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Nomenclature

Chapter 1-2

(µ,sd) Average and standard deviation of the correlation between replicates in the Monte Carlo experiment

(̄µ) Average (average) correlation in simulations with similar parameters

F̄k Average rank of the members of group k in the overall population

s̄d Average sd of the correlation in simulations with similar parameters

X̄m Mean of the mixture between the pre- and post-shock distributions

∆xkh
q Relative difference between the q− th quantiles of group k and h

∆µkh Relative difference between the averages of group k and h

1 Indicator function

E(·) Expected value

n Vector of group sizes

p Vector of group popolation shares

xk Income (or consumption) vector of group k

µ Average income (or consumption) of the population

µk Average income (or consumption) of the group k

µq Average income (or consumption) of the individuals ranking in the quantile q in their group

GBM
b ,

or GGini
Between component of the Bhattacharya and Mahalanobis [1967a] decomposition
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Gk(xk),

or Gk
Gini index of group k

ρ Probability of random (symmetric) shock

ρ(a,b) Correlation between the vectors a and b

ρk Probability of (asymmetric) shock for group k

ρkq Probability of (asymmetric) shock for quantile q in group k

ρq Probability of (asymmetric) shock for quantile q

A Gini index decomposition proposed in Chapter 1

BM Bhattacharya and Mahalanobis [1967a] decomposition

c Variation induced by the shock

Ckh
b Gross contribution of the interaction between groups k and h to between-group inequality

ckh
b Numerator of the gross contribution of the interaction between groups k and h to between-group

inequality

ci

Ck
w Gross contribution of group k to within-group inequality

ck
w Numerator of the gross contribution of group k to within-group inequality

cov(a,b) Covariance between the vectors a and b

CV [E[µk]] Expected Coefficient of Variation between the group averages

dkh
Q Measure of distance between the mean-scaled income distributions of group k and h as defined in

Ebert [1984]

Ebkh Measure of distance between the income distributions of group k and h as defined in Ebert [1984]

F(·) Cumulative distribution function

G(x;w) Gini index of the vector x, weighted by the vector w

g(x;w) Numerator of the Gini index of the vector x, weighted by the vector w

Gk Group k contribution to the Gini index
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gk Numerator of the group k contribution to the Gini index

gb Numerator of the between component of the Gini index decomposition proposed in Chapter 1

Gb(x;w) Between component of the Gini index of the vector x, weighted by the vector w

gb(x;w) Numerator of the between component of the Gini index of the vector x, weighted by the vector w

Gk
b Group k standardised contribution to the between component of the Gini index

GA
b Between component of the decomposition proposed in this thesis

gkh
b Group k standardised contribution to between inequality arising from the interac- tion with group h

Gkh
b Standardised contribution of the interaction between groups k and h to between-group inequality

gkh
b Numerator of the standardised contribution of the interaction between groups k and h to between-

group inequality

GY L
b Between component of the Yitzhaki and Lerman [1991a] decomposition

gw Numerator of the within component of the Gini index decomposition proposed in Chapter 1

Gw(x;w) Within component of the Gini index of the vector x, weighted by the vector w

gw(x;w) Numerator of the within component of the Gini index of the vector x, weighted by the vector w

GA
w Within component of the decomposition proposed in this thesis

GBM
w Within component of the Bhattacharya and Mahalanobis [1967a] decomposition

Gk
w Standardised contribution of group k to within-group inequality

gk
w Numerator of the standardised contribution of group k to within-group inequality

GY L
w Within component of the Yitzhaki and Lerman [1991a] decomposition

GGiniq Gini index between individuals belonging to different groups and ranking in the j− th position in

their group income vector

HI Horizontal inequality benchmark

N Population size

n Size of groups when groups are equal sized

nk Size of group k
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pk Share of population belonging to group k

Q Number of quantiles employed to assess the between group inequality

r Parameter defining the maximum of the uniform distribution for simulation purposes in Section 1.6

RBM Residual term of the Bhattacharya and Mahalanobis [1967a] decomposition

RY L Residual term of the Yitzhaki and Lerman [1991a] decomposition

Sb Between component share

t = [0,1] time while the shock produces its effects

Tj This specifies the option type= j in the function quantile() in software R. The different options are

in accordance with the definitions presented in Hyndman and Fan [1996]

wk
i j Decomposition weight of the difference between individuals i and j of group k

wkh
i j Scaling factor to decompose the contribution to the Gini index coming from the difference between

the individual i of group k and the individual j of group h

wkh
j Decomposition weight of the difference between the individuals ranking in the j − th position of

groups k and h

X Income distribution after the shock

x Variable of interest, income or consumption vector of the population

xk
q Quantile q of the group k income vector

Xm Mixture between the pre- and post-shock distributions

xi Income (or consumption) of individual i

xk
i Income (or consumption) of the individual ranking in the i − th position of the non decreasing

income vector of group k

Y Income distribution before the shock

yk
i Pre-shock income (or consumption) of the individual ranking in the i− th position of the non de-

creasing income vector of group k

yi Pre-shock income (or consumption) of individual i

Y L Yitzhaki and Lerman [1991a] decomposition

6



G(x),
or G

Gini index of vector x

g(x),
or g

Numerator of the Gini index

HBS Household Budget Survey

ISTAT Italian National Statistics Institute

lcm Least common multiple

MAE Mean Absolute Error

MC Monte Carlo

MSE Mean Squared Error

OECD Organisation for Economic Co-operation and Development

SIPP Survey of Income and Program Participation

Chapter 3

∆ Arc-percentage change

δi, t Income shock of individual i at time t

∆i; (t, t+1) Arc-percentage change of the individual i income between t and t +1

Yi Average income of individual i

lnYi Average of the logarithm of income of individual i

σ2
i Variance of the logarithm of income of individual i

σ2
pop Population average of the individual variance of the logarithm of income

σt, t+1(∆) Standard deviation (between N individuals) of the arc-percentage change between two periods t

and t +1

Gi Gini index of individual i income over time

Gpop Population average of the individual Gini index over time

Gi, b Between component of the individual i Gini index over time

Gi, w Within component of the individual i Gini index over time
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Gpop, b Population average of the individual between component of the Gini index over time

Gpop, w Population average of the individual within component of the Gini index over time

M Number of subperiods in a year (e.g., M = 12 if the analysis is monthly)

N Population size

SCV squared coefficient of variation

SCVi squared coefficient of variation of individual i

SCVi, in f ra, y Infra-annual component, relative to year y, of the individual squared coefficient of variation

SCVi, in f ra Infra-annual component of the individual i squared coefficient of variation

SCVi, inter Inter-annual component of the individual i squared coefficient of variation

SCVi, net−in f ra Infra-annual component net of seasonality of the individual i squared coefficient of variation

SCVi, seasonal Seasonal component of the individual i squared coefficient of variation

SCVpop, in f ra Population average of the infra-annual component of the individual squared coefficient of vari-

ation

SCVpop, inter Population average of the inter-annual component of the individual squared coefficient of vari-

ation

SCVpop, net−in f ra Population average of the infra-annual component net of seasonality of the individual

squared coefficient of variation

SCVpop, seasonal Population average of the seasonal component of the individual squared coefficient of vari-

ation

T Number of periods (generally months)

t Time index

Y Number of years

Yi,·,m Average income of individual i in month m

Yi,t Income of individual i in period t

Yi,y,· Average income of individual i in year y
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Yi,m,y Income of individual i in month m of year y

MC Monte Carlo

SIPP U.S. Survey on Income and Programme Participation
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Introduction

In the current epoch of globalisation, technological upheaval, and socio-economic transformations, the study

of income inequality and instability is paramount. As the world changes and confronts monumental chal-

lenges, from financial crises to pandemics and inflation, understanding the nuances and intricacies of income

distribution and inequality dynamics helps to effectively identify and mitigate the difficulties that people face

while world and national economies evolve.

The title of this manuscript, ”From Methodological Challenges to Empirical Insights: Reassessing In-

come Inequality and Instability”, encapsulates a journey from grappling with methodological challenges

to deriving profound empirical insights into the dynamics of inequality and instability. This thesis is the

result of research work that I carried out during my Ph.D. in Economics at the University of Bologna and

during my visiting at the Organisation for Economic Co-operation and Development (OECD). It provides a

methodological discussion to guide and improve the assessment of income inequality and income instability.

I briefly outline below the contents of the three chapters.

Chapter 1 consists of a methodological contribution to the assessment of horizontal inequality, which

concerns itself with the disparities between groups defined, for example, by factors such as race, gender,

or geography. Traditional methods to assess horizontal inequality partition the population of interest into

groups based on a singular factor and decompose inequality measures, say the Gini index, into within- and

between-group components. Notably, the between-component assesses horizontal inequality. While starting

with decompositions offers a direct way to represent horizontal inequality as a proportion of overall inequal-

ity, emphasising the relevance of the examined factor, it also imposes limitations on the mathematical expres-

sions available to capture the multifaceted nature of horizontal inequality. The between-components of the

conventional decompositions assess horizontal inequality simply by comparing the group means. Contrast-

ing them with an axiomatically derived benchmark of horizontal inequality, they underestimate horizontal

inequality when there is no stochastic dominance among the group distributions. This chapter introduces a

two-component decomposition of the Gini index that provides a more nuanced understanding of group dif-

ferences and solves the risk of underestimation. A Monte Carlo experiment compares the axiomatically de-

rived benchmark with the alternative between-components and shows that the proposed between-component

has the highest correlation with the benchmark, exceeding 0.95 for all plausible parameter specifications.

Analysis of real data confirms this evidence and highlights the risk of underestimating horizontal inequality

by using conventional decompositions. In conclusion, this chapter reinforces the decomposition approach,

providing a precise tool for assessing horizontal inequality.

In Chapter 2, we shift our gaze to the aftermath of asymmetric shocks on horizontal inequality. The

world has witnessed profound economic perturbations over the past 15 years, from financial crises to the

COVID-19 pandemic and the high inflation rate. Although there is a plethora of research on the overar-

ching impact of these shocks on inequality, there is a conspicuous gap when it comes to discerning their
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effects on the disparities between socio-economic groups. The biggest shocks usually impact the population

with heterogeneous intensity between groups and between quantiles. This chapter shows that conventional

(mean-based) methods for assessing inequality between groups do not adequately capture heterogeneous

and asymmetric modifications of the group distributions. It discusses alternative indicators and suggests

the use of the Gini decomposition introduced in Chapter 1. Empirical analysis focusses on COVID-19 and

uses consumption microdata from Italian households to explore the main factors of inequality such as age,

sex, and geography. The revelations about the age and gender gap, in particular, challenge conventional

wisdom and underscore the value of our methodological approach. What emerges is that the increase in the

age and gender gap after Covid is measured as significantly smaller than it would be using the conventional

methodology. Before Covid, there is no stochastic dominance between distributions, then the asymmetry

of the shock creates stochastic dominance. For this reason, the conventional decompositions underestimate

the inequality between groups before Covid, whereas the underestimation disappears after Covid because of

stochastic dominance. The increase in conventional indicators is mainly explained by this mechanism, while

the increase in my between-component is representative of the dynamic of the distributions. The analysis

also provides evidence, with rigorous simulations, warning about the weakness of mean-based indicators in

the presence of asymmetric shocks.

Lastly, Chapter 3 pivots towards the subject of income instability. The predominant empirical narrative

of income instability focusses on year-on-year fluctuations in annual income, overlooking the intricacies of

short-term variations. This chapter underscores the importance and challenges of measuring high-frequency

individual instability and proposes the average squared coefficient of variation as a potent tool for its as-

sessment. It possesses important properties, being decomposable into infra- and inter-annual components,

and allowing the possibility to disentangle the share of instability due to seasonality and upward mobility.

An easy-to-interpret model of monthly earnings dynamic feeds a Monte Carlo experiment, which compares

the assessment of instability using monthly data or annual averages. The underestimation due to annual

data is particularly high when the parameters of the model represent periods of recessions or individual with

unstable conditions in the labor market, which is when instability matters the most . Leveraging monthly

income data from the U.S. Survey of Income and Program Participation (SIPP), our analysis confirms the

significance of high-frequency data for the proper assessment of income instability.

Together, these chapters weave a tapestry of advanced methodologies and empirical analyses that aim

to redefine our understanding of income inequality and instability in a rapidly changing world. Through

rigorous theoretical expositions, innovative decomposition techniques, and empirical explorations, this thesis

aims to make a significant contribution to the study of economic inequality.
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Chapter 1

Uncovering Complexities in Horizontal
Inequality: A novel decomposition of
the Gini index

Keywords: Horizontal Inequality, Inequality decomposition, Gini index, Regional inequality

1.1 Preamble

This chapter provides a novel tool to study how inequality factors, such as geography, race, or gender, con-

tribute to overall inequality, and explains when it should be preferred to existing methods. Partitioning a

population into groups according to one factor and additively decomposing an inequality measure in within-

and between-group components is the usual approach to evaluate the share of inequality due to the differ-

ences between groups. After discussing the theoretical impossibility of additively decomposing the Gini

index into within- and between-components, in fact, we propose a Gini decomposition into two highly in-

formative components. They measure within- and between-group inequality, with substantial improvement

upon the usual assessment of inequality between groups. The between-group component of conventional

decompositions only compares the means of the groups, failing to consider the complexity of the differences

between groups. The proposed method overcomes this limitation: our between-group component accu-

rately captures the complexity of group differences and is a convenient measure of horizontal inequality.

Through rigorous simulations and empirical analysis on the Organisation for Economic Co-operation and

Development (OECD) Income Distribution Database, we discuss the validity and usefulness of our method

for evaluating and understanding inequality, finally providing a vademecum to choose the most appropriate
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measure of horizontal inequality.

In this chapter, while we primarily discuss the application of our new decomposition method to income

data, it is important to note that the framework is equally applicable to other cardinal and discrete variables

such as educational attainment, health outcomes, or wealth. This versatility makes it a valuable tool for a

broad spectrum of socioeconomic research.

This chapter represents a profound extension of my master’s degree thesis. I am deeply thankful to

Professors G. Pellegrini and R. Zelli for their invaluable guidance during the initial phase of this work.

Special gratitude is owed to Prof. M. Costa, whose insights were pivotal in shaping the final manuscript. I

am also thankful to Professors C. D’Ippoliti, G. Cavaliere, G. Pignataro, M. Kobus, G. De Marzo, F. Subioli

and my friends for their constructive feedback. I extend my sincere thanks for the data provided by the Centre

on Well-being, Inclusion, Sustainability, and Equal Opportunity (WISE) of the OECD, used under specific

licence agreements. A preliminary version of this project was presented to the Department of Economics of

Bologna. An improved version of this work was presented at the Tenth Meeting of the Society for the Study

of Economic Inequality (Aix-en-Provence 2023); at the Fourth PhD Workshop (Manciano 2023), jointly

organised by the University of Bologna, the Marco Fanno Association and the UniCredit Foundation; and at

the Seventeenth Winter School on Inequality And Social Welfare Theory (Canazei 2024). They all offered

further valuable refinement opportunities. A derivative paper of this chapter [Attili, 2024] has been recently

published in Social Indicators Research, and I am grateful for the insights provided by the Editor Filomena

Maggino and two anonymous referees. An earlier version of this work was also featured in the Quaderni -

Working Paper DSE series.

The analytical methodologies developed for this chapter, involving the R codes to calculate the proposed

decomposition, are detailed in the Appendix.

1.2 Introduction

Assessing inequality in a population can benefit from the analysis of how subgroups differ from each other.

It is crucial for the study of populations characterised by strong gender or territorial divisions, as well as

disparities associated with age, ethnicity, or religion. All these sources of horizontal inequality hamper well-

being and development. Their negative impact is widely recognised, to the extent that their reduction is the

focus of Sustainable Development Goals 5 and 10 of the United Nations Development Programme.

What are the main factors (geography, ethnicity, gender, etc.) associated with divides? Are these gaps

actually narrowing? What are the most effective treatments to bridge the gap between population subgroups?

The usual strategy for answering these policy questions is to decompose inequality by factors, obtaining two

components that measure the contributions to inequality from within- and between-group disparities, with

the latter containing much of the information on horizontal inequality. This approach has been extensively
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used in the literature on horizontal inequality (see, e.g., Gachet et al., 2019; McDoom et al., 2019; Canelas

and Gisselquist, 2019).

Given the wide range of possible inequality measures and decompositions, Josa and Aguado [2020]

recently proposed an excellent review of the available methodologies and their implications, providing a

practical framework for choosing the most appropriate measure. Among the various measures of inequal-

ity, the Gini coefficient has been particularly noted for its broad applicability and ease of interpretation.

However, differently from other inequality measures such as the Generalized Entropy indices, that is decom-

posable into within and between inequality components, the Gini index is not additively decomposable in

conventional terms. Despite the Gini coefficient lack of (conventional) additive decomposability into within-

and between-group components, which poses challenges in understanding the sources of horizontal inequal-

ity, the Gini index remains widely used in such studies. The interest in proposing and interpreting new

decomposition persists in recent efforts (Heikkuri and Schief, 2022), especially in the literature focusing on

the distinction between fair inequality and inequality of opportunity (Moramarco, 2023;Sarkar, 2023).

In this thesis we propose a further decomposition of the Gini index, which contributes to the existing

literature because its between-component is well suited to measure horizontal inequality. It stands out from

several decompositions currently employed by researchers for the same purpose, solving a critical issue that

we refer to as oversimplification.

The methods for decomposing inequality indicators (see Deutsch and Silber, 1999 for a review) share a

common approach, pursuing the additive decomposability property (Bourguignon, 1979; Shorrocks, 1980).

An inequality measure is additively decomposable if it can be expressed as the sum of two components

observing the following constraints: the within-group component has to be the average inequality within

subgroups weighted by population size, while the between-group component has to depend explicitly on the

distance between the group means and on the group sizes.

As discussed by Ebert [2010], the constraint on the between-group component leads to oversimplification

when analysing horizontal inequality between groups with similar means but different distributions, or study-

ing inequality dynamics. In some cases, mean-based indicators may suggest that the groups are moving

closer together, while, in reality, the distributions of the groups may be moving farther apart. While this

phenomenon is occasional, it is common for the distance between means to differ from the distance between

distributions, or for the two distances to have different dynamics.

The Gini index, a commonly used measure of inequality, is not additively decomposable. Its conventional

decompositions require an additional term if the within- and between-components observe the constraints

of additive decomposability. In this chapter we show that, by relaxing these constraints, it is possible both

to obtain a two-component decomposition of the Gini index and to solve oversimplification. Indeed, our

proposal possesses two components measuring the inequality within and between groups, with a novelty on

the between-group component. It solves oversimplification by averaging the inequality between individuals

ranked in the same quantiles of different subgroups.
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We generally refer to income data in this chapter, but the introduced decomposition method is versatile

and can be applied also to other variables like education, health, and wealth, making it valuable for diverse

socioeconomic research.

The chapter unfolds as follows. Section 1.3 introduces the notation that we use throughout the paper;

then it discusses the conventional subgroup decompositions of the Gini index and introduces a benchmark

measure for horizontal inequality, before presenting the intuition leading to our decomposition. Section 1.4

formalises the new decomposition in the case of equal-sized groups and shows its properties. Section 1.5

extends the decomposition to the case of groups with different sizes. Section 1.6 presents the Monte Carlo

experiment that studies the correlations between alternative measures, highlighting the informativeness of the

proposed decomposition. Section 1.7 uses the OECD Income Distribution Database to analyse the income

inequality of EU countries, providing striking evidence in favour of our between-component. Section 1.9

provides conclusive remarks and a vademecum for choosing the most appropriate measure of horizontal

inequality.

1.3 The Gini index and horizontal inequality

The Gini coefficient, introduced by Corrado Gini in 1912, has been a central tool in the analysis of economic

disparities. Renowned for its straightforward interpretation and ease of calculation, the Gini coefficient

quantifies the extent of inequality in a distribution by measuring the average income disparities among all

pairs of individuals. Consider a population of N units. We denote by xi the i− th element of the population

income vector x, by µ = ∑
N
1 xi/N the average income of the population, and by G(x) its Gini index. When

considering a partition of the population into K groups, denote the vector of their sizes with n = (n1, . . .nK),

where ∑
K
k=1 nk = N. Let xk

i be the i-th element of the group k = 1, . . . ,K (non decreasing) vector of incomes

xk = (xk
1, . . . ,x

k
nk
). Furthermore, we denote by µk the mean of group k, and by Gk(xk) its Gini index.

