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Abstract

In the dynamic landscape of modern technology, artificial intelligence (AI) is rapidly
advancing, enabling increasingly complex capabilities in tiny flying robots. In the
most pioneering scenario, tiny AI-driven unmanned aerial vehicles (UAVs) are en-
visioned to achieve the same level of intelligence that is akin to biological systems,
such as insects. Bees, for example, highlight the capability to pursue multiple goals
concurrently and with full autonomy. The development of such sophisticated skills
in miniaturized UAVs holds the potential for their effective utilization across a wide
range of applications, which can significantly impact many aspects of our lives.

However, the miniaturization of UAVs carries several challenges. Nano-drones,
approximately 10 cm in diameter, are at the developmental forefront. Yet, the con-
current execution of multiple intelligence tasks on nano-UAVs is still out of reach,
as their limited size and payload only allow them to embed ultra-low-power (ULP)
processors with stringent computational and memory constraints. This limitation
sets nano-UAVs apart from the multi-tasking capabilities that biological systems
inherently have.

This thesis aims to narrow the intelligence gap between tiny flying robots
and insects. To achieve such an ambitious goal, this thesis enables the
concurrent execution of multiple real-time AI-based perception tasks on
autonomous nano-UAVs.

First, we present methodologies and software tools for automating and optimizing
convolutional neural networks (CNNs) deployment on nano-UAVs while complying
with their constrained ULP processors. As an example, we apply our methodology
to a CNN for visual autonomous navigation, demonstrating the robustness of our
pipeline in the context of an international drone competition.

Second, we thoroughly study how to minimize the CNN workload on nano-drones.
With our methodology, we first study whether there are inactive neurons inside
the targeted CNN, and then we introduce architecture modifications to shrink the
network. We apply this methodology to a SoA visual-based autonomous navigation
CNN for nano-drones, obtaining a CNN that is 50× smaller and 8.5× faster than



the baseline with no compromise on the performance metrics.

Third, leveraging the computational resources freed thanks to our CNN shrinking
methodology, we enable nano-UAVs to perform multiple AI tasks in real-time by
deploying a CNN for object detection in addition to the visual-based navigation
one.

Combining our techniques for CNN optimization and automated deployment, ulti-
mately integrating two CNNs on a ULP processor, we demonstrate that it is pos-
sible to overcome both the computational and memory burden imposed by ULP
MCUs, allowing the simultaneous execution of multiple AI-based perception tasks
on nano-UAVs. This milestone takes tiny flying robots one step closer to the high-
level intelligence of tiny biological systems and their multi-tasking capabilities.
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Chapter 1

Introduction

In the last decade, the ever-growing field of artificial intelligence (AI) has signif-
icantly advanced the development of smart robots, enabling them to accomplish
increasingly complex and sophisticated tasks. Unmanned aerial vehicles (UAVs),
namely aircraft operating without a human onboard, earned particular attention
for commercial and research purposes, as the ability to fly makes them stand out for
their versatility and agility. Nowadays, UAVs bring great aid when employed in a
plethora of use cases [3], such as the exploration of hazardous environments [4, 5, 6],
inspection of industrial facilities [7], monitoring and surveillance [8], search and res-
cue missions [9], precision agriculture [10], and even entertainment [11, 12]. UAVs,
and robots more in general, can operate with various degrees of autonomy: remotely
controlled by a human operator, automatically guided by a remote workstation, or
in complete autonomy by relying solely on onboard computation and sensors. This
thesis focuses on fully autonomous UAVs, meaning that the aircraft independently
execute missions without relying on human intervention or any other external re-
sources [13], such as power-unconstrained remote computers or localization systems.
Operating with such a level of autonomy brings several advantages [14]: it improves
reliability, as there is no risk that the noise on the transmission channel or network-
dependent latency affects the transmitted data; it increases security, being immune
to denial-of-service attacks on the wireless connections and preventing eavesdrop-
ping on the transmitted data; it allows for power saving, as no power consumption
is dedicated to high-bandwidth radio transmissions.

Consequently, enhancing the onboard intelligence of UAVs has become crucial, as
it empowers these drones to handle their missions autonomously. UAVs can be
categorized based on their size and weight, as detailed in Table 1.1. On the one
hand, the larger drones, namely standard and micro-sized UAVs, already demon-
strate remarkable onboard intelligence, even when operating autonomously. Their
large size (greater than 25cm) and weight (greater than 0.5kg) provide sufficient
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Introduction

payload capacity to carry powerful processors (i.e., CPUs, GPUs), like the Nvidia
AGX Orin [15] (having a peak throughput of 200TOps/s at 40W), and sophis-
ticated sensors [16] (i.e., high-resolution cameras, LIDARs) aboard. This enables
them to perform complex tasks by running multiple artificial intelligence algorithms
concurrently within real-time constraints. These UAVs have advanced to a level
where their multi-tasking AI capabilities enabled them to exceed human skills: an
autonomous drone set a significant milestone in the evolution of UAV intelligence
by outperforming the human world champion in a drone racing competition [17].

Table 1.1. UAVs taxonomy by vehicle class-size [2].

Vehicle class ⊘ : Weight [cm:kg] Power [W] Onboard Device

standard-size ∼ 50 : ≥ 1 ≥ 100 Desktop

micro-size ∼ 25 : ∼ 0.5 ∼ 50 Embedded

nano-size ∼ 10 : ∼ 0.01 ∼ 5 MCU

However, in the most visionary scenario, we would like to bring the same level
of sophisticated skills into tiny, insect-scale UAVs. The miniaturization of UAVs
brings several advantages, enabling applications that are out of reach for their larger
counterparts. This includes the ability to navigate in narrow spaces [18], and their
light weight ensures safe operation in close-proximity with humans [19, 7], e.g., in
indoor settings. Additionally, the cost-effectiveness of producing small and simple
electronic components stands out as an important factor for widespread adoption.
With these characteristics, tiny flying robots have the potential to become pervasive
in everyday life, especially within the ever-growing Internet of Things (IoT) world,
characterized by a vast network of wirelessly interconnected smart devices. Tiny
UAVs are well-suited to join this network of interconnected devices by becoming the
ultimate IoT node, which autonomously navigates environments while simultane-
ously sensing, analyzing, and interacting with their surroundings [20]. Within the
IoT world, tiny UAVs can find applications in a plethora of scenarios: in household
environments, e.g., acting as mobile surveillance cameras [21], industrial facilities,
e.g., helping in warehouse logistics [7] or inspecting narrow tunnels/pipes [22], and
in search and rescue missions, where collapsed buildings prevent the use of larger
UAVs [23].

Nano-sized drones [18], with a diameter of approximately 10cm and weighing a few
tens of grams, represent cutting-edge research in achieving this ambitious goal.
Running AI algorithms on such constrained platforms presents numerous chal-
lenges: their compact size and limited payload restrict the size of their batteries
and printed circuit boards, allowing them to carry only compact processing devices
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like MicroController Units (MCUs) and low-power sensors [24]. Their total compu-
tational power budget is typically a few hundreds of mW. Despite these limitations,
these tiny drones have already reached significant milestones in their autonomous
navigation capabilities; they have successfully demonstrated the ability to run sin-
gle convolutional neural networks (CNNs) entirely onboard, as highlighted in works
like [18] and [19]. Yet, the defining factor that distinguishes the autonomy of nano-
drones from their larger counterparts lies in their potential to undertake complex
missions with multiple goals, which demands the execution of multiple intelligence
tasks concurrently on the drone [25, 26, 12]. Such a high level of intelligence is akin
to the one of any biological system, even at the insect scale. For instance, con-
sider the remarkable capabilities of bees [27, 28]: they navigate vast distances, find
and pollinate plants, communicate with their hive through intricate dances, and
constantly adapt to environmental changes. This seamless integration of naviga-
tion, communication, environmental adaptation, and task execution in bees serves
as a compelling model for the autonomous functionality we aim to replicate in
nano-UAVs.

This thesis aims to bridge this gap by pushing the capabilities of nano-
sized UAVs closer to the ones of biological systems, which are autonomous
and can handle multiple concurrent high-level perception tasks that span from basic
control functionality to high-level perception.

To progress towards this ambitious goal, this thesis: i) presents methodologies
and software tools to streamline and automate all the deployment of vision-based
CNNs on nano-drones while complying with their constrained ULP processors. ii)
thoroughly studies how to minimize the CNN workload on nano-drones both in an
automated and hand-crafted way, ultimately freeing up enough resources to unlock
the execution of multiple AI pipelines on nano-UAVs. iii) developing and deploying
multiple vision-based AI tasks running in real-time on nano-drones, specifically
focusing on autonomous navigation and object detection.

Combining all of these techniques, this thesis demonstrates that it is possible to
overcome both the computational and memory burden imposed by ULP MCUs and
achieve the execution of multiple CNNs in real time on nano-drones. This accom-
plishment represents a significant milestone in the SoA for embedding intelligence
in nano-sized drones, bringing these compact aerial vehicles a step closer to the
sophisticated, multi-functional autonomy that tiny biological systems inherently
have.

1.1 Thesis outline and contributions

An overview of the structure of this thesis is depicted in Figure 1.1. The content
of each chapter is summarized in the following.
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Figure 1.1. Flow of the this thesis. The Chapters’ number is indicated
within circle shapes.

Chapter 2 - Related works This chapter presents the state-of-the-art works
related to this manuscript. First, it introduces the taxonomy of UAVs. Then, it
reviews TinyML solutions to enable AI functionalities on fully autonomous nano-
UAVs, including end-to-end solutions and automatic CNN deployment tools for
MCUs. Furthermore, it reviews the datasets in the SoA for enabling autonomous
navigation on nano-UAVs. Then, it reviews autonomous exploration strategies and
visual object detection CNNs suitable for deployment on the MCUs of the nano-
UAV platform. Finally, the chapter delves into the current state of the art in
drone racing. This section highlights navigation through gates and visual obstacle
avoidance techniques with a focus on nano-UAVs.

Chapter 3 - Background This chapter introduces the hardware background
of this thesis. It describes the nano-UAV robotic platform used, including addi-
tional modules and sensors. This chapter also describes the architecture of the
parallel ultra-low-power processor used to enable visual AI applications on such a
constrained platform: the GAP8 MCU.

Chapter 4 - Automating the deployment of AI on MCUs. The limited
computational and memory resources available aboard nano-UAVs introduce the
challenge of minimizing and optimizing vision-based deep neural networks (DNNs),
which require error-prone, labor-intensive iterative development flows. Conversely,
this Chapter explores methodologies and software tools to streamline and automate
all the deployment of a vision-based navigation CNN on an ultra-low-power (ULP)
multi-core System-on-Chip (SoC), which is acting as the AI brain on a nano-UAV.
We take as an example the deployment of PULP-Dronet [18], a SoA CNN for
autonomous navigation of nano-UAVs, from the initial training to the final closed-
loop evaluation. With our pipeline, we reduce by 2× the memory footprint of
PULP-Dronet and improve its inference throughput by 1.6× by employing an 8-bit
quantization scheme instead of the 16-bit original one. Last, we obtain the same
prediction accuracy on the testing set while significantly improving the behavior in
the field.
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Furthermore, we highlight the effectiveness of our automated pipeline for deploy-
ing DNNs on MCUs in the context of a real-world drone racing competition. We
developed a fully onboard deep learning approach for visual navigation and ex-
ploration, leading to a victory in the ”IMAV 2022 Nanocopter AI Challenge,” the
first international competition for autonomous nano-drones. We achieved this re-
sult by exploiting the optimization pipeline outlined in this chapter, which adeptly
addresses the stringent memory, computational, and sensor limitations inherent
to the nano-drone platform used in the competition. Our approach is based on
a variant of the PULP-Dronet CNN, introduced in this chapter: we leverage an
end-to-end approach involving a single CNN that predicts its outputs from the raw
input images only. Additionally, we take an additional step to ease the development
of AI capabilities on nano-drones. We mitigate the lack of a dedicated dataset in
the nano-UAV setting, which stifles the development of novel AI algorithms in this
niche, by designing a new CNN trained exclusively with simulated data. We also
introduce a sim-to-real mitigation strategy for real-world deployment. Our system
showcased its capabilities at the IMAV’22 competition, where it ranked first among
six contending teams, covering a distance of 115 meters in a 5-minute flight with-
out experiencing any crashes. It successfully navigated dynamic obstacles, relying
solely on the onboard computational resources of the nano-drone. This achievement
proves the robustness and effectiveness of our automated deployment pipeline in
a challenging, competitive environment. It underlines the feasibility of utilizing
simulated data to enable nano-UAVs to address real-world challenges.

Chapter 5 - Shrinking NNs to enable multi-tasking AI on nano-UAVs.
In Chapter 4, we demonstrated that executing individual AI tasks, such as visual-
based navigation, is feasible on autonomous nano-UAVs. However, the computa-
tional and memory burden of this network is still too high to achieve multi-tasking
AI perception on constrained MCUs. Therefore, this chapter aims to minimize the
onboard intelligence workload needed for UAVs’ autonomous navigation, freeing
up enough resources to execute multi-perception intelligence tasks aboard a nano-
drone. To do so, we first present a general methodology for evaluating whether deep
learning models are overparametrized, i.e., determining if the same tasks could be
effectively solved with smaller DNNs, specifically in terms of their size and com-
plexity. This methodology involves analyzing overfitting behaviors and examining
the sparsity of CNN’s neurons. As an example, we apply this methodology to the
PULP-Dronet CNN, studying the various trade-offs between the number of chan-
nels, pruning of inactive neurons, architecture modifications, and accuracy. We ul-
timately demonstrate the effectiveness of our method by introducing novel squeezed
CNN models called Tiny-PULP-Dronets, which are up to 50× smaller and 8.5×
faster than the baseline CNN when running on the same processor. Nevertheless,
we show that these models maintain the regression and classification performance
when validated on the testing set. These networks leave sufficient memory and
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compute headroom for onboard multi-tasking intelligence, even at the nano-sized
scale.

Before testing such networks in the field, we want to further improve the visual-
based CNN for visual-based navigation by addressing the shortcomings of PULP-
Dronet, introduced in Chapter 4. This CNN shows limited performance when
trying to avoid static obstacles, therefore restricting its applicability in real-world
scenarios. This limitation depends on the original CNN’s dataset construction,
which combines data from different robotic domains with disjoint training labels
to train the two CNN outputs, i.e., the collision avoidance and steering outputs.
Therefore, we introduce a dataset-collecting methodology for collecting unified col-
lision avoidance and steering information directly on the nano-UAV, and we use this
methodology to collect a new dataset of 66 k images. Second, using this dataset,
we introduce end-to-end training and deployment of a new family of CNNs, called
PULP-Dronet-V3, that i) improves the obstacle avoidance capabilities in specific
scenarios, i.e., static obstacles, and ii) we expand the ablation study on the architec-
tural modifications of our CNN. Finally, we present an extensive in-field validation
of the resulting tiny CNN for autonomous navigation on nano-UAVs, studying how
the reduced workload affects navigation accuracy. We set up a challenging scenario
consisting of a narrow corridor with four static obstacles and a 180◦ turn, and the
new tiny CNN we designed shows the ability to successfully navigate with a 100%
success rate through this scenario at a maximum target speed of 0.5m/s. At the
same time, the SoA un-pruned CNN consistently fails.

As a result, the CNN that resulted from our shrinking methodology only uses
a fraction of the computational resources available on nano-UAVs: we obtained
a 2.9 kB model achieving 139 frame/s throughput. These results pave the way
towards embedding multiple intelligence tasks on this nano-sized class of vehicles,
as we can build up more intelligence on top of this optimized CNN for autonomous
navigation.

Chapter 6 - AI multi-tasking on nano-UAVs. In this Chapter, we take
another step forward in the nano-UAVs SoA toward a higher level of intelligence.
As biological entities pursue multi-objective missions in complete autonomy, we
aim to enable these nano-UAVs to execute multiple AI algorithms fully onboard.
First, we enable autonomous nano-drones to tackle a new AI task: object detection.
We develop multiple CNNs, trained to recognize two object classes, with different
trade-offs between accuracy and throughput. The largest and most accurate model
scores a mean average precision (mAP) of 50% on an in-field collected dataset
while running at 1.6 frame/s on the nano-drone MCU with a power envelope of
only 134 mW. The effectiveness of this model was further validated in-field, where
it was integrated with state machine-based exploration policies. These policies,
characterized by low computational complexity, leverage data from time-of-flight
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distance sensors to perform obstacle avoidance. In these field tests, our system
demonstrated an average detection rate of 90%

Building on the progress made in Chapter 5, where we reduced the size of a CNN
for visual-based autonomous navigation, we now merge the AI models developed in
Chapter 5 and Chapter 6. This integration allows for the sequential execution of
visual-based obstacle avoidance and object detection tasks on autonomous nano-
UAVs, running in real-time at 1.6 frames/s. Ultimately, this achievement marks the
SoA by presenting the first fully autonomous nano-drone tackling a multi-objective
mission, which consists of exploring, preventing collision, and detecting objects in
real time while relying only on onboard sensory and computational resources. As a
result, this thesis brought miniaturized flying robots a step closer to the high-level
intelligence of tiny biological systems, demonstrating that it is possible to overcome
both the computational and memory burden imposed by ULP MCUs, allowing the
simultaneous execution of multiple AI-based perception tasks on nano-UAVs.
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Chapter 2

Related works

This chapter outlines the current SoA research on UAVs, categorized by size, weight,
power consumption, and onboard processing devices, as detailed in Table 1.1. The
latter two characteristics are related to each other, as the budget for onboard elec-
tronics is limited to ∼5-15% of the total power envelope of the UAV [29]. Standard-
sized UAVs, with a diameter typically exceeding 50 cm and a power budget over
100W, can afford to host powerful CPUs such as the Intel i7/i5 onboard [30]. Micro-
sized UAVs, slightly smaller, have a lower power budget of about 50W but can still
accommodate host powerful embedded devices, such as NVIDIA Jetson/Xavier
boards [26, 16, 17]. Both standard- and micro-sized UAVs can afford to execute
complex perception and control pipelines onboard, composed of multiple AI tasks
running simultaneously [17, 26, 16].

On the other end of the spectrum, nano-sized UAVs have a diameter around 10 cm,
weigh only a few tens of grams, and have a power budget of just a few watts [18].
This small platform’s size and power constraints prevent hosting high-end com-
putational units. Instead, they have to rely on resource-constrained and simple
single-core MCUs. Despite these limitations, the objective of this manuscript is
to enable nano-sized UAVs to reach levels of skill and autonomy comparable to
those of their larger counterparts. To reach such a level, nano-UAVs must be capa-
ble of running multiple AI tasks simultaneously, whereas current SoA only enables
executing a single neural network onboard.

The rest of the chapter is organized as follows. Section 2.1 discusses the capabil-
ities of standard- and micro-sized UAVs to execute multiple AI tasks, Section 2.2
examines the current ability of nano-sized UAVs to run single AI tasks, i.e., CNNs,
Section 2.3 presents datasets applicable to UAV autonomous navigation, explaining
the need for a new one, Section 2.4 reviews algorithms for maximizing the explo-
ration of unknown environments, suitable for simple single-core MCUs, Section 2.5
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reviews CNNs for object detection suitable to nano-drones, and, finally, Section 2.6
reviews the approaches for drone racing.

2.1 Standard and micro-sized UAVs

The overwhelming majority of complex robotic perception algorithms have been
demonstrated aboard standard- and micro-sized UAVs [30, 31, 12, 32, 16, 33, 34,
26, 25, 17, 35], which feature powerful onboard computers, e.g., GPUs. The sophis-
ticated functionality that can be achieved with these platforms includes onboard
autonomous navigation in unstructured natural environments [30, 12] and search
for particular objects in the field of view using semantic segmentation, for example,
for smart agriculture [31]. More recently, complex visual-based perception pipelines
have been demonstrated in the context of drone-racing [16, 33, 34, 26, 25, 17, 35],
encompassing the development of CNNs for gate detection, obstacle avoidance, and
deep reinforcement learning (RL) approaches for the navigation. These functionali-
ties need multiple CNNs and other non-neural algorithms, such as visual SLAM [32],
to enable multiple concurrent tasks, e.g., pose estimation, collision avoidance, and
trajectory planning.

2.2 Enabling AI on nano-size UAVs

Nano-sized autonomous UAVs [24, 18, 19], comparable to a hand palm size, are an
exciting yet challenging target for the deployment of AI-based autonomous naviga-
tion features. Their tiny form factor form (approximately ∼10 cm) and lightweight
payload (around ∼30 g) [1] demand for compact mission computers, such as MCUs,
which suffer from severe constraints on both memory (few MB of memory onboard)
and computational capabilities. We can distinguish three categories of solutions to
enable nano-UAVs with AI capabilities despite these limitations:

1. Automatic nano-UAVs with offloaded computation. This approach
involves offloading computation to a powerful external base station [40, 41,
42], thereby sacrificing complete autonomy but allowing for more complex
processing that the UAV’s onboard systems cannot handle;

2. Simple AI workloads with autonomous nano-UAVs. This approach
aims at fully onboard execution by minimizing the execution workload. Con-
sequently, when using single-core MCUs, the nano UAVs end up achieving only
minimal functionalities and/or rely on low-dimensional input signals (e.g., no
images) [43, 36, 44, 45, 37, 46, 47];

3. Accelerated autonomous nano-UAVs. This approach enhances the on-
board computing capabilities with application-specific processors [48, 49, 50,
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51, 52] or general-purpose visual navigation engines [24, 19], to enable the fully
onboard execution of complex AI workloads.

2.2.1 Automatic nano-UAVs with offloaded computation

To address the computational constraints of single-core microcontrollers (MCUs),
one solution involves offloading intensive computing tasks to external, wirelessly
connected resources [42, 40]. This method shifts the operational mode of nano-
UAVs from autonomous to automatic, as it depends on external infrastructure
to complete its tasks. In [42], the authors propose an autonomous navigation
approach based on a CNN that uses reinforcement learning to adjust part of its
parameters online. The initial values of the weights are obtained by training the
whole network with synthetic images obtained from a game engine, and they also
prove the in-field functionality using a 80 g drone. However, the action space of
their algorithm is limited to the following commands: move 50m forward, steer
45◦, and steer −45◦. This results in less smooth and flexible navigation than our
approach, which provides a continuous output for the steering angle and adaptive
forward velocity. In [40], the authors implement a fuzzy logic position controller
and vision-based position estimation by offloading all the computation to an Intel
i7 processor streaming images with a 2.4GHz radio.

This class of approaches, however, suffers from several important drawbacks [14]: i)
it introduces network-dependent latency, which prevents the drone from operating
farther than a few tens of meters from the remote base station, ii) the noise on
the transmission channel affects the reliability of the transmitted data, iii) security
becomes a concern for eavesdropping on confidential images and data and denial-of-
service attacks on the wireless connections, and iv) the power consumption of the
high-frequency radio transmission is significant, and the wireless transceiver may
dominate the power budget for control (for example, the NINA transceiver of the
AI-deck of a Crazyflie nano-drone has a power envelope between 0.3W and 1W).

2.2.2 Simple AI workloads with autonomous nano-UAVs

From the second category of solutions, Lambert et al. [43] exploit the STM32F4
MCU to implement a simple DL-based flight-controller for hovering on a Crazyflie
2.0. Kooi and Babuška [36], a deep reinforcement learning (RL) method employing
proximal policy optimization enables autonomous landings of nano-drones on in-
clined surfaces. The CNN designed for this purpose requires around 4.5 k multiply-
accumulate (MAC) operations per forward step. Although the network operates
efficiently, computing an inference in approximately 2.5ms on a single-core Cortex-
M4 processor, its functionality remains constrained solely to the landing task.
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Similarly utilizing the Cortex-M4 processor, Neural-Swarm [45, 37] leverages a DL-
based controller (∼ 27 kMAC) to manage close-proximity interaction forces en-
countered during formation flights of nano-drones. With a processing cost of ∼
9.5 kMAC, each nano-drone in the swarm processes only the relative position and
velocity data of surrounding UAVs, tackling safe maneuvers in close proximity
with other UAVs. Zhao et al. [44] implement a CNN to improve the nano-UAV’s
localization accuracy by modeling the localization system’s sensor biases. This
model can run at 200Hz on the onboard ARM Cortex M4 MCU requiring about
2.7 kMAC/frame, i.e., 10000× less operations than existing SoA CNN-based au-
tonomous navigation workloads, e.g., ∼40MMAC/frame in [18].

McGuire et al. [46] propose a lightweight navigation algorithm that enables a swarm
of drones to explore an indoor area while avoiding collision with the walls by ex-
ploiting four laser distance sensors on each drone. The simple sensor input (i.e.,
four single laser beams) results in an avoidance mechanism that can only detect
large and homogeneous obstacles. Daramouskas et al. [47] proposes an approach for
navigation with obstacle avoidance using a random forest classifier. They report
a classification accuracy of 90% while using a size of 229 nodes for the decision
tree. However, their approach was only developed and tested with synthetic data
generated with the aid of a simulator. While useful for some specific tasks, all of
these tiny models are not viable solutions for more challenging navigation problems
like the ones we tackle in this thesis.

2.2.3 Accelerated autonomous nano-UAVs

A possible solution to the limitations imposed by single-core MCUs is augment-
ing nano-UAVs with better compute functionality. For larger UAVs, this is a
common choice – using devices such as NVIDIA GPUs, Intel Myriad, or Google
Edge TPU [30, 31, 53, 54] that are both flexible and highly efficient. For nano-
UAVs, however, the possibilities are more limited. Some recent works emphasize
the efficacy of application-specific integrated circuits (ASIC), which are suitable for
autonomous navigation functionalities [51, 52, 48, 49, 50] on a low-power budget.
Some of these systems have been designed to tackle specific UAV applications, such
as visual-inertial odometry (VIO) [48] and simultaneous localization-and-mapping
(SLAM) [49, 50], within a power envelope of few hundred mW. While extremely
efficient, these systems are inflexible, and they do not implement end-to-end flying
functionality but only accelerate some sub-functions, requiring a mission and flight
controller MCU anyways.

Conversely, the approach we follow in this manuscript involves the use of multi-
core flight controllers designed for artificial intelligence workloads Such an approach
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addresses the limitations imposed by higher-complexity DL-based workloads by ex-
ploiting fully programmable parallel computing accelerators [55]. Parallel ultra-
low-power (PULP) processors use small-scale multi-core clusters with 4-16 cores,
with an enhanced RISC-V instruction set architecture (ISA), to exploit intrinsic
parallelism of vision workloads, including CNNs. The key advantage of this ap-
proach is its flexibility and capability to handle end-to-end flight control tasks. The
state-of-the-art COTS MCU for nano-drones is the GAP8 SoC [56], an embodiment
of the PULP paradigm with a general-purpose 8-core parallel cluster. This fully
programmable MCU was successfully exploited to enable the execution of more so-
phisticated visual-based AI workloads [19, 38, 18, 24], for tasks such as autonomous
navigation and pose estimation using CNNs in the range of 10-100MMAC/frame.
Table 2.2.3 summarizes the main characteristics of GAP8 and the most popular
Nvidia GPUs aboard micro-sized drones. GAP8 has up to 8000× less RAM mem-
ory and 12141× lower peak throughput than the most powerful Nvidia GPU, i.e.,
the Jetson AGX Orin.

