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Abstract

The last two decades have witnessed a rapid increase of awareness regarding

tsunami hazard, especially since the 2004 Sumatra event. This has been ac-

companied by the development of Tsunami Early Warning (TEW) systems all

around the world, which includes instrumental monitoring networks and infras-

tructures to allow rapid communication with stakeholders and civil protection

institutions. Classically, TEW systems have been based on seismic monitoring,

although direct observation of travelling tsunami waves has acquired an ever

more important role. The de facto standard tsunami measurement device to-

day is the Ocean Bottom Pressure Gauge (OBPG), which measures the water

column pressure at the bottom of the sea. Many TEW systems today are based

on the detection in real time of tsunami waves by OBPGs that are continuously

operating and transmitting data. In this thesis, we test four tsunami detection

algorithms, namely Mofjeld's algorithm, tide removal with Empirical Orthogo-

nal Functions, the Tsunami Detection Algorithm and a method based on the

Fast Iterative Filtering (FIF) and IMFogram algorithms. FIF and IMFogram

are data driven signal analysis tools which are used to decompose a signal into

elementary oscillatory modes and obtain a time-frequency representation of the

signal. We show that these techniques can be a compelling alternative to classi-

cal analysis methods, since they give equivalent results, with the added robust-

ness of data driven methods and the ability of performing multiple operations

(denoising, tide removal, bandpass �ltering) in a single operation. Then, we

leverage on their properties to develop a new tsunami detection algorithm. The

four detection methods are tested against two datasets built from OBPG data

from the NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART).

The �rst dataset consists of month-long signals including only tides and noise,

while the second includes day-long records acquired during past tsunami events.

We discuss possible criteria to choose the optimal amplitude detection thresh-

old, based on detection rates of tsunamis, seismic shaking and possible false

detections. The newly developed FIF-based technique shows very promising

results, both in terms of false detection rates and low optimal detection thresh-

olds. Finally, the ability of the technique to characterize the tsunami waveshape

in real time are discussed and strategies to reduce errors in operational contexts

are presented.
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Chapter 1

Introduction

1.1 Global impact of tsunamis

In the presence of a body of water, some natural events may cause signi�cant

vertical displacements of the entire water column. Among these events, we may

�nd o�shore earthquakes, subaerial and submarine landslides, volcanic eruptions

and sudden and strong atmospheric disturbances. The vertical displacement of

the water body then generates propagating trains of long waves that are called

tsunamis. These waves have usually amplitudes of few centimeters o�shore, but

due to shoaling and ampli�cation phenomena they show remarkable increase in

amplitude in the vicinity of coastal areas. For these reasons, tsunamis may rep-

resent a signi�cant threat to coastal areas, which includes human settlements,

historical and cultural heritage sites, and vulnerable or even endangered local

ecosystems. The estimated losses caused by tsunamis amount to US$280 bil-

lion in costs and more than 250 thousands casualties between 1998 and 2017

(Imamura et al., 2019). In particular, the 2004 Boxing Day tsunami, respon-

sible for the vast majority of tsunami casualties in the aforementioned period,

was a great catalyst in increasing the interest in tsunami modelling and hazard

assessment (Synolakis and Bernard, 2006).

The impact that tsunamis have had in the last few decades increased the

attention of public institutions and the interest of researchers in improving the

understanding about the physics and phenomenology of tsunamis. For a general

overview, we refer the reader to the works by Levin and Nosov (2016) and Saito

(2019). However, many di�culties are still present in dealing with tsunami

hazard (Behrens et al., 2021), such as:

1
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� the complexity of triggering mechanisms and the possibility of cascading

e�ects (e.g. an earthquake triggers a landslide, which then generates the

tsunami);

� the scarcity of data, which prevents us to have a complete description of

the phenomena on a purely statistical basis;

� the limits in real time forecasting methods and population alerting systems

due to the large spatial scales a�ected in short time.

To face these di�culties, two main strategies have been developed. The �rst is

the production of tsunami hazard and risk models, that quantify the probability

that an event of a certain size, usually expressed in terms of water height at

target locations, will happen within a given amount of time. Such models may

be developed for di�erent spatial scales, from global (Løvholt et al., 2014), to

regional (Basili et al., 2021), to local (Volpe et al., 2019). The second strat-

egy consists in developing so called Tsunami Early Warning (TEW) centres,

i.e. institutions, usually run by multinational cooperations, that provide threat

information in real time for potentially on-going tsunami events.

The most important part of TEW systems is the instrumental monitoring

network. Since the majority of tsunamis are caused by earthquakes, the most

commonly used instrumental data employed for TEW are seismic records. As

soon as seismic data are acquired, data are processed to determine the tsunami-

genic potential of the earthquake, based on empirical correlations (e.g. Lomax

and Michelini, 2013), or fast algorithms for focal mechanism determination

(e.g. Duputel et al., 2011). However, TEW systems based on seismic moni-

toring alone have signi�cant drawbacks, namely the instrinsic uncertainties of

the seismic source and the possibility of non seismic tsunamis. The former is

mainly caused by the fact that the most important aspects for tsunami gen-

eration is the vertical coseismic displacement �eld, which is very di�cult to

determine in real time, especially when the epicenter is located o�shore. The

latter is signi�cant because more than a quarter of tsunamis are related to non

seismic origin. In locations with higher tsunami generation frequency, for ex-

ample in the island of Stromboli (southern Tyrrhenian sea, Italy), local ad hoc

monitoring systems are used (Selva et al., 2021a). In general, the best solution

consists in sea level monitoring instruments that can measure tsunamis directly.
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1.2 Tsunami recording and applications of real

time detection

Historically, the �rst direct tsunami instrumental data were recorded by coastal

Tide Gauges (TGs), which continuously measure sea level height at a �xed

position. A schematic representation of a modern TG is shown in Fig. 1.1.

The instruments have been used for sea level monitoring since the �rst half of

the 19th century and self-recording variants have been available since the 1830s

(Matthäus, 1972).

Figure 1.1: Schematic representation of modern tide gauge. Image from
https://oceanservice.noaa.gov/education/tutorial_tides/tides11_

newmeasure.html.

Despite the fact that TGs were deployed to monitor tides, and that old

instruments had a too large sampling interval for tsunami monitoring, some

of them were able to record old events, such as the one caused by the 1883

Krakatau eruption (Pelinovsky et al., 2005) and the one triggered by the 1887

Ligurian earthquake (Eva and Rabinovich, 1997). In Fig. 1.2, TG records from

these events are shown. In particular, Fig. 1.2a shows the record of the Ligurian

tsunami from the TG located at the Genoa harbour, while Fig. 1.2b and 1.2c are

signals relative to the Krakatau event from Batavia (Jakarta) and Nagapattinam

(India). A problem of TGs not suited for tsunami monitoring is the possibility

of saturation, i.e. the instrument is not able to record waves over a certain

amplitude. This is the case we can observe in Fig. 1.2b, where the �rst two
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(a)

(b) (c)

Figure 1.2: Historical examples of tsunami waves recorded at TGs. (a) record
from the TG in Genoa harbour, relative to the tsunami following the 23/02/1887
Ligurian Sea Earthquake. Image from Eva and Rabinovich (1997). (b), (c) TG
records for the tsunami that followed the 26/08/1883 Krakatau volcanic erup-
tion. Image from Pelinovsky et al. (2005). Note the cut-o� at 5m amplitudes
in (b).

tsunami oscillations are cut at a value of 5m. In recent decades, the role of TGs

in tsunami science has been recognized as fundamental and many instruments

have been updated to better characterize tsunami events.

Nowadays, they are used both for retrospective studies (Pires and Miranda,

2001; F. Romano et al., 2016; Satake, 1987) and real time detection (Bres-

san et al., 2013; Lee et al., 2016). To this latter aim, UNESCO's Sea Level

Station Monitoring Facility website (https://www.ioc-sealevelmonitoring.

org/) gives access to real time sea level data from TGs managed by 175 di�er-
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ent data providers, through a graphical interface, shown in Fig. 1.3. However,

some characteristics of TGs may be not appropriate in the context of tsunami

monitoring. Firstly, they are necessarily positioned in coastal areas, thus they

Figure 1.3: Map page of the Sea Level Monitoring Facility website (https:
//www.ioc-sealevelmonitoring.org/). The points in the map represent the
stations whose data are available. Green dots indicate online stations, while red
dots indicate either o�ine stations or stations whose data are outdated.

are able to detect sea level anomalies only when these are already close to the

coast. While this is still useful to understand the evolution of the event and

to warn communities further away from the source, it may be late to alert the

population at the location of the TG. Secondly, the tsunami evolution at coastal

locations is deeply dependent on local geomorphological and topobathymetric

features. In particular, tide gauges are usually located in bays or harbours,

which have normal modes that may be excited by incoming waves. This, to-

gether with oscillation modes due to the geometry of coastal shelves, is the

reason of the complex response spectra observed in TG in response to incoming

waves (Aranguiz et al., 2019; Rabinovich, 1997). We have to point out that in

some regions, such as the Mediterranean Sea, TGs are the only available in-

struments in operation for tsunami warning purposes and other kinds of sensors

are either absent or only experimental. Conversely, site-e�ects are negligible in

case of measurements of tsunami waves in deep water environments. For this

reason, Ocean Bottom Pressure Gauges (OBPGs) have been tested and used for
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Figure 1.4: Schematic example of a DART 4G OBPG. This is the latest de-
veloped DART model. Details about DART instruments are described in later
Chapters. From the DART 4G brochure, available at https://nctr.pmel.

noaa.gov/Pdf/brochures/dart4G_Brochure.pdf.

many decades. As the name implies, these instruments measure the pressure at

the bottom of the water column. A schematic representation of such an instru-

ment is shown in Fig. 1.4. The �uid layer acts as a natural �lter for super�cial

meteooceanographical oscillations, leaving in the instrumental record only long

wave phenomena, whose pressure pro�le is hydrostatic. Furthermore, they are

not a�ected by nonlinearities and resonance e�ects that we get in TG records.

Signals from OBPGs are thus a superposition of:
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� tidal oscillations, in particular diurnal and semidiurnal tides, which rep-

resent the most energetic component of the signal;

� transient long wave oscillations, such as tsunamis;

� changes in bottom pressure caused by displacement of the ocean bottom.

The last case is quite signi�cant for tsunami early warning, since OBPGs lo-

cated near seismic sources will be a�ected by seismic shaking. Two examples of

OBPGs raw tsunami records can be found in Fig. 1.5, where two signals, respec-

tively from the 2010 Chile tsunami and the 2011 Tohoku earthquake tsunami,

are shown. In both cases, long term trends related to tidal oscillations are

present. Large oscillations in the periods of tens of minutes, followed by decay-

ing codas, represent the tsunami waves. In both cases, very large high frequency

seismic oscillations can be observed before the tsunami arrival.

(a)

(b)

Figure 1.5: Examples of DART tsunami records. (a) is the record from DART
32412 relative to the South American tsunami triggered by the Mw = 8.8 earth-
quake occurred on 27/10/2010 06:34:15 UTC. (b) is the record from DART
21419 relative to the Tohoku tsunami triggered by the Mw = 9.1 earthquake
occurred on 11/03/2011 05:46:23 UTC. In both plots, time is measured in min-
utes since earthquake origin time
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Figure 1.6: Map page of the Deep ocean Assessment and Reporting of Tsunamis
website (available at https://www.ngdc.noaa.gov/hazard/DARTData.shtml).
The points in the map represent the stations whose data are available on NOAA
database, for both active and past stations.

Today, OBPGs are the standard instruments in many TEW systems. The

most widely spread and used is the NOAA DART® network, which is the only

global OBPG network, with instruments in the Western Indian Ocean, North

Atlantic Ocean, and Paci�c Ocean. Similarly to TGs, data from this network are

made available through a web portal, shown in Fig. 1.6. Data from this network

will be extensively used in this thesis to test tsunami detection methods, thus

more details will be presented in the next Chapters. OBPGs are also used

in regional dense networks, such as DONET (Kawaguchi et al., 2008) and S-

NET (Mochizuki et al., 2018), installed o� the coasts of Japan. These networks

integrate state of the art pressure gauges with ocean bottom seismometers in
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order to characterize the source and the tsunami waves as accurately as possible.

Lastly, there are plans by INGV to install OBPGs o� the coasts of Southern

Italy (Amato et al., 2021).

The recent advancements both in detection technology and in computing

power have introduced many new forecasting methods for TEW. A now classi-

cal method is a real time inversion of tsunami data from OBPGs (Percival et al.,

2011; Tang et al., 2009; Titov et al., 2003). Bottom pressure data are inverted to

�nd the optimal linear combination of precomputed elementary seismic sources,

from which wave heights along di�erent coastlines are then cpmputed. More

recently, data assimilation methods have been tested and implemented (Hei-

darzadeh et al., 2019; Maeda et al., 2015; Wang et al., 2019a,b, 2017, 2021).

These approaches, mutuated from meteorology and oceanography, allow to fore-

cast the wave height and velocities in the near future from tsunami data, without

assumptions on seismic sources. At last, a Bayesian forecasting method has been

introduced by Selva et al. (2021b), where a probability distribution function is

computed as soon as seismic data are acquired. Then, each time new data are

available, they are used to compute a new re�ned probability distribution func-

tion for the expected wave heights in points of interest using Bayes' theorem.

This approach has the added advantage of taking into account the uncertainties

intrinsic in all the steps of data acquisition and elaboration and it could be used

to take into account data from di�erent sources.

For any of these applications, the problem of real-time tsunami detection

represent a fundamental challenge. Current technology is already capable of

providing invaluable informations that are used to issue timely alert messages,

however many issues remain to be solved. The �rst issue is the choice of a

tsunami detection algorithm and it is the main focus of the present work. The

most used algorithm to this aim is Mofjeld's algorithm (Mofjeld, 1997), which

is an incredibly computationally e�cient detiding algorithm that is installed

into the instruments of the DART® network. Nonetheless, the algorithm suf-

fer from a few drawbacks, such as the inability to �lter seismic shaking, which

makes it unusable in the very near-�eld to distinguish tsunami oscillations from

seismic waves. While fourth generation DART® (DART 4G) have been de-

signed to include a specially designed �lter to separate earthquake shaking from

the tsunami waves, its functioning depends on obtaining data with sampling

frequency of 1Hz (Moore, 2024). However, data of these nature are still rare,

given that instruments, if not externally prompted by the user, only memorize

already �ltered signals and that old DART models are still in use in opera-

tional contexts. Another drawback of Mofjeld's algorithm is that any anomaly
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with respect to the background (tides and random noise) is distorted. Thus,

the technique is not able to characterize the tsunami waveform accurately (Bel-

trami, 2008, 2011), which is needed for data assimilation or Bayesian forecasting

methods cited before.

Other algorithms have been proposed in the literature, but, in most cases,

they lack systematic tests on large dataset of real tsunami records. In che case

of EOF detiding (Tolkova, 2010, 2009) and the Tsunami Detection Algorithm

(Chierici et al., 2017), the present work aims to �ll this gap. These techniques,

contrary to Mofjeld's algorithm, require some already acquired data in order to

compute tidal models.

At last, while OBPGs are the standard instruments for tsunami detection,

we should remember that they are still very expensive and di�cult to install.

For these reasons, alternative detection instruments have been proposed, such

as wind-wave gauges (Beltrami and Di Risio, 2011; Di Risio and Beltrami,

2014), positioning of commercial ships (Foster et al., 2012), airborne instruments

(Mulia et al., 2020), ionospheric sounding (Astafyeva, 2019; Occhipinti, 2011),

and SMART ocean bottom cables (Howe et al., 2019), one of which has recently

been installed in the Mediterranean Sea (Marinaro et al., 2024).

1.3 Outline of the present work

The purpose of the present work is to test and compare algorithms for real time

tsunami detection, with a special focus on algorithms suitable for OBPGs. In

Chapter 2, four techniques are presented. The �rst is Mofjeld's algorithm (Mof-

jeld, 1997), based on Newton's forward interpolation formula. This method is of

particular importance, since it is the one which instruments of the DART® network

are equipped with. For this reason, it is the considered one of the de facto

standard algorithms for the purpose and it is by far the most tested tsunami

detection algorithm available. It is mathematically simple and computationally

e�cient. However, it su�ers from the drawbacks of not being able to correctly

characterize the tsunami wavehape, as will be explained later in Chapter 2.

The second method consists in tidal removal by using Empirical Orthogonal

Functions (Tolkova, 2009; Tolkova, 2010), where a set of basis vectors is com-

puted from a long bottom pressure time series and then used to extract and

remove tides from new data. Then, we present the Tsunami Detection Algo-

rithm (TDA, Chierici et al., 2017), which is a sequential application of di�erent

�ltering operations, i.e. tide removal with a harmonic model, spike removal and

bandpass �ltering. Lastly, we present a newly developed technique based on the
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real time application of the Fast Iterative Filtering method (FIF, Cicone, 2020;

Cicone et al., 2016; Cicone and Zhou, 2021; Stallone et al., 2020) and the IMFo-

gram algorithm (Barbe et al., 2020; Cicone et al., 2022). The FIF method allows

to decompose a signal into elementary oscillatory components called Intrinsic

Mode Functions (IMFs), each with a well-de�ned local frequency. Then, the

IMFogram algorithm may be used to obtain a time-frequency representation of

the signals by computing instantaneous amplitude and instantaneous frequency

of each IMF. For each technique, we present its basic mathematical structure,

its needs in terms of previously acquired data and its pros and cons for their

applications to pressure sensors.

