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Abstract

In this thesis we study the synergy between observations of the cosmic microwave back-
ground (CMB) and the large scale structure of the Universe, in the context of the ESA
mission Euclid. The Euclid mission aims at building the largest galaxy catalogue to date,
observing galaxies in about a third of the sky, and providing high quality data for the
study of dark energy, dark matter and gravity. In this context we first discuss modified
gravity theories that can be targeted by Euclid and provide original cosmological con-
straints with existing datasets on a subset of scalar-tensor theories of gravity, discussing
also their implications for the Hubble tension. We then forecast for Euclid capabilities in
further constraining this class of models in combination with CMB experiments. In the
forecasts we initially focus on the combination of CMB lensing with Euclid observables
showing its relevance for extended cosmological models, and finally we provide forecasts
for the full CMB-Euclid joint analysis. This study shows the striking complementarity
of these datasets, which breaks degeneracies between cosmological parameters, guaran-
teeing the largest constraining power, both on the standard cosmological parameters and
on the parameters of the extended models, such as the sum of the neutrino masses or
the modified gravity parameters. In order to provide these constraints and fulfill the
forecasts it is necessary to build an end-to-end pipeline for the joint analysis of Euclid
and CMB data, we explore this topic as well by presenting the results of the validation
and implementation of the likelihood module for the cross-correlation observables. In
particular we delve into the details of the likelihood for the detection of the integrated
Sachs-Wolfe effect through the correlation of the CMB temperature field and galaxy num-
ber counts; and also discuss the implementation of CMB lensing in the official Euclid
likelihood code.
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Introduction

The cosmological concordance model is the so-called Λ cold dark matter (ΛCDM) model.
This model has established itself in the last thirty years or so, and provides a good fit to
many cosmological observations [1]. It assumes the cosmological principle (homogeneity
and isotropy on large scales) and its basic ingredients are: Einstein’s theory of General
Relativity as theory of gravity, the standard model of particle physics, a cosmological
constant (Λ) and a cold dark matter (CDM) component. The cosmological constant,
provides an explanation to the recent acceleration of the expansion of the Universe in
the ΛCDM model and it is described as a perfect fluid with negative pressure; this new
component is called dark energy. Dark matter does not interact (or does it very weakly)
electromagnetically and its existence had been postulated on the basis of observational
evidences [2] and is supported by both astrophysical probes, as galaxy rotational curves
and cluster mergers, and cosmological probes such as the cosmic microwave background
(CMB). The prefix “cold” means that such matter was non-relativistic when, in the early
Universe, it decoupled from radiation (as opposed to the “hot” dark matter) and current
observations of structure formation suggest that the great majority of dark matter has
to be “cold”.

The nature of dark energy and dark matter is still unknown and must lie outside the
standard model of particle physics. The study of different possibilities and alternatives
for these dark components is one of the most active field of cosmology and particle
physics. Beyond the simple ΛCDM model, also on the basis of a discrepancy between
observations and theoretical predictions for the vacuum energy, many alternatives have
been proposed, such as dynamical dark energy models or modified gravity theories in
which a scalar field drives the accelerated expansion solving some of the cosmological
constant fine tuning problems.

In this decade, it will be possible to study and constrain these extensions of the stan-
dard model with unprecedented precision as we will see the blossoming of cosmological
observations of the Large Scale Structure (LSS) of the Universe, that will help disclos-
ing the nature of dark energy and dark matter. Among these observations, the Euclid
mission1, which will build a catalog of more than a billion galaxies and whose data will
be accompanied by other ground based experiments such as Vera Rubin observatory2;
and SKAO3, stands out, thanks to its power in constraining dark matter, dark energy,
modified gravity and neutrino masses. Therefore, in the near future, observations of the
LSS of the Universe will complement CMB observations, which, up to now, dominated
and shaped the field of precision cosmology, and will continue to contribute with ongo-
ing surveys such as ACT4, SPT-3G5, or upcoming ones like the Simons Observatory6,
liteBIRD7 and CMB Stage 48.

1https://www.esa.int/Science_Exploration/Space_Science/Euclid
2https://rubinobservatory.org/
3https://www.skao.int/
4https://lambda.gsfc.nasa.gov/product/act/index.html
5https://astro.fnal.gov/science/cmbr/spt-3g/
6https://simonsobservatory.org/
7https://www.isas.jaxa.jp/en/missions/spacecraft/future/litebird.html
8https://cmb-s4.org/
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Introduction

In this context, the synergy between LSS and CMB is crucial, and since they are
not independent (the fluctuations we see in the CMB are the seeds for the formation
of LSS), it is possible to cross-correlate them: this is called CMB-LSS cross correlation
(CMBXC). The main advantages of CMBXC are its ability to break degeneracies be-
tween model parameters (cosmological or astrophysical) and to decrease the uncorrelated
systematic uncertainties of each probe, thus offering a robustness test. Moreover, the
cross-correlation between LSS and the CMB temperature data can probe scales where
CMB is dominated by cosmic variance; in particular, at these scales it can single out a
peculiar signature of dark energy: the late integrated Sachs Wolfe (ISW) effect [3, 4].
At the same time, the cross-correlation of LSS with CMB lensing, due to its sensitiv-
ity to the amplitude of matter fluctuations σ8, the matter density Ωm and the sum of
neutrino masses [5], is of uttermost importance to improve the constraints of the LSS
probes. Thus, LSS-CMB, and in particular the Euclid-CMB cross-correlation will be
fundamental for the study of dark energy, dark matter and neutrinos.

In this thesis, we first investigate some modified gravity models with current CMB
and LSS data, we then describe the Euclid mission and the preparation for upcoming
CMBXC data analysis, and conclude the thesis by providing forecasts on the capabilities
of Euclid combined with CMB of constraining modified gravity models and the sum of
the neutrino masses.

In detail, the thesis is structured as follows

(I) In chapter 1 we introduce the basic concepts of modern cosmology and the current
cosmological concordance model, providing an overview of the cosmological probes
relevant for this work.

(II) Chapter 2 is a general overview of modified gravity and Horndeski theories, fol-
lowed by the current constraints on these models. We close the chapter providing
original cosmological constraints on scalar-tensor theories of gravity and discussing
their implications for the open problems of cosmology.

(III) Chapter 3 offers an overview of the Euclid mission, its scientific objectives and
the main observables: galaxy clustering and weak lensing. We also introduce the
cross-correlation between Euclid photometric probes and CMB observables.

(IV) In Chapter 4 we presents the methodology and results of the validation and tests of
the likelihood for Euclid -CMB cross correlation, aimed at building an end-to-end
pipeline for the upcoming data analysis.

(V) Finally, in chapter 5 we discuss the capability of the photometric Euclid survey to
constrain extended cosmological models when combined with current and future
CMB anisotropy datasets.

In this thesis we employ the metric signature (−,+,+,+) and natural units c = ℏ = 1;
an overdot denotes a derivative with respect to cosmic time while a prime stands for
derivative with respect to conformal time. The convention for tensor indices is the
following: greek letters for spacetime indices (µ, ν, ... = 0, 1, 2, 3), and latin letters for
spatial indices (i, j, ... = 1, 2, 3).

In many plots presented in this work, the goal is to show qualitative behaviours com-
parisons, thus, the exact values of the cosmological parameters are not relevant. If not
specified, they are fixed at the Planck analysis best-fit [1].
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Chapter 1

Basics of modern cosmology

1.1 General Relativity

Since gravity is the dominant force on cosmological scales, the theory of gravity is the
basis of every cosmological model. General relativity (GR) [6] is the best theory of
gravity we have at present as it has been corroborated by multiple experiments and
observations since its inception [7]. The central pillar of GR is the equivalence principle
of gravitation and inertia, i.e., in a sufficiently small neighborhood of any spacetime
point in an arbitrary gravitational field, the laws of physics reduce to those of special
relativity and it is not possible, by means of local experiments, to detect the presence
of a gravitational field [8]. Thus, within GR, gravity is not described by a field defined
on spacetime, but it becomes instead a property of spacetime itself; in particular it is
a manifestation of the curvature of spacetime. In this context, events are points in the
4-dimensional spacetime manifold, and once chosen a coordinate system, an event can
be uniquely identified by its coordinates xµ = (x0, x1, x1, x3). The spacetime interval
between two events xµ and xµ + dxµ is

ds2 = gµν(x)dx
µdxν , (1.1)

where gµν is the 2-rank symmetric metric tensor, which defines distances and lengths
of vectors on the manifold. The metric tensor is the fundamental object that contains
all the information about spacetime curvature. In essence, within GR, spacetime can
be curved by matter and the motion of matter itself is described in the curved space-
time. Two equations are therefore necessary: one to describe the motion of matter in a
curved spacetime and a second one to model how the gravitational field, i.e. spacetime
curvature, responds to the presence of matter. Free test particles move along paths of
shortest possible distance, meaning that they minimize the integral

∫
ds between two

fixed endpoints. These trajectories xµ(λ) (parametrized by an affine parameter λ) are
called geodesics and satisfy the following equation

d2xµ

dλ2
+ Γµ

ρσ

dxρ

dλ

dxσ

dλ
= 0, (1.2)

where Γµ
ρσ is the Christoffel symbol:

Γρ
µν =

1

2
gρσ
(
∂gµσ
∂xν

+
∂gνσ
∂xµ

− ∂gµν
∂xσ

)
. (1.3)

The geodesic equation thus describes how matter responds to gravity, while the way
matter curves spacetime generating gravity is encapsulated in Einstein’s field equation
which relates the geometry of spacetime with the total energy-momentum tensor (EMT):

Gµν = Rµν −
1

2
gµνR = 8πGTµν . (1.4)

3



1. Basics of modern cosmology

Gµν is the Einstein tensor, Rµν and R ≡ gµνRµν are called, respectively, the Ricci tensor
and Ricci scalar. They are contractions of the Riemann curvature tensor

Rλ
µρν = Γλ

µν,ρ − Γλ
µρ,ν + Γλ

αρΓ
α
µν − Γλ

ανΓ
α
µρ , (1.5)

which depends on the metric and its derivatives. G is Newton’s constant and Tµν is the
EMT.

Due to the form of the Riemann tensor (1.5), the Einstein tensor satisfies the Bianchi
identities, ∇νG

µν = 0, and through Eq. (1.4) it leads to the conservation law for the
EMT: ∇νT

µν = 0.

1.2 Friedmann-Lemat̂re-Robertson-Walker metric

In cosmology, Eq. (1.4) has to be solved for the entire matter distribution of the Universe.
To simplify this task we make use of the cosmological principle which states that the
Universe is homogeneous and isotropic on large scales. The assumption of homogeneity
and isotropy of 3-space selects a preferred class of observers: those for whom the Universe
appears isotropic, the so-called comoving observers. Using a coordinate system (t, xi)
associated with comoving observers we can express the metric that solves Eq. (1.4) under
these assumptions as:

ds2 = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (1.6)

where t is the proper time of comoving observers and (r, θ, φ) are the usual spherical
coordinates of 3-space. The curvature parameter K can take three possible values:
K = 0,+1,−1, corresponding, respectively, to flat, spherical (closed) and hyperbolic
(open) spatial hypersurfaces. Finally, a(t) is the scale factor and it uniquely determines
the temporal evolution of the metric once the curvature parameter has been fixed.

The metric (1.6) has been obtained using only symmetry arguments, with no reference
to the source of gravity Tµν or the Einstein field equations. In order to determine the
form of a(t) and the value of K it is necessary to specify the matter content in the
Einstein’s equations: homogeneity and isotropy require the EMT to take the perfect
fluid form [9]

T µν = p gµν + (ρ+ p)uµuν , (1.7)

where ρ and p ≡ wρ are, respectively, the total density and total pressure of the fluid,
and uµ = dxµ/

√
−ds2 is the 4-velocity. whereas the EMT (1.7) is that of a perfect

fluid and we use the notation ρ and p to denote its density and pressure, there is no
requirement for the source to be an actual ideal fluid. In particular, the pressure p is not
required to be positive, as it would be in an ideal fluid.

4



1.3. Kinematics of the Friedmann models: redshift, distances, and horizons

1.3 Kinematics of the Friedmann models: redshift, dis-
tances, and horizons

Due to the expansion of the Universe, the wavelength of light emitted by distant objects
gets stretched out by a factor proportional to the scale factor. We thus observe at time
t0

1 a longer wavelength, λ0, than the emitted one λ at the time t. This phenomenon is
called cosmological redshift, with the redshift, z, defined as

1 + z ≡ λ0
λ1

=
a(t0)

a(t1)
≡ a0
a(t1)

. (1.8)

For nearby sources, a(t) can be expanded around t0: a(t) = a(t0)[1 + (t − t0)H0 + ...],
where H0 is the Hubble constant

H0 ≡
(
ȧ(t)

a(t)

)
t=t0

= 100h km s−1Mpc−1. (1.9)

The concept of distance in a FLRW universe can be defined in several ways and to do
so it is useful to redefine the radial coordinate dχ ≡ dr/(1−Kr2) to rewrite the FLRW
metric as

ds2 = −dt2 + a2(t)

[
dχ2 + f 2

K(χ)dΩ
2

]
, (1.10)

where

fK(χ) ≡
1√
|K|


sinh(

√
|K|χ) K < 0√

|K|χ K = 0

sin(
√
|K|χ) K > 0.

(1.11)

This quantity is the metric distance dm ≡ fK(χ). The distance related to the radial
coordinate is the comoving distance, which, between us and a galaxy at redshift z is

χ(z) =

∫ t0

t1

dt

a(t)
=

∫ z

0

dz

H(z)
, (1.12)

and for a flat universe coincides with the metric distance. It is not observable, what is
observable is the physical distance, also called proper distance, which is the comoving
distance multiplied by the scale factor: dpr = a(t)χ. At small redshifts, the physical
distance is simply t0 − t, thus, from Eq. (1.8), it follows that redshift increases linearly
with distance, z ≃ H0d. This is the Hubble law, introduced by Hubble [10] in the form
vgal = Hd, where vgal is the recessional velocity of a galaxy at a physical distance d.

Another definition of interest in cosmology is the angular diameter distance dA, which
measures the distance of an object with observed angular size in the sky δθ and of known
physical extension D,

dA =
D

δθ
, (1.13)

1The subscript 0 means today unless otherwise specified.
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1. Basics of modern cosmology

which, in a flat universe simply reduces to dA = χ/(1 + z).
Finally, we introduce the luminosity distance dL connecting the intrinsic Luminosity

L of a source at a given comoving distance χ and redshift z, with its observed flux F :

F =
L

4πd 2
m(1 + z)2

≡ L

4πd 2
L

, (1.14)

from which we can identify
dL = dm (1 + z) , (1.15)

and obtain the relationship between the luminosity and the angular diameter distance
as

dA =
dL

(1 + z)2
. (1.16)

If the Universe has a finite age light can only travel a finite distance from its beginning,
the maximum comoving distance travelled by a photon since the Big Bang is called
particle horizon χp, it is given by

χp =

∫ t0

ti

dt

a(t)
=

∫ ln a

ln ai

(aH)−1 d ln a, (1.17)

where (aH)−1 is the so called Hubble radius. The Hubble radius is often referred to as
the horizon cause the two are of the same order of magnitude in standard cosmologies:
χp ∼ (aH)−1, but they are conceptually different. Indeed, the Hubble radius is the
distance travelled by a photon in a Hubble time H−1 while the particle horizon is the
maximum distance a photon can travel since the Big Bang.

There exist another horizon, the event horizon which is defined as

χe ≡
∫ tf

t0

dt

a(t)
=

∫ af

a0

da

H(a)a2
, (1.18)

where tf is the final moment of the Universe, if the expansion goes on forever tf → +∞.
The event horizon represent the largest comoving distance from which light emitted now
can ever reach the observer in the future.

1.4 Dynamics of the Friedmann models

Inserting the FLRW metric (1.6) and the EMT (1.7) into the Einstein’s field equations
(1.4) we obtain the Friedmann equations, that can be solved to determine the time
evolution of the scale factor a(t),(

ȧ

a

)2

≡ H2 =
8π G

3
ρ− K

a2
(1.19)

ä = −4π G

3
(ρ+ 3p) a. (1.20)

6



1.4. Dynamics of the Friedmann models

Eq. (1.20) implies that the Universe expansion decelerates (ä < 0) if ρ+3p > 0. This in-
equality, called the strong energy condition, can be rewritten as w > −1

3
. A deceleration

in the expansion of the Universe is in contrast with observations which show that the
expansion is accelerating. Since ordinary matter and radiation satisfy the strong energy
condition there has to be in the Universe an additional component with negative pressure
(w < −1/3) to explain the current accelerated expansion; this component is known as
dark energy (DE), and it can be described parameterized in different ways. In the stan-
dard model of cosmology, called Λ-cold-dark-matter (ΛCDM) model, the cosmological
constant, corresponding to a component with w = −1, plays the role of DE.

Note that Hubble law states H > 0, implying from Eq. (1.20) that a(t) is a growing
function of time (ȧ > 0 at all times). Thus, there exist a time in the past where a(t) = 0
and density and pressure become infinite, this is the Big-Bang singularity and it cannot
be avoided in the Friedmann models.

A third equation can be obtained considering the 0-th component of the local conser-
vation of the EMT: ρ̇ + 3H(ρ + p) = 0, which, using the equation of state p = wρ, can
be integrated to give

ρ(t) = ρ0(t)

(
a

a0

)−3(1+w)

. (1.21)

Eqs. (1.19) to (1.21) are not independent, given two of them is sufficient to derive the
third equation. Once a parameter of state w is specified Eq. (1.21) give the evolution of
density as a function of the scale factor. We list below the different components of the
Universe whose behaviour can be parametrized by w.

Cold matter: pressureless matter, wm = 0, with negligible kinetic energy. It is com-
posed by all non relativistic massive particles like nuclei and electrons of ordinary matter,
usually called baryonic matter, and by cold dark matter (CDM), a type of matter which
interacts only gravitationally and whose particle nature is still unclear. It follows from
the equation of state and Eq. (1.21) that as the Universe expand the matter density
scales as ρm ∝ a−3.

Radiation: composed by ultra relativistic particles like photons or, in the early Uni-
verse, neutrinos, its equation of state is wr = 1/3 and its energy density scales as ρr ∝ a−4.
The reason for the extra factor a−1 with respect to matter is cosmological redshift, which
is proportional to a−1.

Cosmological constant: it is characterized by a constant energy density

ρΛ =
Λ

8πG
∝ a0, (1.22)

and therefore the equation of state is wΛ = −1. Since the energy density of the cosmo-
logical constant does not dilute, this term becomes dominant with respect to the other
components as the Universe expands. This component can be naturally interpreted as
the energy of vacuum but its small inferred value compared to typical scales in particle
physics [11] has led to the quest for alternative models.

7



1. Basics of modern cosmology

Curvature: We can define an effective curvature energy density that enters Eq. (1.19)
as

ρK = − 3K

8πG
a−2, (1.23)

and has, consequently, equation of state wK = −1/3.
It is useful to define dimensionless density parameters:

Ωi,0 ≡
ρi,0
ρcrit,0

=
8πG

H2
0

ρi; (1.24)

where the critical density ρcrit is the density of a flat Universe and the subscript i = r,m,Λ
for radiation, non-relativistic matter and cosmological constant identifies the different
components of the Universe. Splitting the matter contribution in its components, the
subscript c identifies cold dark matter while b stands for baryons. The sum of the
density parameters Ωtot =

∑
i Ωi can either be larger than unity, corresponding to a

closed universe, smaller than 1, which corresponds to an open universe, or exactly 1, as
in a flat universe.

With these definitions, dropping the subscript 0 in the density parameters and follow-
ing the convention a0 = 1, Eq. (1.19) can be rewritten in the following way:

H2

H2
0

= Ωra
−4 + Ωma

−3 + Ωka
−2 + ΩΛ . (1.25)

Since the scale factor increases with time, radiation, which initially dominates the matter
content of Universe, is diluted faster than matter, and at a certain point in time, called
matter-radiation equality, the two components contribute equally: ρr(zeq) = ρm(zeq).
After equality we enter the so called matter epoch, but, since the matter density dilutes as
a−3 while the cosmological constant contribution is constant, we reach equality between
these two components and the expansion of the Universe starts to accelerate as the
cosmological constant dominates.

The official values for the density parameters obtained by the Planck collaboration [12]
are ΩK = 0.0007±0.0019 [1], Ωm = Ωc+Ωb = 0.3111±0.0056, and ΩΛ = 0.6889±0.0056.
The relativistic contribution coming from the cosmic microwave background and the
cosmic neutrinos background is Ωr ≃ 9.4× 10−5.

The description of Universe in terms of these components is known as the ΛCDM
model.

1.5 The Hot Big-Bang model

As we have seen the early Universe was dominated by relativistic degrees of freedom, we
can subdivide this epoch of radiation domination into the following stages:

• Quark era: T > TQH ≃ 200 − 300MeV. The temperature is too high to allow
hadronization: matter is in the form of free quarks in a quark gluon-plasma. At
the end of this epoch (T = TQH), quarks and antiquarks bind together to form
hadrons.
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1.5. The Hot Big-Bang model

• Hadron era: TQH > T > Tπ ≃ 130MeV. Hadrons dominate until pions and
antipions annihilate at T = Tπ.

• Lepton era: Tπ > T > Te ≃ 0.5MeV. Leptons dominate the enrgy content until
positrons-electrons annihilate at Te. Primordial nucleosynthesis occurs during this
era and before the end of this epoch neutrinos decouple from the cosmological fluid
at T ≃ 1Mev.

• Plasma era: Te > T > Teq ≃ 1eV. The Universe is composed by photons, baryonic
matter (protons, electrons and helium nuclei), CDM and neutrinos, both decoupled
from the photon-baryon fluid.

After matter-radiation equivalence the photon-baryon fluid is still tightly coupled
thanks to efficient Thomson scattering, as temperature decreases electrons are captured
by protons and neutral hydrogen forms for the first time. This process, known as re-
combination leads to a drop in free electrons and consequently Thomson scattering be-
comes inefficient, leading to the decoupling of photons and baryons at redshift z ≃ 1100.
The photons freely propagating since then constitute the cosmic microwave background
(CMB).

In addition to the prediction of the existence of the CMB as relic radiation [13], the
Hot Big Bang model also naturally predicts the abundances of light chemical elements
produced during Big-Bang Nucleosynthesis (BBN) [14] and the expansion of the Uni-
verse.

1.5.1 Problems of the hot Big-Bang model and inflation

The hot Big-Bang theory has undoubtedly been successful but it is plagued by some
problems. We highlight here two of them2.

• The flatness problem: Observations are consistent with a flat universe: ΩK =
0.0007±0.0019 [1]. To account for the observed degree of flatness today, the initial
density parameter must have deviated from unity by no more than one part in
1056, giving rise to a fine tuning problem.

• The horizon problem: the observation of an homogeneous CMB monopole on the
entire sky, i.e. scales much larger than the Hubble radius at the time when the CMB
was formed, is puzzling. The angular size of regions that were in causal contact
at the time of decoupling is only a small fraction of the sky, approximately θhor ≃
1.6◦ [9] and no physical influence could have smoothed out initial inhomogeneities
bringing these regions to the same temperature. This is known as the Horizon
problem.

The most compelling solution to these problems is cosmic inflation, which postulates an
exponential expansion stage in a cold and quantum era before the thermal epoch of the
standard Big Bang cosmology. During this phase the scale factor increased by a factor

2Historically, the missing observation of hot relics such as magnetic monopoles or the gravitino,
predicted by Great Unified or supergravity theories, was one of the main reason to introduce inflation.
We don’t discuss this problem here, focusing on the issues of the hot Big-Bang model and not of those
of speculative theories.
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1. Basics of modern cosmology

eN , where N is the number of e-folds. If |ΩK | = O(1) at the beginning of inflation, then
at the end it would be of order e−2N . This implies that if inflation lasts long enough,
meaning that N > 62 [9], then the flatness problem is solved.

Concerning the horizon problem: the exponential expansion would stretch tiny causally
connected patches to cosmic sizes, providing enough time to homogenize our observable
Universe. Quantitatively, the proper horizon, defined as the scale factor times the par-
ticle horizon, at the time of last scattering tL is

dH(tL) ≡ a(tL)

∫ tL

t∗

dt

a(t)
=
a(tL)

aIHI

(
eN − 1

)
(1.26)

where t∗ and tI are the time of beginning and end of inflation; HI is the Hubble parameter
during inflation and the number of e-folding is given by N = HI(tI − t∗). The condition
that the proper horizon at the time of last scattering is larger than the angular diameter
distance of the last scattering surface: dI(tL) > dA(tL), requires N > 62, exactly like the
flatness problem.

Without going into the mathematical details, the simplest way to achieve inflation is
by considering a fluid with negative pressure by means of a scalar field φ(t) called the
inflaton. At some early time the scalar field takes a value such that its potential V (φ)
is very large but quite flat, in this way the field slowly rolls down the potential and
the Hubble parameter decreases very slowly, allowing a nearly exponential expansion of
the Universe before the field configuration changes significantly. At the end of inflation
the inflaton field oscillates around the minimum of the potential and decays into other
particles. This period is called preheating and it is the first stage of reheating which
connects the cold and quantum inflation phase to the thermal hot Big-Bang cosmology.

1.6 The inhomogenous Universe

So far we have considered an homogenous and isotropic universe and the metric (1.6) and
the EMT (1.7) are consequences of this assumption. However, the presence of gravita-
tional bound structures such as galaxies and clusters shows that the matter distribution
in our Universe is not homogeneous and isotropic. The amplitude of the fluctuations in
the energy-density of the Universe were 105 smaller than the background at the time of
last scattering (z ≃ 103); these small fluctuations generated in the early Universe are
amplified by gravitational instability leading to the formation of cosmic structures. The
study of the anisotropies and inhomogeneities is central in modern cosmology as it is
necessary for the comparison between predictions and observables which allows to test
cosmological models and constrain the parameters describing our Universe.

For these reasons in this section we introduce first order perturbation theory. Density
perturbations are considered random Gaussian field so that their Fourier modes are
decoupled at linear level. The convention for the Fourier transform is:

A(τ,x) =

∫
dk

(2π)3
A(τ,k)eik ·x , A(τ,k) =

∫
dxA(τ,x)e−ik ·x , (1.27)
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and the power spectrum PA(τ,k) of a function A is then

⟨A(τ,k)A∗(τ,k′)⟩ = (2π)3PA(τ, k) δ
(3)
D (k− k′) . (1.28)

We follow the notation and conventions of [15] and draw heavily form [16]. We con-
sider, for simplicity, flat (K = 0) FLRW metric expressed in conformal time dτ = a(t) dt,
and raise and lower spatial indices with the Kronecker delta throughout this section.

1.6.1 Metric perturbations

To account for inhomogeneities we consider linear perturbations δgµν(τ,x) around the
background FLRW metric ḡµν(τ): gµν(τ,x) = ḡµν(τ) + δgµν(τ,x), so that we can write
the perturbed metric in a general way [17]

ds2 = a2(τ)
[
−(1 + 2A)dτ 2 + 2Bi dx

idτ + (δij + hij)
]
, (1.29)

where A, Bi and hij are functions of space-time. The metric perturbations can be de-
composed into 3 categories according to their transformation properties with respect
to a local 3-rotation on hypersurfaces of constant time: scalar (δg00), vector (δg0i) and
tensor (δgij) perturbations, this is called scalar-vector-tensor (SVT) decomposition. The
vector mode δg0i can be written, thanks to the Helmholtz decomposition theorem, as the
gradient of a scalar field plus a vector field with null divergence: Bi = ∂iB + B̂i, with
∂iB̂i = 0. In a similar manner, the tensor perturbation can be decomposed as:

hij = 2Cδij + 2∂⟨i∂j⟩E + 2∂(iÊj) + 2Êij ; (1.30)

with
∂⟨i∂j⟩E ≡

(
∂i∂j −

1

3
δij∇2

)
E, (1.31)

∂(iÊj) ≡
1

2

(
∂iÊj + ∂jÊi

)
. (1.32)

The hatted objects are divergenceless: ∂iÊi = 0 = ∂iÊij; moreover Êij is also traceless.
This latter term encodes the tensorial degrees of freedom of the FLRW metric. The
decomposition (1.30) consists of a scalar part (the first two term on the right hand side),
a vector part (third term), and a tensor part corresponding to the fourth term Êij. We
have therefore separated the 10 degrees of freedom of the metric into 4 scalar, 4 vector
and 2 tensor degrees of freedom. The importance of the SVT decomposition lays in the
fact the equations for scalars vectors and tensors do not mix at linear order and the
perturbations evolve independently [18].

Physically, the scalar perturbations are induced by energy density inhomogeneities
and they exhibit gravitational instability leading to the formation of structure in the
Universe; they will be the focus of the remaining of the section for these reasons. Vector
perturbations arise from the rotational motion of the fluid and in standard cosmologies
they decay very quickly with the expansion of the Universe, while tensor modes, instead,
physically represents gravitational waves propagating on the background FLRW metric.
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1. Basics of modern cosmology

1.6.2 Gauges

In a FLRW universe, only one time slicing is compatible with the assumption of homo-
geneity, while, in a perturbed universe there are infinite time slicings such that on each
slice, all quantities remain close to their average values. The fluctuation of a variable
at a given spacetime point is the difference between its actual value and the average
value in that point, e. g., for energy density δρ(τ,x) = ρ(τ,x)− ρ̄(τ). The average ρ̄(τ)
depends on the choice of the time slicing, while true value ρ(τ,x) is unambiguously
defined, therefore choosing a different slicing the quantity ρ(τ,x) is compared with an
average computed on a different hypersurface and thus δρ(τ,x) would take a different
value, meaning that the fluctuations is dependent on the choice of the equal-time hyper-
surface. A gauge is a choice of time slicing and gauge transformations are induced by
the coordinate transformation

xµ → x̃µ = xµ + dµ(xν) , (1.33)

where dµ has to be small in every point to ensure that the perturbations are still linear
after the coordinate transformation.

The solutions to the equations of motion for the perturbed quantities would contain
some spurious “gauge modes” that have no impact on the observables, they just reflect
the gauge freedom of changing coordinate system without affecting the physical results.

There are two ways to deal with gauge issues: implement a gauge-invariant formalism
or fixing the gauge.

Gauge independent formalism: introduce combinations of the metric perturbations
that are invariant under the transformation (1.33) and solve gauge-invariant equations
for these variables. The most common quantities of this kind are the so called Bardeen
potentials [19]

ΨB ≡ A+H(B − E ′) + (B − E ′)′ , (1.34)

ΦB ≡ −C −H(B − E ′) +
1

3
∇2E . (1.35)

where H ≡ a′/a is the conformal Hubble parameter.

Gauge fixing: one can simply fix the gauge and carry on the computations in the
preferred gauge as observable quantities are independent of this choice [16]. Furthermore,
the choice of the gauge could be relevant for numerical integration of the equations of
motion or simplify the physical interpretation of the solutions. Two gauges relevant for
this thesis:

• The synchronous gauge, whose name stems from the fact that it selects a set of “fun-
damental” comoving observers for which the conformal time coordinate increases
at the same rate, is defined by the conditions As = Bs = 0. With this choice the
metric (1.29) is ds2 = a2(τ)

[
−dτ 2 + (δij + hij)

]
. The connection with the notation

of Ref. [15] is: 2C ≡ h/3, 2E ≡ µ, Êi ≡ Ai and 2Êij ≡ hTij. We define hij as a
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Fourier integral

hij(τ,x) =

∫
dk

(2π)3
eik·x

[
k̂ik̂j h(τ,k) +

(
k̂ik̂j −

1

3
δij

)
6η(τ,k)

]
, k = kk̂.

(1.36)
The synchronous gauge is not uniquely fixed by the above conditions because the
choice of the initial hypersurface and its coordinate assignments are arbitrary [15].
This residual gauge freedom manifests in fictitious gauge modes appearing in the
solutions of the Einstein equations, and it is commonly fixed by working in the
CDM rest frame. This gauge is useful for the simple form of the equations and
the stability for in the numerical integration of the perturbed Einstein-Boltzmann
equations.

• The Newtonian (or longitudinal) gauge defined by Bl = El = 0. It is customary to
identify A ≡ ψN and C ≡ −ϕN , in such a way that the metric takes the form

ds2 = a(τ)
[
−(1 + 2ψN)dτ

2 + (1− 2ϕN)δijdx
idxj

]
. (1.37)

In the weak field limit of the Einstein field equation ψN represents the Newtonian
gravitational potential.

1.6.3 Einstein equations

We can write the Einstein equations by splitting the EMT and the Einstein tensor into
a background and a perturbed part

δGµ
ν = 8πGδT µ

ν . (1.38)

The right hand side of Eq. (1.38) contains the perturbed EMT, whose components are

T 0
0 = −(ρ̄+ δρ) , (1.39)

T 0
i = (ρ̄+ p̄)vi = −T i

0 , (1.40)
T i

j = (p̄+ δp)δij + Σi
j , (1.41)

in which δρ and δp are, respectively, the density and pressure perturbations, vi = dxi/dτ
is the coordinate velocity of the fluid and Σi

j = T i
j − δij T

k
k/3. As in Ref. [15] we define

δ ≡δρ/ρ (1.42)
θ ≡ ikjvj , (1.43)

(ρ̄+ p̄)σ ≡−
(
k̂ik̂j −

1

3
δij

)
Σi

j . (1.44)
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Thus, the time-time, longitudinal time-space, trace space-space and traceless space-space
Einstein equations are [15]

k2η − 1

2
Hh′ = −4πGa2

∑
i

δρ
(S)
i , (1.45)

k2η′ = 4πGa2
∑
i

(ρ̄i + p̄i)θ
(S)
i , (1.46)

h′′ + 2Hh′ − 2k2η = −24πGa2
∑
i

δp
(S)
i , (1.47)

h′′ + 6η′′ + 2H(h′ + 6η′)− 2k2η = −24πGa2
∑
i

(ρ̄i + p̄i)σ
(S)
i , (1.48)

in the synchronous gauge, while, in the Newtonian gauge they take the following form

k2ϕN + 3H(ϕ′
N +HψN) = −4πGa2

∑
i

δρ
(N)
i , (1.49)

k2(ϕ′
N +HψN) = 4πGa2

∑
i

(ρ̄i + p̄i)θ
(N)
i , (1.50)

ϕ′′
N +H (ψN + 2ϕN)

′ +

(
2
a′′

a
−H2

)
+
k2

3
(ϕN − ψN) = 4πGa2

∑
i

δp
(N)
i , (1.51)

k2(ϕN − ψN) = 12πGa2
∑
i

(ρ̄i + p̄i)σ
(N)
i ,

(1.52)

where the index i runs over all species contributing to the content of the Universe.
To close the system of equations it is necessary to add the equations describing the

time evolution of density and velocity perturbations to the Einstein’s equations. These
are the so called Boltzmann equations and are the topic of the next section.

1.6.4 Boltzmann equations

The Boltzmann equations take into account the interactions between different species,
we derive them for photons, massless neutrinos, CDM and baryons in the synchronous
gauge, for their expression in the Newtonian gauge see Ref. [15].

Consider the phase space described by three spatial coordinates xi and their conjugate
momenta Pi. The conjugate momentum is the spatial part of the 4-momentum and in
the synchronous gauge it is related to the proper momentum, pi = pi (measured by
an observer at a fixed spatial coordinate), by Pi = a

(
δij + hij/2

)
pj. The phase space

distribution f = f(xi, q, nj, τ) evolves as

df

dτ
= C[f ] , (1.53)

where qj ≡ apj ≡ qnj in which q is its magnitude and nj its direction. The collision
term on the right hand side takes into account all possible interactions and differs from
species to species.
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Figure 1.1: Representation of the ways the different components of the Universe interact, these
interactions are described by the Einstein-Boltzmann equations. Some species do not interact
directly but they are all connected through their interactions with gravity. Figure taken from
[18].

The phase-space distribution can be expanded around its zeroth-order

f(xi, q, nj, τ) = f0(q)
[
1 + Ψ(xi, q, nj, τ)

]
, (1.54)

where, the zeroth-order is the Fermi-Dirac (Bose-Einstein) distribution for fermions
(bosons).

The components of the EMT given in Eqs. (1.42) to (1.44) can be written in terms
of the perturbation Ψ. Moreover, writing the total derivative of Eq. (1.53) in terms of
partial derivatives and using the geodesic equation to get the expression for dq/dτ , the
Boltzmann equation in k-space in the synchronous gauge becomes

∂Ψ

∂τ
+ i

q

ϵ
(k · n̂)Ψ +

d ln f0
d ln q

[
η′ − h′ + 6η′

2
(k̂ · n̂)2

]
=

1

f0

(
∂f

∂τ

)
C

. (1.55)

where n̂ = q/|q|, and ϵ = (q2 + a2m2)1/2 = −P0. This equation is valid for all the
components of the cosmological fluid, what changes depending on the species considered
is the collision term on the right hand side.

Neutrinos

For the sake of simplicity only massless neutrinos are considered here, for them q = ϵ and
the collisional term can be neglected. To reduce the number of variables we integrate out
the q-dependence from Eq. (1.55) and expand the angular dependence of the perturbation
Ψ in a series of Legendre polynomials Pℓ((k̂ · n̂):

Fν(k, n̂, τ) ≡
∫
q3 dq f0(q)Ψ∫
q3 dq f0(q)

≡
∞∑
l=0

(−i)ℓ(2l + 1)Fν ℓ(k, τ)Pℓ((k̂ · n̂) . (1.56)
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Integrating Eq. (1.55) over q3 dq f0(q) and dividing it by
∫
q3 dq f0(q), the Boltzmann

equation becomes
∂Fν

∂τ
+ ikµFν = −2

3
h′ − 4

3
(h′ + 6η′)P2(µ) , (1.57)

where µ = k̂ · n̂. By using the Legendre expansion (1.56) we obtain for the perturbations
δν , θν and σν defined in Eqs. (1.42) to (1.44):

δ′ν = −4

3
θν −

2

3
h′ , θν = k2

(
1

4
δν − σν

)
, (1.58)

F ′
ν 2 = 2σ′

ν =
8

15
θν −

3

5
kFν 3 +

4

15
(h′ + 6η′) , (1.59)

F ′
ν ℓ =

k

2l + 1

[
lFν (ℓ−1) − (ℓ+ 1)Fν (ℓ+1)

]
, ℓ ≥ 3 . (1.60)

Starting from the Boltzmann equation we have obtained an infinite hierarchy of equations
for the multiple moments of the distribution function. The hierarchy is usually truncated
at some ℓmax; most of the codes that numerically solve the Boltzmann hierarchy apply
the truncation scheme proposed in Ref. [15], which is designed to minimize artificial
reflection of power from ℓmax back to lower multipoles [20].