Table 2.1 gives an overview of AI workloads for autonomous nano-drones. By ex-
ploiting the GAP8 SoC, Palossi et al. [18, 24] developed the SoA CNN for end-to-end
visual-based autonomous navigation on a fully autonomous nano-drone. The CNN,
namely PULP-Dronet[18], has a computational cost of ∼41MMAC per inference
and requires 320 kB of memory footprint. The autonomous navigation capabilities
of this network are assessed by successfully tackling turns and avoiding collisions
with dynamic obstacles appearing along the way. NanoFlowNet [39] is a CNN for
dense optical flow segmentation that aims at the obstacle avoidance task. The
CNN has 171 k parameters and runs on GAP8 at 5.6 frame/s, and it differs from
the PUL-Dronet approach as it outputs per-pixel information about the obstacles
in the scene. The authors test this CNN in the field on a nano-drone but do not
provide statistical results about the robustness of the approach nor the average
flight speed that they achieved while avoiding obstacles.

[19, 38] exploit GAP8 to demonstrate a fully autonomous nano-drone performing
a human pose estimation task. Their CNN, called PULP-Frontnet, predicts the
drone’s relative pose with respect to a freely moving human subject, allowing the
drone to follow the subject’s movement. This prediction aims at maintaining a
consistent distance in front of human subjects while following their movements, and
it only exploits low-resolution grayscale images captured from a front-facing camera.
Their best model in the in-field experiments requires 14.7MMAC and achieves an
inference rate of 48 frame/s while consuming 96mW. Tackling the same problem,
Cereda et al. [57] exploited neural architecture search techniques to design a tinier
version of the PULP-Frontnet CNN, obtaining a 7.4MMAC and 65 kB model, while
retaining good regression performance when tested in-field. Similarly to what we
do in Chapter 5.2, they investigate a network architecture inspired by Mobilenet
v2 [58].
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While previous works enable the execution of single AI tasks, in this
manuscript, we advance the SoA of TinyML on nano-UAVs by enabling
the execution of multiple CNNs aboard a nano-drone for the first time.
To do so, in Chapter 4.1, we automate the deployment of CNN on the GAP8 SoC,
demonstrating it on the PULP-Dronet CNN, after applying a more aggressive fixed-
point 8-bit quantization. Moreover, we address two main limitations of the PULP-
Dronet CNN. First, we highlight in Section 4.1 how this CNN lacks the ability to
guide the nano-UAV around static obstacles. This poses a significant limitation in
its practical application within challenging real-world scenarios, where navigating
uncontrolled environments becomes critical. This missing capability is attributed
to the training dataset of PULP-Dronet, as it comprehends multiple sets of images
with disjointed labels for the steering and collision tasks. The second limitation of
this work is its non-negligible workload of ∼41MMAC, limiting its throughput to a
maximum of 19FPS. In Section 5.1, we demonstrate that the PULP-Dronet CNN
architecture is over-parametrized for the task it solves. In Section 5.2, we enable
autonomous navigation with a network that is 168× smaller than PULP-Dronet,
leaving plenty of memory and computing resources that can be exploited to enrich
a solid autonomous navigation framework with concurrent capabilities.

In Chapter 6, we deploy another high-level intelligence task on nano-UAVs, but
with a computational complexity that is one order of magnitude higher than [38].
We deploy a 4.7MB CNN to perform object detection of two object classes, and
they showcased it in the context of an exploration and search mission. Thanks
to the resources we freed by developing our Tiny-PULP-Dronet, in Chapter 6, we
enable the concurrent execution of the Tiny-PULP-Dronet CNN with the object
detection one.

2.2.4 Automatic deployment tools

Deploying multi-MMAC CNNs on an MCU-class device requires coping with a
power envelope of few hundreds of mW, a memory of just a few MB or less, and
limited peak performance, demanding for a strict co-optimization of the algorith-
mic, software, and hardware components [59, 60]. The minimization of a DL model
can be performed with i) specific topological choices, like using depth-wise con-
volutions [58, 61] or ii) using quantization as a compression technique [62, 63]
from float32 down to int8 (or less), with a net 4× reduction of model footprint.
Quantization can also expose more data parallelism exploitable by packed-SIMD
instructions [64], improving the final inference throughput and the energy consump-
tion.

Once the network has been optimized for size, addressing the deployment challenge
becomes critical. This involves maximizing the utilization of computing resources
through three primary strategies: i) parallelizing computations, ii) managing the
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2.3 – Datasets for nano-UAV autonomous navigation

memory hierarchy through topology-dependent tiling, and iii) minimizing data
transfer overheads. This step is particularly crucial for MCU devices, where pro-
cessing units are inherently limited [59].” General-purpose tools such as TFLite for
MCUs and Larq [65, 66, 67], as well as vendor-locked tools like STM32 X-CUBE-
AI1 have been proposed to ease deployment on MCUs. For PULP platforms, on
which we focus in this manuscript, two deployment tools have been recently intro-
duced: GWT’s AutoTiler 2, which is partially closed-source, and DORY [59] with
PULP-NN backend [68], an alternative open-source academic framework.

In Chapter 4.1, we exploit these recent advancements to bring the deployment of
DL-based visual navigation on nano-drones from handcrafted and hand-tuned de-
ployment [18] to a new streamlined, automated methodology. We leverage DNN
deployment frameworks by integrating them into our flow, and we achieve signifi-
cantly improved performance and energy efficiency on autonomous navigation DL
workloads, improving the nano-UAV in-field behavior and freeing resources for even
more complex missions and tasks.

2.3 Datasets for nano-UAV autonomous naviga-
tion

In Section 5.2 we highlight the importance of introducing a new dataset for visual-
based autonomous nano-drone navigation. Therefore, in this section, we review the
dataset for UAVs available in the literature. Dupeyroux et al. [69] released a dataset
for obstacle detection and avoidance, specifically targeting micro-sized drones (i.e.,
weighting ∼ 0.5 kg). It has 92GB of data, including high-resolution images (full-
HD) for ∼ 80% of the acquisitions. Thus, adapting these images to the nano-drone
use case would require a photometric augmentation pipeline to convert full-HD
images to the format of a low-quality and low-resolution camera commonly found
on nano-UAVs [18]. Moreover, in [69], the obstacle avoidance information is based
on radar and distance sensors. Thus, using this information relegates the CNN to
solve the autonomous navigation task in a mediated way. Conversely, we collect
a dataset logging the low-quality images from a nano-drone along with the pilot’s
yaw-rate input, which is fed to the flight controller during the data acquisition,
allowing us to train an end-to-end network for autonomous navigation.

The Dronet dataset [70] was created to enable autonomous navigation on large
UAVs. They combined two sets of images: one from driving cars, where each image
was associated with the car’s steering wheel angle, and a second one from bicycles,

1https://www.st.com/en/embedded-software/x-cube-ai.html

2https://greenwaves-technologies.com/manuals/BUILD/AUTOTILER/html/index.html
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where the labels were labeled with the binary collision information. This dataset
was successfully exploited to enable autonomous nano-drone navigation in [18],
where additional ∼ 1300 grayscale low-quality images collected from a nano-UAV
were used to fine-tune the network to the low-quality images provided by the nano-
drone’s camera. However, this dataset does not provide joint steering and collision
labels for the navigation, leading to poor performance when tackling static obstacle
avoidance [1], as detailed in Section 2.2.3. Similarly, [71] collected ∼15 k images
for solving the same task as Dronet. However, this dataset is also divided into two
sets of images for steering and collision labels. [72] used the Dronet dataset to
train an off-board CNN for nano-drones autonomous navigation, still not tackling
the static obstacle avoidance scenario.

The dataset presented in Section 5.2 overcomes these limitations as all the ∼66 k
collected images feature both collision and steering information, i.e., it does not
have disjointed labels. Specifically, we log the input of a human pilot navigating
a nano-drone in multiple environments. These labels can be used to train an end-
to-end CNN that imitates the behavior of a human pilot. Furthermore, we log the
drone’s estimated state and label all the images with a binary label for obstacle
avoidance. We open-source our dataset, dataset collector tool, and pre-trained
models to foster research on autonomous nano-drone navigation.

2.4 Autonomous exploration

In Chapter 6, we develop and compare multiple exploration algorithms on a nano-
drone. Consequently, this section reviews autonomous exploration algorithms that
are specifically suitable for deployment on nano-drones, considering the constraints
imposed by the limited onboard resources.

Computer vision-based navigation techniques, based on complex feature extraction
pipelines [73] or simultaneous localization and mapping (SLAM) techniques [32],
are reliable for autonomous robotic navigation. Still, as SLAM-based approaches
have large memory requirements and rely on computationally intensive algorithms,
they are exclusive to large UAV systems carrying heavy and high-power embedded
computing systems [32].

The state-of-the-art autonomous exploration approaches for nano-drones, which
suffer from limited computational power and memory, take advantage of bio-inspired
(or bug-inspired) algorithms, which rely on lightweight state-machine-based algo-
rithms and low-power sensor readings[74]. For example, [75] compares two bio-
inspired exploration policies: the first changes the heading direction randomly after
detecting an obstacle, while the second follows the obstacle’s boundaries. Similar
to the second one, [74] implements a policy that follows the walls of a room, called
wall-following, while [76] describes a spiral motion. Moreover, there is a subcategory
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2.5 – Object detection on constrained MCUs.

of bug-inspired algorithms that uses ranging measurements for navigating towards a
target point [77, 78], even in the presence of obstacles. In Chapter 6, we adapt such
bio-inspired ranging-based algorithms to our flying nano robotic platform and, for
the first time, we integrate them with a visual object detection pipeline, evaluating
the effectiveness of the exploration policy within a search mission.

2.5 Object detection on constrained MCUs.

In Chapter 6, we develop a CNN for visual object detection running fully onboard
a nano-drone. Therefore, this section reviews lightweight object detection algo-
rithms that can run on an MCU. Among the CNN-based visual object detection
pipelines, single-shot detector (SSD) [79] is a popular approach, consisting of a
feature extraction backbone and multiple convolutional detection heads. To reduce
the computation and memory costs, shallow backbones have been proposed, e.g.,
Mobilenet, while preserving the detection scores on widely used dataset [58].

Focusing on the porting of object detectors on embedded systems, Tran Quang
Khoi et al. [80] deploy an SSD network (SSDLite-MobileNetV2) with a similar
architecture as the one used in this Chapter onto a RaspberryPi B3+ mounted
on a standard-sized drone. The model execution reaches 0.71FPS, lower than our
obtained throughput. More importantly, this solution exceeds both the power (up
to 3W) and size constraints of the nano-drone system considered in this Chapter.
Lamberti et al. [81] presented an SSD algorithm for license plates detection on
a static multi-core MCU node (GAP8), achieving up to 1.6FPS with a power
consumption of 117mW. Starting from this previous work, we design and integrate
an SSD-based object detection CNN onto a nano-drone capable of exploring the
environment while detecting multiple instances and classes of objects in its field of
view.

2.6 Drone racing

In Section 4.2, we describe our nano-drone system winning the “Nanocopter AI
Challenge” at the International Micro Air Vehicles conference 2022, a nano-drone
race that focuses on obstacle avoidance (OA) and gate-based navigation (GN). In
this section, we focus on these two complex tasks surveying the SoA for various
class sizes of drones (Tab. 2.6).

2.6.1 Obstacle avoidance

While racing micro-drones can carry bulky sensors (e.g., Lidars [16], stereo cam-
eras [16, 25]) and GPUs with a power envelope of up to 30W (Tab. 2.6), nano-UAVs
suffer from limited perception capabilities due to their tiny low-power sensors and
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2.6 – Drone racing

microcontroller units (MCUs) [1]. SoA perception algorithms, such as simulta-
neous localization and mapping (SLAM) [32], can not run onboard nano-drones
due to their steep performance requirements. Even when run off-board, they suf-
fer from substantial performance degradation as nano-drones employ low-quality
sensors [82, 83].

Lightweight approaches better suited to nano-drones employ different sensors such
as Time-of-Flight (ToF) ranging sensors [46, 6]. These approaches can be imple-
mented onboard and provide robust obstacle avoidance, even in unknown envi-
ronments, with raw sensor readings or minimal onboard processing (e.g., 30OP/s
in [6]), such as simple bug-inspired lightweight state machines [46]. However, in
our competition, only a low-resolution monochrome monocular camera was allowed,
narrowing the teams’ effort only to visual-based approaches.

A lightweight vision-based system for pocket-sized drones was presented by McGuire
et al. [84], implementing depth estimation with a stereo camera and achieving
obstacle avoidance at low speed (0.3m/s). The SoA visual-based CNN for au-
tonomous nano-drone navigation is PULP-Dronet [18], trained on real-world data
to predict a steering angle and a collision probability based on a QVGA monocular
image. PULP-Dronet runs onboard the GAP8 SoC at 19 frame/s, proving in-field
obstacle avoidance capabilities up to a speed of 1.65m/s when coping with a dy-
namic obstacle. As a result, at the IMAV competition, 3 of 6 teams, including
us, employed this CNN as a starting point to build their visual obstacle avoidance
pipeline. in Section 4.2, we explain how we modified the PULP-Dronet reference
implementation in its task, i.e., the original CNN predicts a collision probability
and a steering angle. Instead, our model is optimized to predict three collision
probabilities by horizontally splitting the input image into three regions. Then, we
introduce a novel training pipeline that exclusively relies on simulation, while the
original work uses real-world images based on autonomous driving cars. Finally,
we enrich our simulator with a photometric augmentation pipeline, which increased
the generalization capabilities of our model to a top-scoring in-field performance.
Compared to PULP-Dronet, our approach targets more aggressive obstacle avoid-
ance capabilities: up to 2m/s speed, concurrent static and dynamic obstacles, and
5min uninterrupted flight. A thorough discussion on the comparison with the SoA
PULP-Dronet is presented in Sec. 4.2.4.

2.6.2 Gate-based navigation

SoA approaches for micro-drone racing competitions tackle trajectory planning and
optimization, gate detection, and control [35]. However, their prohibitive complex-
ity prevents them from being implemented on nano-drones, even without consider-
ing the computational budget needed by the obstacle avoidance task. Time-optimal
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trajectory optimization relies on model predictive control (MPC) solving linear al-
gebra at high-frequency (∼100Hz) and with real-time constraints [85]. To cope
with the MPC complexity, Foehn et al. [85] exploit an NVIDIA Jetson TX2 GPU,
which has ∼ 60× higher computation capabilities than GAP8.

For gate detection, the SoA exploits either i) CNNs for segmentation of high-
resolution images [25], which results in a computational complexity of more than
3GOPs [25] per inference, or ii) traditional computer vision approaches with stereo
images [16]: both are still out of reach for nano-drones. Kaufmann et al. [33]
proposed a simpler CNN for predicting the gate’s poses directly from the image,
but this technique runs at only 10Hz on a powerful (∼13W) Intel UpBoard and
relies on a coarse map of the gate’s positions.

PencilNet [34] is a lightweight CNN for gate pose estimation trained on simulated
images, addressing the sim-to-real gap with an intermediate image representation.
This model comprises 32 k parameters and 53 kMAC operations per frame. From
a computational/memory point of view, this CNN is suitable for real-time exe-
cution on our nano-drone. However, the gate pose estimation is only part of a
more complex pipeline to achieve gate-based navigation, which additionally re-
quires a memory-consuming mapping of the environment and a more complex
trajectory planning. For this reason, the PencilNet CNN was demonstrated on
a drone equipped with a powerful Nvidia Jetson TX2, with a power consumption
75× higher than our nano-drone’s GAP8 SoC, and a high-end Intel RealSense T265
for the state estimation.

More lightweight approaches for visual servoing have also been demonstrated aboard
autonomous nano-drones, based on simple computer vision approaches, such as
color segmentation, to cope with the platform’s limited computational resources.
In [86], the authors used raw image data to detect and fly through monochromatic
gates, while in [87], a simple target-tracking algorithm for monochromatic objects
was introduced. However, neither work targets high-speed scenarios, resulting in
too limited agility for drone racing.
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Chapter 3

Background

This Chapter goes through the nano-drone platform used throughout the whole
thesis, i.e., the Crazyflie 2.1 by Bitcraze, and the processor used to enable the
execution of multiple AI tasks aboard, i.e., the GAP8 SoC.

3.1 Nano-UAV robotic platform

The robotic platform employed in this manuscript is the commercial-off-the-shelf
(COTS) Crazyflie 2.1 nano-quadrotor from Bitcraze1. Figure 3.1 gives an overview
of the system. This tiny UAV weighs 27 g, has a diameter of ∼10 cm, and a total
payload of ∼ 15 g. This open-source and open-hardware drone uses the STM32F405
MCU as its flight controller coupled with the Bosch BMI088 inertial measurement
unit (IMU), which combines an accelerometer and gyroscope. The STM32 MCU
operates at speeds up to 168MHz and integrates 48 kB SRAM and 128 kB flash,
and it is in charge of all low-level flight controller functionalities, such as sensors’ in-
terfacing, state estimation, and low-level control. The IMU data drives an extended
Kalman filter for state estimation at a rate of 100Hz, while a proportional-integral-
derivative control loop cascade manages actuation. This cascade comprises two
control loops, with one governing attitude at 500Hz and the second updating po-
sition at 100Hz. The Crazyflie 2.1 also integrates a nRF51822 MCU for 2.4GHz
ISM band radio communication. As our drone is completely autonomous while
performing its mission, we only use this radio communication for the purpose of
dataset collection in Section 5.4.2.

Our configuration extends the robotics platform with two COTS pluggable printed

1https://www.bitcraze.io/products/crazyflie-2-1
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Figure 3.1. The robotic platform comprises the Crazyflie 2.1, Flow deck,
Multi-ranger deck, and AI-deck.

circuit boards (PCBs) from Bitcraze: the Flow deck and AI-deck2. The 3.5 g optical
flow sensor features a low-resolution, down-looking PMW3901 optical flow visual
sensor, enabling the drone to detect motions in the 2D plane parallel to the floor,
coupled with a VL53L1x time-of-flight (ToF) ranging module, which provides a
distance measurement from the ground. These inputs enhance onboard state esti-
mation accuracy, minimizing long-term drift.

The second expansion board, the AI-deck, is the commercially supported version of
the PULP-Shield research prototype, introduced in [24]. This PCB, weighing 4.4 g,
is the primary onboard computing unit responsible for executing heavy AI work-
loads, such as the CNNs proposed in this manuscript. The PCB extends the nano-
drone’s onboard capabilities with an energy-efficient GAP8 processor [56], off-chip
DRAM, and Flash memory (8MB and 64MB, respectively), a QVGA resolution
low-power gray-scale camera (i.e., Himax HM01B0 sensor), a UART communica-
tion channel between the STM32 and the GAP8, and a versatile ESP32-based WiFi
module. In this thesis, we focus on a configuration where the power-intensive Wi-Fi
remains off, aiming for a fully autonomous system where all navigation intelligence
resides onboard the nano-drone without relying on external communication or com-
putation. However, we exploited the high bandwidth of the Wi-Fi communication
for the dataset collection in Section 5.4.2.

In Chapter 6 and Section 5.2 we extend our robotic platform with an additional
PCB, i.e., the Multi-ranger deck. This deck weights 2.3 g and comprises five single-
beam VL53L1x ToF distance sensors, placed on both the top and lateral sides of the
drone, and provide line-of-sight distance measurements within the [0, 4]m range,
and they operate at a frequency of 20Hz. In Chapter 6, we use this deck to feed

2https://store.bitcraze.io/products/ai-deck
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3.1 – Nano-UAV robotic platform

the exploration state machine with ToF data, performing autonomous exploration
and obstacle avoidance, while in Section 5.2 we use this deck for dataset collection
purposes.

3.1.1 GAP8 System-on-Chip

The GAP8 SoC [56], which is used for all onboard vision and tinyML processing,
is a commercial embodiment of the PULP platform [64]. GAP8 has 1+8 general-
purpose RISC-V-based multicore MCU, where the nine cores are organized in two
power and frequency domains, namely the fabric controller (FC) and the clus-
ter (CL), as shown in Figure 3.2. The former features one single-core low-power
processor implementing the RISC-V RV32IMCXpulpv2 ISA based on the RI5CY
design[64], paired with on-chip SRAM memory and peripherals supporting pro-
tocols like SPI, I2C, HyperBus, and Camera Parallel Interface (CPI). These can
be accessed through a dedicated Direct Memory Access (DMA) engine called mi-
croDMA to offload the communication burden from the FC. Ultimately, the FC
is used for control-oriented tasks, acting as an “activity supervisor” managing the
interfaces to off-chip sensors/memories and orchestrating on-chip memory opera-
tions.

On the other hand, the CL is a fully programmable parallel accelerator designed to
execute computationally intensive parallel workloads, such as vision-based CNNs,
enabling high-level energy efficiency via the parallel computational paradigm [55].
The CL includes 8 RISC-V cores with the same ISA extensions as the FC; in partic-
ular, the Xpulpv2 extension includes 8-bit and 16-bit packed SIMD, Multiply-And-
Accumulate, and dot-product operations, which enhance the SoC’s linear algebra
capabilities for such workloads. The cores are connected over a logarithmic inter-
connect to 64 kB of Tightly Coupled Data Memory (TCDM) comprising 16 memory
banks. The logarithmic interconnect assures 1-cycle latency access for all the cores
when there is no bank conflict, enabling fast data parallelism among the cores. The
logarithmic interconnect assures 1-cycle latency access for all the cores when there is
no bank conflict, enabling fast data parallelism among the cores. The cluster has a
DMA to offload data transfers between the TCDM and the 512 kB L2 memory. The
cores are programmed with the Single-Program Multiple-Data programming model
and synchronized using dedicated hardware for low-latency barriers. Ultimately,
the CL can yield up to 5.4GOps/s [68] in a power envelope of ∼100mW.

The FC and cluster domains are separately clocked to tune for best energy efficiency
and performance trade-off. The FC domain can be clocked between 50MHz and
250MHz, while the cluster domain can be between 100MHz and 175MHz. The
SoC voltage can be set between 1V and 1.2V depending on the FC and cluster
clock frequency.
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Figure 3.2. AI-deck diagram and the GAP8 System-on-Chip architecture.

Combining the STM32 MCU with the GAP8 SoC enables the heterogeneous archi-
tectural paradigm at the ultra-low-power scale [55], enabling the onboard execu-
tion of sophisticated vision-based algorithms. In this host-accelerator context, the
STM32 represents the host, handling control-oriented tasks (i.e., flight controller),
while the GAP8 offers general-purpose parallel computation capabilities, acting as
the accelerator for compute-intensive perception and navigation tasks.

26



Chapter 4

Automating the deployment of AI

on MCUs

The challenge of deploying DNNs on nano-UAVs is significantly compounded by
their limited computational and memory resources. These constraints necessitate
a focus on minimizing and optimizing vision-based DNNs, which traditionally in-
volve error-prone and labor-intensive development processes. Section 4.1 explores
methodologies and software tools designed to streamline and automate the de-
ployment of vision-based CNN navigation on an ultra-low-power (ULP) multi-
core system-on-chip, serving as a mission computer for nano-UAVs. We exem-
plify our approach with the deployment of PULP-Dronet [18], a SoA CNN for
the autonomous navigation of nano-UAVs. Our pipeline spans from initial train-
ing to final closed-loop evaluation, achieving comparable prediction accuracy to
the original CNN [18] while significantly enhancing the in-field performance of our
nano-drone. Notably, we have managed to halve the memory footprint and increase
inference throughput by 1.6 × by employing an 8-bit quantization scheme instead
of the 16-bit original one.

Additionally, Section 4.2 demonstrates the robustness of our automated pipeline
for deploying DNNs on MCUs, particularly within the challenging setting of a
real-world drone racing competition. Our fully onboard deep learning solution,
tackling visual navigation and obstacle avoidance, led to victory at the ”IMAV
2022 Nanocopter AI Challenge,” the first international competition for autonomous
nano-drones. We achieved this result by exploiting the optimization pipeline that
will be outlined in Section 4.1, which adeptly addresses the stringent memory,
computational, and sensor limitations inherent to the nano-drone platform used in
the competition. Additionally, we take an additional step to ease the development
of AI capabilities on nano-drones. We mitigate the lack of a dedicated dataset in
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Automating the deployment of AI on MCUs

the nano-UAV setting, which stifles the development of novel AI algorithms in this
niche, by designing a new CNN that is trained exclusively with simulated data, and
we introduce a sim-to-real mitigation strategy for real-world deployment.

4.1 Automated End-to-End Optimization and De-
ployment of DNNs on nano-drones

In the past years, unmanned aerial vehicles (UAVs) have been adopted in a wide
range of applications, such as surveillance and inspection of hazardous areas [18,
88]. Nano-size UAVs, with a form factor of a few centimeters and a weight of
tens of grams, are the ideal candidates for fully autonomous indoor navigation as
they can safely operate near humans and reach narrow spots with their reduced
dimensions [18, 24, 19]. However, these platforms have a total power envelope of a
few Watts, of which only 5−15% is allotted for computation, making it challenging
to deploy real-time navigation pipelines directly onboard [29]. Furthermore, the
small physical footprint and limited payload that nano-UAVs can carry constrain
the battery and printed circuit board sizes. Overall, these constraints mean that
onboard computing devices must have the physical footprint, power envelope, and
on-chip memory of a typical microcontroller unit (MCU).

For traditional UAVs, the classical approach for autonomous navigation is simulta-
neous localization and mapping (SLAM), which creates a map of the environment
and plans the trajectory according to it [89]. Classical SLAM is too computation-
ally intensive to be feasible on nano-UAVs. An alternative emerging approach is
to infer relevant navigation information directly from onboard sensors and cameras
using machine learning-based algorithms. In particular, deep convolutional neural
networks (CNNs) have recently proved to provide good performance in autonomous
navigation at a fraction of the cost of SLAM: enough to run practical navigation
tasks directly on highly resource-constrained platforms [24, 44]. Still, achieving
more sophisticated navigation skills requires deploying more complex CNNs un-
der even stricter real-time constraints, promptly reacting to challenging dynamic
environments, avoiding collisions, planning new routes, etc. Therefore, it is imper-
ative to look for strategies to minimize the models’ complexity and footprint while
maintaining high accuracy.

Recently, low-power multi-core System-on-Chips (SoCs) have been introduced as
potentially ideal devices to combine an MCU’s flexibility with AI-oriented compute
acceleration capabilities [56, 90]. At their peak performance, these devices deliver
up to 10–100× better performance and efficiency than conventional MCUs, con-
stituting an ideal platform for fully onboard DNN-driven autonomous navigation.
However, their complex architecture, together with the non-trivial requirements of
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DNN-based algorithms, requires a complex procedure including training, quantiza-
tion, and a difficult hand-tuning phase to maximize performance on the final target
– a critical step to achieve a high frame rate and thus good in-field navigation
performance.

In this chapter, we focus on automating the end-to-end deployment of a DNN-
based neural flight controller on top of a nano-UAV employing the GreenWaves
Technologies (GWT) GAP8 SoC [56] – one of the most advanced commercially
available AI-oriented SoCs suitable to nano-size drones. We evaluate two distinct
toolsets available for GAP8, namely the GAPflow provided by GWT and the open-
source NEMO/DORY flow fostered by the research community [59]. Specifically,
we adapt and tune these flows to automatically deploy a CNN for autonomous
navigation based on the state-of-the-art (SoA) PULP-Dronet [18]. PULP-Dronet is
a residual network used to drive a nano-UAV through an interior (e.g., a corridor)
or exterior (e.g., street) environment, deriving a probability of collision, used for
obstacle avoidance, and a steering angle to keep within a lane – implemented as a
classification and a regression task, respectively.