Among the many different formulations of the Gini index (see Giorgi et al., 2005; Giorgi, 2011; Ceriani

and Verme, 2015 and Ceriani and Verme, 2012), we consider the following:

G =
1

2µN2

N

∑
i=1

N

∑
j=1

|xi − x j|=
g

2µN2 (1.1)

where the numerator g is the sum of all the pairwise absolute differences between individual income. It is

normalised by the factor (2µN2)−1, so that G is scale invariant, meaning it does not change with the scale

of the data - namely, the currency used -. Consequently, G ∈ [0,1] if all xi ≥ 0.
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1.3.1 Subgroup decomposition of the Gini index

There is a wide variety of Gini index decompositions. They originate by alternative formulations of the

index and by different approaches. We mainly focus on the most widespread and intuitive decomposition,

whose between-component, often called GGini, is widely used to measure horizontal inequality. It was

presented for the first time in Bhattacharya and Mahalanobis [1967a]. This decomposition consists of two

components that measure inequality within and between groups, plus a third term, which by construction is

the residual of the decomposition. We can express the general structure of the Bhattacharya and Mahalanobis

decomposition as follows:

G = GBM
w +GBM

b +RBM (1.2)

The within component GBM
w measures the inequality within groups by a weighted average of the Gini index

of each group Gk. It reads:

GBM
w =

K

∑
k=1

µk

µ

n2
k

N2 Gk (1.3)

and each weight is the product between the income and population shares of the group k.

As for the between component in Eq. (1.2), it reads:

GGini = GBM
b =

1
2µN2

K

∑
k=1

K

∑
h=1

nknh|µk −µh| (1.4)

The GGini has a nice feature: the weight of each mean difference is the product of the group sizes, hence

the GGini measures the inequality between groups applying the Gini index to the case with no inequality

within groups, i.e. when each observation has the average income of its group. It is the inequality be-

tween the weighted means. Unfortunately, due to oversimplification, this is not always fully representative

of horizontal inequality. As a compelling example, GGini = 0 when groups have the same mean but their

distributions differ in terms of variability, skewness, or higher moments, indicating the presence of hori-

zontal inequality. Oversimplification also arises when the averages are different, being not the predominant

source of the differences between the distributions of the groups. With the possibility of rare exceptions,

the oversimplification of horizontal inequality manifests itself as underestimation of the inequality between

groups.

Relation 1.4 represents the reference for further decompositions of the Gini index proposed over time;

a contribution that partially deviates from the approach of Bhattacharya and Mahalanobis is attributed to

Yitzhaki and Lerman [1991a]. Its general structure is the same as Eq. (1.2). We identify the components of

this decomposition by replacing the superscripts of the three components with YL. Regarding GY L
w , it only
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differs from Eq. (1.3) in the structure of the weights, weighting each Gk by the income share of group k:

GY L
w =

K

∑
k=1

µk

µ

nk

N
Gk (1.5)

Given the structure of the weights, the correlation ρ(GBM
w ,GY L

w ) = 1 if the groups have the same size, but it

decreases with the size variability.

Regarding GY L
b , it reads:

GY L
b = 2cov(µk, F̄k)/µ (1.6)

It is the covariance between the group averages and the average rank of the groups members in the overall

population (F̄k). The two between-components in Eq. (1.4)-(1.6) appear very different, but, like any between

component of a subgroup decomposition of inequality, GY L
b is also based on the comparison of the means of

the groups and suffers from oversimplification.

Despite its widespread use, the Gini index is criticized because it does not observe the conventional

definition of additive decomposability and includes the residual term — a limitation that the Generalized

Entropy (GE) indices address effectively. GE indices, including Theil’s T index and the mean log deviation,

are characterized by their additive decomposability, allowing researchers to separate total inequality into

within and between group components (T = Tw +Tb). This property makes GE measures particularly useful

for understanding the sources of inequality, especially in complex, heterogeneous populations. However, as

GBM
b and GY L

b , the between components of the GE indices decomposition also suffer of oversimplification

due to their dependence on the means of the groups. The decomposition we present in this chapter is not

additive decomposable in conventional terms but provides an additive formula for the Gini index (G =

Gw +Gb). The decomposition metodology proposed herein solves the problem of oversimplification of

between inequality and provides an additive formula to decompose the Gini index in within and between

components. This justifies the continued focus on the Gini index within this thesis and the comparison with

other Gini decomposition. The comparison of our decomposition with the GE decompositions would be less

interesting since most of the difference between the components and their evolution would result due to the

difference in scale and sensitivity to transfers of the alternative measures.

1.3.2 A benchmark measure of horizontal inequality

Having two vectors of Q quantiles representing two income distributions, we consider the following as a

measure of their diversity:

Ebkh =
1
Q

Q

∑
q=1

|xk
q − xh

q|

It is proposed by Ebert [1984] and is the simple average difference between quantiles. In his paper, Ebert
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proposes a more general class of measures based on a parameter. Ebkh corresponds to the case in which

this parameter is equal to 1. A previous proposal by Dagum [1980] had already developed a measure of

economic distance between two income distributions, but it has been criticised by Shorrocks [1982] due

to its asymmetric nature. Ebert proposal, instead, presents all the properties of a distance and observes a

general axiomatic approach. Furthermore, it perfectly reflects our idea that a measure of horizontal inequality

between groups must compare their overall distributions. We generalise this measure to the case of K groups

by using the same weighting structure of Eq. (1.4):

HI =
1

2µN2

K

∑
k=1

K

∑
h=1

nknhEbkh

so that HI is scale invariant and the weight of each Ebkh depends on the number of pairs between the two

groups.

We provide an additional reason why HI is a suitable benchmark for horizontal inequality. We define

the GGini for quantile q as

GGiniq =
1

2µqN2

K

∑
k=1

K

∑
h=1

nknh|xk
j − xh

j | (1.7)

where µq = ∑
K
k=1 xk

q/K is the average, across groups, of observations ranking in the q− th position of their

group. Using Eq. (1.7), we can rewrite HI as follows:

HI =
1
Q

Q

∑
q=1

1
2µN2

K

∑
k=1

K

∑
h=1

nknh|xk
q − xh

q|=
Q

∑
q=1

µq

Qµ
GGiniq (1.8)

This benchmark evaluates the horizontal inequality of each quantile using the Gini index, then averages

the results weighting each GGiniq by the income share of quantile q. The advantage of HI over GGini in

measuring horizontal inequality is twofold. First, HI allows us to consider the differences between groups

that are not captured by the mean. Second, decomposing HI in its addenda by k and/or by q produces

informative indicators that allow one to know which groups and which parts of their distributions struggle the

most. One can study the contribution of the bottom quartile to horizontal inequality and discover that the poor

in one group suffer relatively more inequality than the poor in the other group, or that even if the groups are

not equal on average, the poor are similar in the two groups. Horizontal inequality between two groups has

different implications if it originates at the top, middle, or bottom of the distribution. For example, knowing

the sources of horizontal inequality could be crucial when relating it to conflicts. Horizontal inequality

triggers the start of conflicts, while within-group inequality shapes their intensity (Cederman et al., 2011;

Esteban and Ray, 2011; Huber and Mayoral, 2019). The inequality-conflict literature clearly states that the

presence of poor people experiencing bad living conditions and rich people, who can finance the conflict, is

an essential engine for civil war. Explicitly considering horizontal differences at the top, middle, or bottom of
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the distribution helps to study which aspects of group distributions and group differences shape the incentive

to fight, allowing one to test refined hypotheses about the drivers of conflicts and their intensity.

To conclude this section, we describe the intuition to derive, from the Gini index, a measure with the

peculiarities of HI and such that its complement to the Gini measures the inequality within groups.

1.3.3 A new insight

Consider a population partitioned into K equal-sized groups and define n as their size. The numerator of the

Gini index in Eq. (1.1) can be written as:

g =
N

∑
i=1

N

∑
j=1

|xi − x j|=
K

∑
k=1

K

∑
h=1

n

∑
i=1

n

∑
j=1

|xk
i − xh

j | (1.9)

Figure 1.1 provides an innovative insight into the structure of the Gini index. It illustrates a two-group-

two-individual situation, with group k = {8,3} and group h = {6,2}. Figure 1.1a highlights all pairwise

differences between units, considered twice so that their sum constitutes g.

As the scheme suggests, we can distinguish three kinds of difference: vertical, horizontal, and diagonal.

Vertical differences involve same-group pairs. Horizontal differences involve same-rank (same-quantiles)

pairs from different groups. Diagonal differences involve different-rank pairs from different groups. We as-

(a) Pairwise differences composing g (b) Decomposition in the non-trivial case

Figure 1.1: A two-group-two-individual illustration, with group k = {8,3} and group h = {6,2}. The left panel high-

lights all the pairwise differences between units, considered twice so that their sum constitutes g. The vertical, horizontal,

and black diagonal differences have intuitive decomposition. The right panel illustrates the decomposition of the grey

diagonals
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sign vertical and horizontal differences to within and between components, respectively. Although diagonal

differences involve pairs of different groups, they also reflect vertical (same-group) differences and are not

entirely attributable to inequality between groups. For example, imagine replacing the values in the scheme

so that the groups are identical: pose xh
1 = xk

1 = 8 and xh
2 = xk

2 = 3. The values of the diagonal differences -

5 - are equal to the vertical ones and should not contribute to the absent horizontal inequality.

At this stage, diagonal differences can be instinctively thought of as the addenda of a residual term arising

from the decomposition, and it seems natural to associate their sum with the conventional residuals RBM

and RY L. These residuals - which are non-negative and disappear if the distributions of the groups do not

overlap - are interpretable in terms of overlapping, stratification, and transvariation between the distributions

of the groups (Yitzhaki and Lerman, 1991a; Lambert and Aronson, 1993; Yitzhaki, 1994; Dagum, 1997 and

Costa, 2021). This interpretation does not apply to the sum of diagonal differences, which is positive even

when the groups do not overlap. The sum of diagonals is zero only if there is perfect equality, since the

diagonals contain information on both within- and between-group inequality. Going back to Figure 1.1, we

propose a strategy to disentangle each diagonal difference in two informative contributions to within- and

between-group inequality.

The two black diagonals in Figure 1.1a are intuitively decomposable. For example, looking at the solid

black diagonal line and moving along the legs of the solid black triangle, the difference between the richest

member of group k and the poorest member of group h is 6 since the former is 5 points richer than the poorest

individual in her group, who is 1 unit richer than her counterpart in group h (6 = 5+1). A similar argument

holds from the opposite point of view, which is looking at the dashed black diagonal line, representing the

difference between the poorest member of group h and the richest member of group k (6 = 4+ 2). The

two black diagonal differences are predominantly due to and reflect the inequality within the two groups.

Consequently, we suggest splitting their contribution to g (6+ 6 = 12) assigning 5+ 4 = 9 to the within

component and 1+2 = 3 to the between one.

This strategy is not feasible in the case of grey diagonals, which are the focus of Figure 1.1b. Here,

the three values involved in the path along the grey legs do not increase or decrease monotonically as for

the black lines, namely the product between the horizontal and the vertical signed differences is negative. In

such cases, we should subtract the horizontal value from the vertical value to obtain the value of the diagonal

difference. However, it would be paradoxical to decrease the between component by the horizontal value,

i.e. by 1 in the case of the solid grey lines1.

As Figure 1.1b illustrates, we suggest splitting each diagonal difference proportionally to the vertical and

horizontal ones and assigning these two (positive) values to the within and between components, respec-

tively. Using the proportional scaling to decompose the diagonals ensures that adding all their contributions

1To see the paradox, imagine replacing the poorest individual of group h with a poorer one. Subtracting 3− (2− ε) > 1 would

produce a lower value of the between component, although intuition suggests that the between inequality is now higher because the

poor group is poorer.
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to the within and between components preserves the proportion between the sum of vertical and horizontal

differences. This is the key for the informativeness of the final components.

We have just presented the intuition that underlies the decomposition. In the next section, we formalise

the decomposition under the hypothesis of equal-sized groups, which is relaxed in Section 1.5.

1.4 The decomposition proposal

Starting from Eq. (1.9), we propose decomposing each non-zero difference as follows2:

|xk
i − xh

j |= |xk
i − xh

j |
|xk

i − xk
j|+ |xk

j − xh
j |

|xk
i − xk

j|+ |xk
j − xh

j |
=

= |xk
i − xk

j|
|xk

i − xh
j |

|xk
i − xk

j|+ |xk
j − xh

j |
+ |xk

j − xh
j |

|xk
i − xh

j |
|xk

i − xk
j|+ |xk

j − xh
j |
=

= |xk
i − xk

j|wkh
i j + |xk

j − xh
j |wkh

i j

(1.10)

where the two addenda are, respectively, contributions to the within and between components, while wkh
i j =

|xk
i − xh

j |/(|xk
i − xk

j|+ |xk
j − xh

j |) is the scaling factor. It is wkh
i j = 1 for vertical differences (k = h), horizontal

differences (i = j) and differences such as black diagonals (k ̸= h, i ̸= j and (xk
i − xk

j) · (xk
j − xh

j) ≥ 0). For

these differences, Eq. (1.10) reduces to |xk
i − xh

j | = |xk
i − xk

j|+ |xk
j − xh

j |. Differences such as grey diagonals

(k ̸= h, i ̸= j and (xk
i − xk

j) · (xk
j − xh

j) < 0) are associated with wkh
i j ∈ [0,1). In this case, wkh

i j < 1 because

|xk
i − xh

j |< |xk
i − xk

j|+ |xk
j − xh

j |: the scaling factor reduces the vertical and horizontal differences so that the

contributions to the within and between components add up to |xk
i − xh

j |.
The decomposition of the Gini index follows by substituting Eq. (1.10) into Eq. (1.9). Denoting

∑
K
h=1 wkh

i j = wk
i j and ∑

n
i=1 wkh

i j = wkh
j , we obtain the numerators of the two components of the decomposi-

tion:

g = gw +gb =
K

∑
k=1

n

∑
i=1

n

∑
j=1

wk
i j|xk

i − xk
j|+

K

∑
k=1

K

∑
h=1

n

∑
j=1

wkh
j |xk

j − xh
j | (1.11)

and we can write

2We underline that the equal-sized groups hypothesis guarantees that, given the couple (xk
i ,x

h
j ), the element xk

j always exists. In

the following, we consider xk
j without loss of generality. It is equivalent to consider xh

i because the Gini index sums each difference

twice by inverting the indices of the summations.
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G = GA
w +GA

b =
gw

2µN2 +
gb

2µN2 (1.12)

The Gini index consists of two terms. We interpret GA
w and GA

b as the within and between components of

inequality because, respectively, they depend on the contributions from same-group and same-rank pairwise

differences. Clearly, GA
b does not explicitly depend on the group means, therefore it does not observe the

(conventional) additive decomposability property. Pursuing a between-component that measures horizontal

inequality while comparing the entire distributions of the groups inevitably leads to contrast with the defini-

tion of additive decomposability. However, while additive decomposability is desirable when the goal is to

understand how resources are unequally distributed between groups, we believe that relaxing the constraint

it imposes on the between component is essential to accurately capture horizontal inequality.

The within and between components involve, respectively, wk
i j and wkh

j . These weights ensure that each

same-group (same-rank) difference contributes to within (between) inequality according to how much it

affects the diagonal ones. For example, if a vertical difference increases, thus enlarging some of the grey-

like diagonal differences, then the related scaling factors consistently increase and inflate the weight wk
i j.

The structure of the weights follows from that of the scaling factors, which is not necessarily unique. In

Eq. (1.10) we multiply |xk
i −xh

j | by 1, expressed as the ratio of |xk
i −xk

j|+ |xk
j −xh

j | to itself. Instead, we could

multiply by the ratio of f (xk
i − xk

j)+ f (xk
j − xh

j) to itself, being f (·) monotonic and continuous function.

|xk
i − xh

j |= |xk
i − xh

j |
f (|xk

i − xk
j|)+ f (|xk

j − xh
j |)

f (|xk
i − xk

j|)+ f (|xk
j − xh

j |)
=

= f (|xk
i − xk

j|)
|xk

i − xh
j |

f (|xk
i − xk

j|)+ f (|xk
j − xh

j |)
+ f (|xk

j − xh
j |)

|xk
i − xh

j |
f (|xk

i − xk
j|)+ f (|xk

j − xh
j |)

=

= f (|xk
i − xk

j|)ωkh
i j + f (|xk

j − xh
j |)ωkh

i j

(1.13)

This produces a more general class of decompositions; depending on the choice of f (·), decomposi-

tion puts more emphasis on large or small differences (e.g., f (x) = x2 or f (x) =
√

|x|). The ωkh
i j are the

scaling factors of this class; they equal wkh
i j when f (·) is the identity function. Since we are decomposing a

linear measure of inequality [Mehran, 1976], we think that the natural choice is to take f (·) as the identity

function, which is the only one that preserves the linearity of the Gini index in the components of its

decomposition.
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1.4.1 Properties of the decomposition

Our decomposition enjoys relevant properties, both in the within- and the between-group components.

Given wkk
i j = 1, wkh

j j = 1 and wkh
i j ≥ 0, we have wk

i j ≥ 1 and wkh
j ≥ 1. Therefore, the following properties hold:

GA
w = 0 ⇐⇒ |xk

i − xk
j|= 0 ∀ i, j,k (i)

GA
b = 0 ⇐⇒ |xk

j − xh
j |= 0 ∀ j,k,h (ii)

The first relation ensures that the within component is zero iff all the same-group differences are zero,

i.e. there are no differences within groups. The second condition guarantees that the between-component is

zero iff all the same-rank differences are zero, i.e. the groups have the same distribution.

Properties (i)-(ii) are conceptually analogous. All the most widespread decompositions of inequality have

a within component that, like ours, observes property (i). As for property (ii), GBM
b and GY L

b satisfy its

sufficiency - they are zero if the groups have the same distribution - while they do not satisfy its necessity

- they are zero even if the groups have different distributions. Our between-component observes both the

sufficiency and necessity of property (ii), being zero iff the groups have the same distribution.

Additional important properties concern the high correlation of GA
w with Eq. (1.3)-(1.5), and of GA

b with

Eq. (1.8), which follows from algebraic similarity of those equations. Regarding GA
w, we can rewrite it as

GA
w =

1
2µN2

K

∑
k=1

n

∑
i=1

n

∑
j=1

wk
i j|xk

i − xk
j|=

=
K

∑
k=1

µk

µ

n2

N2 · 1
2µkn2

n

∑
i=1

n

∑
j=1

wk
i j|xk

i − xk
j|

(1.14)

The term ∑
n
i=1 ∑

n
j=1 wk

i j|xk
i − xk

j|/2µkn2 would equal Gk if all the weights wk
i j = 1, resulting in GA

w = GBM
w .

This never happens but, as we discussed, each wk
i j preserves the information of the vertical differences that

it multiplies. Therefore, the correlation between GA
w and GBM

w is naturally high. Being n/N = 1/K, if all

the weights are wk
i j = K then GA

w = GY L
w . Actually, 1 ≤ wk

i j ≤ K, therefore the weighting structure of GA
w is

the middle ground between those of GBM
w and GY L

w . This is why GA
w has the good property of being highly

correlated with both GBM
w and GY L

w .

A similar discussion holds by comparing GA
b with the horizontal inequality benchmark defined in Eq. (1.8).

Our between component reads:

GA
b =

1
2µN2

K

∑
k=1

K

∑
h=1

n

∑
j=1

|xk
j − xh

j |wkh
j =

=
n

∑
j=1

µ j

nµ

1
2µ jN2

K

∑
k=1

K

∑
h=1

nwkh
j |xk

j − xh
j |

(1.15)
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which has a comparable structure to Eq. (1.8). GA
b and HI would be equivalent (in the case n = Q) if all the

weights were wkh
j = n. Again, it never happens and since 1 ≤ wkh

j ≤ n then GA
b is usually lower than HI.

