collaborate to ensure cooperation between MEC
and O-RAN orchestration methods.

At the lower level, the Near-RT RIC enables xApp execution in near real-time. xApps are mod-
ular components that implement custom logic, receiving telemetry from the RAN and sending
control commands via the E2 interface. This supports closed-loop control of the RAN at a near
real-time scale (below 1s). On the ETSI MEC side, MEC Apps discover and consume MEC ser-
vices to meet user requests. As described in section 2.3, MEC Apps can leverage several ETSI
MEC services, such as the RNI service [140], which provides access to radio conditions and user
plane measurements, and the V2X information service [141], which delivers relevant V2X data
from the 3GPP network.

xApps can seamlessly supply the data provided by these services. The proximity of xApps allows
to offer MEC-compliant services to MEC Apps through the service registry. Additionally, the
Near-RT RIC, which is built on a microservices architecture (refer to section 2.5), shares a similar
approach with VI platforms that provide compute, storage, and network resources to MEC Apps.
As the Near-RT RIC runs on Kubernetes, it can also host MEC-compliant applications, service
registries, and MEC services alongside xApps.

This dissertation focuses on the edge layer of the architecture, specifically on components in-
cluded in the MEC Host Layer. This integration enables the execution of user-requested appli-
cations, MEC Apps, that do not modify RAN configurations. Instead, MEC-compliant appli-
cations run alongside xApps and rApps on the RICs, leveraging their functionality to deliver ser-
vices to end-users. Additionally, this integration creates opportunities for RICs managed by dif-
ferent mobile network operators to interact and may enable xApps to connect with the network
core [136].
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5.1.2 Challenges

The integration of ETSI MEC and O-RAN standards presents significant opportunities for im-
proving edge computing and RAN management. However, key challenges need to be addressed
to fully unlock the potential of this integration. Two of the primary challenges are as follows:

1. Unifying the interfaces to enhance the capability of both standards: A major chal-
lenge in integrating ETSI and O-RAN standards lies in the need to unify their interfaces.
This unification aims to eliminate ambiguities in their interaction, interworking, and inte-
gration processes. Without clear, unified interfaces, these standards risk operational inef-
ficiencies and miscommunication between network components, which could hinder the
deployment of edge services and RAN control mechanisms. A first approach to this topic
has been explored in [142], offering a solution that focuses on the SMO framework that
ensures the unification of interfaces O-RAN, 3GPP and ETSI specifications.

2. Immaturity in the existing framework for xApp development: Another significant
challenge arises from the underdeveloped framework for xApp development, mostly due to
the complexity of the E2 interface. The E2 interface, which facilitates communication be-
tween the RIC and RAN, offers great flexibility through its multiple Service Models (SMs).
However, this flexibility introduces complexity, making it difficult for developers to create
xApps efficiently. Existing frameworks do not entirely abstract the intricacies of E2SMs,
leading to longer development times and potential errors in implementation.

This dissertation focuses on this second challenge by proposing and prototyping a new frame-
work that simplifies xApp development. The framework, presented in the next section, allows
developers to concentrate on the core control logic of their xApps while abstracting the complex-
ities of the E2 interface and its service models behind a simple API. Doing so reduces the barriers
to xApp development, accelerating innovation and deployment within the O-RAN ecosystem.

5.2 xApp Framework for O-RAN E2 ServiceModels

As discussed in the previous section, the xApp development process remains in its early stages,
primarily due to the complexity of the E2 interface. This complexity limits developers from fully
focusing on xApp logic, as they also need to deal with the intricacies of this interface. This section
presents the design and implementation details of xDevSM, a framework specifically designed to
simplify xApp development for the OSC Near-RT RIC.

xDevSM offers a set of APIs that abstract the steps defined in various E2SM protocols, stream-
lining the interaction between the xApp, the Near-RT RIC, and the E2 termination at the RAN
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node. By handling the complexities of configuring E2SM messages, xDevSM allows developers
to focus entirely on defining their application logic.

The framework builds on OSC RIC components and extends xApp functionality with a wrap-
per that can interface with shared libraries implementing specific E2SM protocols, such as KPM.
As this section demonstrates, xDevSM has been thoroughly tested with various open-source RAN
implementations, including srsRAN, OAI, and NVIDIA’s Aerial RAN CoLab (ARC), demon-
strating both its flexibility and its ability to validate functional use cases.