Differently from the seminal PULP-Dronet, which relied on 16-bit fixed-point data
representation, we focus on fully automated deployment, including network quanti-
zation to 8-bits, data tiling, code generation for the GAP8 SoC, evaluation of per-
formance on the regression and classification tasks. We also improve the integration
of the new PULP-Dronet with the flight controller, with a more robust approach to
deal with situations where the network’s output is not providing strong guidance.
We compare our results in terms of accuracy to the original PULP-Dronet, showing
that the prediction capability is maintained (∼90% for the classification despite the
stronger quantization). Our results show a throughput up to 19 frame/s, improved
by a factor of up to 1.6× and total energy consumption of ∼ 3−4mJ/frame, which
is ∼ 44− 58% less than our baseline.

Moreover, we contribute a thorough exploration of the real-world performance of
the CNN in exterior and interior environments, evaluating the drone’s adherence to
expected behavior in several controlled experiments performed in a room equipped
with a Vicon motion capture system. We individually assess the obstacle avoidance
and steering capabilities. We find that the drone can stop 0.42m away from a dy-
namic obstacle that appears 1.5m in front of the drone while flying with 1.41m/s,
with a significant 25.3% improvement in the speed/braking-distance ratio vs. the
original PULP-Dronet. Furthermore, we also demonstrate the capability of the
drone to fly an angled narrow tunnel, and we record the trajectories for various
drone velocities. We also evaluate the free-flight capabilities of the drone in a
controlled indoor environment, achieving 110m path in 56 s, which marks an im-
provement of ∼ 4× vs. our baseline.
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Our new, streamlined approach significantly improves the autonomous flight capa-
bilities of PULP-Dronet while freeing up resources (i.e., reduced memory footprint
and inference time), which allows the system to handle even more tasks (e.g., local-
ization, detection, tracking, etc.). Also, we investigate the generalization capabili-
ties of the drone flying in new environments that are not captured by the training
dataset. Among all considered environments, we recorded the longest flight time
of 171 s in an urban street.

4.1.1 Background

PULP-Dronet CNN

Dronet [70] is a vision-based end-to-end autonomous drone navigation CNN, de-
ployed on a nano-drone, for the first time, in the seminal PULP-Dronet project [18].
This shallow NN is based on three consecutive ResNet [91] blocks that branch the
last layer to produce two outputs: a probability of collision (classification prob-
lem) and a steering angle (regression problem). The CNN was originally developed
using 16-bit fixed-point arithmetic and a quantization-aware training process. Im-
ages used in the original training/validation/testing, and also in this Chapter, are
partitioned into three disjoint sets:

• Udacity: ∼39.1K high-resolution images labeled only with steering angle.

• Bicycle: ∼32.2K high-resolution images labeled only with collision probabil-
ities.

• Himax: ∼1.3K low-resolution images collected from the same camera aboard
our target nano-drone and labeled only with collision probabilities.

The union of Udacity and Bicycle sets results in the so-called Original dataset that
we use to train our PULP-DroNet V2 in PyTorch (100 epochs) and to select the
models that minimize both regression and classification error on the validation set.

4.1.2 Deployment Automation Flow

The development of AI-based algorithms on MCU-class processors, aboard a nano-
drone, is a complex multi-objective optimization problem that must take into ac-
count: i) memory availability, ii) power envelope, iii) hardware limitations (e.g.,
no FPU), and iv) throughput. Therefore, to enable the execution of PULP-Dronet
on GAP8 under these constraints, we assemble and streamline a flow of automated
tools that divide the process into two main stages: i) quantization of the neural
network, and ii) hardware-aware deployment of the quantized model.
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Quantization

This stage, remapping the CNN’s numerical representation, e.g., from float32 to
int8, enables efficient integer computation on the underlying hardware. From a
mathematical viewpoint, the tools we consider in this chapter focus on uniform
affine quantization: all tensors t (typically inputs x, outputs y or weights w) are
first restricted to a known range [αt, βt), then they are mapped to N -bit purely
integer tensors t̂ by means of a bijection:

t = αt + εt · t̂ , (4.1)

where εt = (βt − αt)/(2
N − 1). εt is often called the scaling factor used to scale

tensors from their floating-point to their integer representation. Quantization flows
enforce the representation quantized tensors of all waits and part of the data tensors
in the network – the latter typically together with ReLU activation functions.

NNTOOL is the NN mapping flow developed by GWT, included in the GAPflow,
that converts a TFLite topology graph into a new custom representation. It is dis-
tributed as part of the GAP8 software development kit1. NNTOOL performs “layer-
fusion”, post-training calibration and quantization (8/16-bit), and folds batch nor-
malization (BN) into the convolution layer that precedes it, avoiding costly in-
termediate buffers and saving a small amount of memory traffic (i.e., 1.792 kB in
Dronet). On the other hand, NEMO is the quantization tool used by the open-
source pipeline NEMO/DORY [59], which provides both post-training quantization
(i.e., quantizing the model without further re-training, using only lightweight cal-
ibration) and quantization-aware training (i.e., quantization at training-time, to
mitigate potential accuracy loss). NEMO does not fold BN layers, but instead, it
converts them into fully integer channel-wise scaling operations [60].

For our application, we apply post-training quantization at 8-bit for both NEMO
and NNTOOL, which is – to date – the most commonly adopted quantized bit-
width and is supported by both flows. Specifically, NNTOOL employs a signed
int8 format for both activations and weights, whereas NEMO employs uint8 for
activations and int8 for weights. Both tool-sets require a Conv-BN-ReLU pattern
for all main branches of each ResBlock. This simplifies both quantization and
deployment: the accumulated tensor at the output of the Conv operation naturally
requires a finer grain representation than that of inputs and weights – both flows
employ 32 bits. Integer scaling and ReLU can be applied to a single element
at a time, meaning that there is no need to materialize a full tensor of 32 bits
elements – rather, each element is produced at 32 bits by Conv but immediately
reduced to 8 bits by ReLU or BN+ReLU. The baseline version of the NEMO flow
does not support the quantization of data that is not at the output of a ReLU;

1https://github.com/GreenWaves-Technologies/gap_sdk
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as a consequence, we introduce a further modification by pushing the final ReLU
of the ResBlocks back to the residual branch. Figure 4.1 summarizes the minor
modifications that were used in the two flows with respect to PULP-DronetV1
– establishing two new NN topologies, namely, PULP-DronetV2 GAPflow and
PULP-DronetV2 NEMO/DORY.

Figure 4.1. ResBlocks of PULP-DronetV1, PULP-DronetV2 GAPflow and
PULP-DronetV2 NEMO/DORY (top-bottom order).

Hardware-aware deployment

The deployment goal is to enable and exploit the hardware platform by generating
C code that: i) maximizes the parallel execution over all available cores, and ii)
minimizes the data transfer overhead. On GAP8, the main challenge is the limited
L1 memory (64 kB), which forces the deployment tools to solve an optimization
problem, partitioning the tensors into smaller chunks of data, called tiles, to be
moved between L2 and the L1 memory.

Both GAPflow and NEMO/DORY partition this problem in two separate parts:
i) a set of optimized kernels operating exclusively on L1 data tiles, and ii) a tiling
solver to define the optimal size for tiles and generate the code for the related data
transfers between L2 and L1, including double buffering for all tensors. As opti-
mized primitives, GAPflow relies on a set of open-source kernels available within
the GAP SDK, possibly defining custom ones. NEMO/DORY uses the open-source
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PULP-NN library2 [68]. The tiling solver employed by the GAPflow is a pro-
prietary tool called AutoTiler, whereas NEMO/DORY employs DORY, an open-
source flow [59].

The two primitive libraries exploit different data layouts, affecting the final perfor-
mance on the Conv layers. PULP-NN, employed by NEMO/DORY, exploits the
height-width-channel (HWC) layout, where the data along the channels’ dimen-
sion is stored with a stride of one, while the data along the width dimension is
stored with a stride equal to the number of channels. NNTOOL uses the channel-
height-width (CHW) format, reverting the previous order. The convolutional layer
can be performed either as a direct convolution or as a matrix-matrix multiplica-
tion, optimized for CHW and HWC layouts. Both implementations have pros and
cons. Direct convolution uses a sliding window with a masking/shuffling mecha-
nism, while in the matrix multiplication case, we need to pay some extra overhead
to rearrange the input data to a single-dimension tensor (i.e., im2col, image-to-
column) so that the convolution can be computed as matrix multiplication. On the
other hand, matrix multiplication is a more regular operation than convolution, it
is essentially identical for any filter size, and it does not require any data shuffling.
In general, the HWC layout and the matrix-matrix multiplication become more
convenient when the feature map of the convolved layer has many input channels.
Conversely, the CHW data layout used by the GAPflow is most advantageous with
direct convolutions on Conv layers with spatial dimensions much larger than the
number of input channels.

The tiling solver employed by GAPflow is the AutoTiler, whereas the open-source
flow employs DORY [59]. AutoTiler is a proprietary, partially closed-source tool.
It can automatically promote full tensors from L3 to L2 and L1 or tile them to
maximize performance using the GAPflow backend primitives. On the other hand,
DORY specifies tiling as two separate problems – one for L3/L2 and the other for
L2/L1 transfers. To promote data from L3 to L2, DORY uses a set of simple heuris-
tics, such as looking at the known-good solution first (e.g., copying the full weights
for the next layer in L2 while the current one is being run, keeping all activations
in L2) and revert to less optimal ones when the former ones are not feasible (e.g.,
move part of the activations in L3). For the L2/L1 transfers, insisting on a much
smaller L1 size (64 KB), tiling is specified as a constrained optimization problem
with the objective of maximizing L1 utilization and, at the same time, maximizing
a few hardware-aware heuristics (e.g., favor tiles that are better parallelized due to
their specific sizes).

Overall, we observe that for our CNN, the AutoTiler finds a better solution for
layers that are spatially large and without many input channels, such as the first

2https://github.com/pulp-platform/pulp-nn
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convolutional layer; DORY, on the other hand, performs better for layers where
the number of inputs channels is high. By inspection of the generated code, we
also notice that the AutoTiler can fuse consecutive layers (e.g., convolutions, max-
pooling, and ReLU) and apply multiple operations directly on the same L1 tile,
avoiding an intermediate copy to L2. This is the case for the first part of PULP-
Dronet (i.e., Conv5 × 5 + MaxPool), where the AutoTiler merges the first two
layers, while DORY executes them one after the other, as it can not store in the L1
memory all the needed parameters required by the HWC layout. Both GAPflow
and NEMO/DORY implement, whenever possible, pipelined memory/computation
phases using the GAP8’s µDMA (L3-L2).

Platform integration & low-level control

Figure 4.2. Overview of the main acquisition and control loops. The AI-
deck is in charge of image acquisition and perception, and the drone’s MCU
runs the application that interprets the perception results and transforms
them into flight commands

.

To enable autonomous navigation on the nano-drone, the inference results of the
CNN running in the AI-deck have to be communicated to the flight controller,
running on the Crazyflie’s main board. This controller runs control algorithms
that drive the drone and run on top of the STM32F405 MCU. The Crazyflie flight
controller and the AI-deck communicate via UART communication at 115200 baud.
Figure 4.2 shows the stages of perception and control. In the AI-deck side (purple),
whenever a new inference is started for the current image (k) in the CL, the FC
also commands the acquisition of the next image (k+1), which will serve as input
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for the next inference. When a new inference result is available, the AI-deck sends
this data via UART. When using GAPflow, the outputs of the deployed CNN are
also quantized at 8 bits: the inference result, therefore, simply consists of 2 bytes
- one for the probability of collision and one for the steering rate. When using
NEMO/DORY, the accumulated values after the final layer – represented as 32-bit
integers – are directly used as outputs. In this case, the inference result is sent as
a packet of 8 bytes.

The program that allows receiving the data from the AI-deck and processing it to
drive the drone is integrated as a new task in the drone’s firmware. To achieve a
computational-efficient data exchange, the drone’s MCU uses a DMA mechanism
to receive the UART data from the AI-deck. The DMA is configured to trigger an
interrupt whenever a certain number of bytes has been received – which is two in
our case. When the interrupt is triggered, a binary flag (i.e., 0 or 1) that indicates
new data available from UART is set. The main loop of the application evaluates
the value of this flag every 5ms, and in case it is set, it reads the two received bytes
and then resets the flag back to 0.

The main overview of the inference post-processing stages is given in Figure 4.2, and
each step (scale, transform, filter) is detailed by Listing 4.1. First, the two pieces of
data (data[0] and data[1]) associated with the output of the CNN are de-quantized
by multiplying them by the scaling constants resulting from the quantization pro-
cess. The scaling constants are programmed in the drone’s MCU firmware. Next,
I(k) is computed, which is an integral term that is added to the probability of
collision (pcol), and it is meant to penalize the lasting effect of the obstacles in the
field view. We noticed that the CNN is sometimes unsure about particular frontal
obstacles, and the probability of collision oscillates from values > 0.8 to values be-
low 0.3. Thanks to the addition of the integral term, when the CNN is indicating
an obstacle with a pcol > 0.3, I will increase over time, building up the drone’s
confidence that it is facing an actual obstacle. When the CNN’s inference indicates
an obstacle-free horizon (pcol < 0.3) for a longer time again, pcol − 0.3 is negative,
and therefore, the integral decreases. We clip the value of I(k) to the interval [0,3)
as negative confidence is meaningless (on the lower side), and excessive confidence
could result in a windup effect. We scale I(k) by a scaling constant w that estab-
lishes how much impact the integral has on the final value of the probability of
collision. In our experiments, we set this value to 0.2.

To convert the probability of collision pcol into forward velocity (vunfilt), we use a
simple square low – penalizing velocity quadratically with respect to pcol. Further-
more, to reduce the high-frequency noise associated to vunfilt, this value is filtered
using a first-order, low-pass infinite impulse response (IIR) filter defined by the
coefficient α1 (we use α1 = 0.6. The same type of filter (defined by α2) is also used
for the steering rate ωsteer. We use α2 = 0.7; we observed experimentally that a
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lower value results in an increased delay and in low-frequency oscillations around
the navigation path. The filtered values for the forward velocity and the steering
rate (vset and ωset) represent the new flight setpoint, which is transmitted to the
drone’s flight controller.

while 1:

if uart_data_available:

# reset the flag

uart data available ← 0

# scale data

pcol ← data[0] ∗ cscale0
ωsteer ← data[1] ∗ cscale1
# compute the integral

I(k)← I(k + 1) + (pcol − 0.3)
I(k)← clip[0,3)(I(k))

# transform: compute forward velocity

pcol ← pcol + w · I(k)
vunfilt ← vtarget(k) · (1− pcol)

2

# filter forward velocity

vset(k)← α1 · vunfilt + (1− α1) · vset(k − 1)
# filter steering rate

ωset(k)← α2 · ωsteer + (1− α2) · ωset(k − 1)
# command the drone

command(vset(k), ωset(k))

Listing 4.1. The listing describes the data processing that is applied to
the raw output of the CNN to obtain the setpoint that is communicated to
the drone’s commander.

4.1.3 Results

In this section, we present three main classes of results: i) regression and clas-
sification capability of the proposed PULP-Dronet V2 CNNs; ii) onboard power
analysis and inference performance; iii) in-field closed-loop control accuracy and
the real-time performance.

Regression & classification performance

In Table 4.1, the NNs quality metrics are reported as accuracy for the classification
problem and root-mean-squared error (RMSE) for the regression one, using the
Original and Himax datasets for both training and testing. We also evaluate the
impact of quantization w.r.t. floating-point calculation for each model proposed
and each training set. Particular attention should be given to the scores achieved
on the Himax testing set as it maps the type of images available on our flying drone.
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Table 4.1. Regression & classification – in bold our best fixed8 scores

Training Testing
NN

topology
Dataset Precision

Original Dataset Himax Dataset
RMSE Acc Acc

V1
Original

Float32 0.105 0.945 0.845
Fixed16 0.097 0.935 0.873

Original
+Himax

Float32 0.109 0.964 0.900
Fixed16 0.110 0.977 0.891

V2
GAPflow

Original
Float32 0.126 0.915 0.831
Fixed8 0.124 0.916 0.840

Original
+Himax

Float32 0.136 0.925 0.881
Fixed8 0.135 0.925 0.886

V2
NEMO/
DORY

Original
Float32 0.146 0.902 0.841
Fixed8 0.143 0.903 0.836

Original
+Himax

Float32 0.118 0.893 0.905
Fixed8 0.120 0.892 0.900

Testing on Original Dataset

When training on the Original dataset with a float32 format, both the proposed
models show a lower performance w.r.t. the PULP-Dronet V1. The drop is between
0.02 and 0.04 in RMSE and up to ∼ 4% of accuracy. This small difference can be
ascribed to i) the differences in the NNs topologies and quantization factors (8-bits
vs. 16-bits), and ii) a weak CNN’s convergence. We attribute this weak conver-
gence to the disjoint training datasets for the two problems (i.e., classification and
regression); the relatively large unified CNN front-end, resulting in shared weights
for two very different tasks up to the very last layer, may also contribute. Our
models reveal a different behavior when training on the Original+Himax dataset
(float32) than the equivalent models trained on the Original set. The GAPflow
model (similarly to the V1 baseline) slightly improves the classification performance
(∼ +1% accuracy) at the price of a small reduction in the regression capability
(∼ +0.01 RMSE); instead, the NEMO/DORY model shows the opposite behav-
ior, i.e., accuracy ∼ −1% and RMSE ∼ −0.02. The small differences are mainly
because the two pipelines use slightly different topologies (Figure 4.1), due to the
different approach to batch normalization in the quantized regime.

Our four 8-bit quantized models show a minimal variation in both RMSE and ac-
curacy metrics (within 0.003 and 0.1%, respectively) compared to the respective
float32 version, which is not the case for the V1 baseline as it improves the RMSE
of 0.008 and drops 1% of accuracy. The lower variance is the consequence of the dif-
ferent quantization schemes adopted. In fact, in contrast to the quantization-aware
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training used in V1, we do not need to retrain the NNs to change the numerical do-
main due to our post-training quantization. Moreover, post-training quantization
does not require the model’s training dataset, enabling a faster and straightforward
process for producing the quantized model.

Testing on Himax Dataset

When training on the Original dataset with a float32 format, all the three NN
topologies score a similar accuracy of ∼ 83− 84%. Instead, training on the Origi-
nal+Himax dataset, the accuracy of all models increases up to ∼ 88−90%, proving
the beneficial effect of the dataset extension. Finally, the 8-bit quantization of
the V2 models does not affect the accuracy, keeping the same maximum (90%)
achieved by the 16-bit quantized baseline (V1), which again shows higher variance.
Ultimately, the proposed PULP-Dronet V2 models achieve the same accuracy of
the V1 baseline on the in-field-collected Himax dataset, despite the reduced data-
type (8-bit vs. 16-bit), leading to a highly desirable 2× reduction in the memory
footprint. Including the Himax dataset in the training process does not aim at
mitigating any quantization effect, but to ensure a better tuning between the CNN
model and the onboard camera. In conclusion, regardless of the testing dataset,
the 8-bit quantization preserves the CNN’s accuracy unaltered w.r.t to the float32
representation and allows us to deploy and run our model on the target platform
successfully3.

Power consumption & inference performance

We evaluate the execution time and power traces of the proposed models run-
ning them on the GAP8 and using a RocketLogger data logger [92] (64 ksps).
For these experiments, the SoC’s operating points are FC@50MHz, CL@100MHz,
VDD@1V, as the most energy-efficient configuration [18], and FC@250MHz, CL@175MHz,
VDD@1.2V to push the system at its maximum performance. The GAPflow model
processes one frame in 1.05Mcycle, while the NEMO/DORY model needs 11%
fewer cycles. Since our models use almost the same topology of PULP-Dronet
V1, they all compute ∼ 41MMAC/frame as the original baseline. We mention,
however, that each MAC in PULP-Dronet V2 is an 8x8-bit MAC rather than a
16x16-bit MAC as in V1.

Figure 4.3 shows the power consumption for one frame inference for both models
(most energy-efficient configuration or energy-efficient configuration) and highlights

3The model’s memory footprint could be further reduced with stronger quantization, e.g.,
4/2/1-bit; however, this approach is not guaranteed to be sufficient to maintain the full precision
regression/classification performance as shown by our work and by the SoA when adopting 8-bit
quantization [63, 62].
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the time intervals associated with the execution of each CNN layer. The GAPflow
model (Figure 4.3-A) shows an initial extra stage to normalize the 8-bit input
data-range to [-127,+128], as well as some cluster idleness at the beginning of layer
7, due to a µDMA transfer wait. A major difference between the two models
is visible in the first two layers (i.e., conv5×5 and max-pool), as the GAPflow
model achieves better performance merging them (see Section 4.1.2). Neverthe-
less, NEMO/DORY outperforms its counterpart during the Conv+ReLU pattern,
present in each ResNet block.

Figure 4.3. GAP8’s power waveforms for: FC@50MHz, CL@100MHz,
VDD@1V, i.e., the most energy efficient configuration.

In the most energy-efficient configuration, the GAPflow and NEMO/DORY models
achieve similar performance for one frame inference, as ∼ 9 frame/s @ ∼ 40mW
and ∼ 10 frame/s @ ∼ 35mW, respectively, improving the throughput vs. PULP-
Dronet V1 (40%−60%). Running the same test, with the SoC’s maximum frequen-
cies, the GAPflow model scores ∼ 17 frame/s @ ∼ 119mW, while the NEMO/-
DORY one peaks at ∼ 19 frame/s @ ∼ 102mW. Even if the GAPflow model
exposes a more balanced utilization of the available cores, i.e., almost constant
CL power consumption, it pays the overhead for the CWH layout applied to small
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WH. Conversely, DORY, even with a less balanced parallel workload, i.e., scattered
profile inside layers 3, 4, 5, 6, and 7, reduces overheads due to its HWC layout.

Ultimately, quantization is a key-enabler technique to fully deploy a DNN model
on resource-constrained COTS MCUs, which usually lack floating-point units (e.g.,
the GAP8 SoC). For the same reason, it is hard to precisely compare the execution
performances of a full-precision model vs. a quantized one on such a processor.
An option is represented by soft-float emulation of all floating-point operations;
although, this approach would introduce a major execution overhead. Therefore,
we show how quantization improves memory footprint and inference throughput
by comparing the proposed 8-bit model to the quantized V1 baseline (16-bit). On
the one hand, the 2× reduction in the data-type format halves the total size of
parameters from 0.64MB to 0.32MB. On the other hand, it allows for efficient
exploitation of the GAP8’s SIMD instructions, resulting in a throughput speedup
of 1.5-1.6× w.r.t. the baseline. This mismatch in speedups (i.e., memory footprint
and throughput gain) can be ascribed to multiple factors, such as i) non-MAC and
non-accelerable operations, and ii) non-idealities, e.g., imbalanced workload and
marshaling overheads.

Figure 4.4. The nano-drone’s power envelope break-down, with AI-deck zoom-in.
A/B) NEMO/DORY, and C/D) GAPflow framework. SoC running at
FC@50MHz, CL@100MHz (A/C) and FC@250MHz, CL@175MHz (B/D), the
most energy efficient and maximum performance configurations, respectively.

State-of-the-Art comparison

We validate the two proposed GAP8’s pipelines, comparing their performance
against one of the most popular CNN libraries for MCUs: CMSIS-NN [67]. CMSIS-
NN peaks at 0.71MAC/cycle on 8-bit data convolutions [67] on a CNN’s layer sim-
ilar to our 3×3 convolution, for which we achieve at best 0.81MAC/cycle/core and
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1.0MAC/cycle/core for the GAPflow and NEMO/DORY, respectively. Consider-
ing all the inevitable non-idealities, such as sub-optimal load balancing, we yield
a weighted performance, for the entire CNN, of 3.9MAC/cycle (GAPflow) and
4.7MAC/cycle (NEMO/DORY), employing all the GAP8’s cores. To concertize
this comparison, we consider the CMSIS-NN on top of a high-performance Cortex-
M7-based single-core STM32H723VE, which can achieve up to 390MMAC/s @
203mW, running at 550MHz. The GAP8, at the maximum frequency of CL@175MHz,
achieves 1.44GMAC/s @ 102mW and 1.14GMAC/s @ 119mW with NEMO/-
DORY and GAPflow, respectively. This analysis shows that, whether using the
GAPflow or the NEMO/DORY pipeline, the GAP8 outperforms the Cortex-M7-
based MCU with CMSIS-NN by more than 1.7× in power consumption and by
more than 3× in throughput. The throughput is of high importance because it
has a significant impact on the navigation capabilities, as showed and discussed in
Section 4.1.3.

Power break-down

This section analyzes the power-breakdown of the entire nano-UAV running both
PULP-Dronet V2 pipelines – i.e., NEMO/DORY and GAPflow. We frame this in-
vestigation also considering – for each PULP-Dronet V2 version – the two GAP8’s
operating points introduced in Section 4.1.3, called most energy efficient and maxi-
mum performance, respectively running at FC@50MHz CL@100MHz, and FC@250MHz
CL@175MHz.

The analysis in Figure 4.4 refers to three main parts: i) the nano-drone’s motors,
ii) its basic electronics running the stock flight controller, and iii) the AI-deck exe-
cuting our visual-workloads. The electronics slice accounts for both flight controller
MCUs (i.e., STM32 and nRF51) and all the basic platform’s sensors (e.g., IMU,
barometer). Additionally, for all four configurations, we also report a break-down
zoom-in on the three main AI-deck’s components: i) the GAP8 SoC, ii) the off-
chip DRAM, and iii) the ULP camera. The reader should note that the DRAM
is considered active at full speed only for the time required to copy the CNN’s
parameter from L3 to L2 and otherwise turned off. Similarly, Flash memory is
not considered in this power break-down evaluation, as it is necessary only for the
system initialization (i.e., data movement from Flash to DRAM) and then never
again used during the drone’s mission.

Figure 4.4 shows how the four motors consume the vast majority of the total power
budget, i.e., 7.3W on average, while the rest of the drone’s electronics accounts for
277mW in all four configurations, as they are always kept at the same operative
conditions. Conversely, the power consumption for the AI-deck changes depending
on both exploration parameters, but it is never higher than 1.64%, resulting in a
motors’ power consumption between 94.8% and 96.0% of the total budget.
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Focusing on the comparison between the two PULP-Dronet V2 versions, we can
identify two main behaviors: i) the version developed using the NEMO/DORY
framework always shows higher average power consumption for the DRAM and
ii) the GAPflow -based version always has a marginally higher average power con-
sumption for the GAP8 computation. In the most energy efficient configuration,
the NEMO/DORY implementation accounts for the 0.63% of the system’s power
consumption (Figure 4.4-A), while GAPflow accounts for the 0.67% (Figure 4.4-C).
In fact, as shown in Section 4.1.3, the GAPflow -based implementation brings, on
average, to a slightly higher power consumption compared to NEMO/DORY one,
39mW and 34mW, respectively. Moreover, due to the L2 data pre-loading during
the initialization stage, the GAPflow version accesses the DRAM fewer times than
its counterpart, resulting in a lower DRAM power consumption w.r.t. NEMO/-
DORY, i.e., 8mW and 10mW, respectively.