Since the FIF method and the IMFogram algorithm have been developed

quite recently and have not yet been applied in the context of tsunami signal

analysis (which represent the most original and novel aspect of this thesis),

Chapter 3 is devoted to showing how they can be used to extract informations

from sea level records. This is done through the analysis of two case studies. The

�rst is a TG signal from the 02/05/2020 Crete tsunami, chosen as representative

of a tsunami signal, including the main wave, local resonance phenomena, ran-

dom noise and tidal oscillations. The second case study consists in the analysis

of TG signals from the 06/02/2023 small tsunami observed in the north-eastern

Mediterranean sea.. The event followed the �rst main shock of a disastrous se-

quence of earthquakes occurred in Turkey and along its border with Syria, that

included two events with magnitude 7.8 and 7.5 (according to USGS) respec-

tively and many aftershocks with Mw > 5.0. The tsunami was probably caused

by mass wasting events triggered by the �rst mainshock, however the number

and location of slides is still debated (Heidarzadeh et al., 2023; Hu et al., 2023).

It is shown how combining the FIF and IMFogram techniques we can carry

out analyses similar to what is traditionally performed with classical methods

(e.g. Fourier analysis or wavelet transforms), but with two added bene�ts. The

�rst is that features in the time-frequency plane obtained with these techniques

are better localized than with classical techniques, allowing more precise esti-

mates of frequency content and instantaneous amplitude. The second is that

the both techniques are completely data driven, allowing to perform multiple

operations (denoising, detiding and extraction of tsunami waveform) as a uni�ed

process.

Then, Chapter 4 and 5 deal with the application of the four techniques to real

time tsunami detection, on two di�erent datasets, both built from DART® buoys

data. In Chapter 4, the techniques are applied to 5 signals lasting one month

from DART® buoys historical data, where no transient e�ect (seismic shak-
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ing or tsunami wave) is observed. In this way, we are able to characterize the

background noise of each technique's residual and to discuss the e�ects of the

statistical distribution of such residuals. From this, we �nd the optimal detec-

tion thresholds for each technique to avoid false detections.

In Chapter 5, we turn the attention to testing on signals with transient os-

cillations. We start by describing a procedure to build a testing dataset that

encompasses the wide variety of possible signals we may record in real time,

based exclusively on real tsunami signals. In this way, we can avoid possible bi-

ases that may arise in using simpli�ed waveshapes or simulated tsunami waves.

Then, the detection capabilities of each techniques are quantitatively estimated,

in terms of how successfully they detect tsunamis, how often they detect seismic

waves and false detections occur. Criteria for choosing the optimal detection

threshold for each technique are discussed. The Chapter ends with considera-

tions regarding the characterization of the tsunami waveshape from the residuals

of the techniques.



Chapter 2

Real-time tsunami detection

algorithms

In this chapter, a description of four real-time tsunami detection algorithms is

given. The techniques presented are Mofjeld's algorithm (Mofjeld, 1997), de-

tiding with Empirical Orthogonal Functions (EOFs) (Tolkova, 2009; Tolkova,

2010), Tsunami Detection Algorithm (Chierici et al., 2017) and a newly devel-

oped technique based on data driven signal analysis techniques, namely the Fast

Iterative Filtering (FIF) technique (Cicone, 2020; Cicone et al., 2016; Cicone

and Zhou, 2021) and the IMFogram algorithm (Barbe et al., 2020; Cicone et al.,

2022). For all the techniques, the basic mathematical structure is presented and

the properties are discussed, with particular attention given to application to

Ocean Bottom Pressure Gauge (OBPG) data. Since FIF and IMFogram have

not yet been applied to the analysis of tsunami signals, their theoretical aspects

are considered in more detail than the other techniques.

2.1 Mofjeld's algorithm

The NOAA Paci�c Marine Environmental Laboratory (PMEL) developed the

DART® buoys, which today are sort of standard instruments for tsunami o�-

shore real-time monitoring and reporting. A DART sensor is composed by a

bottom pressure recorder, positioned at the sea�oor, and by a surface buoy that

transmits data to monitoring facilities. The two components communicate be-

tween themselves through acoustic signals. The DART program has its origin

in the �rst experiments in direct tsunami measurements in deep oceans in the

13
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1980s and has now provided continuous sea level monitoring for more than two

decades with a variable number of sensors at any given moment in the Paci�c,

Northwestern Indian and North Atlantic oceans (Li, 2022; Rabinovich and Eblé,

2015).

Each DART in NOAA's network includes in its software an automatic tsunami

detection algorithm developed by Mofjeld (1997). This algorithm is mathemat-

ically and computationally very e�cient and, being the standard in the only

global tsunami monitoring network, it has a very long history of studying and

testing. The basic idea is to forecast ocean bottom pressure by extrapolating

the long term trend in the data. As soon as a new pressure measurement is

acquired, it is compared with the forecast. A detection is triggered if the abso-

lute di�erence between the measurement and the forecast is bigger than a given

threshold T .

The forecast is computed using Newton's foreward extrapolation formula

ηp(t
′) =

3∑
i=0

wiη(t− idt) (2.1)

where ηp is the forecast bottom pressure, η̄(t) is the moving average of the

pressure at time t, dt is the time between points used for extrapolation, t′ is the

predition time and wi are weights to be computed. To �nd the value of wi, let

us write ηp(t) as a third degree polynomial

η(t) = a0 + a1(t− t1) + a2(t− t1)(t− t2) + a3(t− t1)(t− t2)(t− t3) (2.2)

where t is the current time, t1, t2 and t3 are arbitrary the time instants at which

the value of the polynomial is assumed to be known. Consistently with eq. (2.1),

we choose ti = t− idt, i.e. they are chosen at a constant time interval from each

other. The extrapolation is made from averaged values to reduce the in�uence

of random �uctuations and noise. The values of ai can be found by substituting

the values (t0 − idt, ηi), where ηi = η(t0 − idt), from which

a0 = η0

a1 = −η1 − η0
dt

a2 =
η2 − 2η1 + η0

2dt2

a3 = −η3 − 3η2 + 3η1 − η0
6dt3

(2.3)



CHAPTER 2. REAL-TIME TSUNAMI DETECTION ALGORITHMS 15

If we express the prediction time t′ in terms of present time t as t′ = t + pdt,

we can express the forecast as

η(t′) = η(t+ pdt) = η0

(
1 +

11

6
p+ p2 +

1

6
p3
)
+

+ η1

(
−3p− 5

2
p2 − 1

2
p3
)
+

+ η2

(
3

2
p+ 2p2 +

1

2
p3
)
+

+ η3

(
−1

3
p− 1

2
p2 − 1

6
p3
)

(2.4)

The default settings of DART buoys consider a prediction time 5min15 s after

current time, dt = 1h and the moving average is computed over intervals of

10min. From these parameters, we get that p = 0.0875 and the weights wi are

computed from eq. (2.4) as 
w0 = +1.16818475

w1 = −0.28197559

w2 = +0.14689746

w3 = −0.03310644

(2.5)

We note that, to the best of our knowledge, the full derivation of eq. (2.5) and

the explicit expression in eq. (2.4) are not reported anywhere else in tsunami

literature.

The properties of Mofjeld's algorithm for detection can be well understood

by looking at an example, as the one in Fig. 2.1. In the example, the technique

is applied to data from DART 21414 recorded during the 11/03/2011 Tohoku

tsunami. The residual is compared with the post-processed tsunami wave from

Davies (2019). The most evident characteristic of the forecast is that a few

minutes after the arrival of the tsunami, it deviates from the long term trends

due to tidal oscillations. In fact, since the prediction time is set at 5min15 s

after current time, eq. (2.1) uses tsunami data to estimate the long term trends.

This e�ect should not in�uence the cases of waves with periods of few minutes.

However, this is rarely the case for medium and large tsunamis. A possible so-

lution has been proposed by Beltrami (2011), which consists in taking a longer

prediction time. Doing this delays the in�uence of the tsunami waves on the

tide forecast long enough to allow the characterization of the leading wave in

terms of amplitude and period. However, Beltrami (2011) shows that this mod-
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Figure 2.1: Example of application of the detection algorithm by Mofjeld (1997).
The upper plot shows a comparison between the acquired sea level data and the
long term forecast computed using eq. (2.4) with coe�cients in eq. (2.5). The
lower plot shows the residual produced by the technique and the post-processed
waveform (Davies, 2019). Data relative to the 11/03/2011 Tohoku tsunami from
DART 21414.

i�cation results in a smaller signal-to-noise ratio in the forecast, which would

make smaller tsunamis undetectable.

Another characteristic of the method is that it does not �lter out high fre-

quency components. For this reason, random noise with few millimeters ampli-

tude remain present in the residual (as will be shown in the next chapters), as

do seismic waves. Modern DART 4G models have additional modules to deal

with the seismic waves once they are detected, thanks also to the higher sam-

pling frequency of 1Hz, with respect to the 1/15 Hz that is common in older

instruments.

At last, we may note that the only strong assumption of Mofjeld's algorithm

is the separation of time scales, i.e. that we want to detect a signal with typical

periods of minutes from a background where hour-long oscillations dominate.

Thus, the technique can be applied to instruments di�erent from deep-ocean

gauges. An example of this can be found in the work by Beltrami and Di Risio
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(2011), where the detection of tsunamis from wind-wave gauges is proposed and

analysed. In that case eq. (2.1) is used to remove tides from the signal.

2.2 Tide removal through Empirical Orthogonal

Functions

Another site independent technique for removing long tidal oscillations from

tsunameters' records has been developed by Tolkova (2009) and modi�ed and

further developed by Tolkova (2010). The technique is based on the use of

Empirical Orthogonal Functions (EOFs) to analyze time series. The idea behind

EOFs is to �nd an empirical basis to represent data in a data driven way and

it is often used to study spatial patterns of oscillations of various phenomena.

In the context of tsunami science, they have been applied to study resonance

modes of particular topobathymetric features, such as bays (Tolkova and Power,

2011) or islands (Bellotti and A. Romano, 2017), and to the optimal placement

of measuring sensors (Mulia et al., 2017).

Applications of the technique to a one-dimensional time series aim to �nd

a basis of a given length M with which we can decompose M -long segments of

the time series. The physical process represented by the time series can then

be described by the coe�cients of the decomposition in each segment. To �nd

such a basis, Tolkova (2010) presents the following procedure. Starting from a

long, continuous and uniformly sampled time series η(t), we extract from it N

non overlapping segments of length M . We subtract from each segment its own

average and we arrange them as columns of a matrix, which can be expressed

as

Cij =

N∑
k=1

[ζ(qk + i− 1)− ak]) [ζ(qk + j − 1)− ak] (2.6)

where qk is the index where the k-th fragment starts and ak is the average of

the k-th fragment. EOFs are then computed as the eigenvectors ei of the matrix

C̃ij = Cij + CM+1−i,M+1−j (2.7)

A signal of lengthM can be represented by projecting it onto the set of vectors ei
and it is shown by Tolkova (2009) that few components are needed to accurately

represent experimental tide measurements. To extract the tidal component s

from a signal η, we use the formula

s = EET η (2.8)
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where E is the matrix whose columns are the vectors ei. This formula acts

essentially as a low-pass �lter, removing characteristics of the signal that are

not captured by the basis.

The works presented by Tolkova (2009) and Tolkova (2010) discuss the ap-

plication of this empirical basis to the removal and prediction of tides. Here,

we are interested in the former problem. Some considerations about the prop-

erties of the basis and the decomposition are interesting for tsunami detection

applications and we report them in the following. For the theoretical details,

we refer the reader to the already mentioned works.

For the segments, Tolkova (2010) uses basis vectors of length equal to one

lunar (or tidal) day (24 h 50.4min). For a sampling time of 15 s, common in

DART buoys and used in the applications in the next chapters, this translates

into M = 5940. This length is the shortest that allows to capture the quasi

sinusoidal components related to diurnal and semidiurnal tides, which are the

dominant component of OBPG records. In this work, we adopt M = 5940 to

detide signals in real time. We note that this choice is application speci�c and

may not be appropriate for other uses. For example, Tolkova (2009) uses three

lunar day EOFs to apply the technique to short term tide amplitude prediction.

Another characteristic is that ei tends to reproduce the periods of the diurnal

and semidiurnal tides, which are more or less universal and are thus similar

between di�erent locations and instruments. In fact, tides in di�erent locations

di�er mostly in their �ne structure and signals of the chosen length are not

long enough to resolve it. This is used to our advantage for tsunami detection,

since, as it is shown by Tolkova (2010), a basis computed in a location may be

used to decompose a time series from a di�erent location or instrument with no

reduction in accuracy. This fact leads us to one of the most important aspects

of the technique: once EOFs have been computed from a time series, they can

be used for any deep-ocean data acquired at di�erent locations.

At last, we point out that the optimal number of basis vectors to use can

be determined empirically by checking how accurate the tides computed from

eq. (2.8) are. Tolkova (2010) shows that 7 components are enough to reduce the

error (computed as the root mean square) to 3mm, while traditional harmonic

analysis (Pawlowicz et al., 2002) requires tens of sinusoidal components.

The application of the technique for real time tsunami detection is as follows:

� the last lunar day of data is stored;

� the signal's average is removed from the data;

� tides are extracted with eq. (2.8) and subtracted from the signal;
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Figure 2.2: Example of Empirical Orthogonal Functions for one lunar day
extracted with the tecnique proposed by Tolkova (2010), computed from the
deployment between 06/06/2018 and 08/06/2022 of DART 46414. The vertical
axis is expressed in arbitrary unit, since the technique is invariant under scaling
of the basis vectors.



CHAPTER 2. REAL-TIME TSUNAMI DETECTION ALGORITHMS 20

� a detection is triggered if the last point of the residual di�ers in absolute

value more than a chosen threshold T .

At last, we note that the universality property previously mentioned is valid

only for the longer period components, but not for the high frequency ones.

Thus, the same �ltering method cannot be used to �lter neither random noise

nor seismic shaking, as is the case for Mofjeld's algorithm.

An example of such a basis is shown in Fig. 2.2. The basis has been computed

from NOAA data for DART 46414, located southeast of Chirikov Island in the

Gulf of Alaska, using data from the period between 06/06/2018 and 08/06/2022.

This time series is ideal to compute an EOF basis, since it presents no holes nor

abrupt discontinuities. It can be noted that these basis vectors are symmetrical

with respect to their central point, due to the symmetrization of the matrix in

(2.7). As expected, the dominant period of the EOFs are around 1/2, 1 and 2

cycles per period, i.e. the periods of the dominant tidal oscillations.

2.3 Tsunami Detection Algorithm

Tsunami Detection Algorithm (TDA) has been introduced by Chierici et al.

(2017). its core ideas are (a) adapting to operational real-time context the

operations that are normally used in post processing of tsunami waveforms and

(b) using a modular structure that can be modi�ed according to speci�c needs.

TDA is structured as a cascade of di�erent operations: tide removal, despiking,

bandpass �lter, then check for detection.

Tide removal is performed by computing tides using a harmonic model

(Pawlowicz et al., 2002):

f(t) = a0 +

i=N∑
i=1

ai cos (ωit+ ϕi) (2.9)

where ωi and ϕi are frequencies and phases of each component, and ai are

the tidal coe�cients. To apply the technique in real-time, tidal coe�cients are

precomputed and, in an operational context, regularly updated.

In this work, analysis on real data are data-driven as much as possible,

in order to reduce the in�uence of models' assumptions. For this reason, we

choose to compute tidal coe�cients by harmonic �t over available data at the

instrument. To this aim, we use the software UTide by Codiga (2011). In each

application presented in the following chapters, we select a long but variable

amount of data preceding the segment of interest, which we decimate, taking
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one point every 50 or 100, and then use it to compute tidal coe�cients. When-

ever enough data are available, removing tides computed using a tidal model

results in residuals of amplitude within 4 cm. OBPGs in the DART network

are regularly resurfaced for maintainance and downloading raw data, and new

instruments are added to the network continuously. Due to these two factors,

there are many cases where no enough preceding data are available for UTide to

converge to a solution. Whenever available, between 2 and 12 months of data

are used. If few data are available, it may also be the case that the algorithm

converge to a solution, but this has a low accuracy. In these cases, the residual

after tide removal still have amplitude of several centimeters which might not

be eliminated by the subsequent �ltering procedure. More details about these

e�ects are given in Chapter 4 and 5, where applications to background signals

and tsunami records respectively are given.

For the �ltering module, Chierici et al. (2017) choose a Finite Impulse Re-

sponse (FIR) bandpass �lter, producing a �ltered signal y computed as

yn =

i=+N∑
i=−N

cifn−i (2.10)

where fn is the signal we are �ltering and N is the order of the �lter. ci is the

i-th coe�cient of the �lter and it depends on the chosen type of �lter (FIR in

this case), the order N and the cut-o� frequencies. These coe�cients may be

computed numerically with various di�erent methods, depending on the desired

characteristics and on the signal to which it is to be applied (Mousa, 2020).

Often, the connection between digital �lter design and convex optimization

problems is employed (Boyd and Vandenberghe, 2004). In the present work,

we use MATLAB's design�lt () function to compute the coe�cients ci given

the order N , the sample rate and the cut-o� frequencies. The default compu-

tational method, that consists in a constrained least square problem, is chosen.

However, eq. (2.10) requires a symmetric set of samples around the n-th sam-

ple. In a real-time context, the n-th sample represents the last measurement

we acquired (minus the forecast tide), thus to use eq. (2.10) in real-time, we

apply a mirror boundary condition to the signal. The bandpass �lter can then

be written as

yn = c0fn + 2

N∑
i=1

cifn−i (2.11)

By correctly choosing the frequency window, we are able to remove long term

trends not removed by tidal analysis and high frequency components such as
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random noise and seismic shaking. This latter case is of special interest, since

the majority of tsunamis are of tectonic origin and this is the case for events

analysed in the following chapters. Chierici et al. (2017) use a [2min, 120min]

and a [4min, 120min] period windows, which should include the wide variety of

observable tsunami periods (Mungov et al., 2013; Rabinovich, 1997; Rabinovich

and Eblé, 2015). The order of the �lter is set to 4000.

We note that the applications in the following chapters all have been through

basic preprocessing, in order to analyse only the e�ects of tsunami detection

algorithms. Thus, every signal has already been despiked and for this reason

despiking methods, both in the context of TDA and in general, are not discussed

in the present work.