Photons

Photons can be treated similarly to massless neutrinos, but in this case the collisional
terms cannot be neglected because, before recombination photons are tightly coupled
with baryons via Thomson scattering, and even after recombination there is some residual
energy transfer between the two species. Additionally, photons are linearly polarized in
the plane perpendicular to their propagation direction n̂. This is due to the fact that
Thomson scattering produces linear polarization of the scattered radiation when the
incident radiation field has a quadrupole moment [18]. Before recombination photons
and baryons are tightly coupled and no quadrupole can be formed, near the end of
recombination, due to rarer interactions between photons and electrons, a quadrupole
moment forms and causes the polarization of the CMB [21].

It is common to consider the sum of phase space densities in the two polarization
states for each k and n̂, Fγ(k, n̂, τ), defined as in equation (1.56), and the difference
Gγ(k, n̂, τ). Their explicit expressions together with the collision factor can be found in
Ref. [15], while the Boltzmann equations are:

δ′γ = −4

3
θγ −

2

3
h′ , (1.61)

θ′γ = k2
(
1

4
δγ − σγ

)
+ a ne σT (θb − θγ) , (1.62)

σ′
γ =

4

15
θγ −

3k

10
Fγ 3 +

2

15
(h′ + 6η′)− a ne

20
σT (18σγ −Gγ 0 −Gγ 2) , (1.63)

F ′
γ ℓ =

k

2ℓ+ 1

[
lFγ (ℓ−1) − (ℓ+ 1)Fγ (ℓ+1)

]
− a ne σTFγ ℓ, l ≥ 3 , (1.64)
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where the subscripts b and γ refer to baryons and photons respectively, σT = 0.6652 ×
10−24 cm−2 is the Thomson cross-section and ne is the proper mean density of the elec-
trons. The term aneσT (θb − θγ) in Eq. (1.62) describes the interaction with baryons
which transfers momentum and energy between the two components. The hierarchy for
photons is truncated in the same manner as for massless neutrinos.

Cold dark matter

CDM is described as a pressureless perfect fluid ω = ω′ = 0 with zero anisotropic pressure
σc = 0, interacting with other species only through gravity, thus the collisional term is
zero. Since in the synchronous gauge we work in the rest frame of CDM θc = 0, the only
equation for CDM is δ′c = −h′/2.

Baryons

Baryons are also described as perfect fluids but are tightly coupled to photons by Thom-
son scattering, and the Boltzman equations are [15]

δ′b = −θb −
1

2
h′ , (1.65)

θ′b = −Hθb + c2sk
2δb +

4ρ̄γ
3ρ̄b

a ne σT (θγ − θb) , (1.66)

where c2s = δp/δρ is the baryon sound speed squared.

Tight coupling approximation

At early times, the scattering rate for photon-baryon interaction Γγb ≡ 1/tγb ≃ neσT is
larger than the Hubble rate ΓH ≡ 1/tH ≃ (aτ)−1, therefore any deviation of θγ −θb from
zero rapidly decays away. Deep in the radiation era we can then set θb = θγ = θγb, i.e.
a tight coupling between baryons and photons. Combining (1.62) and (1.66) in such a
way that the scattering terms cancel we get [22]:(

4

3
Ωγ − Ωb

)
θ′γb = −ΩbHθγb +

1

3
Ωγk

2δγ , (1.67)

and neglecting the scattering terms in the equations for the density contrasts they become

δ′b = −θγb −
1

2
h′ , δ′γ = −4

3
θγb −

2

3
h′ . (1.68)

1.6.5 Initial conditions

In order to solve the Einstein-Boltzmann system of differential equations it is neces-
sary set the initial conditions for the metric and density perturbation. Initial conditions
are linked to the spectra of primordial perturbations produced by inflation and we will
focus only on adiabatic initial perturbations since they are predicted by the simplest
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inflationary models [23] and this hypothesis is also supported by the small amount of
isocurvatures allowed by CMB data [24]. These initial values for the cosmological fluc-
tuations are usually set deep in the radiation era but after the neutrinos decoupling.

In the radiation era a ∼ τ and H ∼ τ−1 and we consider scales which are outside the
horizon3: kτ ≪ 1.

Adiabatic perturbations

In the matter and radiation plasma before the equivalence the entropy per matter particle
is given by Γ = T 3/nm with nm the number density of matter particles. The entropy
perturbation is then defined as

S ≡ δΓ

Γ
= 3

δT

T
− δm =

3

4
δr − δm , (1.69)

where ρr ∝ T 4 has been used in the last equality. The requirement for the entropy
perturbation to vanish is

δγ ≃ δν ≃ 4

3
δc ≃

4

3
δb . (1.70)

Fluctuations satisfying the above equations are called adiabatic or iso-entropic. They
perturbations are characterized by the fact that the fractional perturbations in number
density are the same for both radiation and non-relativistic matter. This global pertur-
bation to the total energy density leads through the Einstein equations to a perturbation
to the local geometry of the Universe. Matter perturbations that do not contribute to
the curvature perturbation at the leading order are possible and they are called isocur-
vature (or entropy) perturbations. As already anticipated, isocurvatures are strongly
constrained by CMB data [24].

For these reasons, the initial conditions are commonly set to be adiabatic, they take
the following form in the synchronous gauge [15, 22]:

h = C(kτ)2 , η = 2C − 5 + 4Rν

6(15 + 4Rν)
C(kτ)2 , (1.71)

δγ = −2

3
C(kτ)2 , δc = δb =

3

4
δν =

3

4
δγ , (1.72)

θc = 0 , θγ = θb = − 1

18
C(k4τ 3) , θν =

23 + 4Rν

15 + 4Rν

θγ , (1.73)

σν =
4C

3(15 + 4Rν)
(kτ)2 , (1.74)

where Rν = ρν/(ρν + ργ) is the neutrino fraction and C is connected to the primordial
power spectrum of fluctuations.

3k is a superhorizon scale if kτ < 1 while it is a subhorizon mode when kτ > 1.
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The curvature perturbation

Adiabatic perturbations give rise to constant curvature fluctuations. The gauge-invariant
comoving curvature perturbation can be defined in terms of the Bardeen potentials as
[25]

R = −ΨB − 2

3(1 + ω)H(Ψ′
B +HΦB), (1.75)

and it obeys the following evolution equation [25]:

R′ =
2

3(1 + ω)H k2
[
c2sΦB +

1

3
(ΦB −ΨB)

]
+ 3H c2s S . (1.76)

From the equation above it’s clear that the on superhorizon scales (k ≪ H) the curvature
perturbation remain constant if the fluctuation is adiabatic (S = 0). For this reason
adiabatic perturbations are also called curvature perturbations.

Conventionally the primordial power spectrum is usually given for the comoving cur-
vature perturbation R whose form, predicted by inflation, is

PR(k) =
2π2

k3
As

(
k

k⋆

)ns−1

, (1.77)

where k⋆ is called the pivot scale and it is usually chosen to be k⋆ = 0.05Mpc−1, As

is the amplitude of the primordial power spectrum and ns its spectral tilt. The last
two are free parameters of the model and they have to be fitted to the data when
analyzing a cosmological dataset. For ns = 1(≃ 1) the power spectrum is said to be scale
invariant (nearly scale invariant), in the sense that the dimensionless power spectrum
∆R ≡ k3PR(k)/(2π2) is scale invariant.

Thus, once the initial conditions are given and the primordial power spectrum has
been given or computed from an inflationary model, it is possible to solve the Einstein-
Boltzmann equations for the cosmological perturbations and relate in this way the initial
conditions from inflation to the late-time observables. In fact, the power spectrum of a
given variable at a given time can be connected to the primordial power spectrum in the
following way

PA(τ, k) = T 2
A (τ, k)PR(k) ≡

[
A(τ,k)

R(k)

]2
PR(k) , (1.78)

where T is called transfer function and there is no time dependence for R since it can
be evaluated at a time early enough such that k ≪ H. It is customary to normalize
R(k) = 1. The transfer function is only a function of k, not k, since the equations of
motions for all perturbations do not depend on the direction of the wave vector in order
to respect isotropy.

The task of solving the Einstein-Boltzmann equation to obtain the transfer functions is
usually carried out numerically using dedicated codes called Einstein-Boltzmann codes,
the most widespread ones are CLASS4 [20, 26] and CAMB5 [27].

4https://lesgourg.github.io/class_public/class.html
5https://camb.info/
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1. Basics of modern cosmology

Figure 1.2: Full sky Planck CMB temperature map. Figure taken from [12].

1.7 Cosmological observations

In this section we outline some of the most important observational probes used in cos-
mology to test physical models of the Universe, presenting also some the key observational
campaigns (past or present) relative to each probe. This overview is not comprehensive
of all the probes employed in modern cosmology and relative experiments, moreover for
the observables relevant for the Euclid mission6 we will give a more thorough treatment
when needed, in the following chapters.

1.7.1 Cosmic microwave background

After recombination, which happened at zrec ≃ 1100, photons and baryons decouple
and radiation is free to propagate as the Universe becomes transparent to light. This
stream of photons constitutes the CMB. The CMB has a black-body spectrum with a
temperature of Tcmb = 2.72548 ± 0.00057 [28]. It is observed to be isotropic on the sky,
with temperature anisotropies of the order Θ ≡ δT/T ∼ 10−5, these are the imprints of
the primordial density fluctuations. The most accurate map of the CMB anisotropies in
temperature is shown in Fig. 1.2 and comes from the Planck mission [12].

It is possible to compress the information encoded in the CMB anisotropies maps into
the angular power spectrum expanding the temperature anisotropy Θ(θ, φ) on the sky
in terms of spherical harmonics:

Θ(θ, φ) =
∞∑
ℓ=1

ℓ∑
m=−ℓ

aℓmYℓm(θ, φ) , (1.79)

6https://www.esa.int/Science_Exploration/Space_Science/Euclid
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1.7. Cosmological observations

where the multipole ℓ is related to an angular scale θ ∼ 2π/ℓ, while the index m describes
angular orientation. The multipole coefficients aℓm represents deviation from the average
temperature and therefore their expectation value is null, ⟨aℓm⟩ = 0, but they have a
nonzero variance. This variance, for Gaussian fluctuations, can be fully described by the
angular power spectrum

⟨a∗ℓ′m′aℓm⟩ = δℓℓ′δmm′CTT
ℓ , (1.80)

with ⟨ ⟩ representing the ensemble average. We cannot average over an ensemble of
different realizations of the sky as we are limited to only one Universe, so ideally, if we
could measure the temperature over the full sky without any noise, the observed power
spectrum would be a quantity averaged over m

Cobs
ℓ =

1

2ℓ+ 1

m=ℓ∑
m=−ℓ

|aℓm|2 . (1.81)

This introduces a limitation, known as cosmic variance, on how accurately the CMB
angular power spectrum can be known, due to the fact that we can average only over
a finite number (2ℓ + 1) of independent modes for each multiple ℓ. For a given Cℓ, the
error associated to cosmic variance is [9]

∆Cℓ =

√
2

2ℓ+ 1
Cℓ. (1.82)

CMB temperature anisotropies can be divided into primary and secondary anisotropies.
The primary anisotropies were already present at the time of decoupling while the sec-
ondary ones originated during the propagation of the photons from the last scattering
surface to us, they thus provide information about structure formation.

Primary anisotropies are the result of different processes happening at different scales.
On super-Hubble scales the photons are only subject to the gravitational interaction.
Due to the presence of inhomogeneities in the gravitational potential, the photons orig-
inating in overdense regions have to climb out of a potential well, losing energy for
gravitational redshift. The opposite happens to a photon rolling down a potential hill.
This mechanism causes a variation in the temperature contrast Θ = ψN = ΨB, where ψN

is the gravitational potential defined in Eq. (1.37). This effect is compensated partially
by a gravitational time delay: a photon originating in an overdense region is scattered
at a slightly earlier time and thus at an higher temperature compared to a photon from
a region of average or below average density. This contributes as Θ = −2ψN/3, and
the resulting net effect is Θ = ψN/3, which is known as Sachs-Wolfe effect [29]. Since
on large scales we have 2ψN = −δ, the hot (cold) spots in the CMB corresponds to
underdense (overdense) regions.

On sub-Hubble scales there are acoustic oscillations, called baryon acoustic oscillations
(BAO), due to the fact that the baryon-photon fluid falls in the potential wells created
by the dark matter perturbations and gets compressed in the process, leading to an
increase in the radiation pressure which counteracts the compression, and resulting in an
oscillating behaviour of the fluid. In the density peaks of these sound waves, the baryon-
photon fluid is adiabatically compressed and thus hotter than the average, viceversa for
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the bottoms. Both contribute to the CMB power spectrum because it is quadratic in
the perturbations and therefore we expect peaks corresponding to the scales that were
in the extrema of their oscillations at zdec, even peaks for rarefaction and odd peaks for
compression. We can see in the top panel of Fig. 1.3 these acoustic peaks. The first peak,
at ℓ ≃ 220, corresponds to the angular scale of the horizon at recombination (θ ≃ 1.6◦),
and it can give us an estimate of the total density parameter.

At the smallest scales (ℓ > 1000) the dominating process is the so-called Silk damping :
the perfect fluid approximation for the photon-baryon fluid is not valid at these scales due
to the finite mean free path of photons, and the two components are effectively decoupled.
Under a certain characteristic size called the Silk scale, the temperature fluctuations are
therefore erased by the diffusion of photons and primary CMB anisotropies are damped
on the smallest angular scales (less than few arcmins).

Secondary anisotropies consists of several effects, some of the most relevant are:
• Integrated Sachs-Wolfe effect (ISW): in a matter dominated universe the Bardeen

potentials are constant and photons enter and leave a potential well with their
frequency being unaffected: the blue shift that the photons acquire by falling into
a gravitational potential is exactly cancelled by the redshift induced by climbing out
of it. This is no longer true in a universe with a significant contribution coming from
dark energy or radiation: in this scenario the gravitational potentials vary with
time shifting the frequency of the photons. The contribution to the temperature
fluctuations induced by the change of the gravitational potential due to the residual
radiation after decoupling is called early ISW effect. Instead, in the late Universe,
when we enter the dark energy dominated era, the gravitational potentials start
to decay causing a further contribution to the temperature fluctuations. This is
known as the late ISW (LISW) effect and we will discuss in the following how it
can be probed by studying the cross correlation between Euclid and CMB data.

• The thermal Sunyaev–Zeldovich effect: CMB photons passing through clusters of
galaxies or other regions of dense and hot gas are inverse Compton scattered by
the hot electrons causing a localized spectral distortion of the black body.

• Gravitational lensing: the photons of the CMB are deflected by the gravitational
fields of the large scale structure (LSS) of matter and we observe them coming
from a slightly different direction. The lensing of the CMB smooths the acoustic
peaks in the temperature power spectrum and generates a peculiar signal in the
polarization of the CMB on small scales. CMB lensing also induces a nonzero four
point correlation function which can be used to reconstruct the lensing potential ϕ
and its power spectrum Cϕϕ

ℓ [5]. The details of the CMB lensing power spectrum
and its reconstruction will be addressed in sections 3.3.2 and 4.2.

In the CMB there is more information than the one contained in its temperature
fluctuations. Indeed, because of the Thomson scattering between baryons and photons
before recombination, the CMB is also linearly polarized. This polarization is described
by using combinations of the Stokes parameters Q and U commonly used to characterize
the polarization of a radiation field. These non-local combinations of Q and U are
called E and B modes [30]. E-mode polarization (as Θ) is produced by all type of
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Figure 1.3: Compilation of CMB angular power spectrum measurements. The upper panel
shows the power spectra of the temperature and E-mode and B-mode polarization signals,
the next panel the cross-correlation spectrum between T and E, while the lower panel shows
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perturbations - scalar, vector, tensor - whereas B-mode polarization only by vector and
tensor perturbations. Θ and E-modes are correlated, wile the ΘB and EB correlations
are nonzero only in presence of parity violating processes in the generation of the initial
fluctuations. Primordial B-mode polarization (generated by primordial gravitational
waves or primordial magnetic fields) is obscured by the parasitic gravitational lensing
signal, which causes the blurring of E-mode polarization from scalar perturbations along
the line of sight. In analogy to the temperature field angular power spectrum, the power
spectra for the E and B modes are

⟨E∗
ℓ′m′Eℓm⟩ = δℓ′m′δℓmC

EE
ℓ , (1.83)

⟨a∗ℓ′m′Eℓm⟩ = δℓ′m′δℓmC
TE
ℓ , (1.84)

⟨B∗
ℓ′m′Bℓm⟩ = δℓ′m′δℓmC

BB
ℓ . (1.85)

In general, the link between the primordial power spectrum (1.77) and the CMB
angular power spectra is given by

CXY
ℓ =

2

π

∫ ∞

0

dk k2PR(k)T X
ℓ (k)T Y

ℓ (k), (1.86)

where Tℓ(k) are the corresponding transfer functions.
A summary of the current measurements of temperature, E-mode polarization spectra

and their cross correlation, together with the CMB lensing power spectrum measured
by several CMB experiments is shown in Fig. 1.3. The dashed line in the figure is the
ΛCDM best-fit model to the Planck 2018 likelihood.

In chapter 2 we will make use of CMB data in temperature, polarization, and lensing
from Planck Data Release 3 and relative likelihoods [31, 32]. We refer to this dataset as
P18 in the following.

1.7.2 Type Ia Supernoave (SNIa)

A type Ia supernovae originates from the explosion of a white dwarf that have surpassed
the Chandrasekhar mass [33] through accretion of matter from a companion in a binary
system [34]. All SNIa have almost identical intrinsic luminosity and their absolute mag-
nitude is known (after calibration). For this reason and due to the fact that they can be
observed at high redshifts thanks to their immense luminosity they can be used as indi-
cators of the luminosity distance. In particular, SNIa observations measure the distance
modulus µ, which is the difference between the observed and absolute magnitude of a
source [35]:

µ = 5 log10
(
dL/10 pc

)
, (1.87)

where dL is the luminosity distance defined in Eq. (1.14). This quantity is sensitive to
Ωm and ΩΛ and for this reason the study of the SNe Ia luminosity distances led to the
discovery of the accelerated expansion of the Universe [36, 37], providing the first evi-
dence of dark energy. If calibrated, i.e. their absolute magnitude is inferred by measuring
independently the distance of a sample of SNe, they can also proved a competitive mea-
surement of the Hubble constant. Thanks to improvements in calibrations of SNe using
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Figure 1.4: Linear matter power spectrum P (k, z = 0) inferred from different cosmological
probes and the ΛCDM model prediction. The dotted line represents the effect of nonlinear
clustering. Figure taken from [12].

Cepheids variables and together with the expansion of catalogs, the direct measurement
of the Hubble constant with SNIa is now [38]

H0 = 73.04± 1.04 km s−1Mpc−1. (1.88)

This measurement is in 5σ tension with the inference in the ΛCDM model using Planck
CMB data, which gives H0 = 67.36 ± 0.54km s−1Mpc−1. This difference between the
two estimates is known as the Hubble tension and it is one of the most discussed issues
in cosmology at the moment.

In the following chapter we will use the Pantheon catalog of SNIa [39]7 and refer to
it as SN; this dataset is comprised of 1048 measurements of the luminosity distances at
redshifts 0.01 < z < 2.3. In conjunction to this catalog we will consider a prior on the SNe
peak absolute magnitude MB [40] [hereafter p(M)] of MB = −19.2435± 0.0373 mag, or
analogously, a Gaussian prior on the Hubble constant from Eq. (1.88) [hereafter p(H0)].

1.7.3 Galaxies as a probe of the matter distribution of the Uni-
verse

The distribution of matter in the Universe can be modeled using the matter power
spectrum, Pδδ(k, z), which, following the conventions of Eqs. (1.77) and (1.78), is

Pδδ(k, z) = 2π2Ask
−3

(
k

k⋆

)ns−1 [
δ(k, z)

R(k)

]2
, (1.89)

7https://github.com/dscolnic/Pantheon

25

https://github.com/dscolnic/Pantheon


1. Basics of modern cosmology

where, the function δ(k, z) = (δρc + δb)/(ρc + ρb) is the matter density contrast at a
given scale and redshift. Its late-time evolution in the ΛCDM model can be written as
[18]

δ(k, z) = δ(k, z̃)
D(z)

D(z̃)
, (1.90)

where z̃ is an arbitrary redshift corresponding to the beginning of matter domination,
while D(z) is the so-called growth factor, usually normalized to unity today.

Fig. 1.4 shows the matter power spectrum inferred from different cosmological probes
and the ΛCDM prediction, which fits the data quite well, as the black continuous line,
while the dotted line shows the impact of nonlinear clustering at z = 0. Nonlinear
clustering is relevant when the density contrast is δ ≥ 1; in this regime, the formalism
we detailed in section 1.6 is no longer valid. The breakdown of linear perturbation theory
is more relevant on small scales and the onset of the nonlinear regime corresponds to
a scale kNL ≃ 0.25hMpc−1 today. There are several prescription developed to take
into account nonlinearities, the two most used ones, obtained by fitting of cosmological
simulations, are halofit [41–43] and HMcode [44, 45].

The shape of the matter power spectrum depends on the evolution of the pertur-
bations, which in turn depend on gravity; it presents a turnover at a scale of keq ≃
2 × 10−2 hMpc−1 corresponding to the scale that enters the Hubble radius at matter-
radiation equality. The growth of structure on smaller scales, that entered the horizon
during the radiaton era, is suppressed, this is the reason why the matter power spectrum
is a decreasing function of k for k > keq.

The key question is how we can infer the matter distribution from observations of
astronomical objects, mainly galaxies. There are several probes that make use of galaxies
to study the matter distribution of the Universe among which I will briefly introduce
here galaxy clustering, BAO, and weak lensing (WL) citing current observation, while
giving a more thorough description of these probes in the context of the Euclid mission
in chapter 3.

Galaxy clustering

Galaxy clustering refers to the three dimensional distribution of galaxies in the Universe,
obtained by measuring their angular coordinates on the sky and their redshifts. Since
the statistical distributions of galaxies depends on the cosmological model, measuring
their positions provides valuable information to validate/invalidate models and constrain
their parameters. By measuring the positions of galaxies we are not directly probing the
matter distribution of the Universe, which is mostly dark matter, but we can use galaxies
as a tracer of the underlying matter distribution. For this reason we need a modelling
for the relation between the galaxy and matter distribution, the so called galaxy bias. In
the linear regime, the galaxy overdensity can be related to the total matter overdensity
by a scale independent galaxy bias b(z) as

δg = b(z)δ. (1.91)

Although introduced here in general for galaxies, different biases link the matter density
contrast to other matter tracers, such as different types of galaxies or clusters of galaxies.
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Figure 1.5: Sloan Digital Sky Survey (SDSS) galaxy map: A slice of the universe showing
the large-scale structure of galaxies in the northern sky, with us situated at the bottom center.
Each dot is a galaxy and the color is corresponds to the color of the galaxy (red dots represents
redder galaxies) the green-red color of that galaxy (Credit: M. Blanton and Sloan Digital Sky
Survey).

The bias can depend on the scale k.
Additionally, the positions of galaxies are estimated from the measurement of their

redshifts, which depends on two effects: the redshift due to the cosmological expansion
and the redshift (or blueshift) due to peculiar motions. Therefore, the positions of
galaxies appear squashed in redshift space, due to the additional Doppler shift caused by
peculiar velocities, in addition to the redshift caused by the Hubble flow. We distinguish
between redhsift space, where galaxy positions are estimated by their redshift, and real
space, which corresponds to the actual position of galaxies; the relationship between the
redshift space galaxy power spectrum Pgg and the real-space matter power spectrum Pδδ

is
Pgg(k, µk, z) =

[
b(z) + f(z)µ2

k

]2
Pδδ(k, z) , (1.92)

where b(z) is the galaxy bias previously introduced and the last term in the square
bracket describes the RSD at linear level [46]. There, µk ≡ k̂ · n̂ is the cosine of the
angle between the line of sight and the wavevector k, and f(z) is the linear growth rate
defined by f ≡ d lnD(a)/d ln a.

The observational campaigns that measure galaxy clustering are called galaxy red-
shift survey surveys and they are classified in two main categories: spectroscopic and
photometric surveys, depending on how the redshifts of the galaxies are obtained. In
spectroscopic surveys, the spectra of the source is measured and then compared with a
source of the same kind with known emission or absorption lines, looking for character-
istic features. In photometric surveys an the light coming from a galaxy passes through
several filters and it is therefore observed in different wavelength bands, this allows to
convert the images into low resolution spectra and the redshift is obtained with a fit
to a template spectral energy distribution (SED) of a galaxy. The main advantage of
photometry is its speed: in a photometric survey it is possible to collect a larger amount
of redshifts in the same amount of time, compared to an analogous spectroscopic survey,
which, although more precise, will have a smaller sample. The drawbacks of photomet-
ric surveys are the systematics errors, which can be difficult to evaluate and extremely

27



1. Basics of modern cosmology

pernicious if not treated properly.
The first systematic galaxy redshift survey was the Center for Astrophysics (CfA)

redshift Survey [47], which started in 1977 and measured the redshifts of more than
14 000 galaxies up to about z ≃ 0.05. Examples of more modern galaxy surveys are
the Sloan Digital Sky Survey (SDSS)8 and the Dark Energy Survey (DES)9. SDSS is
comprised by a series of photometric and spectroscopic surveys which are ongoing since
the year 2000. The last data release of SDSS-IV, containing more than 1.5 million
galaxies, was in 2020 [48]. Fig. 1.5 shows the map of galaxies constructed by SDSS in
the northern sky up to redshift ≃ 0.14, where each point represents a galaxy.

DES, instead, is a photometric survey, which covered an area of 5000 square degrees
on the sky and observed more than 300 million galaxies. They have provided results
obtained from the photometric survey alone in [49] but the most stringent constraints
come from the combination with WL measurements [50]. This combination of DES
data is consistent with the Planck analysis of CMB data. Also SDSS results on the
determination of the Hubble constant agree with the Planck value [48].

Baryon acoustic oscillations

The peaks and troughs observed in the CMB temperature angular power spectrum
(Fig. 1.3) originate from the acoustic oscillations in the baryon-photon fluid described
in section 1.7.1. These oscillations affect the baryons; in fact, after decoupling from
the photons, at around zd ≃ 1020, a time called baryon drag, the sound waves remain
imprinted in the baryon distribution and, through gravitational interactions, in the dark
matter distribution as well. Thus, dark matter will tend to cluster more on this scale
and galaxies will be more likely to form in correspondence of this BAO scale, which is
determined by the comoving sound horizon at baryon drag rd. This preferred scale, ex-
pected to be observed in the baryon distribution in the Universe appears in observations
as a preferred angular separation of galaxies in the transverse direction, and a preferred
redshift separation of galaxies along the line of sight.

BAO were first observed by the Two-degree-Field Galaxy Redshift Survey as oscil-
lations in the power spectrum of galaxies [57], and by the SDSS [51] as an uptick in
the 2-point correlation function (excess probability of finding two galaxy at a certain
distance with respect to a random distribution), in correspondence of the BAO scale.
The latter result is shown in the left panel of Fig. 1.6.

The fact that galaxies have a preferred clustering scale can be used to probe the expan-
sion of the Universe, in fact BAOs measurements in the transverse direction constrain the
acoustic scale ratio DV (z)/rd, where rd is measured by CMB data to be about 147Mpc,
while the distance DV is

DV (z) =

(
D2

A(z)
c z

H(z)

)1/3

. (1.93)

The BAO measurements in the radial direction, instead, constrain the product H(z)rd
and since rd is precisely measured from Planck data, the BAO measurement corresponds

8https://www.sdss.org/, https://www.sdss4.org/, https://classic.sdss.org/home.php
9https://www.darkenergysurvey.org/
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Figure 1.7: Left: Illustration of the deflection of the light rays of three distant galaxies as they
cross the Universe (Copyright CNRS/IAP/Colombi/Mellier). Right: effect of the propagation
of light through the LSS of the Universe on the observed shapes of galaxies.

to a measurement of the Hubble parameter (right panel of Fig. 1.6).
In chapter 2 we will use BAO data from BOSS DR12 [52]; low-z BAO measurements

from SDSS DR7 and 6dF [58, 59]; Lyman-alpha forest BAO measurements from eBOSS
DR14, and a combination of those [54, 55, 60]. Hereafter we call this combination of
datasets simply BAO. We will also consider the full shape (hereafter FS) of BOSS DR12
power spectrum measurements [61, 62].

Weak lensing

Another important approach to study the matter distribution of the Universe is to ob-
serve the shape of galaxies. General relativity predicts gravitational lensing, i.e., that
light coming from an astronomical source is deflected by intervening matter along the
line of sight; when the deflection is large the effect is called strong lensing. To map the
matter in the Universe, it is more relevant to study the opposite regime, called weak-
lensing: on traversing the inhomogeneous matter distribution in the Universe, light rays
from distant galaxies are weakly deflected and distorted, causing a subtle change in the
shape of observed galaxies. This effect is known as cosmic shear and it is illustrated in
Fig. 1.7. Therefore, in principle, by measuring the shapes of images, the gravitational
field of the large scale structure of the Universe can be mapped, and, consequently we
can infer the matter distribution. Cosmic shear is a very small effect: it typically causes a
distortion in the image of a source much smaller than the intrinsic ellipticity of galaxies.
However, it is still possible to measure cosmic shear by statistically averaging all these
small distortions [63]; in fact, the distortion in the shape of close galaxies is alike since
their light rays are crossing similar gravitational fields, and since there are no preferred
directions in the intrinsic random orientation of galaxies it is thus possible to measure
the distortion which has a preferred direction.

The shear field is the results of the projection of the three-dimensional gravitational
field along the line-of-sight, in fact, we can write a mapping between the lensed (image)
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coordinates θ to the unlensed (source) coordinates β as an integral along the line of
sight:

Aij ≡
∂βi
∂θj

− δij = −2

∫ χS

0

dχ fK(χ)
fK(χS − χ)

fK(χS)
∂i∂jϕN(x(θ, χ)) (1.94)

where i, j represent the directions on the sky and χS is the comoving distance to the
source, ϕN = ΦB is the gravitational potential defined in Eq. (1.37), equal to the Bardeen
potential (1.35), and fK was defined in Eq. (1.11). The matrix Aij is usually parametrized
as

Aij =

(
1− k − γ1 −γ2

−γ2 1− k + γ1

)
, (1.95)

where k, which encodes the magnification of the image, is called convergence, and γ1,
and γ2 are the components of the shear, as they describes the distortion in the shapes of
the images.

The first measurements of cosmic shear were reported in the year 2000 by several
groups almost simultaneously [64–66], since then several refined measurements followed.
As anticipated earlier in the context of galaxy redshift surveys, DES provides, in addition
to galaxy clustering measurements, cosmic shear observation and cross correlation with
galaxy clustering. Cross correlating galaxy clustering with cosmic shear is not only useful
to obtain tighter constrains but also to break degeneracies between parameters and to
reduce systematics as they differ for each probe.

1.8 Summary of the standard model of cosmology

Parameter Value

ωb 0.02242± 0.00014

ωc 0.11933± 0.00091

H0 [km s−1Mpc−1] 67.66± 0.42

τreio 0.0561± 0.0071

ln(1010As) 3.047± 0.014

ns 0.9665± 0.0038

Table 1.1: Constraints from [1] on the ΛCDM parameters at 68% CL considering the combi-
nation P18+BAO.

The standard cosmological model, also known as the ΛCDM model or concordance
model, explains successfully the current cosmological observations described in sec-
tion 1.7. This model assumes flat spatial sections (Ωk = 0.001± 0.002 [1]), postulates all
dark matter to be cold and that the current acceleration in the expansion of the Universe
is due to a cosmological constant Λ. In the ΛCDM model, primordial fluctuations are
Gaussian and described by the power law (1.77), with by an amplitude As and a spectral
index ns.
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1. Basics of modern cosmology

ΛCDM fits most of the current cosmological observations with only six free parameters:

• Ωb, the baryon energy density today,
• Ωm, the total matter energy density today, or Ωc, the cold dark matter energy

density today,
• H0 the Hubble constant,
• τ , the Thomson scattering optical depth at reionization,
• As, the amplitude of the primordial power spectrum,
• ns the scalar spectral index of the primordial power spectrum.

It is often common to consider the following parameters ωi = Ωih
2(i = m, b, c) instead

of directly using the density parameters, moreover, when considering galaxy clustering,
the parameter σ8 is used in place of As as it is more easily accessible to galaxy surveys.
This parameter represents the amplitude of mass fluctuations smoothed on a scale of
8 h−1Mpc

σ2
8 =

∫
dk

k

k3Plin(k)

2π2

∣∣WTH(kR8)
∣∣2 , (1.96)

where WTH is a top-hat filter in Fourier space. Since As enters linearly in the power
spectrum it is linearly related to σ2

8, which can then be considered as the normalization
of the power spectrum. The values of the ΛCDM parameters inferred by the Planck
collaboration using a combination of CMB and BAO data are reported in Table 1.1.

This set of parameters can extended to study alternative models or to probe deviations
from the standard model. One example is the CPL parameterization [67, 68] where the
equation of state of dark energy is time dependent:

wDE(z) = w0 + wa
z

1 + z
, (1.97)

consequently the model takes the name w0waCDM. Other common extensions are to
fit the sum of the neutrino masses to the data or the so called µ,Σ parameterization
of modified gravity. Other alternatives are models built upon an underlying theory
of gravity different from GR, these models often try to explain dark energy by different
means than a cosmological constant and they will be the topic of chapter 2. Models where
DM is composed by a mixture of cold and warm/hot dark matter are also systematically
studied by the community.

There are several motivations to study extended cosmological models, the most obvious
one is to compare them to the standard model in how well they can fit the data. Another
one is to provide a better explanation to the nature of dark matter and dark energy. A
final one is to potentially help alleviating the tensions on some ΛCDM parameters coming
from different cosmological observations [69–71].
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Chapter 2

Current and novel constraints on modi-
fied gravity
Einstein’s theory of General Relativity, upon which the standard cosmological model
is built, has had remarkable experimental success and its extensions and modifications
cannot be completely justified by experimental reasons. Motivations to look beyond GR
arise naturally in the context of fundamental physics and cosmology, in fact, the nature
of DE and DM is still uncertain and modifications to the laws of gravity on cosmological
scales provide a possible explanation. For these reasons, a plethora of new proposals
has emerged, ranging from parametrizations to probe deviations from GR [7, 72] to
extensions of GR.

Scalar-tensor theories (STTs) of gravity are one of many such proposal, the first theory
of this kind was originally conceived by Jordan [73] and later by Brans and Dicke [74],
formalizing Dirac’s idea of a time-dependent Newton’s constant [75]. The gravitational
constant is in fact a function of a time-dependent scalar degree of freedom in STTs.
More formally, STTs are characterized, in addition to the metric tensor, by the presence
a scalar field nonminimally coupled to the Ricci scalar R but not coupled with matter
at the Lagrangian level, guaranteeing in this way that the weak equivalence principle is
satisfied [76]. Therefore, the local value of the gravitational field is determined only by
the distribution of matter in the Universe, incorporating in this way Mach’s principle,
which states that the global distribution of matter should determine local gravitation.
This is a distinctive characteristic of STTs: the cosmological distribution of matter affects
local gravitational experiments and consequently the strong equivalence principle does
not hold anymore [76].

In this chapter we provide a brief overview of a general class of STTs: Horndeski
theories [77], and then focus on a subset of theories with a minimal set of extra parameters
compared to ΛCDM, continuing the work of [78].

In sections 2.6.2 and 2.6.3 we present novel cosmological constraints on STTs, based
on the research works in [79, 80].

Some of the models described in this chapter are also relevant in the context of the
forecasts for the Euclid mission presented in chapter 5,

2.1 Horndeski action and its special cases

One of the conditions for a STT to be viable is that the scalar field does not induce
an Ostrogradsky instability [81] associated with an Hamiltonian unbounded from below.
To avoid this kind of instabilities it is sufficient to have at most second-order time
derivatives in the equations of motion (EOM) for the scalar field (Klein-Gordon (KG)
equation). Gregory Horndeski constructed in 1974 the most general STT with second
order EOM [77], but its relevance for cosmology has been appreciated only recently
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2. Current and novel constraints on modified gravity

with the rediscovery in the context of Galileons [82–84], which have been proved to be
equivalent to Horndeski theories in Ref. [85]. The action of the theory is

SH =

∫
d4x
√

|g|
(
LH + LM

)
, (2.1)

where |g| is the absolute value of the determinant of the metric tensor gµν , LM is the
matter Lagrangian which does not depend on the scalar field and it is minimally coupled
with the metric gµν . The gravitational Lagrangian LH is given by

LH =G2(σ,X) +G3(σ,X)2σ +G4(σ,X)R +G4,X(σ,X)
[
(2σ)2 − (∇µ∇νσ)(∇µ∇νσ)

]
−1

6
G5,X(σ,X)

[
(2σ)3 − 3(2σ) (∇µ∇νσ)(∇µ∇νσ) + 2(∇µ∇ασ)(∇α∇βσ)(∇β∇µσ)

]
+G5(σ,X)Gµν∇µ∇νσ .

(2.2)

Here, R and Gµν are, respectively, the Ricci scalar and the Einstein tensor introduced
in Eq. (1.4), σ is the scalar field and X ≡ −∇µσ∇µσ/2 = −∂µσ∂µσ/2 = −(∂σ)2/2 its
kinetic term, while □ ≡ ∇µ∇µ is the covariant d’Alembert operator. The functions
G2,3,4,5 depend on the field σ and the kinetic term X, with Gi, σ, Gi,X indicating the
derivative of the ith G function with respect to the scalar field and the kinetic term.
The Lagrangian (2.2) encompasses several models, some of them listed below.

General relativity GR itself is a subclass of Horndenski theory with the G functions
given by G4 = M2

Pl/2 and G2 = G3 = G5 = 0, where MPl = 1/
√
8πG is the reduced

Planck mass.

Quintessence and k-essence K-essence [86–89] corresponds to G2 = G2(σ,X), G3 =
G5 = 0, G4 = M2

Pl/2, while Quintessence [90, 91] is a subset of K-essence with G2 =
X − V (σ) where V (σ) is the potential of σ.

Brans-Dicke (BD) and induced gravity (IG) Brans-Dicke theory [73, 74] is often
discussed by using a different symbol for the scalar field: ϕ, we follow this convention
here. The theory is given by

G2(ϕ, χ) = 2
ωBD

ϕ
χ , G3 = 0 , G4(ϕ) = ϕ , G5 = 0 , (2.3)

where χ ≡ −∇µϕ∇µϕ/2. GR is recovered in the limit ωBD → ∞, and this parameter is
constrained to be ωBD > 40000 by the Cassini probe [92]. Therefore, BD is viable in the
limit of large ωBD, but this fine-tuning, necessary to satisfy the experimental bounds,
makes the model unappealing. To accommodate for the accelerated expansion of the
Universe, BD has to be endowed with a potential V (ϕ) for the scalar field, which enters
the G2 in Eq. (2.3).