Moving to a comparison on the SoC’s operating points, the max performance con-
figuration gives a slight advantage to the NEMO/DORY version of PULP-Dronet,
which makes the AI-deck consuming 1.43% of the total system’s power (Figure 4.4-
B), while using GAPflow the percentage becomes 1.64% (Figure 4.4-D). This small
advantage comes from the fact that the NEMO/DORY version, requiring more L3-
L2 data transfer w.r.t. the GAPflow version, can benefit more from the increased
FC’s frequency of the max performance configuration. This difference results in
a minimal reduction of the AI-deck’s power consumption for the NEMO/DORY-
based version, as much as 0.04% and 0.21% compared to the GAPflow, for the
most energy-efficient configuration and the maximum performance one, respec-
tively. Therefore, from a practical viewpoint, both PULP-Dronet V2 versions
perform with a very similar power envelope when deployed on our nano-drone.
Ultimately, in all four configurations, we can remark how the addition of the AI
workload to our quadrotor only accounts for the smallest portion of the power
consumption of the entire system, never higher than 1.64%. Such a small impact
on the whole system’s power budget demonstrates the capability of running the
PULP-Dronet V2 at the highest performance point, only marginally impacting the
quadrotor lifetime. This enables the possibility to further extend the onboard in-
telligence with additional tasks (e.g., tracking, detection, localization), aiming at
more complex mission objectives.

In-field closed-loop evaluation

In the following, we perform the in-field evaluation of the navigation capabilities of
the PULP-Dronet V2, using the implementation generated by the GAPflow frame-
work, and deploying it on a Crazyflie 2.1 nano-drone equipped with an additional
AI-deck, as illustrated in Section 4.1.1. We focus on four key aspects to assess the
performances of our closed-loop nano-UAV: i) the obstacle avoidance task; ii) the
lane following task; iii) the longest flight distance in a familiar environment; iv) the
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generalization capability, testing the autonomous navigation in never-seen-before
environments.

Figure 4.5. A) Experimental setup for the obstacle avoidance evaluation. In-field
tests are carried sweeping vtarget, for both the most energy efficient (B) and the
maximum performance (C) SoC’s configurations.

Obstacle avoidance task

One of the two outputs of the Dronet CNN is the probability of collision used to
predict a potential obstacle in the path followed by the nano-drone. In this set
of experiments, we assess the drone’s robustness in avoiding dynamic obstacles by
stressing the closed-loop system with an ad-hoc setup, as shown in Figure 4.5-
A. The drone flies a straight trajectory of 4.5m where a dynamic obstacle (i.e.,
0.7×0.7m cardboard sheet) appears at the end of the path, leaving only 1.5m
for braking and avoiding the collision – i.e., braking-space. The straight flight
is enforced by silencing the steering angle output of the CNN – i.e., always 0.
We perform and record all experiments in a room equipped with a mm-precise
motion capture system @ 50Hz (i.e., Vicon) to analyze the drone’s behavior in
post-processing.

We investigate this scenario by sweeping two key parameters: i) the drone’s target
forward velocity (vtarget), i.e., a software parameter representing the forward velocity
the drone tries to reach if no obstacle is detected, and ii) the CNN’s inference
throughput by means of the two SoC configurations, introduced in Section 4.1.3,
named most energy-efficient and max performance. This evaluation is depicted in
Figure 4.5-B for most energy-efficient configuration (FC@50MHz, CL@100MHz)
peaking at 8.7 frame/s, and in Figure 4.5-C for the maximum performance one
(FC@250MHz, CL@175MHz) up to 12.8 frame/s.
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We stress the system with a growing velocity vtarget that takes the following val-
ues: 0.5m/s, 1.0m/s, 1.5m/s, and 1.75m/s in Figure 4.5-B, and 0.5m/s, 1.0m/s,
1.5m/s, 1.75m/s, and 2.0m/s in Figure 4.5-C. As the vtarget is a software param-
eter, we also report, for each test, the actual peak velocity when the drone begins
braking (vbrake) recorded with the Vicon. We stop this incremental procedure once
we reach the limit for which the nano-drone can not prevent the collision anymore.
Additionally, in all plots, we highlight a dashed vertical line marking the time when
the moving obstacle appeared in the drone’s view.

The system proves to be fully working up to vbrake = 1.41m/s and vbrake = 1.65m/s,
in the most energy-efficient configuration and the maximum performance one, re-
spectively. We can notice how the maximum performance configuration provides a
similar safety distance (d =∼ 0.25m) w.r.t. its counterpart, despite their different
vbrake, thanks to the higher inference throughput (i.e., 12.8 frame/s vs. 8.7 frame/s).
Lastly, referring to the PULP-Dronet baseline [24]; for the same FC@50MHz,
CL@100MHz configuration, we score a 25.3% higher vbrake/braking-space ratio,
confirming not only the successful deployment of our PULP-Dronet V2 on the
COTS Crazyflie nano-drone but also increased promptness of the system.

Lane detection task

In the following experiments, we assess the PULP-Dronet V2 capability to predict
the correct steering angle under two controlled curvature scenarios: a smooth turn
of 45◦, and a more challenging 90◦ (i.e., sharp turn). The setup consists of a
path 4.5m long and 1.3m wide with a left-side turn in the middle, as depicted in
Figure 4.6-A/B with the dotted lines indicating the boundaries of the path. We
explore two parameters i) the target forward velocity (vtarget) and ii) the CNN’s
throughput, like in the previous obstacle avoidance experiments, utilizing the two
SoC’s configurations introduced in Section 4.1.3. The software parameter vtarget
is swept with a granularity of 0.25m/s for the 45◦ case, and a smaller 0.1m/s
growing-step for the 90◦ setup, due to its higher complexity.

Starting from vtarget = 0.5m/s for the 45◦ setup (Figure 4.6-A) and vtarget = 0.3m/s
for the 90◦ one (Figure 4.6-B), we keep increasing the vtarget until the system reaches
its limit (i.e., collision). This exploration defines the actual maximum average
velocity (vavg) – including the initial acceleration phase – for which the nano-drone
can complete this lane detection task, resulting in:

• scenario 45◦, configuration FC @ 50MHz CL @ 100MHz: maximum vavg =
1.29m/s;

• scenario 45◦, configuration FC @ 250MHz CL @ 175MHz: maximum vavg =
1.47m/s;

• scenario 90◦, configuration FC @ 50MHz CL @ 100MHz: maximum vavg =
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Figure 4.6. Lane detection task evaluation. We assess the CNN’s capability of
predicting the correct (ground truth) steering angle in a scenario featuring a left–
side turn – 45◦ (A) 90◦ (B) – at the center of the path. We sweep the forward target
velocity (vtarget) identifying the limit of our system – in red failing configurations.

0.49m/s;

• scenario 90◦, configuration FC @ 250MHz CL @ 175MHz: maximum vavg =
0.59m/s;

The increased throughput of themaximum performance configuration (12.8 frame/s
vs. 8.7 frame/s), enables higher flight speed in both testing scenarios. As expected,
the higher complexity of the 90◦ scenario is confirmed by a lower maximum vavg
compared to the 45◦ counterpart.

The 2D trajectories of all tests are reported in Figure 4.6, where we define as ground
truth (dashed lines) the trajectory an ideal nano-drone would follow, keeping the
path center for the entire flight. Comparing the actual trajectories with the ground
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Table 4.2. Steering angle RMSE and actual average velocity.

vtarget[m/s]

SoC configuration

FC@50/CL@100 MHz FC@250/CL@175 MHz

RMSE [m] vavg[m/s] RMSE [m] vavg[m/s]

T
u
rn

cu
rv
a
tu

re

45°

0.5 0.07 0.63 0.26 0.62

0.75 0.12 1.07 0.21 0.78

1 0.07 0.92 0.22 1.32

1.25 0.17 1.29 0.20 1.36

1.5 collision 1.57 0.23 1.47

90°
0.3 0.14 0.36 0.11 0.34

0.4 0.17 0.49 0.16 0.44

0.5 collision 0.63 0.20 0.59

truth one, in Table 4.2, we report the root mean squared error (RMSE) for all tests.
For both scenarios, we can see a general trend where the higher the actual velocity
is (vavg) the more the RMSE grows, ranging between 0.07-0.26m and 0.11-0.20m,
for the 45◦ and 90◦ case, respectively.

A second interesting trend can be seen in the variation of the RMSE between the
two SoC configurations of the 45◦ scenario. At a first look, it seems that a higher
throughput penalizes the system’s capability, increasing the RMSE. However, by
looking at the drone’s trajectories in Figure 4.6-A (right plot), it is clear how the
successful tests are clustered into two groups:

• tests vtarget 0.5 and 0.75 (yellow and blue curves) tend to follow a shorter path
trajectory;

• all the other curves exhibit a right-hand drive policy fostered by the dataset
labeled with steering angles (i.e., Udacity samples are collected in the US).

In both cases, the ultimate trajectory is slightly away from the ideal central ground
truth, increasing the RMSE but still accomplishing the mission.

Longest flight distance

In this set of experiments, we want to assess our closed-loop system’s autonomous
navigation capability in a free-flight mission, exploring a “friendly” environment.
For this purpose, we select as mission field the same 110m-long corridor (U-shape)
used for collecting part (16%) of the Himax dataset images. The mission field

46



4.1 – Automated End-to-End Optimization and Deployment of DNNs on nano-drones

presents only static obstacles (e.g., walls, doors, and furniture), where we perform
25 tests, sweeping the vtarget parameter. We employ a growing-step of 0.5m/s,
from vtarget = 0.5m/s to 2.5m/s, testing each configuration 5 times. All these
experiments are made by selecting the maximum performance SoC’s configuration
(FC@250MHz, CL@175MHz), able to deliver up to 12.8 frame/s inference.

Table 4.3. Evaluation of the flight time and average velocity when the drone flies
through a 110m long corridor.

vtarget

[m/s]

vavg

[m/s]

Average

time [s]

Distance

[m]

Success

rate

0.5 0.51 216 110 5/5

1 0.98 112 110 5/5

1.5 1.72 64 110 5/5

2 1.96 56 110 4/5

2.5 2.29 48 110 1/5

Figure 4.7. Samples of: A) the training images (both Udacity and Himax
dataset); B) working-place corridor; C) office room with furniture; D) narrow
pipeline-like tunnel; E) public street.

In Table 4.3, we summarize all the experiments for each vtarget configuration, re-
porting the average flight time over the successful runs and highlighting in bold
the peak performances. We achieve the maximum success-rate (5 success out of
5 tests, per configuration), with an actual mean flight velocity (vavg) from 0.51
to 1.72m/s. Increasing the vavg to 1.96m/s, lowers the the success-rate to 80%,
defining the performance upper bound of our system, as increasing even further the
vavg to 2.29m/s the success-rate quickly drops to 20%. With such high velocity
also comes an increased acceleration the drone applies to reach the desired vtarget,
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resulting in a high positive pitch. Therefore, the camera mostly captures the floor,
which turns in a minimal time to react to the obstacles, flying at high speed. These
results prove a superior performance compared to PULP-Dronet V1, which for the
same flown distance reports an average velocity of 0.5m/s. While PULP-Dronet
V1 used a linear mapping between the probability of collision and the forward ve-
locity, we extended this mechanism with a quadratic relation. This results in a
more significant reduction in the forward velocity while approaching an obstacle,
which gives the drone more time to steer when flying at high velocities (prior to
steering) 4. The main limitation of this experiment is that the corridor is “known”
to PULP-Dronet V2 as the training set contains images of the corridor: in the
next section, we explore the network’s capability to generalize to never-seen-before
testing environments.

Generalization capability

As the last part of our in-field evaluation, we present a set of functional experiments
aiming at demonstrating the robustness of the PULP-Dronet V2 CNN, testing the
closed-loop system in different deployment scenarios. As reported in Table 4.4, and
showcased in Figure 4.7, we explore four different application scenarios, namely:

1. corridor: a working-place corridor that is not part of the Himax dataset;

2. office room: a room with tables and lab equipment;

3. narrow tunnel: a narrow pipeline-like tunnel (∼5m long and ∼1.2m wide)
made of cardboard;

4. street: a public street, with road signs and cars.

Orthogonal to the four scenarios, we also consider a second testing criterion: the
presence/absence of obstacles in the path the nano-drone should follow. For the
cases corridor, office room, and street, the obstacle is represented by a person that
can be either standing still in the center of the path (i.e., static obstacle) or moving
and crossing the trajectory of the drone or stopping in front of it (i.e., dynamic
obstacle). Regardless of the type of obstacle, the goal is to adjust the moving
direction, avoiding the obstacle. Instead, for the narrow tunnel case, we employ
a small cardboard panel as an obstacle, still differentiating between a static and
dynamic configuration. All these experiments refer to a setup with a drone’s mean
target velocity vtarget = 0.5m/s.

Considering the training datasets shown in Figure 4.7-A, the selected deployment

4As supplementary material, we make available video footage of one run, with vtarget = 2.0m/s,
available at https://youtu.be/41IwjAXmFQ0.

48

https://youtu.be/41IwjAXmFQ0


4.1 – Automated End-to-End Optimization and Deployment of DNNs on nano-drones

fields introduce a significant difference between the visual cues present in the in-
field images and those the CNN has been trained with. The main two sources of
difference between the training and deployment can be ascribed to i) environmental
conditions (e.g., absence of road lane signs in the street) ii) photometric/geometric
differences between the cameras used to acquire the vast majority of the training
dataset and the one available on the mission drone (e.g., field-of-view and resolu-
tion).

Table 4.4. In-field evaluation scenarios over multiple runs with and without
obstacles (mean flight time : success-rate).

S
ce

n
a
ri
o

Obstacle

None Static Dynamic

1. Corridor 144 s : 6/6 137 s : 3/6 63 s : 4/6

2. Office room 86 s : 5/6 78 s : 4/6 67 s : 5/6

3. Narrow tunnel 12 s : 5/6 0 s : 0/6 19 s : 4/6

4. Street 171 s : 6/6 148 s : 6/6 148 s : 6/6

In Table 4.4, we report the results in terms of mean flight time (across multiple
runs) and success-rate, for each case. For scenarios 1, 2, and 4, we consider the test
successful if the drone follows the path, with no crashes, for at least 60 s. Instead,
for scenario 3, we define as success criteria the capability of the nano-drone to
complete the exploration of the entire narrow tunnel. Among all successful cases,
the mean flight time spans from 12 s to 171 s, for scenario 3 with no obstacles and
scenario 4 with no obstacles, respectively.

The PULP-Dronet V2 sample application shows a high success rate for all con-
figurations except for the narrow tunnel with static obstacles, in which case the
nano-drone gets stuck in the obstacle proximity, slowly drifting towards it, until it
suddenly crashes. As introduced in Section 4.1.1, the training datasets have disjoint
labels, with the Udacity set providing only steering labels and both Bicycle and
Himax sets coupled with only collision ones. Therefore, the actual tasks learned
by the CNN can be defined as “predict the presence of obstacles” and “predict the
steering to follow the lane”, but not explicitly “predict the steering to prevent a
collision”. This limit of the Dronet CNN (all versions) could be mitigated in the
future by either introducing a new training dataset providing both labels for each
image sample or introducing an additional level of intelligence between the CNN
and the low-level control.

However, this group of tests aims at assessing the generalization capability of the
PULP-Dronet V2 baseline model without introducing any additional deep learning
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technique, such as deep domain adaptation [93], dataset augmentation [19] or con-
tinual learning [94], as they would be out of the scope of this manuscript. All the
nine configurations presented in this evaluation are provided with video footage of
the experiments available at https://youtu.be/Cd9GyTl6tHI.

4.1.4 Conclusion

The recent progress in deep learning research opens new possibilities for using
vision-based end-to-end neural networks to enable nano-drone autonomous naviga-
tion. The MCUs found in nano-drones have limited memory and computational re-
sources, and therefore they are unable to run complex CNN models in their original
form. However, the available solutions for complexity reduction of the CNNs used to
facilitate navigation mainly involve hand-crafted modifications and typically require
multiple iterations. This Section fills this gap by analyzing and integrating tools and
methodologies that automate this optimize-and-deploy process, automating fine-
grained hardware-aware tuning of the CNN. We perform an extensive experimental
evaluation of the proposed flow, using a SoA CNN for autonomous nano-drone
navigation [18], achieving ∼ 3−4mJ/frame inference and reducing the memory
requirements by 2× and improving the throughput by 1.6× while preserving the
same ∼ 90% classification accuracy of the original implementation. Furthermore,
we perform an in-field evaluation of the navigation capabilities of a nano-drone,
considering the collision avoidance, steering capabilities, maximum flown distance,
and generalization in never-seen-before environments. We record a maximum in-
door flight distance of 110m and an average velocity of 1.96m/s, 4× higher than our
PULP-Dronet baseline. We foster the research community releasing as open-source
our code and models: https://github.com/pulp-platform/pulp-dronet.

The contribution of the author in this Chapter have been the following:

• trainig of the CNN models;

• quantization of the CNN with the NEMO;

• evaluation of the CNNs on the datasets, before and after quatization;

• deployment of the CNN with the DORY;

• evaluation of the CNN’s power consumption and the inference performance;

• state-of-the-art comparison with repsect to the CMSIS-NN library;

• power breakdown analysis of the nano-UAV.
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4.2 A Sim-to-Real Deep Learning-based Frame-
work for Autonomous Nano-drone Racing

Figure 4.8. Our nano-drone winning the IMAV’22 “Nanocopter AI Challenge.”

Competitions have always been a catalyst for scientific and technological progress.
As the space race was a driver to develop programmable computers and microchips,
likewise, in recent years, autonomous drone racing pushed the development of
cutting-edge navigation algorithms, including artificial intelligence (AI), running
aboard unmanned aerial vehicles (UAVs) [26, 25, 16]. Competitions act as a proxy
to improve UAVs’ perception, planning, and control skills: from 2016 to date,
the racetrack’s average flight speed of autonomous drones increased from 0.6 to
22m/s [35]. Eventually, these advancements positively impact a more comprehen-
sive range of applications where robust, agile, and precise autonomous navigation
is crucial, such as rescue missions [9] and human-robot interaction [19].

So far, these competitions have focused on micro-sized drones, i.e., ∼30 cm-wide
robots capable of hosting powerful processors and rich sensors, autonomous nano-
sized drone racing constitutes a newborn category employing palm-sized UAVs.
The first competition of this kind was the “Nanocopter AI Challenge” hosted at
the 13th International Micro Air Vehicle conference (IMAV’22). This last-born class
of robotic competitions poses a new challenge to roboticists due to the small size
of nano-drones, i.e., 10 cm in diameter and a few tens of grams in weight. While
nano-drone racing targets tasks similar to major competitions for bigger drones
(e.g., AlphaPilot, IROS Drone Racing, etc.), their ultra-tiny form factor allows
only minimal onboard resources, i.e., memory, computation, and sensors.
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In the IMAV’22 competition, all challengers run their navigation algorithms on the
same platform: a commercial off-the-shelf (COTS) Crazyflie 2.1 nano-drone (Fig-
ure 4.8) equipped with the AI-deck board featuring a GWT GAP8 System-on-Chip
(SoC) [56] and a grayscale, low-resolution camera [24]. Compared to the typical
processors found on micro-sized racing drones [25, 26], e.g., Nvidia Jetson Xavier,
the GAP8 SoC has more than 1000× less compute power and memory. Despite
this, the competition encouraged onboard computation by granting a 5× score mul-
tiplier while challenging the nano-drone with agile maneuvers to i) avoiding static
and dynamic obstacles and ii) passing through a set of gates in a never-seen-
before indoor arena. In fact, before the competition, no arena map or real-world
dataset was released; participants could only access a photorealistic simulator.

This Section’s main contribution is a thorough analysis and description
of the strategy, methodology, and technical implementation we employed
to win the IMAV’22 competition: a fully-onboard deep learning-based
visual navigation framework trained only on simulation data. In detail,
we present i) an exhaustive discussion of our strategy, which accounts for both
the competition’s guidelines and the nano-drone’s limitations; ii) a convolutional
neural network (CNN) for obstacle avoidance derived from the open-source PULP-
Dronet [1] and trained only on simulation images; iii) mitigation of the sim-to-real
gap [95] via aggressive photometric augmentation, label balancing, and comprehen-
sive data generation; iv) three alternative navigation policies, which we characterize
both in simulation and in the field.

Our final system, employing the best-performing navigation policy, ranked first
among six contending teams at the IMAV’22 competition. In our best run, we
scored 115m of traveled distance in the allotted 5min-flight, never crashing, dodg-
ing dynamic obstacles, and only using computational resources aboard our nano-
drone. Our result demonstrates the effectiveness of the proposed sim-to-real mit-
igation strategy, our implementation’s robustness, and our rationale’s soundness,
and by sharing our insights, we aim to provide the research community with a solid
groundwork for the evolution of this field.

4.2.1 The IMAV’22 Nanocopter AI Challenge

The competition: the metric to assess each team’s score is the distance trav-
eled within the mission area (the 8×8m green square shown in Fig. 4.9-A) within
the allotted time (5min), employing a Crazyflie 2.1 nano-drone. This distance is
measured with a motion capture system that ignores the part of the trajectory
lying outside the mission area. Participants can choose between two coefficients
of difficulty, one accounting for environmental complexity (αenv) and the other for
computational resources (αcomp). Additionally, in the arena, there are two rect-
angular gates through which the nano-drone can fly; every time the drone passes
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through a gate, the distance is increased by an additional 10m.

Figure 4.9. A) the 10×10m competition arena. B) the robotic platform.

Participants can choose among three levels of environmental complexity: only static
gates (αenv = 1×), static gates and obstacles (αenv = 5×), and static gates and
dynamic obstacles (αenv = 10×). If the nano-drone uses remote computation (i.e.,
Wi-Fi-connected commodity laptop), the αcomp is 1×; for onboard computation,
instead, it is αcomp = 5×. The final score is calculated as follows:

Score = (Sdist + 10 · Sgates) · αenv · αcomp (4.2)

where Sdist is the total traveled distance and Sgates is the number of times the
drone passes through the gates. Time counting is never stopped (except for battery
swaps): crashing, re-flashing, rebooting, components replacements, and other flight
interruptions are allowed, but they will ultimately penalize the score. The teams can
choose the starting position of the drone, but after a flight interruption, subsequent
take-offs must occur near the location where the flight was interrupted.

Robotic platform: all teams competed with the same robotic platform comprising
a COTS Bitcraze Crazyflie v2.1 drone and two additional onboard modules, as
shown in Fig. 4.9-B. The drone is a modular 27 g 10 cm quadrotor integrating
sensing, communication, and actuation subsystems with an STM32F405 MCU for
sensing, state estimation (through an extended Kalman Filter) and control. The
UAV can fly up to ∼7min employing a 250mAh battery. The first additional
module is the Flow-deck, a small (21×28mm) printed circuit board (PCB) that
provides additional sensors to improve the state estimation: a VL53L1x Time-of-
Flight distance sensor for measuring the height from the floor and a PMW3901
low-resolution (35×35 px) optical-flow camera.
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The second expansion board employed is the AI-deck, a PCB for vision-based on-
board processing. The module embeds i) an Himax HM01B0 low-power (∼4mW)
QVGA monochrome image sensor camera, ii) a NINA-W102 MCU supporting
Wi-Fi and Bluetooth communications, and iii) GAP8, an ultra-low-power (ULP)
SoC capable of efficiently managing computation-intensive workloads by employ-
ing hardware-enabled (8-core cluster of processing cores) parallel programming
paradigms. The SoC also features standard interfacing peripherals (SPI, I2C,
UART) as well as different hierarchically organized SRAM memories (L1:64 kB
L2:512 kB).

Simulator: the IMAV challenge organizers provided all teams with a simulator
developed and released by Bitcraze, based on the open-source Webots robot simu-
lator. The simulator includes a simple PID controller for the attitude control of a
Crazyflie quadcopter. It emulates the 87◦ field of view of the drone’s Himax cam-
era, and it provides a photorealistic world model of the competition arena. Several
obstacles in the simulator resemble the ones of the IMAV challenge, including an
orange pole; an orange gate; three panels with a width of 1m, 1.5m, and 3m,
respectively; curtains; carpets; nets.

Our strategy: given IMAV’s rules, to maximize the overall score, the nano-drone
should: i) address two concurrent complex vision-based tasks, i.e., obstacle avoid-
ance and gate-based navigation; ii) rely only on onboard computation; iii) operate
in the most challenging environment. Relying on off-board computation can ease
the computational burden. However, this approach reduces the overall score due
to the lower coefficient of difficulty and decreases the drone’s reactiveness due to
the additional Wi-Fi communication latency. Instead, individually addressing even
one of the two tasks would represent a significant step forward in the SoA. Neither
simulation-based obstacle avoidance nor gate-based navigation is still demonstrated
in a challenging autonomous nano-drones race. At the same time, as previously
discussed, the computational and memory limitations of embedded platforms such
as GAP8 still constitute a strong holdback against deploying multiple tasks si-
multaneously. Therefore, for the IMAV’22 competition, we prefer to address only
one of these tasks while challenging our system with fully onboard computation
(αcomp = 5×) and maximum environmental difficulty (αenv = 10×).

To choose which task to perform, we consider two ideal nano-drones A and B flying
at a mean speed of 1.5m/s in a thought experiment. A performs obstacle avoidance
in the most complex environment (αenv = 10×), while B addresses gate-based
navigation in an obstacle-free scenario (αenv = 1×). In a 5min flight, the A system
would score 7500 points. Assuming the two gates are 3m apart, the B system
would travel 750m, passing through the gates 250 times, leading to a final score of
3250 points. Therefore, we believe that with the rule set of this competition, an
autonomous nano-drone that quickly explores its surroundings and reliably avoids

54



4.2 – A Sim-to-Real Deep Learning-based Framework for Autonomous Nano-drone Racing

collision with dynamic obstacles (scenario A) has the potential to mark a higher
score than a system designed for gate-based navigation in the simpler scenario B.

4.2.2 Navigation policies

Deep Neural Network: the neural network used in this Section is derived from
the open-source PULP-Dronet CNN [1]. We keep the same network topology con-
sisting of three consecutive residual blocks (ResBlocks). Each ResBlock comprises
a primary branch that executes two 3×3 convolutional layers and a parallel by-pass
employing a 1×1 convolutional layer. Unlike the previous work, whose outputs con-
sisted of a single collision probability and a steering angle, our CNN features three
collision probabilities by splitting the input image horizontally in three 54×162 px
left, center, and right portions of the field-of-view (FoV). We exploit only simulated
data to train the network, and the data collection procedure is detailed in Sec. 4.2.3.
After training the network, we apply fixed-point 8-bit quantization to its weights
to: i) reduce the CNN’s memory footprint by 4×, resulting in a size of 317 kB, and
ii) to enable optimized 8-bit fixed-point arithmetic, resulting in a throughput of
30 frame/s when deployed on GAP8. We define three navigation policies that rely
on the CNN outputs: Baseline, Policy 1, and Policy 2.

Baseline: for each input image, the drone flies towards the direction with the lowest
collision probability among the three CNN’s outputs. In case all three probabilities
are higher than a given threshold Th, the drone spins in place by 180◦ ± a random
angle in the [0◦, 30◦] range. To generate the training labels for this model, only
actual objects in the environment (i.e., panels, cylinders, walls, gates, etc.) are
considered obstacles.

Policy 1: same as the baseline policy, with the difference that the training labels
are generated considering as an obstacle also the ground outside the mission area,
i.e., black and blue stripes in Fig. 4.9-A, as well as surrounding walls.