2.4 The Fast Iterative Filtering and IMFogram

techniques

In this section, we introduce a new tsunami detection technique which is based

on the Fast Iterative Filtering and the IMFogram algorithms. Since these tech-

niques have been developed quite recently and almost no application to tsunami

science is present in the literature, some details of the technique and a few ap-

plications to tsunami time-frequency analysis are presented.

2.4.1 Analysis of nonlinear and nonstationary signals

The analysis of nonlinear and non-stationary time series can be thought as con-

sisting of two distinct problems: the decomposition of the signal into simpler

components and the individuation of the instantaneous frequency content (Ci-

cone, 2019). Two among the most used techniques for decomposition are the

Fast Fourier Transform (e.g. Brigham, 1988), which decomposes the signal as

a superposition of sinusoids of di�erent but �xed frequency, and the Wavelet

Transform (e.g. Daubechies, 1992), which uses dilations and translations of a

mother wavelet. Both these techniques are fundamentally linear. In fact, their

applicability rests on the possibility of representing the original signal as a linear

combination of a set of basis functions. Historically, the �rst completely data-

driven technique for signal decomposition to be introduced was the Empirical

Mode Decomposition (EMD) introduced by Huang et al. (1998). The technique

decomposes a signal into Intrinsic Mode Functions (IMFs), which satisfy the

following properties:
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� the number of zero crossings and the number of relative extrema are equal

or di�er by one;

� the envelopes of relative maxima and relative minima are symmetric with

respect to zero.

These properties ensure that each IMF has a well-de�ned local instantaneous fre-

quency, which makes IMFs decompositions a good �rst step for time-frequency

analysis. It is shown by Huang et al. (1998) that an intuitive understanding of

IMFs may be as follows: while in Fourier analysis we decompose signals into

components of the form A cos (ωt+ ϕ), an IMF can be seen as a function in the

form A(t) cos (θ(t)), also known as Amplitude Modulated - Frequency Modu-

lated (AM - FM) function . Decompositions of a signal into IMFs can then be

considered a data-driven generalization of Fourier analysis where amplitudes are

allowed to vary and phase functions can evolve nonlinearly.

To decompose a signal {sj}Nj=1, we introduce the operator L such that (Ls)j
is a measure of local average of the signal at index j, and the operator S de�ned

such that (Ss)j = sj − (Ls)j . Then, the �rst IMF I1 is computed as

I1 = lim
n→∞

Sns (2.12)

and the following are de�ned iteratively

Ik = lim
n→∞

Sn(s− I1 − I2 − · · · − Ik−1) (2.13)

The result is an additive decomposition of the form

s =

N∑
k=1

Ik + r(t) (2.14)

where r(t) is the residual left from the last extraction. The process, called sifting

method is carried out until we are left with a non-oscillatory r(t) or a prescribed

number of IMFs has been extracted.

In a numerical environment, the in�nite recursion has to be approximated

to a �nite one. Usually, if Ijk is the result of the j-th iteration in exctracting the

k-th IMF, a parameter δ is �xed and the iteration is carried out until

∥Ijk − Ij−1
k ∥

∥Ij−1
k ∥

< δ (2.15)

Di�erent algorithms di�er in the de�nition of L, i.e. how the local average
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is computed. In the case of the EMD method, the local average is computed as

follows: local maxima and minima are interpolated with cubic splines to �nd

an upper and lower envelope, respectively. Then, the local average (Ls) is given
by the pointwise mean of the envelopes.

Despite having been successfully used in many applications in geophysics

(Battista et al., 2007; Chen et al., 2012; Gómez and Velis, 2016), the EMD

method has been shown to have some drawbacks: First of all, the technique is

unstable to small added noise (Lin et al., 2009), which means that two signals

di�ering only by a small amount may have very di�erent decompositions. Mode

mixing is also a common occurrence (Wu and Huang, 2009) for signals with

intermittent components. In this case, separation of di�erent time scales (i.e.

di�erent frequency content) into di�erent IMF is not achieved. Due to these

e�ects, the technique may result in a decomposition whose components have

not real physical meaning (Huang et al., 1999).

Many EMD variants have been proposed to alleviate these problems. Usu-

ally, noise-assisted ensemble techniques have been proposed (Lang et al., 2020;

Torres et al., 2011; Wu and Huang, 2009). One such example is the Ensemble

Empirical Mode Decomposition (EEMD), introduced by Wu and Huang (2009).

The EEMD technique works as follows. First, white noise is added to many

di�erent realization of the signal; the analysis is then carried out on the entire

ensemble and the n-th IMF is obtained as the average of the n-th IMF of each

decomposition in the ensemble.

2.4.2 The (Fast) Iterative Filtering algorithm

The Iterative Filtering (IF) technique, introduced by Lin et al. (2009), tackles

the drawbacks of the EMD method by replacing the sifting procedure with a

moving average. In particular, given a low pass �lter w(t), the moving average

of a signal is computed as a convolution

(Lf) (x) =
∫ l

−l

f(x+ t)w(t)dt (2.16)

of the signal with a given mask w(t) de�ned on a compact domain of length 2l,

where l is called mask length.

The main characteristic of the technique is that the �lter length l varies

during the decomposition. When extracting the k-th component, the mask is

chosen such that

lk = 2
⌊
ξ
N

m

⌋
(2.17)
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where N is the length of the analyzed sample, m is the number of relative

extrema and ⌊·⌋ is the �oor operator. Thus, the �lter length is chosen propor-

tionally to the density of relative maxima and minima, which can be interpreted

as a measure of the high frequency content of the signal. The proportionality

constant ξ usually assumes values in the interval [1.1, 3.0] and can be chosen

according to the characteristic of the signal (Cicone, 2019). Thus, we can di-

rect the decomposition based on how much we want to separate various similar

components.

Contrary to EMD-like method, IF can be rigorously analyzed from a the-

oretical point of view and many properties can be thus established. One such

property is convergence, which can be guaranteed by properly choosing the

mask. Let us consider a function that is symmetric, non negative, smooth,

bounded and has compact support, which is known in IF literature as a �lter

(Cicone, 2020). Then, convergence can be guaranteed if we compute the masks

as convolutions of a �lter with itself (Cicone et al., 2016).

Another property of the IF method is that it is not subjected to mode mixing.

In fact, applications to the one or two frequencies problem (Rilling and Flan-

drin, 2007) has shown that the technique is able to separate correctly sinusoidal

components (Cicone et al., 2022, Cicone et al., 2024). Furthermore, an energy

conservation principle can be established (Cicone et al., 2022), which shows that

the frequency content of the original signal is the same as the total frequency

content of its component. This is not true for EMD, which may present so-called

unwanted oscillations, i.e. some IMFs may present non-physical oscillations that

cancel each other when summed, but contribute to the frequency content of the

decomposition.

Lastly, one further advantage is that the IF algorithm can be reformulated,

assuming periodic boundary conditions, in a form using the Fast Fourier Trans-

form (Cicone and Zhou, 2021). This variant, called Fast Iterative Filtering

(FIF), results in great improvements in computational cost, with computing

time often reduced by an order of magnitude or more (Cicone, 2020).

It has to be noted that both EMD- and IF-like techniques may introduce

errors at the boundaries, as is the case even for any other signal processing

techniques. In the case of IF, these errors decay exponentially moving inwards

from the boundary (Cicone and Dell'Acqua, 2020). To reduce as possible the

in�uence of possible boundary errors, the signal is extended before analysis

following the procedure proposed by Stallone et al. (2020).
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2.4.3 Time-Frequency Representation and the IMFogram

Algorithm

The determination of the instantaneous frequency content of nonstationary sig-

nals is still a challenging problem, since there is no general consensus on the

de�nitions of instantaneous amplitude and instantaneous frequency. In the case

of nonstationary signals, it is common to adopt the Hilbert Transform (Huang

et al., 1999). For a function f , its Hilbert Transform is de�ned as

(Hf) (x) =
1

π
P
∫ ∞

−∞

f(t)

x− t
dt (2.18)

where P means that the integral has to be taken as a principal value. It can

be shown that, for a real function f(x), a complex function in the form g(x) =

f(x)+ i (Hf) (x) is analytic and it can be rewritten as g(x) = A(x) eiϕ(x), where

A(x) is the instantaneous amplitude and ϕ(x) is the instantaneous phase, whose

derivative can be interpreted as the instantaneous frequency.

Due to its property, each IMF will have only interwave modulations: the

frequency may vary at each point, but will be unique at each point. For this

reason, the use of the Hilbert Transform in conjunction with the EMD method

has been proposed since the introduction of the latter (Huang et al., 1998).

However, it has been noted (Cicone et al., 2016) that the application of Hilbert

Transform may not be appropriate to retrieve local characteristics of a signal,

since its de�nition (2.18) relies on global operators (i.e. an integration).

An alternative Time-Frequency representation suited for use with EMD- or

IF-like techniques is the IMFogram (Barbe et al., 2020; Cicone et al., 2022),

which relies on local de�nitions of frequency and amplitude. The frequency of a

sinusoidal function can be computed as f = 1
2d , where d is the distance between

two successive zero crossings. In the case of signals with varying frequency, we

can generalize this idea by computing, at each zero crossing zi, the instantaneous

frequency as fi =
1

2(zi+1−zi)
. Once instantaneous frequencies at zero crossings

have been found, the value at other times is found by interpolation. For the

instantaneous amplitude, we take the absolute value of the signal s, individuate

the relative maxima and let g be the function interpolating these maxima. The

instantaneous amplitude is taken as the pointwise maximum between |s| and g.

The IMFogram is usually represented as a matrix where the element Aij is

the instantaneous amplitude for the i-th frequency and at the j-th time. Usually,

the results are averaged over an arbitrary long time window, after which we

usually speak of local amplitude and local frequency. However, contrary to other
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Time-Frequency representations, such as the Short-time Fourier Transform, the

length of this window is completely arbitrary and its role is only to reduce the

size of the output.

It can be shown that the elementwise square of the IMFogram matrix ob-

tained from an IF decomposition with convergence parameter δ approaching

zero, converges to the ordinary spectrogram. Even though the two representa-

tions have di�erent meanings, since the IMFogram may represent the eventual

non-stationarity of the signal, this property may be used to justify a posteriori

the de�nitions introduced for local frequency and amplitude.

2.4.4 FIF-based Tsunami Detection Algorithm

The application of data-driven decomposition methods to real-time tsunami de-

tection has been proposed by Wang and Satake (2021) and Wang et al. (2020b),

based on the idea of extracting the tsunami component from an OBPG data

by using the EEMD (Wu and Huang, 2009). In their work, they show that by

decomposing 3 h of data with sampling time of 1min, the result of the decom-

position is

� one IMF, which they call IMF1, containing random noise and seismic

shaking;

� 3 IMFs, whose sum they call IMF2, in the tsunami frequency range;

� 3 IMFs, whose sum they call IMF3, in the tidal frequency range.

The sum of the 3 middle IMFs is considered the �tsunami component� of the

signal. The decomposition is performed each minute on the last 3 h of data

acquired. If the last point of IMF2 is bigger than a given threshold, a detection

is triggered. The technique has been tested on data from tsunamis of di�erent

size that a�ected Japan, i.e. the ones generated by the 1998 Mw = 6.4 Sanriku

earthquake, by the 2011 Mw = 9.0 Tohoku earthquake and the 2016 Mw = 7.4

Fukushima earthquake. Futhermore, it has been tested on a month-long time

series preceding the Fukushima event where no tsunami had been observed, to

check for false detections.

However, the EEMD-based detection method as presented by Wang et al.

(2020b) has a few drawbacks which limits its wider applicability. First, the

fact that the tsunami is represented by the second, third and fourth IMFs is

empirical. Even though these spectral properties always hold on the dataset

used in the paper, it is not guaranteed that it holds true in general for any

other instrument. We also note that, since each realization has di�erent noise,
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the number of IMFs in each decomposition may not be consistent among the

ensemble (Torres et al., 2011). The number and spectral properties of IMFs is

also dependent on the sampling time of the signal, especially in noisy envin-

roment where random oscillations are expected at all periods. Second, despite

perfoming better than the classical EMD, the EEMD technique still presents

cases of mode mixing and mode splitting quite frequently (Lang et al., 2020),

which may invalidate the physical interpretations of di�erent IMFs. Third, en-

semble variants of EMD have a very high computational cost, since it needs

to carry out the decomposition many times (usually in the order of hundreds).

Numerical tests have shown that the EEMD technique is usually several order

of magnitude more costly than IF and FIF (Cicone, 2020).

Figure 2.3: Example of FIF-based tsunami detection. At each time step: (a) we
take the last 3 h of data, (b) we detrend them, (c) we decompose the detrended
signal using FIF and (d) we sum the IMFs within a chosen frequency range.
Data from DART 32413, during the 16/09/2015 Illapel tsunami. The generating
earthquake occurred at 22:54:32 UTC, while �now� in the plot refers to 4 h43min
after origin time.

To overcome these downsides, we propose a new similar technique based on
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the use of the FIF and IMFogram algorithms, which works as follows:

1. take the last 3 hours of data;

2. remove the long period trend with polynomial �t;

3. decompose the residual using FIF;

4. compute instantaneous frequency of each IMF with the IMFogram algo-

rithm;

5. �nd the tsunami component by summing the IMFs with frequency within

a chosen range;

6. compare the last point of the tsunami component with a chosen detection

threshold.

The ability of IMFs to capture oscillations with variable frequency is one of the

main motivation behind the introduction of EMD-like techniques. However, in

the case of tsunami waves, that may sometimes be a disadvantage. In fact, in the

case where a tsunami just arrived, as is the case in Fig. 2.3, the decomposition

may produce a long term trend with variable slope instead of separating tide

and tsunami. For this reason, we remove the tidal trend with a polynomial

�t in step 2. In order to reduce the in�uence of tsunami waves on the �t,

statistically robust regression (Street et al., 1988) methods are used and we

choose to compute its weight as Cauchy functions. Furthermore, we will �t a

degree 3 polynomial.

The FIF decomposition is then carried out using δ = 10−4 and ξ = 2.

Choosing lower values for these parameters might result in a substantially larger

amount of IMFs, which would not change the �nal result, since the selection

is made based on frequency content, but it increases the computational time.

Higher values for δ and ξ may not separate all the di�erent time scales present in

the detrended signal. Though, we also note that the algorithm is not very sensi-

tive to parameter perturbations. To reduce the in�uence of boundary errors,we

follow the procedure prescribed by Stallone et al. (2020) with a symmetric ex-

tension.

The selection of IMFs in step 5 allows us to use FIF and IMFogram as a

band pass �lter and the frequency window can be chosen based on the speci�c

envinroment and applications. In the present work, we are mainly interested in

detection of tectonic tsunamis, so we choose to consider in the tsunami band

IMFs whose period in the last 30min has an average value between 4min and 2 h.

Just as in the previous step, we note that the algorithm is not very sensible to
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perturbations of this period interval and detection remains basically unchanged

if the upper bound is changed to 3 h or is even removed, since tides are already

been subtracted. To sum up, the chosen settings for the application of the

method are

� a polynomial of degree 3 obtained with a statistically strong regression in

step 2;

� FIF decomposition is applied with parameters δ = 10−4 and ξ = 2;

� components with periods between 4min and 2 h are selected in step 5.

Once the tsunami waveform has been extracted, we check for detection with an

amplitude based criterion as we do for all other techniques previously presented

in the chapter. So, at each time step, a detection is triggered if the last point

of the tsunami waveform is larger in absolute value than a chosen threshold.

At last, we note that the present FIF-based technique is still computationally

more e�cient than the EEMD-based method developed by Wang et al. (2020b).

In fact, despite needing two more numerical procedures (detrending through

�t and time-frequency computation from the IMFogram), the performance gain

of FIF with respect to EEMD makes the detection method still much more

e�cient. This makes the technique easier to test on large datasets and power

e�cient for real-time use. The technique is also more easily applicable to newly

developed or newly deployed instruments, since the choice of IMFs that represent

the tsunami is based on time-frequency computation in real-time, instead of an

a priori choice based on calibration on already available data.

2.5 Conclusions

In this chapter, four tsunami detection methods have been presented: Mofjeld's

algorithm, EOF detiding, TDA and a new tsunami detection methods based

on the Fast Iterative Filtering and IMFogram algorithms. For each technique,

the necessary theoretical tools are brie�y introduced, with reference to the rel-

evant literature for details. In particular, a derivation of Mofjeld's algorithm

is presented, which is, to the best of our knowledge, not available in the pub-

lished tsunami literature. A digression on the FIF and IMFogram algorithm is

also present, since this work represents the �rst extensive application of these

technique in the �eld of tsunami science.

The techniques di�er from each other in many aspects. Firstly, di�erent

amount of previous data are needed. The most demanding technique is TDA,
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for which months of previous data for each instrument are necessary to com-

pute tidal coe�cients. In the case of EOF, basis vectors have to be computed

from a long time series, however the same basis vectors can be used for every

instrumental record. On the other hand, Mofjeld's algorithm and FIF-based

detection need only the last few hours of data to work.

Another di�erence between techniques is the ability fo �lter high frequency

disturbances. OBPG records show near-constant amplitude noise and sparsely

distributed larger high frequency oscillations caused by seismic shaking. Both

TDA and the FIF-based method have �ltering capabilities built in, which al-

low to extract oscillations within the tsunami frequency band. This is not the

case for Mofjeld's algorithm and EOF detiding, for which we should expect de-

tection triggered by seismic waves. All of these properties will be investigated

experimentally on real tsunami records in the following chapters.

One last aspect which di�erentiate the techniques is the computational costs

of a single step. In the case of TDA and Mofjeld's algorithm, only basic arith-

metic operations are needed for each time step, making the essentially instanta-

neous with respect to EOF detiding and FIF-based detection. In fact, the latter

two require linear algebra operations at each step that, even if very optimized,

are orders of magnitude more demanding than the formers. These aspects will

not be analysed further in this work. The reason is that all techniques in their

simplest implementations (mostly through native MATLAB linear algebra func-

tions) are already able to work faster then real time, i.e. computations for each

step take less time than the sampling time of standard OBPGs. Any further op-

timization should take into account the speci�c hardware and software aspects

of a particular instrument.