5.2.1 RelatedWork

Previous research has demonstrated that dynamically configuring the RAN stack through closed-
loop control using xApps can result in significant improvements in spectrum utilization, through-
put, and user satisfaction [143, 144, 145, 146]. The role of RICs has been explored in several areas,
including network slicing [143], load balancing and handover [147, 148], traffic shaping [146], and
spectrum sharing [149], among others [54].

Despite the advancements made through multiple E2 and RIC projects, developing xApps that
work across different components developed by various projects or vendors remains a challenge.
Additionally, the rapid cycle with which the O-RAN ALLIANCE publishes new specifications
often conflicts with the time required to develop new OSC releases, complicating the maintenance
and update of the E2 specifications. To address this, some efforts have implemented abstraction
layers over the E2 interface [150], while others have simplified SMs by using Protobuf buffers
instead of ASN.1 data structures [151, 152]. Although this approach simplifies the development
and testing of new SMs, it lacks full O-RAN compliance and requires both the xApp and RAN
to support Protobuf. Additionally, Protobuf encoding introduces a higher overhead compared
to the binary encoding offered by ASN.1 [153].

To address the abovementioned challenges, this dissertation proposes a flexible framework that
abstracts away the complex E2SM encoding/decoding processes, facilitating seamless interaction
with multiple RAN implementations.

5.2.2 xDevSM: A Flexible SM Framework for xApp Development

As section 2.5 mentions, the OSC offers a comprehensive set of libraries and functions for various
programming languages designed for their Near-RT platform version to support xApp develop-
ment. This suite includes APIs for messaging through the RMR, such as callback for registration,
E2AP encoding and decoding, subscription APIs, and the Shared Data Layer (SDL) interface.
xDevSM framework leverages the Python-based framework [154] provided by OSC, which in-
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xApp Logic

SM Framework API

SM Framework

KPM RC

RICXAPPFRAME

E2AP
RMR
Client

Subscriber Config

O-RAN SC Near-RT RIC

Figure 5.2: xDevSM and OSC RIC components. The xDevSM components are in yellow, while the OSC
frameworks are in green and blue. The xApp developer only takes care of the xApp logic, in
orange

troduces two main types of xApps: Reactive xApps (RMRXApp) and general xApps (XApp). Reactive
xApps respond to incoming RMR messages through registered callbacks, allowing the main xApp
to manage multiple message types. General xApps, on the other hand, require the main xApp to
actively fetch messages from the RMR buffer.

While the OSC frameworks are primarily focused on facilitating communication between RIC
components, they do not provide APIs that simplify E2SM-related interactions with the E2 node.
Once the xApp subscribes or connects to an E2 node, developers must handle the complex task
of serializing and deserializing E2SM messages, making them responsible for understanding the
specific E2SM versions supported by the E2 nodes to build functional xApps.

xDevSM addresses these challenges by providing a plug-and-play solution for encoding and de-
coding E2SM data through simple, well-defined APIs. As illustrated in Figure 5.2, the framework
is built on top of the Python xApp framework provided by the OSC [154, 155] and comprises two
components: the SM Framework and the SM Framework API.

The SM Framework offers Python objects and functions that enable accurate decoding and
encoding of messages related to supported E2SMs. These functions are implemented in shared
libraries written in C, which are dynamically loaded by the framework as needed. In this initial ver-
sion, the shared libraries are based on E2SM functions from the FlexRIC project [56], along with
custom functions to streamline common xApp tasks requiring data encoding/decoding. Python’s
garbage collector is leveraged to manage memory deallocation for the corresponding C structures.
Developers can extend the shared libraries with additional encoding/decoding functions to sup-
port new E2SMs and then integrate them with Python objects. The API component provides
interfaces for interacting with the Near-RT RIC and E2 nodes, allowing developers to imple-
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Figure 5.3: Class diagram for xDevSM

ment their xApp logic. It includes an abstract method that xApp developers must define, called
after xApp initialization, and contains the application-specific logic. For example, it can request
the decoded RAN function description or store the key performance indicators in a time-series
database. Additionally, the xApp containing the logic can receive decoded KPM messages and can
directly send RC messages in an encoded form. These messages are managed using the SM frame-
work functionalities described above and sent to the RIC components using the OSC framework.