Policy 2: the three probabilities of collision are trained as in Policy 1, and if at
least one of them is higher than a given threshold T, the drone will behave as in the
previous two policies. Otherwise, if all probabilities of collision are lower than Th,
the drone will try to reach one of the four waypoints (WPs) defined as the corners
of a square inscribed in the mission area, WP1,2,3,4 in Fig. 4.9-A. This WP-based
navigation mechanism leverages i) the a priori knowledge of the take-off point, i.e.,
we can choose the take-off point/orientation of the drone, for example, in WP1; and
ii) the onboard visual-inertial state estimation which provides the relative position
of the drone w.r.t. the take-off point. Then, when the drone is in the WP-based
navigation mode, it will try to visit the WPs in a predefined cyclical order; for
example, WP1,2,3,4 produces a counterclockwise motion, and WP4,3,2,1 a clockwise
one. Lastly, to mark a WP as “visited,” we define a circular area of radius r centered
in each WP (in red in Fig. 4.9-A): when the drone enters such an area, we mark the
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corresponding WP as visited and continue with the next one. Whenever all three
collision probabilities are higher than the threshold Th, we invert the sequence of the
targeted waypoints, alternating a clockwise and counterclockwise direction. This
mechanism also serves as an escape strategy when a WP is unreachable.

Rationale discussion: autonomous drones flying with a priori knowledge of the
environment, i.e., a map, are highly effective as we can plan for the best trajectory.
Unfortunately, the ultra-constrained resources (memory, computation, and sensors)
aboard a nano-drone make this map-based navigation unfeasible [82] or extremely
limited [32]. However, in the IMAV’22 competition, we can exploit coarse-grained
information, as we know the size of the mission area, the colors of the ground,
and – up to some degree – the shape/texture/colors of the objects thanks to the
simulator provided by the organizers. Since obstacles and gates are more likely to
populate the inner part of the flying area rather than its borders, Policy 2 tries to
maximize the likelihood of a straight obstacle-free path by positioning the WPs at
the edges of a square.

Therefore, ideally, we should place our four WPs precisely on the edges of the
green square in Fig. 4.9-A. However, the unavoidable noise/drift of the simple state
estimation aboard our nano-drone would often drive the vehicle outside the mission
field, negatively impacting the final score. For this reason, we introduce the WPs
as the edges of an inner square within the available 8×8m mission area.

Figure 4.10. A) 1024 simulated Monte Carlo trajectory realizations B) min-
imum safety margin w.r.t. height, C) minimum safety margin w.r.t speed,
having fixed the height to 0.5m.
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State estimation analysis: we characterize the position and orientation error of
the Crazyflie’s state estimation subsystem. This allows us to determine a margin
between the WPs and the corners of the mission area that i) keeps the drone flying
close to the edges of the area and ii) minimizes the risk that state estimation drift
drives the drone out of the area. We start by collecting real-world flight data, which
we use to build a statistical model. We rely on a setup similar to IMAV competition
with artificial turf on the floor, albeit over a smaller 5×6m flying area. We record
the drone’s movements with a motion-capture system and the drone’s onboard state
estimation, both at 100Hz. We perform runs of 5min each, in which the drone flies
using a random walk policy while constrained through the mocap into an empty
squared area – smaller than our 5×6m arena. We perform 16 flights: two runs for
each configuration combining two flight heights, i.e., 0.5 and 1.0m, and four mean
speeds, i.e., 0.5, 1.0, 1.5, 2.0m/s.

Similarly to [96, Sec. 5.2.4], we quantify the state estimation error by modeling
the uncertainty on incremental state estimation updates. We sample many ten-
second time windows from the collected data, considering the relative pose of the
drone at the beginning and the end of each window. We measure the estimation
error separately for each component of the relative pose: x, y, and yaw. For
each component, we fit a Gaussian distribution to the errors measured over many
windows, then we rescale the distribution to represent the error accumulating in 1
second.

Then, in the Webots simulator, we collect eight runs, i.e., all combinations of heights
and speeds, of 5min each (red lines in Fig. 4.10-A). The drone follows a squared
trajectory on a 6×6m square, which is intuitively a safe configuration. We invert
the flown path for each lap by alternating clockwise/counterclockwise directions to
ensure that any systematic errors in yaw estimation (e.g., a consistent under/over-
estimation of the amount of rotation) cancel out rather than accumulate. We use
these eight flown trajectories to build a bounding box enclosing them (dashed black
line in Fig. 4.10-A). We apply the statistical error model to corrupt the ideal squared
trajectory, computing 1024 Monte Carlo (M. C.) realizations of the drone’s state
estimation (pale gray lines in Fig. 4.10-A). Then, only considering the portion of the
M. C. trajectories outside the bounding box, we measure the maximum distance
between them and the box itself. This measure gives us a statistical minimum
safety margin distribution that will likely constrain the flight within the desired
flight area.

Fig. 4.10-B shows (average on all speeds) that flying at 0.5m height requires a
lower safety margin than at 1.0m, centering the distribution at 1.08m and 1.56m,
respectively. Therefore, we select 0.5m as our target height, and we focus only
on this configuration in Fig. 4.10-C, where we explore the four velocities. Among
all velocities, 42% of the 1024 realizations never exceed a safety margin of 1m,
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while 95.3% satisfy a margin of 2m. Furthermore, the median time spent outside
the 1m margin is 2 s (95th percentile: 31 s) per realization. Finally, of the 4.7% of
realizations that cross the margin of 2m, the median number of crossings is only
one per realization (95th percentile: 5). These findings confirm that positioning our
WPs at the edges of a 6×6m square will i) keep the drone in the desired 8×8m
mission area on average for 97.6% of the 5min run’s time; and ii) cause the drone
to exceed the maximum 10×10m space, i.e., crash, only with 4.7% probability
and only once per run. Finally, the four flight speeds analyzed do not significantly
impact the safety margin requirements, which leads us to use the highest speed:
2.0m/s.

4.2.3 CNN training and deployment

Dataset collection: we use the Webots simulator, shown in Fig. 4.13-A, to collect
a dataset of images for our CNN. To automatically generate the labels for each
image, we extended the simulator’s capabilities by introducing the generation of
depth and segmentation frames from the camera. During the image collection, we
use a flight height of 0.5m, see Sec. 4.2.2. Furthermore, to mimic the dynamic
effects of an actual UAV flight, we add random variations for pitch, roll, and yaw
in a [−5◦; +5◦] range and for the height in a [0.45; 0.55] m range.

Figure 4.11. Images: A) from the simulator, B) after augmentation, C) Himax
camera sample collected in the IMAV arena. The three blue bars in images B-C)
represent the three collision probabilities predicted by our network.

We collect images with a 324×324 px resolution and 87◦ FoV, the same as our
Himax camera. For each image, we save per-pixel depth and segmentation masks,
which we exploit for labeling: we divide the camera FoV into three vertical portions
of 108×324 px, and for each portion, we set a collision label = 1 if the 10% of the
pixels belonging to obstacles has distance ≤2m, 0 otherwise. We consider all kinds
of objects as obstacles, including gates and excluding carpets. We collected 41 k
images in 3 simulated scenarios to ensure labels balancing and uniform sample
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Figure 4.12. The drone’s state machines mapped on the MCUs available aboard.

distribution. 10 k images are collected by spawning the drone randomly across
the arena populated by obstacles, and 21 k images are acquired by flying around
each obstacle in the simulator. This last group comes from a ”360 scan” of each
obstacle, which we equally split between images with an empty background and
a populated one. Finally, 10 k images are taken from the drone flying along a
square trajectory, 50 cm within the green flying area edges, equally split between
clockwise and counterclockwise flight directions. Eventually, we split each portion
of the dataset using 70% of the images for training, 10% for validation, and 20%
for testing.

Photometric augmentations: as the simulated images are noise-free 3D ren-
derings of the scene, we introduce an aggressive data augmentation pipeline to
bridge the appearance gap with real-world Himax images. We randomly perturb
the simulated images to reproduce several real-world image artifacts: motion blur,
Gaussian blur to simulate lens defocusing, Gaussian noise, and exposure changes
(gain, gamma, dynamic range, and vignetting). Finally, we convert images to
grayscale and resize them to 162×162 px, as our Himax camera.

Fig. 4.11-A-B and the supplementary video show the result of this photometric
pipeline, while Fig. 4.11-C displays a real drone frame. We assess the impact of the
photometric augmentations on CNN accuracy by exploring all eight combinations
of exposure, blur, and noise augmentations. To evaluate the accuracy, we collected
2200 real-world images from our 5×6m indoor flying arena, shown in Fig. 4.13-B.
The results in Tab. 4.5 shows that enabling all augmentations scores the highest
accuracy, surpassing the non-augmented model by 17%.

Navigation policies implementation: Fig. 4.12 shows the state machines mapped
on the two MCUs available aboard our UAV. GAP8 implements a loop for i) image
acquisition, ii) CNN inference, and iii) UART transmission of the 3 CNN collision
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Table 4.5. Neural network accuracy by photometric augmentation method: Noise
(N), Blur (B), and Exposure (E).

Aug. N None B B+E N+B E N+E N+B+E

Acc. 55% 56% 58% 62% 64% 68% 69% 72%

probability outputs, i.e., {left, center, right}, to the STM32. The STM32 instead
implements two loops for high and low-level control of the drone, respectively. The
high-level control loop i) reads the CNN’s output from UART, ii) converts the 8-bit
fixed-point CNN’s outputs ([0,255] range) to float32 numbers ([0,1] range) and ap-
plies a low pass filter, iii) thresholds the three probabilities of collision toTh = 0.7,
getting values ∈ {0,1}, iv) applies the navigation policy to calculate the next set
point, and v) updates the low-level controller. Instead, the low-level control loop,
running at 100Hz, updates the state estimation through the eKF and applies a
cascade of PID controllers to reach the set point pushed by the high-level control
loop.

All three navigation policies described in Sec. 4.2.2 output a {speed, yaw rate}
tuple as a set point. For all policies, the forward speed is inversely proportional
to the center collision probability. The yaw rate is set to -90 or +90 deg/s when
the right or the left collision probabilities get over the threshold th, respectively.
If all three collision probabilities exceed the threshold Th, the drone spins in place
as described in Sec. 4.2.2. Conversely, the three policies act differently when all
collision probabilities are zero: Baseline and Policy 1 command the drone to fly in
a straight line, while Policy 2 activates the WP-based navigation mode, heading
the drone to the next WP.

4.2.4 Experimental results

In-simulator evaluation

We evaluate our three navigation policies with the Webots-based simulator, sam-
ple picture shown in Fig. 4.13-A. We rely on an ideal flight controller inside the
simulator, meaning i) no state-estimation drift and ii) exploiting depth maps for
ideal obstacle avoidance. We tested nine configurations combining the three control
policies introduced in Sec. 4.2.2 and at three speeds (1, 1.5, and 2m/s). For all the
tests, we used seven obstacles: two orange poles, two gates, and three panels with
a width of 1, 1.5, and 3m, respectively. We run ten experiments of 5min each for
each configuration, varying the obstacles’ initial position but keeping it consistent
among the nine configurations. To emulate the dynamic obstacles of the challenge,
we move one obstacle every 30 s. We compare the policies based on the distance
traveled on the green turf.
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Figure 4.13. Three environments: A) theWebots simulator, B) our indoor 5×6m
arena, and C) the 8×8m competition arena.

Figure 4.14. Median traveled distance (10 runs) in 5min flights on the simulator
of our three navigation policies at 1.0, 1.5, and 2.0m/s.

Fig. 4.14 shows that the baseline policy (which does not consider the floor outside
the green turf as an obstacle) is consistently worse than the others, spending 16%
of the time outside the mission area. Conversely, Policy 1 and 2 detect the external
area as an obstacle, spending only 1% and 0.8% of the time on the external area,
respectively. Both Policy 1 and 2 benefit from higher flight speeds due to the
simulator’s perfect sensing preventing collisions. At the lowest speed configuration
of 1m/s, Policy 2 achieves a slightly lower median distance than Policy 1, 165m
vs. 169m. Instead, for higher speed configurations, the median distance of Policy 1
is slightly lower than Policy 2: 217m and 246m at 1.5m/s, and 193m and 225m
at 2m/s, respectively. Since both Policy 1 and Policy 2 score a similar traveled
distance, we push forward our analysis by deploying and testing both of them in
the field.
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State-of-the-Art comparison

Since our CNNs are inspired by the PULP-Dronet [1], as well as many other teams
at the competition, we present a thorough comparison of our system against a
vanilla PULP-Dronet and a fine-tuned version of it. Given the different outputs
between our CNN and the original one, we adapt our navigation Policy 1 (no WPs)
to the PULP-Dronet baselines. We use the PULP-Dronet steering output, as in its
original implementation, by converting it in a yaw-rate for the controller in case
of a probability of collision lower than 0.7, while the drone rotates 180°otherwise.
For the fine-tuned version, we use the same dataset collected in simulation to train
our models. The single collision label of PULP-Dronet is matched to the central
probability of our models, while the steering angle reflects the direction with the
lower probability of collision among the three probabilities: left, center, and right.

The results in Fig. 4.15 are collected in simulation, where we run ten 5-min tests for
each model at three target flight speeds (i.e., 1, 1.5, and 2m/s). The vanilla PULP-
Dronet marks the lowest score in all configurations, 84–114% less than our system,
while the fine-tuned PULP-Dronet reduces this gap with a performance reduction
of 28%–43%, depending on the flight speed. Our network scores a median distance
traveled of 171, 199, and 228m at 1, 1.5, and 2m/s, respectively, showing the
benefit of our architectural changes and training methodology.

Figure 4.15. Median traveled distance (10 runs) in 5min flights on the simulator
comparing our work to the SoA PULP-Dronet [1] at 1.0, 1.5, and 2.0m/s.

In-field evaluation

We evaluate Policy 1 and Policy 2 in our 5×6m indoor flying arena, testing them
with two target speeds, 1.5 and 2m/s, resulting in four configurations. For each
configuration, we perform 5 runs of 5min each. We use three black cylinders and
two white panels as obstacles, as shown in Fig. 4.13-B. We replicate the compe-
tition’s conditions, e.g., periodically moving the dynamic obstacles (every ∼30 s),
and without stopping the time count if the drone crashes. As shown in Fig. 4.16-A,
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Policy 1 scores a median 45 and 65m, while Policy 2 marks a median 91 and 92m,
while flying at 1.5 and 2m/s, respectively. The improved performance of Policy 2
derives from the WP-based navigation, which provides the drone with boundaries,
limiting the time spent in potentially dangerous areas outside the mission field.
A sample run of Policy 2 is shown in Fig. 4.16-B. For the IMAV competition, we
choose to use the Policy 2 at 1.5m/s for the first run (conservative) and push our
system to the 2m/s limit in our second attempt.

Figure 4.16. In-field testing, A) median traveled distance (5 runs) in 5min flights
of our two navigation policies at 1.5 and 2.0m/s. B) Sample run of Policy 2 with
a vtarget = 1.5m/s, scoring 117m of traveled distance.

The nanocopter AI challenge

The arena for the competition was a 10×10m area, represented in Fig. 4.9-A,
where only the 8×8m green surface is considered for the final score. The arena
had ten objects (Fig. 4.13): four orange poles, two black panels, two flags, and
two gates. The competition allows each team to perform two runs of 5min each,
having only the best one considered in the final leaderboard. Six teams participated,
and the video recording is available online5. For each team, Tab. 4.6 summarizes
the distance traveled, the number of gates passed, and the final score computed
according to Eq. 4.2.

The last team achieved a traveled distance of 9m in an obstacle-free environment
while employing an off-board (i.e., WiFi-connected laptop) color segmentation algo-
rithm. The 5th ranked team tackled an obstacle avoidance task using an off-board
CNN for monocular depth estimation. They exploited the depth to control the
drone’s forward speed and steering angle commands, ultimately reaching a traveled
distance of 67m. The 4th-classified team proposed a system that passed through
four gates, i.e., the highest number of traversed gates among all teams. They
tackled gate-based navigation with an off-board color segmentation visual pipeline.

5http://youtu.be/WaDU4I2TImA
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Table 4.6. The final leaderboard of the “Nanocopter AI challenge.”

Team Processing Obstacles [m] / Gates Score

PULP (ours) Onboard Dynamic 115 / 0 5750
Black Bee Drones Onboard Static 81 / 0 2015
SkyRats Onboard Dynamic 29 / 1 1945
CVAR-UPM Off-board Dynamic 31 / 4 702
CrazyFlieFolder Off-board Dynamic 67 / 0 666
RSA Off-board No 9 / 0 9

However, their final traveled distance of 31m was penalized by numerous crashes,
wasting precious time for resuming the flight.

The team ranked 3rd used an onboard vanilla PULP-Dronet for obstacle avoidance,
which led to a conservative ∼0.1m/s average speed on their best 5-min run (run 1 ).
Nevertheless, they managed to pass through one gate while crashing multiple times
(up to five in run 2 ), resulting in a traveled distance of 29m. The second classified
team exploited only onboard computation in a static obstacles environment. Their
navigation strategy limited the exploration to a small obstacle-free part of the
environment, leading to a total distance of 81m.

We tackled the most challenging scenario, i.e., dynamic obstacles, with only on-
board computation (i.e., no WiFi-connected laptop), while leveraging our Policy 2,
described in Sec. 4.2.2. In our two runs, we set a maximum target speed of 1.5
2.0m/s, which resulted in a traveled distance of 115 and 97m, respectively. During
the first and best run, we never crashed for the entire 5-minute flight, resulting in
the winning score of 5750 points, i.e., almost 3× more than the second-classified
team. Fig. 4.17 summarizes our two runs, reporting a top-view of the arena where
flight trajectories are shown with their mean average speed.

4.2.5 Conclusion and future work

We present the deep learning framework for visual-based autonomous navigation
aboard nano-drones, winning the “IMAV’22 Nanocopter AI Challenge” drone race.
Our system combines a CNN for obstacle avoidance, trained only in simulation, a
sim-to-real mitigation strategy, and a navigation policy, defining the drone’s control
state machine. Our system scored 115m of traveled distance at the competition
while coping with static and dynamic obstacles. As we focused on the most chal-
lenging obstacle avoidance task while leaving out the gate-based navigation task,
future work will address developing lightweight perception modules for both tasks.
Nevertheless, our system marks the SoA being the first example of an autonomous
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Figure 4.17. Trajectories of our two runs during the IMAV’22 race: run 1 ranked
our team 1st at the “Nanocopter AI challenge.”

nano-drone completing its mission (5min flight, at 1.5m/s with no crashes) in a
challenging never-seen-before race environment. Additionally, any bigger robot can
exploit our lightweight yet accurate and reactive perception, freeing a vast amount
of computational resources and memory that can be allocated to tackle additional
tasks. By sharing our knowledge, we foster future research by providing a solid
foundation in the newborn field of nano-drone racing.

65



66



Chapter 5

Shrinking NNs to enable

multi-tasking AI on nano-UAVs

In Chapter 4, we demonstrated that executing individual AI tasks, such as visual-
based autonomous navigation, is feasible on autonomous nano-UAVs. However,
the computational and memory burden for enabling AI multi-tasking perception is
still too high to be pursued on constrained MCUs. Therefore, this chapter aims
to minimize the onboard intelligence workload needed for UAVs’ autonomous nav-
igation, freeing up enough resources to execute multi-perception intelligence tasks
aboard a nano-drone. To do so, we first present a general methodology for eval-
uating deep learning models over parametrization (in terms of size and complex-
ity). This methodology involves analyzing overfitting behaviors and examining the
sparsity of Convolutional Neural Networks (CNNs) neurons. As an example, we
apply this methodology to the SoA PULP-Dronet CNN introduced in Chapter 3,
studying the various trade-offs between the number of channels, pruning of inac-
tive neurons, architecture modifications, and accuracy. We ultimately demonstrate
the effectiveness of our method by introducing novel squeezed CNN models called
Tiny-PULP-Dronets, which are up to 50× smaller and 8.5× faster than the base-
line CNN when running on the same processor. Nevertheless, we show that these
models maintain the regression and classification performance when validated on
the testing set. These networks leave sufficient memory and compute headroom for
onboard multi-tasking intelligence, even at the nano-sized scale.

Before testing such networks in the field, we want to further improve the visual-
based CNN for visual-based navigation by addressing the shortcomings of PULP-
Dronet, introduced in Chapter 3. This CNN shows limited performance when the
nano-UAV needs to navigate around static obstacles, therefore restricting its ap-
plicability in real-world scenarios. This limitation depends on the original CNN’s
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dataset construction, which combines data from different robotic domains with dis-
joint training labels to train the two CNN outputs, i.e., the collision avoidance
and steering outputs. Therefore, we introduce a dataset-collecting methodology for
collecting unified collision avoidance and steering information directly on the nano-
UAV, and we use this methodology to collect a new dataset of 66 k images. Second,
using this dataset, we introduce end-to-end training and deployment of a new fam-
ily of CNNs, called PULP-Dronet-V3, that i) enable visual-based static obstacle
avoidance and autonomous navigation suited to nano-drones, therefore improving
the main navigation limitation of the SoA CNN (Chapter 3), and ii) we expand the
investigation of the CNNs’ memory footprint and workload minimization for au-
tonomous nano-UAV navigation by studying multiple CNNs’ architectures. Finally,
we present an extensive in-field validation of the resulting tiny CNN for autonomous
navigation on nano-UAVs, studying how the reduced workload affects navigation
accuracy. We set up a challenging scenario consisting of a narrow corridor with
four static obstacles and a 180◦ turn, and the new tiny CNN we designed shows the
ability to successfully navigate with a 100% success rate through this scenario at
a maximum target speed of 0.5m/s. At the same time, the SoA un-pruned CNN
consistently fails.

As a result, the CNN that resulted from our shrinking methodology only uses a
fraction of the computational resources available on nano-UAVs: we obtained a
2.9 kB model achieving 139 frame/s throughput. This CNN still provides reliable
navigation skills, which is the pivotal requirement for any IoT node not to crash
when moving within an environment. In this way, we pave the way towards embed-
ding multiple intelligence tasks on this nano-sized class of vehicles, as we can build
up more intelligence on top of this optimized CNN for autonomous navigation.

5.1 Squeezing Neural Networks for Faster and
Lighter Inference

With their sub-10 cm diameter and tens of grams in weight, nano-UAVs are agile
and highly versatile robotic platforms, employed in many use cases where small
size is crucial. From aerial inspection in narrow and dangerous places [4] to close-
proximity human-robot interaction tasks [19], nano-UAVs are the ideal candidate
platforms. Similar to other autonomous robots, also nano-UAVs navigate thanks
to the interaction of three key sub-systems [97]. The state estimator determines
the current state of the system. Then, what we call the onboard intelligence is
responsible for solving the decision-making problem of choosing the next target
state. Finally, the control part brings the system from the current state to the
target one. Our work focuses on the intelligence, where the limited payload and
power density of nano-drones clash with the onboard execution of complex real-time
algorithms and even more with multi-tasking vision-based solutions.
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Therefore, our goal is to minimize the onboard intelligence workload. This sce-
nario allows to optimally balance between i) enhancing the UAV’s reactivity with
an increased throughput in the decision-making process [98], and ii) freeing up
resources for the execution of multi-perception intelligence tasks aboard our nano-
drone. These features enable nano-UAVs to tackle more complex flight missions.
For example, autonomous aerial cinematography and high-speed drone racing re-
quire a combination of multiple tasks running concurrently aboard [12, 25], includ-
ing visual-inertial odometry, object detection, trajectory planning, environment
mapping, and collision avoidance. Ultimately, we could significantly push small-
size robotic platforms towards the biological levels of intelligence [27].

To date, nano-drones can accomplish individual intelligence autonomous navigation
tasks by leveraging deep learning-based (DL) algorithms – spanning a broad spec-
trum of complexity and sensorial input [36, 37, 19, 99]. In [36], Kooi and Babuška
use a deep reinforcement learning approach with proximal policy optimization for
the autonomous landing of a nano-drone on an inclined surface. The designed con-
volutional neural network (CNN) requires about 4.5 k multiply-accumulate (MAC)
operations per forward step, being sufficiently small to allow a single action eval-
uation in about 2.5ms on a single-core Cortex-M4 processor, but still providing
limited perception capabilities, restricted to landing purposes only. Employing the
same Cortex-M4, Neural-Swarm2 [37] exploits a DL-based controller to compen-
sate close-proximity interaction forces that arise in formation flights of nano-drones.
With only about 37 kMACs, each nano-drone processes only the relative position
and velocity of surrounding UAVs, enabling safe close-proximity flight.

Focusing on higher complexity DL-based workloads, the computational limitations
imposed by single-core MCUs can be addressed by leveraging cutting-edge flight
controllers targeting artificial intelligence. An example of these new-generation
devices is given by the 9-core GWT GAP81, a parallel-ultra-low-power (PULP)
processor. This processor was previously exploited on UAVs in the PULP-Dronet
project [99], leading to a fully-programmable end-to-end visual-based autonomous
navigation engine for nano-drones. PULP-Dronet is a single CNN capable of nav-
igating a 27-grams nano-drone in both indoor and outdoor environments by pre-
dicting a collision probability, for obstacle avoidance, and a steering angle, to keep
the drone within a lane. Similarly, in the PULP-Frontnet project [19] the PULP
paradigm is leveraged to successfully run a lightweight CNN (down to 4.8MMAC
and 78 kB) that performs a real-time relative pose estimation of a free-moving hu-
man, on a nano-UAV. This prediction is then fed to the nano-drone’s controller,
enabling precise “human following” capability. Both PULP-Dronet and PULP-
Frontnet demonstrate the feasibility of embedding high-level intelligence aboard

1https:// greenwaves-technologies.com/gap8 mcu ai
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nano-UAVs. However, all these State-of-the-Art (SoA) solutions focus on vision-
based single task intelligence, as the computational/memory burden for multi-
tasking perception is still challenging ultra-low-power MCUs.

This Section presents a general methodology for analyzing the size and complexity
of deep learning models suffering from overfitting and sparsity, which we apply, as
an example, to the SoA PULP-Dronet CNN. Then, we study the various trade-offs
between the number of channels, pruning of inactive neurons, and accuracy, demon-
strating the effectiveness of our method by introducing novel squeezed versions of
the PULP-Dronet called Tiny-PULP-Dronets. Our CNNs are up to 50× smaller
and 8.5× faster than the baseline running on the same PULP GAP8 SoC, with
no compromise on the final regression/classification performance. Ultimately, the
Tiny-PULP-Dronets, with a minimum model size of only 6.4 kB and a maximum
throughput of more than 160 frame/s, enable higher reactivity on the autonomous
navigation task, and leave sufficient memory and compute headroom for onboard
multi-tasking intelligence even at the nano-sized scale.

5.1.1 Methodology

PULP-Dronet [99] is a ResNet-based [91] CNN made of three residual blocks (Res-
Blocks), where each one consists of a main branch, performing two 3× 3 convolu-
tions, and a parallel by-pass (Byp), performing one 1 × 1 convolution. This CNN
produces a steering angle (regression) and a collision probability (classification)
output. Therefore, the model is trained using two different metrics: the mean
squared error (MSE) and the binary cross-entropy (BCE). The two metrics are
then combined in a single loss function, Loss = MSE + βBCE, where β is set to
0 for the first 10 epochs, gradually increasing in a logarithmic way to prioritize the
regression problem. Finally, the training process exploits a dynamic negative hard-
mining procedure, gradually narrowing down the loss computation to the k-top
samples accounting for the highest error.