Chapter 3

Data-driven analysis of

tsunami signals

In this chapter, two examples of tsunami signals from recent Mediterranean

events are presented. Namely, the �rst example is from the 02/05/2020 Crete

earthquake-generated tsunami, measured by the tide gauge located at Ierape-

tra. The second example regards the small tsunami observed after the �rst

shock of the 06/02/2023 earthquake doublet occurred at the Turkey-Syria bor-

der. In both cases, data have been retrieved from the IOC Sea Level Monitoring

Facility's website (https://www.ioc-sealevelmonitoring.org/). The main

goal of the analysis is to show in practice how the FIF and IMFogram algo-

rithms can be used to e�ectively analyse tsunami signals. More speci�cally, for

the Crete 2020 tsunami we show that the analysis is able to produce the same

results as traditional �lters in a data driven way. In the case of the 2023 Turkey-

Syria earthquake-generated event, it is shown that the analysis of the tide gauge

records in the Turkish stations of Arsuz, Erdemli and Tasucu obtained through

the decomposition into IMFs and their time-frequency analysis are consistent

with what is reported in already published papers by other authors. The con-

clusion from both cases is that data-driven methods can be used to analyse

tsunami signals giving results very similar to traditional techniques but with

the added bene�t of being completely data-driven and performing detiding and

denoising in a single operation.

32
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3.1 Tide gauge signal from the 02/05/2020 Crete

Tsunami

Figure 3.1: Epicenter of 02/05/2020 Crete earthquake and tide gauges located
in Ierapetra (NOA-04) and Kasos (NOA-03).

A Mw = 6.6 earthquake occurred on 02/05/2020 at 12:51:06 UTC, about

80 km o�shore from the island of Crete (Greece). Despite not being a partic-

ularly impactful event, it has nonetheless been the subject of multiple studies,

both as a case study for improvements to Mediterranean Tsunami alert systems

(Kalligeris et al., 2022; Papadopoulos et al., 2020; Wang et al., 2020a) and to

determine the earthquake mechanism, since it was located in an area of interest

from a seismotectonic point of view (Baglione et al., 2021; Heidarzadeh and

Gusman, 2021). In particular, the event was located in an area where several

earthquakes of similar size have been observed in the last century (Kalligeris

et al., 2022) and it showed that the area might not be prepared for more serious

events, both from an alert system and a population awareness point of view (see

Papadopoulos et al., 2020 and Kalligeris et al., 2022 respectively). The tsunami

was recorded at the NOA-03 and NOA-04 tide gauges, located in the island of

Kasos and in the port of the city of Ierapetra, respectively, as shown in Fig. 3.1.

Since it has been shown by Baglione et al. (2021) that the Kasos record does not
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Figure 3.2: Sea level record measured at the Ierapetra tide gauge. Time is
expressed in minutes since the earthquake origin time 12:51:06 UTC. Data from
00:00:00 02/05/2020 to 06:00:00 03/05/2020, with sampling time of 1min.

contribute signi�cantly in inversions for the source, we are going to analyse only

the Ierapetra record, shown in Fig. 3.2. The signal has some typical characteris-

tics of tsunami records, i.e. it is dominated by long term oscillations, ascribable

to tides, to which high frequency oscillations are superimposed. These high

frequency oscillations include random noise for the entirity of the record and a

transient wavetrain starting at 16min after earthquake origin time. These tran-

sient oscillations are made of two di�erent phases: the �rst is made by a few

oscillations reaching a peak-to-peak amplitude of 33 cm, while the second starts

around 1 h after origin time and consists of slowly decaying oscillations reach-

ing 15 cm peak-to-peak amplitude lasting a few hours. Many of these aspects

can be better visualized from the decomposition into IMFs obtained using FIF,

shown in Fig. 3.3, and the instantaneous frequencies and amplitudes for each

IMFs in Fig. 3.4. From the instantaneous frequencies we can see that all the

components are contained within a quite narrow frequency range, which allows

us to separate them based on physical origin. The �rst component IMF 1, that

has a median period of 4min captures random noise and the �rst part of the

tsunami wavetrain, consistently with other published studies (Heidarzadeh and

Gusman, 2021). From the instantaneous amplitudes in Fig. 3.4, we can observe
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Figure 3.3: Intrinsic mode functions computed using the FIF technique for the
02/05/2020 tsunami signal recorded at Ierapetra. Time is expressed in minutes
since the earthquake origin time 12:51:06 UTC. IMFs 3 to 5 and 6 to 9 are
summed together based on frequency considerations. Zoomed versions of IMF
1 and IMF 2 are also shown.
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Figure 3.4: Instantaneous amplitude and instantaneous frequency for the IMFs
in Fig. 3.3, relative to the 02/05/2020 tsunami signal recorded at Ierapetra.
Time is expressed in minutes since the earthquake origin time 12:51:06 UTC.
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two rapid high oscillations followed by a relatively fast decay. This component

is the arrival of the direct wave from the tsunami and a �rst interaction with

the Cretan coastline. The second component captures the persistent oscillations

that follow the �rst wavetrain, with a median period of 10min and an instanta-

neous amplitude of 6 cm that remain almost constant between 1 h and 4 h after

origin time. These features of IMFs 1 and 2 are shown Fig. 3.3. While reso-

nances are commonly observed in harbours after the arrival of a tsunami, this is

probably not the case, since the corresponding periods are usually around tens

of seconds. The oscillation captured by IMF 2 is probably the result of shelf

resonance. These qualitative considerations are in line with what is presented

by Kalligeris et al. (2022), where the natural oscillation frequencies of the region

have been studied through numerical modelling. In that work, it is shown that

the Ierapetra harbour has a fundamental oscillation period of 2.4min, which ex-

plains why the direct wave arrival, with a period around 4min, does not trigger

resonance phenomena. On the other hand, Kalligeris et al. (2022) show that a

period around 9.5min probably corresponds to an oscillations mode of the bay

to the east of the harbour, which can be observed also in the background spec-

tra before the arrival of the tsunami. The properties of this oscillation mode

correspond to what we observe in the IMF2 in Fig. 3.3, both in terms of period

(around 10min) and in the presence of clearly observable oscillations before the

tsunami �rst arrival.

IMFs 6 to 9 have periods of several hours. Thus, they can be assumed to

represent a decomposition of tides, as evident from their sum shown in Fig. 3.3.

At last, the intermediate components 3 to 5 have periods of tens of minutes

and very low amplitudes (within 3mm each) and are probably long wave noise

typical of coastal areas. We note that time-frequency results, especially for the

transient wave train, are consistent with the analyses already presented in liter-

ature, e.g. by Heidarzadeh and Gusman (2021). We also note that period esti-

mates from the IMFogram algorithm are more focused than what is reported by

Heidarzadeh and Gusman (2021), where a similar analysis is performed through

wavelet analysis. In fact, as shown by Cicone et al. (2022), the time-frequency

distributions of transient signals obtained through the IMFogram algorithm are

better localized in the time-frequency plane: Heidarzadeh and Gusman (2021)

�nds from wavelet dominant periods of 3-5min and 5-10min, while the IMFo-

gram algorithm shows that the periods are located in narrower bands. To show

the validity of using FIF for analysis, we compare the technique with EMD

and traditional �lters. We can see in Fig. 3.5 that the �rst two IMFs obtained

through EMD have some similar characteristics to IMF1 and 2 obtained with
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Figure 3.5: Comparison of EMD and FIF methods in computing the highest
frequency IMFs for the signal in Fig. 3.2, relative to the 02/05/2020 tsunami
signal recorded at Ierapetra.

Figure 3.6: Comparison of IMFs computed through FIF and signals extracted
with harmonic �lters for the record in Fig. 3.2, relative to the 02/05/2020
tsunami signal recorded at Ierapetra. IMF 1 is compared with the high pass
(HP) �ltered signal with 1/400Hz cuto� frequency. IMF 2 is compared with
the bandpass �ltered signal with cuto� frequencies at 1/2000Hz and 1/400Hz
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FIF, but the separation between the two di�erent kind of oscillations is not re-

produced by EMD. In fact, while FIF separates contributions of di�erent period,

such as the �rst wavetrain from the following resonance mode, the two regimes

are not clearly separated in EMD. In fact, we �nd in the �rst IMF both sparse

larger oscillations between 2 h and 4 h and the direct arrival of the tsunami wave

train. Viceversa, we �nd a much more pronounced oscillation in correspondence

of the �rst arrival even in the second component. This exempli�es the fact that

classical EMD is sometimes not able to separate di�erent oscillation regimes.

Between EMD and FIF, we can con�rm that FIF gives the expected results

by comparing with what we obtain by classical �lters. In Fig. 3.6, IMFs 1 and 2

are compared with a �ltered version of the original signal. In particular, IMF 1

is compared with the result of a high-pass �lter with cuto� frequency of 1/400Hz

and IMF 2 is compared with a band-pass �ltered signal with cuto� frequencies

1/2000Hz and 1/400Hz. In both cases, there is very good agreement between

the two waveforms, con�rming that the two signals live in di�erent frequency

bands. It is important to notice that the physical separation of the 4min and

10min components is obtained by FIF in a totally data driven way, with no

need to determine the frequency band to study in advance.

3.2 Tide gauge signals from the 06/02/2023 East-

ern Mediterranean event

On 06/02/2023 the region between southern Turkey and northern Syria was hit

by a devastating earthquake sequence that started with a Mw = 7.8 event at

01:17:34 UTC on the Eastern Anatolian Fault, and was followed by a Mw = 7.5

earthquake at 10:24:49 UTC (according to USGS). This doublet earthquake was

also accompanied by a large number of aftershocks. The �rst very important

aspect of this seismic sequence is the profound societal impact it had and con-

tinues to have, due to the tragic amount of victims (approximately 60 000) and

the very wide spread coseismic e�ects that a�ected human settlements (Ozkula

et al., 2023). On the other hand, the event is also very important from a seis-

mological point ov view. In fact, it has been shown that the main shocks had a

very complex rupture process (Liu et al., 2023; Petersen et al., 2023), the study

of which can help in understanding the complexity of source mechanisms.

The earthquakes were also accompanied by a variety of secondary e�ects,

such as ionospheric disturbances (Haralambous et al., 2023), dynamic trigger-

ing of far away seismic structures with both aftershocks and seismic tremors
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Figure 3.7: Epicenter of the �rst mainshock in the 06/02/2023 Turkey and Syria
seismic sequence, and tide gauges located in Arsuz, Erdemli and Tasucu. Only
the �rst shock of the sequence is shown, since it was the only one followed by a
tsunami. In the legend, TG stands for Tide Gauge.

(Inbal, 2023; Inbal et al., 2023), widespread mass wasting events (Görüm et al.,

2023), and tsunami waves observed at some tide gauges around the Turkish

coasts, in particular in the tide gauges located in Arsuz, Erdemli and Tasucu,

shown in Fig. 3.7. The tsunami itself has been and still is the subject of de-

bate, since its records are consistent with a source contemporary with the �rst

earthquake of the sequence, despite this having an epicenter located far inland

and having a strike-slip mechanism. Even though the exact source has yet to be

determined, the literature published so far suggests that the waves were gener-

ated by underwater mass wasting, though the position and number of slides is

yet to be determined (Heidarzadeh et al., 2023; Hu et al., 2023). Furthermore,

the situation was complicated by infragravity waves of atmospheric origin in

the days following the tsunami (Medvedeva et al., 2023). At last, it should be

also stressed out that, following the operating procedures of the NEAMTWS

(Tsunami Warning System in the North-Eastern Atlantic, the Mediterranean

and connected seas), the �rst earthquake of the sequence lead two Tsunami

Service Providers to issue a basin wide alert. Given the characteristics of the

tsunami and the location of the epicenter, questions about re�ning the meth-

ods employed by NEAMTWS have gained much attention again (Lorito et al.,

2023).
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Figure 3.8: Raw data from 3 tide gauges located near the southern Turkish
coast. Time is measured in minutes from origin time of the �rst earthquake
of the sequence (01:17:34 UTC). Tsunami-related wavetrains are visible in the
Arsuz and Erdemli records at 26min and 46min after origin time. The data
have a 30 s sampling time.

Many of the mentioned characteristics of the tsunami may be inferred from

a joint use of of the available records. In particular, sea level oscillations com-

patible with a tsunami can be found by visual inspection in records of at least

a couple of tide gauges, located at Arsuz, (36.416N, 35.885E) in the �skenderun

bay, and Erdemli, (36.564N, 34.255E) on the southern Turkish coasts, as shown

in Fig. 3.8. In order to perform a time-frequency analysis of the signals, we

extract long portions of the tide gauges' data going from 12:00:00 04/02/2023

to 18:00:00 09/02/2023, in order to include the atmospheric perturbation that

followed the tsunami in Arsuz. These signals are decomposed using FIF and we

perform time-frequency analysis with the IMFogram algorithm. In the Arsuz

record (Fig. 3.9a), both the tsunami wavetrain and the atmospheric disturbance

starting a few hours later are evident. We can see that this di�erent factors are

separated from one another by the FIF decomposition. In fact, we can see from

Fig. 3.9b that IMF 1, representing the highest frequency component, has a slow

increase in the hours after the events, reaching the maximum variations around

2000min (i.e. on 07/02/2023). The tsunami wavetrain is well captured by IMF
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2 and 3, which arrives at 26min, but they show di�erent long term behaviour.

In particular, IMF 2 shows oscillations lasting for the next days, probably due

to the in�uence of the atmospheric disturbance as well, while IMF 3 decays to

the pre-event noise level by the next day. All the considerations are con�rmed

by computing instantaneous amplitudes and frequencies with the IMFogram

algorithm. As shown in Fig. 3.9c, IMF 1 has a median period of less than

2min, capturing high frequency noise and showing the very large oscillations of

the following days, with a maximum amplitude of 23 cm two days after origin

time. Tsunami energy is concentrated in the components with median period

of 7.6min and 19min. Furthermore, IMF 2 captures the maximum amplitude

of 11 cm, observable by eye inspection from the raw data. IMF 4 has a median

period of around 2.5 h and amplitude within 4 cm, compatible with long period

noise we can expect in semiclosed basins such as the eastern Mediterranean.

The remaining IMFs have frequencies in the tidal spectrum.

The analysis of the Erdemli signal gives similar results regarding the tsunami,

while not showing the atmospheric oscillations observed in the Arsuz record. As

shown by the decomposition in Fig. 3.10b and the amplitude-frequency compu-

tations in Fig. 3.10c, the �rst IMF has a median period of 2min and an ampli-

tude within 5 cm, which seems correlated with later tsunami oscillations. The

tsunami wavetrain is again captured by IMF 2 and 3, with IMF 2 being the

most energetic one. IMF 2 has a median period of 7.7min with a maximum

amplitude of 14.5 cm, while IMF 3 has a longer period around 27min and a

maximum amplitude of 6 cm; both decay within a day after the event. Both of

these components lie in the relative vicinity of the periods observed for IMF 2

and 3 of the Arsuz record. In particular, the second components agree quite

signi�cantly in terms of period. On the other hand, the third components have

periods that di�er by 8min. Given that their amplitude patterns is compati-

ble with a tsunami, i.e. they increase in correspondence with IMF 2 and decay

later, IMFs 3 may be related to the interaction of the tsunami with local geo-

morphology, though numerical simulations should be carried out to con�rm it.

The results of these analyses can be compared easily with results in pub-

lished works. Heidarzadeh et al. (2023) use wavelet analysis to �nd that the

most energetic bands in the signals are 5.4-7min and 17-21min, while Hu et al.

(2023) gives broader estimates as main frequency band between 2-10min and

10-30min, which include the main period observed by joint FIF-IMFogram anal-

ysis. A comparison with bandpass �ltered signals is shown in Fig. 3.11. The

period bands used are the same used by Hu et al. (2023) and the components
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obtained by bandpass �ltering are compared with the IMFs obtained using FIF.

In particular, the extracted signal is the sum of the IMFs with median frequency

within the frequency band. The waveforms agree quite well. On one hand, we

con�rm that the Erdemli signals has energy concentrated within the 2-10min

period band (Hu et al., 2023), since the waveforms for the two bands are similar.

The opposite is true for the Arsuz record. In this case, we also observe that a

lower agreement for the signals within the 2-10min band, where the waveform

obtained from FIF decomposition is smoother than the one obtained from har-

monic �lters. The explation may be found in the analysis we just conducted:

IMF 1, which captures noise with period close to sampling time, has a period

around 2min, i.e. it oscillates around the �lter's cut-o� frequency. Thus, the

signal obtained by harmonic �ltering keeps in some energy from the noise com-

ponent. This does not happen using the FIF decomposition because it produces

components each lying within a narrow and well-de�ned frequency range.

From the conclusions we just made about Arsuz and Erdemli records, we can

analyse the tide gauge signal from the Tasucu instrument, located at (36.281N

, 33.836E). In fact, IMF 2 of its decomposition, shown in Fig. 3.12b, shows an

increase in amplitude with a maximum of 4.5 cm around 2.5 h after origin time,

compatible with a late tsunami oscillations. The median period of IMF 2 is

around 19min, which lies within the tsunami frequency band observed in the

previous data. However, recognizing the tsunami waveform by visual inspection

is not possible in this case. The presence of the oscillations consistent with the

tsunami in terms of frequency amplitude may be con�rmed by the following

time-frequency analysis. One of the reasons, besides the low amplitude of the

signal, is that IMF 3, which has a median period of around 1 h has a comparable

amplitude with what is observed for the tsunami. Remaining IMFs have periods

of several hours and represent tidal oscillations.
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(a) Arsuz tide gauge record.