Compared to other solutions [156], xDevSM relies on shared libraries to manage ASN.1 se-
rialization and deserialization procedures, leveraging the C language, which is the most widely
adopted in this context [56, 157, 158]. This approach enhances the robustness of xDevSM, as
it simplifies the process of finding and building shared libraries to support new service models.
Additionally, the extensive use of C in this environment ensures better performance and compat-
ibility, making xDevSM a more reliable and adaptable framework for xApp development.

5.2.3 xDevSM: Design and Implementation

The new abstraction layer introduced in the xDevSM framework facilitates data translation and
optimizes memory management by dynamically handling the allocation and deallocation of ex-
ternal structures. This dissertation provides details on the KPM SM [159] encoding/decoding
features provided in this layer by xDevSM, as the RC SM is currently under development. As
shown in Figure 5.3, the API component includes a class called XappKpmFrame, which extends the
RMRXApp class provided by the OSC xApp framework [155]. This extension adds methods for re-
trieving E2 node information, such as the connection status to the Near-RT RIC and available
RAN functions, as well as subscription-related methods. To facilitate RAN information retrieval,
the framework utilizes a Python object called KpmFuncDefArrWrapper, which refers to a custom data
structure defined in the libsm_framework.so shared library. This structure is essential for decoding
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Listing 5.1: Logic of a Basic KPM xApp
1 class KpmXapp(kpmframe.XappKpmFrame):

2 def logic(self):

3 self.register_ind_msg_callback(handler=self.indication_callback)

4 # Registring other callbacks and get list of available gnb

5 for index, gnb in enumerate(gnb_list):

6 json_obj = self.get_ran_info(e2node=gnb)

7 if json_obj["connectionStatus"] != "CONNECTED":

8 continue

9
10 ran_function_description = self.get_ran_function_description(json_ran_info=json_obj)

11 func_def_dict = ran_function_description.get_dict_of_values()

12
13 func_def_sub_dict = {}

14 selected_format = format_action_def_e.END_ACTION_DEFINITION

15 if len(func_def_dict[format_action_def_e.FORMAT_4_ACTION_DEFINITION]) == 0:

16 selected_format = format_action_def_e.FORMAT_1_ACTION_DEFINITION

17 else:

18 selected_format = format_action_def_e.FORMAT_4_ACTION_DEFINITION

19
20 if selected_format == format_action_def_e.END_ACTION_DEFINITION:

21 self.terminating_xapp()

22 return

23
24 # Selecting only supported action definition

25 func_def_sub_dict[selected_format] = [value for value in func_def_dict[selected_format] if value in

measurements_ids]

26
27 # Sending subscription

28 ev_trigger_tuple = (0, 1000)

29 status = self.subscribe(gnb=gnb, ev_trigger=ev_trigger_tuple, func_def=func_def_sub_dict)

30
31 # Check Status...

and building RAN function definitions, which are stored in hexadecimal and E2SM-encoded for-
mats by the Near-RT RIC subscription manager. The wrapper also handles memory deallocation
once the Python object is no longer needed.

The subscribe method of the XappKpmFrame class allows developers to specify the E2 node, the
RAN functionalities to be monitored, and the reporting period for the xApp subscription. Before
sending this information to the subscription manager, the subscribe method encodes the RAN
functionalities and the reporting period using functions defined in the libsm_framework.so shared
library. Upon receiving this encoded information, the subscription manager performs additional
encoding using the E2AP libraries and then forwards the subscription to the E2 nodes. The en-
coding functions in libsm_framework.so rely on procedures defined in libkpm_sm.so, which is
built using the FlexRIC [56] framework.

Developers can exploit this framework by either extending the XappKpmFrame class or by encap-
sulating an instance of it. Extending the XappKpmFrame offers greater flexibility, allowing developers
to customize behaviors of internal methods such as post-initialization actions, logger level adjust-
ment, and modified decoding functions. On the other hand, encapsulating an instance allows
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Listing 5.2: gNB Registration on Near-RT RIC
1 [

2 {

3 "inventoryName": "gnb_001_001_00000e05",

4 "globalNbId": {

5 "plmnId": "00F110",

6 "nbId": "00000000000000000000111000000101"

7 },

8 "connectionStatus": "CONNECTED"

9 }

10 ]

developers to utilize the class’s procedures without changing its internal behavior, simplifying in-
tegration and reducing potential errors.