The BD model can be recast into an equivalent form known as induced gravity (IG)
[93–95], the two theories are in fact connected by the field redefinition ϕ = ξσ2/2, with
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2.1. Horndeski action and its special cases

ξ = Z/(4ωBD) > 0, and Z = ±1 being the sign of the kinetic term. The IG action is
therefore

SIG =

∫
d4x

√−g
( 1

2
ξσ2R− Z

2
(∂σ)2 − V (σ) + LM

)
, (2.4)

Here, the GR limit corresponds to ξ → 0. The cosmological implications of IG for Z = 1
have been extensively studied in [96–100] and will be discussed in section 2.6.

General nonminimally coupled (NMC) theories A generalization of IG and BD
is obtained by extending the coupling function to the Ricci scalar to be an arbitrary
function of the field F (σ) [101]

SNMC =

∫
d4x

√−g
( F (σ)

2
R− Z

2
(∂σ)2 − V (σ) + LM

)
. (2.5)

These theories have been studied initially in [102–108] and more recently, cosmological
constraints have been obtained on NMC theories depending on the form of the coupling
F (σ) and the potential V (σ). To set the nomenclature we list below some of the models
encompassed by the action (2.5).

• IG itself is a special case of NMC with F (σ) = ξσ2.
• Effectively massless NMC, characterized by F (σ) = N2

Pl + ξσ2, V (σ) ∝ F 2(σ) and
Z = +1, studied in [109, 110], and also in [111], where an additional parameter ∆
is introduced to allow for an imbalance between the effective gravitational constant
Geff between two test masses, and Newton’s constant GN, as Geff(z = 0) = GN(1+
∆)2, while NPl = MPl is kept fixed. The case with ξ = 1/6 is the conformally
coupled (CC) model, while the subclass with ξ as a free parameter is called NMC+
(NMC–) when ξ > 0 (ξ < 0).

• Early modified gravity (EMG), characterized by F (σ) = M2
Pl + ξσ2, and a gener-

alized potential VEMG(σ) = Λ + λσ4/4, always with Z = +1, studied in [112].
We present in section 2.6.2 novel constraints on IG, the effectively massless NMC and
EMG in the so-called phantom branch (Z = −1), and provide Fisher forecasts for the
joint analysis of data from the Euclid mission and several CMB experiments in chapter 5,
for these models in the standard branch (Z = +1).

Kinetic braidings and its extensions: BDG and IGG The most general subclass
of Horndenski theories consistent with the tensor propagation speed ct equal to the speed
of light is given by [113]

S =

∫
d4x
√
|g|
[
G4(σ)R +G2(σ,X) +G3(σ,X)□σ + LM

]
. (2.6)

The so-called kinetic braiding [114, 115] corresponds to the minimally coupled case,
i.e., G4 = M2

Pl/2; this can be generalized by introducing a nonminimal coupling. In
particular, we consider the following G functions

G2 = ZX − V (σ) + 4ζ(σ)X2, G3 = −2g(σ)X, G4 = F (σ)/2, (2.7)
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2. Current and novel constraints on modified gravity

We discuss novel constraints on these models in section 2.6.3.

I have presented the models that are relevant for this thesis, but the Horndeski action
encompasses many others, such as f(R) gravity [116–118], Gauss-Bonnet couplings [119–
122], f(G) gravity [123, 124] and others, for a complete review see [113, 125]. We also
want to point out that the effective field theories (EFTs) of dark energy [126, 127] can
be remapped to Horndeski theories and are therefore equivalent.

2.2 Equations of motion in a FLRW universe

We present the EOM for the action (2.6) with the G functions Eq. (2.7), because this
is the most general theory we will study in the following and all the special cases we
consider can be obtained by specializing the equations to the model under study. For
example, once the EOM for (2.7) have been obtained, to get the IG equations one has
to set F (σ) = ξσ2 and g(σ) = ζ(σ) = 0.

By varying the action with respect to the metric we obtain the modified Einstein field
equation

Gµν =
1

F (σ)

[
T (M)
µν +T (G)

µν +Z
(
∂µσ∂νσ−

1

2
gµν∂

ρσ∂ρσ
)
−gµνV (σ)+(∇µ∇ν−gµν2)F (σ)

]
,

(2.8)

where T (M)
µν = − 2√

|g|
δ(
√

|g|LM)

δgµν
is the energy-momentum tensor of matter and T (G)

µν is the

“Galileon energy momentum tensor”, defined as

T (G)
µν = −2

{
g(σ)∇µσ∇νσ2σ −∇(µ σ∇ν)

[
g(σ)(∂σ)2

]
+

1

2
gµν∇α σ∇α

[
g(σ)(∂σ)2

]
−ζ(σ)

2
gµν(∂σ)

4 + 2ζ(σ)∇µσ∇νσ (∂σ)2
}
,

(2.9)

with ∇(µ σ∇ν) ≡ 1
2

(
∇µ σ∇ν +∇ν σ∇µ

)
.

The KG equation for the scalar field is obtained by varying the action (2.6) with
respect to the field, giving

2σ
[
Z − 4ζ (∂σ)2

]
− 2g

{
(2σ)2 −∇µ∇νσ∇µ∇νσ −∇µσ∇νσRµν

}
− 3ζ,σ (∂σ)

4

+ 4g,σ ∇µσ∇νσ∇µ∇νσ + g,σσ (∂σ)
4 − 4ζ(σ)∇µ[(∂σ)

2]∇µσ +
1

2
F,σ R− V,σ = 0.

(2.10)

Considering a spatially flat FLRW universe: ds2 = −dt2 + a2(t) dx2 , the covariant
Einstein field equations (2.8) reduce to:

3FH2 = ρ+
1

2
Zσ̇2 − 3HḞ + V (σ) + σ̇3

[
6g(σ)H − ġ(σ) + 3ζ(σ)σ̇

]
≡ ρ+ ρσ , (2.11)

−2FḢ =ρ+ p+ Zσ̇2 + F̈ −HḞ + σ̇2
[
(6gH − 2g,σ σ̇)σ̇ + 4ζσ̇2 − 2gσ̈

]
≡ρ+ p+ ρσ + pσ ,

(2.12)
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2.2. Equations of motion in a FLRW universe

where:
ρσ =

Z

2
σ̇2 − 3HḞ + V (σ) + σ̇3

[
6g(σ)H − ġ(σ) + 3ζ(σ)σ̇

]
, (2.13)

pσ =
Z

2
σ̇2 − V (σ) + F̈ + 2HḞ − σ̇4(g,σ −ζ)− 2gσ̇2σ̈. (2.14)

The scalar field equation (2.10) in the FLRW metric takes the following form:

σ̈
(
Z + 12gHσ̇ − 4(g,σ −3ζ)σ̇2

)
− 3F,σ (2H2 + Ḣ) + V,σ +3ZHσ̇

+ 6g(3H2 + Ḣ)σ̇2 + 12Hζσ̇3 − (g,σσ −3ζ,σ )σ̇
4 = 0.

(2.15)

Due to the nonminimal coupling F (σ)R in the Lagrangian, the Newton’s constant
in the Friedmann equations is replaced by a time varying cosmological gravitational
constant Gcosm = (8πF )−1, which depends on the value of the scalar field σ. This means
that in STTs the gravitational effects are encoded not only in the curvature of spacetime
but also in the interaction with the scalar field. We wish to stress the fact that the
coupling constant Gcosm is not the one measured between test masses. The effective
gravitational constant Geff , which can be measured locally, is obtained in the weak field
limit of the theory, and for the model (2.6) is given by [128, 129]

Geff =
1

16πG4

[
4G2

4,σ +G4(G2,X − 2G3,σ)

3G2
4,σ +G4(G2,X − 2G3,σ)

]
. (2.16)

The above expression for Geff is valid only for theories where screening mechanism are
not relevant [128] (see section 2.4).

We define the density parameters for radiation (r), pressureless matter (m) and the
scalar field (σ) following the notation of Ref. [96]:

Ω̃i =
ρi

3FH2
≡ ρi
ρcrit

(i = r,m, σ). (2.17)

It is also useful to define the dark energy density and pressure parameters in a framework
that mimics Einstein gravity at the present time, this is done by rewriting the Friedmann
equations as [96, 101, 130]

3F0H
2 = ρ+ ρDE , −2F0Ḣ = ρ+ p+ ρDE + pDE , (2.18)

which leads to

ρDE =
F0

F
ρσ + ρ

(
F0

F
− 1

)
; pDE =

F0

F
pσ + p

(
F0

F
− 1

)
. (2.19)

Thus, in this framework we can define the effective parameter of state for DE as wDE ≡
pDE/ρDE and the density parameters mimicking radiation, matter and DE in Einstein
gravity are

Ωi =
ρi

3F0H2
(i = r,m,DE). (2.20)

Note that the definitions in Eqs. (2.17) and (2.20) coincide at the present time z = 0:
Ω̃0,i = Ω0,i.
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2. Current and novel constraints on modified gravity

2.3 Stability conditions

We present in this section the stability conditions both in the scalar and tensor sector.
Scalar-tensor theories can suffer from instabilities if the kinetic term in the Lagrangian

is nonstandard, i.e., Z = −1 (phantom branch), and G3 = 0. In order to be viable a STT
has to satisfy certain stability conditions that guarantee that scalar field is not a ghost
and the propagation of its perturbation respects causality. More precisely, Laplacian
instabilities arise if the square of the speed of sound becomes negative, while ghost
instabilities take place when the sign of the kinetic term is negative in the second-order
action for scalar perturbations. The theory given by the action (2.6) is healthy, meaning
it does not incur in these instabilities if the following conditions are satisfied [131, 132]

qs ≡ 4G4

{
G2X+2G3σ+σ̇

[
(G2XX+G3Xσ)σ̇−6G3XH

]}
+3(2G4σ+G3X σ̇

2)2 > 0, (2.21)

c2s ≡
[
4G2XG4 + 8G3σG4 +

(
6G2

4σ −G3X σ̇
2
) (

2G2
4σ +G3X σ̇

2
)

− 8G4

(
G3X σ̈ + 2G3XHσ̇ +G3Xσσ̇

2
) ]
/qs > 0.

(2.22)

Eqs. (2.21) and (2.22) show that even in IG in the phantom branch with 0 < ξ < 1/6
(ωBD < −3/2) – a region in parameter space that would contain a ghost – the instability
can be avoided if we add a Galileon term G3(σ,X)2σ in the Lagrangian.

Considering the tensor sector, it is possible to identify the conditions for the absence
of ghost and Laplacian instabilities by expanding the Horndeski action Eq. (2.2) up to
second order in tensor perturbation. The conditions are for the cosmological Planck
mass and the tensor speed of sound squared to be positive:

qt ≡ 2G4 − 2σ̇G4,X + σ̇2G5,σ −Hσ̇3G5,X > 0, (2.23)

c2t =
1

qt

(
2G4 − σ̈G5,σ − σ̇2σ̈G5,X

)
> 0. (2.24)

For the action (2.6) they simply reduce to G4(σ) > 0. This constraint is automati-
cally satisfied by our choice of parameters since we consider G4(σ) = F (σ)/2 with the
dependence of F on the scalar field as ξσ2 and ξ > 0.

Moreover, we note that the speed of gravitational waves given by Eq. (2.24) can be
different from the speed of light (c = 1), while it is always equal to unity in the models
(2.6) we consider.

2.4 Screening

STTs modify the gravitational interaction on cosmological scales, but the scalar degree
of freedom can also leave imprints on scales unaffected by the cosmological expansion,
such as the Solar System, where deviations from GR are strongly constrained. Therefore,
a modified gravity (MG) theory should either have small deviations from GR in local
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2.4. Screening

regions of the Universe or be equipped with a mechanism that suppresses the effect
of the scalar field in high density regions, while leaving its cosmological repercussions
unaltered. In STTs, there are several types of this kind of mechanisms, called screening
mechanisms, such as the chameleon effect [133, 134], the symmetron [135, 136] and
k-Mouflage models [137]. The mechanism relevant for this thesis, as it is typical of
the cubic Galileon Lagrangian L = X2σ considered here, is the so-called Vainshtein
screening [138], for which we illustrate the basics results in a cosmological background.

Vainshtein screening

The Vainshtein screening is a mechanism that operates in theories with a self-interaction
of the form X2σ: this Galileon term leads to the decoupling of the scalar field from
matter and the remaining degrees of freedom within a radius rV, known as the Vain-
shtein radius. Inside the Vainshtein radius (r < rV), the theory of gravity is indistin-
guishable from GR: the behavior of the gravitational potentials is Newtonian and the
post-Newtonian parameters are those of GR, while the gravitational constant on small
scales is given by the cosmological gravitational constant GN = Gcosm = 1/(16πG4) [139].
For the Sun, the Vainshtein radius can be of the order of 100 pc, this guarantees that
the effect of modifications of gravity cannot be observed in the scales of star systems or
galaxies.

It was shown in Refs. [139, 140] that the Vainshtein mechanism cannot suppress the
time variation of the gravitational constant, which is due to the cosmological background
evolution of the scalar field: the mechanism is not able to set the coupling constant
of gravity (the gravitational constant or equivalently σ0). It is only the cosmological
evolution of the scalar field that determines the value of the coupling constant of GR
observed on small scales today.

The Vainshtein radius in a cosmological background, for a spherical celestial object of
mass δM , is [139]

rV =
(
BCµ/H2

)1/3
, (2.25)

where µ = δM/(16πG4), B and C are functions of the Hordenski functions Gi, and their
explicit forms are written at the end of the section. If the product BC is of order 1, then
the Vainshtein radius can be written, taking H0 = 70 km s−1Mpc−1, as

rV =

(
µ

H2

)1/3

≃ 100

(
H0

H

)2/3(
δM

M⊙

)1/3

, (2.26)

giving for the Sun, at present time rV⊙ ≃ 100 pc. After having solved for the back-
ground evolution of the Universe, we will evaluate Eq. (2.25) directly, showing that the
assumption BC = O(1), useful for the estimate above, is valid in the late Universe.

B and C functions For a theory given by Eq. (2.6), B, C and the functions that define
them, are

B ≡ 4β0
α0 + 2α1α2 + α2

2

, (2.27)
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C ≡ α1 + α2

α0 + 2α1α2 + α2
2

, (2.28)

where

αi(t) ≡
Ai

GT

, β0(t) ≡
B0

GT

, (2.29)

with

β0 ≡
α1

2
+ α2 (̸= 0), (2.30)

and

FT ≡ 2G4 ≡ GT , E ≡ 2XG2X −G2−6Xσ̇HG3X +2XG3σ−6H2G4−6Hσ̇G4σ, (2.31)

P ≡ G2 + 2X (G3σ + σ̈G3X) + 2
(
3H2 + 2Ḣ

)
G4

+2 (σ̈ + 2Hσ̇)G4σ + 4XG4σσ, (2.32)
Θ ≡ σ̇XG3X + 2HG4 + σ̇G4σ, (2.33)

A0 ≡
Θ̇

H2
+

Θ

H
− GT − 2

ĠT

H
− E + P

2H2
, A1 ≡

1

H
ĠT + GT −FT , (2.34)

A2 ≡ GT − Θ

H
; B0 ≡ −X

H
σ̇G3X . (2.35)

2.5 Current constraints on modified gravity and STTs

The current status of observations and tests of gravity is illustrated in Fig. 2.1, taken
from Ref. [141]. Gravity is parameterized by a gravitational potential E ≡ GM/r and
the curvature of space ξ ≡ GM/r3. M and r are, respectively, the mass and radius
of a spherical object. The strong gravity regime (large ξ) has been extensively tested
with Solar System and binary pulsar observations, while, as the figure shows, the weak
gravity regime (small ξ) is mostly unexplored, with only cosmological observations being
relevant at those scales.

In the previous section we saw that many MG theories are equipped with a screen-
ing mechanism which hides the modifications to gravity at small scales and/or dense
environments, rendering impossible to discriminate between models in those regimes.
Therefore, cosmological observations play a crucial role in our understanding of gravity
as it is only on those scales that the modifications to GR emerge in many alternative
theories.

In this section I provide a brief overview of some of the most relevant constraints
on MG: the measurement of the speed of gravitational waves, big-bang nucleosynthesis,
local (Solar System and laboratory) experiments and cosmological observations.
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Figure 2.1: Left: Gravitational field’s parameter space. The horizontal lines represent the
curvature of the Universe at BBN and at last scattering, while the other one is the curvature as-
sociated with the cosmological constant. The acronyms are MS: main sequence stars, WD: white
dwarfs, NS: neutron stars, BH: stellar mass black holes, SMBH supermassive black holes, PSRs:
binary pulsars, MW: Milky Way, SS=Solar System planets. Right: Experimental version of
the gravitational field’s parameter space. The abbreviations are PPN: Parameterized Post-
Newtonian regime, Inv.Sq.: laboratory tests of inverse square law of gravitation, Atom: atom
interferometry experiments, EHT: Event Horizon Telescope, ELT: Extremely Large Telescope,
DETF4: hypothetical “stage 4” experiment according to the classification of [142], Facility:
future large radio telescope such as the Square Kilometer Array Observatory (SKAO). Both
figures taken from Ref. [141].
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2.5.1 Constraints from gravitational waves

In the general Horndenski theories (2.2) the speed of propagation of gravitational waves
is given by Eq. (2.24) and it can differ from the speed of light (c = 1) [113], this feature of
the theory has allowed to rule out several terms of the Horndenski Lagrangian when the
observation of the neutron star merger GW170817 and its electromagnetic counterpart
GW170817A [143–145] has demonstrated that gravitational waves travel at the speed
of light with a precision of −3.5 × 10−15 ≤ ct − 1 < 7 × 10−16. This observation alone
has invalidated theories that would otherwise be viable if tested only with cosmological
datasets: any possible dependence of G4 on the kinetic term has been tightly constrained,
and likewise all the terms depending on G5 in (2.2) [113, 146, 147] (see also [148] for a
different take on the issue).

2.5.2 Constraints from big-bang nucleosynthesis

The abundances of light elements produced during BBN depends on the expansion of the
Universe which in turn depends on the gravitational constant. Theories where this con-
stant is time-dependent modify therefore the abundances of light elements with respect
to the standard predictions of GR. The variation of the gravitational constant from the
time of BBN to today has been measured, using BBN data, first in Refs. [149, 150] where
they found GBBN/G0 = 1.01+0.20

−0.16 at 68% CL, and recently in [151] which presented the
strongest constraint: GBBN/G0 = 0.99+0.06

−0.05.

2.5.3 Constraints from Solar System and laboratory observa-
tions

Deviations from GR are strongly constrained by Solar System tests. These deviations are
often parameterized in the so-called post-Newtonian (PN) formalism, which completely
characterizes the weak field limit of the theory. In NMC models only the parameters
γPN and βPN can differ from the GR value of 1; thus the line element can be expanded
as function of these two parameters and the gravitational potential Φ as

ds2 = −
(
1 + 2Φ− 2βPNΦ

2
)
dt2 + (1− 2γPNΦ) dxidx

i. (2.36)

Measuring or putting bounds on γPN and βPN therefore means constraining the param-
eters of STTs such as ωBD.

Solar System bounds

The post-Newtonian parameter γPN has been constrained from measurement of Shapiro
time delay [152]: a radar signal sent across the Solar System past the Sun and returned
to Earth after being reflected by some object (a planet or a satellite) is subject to a time
delay [7]

δt ≃ 1

2
(1 + γPN)

240− 20 ln

(
d2

r

)µs, (2.37)
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2.5. Current constraints on modified gravity and STTs

Figure 2.2: Left: Current constraints on the post-Newtonian parameters, from [142]. Right:
Measurements of the gravitational constant in different experiments, from [155]. This work
(TOS) and (AAF) refer to the methods used in [155] to measure G and stand for measure-
ments using torsion pendulum experiments with the time-of-swing method and the angular-
acceleration-feedback method

where d is closest distance of the light ray from the Sun and r is the distance from the
Sun (in astronomical units) of the planet or satellite on which the signal has bounced.
The best measurement of this kind was performed in 2003 by the Cassini spacecraft
while on its way to Saturn, giving γPN − 1 = (2.1± 2.3)× 10−5. This constraint can be
converted into bounds on STTs without a screening mechanism such as BD (IG) which
predict γPN ≤ 1, the resulting limit is ωBD > 40000 (ξ < 6.25× 10−6).

It is also possible to constrain STTs from the observed bound on the second PN
parameter βPN which can be obtained from observations of the shift in the perihelion of
the orbit of Mercury. The measurement depends on a combination of γPN and βPN, and
once the Cassini constraint on the first PN parameter is assumed one obtains βPN − 1 =
(4.1± 7.8)× 10−5 [7].

Laboratory experiments

The effective gravitational constant measured between test masses in Cavendish-like ex-
periments is given by Eq. (2.16), therefore precise measurements translate in constraints
on STTs and they can also probe screening mechanisms and the presence of Galileon
fields [153]. Very precise torsion balances and atom interferometry are among the mod-
ern techniques used for the measurement of G [154]. The 2018 CODATA reccomended
value is 6.67430(15) × 10−11m3 kg−1 s−2, but as it can be seen from the right panel of
Fig. 2.2 different experiments are in tension and their estimates differ on the 4th digit
after the comma. In particular, the two most precise measurements, obtained using
two independent methods, are, in units of 10−11m3 kg−1 s−2 [155], 6.674184(78) and
6.674484(78), which results in a 2.7σ difference.
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2.6 Cosmological constraints

In this section we first present a selection of constraints obtained using cosmological
datasets on some of the simplest STTs of gravity such as IG, NMC, EMG with a standard
sign of the kinetic term (Z = 1). This is not an exhaustive summary: there are various
attempts at constraining subclasess of the Lagrangian (2.2), both considering a particular
form of theG functions or using parametrizations of the Horndenski action. See e.g. [156–
161]. We then discuss novel constraints on STTs both with standard and nonstandard
(Z = −1) sign of the kinetic term, in sections 2.6.2 and 2.6.3.

The results and the plots for the cosmological dynamics and the observables in these
sections are produced using a modified version of CLASSig [98]. To obtain the results, we
have carried out a Markov chain Monte Carlo analysis (hereafter MCMC, see appendix A)
using the publicly available sampling code MontePython-v31 [162, 163] connected to the
aforementioned version of CLASSig. For the sampling, we use the Metropolis-Hastings
algorithm with a Gelman-Rubin [164] convergence criterion R − 1 < 0.01, and the re-
ported mean values and uncertainties on the parameters, together with the contour plots
have been obtained using GetDist2 [165]. We consider combinations of the datasets and
likelihoods presented in chapter 1 (P18, BAO, FS, SN, p(M) or p(H0)), sampling on
the standard parameters, i.e. ωb, ωc, H0, τ , ln

(
1010As

)
, ns, and the modified gravity

parameters, assuming two massless neutrinos with Nur = 2.0328, and a massive one with
minimum mass mν = 0.06 eV. The primordial 4He mass fraction Yp in the analysis is
fixed according to the prediction of PArthENoPE [166, 167] and taking into account the
relation between the baryon fraction ωb and the varying gravitational constant which
modifies the expansion rate of the Universe during BBN.

We report the difference in the model χ2 with respect to ΛCDM: ∆χ2 ≡ χ2−χ2
ΛCDM ≡

−2 lnL − 2 lnLΛCDM, where L is the likelihood function defined in appendix A. Thus,
negative values of ∆χ2 indicate an improvement in the fit compared to ΛCDM. The
minimum χ2 is computed following the minimization method of Ref. [168]. Additionally,
we quote the Akaike information criterion (AIC) [169] of the extended model M relative
to that of ΛCDM: ∆AIC = ∆χ2 + 2(pM − pΛCDM), where pM is the number of free
parameters of the model.

2.6.1 IG, NMC and EMG in the standard branch

Constraints on IG

The tightest constraints on IG (2.4) were obtained in [110] using a combination of Planck
CMB data and BAO data, which provide ξ < 0.00055 at 95% CL, corresponding to an
estimate of the post-Newtonian parameter |γPN − 1| < 0.0022 at 95% CL; they also
provide a limit on the time variation of the gravitational constant from the radiation era
to today in this class of models: δGcosm/Gcosm(z = 0) > −0.016 (95% CL).

1https://github.com/brinckmann/montepython_public
2https://getdist.readthedocs.io/en/latest/
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2.6. Cosmological constraints

Constraints on NMC

For an effectively massless NMC (2.5) with Z = +1, P18+BAO give [110] NPl <
1.000018MPl at 95% CL for the CC model, instead when ξ is allowed to vary, the
results are NPl > 0.64MPl and ξ < 0.046 for NMC+; and NPl < 1.05MPl, ξ > −0.042
for NMC–. The derived constraints on the time variation of the Gravitational constant
and the PN parameters, for the CC case are, at 95% CL

δGcosm

Gcosm(z = 0)
> −0.017, γPN > 0.999982, βPN < 1.000001. (2.38)

Note that, while in IG γPN ≲ O(10−3), the above bounds on the PN parameters γPN and
βPN are tighter than the analogous Solar System measurements given in section 2.5.3.

With the inclusion of a prior on the value of H0 = (74.03 ± 1.42) km s−1Mpc−1 the
inferred value of the Hubble constant is H0 = (70.1± 0.8) km s−1Mpc−1 at 68% CL for
IG, and H0 = (69.64+0.65

−0.73) km s−1Mpc−1 at 68% CL for CC. This is due to the fact that
there is a degeneracy between H0 and ξ which can accommodate for a larger H0 with
respect to ΛCDM. The Hubble tension is reduced to a significance of 2.7σ (3.2σ) for P18
in IG (CC). All these results are stable when switching to a flat potential V (σ) = Λ.

Cosmological bounds on the gravitational constant

In Ref. [111] a variant of the effectively massless NMC model in the standard branch
with an new parameter ∆ is considered. This allows for an imbalance between the
effective gravitational constant Geff between two test masses, and Newton’s constant
GN: Geff(z = 0) = GN(1 + ∆)2, while NPl = MPl is kept fixed. The models studied
are IG, CC and NMC in general. We report the results of Ref. [111] obtained for a
combination of CMB, BAO and a prior on H0 from Ref. [170].

For IG, at 68% and 95% CL respectively, ∆ = −0.026 ± 0.024 and 103ξ = 0.74+0.52
−0.54,

corresponding to a 2.5σ detection of the coupling ξ. The constraints on the ratio of the
effective gravitational constant correspond to Geff/GN = 0.949± 0.048 at 68% CL.

The CC case is tightly constrained: 10−5∆ = 2.01+0.86
−0.97 and Geff/GN = 1.000040+0.000017

−0.000019

at 68% CL.
The results for NMC+ (NMC–) are ∆ = −0.0072+0.0053

−0.0020 (< 0.030) at 68% (95%) CL;
while, the constraints on the ratio of the effective gravitational constant correspond to
Geff/GN = 0.986+0.011

−0.0041(< 1.06) at 68% (95%) CL.
Moreover, for IG, NMC+, NMC– respectively, the inferred value of H0 is 70.04±0.83,

69.76± 0.80 and 69.97+0.82
−0.97 km s−1Mpc−1, reducing therefore the Hubble tension.

Constraints on early modified gravity

Early modified gravity, defined in section 2.1, was studied and constrained with cosmo-
logical datasets in Ref. [171] for Z = +1. In this model, the scalar field, grows around
recombination and then undergoes a series of damped oscillations reaching σ = 0. For
this reason, late-times modification of gravity are suppressed and the model passes the
laboratory and Solar System tests of gravity.
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They perform the data analysis with a variety of cosmological datasets, showing a
substantial reduction of the Hubble tension to 1.7σ, when considering CMB, BAO, SN,
and FS, obtaining H0 = 71.00+0.87

−0.79 km s−1Mpc−1 at 68 % CL. For this dataset the limits
on the nonminimal coupling constant and the first post-Newtonian parameter are, re-
spectively, ξ < 0.42 at 95% CL and γPN − 1 > −1.7× 10−9 at 95% CL.

We have highlighted the main cosmological constraints on the simplest STTs of gravity,
and in chapter 5 we will present forecasts showing how these constraints can be tightened
when considering the data of the Euclid mission in combination with CMB experiments.

2.6.2 IG, NMC and EMG in the phantom branch

In this section we study the cosmological dynamics and provide constraints on IG,
NMC+, NMC–, EMG in the phantom branch (Z = −1); the results presented are based
on the research work in [79]. IG and NMC are studied with a potential V (σ) = λF 2(σ)/4,
while, for EMG, the potential is V = Λ+ λσ4/4. In contrast to the standard branch, in
EMG phantom λ is negative in order to produce damped oscillations in the evolution of
the scalar field.

The equations of motion for the background evolution in a FLRW universe are given
by Eqs. (2.11), (2.12) and (2.15) with g(σ) = ζ(σ) = 0, joint with a choice of the
nonminimal coupling function F (σ) and the potential V (σ) corresponding to the model
considered. Analogously, the linearly perturbed Einstein and scalar field equations can
be obtained from the ones given in full generality in appendix B.

In these models, the effective gravitational constant (2.16) for the force between two
test masses is

Geff =
1

8πF

ZF + 2F 2
,σ

ZF + 3
2
F 2
,σ

, (2.39)

while the post-Newtonian parameters evaluated at present time are

γPN = 1− F 2
,σ

ZF + 2F 2
,σ

, βPN = 1 +
1

4

FF,σ

2ZF + 3F 2
,σ

dγPN
dσ

. (2.40)

From the equations above we can see that constraints on the nonminimal coupling func-
tion F and its derivative F,σ translate into bounds on the PN parameters; while these
parameters are strongly constrained by Solar System tests as we’ve seen in section 2.5.3,
they are weakly constrained by current cosmological data, but combinations of future
cosmological surveys could be competitive with Solar System measurements [111, 172,
173].

The stability conditions of the theory, given in general by Eqs. (2.21) and (2.22),
simply reduce to

Geff > 0 ,
ZF

F 2
,σ

> −3

2
, (2.41)

where the last inequality is equivalent to the requirement of positivity of the kinetic
energy of the scalar field in the Einstein frame [174]. For Z = −1 Eqs. (2.41) reduce
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to −3/2 < −FF 2
,σ < 0 and F > 0. In principle, these requirements restrict the allowed

parameter space for the parameters entering in F (σ), nonetheless, in the following we
will also include models whose parameters violates the stability conditions and test them
in an agnostic way.

Phantom induced gravity

In phantom IG we impose the boundary condition on the value of the effective grav-
itational constant today to be equal to the Newton’s constant measured on Earth:
Geff(z = 0) = GN, in this way we fix the current value of the scalar field.

Due to the evolution of the scalar field and consequent time dependence of the grav-
itational constant, STTs modify the expansion rate of the Universe. In a model with a
nonminimal coupling F (σ), this modification is

H(ξ ̸= 0)

H(ξ = 0)
≈
√

M2
Pl

F (σ)
. (2.42)

Decreasing the Planck mass F (σ) < M2
Pl with respect to the GR value increases the

expansion rate at a given time, reducing therefore the comoving sound horizon at recom-
bination

rs =

∫ ∞

zrec

dz′
cs(z

′)

H(z′)
, (2.43)

where zrec is the redshift of recombination and cs is the speed of sound in the photon-
baryon fluid.

In left panel of Fig. 2.3 we show that the nonminimal coupling function F increases
in the standard branch (solid lines) while it is a decreasing function of redshift in the
phantom branch (dashed lines). The different behaviour of F in the two branches is
connected to a different late-time evolution of the Hubble parameter through Eq. (2.42):
H is larger than in ΛCDM in the standard branch, and smaller in the phantom branch,
as it can be seen from the right panel of Fig. 2.3. This also induces modifications on all
the distances that depends on H, such as the comoving angular diameter distance

DM(z) =

∫ z

0

dz′

H(z′)
, (2.44)

but does not cancel out on the observed angular size of the sound horizon at the last-
scattering surface θ∗

θ∗ =
rs

DM(z∗)
, (2.45)

resulting in a shift of the acoustic peaks of the CMB, connected to the evolution of the
coupling F [110, 175, 176]. In Fig. 2.4, we show how this shift of the acoustic peaks of
the CMB temperature anisotropies angular power spectrum is related to the evolution of
F , equivalent to a time evolution of the Planck mass: in the standard branch the peaks
are shifted to the right while they move to the left in the phantom one. The standard
ΛCDM model fits CMB data quite well, therefore these shifts need to be compensated
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Figure 2.3: Left: time evolution of the nonminimal coupling function F = ξσ2 to the Ricci
scalar. Right: redshift evolution of the Hubble parameter. Different values of the coupling
parameter ξ are considered in the standard (solid lines) and phantom branch (dashed lines) for
IG (F = ξσ2, V = λF 2/4).
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Figure 2.6: Left: redshift evolution of σ8. Right: relative differences of the linear matter
power spectrum at z = 0 with respect to ΛCDM. Different values of the nonminimal coupling
parameter ξ are considered in the standard branch (solid lines) and in the phantom one (dashed
lines) for IG (F = ξσ2, V = λF 2/4).

by some other parameters that change with respect to ΛCDM: the two branches prefer
larger or smaller values of the total matter density Ωm while keeping constant the CDM
fraction. This can be seen from Fig. 2.5 where we present constraints, obtained using
only CMB data, on IG in the phantom branch compared to the standard case. In the
figure, in the plane ξ-H0 the degeneracy changes orientation going from one case to the
other according to Eq. (2.42). The main result we want to emphasize from this CMB-
only analysis is that in the phantom branch the allowed values of the coupling ξ are
larger, while the inferred value of the Hubble constant is lower, without reducing the H0

tension. This study highlights the correspondence between the kinetic term and spatial
curvature: the standard (phantom) kinetic term shifts the position to the right (left) as
it happens in a universe with negative (positive) spatial curvature.

In the phantom branch, σ8 is smaller when when compared to its value both in the
standard branch and in the ΛCDM model as we show in Fig. 2.6. This result can be
understood considering the late-time solution of the perturbation equation for the matter
density contrast in the linear regime, on sub-horizon scales

δ′′m +

(
3

a
+
H ′

H

)
δ′m − Geff

2GH2

ρm
a2
δm ≃ 0 , (2.46)

with primes denoting derivatives with respect to the scale factor a. Making use of the
Friedmann equations and the fact that in the matter era the field evolves as σ ∼ a2Zξ

[96], it is possible to rewrite Eq. (2.46) as

δ′′m +
3

2a

(
1− 4Zξ

3

)
δ′m − 3

2a2

(
1 +

16Zξ

3

)
δm ≃ 0 . (2.47)

The leading order solution of Eq. (2.47) in the weak coupling regime (ξ ≪ 1), which is
the range allowed from observations, is δm ∼ a1+4Zξ, this implies a slower (faster) growth
of structures compared to ΛCDM for Z < 0 (Z > 0) during matter domination.

The results of our MCMC analysis for several combinations of datasets are shown in
Fig. 2.7 and section 2.6.2, where the constraints on all the parameters can be found.
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The less constraining analysis is the one without CMB information, comprising only of
a combination of FS with SN and a Gaussian prior on ωb motivated by BBN; in this
case, but also for the CMB-only analysis, larger value of ξ are allowed thanks to changes
in the density parameters and in the scalar spectral index. Focusing on the coupling
parameter to the Ricci curvature: the upper limit on ξ at 95% CL is < 0.0024 for
FS+SN, < 0.0018 for P18, < 0.00046 for P18+BAO, and < 0.00040 for P18+BAO+SN.
For the Hubble constant H0

[
km s−1Mpc−1

]
, the marginalized means and uncertainties

at 68% CL are to 67.4 ± 1.8 for FS+SN, 63.6+2.7
−1.9 for P18, 67.17+0.64

−0.50 for P18+BAO,
67.29+0.60

−0.47 for P18+BAO+SN; in all cases lower than the corresponding results found in
the standard branch (see section 2.6 and Refs. [110, 177]). Adding a prior on H0, the
upper bound on ξ becomes much tighter: ξ < 0.00016 at 95% CL, while the Hubble
constant increases only marginally: 68.34± 0.41 at 68% CL.

The results of our analysis on today’s value of σ8 are, at 68% CL, 0.717 ± 0.049 for
FS+SN, 0.784+0.021

−0.015 for P18, 0.799+0.010
−0.009 for P18+FS, and 0.8059±0.0058 for P18+FS+SN.

However, the quantity commonly used to quantify the tension between Planck and weak
lensing of galaxies measurements is the combination S8 ≡ σ8

√
Ωm/0.3, for which we find

51



2. Current and novel constraints on modified gravity

2.20 2.25
10 2

b

0.75

0.80

8

0.80

0.85

0.90

S 8

0.8

0.9

N
Pl

[M
Pl

]

0.005

0.030

0.055

148

150

152

r s
[M

pc
]

0.30

0.35

0.40

0.45

m

56

60

64

68

H
0
[k

m
s

1
M

pc
1 ]

0.95
0.96
0.97
0.98

n s

3.00

3.05

3.10

ln
10

10
A s

0.116

0.120

0.124

cd
m

0.117 0.123
cdm

3.01 3.05 3.09
ln1010As

0.96 0.98
ns

56 60 64 68
H0 [km s 1 Mpc 1]

0.32 0.40
m

148 150 152
rs [Mpc]

0.02 0.04 0.8 0.9
NPl [MPl]

0.80 0.85
S8

0.75 0.80
8

P18
P18 + BAO
P18 + BAO + SN
P18 + BAO + SN + p(H0)
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Pl + ξσ2, V = λF 2/4) in the phantom branch (Z = −1).

0.744± 0.050 for FS+SN, 0.850+0.016
−0.019 for P18, 0.831+0.011

−0.012 for P18+FS, and 0.825± 0.012
for P18+FS+SN at 68% CL, resulting to be larger than in the standard branch as shown
in Fig. 2.5.

The constraints found for IG are at odds with the region of parameter space free from
ghosts, which corresponds to ξ > 1/6. In general, this condition for ξ can be relaxed
if one considers the more general Lagrangian (2.6) for which the stability conditions
are given by Eqs. (2.21) and (2.22), allowing, in principle, for values ξ < 1/6 while
maintaining the theory free of ghost and Laplacian instabilities [175, 178, 179].

Phantom nonminimal coupling

For NMC+ and NMC– in the phantom branch, we vary in our MCMC analysis the
dimensionless parameter ∆ÑPl ≡ NPl/MPl − 1 and ξ in addition to the six ΛCDM
standard parameters.

The results for all the datasets considered are presented in Fig. 2.8 and Table 2.2 for
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Figure 2.10: Redshift evolution of the scalar field σ (upper left panel) and of the nonminimal
coupling function F (σ) (upper right panel). Relative differences with respect to ΛCDM in the
CMB temperature anisotropies power spectrum (bottom left panel) and in the linear matter
power spectrum at z = 0 (bottom right panel). Different values of the amplitude of the potential
V0 are considered for |ξ| = 0.1 in the standard branch (solid lines) and in the phantom one
(dashed lines) for EMG (F = M2

Pl + ξσ2, V = Λ+ λσ4/4).

NMC+ and in Fig. 2.9 and Table 2.3 for NMC+. For all the datasets combinations
the constraints on the cosmological parameters are consistent with the results of IG.
The marginalized bounds at 95% CL on the coupling constants of NMC+ (NMC–) are
ξ < 0.0015 (> −0.039) and NPl > 0.91 (< 1.18) for P18+BAO, and to ξ < 0.0019
(> −0.027) and NPl > 0.83 (< 1.21).