(b) IMFs obtained through the FIF technique

(c) IMFogram analysis

Figure 3.9: Joint FIF + IMFogram analysis of the Arsuz tide gauge record.
(a) raw signal 12:00:00 04/02/2023 to 18:00:00 09/02/2023, (b) Intrinsic Mode
Functions obtained with the Fast Iterative Filtering technique, (c) Instantaneous
Amplitudes and Periods obtained through the IMFogram. Time is measured in
minutes from origin time of the �rst earthquake of the sequence (01:17:34 UTC).
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(a) Erdemli tide gauge record.

(b) IMFs obtained through the FIF technique
(c) IMFogram analysis

Figure 3.10: Joint FIF + IMFogram analysis of the Erdemli tide gauge record.
(a) raw signal 12:00:00 04/02/2023 to 18:00:00 09/02/2023, (b) Intrinsic Mode
Functions obtained with the Fast Iterative Filtering technique, (c) Instantaneous
Amplitudes and Periods obtained through the IMFogram. Time is measured in
minutes from origin time of the �rst earthquake of the sequence (01:17:34 UTC).
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Figure 3.11: Comparison of tsunami waves extracted from a FIF+IMFogram
analysis and with bandpass �lters. The period windows are taken to reproduce
the �ltered signals by Hu et al. (2023).
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(a) Tasucu tide gauge record.

(b) IMFs obtained through the FIF technique

(c) IMFogram analysis

Figure 3.12: Joint FIF + IMFogram analysis of the Tasucu tide gauge record.
(a) raw signal 12:00:00 04/02/2023 to 18:00:00 09/02/2023, (b) Intrinsic Mode
Functions obtained with the Fast Iterative Filtering technique, (c) Instantaneous
Amplitudes and Periods obtained through the IMFogram. Time is measured in
minutes from origin time of the �rst earthquake of the sequence (01:17:34 UTC).
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3.3 Main takeaways

In this chapter, data driven techniques have been applied to tsunami records

from the 02/05/2020 Crete tsunami and the 06/02/2023 small tsunami observed

along the Turkish coasts. The signals have been decomposed using the Fast

Iterative Filtering technique, which is decomposes a signal into a variable num-

ber of oscillatory modes, called Intrinsic Mode Functions. Each IMF is locally

bounded within a narrow frequency band that may change with time. After

the decomposition, the IMFogram algorithm is used to obtain a time-frequency

representation of the signal. Both techniques are designed to work in case of

nonlinear and nonstationary time series.

In each case, the components have been analysed and we determined which

ones can be traced back to the tsunami by checking if their instantaneous am-

plitude increase after earthquake origin time. From there, the main frequency

content of the tsunami wave have been determined. Thanks to the analysis

carried out on the Arsuz and Erdemli records, for the 06/02/2023 event, we

have been able to determine that the tsunami has been recorded in the Tasucu

record as well, where it is di�cult to spot by visual inspection.

In general, the IMFogram analysis has shown that:

� a joint FIF+IMFogram analysis may be used to carry out routine tsunami

data analysis with results that are in agreement with Fourier and wavelet

transforms that are commonly used in the published literature;

� contrary to classical techniques, the decomposition and analysis is totally

data-driven.

The last point is particularly signi�cant in cases such as the Arsuz and Erdemli

records. FIF splits high frequency noise, the tsunami signal and tides into

di�erent IMFs, allowing to denoise and detide the signal at the same time in a

data driven way. Instantaneous frequency computation of each IMF with the

IMFogram algorithm makes it possible to use these technique to bandpass �lter

a signal and we have shown how the results are in very good agreement with

traditional harmonic �lters. However, the data driven nature of the techniques

make them more robust with respect to variations in the frequency band, due

to the fact that each IMF is contained in a narrow frequency band at each given

time.

The joint use of the FIF and IMFogram algorithms to analyse tsunami signals

is thus able to give the same results as classical techniques but in an easier and

more straightforward way, thanks to the data driven nature of the techniques.
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For this reason, we believe that these techniques have the potential to enter the

rountine data analysis toolbox in tsunami science.



Chapter 4

Detection tests on

background time series

In this chapter, applications of the four detection techniques to background sig-

nals, i.e. signals without seismic shaking or tsunami waves, are presented and

discussed. First, NOAA DART® data are described in the details needed for

the selection of time series to test. The reasons why we choose to DART® are

multiple. Firstly, past data are made freely available by NOAA in their raw

form, allowing us to test detection algorithm as if they were operating in real

time. Secondly, NOAA's DART program represents the only global tsunami

monitoring network, so they include instruments from very di�erent environ-

mental conditions. Lastly, the program has been active for decades, making a

large amount of data available.

After the criteria for the choice of the testing signals are explained, the four

detection techniques are all applied simulating real time operation. The results

are analyzed and the four techniques are compared in terms of properties of their

detection curves. The result of the analysis can then guide us in the applications

to observed tsunami waveforms. For readability reasons, all the plots are moved

in a dedicated appendix at the end of this chapter.

4.1 NOAA's DART® data

The Deep Ocean Assessment and Reporting of Tsunamis (DART) project is

part of the U.S. National Tsunami Hazard Mitigation Program and constitutes

the most widespread tsunami o�shore monitoring and detection network in the

50
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world, with instruments installed in the Northeastern Indian ocean, Northwest-

ern Atlantic ocean, and in the Paci�c Ocean. The �rst instruments developed by

NOAA Paci�c Marin Environmental Laboratory (PMEL) for the project were

composed by a bottom pressure sensor and a surface buoy that allow for one-way

transmission of sea level data. Four of these instruments were deployed in Au-

gust 2000. A few years later, a second generation of instruments were developed,

capable of two-way communication, to allow remote control. The third gener-

ation integrated the pressure gauge and the buoy into a single Easy-To-Deploy

(ETD) system. Finally the most recent fourth generation added modules for

automatic �ltering of seismic shaking, allowing the deployment of instruments

closer to subduction areas. Details about the technology and development of

DART® instruments can be found at the website of the NOAA Center for

Tsunami Research (https://nctr.pmel.noaa.gov/Dart/) and a detailed his-

tory of deep ocean tsunami measurement is presented by Rabinovich and Eblé

(2015).

DART® instruments have di�erent operating modes. Normally, the instru-

ments are in �standard mode�: they acquire data with a sampling time of 15 s,

but transmit to the surface buoy one measurement every 15min. Instruments

also come with detection software installed, which usually consists of an imple-

mentation of Mofjeld's algorithm, as in eq. (2.4). Once a detection is triggered,

the instruments enter in �event mode�, during which the instrument transmits

data at a higher frequency. In particular, it transmits the full 15 s sampled data

for 4 minutes, then it transmits 1min averages for 3 hours, while also trasmitting

1min averages for the hour preceding the trigger.

DART® data are available via a web service hosted by NOAA (https://

www.ngdc.noaa.gov/thredds/catalog/enhancedCatalogWaterlevel.html) in

two forms:

� Unassessed Ocean Bottom Pressure, which are the raw data from each

instrument;

� Quality-controlled, modeled, and de-tided Ocean Bottom Pressure, where

post-processing operations have been applied (Mungov et al., 2013).

Both datasets are available at the highest available resolution, which may change

between di�erent instruments or deployments. In fact, despite the instruments

acquiring and memorizing 4 pressure measurements per minute, these data can

only be retrieved whenever the instrument is resurfaced for maintainance or

substitution. In case of malfunctioning or data corruption, there may be missing
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segments of data, which are �lled by data transmitted to land during operation,

wherever available.

4.2 Dataset creation

An important aspect of a tsunami detection technique is its behaviour whenever

there are no transient signals, such as tsunamis or seismic shaking, which, in

the case of OBPG records, corresponds to the case where only tides and random

noise is present. Hereafter, we will refer to these signals as background signals.

For these signals to be suitable for detection testing, a few criteria may be

followed. The �rst is that the signal should be long enough to be tested for

stability in the detection capabilities. In our cases, we choose to take signals

that are one month long, in order to test for variations in the tidal regime, up to

monthly constituents. Second, since we want to simulate real-time application

of the techniques, we only select segments of data where full data sampled at 15 s

are available. Third, we select signals that have no holes, jump discontinuities

or instrumental spikes. Even though any of these artifacts can be treated by

preprocessing the data, we want to reduce the in�uence of any preprocessing

operation on the results of the analysis. Discussions on how to deal with these

artifacts in real-time is outside the scope of the present analysis. Lastly, we

want to test data from di�erent geographical locations, to see if environmental

factors in�uence the detection capabilities.

All the techniques are applied in the default version presented in Chapter

2. In particular, we use the weights in eq. (2.5) for Mofjeld's algorithm, the

basis shown in Fig. 2.2 for EOF detiding, and tidal coe�cients computed with

UTide and a FIR bandpass �lter on the [4min, 120min] band for TDA. The use

of precomputed tidal coe�cients in the latter imposes another requirement: the

signal needs to be part of long enough deployment to compute tides precisely.

In each case, around 9 months of previous data have been used to compute tidal

coe�cients. The FIF-based technique is applied exactly as explained in Chapter

2. The basic characteristics of the selected signals, named from now on with

letters A to E, are presented in Tab. 4.1, where we list instrument, location,

time period and maximum tidal range within that period for each one. The

signals are shown in Fig. 4.3, 4.7, 4.11, 4.15 and 4.19, respectively.
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Case DART Location Period Tidal Range

A 46414 SE of Chirikov
Island (Alaska,

USA)

01/08/2019 - 31/08/2019 337.25 cm

B 52402 ESE of Saipan
(Northern Mariana

Islands, USA)

01/06/2016 - 30/06/2016 82.04 cm

C 32413 WNW of Lima
(Perú)

01/01/2019 - 31/01/2019 129.62 cm

D 51407 W of Kailua-Kona
(Hawaii, USA)

15/04/2022 - 14/05/2022 88.70 cm

E 21413 ESE of Tokyo
(Japan)

01/06/2021 - 30/06/2021 86.02 cm

Table 4.1: Instrument, location, period and maximum tidal range for each back-
ground signal selected for testing.

4.3 Detection curves

All the techniques presented in this work are amplitude discriminating detection

methods (Chierici et al., 2017), which means that a waveform in the tsunami

frequency is extracted from the most recently acquired data and a detection is

triggered if the last point of this component is bigger in absolute value than

a given detection amplitude threshold T . In the case of Mofjeld's algorithm,

the tsunami component is extracted by subtracting the forecast trend from the

raw data, while EOF detiding computes it by subtracting from data the tides

found by projection on the empirical basis. In both cases, the techniques act

as highpass �lters. On the other hand, TDA and the FIF-based method act

as bandpass �lters, since they not only remove long term trends (with tidal

prediction and polynomial �tting, respectively), but they also �lter data in

chosen frequency bands. Since the main observable for detection application is

given by the last point of the processed data, the properties of the techniques

can be studied by looking at the properties of the time series of these last points.

Here, we de�ne the time series of these last points as the detection curve of the

signal. The detection is thus triggered once the detection curve has an amplitude

bigger than T .

Ideally, a detection curve should be di�erent from zero whenever a tsunami

is passing at the instrument location and zero elsewhere. In reality, detection

curves contain various contributions even for background signals, whose origin

depends on the applied technique. The reason why detection curves can show
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Figure 4.1: Inconsistency of tsunami components at di�erent time steps for the
FIF-based detection method. Data from the time series relative to background
case A (see Tab. 4.1). Top panel: the blue curve is the tsunami component com-
puted at step n = 69170, i.e. approximately 12 days after the beginning of case
A; the orange curve is the tsunami component computed 10 steps later. Bot-
tom panel: di�erence between the two tsunami components where the domains
overlap.

such patterns is that the extracted tsunami component at each time step is not

necessarily consistent with what is found at a di�erent time step. To illustrate

this fact, we can consider the detection steps at two successive time steps t1 and

t2, for which the presented techniques will produce tsunami components which

largely overlap. Now, we consider a time t0 that lies within this overlap. The

aforementioned lack of consistency means the values at t0 of the two tsunami

components are not necessarily equal. Thus, we can expect oscillations, both

of high and low frequency, to be present in the detection curves, even if the

techniques we use include �lters. We note that this inconsistency can mean

also that the tsunami shape visible in a detection curve does not correspond

to the real wave observed at that position. An example of this is presented in

Fig. 4.1, where two tsunami components, obtained using the FIF-based detection

technique, computed at a distance of 150 s. i.e. 10 steps at a 15 s time step, are

compared. For any time included in the domain of both curves, their amplitude

is not exactly the same. The amplitude of each point in detection curves will thus

include the contributions not �ltered by the technique, plus a small perturbation

caused by this inconsistency. This is the reason why detection curves include
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high frequency noise even for techniques that include a high frequency �lter,

such as TDA and the FIF-based method.

Mofjeld's algorithm is only capable to remove long term trends, so it is

able to remove tides and long term pressure variations of meteooceanographical

origin, but not random noise, which will be then included in the detection

curve. Detection curves for EOF detiding and TDA may also include long term

oscillations caused by tidal residuals. In the former case, the reason is that tides

found by projecting onto the empirical basis are not able to capture the tidal

�ne structure that is usually site speci�c and has periods of 6, 8 and 12 h. In

the latter case, tide computation may not remove tides in their entirety and the

bandpass �lter may not remove whatever oscillation is left, since we are taking

a boundary point after applying a mirror boundary condition. For the same

reason, TDA's detection curves may also show some residual high frequency

components. At last, the new FIF-based detection may contain some long term

oscillations, due to possible deviations between the polynomial �t and the long

term trend, and some high frequency components due to noise and possibly

seismic shaking.

In the following section, we are going to look at the detection plots for

background signals. The property of detection curves in the presence of tsunami

or earthquake waves is treated in the next chapter.

4.4 Detection results for background signals

The four detection techniques are applied to simulating real-time operation on

the signals presented in Tab. 4.1 and the detection curves for each case per

each technique are reported in the appendix of this chapter (Fig. 4.5, 4.9, 4.13,

4.17, 4.21). Some di�erences between the techniques can be noticed by visual

immediate visual inspection.

As expected, all techniques show some oscillations, though the main periods

in each of them di�er quite signi�cantly. In particular, EOF detection curves

show quite coherent oscillations with almost constant amplitude throughout the

entirity of the curves for all 5 cases. TDA also has some similar oscillations,

but also some very long term non oscillating trends. For example, in case B,

the TDA detection curve oscillates around positive values, except for the period

around day 15 where it temporarily decreases to zero. Case C and D have the

opposite behaviour, with the curve having mostly negative values with some

occasional variations in average value on the scale of days. The most evident

long term trend is found in the curve for case E, where the signal oscillates
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Case DART EOF TDA FIF

A [−0.59, 0.51] [−1.39, 1.45] [−2.16, 1.75] [−0.92, 1.13]
B [−0.40, 0.42] [−1.67, 1.85] [−0.63, 1.25] [−0.63, 0.71]
C [−0.54, 0.58] [−1.72, 1.84] [−1.30, 0.75] [−0.74, 0.74]
D [−0.51, 0.54] [−1.94, 1.93] [−1.27, 0.82] [−0.94, 0.97]
E [−0.44, 0.43] [−1.71, 1.62] [−0.69, 1.46] [−0.64, 0.63]

Table 4.2: Maximum and minimum value in centimeters recorded in each de-
tection curve for each technique. DART refers to Mofjeld's algorithm.

around zero up to day 17, after which there is an increase of more than 0.5 cm.

The Fourier spectra of the detection curves (in Fig. 4.4, 4.8, 4.12, 4.16, 4.20)

also show the presence of strong oscillations in TDA's and EOF's detection

curves. EOF detections curves have strong spectral peaks in correspondence of

the 8 h period, which is a typical period observed in tidal �ne structure that the

technique is not able to remove. The spectral peaks of TDA are more variable

among the cases, but its energy is concentrated mainly around the periods of

diurnal and semidiurnal tides, indicating that imprecise tidal modelling is the

biggest issue in the detection curves. We can also note that TDA's detection

curves are the only with a signi�cant portion of energy concentrated at the zero

frequency limit, due to the whole-signal long trends they have. The Fourier

spectra of both Mofjeld's algorithm and FIF have peaks near the 12 h period,

although they are much weaker than in other techniques. An exception to

this general trends is given by case A, where TDA has much more coherent

oscillations, with taller peaks in the Fourier spectra. This seems to indicate a

relation between TDA characteristics and the maximum tidal range observed at

the recording location, since DART 46414 is located in the Alaskan Gulf, where

high amplitude tides are observed.

The presence of very long trends in a detection curve causes an asymmetry

in the distribution of the residuals. Such an asymmetry can be a problem for

tsunami detection. If we consider a tsunami wave superimposed to a background

similar to case B, its detectability depends on its polarity. In particular, a

leading crest tsunami would be easier to detect, since the data are already

skewed towards positive values, while the detection of leading trough tsunamis

would be more di�cult. This factor can be very well visualized in two ways.

The �rst is by comparing the asymmetry in the maximum range observed for

each detection technique, reported in Tab. 4.2. From that, it is evident that

TDA is the only technique where this kind of asymmetry is signi�cant, with a

di�erence between the maxima and the (absolute value of the) minima di�er of
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Case DART EOF TDA FIF

A 0.15cm 0.41cm 0.64cm 0.24cm
B 0.10cm 0.56cm 0.27cm 0.15cm
C 0.13cm 0.61cm 0.29cm 0.17cm
D 0.13cm 0.63cm 0.30cm 0.20cm
E 0.10cm 0.57cm 0.35cm 0.14cm

Table 4.3: Standard deviation in centimeters of each detection curve for each
technique. DART refers to Mofjeld's algorithm.

about 4mm, while the same metric is an order of magnitude smaller for other

techniques.