PULP-Dronet is deployed in fixed-point arithmetic on a multi-core GAP8 SoC,
yielding 41MMAC operations per frame and 320 kB of weights. The peak memory
footprint – also including input and intermediate buffers – is as much as 400 kB,
which is close to the total on-chip L2 memory (i.e., 512 kB) and represents a strong
limiting factor for our multi-tasking objective.

Overfitting. A strong indicator of a deep learning model’s overfitting is a decreas-
ing/constant training loss paired with a validation loss that grows over the epochs.
In Figure 5.1, we show both BCE (A) and MSE (B) curves over 100 epochs for both
training (64 k images) and validation (7 k images) procedure. In Figure 5.1-A, the
baseline PULP-Dronet (dotted lines) suffers from overfitting on the BCE, showing
a constantly growing validation error, while the MSE (Figure 5.1-B) shows a noisy
but almost constant validation error trend. This behavior gives us the intuition
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Figure 5.1. Training/validation loss’ components – BCE (A) and MSE (B) – of
PULP-Dronet, comparing the the baseline model against the tiny one.

that the network topology could be over-parameterized for the given perception
problem.

Therefore, we introduce a model exploration to minimize its size while aiming at
the same minimum in the validation losses – or even lower. Our approach aims at
thinning the network’s tensors by applying a γ scaling factor to the number of chan-
nels across all layers. We span the γ parameter in the range [0.125, 0.250, 0.5, 1.0],
where γ = 1.0 corresponds to the baseline PULP-Dronet, and we call the smaller
variants Tiny-PULP-Dronet CNNs. The smallest Tiny-PULP-Dronet (γ = 0.125)
losses are reported in Figure 5.1 (solid lines), where both the baseline and the tiny
model assess to the same minimum validation MSE of 0.01. On the other hand, the
tiny model achieves a minimum validation BCE of 0.052, slightly lower than the
corresponding value of the baseline (0.064), confirming overfitting of the baseline
PULP-Dronet.

Sparsity. Deep learning models’ sparsity analysis is a key tool for identifying
and selectively pruning parts of the models that are not contributing to the learn-
ing process [100]. We define as the structural activation’s sparsity the percentage
of neurons in a convolutional layer that never activate over the entire validation
dataset – always equal to 0. This analysis for the PULP-Dronet baseline is reported
in Table 5.1, which highlights significant sparsity across the whole network, peaking
in the ResBlock3 (92% for the last by-pass). These results suggest: i) the network
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might suffer of over-parametrization, across all layers; and ii) by-pass branches,
usually exploited in very deep CNNs to avoid vanishing gradient effects [91], are
underutilized in this shallow CNN.

Therefore, we analyze the gradients for each network layer after the by-pass removal:
the convolution associated with Act1 shows the strongest gradient’s attenuation.
On this layer, we record on the last 10 epochs (worst case) an average gradient
magnitude of 0.055 with a standard deviation of 0.16, supporting the initial intu-
ition of no vanishing gradients on the PULP-Dronet shallow CNN. Furthermore, in
Table 5.1, we also provide the same sparsity analysis for the smallest Tiny-PULP-
Dronet (γ = 0.125), with by-pass branches removed. Compared to the baseline
model, the tiny one scores a sparsity of almost 0% across all layers, suggesting a
more efficient usage of the neurons left after the two squeezing techniques.

Table 5.1. Structural sparsity analysis of PULP-Dronet, comparing the
baseline vs. the tiny model.

Conv ResBlock1 ResBlock2 ResBlock3

Topology Act0 Act1 Act2 Byp1 Act3 Act4 Byp2 Act5 Act6 Byp3

Baseline 28% 13% 6% 6% 25% 10% 11% 49% 60% 92%

Tiny 0.15% 0% 0% — 0% 0.07% — 0% 0% —

5.1.2 Results

Models evaluation

In this section, we present our study on the effect of the proposed methodology
when applied to the PULP-Dronet CNN in terms of memory footprint, compu-
tational effort, and regression/classification performance. Figure 5.2 presents the
comparison between the baseline CNN against its Tiny variants. The reduction of
the number of channels through γ saves 237 to 314 kB and 29 to 39 MMAC. Addi-
tionally, also the by-pass removal reduces the memory usage of 1 to 12 kB and the
operations by 0.1 to 1 MMAC, depending on the specific model. Combining by-pass
removal and the scaling of network’s channels, the smallest Tiny-PULP-Dronet re-
duces 50×memory footprint and 27× on MAC operations vs. the baseline, reaching
a minimum of 6.4 kB and 1.5MMAC, respectively.

Focusing on the regression performance for the testing set, the root mean squared
error (RMSE) shows a similar trend for both with and without (w/o) by-pass groups
(Figure 5.2). The score slowly improves while reducing the model size from γ = 1 to
γ = 0.25, which is a common behavior of those models that suffer from overfitting
and take advantage of an increased generalization capability, reducing their train-
able parameters [100]. Instead, for both groups, the smallest models (γ = 0.125)
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show a lower improvement on the RMSE, suggesting their potential underfitting.
Figure 5.2 also reports the Accuracy evaluation for the classification problem. While
this metric, on the with by-pass group, seems to keep an almost constant perfor-
mance all over the sizes (∼0.91), it slowly reduces with the size for the without
by-pass group. Overall, the by-pass removal does not significantly penalize either
the RMSE or the Accuracy of the models, allowing to reach a remarkable 0.88
Accuracy for the smallest configuration. More importantly, this pruning is highly
desirable for i) reducing the memory footprint (∼ 3%) and operations (∼ 1.5%),
and ii) simplifying the deployment process on MCUs.

To support the second point, we further analyze the peak memory allocation needed
for one single-image inference of the CNNs accounting for input/output intermedi-
ate buffers and network weights. Looking at the peak memory allocation utilizing
a simple incremental allocator, which sums up the memory required by each layer,
the baseline PULP-Dronet requires 870 kB compared to only 105 kB for the small-
est Tiny-PULP-Dronet (γ = 0.125). On the other hand, by employing a dynamic
allocator which maximizes data reuse, the baseline PULP-Dronet peaks at 400 kB,
while the smallest CNN peaks at 80.1 kB. In this latest case, the removal of by-pass
branches simplifies and reduces the memory burden eliminating the need for the
simultaneous storage of two intermediate activations along parallel branches, which
peaks at 10 kB in the smallest Tiny-PULP-Dronet. Considering the dynamic allo-
cator, we ultimately reduce by 5× the peak memory usage required by the onboard
intelligence, a key element to enable multi-tasking aboard constrained devices like
the GAP8 SoC.

Power analysis

We evaluate GAP8’s execution time and energy consumption when running a single-
frame inference with the smallest Tiny-PULP-Dronet model (γ = 0.125). We use
the RocketLogger data logger [92] (64 ksps) to separately plot the power wave-
forms of the GAP8’s main core, the Fabric Controller (FC), and its 8-core parallel
cluster (CL). We test two SoC configurations: the so called energy-efficient config-
uration [99], whose operating point is FC@50MHz, CL@100MHz, and VDD@1V,
and the maximum performance settings according to the GAP8’s datasheet, which
is FC@250MHz, CL@175MHz, VDD@1.2V.

GAP8 takes 1.1Mcycles to process the Tiny-PULP-Dronet, as shown with the
power traces in Figure 5.3, where we highlight the individual execution of each
network’s layer, for both SoC configurations. The energy-efficient configuration
(Figure 5.3-A) shows an average power consumption of 34mW, 11.3ms inference
time, for a total energy consumption of 0.38mJ. Moving to the maximum perfor-
mance configuration (Figure 5.3-B), the inference time gets reduced to 6.3ms under
the same average power, leading to 0.63mJ per frame. Overall, these results show
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Figure 5.2. Comparing PULP-Dronet vs. its Tiny variants, in terms of size,
MAC, Accuracy, and RMSE. We span γ in the [0.125, 0.250, 0.5, 1.0] range.

Figure 5.3. GAP8 power waveforms executing the smallest Tiny-PULP-Dronet
(γ = 0.125). (A) most energy-efficient SoC’s configuration – FC@50MHz,
CL@100MHz, VDD@1.0V – and (B) the maximum performance one –
FC@250MHz, CL@175MHz, VDD@1.2V.

an improvement of 8.5× on the network’s inference time when compared to the
baseline PULP-Dronet, which takes 96ms and 52ms to run an inference under the
energy-efficient and maximum performance SoC configurations, respectively. Ulti-
mately, we improve the frame-rate of PULP-Dronet from 10 frame/s to 89 frame/s
on the energy efficient configuration, and from 19 frame/s to 160 frame/s, on the
maximum performance one.
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Lastly, we analyze the execution of the first 5 × 5 convolution, which takes about
75% of the total network’s execution time on the smallest Tiny-PULP-Dronet (γ =
0.125). This layer processes a 200×200×1 input image and outputs a 100×100×4
feature map, resulting in 1MMAC operations, which corresponds to the 70% of the
total network’s operations, partially explaining its higher execution time over the
others. However, alongside the reduction by 27× of the network’s MAC operations
w.r.t. the baseline, we only witness a latency reduction of 8.5×. This non-linear
scaling is due to inevitable non-idealities: i) the Height-Width-Channel data layout
limits the input feature map data reuse, being proportional to the layer’s output
channels number, i.e., only 4, ii) the marshaling stage required by the convolution
for padding and constructing the input’s flattened buffer adds up to 45% of the total
layer execution. Ultimately, with a peak 8.5× throughput improvement, Tiny-
PULP-Dronets enable a faster reactivity of the nano-UAV when autonomously
navigating the environment.

5.1.3 Conclusion

The limited payload and computational power of nano-UAVs prevent high-level
onboard intelligence, such as multi-tasking execution, which is still out of reach.

This Section presents a general methodology that leverages the CNN’s sparsity
and overfitting to squeeze both memory footprint and computational effort. By
applying our methodology to the SoA PULP-Dronet CNN for autonomous driving,
we introduce its Tiny-PULP-Dronet variants. These CNNs show a reduced memory
burden (50× smaller) and computational complexity (27× lower) vs. the original
model while i) preserving the same regression performance, ii) having minimal
accuracy degradation (6% at most), and ultimately leaving sufficient resources for
faster and lighter inference on multi-tasking autonomous nano-drones.
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5.2 Distilling Tiny and Fast Deep Neural Net-
works for Autonomous Navigation on Nano-
UAVs

Figure 5.4. Our autonomous nano-UAV navigating an unknown environment.

With the growth of the Internet of Things (IoT), tiny nano-sized unmanned aerial
vehicles (UAVs) empowered with onboard artificial intelligence (AI) are gaining
importance as ubiquitous IoT nodes: with their sub-10 cm diameter and tens of
grams in weight, they can autonomously navigate environments while simultane-
ously sensing and analyzing their surroundings [20]. Thanks to their compact form
factor, nano-UAVs can operate in confined/narrow spaces [1] and safely in the prox-
imity of humans [38] (as shown in Figure 5.4), enabling many use-cases, such as
the exploration of harmful environments [4] and rescue missions [101, 102].

A UAV that acts as an intelligent IoT node requires the concurrent execution of mul-
tiple tasks in real-time [101], from simple ones (e.g., hovering, state estimation) [43]
to complex AI workloads [1, 38]. However, this ideal scenario is challenged by the
constrained payload and power limitations of nano-drones, which bound the ca-
pabilities of their mission computers to MicroController Units (MCUs) [1]. The
State-of-the-Art (SoA) MCU for commercial-off-the-shelf (COTS) nano-drones is
the GAP8 System-on-Chip (SoC) [56], a parallel ultra-low-power (PULP) 9-cores
processor with a peak throughput of 5.4GOps/s [68].
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In this context, overcoming the computational/memory burden imposed by ultra-
low-power MCUs is paramount, yet very challenging [103]. A particularly pivotal
requirement for any IoT node moving within an environment is visual navigation,
i.e., the capability to autonomously navigate an environment based purely on lo-
cal visual information, avoiding obstacles. The SoA convolutional neural network
(CNN) for visual-based autonomous navigation on nano-drones is PULP-Dronet [1],
outputting a collision probability and a steering angle suggestion following visual
cues in an environment, such as lanes on a floor. This CNN has been demonstrated
in indoor and outdoor environments, enabling turns and avoiding collisions with
dynamic obstacles. However, these capabilities come at a non-negligible compu-
tational cost, which allows for a maximum throughput of 19FPS on the GAP8
platform [1]; moreover, this CNN shows limited performance to drive the nano-
UAV to navigate around static obstacles, limiting its applicability in real-world
scenarios.

In this Section, we set a new milestone in the SoA of autonomous visual-based
nano-UAV navigation by tackling the avoidance of static obstacles while simul-
taneously shrinking the CNN memory footprint and computational burden to the
minimum. Some of the shortcomings of the PULP-Dronet network, particularly the
limitations in obstacle avoidance, depend on the choice to construct the training
set by combining datasets from different robotic domains with disjoint training for
steering and collision labels. A route to attack this issue is to base the training on
data collected directly on a nano-UAV, with the joint information on the presence
of an obstacle and the route to avoid it imbued in the training set itself. To do so,
we introduce several novel contributions:

• a methodology to collect unified collision avoidance and steering information
only with onboard resources of the nano-UAV, without dependence on external
infrastructure like motion capture systems. The resulting PULP-Dronet v3
dataset consists of 66 k labeled images, which we release open-source along
with our dataset collection framework.

• The end-to-end training and deployment of the first family of CNNs that enable
visual-based static obstacle avoidance and autonomous navigation suited to
nano-drones, PULP-Dronet v3.

• an extensive study of minimizing the CNNs’ memory footprint and workload
for autonomous nano-UAV navigation, resulting in a new family of Tiny-
PULP-Dronet v3 CNNs.

We validate all our networks on our collected dataset and characterize their end-to-
end execution time on the GAP8 SoC. Our tiniest network has only 2.9 k parameters
and 0.6M multiply-accumulate (MAC) operations, 168× smaller and 7.3× faster
(up to 139FPS) than the SoA PULP-Dronet v2 [1] when running on the same PULP
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GAP8 SoC. This outcome allows us to free up precious computational resources that
can be exploited to tackle additional tasks. This network only requires 0.7mJ for
each inference, with an average power consumption of 100mW when running on
GAP8 at its maximum performance.

Furthermore, we deployed and extensively field-tested two networks: a larger one
(matching the size of the SoA CNN) and our ultra-tiny distilled CNN. This allowed
us to evaluate how the reduced workload affects navigation accuracy. We set up a
challenging scenario consisting of a narrow corridor with four static obstacles and
a 180◦ turn. When setting the target speed to 0.5m/s, both our large and tiny net-
works exhibit a high success rate in navigating through the corridor, scoring a 80%
and 100% success rate, respectively. In the same scenario, the SoA PULP-Dronet
v2 [1] always fails. Among our two networks, the larger one shows better robustness
at higher speeds, succeeding 60% with a target speed of 1m/s, whereas the tiny
one fails. We foster the research on autonomous nano-drone navigation by releasing
all our results as open-source: our new dataset, dataset collector framework, CNN
weights, and code.

5.3 Nano-UAV robotic platform

5.3.1 Robotic platform and the GAP8 SoC

The robotics platform employed in this section utilizes the Bitcraze Crazyflie 2.1
quadrotor, as introduced in the background chapter (Chapter 3). The setup in-
cludes the main flight controller PCB equipped with an STM32 MCU and two
additional pluggable PCBs: the Flow deck and the AI-deck. The PULP-Dronet
v2 CNN introduced in this chapter is executed on the GAP8 SoC, introduced in
Chapter 3. This chapter examines a specific configuration where the Wi-Fi and
radio modules of the UAV are inactive during autonomous navigation tasks, rely-
ing solely on the visual data from the front-facing camera. This setup ensures that
the drone operates completely autonomously, with all navigation intelligence resid-
ing on the nano-drone, independent of external communication or computational
support. However, radio and Wi-Fi connections are utilized exclusively for dataset
collection (refer to Section 5.4.2). Additionally, we use the multi-ranger deck to
measure distances to front-facing obstacles for data acquisition purposes only.

5.3.2 Automatic Deployment Tools

The development of CNNs for an MCU-class processing device, such as the GAP8
on our nano-drone, is a multi-objective optimization problem. In our case, it must
take into account: i) memory limitations (L2 512 kB and L1 64 kB), ii) the hard-
ware limitations (i.e., no floating point unit), power envelope (∼100mW), and
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throughput (i.e., a flying drone needs to react in real-time). As for PULP-Dronet
v2 [1], we use an automated flow that works in two steps: first, we quantize the neu-
ral network, and then we perform a hardware-aware deployment of the quantized
model.

For quantization, we take float32 pre-trained CNN models, and we apply post-
training quantization using NEMO [104], a deep neural network (DNN) quanti-
zation tool that performs uniform asymmetric static layer-wise quantization. We
apply fixed-point 8-bit (int8) post-training quantization to the weights and acti-
vations of our networks. By doing so, we enable optimized 8-bit fixed-point arith-
metic on GAP8, i.e., packed-SIMD instructions [64]. Moreover, the conversion from
float32 data type and the quantized int8 reduces by 4× the memory footprint of
the CNNs models.

For hardware-aware deployment, we use DORY[59], a state-of-the-art code genera-
tion tool for quantized DNNs. It is tuned for deployment on memory-constrained
embedded devices with multiple levels of memory hierarchy with the goal of op-
timizing performance. To fit the data in the available memory resources, large
operations need to be split into smaller pieces called tiles. DORY models the tile
size optimization problem as a constraints program with the memory size as the
main constraint and hardware-aware heuristics to guide the ILP solver towards the
best-performing solutions. While tiling makes the operations fit into our desired
memory, it still requires data marshalling between the memory levels to process the
whole layer. To hide this data movement cost, DORY overlaps it with computa-
tion by employing multi-buffering and software pipelining. For efficient operation
computation, calls to the PULP-NN kernels get generated. PULP-NN[68] is an
open-source library of hand-optimized kernels for quantized neural networks exe-
cuting on the PULP cluster.

5.3.3 Baseline PULP-Dronet CNN

PULP-Dronet [1] is an end-to-end vision-based CNN for autonomous navigation
aboard nano-drones, deployed on a nano-drone for the first time in [18] and suited
for deployment on the AI-Deck. We employ PULP-Dronet as a baseline model for
our work. This shallow NN is based on three residual blocks (ResBlocks) [91], where
each one consists of a main branch, performing two 3×3 convolutions, and a parallel
by-pass, performing one 1 × 1 convolution. The number of output channels is 32,
64, and 128 for the three blocks, respectively. For each block, the last convolution
on both branches of applies a stride factor of 2 to half the feature map size. Each
convolution is followed by a Batch Normalization layer and by a ReLU6 activation
function.

The CNN processes a grayscale image of size 200× 200. This image is the bottom-
center crop extracted from the QVGA image captured by the AI-Deck’s Himax
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Figure 5.5. A) our dataset collection overview, B) our dataset collector GUI, and
C) a sample sequence from our collected dataset.

camera. The final layer produces two distinct outputs: a collision probability (clas-
sification problem) and a steering angle (regression problem). Consequently, the
model is trained using two distinct metrics: the mean squared error (MSE) and
the binary cross-entropy (BCE). These metrics are combined into a unified loss
function, Loss = MSE + βBCE. β is set to 0 for the first 10 epochs, gradually
increasing in a logarithmic way to prioritize the regression problem. The training
process employs a dynamic negative hard-mining approach, gradually focusing the
loss computation on the k-top samples that exhibit the highest error. PULP-Dronet
is deployed in fixed-point 8-bit arithmetic on the multi-core GAP8 SoC, yielding
41MMAC operations per frame and 320 kB of weights.

The original dataset used for training, validation, and testing integrates three dis-
joint sets of images: Udacity (39.1 k) consisting of high-resolution images labeled
solely with steering angles, Bicycle (32.2 k) containing high-resolution images la-
beled exclusively with collision probabilities, and Himax ( 1.3 k) comprising low-
resolution images captured from the same camera aboard our target nano-drone,
labeled only with collision probabilities. The combination of Udacity, Bicycle sets,
and Himax forms the Original+Himax dataset used to train PULP-DroNet V2.

5.4 Methodology

5.4.1 The dataset collector tool

We developed a software tool for dataset collection, outlined in Figure 5.5-A. This
tool enables a pilot to manually control the nano-drone and simultaneously log:
i) any data from the STM32 flight controller (e.g., the drone’s state estimation)
and sensors attached to it (e.g., additional expansions decks of the Crazyflie2.12,
such as ranging sensors), ii) images captured by the AI-deck’s front-facing camera.
All data is recorded on a PC base station, which independently receives the two

2https://store.bitcraze.io/collections/decks
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Trivial Predictor
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Figure 5.6. Distribution of the steering labels in our testing dataset and classifi-
cation/regression performances of three trivial predictors.

data streams: the STM32 packets, transmitted via radio, and AI-deck images,
transmitted via Wi-Fi.

To ensure the data from these two separated streams can be accurately matched in
post-processing, we i) periodically synchronize both the STM32 and GAP8 MCUs
with a global clock, generated from a GPIO of GAP8, and ii) send each chuck of
data associated with a timestamp that is globally synchronized across our robotic
platform. This synchronization methodology minimizes matching errors by ensur-
ing each packet is timestamped at its source, thus avoiding network-related errors
and leaving only minimal discrepancies caused by the MCUs’ oscillator drifts.

Our dataset collector tool consists of: i) code for the STM32 and GAP8 SoC
(Figure 5.5-A), which enables sending the data streams while keeping the global
clock synchronized, and ii) a graphical user interface (GUI) (Figure 5.5-B) to plot
the data streamed from the flight controller and visualize images collected from the
AI-deck.

5.4.2 Our dataset for nano-drone autonomous navigation

We introduce a new dataset for visual-based autonomous nano-drone navigation.
We move on from the limitations of the past PULP-Dronet dataset [18], which was
created by assembling different sets of data, each one having images labeled either
for the steering or the collision avoidance task, as explained in 2.2.3, ultimately
penalizing the static obstacle avoidance [1]. To tackle this limitation, we collect a
new unified dataset from scratch.

With the dataset collector tool introduced in Section 5.4.1, we collected a dataset
of 66 k images for nano-drones’ autonomous navigation, for a total of ∼600MB
of data. We used the Bitcraze Crazyflie 2.1, described in Section 3.1. A human
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Figure 5.7. Our network architecture exploration includes: i) three block types
– RB, D+P, IRLB; ii) an optional bypass connection (dashed line); iii) variations
on the number of channels based on γ.

pilot manually flew the drone, collecting i) images from the grayscale QVGA Hi-
max camera sensor of the AI-deck, ii) the gamepad’s yaw-rate, normalized in the
[−1;+1] range, inputted from the human pilot, iii) the drone’s estimated state,
and iv) the frontal obstacle’s distance with the ToF sensor.

After the data collection, we labeled all the images with a binary collision label
whenever an obstacle was in the line of sight and closer than 2m. We recorded 301
sequences in 20 different environments. Each sequence of data is labeled with high-
level characteristics: scenario (i.e., indoor or outdoor), path type (i.e., presence or
absence of turns), obstacle types (e.g., pedestrians, chairs), flight height (i.e., 0.5m,
1m, 1.5m), light conditions (dark, normal, bright), acquisition date, and a location
name identifier.

For training and validating our CNNs, we post-processed the datasets as follows.
We used 70%, 10%, and 20% of the images as training, validation, and testing
sets, respectively. We augmented the training images by applying random flipping,
brightness augmentation, vignetting, and blur. The resulting training dataset has
∼124 k images, split as follows: 109 k, 5 k, 10 k images for training, validation, and
testing, respectively. To address the labels’ bias towards the center of the [−1;+1]
yaw-rate range in our testing dataset – specifically, the over-representation of images
associated with a yaw-rate of 0, indicating no input from the human pilot and thus
the drone flying straight – we balanced the dataset by selectively removing a portion
of images that had a yaw-rate of 0. The final distribution of our balanced dataset
is represented in Figure 5.6. In the same Figure, we also report the RMSE and
Accuracy for three trivial predictors, i.e., a predictor that either always predicts
collision to 1 or 0, and a predictor that always predicts a yaw-rate of zero (i.e., go
straight). These values can be later used in Section 5.5 as a baseline to assess the
RMSE and Accuracy performance of our trained networks.
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5.4.3 Network architecture design

The original PULP-Dronet architecture [1] exploits three ResBlocks (RB) [91]. In
other vision tasks, the RB architecture has been largely replaced by other kinds of
network topologies, which provide similar accuracy characteristics but with lower
workload and memory footprint [57]. Therefore, we design the new PULP-Dronet
v3 architecture by exploring several modifications to its baseline topology.

Our modifications, detailed in Figure 5.7, involve substituting the three RB blocks
of PULP-Dronet v2, removing parallel by-pass branches, and varying the number
of channels in the intermediate feature maps. To optimize autonomous navigation
and enable more complex onboard functionality, we studied several modifications
to this setup. First, we replace these blocks with two other blocks we designed,
taking inspiration from the well-known Mobilenet family of CNNs [105, 58]. These
CNNs have been shown to be both accurate for visual AI tasks and suitable for
efficient MCU deployment [106, 57]. For each block we substitute, we keep the
same output feature map dimensions (width and height) of PULP-Dronet v2.

The first new block we design is based on the Mobilenet v1 [105]. It uses separable
depthwise and pointwise (D+P) convolutional layers instead of traditional ones.
Such layers factorize a standard convolution into a sequence of K×K depthwise
convolution and a 1 × 1 convolution called pointwise convolution, where K is the
kernel size. We define our D+P block as consisting of two branches: the main
branch performs two 3× 3 D+P convolutions, while the parallel branch executes a
standard 1×1 convolution. We apply convolutional strides different from 1 only to
the last convolution in both branches. Each convolution (depthwise, pointwise, and
standard) is subsequently followed by a batch normalization (BN) layer and a recti-
fied linear unit (ReLU). This Conv-BN-ReLU pattern simplifies both quantization
and deployment explained in Section 5.5.4: the tensor outputted by the Conv oper-
ation demands a finer grain representation (utilizing 32 bit) compared to the inputs
and weights. Therefore, the BN is used to accumulate a 32 bit representation, while
the ReLU reduces it back immediately to 8 bit.

The second block we define is inspired by Mobilenet v2 [58], using inverted residuals
and linear bottlenecks (IRLB) layers. This block comprises a 1 × 1 convolution,
which expands the number of channels by an expansion factor, succeeded by a D+P
convolution, and a 1×1 projection convolution that inverts the expansion, reducing
the number of output channels. Stride factors different from 1 are applied in the
D+P convolution. We choose an expansion ratio equal to 6 as in [58]. Additionally,
we add a by-pass branch performing a 1× 1 convolution, ensuring the same output
size as the main IRLB branch. expanding to a higher-dimensional feature space

We explore additional architecture variations by considering the removal of parallel
by-pass branches from each block type. These branches primarily serve to mitigate
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vanishing gradient effects in deep CNNs [91]. However, recent studies [103] have
highlighted their inefficacy in shallow CNN models, such as the seven-layer PULP-
Dronet.

Lastly, we explore different sizing factors to investigate the accuracy, memory foot-
print, and computational cost trade-offs, As in [103, 105], we thin the network’s
tensors by applying a γ dividing factor to the number of channels across all con-
volutional layers. We span the γ parameter in the range [1, 2, 4, 8], where γ = 1
corresponds to the baseline size for PULP-Dronet[1].