This dissertation explores the first option, as illustrated in Figure 5.3 (orange block). The Kp-

mXapp class inherits from XappKpmFrame, registers a callback method to handle Indication Messages,
and defines the logic method. This ensures that all operations related to the dispatching of in-
dication messages and decoding the information are handled within the framework. Specifically,
the framework automatically decodes the E2AP part using the RICXAPPFRAME IndicationMsg class
(green block Figure 5.3) and the E2SM data using the KpmIndMsgWrapper and KpmIndHdrWrapper

classes (yellow block Figure 5.3). The E2SM-related classes expose a decode API, which invokes a
function defined in the libkpm_sm.so. This function decodes the E2SM-related information and
returns a Python Object corresponding to the KPM related data. This modular design allows
for easy updates to the E2SM by simply changing the shared library version, provided that func-
tion signatures remain consistent across different E2SM versions. Once the received message has
been decoded, the registered function containing the behavior defined by the xApp developer is
executed.

The logic method is an abstract method provided by the XappKpmFrame that allows the devel-
opers to define the xApp behavior. Within this method, developers can specify which E2 node
to select based on a particular logic, identify RAN functionalities of interest, set reporting pe-
riod, and more. For instance, in the scenario provided in Listing 5.1, after registering a callback
and retrieving the available gNBs, the xApp fetches KPM parameters associated with each gNB,
selects formats supported by framework, and sends a subscription to the gNB. The xApp then
receives notifications for each indication event in its decoded form. This example highlights how
the xDevSM framework simplifies the process for developers when designing and implementing
an xApp using existing frameworks.
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Listing 5.3: gNB RAN Function Descriptions Decoded in xApp
1 {[...], "id": "ricxappframe.xapp_frame", "mdc": {}, "msg": "Available functions: {0: [], 1: [], 2: [], 3: [’DRB.

PdcpSduVolumeDL’, ’DRB.PdcpSduVolumeUL’, ’DRB.RlcSduDelayDl’, ’DRB.UEThpDl’, ’DRB.UEThpUl’, ’RRU.PrbTotDl’,

’RRU.PrbTotUl’], 4: []}"}

2 {[...], "id": "ricxappframe.xapp_frame", "mdc": {}, "msg": "Selected functions: {3:[’DRB.PdcpSduVolumeDL’, ’DRB.

PdcpSduVolumeUL’, ’DRB.UEThpDl’, ’DRB.UEThpUl’, ’RRU.PrbTotDl’,’RRU.PrbTotUl’]}"}

Listing 5.4: gNB KPM parameters Decoded by xDevSM
1 {"ts": 1738666526341, "crit": "DEBUG", "id": "ricxappframe.xapp_frame", "mdc": {}, "msg": "printing info ue[0]"}

2 {"ts": 1738666526341, "crit": "INFO", "id": "ricxappframe.xapp_frame", "mdc": {}, "msg": "DRB.PdcpSduVolumeDL:0"}

3 {"ts": 1738666526341, "crit": "INFO", "id": "ricxappframe.xapp_frame", "mdc": {}, "msg": "DRB.PdcpSduVolumeUL:0"}

4 {"ts": 1738666526341, "crit": "INFO", "id": "ricxappframe.xapp_frame", "mdc": {}, "msg": "DRB.RlcSduDelayDl:0.0"}

5 {"ts": 1738666526341, "crit": "INFO", "id": "ricxappframe.xapp_frame", "mdc": {}, "msg": "DRB.UEThpDl:0.024"}

6 {"ts": 1738666526341, "crit": "INFO", "id": "ricxappframe.xapp_frame", "mdc": {}, "msg": "DRB.UEThpUl:0.552"}

7 {"ts": 1738666526341, "crit": "INFO", "id": "ricxappframe.xapp_frame", "mdc": {}, "msg": "RRU.PrbTotDl:74"}

8 {"ts": 1738666526341, "crit": "INFO", "id": "ricxappframe.xapp_frame", "mdc": {}, "msg": "RRU.PrbTotUl:166"}

5.2.4 Analyzing xDevSMwith different Open-Source RANs

This section explores the flexibility of the xDevSM framework across various RAN implementa-
tions. The evaluation includes experiments conducted with both OAI and srsRAN, tested in two
distinct scenarios: simulated environments and OTA.