As it was already pointed out for the standard branch in Refs. [109, 110], there is
a strong degeneracy between the parameters NPl and ξ for F (σ) = N2

Pl + ξσ2. This
is due to the fact that cosmological observables are affected by contributions of the
order O

(
ξσ2/N2

Pl

)
, therefore, the effects of a large value of |ξ| can be compensated by

increasing |ÑPl − 1| and vice versa.

Phantom early modified gravity

For EMG in the phantom branch, in addition to the six standard parameters we sample
on ξ and V0 where λ ≡ −102V0/M4

Pl. The scalar field goes through damped oscillations
and decays around the local maximum of the potential, σ = 0. For this reason, we do
not need to impose the boundary condition Geff = GN since it is satisfied for any initial
value of scalar field σini, which is now an additional free parameter of the theory.

In the top left panel of Fig. 2.10, we show that the background evolution of the
scalar field is similar in the two branches, standard and phantom: the field is at rest
in the radiation dominated era and around recombination it starts to grow sourced by
non-relativistic matter. Later, it is driven into coherent damped oscillations from the

54



2.6. Cosmological constraints

quartic potential. Instead, the nonmnimal coupling function F , shown in the top right
panel, evolves differently in the two branches: before the field starts to oscillate it is
an increasing function of time for Z = 1, while it decreases in the phantom branch.
This is due to the different sign of the coupling ξ in the two branches and it affects also
the spectra portrayed in the bottom panels of Fig. 2.10. In the phantom branch the
acoustic peaks of the CMB temperature anisotropies angular power spectrum are shifted
to the right with respect to the ΛCDM model when the scalar field starts to move after
recombination (V0 = −1) and they shift to the left if the scalar field starts to decay
before recombination (V0 = 2); the opposite happens in the case with standard kinetic
term.

Concerning the linear matter spectrum, in the bottom right panel of Fig. 2.10 we show
the relative differences with respect to ΛCDM, the figure portrays an enhancement in
small scale power in the phantom branch and an opposite suppression in power in the
standard case, independently of the value of V0, underlining the importance of the com-
bination of early-time probes with late-time observations to experimentally discriminate
between the two branches and break the degeneracies between the additional parameters.

We present the results for the combinations of datasets P18+BAO+SN and P18
+BAO+SN+p(H0) in Fig. 2.11 and Table 2.4; since ξ is not constrained by data we
show the constraints on the combination ξσ2

ini [M
2
Pl] (connected to the additional effect

on the expansion rate (2.42) before recombination). The marginalized upper limit on ξσ2
ini

at 95% CL corresponds to > −0.0026 for P18+BAO+SN and to ξσ2
ini = −0.006± 0.005

when adding p(H0). Analogously, for the initial value of the scalar field we obtain, at
95% CL, σini [MPl] < 0.45 for P18+BAO+SN, and 0.35+0.17

−0.15 for P18+BAO+SN+p(H0).
The amplitude of the self-interaction term V0 is not well constrained either: an upper
bound at 95% CL, corresponding to V0 < 0.81, is obtained only in the case with the
Gaussian prior on H0. Concerning the Hubble constant, the marginalized means and
uncertainties at 68% CL correspond to 68.44+0.62

−0.79 for P18+BAO+SN, and 70.18+0.59
−0.68 for

P18+BAO+SN +p(H0); while, for S8 we find S8 = 0.827±0.011 for P18+BAO+SN, and
S8 = 0.822 ± 0.010 for P18+BAO+SN+p(H0). The constraints on all the parameters
are reported in Table 2.4.

Summary of the results

We have studied the cosmological dynamics and inferred the cosmological constraints
for MG models with a nonminimally coupled scalar field with a non standard sign of
the kinetic term, dubbed phantom branch. This study extends the parameter space
considered previously in Ref. [98, 99, 110–112, 173], and allows a comparison with other
works on Brans-Dicke theory with −3/2 < ωBD <∞ [176].

For an effectively massless scalar σ, like the one we considered in IG and NMC, the
change of sign of the kinetic term modifies the evolution of σ, which is at rest during the
radiation era, and goes as σ ∼ a2Zξ during the matter-dominated epoch.

We have further shown the effect of the sign of the kinetic term on cosmological
observables such as the CMB temperature anisotropies angular power spectrum and
the matter power spectrum, and we obtained the marginalized constraints for different
combination of cosmological datasets by allowing the coupling to the Ricci scalar and
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the rest of the cosmological and nuisance parameters to vary in an MCMC analysis.
Combining P18 with BAO and SN we constrain the coupling parameters at 95% CL to
ξ < 0.00040 for F (σ) = ξσ2 and for F (σ) = N2

Pl + ξσ2 to ξ < 0.0019 (> −0.027) and
NPl > 0.83 (< 1.21).

In the standard branch, nonminimally coupled STTs with early-time deviation from
GR usually lead to higher inferred values for the Hubble constant H0 and for σ8, together
with a lower value of the matter density parameter Ωm [110, 175, 176]; in their phantom
construction instead, the modified evolution of the scalar field, connected to a different
time evolution of the effective gravitational constant, inverts the degeneracy between
these parameters and the coupling ones. For this reason, we obtain a lower values for σ8
and H0 compared to the standard branch.

We have also considered the phantom version of EMG. In this scenario the evolution of
the scalar field is very similar to the standard case, with the quartic potential leading the
scalar field into damped oscillations, finally decaying at σ = 0; but different signatures
appear on the cosmological observables. Compared to ΛCDM, the acoustic peaks of
the CMB are shifted to the right for a standard kinetic term when the scalar field
moves before recombination (V0 = 2) and in the phantom branch if the scalar field
starts to decay after recombination (V0 = −1), vice versa they shift to the left. Matter
perturbations on sub-horizon scales are enhanced with respect to ΛCDM in the phantom
branch and suppressed in the standard scenario, independently of the value of amplitude
of the potential V0.

The values of the coupling parameters statistically preferred lay outside the region in
parameter space free from ghosts and Laplacian instabilities. The possibility to alleviate
the current tensions between different cosmological observations in STTs that satisfy the
stability conditions in the phantom branch is discussed in section 2.6.3.
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Tables

Tables summarizing the results presented in this section for IG, NMC and EMG.

P18 P18 + BAO P18 + BAO + SN

ωb 0.02223± 0.00017 0.02244± 0.00013 0.02245± 0.00013

ωc 0.1204± 0.0012 0.11896± 0.00099 0.11882± 0.00096

H0 [km s−1Mpc−1] 63.6+2.7
−1.9 67.17+0.65

−0.48 67.29+0.60
−0.47

τ 0.0523± 0.0071 0.0584+0.0070
−0.0083 0.0584+0.0068

−0.0076

ln
(
1010As

)
3.037± 0.015 3.051+0.014

−0.016 3.051± 0.014

ns 0.9574+0.0067
−0.0057 0.9668± 0.0038 0.9671± 0.0036

ξ < 0.0018 (95% CL) < 0.00046 (95% CL) < 0.00040 (95% CL)

Ωm 0.354+0.020
−0.032 0.3135+0.0059

−0.0068 0.3120+0.0056
−0.0065

S8 0.850+0.016
−0.019 0.823± 0.011 0.821± 0.010

rs [Mpc] 148.89+0.8
−1.4 147.62+0.31

−0.50 147.62+0.29
−0.44

γPN > 0.9928 (95% CL) > 0.9982 (95% CL) > 0.9984 (95% CL)

∆χ2 −2.8 0 −0.5

Table 2.1: Constraints on the main and derived parameters of the IG model (at 68% CL if
not otherwise stated) considering P18 in combination with BAO and BAO+SN.

P18 P18 + BAO P18 + BAO + SN

ωb 0.02224+0.00018
−0.00016 0.02246± 0.00013 0.02246+0.00011

−0.00014

ωc 0.1206± 0.0012 0.1190+0.0014
−0.0011 0.1189± 0.0010

H0 [km s−1Mpc−1] 64.1+2.6
−1.7 67.28± 0.59 67.42± 0.52

τ 0.0514± 0.0081 0.0590± 0.0052 0.0583± 0.0071

ln
(
1010As

)
3.037+0.015

−0.023 3.0517+0.0074
−0.015 3.051± 0.014

ns 0.9580+0.0058
−0.0047 0.9673± 0.0042 0.9674± 0.0039

ξ < 0.030 (95% CL) < 0.015 (95% CL) < 0.019 (95% CL)
NPl [MPl] − > 0.91 (95% CL) > 0.83 (95% CL)

Ωm 0.349+0.017
−0.030 0.3121+0.0068

−0.0056 0.3110± 0.0061

S8 0.849+0.013
−0.019 0.823+0.014

−0.009 0.821+0.012
−0.011

rs [Mpc] 148.56+0.90
−1.3 147.54+0.30

−0.48 147.52+0.27
−0.44

γPN > 0.9941 (95% CL) > 0.9986 (95% CL) > 0.9987 (95% CL)
βPN > 0.999965 (95% CL) > 0.999994 (95% CL) > 0.999994 (95% CL)

∆χ2 −1.5 0 −0.5

Table 2.2: Constraints on the main and derived parameters (at 68% CL if not otherwise
stated) considering P18 in combination with BAO and BAO+SN for the NMC+ model.
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P18 P18 + BAO P18 + BAO + SN

ωb 0.02230± 0.00014 0.02245± 0.00013 0.02247± 0.00013

ωc 0.11982+0.00068
−0.0011 0.11891± 0.00094 0.11875+0.00078

−0.0010

H0 [km s−1Mpc−1] 64.1+3.1
−2.1 67.26+0.59

−0.45 67.44+0.57
−0.45

τ 0.0548+0.0072
−0.0059 0.0573+0.0061

−0.0074 0.0590± 0.0068

ln
(
1010As

)
3.041+0.017

−0.013 3.049± 0.014 3.052+0.014
−0.012

ns 0.9604+0.0067
−0.0045 0.9669+0.0043

−0.0035 0.9675± 0.0036

ξ > −0.036 (95% CL) > −0.039 (95% CL) > −0.027 (95% CL)
NPl [MPl] < 1.13 (95% CL) < 1.18 (95% CL) < 1.21 (95% CL)

Ωm 0.348+0.021
−0.033 0.3125+0.0052

−0.0065 0.3106+0.0050
−0.0068

S8 0.844+0.011
−0.018 0.821± 0.011 0.8204+0.0091

−0.012

rs [Mpc] 148.91+0.77
−1.6 147.60+0.28

−0.43 147.57+0.30
−0.40

γPN > 0.988 (95% CL) > 0.998 (95% CL) > 0.998 (95% CL)
βPN < 1.00018 (95% CL) < 1.000022 (95% CL) < 1.000017 (95% CL)

∆χ2 −2.8 0 −0.3

Table 2.3: Constraints on the main and derived parameters (at 68% CL if not otherwise
stated) considering P18 in combination with BAO and BAO+SN for the NMC– model.

P18 + BAO + SN P18 + BAO + SN + p(H0)

ωb 0.02246± 0.00014 0.02255± 0.00014

ωc 0.1194± 0.0010 0.11900± 0.00099

H0 [km s−1Mpc−1] 68.44+0.62
−0.79 70.18+0.59

−0.68

τ 0.0536± 0.0080 0.0503+0.0085
−0.0073

ln
(
1010As

)
3.043± 0.016 3.035+0.017

−0.015

ns 0.9671+0.0036
−0.0042 0.9687± 0.0038

ξσ2
ini [M2

Pl] > −0.0057 (95% CL) −0.0062+0.0028
−0.0023

V0 − < 0.81 (95% CL)
σini [MPl] < 0.446 (95% CL) 0.348+0.062

−0.097

Ωm 0.3028± 0.0068 0.2875± 0.0056

S8 0.827± 0.011 0.822± 0.010

rs [Mpc] 147.00± 0.40 146.56± 0.46

∆χ2 −0.3 −14.9

Table 2.4: Constraints on the main and derived parameters (at 68% CL if not otherwise
stated) considering P18 in combination with BAO+SN and BAO+SN+p(H0) for the EMG
model.
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2.6.3 Nonminimally coupled Galileon

In this section, I study the cosmological dynamics and provide constraints on nonmini-
mally coupled Galileon models; the results presented are based on the research work in
[80], which also capitalizes on the development of and Einstein-Boltzmann code dedicated
to this class of theories started in my master thesis [78].

In addition to the modified dynamics, the Galileon term provides a screening mech-
anism to potentially reconcile the models with general relativity predictions inside a
Vainshtein radius, by fixing the PN parameters to their GR value. This is necessary
because, without screening, the value ξ = 5 × 10−5 considered here, would not respect
the solar system constraints on the PN parameters discussed in section 2.5.3.

The class of models considered in this section falls within the Horndeski theories (and
can be remapped to an EFT formalism) allowed by the measurement of the gravitational
waves propagation speed without fine tunings; in particular, we consider the action (2.6)
with the G functions (2.7):

G2 = ZX − V (σ) + 4ζ(σ)X2, G3 = −2g(σ)X, G4 = F (σ)/2. (2.48)

This Lagrangian, with coupling function F (σ) = ξσ2 is equivalent to the extension of the
Brans-Dicke model with a Galileon term. In fact with the field redefinition described in
section 2.1, ϕ = ξσ2/2, with ξ = Z/(4ωBD) > 0, and Z = ±1, the G functions become

G2 = 2
ωBD

ϕ
χ− V (ϕ), G3 = −2f(ϕ)χ, G4 = ϕ , (2.49)

where χ ≡ −∇µϕ∇µϕ/2 and the relationship between the functions g, ζ andf is g(σ) =
ξσ3f(σ); ζ(σ) = σ−1g(σ). Therefore, also following the nomenclature of Ref. [180],
the model defined by Eq. (2.48) with F (σ) = ξσ2, is the Brans-Dicke Galileon (BDG),
while we refer to the model with G2 = ZX − V (σ), always with F (σ) = ξσ2, as the
induced gravity Galileon (IGG), since it is the extension of IG with a Galileon term
G3 = −2g(σ)X. We have shown that even if BD and IG are equivalent up to a field
redefinition, their extensions with Galileon terms are not. In particular, IGG corresponds
to BDG with, formally, ζ = 0, but it is not simply a special case of BDG when ζ = 0: in
BDG the functions g and ζ are not independent and setting ζ = 0 would mean setting
g = 0 as well.

We study two different flavours of BDG and IGG, relating to the sign of the kinetic
term Z:

• Standard branch: canonical sign for the kinetic term (Z = 1). In this branch we
study both IGG and BDG (IGGst and BDGst) with V (σ) = λnσ

n, g(σ) = αmσ
m,

for several combinations of n and m. In this scenario the potential dominates the
background evolution of the Universe at late-times and provides the acceleration
of the expansion of the Universe, while the G3 enters as a small correction to the
standard IG theory.

• Phantom branch: noncanonical sign for the kinetic term (Z = −1) and ξ < 1/6
(ωBD < −3/2). In this branch we consider only BDG with g(σ) = ασ−1, either
with or without a potential. If there is no potential the burden to provide cosmic
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acceleration, a healthy theory and effective screening on small scales, is on the
G3 term. Reinserting the potential into the theory, both the Galileon term and
the cosmological constant contribute to the late-time dynamics giving rise to the
acceleration of the expansion of Universe.

Note that out analysis allows to study the proposal by Silva and Koyama [178] to drive
the late-time acceleration acceleration of the Universe without an effective cosmological
constant, but only with the G3 term.

The equations of motion for the background evolution in a FLRW universe are given
by Eqs. (2.11), (2.12) and (2.15), with F (σ) = ξσ2 and a choice for the functions V (σ),
g(σ) and ζ(σ), corresponding to the model considered. The linearly perturbed Einstein
and scalar field equations for this model can be found in appendix B.

IGG in the standard branch (Z = 1)

In the standard branch, in the region in parameter space that produces a reasonable
cosmological background evolution, BDG and IGG are nearly indistinguishable [78], for
this reason we restrict ourselves to IGG for Z = 1.

Considering a monomial potential V (σ) = λnσ
n and g(σ) = αmσ

m, the IGG model
presents exact late-time solutions with accelerated expansion in the absence of matter,
with scale factor a(t) ∝ tp, the exponents n and m related by m = 1− n, and

p =
2(−2 + n+ 4β − 4ξ + n2ξ)

(24β − 16ξ + 20nξ − 8n2ξ + n3ξ)
, (2.50)

σ(t) = c0t
−2/(n−2), (2.51)

where β, defined by α ≡ βcn−2
0 , is a reparametrization of α, useful to show that in the

limit of α → 0 (β → 0) we recover the analogous solution found in IG in Ref. [181]. For
n = 4 and n = 2, there are de Sitter solutions a(t) ∝ eHt with constant Hubble parameter
H > 0. For n = 4, the solution found for IG [181]: σ = ±H

√
3ξ/λ4 is trivially still valid

in IGG for every possible form of g(σ), as this term does not contribute under the ansatz
σ = constant. For n = 2, when g(σ) ∝ σ−1, there are solutions of the form σ ∝ eHtδ,
with δ ≡ δ(α, ξ,H). Its explicit form is

δ = −1, or δ =
−1− 4ξ ±

√
(1 + 4ξ)2 + 48H2ξα

12H2α
. (2.52)

In the limit α → 0 these solutions reduce to the ones discussed in Ref. [182]: δ = −1
or δ = 2ξ/(1 + 4ξ).

In the following, we restrict to n = m = 0, since the numerical results are qualitatively
similar for any choice of n and m; and, instead of α, we use the rescaled, adimensional
quantity α̃ = α× (Mpc [GeV]−1)−2 × (MPl [GeV])1+m.

The redshift evolution of the scalar field is shown in the left panel of Fig. 2.12, for a
constant potential V (σ) = λ0 ≡ Λ and g(σ) = α, compared to the analogous IG model
with ξ = 5× 10−5. It can be seen that the departure from IG is significant for larger
α, i.e. stronger gravity at early times. Deep in the radiation era the field is nearly at
rest but then it grows steeply (the larger α the steeper the growth) reaching the value
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Figure 2.12: Time evolution of the scalar field (left panel), the equation of state parameter for
dark energy (central panel) and the density parameters (right panel) in IGG standard (Z = 1)
with ξ = 5× 10−5, constant V (σ) = Λ and g(σ) = α, for different values of α̃.

expected in IG in the matter era and evolving until today in the same way as it does in
IG.

The value of the field at z = 0 is fixed by requiring that the effective gravitational
coupling given by Eq. (2.16) coincide with the measured value of the Newton’s constant
GN. For m = 0, the Galileon term does not contribute to Eq. (2.16), as it enters only
through its derivative with respect to the σ, while, form ̸= 0 the contribution is negligible
due to the redshift evolution of the scalar field in the matter era. Thus, we use the IG
approximation, 8πGeff(z = 0) = (1 + 8ξ)/

[
ξσ2

0(1 + 6ξ)
]
, to fix the present value of the

scalar field σ(z = 0) ≡ σ0.
In the right plot of Fig. 2.12 we show the evolution of density parameters in IGG with

n = m = 0. The values of α are chosen large enough to show the effect of the G3 term
in this scenario, which causes a different evolution of Ω̃r and Ω̃σ in the early Universe
with respect to IG and ΛCDM.

The middle panel of Fig. 2.12 presents the evolution of the parameter of state of dark
energy wDE ≡ pDE/ρDE, it tracks the IG behavior at late times but departs from it at
z ≥ 103, in correspondence to the analogous uptick in the evolution of Ω̃σ. In fact,
wDE follows the dominant component: deep in the radiation epoch it has a value close
to 1/3, then in the matter era it decreases towards zero; finally, at present epoch, it
becomes negative, wDE ≃ −1, mimicking a cosmological constant. The bump, occurring
approximately during the radiation era, corresponds to the time in which the energy
density of the field grows and becomes of the same order of that of radiation.

The growth of Ωσ so early in time is due to inefficient cosmological analogue of the
Vainshtein screening in this model for the range of parameters considered. In fact,
the so-called cosmological analogue of the Vainshtein screening (hereafter cosmological
Vainshtein screening), first discussed in Ref. [183], freezes the field to its initial value
and after certain timescale the field is released and it starts to evolve. In particular, in
a configuration where a single component other than the scalar dominates the energy
content of the Universe, the density parameter of the scalar field is approximately

Ωσ ≃ 1

H

√
ξ

α σm+1
, (2.53)
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Figure 2.13: Relative differences with respect to ΛCDM for IGG standard with ξ = 5 ×
10−5, V (σ) = Λ, g(σ) = α. CMB TT (top left), EE (top right), mensing potential (bottom
left) and linear matter power spectra (bottom right).

and it stays suppressed compared to radiation or matter as long as H
√
ασm+1/

√
ξ >> 1,

for which we have cosmological Vainsthein screening. After a time t ∼
√
ασm+1/

√
ξ the

approximation of a single component Universe breaks down as the density parameter of
the scalar field begins to grow. Therefore, for smaller values of α we expect the scalar
field to start evolving earlier in time. This is confirmed by the peculiar dynamics at
early times we highlighted in Fig. 2.12: the values of α are too small to guarantee that
the field stays frozen until late-times, and while for larger values of α we have the largest
differences with respect to IG, it can be clearly seen from the left and central panels of
Fig. 2.12 that the scalar field starts moving earlier for smaller α, reaching the IG line
even before matter-radiation equality for α̃ = 5× 10−7.

In Fig. 2.13 we show the deviations in the temperature and E-mode polarization
CMB angular power spectra in the IGGst model with respect to ΛCDM, together with
the CMB lensing potential angular power spectrum and the total linear matter power
spectrum at z = 0.

In the standard branch there are small effects in the temperature power spectrum
at at low multipoles, resulting in an ISW effect extremely similar to the one observed
in ΛCDM. This behavior is common to all the spectra in IGGst at low multipoles, for
which the differences with respect to GR are small. The departure from ΛCDM is more
evident on the scales of the acoustic peaks in TT and on smaller scales, where, due to
the modification of gravity around the time of recombination, the contribution of the
scalar field shifts and enhances the peaks of the power spectrum.

We now turn on the discussion of the results of our data analysis where in addition
to the six standard parameters we sample on α̃ at fixed ξ = 5 × 10−5. We present the
case n = m = 0, as all the findings are stable with respect to changes in the exponents.
In Fig. 2.14 and Table 2.5 we show the result for the analysis with Planck CMB data
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Figure 2.14: Marginalized 68% and 95% CL 2D regions using CMB data alone (P18). IGG
standard (Z = 1) with ξ = 5 × 10−5, V (σ) = Λ, g(σ) = α in green; IG standard with
ξ = 5× 10−5, V (σ) = Λ, in orange and ΛCDM.

Figure 2.15: Time evolution of the scalar field (left panel), the equation of state parameter
for dark energy (middle panel) and the density parameters (right panel) in BDG phantom
(Z = −1) with no potential and g(σ) = ασ−1, for different values of ξ.

only, with a comparison to ΛCDM, and IG with ξ = 5 × 10−5. We obtain a tight
constrain on the Galileon term for P18: i.e. α̃ < 2.5 × 10−6 at 95% CL, showing how
CMB data are sufficient to strongly constrain IGG around IG. The contours for all the
other parameters overlap with the IG ones. The marginalized mean and uncertainty for
the Hubble constant H0 [km s−1Mpc−1] at 68% CL corresponds to 67.72± 0.54 without
any hint at a possible reduction of the Hubble tension, as there is no significant increase
either in the mean or in the uncertainty with respect to the ΛCDM value of 67.36 ± 0.54
[1], or the IGst result 67.64 ± 0.54 (when ξ = 5×10−5 is fixed in the MCMC). Combining
BAO with P18 we obtain tighter constraints but the same qualitative behavior (Tables 2.5
and 2.6): the marginalized upper bound at 95% CL on the amplitude of the Galileon
parameter corresponds to α̃ < 2.2× 10−6, while, the marginalized mean and uncertainty
on the Hubble constant is H0 = 67.97 ± 0.44 km s−1Mpc−1. The cosmological
constraints from P18 and P18+BAO on α̃ allow a Vainshtein mechanism to occur only
at subparsec scale for an object of a solar mass.
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BDG in the phantom branch (Z = −1) with V = 0

In the phantom branch we first consider the basic case of BDG without potential and
with g(σ) = ασ−1 and ζ = σ−1g(σ). This model has no ΛCDM limit and the late time
acceleration of the Universe arises from completely dynamical mechanisms thanks to the
behaviour of the scalar field [178].

It was shown in Ref. [178] that, in absence of matter and radiation, ρ = p = 0, there
is a self-accelerating late-time solution with Ḣ = Q̇ = 0, with Q = σ̇/σ, satisfying

y ≡ Q

H
= ξ

−4±
√

−32− 6Z/ξ

Z + 8ξ
. (2.54)

The solution is real for Z = −1 and ξ < 3/16 (equivalent to ωBD < −4/3), for which the
Friedmann and scalar field equations (2.11) and (2.15) give

H2 =
ξ

α

3 + 6y + y2/(2ξ)

2y3(3 + 2y)
. (2.55)

Thus, without the potential, the Galileon term provides cosmic acceleration, but in order
to do so the parameter α should be fine-tuned. This is done by solving Eq. (2.55) for
α and using it as an initial guess for a shooting algorithm that fixes the value of α in
order to produce the desired ΩDE = 1 − Ωm − Ωr at present time, given the density
parameters of matter and radiation as inputs. Since α is fixed by the requirement of
cosmic acceleration, the only free parameter of the theory is ξ; resulting in a theory that
can provide late-time cosmic acceleration without a cosmological constant, with as many
free parameters as the IG.

The values of α necessary to provide late-time cosmic acceleration of the Universe
always guarantee effective Vainshtein screening, for this reason we do not set σ0 following
Eq. (2.16), as the gravitational constant on small scales is GN = Gcosm. Therefore, the
present value of the scalar field is fixed such that the Planck mass is M2

Pl(z = 0) ≡ ξσ2
0 =

1.
Departures from ΛCDM are evident already at the background level, especially in the

matter era and in the late-time Universe where the field dominates the energy content.
During matter domination, before the equality with DE, we observe, from the right
panel of Fig. 2.15, that Ω̃σ becomes negative and the effect is more prominent for larger
values of ξ. When Ω̃σ is decreasing and becoming negative, the corresponding ΩDE in the
ΛCDM model is growing already: a steeper growth of energy-density parameter of the
scalar field is needed in order to reach the ΛCDM value today and for matter-dark energy
equality to happen around the same redshift. We want to emphasize that Ω̃σ < 0 is not a
problem from the physical point of view: this parameter just describes the contribution
of the scalar field to the total expansion rate when the Friedmann equations are recast
in a form resembling Einstein gravity [101, 130].

The evolution of the DE parameter of state, wDE, in the central panel of Fig. 2.15 shows
a phantom behavior wDE < −1 in correspondence to Ω̃σ becoming negative and growing
back to dominate the energy content of the Universe. This behavior is more prominent
for a smaller value of ξ, for which the dip tends to be deeper. Today, wDE < −1 and it
eventually reaches −1 in the future [178].
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Figure 2.16: Stability conditions: ghost instability (left panel), Laplacian instability (middle
panel). Vainshtein radius for a solar mass spherical object (right panel). BDG in the phantom
branch (Z = −1), without potential, g(σ) = α/σ, for different values of ξ.

In contrast to the standard branch where the scalar field started to evolve in the
radiation-dominated epoch, here σ is frozen until late times, and it grows to reach today’s
value (ξσ2

0 = 1) only at small redshifts. This is the effect of the cosmological Vainshtein
screening discussed in section 2.6.3: in the phantom branch α needs to be larger than
in the standard case in order for the Galileon term to accelerate the expansion of the
Universe, and since the time after which the scalar field is released is t ∼

√
α/ξ, the

growth the scalar field energy density is delayed with respect to the standard branch, for
which α is constrained to be small.

As we’ve seen in section 2.3, a STT can be stable thanks to the addition of the G3

term in the Lagrangian even with a non canonical sign for the kinetic term, it is therefore
necessary to check for the stability conditions of the theory given by the Eqs. (2.21)
and (2.22). The evolution with redshift of these conditions is presented in the left and
central panel of Fig. 2.16: the requirements are satisfied for all the values of ξ considered
thanks to the Galileon term. This term is also responsible for effective screening on small
scales through the Vainshtein screening mechanism, allowing the theory to reduce to GR
within the Vainshtein radius, given by Eq. (2.25). Today, the Vainshtein radius of an
object of a solar mass is rV⊙ ∼ 100 pc for all the values of ξ we considered, and its time
evolution is shown in the right panel of Fig. 2.16.

In Fig. 2.17 we present the relative differences in the temperature and E-mode po-
larization CMB angular power spectra with respect to ΛCDM, together with the CMB
lensing potential angular power spectrum and the total linear matter power spectrum at
z = 0. Contrary to the standard branch, we observe very large departures from ΛCDM
at large scales in all power spectra, especially in TT, due to the enhanced ISW effect.
We point out that since the model has no ΛCDM limit the curves do not flatten out on
zero for smaller ξ. Thus, while this model provides late-time cosmic acceleration without
a cosmological constant, it presents large differences with respect to ΛCDM for CMB
and matter power spectra; this is a disadvantage for differences > 30% when comparing
the predictions against the data, since ΛCDM fits Planck data quite well.

We present in Fig. 2.18 and Table 2.5 the results of our P18 analysis where, in addi-
tion to the standard cosmological and nuisance parameters we sample on the nonminimal
coupling ξ. This is the most radical among the models we studied as it cannot repro-
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Figure 2.17: Relative differences with respect to ΛCDM for BDG phantom (Z = −1) without
potential and g(σ) = ασ−1, for different values of ξ. CMB TT (top left), EE (top right), lensing
potential (bottom left) and linear matter power spectra (bottom right).

duce the CMB and LSS theoretical prediction of ΛCDM, putting it at a disadvantage
when tested against Planck data, and a ∆χ2 = 30.6 confirms it. CMB alone is therefore
sufficient to rule out this model, which has attracted a lot of attention in the scientific
community as an alternative to ΛCDM. However, we would like to highlight the fol-
lowing: in addition to the appealing feature of providing cosmic acceleration without
a cosmological constant, the marginalized mean and uncertainty on Hubble constant is
raised to H0 = 79.57± 0.67 km s−1Mpc−1. While this result is still far from alleviating
the Hubble tension, the ability to produce a Hubble constant larger than the SH0ES
value [38] is interesting and and could fuel the search for similar models that, while
retaining this feature, might provide a better fit to the data.

We conclude this section by stressing the importance our original results in ruling
out a compelling theoretical alternative to Λ in explaining the recent acceleration of the
Universe. Our results share similarities with analogous previous studies ruling out large
classes of f(R) theories [184] as an explanation of the late-time acceleration. f(R) models
have been rescued by extending the functional form f(R) [185], and are still considered
viable theories, targeted by upcoming observational campaigns such as Euclid [186]. For
this reasons, it would interesting to see if our results are completely general for any
functional form the G3, or if the model can be rescued by a modification of the Galileon
term.

Whereas this model is ruled out by Planck data, in the next section we reinsert the
cosmological constant in G2 to provide a better fit to the data and maintaining, at the
same time, the nice properties of the model: stability and efficient screening.
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Figure 2.18: Marginalized joint 68% and 95% CL regions 2D parameter space using P18 data
alone. In orange BDG phantom (Z = −1) without potential, g(σ) = ασ−1 and ΛCDM in blue.
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Figure 2.19: Time evolution of the scalar field (left panel), the equation of state parameter
for dark energy (middle panel) and the density parameters (right panel) in BDG phantom
(Z = −1) with ξ = 5× 10−5, constant V (σ) = Λ and g(σ) = ασ−1, for different values of 1/α̃8.

BDG in the phantom branch (Z = −1) with V = Λ

We now turn our attention to the study of BDGph with a cosmological constant: G2 =
ZX −Λ+ 4ζ(σ)X2, always with g(σ) = ασ−1 and ζ = σ−1g(σ); in this way we obtain a
theory with a ΛCDM limit.

In order to have the late-time cosmic acceleration, the parameters α and Λ need to
be fine-tuned: we select a value for α and use a shooting algorithm on the cosmological
constant to obtain Ω0,DE(Λ, α) = 1− Ω0,m − Ω0,r. In this way the late-time acceleration
of the Universe is driven by an interplay between the potential and the Galileon term.
This is in contrast to the previous section where there is no potential, but also differing
with respect to the standard branch where the Galileon term is too small to significantly
contribute to the late-time dynamics.

Analogously to the previous section, we fix the present value of the scalar field in such
a way that the gravitational constant on small scales coincides with the cosmological one
GN = Gcosm (ξσ2

0 = 1).
In what follows, we consider α̃ rescaled by a factor 108: α̃8 ≡ 10−8α̃. All the plots

and the MCMC constraints will be expressed as a function of 1/α̃8. The reason for
using the inverse of α̃ is that the ΛCDM limit is obtained when α̃ → ∞ (1/α̃ → 0);
this is a manifestation of the cosmological Vainshtein screening mechanism. Indeed, as
discussed in section section 2.6.3, the energy-density parameter of the Galileon field,
during either matter or radiation domination goes as Ωσ ≃ H−1

(
α/ξ

)−1/2, and it stays
suppressed compared to the dominant component as long as H

√
α/ξ >> 1, meaning

that for α → ∞ the energy density of the Galileon is always suppressed, or, in other
words, the scalar field is always frozen. In this model, in addition to the Galileon terms
contributing to the budget of the Universe we also have a cosmological constant, and
therefore, in the limit of large α the theory with a frozen scalar field plus a cosmological
constant is indistinguishable from ΛCDM. We wish to emphasize that the correct ΛCDM
limit is obtained only if the boundary condition for the scalar field is fixed to the correct
value, ξσ2

0 = 1, otherwise, the resulting limit is a ΛCDM with a different gravitational
constant. This highlights once more the necessity to be consistent with the measured
value of the gravitational constant today here on earth.
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Figure 2.20: Stability conditions: ghost instability (left panel), Laplacian instability (middle
panel) and Vainshtein radius for a solar mass spherical object (right panel) in BDG in the
phantom branch (Z = −1) with ξ = 5 × 10−5, constant V (σ) = Λ and g(σ) = ασ−1, for
different values of 1/α̃8.

In the left panel of Fig. 2.19 we show the time evolution of the scalar field as a function
of 1/α̃8: for larger values of this parameter the field starts at a lower initial value and
it grows more steeply in the late Universe to reach the required value ξσ2

0 = 1 at z = 0.
Contrary to the standard branch, where the field starts to evolve deep in the radiation
era, here, due to the cosmological Vainshtein screening, the field is frozen until late-times
when Ωσ starts to grow. The field being frozen means that for a large portion of the
history of the Universe the gravitational constant is really constant but different from
the value measured on Earth today. This gives to the model the characteristic of both
an early and late model as gravity is different in the early Universe and the dynamics of
the field is relevant at low redshifts, when it is released from the cosmological screening.

In the right panel of Fig. 2.19 the evolution of the density parameters is shown: already
for 1/α̃8 = 0.1 the background expansion is indistinguishable from ΛCDM. Only for more
extreme values we see appreciable departures from the standard model as the growth
of the dark energy density parameter is delayed and steeper for 1/α̃8 = 0.4. The time
evolution of the DE parameter of state also confirms this behaviour: it approaches and
reaches the value −1 earlier for smaller values of 1/α̃8; while for the larger values we
observe a phantom behavior with wDE < −1 and wDE ̸= −1 today, reaching −1 in the
future.

Analogously to the previous case (V = 0) in the phantom branch we check for the
stability conditions of the theory: they are satisfied also in this scenario due to the
presence of the Galileon term, as it can be seen in Fig. 2.20, where we show the time
evolution of Eqs. (2.21) and (2.22).

As it was first observed in Ref. [178] for the case V = 0, we note from the figure that the
speed of sound of scalar perturbations can become temporarily superluminal close to the
transition to dark energy domination for large values of 1/α̃8. The viability of a theory
with temporarily superluminal propagation of scalar perturbations is a debated issue:
some authors claim it is not problematic [187, 188], whereas others argue the opposite
[189–191]. Thus, while in principle the requirement c2s ≤ 1 can potentially constrain the
value of 1/α̃8, we conservatively do not impose any theoretical prior c2s ≤ 1 in our MCMC
analysis. As pointed out in section 2.3 the stability conditions in the tensor sector are
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Figure 2.21: Relative differences with respect to ΛCDM for BDG phantom (Z = −1) with
ξ = 5× 10−5, constant V (σ) = Λ and g(σ) = ασ−1, for different values of 1/α̃8. CMB TT (top
left), EE (top right), lensing potential (bottom left) and linear matter power spectra (bottom
right).

automatically satisfied by the choice of our Lagrangian and parameters.
Moreover, in the right panel Fig. 2.20 we show the cosmological evolution of the

Vainshtein radius for an object of mass, confirming that screening is effective and the
Vainshtein radius begins to grow for z ≲ 10, reaching rV⊙ ≳ 90 pc today, successfully
recovering GR in the Solar System.

Fig. 2.21 shows the relative differences in the temperature and E-mode polarization
CMB angular power spectra with respect to ΛCDM, together with the CMB lensing
potential angular power spectrum and the total linear matter power spectrum at redshift
z = 0. We observe large departures from ΛCDM at low multipoles in TT, due to the
interplay of G3 and the ISW effect [192, 193]. While we see differences on all scales in
all power spectra of Fig. 2.21, we recover the predictions of the ΛCDM model as 1/α̃8

gets smaller, thanks to the presence of the cosmological constant. Therefore, there is
room to provide a good fit to the data even with 1/α̃8 ̸= 0 but small. The differences in
the matter power spectrum with respect to the standard model, presented in the bottom
right panel of Fig. 2.21, are interesting targets for upcoming large scale structure data
such as DESI3, Euclid4, or Vera Rubin observatory5, which will significantly tighten
constraints on these models.

We now turn to the results of our analysis with publicly available cosmological datasets,
in addition to the standard cosmological and nuisance parameters we sample on 1/α̃8 in
order to have the ΛCDM limit at zero and not at infinity, as we would if we had sampled

3https://www.desi.lbl.gov
4https://www.esa.int/Science_Exploration/Space_Science/Euclid
5https://www.vro.org/, https://www.lsst.org/
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Figure 2.22: Marginalized 68% and 95% CL 2D regions, using the combination P18 + BAO.
BDG phantom (Z = −1) with ξ = 5 × 10−5, g(σ) = ασ−1 in red, IGph and IGph with fixed
ξ = 5× 10−5 respectively in green and orange; in all cases V (σ) = Λ. ΛCDM in blue.