It is important to avoid confusing this relation with an underestimation of horizontal inequality. We argue

that the weights wkh
j guarantee such a strong correlation between GA

b and HI that we can consider GA
b lower

than HI simply due to a scaling transformation. We confirm the high correlation between GA
b and HI, and

between GA
w, GBM

w and GY L
w , using a Monte Carlo simulation. We present the experiment and its results in

Section 1.6.

Concluding this section, we observe that, as discussed for HI, isolating the addenda of GA
b by j and k

provides indicators which allow one to understand which parts of the distributions differ the most between

the groups, and which group differs the most from the others. We believe that these indicators are another

tool from which several fields of the inequality literature can benefit.

1.5 The different-sized groups extension

In this section we show that the equal-sized groups hypothesis is not binding. It was necessary to understand

the decomposition arguments, but the proposal can be easily extended to cope with more general situations

in which the K groups have different sizes. In this case, Eq. (1.9) becomes:

g(x) =
N

∑
i=1

N

∑
j=1

|xi − x j|=
K

∑
k=1

K

∑
h=1

nk

∑
i=1

nh

∑
j=1

|xk
i − xh

j |

and a way to ensure the existence of the element xk
j is necessary for the implementation of our decomposition

proposal. We propose two distinct solutions. The first evaluates the two components without approxima-

tion, but necessitates potentially unaffordable computations. The second drastically reduces computational

requirements by paying the cost of a negligible approximation.

1.5.1 The exact approach

Consider a new common size n = lcm(n) and the vector of the groups population shares p = (p1, . . . , pK),

where pk = nk/n is the population share of group k, so to build the repopulated vectors zk = (zk
1, . . . ,z

k
n) =

(xk
1 . . .x

k
1︸ ︷︷ ︸

p−1
k

, . . .xk
nk
. . .xk

nk︸ ︷︷ ︸
p−1

k

). It is easy to show that:

g(x) =
K

∑
k=1

K

∑
h=1

nk

∑
i=1

nh

∑
j=1

|xk
i − xh

j |=
K

∑
k=1

K

∑
h=1

n

∑
i=1

n

∑
j=1

pk ph|zk
i − zh

j |= g(z;p) (1.16)

where g(z;p) is the numerator of the weighted Gini index. Figure 1.2 provides the intuition of Eq. (1.16).

Imagine two groups composed, respectively, of two and three individuals, as reported in the left rectangle.
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Figure 1.2: A two-group illustration of repopulation in the exact approach. The left panel represents two groups

composed, respectively, of two and three individuals. The exact approach replace them with the equal-sized groups in

the right rectangle and introduces the weights pk and ph in Eq. (1.16) to preserve the correspondence with the Gini index

Replace them with those in the right rectangle. According to the principle of population, xk and zk (as well

as xh and zh) have the same within-group inequality. In addition, the cumulative distribution functions of the

two groups are the same before and after the replacement, and hence the distance between the two groups is

also unvaried. However, each difference between couples in the left scheme appears, in the right scheme, 9

times if the couple belongs to zk, 4 times if it belongs to zh and 6 times if the two units belong to different

groups. The pk and ph in Eq. (1.16) adjust by multiplying the differences, respectively, by 1/9, 1/4 and 1/6.

In this way, equal-sized groups are obtained preserving the correspondence with the Gini index and with the

original distributions of the groups.

We decompose the Gini index using a technique that is analogous to the one used to derive Eq. (1.11):

G(x) = G(z;p) = Gw(z;p)+Gb(z;p)

The only difference is in the structure of the new weights wk
i j = ∑

K
h=1 pk phwkh

i j and wkh
j = ∑

n
i=1 pk phwkh

i j .

This adjustment integrates essential information to maintain the original significance of each pair, akin to

employing a sample population with corresponding sample weights.

Unfortunately, in most cases, this approach requires an unaffordable computational effort because of

the potentially huge magnitude of the least common multiple. To reduce computational requirements, we

present an alternative procedure, which we refer to as quantilisation.

1.5.2 Quantilisation

Differently from the exact approach, we propose to consider a lower value of n and to calculate differently

each zk: for each group, the vector zk contains the n quantiles from the income vector of the group. As for pk,

their calculation is the same employed in the exact approach, but now nothing constrains n ≥ nk, thus it can

be pk > 1. The decomposition is the same, but in this case the value of the Gini index and the components
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of the decomposition incur in some minimal approximation:

G(x)≈ G(z;p) = Gw(z;p)+Gb(z;p) (1.17)

To employ this method and minimise the approximation, there are the definition of quantile and the

value of n to be selected. For the former, we advise the Definition 7 reported in Hyndman and Fan [1996],

which is the default definition adopted by the quantile function in various statistical software. Given each

vector xk, accordingly to this definition and in order to minimise the approximation, we suggest first to

interpolate linearly the nk vertices
(
(i−1)/(nk −1),xk

i
)
, and then to estimate the n quantiles by the values

associated with the probabilities

prob j =
j−1
n−1

j = 1, . . . ,n (1.18)

on the resulting piecewise linear curve.

Regarding the value of n, we define pk = nk/∑
K
k=1 nk and advise the value:

n =
K

∑
k=1

pknk =
∑

K
k=1 n2

k

∑
K
k=1 nk

(1.19)

which determines n as the average of the nk, each weighted by its own share of population pk.

The decisions proposed for both the quantile definition and for the value of n are motivated in the appendix.

Here, we only inform that, if they are employed, the approximation that the quantilisation procedure copes

with is minimal and negligible. To obtain two estimates of the exact components, which are consistent

and sum up to the Gini index of the original data, it is sufficient to multiply the shares of the components,

obtained by quantilisation, by the value of the index:

G(x) = Gw(x)+Gb(x)≈ Gw(z;p) · G(x)
G(z;p)

+Gb(z;p) · G(x)
G(z;p)

1.6 Monte Carlo experiment: comparison of alternative decomposi-
tions

In this section we study, using a Monte Carlo simulation, the correlation of GA
w and GBM

w with GY L
w ; and the

correlation of GA
b , GGini and GY L

b with HI. We also carried out the experiment using GBM
w instead of GY L

w as

the reference point for the inequality within the groups. This additional simulation confirms the discussion

after Eq. (1.14), which stresses that the weighting structure of GA
w is the balancing between those of GBM

w

and GY L
w .
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The experiment works with three predetermined parameters: the number of groups, the parameter(s) of

the distribution of n and the coefficient of variation between the averages of the groups (CV [E[µk]]). The

latter is an indirect parameter, which derives from imposing credible conditions on the parameters of the

lognormal distribution that is used to sample incomes. More details about the income simulation procedure

and its theoretical foundations can be found in the Appendix. Here, we only stress that the parameters of the

lognormal distribution are micro-founded. Indeed, as detailed in the second part of the Appendix, they are

chosen sampling from the parameters estimated in Bandourian et al. [2002] using real data along different

countries and periods. This guarantees robust results with respect to real income distributions.

The procedure is schematised in Figure 1.3 and can be summarised as follows:

Step I. Fixing K and (n,r), generate the vector n: each nk is drawn from a uniform [n,(1+ r) ·n], where

100 · r is the maximum percentage deviation from the minimum n.

Step II. Fixing CV [E[µk]], generate the income vectors from the lognormal distribution 50 times, each time

evaluating all the statistics involved (GA
w, GBM

w , GY L
w , GA

b , GBM
b (=GGini), GY L

b and HI). The 50 points allow

us to estimate the following triples of correlation estimates:
ρ
(
GA

w,G
Y L
w
)

ρ
(
GBM

w ,GY L
w
)

ρ
(
GY L

w ,GY L
w
)
 ,


ρ
(
GA

b ,HI
)

ρ
(
GBM

b ,HI
)

ρ
(
GY L

b ,HI
)


Step III. To assess the correlation in scenarios where the variability of the group means increases, repeat

Step II for eight distinct values of CV [E[µk]]. .

The simulation runs Step I-III 20 times and delivers, for each value of CV [E[µk]], 20 replicates of the triples

defined in Step II. For each position in the triple, we summarise its 20 replicates by their average and standard

deviation (µ,sd). For each position in the triple, the eight pairs (µ,sd) corresponding to the eight values

Figure 1.3: The Monte Carlo experiment in a scheme
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of CV [E[µk]] are averaged pairwise, determining four pairs
(
µ,sd

)
. They correspond to low, medium-low,

medium-high, and high (L, M-L, M-H, H) CV [E[µk]]. The experiment evaluates multiple scenarios by also

varying the number of groups K and the parameters (n,r).

Results. We present in Table 1.1 the four pairs (µ , sd) for representative parameters (K = 3,30;

n = 10,100; r = 1,4).

As for the within component, both ρ(GA
w,G

Y L
w ) and ρ(GBM

w ,GY L
w ) are rarely below 0.9, with the first be-

ing generally higher and less volatile. The only exception occurs when the variability in n is low (i.e. when

r is low): in this case ρ(GBM
w ,GY L

w ) is sometime higher. This is because ρ(GBM
w ,GY L

w ) = 1 when the groups

are equal-sized, decreasing with the variability of n.

The correlations depend marginally on the specification of the parameters. Higher values of K negatively

influence ρ(GA
w,G

Y L
w ), but increasing the values in n absorbs this small effect; ρ(GA

w,G
Y L
w ) also decreases

for higher values of CV [E[µk]], while its variability increases. In any case, all the µ referred to our within

component are never below 0.92 and the highest sd is 2.8 ·10−2.

When performing the Monte Carlo experiment using GBM
w as the reference instead of GY L

w , we obtain re-

sults that substantially mirror those presented. As expected, thanks to its weighting structure, our within

component is the middle ground between GY L
w and GBM

w .

Regarding the comparison of GA
b , GBM

b and GY L
b with HI, regardless of K and n, ρ(GA

b ,HI) is always

the highest (≈ 1) and least volatile, showing striking advantages in situations where the variability of the

means is not large. It slightly decreases and shows higher sd when the variability in n increases and the

values in n and K are small. When the variability of the means increases, explaining most of the differences

between groups and reducing their overlap, ρ(GBM
b ,HI) increases and narrows the gap with ρ(GA

b ,HI); also

ρ(GY L
b ,HI) increases with the variability of the means, but remains much smaller and the most volatile. In

conclusion, according to the Monte Carlo experiment, GA
b is the most suitable between-component to capture

the complexity of horizontal inequality when the groups have similar means. It provides richer information

than the conventional between-components unless the group averages are so far apart as to drastically reduce

overlapping between the distributions and explain most of the difference between the groups.

1.7 Horizontal inequality between the EU country pairs

This section points out the importance of choosing the appropriate measure to assess horizontal inequality

and its evolution. Our analysis makes use of the OECD Income Distribution Database, which provides the

average household income in each decile of all EU countries, adequately transformed in PPP, from 2004 to

2018.
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Figure 1.4: Horizontal inequality of the European Union country pairs in 2018, as measured by HI, GGini and GA
b .

Comparison of HI (x-axes) with the GGini and GA
b (y-axes). Oversimplification of the GGini takes the form of underes-

timation of horizontal inequality and is not rare when groups have similar mean. The scatter relating HI and GA
b has no

outliers and confirms ρ(GA
b ,HI)≈ 1

First, we measure the income inequality of all EU country pairs in 2018. For each country pair, we

decompose the inequality between their income deciles by Eq. (1.2) and Eq. (1.31). We also evaluate HI

between the two countries. Finally, we compare the inequality between countries as measured by GA
b , GGini

and HI to study the differences between alternative measures of horizontal inequality. In Figure 1.4, each

point represents the horizontal inequality of a country pair in the space (HI,Gb). Black and grey points relate

HI, respectively, to GGini and GA
b . Comparing GGini and HI highlights that they are perfectly correlated

over several country pairs, especially the most dissimilar couples. However, there are couples of countries

that significantly reduce ρ
(
GBM

b ,HI
)
. Indeed, when the inequality between two countries is medium to

low, GGini often underestimates the inequality between countries, sometimes being significantly lower than

the value we would expect based on HI. The oversimplification issue does not involve our between-group
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component. Comparing HI with GA
b highlights their strong correlation over all the country pairs, even those

with similar means and different distributions.

Focusing on the evolution of horizontal inequality over time, we consider two country pairs representing

two opposite situations: the pairs over which the GGini and HI are correlated, and the pairs suffering of

oversimplification.

The first scenario, which involves Italy and Greece, is represented in Fig. 1.5a. All three measures report

the same evolution, as long as the correlation between HI and GGini is perfect and that between HI and

GA
b is above 0.99. The inequality between the two countries decreases slightly from 2004 to 2009, while

it more than doubles between 2009 and 2013. In order to investigate the reasons explaining the evolution

of horizontal inequality, in Fig. 1.6a we focus on three peculiar years (2004, 2009, 2013) and plot the

difference (as a fraction of the mean) between the income deciles of the two countries. The reduction

of horizontal inequality between Italy and Greece from 2004 to 2009 is primarily due to the decrease in

the gap in the richest decile. Between 2009 and 2013, all (positive) differences between deciles are at

least double. Consequently, also the difference between the Italian and Greek means more than doubles,

which explains the perfect correlation between GGini and HI in Fig. 1.5a. Comparing the United Kingdom
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Figure 1.5: Horizontal inequality between Italy and Greece (left panel) and between the UK and Italy (right panel)

from 2004 to 2018, as measured by HI, GGini and GA
b . All three measures in the left panel depict the same evolution

of horizontal inequality between Italy and Greece, while HI and GA
b strongly differ from GGini when comparing the

United Kingdom and Italy (right panel)
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Figure 1.6: Differences between income deciles of Italy and Greece (top panel) and of the UK and Italy (bottom

panel). The difference is reported as a fraction of the overall mean. The Italian deciles always dominate the Greek ones.

Differently, there is stochastic dominance between income deciles of the UK and Italy only in the most recent years.

This explains the conflicting trajectories of Figure Fig. 1.5b.

and Italy (Fig. 1.5b and Fig. 1.6b), we obtain a completely different picture. In this case, GGini evolves

differently from HI - the correlation of the two series is 0.27. On the contrary, the correlation between GA
b

and HI is still greater than 0.99. We use Fig. 1.6b to explain this contrasting evidence. We note that all
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the deciles of the two countries are quite similar in 2004, except for the last one. The distance between the

deciles (but the first) increases considerably in 2009. Accordingly, both HI and GA
b reach their maximum

in 2009, while GGini reaches its minimum. This happens because the 10th decile is higher in the UK while

the other deciles are higher in Italy; therefore, the differences between the deciles compensate and produce

a small difference between the means. We believe that it is not appropriate to consider the two distributions

closer in 2009 than in 2004, and we argue that this is a relevant case in which oversimplification is at work.

As further confirmation of our argument, the GGini massively increases between 2009 and 2014, despite no

evidence of such a large increase in the distance between the two distributions. Again, the fast increase of

the GGini is motivated by the sign of the differences between the deciles, rather than their magnitude. Going

back to Figure 1.4, all perfectly correlated black dots correspond to pairs of countries such that the income

distribution of one country dominates the other over all quantiles (stochastic dominance), as in the case of

Italy and Greece. When there is no stochastic dominance between distributions, it is our conviction that the

ability of GA
b to measure horizontal inequality is considerably superior to that of the GGini.

1.8 Pairwise Differences and Group Contributions: A Topic to Ex-
plore

The significance of starting from Eq. (1.1) and directly addressing the pairwise differences in Gini index

decomposition strategies has been emphasized by Rey and Smith [2013], Ceriani and Verme [2015], and

Modalsli [2017].

Rey and Smith [2013] challenge the traditional notion of additive decomposability, introducing a within-

between decomposition of the Gini index (G = Gw+Gb). Specifically, they decompose the Gini index using

a matrix that defines pairs of neighbors and non-neighbors. The disparities among neighboring pairs form the

within component, while the rest contribute to the between component. Notably, their between component,

which hinges on pairwise differences rather than group averages, addresses the issue of oversimplification.

Nevertheless, it is not suitable for mutually exclusive groups, such as geographical partitions, where it tends

to overestimate the inequality between groups. For instance, their between-component yields a positive

value even when groups have identical distributions, exemplifying the overestimation problem.

Ceriani and Verme [2015] introduce a group-based decomposition, focusing on each group’s contribution

to overall inequality. While their approach does not follow a strict within-between decomposition, it is

still relevant to our discussion. They define the Gini index as the sum of individual contributions. They

show that these contributions, which are based on the summation of pairwise differences, adhere to a set

of desirable properties to measure individual diversity. This is intended to describe the degree of diversity

of each individual from all the other members of the population. Interestingly, the authors showed that

individual contributions can be aggregated, delivering group-wise contributions to global inequality.
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The idea of group contributions is enhanced by Modalsli [2017]. His proposal is definitely comparable

to the Rey and Smith decomposition, but the author built it to deal with a partition and the between term

encounters the drawback that we have already discussed. To overcome this, he introduces a “mean between”

term and a residual component, without any drastic innovation w.r.t. the decompositions considered at the

beginning of this section. However, its work has the merit of having isolated “the contributions from country

and country pairs as well as regions and region pairs to global inequality”.

We believe that our decomposition proposal could combine and enhance the results of these three

papers. Indeed, the procedure that calculates the two components can also deliver informative contributions

from groups (or part of groups) and group pairs to global inequality, while also ensuring a robust assessment

of horizontal inequality.

We can rewrite the numerator of Eq. (1.1) as

g =
K

∑
k=1

n

∑
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n

∑
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wk
i j
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Defining the terms,

ck
w = pkgk

w, (1.21)
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we obtain

g =
K

∑
k=1

ck
w +

K

∑
k=1

K

∑
h=k+1

ckh
b =

K

∑
k=1

pkgk
w +

K

∑
k=1

K

∑
h=k+1

pk phgkh
b (1.25)

The terms ck
w and gk

w represent the gross and standardized numerator of the contributions of group k to

within-group inequality. The gross contribution, ck
w, scales linearly with the size of the group, while the

standardized contribution, gk
w, normalizes this contribution, allowing for direct comparison of within-group

inequalities across different groups. Similarly, ckh
b and gkh

b denote the gross and standardized contributions,

respectively, of the interaction between groups k and h to the between-group inequality. To obtain the gross

and standardized contributions Ck
w, Gk

w, Gkh
b and Ckh

b one can divide ck
w, gk

w, ckh
b and gkh

b by the denominator

of the Gini index. Thus, the Gini index is comprised of the sum of within-group contributions across the K

groups and the K(K −1)/2 pairwise group contributions to between-group inequality.

We allocate half of each gkh
b to the two groups k and h, defining

Gkh
b = Ghk

b =
1
2

Gkh
b
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Gkh
b is the group k standardised contribution to between inequality arising from the interaction with group h.

At this point, defining Gk
b = ∑

K
h=1 phGkh

b as the group k standardised contribution to between inequality, we

can rewrite

Gb =
K

∑
k=1

pkGk
b (1.26)

Hence, we can also write the Gini index as

G =
K

∑
k=1

pkGk
w +

K

∑
k=1

pkGk
b (1.27)

Finally, defining Gk = Gk
w +Gk

b as the group k contribution to inequality, we can write

G =
K

∑
k=1

pkgk (1.28)

Summing up, the decomposition strategy proposed in this Chapter allows to define all the following

decompositions of the Gini index:

G =Gw +Gb (1.29)

G =
K

∑
k=1

pkGk
w +

K

∑
k=1

K

∑
h=k+1

pk phGkh
b (1.30)

G =
K

∑
k=1

pkGk
w +

K

∑
k=1

pkGk
b (1.31)

G =
K

∑
k=1

pkGk (1.32)

The decomposition in Eq. (1.29) is the one introduced in Section 1.4 and delivers the two within and

between-group components of inequality. Eq (1.30) proposes a further decomposition of these two com-

ponents, respectively, in the summations of the within contribution of each group and of the pairwise group

contributions to between inequality. Eq. (1.31) expresses the Gini index as the summation of the group con-

tributions to within and between inequality. Aggregating by groups these contributions we obtain the last

decomposition - Eq. (1.32) - which sums up the contribution of each group to overall inequality in the spirit

of Ceriani and Verme [2015] and Modalsli [2017].