OpenAirInterface

This section presents an analysis based on deployments utilizing OAI software, including both
simulated environments and real-world scenarios where the OAI RAN operates alongside the
Open5GS core and Commercial Off-the-Shelf (COTS) user equipment (UEs).
Simulated Deployment. As illustrated in Figure 5.4a, the deployment involves setting up a 5G
network using Minikube, where OAI provides both the RAN and core 1.To enable the E2 in-
terface and establish connectivity with the near-RT RIC, the OAI RAN was configured with its
default E2 agent, provided by the FlexRIC project. A pod within the oai-ran namespace imple-
ments an NR UE that connects to the base station via OAI’s RFSim. This setup creates an O-
RAN-compliant, isolated environment, allowing for efficient testing and prototyping of xApps.
The KpmXapp (Listing 5.1) was employed to validate xDevSM compatibility with OAI. In this
configuration, the SM framework utilizes the shared library (libkpm_sm.so) produced during the
building phase of the E2Agent from the FlexRIC SDK. Multiple tests confirmed effective com-
munication between OAI software and OSC Near-RT RIC Releases I and J, while the xApps
performed their designated tasks as expected.

1https://github.com/aferaudo/ORANInABox/wiki
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Figure 5.4: OpenAirInterface Deployments
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Figure 5.5: Comparison of iPerf3 (blue dots) and xApp (orange squares) reported values with OAI

Listing 5.2 shows the successful connection of a base station to the Near-RT RIC. Listing 5.3
presents an example of the RAN Function definitions received from the E2 node, processed by
the xApp, and decoded by xDevSM. Moreover, Listing 5.4 provides an example of information
sent through the E2 interface by the gNB. These include the amount of Packet Data Conver-
gence Protocol (PDCP) traffic exchanged during the interval defined in the KPM subscription
(DRB.PdcpSduVolumeDL, DRB.PdcpSduVolumeUL), the average throughput (DRB.UEThpDl, DRB.UEThpUl),
and the number of Physical Resource Blocks (PRB) allocated (RRU.PrbTotDl, RRU.PrbTotUl).

This simulated deployment provided the foundational environment for developing, testing,
and prototyping the xDevSM framework. The shared libraries created in this environment were
reused for subsequent deployments.

Over-the-Air Deployment with NVIDIA ARC. Building upon the simulated environment,
this deployment involved an OTA setup. It leverages the X5G testbed [152], where OAI was em-
ployed as the CU and DU-high, while the DU-low (PHY-high) used NVIDIA ARC’s inline ac-
celeration via GPU. This DU is connected to a Foxconn RU operating in the 3.7-3.8 GHz band,
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Figure 5.6: srsRAN Deployments

with a bandwidth of 100 MHz, and connected to Samsung S23 and OnePlus AC2003 Nord
COTS smartphones. The default E2 agent for the OAI stack was again used in this setup, with
Open5GS as the core network to validate functionality with different AMF and UPF implementa-
tions, which may encode UE information differently. Figure 5.4b illustrates the final deployment.

Tests were conducted with up to five connected UEs, and the xApp accurately reported metrics
for all devices. Disconnection scenarios were also evaluated, with the xApp successfully removing
disconnected UEs from the list of available devices sent from the gNB to the near-RT RIC.

Figure 5.5 shows that the throughput values reported by the xApp closely match the traffic
generated by the UEs using iPerf3 over TCP, both downlink and uplink. A minor offset of ap-
proximately 2% was observed, attributed to a misalignment in reporting of the KPMs by the xApp
and iPerf3 logs. This discrepancy also relates to the overhead introduced by headers in the TCP/IP
stack and at PDCP, which is captured by the xApp and not by iPerf3, as iPerf3 measures applica-
tion layer throughput, while the xApp tracks throughput within the RAN.

srsRAN

This section examines deployments using srsRAN to evaluate the effectiveness of xDevSM frame-
work with a different RAN implementation. As with the previous analysis, the experiments are
conducted in two phases: a simulated deployment using two virtual machines for the Near-RT
RIC and 5G components, followed by an OTA deployment.
Simulated Deployment. In this deployment, the simulated setup from the srsRAN tutorial2 is
used, where the srsUE and gNB communicate via a ZeroMQ-based RF driver, with Open5GS as
the core network.