The second way to visualize the asymmetric distribution of values is from the

histogram of amplitudes (in Fig. 4.6, 4.10, 4.14, 4.18, 4.22). Mofjeld's algorithm

produces the narrowest histograms, centered around 0, i.e. detection curves for

background signals obtained by this technique are the ones that are statisti-

cally closer to the ideal behaviour. The FIF-based method has a very similar

behaviour, with slightly thicker tails in cases A and D. EOF and TDA both

deviates from this behaviour. The former has wider histograms with thicker

tails in all the selected cases, with cases C and D having an almost bimodal

distribution, indicating that the signal tends to oscillate coherently during its

whole length. On the other hand, TDA produces detection curves that are nar-

rower than EOF's ones, but they have peaks that are signi�cantly far from zero.

The very long trend present in the second part of signal E results in a slightly

bimodal distribution, where neither of the maxima are located at zero.

The general considerations on the distributions of values in the detection

curves done previously are con�rmed by comparing the standard deviations of

detection curves, reported in Tab. 4.3. Standard deviation follows a general

ordering rule: Mofjeld's algorithm produces detection curves with the lowest

standard deviation, just under FIF, then followed by TDA and EOF. Case A,

where tidal residuals in TDA are particularly evident, is the only one where

TDA's detection curve has a greater standard deviation than the EOF's curve.

The general conclusions we can draw from this analysis are:

� the precision in tide prediction is the fundamental factor in detection curve

for EOF and TDA;

� Mofjeld's algorithm and FIF-based detection perform much better in terms

of closeness to 0 of their detection curves;

� the performance in tsunami detection can be dependent on the polarity
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of the wave only using TDA, while other techniques have a symmetric

distribution around 0.

One thing to stress again is that TDA results in this chapter represent optimal

cases, since signals have been speci�cally chosen to have enough preceding data

(around 8 or 9 months) to obtain an accurate tidal model. We already pointed

out that TDA detection curves contain residual oscillations in the tsunami fre-

quency band (see spectral plots in Fig. 4.4 to 4.20). In the case where fewer data

are used, we may obtain less precise tidal models, which would result in larger

amplitude detection curves even for background cases. To show this e�ect, TDA

detection curves have been computed using tidal models obtained from time se-

ries of di�erent length. In particular, coe�cients for the harmonic tidal model

in eq. (2.9) have been computed from time series ending two weeks before the

starting point of the case study (in Tab. 4.1) and starting at di�erent times

before that. The result are shown in Fig. 4.2. For each case, the maximum,

minimum and mean value of each detection curve is plotted. It is immediately

evident that detection curves amplitude is strongly dependent on how many

data we use to compute the tidal model. In particular, the amplitude tends to

stabilize within ±2 cm when at least 6 to 7 months of data are used. Fewer data

not only result in larger oscillations, but also in more asymmetric distribution,

as we can see from the signal averages, i.e. the red curves, in Fig. 4.2.

However, there are two more problems we may face. The �rst is that it may

be di�cult to satisfy all the requirements. For example, in cases B, C and E the

detection curves with average value closer to zero, i.e. the most symmetrical,

are not the ones with the narrower variability range. We recall that asymmetric

detection curves for background signals mean that the detectability of a tsunami

may depend not only on its amplitude but also on its polarity. Thus, we may

not be able to choose a set of tidal coe�cients that minimize detection curve

residuals and polarity e�ects at the same time.

The second problem we can face with the computation of tidal models is

that, while the variability ranges initially converges around zero, there may be

cases where this trend breaks for large enough time series. In case A, we can

notice that, after reaching a narrow and symmetrical distribution for around 8

months of data, then both the minimum and maximum of the detection curves

increase with longer time series. In case C, we can appreciate a signi�cant jump

for time series length greater than 12 months. These e�ects may be related

to the possible presence of very long term trends in OBPG records, which, if

not taken into account, make tidal coe�cients computation dependent on which

sections of the time series we use. Given that these trends are usually studied
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Figure 4.2: Variability range of TDA detection curves for di�erent tidal models.
For each case, the maximum and minimum (in black) and the average value
(in red) of each detection curve corresponding to a di�erent length of source
data used to compute tidal coe�cients. Horizontal blue lines corresponds to
amplitudes of ±3 cm. The smallest data length for which data are plotted in
each case is the smallest for which UTide converges. The largest data length
used correspond to the maximum amount of data available in that deployment.
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and removed a posteriori (Mungov et al., 2013), no attempt to take them into

account has been made here. To have background detection curves within 2

to 3 cm, we can simply propose the rule of thumb of using 7 to 9 months of

previous data to compute tidal coe�cients.

We can comment what the background analysis suggests us in terms of detec-

tion thresholds. The de facto standard threshold for amplitude discriminating

techniques is T = 3 cm, by virtue of it being used in NOAA's instruments (Mof-

jeld, 1997), but some studies, such as Chierici et al. (2017) and Wang et al.

(2020b) consider also T = 2 cm. Given the analysis of background signals, we

can take as a hard low limit a threshold of T = 0.5 cm, for which Mofjeld's

algorithm, which performed the best, would trigger detections in multiple cases.

None of the techniques considered here trigger any detection for T ≥ 2.5 cm,

while for T = 2 cm we get false detection only with TDA in only one of the cases.

Based on previous considerations, this may suggest that detection threshold

should be chosen depending on tidal range, whenever a harmonic tidal model is

used. At last, we note that the new FIF-based method gives no false detection

even for T = 1.5 cm and would trigger a single false detection in case A for

T = 1 cm. Obviously, the choice of the optimal threshold depends not only on

false detection in absence of tsunamis, but also on the behaviour in presence of

real events. Thus, we address the discussion in the next chapter.

4.5 Conclusions

In this chapter, the four tsunami detection methods have been tested on back-

ground signals, i.e. OBPG records when only tides and high frequency noise are

present. In order to assess the stability of the �ndings, the �ve di�erent time

series have been chosen from di�erent geographical areas and time periods, all

taken from the Unassessed Ocean Bottom Pressure data collected by NOAA.

The main �ndings of this analysis are in the spectral and amplitude prop-

erties of the detection curve of each technique. In general, Mofjeld's algorithm

produces the detection curves closer to zero, in terms of maximum variability,

spectral amplitudes and standard deviation. These metrics are only slightly

higher for the FIF-based methods. For these techniques, we can consider a

2 cm as a candidate threshold to use to identify anomalous oscillations in the

detection curves. The threshold may be brought down to 1.5 cm for the FIF-

based method and 1 cm for Mofjeld's algorithm, according to the presented tests.

More rigorous criteria to choose a detection threshold will be discussed in the

following chapter.
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Both TDA and EOF detiding show much more pronounced oscillations, as

evident from their Fourier spectra. Since the observed spectral peaks have peri-

ods that can be related to tidal periods, we can conclude that these techniques

perform worse in terms of long term oscillation removal. However, the detection

curves have amplitude almost always within 2 cm, which allows to use them for

tsunami detection in an e�ective way.

At last, TDA is the only technique which presents detection curves with a

signi�cantly asymmetric amplitude distribution. This aspect, which is related

to the di�erence between measured tides and computed tidal coe�cients, may

render the technique more or less e�ective depending on the polarity of the

tsunami wave.

Appendix - Plots

In this appendix, plots for the background signals analysed and referenced in

this chapter are presented. For each case we present

� the raw signal as measured by the sensor;

� the detection curves for each of the four techniques;

� the modulus of the Fast Fourier Transform of each detection curve;

� the histogram of amplitudes for each detection curve.

Each technique is mentioned by a shortened name or acronym. In particu-

lar, Mofjeld's algorithm is referred to as DART, detiding with Empirical Mode

Decomposition as EOF, Tsunami Detection Algorithm as TDA and the new

FIF-based technique as simply FIF.
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Figure 4.3: Raw data relative to case A in background analysis. Data from
DART 46414, between 01 /08/2019 and 31/08/2019.

Figure 4.4: Absolute values of the FFT for detection curves obtained for back-
ground case A. DART refers to Mofjeld's algorithm.
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Figure 4.5: Detection curves for each technique for background case A. DART
refers to Mofjeld's algorithm.
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Figure 4.6: Histograms of the detection curves for each technique for background
case A. DART refers to Mofjeld's algorithm.
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Figure 4.7: Raw data relative to case B in background analysis. Data from
DART 52402, between 01/06/2016 and 30/06/2016.

Figure 4.8: Absolute values of the FFT for detection curves obtained for back-
ground case B. DART refers to Mofjeld's algorithm.
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Figure 4.9: Detection curves for each technique for background case B. DART
refers to Mofjeld's algorithm.
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Figure 4.10: Histograms of the detection curves for each technique for back-
ground case B. DART refers to Mofjeld's algorithm.
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Figure 4.11: Raw data relative to case C in background analysis. Data from
DART 32413, between 01/01/2019 and 31/01/2019.

Figure 4.12: Absolute values of the FFT for detection curves obtained for back-
ground case C. DART refers to Mofjeld's algorithm.
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Figure 4.13: Detection curves for each technique for background case C. DART
refers to Mofjeld's algorithm.
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Figure 4.14: Histograms of the detection curves for each technique for back-
ground case C. DART refers to Mofjeld's algorithm.
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Figure 4.15: Raw data relative to case D in background analysis. Data from
DART 51407, between 15/04/2022 and 14/05/2022.

Figure 4.16: Absolute values of the FFT for detection curves obtained for back-
ground case D. DART refers to Mofjeld's algorithm.
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Figure 4.17: Detection curves for each technique for background case D. DART
refers to Mofjeld's algorithm.
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Figure 4.18: Histograms of the detection curves for each technique for back-
ground case D. DART refers to Mofjeld's algorithm.
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Figure 4.19: Raw data relative to case E in background analysis. Data from
DART 21413, between 01/06/2021 and 30/06/2021.

Figure 4.20: Absolute values of the FFT for detection curves obtained for back-
ground case E. DART refers to Mofjeld's algorithm.
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Figure 4.21: Detection curves for each technique for background case E. DART
refers to Mofjeld's algorithm.
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Figure 4.22: Histograms of the detection curves for each technique for back-
ground case E. DART refers to Mofjeld's algorithm.



Chapter 5

Detection tests on tsunami

signals

In this chapter, we test the four detection techniques against signals recorded

from DART®OBPGs during past tsunami events. The dataset is built in

such a way to account for the variability that can be observed in real-time

tsunami monitoring. In fact, records di�er for the characteristics of the tsunami

wave, due to factors like the polarity of the leading wave, dispersion e�ects and

directivity in the propagation, presence of seismic shaking, which may overlap

with the tsunami signal, di�erent tidal and noise regimes, and even absence

of any transient signal for far away instruments and/or weak tsunamis. The

number of tsunami, earthquake and false detections are computed as functions

of a variable detection threshold, whose impact on each technique's detection

capability is shown and commented. Then, we check how detection curves

relative to the FIF-based detection method reproduce the tsunami waveforms,

in order to assess the possibility of characterizing period and amplitude in real

time. Lastly, we want to note that the general procedure for detection testing

presented here can be applied to any other tsunami detection method, provided

enough observations are available.

Many of the detection tests presented in the literature have been limited in

scope and have been applied to a very limited number of real tsunami records,

such as in the works by Chierici et al. (2017), Di Risio and Beltrami (2014),

Lee et al. (2016), Tolkova (2010), and Wang et al. (2020b), where no more

than three experimental tsunami records have been used. Among more compre-

hensive tests, we can �nd the works by Bressan and Tinti (2011), where data

77
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from seventeen events recorded by a single instrument (Adak Island coastal tide

gauge) is used, Bressan and Tinti (2012), who analyzed 123 coastal tide gauge

records relative to a single event (11 March 2011 Tohoku-Oki tsunami), and

Bressan et al. (2013) and Lee et al. (2016), where simulated tsunami signals

are used. The testing strategy with the highest statistical signi�cance is prob-

ably the Montecarlo procedure presented by Chierici et al. (2017). However,

the waves used are simple sinusoids superimposed over background data, since

the number of waves needed is too high to use both simulated and real tsunami

signals. The methodology proposed here takes into account variability in instru-

ment location, background conditions and tsunami waveforms on a completely

data-driven basis, without the need for simpli�ed or simulated waveforms. While

we recognize that some detection methods needs calibration for each instrument

(e.g. Bressan and Tinti, 2011), and some may be appropriate for instruments

where observations are limited (e.g. Di Risio and Beltrami, 2014), the detection

methods proposed here are suitable for a completely data-driven instrument-

independent calibration. For readability reasons, plots relative to section 5.3

are moved in a dedicated appendix at the end of this chapter.

5.1 Dataset creation

In order to test the tsunami detection technique exclusively on real data, our

starting point is a catalogue of past tsunami events. In the present work, we

start with the list of events used by Davies (2019). The catalogue is shown in

Tab. 5.1 and is made of tsunami events triggered by thrust earthquakes from

in the Global Centroid Moment Tensor catalogue (Ekström et al., 2012) that

occurred between 2006 and 2016, with depth less than 71 km and Mw > 7.7.

The reason behind this choice is that the distributions in magnitude and location

result in a diverse list of tsunami records from OBPGs, in terms of amplitude,

waveform and possible superposition with seismic waves. Another reason is that

Davies (2019) used post-processed waveforms for this events, available online1.

To build the signal catalogue, we proceded as follows:

1. we selected all of NOAA's DART® gauges active at the time of each of

the earthquakes in the Davies (2019) catalogue, whose data are available

at the website of the NOAA Center for Tsunami Research2;

1https://github.com/GeoscienceAustralia/ptha/blob/master/R/examples/austptha_

template/SOURCE_ZONES/TEMPLATE/TSUNAMI_EVENTS/plots/README.md.
2https://nctr.pmel.noaa.gov/Dart/.
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Event ID Source zone Date Mw Lon Lat

KT1 Kermadec-Tonga 03/05/2006 15:26:40 8.0 -174.12 -20.19
KJ1 Kurils-Japan 15/11/2006 11:14:17 8.3 153.29 46.57
So1 Solomon Islands 01/04/2007 20:39:56 8.1 157.04 -8.46
SA1 South-America 15/08/2007 23:40:57 8.0 -76.60 -13.39
Su1 Sunda 12/09/2007 11:10:26 8.5 101.37 -4.44
SA2 South-America 14/11/2007 15:40:50 7.8 -69.89 -22.25
Pu1 Puysegur 15/07/2009 09:22:29 7.8 166.56 -45.76
KT2 Kermadec-Tonga 29/09/2009 17:48:11 8.1 -172.10 -15.49
NH1 New-Hebrides 07/10/2009 22:18:51 7.8 166.38 -12.52
SA3 South-America 27/02/2010 06:34:15 8.8 -72.71 -35.85
Su2 Sunda 06/04/2010 22:15:01 7.8 97.05 2.38
Su3 Sunda 25/10/2010 14:42:22 7.9 100.08 -3.49
KJ2 Kurils-Japan 11/03/2011 05:46:23 9.1 142.37 38.32
NH2 New-Hebrides 06/02/2013 01:12:25 7.9 165.11 -10.80
SA4 South-America 01/04/2014 23:46:47 8.2 -70.77 -19.61
SA5 South-America 16/09/2015 22:54:32 8.3 -71.67 -31.57
SA6 South-America 16/04/2016 23:58:36 7.8 -79.93 0.35
So2 Solomon Islands 08/12/2016 17:38:46 7.8 161.32 -10.68

Table 5.1: Catalogue of tsunamigenic earthquakes from Davies (2019), used to
build a dataset of tsunami signals for detection testing.

Figure 5.1: Map of the events in Davies' catalogue (Davies, 2019). The nomen-
clature is the same used by Davies (2019) and it is explained in Tab. 5.1.
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2. from each DART we extracted data a variable time before the event (we

will comment futher on this later) up to 24 h after origin time;

3. we excluded signals with long segments of missing data and signals where

only the transmitted data are available;

4. we removed instrumental spikes and �lled the gaps by interpolation.

The reason behind point 3 is that we want to test the technique as if it was

applied by the instrument in real time, i.e. on data sampled at 15 s. On the

other hand, point 4 is motivated by the fact that spikes in DARTs are usually

caused by communication between the pressure gauge and the buoy and we

assume here that they would be taken care of separately. The amount of needed

data before the events depends on the technique. The data we are going to

analyse are the detection curves starting from origin time lasting for 1 day, so

we need the experimental signal to have enough data for each technique to work.

We recall that Mofjeld's algorithm needs 3 h 5min 15 s, or 741 samples at 15 s

sampling intervals, of preceding data; EOF detiding needs one lunar day, or

5940 samples; TDA needs as many points as the order of the FIR �lter, i.e.

4000, and FIF uses data segments that last 3 h, or 720 samples.

Since TDA assumes the tidal coe�cients to be known during operation,

the coe�cients themselves have been computed in advance for each case using

UTide as we did in the previous chapter for background signals. However, there

are cases where this presents some di�culties. The �rst case is when we have

instruments where not enough preceding data is available. This is the case for

newly installed instruments, but also for instruments that have been recently

resurfaced for maintainance and data recovery. In these cases, we did not apply

TDA. A second case is when enough preceding data are available for UTide to

give a convergent solution, but not enough to compute many tidal coe�cients.

In such cases TDA has been applied as described in Chapter 2, but we may �nd

poor results, since large tidal residuals are passed to the detection curve. The

problem is particularly evident in areas with large tidal oscillations, such as in

the Gulf of Alaska.

In the end, we obtain a set of 437 signals. Due to the various possible

features that each signal may present, determining if and what kind of detection

occurs for each detection curve is carried out by visual inspection, based on

the hypothesis that oscillations due to tsunamis and earthquakes are clearly

distinguishable from one another and from oscillations in the detection curves

not corresponding to an event. It is evident that a classi�cation carried out in

this way may be biased and contains a degree of arbitrariness. To alleviate the
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situation, the analysis is carried out for two datasets. The �rst is the full set of

437 signals, while the second is composed by the 73 signals of our dataset for

which a post-processed waveform is available in Davies (2019), so that a clear

correspondence between detection curves and tsunami waves can be established.

We will refer to the entire dataset simply as full dataset and to the second as

restricted dataset.