Combining the information supplied by the components of the defined decompositions it is possible to

fully characterise the relevance and the role that each group plays in the formation of overall, within and

between inequality.
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1.9 Conclusions

Our study proposes a new decomposition technique for the Gini index, which addresses the limitations of

conventional methods in assessing horizontal inequality. The most widespread subgroup decompositions of

inequality deliver within- and between-group components. The latter, which is based on the comparison

of the means of the groups, is commonly used to assess horizontal inequality. However, further charac-

teristics of the distributions are relevant for measuring horizontal inequality. Our decomposition fills this

gap, proposing a between-group component that compares the entire distributions of the groups, rather than

just their means. This makes it particularly appropriate to measure horizontal inequality, as confirmed by

a Monte Carlo experiment and empirical analysis, both assessing the strong correlation of our component

with a benchmark measure of horizontal inequality.

Our decomposition has another advantage. Conventional decompositions of the Gini index present a residual

term in addition to the within- and the between-components. This residual disappears only if the distribu-

tions of the groups do not overlap. Exploiting a new insight into the Gini index, we disentangle each adden-

dum of the index into two informative contributions to within- and between-group inequality, obtaining a

two-component decomposition without the need to include a residual term. Hence, in our decomposition, in-

equality within groups explains a share of the Gini index, while excess inequality only depends on inequality

between groups.

Empirical analysis confirms the relevance of our decomposition to support both cross-sectional and

time-series inequality analysis. Studying the cross-sectional inequality between the European country pairs

in 2018, we compare our between component (GA
b ), and that of the most widespread Gini decomposition

(GGini), with the horizontal inequality benchmark (HI). GGini and HI are strongly correlated over several

country pairs, but GGini underestimates horizontal inequality for countries with similar means and different

distributions. On the contrary, GA
b and HI have a strong correlation over all the country pairs. Studying in-

equality over time, our analysis spans between 2004 and 2018 and involves the Italy-Greece and the United

Kingdom-Italy country pairs. It highlights that, differently from GA
b and HI, the GGini is not always able to

accurately capture the complexity of the differences between groups and their evolution.

Our discussion points out that both GGini and GA
b accurately measure horizontal inequality when there is

stochastic dominance between the distributions. In this case, the information provided by the two measures

is the same of HI, and the advantage of our decomposition is to avoid the residual. This advantage disappears

when the distributions of the groups do not overlap, because the residual of the conventional decompositions

of the Gini index vanishes. When, instead, there is no distribution that dominates the other over all quantiles,

ρ(GA
b ,HI) remains high while GGini underestimates horizontal inequality and fails to assess its evolution. In

such cases, we argue that our decomposition provides a more nuanced understanding of inequality between

groups. The advantage of our decomposition comes at the cost of higher computational cost, but an efficient

R code, which is publicly available on GitHub as detailed in the Appendix, mitigates this drawback.
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In conclusion, we firmly believe that the decomposition technique outlined in this paper greatly enhances

the applicability of the Gini index to the study of inequality, as it opens new avenues for research into

horizontal inequality and related areas.
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Appendix

1.A On the quantilisation procedure

This part of the appendix discusses the suggested value of n and of the definition of quantiles in the quantil-

isation procedure, explaining their optimality and quantifying the magnitude of the approximation incurred.

Defining p = (p1, . . . pk) we can rewrite the suggested value of n as n = pn⊺. This expression determines

(a) MSE (left scale) and MAE (right scale) for different choices

of n

(b) Boxplots of the 150 relative differences in Sb for different

choices of n

Figure 1.A.1: Approximation of the between component share for different choices of n. The approximation is evaluated

by comparing the 150 shares obtained by the quantilisation procedure with those by the exact approach

n as the average of the nk, each weighted by the share of population pk. We study the performance of this

value in Figure 1.A.1, where we evaluate the approximation by looking at the relative discrepancy between
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the two shares Gb/G from the exact approach and the quantilisation method. Precisely, we define Sb =Gb/G

as the between component share obtained by the quantilisation method and Sr
b = Gr

b/Gr as the reference

share obtained by the exact approach. The relative discrepancy is measured by the Mean and the Absolute

Squared Error of Sb/Sr
b w.r.t. 1 = Sr

b/Sr
b. They are calculated running 150 simulations and evaluating the

empirical counterpart of MSE(Sb/Sr
b) = E[(Sb/Sr

b −1)2] and MAE(Sb/Sr
b) = E[|Sb/Sr

b −1|].
At each iteration, we draw lognormal income vectors with sizes n, as described in the second section of

this Appendix. We compare the approximation with alternative choices of n, which are the minimum and

the maximum of n, its deciles (expressed in the plot as probabilities of the inverse distribution function) and

the value obtained by Eq. (1.19). Generating the vector n, we impose constraints on its elements to ensure

affordable values for lcm(n). To be specific, the algorithm firstly specifies K (= 5, 10 or 20). Then it builds

a vector mul composed by the divisors of 24335 that belong to an interval [min,max]. The min (= 36 or 72)

and the max (= 360 or 720) are both included in n. The other K−2 values are sampled with repetition from

mul. With this choice the lcm cannot exceed the value 2160 and the computations are affordable. Figure

1.A.1 represents the results for K = 20, min = 72 and max = 720.

As we show in Figure 1.A.1a, the proposed value of n - represented by the solid indicators - minimizes

(or reach a value very close to the minimum of) the approximation that this method copes with, both for

the MSE (left scale) and the MAE (right scale). This result is achieved thanks to vanished distortion and

variance reduction, as we show in Figure 1.A.1b. We stress the irrelevance of the approximation when the

suggested n is employed: according to the MAE, which is interpretable as average absolute percentage error,

the error is 0.22%.

The magnitude of the percentage approximation changes with the simulation parameters, as Table 1.A.1

points out. It reports the percentage MAE of the between component share for different choices of n, K and

of the interval [min,max]. Results are really encouraging. The values of the MAE are below the percentage

point in half of the parameter specifications, and they are always below 1% when the suggested choice of n

is employed.

For each choice of n, when the ratio max/min decreases, the approximation reduces, too. If that ratio stays

constant, the MAE informs about better performance for higher min and max. Results are enhanced when n

is selected by Eq. (1.19) and the number of groups is high. The described dependence of the MAE on the

values of n, K and of the interval [min,max] proves the consistency of our procedure, and may ensure even

lower approximation in many realistic scenarios where the parameters are presumably more conducive.

The suggested choice of n almost always guarantees a relevant reduction in the computational cost associated

to n = max(n). This reduction is not negligible in our simulations: p̄ is the average value, in the 150

simulations, associated to our choice of n in the inverse distribution function of n. It is reported in the last

column of the table and range from 0.69 to 0.84.

As supported by the values in the third column of the table - which decrease when min(n) increases - it could

be also acceptable to choose a value n << min(n) if min(n) is high and a computational saving choice is
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Percentage approximation for different deciles n = pn⊺

K [min,max] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 n p̄

5

[36,360] 6.12 4.88 4.14 3.20 2.53 2.17 1.42 1.20 1.00 0.92 0.90 0.94 0.78

[36,720] 8.28 6.41 5.45 4.13 3.26 2.79 1.71 1.44 1.05 0.91 0.86 0.91 0.83

[72,360] 2.66 2.19 1.93 1.52 1.18 1.01 0.76 0.69 0.61 0.57 0.58 0.60 0.73

[72,720] 4.07 3.24 2.79 2.14 1.70 1.45 1.00 0.86 0.69 0.61 0.59 0.64 0.79

10

[36,360] 4.72 3.90 2.97 2.23 1.61 1.14 0.86 0.65 0.55 0.56 0.60 0.53 0.77

[36,720] 5.44 4.42 3.35 2.56 1.94 1.43 0.99 0.69 0.52 0.45 0.47 0.45 0.84

[72,360] 2.11 1.76 1.41 1.11 0.87 0.65 0.49 0.38 0.34 0.33 0.35 0.35 0.71

[72,720] 3.17 2.66 2.13 1.63 1.20 0.85 0.61 0.47 0.38 0.32 0.32 0.34 0.78

20

[36,360] 3.72 2.94 2.26 1.77 1.26 0.83 0.54 0.37 0.31 0.36 0.42 0.30 0.75

[36,720] 4.85 3.81 2.93 2.20 1.55 1.08 0.67 0.43 0.29 0.25 0.30 0.24 0.82

[72,360] 1.78 1.53 1.17 0.89 0.64 0.44 0.29 0.22 0.21 0.23 0.26 0.21 0.69

[72,720] 2.68 2.20 1.66 1.26 0.89 0.61 0.43 0.29 0.24 0.26 0.32 0.22 0.78

Table 1.A.1: Percentage approximation of the quantilisation procedure as measured by the MAE of the between com-

ponent share, for different parameter specifications. The last column represents the average fraction of elements in the

vector n which are lower than the suggested n

required.

All these results are associated to the quantile definition that we suggest. Our choice comes from the

comparison of the approximation achieved using the nine different quantile definitions presented in Hynd-

man and Fan [1996] in the procedure which generates Figure 1.A.1a.As we show in Figure 1.A.2,

the Definition 7 essentially presents the lowest MSE (and MAE) for each choice of n and it ensures

computational advantages because the MSE approaches 0 for smaller n.

The outstanding performance of definitions 1 and 2 when the probability is close to 1 are exceptions. Both

the definitions rely on a stepwise cumulative probability function which selects the quantiles from the set of

values in the starting vector. Thus, if p = 1 and max(n) = lcm(n), the vector of quantiles corresponds to

the zk of the exact approach, and no approximation is encountered, with evident advantages starting from

p = 0.8. Nonetheless, in the vast majority of real applications, the vector n is much more variable than the

bounded vectors used in these simulations. Hence lcm(n) is generally far from max(n) and the Definition 7

from Hyndman and Fan [1996] is definitely recommended.

Actually, the optimal performance associated to the suggested quantiles selection strategy should not

come as a surprise. Its outstanding results have a twofold explanation. First, the performance of the proposed

choice of n directly derives from its consistency with the exact-approach weighting system. This choice

assigns greater weights pk to the sizes of the most sized groups, which is desirable because these are the

groups with the biggest pk. It is reasonable to preserve their information by choosing a large n and by
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Figure 1.A.2: Between component share approximation of the 9 quantile definitions presented in Hyndman and Fan

[1996]. Approximation is measured by the MSE with the procedure of Figure 1.A.1. Using the software R, each

definition can be selected by the option type of the function quantile(). Here, Tj stands for selecting the option type= j

resampling the smallest groups. But if many small groups are present, n is attracted towards their small size.

Here, the quantilisation of the biggest groups is preferred to resampling the many small groups. The second

explanation for the optimal performance of the suggested strategy is the following. Eq. (1.18) selects the

values prob j so as to partition the interval [0,1] in n−1 equal parts, with 0 and 1 two of the n vertices of the

partition. It is straightforward to verify that, with our suggestions, min(xk) and max(xk) are preserved for

each n and k. Moreover, if nk = n ∀ k, then the vectors xk are entirely preserved, too. Both these properties,

which ensure robustness w.r.t. outliers, hold at the same time only employing Definition 7 from Hyndman

and Fan [1996] and the suggested choice of the values prob j.

1.B The income simulation algorithm

A Monte Carlo algorithm is employed to evaluate the approximation of the quantilisation procedure and to

estimate correlations. This section of the appendix provides with the theoretical foundations of the income

simulation procedure feeding both these algorithms.

The distribution of n is a K-variate uniform, where the number of groups K and the extremes of the

distribution are determined ex-ante. A uniform distribution is also exploited to draw the expected average

income of each group: E [µk] ∼ Unif(m,M). The minimum m of this distribution is set to 104. As for the
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maximum M, it is fixed to 5 ·104 in the simulations described in the first part of this appendix. Differently, in

the simulations presented in Section 1.6, M is varied to highlight how correlations depend on the variability

of the means of the groups. This is possible because a modification of M directly affects CV [E[µk]]. For the

uniform distribution Eu [E [µk]] = (M +m)/2 and Varu [E [µk]] = (M −m)2/12, therefore the coefficient of

variation of E [µk] is

CV [E [µk]] =

√
Vu [E [µk]]

Eu [E [µk]]
=

1√
3
(M−m)

(M+m)
∈
[

0,
1√
3

]

and, with m fixed, it only depends on the value of M.

The values of M are selected so that the coefficient of variation divides the interval into S equal parts. Denote

by M(s), s = 1 . . .S the different values required for this scope. The values M(s) satisfy:

M(s)−m
M(s)+m

− M(s−1)−m
M(s−1)+m

= c

with M(0) = m and c = 1/
(√

3S
)
. With easy calculations, the following holds:

M(s) =
m(cM(s−1)+ cm+2M(s−1))

(2m− cM(s−1)− cm)

and the M(s) can be calculated iteratively.

Once all the parameters are fixed, we draw the incomes of each group from a lognormal distribution with

expected value E [µk] ∼ Unif(m,M). The last requirement is to define a meaningful way to determine the

two parameters η and σ2 of the distribution. As it is well known, for a lognormal distribution the following

holds:

E [µk] = eηk+
σ2

k
2 (1.33)

This equation allows an effective way to determine the two elements ηk e σk:

ηk = αk lnE [µk] (1.34)

σ
2
k = 2(1−αk) lnE [µk] (1.35)

Their ratio is

ck =
σ2

k
ηk

=
2(1−αk) lnE [µk]

αk lnE [µk]
=

2(1−αk)

αk

At this point, we consider the 82 couples of lognormal parameters estimated in Bandourian et al. [2002]

using 82 real income distributions from 23 countries over several years (from the end of sixties to the end of

nineties). We evaluate all the ci = σ2
i /ηi, i = 1, . . . ,82.
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Verisimilar values for αk can be obtained sampling a value of i for each group and posing ck = ci, solving

the following equation:

ci = ck =
2(1−αk)

αk
=⇒ αk =

2
ci +2

(1.36)

Therefore ηk and σ2
k are determined by Eq. (1.34)-(1.36).

The appropriateness of the last step - i.e. sampling a value of i for each group and using the correspondent

ci - is justified by the fact that the 82 values of α in Bandourian et al. [2002] are not influenced by the

associated E[µk]: a simple linear regression reports an approximately null coefficient (5.6 ·10−4) and a large

p-value (0.65) for the regressor E[µk]. Consequently, there are 82 credible proportions to split E[µk] in ηk

and σ2
k /2. We exploit them to simulate income.

1.C R Code for implementing the decomposition

The R package implementing the described decomposition technique is available on GitHub. To ensure the

GiniDecA package can be installed from GitHub, first check if the devtools package is installed. If not,

install devtools using the following command in R:

1 if (!requireNamespace("devtools", quietly = TRUE))

2 install.packages("devtools")

Afterward, install GiniDecA in the R environment

3 devtools::install_github("FedericoAttili/GiniDecA")

and use the GiniDec function as in the example below:

4 library(GiniDecA)

5 giniDec(x=c(8,3,6,2),z=c(’k’,’k’,’h’,’h’), w = F)

6 #where x is the population income vector, z is the group label vector and w is

the vector of weights

More details about the package functions are listed below, where the most important code of the package

is organised into various subsections to ease its presentation. This code, which already meets most standards

for publication on CRAN, will be refined to build an official R package.

1.C.1 Initial Setup and utilities

This part of the code is crucial for setting up the environment. It involves setting the working directory and

loading the ‘Rcpp‘ library. This library is particularly important because allows integration of R with C++,

which is used to speed up the computation of the decomposition.
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1

2 setwd(getwd())

3

4 library(Rcpp)

5 sourceCpp(’ginicpp.cpp’) # Replace with the actual path to your C++ file

The following snippet consists of various utility functions that facilitate the data processing and analysis:

1. ‘mapping” function: This function converts group labels into numeric values, which is essential for

analyses that require numeric group identifiers. It takes a vector ‘groups‘ as input, converts it to a factor, and

then to a numeric vector. It returns a named vector where the names are the original group labels and the

values are the corresponding numeric identifiers.

2. ‘gcd” function: A recursive function to calculate the greatest common divisor of two numbers, ‘a”

and ‘b”.

3. ‘lcm pair” function: Calculates the least common multiple of two numbers.

4. ‘lcm” function: Extends the ‘lcm pair” function to operate on a vector of numbers, calculating the

least common multiple of all elements in the vector.

1 ########################

2 #useful functions

3

4 mapping=function(groups){#mapping of factor labels for conversion to numeric

5

6 # Convert groups label to factor

7 group_factor <- factor(groups)

8

9 # Convert factor to numeric

10 groups <- as.numeric(group_factor)

11

12 # Convert numeric back to original categories

13 key <- data.frame(label=levels(group_factor)[unique(groups)],id_group=as.

numeric(unique(groups))-1)

14 mapping <- setNames(key$label, key$id_group)

15 }

16

17

18 # Function to calculate the greatest common divisor (GCD) of two numbers

19 gcd <- function(a, b) {

20 if(b == 0) {
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21 return(abs(a))

22 } else {

23 return(gcd(b, a %% b))

24 }

25 }

26

27 # Function to calculate the least common multiple (LCM) of two numbers

28 lcm_pair <- function(a, b) {

29 return(abs(a * b) / gcd(a, b))

30 }

31

32 # Function to calculate the LCM of a vector of numbers

33 lcm <- function(x) {

34 # Check if the vector has at least one element

35 if(length(x) < 1) {

36 stop("Input vector must have at least one element.")

37 }

38

39 # Initialize LCM with the first element

40 result_lcm <- x[1]

41

42 # Iteratively calculate LCM for the rest of the elements

43 for(i in x[-1]) {

44 result_lcm <- lcm_pair(result_lcm, i)

45 }

46

47 return(result_lcm)

48 }

49

50 # Example usage

51 numbers <- c(3, 7, 8)

52 lcm(numbers) # Should return 24, which is the LCM of 4, 6, and 8

1.C.2 Group Size Recalibration Function

The ‘group size recalib” function is foundamental for the recalibration of the group sizes detailed in Section

1.5.1. This recalibration is performed to ensure that each group in the dataset has the same number of

observations. It takes two arguments: ‘x”, an income vector, and ‘z”, a grouping vector. The function returns
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a recalibrated dataset where the group sizes are equal, which is essential to employ the decomposition. The

weight recalibration of Eq. (1.16) is performed later, directly in the ‘giniDec” function (see further below).

1

2 group_size_recalib <- function(x, z) {

3 # The function takes an income vector x and a grouping vector z, then

recalibrates

4 # the data such that each group has the same number of observations based on

the

5 # least common multiple of the original group sizes. It scales the data using

6 # inverse proportions to maintain the overall distribution while ensuring

7 # uniform group sizes. The recalibration could be used for certain types of

8 # analysis where uniform group sizes are required for comparison or

aggregation

9 # purposes.