Figure 2.23: Marginalized 68% and 95% CL 2D regions, using the combination P18 + SN +
p(M). BDG phantom (Z = −1) with ξ = 5× 10−5, g(σ) = ασ−1 in red, IGph and IGph with
fixed ξ = 5× 10−5 respectively in green and orange; in all cases V (σ) = Λ. ΛCDM in blue.

on α. In this analysis the nonminimal coupling parameter is fixed: ξ = 5× 105 and we
add BAO to P18 data in order to constrain the parameter 1/α̃8 within our prior range,
1/α̃8 = 108/α̃ ∈ [0, 0.4]. Indeed, current CMB data are indeed not enough to constrain
this seven parameter model with ξ fixed.

The results for the P18+BAO analysis are presented in Fig. 2.22 and Table 2.7; the
presence of the cosmological constant helps in providing posterior distributions closer
to ΛCDM and the marginalized means and uncertainties for most of the cosmological
parameters are similar. The Hubble constant is an exception: due to the shape of the
posterior in the plane 1/α̃8-H0 (see Fig. 2.22), higher values of H0 compared to ΛCDM
ones are allowed. Indeed, using the combination P18+BAO (Table 2.7) the marginalized
mean and uncertainty for H0 [km s−1Mpc−1] at 68% CL correspond to 69.1+0.9

−1.3. For
the same dataset, IG phantom with the nonminimal coupling constant fixed at the same
value considered here for BDGph, ξ = 5×10−5, gives 67.62±0.42, while it gives 67.20+0.68

−0.55

when ξ is a free parameter. Thus, BDGph raises the inferred value of the Hubble constant
relatively to IGph and it reduces the Hubble tension to a significance of 2.5σ.

These results motivate our subsequent analysis using the Pantheon catalog with the
addition of a prior on the peak absolute magnitude of SN Ia. We present the out-
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comes of this analysis in Fig. 2.23 and Table 2.8. When considering this combination
of datasets (P18+SN+p(M)), the Hubble tension is alleviated: it has a significance
of only 1.7σ in BDGph, since the marginalized mean and uncertainty at 68% CL are
H0 = 70.58± 0.97 km s−1Mpc−1. The corresponding values in IGph, with ξ = 5× 10−5

and ξ free to vary in the MCMC are, respectively, 68.15 ± 0.52 and 68.07 ± 0.56. This
means that the Galileon term is not only necessary to avoid instabilities present in IGph
(see section 2.6.2) but it also plays an important role in alleviating the Hubble tension.
Moreover, we obtain ∆χ2 = −8.5 and ∆AIC = −6.5, showing a weak preference for the
model with respect to ΛCDM, whereas in all other cases there is no significant improve-
ment, if any, with respect to the standard cosmological model.

We also wish to emphasize another aspect of our findings in terms of the Vainshtein
radius. For P18 + SN + p(M) the mean and uncertainty on the Galileon coupling
constant correspond to 1/α̃8 = 0.23+0.06

−0.05 at 68% CL; in other words, we see high statistical
significance for 1/α̃8 ̸= 0, and consequently a Vainshtein radius of O(100) pc for a solar
mass. This is in contrast with the analysis done using P18+BAO where 1/α̃8 is consistent
with zero at 1σ and we only obtain an upper limit, 1/α̃8 < 0.28 at 95% CL, perfectly
consistent with the ΛCDM limit of the theory.

Summary of the results

We have studied the cosmological dynamics and inferred the cosmological constraints for
MG models with a nonminimally coupled scalar field and a cubic Galileon term. Since
the extensions of IG and BD with a Galileon term are not equivalent theories, we have
studied the two models separately: IGG and BDG; these models are equipped with the
Vaishtein screening mechanism, potentially reconciling the theory with GR inside the so-
called Vainshtein radius. Moreover, the presence of the Galileon term is also necessary to
ensure that the theory is free of ghost and Laplacian instabilities even for a noncanonical
sign of the kinetic term, Z = −1. We have therefore considered the Lagrangian (2.7)
in the standard (Z = 1) and phantom (Z = −1) branch, comparing the theoretical
predictions of the models with observations.

For a standard kinetic term, the scalar field starts evolving during the radiation dom-
inated era due to the absence of cosmological Vainshtein screening. This behavior is
then dissipated in the matter dominated era, in which the Galileon term is subleading.
We find that the CMB anisotropy pattern is sensitive to these effects and constrains the
Galileon term to be small close to the CMB last scattering surface. For BDG in the
standard branch the results are identical to the ones of IGG, we have therefore reported
them only once for IGG with ξ = 5× 10−5 and n = m = 0. Planck 2018 and BAO data
tightly constrain the amplitude of the Galileon parameter as α̃ < 2.2× 10−6 at 95 % CL
(Table 2.6), and the resulting posterior probabilities for cosmological parameters are very
similar to those of IG. The cosmological constraint on α̃ are such that the Vainshtein
mechanism can occur only at subparsec scale for an object of a solar mass.

In the phantom branch we have considered only BDG. The presence of a Galileon
term leads to a healthy theory for all the values of ξ, i.e. for any negative value of ωBD,
therefore rescuing the range ωBD < −3/2 which would contain a ghost in the BD/IG.
The phenomenology in the phantom branch is quite different with respect to the Z = +1
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case, in fact, the Galileon field is frozen for most of the matter dominated era and it is
released only at lower redshift.

BDGph with m = −1, V = Λ and fixed ξ = 5 × 10−5, leads to a value of H0 larger
than in ΛCDM with a screening of ∼ 100 pc for a solar mass, as desired. Indeed, our
results using Planck 2018 joint with BAO data are H0 = 69.1+0.9

−1.3 km s−1Mpc−1 at 68%
CL, and α̃−1 < 0.28× 10−8 at 95% CL (Table 2.7 and Fig. 2.22).

By adding the Pantheon dataset with a prior on the supernovae peak absolute mag-
nitude, we get H0 = 70.58± 0.97 km s−1Mpc−1 and α̃−1 = 0.23+0.06

−0.05 × 10−8 at 68% CL,
always for ξ = 5 × 10−5 and m = −1 (Table 2.8 and Fig. 2.23). In addition, the value
and the posterior of S8 are unchanged with respect to ΛCDM, not aggravating the σ8
tension [71].

We have also analyzed the theoretical predictions of BDGph with no potential and the
late-time acceleration driven exclusively by the Galileon term. The model is physically
viable and provides screening on Solar System scales, but it leads to CMB predictions
which are at odds with the Planck data, with a ∆χ2 = 30.6 with respect to ΛCDM.
Therefore, although theoretically interesting because the acceleration is not driven by an
effective cosmological constant, the model with not potential is ruled out by observations.
It would be interesting to see if these conclusions hold for any functional form of the G3.

In conclusion, we have demonstrated how rather nontrivial cosmological effects arise
in the presence of a Galileon term, as it can lead simultaneously to a value of H0 larger
than in ΛCDM and to effective screening for a large volume of parameter space.
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Tables

We collect in this section the tables for IGGst and BDGph.

IGGst IGst BDGph V = 0 ΛCDM

102ωb 2.242± 0.014 2.240± 0.014 2.266± 0.015 2.237± 0.015

ωcdm 0.1200± 0.0012 0.1200± 0.0012 0.1165± 0.0012 0.1200± 0.0012

H0 [km s−1Mpc−1] 67.72± 0.54 67.64± 0.54 79.57± 0.67 67.36± 0.54

ln(1010As) 3.044± 0.014 3.046± 0.014 2.9979+0.0093
−0.013 3.044± 0.014

ns 0.9647± 0.0044 0.9662± 0.0041 0.9776± 0.0041 0.9649± 0.0042

τ reio 0.0545± 0.0073 0.0546± 0.0075 < 0.0475 (95% CL) 0.0544± 0.0073

106α̃ < 2.5 (95% CL) — — —
ξ 5× 10−5 5× 10−5 < 7.70 · 10−7 (95% CL) —

∆χ2 (∆AIC) 0.2 (2.2) 0.2 (0.2) 30.6 (32.6) —

Table 2.5: Constraints on the main parameters (at 68% CL unless otherwise stated) con-
sidering P18 for IGG standard (Z = 1 and g(σ) = α), IG standard, both with
ξ = 5 × 10−5, V (σ) = Λ, BDG phantom (Z = −1) with V (σ) = 0 and g(σ) = ασ−1

and ΛCDM.

IGGst IGst ξ = 5× 10−5 ΛCDM

102ωb 2.245± 0.014 2.244± 0.013 2.244± 0.013

ωcdm 0.11940± 0.00096 0.11937± 0.00093 0.11925± 0.00094

H0 [km s−1Mpc−1] 67.97± 0.44 67.91± 0.42 67.75± 0.43

ln(1010As) 3.047± 0.014 3.048± 0.014 3.049± 0.014

ns 0.9662± 0.0041 0.9676± 0.0036 0.9675± 0.0037

τ reio 0.0562± 0.0073 0.0563± 0.0071 0.0568± 0.0072

106α̃ < 2.2 (95% CL) — —
ξ 5× 10−5 5× 10−5 —

∆χ2 (∆AIC) -0.1 (1.9) -0.1 (-0.1) —

Table 2.6: Constraints on the main parameters (at 68% CL unless otherwise stated) consid-
ering the combination P18+BAO for IGG standard (Z = 1) with g(σ) = α, IG standard
with ξ = 5× 10−5 fixed and ΛCDM. In all cases V (σ) = Λ.
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76 2. Current and novel constraints on modified gravity

BDGph IGph ξ = 5× 10−5 IGph

102ωb 2.244± 0.014 2.245± 0.013 2.245± 0.014

ωcdm 0.11966± 0.00097 0.11910± 0.00093 0.11884± 0.00099

H0 [km s−1Mpc−1] 69.1+0.9
−1.3 67.62± 0.42 67.20+0.68

−0.55

ln(1010As) 3.045± 0.014 3.048+0.014
−0.015 3.048± 0.015

ns 0.9678± 0.0038 0.9675± 0.0037 0.9671± 0.0038

τ reio 0.0543± 0.0073 0.0568+0.0068
−0.0077 0.0575± 0.0075

1/α̃8 < 0.28 (95% CL) — —
ξ 5× 10−5 5× 10−5 < 0.00047 (95% CL)

∆χ2 -1.1 0.2 0
∆AIC 0.9 0.2 2

Table 2.7: Constraints on the main parameters (at 68% CL unless otherwise stated) con-
sidering the combination P18+BAO for BDG phantom (Z = −1) with g(σ) = ασ−1, IG
phantom with ξ = 5 × 10−5 fixed and IG phantom with ξ free to vary. In all cases unless
otherwise specified ξ = 5× 10−5 and V (σ) = Λ.

BDGph IGph ξ = 5× 10−5 IGph ΛCDM

102ωb 2.253± 0.014 2.256± 0.014 2.257± 0.014 2.256± 0.014

ωcdm 0.1190± 0.0012 0.1180± 0.0011 0.1180± 0.0011 0.1181± 0.0011

H0 [km s−1Mpc−1] 70.58± 0.97 68.15± 0.52 68.07± 0.56 68.31± 0.50

ln(1010As) 3.046± 0.015 3.053± 0.015 3.054± 0.015 3.054+0.014
−0.016

ns 0.9699± 0.0040 0.9703± 0.0041 0.9702± 0.0041 0.9705± 0.0040

τ reio 0.0555± 0.0077 0.0602+0.0076
−0.0085 0.0608± 0.0079 0.0602+0.0072

−0.0083

1/α̃8 0.23+0.06
−0.05 — — —

ξ 5× 10−5 5× 10−5 < 0.00022 (95% CL) —

∆χ2 -8.5 1.1 0 —
∆AIC -6.5 1.1 2 —

Table 2.8: Constraints on the main parameters (at 68% CL unless otherwise stated) consid-
ering the combination P18+SN+p(M) for IG phantom (Z = −1) with ξ = 5 × 10−5 fixed
and free to vary, BDG phantom with ξ = 5 × 10−5, g(σ) = ασ−1 and ΛCDM. In all cases
V (σ) = Λ.



Chapter 3

Euclid and cross-correlation of its probes
with CMB

Euclid is a medium class space mission of the European Space Agency (ESA), selected
in 2011 and launched into orbit around the Sun-Earth Lagrangian point L2 on July 1st
2023. The primary objectives of the mission are to better characterize dark matter, dark
energy and the accelerated expansion of the Universe, test gravity on cosmological scales
and study the role of neutrinos in the growth of structure. In order to reach these goals,
Euclid will combine complementary probes: weak lensing and galaxy clustering through
BAO and RSD (see section 1.7.3). The WL is sensitive to all nonrelativistic matter but
this probe depends on a combination of angular distances (sensitive to the expansion
rate) and the mass density contrast (sensitive to the growth rate of structures); on the
other hand, BAO probe the expansion of the Universe and RSD are sensitive to the
growth rate of structure. Thus, the combination of all these probes will allow Euclid to
strongly constrain the dark sector of the Universe.

3.1 The Euclid mission

The nominal mission will last six years, during which the so-called wide survey will be
performed: Euclid will measure the redshifts and shapes of galaxies on a patch of the
sky of about 15 000 deg2, up to redshift z ≃ 2.5, covering in this way the late-time
cosmic acceleration period. During the wide survey Euclid will observe objects with
a minimum magnitude of 26.2 (visible) and 24.5 (near infrared) [194] by scanning the
sky and observing about 15 deg2 per day (∼ 400 deg2 per month), and every 6 months
it will be pointed to the opposite direction to survey the other hemisphere. In this
way, Euclid will measure the images and photometric redshifts of 1.5 billion galaxies,
and the spectroscopic redshifts of 35 million galaxies over a wide field of view. The
mission will benefit from collaborations with ground-based surveys for a better estimate
of photometric redshifts.

While the wide survey constitutes the core of the mission, another survey, observing
objects 2 magnitudes fainter than the wide survey, will be carried out by repeatedly
scanning the same areas of the sky at regular intervals during the mission. This survey
is comprised of the three Euclid deep fields, covering a total of 50 deg2, observing high-
redshift galaxies, quasars, and active galactic nuclei. The deep fields have the capabilities
of discovering O(105) galaxies at z > 6 [195] and are therefore relevant for studying the
formation and evolution of galaxies. Moreover, they are required to calibrate the wide
survey data and assess the redshift purity and completeness of the spectroscopic wide
survey. The regions of the sky covered by the wide and deep fields are shown in Fig. 3.1.

Even if Euclid is primarily a cosmological mission, it will bring major advances in
nearly all areas of astronomy, from the study of nearby solar system objects to extrasolar
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Figure 3.1: Regions of the sky covered by the Euclid mission in the equatorial coordinate
system in Mollweide projection. The wide survey area is highlighted in blue and the deep
survey in yellow. The region where the Milky-way is present and the ecliptic plane are avoided
during the mission. Figure taken from the EC website.

planets and star formation as well as galaxies at all epochs of the Universe. For example,
the mission is expected to characterise at least 100 000 solar system bodies, to find
extrasolar planets thanks to the microlensing effect, to discover thousands of supernovae
up to z = 2, and to increase the observed number of strong gravitational lenses (galaxy
scale) by a factor of 10.

For the specifications of the satellite and the instruments summarized in the following
sections we refer to the ESA1 and Euclid consortium (EC)2 website.

3.1.1 The satellite

The Euclid spacecraft, shown in Fig. 3.2, consists of two modules: the service mod-
ule (SVM) designed and built by Thales Alenia Space, and the payload module (PLM)
responsibility of Airbus (Defence and Space). The SVM hosts the sunshield and the
spacecraft subsystems for payload operations, including telemetry, power, thermal con-
trol, and attitude and orbit control (AOCS) systems. The sunshield protects the PLM
from sun radiation and holds up the photovoltaic panels that supply electrical power to
the spacecraft.

The PLM consists of the telescope, the PLM thermal control system, the Fine Guid-
ance Sensor (FGS), the VIS and NISP instruments (delivered by the EC), which are
described in the next section, and the detectors (delivered by ESA). VIS stands for
VISible instrument and NISP for Near Infrared Spectrometer and Photometer.

The telescope is a 3-mirror Korsch cold telescope with a field of view of 1.25 ×
1https://www.esa.int/Science_Exploration/Space_Science/Euclid
2https://www.euclid-ec.org/
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3.1. The Euclid mission

Figure 3.2: Pictures of the Euclid spacecraft at Thales Alenia Space in Cannes. Both images
taken from the ESA website.

0.727 deg2. The mirrors and the structures are made in Silicon Carbide; the primary
mirror (M1), with a diameter of 1.2 m is kept at temperature below 130K with thermal
stability lower than 50mK. The secondary mirror (M2) with a diameter of 0.35 m has a
3-degrees of freedom mechanism for adjusting tilt and focus to meet all requirements on
image quality for weak lensing science and to allow the correction of possible alignment
errors after the launch. The telescope utilizes a dichroic filter in the exit pupil to simul-
taneously guide light to both instruments: the reflected light is directed to VIS, while
the transmitted light to NISP, as illustrated in the right panel of Fig. 3.3. This config-
uration enables both instruments to cover the same field-of-view and take advantage of
comparable exposure times.

3.1.2 The instruments: VIS and NISP

The Euclid satellite hosts two instruments: the VISible instrument (VIS) and the Near
Infrared Spectrometer and Photometer (NISP).

The VIS instrument provides high-quality images for weak lensing, with high resolution
in order to measure the shape of the observed galaxies. It is composed of a mosaic of
36 charge coupled devices (CCDs), each of which contains 4096× 4132 12-micron pixels,
this constitutes the so called focal plane array (FPA) towards which the light is directed.
The instrument is equipped with a single very broad band filter covering the wavelength
range from 530 to 920 nm, with an effective angular resolution of about 0.18 arcsec. The
field of view of VIS is very large: it can image 0.57 deg2 of the sky at a time, equivalent to
the area of 2.5 full moons as seen from Earth. Other components of the VIS instrument
are a shutter unit which screens the FPA from light during the read-out of the detectors,
a calibration unit which sends light at different wavelengths to the FPA and it’s used for
flat-field calibration. A more detailed overview of the various VIS subsystems is shown
in Fig. 3.4. A single VIS observation has an exposure time of about 565 s after which
the data are digitalised and compressed; the same observation on the same field of view
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Figure 3.3: Left: Euclid ’s PLM, which consists of a silicon baseplate supporting the telescope
and two instruments. The VIS on the left while The NISP is towards the top. The telescope’s
primary and secondary mirrors are hidden from view and are underneath the baseplate in this
orientation. Image taken from ESA website. Right: Overview of the PLM sub-systems and
optical design. Figure taken from the EC website.

is then repeated three more times with displacements between the various observations
in order to cover the gaps in the detector array.

One of the earliest images of VIS taken during the commissioning phase in July 2023
is shown in Fig. 3.5.

The NISP instrument is composed by a slitless spectrograph (NISP-S) and a pho-
tometer (NISP-P) with 3 broad band filters. The instrument measures near-infrared
light (900-2000 nm) using a grid of 16 detectors, each containing 2040× 2040 18-micron
pixels with a field of view of 0.53 deg2 shared with VIS. This is the largest field of view
for an infrared instrument flown in space. Before reaching the detector, the incoming
light is sent through either a photometry filter or a spectrometry grating prism (grism).
In fact, in front of the detector there are two wheels which allow to switch from photo-
metric to spectroscopic mode and vice versa. A schematic view of the NISP is presented
in Fig. 3.6. The filters wheel contains the band pass filters in the Y, J and H bands
for the photometric channel; these bands correspond, respectively, to [950 − 1212] nm,
[1168 − 1567] nm and [1521 − 2021] nm [196]. The other wheel contains four low reso-
lution near-infrared grisms: one “blue” grism (926-1366 nm) and three “red” grisms with
same wavelength range (1206-1892 nm) but with a different orientation. The reason for
this is that the spectra of observed galaxies are diffracted directly on the detector and
the resulting image is composed by all spectra of the galaxies in the field of view, which
may overlap (see Fig. 3.7). Imaging the same field of view with different grism orienta-
tions allows to decontaminate each slitless spectrum and ensure the correct extraction
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Figure 3.4: Overview of all the units composing the VIS instrument. The shutter, the cali-
bration unit and the focal plane array are positioned in the cold PLM environment to reduce
the thermal noise, while the payload and mechanism control unit and the command and data
processing units reside in the SVM. Image credit: Euclid Consortium.

Figure 3.5: Early commissioning test image from the VIS. Image taken from the ESA website.

https://www.esa.int/Science_Exploration/Space_Science/Euclid/Euclid_test_images_tease_of_riches_to_come
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Figure 3.6: Overview of the subsystems comprising the NISP instrument (the warm electronic
subsystem is not shown on this figure). The top panel shows the elements of the NISP optome-
chanical assembly and detector assembly: NISP calibration unit (NI-CU), NISP camera lens
assembly (NI-CaLA), NISP structure assembly (NI-SA-ST and NI-SA-HP), NISP corrector lens
assembly (NI-CoLA) and the NISP detector system (NI-DS). The NI-FWA is the NISP filter
wheel assembly and NI-GWA is the grism wheel assembly. The bottom panel shows the filter
positions (left), grism positions (right) and the transmission curves of the photometric filters
and the grisms.
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Figure 3.7: Early commissioning test images by the NISP in spectroscopic mode (left) and
photometric mode (right). Both images taken from the ESA website.

of the spectra of galaxies. The uncertainty on the spectroscopic redshift measurements
is expected to be σz = 0.001(1+ z). One of the earliest images of NISP taken during the
commissioning phase in July 2023 is shown in Fig. 3.7.

The spectroscopic survey will target the Hα emission line of galaxies, corresponding
to the electron transition from n = 3 to n = 2 in the hydrogen atom, which emits a
photon at 656.3 nm in the rest frame of the emitter. This line is commonly emitted
by ionized hydrogen atoms recombining with free electrons, thus we typically observe it
in environments rich of ionized hydrogen such as star forming galaxies where the young
stars ionize the hydrogen in the interstellar medium.

The two instruments work in conjunction: in addition to the low resolution-spectra of
millions of galaxies, the NISP will provide near infrared photometry for all the galaxies
observed by the VIS, allowing, in combination with data from ground based surveys in
other bands, to determine the photometric redshift of the VIS galaxies. The estimated
precision of the photometric redshifts is σz = 0.05(1 + z). These redshifts are obtained
by fitting spectral energy distribution (SED) templates on the fluxes of the four bands of
the survey. In this procedure there is however a risk of “catastrophic” redshift estimation
when the fit is wrong. In Ref. [197] this outlier fraction was estimated to be around 10%.

3.1.3 The Science Ground Segment

As previously discussed, Euclid photometric observations are carried out in three infrared
bands (Y, J and H) and one visible band. The observations in the remaining visible bands
(g, r, i, z), needed for the estimation of photometric redshifts, will be provided by several
ground-based surveys3. Thus, in addition to the large data volume provided by Euclid
this poses the challenge to process, analyze and mix heterogeneous data coming from
space and ground-based surveys which differ in depth and resolution.

This task is performed by the so-called Science Ground Segment (SGS) of Euclid, which
is composed of the ESA Science Operations Centre (SOC) and the Euclid Consortium

3Pan-STARRS (https://outerspace.stsci.edu/display/PANSTARRS/), DES (https://www.
darkenergysurvey.org/, Vera Rubin Observatory (https://rubinobservatory.org/), CFIS (https:
//www.cfht.hawaii.edu/Science/CFIS/), KIDS (https://kids.strw.leidenuniv.nl/).
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Science Ground Segment (EC SGS). The SOC is responsible for the survey planning,
managing the downlinked data and providing the EC with the data necessary to perform
further processing of the science data.

The EC SGS will perform the scientific processing of the data, down to the production
of the scientific results. The processing activity will occur in the Science Data Centers
(SDCs). Two SDCs are dedicated to monitor instrument performance, while other SDCs
will be providing external data sets obtained from ground based surveys to complement
the Euclid data.

Moreover, the SGS will be responsible for the archive and the production of the official
Euclid data releases.

3.1.4 The Euclid Consortium

Selected by ESA in 2012, the Euclid Consortium is the official scientific consortium en-
trusted with the tasks of managing the instruments, producing and leading the scientific
exploitation of the data in the proprietary period. In collaboration with ESA, the EC
has planned, constructed, and will be overseeing the operation of the Euclid mission. For
this reason the consortium includes researchers in many fields of physics and astronomy,
along with engineers, technicians, management and administrative staff, for a total of
∼ 2500 people and 17 countries involved (Austria, Belgium, Denmark, Finland, France,
Germany, Italy, the Netherlands, Norway, Portugal, Romania, Spain, Switzerland and
United Kingdom, Canada, USA and Japan).

Going into further detail, the EC is in charge of delineating the scientific goals, the
mission concept, specifying the science requirements and the survey. The EC also suc-
cessfully designed, built, tested, integrated, and delivered the VIS and NISP instruments
to ESA.

An important part of the EC is the EC SGS which bears the responsibility for the de-
sign, development tests, integration and operation of the data processing tools, pipelines
and SDCs. It is composed of several Organizational Units (OUs), each dedicated to
a distinct task, such as providing the photometric redshifts, or measurements of the
spectral features.

The EC SGS together with the EC Science Working Groups (SWG) manages the
production and delivery of Euclid data releases, and their scientific exploitation. The
SWGs are divided into three categories: the cosmology SWGs (like weak lensing, galaxy
clustering, CMB cross-correlation or theory), the legacy SWGs (like planets, or the Milky
Way), and the cosmological simulations SWG.

The EC is led by the Euclid Consortium Lead (ECL) and a Euclid Consortium Board
(ECB), they are also the primary contact points between the EC members and ESA.

3.2 Euclid main probes

By Euclid primary probes we mean weak lensing and galaxy clustering. Euclid will
measure shapes, photometric/spectroscopic redshifts and angular positions of galaxies
on the sky and in order to analyze these data we need to relate them to quantities that
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can be reliably computed in a given theory: power spectra4.
Both photometric and spectroscopic galaxy populations will be divided into redshift

bins allowing to perform a tomographic analysis and increase the signal-to-noise ratio
(SNR), as this tomographic approach is necessary in order to achieve high-precision
dark energy measurements [198–200] The error in the measured redshifts of a galaxy
thus becomes an important factor in the binning procedure, for this reason spectroscopic
galaxies can be divided into thin bins while photometric bins are usually wider. The
binning is commonly done in such a way to either have the same number of galaxies in
each bin (equipopulated bins) or equispaced bin edges (equidistant bins).

We discuss in this section how to model these two main Euclid observables.

3.2.1 Euclid spectroscopic galaxy clustering

Euclid will reconstruct the 3D galaxy field in the redshift range (0.9, 1.8) by performing
slitless spectroscopy of Hα emitting galaxies with an accuracy on measured redshifts
of σz = 0.001(1 + z). The main observable is therefore the power spectrum of these
galaxies P spectro

gg (k, z), which is given, in first approximation and in the linear regime, by
Eq. (1.92). In practice, several other effects needs to be taken into account. Redshift
uncertainties modify the power spectrum in the following way:

P spectro
zerr (k, µk, z) = P spectro(k, µk, z)Fz(k, µk, z), (3.1)

where Fz(k, µk, z) = exp
(
−k2µ2

kσr(z)
)

accounts for the smearing of the galaxy density
field along the line of sight caused by possible redshift errors. This error is given by
σr(z) = c σz/H(z).

Moreover, to measure the galaxy power spectrum, the observed redshifts have to be
transformed into distances, in order to do so it is necessary to assume a fiducial cosmolog-
ical model; in this sense the true underlying power spectrum is not directly observable.
The difference between the true cosmology and the assumed model leads to a rescaling
of the wavevector components parallel and perpendicular to the line of sight k⊥ and k∥:

k∥ =
kfid⊥
q⊥

, q⊥(z) =
DA(z)

Dfid
A (z)

; k∥ =
kfid∥
q∥
, q∥(z) =

Hfid(z)

H(z)
. (3.2)

This rescaling can be used to relate the reference kfid and µfid
k to the true k and µk

k(kfid, µfid
k , z) =

kfid

q⊥

1 + (µfid
k )2

(
q2⊥
q2∥

− 1

)1/2

, (3.3)

µk(µ
fid
k , z) = µfid

k

q⊥
q∥

1 + (µfid
k )2

(
q2⊥
q2∥

− 1

)1/2

. (3.4)

4The analysis can be also carried out in configuration space rather than harmonic space. Con-
figuration space is more directly related to the measurements but the theoretical predictions are more
straightforward in the harmonic space. All codes compute quantities in the harmonic space to eventually
project them in the configuration one, thus we will restrict to power spectra.
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Additionally, deviations from the fiducial cosmology rescale the power spectrum by a
factor (q2⊥q∥)

−1.
Combining all these effects, the observed linear matter power spectrum of the spec-

troscopic galaxies of Euclid can be written as

P spectro
obs (kfid, µfid

k , z) =
1

q2⊥q∥

[
bspectro(z) + f(z)µ2

k

]2
Pδδ(k, z)Fz(k, µk, z) , (3.5)

where all k = k(kfid, µfid
k , z) and µk = µk(µ

fid
k , z) and we have specified bspectro(z) for

the spectroscopic galaxies since this bias is different from the one of the photometric
survey. This is due to the fact that the samples are selected following different criteria
and consist of galaxies with different properties. We will not specify bphoto(z) for the
photometric sample in the following, but simply use b(z).

The expression given in Eq. (3.5) can be further refined to include an offset between
the true density of clustering objects and the measured one, the density of random
outliers (non-clustering objects), and the effects of nonlinear galaxy clustering, but it
goes beyond the scope of this thesis.

3.2.2 Euclid photometric probes

In photometric galaxy surveys the resolution of the redshift measurements is not enough
to study directly the 3D matter power spectrum, it is then common to consider the
projection of this 3D distribution on the 2D celestial sphere, linking the matter power
spectrum to angular power spectra. Studying the projection of the density and shear
fields on the sky also allows to account more easily for their cross-correlation and perform
the so-called 3× 2pt analysis which considers three combinations of the two point corre-
lation functions of galaxy lensing WL, and galaxy positions GCp: ⟨WLWL⟩, ⟨GCpGCp,
⟨WLGCp⟩. Working with angular power spectra it is also more straightforward to cross-
correlate Euclid probes with CMB fields.

The projected angular power spectrum between two fields X and Y, in the i-th and
j-th redshift bin, is in general given by

C
XiYj

ℓ =
2

π

∫ ∞

0

dk k2PR(k)

∫ ∞

0

dz1W
Xi(k, z1)jℓ(kχ(z1))

∫ ∞

0

dz2W
Yj(k, z2)jℓ(kχ(z2)),

(3.6)
where, the letters X and Y can stand either for WL, photometric galaxy clustering (GCp),
and jℓ are the spherical Bessel functions of order ℓ. W(k, z) are so-called kernel functions
of the observables, they relate the underlying power spectrum to the observables and
characterize the time evolution of a perturbation of the cosmological quantity sourcing
the considered observable, for example the matter density field for the GCp.

For cosmic shear the kernel function is

W
γ
i (k, z) =

3Ωm0H
2
0

2

(1 + z)χ(z)

H(z)
δ(k, z)

∫ zmax

z

dz̃ n(z̃)

[
1− χ(z)

χ(z̃)

]
(3.7)

with zmax the maximum redshift of the source redshift distribution ni(z), which represents
the normalized observed number density of galaxies in the i-th redshift bin.
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The kernel for GCp is
W

GCp
i (k, z) = ni(z)b(z)δ(k, z) (3.8)

where, the galaxy bias b(z) is assumed to be scale-independent.
In general, these kernel functions do not have a closed-form expression and require

the use of Boltzmann codes to be computed; moreover, integrating the Bessel functions
renders Eq. (3.6) computationally expensive. It is possible to simplify Eq. (3.6) and the
integral over the Bessel functions by using the Limber approximation [201–203], valid on
small angular scales:∫

dkk2f(k)jℓ(kχ1)jℓ(kχ2) →
π

2

1

χ2
1

f (kℓ) δDirac(χ1 − χ2), (3.9)

with kℓ = (ℓ+1/2)/χ(z); in the Limber approximation and with the change of variables
dχ = dz/H(z), Eq. (3.6) becomes, as a function of the matter power spectrum Pδδ

C
XiYj

ℓ =

∫
dz

H(z)χ2(z)
WXi(z)WYj(z)Pδδ (kℓ, z) . (3.10)

The kernels W (z) appearing in this simplified formula different from the ones in Eq. (3.6)
and depend only on redshift. For WL the kernel includes contributions from both the
cosmic shear signal (γ) and the intrinsic alignment (IA) systematic, it is given by

WWLi(z) = W γi(z)− PIAΩm0

D(z)
W IAi(z). (3.11)

The IA is due to tidal processes during the formation and evolution of galaxies which
induce a preferred orientation in the shapes of galaxies. This intrinsic correlation of
the orientation of galaxies is a contaminant of the shear power spectrum, and must
be properly taken into account in a WL survey. In particular the modelling of the
function PIA is described in Ref. [197] and it introduces three nuisance parameters named
AIA, ηIA and βIA, which are, respectively, the amplitude, the redshift dependence and the
dependence on the galaxy luminosity of the IA. The kernels for shear and IA are

W γi(z) =
3

2
H2

0 Ωm0(1 + z)χ(z)

∫ zmax

z

dz̃ ni(z̃)

[
1− χ(z)

χ(z̃)

]
,

W IA(z) = ni(z)H(z).

(3.12)

In these expressions, D(z) is the linear growth factor introduced in section 1.7.3.
The kernel for GCp is

WGCpi = b(z)ni(z)H(z). (3.13)
In principle, the redshift distributions ni(z) entering Eqs. (3.11) and (3.13) can be

different depending on the probe. In Ref. [197, 204], the same ni(z) was assumed both for
WL and GCp, given by the photometric convolution of the true galaxy distribution n(z)
with the photometric redshift error, which is characterised by the probability pph(zp|z)
of a galaxy at redshift z to be measured via photometry at redshift zp

ni(z) =

∫ z+i
z−i

dzp n(z)pph(zp|z)∫ zmax

zmin
dz
∫ z+i
z−i

dzp n(z)pph(zp|z)
, (3.14)
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where z−i = zi and z+i = zi+1 are the edges of the ith redshift bin. The underlying
true distribution n(z) appearing in this expression is chosen to be in agreement with the
Euclid Red Book [205, 206]:

n(z) ∝
(
z

z0

)2

exp

[
−
(
z

z0

)3/2
]
, (3.15)

where z0 = zm/
√
2, with zm = 0.9 being the median redshift and the surface density of

galaxies is taken to be n̄g = 30 arcmin−2. With this choice, the baseline in Ref. [197] was
10 equi-populated bins, with bin edges given by

zi = {0.0010, 0.42, 0.56, 0.68, 0.79, 0.90, 1.02, 1.15, 1.32, 1.58, 2.50}. (3.16)

We note that the minimum redshift considered in Ref. [197] is an optimistic value of 0.001,
which is lower than in Ref. [205], where a minimum of 0.2 was used as a conservative
limit to avoid potential catastrophic redshift outliers.

The probability distribution function pph(zp|z), describing the probability that a galaxy
with redshift z has a measured redshift zp, is parameterized in the following way

pph(zp|z) =
1− fout√
2πσb(1 + z)

exp

{
−1

2

[
z − cbzp − zb
σb(1 + z)

]2}

+
fout√

2πσo(1 + z)
exp

{
−1

2

[
z − cozp − zo
σo(1 + z)

]2} (3.17)

where, for a fraction (1 − fout) of sources with reasonably well measured redshifts, σb
is the photometric redshift error distribution, while zb and cb are an additive and a
multiplicative bias. The terms σo, zo and co are the corresponding quantities for catas-
trophic outliers. The fraction of catastrophic outliers is represented by the parameter
fout. The choice for these parameters is summarized in Table 3.1, and the redshift dis-
tributions ni(z) computed with these values for 3, 5 and 10 equi-populated bins are
shown in Fig. 3.8; they have been obtained using using the publicly available code
euclid_windows5.

cb zb σb co zo σo fout

1.0 0.0 0.05 1.0 0.1 0.05 0.1

Table 3.1: Parameters adopted to describe the photometric redshift distribution of sources of
Eq. (3.17).

We emphasize that while these specifications can still be considered a good approx-
imation of Euclid capabilities, they have been surpassed in recent years by the use of
redshift distributions extracted from simulations, such as the Flagship 1 [207] and now
the Flagship 2 mock galaxy catalogues, which are the largest simulated galaxy catalogues

5https://github.com/paganol/euclid_windows
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Figure 3.8: Redshift distributions (unnormalized) for 3 (upper left), 5 (upper right) and 10
(bottom left) equi-populated bins obtained from euclid_windows using Eq. (3.14). In the
bottom right panel we show the redshift distributions extracted from the Flagship 2 simula-
tion. The difference in the y-axis scale is due to the fact that the Flagship 2 ni’s are already
normalized.
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ever produced. Products extracted from the Flagship 2 simulation, including the galaxy
distribution and the galaxy bias, are EC internal material at the moment, and have not
yet been published, but are used within the EC as the baseline for upcoming papers. In
the bottom right panel of Fig. 3.8 we show the 13 equipopulated redshift bins, spanning
the redshift range 0.2 < z < 2.5, extracted form the Flagship 2 simulation. The total
number density of galaxies in this scenario is ng = 24.3 galaxies/arcmin2.

In chapter 5, in addition we will also use this Flagship 2 galaxy distribution to char-
acterize Euclid specifications.

3.2.3 Combination of spectroscopic and photometric probes

One of the strengths of Euclid is the ability to analyze the same galaxy field with
photometric and spectroscopic probes and make the best use of their complementary
nature. Indeed, combining photometry and spectroscopy allows to break degeneracies
on cosmological and nuisance parameters, tightening therefore the final constraints. To
exemplify this, we present in Fig. 3.9 the forecasts from Ref. [197] on a w0waCDM
model, obtained by considering spectroscopic galaxy clustering (GCs) alone, WL alone,
WL+GCp, and WL+ GCp + XC + GCs, where XC means the cross-correlation between
the photometric probes GCp and WL. The GCs is added independently to the other
probes. The combination of GCs and WL is extremely powerful as it breaks degeneracies
among cosmological parameters, indeed the purple (GCs) and the blue (WL) contours
are orthogonal or close to orthogonal for several 2D parameter spaces, especially the
planes with h,Ωb, σ8 and ns. This highlights the fact that to reach the expected levels of
accuracy in the estimates of parameters it’s important to rely on the complementarity
of the various probes and not just on the individual constraining power.
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cosmology, for GCs (purple), WL (blue), their combination (orange), and with the addition of
GCph and its cross-correlation with WL (yellow). Figure from Ref. [197].
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3.3 CMB cross-correlation

The relevance of CMB and LSS probes combination has been widely demonstrated (see
e.g. Refs. [208, 209]) as it reduces the significance of systematic effects, breaks degen-
eracies between cosmological parameters, and is crucial for discovering inconsistencies
between the different datasets.