5.2 Detection analysis

The �rst analysis we may carry out for the detection curves we just obtained

is to look at the distribution of some basic statistical measures. Since we have

seen in Chapter 4 that the amplitude of detection curves tend to follow bell-like

distributions, we may give a global description of the full dataset by checking the

distributions of signal averages and standard deviations. The signal average can

be interpreted as a measure of symmetry in the amplitude distribution of the

detection curves. As we can see from Fig. 5.2, the (absolute value of the) signal

mean for a given technique may vary up to an order of magnitude. It is evident

that the most asymmetric technique, i.e. the one that oscillates on average

further from zero is TDA, where absolute means of up to a few centimeters are

observed. As mentioned before, large residuals are to be expected whenever

data to compute tidal coe�cients are scarce. The relative ordering between

techniques tend to be stable along the data set, with TDA performing the

worst, followed by EOF detiding, followed by FIF-based detection and Mofjeld's

algorithm. This is in line with the properties about asymmetry we observed on

background signals in the previous chapter. As anticipated, TDA could not be

applied to 55 of the signals, for which tides could not be computed and for this

reason the curves for TDA in Fig. 5.2 are incomplete.

On the other hand, the standard deviation is an integral measure, so it is

more correlated to the signal waveform. In fact, it shows a dependence on the

event considered. If we look at weaker events, where most or all the signals

are background, the standard deviations follow the same ordering as for the

means, in accordance with what we observed in Chapter 4. If we look at bigger

events, such as KJ1, SA3 and KJ2 (Tab. 5.1), we note an increase of up to two

orders of magnitude and we can also observe that the techniques show better

agreement in terms of standard deviation. Details about how the waveshapes

are reproduced in the detection curves are omitted here and will be discussed

in the next section.

To quantify detection rates of the techniques, we de�ne
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Figure 5.2: Statistical indicators for 24 h long signals relative to the catalogue
in Tab. 5.1. In the upper and lower plot, the absolute value of the signal mean
value and the signal standard deviation are shown, respectively. Note that the
TDA curve is incomplete due to the unavailability of data to compute tides in
55 signals.

� N : total number of signals in the dataset;

� nF : number of signals with at least one false detection, i.e. at least one

detection reducible neither to the tsunami wavetrain nor to earthquake

shaking;

� nE : number of signals with no false detections and at least one earthquake

detection;

� nT : number of signals with no false detections and at least one tsunami

detection.

Furthermore, we de�ne two further quantities, which we will call detection scores

as

θ1 =
nT − nF

N
(5.1)

and

θ2 =
nT − nE − nF

N
(5.2)

These detection scores are presented as metrics to measure the performance in

some speci�c applications and we can choose which metric needs to be opti-

mized based on the approach we want to apply to the detection network. One
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possible approach can consist of a detection algorithm which gives as few false

detections as possible, in order to reduce false alarms as much as possible. In

this case, we would like a detection methods that minimizes nF /N . However,

this may lead to a too conservative algorithm. For this reason, we may de-

cide to maximize θ1 instead. In fact, this detection score measures the rate of

tsunami detections, while also penalizing false detections. As already pointed

out in previous chapters, the overlap of seismic shaking and tsunami oscillations

may cause di�culties in the characterization of wave characteristics, especially

if the instrument is placed close to seismogenic areas. So, we may want to also

penalize the possibility of detecting earthquakes, in which case we may choose

a detection algorithm that maximizes θ2.

To optimize the techniques, we computed nF /N , nE/N , nT /N , θ1 and θ2 for

each techniques for detection thresholds T varying from a minimum T = 1 cm

to a maximum of T = 4 cm with a step of T = 0.5 cm. The choice of the min-

imum is due to the fact that, T = 0.5 cm would result in false detections on

background signals using Mofjeld's algorithm, which gives the narrowest distri-

bution in amplitude in detection curves. On the other hand, the choice of the

maximum is motivated by the fact that choosing a too big T may lead to missing

potentially dangerous events. The detection rates for earthquake and tsunami

waves are shown in Fig. 5.3. The earthquake detection rates re�ect very well

the �ltering capabilities of the techniques. In fact, TDA and the FIF-based

method show much lower earthquake detection rates than EOF and Mofjeld's

algorithm, though they still detect some earthquakes for every detection thresh-

old. This is due to both the presence in the dataset of very large events, but

also the boundary condition e�ects described in Chapter 2. The general trend is

for the detection rate to descrease with T , i.e. the way to minimize earthquake

detection is to use bigger thresholds. EOF detiding is an exception to the trend,

showing reaching a maximum detection rate for T = 2 cm. Since we are counting

signals with earthquake detection but no false detection, this shows that EOF

is dominated by false detections for thresholds below 2 cm. The same happens

for EOF detiding but also for TDA in the case of the tsunami detection rate,

where false detections dominates over tsunami detections for thresholds below

1.5 cm for the full dataset and 2 cm for the restricted dataset. The FIF-based

method has a mixed behaviour: on the restricted dataset, nT /N reaches a max-

imum for 1.5 cm, while it decreases monotonically in the full dataset. The false

detection rates in Fig. 5.4 con�rms the strong role of false detections in the case

of TDA and EOF detiding. These two techniques show much larger false de-

tection rates for low T . However, EOF detiding reach an asymptotic behaviour
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Figure 5.3: Rates of earthquake and tsunami detections as functions of a varying
detection threshold in both the full and restricted datasets. Here, Mofjeld's
algorithm is indicated simply as DART.

Figure 5.4: False detection rates as functions of a varying detection threshold
for both the full and restricted datasets. Here, Mofjeld's algorithm is indicated
simply as DART.
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Figure 5.5: Detection score θ1, de�ned in eq. (5.1), as function of detection
threshold for both the full and restricted dataset. Here, Mofjeld's algorithm is
indicated simply as DART.

for T ≥ 2.5 cm, so we may interpret this as the optimal threshold to minimize

false detections. TDA also reaches an asymptote in the restricted dataset for

T ≥ 3.0 cm, but it does not reach an asymptote in the full dataset, due to

the higher number of signals with not enough data for precise tide prediction.

Mofjeld's algorithm and the FIF-based method show much better results. In

the full dataset, Mofjeld's algorithm show no false detections for T ≥ 2.5 cm,

while it shows none for any threshold in the restricted one. The FIF-based tech-

nique has a slightly worse performance for very low threshold and it converges

to zero false detections for T ≥ 2.5 cm in the full dataset and T ≥ 2.0 cm in

the restricted one. We also note that for T = 2.0 cm the method has the same

number of false detections (nF = 2) in the full dataset as Mofjeld's algorithm.

These are very promising results, due to the role as de facto standard tsunami

detection method that Mofjeld's algorithm has.

To �nd optimal thresholds, we may now look at the detection scores θ1 and

θ2. In the case of θ1, we have di�erent behaviour between the two datasets.

In the case of the restricted dataset, TDA, EOF detiding and the FIF-based

technique all have an optimal threshold, equal to 2 cm for the �rst two and to

1.5 cm for the third, while Mofjeld's algorithm has a monotonic behaviour. In

the full dataset, only EOF detiding has a maximum value at 2.0 cm, while the

other techniques all have a monotonic trend: Mofjeld's algorithm and the FIF-

based method decrease with the threshold, i.e. their performance gets better

with lower T , while TDA increases with T , showing the strong in�uence of

detection curves with large oscillations in the full dataset.

In the case of θ2, the FIF-based method shows a better performance than all
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Figure 5.6: Detection score θ2, de�ned in eq. (5.2), as function of detection
threshold for both the full and restricted dataset. Here, Mofjeld's algorithm is
indicated simply as DART.

three other tehcniques. In the case of EOF detiding and Mofjeld's algorithm, the

reason is found in the fact that θ2 penalizes earthquake detections and they do

not include any high frequency �ltering modules. They increase monotonically

in the full dataset, while they show a weakly concave trend in the restricted

dataset. As for previous metrics, EOF gets signi�cantly worse as soon as a

threhold smaller than 2 cm is considered. On the other hand, TDA continues to

su�er from the problem encountered previously: a number of signals with poor

tidal model, which cause θ2 to be monotonically increasing in the full dataset,

and a set of signals for which tides cannot be computed at all, from which we get

the o�set in the restricted dataset between it and the FIF-based method. The

FIF-based technique is the only one showing a consistent behaviour between the

two datasets. In both cases, the optimal value of θ2 is reached for T = 1.5 cm,

which can be interpreted as the optimal threshold to detect tsunamis while also

minimizing false or earthquake detections.

As we have done in chapter 4 for background signals, we can have try to

visualize the e�ect of data availability on TDA detection curves. To do this,

we can look at the relation between the maximum absolute amplitude of each

detection curve with the amount of previous data available for computing a tidal

model. For the maximum amplitude to be representative of the e�ects of tidal

residuals and not tsunami waves or earthquake oscillations, curves need to be

selected carefully. For this reason, we only keep TDA detection curves which do

not trigger a detection or which trigger a false detection. However, in this work

we label as false detection any detection curve where a detection not related to

tsunami waves or earthquake oscillations occurs, so we also need to eliminate
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Figure 5.7: Scatterplot of maximum absolute amplitude as a function of previous
data availability in months for TDA detection curves. The blue curve represent
the amplitude threshold T = 2 cm.

curves where large tsunami waves occur. To this aim, we can compare with

detection curves obtained with the FIF-based method. In fact, the FIF-based

method presents no detection curves with false detections and visible tsunami

waves for a detection threshold T = 2 cm. In the end, we select the detection

curves which

� trigger either a false or no detection with TDA;

� trigger no detection with the FIF-based method.

In Fig. 5.7, we plot the maximum absolute amplitude for TDA detection curves

in this subset as a function of the amount of data between the origin time and

the beginning of the deployment of the instrument. We note that for relatively

long data availability (approximately 6 or more months), not the full time series

has been used for tidal modeling and for each case we proceeded on a case by

case basis, to obtain the best model �tting tidal coe�cients. Nonetheless, for

shorter time series, where we used the full available data, the e�ects are more

evident. Fig. 5.7 shows a correlation between amplitude of detection curves

and data availability. In fact, we notice a general decrease of maximum abso-

lute amplitude with increasing data availability, though some outliers are still

present. The analysis shown here can thus be used to choose the optimal detec-

tion threshold for an instrumental network, following di�erent criteria according
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Figure 5.8: Raw data relative to event Pu1, DART 21415. Time is in minutes
since origin time. Note the jump discontinuity between t = 500min and t =
550min.

Figure 5.9: Raw data relative to event SA2, DART 44402. Time is in minutes
since origin time. Note the sharp change of gradient between t = 950min and
t = 1000min.
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to the needs of the speci�c network. In particular, we may choose a threshold

that minimize false detection at all cost, or one where we allow some false detec-

tions as long as we get improvements in detecting tsunamis. Mofjeld's algorithm

works as expected: it has great performance in reducing non tsunami and non

earthquake oscillations, resulting in very low false detection rates. However, if

it is desirable to �lter out seismic shaking, the technique performs worse than

others. EOF detiding has somewhat of a hard threshold in e�ciency around

2 cm, below which we get a sharp decrease. This is in line with the amplitude

of residuals we expect after removing tides with EOF basis. TDA is strongly

dependent on data quality before the segment of data under check and the ab-

sence, in some cases, or reduced length, in others, of data preceding the events

strongly in�uence the overall perfomance. The technique may very well bene�t

from a di�erent tide removal method.

Finally, we can also provide some considerations about optimal detection

thresholds for the implementation and application of the FIF-based method.

In particular, if we want to minimize the false detection rate, we propose T =

2 cm. For this value, the technique shows only 2 false detections. Upon further

investigation, the two signals that give false detection are from event Pu1, DART

21415, and event SA2, DART 21415, which show unexpected sharp gradients, as

shown in Fig. 5.8 and 5.9, respectively. In the detection curves in Fig. 5.10 and

5.11, we can see that such artifacts a�ect the detection curves of all techniques.

For Mofjeld's algorithm, this happens because these gradients are too steep to

be captured by the extrapolation. In other techniques, the problem is ampli�ed

by the e�ects that �ltering operations have on discontinuities and jumps. The

occurrence of such cases strongly suggests that, for operational purposes, any of

the techniques should be accompanied by jump and spike detection algorithms.

On the other hand, it also con�rms that the FIF-based technique has no false

detection on background signals for a threshold T = 2 cm, which we can consider

appropriate for operational contexts. A threshold T = 1.5 cm presents false

detection not caused by artifacts in the data, but it is shown to be the optimal

parameter in terms of the detection score θ1.
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Figure 5.10: Example of detection curves for event Pu1, DART 21415. The
amplitudes on the vertical axis are measured in centimeters. Here, Mofjeld's
algorithm is indicated simply as DART. TDA was not applied due to the un-
availability of preceding data to compute tidal coe�cients.
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Figure 5.11: Example of detection curves for event SA2, DART 44402. The
amplitudes on the vertical axis are measured in centimeters. Here, Mofjeld's
algorithm is indicated simply as DART.
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5.3 Tsunami characterization from detection curves

In the work by Beltrami (2011), the problem of real-time characterization of a

detected tsunami wave was presented and it was shown that Mofjeld's algorithm,

despite being very e�cient in detecting, it is not able to characterize amplitude

or period of the wave correctly. In fact, despite the detection curves showing

recognizable oscillations in correspondence of the tsunami, the two waveshapes

do not correspond for most of the tsunami period band. However, modern

tsunami early warning systems greatly bene�t from a correct estimation of wave

amplitude and period, or even from the full waveform. The abilities of the

techniques have already been addressed for a limited number of examples for

Mofjeld's algorithm (Beltrami, 2011), EOF detiding (Tolkova, 2009; Tolkova,

2010) and TDA (Chierici et al., 2017). Obviously, no such analysis has been

carried out for the FIF-based techniques. In general, the analysis has to be made

on a case by case basis, but there are some generalizable characteristics that we

are going to illustrate through selected examples from the analyzed dataset.

The characteristics that we want to investigate are

1. the behaviour of signals where no earthquake or tsunami is present;

2. if the oscillations in the detection curves reproduce correctly the tsunami

waveform;

3. if the seismic wave is �ltered and if it can be separated from the tsunami

waves.

While the �rst point has been discussed in detail in the analysis of background

signals (Chapter 4), an interesting behaviour is observed in the signals from

DARTs 46404 and 46407 during event Su3. In both cases, the raw data appear

to be much noisier than what is observed in background conditions. However,

no recognizable signs of neither seismic nor tsunami waves is observed. In the

detection curves in Fig. 5.12 and 5.13 obtained by Mofjeld's algorithm, this large

amplitude noise is quite evident. Of course, such noise causes higher amplitude

detection curves also for EOF detiding, which does not �lter high frequencies,

but also on TDA and the FIF-based technique, due to already discussed bound-

ary e�ects. The situation, probably due to oceanographic e�ects, would lower

the signal to noise ratio in presence of a tsunami, weakening the ability to detect

and characterize it. These are the only cases where Mofjeld's algorithm triggers

a false detection if a threshold T = 2 cm is adopted. These signals also exem-

plify the e�ect of long period residual oscillations that are observed in EOF and

TDA detection curves, which would trigger a detection in both cases. The TDA
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detection curve for DART 46404 shows the typical behaviour we have whenever

a low amount of tidal coe�cients is computed and the residual has an amplitude

of a few centimeters. We also note that these cases are the only false detections

produced by Mofjeld's algorithm for T = 2 cm.

The in�uence of these large tidal residuals on the detection of tsunamis is

shown in the next examples. In Fig. 5.14, detection curves for event KJ1, DART

46411 are shown. All techniques reproduce the tsunami wavetrain quite accu-

rately, except for Mofjeld's algorithm as expected, but show some unexpected

behaviour after a few hours. EOF's detection curve increases about 2 h after

the end of the tsunami wavetrain. For a threshold T ≤ 2 cm, that would trigger

a detection, this may lead to an overestimation of the tsunami duration and

possibly too conservative measures for risk management in coastal settlements.

A similar occurrence is observed for TDA a bit later.

Similarly, in the case of event NH2, DART 51425, the observed detections

for T = 2 cm are quite diverse between techniques. While the postprocessed

waveform reaches the threshold only at the peak of the �rst crest, Mofjeld's

algorithm, EOF detiding and TDA all show multiple detections. Mofjeld's al-

gorithm triggers a detection for the passage of Rayleigh waves and then, when

the tsunami passes, a detection is triggered for the �rst trough, but not for the

crest. In the case of EOF detiding, both the earthquake and �rst tsunami trough

are detected, though, due to a residual increasing trend, later oscillations also

exceed T . TDA and the FIF-based method both show signs of the earthquake

oscillations, but it is greatly �ltered out in both cases. While TDA triggers

a detection for the �rst trough, FIF produces the results we expect from the

postprocessed wave, i.e. a detection triggered for the �rst crest and nowhere

else.

A more extreme example of this is observed in Fig. 5.16, relative to the

same event (NH2), DART 52402. In this case, a detection is not expected

for thresholds T ≥ 2 cm. The FIF-based method is the only one giving the

expected result. The passage of the earthquake triggers a detection for Mofjeld's

algorithm and EOF detiding. Residual trends trigger detections during the

passage of the tsunami wavetrain: a later detection for EOF and an immediate

detection for TDA. A similar case is presented for event KT1, DART 51407,

shown in Fig. 5.17, where TDA is the only technique triggering a detection,

though the FIF-based method also over estimates the amplitude of the largest

minimum. Lastly, the example in Fig. 5.18, relative to event KT2, DART 32412,

shows good agreement between the tsunami waveform and detection curves in

all cases, although all techniques overestimate the largest trough and trigger a
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detection.

While all the aspects we just described can be easily dealt with by data

processing, we remind that the techniques presented here are supposed to be

automated and used in real time. Thus, a detection like the one in the TDA's

detection curve in Fig. 5.16, while corresponding to the tsunami, gives an over-

estimation of the wave amplitude, due to the fact that the long terms trend is

not clearly recognizable without successive data.