10

11 # Check if x and z are of the same length

12 if (length(x) != length(z)) {

13 stop("Lengths of ’x’ and ’z’ must be the same")

14 }

15

16 # Calculate the number of unique groups in z

17 K <- length(table(z))

18

19 # Initialize vector to store the size of each group

20 n_k <- numeric(K)

21

22 # Populate n_k with the size of each group

23 for (i in 1:K) {

24 n_k[i] <- table(z)[[i]]

25 }

26

27 # Calculate the least common multiple (LCM) of group sizes

28 n <- lcm(n_k)

29

30 # Calculate the inverse proportion for each group size relative to LCM

31 p_k_inv <- n / n_k

32

33 # Combine income data with group labels and sort, by group and income
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34 x_old <- cbind(x, z)

35 x_old <- x_old[order(x_old[, 2], x_old[, 1]), ]

36

37 # Initialize new matrix for recalibrated data

38 x_new <- matrix(nrow = n * K, ncol = 3)

39

40 # Recalibrate data for each group

41 for (i in 1:K) {

42 start_index <- sum(n_k[1:i]) - n_k[i] + 1

43 end_index <- sum(n_k[1:i])

44 group_data <- x_old[start_index:end_index, 1]

45

46 # Replicate data to fill new group size and assign group label and inverse

proportion

47 x_new[(n * (i - 1) + 1):(n * i), 1] <- rep(group_data, length.out = n)

48 x_new[(n * (i - 1) + 1):(n * i), 2] <- rep(i, n)

49 x_new[(n * (i - 1) + 1):(n * i), 3] <- rep(p_k_inv[i], n)

50 }

51

52 # Sort the recalibrated data by group and income

53 x_new <- x_new[order(x_new[, 2], x_new[, 1]), ]

54

55 # Return the recalibrated data

56 return(x_new)

57 }

1.C.3 Quantile Calculation Function

The ‘quant” function is fundamental for the quantilisation procedure detailed in Section 1.5. It computes

quantiles for specified groups in the dataset. The function takes several arguments: ‘gruppi” (the data

vector), ‘indice gruppo” (group index vector), ‘m‘ (number of quantiles to compute), ‘group sizes‘ (vector

of group sizes), and ‘type” (type of quantile calculation, to be chosen between the nine definitions defined

in [Hyndman and Fan, 1996]). It returns a list containing the quantile values (‘valori quantili”) and the

corresponding group identifiers. Even in this case, the weight recalibration is performed in the ‘giniDec”

function (see further below)

1 library(Hmisc)

2 quant <- function(gruppi, indice_gruppo, m, group_sizes, type=7, weights=F) {
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3 quantili <- seq(0, 1, 1 / (m - 1)) # Sequence of quantiles to calculate

4 valori_quantili <- c() # Initialize vector to store quantile values

5 g <- c() # Initialize vector to store group identifiers

6

7 if (!is.numeric(weights[1])) {

8 # If weights are not provided

9 for (i in group_sizes) {

10 # Calculate quantiles for each group and append to valori_quantili

11 valori_quantili <- append(valori_quantili, as.vector(quantile(gruppi[

indice_gruppo == i], quantili, type = type)))

12 # Append group identifier repeated m times

13 g <- append(g, rep.int(i, m))

14 }

15 } else {

16 # If weights are provided

17 for (i in group_sizes) {

18 # Calculate weighted quantiles for each group and append to valori_

quantili

19 valori_quantili <- append(valori_quantili, as.vector(wtd.quantile(gruppi[

indice_gruppo == i], weights[indice_gruppo == i], quantili)))

20 # Append group identifier repeated m times

21 g <- append(g, rep.int(i, m))

22 }

23 }

24

25 return(list(gruppi = valori_quantili, indice_gruppo = g))

26 }

27

28

29 ########################

1.C.4 The giniDec function

The ‘giniDec” function is the core function to calculate the decomposition proposed in this chapter. It

performs Gini decomposition on the given data. The function takes several arguments, including ‘x’ (in-

put variable vector), ‘z’ (group belonging vector), ‘w’ (individual weights), ‘m’ (quantile level or value),

‘n equalizer’ (method for normalization, equal to ‘quant’ - the default option - or ‘ricalibrazione’; the de-

fault option is advised and it is the only supporting w ̸= F , while n equalizer =‘ricalibrazione’ is specifically
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designed just to assess, in Section 1.A, the approximation incurred by employing the quantilisation proce-

dure), ‘type’ (quantile definition). It returns a list of results, including Gini coefficient, within and between

group Gini components, and their respective shares. If ‘contrib’ is set to TRUE (default is FALSE), the func-

tion also returns the group and pairwise group contributions to within and between components, as defined

in Eq. 1.21 and Eq. 1.23.

1 #CORE FUNCTION

2

3 library(dineq)

4

5 giniDec=function(x,z,w=F,m=NULL,n_equalizer=’quant’,type=7,contrib=F){

6 #x is the vector with the input variable in the population

7 #z is the vector of group belonging; it defines the partition in groups

8 #w represents the vector of individual weights

9 # m tra 0 e 1 indica il livello del quantile, or if >1 directly the value to

employ, if NULL the value suggested in Attili (2020) is employed

10 #type indica la def di quantile utilizzata

11 if(!is.numeric(w[1])){data=data.frame(x,z,1)}else{data=data.frame(x,z,w)}

12 colnames(data)=c(’x’,’groups’,’w’)

13 data_store=data

14 #force the three columns to be numeric,

15 data$x=as.numeric(data$x)

16 data$w=as.numeric(data$w)

17 data$groups=as.numeric(as.factor(data$groups))

18 Gini=gini.wtd(data$x,data$w)

19

20 data=data[order(data$groups),]

21 x=data$x

22 w=data$w

23 z=data$groups

24

25

26 #recalibration

27 #nb if n_equalizer=="ricalibrazione", data should not contain weights

28

29 n_k=as.vector(table(z))

30 K=length(n_k)

31 kapp=unique(z)

32
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33 N_orig=sum(w)

34 mu=sum(x*w)/N_orig

35 w_k=as.vector(tapply(w, z, sum))

36 if(is.null(m)){

37 mm=0

38 for (i in 1:K){mm=mm+n_k[i]*(w_k[i]/sum(w_k))}

39 q=seq(0,1,0.005)

40 qq=quantile(n_k,q)

41 dif=abs(qq-mm)

42 m=q[which.min(dif)]

43 }

44

45 if(n_equalizer==’quant’){

46 if(m<=1){m=as.integer(quantile(n_k,m))}

47 quantili=quant(x, z, m, kapp,type, w)

48 z=quantili$indice_gruppo

49 x=quantili$gruppi

50 numerosita=c(matrix(rep(w_k,m),m,K,byrow = T))

51 p_k_inv=m/numerosita

52 x=cbind(x,z,p_k_inv)

53 rm(z,p_k_inv)

54

55 }

56

57 if(n_equalizer=="ricalibrazione") {

58 x=ricalibrazione_gruppi(x,z)

59 m=mcm(n_k) #restituisce x=cbind(x,z,p_k_inv) con numerosit? apparate e

ordinato prima su z e poi su x

60 }

61

62 x[,3]=1/x[,3]

63

64 data=as.matrix(x)

65

66 output_giniDecomposition <- giniDecomposition(data,contrib=contrib)#contrib=F

by default

67 #this function is written in c++. It takes data and return

68 #the value of the two components (g_w and g_b). If contrib=T,

69 #also two matrices are provided with the contribution of each
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70 #pair of units to within and between component

71 #organise results

72 G_dot=output_giniDecomposition$g_w+output_giniDecomposition$g_b

73 #evaluate the components

74 G_w=output_giniDecomposition$g_w*Gini/G_dot

75 G_b=output_giniDecomposition$g_b*Gini/G_dot

76 #evaluate the component shares

77 within_share=G_w/Gini

78 between_share=G_b/Gini

79

80 if(contrib==T){

81 map=mapping(data_store$groups)

82 #evaluate (absolute) contribution of groups to within inequality

83 group_w_contrib=(tapply(output_giniDecomposition$w_contributions$value,

output_giniDecomposition$w_contributions$k,sum)+tapply(output_

giniDecomposition$w_contributions$value,output_giniDecomposition$w_

contributions$h,sum))/2*Gini/G_dot

84 names(group_w_contrib) <- map[names(group_w_contrib)]

85

86

87 #evaluate (absolute) contribution of groups to between inequality

88 group_b_contrib=(tapply(output_giniDecomposition$b_contributions$value,

output_giniDecomposition$b_contributions$k,sum)+tapply(output_

giniDecomposition$b_contributions$value,output_giniDecomposition$b_

contributions$h,sum))/2*Gini/G_dot

89 # Replace the names in group_b_contrib with corresponding labels

90 names(group_b_contrib) <- map[names(group_b_contrib)]

91

92

93 #evaluate (absolute) pairwise contribution of groups to between inequality

94 group_pairwise_contr=tapply(output_giniDecomposition$b_contributions$value,

list(output_giniDecomposition$b_contributions$k,output_

giniDecomposition$b_contributions$h),sum)*Gini/G_dot

95 group_pairwise_contr=group_pairwise_contr[upper.tri(group_pairwise_contr)]+

t(group_pairwise_contr)[upper.tri(t(group_pairwise_contr))]

96 #set names

97 names(group_pairwise_contr)=apply(combn(names(group_b_contrib),2),2,paste,

collapse=’-’)

98
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99

100 #ADD

101 #evaluate (absolute) contribution of ranks to within and between

102

103 }

104

105 results <- list(

106 Gini = Gini, # Assuming Gini is calculated somewhere in your function

107 G_w = G_w,

108 G_b = G_b,

109 within_share = within_share,

110 between_share = between_share

111 )

112

113 if (contrib) {

114 # Additional results when contrib is TRUE

115 results$group_w_contrib = group_w_contrib

116 results$group_b_contrib = group_b_contrib

117 results$group_pairwise_contr = group_pairwise_contr

118 # ... [any other additional results you want to include]

119 }

120

121 return(results)

122 }

Example usage:

In the following we provide examples to illustrate the application of the above functions. It includes basic

scenarios and more complex cases involving different-sized groups and additional parameters.

1 ## Example usage

2

3 # Generating 4 random numbers between 1 and 10

4 x = runif(4, 1, 10)

5

6 # Creating a vector of group identifiers (1, 2, 1, 2)

7 groups = c(rep(c(1:2), 2))

8

9

52



10 # Computing the Gini decomposition

11 res1 = giniDec(x, groups, contrib = T)

12

13

14 ## Example with different-sized groups and weights

15

16 # Generating 5 random numbers between 1 and 10

17 x = runif(5, 1, 10)

18

19 # Creating a vector of group identifiers (1, 2, 1, 2, 2)

20 groups = c(rep(c(1:2), 2), 2)

21

22 # Creating a weight vector (1, 2, 1, 2, 2)

23 w = c(rep.int(c(1, 2), 2), 2)

24

25 # Computing the Gini decomposition with additional parameters

26 res2 = giniDec(x, groups, w = w, n_equalizer = ’quant’, type = 7, contrib = T)
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Chapter 2

Decomposing inequality after
asymmetric shocks: an analysis of
Italian household consumption

Keywords: Inequality decomposition, Asymmetric shocks, Gini index, COVID-19, Monte Carlo experi-

ment

2.1 Preamble

In the opening chapter, we delved into methods of inequality decomposition, focusing particularly on the

Gini index of a population divided into groups. Our analysis scrutinised the ’between-component’ of various

decompositions, commonly used to evaluate inequality between groups. Recently, the between-component

has been increasingly interpreted as a measure of horizontal inequality. We contend that traditional decom-

position methods are inadequate for accurately assessing and tracking horizontal inequality. They under-

estimate it in scenarios lacking stochastic dominance among the distributions of different groups. For this

reason, we introduce a novel decomposition approach with a between-component that is more suitable for

evaluating horizontal inequality.

In this chapter, leveraging open-source data from the Household Budget Survey (HBS) issued by the

Italian National Statistics Institute (ISTAT), we examine the impact of Covid-19 on horizontal inequality

of the consumption expenditure of Italian households, according to three inequality factors such as gender,

age and geography. Our findings reveal that traditional decomposition methods fall short in accurately cap-

turing the evolution of this inequality. Covid-19’s asymmetric impact across and within various population

54



groups disrupts or establishes stochastic dominance, significantly influencing the assessment of inequality’s

progression. Through a Monte Carlo experiment, we underscore the necessity of selecting an appropriate

measure for assessing horizontal inequality, especially in the face of asymmetric shocks like the Covid-19

pandemic or inflation.

This chapter is a collaborative effort with Michele Costa from the University of Bologna. The prelim-

inary results of this research was presented at the 51st Scientific Meeting of the Italian Statistical Society

(SIS) in Caserta, 2022, providing a platform for engaging discussions and further refinement of the study.

The manuscript has been recently accepted for publication in the SIS2022 Proceedings volume “Advanced

Methods in Statistics, Data Science and Related Applications”. I am indebted to editors Antonio Balzanella,

Matilde Bini, Lucio Masserini, and Rosanna Verde, along with two anonymous referees, for their invaluable

comments and suggestions

2.2 Introduction

In little more than a decade, most of the world’s economies have suffered three of the largest shocks since

the second world war. The economic repercussions of the financial crisis and the COVID-19 restrictions

have been studied extensively. Many efforts are now devoted to the study of high inflation, mainly driven

by rising energy prices. All three shocks affected asymmetrically economic agents, business and personal

income (Milanovic [2022], Bell et al. [2022], Jaravel [2021], Fana et al. [2020]). As a result, the debate

on the implications of asymmetric shocks for monetary policy, prices and risk sharing flourished, receiving

adequate attention and support. The relevance of asymmetric shocks and their distributional consequences

are also well recognised by Bourguignon [2011] and Berman and Bourguignon [2024], which introduce and

employ non-anonymous growth incidence curves to consider initial and final income positions. Similarly,

Jenkins and Van Kerm [2016] advocate for a longitudinal approach to assessing income growth, emphasizing

the importance of individual income growth profile. These methodologies exist to study the asymmetric

effect of growth or shocks in the income distribution dynamics.

In our opinion, the asymmetry of shocks should be considered when studying the dynamics of inequality

between groups, particularly in asymmetric contexts like the post-COVID Italian economic landscape. On

the contrary, methods to study inequality have barely evolved, while we argue that the usual assessment

of inequality is not robust to asymmetric shocks when the focus is on comparisons between population

subgroups. Indeed, traditional methods generally compare distributions of subgroups by looking at the

difference between their means. However, the comparison of means is not representative of the distance

between distributions when the distributions are heterogeneously and asymmetrically affected by shocks.

In this paper, we focus on Italian household consumption after COVID-19, which represented a very

strong shock with serious health, psychological, social and economic consequences. We show that usual
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methods to assess inequality between subgroups do not fully capture the heterogeneous and asymmetric

modifications of the consumption distribution of subgroups. At the same time, we propose a complementary

methodology helping to deliver a more complete picture of inequality between groups.

The need to evaluate the effects of COVID on inequality has immediately been recognized. It led to a

thriving literature (see e.g. Stantcheva [2022] for a review), to which we contribute by including the methods

related to inequality decomposition in the methodological toolbox of researchers and policymakers. Indeed,

the between-inequality component represents a strategic tool to explore the effects of asymmetric shocks on

divides.

COVID-19 impacted Italian households consumption in 2020 through different channels. The princi-

pal ones are income reduction Gallo and Raitano [2020], lockdown, restrictions, and behavioral changes

(Hasan et al. [2021], Marques Santos et al. [2020]). Except for the lockdown, which flattened household

consumption to unprecedented levels in all the social strata, the other channels shaped the distribution of

consumption (and income) with heterogeneous intensity along its deciles and subgroups. The presence

of substantial asymmetries which characterize the effects of COVID has been thoroughly investigated and

highlighted by Bell et al. [2022]. To fully understand the heterogeneous changes that have occurred, it is

therefore important to measure the inequality between subgroups at all distribution points.

We exploit the Italian household budget survey (HBS) to investigate consumption inequality of house-

hold residing in Italy. With respect to three different partitions, which define subgroups based on age, gender

and geographical factor, we compare how different can be the picture of household consumption inequality

when considering decompositions that follow different paradigms. In particular, we compare the summer of

2019 and 2020, which are the two closest comparable periods before and after the lockdown and the main

restrictions. We show that the increase in age and gender divide is much smaller if measured by comparing

the whole subgroup distributions. The impact of COVID-19 on household consumption is instead homoge-

neous among the Italian regions and the different points of their distributions, therefore decompositions of

inequality agree on a modest reduction of the geographical divide in consumption.

This paper is the extension of a previous version presented at the 51st Scientific Meeting of the Italian

Statistical Society (Attili and Costa [2022]) and proceeds as follows. Section 2.3 builds a common frame-

work on the methodologies for studying inequality factors. Section 2.4 theoretically discusses the impact

of shocks on between-inequality indicators. Section 2.5 presents the data employed and illustrates their

main features. Section 2.6 discusses the response of different measures after simulated shocks and after

COVID-19, and exploits a bootstrap algorithm to infer their confidence intervals. Section 2.7 concludes.
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2.3 Inequality factors and inequality decomposition

2.3.1 Assessment of inequality factors

Inequality factors such as gender, age, and geographical area significantly impact various societal aspects.

By segmenting the overall population into subgroups based on two or more reference values of an inequality

factor, we explore the influence of these factors on overall inequality.

Consider a variable of interest x, such as income or consumption, with an average µ in the population of

interest. For two subgroups of the population k and h with means µk and µh, we begin by examining the gap

between these subgroups. This gap is quantified by the relative difference between their means:

∆µkh = |µk −µh|/µ (2.1)

which provides a classic aggregate indicator. There are also other aggregated indicators, but averages

represent by far the most commonly used tool, so we can consider relation (1) as a benchmark.

A more detailed framework than relation (1) can be developed by extending the comparison to a set of points

of the distributions of subgroups k and h. Beyond averages, a detailed comparison involves the distributions

of subgroups k and h at various quantiles. As in Chapter 1, let xk
q and xh

q, q = 1, . . . ,Q, be the Q quantiles of

subgroups k and h, respectively. The difference at each quantile level, ∆xkh
q , is:

∆xkh
q = |xk

q − xh
q|/µ

The aggregated measure of these differences, dkh
Q , is given by:

dkh
Q =

Q

∑
q=1

∆xkh
q /Q (2.2)

Compared to ∆µkh, the quantity dkh
Q enables a comparison based on a broader set of information, which

increases with Q. This is particularly useful when the distributions of the two subgroups exhibit different

shapes. In the case of a population divided into two groups, this measure coincides with the measure of

diversity between income distribution for mean-scaled data (HI) defined in Chapter 1. The extension to the

case with more than two groups involves a series of binary comparisons and their synthesis, leading to the

more general definition of HI. In this chapter, we explicitly consider in the notation the dependence of HI

on the selected number of quantiles Q. In particular, we adopt Q = 10 and evaluate dkh
10, thus aligning with

the traditional inequality framework based on deciles.

We aim to assess whether the relevance of inequality factors and their dynamics are sensitive to the

employed methodology, especially when comparing Eq.2.1 and Eq.2.2. We argue that in cases of asymmetric

shocks, the dynamics of the difference between means may not fully represent the corresponding evolution

of the distributions. This argument is extended to more refined methods of inequality decomposition, with
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a particular focus on the between-component, which is crucial in evaluating the importance of underlying

inequality factors and the gap between subgroups.

Our discussion applies to various inequality measures, including generalized entropy indexes like the

Theil index, the Zenga index (Porro and Zenga [2020]), and the Gini index G. We continue to explore the

context of the Gini index and of the three decompositions considered in Chapter 1, where the decomposition

methodologies are presented and discussed. We focus on the between-component of inequality, which evalu-

ates the impact of differences between subgroups on overall inequality (Elbers et al. [2008], Giorgi [2011]).

Table 2.3.1 summarises the between-group indicators, including these decompositions and the indicators

∆µkh and dkh
Q .

Table 2.3.1: Summary of Between-Group Indicators

Category Type Indicator

Benchmark

Indicators

Gap Between

Means

∆µkh = |µk −µh|/µ

Quantile Com-

parison

dkh
Q = ∑

Q
q=1 ∆xkh

q /Q

Decomposition

Derived

Indicators

Bhatt. and Ma-

halanobis

GBM
b = ∑

K
k=1 ∑

K
h=1 nknh|µk −µh|/2µ (2.3)

Yitzhaky and

Lerman

GY L
b = 2cov(µk, F̄k)/µ (2.4)

Attili decom-

position

GA
b = ∑

K
k=1 ∑

K
h=1 ∑

n
j=1

∣∣∣xk
j − xh

j

∣∣∣wkh
j /(2µn2K2) (2.5)

The table above provides a detailed summary of key between-group indicators, each serving a specific

role in analyzing inequality.

• Gap Between Means (∆µkh): This fundamental benchmark indicator measures the disparity based on

average values within groups, laying the groundwork for more complex inequality assessments.

• Quantile Comparison (dkh
Q ): This indicator extends the analysis beyond averages to differences at

specific quantiles, uncovering disparities across different population segments.
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• Bhattacharya and Mahalanobis Decomposition (GBM
b ): As part of the Gini index decomposition,

this method focuses on differences in subgroup means, similarly to the Gap Between Means. It offers

a traditional approach to understanding the contribution of mean differences to overall inequality.

• Yitzhaky and Lerman Decomposition (GY L
b ): This decomposition also stems from the Gini index

and is akin to the Gap Between Means in its focus on subgroup means and distributional overlaps. It

provides valuable insights, especially where distributional overlaps are significant.

• Attili’s Decomposition (GA
b ): Offering a perspective similar to the Quantile Comparison, Attili’s

method compares observations ranked similarly in different subgroups. This approach is particularly

insightful for detailed, rank-based subgroup comparisons, revealing aspects of inequality that might

be missed by average-based methods.