5.5 Experimental Results

5.5.1 Datasets evaluation

In Table 5.2, we assess the impact of training and testing on our new dataset
(v3) versus the PULP-Dronet v2 dataset introduced in [18] (v2); each dataset is
split into different training and testing sets. We perform this assessment, keeping
the original PULP-Dronet CNN architecture in both cases. When the CNN is
trained on v2 and tested on v2, we achieve performance consistent with the results
reported in [1]. When training on v3 and testing on v3, both performances decrease
compared to the previous case due to the higher complexity of the v3 testing set,
such as a more uniform distribution of steering labels and a richer, and therefore,
more challenging, dataset. We also report the cross-validation of training on v2 and
testing on v3, and training on v3 and testing on v2. In both cases, performances
drop compared to training and testing on the same dataset version, but the v2-
trained network (tested on v3) has a higher drop on both RMSE and Accuracy
than the v3-trained (tested on v2), suggesting better generalization capabilities for
the proposed dataset.

Table 5.2. Cross-validation between PULP-Dronet v2 dataset and ours (v3).

Training
Testing

v2 (6.9 k images) v3 (10 k images)

RMSE Accuracy RMSE Accuracy

v2 (64 k images) 0.118 90% 0.556 54%

v3 (109 k images) 0.236 67% 0.350 83%

5.5.2 CNN architectures exploration

To evaluate the PULP-Dronet v3 family of networks proposed in Section 5.4.3, we
start by analyzing different block types (RB, D+P, and IRLB) and the effect of
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removing the by-pass branches. In Table 5.3, we assess the networks in terms of
parameter count, MAC operations, and key performance metrics – the Accuracy for
the classification problem (the higher, the better) and the RMSE for the regression
one (the lower, the better).

Removing the by-pass branches negligibly affects the CNN performance metrics on
all networks, i.e., at most +0.005 RMSE and +1% in accuracy with IRLB CNN. IOn
the other side, by-pass removal reduces network size by 3−11% and number of MAC
by 3−15%, depending on the architecture. Focusing on the three CNNs without by-
pass, the RB variant achieved the lowest RMSE of 0.339, whereas D+P and IRLB
models score 0.350 and 0.369, respectively. Instead, the D+P network achieves the
highest performance of 84% on the accuracy score. The D+P CNN is also the faster
CNN, requiring only 12MMAC per inference, and the smaller in memory usage,
being 6.2× smaller than RB and 2.5× smaller than IRLB. Ultimately, we select the
D+P model without by-pass branches for its efficiency and minimal performance
drop.

Table 5.3. CNN architectures analysis varying computational blocks and residual
by-pass. The first row shows the SoA baseline [1].

Blocks by-pass γ Type RMSE Acc MAC Param Size [B]

RB yes /1 fp32 0.339 83% 41M 320k 1.3M

RB no /1 fp32 0.339 83% 40M 309k 1.2M

D+P yes /1 fp32 0.352 83% 14M 63k 252k

D+P no /1 fp32 0.350 84% 12M 51k 204k

IRLB yes /1 fp32 0.369 82% 43M 140k 560k

IRLB no /1 fp32 0.364 83% 41M 128k 513k

5.5.3 CNNs size analysis

In this section, we analyze how the number of channels of our CNNs affects their
memory requirements, number of operations, and regression/classification perfor-
mances. Starting from the CNN architecture D+P without by-passes, we span the
γ parameter (see Section 5.4.3) in the range [1, 2, 4, 8], where γ = 1 corresponds to
the baseline size for PULP-Dronet[1]. Table 5.4 shows that using a dividing factor
γ = 2 does not affect the classification accuracy of the network when compared to
γ = 1, both scoring 84%. When using smaller networks, the classification accuracy
drops by 3% with γ = 4 and by 7% with γ = 8.

On the regression task, the RMSE gradually increases as the networks become
smaller. For γ = 1, the RMSE stands at 0.350 , but increase to 0.367 , 0.373 , 0.379
for γ = 2, γ = 4, γ = 8, respectively. On the other hand, the γ factor greatly
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Table 5.4. Accuracy, RMSE, MACs, and memory footprint of our ar-
chitectures by varying γ.

Blocks by-pass γ Type RMSE Acc MAC Param Size [B]

D+P no /1 fp32 0.350 84% 12M 51k 204k

D+P no /2 fp32 0.367 84% 5.2M 17k 69k

D+P no /4 fp32 0.373 81% 2.4M 6.6k 26k

D+P no /8 fp32 0.379 78% 1.1M 2.9k 12k

Table 5.5. Accuracy, RMSE, and memory footprint of our quantized networks.

Blocks by-pass γ Type RMSE Acc MAC Param Size [B]

D+P no /1 int8 0.361 84% 12M 51k 51k

D+P no /2 int8 0.373 82% 5.2M 17k 17k

D+P no /4 int8 0.378 81% 2.4M 6.6k 6.6k

D+P no /8 int8 0.388 78% 1.1M 2.9k 2.9k

impacts the number of the network’s parameters. The biggest network (γ = 1)
has 204 k parameters, the network with (γ = 2) has 3× less parameters (69 k
parameters). Increasing the γ to 4 leads to a network with 26 k parameters, and
finally the smallest network (γ = 8), which we call Tiny-PULP-Dronet v3, leads to
only 1.9 k parameters.

5.5.4 Quantization and deployment

IIn this section, we progress with quantizing and deploying the four D+P models
without by-passes, introduced in Section 5.5.3, to evaluate their trade-off between
accuracy/RMSE and onboard execution efficiency. We apply 8-bit post-training
quantization, as detailed in Section 5.5.4. Table 5.5 outlines the quantized models’
regression/classification, compared to non-quantized models in Table 5.4. Quanti-
zation introduces only 2% reduction in accuracy on the network employing γ = 2,
while other CNNs keep the same score of the 32-bit precision. Instead, the RSME is
more sensitive to the new int8 data type, with the error increasing of 0.011, 0.006,
0.005, and 0.009, for γ = 1,2,4,8, respectively. Compared to the original float32
models (Table 5.4), we reduce by 4× the memory footprint of each CNN.

Then, we deploy these four quantized networks on the GAP8 SoC to analyze
their on-device performances. Table 5.6 shows their inference rate (frame/s) when
GAP8 is running at its max performance (mp) configuration, i.e., FC@250MHz,
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Table 5.6. Networks’ throughput when deployed to GAP8 at its max-
imum performance configuration. The energy per inference is reported
for two configurations (Eee, Emp).

Blocks by-pass γ Cycles MAC
Cycle

frame/s
Eee

[mJ]
Emp

[mJ]

D+P no /1 5.1M 2.4 34 2.1 3.0
D+P no /2 2.9M 1.8 61 1.1 1.7
D+P no /4 1.7M 1.4 101 0.6 1.0
D+P no /8 1.3M 0.9 139 0.4 0.7

CL@175MHz, and VDD@1.2V . Our largest CNN model (γ = 1) achieves a
throughput of 34 frame/s, which is 1.8× higher than the SoA PULP-Dronet v2,
peaking at 19 frame/s, despite using the number of channels across the network;
this improvement derives from our architecture modifications. Other configurations
of γ result in 61 frame/s with 14 kB, 101 frame/s with 4.7 kB, and 139 frame/s with
1.9 kB for γ = [2, 4, 8], respectively. Our smallest model (γ = 8), called Tiny-PULP-
Dronet v3, improves the throughput by 7.3× and reduces the memory footprint by
168× compared to PULP-Dronet v2.

Last, we measure the power consumption of all CNNs under SoC configurations: i)
the max performance setting, and the energy efficient (ee) one, which operates at
FC@50MHz, CL@100MHz, and VDD@1.0V. In the ee configuration, the networks
with γ ∈ 1,2 consume 38mW, while the networks with γ ∈ 4,8 show an average
power consumption of 34mW. On the other hand, in the maximum performance
configuration, all four networks show an average power consumption of 100mW.
As shown in Table 5.6, the energy for one-frame inference with the ee configuration
(Eee) is 2.1mJ, 1.1mJ, 0.6mJ, 0.4mJ for the γ = 1,2,4,8, respectively, while for
the mp configuration (Emp) is always ∼ 1.5× higher.

5.6 In-field testing

We evaluate the navigation capabilities of our PULP-Dronet v3 and Tiny-PULP-
Dronet v3 CNNs with in-field experiments. We record all experiments in a flying
room equipped with a Qualisys motion capture system (24 cameras) with mm-
precise tracking of our drone. We track the position and pose of our drone @100Hz
to analyze the drone’s flight in post-processing.

We investigate if the new dataset we collected, having unified labels for yaw-rate and
collision probability, improves the navigation capabilities with respect to the SoA
PULP-Dronet v2, which was trained with disjoint steering and collision probability
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Figure 5.8. Our u-shaped path for the in-field experiments.

labels, and therefore struggles in avoiding static obstacles, as described in [1].

Figure 5.9. In-field experiments trajectories of PULP-Dronet v3 (A-B-C) and
Tiny-PULP-Dronet v3 (D-E-F) for three target speeds vtarget = [0.5,1.0,1.5]m/s,
tested with static obstacles only (represented as black rectangles).

We set up a challenging navigation scenario: a U-shaped corridor, represented
in Figure 5.8, which we divide into three segments. Segments A and C feature
straight paths, each obstructed by two obstacles, whereas segment B encompasses
a 180-degree turn. The obstacles have a width of 1m, and they are attached on
opposite sides of the 2m wide corridor, blocking straight pathways. We designed
two experiments: i) one where all obstacles are static, and ii) one where obstacle 2
is dynamic. In the dynamic scenario, obstacle 2 is initially absent from the scene.
It appears in the center of the lane when the drone passes obstacle 1, leaving
1.5m of braking space, and it is removed 5 s after. These two scenarios challenge
the nano-UAV navigation capabilities on multiple skills: i) static and dynamic
obstacle avoidance, ii) navigation through a narrow environment (a corridor), and

88



5.6 – In-field testing

T
a
b
le

5.
7.

S
u
cc
es
s
ra
te

of
ou

r
cl
os
ed

-l
o
op

sy
st
em

in
th
e
u
-s
h
ap

ed
p
at
h
w
it
h
st
at
ic

o
b
st
ac
le
s
o
n
ly
.
W
e
re
p
or
t

th
e
su
cc
es
s
ra
te

fo
r
th
e
A
-B

-C
se
ct
io
n
of

th
e
p
at
h
,
an

d
th
e
v a

v
g
ov
er

th
e
co
m
p
le
te

p
a
th

fo
r
P
U
L
P
-D

ro
n
et

v
2
,

P
U
L
P
-D

ro
n
et

v
3
,
o
r
T
in
y
-P

U
L
P
-D

ro
n
et

v
3.

v
ta

r
g
e
t

P
U
L
P
-D

ro
n
e
t
v
2
[1
]

P
U
L
P
-D

ro
n
e
t
v
3
(o

u
rs
)

T
in
y
-P

U
L
P
-D

ro
n
e
t
v
3
(o

u
rs
)

su
cc
es
s
ra
te

su
cc
es
s
ra
te

su
cc
es
s
ra
te

(A
)

(B
)

(C
)

v a
v
g
[m

/s
]

(A
)

(B
)

(C
)

v a
v
g
[m

/s
]

(A
)

(B
)

(C
)

v a
v
g
[m

/s
]

0
.5

0/
5

0/
5

0/
5

—
5/
5

5/
5

4/
5

0.
39

5/
5

5/
5

5/
5

0.
45

1
0/
5

0/
5

0/
5

—
5/
5

4/
5

3/
5

0.
24

5/
5

0/
5

0/
5

—

1
.5

0/
5

0/
5

0/
5

—
5/
5

0/
5

0/
5

0.
96

5/
5

0/
5

0/
5

—

89



Shrinking NNs to enable multi-tasking AI on nano-UAVs

iii) a sharp 180◦ turn. The corridor environment we use in our tests is never-
seen-before for both PULP-Dronet v2 and PULP-Dronet v3, not being part of the
training set of either network.

We test our closed-loop system at three distinct target speeds vtarget = [0.5 , 1.0 , 1.5 ]
m/s. In every test, we set 0.5m as the target height. We conduct five experiments
for each combination of CNN and vtarget for statistical relevance, and we compare
with the SoA PULP-Dronet v2 [1]. To keep comparability with the SoA, we always
use the same drone’s control state machine described in [1]. The videos of the
experiments are accessible at3.

5.6.1 U-shaped path with static obstacles

We conduct the first set of experiments with all static obstacles. Table 5.7 outlines
the success rate for each CNN tested. PULP-Dronet v2 never succeeds at any
speed point to pass section A of the path. Together, the obstacles obstruct the
entire corridor’s width, resulting in a consistently high collision probability, while
the network’s steering output keeps the drone in the center of the lane defined
by the surrounding walls. As a result, the drone either does not move forward,
due to the CNN’s high collision probability, or it slowly drifts against obstacle 1,
ultimately crashing. This outcome aligns with a similar scenario described in [1],
where PULP-Dronet v2 encountered a 100% failure rate in tackling a narrow tunnel
scenario with static obstacles.

Moving to our CNNs, we plot the trajectories of PULP-Dronet v3 in Figure 5.9-A-
B-C, and the trajectories of Tiny-PULP-Dronet v3 in Figure 5.9-D-E-F. We start
analyzing the results with a target speed of 0.5m/s. PULP-Dronet v3 and Tiny-
PULP-Dronet v3 are able to fly through the whole U-shaped path with a single
failure and no failures, respectively. The only time that PULP-Dronet v3 fails,
it crashes against obstacle 4, still successfully completing 66% of the whole path.
Analyzing the @1m/s target speed configuration, PULP-Dronet v3 completes the
full corridor 3 times while crashing one time in the B section and once in the C
section. On the other hand, Tiny-PULP-Dronet v3 reliably succeeds 5/5 times
only in section A of the path, always crashing during the B section. This result
is explained by the fact that the RMSE performance of Tiny-PULP-Dronet v3 is
lower with respect to PULP-Dronet v3 as described in Section 5.5.4. Analyzing
the @1.5m/s target speed configuration, none of the networks tested succeeded in
completing the path, outlining the speed upper limit of our closed-loop systems in
this scenario. These results mark an improvement with respect to PULP-Dronet
v2, showing that i) the dataset we collected with joint labels successfully trains
networks that can tackle both obstacle avoidance and steering tasks together, and

3https://www.youtube.com/c/PULPPlatform
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ii) our Tiny-PULP-Dronet v3, with only 2.8 k parameters, can enable static obstacle
avoidance while being 168× smaller than the SoA model.

5.6.2 U-shaped path with static and dynamic obstacles

Figure 5.10. In-field experiments trajectories of PULP-Dronet v3 (A-B-C) and
Tiny-PULP-Dronet v3 (D-E-F) for three target speeds vtarget = [0.5,1.0,1.5]m/s,
tested with three static obstacles (represented as black rectangles) and a dynamic
one (represented as a light grey rectangle).

We conduct the second set of experiments stressing dynamic obstacle avoidance.
We use the same setup as Section 5.6.1, but now obstacle 2 appears in the center
of the corridor after the drone passes obstacle 1. Table 5.8 outlines the success rate
of the three CNNs tested. Starting from the SoA CNN, PULP-Dronet v2 never
succeeds in navigating any of the three segments (A,B,C) of our path for the same
reason described in Section 5.6.1, getting stuck in front of obstacle 1 and eventually
crashing into it.

Moving to our CNNs, we plot the trajectories of PULP-Dronet v3 in Figure 5.10-
A-B-C, and the trajectories of Tiny-PULP-Dronet v3 in Figure 5.10-D-E-F. PULP-
Dronet v3 shows the highest success rate among all the CNNs tested. It completes
the whole path with a success rate of 60%, 100%, 40% when flying at [0.5 , 1.0 ,
1.5 ] m/s, respectively. Remarkably, PULP-Dronet v3 only crashed once against the
dynamic obstacle while flying at the highest speed (1.5m/s), always succeeding in
passing the A segment in all other cases. On the other hand, the Tiny-PULP-Dronet
v3 completes the whole corridor with a 60% success rate when flying at both 0.5m/s
and 1m/s. However, it always fails at a higher speed of 1.5m/s, either crashing on
the right wall of Section A or failing to complete the turn in Section B. Nevertheless,
Tiny-PULP-Dronet avoided the collision against the dynamic obstacle of section A
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two times when flying at the highest speed.

In conclusion, our experiments showcase the dynamic obstacle avoidance function
of both PULP-Dronet v3 and Tiny-PULP-Dronet v3. They consistently avoided
the section A obstacle at a speed of 1m/s. At higher speeds of 1.5m/s, their success
rates were 80% and 40%, respectively.

5.7 Conclusion

Nano-sized UAVs are ideal candidates as ubiquitous flying IoT nodes. In this study,
we distill a novel family of networks for autonomous navigation on nano-drones,
i.e., the Tiny-PULP-Dronet v3 CNNs. Compared to the SoA, our models reduce
memory footprint by up to 168× (down to 2.9 kB) and achieve an inference rate of
up to 139 frame/s. We create a new open-source 66 k image dataset for autonomous
nano-UAV navigation. We compare with in-field tests both SoA and our networks
on a commercially available nano-UAV. Our tiny networks succeed in navigating a
challenging path with static and dynamic obstacles and a 180◦ turn at speeds of
up to 1m/s, whereas the SoA PULP-Dronet consistently fails despite having 168×
more parameters.
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Chapter 6

AI multi-tasking on nano-UAVs

In this Chapter, we take another step forward in the nano-UAVs SoA toward achiev-
ing a higher level of intelligence. As biological entities pursue multi-objective mis-
sions in complete autonomy, we aim to enable these nano-UAVs to execute multiple
AI algorithms fully onboard. We tackle this complex problem in two steps. First, we
tackle a new intelligence task previously unaddressed by autonomous nano drones:
object detection. We develop multiple CNNs, trained to recognize two classes of
objects, having different trade-offs between accuracy and throughput. The largest
and most accurate model scores a mean average precision (mAP) of 50% on an in-
field collected dataset while running at 1.6 frame/s on the nano-drone MCU with
a power envelope of only 134 mW. With this CNN, we build a nano-drone system
that aims at exploring a room while detecting all the objects of interest in it: we
combine state-machine-based exploration policies, relying on ToF ranging sensors
for collision avoidance, and the vision-based CNN for object detection. The effec-
tiveness of this system is further validated in-field, where it demonstrates an average
detection rate of 90% on six target objects in a never-seen-before environment.

Second, building on the progress made in Chapter 5, we enable the execution of
multiple AI algorithms on a nano drone: we merge the visual-based autonomous
navigation CNN developed in Chapter 5 and the object detection CNN developed
in this chapter. This integration allows for the sequential execution of visual-
based obstacle avoidance and object detection tasks on autonomous nano-UAVs,
running in real-time at 1.6 frames/s. Ultimately, this achievement marks the SoA by
presenting the first fully autonomous nano-drone tackling a multi-objective mission,
which consists of exploring, preventing collision, and detecting objects in real-time
while relying only on onboard sensory and computational resources.

The rapid evolution of the Internet of Things (IoT) fuels the advent of flexible edge
nodes powered by artificial intelligence (AI). In this context, AI-based nano-sized
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Figure 6.1. Our fully autonomous prototype, based on a Crazyflie nano-drone.

unmanned aerial vehicles (UAVs), with a form factor of only ∼10 cm in diameter,
can become revolutionary ubiquitous smart sensing IoT nodes capable of exploring
an environment while interacting with it in full autonomy [107], i.e., fulfilling the
mission without the need of external resources. The tiny and lightweight design
of these pocket-sized drones provides enhanced safety for close-proximity human-
machine interactions [19], as well as for indoor scenarios in narrow spaces, such as
rescue missions [9].

Tackling such complex use cases requires the drone to reach a high level of intelli-
gence typical of biological systems, which are autonomous and capable of handling
multiple concurrent tasks [108] that span from basic control functionality to high-
level perception [27, 109]. While autonomous nano-UAVs can already handle multi-
ple basic functionality blocks at run-time (e.g., state estimation, low-level control),
they still struggle to pursue multi-objective missions (e.g., safe navigation, explo-
ration, visual recognition), which require computationally intensive multi-tasking
perception [9]. In fact, with their ultra-constrained form factor and payload (a
few tens of grams), these robots are prevented from hosting high-density/capacity
batteries and bulky sensors or processors. This scenario is even further exacerbated
by the fraction of the total power budget allotted for the onboard electronics, i.e.,
5-10% of the total, which restricts the onboard processors to low-power microcon-
troller units (MCUs) [29].
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We tackle this problem in two steps. First, we enable our drone to tackle a multi-
objective mission, i.e., exploration and object detection, by mapping multiple tasks
on the two MCUs available aboard our nano-drone. We leverage i.) a single-
core STM32F405 MCU, with a peak performance <100M multiply-accumulate
(MAC) operations per second, for the execution of lightweight workloads (control,
sensor-interfacing tasks), and ii.) a parallel ultra-low-power (PULP) multi-core
co-processor, GAP8, for coping with convolutional neural network (CNN) work-
loads (∼1GMAC/s). In this case, we combine i) bio-inspired exploration policies,
running on the single-core STM32F405 MCU, and ii) a vision-based CNN for ob-
ject detection aboard a nano-drone running on the GAP8 SoC. We thoroughly
characterize four bio-inspired exploration policies by using the ranging measures
of multiple single-beam Time-of-Flight (ToF) sensors and run on the STM32F405
MCU. On average, the best exploration strategy covers 83% of a ∼36m2 room in
a time budget of 3min. We develop an object detection CNN and deploy it on
the GAP8 System-on-Chip (SoC) aboard our nano-drone, analyzing its precision,
computational/power costs, and performance by varying its depth. The biggest
(deepest) object detector achieves a throughput of 1.6 frame/s and recognizes two
classes of objects with a mean average precision (mAP) score of 50% within only
134mW. When combining the bio-inspired exploration policy with the object de-
tection CNN, the drone recognizes six objects (two classes) with a mean detection
rate of 90% (5 independent runs) with a mean flight speed of 0.5m/s.

Second, we enhance our system by enabling, for the first time, the execution of
multiple AI tasks on the GAP8 SoC of the nano-drone. We interleave the CNNs
execution of the SoA visual-based CNN for obstacle avoidance, i.e., the Tiny-PULP-
Dronet introduced in Chapter 5, with the execution of the object detection CNN
introduced in this chapter, achieving a throughput of 1.6 frame/s By doing so, we
improve the collision avoidance capabilities of our system, combining the advan-
tages of visual-based collision avoidance and single-beam ToF ranging sensors: the
monochrome low-resolution images provide semantic information that we process
with the CNN, while ToF sensors provide accurate point-wise distance measure-
ments at close distances (<4m). We show that this multi-sensory approach for
obstacle avoidance can improve up to 60% the collision avoidance capabilities of
our nano-drone.

Ultimately, to the best of our knowledge, we present the first fully autonomous
nano-drone tackling a multi-objective mission, which consists of exploring, pre-
venting collision, and detecting objects in real time while relying only on onboard
sensory and computational resources.
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Figure 6.2. Bio-inspired Exploration policies: (A) Pseudo-random: inverts the
direction by a random angle. (B) Wall-following : keeps a fixed distance from the
perimeter. (C) Spiral : progressively increases the distance from the perimeter.
(D) Rotate-and-measure: moves along the longest free-space direction.

6.1 System design

6.1.1 Robotic platform

Our robotic platform revolves around the Bitcraze Crazyflie 2.1 nano-drone pre-
sented in Chapter 3. This chapter exploits the flight controller PCB, featuring the
STM32F405 MCU, to run the state estimation and actuation controls. We also
extend the UAV platform with three additional Bitcraze PCBs: the Flow deck, the
Multi-ranger deck, and the AI-deck, which features the GAP8 SoC to run the CNN.

6.1.2 Multi-task integration: ToF-based obstacle avoidance
and CNN-based.

We exploit our platform to explore an environment while searching for specific
objects. To this aim, we separate the problem into three tasks: an exploration task,
targeting navigation inside an unknown mission area while avoiding collisions, a
visual-based collision avoidance task, running the Tiny-PULP-Dronet CNN [103],
and an object detection task that runs the visual object detection SSD algorithm,
as described in Sec. 6.1.4.

First, we integrate the exploration task, which is only based on ToF ranging mea-
surements, with the object detection CNN. The exploration task runs a bio-inspired
policy to determine the next set-point to feed the flight controller. As detailed in
Sec. 6.1.3, we study four different policies, i.e., the exploration algorithms, which
take as input either the ranging measurements of the ToF sensors or the collision
probability CNN output of the Tiny-PULP-Dronet to prevent collisions. On the
other side, the performance for the object detection task is accounted by measuring
the successful detections of target objects present in the mission area. The explo-
ration and the object detection tasks do not require interaction with each other;
therefore, we map them on the two MCUs aboard our nano-drone for concurrent
execution. More in detail, we use the two MCUs in a host-accelerator configu-
ration. The STM32 is the host and takes care of the flight controller and the
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exploration policy based on a lightweight state machine. The exploration policies
use the ToF measurements from the Multi-ranger deck to determine the next set-
point of the drone in terms of forward speed and yaw rate. The Multi-ranger deck
acquires raging measurements with a 20Hz frequency, bounding the exploration
policy throughput. On the other hand, GAP8 is the accelerator in charge of ex-
ecuting the most computationally demanding CNN algorithm. This task includes
camera acquisition and CNN processing and outputs the image-frame coordinates
of the objects detected.

Second, we also integrate into our system the visual-based CNN for obstacle avoid-
ance. We adopt a lightweight variant of PULP-Dronet, i.e., Tiny-PULP-Dronet
(Chapter 5), featuring a half number of channels in each convolution layers w.r.t.
the original version (4), resulting in 83.9 kB of memory footprint when quantized
to fixed-point 8-bit precision, achieving a 63 frame/s throughput on GAP8. Its ex-
ecution on the GAP8 requires additional memory overhead to store intermediate
activations, using up to 200 kB of memory budget. Once the inference is done, we
forward the output of the CNN, i.e., the visual obstacle avoidance information, to
the STM32 and it is used in combination with the ToF ranging measurements: a
collision is detected either if the ToF distance measured is < 1m or if the PULP-
Dronet collision output is higher than 0.7. In Section 6.2.4 we will evaluate whether
this multi-sensory method, merging the semantic information from low-resolution
images and precise distance measurements from ToF sensors, enhances the collision
avoidance capabilities of our system.

Ultimately, we enable the execution of both CNNs for visual-based obstacle avoid-
ance and object detection by time-interleaving their execution on GAP8. The
processing is done fully onboard, making the final closed-loop system completely
autonomous, i.e., with no external communication or computation.

Table 6.1. Mean Average Precision (mAP) of the SSD CNNs trained on Google
OpenImages and finetuned on the Himax dataset.

Testing
dataset

Fine-tuning Format
SSD size

1× 0.75× 0.5×
OpenImages no float32 59% 47% 43%

Himax no float32 50% 41% 29%
Himax yes float32 55% 46% 43%
Himax yes int8 50% 48% 32%
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Figure 6.3. Environments for in-field testing. The test arena is 6.5x5.5m2 wide,
restricted to 2×4.5m for the narrow-corridor scenario.

Figure 6.4. Occupancy maps measured using the four exploration policies. The
nano-drone flies at 0.5m/s during the experiments. The color of any cell, which
represents a 0.5×0.5m area, indicates the time spent by the nano-agent in that
area (up to 18 sec). Black is used if the cell has not been explored.