A more recent example from Ref. [1] is illustrated in Fig. 3.10, which shows that com-
bining BAO with CMB allows to break the degeneracy between Ωm and Ωk, indicating
that the observable Universe is flat to a very good approximation. In the right panel,
the same combination of datasets with the addition of SNe in one case, and galaxy weak
lensing in the other, highlights the importance of probe combination for tightening con-
straints on the dark energy parameters w0-wa. In Ref. [1], however, these observables are
assumed to be uncorrelated. This assumption is valid in their analysis since the CMB
probes the early Universe, while the BAO measurements at a low redshift z < 1, and SN
are local probes uncorrelated with the others.

Nonetheless, the matter density field traced by the galaxies is correlated with the
CMB observables, since the overdensities observed in the CMB are the seeds for the
subsequent structures and galaxies formation. Moreover, the CMB photons interact
with the LSS which generate the secondary CMB anisotropies described in section 1.7.1.
For this reason, in current and upcoming surveys, due to their deepness in redshift and
extension on the sky it is not valid to assume CMB and galaxy surveys as independent,
in particular when the footprints of the CMB experiments and the surveys overlap, as
it happens for Euclid and Planck, or for DES and the South Pole Telescope6 (SPT).
Without this assumption, the modelling of the covariances between different probes is
necessary in order to perform a joint analysis.

A joint analysis between two completely different datasets is much more difficult than
cross-correlating probes coming from the same observational campaign. However, it
has been shown to be a very promising path already in Refs. [210–213] where it was
demonstrated that a combined analysis of CMB lensing and galaxy probes for next
generation surveys will be useful in breaking degeneracies between the amplitude of
the matter power spectrum, the galaxy bias and the WL calibration bias. Breaking
these degeneracies with systematic parameters can greatly improve the constraints on
cosmological parameters.

Nowadays, joint analysis are planned early on in the development stage of observa-
tional campaigns. For example, DES and SPT have been designed to maximize the
overlap between the galaxy and the CMB observations. Indeed, they have carried out
a joint analysis by cross-correlating the galaxy weak lensing, the galaxy clustering and
the CMB lensing field from SPT and Planck [214–216]. This type of studies are called
6×2pt analysis because they consider six combinations of the two point correlation func-
tions of CMB lensing ϕ, galaxy lensing WL, and galaxy positions GCp: ⟨ϕϕ⟩, ⟨WLWL⟩,
⟨GCpGCp⟩, ⟨ϕWL⟩, ⟨ϕGCp⟩, ⟨WLGCp⟩. This combination of probes, beside improving
the cosmological constraints in Ref. [214–216], was crucial in checking for inconsisten-
cies between the datasets and was a powerful consistency test for the results of each

6https://pole.uchicago.edu/public/Home.html
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Figure 3.10: Figures from Ref. [1] showing the degeneracy between Ωk and Ωm (left), and
between w0 and wa (right) from different datasets: CMB constraints from Planck to which
external datasets such as BAO, SNe, WL are added.

experiment, including comparisons with results derived from cross-correlations only, and
comparisons designed to test the robustness of the galaxy lensing and clustering mea-
surements from DES.

In addition to the cross-correlation with CMB lensing it is also possible to cross-
correlate galaxy observables with the CMB temperature and polarization fields. Indeed,
on large scales (ℓ < 30) the cross-correlation of CMB temperature with galaxy clustering
will be dominated by the late ISW effect. Even if this signal has a very low SNR, it is
expected to be sensitive to DE and modified gravity models. An example of sensitivity
of CMB-LSS cross-correlation to DE parameters is illustrated in Fig. 3.11, taken from
Ref. [217]. The figure shows the forecasted constraints on the dark energy equation
of state parameters using only cross-correlation probes, on the left for a Euclid -like
photometric survey combined with Planck , and on the right for the combination of
future CMB experiments: LiteBIRD7 + Stage-4 (S4)8[218] with the first phase of SKAO
(SKA1)9.

Within the EC, the data analysis and the exploitation of the cross-correlation between
Euclid and CMB anisotropies are carried out in the CMB cross-correlation science work-
ing group (CMBX-SWG) which is responsible for the development and validation of the
end-to-end pipeline to measure the cross-correlation between CMB lensing and galaxy
probes, together with the LISW signal by cross-correlating CMB temperature and Euclid
GCp data. The pipeline goes from the numerical simulations to build the covariances
and from the estimators of the cross-correlation power spectrum from maps, to the full
analysis to constrain a given model with the likelihood module which takes the esti-
mated power spectra and covariances as inputs. Additional activities within the group
also include cross-correlation with cosmic voids, and cross-correlation of Euclid probes
with the Sunyaev–Zeldovich effect and the cosmic infrared background (CIB).

The first output of the group is a paper forecasting the relevance of CMB cross-
correlation for Euclid in ΛCDM and its minimal extensions, and we are currently working

7https://www.isas.jaxa.jp/en/missions/spacecraft/future/litebird.html
8https://cmb-s4.org/
9https://www.skao.int/en/science-users/118/ska-telescope-specifications
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on extending these forecasts with more updated specifications to modified gravity models,
primordial non Gaussianity and neutrino masses; this will be the topic of chapter 5. Some
of the main results of the first forecast paper [204] are presented in Fig. 3.12 where we
show the improvements of the expected 1σ uncertainties when combining CMB probes
(CMB lensing alone or all the probes) to the Euclid photometric survey, in four different
cosmological models. The figure also shows the 2D marginalized distributions for w0-wa

and the relative improvements in the figure of merit (FoM) due to the inclusion of CMB
probes. The FoM quantifies how well constrained two parameters are, as it is related to
the area of the ellipsis representing the 2D posterior distribution of the two parameters:
large (small) FoM means small (large) area and therefore small (large) errors.

In the following we focus on the cross-correlation between CMB and Euclid photomet-
ric probes since cross-correlation with GCs is also possible but has a lower signal-to-noise.

3.3.1 Cross-correlation with the late-ISW effect

The LISW effect described in section 1.7.1 is hard to detect directly in the CMB tem-
perature power spectrum because of its low SNR due cosmic variance at large scales.
The most direct way to detect it, is to cross-correlate the large-angle CMB anisotropies
with large-scale structure at low redshifts, such as angular galaxy correlations [18], or
the lensing of the CMB itself. Indeed, the ISW effect is due to time varying gravitational
potentials along the line of sight, which affect the temperature fluctuation as

θISW(n̂) = −
∫ χ∗

0

dχ e−τreio
d

dχ
(ϕN + ψN), (3.18)

where ϕN and ψN are the gravitational potential in the Newtonian gauge (1.37), and χ∗
is the comoving distance to the last scattering surface. These potentials are generated by
the matter distribution of the Universe, we therefore expect some correlation between the
distribution of matter and the ISW pattern imprinted in the CMB temperature angular
anisotropies. The evolution of the gravitational potential is suppressed in a matter-
dominated universe and the ISW effect cannot occur until the late stage of accelerated
expansion when DE dominates the energy budget of the Universe, causing the decaying
of the potentials. Matter-DE equality happens approximately at z ≃ 0.3, meaning that
the CMB temperature anisotropies due to the LISW were created at z < 0.3, when
the Hubble scale is comparable to its current value. This implies that the scales are
affected are generally large scales ℓ < 100. From this basic picture, we expect the ISW
effect to be sensitive to DE in whatever forms one chooses to parameterize it, be it a
cosmological constant, a fluid with time varying equation of state or, for example, the
potential of a scalar field. This is confirmed by Fig. 3.13 where we show the dependence
of the cross-correlation power spectrum between the temperature field and the density
field as a function of the cosmological constant density parameter ΩΛ on the left, and
of the w0 parameter of state of DE on the right. Most of the power is at ℓ < 100, with
peaks at about 10 < ℓ < 50, depending on the DE parameters.

The power spectrum is obtained from Eq. (3.6) with the galaxy clustering kernel WGCpi
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Figure 3.13: Dependence of the TG power spectrum on dark energy, parameterized as the
cosmological constant density parameter ΩΛ on the left and the equation of state parameter w0

on the right. The y-axis is Dℓ = Cℓ × ℓ(ℓ+ 1)/(2π).

given in Eq. (3.8) and the ISW kernel

WISW(k, z) = −e−τreio
d

dz
(ϕN + ψN), (3.19)

Assuming no anisotropic stress in Eq. (1.52) and a scale independent growth factor for
the density contrast it is possible to write the kernel in the following form

WISW(k, z) =
3Ωm0H

2
0

k2
d

dz

(
D(z)

a(z)

)
δ(k, z)

D(z)
. (3.20)

Instead, for the simplified expression (3.10) in the Limber approximation, the ISW kernel
is

W ISW(z) =
3Ωm0H

2
0

k2ℓ

d

dz

(
D(z)

a(z)

)
H(z)

D(z)
, (3.21)

and, consequently, the angular power spectrum of the cross-correlation between the
galaxy field in the i-th redshift bin and CMB temperature can be written as

CTGi
ℓ =

3Ωm0H
2
0(

ℓ+ 1/2
)2 ∫ dz H(z)

d

dz

(
D(z)

a(z)

)
b(z)ni(z)D(z)Pδδ (kℓ, z = 0) . (3.22)

The plots in Fig. 3.13 have been obtained considering the unbinned galaxy distribution
(3.15).

Detections of the ISW effect by cross correlating the CMB with LSS tracers have not
been conclusive yet; for example, the Planck 2015 results [219] show a detection with a
significance of 2.9σ by cross-correlating temperature and polarization with galaxies from
SDSS, radio sources from the NVSS catalogue10, and the infrared WISE11 surveys. The
significance is improved when combined the primary CMB with CMB lensing (3.2σ),

10https://www.cv.nrao.edu/nvss/
11https://www.jpl.nasa.gov/missions/wide-field-infrared-survey-explorer-wise
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and the joint cross-correlation of the CMB with all the tracers yields a detection at 4σ.
Note that a 4σ detection has been obtained also recently [220] considering only the cross
correlation of temperature with CMB lensing, by making use of the latest PR4 Planck
data maps and lensing reconstruction [221].

One of the goal of the CMBX-SWG is the detection of the ISW effect by cross-
correlating the CMB temperature field from the Planck mission with Euclid photo-
metric galaxies, for this reason, many efforts within the group are devoted to building
a likelihood to capture the signal. At present, the likelihood module for the ISW cross-
correlation developed does not rely on an Einstein-Boltzmann code to compute the theo-
retical power spectra but it computes them internally in the Limber approximation using
Eq. (3.22). I have been involved in the development and validation of this likelihood in
the MontePython12 [162, 163] framework, this module was mostly used to perform the
validation of the expression used to compute theoretical power spectra and the parame-
ter constraints obtained using it. The validation of the implementation was crucial as it
is the basis for what the group implemented in the official likelihood package of Euclid :
CLOE (Cosmology Likelihood for Observables in Euclid).

The ISW-galaxy cross-correlation is also often included in the forecasts presented in
chapter 5 but computed with the more general Eq. (3.6) with kernels (3.8) and (3.19).

3.3.2 CMB lensing and its cross-correlation

Since CMB lensing is a probe of the late-time matter distribution of the Universe, we
are interested both in the auto-power spectrum and the cross correlations with Euclid
primary probes.

We discussed the basics of weak lensing section 1.7.3 in the context of galaxies and the
distortion of their shapes due to intervening matter along the line of sight. The CMB
acts as a source extended over the entire sky at a given comoving distance χ∗ and its
photons are deflected by the large scale structure of the Universe, causing a remapping
of the CMB fluctuations given by

X len(n̂) = Xunl(n̂+α(n̂)), (3.23)

where X ∈ {T,Q± iU} are the fields describing CMB temperature and polarization.
The angle α = ∇ϕ(n̂) is a field of deflection vectors, and ϕ is the lensing potential

ϕ(n̂) = −2

∫ χ∗

0

dχ
fK(χ∗ − χ)

fK(χ∗)fK(χ)
Ψ(χn̂; τ0 − χ). (3.24)

Here, Ψ is the Weyl potential. Expanding the lensing potential into spherical harmonics
ϕℓm, its angular power spectrum ⟨ϕℓmϕ

∗
ℓm′⟩ = δℓmδℓ′m′Cϕϕ

ℓ can be written as [5]

Cϕϕ
ℓ =

8

π

∫
dkk2

∫ χ∗

0

dχ1

∫ χ∗

0

dχ2PΨ(k; τ0 − χ1, τ0 − χ2)

× jℓ(kχ1)jℓ(kχ2)
fK(χ∗ − χ1)

fK(χ∗)fK(χ1)

fK(χ∗ − χ2)

fK(χ∗)fK(χ2)
, (3.25)

12https://github.com/brinckmann/montepython_public
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where PΨ is the Weyl potential power spectrum. For a flat universe fK(χ) = χ, and for
simplicity we shall assume flatness from now on.

It is also common to consider the lensing convergence, which is the Laplacian of the
lensing potential κ = −1

2
∇2ϕ, its multipole coefficients and power spectrum are related

to the ones of the lensing potential by [222]

κℓm =
ℓ(ℓ+ 1)

2
ϕℓm; Cκκ

ℓ =
ℓ2(ℓ+ 1)2

4
Cϕϕ

ℓ . (3.26)

In our likelihood, the observable is the convergence power spectrum Cκκ
ℓ , which can also

be written in the general form Eq. (3.6) with the kernel given by

Wκ(k, z) = −2
Ψ(k, z)

H(z)

χ∗ − χ(z)

χ∗χ(z)
, (3.27)

or, in the Limber approximation Eq. (3.10) with

W κ(z) =
3Ωm0H

2
0

2
(1 + z)χ(z)

[
1− χ(z)

χ∗

]
. (3.28)

The CMB lensing kernel is similar to the WL one, the key difference is that for the
CMB the source is at a known redshift while for WL we need to integrate on the redshift
distribution of source galaxies.

With these kernels it is possible to compute the CMB lensing auto-power spectrum
and its cross-correlation with WL or GCp.

Phenomenologically, gravitational lensing imprints distinctive statistical signatures
onto the observed CMB fluctuations such as generating statistical anisotropies (non
diagonal correlations in the CMB fields), new non-Gaussian signals and B-mode polar-
ization. It also smooths the observed power spectra. These effects allow us to reconstruct
the lensing potential (and therefore the large scale structure of the Universe) from the
observed lensed CMB.

We show in Fig. 3.14 the smoothing effect of lensing on the CMB temperature power
spectrum, and the CMB lensing power spectrum reconstructed by the Planck collabo-
ration [32], which claimed a 40σ detection of the lensing signal. The figure also contains
the measurements by the ACTPol [223], SPTpol [224], and SPT-SZ [225] collaboration.
More recent measurement of CMB lensing come from the use of the latest PR4 Planck
data maps and lensing reconstruction [221], and from ACT DR6 [226].

I have been involved in the development and validation of the CMB lensing likelihood
as well, especially in the implementation of the theoretical predictions in the likelihood
module joint with the production of mock data vectors, using quadratic estimators (QE),
to validate the end-to-end pipeline. As we’ve seen in section 3.3, since the CMB lensing
is a probe of the matter distribution of the Universe, it is common to employ it in a
combined analysis with galaxy clustering and weak lensing in a 6× 2pt analysis; for this
reason, in chapter 5 we will put some emphasis on the 6× 2pt forecasts.

In the following chapters, I will discuss my contributions to the CMBX-SWG and also
present some of the results that are allowed to be published by the rules of the EC. In
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Figure 3.14: Left: CMB lensing potential power spectrum reconstructed by the Planck col-
laboration, showing also the measurements by the ACTPol [223], SPTpol [224], and SPT-SZ
[225] collaboration. Figure from Ref. [32]. Right: The impact on the lensed CMB temper-
ature power spectrum of varying the lensing amplitude parameter AL (Cϕϕ

L → ALC
ϕϕ
L ) for

AL = [0, 2, 5, 10]. Figure from Ref. [227].

chapter 4 we use Eq. (3.10) with appropriate kernels to discuss the implementation and
validation of those formulas in the likelihood code for the cross-correlation T-GCp and
for the CMB lensing auto power spectrum; instead, for the forecasts in chapter 5 we
compute the observables employing Eq. (3.6).

3.3.3 Signal-to-noise for CMB-cross correlations

In this section we calculate the signal-to-noise ratio (SNR) of the cross-correlation of the
CMB temperature with photometric galaxy clustering galaxy for the detection of the
ISW effect. We also consider the SNR for the cross-correlations between CMB lensing
with photometric galaxy clustering and galaxy weak lensing. The SNR are calculated
for different combinations of a Euclid -like photometric survey with different CMB ex-
periments. For the the cross-correlation between temperature and the galaxy field we
consider only Planck as it as has mapped the CMB temperature anisotropies at the
largest scales (ℓ = 2), and those are sensitive to the T-GCp cross-correlation. For CMB
lensing, we consider the cross-correlations with GCp and WL, beteween Euclid and three
CMB experiments: Planck, Simons Observatory (SO)13[228] and S4.

The SNR of the tomographic cross-correlation between a CMB field and galaxy probes
(GC or WL) is given by [229](

S

N

)2

=
∑
i,j

ℓmax∑
ℓmin

(2ℓ+ 1)fXY
sky C

XYi
ℓ [Cov−1

ℓ ]ijC
XYi
ℓ , (3.29)

where the i, j indices stand for the redshift bins, X ∈ {T, κ}, Y ∈ {GCp,WL}, and fXY
sky

is the fraction of the sky that is jointly mapped by the two surveys: fXY
sky = 0.36 for all

the surveys considered in this section. The covariance matrix Covℓ is defined as

[Covℓ]ij = C
YiYj

ℓ C
XX

ℓ + CXYi
ℓ C

XYj

ℓ , (3.30)
13https://simonsobservatory.org/
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where
C

YiYj

ℓ = C
YiYj

ℓ +N
YiYj

ℓ ; C
XX

ℓ = CXX
ℓ +NXX

ℓ . (3.31)

The shot-noise terms for the Euclid auto-spectra are

N
YiYj

ℓ = δij
σ2

n̄i

, (3.32)

where σ = σϵ when Y = WL is the total intrinsic ellipticity dispersion, and we have
σ = 1 when Y = GCp, and 0 otherwise. We use σϵ = 0.30 as in Refs. [197, 204]. The
term n̄i in the equation above is the galaxy surface density per redshift bin expressed in
inverse steradians, in our case it is simply given by the total surface density of galaxies
n̄g = 30 arcmin−2 divided by the number of bins considered, because we are working
with equi-populated bins. All the cross-spectra are assumed to have zero noise, and for
CMB temperature we adopt isotropic noise deconvolved with the instrument beam

NTT
ℓ = (∆T)2b−2

ℓ , bℓ = exp

(
−1

2
ℓ (ℓ+ 1)

θ2FWHM

8 ln 2

)
, (3.33)

where θFWHM is the full-width-half-maximum of the beam given in radians, and ∆T is the
detector noise levels, expressed in µKarcmin. For Planck we adopt θFWHM = 7arcmin
and ∆T = 33 µKarcmin as in Ref. [204]14.

Regarding the CMB lensing noise we use of latest PR4 Planck data maps and lensing
reconstruction [221] with associated noise; while for SO and S4 we employ the recon-
structed minimum-variance estimator for Nκκ

ℓ [230] of Ref. [204], which corresponds to
the so-called N0 bias. In section 4.2.2 we will provide more details on the CMB lensing
reconstruction and associated noises.

Concerning the multipole range in the sum in Eq. (3.29), we consider the Euclid
observables starting from ℓ = 10, therefore ℓmin = 10 as that is the largest minimum
multipole for the combinations of probes studied in this section (T -GCp, κ-GCp, and
κ-WL). For T -GCp we cut the sum at ℓmax = 500 since most of the signal is at low
ℓ’s. For κ-GCp and κ-WL we have ℓmax = 400 for Planck because that is the maximum
multipole considered in the Planck CMB lensing analysis; whereas, for SO and S4, that
will measure CMB lensing up to ℓ = 3000, we set ℓmax(κ-GCp) = ℓmax(GCp) = 750 and
ℓmax(κ-WL) = ℓmax(WL) = 1500. These multipole ranges for the Euclid observables
corresponds to the pessimistic cuts of Ref. [197].

We compute the observables in a fiducial ΛCDM model using the redshift distribu-
tions described in section 3.2.2 and given by Eqs. (3.14), (3.15) and (3.17), with the
photometric nuisance parameters fixed at the valued provided in Table 3.1.

In Fig. 3.15, the cumulative SNR for T-GCp is shown as a function of ℓmax for one,
three and ten redshift bins, highlighting how multipoles ℓ ≲ 100 do no add information
in the for the ISW signal. The figure shows the relevance of tomography for a probe
with such a low SNR, indeed between the non-tomographic case and the 10 bins scenario
there is an improvement of 27%, and we also see a 14% improvement going from three

14Note that in Ref. [204] there is a typo as the quoted value is ∆T = 23µKarcmin instead of 33.
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Figure 3.15: T-GCp cumulative signal-to-noise as function of ℓmax for a Planck -like CMB
experiment combined with Euclid with one, three and ten redshift bins.

Figure 3.16: κ-GCp and κ-WL cumulative signal-to-noise as functions of ℓmax for the combi-
nation of a Euclid -like photometric survey (10 bins) with Planck , SO and S4.

to ten bins. We therefore expect to reach a ∼ 4σ detection of the ISW using the cross-
correlation between Euclid photometric galaxies and Planck CMB temperature maps,
for 10 bins. The exact values of the SNR are reported in Table 3.2.

In the case of κ-GCp, there is a larger margin of improvement expected with respect
to the current ∼ 20σ detection obtained by Planck and NVSS [231]. Indeed, we obtain
a SNR of 76 when cross-correlating Planck with Euclid and we get a larger SNR for
the combinations of the other CMB experiments with Euclid . We show the cumulative
SNR for κ-Gcp (left panel) and κ-WL (right panel) in Fig. 3.16 for the combination of
a Euclid -like photometric survey with Planck , SO and S4.

For these observables the CMB lensing noise is dominant for Planck , whereas it de-
creases significantly for SO and S4, this is due to their ability to map the small scales in
CMB temperature and polarization, which will allow a much less noisier reconstruction
of CMB lensing. As a consequence, the SNR for κ-GCp and κ-WL can go up to a factor
of 3 for SO, and 5 for S4, with respect to Planck, when considering the cross-correlation
observables. The exact values of the SNR for these probes are reported in Table 3.3.
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1 bin 3 bins 10 bins

Euclid ph-like ⊗ Planck -like 3.1 3.4 3.9

Table 3.2: T-GCp signal-to-noise for a Planck -like CMB experiment combined with Euclid
with one, three and ten redshift bins

κ-GCp κ-WL

Euclid ph-like ⊗ Planck -like 76 48
Euclid ph-like ⊗ SO-like 175 133
Euclid ph-like ⊗ S4-like 257 242

Table 3.3: κ-GCp and κ-WL signal-to-noise for the combination of a Euclid -like photometric
survey (10 bins) with Planck , SO and S4.



Chapter 4

Euclid-CMB cross-correlation likelihood
One of the main activities of the CMBX-SWG is the development of the likelihood in-
volving the CMB-cross correlation observables described in section 3.3 (for the basics of
Bayesian statistical analysis, likelihood and MCMC we refer to appendix A). Concerning
the development and testing of the likelihood, the group works independently from the
so-called Inter Science Taskforce: Likelihood (IST:L), which develops the official Euclid
likelihood package CLOE, but the final products are implemented in the CLOE fork of the
CMBX-SWG, and they will be merged with the official likelihood code. This means that
when CLOE is released it will be shipped with the inclusion of the CMBX probes and the
possibility to carry out the analysis with or without them. For this reason, our indepen-
dent likelihoods have been developed taking into account that the primary goal of this
activity is the integration of our pipeline into CLOE, and we have pursued maximal consis-
tency with the official Euclid likelihood from the inception. For example, the theoretical
predictions for the various observables presented in section 3.2 are computed within the
likelihood module, and we have followed the same philosophy, thoroughly testing and
validating the theoretical predictions for the cross-correlation spectra computed within
our likelihood, before implementing them in the CMBX-SWG fork of CLOE. Beside the
implementation of the theoretical predictions, we have also provided a covariance matrix
that includes the CMBX observables as well as the Euclid photometric probes; we call
this covariance a 7× 2pt covariance since in addition to the 6× 2pt it also incorporates
the T-GCp cross correlation.

The likelihood under consideration is a Gaussian function for all the photometric and
CMBX probes:

−2 lnL(D|θ) =
(
D − T (θ)

)t
Cov−1

(
D − T (θ)

)
, (4.1)

where D is the data vector, while T represents the vector of theoretical prediction which
depend on the cosmological parameters θ. The covariance matrix has an analytical form
as in [204]:

Cov
[
CXY

ℓ , CX′Y ′
ℓ′

]
=

δKℓℓ′

(2ℓ+ 1)fsky

{[
CXX′

ℓ +NXX′
ℓ

] [
CY Y ′

ℓ′ +NY Y ′
ℓ′

]
+
[
CXY ′

ℓ +NXY ′
ℓ

] [
CY X′

ℓ′ +NY X′
ℓ′

]}
, (4.2)

where fsky is the fraction of the sky that is jointly mapped by the different probes, for
Euclid at the end of the survey fsky ≃ 0.36. The term δK is the Kronecker delta (no
correlations between different multipoles), and the indices X, Y , X ′ and Y ′ refer to the
considered observables: T, E, κ, WLi or GCpi. The shot-noise terms for the Euclid
auto-spectra are given by Eq. (3.32), which we report here

NXY
ℓ =

σ2

n̄i

, (4.3)

103



4. Euclid-CMB cross-correlation likelihood

where σ = σϵ when X = Y = WLi is the total intrinsic ellipticity dispersion, and we
have σ = 1 when X = Y = GCpi, and 0 otherwise. The term n̄i in the equation above
is the galaxy surface density per redshift bin expressed in inverse steradians. All the
cross-spectra are assumed to have zero noise, and the noise for the CMB observables are
described in sections 4.1 and 4.2.

In this chapter, we focus on the tests of the Gaussian likelihood for the isolated cases
of the T-GCp and CMB lensing, with particular emphasis on the validation of theoretical
predictions and the approximations used in their computations.

The group has carried out the development of both the ISW and CMB lensing like-
lihood modules, therefore, I will first discuss my contribution to the ISW-likelihood
validation in the MontePython1 [162, 163] framework and then my activities regarding
the CMB lensing likelihood, with consequent implementation into CLOE. These activities
span from tests on the accuracy of the theoretical predictions to the productions of mock-
data vectors, with the goal of building a more realistic pipeline able to take into account,
at the likelihood level, peculiar effects related to the CMB lensing reconstruction from
CMB maps.

4.1 Validation of the ISW-galaxy cross-correlation like-
lihood

The observable to detect the ISW effect is the angular power spectrum of the cross cor-
relation between the CMB temperature and the galaxy field, discussed in section 3.3.1.
At present, the likelihood module for the ISW cross-correlation developed within the
CMBX-SWG does not rely on an Einstein-Boltzmann code to compute the theoreti-
cal power spectra but it computes them internally in the Limber approximation using
Eq. (3.22). In obtaining that formula for the cross-spectrum, in addition to the Limber
approximation, we have assumed the absence of anisotropic stresses and a scale indepen-
dent growth of matter perturbations δ(k, z) = D(z)δ(k, z̃). Using Eq. (3.22) allows us
to be completely consistent with the development of the main Euclid likelihood package
for the primary probes and implement this additional probe consistently within CLOE.
Moreover, the use of these approximations significantly reduces the computation time of
the likelihood, which is crucial to perform a MCMC. Nonetheless, using an approximate
expression might introduce unwanted effects in the estimate of parameters, biasing the
results. I discuss in this section some validations I performed regarding the computa-
tion of the theoretical prediction within our likelihood implementation in MontePython.
Since the information contained in the TG2 cross-correlation is not enough to constrain
all the cosmological parameters, in addition to the TG likelihood we also consider the
simplified Planck Blue book [232] likelihood. This likelihood will provide most of the
constraining power but it is insensitive to certain parameters, for example the galaxy
bias, which can only be constrained by the TG probe in this setting.

1https://github.com/brinckmann/montepython_public
2We use TG to lighten the notation when referring to the cross-correlation between temperature and

photometric galaxy clustering T-GCp.
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4.1. Validation of the ISW-galaxy cross-correlation likelihood

4.1.1 Likelihood and specifications

To perform the validation of the theoretical prediction for the TG power spectrum,
we first need to specify the various ingredients that enter the Euclid and CMB-cross
observables described in sections 3.2 and 3.3, such as the galaxy distributions ni and
the galaxy bias. The latter is modeled as b(z) = bg

√
1 + z, where the parameter bg is

a free nuisance parameter to be varied. We evaluate the bias at the mean redshift of
each bin b(zi) = bg

√
1 + zi and consider it constant in each bin; the fiducial value is

bg = 1. Since this parameter is redshift independent, it comes out of the integral in
Eq. (3.22) and, if there is no additional information from galaxy clustering to constrain
it independently, it can play the role of an amplitude for the CTG

ℓ power spectrum. In
this section we consider information coming from galaxy clustering only in the covariance
matrix, therefore, constraints on bg can be interpreted as constraints on the amplitude
of the ISW effect.

We use the redshift distributions described in section 3.2.2 and given by Eqs. (3.14),
(3.15) and (3.17) with the photometric nuisance parameters fixed at the valued provided
in Table 3.1, for 3 and 10 equi-popolated redshift bins whose edges are given by

zi = {0.0010, 0.71, 1.102.50}, (4.4)
zi = {0.0010, 0.42, 0.56, 0.68, 0.79, 0.90, 1.02, 1.15, 1.32, 1.58, 2.50}. (4.5)

In this section we consider the Gaussian likelihood Eq. (4.25) for the TG power spec-
trum:

−2 lnL(C TGi
ℓ ) =

∑
ij

∑
ℓ

(
Ĉ TGi

ℓ − C TGi
ℓ

) [
Cov−1

]fid
ij,ℓℓ

(
Ĉ

TGj

ℓ − C
TGj

ℓ

)
, (4.6)

with covariance matrix defined as[
CovTGi,TGj

]
ℓℓ′ =

δℓℓ′

(2ℓ+ 1) fsky

[(
C TGi

ℓ C
TGj

ℓ′

)
+
(
C TT

ℓ +NTT
ℓ

)(
C

GiGj

ℓ′ +N
GiGj

ℓ′

)]
,

(4.7)
where fsky is the effective fraction of the sky that is jointly mapped by the different
probes, for which we consider fsky = 0.36, and we have assumed the cross-spectra to
have zero noise. NTT

ℓ is the noise in the CMB temperature power spectrum, given by
Eq. (3.33) (isotropic noise deconvolved with the instrument beam). For the simplified
Planck Blue book [232] likelihood we employ in the remaining of the section, we consider
only one frequency channel with θFWHM = 7.1 arcmin and ∆T = 42.6 µKarcmin. The
term N

GiGj

ℓ represents the shot-noise of the galaxy density contrast given by Eq. (4.3)
where n̄i is simply the total surface density of galaxies n̄g = 30 arcmin−2 divided by the
number of bins considered, because we are working with equi-populated bins.

4.1.2 Validation of the theoretical prediction

We first quantify how much the approximation (3.22) changes the power spectrum
compared to exact computation (3.6) with the kernel (3.19), by comparing the power
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Figure 4.1: Percentage difference between the Temperature-Galaxy power spectra computed
within our likelihood module and with CLASS, for 3 redshift bins on the left and 10 on the right

spectrum computed within our likelihood module with that produced by the Einstein-
Boltzmann code CLASS3 [20, 26] where the integral (3.6) is computed without any as-
sumptions, such as the separability of wavenumber and redshift in the growth of matter
perturbations. We also check the precision settings of CLASS to ensure that the differ-
ence between the power spectra is not due to an inaccurate computation, and set the
precision parameters such that the Limber approximation is not adopted at any scale.
Fig. 4.1 shows the percentage difference in the power spectra, for 3 bins on the left panel
and 10 bins on the right panel. These differences are never larger than 4% in the 3 bins
case and always within 10% for the 10 bins, where, as expected, we observe the highest
differences on large scales. There is a tendency that Fig. 4.1 highlights: for the broadest
bins in redshift, the relative differences at small and large scales are comparable. This
holds true for the first and the tenth bin in the right panel and for all 3 bins in left panel,
which are the more extended bins in z (see Eqs. (3.16) and (4.4) and Fig. 3.8).

We now wish to disentangle the Limber approximation from the other assumption that
lead from Eqs. (3.6) and (3.19) to Eq. (3.22), we do this by adopting the exact formula and
applying only the Limber approximation at different multipoles, without assuming linear
growth of matter perturbation or complete absence of anisotropic stresses. Therefore,
we derive fiducial power spectra using CLASS without the Limber approximation at all
multipoles and then compute the χ2 between this fiducial and the power spectra obtained
using the Limber approximation only after a certain multipole, called ℓswitch, as

∆χ2 =
∑
ij

∑
ℓ

[
CTGi

ℓ NoLimber − C TGi
ℓ (ℓswitch)

] [
Cov−1

]fid
ij,ℓℓ

[
C

TGj

ℓ NoLimber − C
TGj

ℓ (ℓswitch)
]
,

(4.8)
where the covariance matrix is computed using the fiducial power spectra CTGi

ℓ NoLimber.
The result is shown, for 3 and 10 redshift bins, in the left panel of Fig. 4.2, as a function
of ℓswitch, meaning that on the extreme left the Limber approximation is used for all
multipoles while on the right it is not used at any scale. The difference in χ2 is negligible
for the 3 bins case even when the power spectra use the Limber approximation at all

3https://lesgourg.github.io/class_public/class.html
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Figure 4.2: Left: χ2 computed using Eq. (4.8) between the power spectra without the Limber
as fiducial, and the power spectra with the Limber approximation employed after a certain
multipole ℓswitch. Right: percentage difference in the χ2 computed using Eqs. (4.9) to (4.11).

scales, while for 10 bins, we obtain χ2 ≃ 1 for ℓswitch = 2. This should not produce any
bias in parameter estimations, as we will discuss shortly. Increasing the multipole at
which we apply the Limber approximation, the χ2 tends to zero, as expected.

The right plot of Fig. 4.2 shows the percentage difference

%∆χ2 = 100
[
χ2
noLimber − χ2

Limber(ℓswitch)
]
/χ2

noLimber, (4.9)

between the χ2 computed without the Limber approximation and with the Limber ap-
proximation starting from a given multipole ℓswitch:

χ2
noLimber = CTG

noLimber

[
Cov−1

]fid
CTG

noLimber, (4.10)

χ2
Limber(ℓswitch) = CTG

Limber(ℓswitch)
[
Cov−1

]fid
CTG

Limber(ℓswitch), (4.11)

where we have omitted the indices ij and ℓ to lighten the notation. This difference is at
most of 4% for 10 bins when using the Limber approximation from ℓswitch = 2, but it is
already consistent with zero from ℓswitch = 10.

Before adopting Eq. (3.22) as our theoretical prediction in the likelihood module, we
also performed the following test: take the power spectra from CLASS as fiducial data,
and perform an MCMC analysis computing the theoretical predictions in the various
points of parameter space with our approximated formula, and check if this results in
any bias in the estimation of cosmological parameters. We also perform an analogous
MCMC analysis where the role of both the fiducial data and the theoretical prediction are
computed using the approximated power spectrum, and compare the two results. The
latter case will recover the fiducial cosmology because the mock data and the theoretical
prediction are computed in the same way; this is our benchmark, and we compare it
to the run performed using the exact spectra as data. If the two analysis agree we can
conclude that our approximation did not induce any biases in the parameter estimation.

As anticipated, since the information contained in the cross correlation between the
late ISW effect and galaxies is not enough to constrain all the cosmological parameters,
in addition to the TG likelihood we also consider the simplified Planck Blue book [232]
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4. Euclid-CMB cross-correlation likelihood

Figure 4.3: Marginalized joint 68% and 95% CL regions 2D parameter space on the DE
parameters w0, w0+wa and the bias bg, for a combination of the Planck Bluebook likelihood and
our Montepython likelihood for the cross correlation between CMB temperature and galaxies.

likelihood which will provide most of the constraining power on the cosmological param-
eters. The free bias parameter, however, can only be constrained by cross-correlation
observable in this setting, and we are therefore interested to see if the estimates in the
two analysis are consistent with each other and with the fiducial value bg = 1.

Since the LISW is sensitive to the DE parameters we consider for this analysis a
w0waCDM model (1.97) where the fiducial values are w0 = −1 and wa = 0, and we
sample on w0 and on the sum of the two w0+wa, and the other cosmological parameters.

The results are summarized in Table 4.1 and Fig. 4.3 where we show that there is
negligible bias in the estimation of the parameter bg. In particular, both for 3 and 10
bins the recovered value is consistent with the fiducial bg = 1. Furthermore, the case with
mock data from CLASS and the one with mock data computed with the approximated
formula, provide similar best-fit and 1σ error, showing that the use of the approximated
expression does not degrade the constraints. Indeed, as it can be seen from Fig. 4.3
the posteriors are consistent in the two cases. The near overlap between the posteriors
further verifies that our approximated modelling of the cross-correlation power spectra
introduces negligible bias, and it validates the approximations we introduced.
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3 bins 10 bins
fid. Limber fid. No Limber fid. Limber fid. No Limber

Bias in unit of σ
(wrt bg = 1) 0.20 0.21 0.14 0.17

1σ 0.30 0.28 0.29 0.29

Table 4.1: Bias in the estimation of the bias parameter bg in units of the 1σ error, consistent
among all the cases.
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4.2 CMB lensing mock pipeline

Even if CMB lensing is inferred from the CMB, it is a probe of the late-time matter
distribution of the Universe, and it can be connected directly to the matter power spec-
trum today. For this reason, in addition to the cross-correlation between CMB lensing
and Euclid probes, we also implemented the CMB lensing auto power spectrum in the
likelihood framework of Euclid . In this way, we can infer it consistently with all the
other Euclid probes.

In this section I discuss my implementation of the CMB lensing theoretical prediction
in CLOE and, in section 4.2.2, a CMB lensing quadratic estimator (QE) reconstruction
I carried out. The name QE comes from the fact that in order to estimate the lensing
potential, a quadratic combination of the CMB fields T, E, B, is used [233]. The reason to
reconstruct the power spectrum is to produce a mock-data vector to test the likelihood,
and the debiasing of some terms associated with the QE that have to be implemented
in the likelihood itself as corrections to the theoretical predictions.

We use capital indices L,M for the CMB lensing power spectrum and multipole coef-
ficients, distinguishing them from ℓ,m of the primary CMB.