As illustrated in Figure 5.6a, the setup differs from the one outlined in the tutorial. It relies on
two virtual machines connected over the same network: one hosts all the 5G components (RAN,

2https://docs.srsran.com/projects/project/en/latest/tutorials/source/near-rt-ric/source/index.html
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Figure 5.7: Comparison of iPerf3 (blue dots) and xApp (orange square) reported values with srsRAN

UE, and core), and the other runs the Near-RT RIC Release J in a single-node Kubernetes cluster.
In this deployment, the E2Term SCTP service of the Near-RT RIC has been exposed to interact
with srsRAN’s E2 node. For testing, the shared library for the KPM v3.00 service model was built
using the FlexRIC SDK, as srsRAN supports KPM v3.00 [159]. The xApp was then deployed us-
ing the xDevSM framework, utilizing the service model designed for this environment. It should
be noted that, by default, srsRAN exposes more KPMs than OpenAirInterface.

Over-the-Air Deployment with 7.2 Split. The OTA deployment extends the simulated setup,
utilizing srsRAN with the same Foxconn RU as shown in Figure 5.6b. The transmission occurs
over a 40 MHz bandwidth, and iPerf3 tests are conducted similarly to the previous OTA scenario.
As expected, the xApp decodes and displays metrics from the gNB correctly. Figure 5.7 compares
the traffic generated by iPerf3 (using TCP) with the traffic reported by the xApp. The results
show a 1% difference in downlink throughput and around 10% difference in uplink throughput.
This last difference is because the throughput in the uplink is limited to 10 Mbps, and the xApp
measures the performance at the PDCP level. Therefore, the overhead due to the TCP/IP and
PDCP headers is higher than that of other experiments. Sometimes, the xApp failed to decode
UEs updates when devices disconnected from the srsRAN base station. This issue was not ob-
served with the OAI RAN implementation, suggesting that further investigation on the srsRAN
side is necessary.
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Listing 5.5: OAI gNB Exposed RC RAN Function Definitions
1 {"ts": 1739263269274, "crit": "INFO", "id": "ricxappframe.xapp_frame", "mdc": {}, "msg": "INVENTORY NAME:

gnb_001_001_00000e00"}

2 [Event Trigger]

3 UE Information Change

4 [Report]

5 UE Information

6 [Control]

7 Radio Bearer Control

5.2.5 Challenges and Extensions in xDevSM: ADiscussion

One of the key challenges in enhancing xDevSM3 lies in its adaptability to evolving E2SMs. As
O-RAN standardization advances, service models may undergo frequent modifications, necessi-
tating a flexible and efficient approach to integration.

Currently, adapting xDevSM to new or modified E2SMs requires manual intervention. This
process involves designing new Python objects corresponding to the underlying SM structures
defined in the shared libraries (currently based on C). As this mapping process is manual, when
changes in the E2SM notation occur, developers must manually modify the C code that bridges
the E2SM and custom structures before rebuilding the shared library to reflect these updates.
Additionally, developers need to define the Python counterpart of these structures. This manual
process introduces potential for error, increases maintenance time, and limits scalability when
supporting multiple service models across different E2SM versions.

Automating the translation between E2SM structures and Python objects will be a key area of
improvement. This automation would allow xDevSM to dynamically adapt to changes in E2SM
versions and reduce the need for extensive manual code adjustments, thereby increasing efficiency
and reducing the likelihood of inconsistencies.

Another challenge involves the E2AP encoding and decoding, which xDevSM depends on
from the OSC xApp framework. Discrepancies can arise between the xApp framework’s E2AP
implementation and the actual RAN E2AP implementations, leading to potential synchroniza-
tion issues. To mitigate these synchronization risks, future development focuses on integrating
continuous testing solutions for xDevSM, ensuring compatibility between the framework, the
Near-RT RIC, and the RAN implementations.

Additionally, future research aims to extend xDevSM capabilities to include the RC service
model. This SM enables the dynamic adaptation of parameters exposed by the RAN through the
E2 interface (Listing 5.5), allowing near-real-time changes to RAN behavior. Such adaptability is

3https://github.com/wineslab/xDevSM
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crucial to enable closed-loop control and advanced network management tasks, including RAN
slicing, resource allocation optimization, and policy-driven reconfiguration.

For instance, Listing 5.5 provides an example of RC RAN function definitions decoded by
xDevSM and exposed by a OAI gNB through the E2 interface. In this scenario, the gNB supports
the Radio Bearer Control feature, which enables changes to the bearers of E2 nodes or specific
UEs, such as those concerning QoS parameters. This capability is crucial for fine-tuning network
performance and ensuring optimal service quality for different traffic profiles.