These indicators collectively enable a comprehensive analysis of inequality. While GBM
b and GY L

b align

closely with ∆µkh by focusing on subgroup mean differences, GA
b , like dkh

Q , delves into a more granular,

distribution-wide examination. In contexts of asymmetric shocks, these tools are invaluable for uncovering

the multifaceted impacts on inequality dynamics, guiding nuanced policy and research responses.

This chapter thus seeks to extend the theoretical framework established in Chapter 1, applying it to a

nuanced examination of inequality dynamics in various contemporary contexts. The analysis will contribute

to a deeper understanding of how different methodologies influence our perception and analysis of inequality

factors, particularly when examining changes over time or under specific economic conditions.

2.4 Shocks and assessment of inequality factors

In this section, we study the effect of symmetric and asymmetric shocks on the indicators discussed in the

previous section.

We consider a population of size N and we define the income of individual i before the shock as yi, with

i = 1, . . . ,N. The population is divided into two groups, k and h, of size nk and nh (nk + nh = N). Let the

income of the individual i of the group k be yk
i before the shock, with i = 1, . . . ,nk.

We start by discussing symmetric shocks. We can model symmetric shocks as multiplicative or additive

shocks. As for multiplicative shocks, we define:

xi = yi · (1+ c) (2.6)

where c is the variation induced by the shock.

It is simple to show that the values of both Eq. (2.1) and Eq. (2.2) stay unchanged after substituting Eq. (2.6).

Indeed, such a shock does not even affect inequality measures, according to the principle of scale invariance
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(Allison [1978]). We model additive symmetric shocks as:

xi = yi + c (2.7)

In this case, we can show that:

∆µkh = |µk −µh|/(µ + c) (2.1’)

and

∆xkh
q = |xk

q − xh
q|/(µ + c)

so that

dkh
Q =

1
Q · (µ + c)

Q

∑
q=1

|xk
q − xh

q| (2.2’)

Compared to Eq. (2.1) and Eq. (2.2), both Eq. (2.1’) and Eq. (2.2’) vary in the same direction and

proportion. If c is positive, they decrease by a factor ȳ/(ȳ+ c), while they increase for negative shocks.

This concordance could weaken when introducing stochastic shocks. We model them both as additive and

multiplicative:

Multiplicative

xi =

yi · (1+ c) with prob. ρ

yi with prob. 1−ρ

Additive

xi =

yi + c with prob. ρ

yi with prob. 1−ρ

(2.8)

It is not simple to treat Eq. (2.2) analytically in the stochastic case, due to the potential change in decile

membership of some units after the shock. The study of shock sensitivity is also challenging for the between-

inequality indicators.

In general, the analytical study of indicators is even harder when moving toward asymmetric shocks,

which, as we argue from the beginning, can significantly reduce the grounds for the concordance of the

indicators.

We can generalize the analysis of the effects of shocks by resorting to a mixture distribution

Xm = (1− t)Y + tX

where Y and X are the income distribution before and after the shock, respectively, while t ranges between

0 and 1, which is the interval in which the shock produces its effects. When t = 0 the shock has not yet

produced any effect and Xm = Y . When t = 1 it has generated its maximum consequences and Xm = X .

The mean of Xm is

X̄m = Ȳ + t(X̄ − Ȳ )

and we can evaluate δ X̄m/δ t in order to assess the effects of the shock on the mean.
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The linear structure of the mean greatly simplifies the evaluation also in case of asymmetric shocks. For

example, if the shock adds a quantity c only to the incomes below y∗, we obtain

X = Y + c1Y<y∗

where 1 is the indicator function. The mean of the after shock distribution is

X̄ = Ȳ + cF(y∗)

At this point, we can rewrite the mean of the mixture as

X̄m = Ȳ + t(cF(y∗))

Looking at its derivative

δ X̄m/δ t = cF(y∗)

we can study the behaviour of the mean while the shock produces its effects. In this case δ X̄m increases

linearly with t and its slope cF(y∗) increases with y∗. This approach can be easily generalized to analyse the

relative evolution between the averages of multiple groups.

Unfortunately, the extension to inequality measures, from the Gini index to the components of its de-

compositions, is far more complex (Lambert and Decoster [2005]; Gastwirth [2017]) especially in the case

of an empirical (discrete) distribution, where the Gini index is based on the absolute value.

In the following, in order to overcome the difficulties related to the analytical evaluation of the impact

of asymmetric shocks on the inequality measures, we exploit a Monte Carlo algorithm. It starts from the

data on Italian households’ consumption and aims at studying how indicators of between-inequality react to

different kinds of shocks. We maintain the distinction between additive and multiplicative shocks and we

model the shocks as described in the scheme of Tab. 2.4.1.

Table 2.4.1: Additive and multiplicative shock to individual i of group h as modelled and studied by the Monte Carlo

algorithm

Asymmetry Additive process Multiplicative process Probability

Shock asymmetrically affect

both groups and deciles
xk

i =

yk
i + c

yk
i

xk
i =

yk
i · (1+ c)

yk
i

ρkq

1−ρkq
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The table encapsulates the conceptual framework used in the Monte Carlo algorithm to study the im-

pacts of additive and multiplicative asymmetric shocks on individuals within various groups and deciles.

Mathematical representations are provided for the two distinct types of shocks. The additive process adds a

constant c to yk
i , the value of individual i in group k before the shock, with probability ρkq, or does not affect

yk
i with probability 1− ρkq. The multiplicative process, with the same probabilities, involves an increase

by a factor of (1+ c), indicating a proportional change rather than a fixed increment, or no change at all.

The probability ρkq is a crucial element of the model, and denotes the heterogeneous probability of a shock

occurring. This probability is not only specific to each group (k), but also sensitive to the rank of the unit i

within its group (q). The different scenarios implemented, expressed in terms of the choice of ρkq, and the

details of the Monte Carlo study, as well as its results, are illustrated in Section 5.

2.5 Data

Our analysis makes use of the household budget survey (HBS), run by Istat, which allows to study consump-

tion expenditure behaviours of households residing in Italy according to their main socio-economic and

territorial characteristics. We focus on surveys carried out in July, August and September of 2019 and 2020

(4650 and 6964 households in 2019 and in 2020, respectively), because from July to September 2020 the

government removed the shutdown of most activities and many of the restrictions on social distancing and

travels. By focusing on summer consumption, we improve the identification of the (potentially structural)

effects of income losses and behavioral changes from 2019 and 2020.

Household consumption is equivalised for the number of household members by using the square root equiv-

alence scale. We investigate three different bi-partitions based on age, gender, and geographical factor. They

are well-recognised inequality factors, giving rise to age, gender, and geographical divides. Consistently

with the theoretical development in Section 2, it is possible to extend the analysis to the case of k subgroups.

The rationale behind the choice of two subgroups is to achieve a simpler and clearer assessment of the

difference between the subgroups and, consequently, of the effect of the underlying inequality factor.

In Tab. 2.5.1 we report deciles and means of the Italian households’ monthly consumption in 2019 and

2020, detailed by subgroups defined by age, gender and geographical factors. In Fig. 2.5.1 we highlight the

difference between group deciles. The first panel compare Young-(< 65) and Old-headed(≥ 65) households.

In 2019 the former have higher consumption than the latter but in the extreme deciles. Consumption of all

groups and deciles decreases in 2020, but COVID-19 more evidently reduces rich Old-headed households’

consumption, so that Young-headed households show higher consumption at all deciles. Higher values no-

toriously attract the means, so the difference between subgroup means (∆µkh) increases by 67.7% from

2019 to 2020. However, COVID-19 affected the consumption distributions of the two subgroups asymmet-

rically, such that, in contrast with the means, the deciles at the bottom of the distribution get closer in 2020
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Table 2.5.1: Deciles and means of the Italian households’ monthly consumption in 2019 and 2020, detailed by subgroups

defined by age, gender and geographical factors. Age subgroups are based on the partition “Young (aged less than 65)

vs. Old (aged more than 64)”; the “Gender Divide” panel compares “Men vs. Women”; the “Geographical divide” panel

compares “North and center vs. South and islands”

2019 2020

Young Old Young Old

d1 591 592 584 572

d2 879 844 853 823

d5 1470 1322 1404 1293

d9 2700 2548 2639 2455

d10 4035 4273 3953 3723

mean 1784 1705 1731 1604

2019 2020

Men Women Men Women

d1 590 593 608 533

d2 873 852 867 789

d5 1438 1368 1386 1310

d9 2688 2581 2635 2469

d10 4088 4171 3948 3721

mean 1772 1727 1722 1614

2019 2020

North and Center South and Islands North and Center South and Islands

d1 676 501 663 489

d2 981 716 947 695

d5 1585 1122 1499 1083

d9 2868 2083 2779 2061

d10 4397 3253 4117 3101

mean 1926 1392 1838 1356
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Figure 2.5.1: The difference between deciles of different subgroups. The three panels report the comparison of subgroup

deciles (in 2019 and 2020) for three partitions, based on household head characteristics. The ”Age Divide” panel com-

pares ”Young (aged less than 65) vs. Old (aged more than 64)”; the ”Gender Divide” panel compares ”Men vs. Women”;

the ”Geographical divide” panel compares ”North and center vs. South and islands”

(Fig. 2.5.1). This is captured by a much smaller increase of dkh
10 (+5.3%). Are the means representative of

the relative dynamic of the distributions?

The second panel explores the gender divide in households’ consumption. In 2019 Male-headed house-

holds have higher consumption than Female-headed households; again, extreme deciles are an exception.

For the same deciles, the gender divide increases a lot in 2020, while it slightly increases in the middle

of the distribution. As before, ∆µkh is more responsive (+149.2) than dkh
10 (+77.7) to fluctuations of richer

households.

In the third panel, we investigate the territorial divide. As it is well known, Italian households in the

Center and North of Italy are richer than those living elsewhere. The mean and the deciles of consumption

of the two subgroups corroborate this fact and suggest that, at least for consumption, the geographical divide

is the strongest among the three analysed. The impact of COVID-19 on household consumption is stronger

for households in the Centre and the North and, differently from the other partition, it is quite symmetric

across deciles. Therefore, the reduction of the distance between subgroups is measured at around 6% by

both ∆µkh and dkh
10.
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2.6 Results

2.6.1 Simulated shocks: a Monte Carlo experiment

As discussed in Section 2.4, alternative indicators of inequality between groups are likely to react in different

ways to asymmetric (and stochastic) shocks. Starting from the 2019 data, we use a Monte Carlo experiment

to study the behavior of Eq. (2.1)-(2.5) after different shocks. According to the probabilities ρkq as defined

in Tab. 2.4.1, asymmetries produce shocks of heterogeneous intensity both between groups and between

quantiles. For the sake of interpretability, we control the settings by modeling the probabilities as follows.

Regarding the source of asymmetry resulting from belonging to different groups, we define three scenar-

ios (we refer to the partition between Group k and Group h for explanatory purposes). In the first one, Group

k have a higher probability (ρk = 75%) of being hit by the shock than Group h (ρh = 25%). In the second

one, the two groups have the same probability of 50%. In the last one, Group k has a lower probability

(ρk = 25%) of being hit than Group h (ρh = 75%). Furthermore we introduce the asymmetry of the shock

within the groups by defining ρq = 0 or 1 as the probability of being hit by a shock being in the decile q of

the group.

Having ρk and ρq we are able to define ρkq = ρk ∗ρq.

The original consumptions of 2019 correspond to ρq = 0 for all q = 1, . . . ,10. We start experimenting

with ρq = 1 only for the first decile; then for q = 1,2; until ρq = 1 for all q = 1, . . . ,10. Then we start

excluding the possibility of being hit (ρq = 0) for q = 1; then for q = 1,2; until ρq = 1 only for q = 10.

We simulated all the settings both for additive and multiplicative shocks, setting c = 200 for the additive

and c = 20% for the multiplicative case. We run each experiment 100 times and take the average of the 100

replicates of the five indicators.

We summarise the results for the additive positive shock in Fig. 2.6.1. For detailed results regarding

multiplicative (encompassing both positive and negative aspects) and additive negative simulations, please

refer to the appendix section of this chapter. For each setting and indicator, we express the average of the

simulated results as relative to the indicator before the shock. If an indicator takes a value higher (lower)

than 1, simulated inequality between groups is higher (lower) than the observed value. First, we notice that,

as expected, the behaviour of ∆µkh is the same of GBM
b . It is also similar to that of GY L

b , but less sensitive to

changes in the scenario. On the other hand, dkh
10 and GA

b accordingly plot a different picture. Where do these

differences come from? What information do they provide?

To deal with these questions, we link the trajectories of Fig. 2.6.1 to the consumption gaps the groups

(and their deciles) had in 2019 (Tab. 2.5.1 and Fig. 2.5.1). Let’s focus for a while only on the gender and age

divides, which show interesting similarities. In the first scenario (Probabilities=(0.75,0.25)), the probabilities

of a positive shock are higher for Old and Women. In 2019, Old and Women are, respectively, poorer than

Young and Men in all the deciles, but in the first and the tenth. All five indicators suggest a decreasing
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Figure 2.6.1: Summary of simulation results, additive shock. The effect of the shock on the inequality between groups,

as expressed by the ratio between the mean of the simulated indicators and their values before the shock, by inequality

factor and shock probability

between-group inequality while the shock propagates along the first deciles. However, when the shock only

hits the first decile, dkh
10 and GA

b increase with respect to their values before the shock. This is because the

two first deciles of the two groups are very close before the shock, while they stray after it. More precisely,
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before the shock, the average distance at the first decile is less than 20 for both partitions. After the shock,

with the probabilities of the first scenario, c=200 produces an expected increase of 150 for Old and Women,

and of 50 for Young and Men. The richest groups in the first decile are now Old and Women, and the

absolute difference between the two first deciles strays from less than 20 to more than 80.

Measuring the gender divide, a similar argument explains why ∆µkh, GBM
b and GY L

b start to increase from

d1− d5, while dkh
10 and GA

b continue to decrease. Let us focus on the grey bars in Fig. 2.5.1. After the

simulated shock, most of the bars become shorter, and the mean of decile differences decreases. On the

contrary, the three indicators based on the mean stop decreasing at d1-d4, because the grey bars become

negative after the shock and compensate for the positive ones. At d1-d4 the means are approximately equal.

However, involving more deciles in the shock shortens more bars and should imply a further decrease in

between-group inequality, which is not captured by the three mean-based indicators.

As for the geographical divide, it is always quite stable, because the shock is low relative to the divide.

However, the direction of the paths is the one expected, and the indicators are well correlated because, given

the distributions before the shock, the shortening of the bars corresponds to the approach of the two averages.

All the trajectories of the other scenarios can be interpreted with the same approach, with the case of

symmetric shock between groups leading to no drastic changes in the indicators.

As for the multiplicative case, we inform that the findings follow similar arguments. As natural, the divides

are more reactive when extending the shocks to the top deciles.

Table 2.6.1: Observed value of ∆µkh, dkh
10 , GA

b , GBM
b and GY L

b as measured on partitions - defined by age, gender and

geographical factors - of the Italian households’ monthly consumption in 2019 and 2020

2019 2020

∆µkh dkh
10 GA

b GBM
b GY L

b ∆µkh dkh
10 GA

b GBM
b GY L

b

Age divide .045 .071 .044 .033 .003 .075 .075 .047 .058 .005

Gender divide .026 .036 .027 .019 .001 .064 .064 .041 .048 .003

Geogr. divide .304 .304 .148 .218 .077 .286 .285 .142 .208 .069

2.6.2 A real shock: the COVID-19 impact

To compare the five indicators of between-inequality under analysis (∆µkh, dkh
10, GA

b , GBM
b and GY L

b ),

Tab. 2.6.1 reports their values for the three bi-partitions under study, in 2019 and 2020 (GA
b , GBM

b and GY L
b
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Figure 2.6.2: The three panels show the percentage variation (from 2019 to 2020) of the measures of between-group

inequality discussed in Section 2.3 for three partitions, based on household head characteristics. The ”Age Divide”

panel compares ”Young (aged less than 65) vs. Old (aged more than 64)”; the ”Gender Divide” panel compares ”Men

vs. Women”; the ”Geographical divide” panel compares ”North and center vs. South and islands”

are reported as share of G to take into account inequality changes between the two years). We can observe

really different patterns for the three divides analyzed. Geography stands out as the main inequality factors

in both years and all indicators agree in providing this suggestion. The same agreement is observed with

reference to the gender divide, which is the smallest of the three in 2019, but which increases strongly in

2020, reaching the importance of the age divide.

Comparison on a time basis is illustrated in Fig. 2.6.2, which shows the percentage variation, from 2019

to 2020, of the five indicators. They agree on the direction of the dynamic of the three divides. However,

they differ on the intensity of the divides evolution but for the geographical divide. It is interesting to

compare the pictures of the two baseline indicators, ∆µkh and dkh
10, with the evolution described by the

between components from the alternative Gini index decompositions. As for the age divide, from 2019 to

2020, it increases by 67.7% according to the means difference, while just by 5.3% according to dkh
10. While

GBM
b and GY L

b are in agreement with ∆µkh for a strong increase in the age divide, GA
b increases slightly

according to dkh
10. To understand this difference we propose to look at Fig. 2.6.2 while taking Fig. 2.5.1 into

account. The negative bar for the tenth decile in 2019 lowers the difference between the means of Young
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Table 2.6.2: Bootstrap mean, 90% confidence interval and coefficient of variation of ∆µkh, dkh
10 , GA

b , GBM
b and GY L

b as

measured on partitions - defined by age, gender and geographical factors - of the Italian households’ monthly consump-

tion in 2019 and 2020. The bootstrap algorithm consists of 999 replicates. For each replicate, observations are sampled

with replacement according to an i.i.d. bootstrap scheme accounting for survey weights

2019 2020

∆µkh dkh
10 GA

b GBM
b GY L

b ∆µkh dkh
10 GA

b GBM
b GY L

b

Age

divide

5% .015 .054 .037 .012 .001 .050 .051 .035 .038 .002

Mean .046 .073 .046 .034 .003 .075 .075 .048 .058 .005

95% .074 .092 .057 .056 .006 .099 .099 .061 .076 .008

C.V. .386 .156 .132 .387 .544 .193 .189 .158 .193 .341

Gender

divide

5% .003 .022 .017 .002 .000 .041 .042 .030 .031 .002

Mean .027 .040 .029 .020 .001 .064 .064 .042 .048 .004

95% .056 .060 .041 .041 .003 .089 .088 .055 .067 .006

C.V. .616 .302 .254 .617 .951 .228 .224 .186 .227 .418

Geogr.

divide

5% .278 .278 .138 .201 .065 .264 .264 .133 .192 .059

Mean .305 .304 .149 .219 .077 .285 .285 .142 .208 .069

95% .331 .331 .160 .238 .090 .305 .305 .151 .222 .078

C.V. .053 .053 .046 .052 .097 .045 .046 .038 .044 .084

and Old, thus leading to an underestimation of the age divide by using the three mean-based indicators. The

bar for the tenth decile becomes positive in 2020, overcoming the previous underestimation. This is why

in 2020 GBM
b , GY L

b and ∆µkh show (Fig.4) a substantial increase. Only GA
b and dkh

10 properly represent the

information in Fig. 2.5.1.

The picture does not depart when considering the gender partition. All the indicators signal a stronger

increase in the divide, ranging from +56% to +238%. Again, the two measures not relying on the mean

capture the asymmetric change of the distributions and report the weakest increase in the gender divide. As

for the last partition, the geographical one, the agreement between ∆µkh and dkh
10 on modest reduction of the

geographical divide is confirmed by the between components of the Gini index decompositions. In this case,

all the indicators do agree due to a symmetric change in the consumption distribution, leading to a quite

homogeneous decrease of the divide across all the deciles.

To sum up, when deciles vary heterogeneously, the change of the difference between subgroup means
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does not fully account for the evolution of the distance between the subgroup distributions. The latter is

better captured by the average change of the differences between quantiles (dkh
10), which is well represented

by the evolution of Attili’s between component.

With the aim of assessing the relevance of our results, and referring to statistical inference for inequality

measures (see, e.g., Mills and Zandvakili [1997]), we develop a bootstrap procedure in order to obtain

confidence intervals and variability measures for all relevant indicators. Each of the 999 replicates of the

bootstrap is obtained by resampling observations from the original datasets according to an i.i.d. sampling

with replacement, accounting for survey weights.