4.2.1 CMB lensing in CLOE

The main reason to implement the CMB lensing in the likelihood without relying on the
computation from an Einstein-Boltzmann code, is to compute the angular power spec-
trum using directly the low redshift matter power spectrum provided by the nonlinear
module of CLOE, which will allow complete consistency with the computation of Euclid
primary probes. The main challenge of such implementation is that to reliably compute
the CMB lensing power spectrum one needs to integrate Eq. (3.25) up until the last
scattering surface, while the maximum redshift for CLOE is zmax = 4. Using CLOE with
zmax ≃ 1100 is unfeasible as it dramatically slows down the code, rendering impossible
sampling in parameter space. To overcome this problem we split the integral for the
CMB lensing convergence in a low (z < 4) and high redshift (4 < z < z∗) contribution,
as

Cκκ
L = L2(L+ 1)2

∫ χ∗

χ(z=4)

dχ

(
χ∗ − χ

χ2χ∗

)2

PΨ(kℓ, τ0 − χ)

+

∫ z=4

z=0

dz

H(z)χ2(z)
W κ(z)2Pδδ (kℓ, z) (4.12)

with W κ given in Eq. (3.28). The high redshift integral is computed independently of
other CLOE routines and to obtain it we only need the comoving distance to the last-
scattering surface and the Weyl power spectrum up to z∗. Since this task is carried out
independently from the rest of the code and it is not a bottleneck in execution time,
including or not the CMB lensing in the likelihood results in a minimal slow down of the
code, about 3%.

Before implementing Eq. (4.12) in the CLOE fork of the CMBX-SWG, we thoroughly
tested and validated the accuracy of the computation against the Einstein-Boltzmann
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4.2. CMB lensing mock pipeline

Figure 4.4: Left: Percentage difference between the CMB lensing power spectrum computed
with Eq. (4.12) and CAMB. Right: Same as in the left plot but with the addition of the expected
noises in the cmb lensing measurements for SO (black) and S4 (red).

code CAMB4 [27]. A comparison between our computation with Eq. (4.12) and CAMB
is shown in Fig. 4.4, for multipoles L ∈ [10, 3000]. We can see from the left panel
that the agreement between the two codes is extremely good: the largest percentage
difference, which occurs at L = 10, is less than 0.1%. For comparison, in the right panel
of the figure we also add the expected noises in the CMB lensing measurements for the
upcoming Simons Observatory (SO)5 and the future CMB S4 experiment. The difference
with respect to CAMB is completely negligible when compared to the noise, therefore, our
computation of the theoretical prediction is validated.

At the moment, the expression in Eq. (4.12) is what is implemented in the CMBX-
SWG fork of CLOE and it is currently in the process of review and evaluation for merging
our modification into the main CLOE repository.

As we will see in the next sections, due to some subtleties in the QE reconstruction
of the lensing potential, the formula we validated needs to be modified in order to
be compared with real data, and to sample the parameter space without introducing
unwanted biases related to the reconstruction. The next two sections highlight this
procedure which is currently under development and testing, with the goal of providing
a working pipeline on mock data before the first Euclid data release expected in 2025.

4.2.2 Quadratic estimators of the CMB Lensing power spectrum

This section offers an outline of quadratic estimator techniques necessary for this work,
it draws heavily from [234], where the CMB lensing reconstruction procedure is discussed
in a more detailed way, and effects beyond the scope of thesis are included.

Lensing potential estimator

Considering the CMB multipole coefficients defined in section 1.7.1Xℓm, Zℓm ∈ {Tℓm, Eℓm, Bℓm}
and ensemble averaging over a fixed realization of the CMB lensing potential, the CMB

4https://camb.info/
5https://simonsobservatory.org/

111

https://camb.info/
https://simonsobservatory.org/


4. Euclid-CMB cross-correlation likelihood

covariance matrix acquires off-diagonal elements given by

⟨Xℓ1m1Zℓ2m2⟩ =
∑
LM

(−1)M

(
ℓ1 ℓ2 L

m1 m2 −M

)
WXZ

ℓ1ℓ2L
ϕLM , (4.13)

where the bracketed term is a Wigner-3j symbol. The terms WXZ are the covariance
response functions, they are linear in the (lensed) CMB power spectra and their explicit
expressions can be found in [230].

These off-diagonal terms can be used to estimate the lensing potential, in fact a
quadratic estimator of the lensing potential is defined as a function of pairs of inverse-
variance-filtered sky maps X̄ℓm, Z̄ℓm ∈ {T̄ℓm, Ēℓm, B̄ℓm} as

x̄LM [X̄, Z̄] =
(−1)M

2

∑
ℓ1m1,ℓ2m2

(
ℓ1 ℓ2 L

m1 m2 −M

)
W x

ℓ1ℓ2L
X̄ℓ1m1Z̄ℓ2m2 , (4.14)

where W x
ℓ1ℓ2L

is a set of weight functions characteristic of the estimator x, and the
inverse-variance filtered maps are

X̄ℓm =
Xℓm

CXX
ℓ +NXX

ℓ

= FX
ℓ Xℓm (4.15)

with NTT
ℓ the noise spectrum of the map. Filtering the maps downweights noise-

dominated modes. For optimal lensing estimators the weight functions coincide with
the covariance response function of Eq. (4.13). For example, for the temperature-only
optimal estimator W TT = WTT

∣∣
fid

, where the “fid” subscript indicates that the lensing
weight function is evaluated for the fiducial cosmological model chosen for the lensing re-
construction. In general, there are eight possible lensing estimators based on the possible
combinations of T , E, and B, provided that one neglects the lensing of any primordial
B-mode signal. This number reduces to 5 possible estimators (TT, TE, TB,EE,EB) as
there is no distinction between TE and ET , and the BB estimator has no linear response
to lensing in the absence of primordial B-modes [32].

The response of a quadratic estimator to the covariance (4.13) is

⟨x̄LM⟩ = Rxϕ
L ϕLM , (4.16)

where
Rxϕ

L =
1

2(2L+ 1)

∑
ℓ1ℓ2

W x
ℓ1ℓ2L

WXZ
ℓ1ℓ2L

FX
ℓ1
FZ
ℓ2
. (4.17)

To calculate the estimator response we use a fiducial ΛCDM cosmology with given val-
ues of the parameters, meaning that the response depends on the fiducial. For this
reason, when sampling in parameter space during an MCMC, the normalization has to
be recomputed using the CMB power spectra at the particular point in parameter space.

We note that the quadratic estimators (4.14) takes contribution also from effects dif-
ferent from lensing, such as the masking of the maps or the inhomogeneity of the instru-
mental noise. These effects, in fact, introduce correlations between different scales and
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4.2. CMB lensing mock pipeline

can mimic lensing; thus, they have to be removed from the lensing potential estimate.
It is possible to do so by performing several reconstructions over many simulations that
include these effects and then averaging, obtaining the so-called mean field x̄MF

LM which
is subtracted to the estimator (4.14). Since the lensing reconstruction we discuss in sec-
tion 4.2.3 is performed on full sky CMB maps we created using healpy6, we can ignore
the mean field in what follows, and our estimate of the lensing potential is therefore

ϕ̂x
LM =

x̄LM

Rxϕ
L

. (4.18)

The so-called minimum variance (MV) estimator is obtained by combining the individual
estimators as

ϕ̂MV
LM =

∑
x ϕ̂

x
LMRxϕ

L∑
x Rxϕ

L

, (4.19)

with the sum taken over the eight possible lensing estimators (TT , EE, TE, TB, EB,
ET , BT , and BE).

Power spectrum estimator

The CMB lensing power spectrum Cϕϕ
L enters the connected 4-point function of the CMB

fields as [235]

⟨Xℓ1m1Zℓ2m2Cℓ3m4Dℓ4m4⟩c =
∑
LM

(
ℓ1 ℓ2 L

m1 m2 M

)(
ℓ3 ℓ4 L

m3 m4 −M

)
× (−1)MCϕϕ

L WXZ
ℓ1ℓ2L

WCD
ℓ3ℓ4L

+ 2 perms. (4.20)

Since the response functions W enter the above equation, it is possible to estimate the
CMB lensing power spectrum Cϕϕ

L from the quadratic estimators of the lensing potential:

C ϕ̂ϕ̂
L,xy[X̄, Z̄, C̄, D̄] ≡

f−1
sky

2L+ 1

∑
M

ϕ̂x
LM [X̄, Z̄]ϕ̂y∗

LM [C̄, D̄], (4.21)

where fsky is the unmasked sky fraction. We note that the power spectrum comes from
the combination of four CMB fields since each quadratic estimator of the lensing potential
contains a combination of two CMB fields. Starting from Eq. (4.21) it is possible to write
an estimate of the lensing potential power spectrum based on the estimators x and y as

Ĉϕϕ
L,xy = C ϕ̂ϕ̂

L,xy − ∆C ϕ̂ϕ̂
L,xy

∣∣∣
N0

− ∆C ϕ̂ϕ̂
L,xy

∣∣∣
N1
, (4.22)

where we have omitted two correction terms related to the mean field and point sources
contribution to the CMB lensing power spectrum.

There are two correction terms in Eq. (4.22). The ∆C ϕ̂ϕ̂
L,xy|N0 term is the disconnected

contribution to the 4-point function, which would be non-zero even in the absence of
6https://github.com/healpy/healpy
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lensing, it is commonly called N0 bias. It is possible to estimate the N0 bias with a
procedure called realization dependent debiaser, which allows to make the lensing power
spectrum estimate robust to possible mismatches between the assumed fiducial cosmol-
ogy and noise level used for the reconstruction, and the real ones [236]. It consists of
replacing some of the data fields with those from two sets of independent simulations
(labelled MC1 and MC2), and then average over realizations as

∆C ϕ̂ϕ̂
L,xy

∣∣∣
N0

=

〈
− C ϕ̂ϕ̂

L,xy[X̄MC1, Z̄MC2, C̄MC2, D̄MC1] + C ϕ̂ϕ̂
L,xy[X̄MC1, Z̄, C̄MC1, D̄]

+ C ϕ̂ϕ̂
L,xy[X̄MC1, Z̄, C̄, D̄MC1] + C ϕ̂ϕ̂

L,xy[X̄, Z̄MC1, C̄MC1, D̄]

+ C ϕ̂ϕ̂
L,xy[X̄, Z̄MC1, C̄, D̄MC1]− C ϕ̂ϕ̂

L,xy[X̄MC1, Z̄MC2, C̄MC1, D̄MC2]

〉
MC1, MC2

. (4.23)

This estimate of the N0 is stable if the simulations have a covariance differing from
reality up to linear order [236]. Thus, even if we didn’t choose the correct cosmology
as the fiducial for the lensing reconstruction, the realization-dependent procedure can
correct the mismatch and accurately estimate the N0 bias.

The so-called N1 bias, ∆C ϕ̂ϕ̂
L |N1, represents the non-Gaussian secondary contractions

(the other permutations in Eq. (4.20)) due to lensing [237]. In the flat-sky approximation
in 2D Fourier space it is given by

∆C ϕ̂ϕ̂
L,xy

∣∣∣
N1

=
1

Rxϕ
L Ryϕ

L

∫
d2ℓ⃗1
(2π)2

∫
d2ℓ⃗′1
(2π)2

[
Cϕϕ

|ℓ⃗1−ℓ⃗′1|
WXC(−ℓ⃗1, ℓ⃗′1)WZD(−ℓ⃗2, ℓ⃗′2)

+ Cϕϕ

|ℓ⃗1−ℓ⃗′2|
WXD(−ℓ⃗1, ℓ⃗′2)WZC(−ℓ⃗2, ℓ⃗′1)

]
FX
|ℓ⃗1|F

Z
|ℓ⃗2|F

C
|ℓ⃗′1|
FD
|ℓ⃗′2|
W x(ℓ⃗1, ℓ⃗2)W

y(ℓ⃗′1, ℓ⃗
′
2), (4.24)

where ℓ⃗1 + ℓ⃗2 = ℓ⃗′1 + ℓ⃗′2 = L⃗ and the flat-sky lensing weight functions can be found in
[233]. This correction, unlike the realization dependent N0 (RDN0) depends on the
assumed fiducial cosmology and needs to be corrected when sampling the likelihood in
parameter space.

4.2.3 Mock CMB lensing data vector and likelihood corrections

In this section we provide the details of an idealized CMB lensing reconstruction with the
goal of producing a mock data vector for testing and validating purposes of the lensing
likelihood. This reconstruction is in fact realistic enough to capture some effects that
need to be taken into account at the likelihood level when comparing theoretical pre-
dictions against reconstructed CMB lensing power spectra. In particular, the expression
given in Eq. (4.12) has to be modified as a consequence of the quadratic estimator of
CMB lensing that will be used as data. Therefore, after discussing the lensing recon-
struction we provide more details on the lensing likelihood and how to take this into
account.

Starting from a fiducial ΛCDM cosmology, we compute the CMB power spectra Cℓ|fid,
from them we create CMB maps using healpy, we then lens the maps with the fiducial
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4.2. CMB lensing mock pipeline

lensing potential employing lenspyx7. At this stage we are able to reconstruct the
CMB lensing potential using the procedure described in the previous section with the
plancklens8 code, which allows to estimate the CMB lensing potential starting from
lensed maps (be them real or simulated), the noise of the observation and a set of primary
CMB Cℓ’s assumed as fiducials for the reconstruction. We use the noise models provided
by the SO collaboration [228]9, since this will be the main CMB lensing dataset that
will be used for the final 6 × 2pt analysis of the Euclid mission. We consider a sky
fraction fsky = 1 in order to avoid having to deal with mean field subtraction and
numerous simulations, since the goal is not a realistic reconstruction in itself, but rather
the implementation in the likelihood of the debiasing terms, for which we need pre-
computed inputs coming from the QE. Note that, to create and lens the CMB maps we
use a set of fiducials Cℓ|fid, but for the lensing reconstruction we assume a different set
Cℓ = 0.9Cℓ|fid, biasing therefore our assumed cosmology, like it would happen in a real
reconstruction in which one doesn’t know a priori what are the true underlying Cℓ’s, but
still needs to assume a set of fiducials in order to perform the reconstruction. As we
said in the previous section, the mismatch is not a problem if one uses the realization
dependent N0 to debias the QE of the lensing potential, as this procedure is insensitive to
the assumed cosmology. This is confirmed by the results of the reconstruction presented
in Fig. 4.5, where we show on the left panel the fiducial CMB lensing power spectrum
we used to lens the maps in black, the reconstructed minumum variance estimator of
the power spectrum in blue, and in red the sum of the fiducial with the N0, N1 terms:
Cϕϕ

L

∣∣∣
fid

+ ∆C ϕ̂ϕ̂
L,MV

∣∣∣
N0

+ ∆C ϕ̂ϕ̂
L,MV

∣∣∣
N1

.
We can see that the latter agrees with the QE quite well, we have therefore recon-

structed the CMB lensing power spectrum with the expected accuracy. We quantify the
agreement by plotting the residual bias in the estimation of the Cϕϕ

L on the right panel
of Fig. 4.5, compared with the expected error in the measurement of the CMB lensing
assuming a Gaussian covariance with N0 noise. Our estimator is consistent with this 1σ
Gaussian error.

At this point, we have a mock-data vector for the CMB lensing power spectrum,
given by Eq. (4.22), similar to what we expect to estimate from the CMB maps of SO.
However, in the quadratic estimator procedures we have encountered terms that depend
on the assumed fiducial cosmology, such as the N1 bias term or the normalization of the
power spectrum given by the response from Eq. (4.17). Unlike the N0 bias, to debias the
estimator from these terms, they are computed in the fiducial cosmology and they are
therefore reliable only in one point in parameter space. When sampling the likelihood,
in principle we have to recompute these terms for each point of parameter space.

We provide more detail of our lensing likelihood here and how we take care of these
terms. The likelihood for the convergence power spectrum is a Gaussian likelihood

−2 logLκ = (Ĉκκ
L − Cκκ,th

L )
[
Cov−1

]
(Ĉκκ

L′ − Cκκ,th
L′ ). (4.25)

The dependence on cosmological parameters enters in Eq. (4.25) through the theory
7https://github.com/carronj/lenspyx
8https://github.com/carronj/plancklens
9https://github.com/simonsobs/so_noise_models
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Figure 4.5: Left: results of our CMB lensing reconstruction, the blue line is the reconstructed
power spectrum, which correctly fits the sum of the fiducial power spectrum (black) with the
N0 (orange) and N1 (green) bias, shown in red. Right: Residual bias in the estimation of the
power spectrum compared with the expected error in the measurement of the CMB lensing,
assuming a Gaussian covariance with N0 noise.

spectrum at each point in parameter space, Cκκ,th
L . In first approximation and without

any corrections it is given by the expression (4.12) we validated in section 4.2.1. Thus,
the likelihood depends on the cosmological parameters θ in the following ways:

• directly, through the theory spectrum Cκκ
L

∣∣
θ
;

• indirectly (but linearly) on Cκκ
L

∣∣
θ
, via the theory-dependence of N1 (Eq. 4.24);

• indirectly, and non-linearly, on the CMB power spectra CTT
ℓ , CTE

ℓ , and CEE
ℓ

through the estimator normalization and N1 (from the theory-dependent covari-
ance response W of Eq. 4.13).

So, for a given set of cosmological parameters θ, the theory power spectrum that we
should calculate is given by

Cκκ,th
L =

(Rxκ
L Ryκ

L )
∣∣
θ

(Rxκ
L Ryκ

L )
∣∣
fid.

Cκκ
L |θ − ∆Cκκ

L,xy

∣∣∣
N1, fid

+ ∆Cκκ
L,xy

∣∣∣
N1, θ

. (4.26)

Computing the above equation for each sampled point in parameter space would render
an MCMC unfeasible due to the large computation time. Therefore, we choose apply
an approximation for small deviations from the fiducial model, following Ref. [32, 234].
Expanding the CMB power spectrum dependence to linear order around the fiducial
model one gets [234]

Cκκ,th
L ≈ Cκκ

L |θ +
d ln(Rxκ

L Ryκ
L )

dCj
ℓ′

(
Cj

ℓ′

∣∣∣
θ
− Cj

ℓ′

∣∣∣
fid

)
Cκκ

L |fid

+M
(1)κ
LL′,xy

(
Cκκ

L′ |θ − Cκκ
L′ |fid

)
+
d∆Cκκ

L,xy

∣∣∣
N1

dCj
ℓ′

(
Cj

ℓ′

∣∣∣
θ
− Cj

ℓ′

∣∣∣
fid

)
, (4.27)

where j sums over the primary CMB power spectra. The matrix M
(1)κ
LL′ captures the

linear dependence of N1 on the lensing potential for fixed CMB power spectra, while
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the other matrices give the dependence of the response and of the N1 on the primary
CMB power spectra. These matrices, which are the computationally expensive part, are
pre-computed for the fiducial model.

At present, the term involving the response of the quadratic estimator R has been
implemented in the likelihood and is under testing. We plan, in the near future, to

pre-compute the matrices M (1)κ
LL′ and

d∆Cκκ
L,xy|N1

dCj

ℓ′
and implement the remaining terms, in

order to have a likelihood ready to be used with a realistic data vector and deliver a
working pipeline including CMB lensing for the first Euclid data release.

Additionally, the group in charge of simulations in the CMBX-SWG will provide nu-
merical covariances and power spectra estimated from simulations, containing correla-
tions between the CMB lensing field and the galaxy fields (GCp and WL). At that stage
we will be able to completely test the likelihood with these more realistic products and
asses the readiness for the upcoming analysis with real data.

In this context, it is important to point out that the non-Gaussian distribution of the
density field creates a bias in the lensing reconstruction called N3/2. This bias can be
quite small for a CMB lensing only analysis, and in fact we have ignored it so far, but it
could be necessary to take it into account for the cross-correlation with galaxy clustering
and galaxy weak lensing [238]. We therefore plan to estimate how relevant such a term
can be for a 6× 2pt analysis and eventually include it in our pipeline.

4.3 Discussion and future perspectives

We have presented in this chapter the validation of our CMB cross-correlation likelihood.
In particular, we discussed the validation of the theoretical predictions for the cross-
correlation between the the CMB temperature field and galaxy number counts, and for
CMB lensing. Concerning the ISW effect we shown that the approximation introduced
in the computation do not cause any significant bias in the analysis, while for CMB
lensing, beside validating our code against CAMB, we have performed a quadratic estimator
reconstruction with the goal of pre-computing the necessary quantities for the debiasing
of the power spectrum in the likelihood. At the moment, we have implemented the
correction for the normalization of the power spectrum, while the correction for the N1
bias is ongoing. On this note, current and future activities on the likelihood module are

• the inclusion of masks and their effects on covariances;
• test of the end-to-end pipeline with power spectra estimated from simulation;
• assessment of the relevance and eventual implementation of the N3/2 bias for the

cross-correlation between CMB lensing and galaxy probes.
We are therefore confident to complete the end-to-end pipeline and likelihood module to
analyze the upcoming data of the first Euclid data release in 2025.
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Chapter 5

Euclid-CMB cross-correlation forecasts
in extended models

The first paper of the CMBX-SWG [204] forecasts the relevance of the combination
and cross-correlation with CMB for Euclid in ΛCDM and its minimal extensions, we
presented some of the results in section 3.3. One of the messages of this work concerns the
increased impact of the cross correlation in models with more parameters than ΛCDM, as
it was also shown in [217]. For this reason the group is currently working on extending the
forecasts to modified gravity models, neutrino masses and primordial non Gaussianity,
also with more updated and realistic specifications.

In this chapter we discuss some of the preliminary results assessing the constraining
power of CMB cross-correlations in the simplest scalar-tensor theories of gravity, with
the addition of the sum of the neutrino masses as a free parameter. We first emphasize
the role of CMB lensing in complementing the photometric galaxy clustering and galaxy
weak lensing of the Euclid survey, highlighting in this way the information that can be
obtained through LSS probes alone, without considering the CMB primaries; and then
discuss a full CMB-Euclid joint analysis which will provide the most constraining results.

Since this work follows on the efforts of the CMBX-SWG group in Ref. [204], we use
the same methodology and Fisher code developed for those forecasts: SFX_CLASS [204].
In order to produce the results presented in this chapter, I have extended this code
and integrated it with the dedicated Einstein-Boltzmann code for scalar-tensor theories
CLASSig [98], that we use to compute the observables.

Some of the results contained in this chapter will be published in a key project paper
of the CMBX-SWG.

5.1 Fisher forecast formalism

We use the Fisher matrix formalism [239] to forecast uncertainties of cosmological param-
eters when combining Euclid with several CMB experiments. In the Fisher formalism,
the likelihood L is assumed to be a multivariate Gaussian and the Fisher matrix F is
defined as:

Fαβ =

〈
∂2L

∂θα∂θβ

〉
=

1

2
Tr

[
∂C
∂θα

C−1 ∂C
∂θβ

C−1

]
, (5.1)

where the average is over observational data, C is the theoretical covariance matrix and
θα, θβ are the cosmological parameters. By taking into account that the number of modes
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is (2ℓ+ 1)fsky/2, Eq. (5.1) becomes

Fαβ =
ℓmax∑
ℓmin

∑
abcd

2ℓ+ 1

2
fabcd
sky

∂Cab
ℓ

∂θα
(C−1)bc

∂Ccd
ℓ

∂θβ
(C−1)da , (5.2)

where abcd ∈ {T,E, κ,G1, ..., GN ,WL1, ...,WLN}, and fabcd
sky ≡

√
fab
skyf

cd
sky is the effective

sky fraction for each pair of probes. The theoretical covariance matrix C is defined as

C =



C̄TT
ℓ CTE

ℓ CTκ
ℓ CTG1

ℓ . . . CTGN
ℓ CTWL1

ℓ . . . CTWLN
ℓ

CTE
ℓ C̄EE

ℓ CEκ
ℓ CEG1

ℓ . . . CEGN
ℓ CEWL1

ℓ . . . CEWLN
ℓ

CTκ
ℓ CEκ

ℓ C̄κκ
ℓ CκG1

ℓ . . . CκGN
ℓ CκWL1

ℓ . . . CκWLN
ℓ

CTG1
ℓ CEG1

ℓ CκG1
ℓ C̄G1G1

ℓ . . . CG1GN
ℓ CG1WL1

ℓ . . . CG1WLN
ℓ

...
...

...
... . . . ...

... . . . ...
CTGN

ℓ CEGN
ℓ CκGN

ℓ CG1GN
ℓ . . . C̄GNGN

ℓ CGNWL1

ℓ . . . CGNWLN
ℓ

CTWL1
ℓ CEWL1

ℓ CκWL1
ℓ CG1WL1

ℓ . . . CGNWL1

ℓ C̄WL1WL1
ℓ . . . CWL1WLN

ℓ
...

...
...

... . . . ...
... . . . ...

CTWLN
ℓ CEWLN

ℓ CκWL1
ℓ CG1WLN

ℓ . . . CGNWLN
ℓ CWL1WLN

ℓ . . . C̄WLNWLN
ℓ



.

(5.3)
The expected minimum uncertainties on the cosmological parameters are given by the

diagonal of the inverse of the Fisher matrix as

σα ≥
√
(F−1)αα. (5.4)

where we have marginalized on all the remaining parameters.
The so-called figure of merit (FoM) quantifies the capability of constraining two pa-

rameters (α, β), it is given by [240]

FoMα,β =
1√

det(F−1
α,β)

, (5.5)

where F−1
α,β is the 2x2 covariance matrix of the two parameters, hence we have marginal-

ized on all but two parameters by selecting the rows and columns of the two parameters
of interest in the covariance matrix. In general, it is possible to define the FoM for N
parameters [172, 241]:

FoMαi
=

[
1

det(F−1
αi

)

]1/N
, (5.6)

where F−1
αi

is the N ×N covariance corresponding to the considered parameters. We use
the latter to quantify the reduction in parameter space volume, both for cosmological
and nuisance parameters, obtained by combining CMB observables with Euclid galaxy
probes.
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5.2 Specifications for Euclid and CMB experiments

5.2.1 Euclid

For the Euclid-like photometric survey (hereafter Euclid -ph-like or more simply Eph) we
use several different specifications in order to asses the relevance of the tomography and
of the shot-noise in our forecasts. We consider the redshift distributions described in
section 3.2.2 and given by Eqs. (3.14), (3.15) and (3.17) with the photometric nuisance
parameters fixed at the valued provided in Table 3.1, for 5 and 10 equi-popolated redshift
bins whose edges are given by

zi = {0.0010, 0.56, 0.79, 1.02, 1.32, 2.50}, (5.7)
zi = {0.0010, 0.42, 0.56, 0.68, 0.79, 0.90, 1.02, 1.15, 1.32, 1.58, 2.50}. (5.8)

We refer to these specifications as IST:F-like. Note that the 5 bins case is different from
the one studied in Ref. [197]. In this scenario, the shot-noise is given by Eq. (3.32) with
n̄g = 30 galaxies/arcmin2, but for the 10 bins case we additionally study the effect of
doubling the shot-noise, which corresponds to n̄g = 15 galaxies/arcmin2. In the IST:F-
like specifications we adopt a constant galaxy bias in a given redshift bin, with fiducial
values bi =

√
1 + zi, where zi is the central redshift of the ith bin. The resulting bias

parameters bi are part of the Fisher analysis, where they are considered as nuisance
parameters.

In addition to the IST:F-like specifications, we also consider the numerical redshift
distributions shown in the bottom right panel of Fig. 3.8, extracted from the Flagship 2
mock galaxy catalogue. It comprises 13 equi-populated redshift bins with the following
bin edges

zi = {0.2, 0.31, 0.41, 0.49, 0.62, 0.68, 0.76, 0.85, 0.94, 1.05, 1.19, 1.41, 1.68, 2.5}, (5.9)

and total surface density of galaxies n̄g = 24.3 galaxies/arcmin2. In this scenario the
galaxy bias is measured in each redshift bin from the simulation and fitted with the
following polynomial

b(z) = b0 + b1z + b2z
2 + b3z

3, (5.10)

where the coefficients are b0 = 0.83, b1 = 1.19, b2 = −0.93, b3 = 0.42; these are the
fiducial values we consider for these parameters. The galaxy bias as a function of z in
the different cases is shown in Fig. 5.1.

In addition to the galaxy biases, we have three more nuisance parameters describing the
intrinsic alignment, introduced in section 3.2.2: AIA, ηIA and βIA, which are, respectively,
the amplitude, the redshift dependence and the dependence on the galaxy luminosity of
the IA.

The observables considered are photometric galaxy clustering, weak lensing and their
cross-correlation, as described in section 3.2.2, in the following baseline multipole ranges:
10 < ℓGC < 750, 10 < ℓWL < 1500, which corresponds to the so-called pessimistic sce-
nario of Ref. [197]. The multipoles for all the cross-correlations start at the minimum
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5. Euclid-CMB cross-correlation forecasts in extended models

Figure 5.1: Galaxy bias adopted for the different binning schemes: stepwise for 5 and 10
bins for the IST:F-like specifications in the left panel, polynomial fit (blue) for the galaxy bias
measured from Flagship 2 (black dots) in the right panel.

common multipole between the two probes considered (ℓmin
GC = ℓmin

WL = 10), as in Ref. [197],
where the most conservative ranges were used.

In all the cases discussed above, we adopt the sky fraction for the full survey, corre-
sponding to an area of 14 700 deg2 (fsky ≃ 0.36).

5.2.2 CMB surveys

For CMB experiments, we consider Planck-like synthetic data reproducing the Planck
2018 results for the ΛCDM model [1], the ground-based future experiments Simons
Observatory and CMB Stage-4.

We consider the power spectra CTT
ℓ , CEE

ℓ , CTE
ℓ as signal for temperature, polarization

and temperature-polarization cross-correlation, respectively. We adopt isotropic noise
deconvolved with the instrument beam as given in Eq. (3.33) and generalized here for
polarization as well

NXX
ℓ = (∆X)2b−2

ℓ , bℓ = exp

(
−1

2
ℓ (ℓ+ 1)

θ2FWHM

8 ln 2

)
, (5.11)

where X = T ,E and all the quantities entering the above equation have been described
in section 3.3.3. We neglect the noise for the cross-correlation between CMB signals.

For CMB lensing, starting from the noise in temperature and polarization for SO and
S4, we employ the reconstructed minimum-variance estimator for Nκκ

ℓ [230] of Ref. [204],
which corresponds to the N0 bias. For the Planck mission, we use instead the latest
PR4 data maps and lensing reconstruction [221] with associated noise. In Fig. 5.2 we
show the CMB lensing power spectrum with the associated noises just described, we also
present in the other panels the TT and EE power spectrum and related noises for the
different experiments.

Planck

The entire data processing pipelines, including foreground contamination, systematics
and other uncertainties cannot be represented in our Fisher formalism. Therefore, to
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5.2. Specifications for Euclid and CMB experiments

Figure 5.2: Noise power spectra used to reproduce the CMB experiments considered: Planck
(blue), SO (dashed orange) and CMB-S4 (dotted green). Left, middle and right panels corre-
sponds to temperature, polarization and CMB lensing.

reproduce a realistic Planck -like experiment, we choose our specifications as in Ref. [204,
217] to match the Planck 2018 results for the ΛCDM model with the Fisher formalism.
We use only the 143 GHz channel of the HFI instrument [242] with ∆T = 33 µK2

arcmin2, ∆E = 70.2 µK2 arcmin2 and θFWHM = 7, and as in Ref. [217] we inflate the
noise in polarization by a factor of eight for ℓ < 30. This is visible in the blue line in
the central panel of Fig. 5.2. Moreover, we consider a sky fraction fsky = 0.7 and a
maximum multipole ℓmax = 1500 for TT, TE, EE, while for CMB lensing we adopt the
conservative range 8 < L < 400.

Simons Observatory

The Simons Observatory is a set of ground-based telescopes located in the Chilean Andes,
which will begin observations in the early 2024. The initial configuration of SO will
have three small-aperture 0.5-m telescopes (SATs) and one large-aperture 6-m telescope
(LAT). The detector count, both on SATs and LAT, will double in 2028. It will cover
a fraction of the sky of about fsky = 0.4 over the frequency range from 27 to 280GHz,
with beam FWHM between 0.9 and 7.4 arcmin over six frequency bands in the range
from 27 through 280GHz. Over the six bands, the temperature sensitivity are expected
to be from 71 to 54 µKarcmin, with the goal of reaching a factor of

√
2 better [228].

For the noise in temperature and polarization we use the publicly available noise curves
provided by the SO collaboration in [228]1.

We consider the multipole range 40 ≤ ℓ ≤ 3000 for TT and TE, 40 ≤ ℓ ≤ 5000 for EE,
and 2 ≤ ℓ ≤ 3000 for κκ and Tκ. In order to retain the information at the largest scales
add the Planck -like specifications as described above for 2 ≤ ℓ ≤ 39 with fsky = 0.7 in
temperature and polarization. We note that even though the SO sky fraction is only 40%,
it is possible to measure CMB lensing at low multipoles due to the lensing reconstruction
from high-order T and E correlations on small angles, to which all scales of the lensing
signal contribute and can thus be inferred.

1github.com/simonsobs/so_noise_models.
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5. Euclid-CMB cross-correlation forecasts in extended models

CMB stage 4

CMB stage-4 refers to the next generation ground-based CMB experiment with tele-
scopes in Antarctica and Atacama, it will follow the SO and it is scheduled to take
data from 2027. Similarly to SO it will cover 40% of the sky, and for the noise we use
∆T = 1 µKarcmin, ∆E =

√
2 µKarcmin and θFWHM = 1 µKarcmin. For the minimum

multipole in temperature and polarization we consider ℓmin = 40, and as previously dis-
cussed for SO we add the large scale information from Planck . CMB-S4 is expected to
collect data up to ℓmax = 3000 in temperature and ℓmax = 5000 in polarization, these are
the values we use. The lensing power spectrum will be reconstructed from 2 ≤ ℓ ≤ 3000,
and its noise curve is taken as the so-called N0 bias, from [204] where it was computed
using the quicklens2 code.

5.3 Models

Here we discuss the models and the fiducials we consider for our Fisher analysis. Since
[204] studied the ΛCDM and its minimal extensions (w0wa and curvature), we wish
to go beyond that, incorporating in our forecasts some of the modified gravity models
presented in chapter 2 and assessing the constraining power of the joint analysis of Euclid
and CMB experiments on these extensions of GR. Furthermore, we also consider the sum
of neutrino masses mν as an additional parameter.

We select two of the simplest STTs: Induced Gravity (see Eq. (2.4)) and Non Minimal
Coupling (see Eq. (2.5)). IG has one extra parameter, ξ, with respect to ΛCDM, which
modulates the coupling between the scalar field and the Ricci constant in the Lagrangian.
For the potential in IG we consider here a cosmological constant V (σ) = Λ. For NMC
we employ its flavour with the additional parameter ∆, which allows for a an imbalance
between the effective gravitational constant Geff between two test masses, and Newton’s
constant GN: Geff(z = 0) = GN(1 + ∆)2, while NPl = MPl is kept fixed. In this model
we have therefore two extra parameters with respect to ΛCDM: ξ and ∆, and we take as
fiducials for ξ = 10−3 and ∆ = −0.01 (since ξ is positive this model is what was called
NMC+ in chapter 2). For NMC+ we consider the massless theory V (σ) ∝ F 2(σ). Both
models are studied with a canonical sign of the kinetic term.

Concerning the other cosmological parameters, our primary density parameters are
Ωm and Ωb, therefore, when varying the neutrino mass, we shift the value of Ωcdm by the
corresponding amount in order to keep Ωm fixed to its fiducial value. The fiducial values
of the cosmological parameters considered in the analysis are summarized in Table 5.1.
Note that we have a different value for σ8 in the two models, this is because we choose
to use the same amplitude of the primordial power spectrum As = 2.13× 10−9 for both
models, and consequently the derived value of σ8 differs.

2https://github.com/dhanson/quicklens
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Ωb,0 Ωm,0 h ns σ8 τ mν [eV] ξ ∆

0.05 0.32 0.67 0.96 0.819 (NMC) 0.058 0.06 10−3 (NMC) −0.01

0.816 (IG) 10−5 (IG)

Table 5.1: Fiducial values of the cosmological parameters considered.

5.4 Results

In this section we present the forecasted constraints on cosmological parameters from the
combination of the Euclid -like photometric survey and the CMB experiments described
in section 5.2 on the IG and NMC+ models. In order to quantify the relevance of
including the CMB cross-correlation, we compare the forecasted uncertainties obtained
using Euclid alone to those obtained by combining Euclid with CMB probes.

Recently, a 6× 2pt analysis was carried out with real data by the DES collaboration
with CMB lensing from Planck and SPT [214–216], showing that in addition to the
improvement in constraining power, this cross-correlation analysis was crucial in checking
for inconsistencies between the datasets and was a powerful consistency test for the
results of each experiment. Therefore, we first put some emphasis on the impact of
6× 2pt analysis when varying the specifications of Euclid , and at the end of the section
we discuss the combination of all the CMB probes with Euclid in order to forecast the
maximum constraining power.

5.4.1 Baseline results with IST:F-like specifications

Our baseline for IST:F-like specifications is described in section 5.2.1, it corresponds to 10
equipopulated redshift bins with a total galaxy number density ng = 30 galaxies/arcmin2

and one galaxy bias nuisance parameter for each bin. The results for these specifications
combined with the CMB lensing of the experiments discussed in section 5.2.2 are shown in
Fig. 5.3 and Table 5.2. The figure highlights the gradual improvement due to the 6×2pt
analysis with respect to Euclid -ph alone when considering more powerful CMB surveys,
going from Planck -like to SO and S4. The table presents the ratio of marginalised 1σ
uncertainties over their corresponding fiducial values of the cosmological parameters for
the Euclid 3× 2pt analysis. The subsequent rows show the improvement on these errors
with the inclusion of CMB lensing, quantified by the ratio σ3×2/σ6×2, with larger values
meaning larger improvements (smaller error bars for the 6 × 2pt). The combination
with Planck improves the constraints on the modified gravity parameters by ξ and ∆ by
10%, for a total improvement in the FoM (5.6) of the cosmological (nuisance) parameters
of 5% (4%). Larger improvements on these parameters are expected for combinations
with future surveys, with a 20% increase in precision for the joint analysis with SO
and 50%-60% with S4. In general, the improvements are maximum for the parameters
characterizing the extended model. For S4, also the predictions on the sum of neutrino
masses and σ8 are improved by a factor 1.4 and 1.6, respectively, showing that the cross-
correlation can help constraining fluctuations amplitudes. The percentage improvement
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in the total FoM for the cosmological parameters is of 14% (35%) for SO (S4). Because
Euclid observables alone and their combination with CMB lensing cannot constrain the
optical depth at reionization τreio, this parameter is absent from those tables and plots.

These are our baseline results with Euclid IST:F-like specifications, in the next sections
we asses the impact of changing some of them separately, namely the number of bins
and the shot-noise.

Ωm,0 Ωb,0 h ns σ8 mν [eV] ξ ∆

Euclid -ph σ3×2/θ 0.0070 0.069 0.12 0.045 0.051 2.6 100 11

Eph ⊗ Planck σ3×2/σ6×2 1.0 1.0 1.0 1.0 1.1 1.0 1.1 1.1

Eph ⊗ SO σ3×2/σ6×2 1.1 1.0 1.1 1.1 1.2 1.1 1.2 1.2

Eph ⊗ S4 σ3×2/σ6×2 1.2 1.1 1.4 1.2 1.6 1.4 1.5 1.6

Eph ⊗ Planck Eph ⊗ SO Eph ⊗ S4

%FoM(cosmo) 5 14 35
%FoM(nuisance) 4 10 19

Table 5.2: First row: ratio of marginalised 1σ uncertainties over their corresponding fiducial
values in NMC+ for Euclid-ph (IST:F-like with 10 redshift bins). Other rows show the
ratio of the 1σ forecasted errors between the 3× 2pt and 6× 2pt. Also quoted the percentage
improvement in the FoM (5.6) of the cosmological and nuisance parameters.