As xDevSM continues to evolve, addressing these challenges through automation and contin-
uous integration will be key to expanding its applicability and ensuring its long-term viability in
the evolving O-RAN ecosystem.
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6 Conclusions and FutureWork

The VC paradigm presents significant challenges due to the intermittent connectivity and high
mobility of vehicles. This dissertation focused on addressing some of these challenges by tackling
the increasing complexity of vehicular networks and edge computing within the VC ecosystem,
intending to support next-generation vehicular applications effectively.

• In Chapter 3, this dissertation introduced two original solutions to improve communica-
tions reliability in VANET. The first one focused on mitigating VANET attacks through
a robust reputation system that excludes vehicles exhibiting malicious behavior within the
VANET. The dissertation provided comprehensive details on this solution’s design, imple-
mentation, and integration within real-world 5G scenarios. Moreover, this was evaluated
by building a dataset comprising standard V2V and V2I messages exchanged during an
exceptional event, such as an accident. The second contribution explored the potential
of leveraging in-vehicle TSN architecture for external communications. This resulted in a
proposal for a TSN-like controller to reduce interference and prevent data loss in vehicular
networks.

• In Chapter 4, this dissertation designed a novel VC architecture exploiting the ETSI MEC
standard to lay the foundation of a cloud continuum of resources from the traditional (usu-
ally geographically distant) cloud to far-edge resources accessible in a standard way. The
presented scheme allows devices/far-edge nodes to join the resource pool of edge nodes
and device owners to access a reward system. It also addressed resource volatility problems
as devices enter and leave the edge node resource pool. The feasibility of this architecture
was also demonstrated through a simulation tool focusing on parked vehicles, validated by
extensive experiments on response time, resource management, and migration. The dis-
sertation also provided a case study of how this tool can be used to test resource allocation
algorithms in minimizing task relocation.

• Chapter 5 outlined an in-depth investigation of integrating O-RAN with the ETSI MEC
standard to facilitate MEC usage in 5G networks. This Chapter highlighted the synergies
and the challenges identified for such an integration. Moreover, as xApps have a key role in
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such an integration, the Chapter detailed the design and implementation of a framework,
with the intent of minimizing development effort for O-RAN xApps. By introducing an
abstraction layer to manage E2SM encoding/decoding, the framework allowed developers
to focus on the control logic rather than service model intricacies.

In the next section, this dissertation outlines future work that builds upon the solutions pre-
sented, exploring further advancements and research directions to enhance vehicular networks
and edge computing environments.

6.1 Envisioned and Planned FutureWork

From this dissertation emerge many opportunities and future directions, some of which are iden-
tified in this section.

6.1.1 VANETReliability

Building on the DIVA algorithm’s ability to assign a reputation score to each vehicle transmit-
ting road-related information (section 3.1.3), a future direction involves leveraging these scores as
a criterion for reward allocation in VC environments. For example, in the architecture presented
in Chapter 4, rewards could be dynamically defined in proportion to each vehicle’s reputation.
Additionally, exploring the integration of network-based reputation with computing-based repu-
tation, which evaluates a vehicle’s reliability in resource provisioning, could further refine reward
mechanisms used in VC scenarios.

Additionally, since DIVA classifies messages according to the reputation score of each vehicle, it
can serve as a labeling mechanism to identify and flag malicious behaviors within the vehicular net-
work. Future research could apply this labeled dataset to train a machine-learning model, advanc-
ing the system’s ability to autonomously detect other misbehaving vehicles. This approach would
enable real-time misbehavior detection and model adaptability, allowing the machine-learning
system to evolve in response to emerging malicious behaviors.

In the same direction, section 3.2 introduced a TSN-like Controller designed to improve QoS
in vehicle platooning by orchestrating message dissemination over VANET. While the approach
obtained promising results, further research is needed, particularly in managing dynamic events
like vehicles exiting a platoon and reassigning communication slots. Addressing these gaps would
enhance the system’s resilience and communication efficiency in dynamic vehicular environments.

Moreover, future work could explore the integration of cellular and TSN domains to support
time-sensitive applications and low-latency communication requirements, particularly in 5G in-
frastructures [95]. Thanks to the design of this solution, further studies can examine developing
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intelligent strategies for handling platoon formation errors and supporting the prioritization of
safety-critical messages. Implementing distinct priority-based queues could facilitate the reliable
and rapid dissemination of critical information between platoons.