For larger events, the tsunami waveshape is better recognizable in the de-

tection curves. In Fig. 5.19, the general properties of the techniques are well

represented. Mofjeld's algorithm triggers at the correct time, but it deforms

the tsunami quite signi�cantly and it shows a way larger trough than what is

observed. The other techniques are in better agreement with the postprocessed

signal. EOF and TDA have a slight overestimation of the �rst trough, while

FIF's detection curve is much closer to the expected signal. In Fig. 5.20, another

characteristic is shown. While the tsunami waveform starts with a very slow

decay before the �rst crest, a typical sign of dispersive e�ects that we observe

a large distance from the source, all the detection techniques tend to under-

estimate this initial descent. Mofjeld's algorithm and the FIF-based method

eliminate it completely.

The �ltering abilities of TDA and FIF in case of seismic waves has already

been highlighted by the much lower earthquake detection rates and by examples

in Fig. 5.15, 5.16, 5.17, 5.19 and 5.20. We add two more examples, relative

to event KT2, DARTs 51425 and 51426, shown in Fig. 5.21 and 5.22: they

are recorded very close to the generating source, thus there is a signi�cant

overlap of Rayleigh waves and the tsunami waveshape. The technique may be

di�erentiated based on two considerations. The �rst is that the amplitude of

earthquake oscillations is reduced by an order of magnitude in TDA and FIF

with respect to Mofjeld's algorithm and EOF detiding.. The second is that

in the formers, the tsunami waveshape is easily recognizable in the detection

curve, while the seismic coda dominates the latters' curves. In a real time

monitoring context, an easily recognizable tsunami waveshape is fundamental

to issue precise warning and the detection curves produced by TDA and the

FIF-based method are much more interpretable by an expert than the others,

unless additional processing operations are performed. Thus, even in the case

where a detection is triggered by an earthquake, the ability of a technique to

�lter high frequency oscillation is of great importance for the characterization

of amplitude and period of the travelling tsunami.

Despite the numerous advantages o�ered by the FIF-based detection method,
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there are some instances in which the detection curve does not represent tsunami

wave accurately and they present sharp discontinuities. This is a manifestation

of the non consistency of detection curves, discussed in previous chapters, caused

by the fact that tidal �tting and the IMFs do not vary continuously from one

time step to the next. However, an alternative way to estimate the tsunami

waveform can be found in the decomposition steps. In particular, the detec-

tion method includes, as one of the steps, the extraction of the full tsunami

component for the 3 h segment of data, which can therefore be used as a repre-

sentation of the tsunami wave�eld in place of the detection curve. One possible

issue with this approach would be that it involves the transmission of 3 h of

data, i.e. 720 measurements, instead of the single one used for detection. On

the other hand, the estimation of the tsunami amplitude need not be carried

out at each time step, so the extraction of the full tsunami components can be

performed at �xed time after detection or on demand. In fact, this is what is

needed in many forecasting methods, such as real time source inversion (Percival

et al., 2011),probabilistic forecasting (Selva et al., 2021b) or data assimilation

procedures (Wang et al., 2021).

In Fig. 5.23, 5.24 and 5.25, three examples are shown. In all cases, the

detection curve is compared to the postprocessed waveform (Davies, 2019) and

with the tsunami components extracted at time of detection t0, at t0 + 1h

and t0 + 2h. We can see that the detection curves overestimate the maximum

amplitude oscillations, i.e. the �rst crest in the case for event SA3, DART 46403,

and the �rst trough for event KJ2, DART 52405 and event SA3, DART 21413,

since the discontinuities appear to be related to strong gradient parts of the

tsunami wave. On the other hand, the tsunami components seems to reproduce

quite well the corresponding portion of the postprocessed waveform. Not only

these components do not present any jump discontinuity as the detection curve

does, but they also capture the initial descent of the wave�eld that precedes

the �rst crest in Fig. 5.23 and 5.24, which the detection curve was not able

to reproduce (see previous examples). We point out at last, that using a tide

removal method di�erent from polynomial �tting in the FIF-based detection

may alleviate the problem by producing tidal components that vary with more

continuity between successive time steps. However, the computational e�ciency

of polynomial �tting makes it still a convenient choice.
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5.4 Conclusions

In this chapter, the application of the four tsunami detection methods to pres-

sure records from past tsunami events is presented and discussed. One �rst

contribution consists in the methodology for calibrating the techniques, i.e. for

choosing the detection threshold. This calibration methodology starts from

building a catalog of events of di�erent amplitude and origin location for which

instrumental records are available. The records from every instrument active

during the generation and propagation of the tsunami are used to build a test-

ing dataset. Then, each detection technique is applied to the entire dataset

with di�erent detection thresholds. At last the optimal threshold is selected

according to a chosen criterion. Since it uses events with di�erent locations and

recorded by di�erent instruments, we are able to build large and comprehensive

datasets made entirely of real tsunami records without the need of simulated

tsunami waves. This is particularly useful for detection techniques which do not

require an instrument speci�c calibration, such as the ones used in this work.

The event catalog used in the chapter consists of the tsunami records from

NOAA's Unassassed Ocean Bottom Pressure data for the seismogenic tsunamis

used by Davies (2019). The events cover the subduction zones around the Paci�c

Ocean and have been generated by earthquakes with magnitude between 7.7

and 9.1. The resulting dataset includes more than 400 records, which di�er in

background conditions, presence of seismic oscillations, tsunami amplitude and

instrument location.

The criteria to choose the optimal detection threshold proposed in the chap-

ter are based on optimizing simple metrics, that we called detection scores, that

takes into account the number of tsunami, earthquake and false detections.

The techniques behaviour with varying detection thresholds di�er quite sub-

stantially from each other. TDA is the technique that most critically depends

on the quantity and quality of previous data available. In fact, it shows false

detection rates consistently higher than other techniques, due to the presence

of signals with large tidal residuals. In particular it is the only technique where

the di�erence between tsunami and false detections increases monotonically with

the detection threshold, i.e. there is no threshold that optimizes the detection

score θ1. In the case of EOF detiding, we suggest that no threshold below 2.5 cm

should be chosen, given the exponential increase in false detections below that.

This is consistent with the properties of the technique presented in the original

works by Tolkova (2010, 2009).

False detection rates are essentially related to the amplitude of residuals,
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as we studied in the previous chapter. As expected, Mofjeld's algorithm and

the FIF-based method have the lowest false detection rates, in line with the

amplitude of residuals observed for background signals in Chapter 4.

A big di�erence between the technique is their ability to detect or �lter out

seismic shaking. As expected, the techniques with no high frequencies �ltering

capabilities, Mofjeld's algorithm and EOF detiding, show very large earthquake

detection rates. If minimization of seismic shaking is a criterion of interest, this

techniques should be avoided.

In general, the FIF-based detection methods performs quite well according

to many di�erent metrics. It �lters out seismic shaking as e�ciently as TDA,

but it shows much smaller false detection rates. In fact, no false detection is

triggered for thresholds equal or bigger than 2.5 cm and for a threshold of 2.0 cm

the only false detections are related to discontinuities in the records. Thus, if

we want to maximize tsunami detections while minimizing earthquake and false

detections, FIF-based detection seems to be the best technique among the ones

tested in this work.

At last, the technique also shows good abilities in accurately resproducing the

tsunami waveshape, making the technique suitable for integration with tsunami

data assimilation technologies. For a limited number of signals tested, the de-

tection curves produced by FIF-based detection do not accurately represent the

tsunami waveshape. In those cases, we propose that the entire tsunami compo-

nent at �xed time after detection can be used for the determination of period

and amplitude of the tsunami waves, or for applications in data assimilation

systems.

Appendix - Plots

In the following, the plots relative to the previous sections are given. In Fig. 5.12

to 5.22, we show detection curves for exemplary signals from the analysed

dataset. In each case, horizontal lines y = ±2 cm are given as reference for de-

tection analysis. Wherever available, the postprocessed waveform from Davies

(2019) is plotted, as well. Fig. 5.23 to 5.25 have examples of full tsunami com-

ponents extracted during the propagation of the tsunami using the FIF-based

techniques and are compared with both the detection curves and the postpro-

cessed waveforms.
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Figure 5.12: Example of detection curves for event Su3, DART 46404. The
amplitudes on the vertical axis are measured in centimeters. Here, Mofjeld's al-
gorithm is indicated simply as DART. Data availability for TDA tidal modelling
5.5 months.
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Figure 5.13: Example of detection curves for event Su3, DART 46404. The
amplitudes on the vertical axis are measured in centimeters. Here, Mofjeld's al-
gorithm is indicated simply as DART. Data availability for TDA tidal modelling
1 year 4 months.
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Figure 5.14: Example of detection curves for event KJ1, DART 46411. The
amplitudes on the vertical axis are measured in centimeters. Here, Mofjeld's
algorithm is indicated simply as DART. The orange curve is the postprocessed
waveform from Davies (2019). Data availability for TDA tidal modelling 1 year
1 month.
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Figure 5.15: Example of detection curves for event NH2, DART 51425. The
amplitudes on the vertical axis are measured in centimeters. Here, Mofjeld's
algorithm is indicated simply as DART. The orange curve is the postprocessed
waveform from Davies (2019). Data availability for TDA tidal modelling 1 year
5 months.



CHAPTER 5. DETECTION TESTS ON TSUNAMI SIGNALS 102

Figure 5.16: Example of detection curves for event NH2, DART 52402. The
amplitudes on the vertical axis are measured in centimeters. Here, Mofjeld's
algorithm is indicated simply as DART. The orange curve is the postprocessed
waveform from Davies (2019). Data availability for TDA tidal modelling 6
months.



CHAPTER 5. DETECTION TESTS ON TSUNAMI SIGNALS 103

Figure 5.17: Example of detection curves for event KT1, DART 51407. The
amplitudes on the vertical axis are measured in centimeters. Here, Mofjeld's
algorithm is indicated simply as DART. The orange curve is the postprocessed
waveform from Davies (2019). Data availability for TDA tidal modelling 1 year
1 month.
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Figure 5.18: Example of detection curves for event KT2, DART 32412. The
amplitudes on the vertical axis are measured in centimeters. Here, Mofjeld's
algorithm is indicated simply as DART. The orange curve is the postprocessed
waveform from Davies (2019). Data availability for TDA tidal modelling 1 year
10 months.
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Figure 5.19: Example of detection curves for event KJ2, DART 21414. The
amplitudes on the vertical axis are measured in centimeters. Here, Mofjeld's
algorithm is indicated simply as DART. The orange curve is the postprocessed
waveform from Davies (2019). Data availability for TDA tidal modelling 9
months.
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Figure 5.20: Example of detection curves for event KJ2, DART 46402. The
amplitudes on the vertical axis are measured in centimeters. Here, Mofjeld's
algorithm is indicated simply as DART. The orange curve is the postprocessed
waveform from Davies (2019). Data availability for TDA tidal modelling 9.5
months.
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Figure 5.21: Example of detection curves for event KT2, DART 51425. The
amplitudes on the vertical axis are measured in centimeters. Here, Mofjeld's
algorithm is indicated simply as DART. The orange curve is the postprocessed
waveform from Davies (2019). Data availability for TDA tidal modelling 1 year
7 months.
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Figure 5.22: Example of detection curves for event KT2, DART 51426. The
amplitudes on the vertical axis are measured in centimeters. Here, Mofjeld's
algorithm is indicated simply as DART. The orange curve is the postprocessed
waveform from Davies (2019). Data availability for TDA tidal modelling 1 year
7 months.
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Figure 5.23: Comparison between tsunami components at di�erent times, de-
tection curve, obtained by the FIF-based method, and the tsunami waveform
for event KJ2, DART 52405. The black curve indicated as �tsunami� is the
post-processed waveform. The vertical line indicates the detection time from
Davies (2019). t0 = 3h 43min 30 s after origin time. The red dashed horizontal
lines represent the T = 2 cm detection threshold. The coloured lines represent
the tsunami components obtained at t0, t0 + 1h and t0 + 2h.

Figure 5.24: Comparison between tsunami components at di�erent times, de-
tection curve, obtained by the FIF-based method, and the tsunami waveform
for event SA3, DART 46403. The black curve indicated as �tsunami� is the post-
processed waveform. The vertical line indicates the detection time from Davies
(2019). The vertical line indicates the detection time t0 = 17h 31min 45 s after
origin time. The red dashed horizontal lines represent the T = 2 cm detection
threshold. The coloured lines represent the tsunami components obtained at t0,
t0 + 1h and t0 + 2h



CHAPTER 5. DETECTION TESTS ON TSUNAMI SIGNALS 110

Figure 5.25: Comparison between tsunami components at di�erent times, de-
tection curve, obtained by the FIF-based method, and the tsunami waveform
for event SA3, DART 21413. The vertical line indicates the detection time
t0 = 21h 15min after origin time. The red dashed horizontal lines represent
the T = 2 cm detection threshold. The coloured lines represent the tsunami
components obtained at t0, t0 + 1h and t0 + 2h



Conclusions

In this thesis, we presented four tsunami detection methods, namely Mofjeld's

algorithm, tide removal with Empirical Orthogonal Functions, the Tsunami De-

tection Algorithm (TDA) and a newly developed technique based on the Fast It-

erative Filtering (FIF) and the IMFogram algorithms. The latter are data driven

signal analysis techniques that have have been applied to tsunami signals here

for the �rst time. In particular, the FIF technique allows to decompose a signal

into elementary oscillatory components, called Intrinsic Mode Functions (IMFs),

from which the IMFogram algorithm can compute a time-frequency represen-

tation. By choosing IMFs based on their frequency content computed with the

IMFogram, the two techniques combined can act as bandpass �lters. We applied

the techniques to selected examples, in particular a signal from the 02/05/2020

Crete tsunami and multiple records from the 06/02/2023 small tsunami o� the

coasts of Turkey. It is shown how the techniques give results consistent with

classical techniques, such as Fourier analysis and wavelet transforms, but with

some added bene�ts, among which:

� they are completely data driven;

� they can perform multiple operations, such as denoising, tide removal

and bandpass �ltering, all at once; the same operations are carried out

separately with di�erent ad hoc techniques in many studies;

� their use as bandpass �lters is very robust with respect to the choice of

corner frequencies, since each IMF is contained within a narrow frequency

window.

We conclude that FIF and IMFogram can be very valuable and powerful tools

in the context of tsunami data analysis.

The detection techniques have been tested against two datasets built from

data from NOAA's Deep-ocean Assessment and Reporting (DART). The �rst

111
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dataset is made of several month-long time series that include only tides and

noise, to analyse each technique's response in absence of transient oscillations.

It is shown that Mofjeld's algorithm gives detection curves with the narrowest

distribution around zero and the FIF-based detection gives close results. The

other techniques need higher amplitude detection thresholds to have zero false

detection on the background signals.

The second dataset includes the day-long signals acquired during past tsunamis

from all instruments active at the time of their occurrence. The list of events

is the tsunami catalogue used by Davies (2019) and includes events di�ering in

magnitude and location. Using the signals from all the instruments active at

the time of occurrence of each event allowed us to build a diverse dataset that

includes background signals and records with seismic shaking and/or tsunami

oscillations. The detection capabilities have been quanti�ed through detection

scores that takes into account tsunami detections, earthquake detections and

false detections; the scores have been computed for di�erent amplitude detec-

tion thresholds. Criteria about the choice of an optimal detection threshold for

each technique have been discussed and presented.

Mofjeld's algorithm and the FIF-based method have the lowest optimal de-

tection threholds. In particular, for the latter we propose the use of a threshold

T = 1.5 cm to optimize the detection of tsunami waves, while penalizing earth-

quake and false detections. EOF detiding also allows for an optimal threshold

choice, though higher than the one for FIF, since its detection curves consis-

tently show tide residual amplitude of up to 2 cm. TDA gives very good results

on many signals, but shows di�culties in network wide applications. In fact,

its performance is highly dependent on the quality of the precomputed set of

tidal coe�cients. With the methodology presented in this work, we are not able

to �nd an optimal detection threshold for TDA and future applications of the

technique should consider using a di�erent tide removal method.

The ability of the FIF-based method to characterize correctly the tsunami

waveshape has been highlighted and discussed. In particular, it has been shown

that the detection curves reproduce the tsunami waveshape accurately most of

the time and the in�uence of seismic shaking is greatly reduced. In particular,

it has been shown that, even in cases where the earthquake triggers a detection,

seismic waves are greatly reduced in amplitude with respect to the original

signal and its e�ects on the tsunami waveshape are also greatly reduced. In

the few cases where the tsunami is not accurately reproduced in the detection

curves, it is shown that the tsunami component extracted as a byproduct of the

detection method can be used to characterize amplitude and period of the wave.
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The transmission of the full tsunami component can be used once a detection

is triggered in the context of early warning.

The newly proposed FIF-based detection method is thus able to detect

tsunamis in real time from continuously recording OBPGs, while reducing the

in�uence of noise, tides and seismic shaking more than the other analyzed tech-

niques. Applications of the techniques to di�erent datasets is foreseen, especially

in view of the planned installations of OBPGs in the Ionian Sea by the italian

Tsunami Alert Center (CAT-INGV, Amato et al., 2021). Furthermore, there

are no theoretical aspects of the techniques that limit the applications to OBPG

only. Thus, testing on other type of instruments, such as coastal tide gauges,

is also planned. Other possible future applications regard site-speci�c tsunami

alert system, such as the one installed at the island of Stromboli (Selva et al.,

2021a) or possibly to the recent SMART cable installed in the Mediterranean

(Marinaro et al., 2024). At last, we should note that, despite the very good re-

sults obtained with the FIF-based method, we should be aware of its drawbacks,

namely the computational costs and the possibility of deforming tsunami wave-

forms, discussed at the end of Chapter 5. For this second point, the solution

could probably be found in equivalent algorithm with less errors introduced at

the boundary during the decomposition, which is one of the lines of research we

plan to pursuit.
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