Tab. 2.6.2 reports the observed value, the 90% bootstrap confidence intervals and the coefficient of

variation for ∆µkh and dkh
10, as well as for the between-inequality component of the three Gini index decom-

positions analyzed throughout the paper. The averages of the 999 replicates of all the indicators are close to

the observed values both in 2019 and 2020, meaning that the bootstrap procedure is unbiased. The confi-

dence intervals are quite symmetric around the observed value for all five indicators, so we can directly rely

on variability measures to analyse the dispersion of their distributions. Our choice is to use the coefficient

of variation to ensure comparability between five indicators ranging on different scales.

Comparing the partitions, both in 2019 and 2020 the dispersion of the indicators varies across partitions

in inverse proportion to the intensity of the divide: the geographical divide is measured with the lowest

uncertainty by all the indicators, while the dispersion of the indicators is the highest measuring the gender

divide. This is because, when the divide is lower, the resampling is more likely to produce larger variations.

Comparing the two years, with few exceptions concerning dkh
10 and GA

b , the indicators have higher vari-

ability in 2019. As for the comparison of the indicators, for all partitions and both years, GY L
b is the between-

inequality indicator with the highest variability over the 999 replicates, while GA
b is the stablest. In the

middle, GBM
b , ∆µkh and dkh

10 have intermediate values of variability, with GBM
b and ∆µkh reasonably showing

similar dispersion.

Both the comparison of the two years and that of the indicators suggest that dkh
10 and GA

b are more robust

to extreme values, which are more frequent in 2019 and affect in a more decisive manner the indicators

based on the means.

2.7 Conclusions

We analyze the effects of asymmetric shocks on the measurement of inequality, with a specific focus on the

Gini index and on the components of its decompositions.

As a case study, we evaluate the COVID-19 impact on inequality with respect to three factors: age,

gender and geography. Age and gender gaps increase, while territorial divide (which is confirmed as the

most important inequality factor in Italy) slightly decreases.

70



The assessment of these dynamics strongly depends on the employed measure. If it is based on averages,

the evaluation reflects an aggregate effect, which may be attributable to some aspects of the distribution only.

This is the case of age and gender gaps in Italian household consumption: the average change is driven by

the group of households consuming more.

When, on the other hand, the measure of divides refers to the whole distribution, we have a more complete

representation of the intervening dynamics.

Our findings are supported by a Monte Carlo study, which allows us to assess the effects of a wide range

of asymmetric shocks on different inequality measures, and by a bootstrap procedure, which allows us to

infer the confidence intervals and evaluate the responsiveness of indicators to extreme values.

Among the future lines of research, we intend to assess the role of other aggregated comparison measures

(useful references being Wasserstein distance and Kullback-Leibler divergence) and analyze other crises as

well as the effects of the post-COVID recovery in 2021.

To conclude, inequality decomposition methods, which include both mean-based measures, such as

Bhattacharya and Mahalanobis [1967b] and Yitzhaki and Lerman [1991b], and measures referring to the

whole distribution, such as Attili [2021], represent an excellent choice for measuring the effects on inequality

of symmetric and asymmetric shocks.
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2.A Additional Simulation Results

This appendix contains the results of the additional simulations conducted for the study. These include the

outcomes for both multiplicative (positive and negative) and additive negative shocks.

Additive Negative Shock

Probabilities=(0.75,0.25) Probabilities=(0.5,0.5) Probabilities=(0.25,0.75)
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Figure 2.A.1: Results of the simulation with an additive negative shock.
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Figure 2.A.2: Results of the simulation with a multiplicative positive shock.
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Figure 2.A.3: Results of the simulation with a multiplicative negative shock.
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Chapter 3

Reassessing income instability with
monthly data

Keywords: Income instability, Earnings dynamics, Squared Coefficient of Variation, Monte Carlo experi-

ment

3.1 Preamble

In the first two chapters, we argued that simply comparing the average income of groups does not fully

represent the level of inequality between them. Assessments based solely on averages risk underestimating

this inequality or misrepresenting its evolution, especially in the face of significant economic changes, such

as the Covid-19 pandemic or inflation. We suggested that a deeper dive into the distribution details of each

group is crucial to accurately assess and understand the phenomena under study, particularly in the context

of such impactful shocks.

Continuing with this line of reasoning, this chapter focuses on the assessment of income instability,

which represents the intensity of short-term - unpredictable - income fluctuations, and posits that analysing

individuals’ annual income time series is insufficient for a comprehensive understanding of their instabil-

ity. Particularly in periods of significant labor market volatility, or in the presence of labor markets with

minimal regulation, annual earnings may conceal the extent of short-term income fluctuations, leading to an

inaccurate comparison of the instability experienced by individuals or groups. We demonstrate how a shift

to monthly income data can alter the assessment of instability and recommend a measure that is well-suited

to handle the challenges introduced by using monthly data. This work aims to enhance awareness about the

importance of data collection and the availability of detailed individual monthly data, and offers a tool for
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its effective analysis.

This chapter requires a specific notation since it strongly relies on the time dimension and utilises data

from the Survey of Income and Program Participation (SIPP).

The foundational steps of this research, which is coauthored with Emanuele Ciani, commenced during my

research internship at the WISE Center of the OECD while developing the OECD [2023] report titled

“On Shaky Ground? Income Instability and Economic Insecurity in Europe”. I am especially grateful to

Francesca Subioli for her significant and insightful contributions to this project. This work was presented in

its advanced form at the XXXV conference of the Società Italiana di Economia Pubblica (SIEP) in Verona,

2023, and at the III PhD Workshop in Manciano, 2022. These presentations, along with the initial discus-

sions at the Department of Economics in Bologna, have been instrumental in refining the research.

3.2 Introduction

Income instability consists of short-term income fluctuations arising for instance from job loss, changes in

work intensity, or family disruption. Income instability matters for households’ well-being as it is a trigger

of consumption volatility and economic insecurity [Hardy and Ziliak, 2014, Hannagan and Morduch, 2015].

As such, it contributes to the disruption of family routines, stress, and hardship [Hill et al., 2017]. Income

instability has also been found to be associated with mortgage delinquency and poor health outcomes, e.g.,

clinical depression, food insecurity, and worse educational, health, and behavioral outcomes for children

[Leete and Bania, 2010, Avram et al., 2022]. High income instability might become particularly problematic

when households are not fully and timely protected by social insurance, public, or private means.

Income instability is often analyzed through the lens of temporary and permanent variance in earnings.

Temporary variance, in particular, signifies income instability, reflecting short-term fluctuations mainly due

to unpredictable events. While much of the scholarly debate has centered on the methods to estimate this

variance, specifically the choice between complex econometric methods and simpler descriptive ones, and

on applying them to different contexts (see Jenkins, 2011 for a complete review), it is crucial to recognize

the role of data frequency in accurately assessing the transitory variance of income, i.e., income instability.

Restricting the attention to descriptive methods to avoid the sensitivity of the temporary variance estimates

to arbitrary choices in the model specifications [Shin and Solon, 2011], this paper contributes to the debate

by highlighting the advantages of monthly data in unveiling short-term income fluctuations that data with

lower frequency may overlook.

Income instability is usually assessed by looking at annual income variations, whether as captured by

the standard deviation of the arc-percentage changes over 2 years [Avram et al., 2022] or by the average

variance of the logarithm of annual income over several years [Gottschalk and Moffitt, 2009]. However,

annual income data may conceal short-term shocks, leading to underestimation of economic instability. For
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instance, an individual suffering an income loss in the middle of the first year has zero annual income

instability if his income recovers to the initial level in the middle of the second year. The analysis of annual

income can, therefore, smooth out variations in income, thus failing to capture short periods of income

decline.

Only a few papers analyse income instability looking at monthly income [Hills and Smithies, 2006,

Bania et al., 2009, Edwards, 1999, Hannagan and Morduch, 2015]. Although these papers convincingly

show that infra-annual instability matters, employing a range of different measures (e.g., average variance

of income; measures of episodic poverty; number of income spikes or dips during the year), they lack a

methodological discussion on how to best measure instability at the monthly level. In fact, the most popular

measures of income instability are not appropriate to deal with monthly data. The standard deviation of

the arc-percentage change, a very popular aggregate measure of income instability, is well-defined only for

income changes across two periods. The average variance of the logarithm of income can be in principle

used but, once the analysis is performed at the monthly level, it becomes problematic to account for zero

incomes which are common with monthly data.

Our contribution to this literature is twofold. First, we provide a methodological discussion on how to

best measure income instability with high-frequency data, suggesting the Square Coefficient of Variation

as a measure of income instability. Second, by developing a Monte Carlo experiment, we study which

conditions of the labour market or of income dynamics in general primarily require the use of infra-annual

data. It comes out that the underestimation of income instability resulting from the utilization of annual data

becomes more pronounced in cases where income dynamics are characterized by frequent negative shocks,

such as during economic recessions. It is precisely in these periods that the accurate assessment of instability

takes on greater significance.

There are three important requirements when shifting the attention to monthly data. The first is the need

to distinguish between inter- and infra-annual instability - i.e., variability across years of annual average in-

come and variability of monthly income within each calendar year. This is key both to assess the relevance of

looking at a frequency higher than annual and because the two components help understanding if instability

is driven by temporary or permanent shocks. The second is the need to isolate instability coming from sea-

sonality in income patterns. If household members are employed as seasonal workers, e.g., in tourism, they

may systematically report higher incomes in certain months, producing large variations in the year that are

actually largely predictable and should be measured as a separate source of instability. The last requirement

is the possibility to isolate income instability coming from individual trends of upward mobility.

We propose to assess monthly income instability by the squared coefficient of variation of monthly

incomes (SCV ). It possesses key connections with commonly employed indicators of annual income insta-

bility, overcoming their limitations when analysing monthly data. Thanks to the full decomposability of

the squared coefficient of variation, our proposal allows to distinguish inter- and infra-annual instability and

isolate plausible patterns of seasonality. Following Nichols [2008] and Subioli and Raitano [2021], it also

78



allows to understand if instability is driven by individual trends of upward mobility or by unstable conditions

of the labour market. We also discuss an alternative but related method based on the decomposition of the

Gini index developed in Chapter 1.

We finally complement our discussion with an empirical application on monthly income data from the

SIPP. This confirms the relevance of measuring the infra-annual component. Thanks to the panel component

in the survey, it is possible to estimate monthly income instability in the USA over a period of 48 months

and to show how looking at monthly income instability can provide new and novel insights on this harmful

economic phenomenon. By decomposing the squared coefficient of variation of monthly household incomes,

we show that infra-annual instability accounts for 37% of total instability in the USA between 2014 and

2017. We also warn that the share of the infra-annual component is not constant across different populations,

which may produce misleading ranking when using annual instability measures for cross-country or cross-

population comparison. Comparing the evidence from the SCV methodology with that from the Gini index

indicates that especially the most severe income shocks tend more than the others to be leveled out over the

course of years. Monthly data are crucial for reporting them.

Next sections flow as follows. Section 3.3 stresses the importance of using infra-annual data to assess

income instability and motivates our suggestion to employ the SCV to measure it. By a Monte Carlo exper-

iment, Section 3.4 explains the economic conditions under which the utilization of monthly data becomes

crucial to assess instability. Section 3.5 describes empirical evidence of the monthly income data from the

SIPP. Section 3.6 concludes.

3.3 Measuring Income Instability

3.3.1 The Importance of Monthly Data

Monthly data are important to measure income instability because annual data may conceal infra-annual

fluctuations. Table 3.3.1 illustrates a simple scheme with monthly income of two individuals (i and j) over

two years. Both have constant annual total income (9000) so that instability measures based on annual

income capture zero instability. However, due to infra-annual variations, the two individuals are far from

being stable. Also, their levels of total instability should differ, with j being more stable than i in t +1.

How frequent are these kinds of patterns? Simple statistics from monthly income data from the 2014-

2017 panel of the SIPP help in answering this question, suggesting that these kinds of patterns are not rare.

Between 2014 and 2017, we estimate that 49% (27%) of households experienced a monthly income drop

of at least 40% (60%) and lasting at least three months. At the same time, almost 7% (4%) of households

experienced such a drop without reporting any annual income drop bigger than 10%. This confirms that for

a significant share of the population, monthly income fluctuations are cancelled out at least partially when

looking at annual incomes.
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Table 3.3.1: Annual Earnings May Conceal Short-Term Fluctuations

Individual Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

Yltirow2*i t 1500 1500 1500 1500 1500 1500 0 0 0 0 0 0 9000

t +1 0 0 0 0 0 0 1500 1500 1500 1500 1500 1500 9000

Yltirow2* j t 1500 1500 1500 1500 1500 1500 0 0 0 0 0 0 9000

t +1 0 0 0 1000 1000 1000 1000 1000 1000 1000 1000 1000 9000

Note: Monthly income of individuals i and j over two years

3.3.2 The Issues with Conventional Instability Measures

The most widespread measures of income instability are the standard deviation of the arc-percentage change

and the average variance of the logarithm of income. Unfortunately, they are not appropriate to deal with

monthly data.

The arc-percentage change of the individual i between two periods t and t +1 is defined as:

∆i; (t, t+1) =
Yi,t+1 −Yi,t

1
2 (Yi,t+1 +Yi,t)

(3.1)

where Yi,t is the individual income of period t. The arc-percentage change ∆i; (t, t+1) measures income

variation between t and t + 1 as the change in value divided by the average of the initial and final values.

This ensures that positive and negative changes are treated symmetrically, unlike the standard percentage

change, which can yield different results when considering the change from t to t +1 versus t +1 to t. The

arc-percentage change provides a consistent measure regardless of the direction of change and ranges from

-2 to 2. The standard deviation (between N individuals) of the arc-percentage change between two periods t

and t +1 [Avram et al., 2022] is defined as:

σt,t+1(∆) =

√
1
N

N

∑
i=1

∆2
i; (t, t+1) (3.2)

σ(∆) is only defined to measure instability over two periods, usually two consecutive years. This impedes

studying instability with monthly data. Another limitation of σ(∆) is that it is not an individual instability

measure as it only provides population estimate of instability.

The second conventional measure we take into consideration is the variance of the logarithm of income,

which is defined over multiple periods (we generally refer to the number of months T ), so it can be used in

principle with monthly data. Defining lnYi as the average of the individual i logarithm of income (lnYi =
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∑
T
i=1 lnYi,t ), the variance of the logarithm of income at the individual level reads:

σ
2
i =

1
T

T

∑
t=1

(
lnYi,t − lnYi

)2 (3.3)

The population estimate of instability is obtained by the average variance of the logarithm of income, namely

by averaging eq. 3.3 over all individuals [Gottschalk and Moffitt, 2009]:

σ
2
pop =E(σ2

i ) =
1
N

N

∑
i=1

σ
2
i (3.4)

Unfortunately, once the analysis is performed at the monthly level, it becomes problematic to account for

zero incomes - which are common with monthly data - due to the use of logarithm in Eq. 3.3. The presence

of zero incomes leads to undefined values when taking logarithms, complicating the use of this formula

for monthly data analysis. Moreover, another issue arises with the logarithmic transformation: it tends to

diminish the significance of large income fluctuations. This dampening effect on significant income jumps

is not desirable in our context, as capturing these fluctuations is crucial for accurately measuring income

instability. Thus, the logarithmic approach, while useful in certain analyses, presents substantial limitations

in our study of monthly income data. Using the average variance of income would instead introduce an

important issue due to the lack of scale invariance, which is fundamental to measuring income instability

since its assessment should be independent of the currency considered or the inflation trends.

3.3.3 The Squared Coefficient of Variation

In the presence of high-frequency data, we suggest measuring individual instability by the squared coefficient

of variation (SCV) of individual incomes. It is defined as:

SCVi =
1
T

T

∑
t=1

(
Yi,t −Yi

Yi

)2

(3.5)

where Yi is the mean of individual monthly income. If the population has size N, the population estimate of

instability is obtained by averaging the individual SCVi across the population:

SCVpop =E(SCVi) =
1
N

N

∑
i=1

SCVi =
1
N

N

∑
i=1

1
T

T

∑
t=1

(
Yi,t −Yi

Yi

)2

(3.6)

The SCV as a measure of income instability is suggested because, in addition to the usual properties inherited

from the coefficient of variation (including scale invariance), it possesses several important properties to

describe monthly income dynamics.

81



3.3.4 Properties

Property 1: Individual Based Instability Measure By Eq. 3.5, the squared coefficient of variation pro-

vides individual instability estimates. Differently from measures directly defined at the population level (see,

e.g., Eq. 3.2), this property allows for investigating instability at the micro-level. For example, one can look

for population subgroups suffering more instability or regress instability over individual characteristics.

Property 2: Multiperiod Instability Measure The squared coefficient of variation allows for estimating

income instability over a reference period with no limits on income observations. Unlike measures defined

over two periods only (see, e.g., Eq. 3.2), this property enables the measurement of instability with monthly

data over multiple years.

Property 3: Compatibility with Zeros in Data One of the significant advantages of the SCV is its com-

patibility with zero income values in the data. This is particularly relevant for monthly data, where zero

incomes are not uncommon. The SCV can effectively handle these instances without the complications

associated with logarithmic transformations.

Property 4: Consistency with Widespread Measures of Income Instability The SCV shows interesting

similarity with other measures commonly employed in the literature to measure income instability. For

instance, it relates to the variance of the transitory component σ2
pop. Comparing SCVpop to σ2

pop, Eq. 3.4

averages the individual squared logarithmic differences from the mean, which is approximately equivalent

to averaging the squared relative differences of Eq. 3.5. It then takes the average across all individuals, as in

Eq. 3.6.

As for the standard deviation of the arc-percentage change σ(∆), despite its limitations with monthly

data, it is widely used in the literature to assess annual instability. Here we show a key relation between

Eq. 3.2 and Eq. 3.6, following from a strong connection between the SCV and the arc-percentage change ∆.

At the individual level, the squared coefficient of variation calculated over two consecutive annual incomes

is 1/4 of the squared arc percentage change ∆2. At the individual level, in the case of only two periods,

the relationship between the squared coefficient of variation and the squared arc percentage change can be

mathematically expressed as:

SCVi =
1
T

T=2

∑
t=1

(
Yi,t −Yi

Yi

)2

=

=
1
2

[(
Yi,t −Yi,t+1

Yi,t +Yi,t+1

)2

+

(
Yi,t+1 −Yi,t

Yi,t +Yi,t+1

)2
]
=

=
Y 2

i,t+1 +Y 2
i,t −2 ·Yi,t ·Yi,t+1

4 ·Yi
2 =

1
4

∆
2
i; (t, t+1)

(3.7)
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It follows from the derivations that:

E(∆2) = 4×E(SCVi) = 4×SCVpop (3.8)

Furthermore, it is established that:

σ
2(∆) =E(∆2)−E2(∆)≈ 4×SCVpop (3.9)

where the approximation holds because E2(∆) is generally small, even if E(∆) ̸= 0. Thanks to this

relation, we argue that SCVpop appears as the natural extension of σ(∆) to the case of more than two periods.

Property 5: Decomposability in Infra- and Inter-Annual Components One of the main advantages of

measuring instability by SCVpop is its total decomposability into infra-annual and inter-annual components:

SCVpop = SCVpop, in f ra +SCVpop, inter (3.10)

This possibility arises at the individual level, writing the numerator in Eq. 3.5 as:

T

∑
t=1

(Yi,t −Yi,·,y)
2 =

Y

∑
y=1

M

∑
m=1

(Yi,m,y −Yi,·,y)
2 +M ·

Y

∑
y=1

(
Yi,·,y −Yi

)2 (3.11)

where M is the number of months in a year, Yi,m,y is the income of individual i in month m of year y, and

Yi,·,y is the average income of individual i in year y. To achieve this result, we first notice that the numerator

of the variance of income for individual i can be calculated as 1
T ∑

Y
y=1 ∑

M
m=1(Yi,m,y − Ȳi)

2 where Y is the total

number of years and M is the number of months per year. We can add and subtract Yi,·,y within the variance

formula without changing the result:

(Yi,m,y − Ȳi)
2 = ((Yi,m,y −Yi,·,y +Yi,·,y − Ȳi))

2

Expanding the square and grouping terms:

(Yi,m,y − Ȳi)
2 = (Yi,m,y −Yi,·,y)

2 +(Yi,·,y − Ȳi)
2 + cross terms

The remaining terms in the variance decomposition are:

1. Infra-annual fluctuations: ∑
Y
y=1 ∑

M
m=1(Yi,m,y −Yi,·,y)

2

2. Inter-annual fluctuations: ∑
Y
y=1 ∑

M
m=1(Yi,·,y − Ȳi)

2

Individual infra-annual instability arises from the first group of addenda, which compares the income of each

month with the average of its year:

SCVi, in f ra =
1

M ·Y

Y

∑
y=1

M

∑
m=1

(
Yi,m,y −Yi,·,y

Yi

)2

(3.12)
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Defining the instability within each calendar year y as:

SCVi, in f ra, y =
1
M

M

∑
m=1

(
Yi,m,y −Yi,·,y

Yi,·,y

)2

(3.13)

Eq. 3.12 comes as weighted sum of each SCVi, in f ra, y, so that individual infra-annual instability arises sum-

ming up the contributions of individual instability within each calendar year.