6.1.2 ETSI MEC-based Vehicular Computing

The simulation model introduced in section 4.2 supports vehicles modifying their mobility state,
such as those exiting a parking lot. Future enhancements aim to improve this tool to support
fully mobile vehicles, facilitating automated distribution of MEC applications in more dynamic
environments, also depending on specific mobility characteristics. These extensions will require
adjustments in the architecture design outlined in section 4.1, particularly in automating resource
acquisition and release procedures to make the MEC system entirely self-managed, eliminating
the need for device-initiated processes. Initial steps toward this goal were taken during this disser-
tation, which included developing a system-specific MEC App that monitors the AoI as defined
by the MEC-H. Utilizing RNI services, this application tracks new devices entering and leaving
the coverage area of the MEC-H-related 5G base station. This research highlighted different chal-
lenges, such as identifying during resource allocation vehicles staying enough time in the AoI for
task execution and managing frequent migrations as vehicles move between network cells.

The architectural framework proposed in this dissertation provides a foundation for novel VC
computing applications, including Federated Learning [160] environments, which are currently
uncommon in those targeted by the community. Future work could explore deploying a MEC
App as a federated server on the MEC-H local resource infrastructure, capable of coordinating
remote MEC Apps (federated clients) during local model training. The federated server would
select clients based on model descriptors and other information gathered via the MEC standard
API, allowing the clients, upon receiving the model, to train on local data while utilizing their
internal status, local data characteristics, and assigned reward mechanisms.

Furthermore, recent advancements in the ETSI MEC reference architecture [11, 161, 162] re-
flect a growing interest in enabling service continuity across multiple mobile network operators
and infrastructure providers. The MEC federation model [161] aims to enable edge computing
as an operator-agnostic service, allowing users to access edge applications across different opera-
tors’ edge clouds. Future plans will explore this federation model to support the deployment and
continuity of stateful vehicular applications, including inter-operator migration and cross-region
roaming. These studies will be essential to fully realize MEC-enabled edge infrastructure that sup-
ports highly mobile vehicular contexts, where seamless and cross-regional service continuity has
become crucial.
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6.1.3 Vehicular Computing ThroughMEC andO-RAN Integration

As mentioned in section 5.1.2, two main challenges affect the integration of O-RAN and MEC
standards. This dissertation focused on one of these challenges by creating a framework simplify-
ing xApps development. The framework introduces an abstraction layer to reduce the complex-
ity associated with interactions over the E2 interface, thus streamlining the development process.
However, as discussed in section 5.2.5, this framework presents several challenges that require
further exploration in future studies.

Furthermore, future research will focus on extending this framework to support the creation
of MEC services using xApps, thereby enabling the deployment of a fully MEC-compliant edge
node within an O-RAN-compliant 5G network.

Building on the integration of O-RAN and MEC standards, future work will focus on devel-
oping a real-world testbed of the architecture proposed in Chapter 4. Leveraging the reference
architecture provided by the O-RAN alliance, its integration with the ETSI MEC standard, and
innovative open-source frameworks for software-defined vehicles (e.g., SOAFEE [18]), it will pos-
sible to enable the deployment of MEC-compliant applications across both edge nodes and highly
mobile UEs, such as vehicles, within a 5G network.

6.2 Concluding Remarks

This dissertation presented foundational solutions addressing critical challenges in vehicular com-
munications and edge computing, paving the way for more robust and efficient next-generation
vehicular applications. The key contributions of this work are summarized as follows:

• It thoroughly investigated two approaches to ensure security and to meet strict QoS re-
quirements in VANET scenarios. This required the creation of a dataset containing V2V/V2I-
based messages compliant with ETSI standard.

• It explored the possibility of extending MEC-compliant edge node resources with those
included in far-edge devices, improving the computational scope of edge nodes.

• To evaluate this extension, a comprehensive simulation tool was developed and shared with
the research community, allowing researchers to test applications within a VC context that
complies with MEC standards.

• It studied application migration in dynamic vehicular environments, leveraging standard-
compliant APIs to support service continuity in VC scenarios.
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• Finally, it extensively investigated the deployment of MEC standard within a 5G network
by exploiting the O-RAN specifications. This resulted in an openly available framework to
support the development of O-RAN near real-time applications, representing a key enabler
toward achieving this integration.
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