6.1.3 Exploration algorithms

Our four bio-inspired exploration algorithms are shown in Fig. 6.2. All the policies
rely on the ranging measurements from three ToF sensors: the front, left, and right
ones. We assess the performance of these policies by tracking the drone’s movements
in a 6.5m×5.5m room (showed in Figure 6.3-A) equipped with a motion-capture
system, tracking at 50Hz. By discretizing the room’s area into cells of 0.5×0.5m,
we plot the heatmap (Fig. 6.4) representing the occupancy time of the drone over
a 3min flight. Our four exploration policies are:

A) Pseudo-random. This approach imitates the pseudo-random movement of
biological creatures [75, 109]. The drone flies in a straight line as long as the ToF
sensor does not identify obstacles within 1m. When an obstacle is identified, the
drone rotates to a random value, which is always greater than ±90◦ from the current
heading (Fig. 6.2-A) to reduce the likelihood of detecting an obstacle previously
identified.

B) Wall-following. This algorithm explores the perimeter of the room following
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its walls at a constant distance of 0.5m, measured by the side ToF sensors (Fig. 6.2-
B). The navigation stops when a front obstacle is detected, and resumes after a
±90◦ turn towards an obstacle-free heading. By construction, this algorithm never
explores the inner part of the testing room.

C) Spiral. The drone first explores the environment by performing several concen-
tric perimetral paths (such as wall-following), each with an ever-increasing distance
from the external walls (Fig. 6.2-C). Once the room’s center has been reached, the
process is reversed, i.e., the consecutive perimetral explorations are performed with
an ever-decreasing distance to the walls. The process starts over once the drone has
reached its initial position. This spiral exploration starts with an initial distance
from the walls of 0.5m, and, for each lap, it is increased/decreased by the same
amount.

D) Rotate-and-measure. This algorithm features two sequential phases (Fig.
6.2-D). In the first phase, the drone scans the environment by performing a 360◦

spin in place while measuring the front distance every 45◦. In the second phase,
the drone flies towards the most obstacle-free direction for a maximum of 2m.
This policy favors exploring the inner areas of our testing room while frequently
neglecting its corners.

6.1.4 Object detection algorithm design

Our object detection pipeline is based on an SSD algorithm composed of a Mo-
bilenetV2 feature extractor [58, 110], pre-trained on the full OpenImages [111]
dataset, and multiple detection heads, which is the ending part of the CNN that
predicts the locations, categories, and confidence scores of objects at different res-
olution scales. To trade off latency/memory and detection accuracy, we deploy
three different CNNs by varying the width multiplier α of the MobilenetV2 back-
bone. We refer to the different object detection algorithms as SSD-MbV2-α, where
α = {0.5,0.75,1.0}. The largest SSD-MbV2-1.0 model features 4.67M parameters
and requires 534MMAC operations while the SSD-MbV2-0.75 and SSD-MbV2-
0.5 have, respectively, 2.68M and 1.34M parameters and require 358MMAC and
193MMAC operations.

We train our SSD models to detect two object categories, bottles and tin cans, using
a subset of images from the OpenImages collection. Given the unbalanced training
set, i.e., 1306 and 11306 images for tin cans and bottles, respectively, we balance
the dataset by generating additional tin can images through horizontal translation
(up to 10% of the image’s width). The final split consists of 19142 images for
training, 208 for validation, and 663 for testing, where the validation and testing
portions match the original dataset splitting. Finally, to overcome the domain shift
between the training and real-world data (Fig. 6.5), we add a fine-tuning phase on
an additional dataset we collected and called Himax Dataset, which includes 321

101



AI multi-tasking on nano-UAVs

training images and 279 testing images.

To deploy the object detector on GAP8, we quantize the CNN to 8-bit. We perform
an additional fine-tuning step of quantization aware training (QAT) to minimize
the mAP loss due to the 8-bit conversion. Then, we exploit the QAT routine
included within the Tensorflow Object Detection API framework [110] using sym-
metric quantization ranges because the software primitives of the target hardware
rely on symmetric integer ranges. Lastly, Greenwaves’s GAPflow toolset1 is used
to produce the C code of the object detection task, constraining the L2 buffer size
to 250 kB.

6.2 Results

6.2.1 Object detection evaluation

The SSD models are trained on OpenImages for 1200 epochs using the RMSProp
optimizer. We set a learning rate of 8 ·10−4 with an exponential decay of 0.95 every
24 epochs and a batch size of 24. The OpenImages frames are resized to 320× 240
pixels to match the resolution of the drone onboard camera. During training, the
images are extended with photometric augmentations, such as flipping, brightness
adjustment, random cropping, and grayscale conversion, individually applied with a
probability of 0.5. Before deployment, the SSD models are fine-tuned, also applying
QAT, on the Himax dataset for 100 epochs, with a learning rate of 10−4 retaining
the same exponential decay of 0.95 every 10 epochs.

Tab. 6.1 reports the mAP scores (as defined for the COCO dataset [112]) of the

1https://greenwaves-technologies.com/gapflow/

Figure 6.5. Google OpenImages sample (left) vs. onboard sensor image (right).
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multi-sized SSD models on both the OpenImages and our Himax testing datasets.
The largest model achieves an mAP of 59% when trained and tested on images from
the OpenImages dataset, up to 16% vs. the smallest model. These scores reduce
by 9%, 6%, and 14% for the three models when tested on the Himax dataset. We
argue this effect to be due to the onboard camera image quality being lower than
the web-retrieved images. After fine-tuning on the Himax training set, the mAP
score improves up to 55% for the best model, bridging the accuracy gap for the
mAP score on the OpenImages test set. Given the best scores of 50% and 48% after
8-bit quantization, we consider both SSD-MbV2-1 and SSD-MbV2-0.75 models for
the in-field evaluation.

Tab. 6.2 reports the performance of the SSD CNN running on the GAP8 SoC.
We set the operating voltage at 1.2V and a clock frequency of 160MHz for the
multicore cluster, while the peripheral clock is set to 250MHz. The largest models
(SSD-MbV2-1.0) can process up to 1.6 frame/s, with a computational efficiency
of 5.3 MAC/clock cycles. Instead, the smaller SSD-MbV2-0.75 and SSD-MbV2-
0.5 result, respectively, 1.6× and 2.7× faster than the larger model. The power
consumption of the AI-deck reaches a peak of 143.5mW when running the SSD-
MbV2-0.75 model, where the inference task shows the highest compute efficiency,
maximizing the memories’ bandwidth and processing logic utilization. Conversely,
the power consumption decreases to 134.5mW if running the most accurate SSD-
MbV2-1.0 model.

Table 6.2. SSD CNNs’ onboard performance.

SSD Parameters Operations Efficiency Throughput

1× 4.7M 534 MMAC 5.3 MAC/cycles 1.6 FPS
0.75× 2.7M 358 MMAC 5.9 MAC/cycles 2.3 FPS
0.5× 1.2M 193 MMAC 5.3 MAC/cycles 4.3 FPS

6.2.2 Exploration policies evaluation

To assess the performance of our four exploration policies, we calculate the coverage
area (%) in the obstacle-free testing room described in 6.1.3 (Figure 6.3-A) by
calculating the ratio between the visited cells w.r.t. their total (i.e., 143 cells). We
mark a cell “visited” when the drone’s center of mass falls into it. We evaluate
each exploration policy with three average flight speeds (i.e., 0.1m/s, 0.5m/s, and
1m/s), obtaining 12 test configurations. For every configuration, we perform five
runs of 3min each, accounting for a total of 60 runs (3 h flight time).

Fig. 6.6 reports the coverage area of each configuration (policy and speed) aver-
aged on the five runs. The pseudo-random and spiral policies are those that mainly
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benefit from higher speeds, passing from 35% coverage area (at 0.1m/s) to 74%
and 82% (at 0.5m/s), and finally to 80% and 83% (at 1m/s), respectively. In-
stead, the wall-following and rotate-and-measure exploration policies show a slight
improvement passing from a mean flight speed of 0.1m/s to 0.5m/s, as much as
+17% and +14%, respectively. Contrary to the previous policies, the highest flight
speed does not improve the coverage area, i.e., +2% and −1%, respectively. The
wall-following policy has a limited performance since the drone only explores the
room’s perimeter (see Fig. 6.4-B). Similarly, the rotate-and-measure policy spends
the vast majority of the 3min flight spinning in place and focusing on the center
of the room (see Fig. 6.4-D).

6.2.3 In-field closed-loop system evaluation: exploration
and object detection

To test our closed-loop system composed of exploration policies, running on the
STM32 MCU, and the object detection CNN, running on the GAP8 SoC. To eval-
uate the in-field performance, we measure the detection rate of each policy/CNN by
placing three bottles and three tin cans in the room, relying on the same obstacle-
free testing configuration of Sec. 6.2.2: 6.5×5.5m testing room, 3min flights. One
bottle and one tin can are close to the center, while the other four are near the
corners. The final detection rate depends on i.) detector’s precision and through-
put and ii.) covered area (partially depending on the flight speed). In Tab. 6.3,
we evaluate the best two SSD CNNs (see Sec. 6.2.1) with all four exploration
policies and three flight speeds. The bigger SSD-MbV2-1.0 consistently achieves,
for any configuration, an equal or greater detection rate than the medium 0.75×
model, suggesting that, in our setup, the detector’s accuracy is more important

Figure 6.6. Average coverage area (in %) for each exploration policy, varying its
mean flight speed (i.e., 0.1m/s, 0.5m/s, and 1m/s).
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Table 6.3. Average detection rate: 6 objects, 5 runs of 3 minutes each.

SSD
Flight

speed [m/s]
Detection rate

Pseudo
random

Wall
following

Spiral
Rotate and
measure

1.0×
0.1 27% 63% 67% 53%
0.5 90% 50% 73% 53%
1 83% 53% 70% 47%

0.75×
0.1 27% 50% 33% 47%
0.5 80% 37% 43% 50%
1 37% 27% 43% 33%

than its throughput (SSD-MbV2-0.75 has higher throughput than SSD-MbV2-1.0,
but lower mAP).

Focusing on the SSD-MbV2-1.0, the peak performances are achieved by the pseudo-
random and spiral policies, which show the highest detection rate at the interme-
diate flight speed of 0.5m/s. In contrast, in Sec. 6.2.2, the best coverage area was
obtained by the highest flight speed, which suggests 1m/s being too high for the
limited inference rate of the bigger 1× SSD (i.e., 1.6 frame/s). Then, the wall-
following and rotate-and-measure policies show the lower detection rates, 63% and

Figure 6.7. Coverage area of the random policy over 5 runs (mean and variance).
The detection time of the 6 target objects (blue dots) refers to one single run.
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Table 6.4. Power breakdown of the robotic platform.

Motors CF elect. AI-deck Multi-ranger Total

Power [W] 7.32 0.277 0.134 0.286 8.02
Percentage 91.31% 3.45% 1.67% 3.57% 100%

53% at most, respectively. This behavior is the consequence of the limited coverage
area of the policies, where the former misses all the objects placed in the center of
the room while the latter marginally explores the perimeter.

In Fig. 6.7, we focus our analysis on the best performing model: pseudo-random
exploration policy with the nano-drone flying at 0.5m/s and running the SSD-
MbV2-1.0. The yellow line shows the coverage area over five 3min flights, which
scores a maximum average of 72% coverage, with a variance of 21%. The blue dots
indicate the time each object is recognized for a run achieving 100% detection rate
in 154 s.

Lastly, Tab. 6.4 shows the power breakdown of the nano-drone platform, measured
by profiling each component individually with the Power Profiler Kit 2 by Nordic
Semiconductor. The power cost of the AI-deck, running the biggest SSD-MbV2-
1.0, accounts for 1.67% of the total power, which is dominated by the motors
(91.31%). The other electronics components, i.e., Crazyflie’s MCU and the ToF
sensors, require the remaining 7.03% of the total power.

6.2.4 Multi-sensory collision avoidance

We test the combination of ToF&PULP-Dronet to assess its effectiveness with
respect to systems using a ToF-only collision avoidance method. Fig. 6.3 illus-
trates three test environments we used: (A) obstacle-free, (B) obstacle-populated
and (C) narrow-corridor. In environments B and C, we challenge the nano-drone
autonomous explorations using thin obstacles, i.e., chair legs and tripods. Scenario
C differs from B as we set up walls to create a 2×4.5m corridor for the drone
flight. In this experiment, a nano-drone takes off from a known position and ex-
plores the unknown environment driven by the pseudo-random policy described in
Section 6.1.3. For both the ToF-only and ToF&PULP-Dronet settings, we perform
5 and 10 runs for the obstacle-free and narrow corridor environments, respectively,
while 20 runs are experimented in the obstacle-populated environment. During all
the tests, the flight velocity is set to 0.5m/s, and the drones fly at 0.3m altitude.
We track the drone trajectories using an external motion capture system, and we
manually annotate the crashes with the obstacles.

Table 6.5 shows the results of our in-field experiments, reporting the number of
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Table 6.5. In-field obstacle avoidance performance exploration.

Env. Parameters SniffyBug ToF-only
ToF&

PULP-Dronet

obstacle
free

Crash-free rounds 5 /5 5 /5 -
Avg. crash/min 0 0 -
Avg. coverage/min[%] 20.7 22.4 -

obstacle
populated

Crash-free rounds 4 /20 3 /20 16 /20
Avg. crash/min 1.8 1.5 0.2
Avg. coverage/min[%] 33.2 22.6 10.3

narrow
corridor

Crash-free rounds 0 /10 1 /10 7 /10
Avg. crash/min 2.6 2.4 0.4
Avg. coverage/min[%] 19.8 45.2 26.7

collision-free missions and the average number of collisions per minute of flight. We
also list the average coverage area per minute (expressed in % of the total area),
accounted as the number of visited cells w.r.t. the total number of cells (a cell is an
area of 5x5 cm2). In addition to our ToF-only and ToF&PULP-Dronet systems, we
benchmark the anti-collision capability of a single drone of the SniffyBug swarm [5]
solution, which also relies on the ToF information. In the obstacle-free environment,
the ToF solutions already shows perfect performance (100% collision-free), hence
we did not run any experiments using PULP-Dronet. Conversely, for the obstacle-
populated environment, only 20% or 15% of the trials are successful for, respectively,
the SniffyBug and our ToF-only system, dropping to 0% in the narrow corridor for
both systems. The poor results are motivated by the missed detection of the narrow
obstacles by the ToF sensors. The proposed ToF&PULP-Dronet achieves instead
a success rate of 80% and 70% in the two environments. In the narrow-corridor
setup, the ToF-only system shows a coverage-per-minute of 45.2%, which is higher
than Sniffy-bug and ToF&PULP-Dronet solutions. The latter, in particular, suffers
from detecting the corridor with a potential risk of collision. Ultimately, the CNN-
based visual collision avoidance improves the collision success rate in cluttered
environments from 20% to 80%.

6.2.5 Multi-tasking AI execution

When integrating the PULP-Dronet CNN introduced in Section 6.1.2, and the best
object detection CNN (SSD-MbV2-1) evaluated in Section 6.2.3, their interleaved
execution results in a throughput of 1.6 frame/s when deployed on GAP8. Table 6.6
summarizes the memory requirements, throughput, and power budget required by
the exploration policy, and the two CNNs when running on the STM32 and GAP8
MCUs, respectively. Consequently, the visual-based obstacle avoidance provided
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by PULP-Dronet is limited by the throughput SSD-MbV2 CNN, possibly leading
to worse performances when compared to the system tested in Section 6.2.4.

Table 6.6. Embedding cost for the multi-task integration. The Parameters
are stored in the Flash Memory. Memory refers to the maximum usage of
the on-chip L2 memory.

MCU Task
Throughput

[Hz]
Parameters

[MB]
Memory

[KB]
Power
[mW]

STM32 Exploration policy 20 - 0.1 286

GAP8
SSD 1.7 4.67 250 134
PULP-Dronet 63 0.08 200 101
SSD&PULP-Dronet 1.6 4.75 250 133

To study the trade-off between obstacle avoidance and PULP-Dronet’s throughput,
we record a video dataset of a nano-drone approaching 8 obstacles (6 chairs and
2 tripods) from a distance of 60 cm at a speed of 0.5m/s. In total, we collected
64 videos at 10 FPS with an average number of 15 frames and at least 12 frames
per video, collecting ToF measurements as well. To analyze the impact of multiple
throughputs from 1Hz to 10Hz, we sub-sample the acquired video, and we apply
the PULP-Dronet algorithm. The results in Fig. 6.8 show the number of detected
collisions over the dataset. The bottom bars denote the collision assessed only by
the ToF (i.e., PULP-Dronet at 0 FPS), which do not vary across the throughput.
At 2FPS, the benefit of PULP-Dronet is bounded to +17% improvement with
respect to the ToF-only solution. From 3FPS to 6FPS, the boost in detection
rate increases from 34% to 51%, while the performance gain reduces at higher
FPS. When increasing the PULP-Dronet throughput of 8 FPS, the overall obstacle

Figure 6.8. PULP-Dronet obstacle detection at different throughput.
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detection goes up to 87.5%, peaking at 90.5% at 10FPS. Overall, we enabled the
full onboard execution of two CNNs aboard a nano drone by overcoming the strict
memory constraints imposed by MCU-class processors available on nano-UAVs.
We took a step forward toward achieving a multi-tasking level of intelligence that
is typical of tiny biological systems. However, the integrated execution of two
heavy vision-based CNNs is still limited to a throughput of 1.6FPS. Therefore,
this system would further benefit from either a more capable MCU processor or
by further optimizing the current bottleneck of the multi-task integration, i.e., the
object detection CNN, which takes 573ms to process.

6.3 Conclusions

This chapter marks a notable achievement for nano-sized UAVs: for the first time,
we have successfully enabled a nano-drone to tackle a multi-objective mission au-
tonomously, encompassing the exploration of an unknown environment while avoid-
ing collisions, and searching objects with a vision-based CNN detector. We pre-
sented four bio-inspired exploration policies and three versions of object detectors
running independently on two resource-limited MCUs aboard the nano-drone. The
best configuration reaches a final detection rate of 90%, exploiting i.) a pseudo-
random policy for exploration, ii.) the largest object detection model, and iii.)
a mean flight speed of 0.5m/s. This result shows how the higher detection rate
can be reached by trading off the detection capabilities of the CNN, its through-
put, and the mean flight speed of our nano-drone. Lastly, we enabled for the
first time the execution of multiple AI algorithms fully onboard CNNs by time-
interleaving the execution of visual-based obstacle avoidance and object detection
CNNs on the GAP8 SoC. In particular, we fused both ToF ranging measurements
and CNN-based visual obstacle avoidance to improve the reliability of our system
when navigating an environment that features thin obstacles. By enabling this AI
multi-tasking approach on nano-drones we pave the way for new possibilities in the
application of autonomous nano-UAVs.
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Chapter 7

Summary and Conclusion

Within the ever-growing field of artificial intelligence, tiny flying robots can rev-
olutionize many aspects of our lives. Once they reach a true level of autonomy,
i.e., pursuing multiple goals by relying only on their onboard intelligence [13], they
can become the perfect tiny robotic helpers. Such a high level of intelligence is
akin to insect-sized biological systems, which can seamlessly pursue multiple goals
concurrently and with full autonomy [27], but it is still a visionary scenario for
miniaturized UAVs.

Enhancing onboard intelligence in UAVs poses significant challenges, as it requires
the execution of multiple and complex AI perception workloads. On the one hand,
large UAVs, i.e., standard- and micro-sized, cope with this challenge by hosting
bulky and powerful processors aboard, which have a power consumption of a few
tens of Ws. Such UAVs showcase SoA intelligence capabilities [26, 113, 85, 33],
even outperforming humans in some applications [17]. Conversely, tiny drones have
stringent payload and size constraints, which restrict their onboard computation
devices to ULP processors, challenging the execution of complex AI pipelines fully
onboard.

As of today, the forefront of research is constituted by nano-UAVs, i.e., aircraft
having about 10 of diameter and a computational power envelope of a few hundreds
of mW. Recent progress in the field has led to these small UAVs being capable
of successfully executing single CNNs for AI perception entirely onboard. Despite
these advancements, nano-UAVs still fall short compared to insect-scale biological
systems’ capacity to perform complex, multi-objective missions. The challenge lies
in their current inability to execute multiple intelligence tasks simultaneously, a
capability that is crucial to reach sophisticated skills but remains beyond the reach
of these miniaturized UAVs at present.

This thesis demonstrated how to bridge this capability gap, enabling nano-UAVs to
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execute multiple perception AI tasks. This achievement was accomplished through
three incremental steps. First, in Chapter 4, we showed methodologies and soft-
ware tools specifically designed to automate the optimization and deployment of
CNNs on nano-UAVs, taking into account the stringent computing and memory
constraints imposed by their ULP processors. The robustness of this pipeline was
field-proven in a challenging competition scenario, winning the first international
autonomous nano-drone race.

Second, in Chapter 5, we showed a methodology to minimize the CNN workload on
nano-drones. The methodology consists of identifying inactive neurons within the
target CNN, followed by architectural modifications to effectively reduce the net-
work’s size. When applied to a SoA CNN for visual-based autonomous navigation,
we obtained a significantly more compact and computationally efficient network,
which is 50× times smaller and 8.5× faster than the original, without any loss in
performance metrics.

Third, in Chapter 6, we used our pipeline for automated CNN deployment (Chap-
ter 4) and we leveraged the computational resources freed up with our shrinking
methodology (Chapter 5) to successfully enable the execution of multiple AI-based
perception tasks aboard our autonomous nano-drone. we enabled the concurrent
execution in real-time (1.6FPS) of a CNN tackling the object detection task and a
CNN tackling visual-based navigation and obstacle avoidance.

In conclusion, we took miniaturized flying robots one step closer to the high-level
intelligence of tiny biological systems: we demonstrated for the first time that it
is possible to overcome both the computational and memory burden imposed by
ULP MCUs, allowing the simultaneous execution of multiple AI-based perception
tasks on nano-UAVs.

7.1 Outlook and Future Work

This section outlines potential future research aiming to advance the intelligent
capabilities of nano-sized UAVs.

7.1.1 Improving AI skills on nano-UAVs

In this thesis, we enabled for the first time the concurrent execution of two real-
time AI-based perception tasks on autonomous nano-UAVs, tackling visual-based
navigation and object detection. However, to reach a true level of autonomy on
such robotic platforms, more effort must be put into developing evermore complex
AI pipelines. The following are examples of advanced intelligent capabilities that
could enhance or be integrated into nano-UAVs.

112



7.1 – Outlook and Future Work

Autonomous Navigation. State-of-the-art approaches for large UAVs often uti-
lize visual-based simultaneous localization and mapping (SLAM) pipelines for au-
tonomous navigation, creating environmental maps, and planning the trajectory
according to it [114, 89]. While essential for enhanced navigation, classical SLAM
is computationally too demanding for nano-UAVs [73]. Thus, there is a need for de-
veloping lighter monocular SLAM pipelines [115] compatible with MCU constraints,
potentially using filtering-based SLAM techniques [116].

Drone Racing. Our current visual-based pipeline enables autonomous navigation
and obstacle avoidance in never-seen-before environments. However, to achieve
visual-only gate-based navigation, a more sophisticated pipeline encompassing gate
detection and trajectory planning is required [35]. Lightweight CNNs for gate
pose estimation, proven in larger drones, could also be adapted on the nano-
UAVs [34, 33]. Moreover, learning-based methods could revolutionize gate-based
navigation on nano-drones by replacing traditional planning, controlling, and per-
ception mechanisms with neural networks. An end-to-end CNN approach could
enable nano-drones to navigate gates using raw images for direct UAV control [35].

Exploration and search. We have implemented an object detection CNN capable
of identifying two object classes. However, nano-drones must be able to recognize
a broader range of objects to tackle practical use cases where exploration and
target search are needed, e.g., search and rescue missions. Broadening the object
detection skills is essential not only for target identification but also for obstacle
avoidance and for landmark recognition to map the environment [117] A promising
CNN that could enable this scenario is TinyissimoYOLO [118], which can detect up
to 20 object classes with a model size that ranges between 0.58MB and 3.35MB,
depending on the network’s accuracy.

7.1.2 Simulation for developing AI on nano-drones.

The field of nano-drones represents an emerging area of research. as explained in
Section 5.2, the scarcity of datasets collected specifically for this platform poses a
challenge to developing AI algorithms. We introduced a dataset collector framework
specifically tailored for nano-drones to address this issue. However, the manual
data collection and labeling process is time-consuming, hindering rapid research
and development.

Simulators offer a promising solution to this dataset deficiency in deep learn-
ing. There are numerous quad-rotor simulators available, such as Gazebo [119],
Hector [120], FlightGoggles [121], Flightmare [122], Nvidia Isaac Gym [123], and
Webots [124]. Simulators have been successfully used for various applications in
standard-sized and micro-sized UAVs, including drone racing [17, 26, 34, 125], au-
tonomous navigation in unseen-before environments [113, 126], search and rescue
missions [127], and environmental monitoring [128]. Leveraging a simulation-based
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AI approach, this thesis (Section 4.2) has successfully applied simulation to nano-
drones, demonstrating its effectiveness in autonomously navigating a never-seen-
before environment. Looking ahead, I envision that the future development of
AI on nano-drones will increasingly rely on simulators for data collection. This
approach accelerates the development process and offers a versatile and resource-
efficient means to refine and test AI algorithms in software.

7.1.3 DNN acceleration and approximate computing.

The current SoAMCU for commercial-off-the-shelf nano-drones is the GAP8 SoC [56],
a parallel ultra-low-power processor with a general-purspose 8-core cluster deliv-
ering a peak throughput of 5.4GOps/s [68]. However, newer and more advanced
SoCs, such as the GAP9 SoC, have recently emerged. This SoC combines a flex-
ible microcontroller, parallel Digital Signal Processors (DSP), and heterogeneous
acceleration capabilities. Notably, the DSP in GAP9 offers a substantial peak
throughput of 150.8 GOps/s1, substantially enhancing both the maximum perfor-
mance and energy efficiency compared to its predecessor, GAP8. Consequently, it is
anticipated that the nano-UAV class will progressively shift towards adopting this
advanced SoC. This transition is expected to facilitate the execution of AI pipelines
that are more resource-intensive onboard, further expanding the capabilities and
applications of these compact aerial vehicles. For example, the use of GAP9 would
be able to enhance the simultaneous execution of the object detection and visual
obstacle avoidance CNNs introduced in Chapter 6, now limited at 1.6FPS

In Chapter 4, we demonstrated the critical role of low-precision integer arithmetic in
enabling deep learning inference on tiny, resource-constrained UAVs. This approach
significantly speeds up CNN execution, thanks to packed-SIMD instructions [64],
and reduces memory usage. Current understanding in the field, supported by stud-
ies like [62, 129], suggests that 8-bit quantization can achieve near-zero accuracy
degradation, often without retraining. Indeed, our research highlighted the minimal
performance impact when reducing data precision from 16-bit to 8-bit during CNN
quantization (Section 4.1). To further enhance compression rates with only a mod-
est loss in accuracy, recent research is exploring sub-byte quantization, i.e., using
less than 8 bits to quantize DNNs’ weights and activations. An area of particular
interest is heterogeneous mixed-precision quantization [106], which offers a promis-
ing avenue for balancing latency and accuracy trade-offs when quantizing networks
with sub-byte precision. Adopting this extreme quantization strategy can unlock
the deployment of heavier DL workloads on nano-UAVs, as it reduces CNNs’ mem-
ory footprint and improves their throughput, ultimately improving energy efficiency
when executing DNNs.

1https://greenwaves-technologies.com/low-power-processor/
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