Averaging Eq. 3.12 (Eq. 3.13) across the population provides the infra-annual component (within each

calendar year) of instability in the population. We have:

SCVpop, in f ra =E(SCVi, in f ra) =
1
N

N

∑
i=1

SCVi, in f ra (3.14)

and

SCVpop, in f ra, y =E(SCVi, in f ra, y) =
1
N

N

∑
i=1

SCVi, in f ra, y (3.15)

With the same approach, income instability between years comes from averaging the individual inter-

annual instability. The individual inter-annual instability, which compares individual yearly averages with

the overall mean, is given by:

SCVi, inter =
1
Y

Y

∑
y=1

(
Yi,·,y −Yi

Yi

)2

(3.16)

Therefore, the population estimate of inter-annual instability reads:

SCVpop, inter =E(SCVi, inter) =
1
N

N

∑
i=1

SCVi, inter (3.17)

Property 6: Disentangle Seasonality Contribution in a Three-Component Decomposition By the

same approach, adding and subtracting the overall mean Yi and the mean of each month Yi,m,· to the infra-

annual component of instability SCVpop,in f ra, it can be further decomposed to disentangle the contribution

of seasonality. In this way, we isolate the impact of seasonal income fluctuations, obtaining:

Y

∑
y=1

M

∑
m=1

(Yi,m,y −Yi,·,y)
2 =

Y

∑
y=1

M

∑
m=1

(
Yi,m,y −Yi,·,y +Yi −Yi,m,·

)2
+M ·

Y

∑
y=1

(
Yi,m,·−Yi

)2

The terms in the first summation take each month-year income deviation from the year average and correct

for the peculiarity of its month (i.e., the difference between the overall mean and the month average across

years Yi,m,·); terms in the second summation compare each month average across years with the overall

mean. Consequently, we define the infra-annual component of instability net of seasonality and the seasonal

component. At the individual level, the former reads:

SCVi, net−in f ra =
1

M ·Y

Y

∑
y=1

M

∑
m=1

(
Yi,m,y −Yi,·,y +Yi −Yi,m,·

Yi

)2

(3.18)
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The population estimate of infra-annual instability net of seasonality is calculated by averaging Eq. 3.18

across the population:

SCVpop, net−in f ra =
1
N

N

∑
i=1

SCVi, net−in f ra (3.19)

Similarly, we define the contribution of seasonal variations to individual and population instability as:

SCVpop, seasonal =
1
N

N

∑
i=1

SCVi, seasonal =
1
N

N

∑
i=1

1
M

Y

∑
y=1

(
Yi,m,·−Yi

Yi

)2

(3.20)

To estimate seasonality, we assume that individual seasonal differences are persistent during the years of

the reference period. Deviations from this hypothesis may lead to overestimation of the seasonal component.

Also, the use of this methodology in short panels increases the seasonal component. However, we observed

that four-year panels are long enough to provide a sufficiently reliable estimate of seasonality.

Summing up, the average squared coefficient of variation is decomposable as follows:

SCVpop = SCVpop, in f ra +SCVpop, inter =

= SCVpop, net−in f ra +SCVpop, seasonal +SCVpop, inter

(3.21)

Property 7: Disentangle Upward Mobility from Instability Upward income mobility gives positive

contribution to instability measures. Keeping fixed the individual average income, an increasing income

path is not optimal if compared to a smoother path. Despite this, a decreasing or unpredictable income path

is far worse. For this reason it is important to disentangle the contribution of upward mobility from total

instability. For example, this is important to understand if income instability is due to instable conditions

in the job market or to recovery after a crisis; or to investigate to what extent the usually higher instability

of young people is driven by upward mobility. The squared coefficient of variation is compatible with the

method proposed by Nichols [2008] and recently applied to Italian earnings by Subioli and Raitano [2021]

to isolate the contribution of upward mobility from other components of income instability. They model

individual monthly income as a linear time trend with stochastic variations around that trend:

Yi,t = αi +βit̃ + ei,t (3.22)

where t̃ = t − (T+1)
2 is centered to ensure αi = Yi, and E(ei,t |̃t) = 0, so that ei,t are deviations around the

trend. Thanks to the decomposability of SCVi, it can be shown that:

SCVi =
1
T

T

∑
t=1

(
β̂it̃
Yi

)2

+
1
T

T

∑
t=1

(
êi

Yi

)2

(3.23)

The first component of Eq. 3.23 captures the instability due to the overall trend, and the residual êi

captures fluctuations around the trend. When the slope of the trend is positive (β̂i > 0), the contribution to
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instability of the trend component can be interpreted as upward mobility. Conversely, a downward trend

(β̂i < 0) indicates downward mobility. Following Subioli and Raitano [2021], we suggest considering down-

ward mobility and instability around the trend as the “bad” component of instability, in contrast to the “good”

source provided by upward mobility.

3.3.5 An Alternative Measure Based on the Gini Index

As every variance-based indicator, the squared coefficient of variation amplifies the contribution of high

deviations from the mean. The standard deviation of the arc-percentage change ∆ may produce a similar issue

by giving higher importance to significant transitions. In contrast, the variance of the transitory component

σ2
t does the opposite due to the use of logarithms. We propose considering the Gini index, a linear measure

of income inequality [Mehran, 1976], to assess individual instability:

Gi =
T

∑
t=1

T

∑
t ′=1

|Yi,t −Yi,t ′ |
2YiT 2

(3.24)

The Gini index is appropriate for measuring income instability, i.e., to gauge how income is equally dis-

tributed (stability) or concentrated (instability) across periods. The population estimate of the Gini index is

defined as:

Gpop =E(Gi) =
1
N

N

∑
i=1

Gi (3.25)

Gini subgroup decompositions (Bhattacharya and Mahalanobis, 1967a;Yitzhaki and Lerman, 1991a)

can be used to distinguish between infra- and inter-annual instability. This involves dividing the monthly

incomes of each individual into M groups – each corresponding to a calendar year - of M observations. In

this way the within and between groups components of the decompositions can be interpreted as infra- and

inter-annual instability. However, these decompositions include a third component that has no interpretation

in this context. Therefore, we prefer to employ the decomposition proposed in Chapter 1, which only has

within and between components. At the individual level, employing the notation of this chapter, the within

component is given by:

Gi, w =
1

2YiT 2

Y

∑
y=1

M

∑
m=1

M

∑
m′=1

wy
mm′
∣∣Yi,m,y −Yi,m′,y

∣∣ (3.26)

Infra-annual instability is measured by comparing monthly incomes of the same year, with each absolute

difference weighted by the factor wy
mm′ , which is extensively discussed in Chapter 1. The population infra-

annual inequality is measured averaging Eq. 3.26 across the population:

Gpop, w =E(Gi, w) =
1
N

N

∑
i=1

Gi, w (3.27)
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The individual and population between component for measuring inter-annual instability are defined as:

Gi, b =
1

2YiT 2

Y

∑
y=1

Y

∑
y′=1

M

∑
m=1

wyy′
m
∣∣Yi,m,y −Yi,m,y′

∣∣ (3.28)

and

Gpop, b =E(Gi, b) =
1
N

N

∑
i=1

Gi, b (3.29)

Inter-annual instability is measured by comparing same month income from different years, with each ab-

solute difference weighted by the factor wyy′
m . Again, for proper interpretation of these weights, we refer to

Chapter 1. It is important to note that these weights preserve the information of the pairwise differences that

they multiply and ensure the total Gini index to be the sum of the within and between components:

Gi = Gi, w +Gi, b

Gpop = Gpop, w +Gpop, b

(3.30)

Unfortunately, in the case of the Gini index, there is no possibility to isolate a seasonality component.

To elucidate the main differences between SCV and G, we revisit the example of Tab. 3.3.1. Tab. 3.3.2

compares the values of the two instability measures (and their components) for individuals i and j. Both

indicators consistently agree that individual i exhibits higher total and infra-annual instability than individual

j. Notably, the difference in instability between individuals i and j is more pronounced when using the SCV ,

which assigns more significance to the larger deviation from the mean experienced by individual i.

Another crucial difference between the two indicators is the interpretation of the inter-annual component.

Unlike SCV , G does not compare the means of the groups but instead compares the distribution of monthly

income between years. In the case of individual j, the two distributions differ even though they have the

same mean, resulting in a positive inter-annual component.

Table 3.3.2: The SCV is More Sensitive to Big Deviations from the Individual Average Income

Note: Instability for individuals A and B as measured by the SCV and the Gini index

Overall Inter-annual Infra-annual

SCVi 1.00 0.00 1.00

SCVj 0.67 0.00 0.67

Gi 0.50 0.00 0.50

G j 0.44 0.13 0.31

Note: Instability for individuals i and j, as measured by the SCV and the Gini index
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3.4 Annual Data and Instability Underestimation under Plausible In-
come Patterns: A Monte Carlo Experiment

How relevant is the underestimation of instability due to the lack of monthly data? Which labor market

conditions increase the importance of using them? This section presents a Monte Carlo experiment to explore

these questions. It examines the difference between annual and monthly income instability under various

labor market conditions, aiming to identify those associated with higher underestimation of instability when

using annual income data.

This experiment compares annual and monthly income instability as measured by Eq. 3.6 under different

monthly income dynamics. We tested various specifications of income dynamics. The main results are

robust to different specifications, so we present the simplest model to privilege interpretability. We consider

a population of N individuals each having an initial income1 Yi,0 = 1000. The earnings dynamic of each

individual is generated by the following model:

Yi,t+1 = max(Yi,t + εi,t ,0) (3.31)

where εi, t represents the income shock of individual i at time t and is defined as:

εi,t = δi,t · si,t · ii,t ·max(Yi,0 = 1000, Yi,t) with


δ ∼ Bern(pδ )

s ∼ 1−2 ·Bern(ps)

i ∼ Unif(0, I)

t = 1, . . . ,T

The dynamic of the model in Eq 3.31 is constrained by the max(·) operator, ensuring that simulated incomes

remain non-negative. The values δi,t , si,t , and ii,t are realisations from the random variables δ , s and i. They

establish the conditions in the labor market through their parameters. The parameter pδ in the Bernoulli

distribution of δ represents the probability of income shocks, which happen when δ = 1. The realisation

si,t determines the direction of the shock and takes values in {-1, 1} based on its parameter ps controlling

the probability of a negative shock. Finally, ii,t represents the intensity of the shock, uniformly distributed

between 0 and I, which is the intensity of the largest possible shock. Each realization ii,t expresses the share

of the shocks over the previous level of earnings Yi,t−1 or over 0 if Yi,t−1 is negative. Therefore, it determines

the absolute variation in earnings after each shock. The max(·) operator in the equation determining εi,t

ensures the possibility to exit from zero-earnings periods and preserves the proportionality of the shocks

with respect to current income when it is higher than initial income.

To compare the SCV for annual and monthly data, we fix I = 1, the number of periods T = 24, and

the population size N = 104. These parameters mainly affect the level and variability of instability but do

not significantly affect the comparison we are interested in. The two parameters playing a crucial role in
1The distribution of Yi,0 does not impact the results. Indeed, the SCV is defined at the individual level and is scale invariant.
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comparing SCV for annual and monthly data are ps and pδ , which determines how frequent shocks are

and what is the prevalence of negative over positive shocks. In this way, we control for the most relevant

conditions of the labour market. Focusing on these two parameters, the MC experiment operates as shown

in Fig. 3.4.1. First, the algorithm generates the earning dynamic of each individual. Second, it evaluates

monthly and annual instability by Eq. 3.6. Then, it replicates Step I-II for 499 times. Finally, it varies the

values of the parameters ps and pδ .

Fig. 3.4.2 presents three panels, each for each ps ∈ {0.2;0.5;0.8}, showing, for pδ ∈ [0;0.1], annual and

monthly instability as measured by Eq. 3.6. If pδ = 0, there are no shocks and consequently no instability.

Then instability monotonically grows with pδ . The monthly SCV grows faster, capturing all the variability

of earnings dynamics. When the probability of negative shocks is low (left panel), the annual and monthly

SCV are low and close. They increase and, more importantly, diverge faster when negative shocks are more

frequent (higher ps). The ratio between the monthly and annual lines is not constant, also because the

uncertainty of monthly instability increases with ps. This suggests that, assessing instability, the importance

of using monthly data tu void underestimation of income instability increases precisely when the labor

market instability is high (pδ is high), and, even more, during recessions (high ps).

3.5 Monthly Income Instability in the USA

In this section, we exploit monthly income data from the SIPP. We use a panel covering the period 2014-

2017, composed of 4 annual waves. They provide non-missing monthly personal income over 48 months

for 21,253 individuals covering 11,092 households. Our analysis is at the individual level, and for each

individual we consider the equivalised household income. It is obtained by cumulating individual income

of members in the same household and then equivalising by dividing by the square root of household size.

Negative equivalised household incomes are replaced with zero, and we remove 12 households with constant
Figure 3.4.1: Scheme describing the algorithm behind the Monte Carlo experiment
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Figure 3.4.2: Using monthly data is crucial in presence of earnings dynamics with frequent negative shocks

Note: Instability as measured by monthly and annual SCV for pδ ∈ [0;0.1] and ps ∈ {0.2;0.5;0.8}

zero-equivalised household income over 48 months.

Fig. 3.5.1 clusters the household based on their equivalised household income quintile and shows that

infra-annual income instability matters particularly for poor individuals, i.e., those in the lowest quintile of

average household equivalised income over 48 months. High instability also affects top quintile income

individuals, while people in the middle of the distribution are more stable. Net infra-annual and seasonal

components play a crucial role in comparing different groups. For example, inter-annual instability in the

top quintile is 7.5% higher than in the second quintile, but almost 30% higher when considering overall

monthly income instability.

The relevance of monthly data becomes even more evident when comparing individuals belonging to

different racial groups. Fig. 3.5.2 clusters the household based on the race of the household head and shows
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Figure 3.5.1: The Instability Gap for Low-Income Households Widens Once We Include Infra-Annual Instability

Note: Households are clustered by quintile of average income over 48 months. For each group, overall instability is

decomposed into three components: inter-annual instability, infra-annual instability net of seasonality, and seasonality.

that Whites are unsurprisingly the most stable. The group with “Residual” races has the highest value of

overall instability. However, excluding seasonality, it is second in the ranking and close to third if only

considering inter-annual instability. Individuals with black household heads report the highest inter-annual

instability, while Asians, standing out for second highest inter-annual instability, suffer relatively less of

infra-annual shocks.

The two panels of Fig. 3.5.3 compare instability as measured by the SCV and the Gini index, focusing

on the infra- and inter-annual components as measured by their decompositions. The grouping rule follows

that of Fig. 3.5.1, with the right panel depicting the same plot as Fig. 3.5.1. The inter-annual component

of the five groups shows similar values regardless of the selected measure. Only in Q1, it is higher for the

SCV , informing that inter-annual shocks are relatively bigger in Q1. However, the infra-annual component

is consistently higher for the SCV across all quintiles, particularly in Q1 and Q5. This indicates that the

strongest shocks typically occur at the infra-annual level. This is an additional reason to avoid smoothing

them out by looking at annual income variations.

Finally, considering the most recent panel (2018-2021), Fig. 3.5.4 examines the evolution of instability

during the period 2014-2021. We compare the SCV of annual income between consecutive years with the

annual contribution to infra-annual instability as defined in Eq. 3.13. The plot shows a discontinuity between

2017 and 2018 due to COVID-19-related difficulties in reaching out the survey partecipants of the 2018-2021
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Figure 3.5.2: The Instability Gaps and Ranking Between Racial Groups Changes When Considering Infra-Annual

Instability

Note: Households are clustered by groups based on the race of the household head.

panel. For both the panels, the dynamics of the two measures are quite different, confirming the importance

of infra-annual instability to study the evolution of instability.

This section concludes with findings on the contribution of upward mobility to income instability. For

both the 2014-2017 and 2018-2021 panels, we evaluate the share of instability explained by upward mobility.

We distinguish between young and old-headed households, using a 40 year-old cut-off on the age of the

household head. Tab. 3.5.1 confirms that young-headed households generally suffer higher instability, but

experience positive trends more frequently and exhibit higher shares of instability due to upward mobility.

There is a slight increase in instability and the relevance of upward mobility for both age groups between the

two panels. Caution is advised in considering this trend as reliable, and it is suggested to use these findings

only for comparing young- and old-headed households.
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Figure 3.5.3: The Largest Income Shocks Happen at Infra-Annual Level

Note: Households are clustered by quintile of average income over 48 months. For each group, overall instability as

measured by the Gini index (left) and SCV (right) is decomposed into two components: inter-annual and infra-annual

instability.

Table 3.5.1: Instability and Upward Mobility in Young and Old-Headed Households

Panel Age Group E(SCV) Upward Mobility Share (%)
2014-2017 Young 0.28 18.6

2014-2017 Old 0.24 14.5

2018-2021 Young 0.30 21.8

2018-2021 Old 0.25 19.4

Note: Average squared coefficient of variation and upward mobility contribution to it for young- and old-headed house-

holds in the two most recent panels, identified by a 40-year-old cut-off on the age of the household head.
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Figure 3.5.4: Annual Income Instability Dynamic Differs from That of Infra-Annual Instability

Note: SCV between annual incomes of consecutive years (blue) and annual contribution to infra-annual instability (red)

for the two panels 2014-2017 and 2018-2021.
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3.6 Conclusions

This chapter focuses on the measurement of income instability, emphasizing the need to consider short-term

income fluctuations that may be concealed when using annual income data. After motivating the importance

of income data with a frequency higher than annual, the paper briefly discusses the issues of conventional

measures of instability when data have a frequency higher than annual. Then, it develops a methodological

discussion on how to measure income instability using monthly data. It suggests using the average squared

coefficient of variation (SCV ) as a measure of monthly income instability, highlighting several properties of

the SCV that make it suitable for analyzing monthly income dynamics.

After discussing the importance of distinguishing between inter-annual and infra-annual instability, as

well as the need to isolate instability caused by seasonal income patterns and individual trends of upward

mobility, the paper demonstrates how the SCV allows for the decomposition of instability into these compo-

nents, providing a more detailed understanding of income dynamics.

By conducting a Monte Carlo experiment, we confirm that instability measures underestimate instability

when relying solely on annual income changes. We also show that underestimation is particularly significant

during recessions. Especially in such periods, it is strongly suggested to seek for higher frequency data, such

as monthly data, to effectively assess instability.

The work includes an empirical analysis of monthly income data from the U.S. Survey of Income and

Program Participation, confirming the relevance of measuring infra-annual income instability. This anal-

ysis shows that infra-annual instability accounts for a significant share of total income instability in the

USA between 2014 and 2017. Furthermore, it warns against using annual instability measures for cross-

country or cross-population comparisons, as the share of the infra-annual component varies across different

populations. The comparison of the proposed methodology with an alternative procedure based on the de-

composition of the Gini index emphasizes the need to consider monthly data to accurately capture the most

severe income shocks.

In conclusion, this paper highlights the limitations of relying solely on annual income data to measure

income instability and suggests the use of the SCV to assess instability with monthly data. The empirical

analysis supports the importance of considering infra-annual income fluctuations and demonstrates the value

of the proposed measures in providing a more detailed picture of income instability. Overall, the paper con-

tributes to the understanding of income dynamics and provides methodological guidance for policymakers

and researchers studying income instability.
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