5.4.2 Impact of number bins

In this section we consider a Euclid -like photometric survey with a reduced number of
bins, going form the 10 of our baseline to 5, but keeping the galaxy surface density
the same as the baseline (n̄g = 30 galaxies/arcmin2) in order to isolate the impact of
tomography on Euclid and on the cross-correlation. Reducing the number of bins slightly
worsens the constraints for Euclid -alone, rendering probe combination more relevant and
the 6 × 2pt more stringent with respect to the 3 × 2pt. The parameters more affected
by the smaller number of bins are Ωb and h, as the constraining power of Euclid -alone
in this settings is reduced by 36 and 32% for them. As a consequence, the CMB lensing
has a larger impact then it had in the baseline scenario, indeed, in that case the Planck
CMB lensing did not play a significant role in reducing the error on the measured value
of the Hubble constant, while here it provides an improvement of 10%. The predicted
constraints on h are improved with respect to the 3 × 2pt by a factor 1.1, 1.2 and 1.6
respectively, when combining Euclid with Planck , SO, and S4 (see Table 5.3). As in the
previous case, the parameters most affected by the cross-correlation with CMB lensing
are the modified gravity parameters ξ and ∆, followed by σ8 and mν . For this reason we
show graphically the impact of the joint analysis in Fig. 5.4 as a rectangle plot in the plane
∆-θi where θi are cosmological and nuisance parameters. The figure highlights the fact
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Figure 5.3: Marginalized 68% and 95% 2D confidence regions for the joint constraints on the
cosmological (top) and nuisance (bottom) parameters in NMC+ for a Euclid-ph-like survey
(IST:F-like with 10 bins) (red), combined with the CMB lensing from Planck (green), SO
(orange), S4 (blue).
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Figure 5.4: Marginalized 68% and 95% 2D confidence regions for the joint constraints on
the cosmological and nuisance parameters in the plane with the NMC+ parameter ∆, for a
Euclid-ph-like survey (IST:F-like with 5 bins) (red) combined with the CMB lensing
from Planck (green), SO (orange), S4 (blue).

that the 6×2pt also improves the constraints on the galaxy biases and IA parameters, in
this case through the increased precision on the error on ∆. The reduction of parameter
space volume for the cosmological parameters that we quantify with the FoM (5.6), is
more prominent in this scenario, going from the 5% of the baseline case to 7% for the
combination with Planck CMB lensing. For the upcoming SO we obtain a percentage
improvement of 20% and 52% for S4.

Ωm,0 Ωb,0 h ns σ8 mν [eV] ξ ∆

Euclid -ph σ3×2/θ 0.0077 0.11 0.18 0.063 0.067 3.7 140 14

Eph ⊗ Planck σ3×2/σ6×2 1.1 1.0 1.1 1.0 1.1 1.1 1.1 1.1

Eph ⊗ SO σ3×2/σ6×2 1.1 1.0 1.2 1.1 1.4 1.2 1.3 1.4

Eph ⊗ S4 σ3×2/σ6×2 1.2 1.1 1.6 1.4 1.8 1.6 1.8 1.9

Eph ⊗ Planck Eph ⊗ SO Eph ⊗ S4

%FoM(cosmo) 7 20 52
%FoM(nuisance) 10 20 39

Table 5.3: First row: ratio of marginalised 1σ uncertainties over their corresponding fiducial
values in NMC+ for Euclid-ph (IST:F-like with 5 redshift bins). Other rows show the
ratio of the 1σ forecasted errors between the 3× 2pt and 6× 2pt. Also quoted the percentage
improvement in the FoM (5.6) of the cosmological and nuisance parameters.

5.4.3 Impact of shot-noise

In this section we consider a Euclid -like photometric survey with IST:F-like specifica-
tions, using 10 redshift bins but doubling the shot-noise, which corresponds to take the
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Figure 5.5: Marginalized 68% and 95% 2D confidence regions for the joint constraints on the
cosmological and nuisance parameters in the plane with the NMC+ parameter ∆, for a Euclid-
ph-like survey (IST:F-like with 10 bins and doubled shot-noise wrt baseline) (red)
combined with the CMB lensing from Planck (green), SO (orange), S4 (blue)

surface galaxy density as n̄g = 15 galaxies/arcmin2, isolating therefore the impact of the
shot-noise on our analysis.

On the cosmological parameters, the effect of doubling the shot-noise is similar to
halving the number of bins, as it can be seen by comparing the first row of Table 5.4
with Table 5.3. The only exception is Ωb, as the constraining power of the 3×2pt analysis
dropped by 36% with respect to baseline in the 5 bins scenario, while in this case we see a
reduction of only 18%. The fact that our results are similar to the previous section, where
the survey was considered with 5 bins, shows the importance of tomography: it is possible
to have comparable or better constraints even with twice the shot-noise by increasing the
number of bins. However, we see a non negligible impact of the combination with Planck
CMB lensing, especially on the modified gravity parameters, as it can be seen also from
Fig. 5.5, where we present the 2D confidence regions for the cosmological and nuisance
parameters in the plane with ∆. As before, we can almost double the constraining power
on ξ and ∆ for the combination with S4, while for SO we get, respectively, a factor of 1.3,
and 1.4 improvement on these parameters. Also the constraints on the sum of neutrino
masses and σ8 are tighter when CMB lensing is included in the analysis. These results
are summarized by the percentage improvement on the FoM of the cosmological and
nuisance parameters in Table 5.4, with an increase of %FoM(cosmo) of 6%, 17% and
46% when combining Euclid -ph probes with CMB lensing in a 6 × 2pt analysis with
Planck , SO and S4.
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Ωm,0 Ωb,0 h ns σ8 mν [eV] ξ ∆

Euclid -ph σ3×2/θ 0.0089 0.085 0.17 0.062 0.063 3.6 140 13

Eph ⊗ Planck σ3×2/σ6×2 1.1 1.0 1.1 1.0 1.1 1.1 1.1 1.1

Eph ⊗ SO σ3×2/σ6×2 1.1 1.0 1.2 1.1 1.3 1.2 1.3 1.3

Eph ⊗ S4 σ3×2/σ6×2 1.3 1.1 1.6 1.4 1.7 1.6 1.8 1.8

Eph ⊗ Planck Eph ⊗ SO Eph ⊗ S4

%FoM(cosmo) 6 17 46
%FoM(nuisance) 5 12 22

Table 5.4: First row: ratio of marginalised 1σ uncertainties over their corresponding fiducial
values in NMC+ for Euclid-ph (IST:F-like with 10 redshift bins but double shot-noise
wrt baseline). Other rows show the ratio of the 1σ forecasted errors between the 3× 2pt and
6 × 2pt. Also quoted the percentage improvement in the FoM (5.6) of the cosmological and
nuisance parameters.

5.4.4 Baseline results with Flagship 2 specifications

In this section we turn our attention to the combination of Euclid with CMB experi-
ments by considering the Flagship 2 specifications for Euclid described in section 5.2.1.
In this scenario the galaxy bias is parameterized by the polynomial function (5.10), re-
ducing therefore the numbers of nuisance bias parameters to four. The shot-noise is also
increased with respect to the IST:F-like baseline, because the surface density of galaxy
measured from the Flagship 2 mock catalogue is n̄g = 24.3 galaxies/arcmin2. This is
compensated by the larger number of redshift bins: 13.

Fig. 5.6 shows in red the 2D confidence regions for the cosmological parameters in
the 3 × 2pt analysis with these settings. On the left panel the results are for the IG
model, while on the right for NMC+. The other colors show the gradual improvement
with respect to Euclid -alone from the combination with CMB lensing. The improvement
is larger for NMC+ with respect to IG, highlighting the fact that the cross-correlation
is more relevant for models with a larger number of parameters. Indeed, in IG, the
inclusion of Planck lensing is marginal with respect to Euclid alone, while more advanced
future surveys that will better characterize CMB lensing are still able to contribute to
the constraints on cosmological parameters, especially on Ωm, σ8, and mν . In IG, the
percentage improvement on the FoM for the cosmological parameter is 6% for SO and
20% for S4.

For NMC+ the results are qualitatively similar to the baseline with IST:F-like specifi-
cations, with the parameter ∆ being the most sensitive to the cross-correlations: already
in the 6× 2pt with Planck we see an improvement by a factor 1.1 in the precision of the
forecasted 1σ error. While we gain constraining power by using the future CMB surveys,
this gain is not as dramatic as it was in the IST:F-like case. Indeed, the forecasted 1σ
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Figure 5.6: Marginalized 68% and 95% 2D confidence regions for the joint constraints on the
cosmological parameters in IG (left) and NMC+ (right) for a Euclid-ph-like survey (13
bins from Flagship 2) (red), combined with the CMB lensing from Planck (green), SO
(orange), S4 (blue).

error on ∆ improves only by 20% when combining Euclid with S4 CMB lensing. As a
consequence, the percentage increase in the FoM of the cosmological parameters is driven
by a slight improvement on all the parameters, rather than being mostly due to the more
accurate measurement of ξ and ∆. This is the most pessimistic scenario we analyzed for
the 6 × 2pt and even in this case the contribution given by the cross-correlation with
CMB lensing is non-negligible in both models considered, especially in NMC where the
FoM of cosmological parameters increases by 12% (26%) when combining Euclid -ph with
SO.

We expect the 6×2pt analysis to be even more relevant we will introduce in our pipeline
additional and more realistic features characterizing the Euclid photometric survey. One
of these is the inclusion of the shear multiplicative bias, which can be calibrated by the
inclusion of CMB lensing in the analysis [213, 218], leading to a better understanding of
the Euclid systematics and better constraints on cosmological parameters.
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Ωm,0 Ωb,0 h ns σ8 mν [eV] ξ

Euclid -ph σ3×2/θ 0.0091 0.047 0.037 0.015 0.0058 0.89 13

Eph ⊗ Planck σ3×2/σ6×2 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Eph ⊗ SO
(+Planck low-ℓ) σ3×2/σ6×2 1.1 1.0 1.0 1.0 1.1 1.0 1.0

Eph ⊗ S4
(+Planck low-ℓ) σ3×2/σ6×2 1.2 1.0 1.0 1.0 1.2 1.1 1.0

Eph ⊗ Planck Eph ⊗ SO (+Planck low-ℓ) Eph ⊗ S4 (+Planck low-ℓ)

%FoM(cosmo) 1 6 20
%FoM(nuisance) 1 5 13

Table 5.5: First row: ratio of marginalised 1σ uncertainties over their corresponding fiducial
values in IG for Euclid-ph (Flagship 2 with 13 bins). Other rows show the ratio of the 1σ
forecasted errors between the 3× 2pt and 6× 2pt. Also quoted the percentage improvement in
the FoM (5.6) of the cosmological and nuisance parameters.

Ωm,0 Ωb,0 h ns σ8 mν [eV] ξ ∆

Euclid -ph σ3×2/θ 0.014 0.061 0.050 0.033 0.040 1.4 19 7.9

Eph ⊗ Planck σ3×2/σ6×2 1.0 1.0 1.0 1.0 1.1 1.0 1.0 1.1

Eph ⊗ SO
(+Planck low-ℓ) σ3×2/σ6×2 1.1 1.0 1.0 1.1 1.1 1.1 1.0 1.1

Eph ⊗ S4
(+Planck low-ℓ) σ3×2/σ6×2 1.2 1.0 1.0 1.2 1.2 1.1 1.1 1.2

Eph ⊗ Planck Eph ⊗ SO (+Planck low-ℓ) Eph ⊗ S4 (+Planck low-ℓ)

%FoM(cosmo) 4 12 26
%FoM(nuisance) 2 8 13

Table 5.6: First row: ratio of marginalised 1σ uncertainties over their corresponding fiducial
values in NMC+ for Euclid-ph (Flagship 2 with 13 bins). Other rows show the ratio of the
1σ forecasted errors between the 3× 2pt and 6× 2pt. Also quoted the percentage improvement
in the FoM (5.6) of the cosmological and nuisance parameters.



5.4. Results

5.4.5 Full CMB-Euclid joint analysis

So far we have presented the combination of the CMB lensing with the galaxy number
counts and weak lensing of galaxies from the Euclid photometric survey. Here, we
turn our attention to forecasts for the combination of all the CMB probes (temperature,
polarization and lensing) and their cross-correlations with the Euclid photometric probes.
We do this by using the latest Euclid specifications extracted from the Flagship 2 mock
galaxy catalogue and described in section 5.2.1. In this analysis, the future CMB surveys
are complemented by the information coming from Planck at ℓ < 40 in temperature and
polarization, so when we refer to SO and S4 it is implicit that they are combined with
Planck ’s large scales. The joint analysis with all CMB probes, beside highlighting the
role of CMB primary anisotropies in breaking degeneracies, can provide an idea of what
we can expect for constraints on modified gravity models from the full combination of
CMB, galaxy and weak lensing surveys in the next decade.

Figs. 5.7 and 5.8 for Planck , and Figs. 5.9 and 5.10 for SO, show the 2D confidence
regions for the cosmological parameters in IG and NMC+, for CMB probes, Euclid -ph
and their combination. We want to stress the complementarity between CMB and LSS
that the figure depicts: most of the contours are orthogonal to each other, allowing to
completely break degeneracies between parameters. This is due to the very different
regimes under which each observable probes the Universe: early times and large scales
for the CMB, late times and smaller scales for Euclid . Exploiting this complementarity
will allow a determination of the cosmological parameters with unprecedented precision,
for example, the forecasted 95% CL constraint on the determination of ξ in IG is ξ <
2.2 × 10−4 when combining Planck with Euclid -ph. This is a factor of 2.5 better than
the present constraint discussed in section 2.6, which can only be improved if one also
considers the Euclid spectroscopic survey. For the combination with SO (S4) we forecast
ξ < 1.8× 10−4 (ξ < 1.6× 10−4) at 95% CL, far better than has ever been obtained with
cosmological datasets.

All the other cosmological parameters are affected by the joint analysis as it can be
seen from Tables 5.7 and 5.8 both for IG and NMC. The relative error in the parameters
in the 3×2pt analysis is already quoted in Tables 5.5 and 5.6, therefore we have omitted
it in the tables of this section.

The Hubble constant, the baryon density and the tilt of the power spectrum ns are
the parameters that benefit the most by the inclusion of all CMB probes. These are all
parameters to which the primary CMB is very sensitive and the largest improvements
are expected, especially on Ωb, because the galaxy survey probes are sensitive to the
total matter (dark matter and baryons) and not specifically to baryons.

Since the determination of the sum of neutrino masses from cosmological datasets
alone is model dependent and it can be far less stringent in extended models [1], we also
point out that in IG the absolute 1σ error on the determination of the sum of neutrino
masses for the combination of Euclid -ph with CMB-S4, is σ(mν) = 27m eV, allowing a
95% CL detection of the neutrino mass in this extended model. This constraint could
be significantly improved by adding the spectroscopic information contained in Euclid
data.

In the NMC+ model, we have noticeable improvement with respect to the 3 × 2pt
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Ωm,0 Ωb,0 h ns σ8 τreio mν [eV] ξ

Eph ⊗ Planck R(θ) 1.2 6.6 10.8 6.3 1.3 1.4 1.6 1.2

Eph ⊗ SO
(+Planck low-ℓ) R(θ) 1.3 8.0 11.7 7.5 1.4 1.4 1.8 1.4

Eph ⊗ S4
(+Planck low-ℓ) R(θ) 1.8 10.5 15.2 8.6 2.0 1.4 2.0 1.7

Table 5.7: IG model: ratio of marginalised 1σ uncertainties for the parameter θ, R(θ) =
σ3×2pt(θ)/σjoint(θ), where σjoint is the expected error of the combination of Euclid-ph (Flag-
ship 2 with 13 bins) with the given CMB experiment. For the optical depth at reioniza-
tion τreio we quote the improvement obtained after combining Euclid with CMB data alone:
R(τreio) = σCMB/σjoint.

Ωm,0 Ωb,0 h ns σ8 τreio mν [eV] ξ ∆

Eph ⊗ Planck R(θ) 1.3 5.6 7.7 9.4 2.9 1.2 1.7 1.4 3.6

Eph ⊗ SO
(+Planck low-ℓ) R(θ) 1.5 7.9 11.2 10.8 4.1 1.3 2.1 2.8 5.4

Eph ⊗ S4
(+Planck low-ℓ) R(θ) 2.4 11.7 16.9 12.7 5.7 1.2 2.5 3.8 7.2

Table 5.8: NMC+ model: ratio of marginalised 1σ uncertainties for the parameter θ,
R(θ) = σ3×2pt(θ)/σjoint(θ), where σjoint is the expected error of the combination of Euclid-ph
(Flagship 2 with 13 bins) with the given CMB experiment. For the optical depth at reion-
ization τreio we quote the improvement obtained after combining Euclid with CMB data alone:
R(τreio) = σCMB/σjoint.

in all cosmological parameters, similarly to the IG case, but also on ξ and ∆, with the
results summarized in Table 5.8.
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Figure 5.7: Marginalized 68% and 95% 2D confidence regions for the joint constraints on the
cosmological parameters in IG for a Euclid-ph-like survey (13 bins from Flagship 2)
(red), Planck-like (grey), and combination of the two (blue).



Figure 5.8: Marginalized 68% and 95% 2D confidence regions for the joint constraints on the
cosmological parameters in NMC+ for a Euclid-ph-like survey (13 bins from Flagship
2) (red), Planck-like (grey), and combination of the two (blue).



Figure 5.9: Marginalized 68% and 95% 2D confidence regions for the joint constraints on the
cosmological parameters in IG for a Euclid-ph-like survey (13 bins from Flagship 2)
(red), SO-like (grey), and combination of the two (blue).



Figure 5.10: Marginalized 68% and 95% 2D confidence regions for the joint constraints on the
cosmological parameters in NMC+ for a Euclid-ph-like survey (13 bins from Flagship
2) (red), SO-like (grey), and combination of the two (blue).



5.5. Discussion and future directions

5.5 Discussion and future directions

We have presented in this chapter a forecast analysis in two modified gravity models (IG
and NMC+) for the Euclid photometric survey and its combination with several CMB
experiments, focusing first on the combination with CMB lensing in the 6× 2pt analysis
and discussing at the end the impact of a full joint analysis with all the CMB probes. We
have considered different specifications for Euclid : an IST:F-like baseline setting that
we have then modified to assess the effect of tomography and shot-noise; and a more
updated characterization of the survey coming from the Flagship 2 simulation.

On this note, striving to better parameterize the Euclid survey, at the moment we are
including more realistic effects in our pipeline, which we list below.

• Inclusion of the shear multiplicative bias, which can be calibrated by the inclusion
of CMB lensing in the analysis [213, 218], leading to a better understanding of the
Euclid systematics and better constraints on cosmological parameters.

• The inclusion of relativistic corrections for the number counts and consequent
marginalization on magnification bias, which has been shown to be sensitive to the
cross-correlation in [217].

• Redshift dependent multipole cuts in order to employ different ℓ ranges in different
bins.

• Inclusion of super sample covariance (SSC) which can degrade the constraining
power of Euclid [243], especially in extended models, rendering the CMB cross-
correlation a precious ally to recover some of this constraining power, since the
CMB is less affected by this SSC effect.

• Usage of different redshift distributions for the different probes, especially in light of
the early Euclid data releases where the binning for photometric galaxy clustering
could be considered up to redshift smaller than the redshift of the full survey
z < 2.5.

Improvements on the CMB side include the addition of LiteBIRD3 [244, 245] to com-
plement the small scales of CMB-S4, given the similar timelines of the two experiments.

These refinements are a work-in-progress and once finished they will set the baseline
specification for the upcoming article on the forecasts in extended models of the CMBX-
SWG.

3https://www.isas.jaxa.jp/en/missions/spacecraft/future/litebird.html
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Conclusions
The next decade holds great promise for precision cosmology. Accurate maps of CMB
anisotropies, as generated by experiments such as Planck , have provided crucial insights
into the early Universe and have placed constraints on the ΛCDM model. Future CMB
experiments are poised to build upon these findings and improve these measurements.
Moreover, several galaxy surveys will map the 3D distribution of matter with diverse
methodologies and providing a complementary probe of the Universe at low redshift,
constraining in this way dark matter and late-time effects such as dark energy, but also
improving our knowledge of the theory of gravity at cosmological scales.

The joint analysis of both type of datasets, accounting also for the cross-correlations
between CMB and LSS, will allow to constrain extensions of the ΛCDM model. The
upcoming data will therefore weigh in the open questions of cosmology such as the Hubble
tension and the nature of dark energy and dark matter, and it is imperative to test
generalizations of the standard model with all the available data and their combination,
to assess whether or not new physics is required.

In this thesis we have discussed the preparation for this endeavor in the context of the
ESA Euclid mission and the Euclid Consortium of which I am a member. In particular,
we have detailed the status and the validation of the CMB cross-correlation likelihood for
the detection of the ISW effect through the correlation between the CMB temperature
field and the galaxy density field, and for the addition of CMB lensing and its cross-
correlation with Euclid main probes in a joint likelihood. The goal of this activities is to
build the final steps of an end-to-end pipeline that is being developed in the CMBX-SWG
within the Euclid consortium. The group is indeed developing numerical simulations to
build covariances, employing estimators techniques to extract the cross-correlation power
spectra from maps, and investigating the impact of the cross-correlation on the Euclid
survey. All these ingredients will have their final application in the likelihood module
that we are developing in order to perform a Euclid -CMB joint analysis. The main
results presented in this thesis in the context of the CMBX likelihood are listed below.

• Validation of the theoretical approximations used to compute the cross-correlation
between the CMB temperature field and galaxy number counts, necessary to de-
tect the ISW effect in the cross-correlation data. The main assumptions in the
computation of the theoretical power spectra are the Limber approximation and
the scale independence of the growth of matter perturbations. These validations
have been carried out on several levels: by comparing the power spectra in our
approximated implementation with the exact spectra obtained from the Einstein-
Boltzmann code CLASS, by computing the difference in χ2 values with and without
any approximations, and by performing an MCMC analysis where the role of the
data is played by the power spectra computed without approximations. We have
repeated this analysis considering the Euclid survey with 3 and 10 redshift bins
and we have obtained positive results in all cases, demonstrating that the percent-
age differences in the power spectra and in the χ2 are small enough to not induce
any bias in the estimate of cosmological parameters in the dynamical dark energy
models, which are one of the main targets of Euclid .

• Validation of the theoretical computation for CMB lensing and its implementation
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in the official likelihood package of Euclid : CLOE. While CMB lensing is observed
from the CMB, it is a probe of the late-time distribution of matter. We have there-
fore included CMB lensing in the likelihood to compute it consistently with all the
other LSS probes. The main challenge was to reliably compute the power spectrum
without slowing down the code and we have achieved this result. Additionally, we
have implemented in the likelihood some necessary terms that take into account
biases in the estimated power spectrum of the CMB lensing, due to peculiarities
of the lensing reconstruction from CMB temperature and polarization. In order to
include these terms, we need some pre-computed matrices coming from the lensing
reconstruction. Therefore we have performed a CMB lensing reconstruction with
noise levels from the Simons Observatory to obtain these matrices and successfully
implemented the correction for the normalization of the power spectrum in the
likelihood. The computation of the matrices to correct for the so-called N1 bias
are ongoing.

Once the likelihood is finalized, and we discuss at the end of this section some steps taken
towards this direction, we will be able to ingest Euclid data and their cross correlations
with CMB fields, and test, firstly the ΛCDM model and then its extensions such as
dynamical dark energy models, modified gravity theories and neutrino masses.

In this thesis we have provided some context for the study of a subset of these extended
models: scalar-tensor theories (STTs) of gravity, discussing the current constraints and
producing novel cosmological constraints with publicly available datasets.

In particular, we have studied the cosmological dynamics of the simplest STTs such
as induced gravity (IG), non minimal coupling models (NMC) and early modified grav-
ity (EMG), with non standard sign of the kinetic term, dubbed phantom branch. We
have assessed the effect of the sign of the kinetic term on cosmological observables and
obtained the marginalized constraints for different combination of cosmological datasets
by allowing the coupling to the Ricci scalar (and the amplitude of the potential in EMG)
to vary together with the rest of the cosmological and nuisance parameters an MCMC
analysis:

• The analysis in IG and NMC showed that the modified evolution of the scalar field
in the phantom branch, connected to a different time evolution of the effective
gravitational constant, inverts the degeneracy between these parameters and the
coupling ones. For this reason, we obtain a lower values for σ8 and H0 compared
to the standard branch.

• In the phantom version of EMG we showed that while the evolution of the scalar
field is very similar to the standard case, different signatures appear on the cos-
mological observables. We have further constrained the parameters of this model
with a combination of cosmological datasets showing a statistical preference with
respect to ΛCDM.

Furthermore, we have analyzed the cosmological dynamics and inferred the cosmological
constraints for the extension of the simplest nonminimally coupled STTs with a cubic
Galileon term, which ensures the stability of the theory in the phantom branch and
provides the Vainshtein screening mechanism, potentially reconciling the theory with
GR inside the so-called Vainshtein radius. We have shown the peculiar dynamics both
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in the standard and phantom branch, comparing the theoretical predictions of the models
with observations, obtaining the following results:

• For a standard kinetic term, we find that the CMB anisotropy pattern constrains
the Galileon term to be small close to the CMB last scattering surface, resulting
in a Vainshtein mechanism that can occur only at subparsec scale for an object of
a solar mass.

• In the phantom branch, we have shown that the presence of a Galileon term leads
to a healthy theory for all the values of the coupling constant ξ, rescuing the range
which would contain a ghost in the IG theory. We have highlighted the different
phenomenology with respect to the standard branch and constrained the theory
with different datasets. We considered one case where the potential is given by a
cosmological constant and another case where there is no potential and the late-
time acceleration is driven exclusively by the Galileon term. This latter model is
physically viable and provides screening on Solar System scales, but it leads to
CMB predictions which are at odds with the Planck data, with a ∆χ2 = 30.6 with
respect to ΛCDM, we have therefore ruled out the model by making use of CMB
data.
The results of the data analysis for the case with a cosmological constant, show
instead a reduction in the significance of the Hubble tension at 2.5σ with CMB +
BAO and 1.7σ when including Supernovae with a prior on their absolute magni-
tude. With this latter dataset, we see high statistical significance for the Galileon
parameter 1/α̃8 ̸= 0, and consequently a Vainshtein radius of O(100) pc for a solar
mass.

With the goal of assessing the relevance of CMB cross-correlation with Euclid in
extended models we have forecasted what we can expect from the combination and
cross-correlation of CMB observables with Euclid photometric survey, by considering
all the cross-correlations between fields in the harmonic space. Most of the forecasts
focused on the so called 6 × 2pt analysis which considers six combinations of the two
point correlation functions of CMB lensing, galaxy weak lensing, and galaxy positions.
This type of analysis shows the maximal constraining power that can be obtained by
LSS probes alone, without considering the CMB temperature and polarization, which
are dominated by the physics at last scattering. We discussed the relevance of the 6×2pt
analysis in several different settings and specification for Euclid , assessing the impact of
reducing the number of bins and increasing shot-noise separately. We have found that the
6× 2pt analysis always provides important additional information and helps increasing
the constraining power of both the cosmological and nuisance parameters, especially the
parameters of the extended models. By reducing the number of bins and increasing the
shot-noise we have highlighted even more this combination with CMB lensing.

We have also studied and compared the 6×2pt analysis against the 3×2pt analysis with
updated specifications for the Euclid -photometric survey, extracted from the Flagship
2 mock galaxy catalogue. With these Euclid specifications, the combination with the
CMB lensing from Planck does not add much constraining power and it is necessary to
cross-correlate the survey with future CMB experiments, such as SO and S4, to see some
improvement in the cosmological constraints.
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However, we have demonstrated that when considering the entirety of CMB probes,
the combination with Planck allows to break degeneracies on almost all the cosmological
parameters, highlighting the strong complementarity of these two types of observations:
early-times and large scales for the CMB and late-times and small scales for Euclid .
The maximal constraining power is obtained by adding the large scale information of
Planck in temperature and polarization to the future CMB experiments SO and S4, and
then performing a joint analysis with the Euclid photometric probes. This full combi-
nation allows to constrain the parameters of the extended models with precision never
reached by any cosmological dataset. For example, we have shown that the combination
of the Euclid photometric survey with S4 will provide a 95% CL detection of the neu-
trino mass, without even considering the precious spectroscopic information contained in
Euclid data. In the context of modified gravity, we have forecasted that already the com-
bination of Planck with Euclid will allow to noticeably improve the present cosmological
constraint on the simplest STTs.

Concerning future prospects, the work carried out in this thesis can be extended in
several directions:

• Modified gravity: we plan to extend the works performed in this thesis by ex-
tending the parameter space in our MCMC analysis and to study variations of the
models discussed here, with different functional forms for the Horndeski functions.

• Likelihood: current work on the likelihood is focused on including more realistic
effects, such as the use of the mask for Euclid and the CMB surveys, and their effect
on the covariance. We will also test the likelihood with power spectra estimated
from simulations, both for CMB lensing, the CMB temperature field and their
cross-correlations with galaxy probes.

• Forecasts: ongoing activities are devoted to the inclusion in the pipeline of addi-
tional nuisance parameters, such as the shear multiplicative bias, to better char-
acterize the Euclid photometric survey, together with the addition of the super
sample covariance in the forecasts.

These steps are planned for the near future, in order to be able to properly analyze the
first Euclid data in one year time.
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Appendix A

Statistical methods for data analysis in
Cosmology
Most of the data analysis in cosmology and in this thesis employs Bayesian statistics and
MCMC (Markov chain Monte Carlo) methods. Therefore, in this appendix we review
some of the fundamental concepts of Bayesian statistics, and MCMC algorithms with
particular emphasis on parameter inference and model comparison.

In a Bayesian framework the parameters of interest have probability distributions, and
the central pillar Bayesian statistical analyses is Bayes’ theorem:

P (θ|d,M) =
L(d|θ,M)π(θ|M)

P (d|M)
. (A.1)

P (θ|d,M) is the posterior probability for the parameters θ of the model M, given the
data d; finding this probability distribution function (pdf) is the goal of Bayesian infer-
ence. The likelihood function L is a measure of the chance that we would have obtained
the observed data d, given a model M with parameter values θ; it is often written
simply as a function of the parameters L(θ). The prior π is the probability distribution
of the parameters θ, obtained from all external information available before performing
the experiment. This prior information might come from theoretical constraint, as well
as from the results of previous experiments. Finally, the evidence P (d|M) is the proba-
bility of the data and is given by P (d|M) =

∫
dθL(d|θ,M)π(θ|M); for this reason, it

is also called the marginal likelihood. Since it does not depend on θ, the evidence is not
relevant for parameter estimation, but it plays an important model comparison.

A.1 Parameter inference

The parameters θ can be divided in a set of interesting quantities φ and a set of un-
interesting ones ψ. The latter might correspond to nuisance parameters related to un-
certainties in the measuring process or unconstrained physical properties, or simply to
all the parameters except one or two we wish to constrain simultaneously. It is possi-
ble to obtain the pdf of the parameters of interest by integrating over all the nuisance
parameters:

P (φ|d,M) ∝
∫

dψL(φ,θ) π(φ,θ|M). (A.2)

This procedure is called marginalization and in many cases it is not possible to do it
analytically. Moreover, the likelihood is often assumed to be Gaussian in the observables,
this means that it is non-Gaussian for the cosmological parameters, and computing
analytically the integrals to find the expectation values and other quantities of interests
could be unfeasible.
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Figure A.1: Left: example of a chain constructed by the Metropolis-Hastings algorithm:
starts at θ1, θ2 is proposed and accepted (step A), θ3 is proposed and refused (step B), θ4 is
proposed and accepted (step C). The resulting chain is {θ1, θ2, θ2, θ4, ...}. Central: example
with a too large jump size, it causes most proposals to be rejected. Right: example with a too
small jump size and inefficient sampling of parameter space. Figure taken from Ref. [247].

It is therefore necessary to infer the posterior distributions of the parameters numer-
ically, by sampling the likelihood over a wide range of parameter values. If mapping
the likelihood in a one-dimensional parameter space requires n evaluations, then for a p-
dimensional parameter space we would need np evaluations. For cosmological parameter
estimation the typical number of parameters is of order ten to one hundred, rendering a
brute force approach impossible; we therefore need different techniques to evaluate the
likelihood in the entire parameter space. Markov chains Monte Carlo (MCMC) are the
most widespread techniques to numerically sample the posterior, the main reason for
this popularity is that the number of evaluations necessary to obtain a good estimate
of the distribution and related quantities of interests scales linearly with the number
of parameters [246]. In this procedure it is possible to generate a set of points in pa-
rameter space whose distribution function is the same as the distribution we wish to
study, called target distribution (usually the likelihood or the posterior). The “Monte
Carlo” part of the name comes from the fact that the points are drawn randomly, while
the “Markov” part signifies that the chain is a Markov process, meaning that the next
point of the chain depends only on the present one and not on the sequence of previous
ones. An important property of a Markov chain is that it converges to a stationary state
where successive elements of the chain are samples from the target distribution. We can
therefore estimate quantities of interest directly from it.

There are several sampling algorithms to perform an MCMC, the Metropolis-Hastings
[248, 249] algorithm is one of the most popular and it is the one used in this work. It
can be outlined as follows:

(i) Randomly select a point in parameter space as starting point.
(ii) Select a second point θ′ by drawing it from a distribution q(θ′|θ) centered on θ.

This distribution is called proposal distribution and it is usually a multivariate
Gaussian.

(iii) Compute the ratio of the likelihood of the two samples, the point θ′ is then accepted
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with probability

Pacc = min

{
1,

L(θ′)q(θ′|θ)
L(θ)q(θ|θ′)

}
. (A.3)

If θ′ is accepted it becomes a new state of the chain. Otherwise, we reject it and
the chain stays at θ. The cycle is then repeated from step (ii).

An illustration of the MH algorithm is shown in Fig. A.1. In practice, in order to explore
the target distribution as fast as possible, a series of refinements are applied to the
proposal distribution q(θ′|θ). If the proposal is too small, in the sense that the typical
jump in parameter space is small, then the sampling is inefficient and it will take very
long before the posterior distribution is explored, as almost all the points are accepted.
On the other hand if the proposal distribution is too large, then the majority of proposed
points will be in regions of low probability, far from the peak, and will be rejected. One
possibility to solve these issues is to run exploratory chains to get an idea of the size of
the target distribution by computing the covariance matrix from the samples and then
using it as the covariance of the Gaussian proposal for new chains. Another possibility
is to update the covariance matrix on the fly during the chain, in both cases the points
computed using a proposal distribution different from the final one have to be discarded
and cannot be part of the final analysis.

Since the starting point of a chain is chosen randomly, the subsequent points will be
outside the stationary region and the chain is not sampling the target distribution until
after a while, when it reaches higher probability regions. It is therefore common to
also discard a certain percentage (usually ∼ 30%) of the beginning of the chain, called
burn-in. Doing so, any dependence on the starting point is removed.

Finally, when performing an MCMC analysis it is necessary to ensure that the chains
are stationary and have converged to the target distribution. The usual diagnostic for
this purpose is the so-called Gelman-Rubin convergence criterion [164]. This test consists
of comparing the variance within individual chains to the variance between chains. Their
ratio, R, should be close to unity when the chains have converged. In Cosmology, the
convergence criterion is usually R− 1 < 0.01.

A limitation of the Gelman-Rubin criterion is that it might misdiagnose convergence
if R happens to be very close to unity by chance. A list of some of the most popular
convergence diagnostics for MCMC can be found in Ref. [250].

Once the posterior distribution is sampled, it is possible to estimate any integrals of
any function of the parameters (such as the expected value or the variance) simply as

⟨f(θ)⟩ ≃ 1

N

N∑
i=1

f(θi), (A.4)

where i labels the points of the chain.
Also, marginalization becomes trivial: it is sufficient to build an histogram counting

the number of samples in each bin of some subset of parameters, ignoring the values of
the parameters we wish to marginalize over.
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A.1.1 Credible intervals

In addition to estimates obtained with Eq. (A.4), one needs credible regions in parameter
space that express the degree of uncertainty in the inference. A closed but not necessarily
connected hypersurface ∂Aγ, called a 100γ% credible region, can be constructed such
that the hypervolume Aγ contains a fraction γ of the total posterior volume∫

Aγ

dθ P (θ|d,M) = γ (A.5)

This definition is not unique, the two most popular choices in the 1D case are
• equal-tailed intervals (ETI), where equal fractions of the posterior volume lie in

the two tails of the distribution, meaning that being below the interval is as likely
as being above it, with probability (1− γ)/2;

• highest density intervals (HDI), within them the posterior at any point is larger
than at any point outside. These intervals have equal posterior density at the
upper and lower endpoint, and the areas of the two tails are not necessarily equal.

In chapter 2 we quote HDI intervals when referring to parameter constraints in all cases
except when only an upper or lower limit on a parameter can be found. In this latter
case we quote one-tailed intervals where the fraction (1− γ) of the posterior volume lies
in one of the tails.

A.2 Model comparison

The reason to analyze a dataset is to find the best model describing the Universe. Thus,
we are interested in knowing whether a model M1 is statistically preferred over another
model M2. The performance of a model given the data is quantified by P (M|d), which
is called posterior odd and it is proportional to the product of the prior probability for
the model itself, P (M), and of the Bayesian evidence P (d|M) encountered in Eq. (A.1).
To compare two models we then compute the ratio of their posterior odds [251]

O12 ≡
P (M1|d)
P (M2|d)

=
P (d|M1)P (M1)

P (d|M2)P (M2)
≡ B12

P (M1)

P (M2)
(A.6)

where, in the first equality we applied Bayes theorem to P (M|d), and P (M) is the prior
probability for the model itself. The term B12 is called Bayes factor and it corresponds
to the ratio of the evidences. It is common to choose non-committal priors on the models,
i.e., P (M1) = P (M2), in this case the ratio of the posterior odds is the Bayes factor,
O12 = B12. A value of B12 greater (smaller) than one means that the data favor model
M1 (M2). The Bayes factor is the ratio of the evidences and the evidence is the integral
of the likelihood times the prior, this highlights the relevance of the prior choice π(θ,M)
in Eq. (A.1). In fact there could be parameters which are exclusive of one model, or
another parameter which has a wider range in a particular model; all this is encapsulated
in the prior which in turn affects the evidence, favouring one model over another one.
Thus, the Bayes factor is radically different from the ratio of the likelihoods: a more
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complicated model will always provide higher or equal likelihood values whereas the
evidence will favor a simpler model if the fit is nearly as good, through the smaller prior
volume.

Obtaining P (M|d) can be unfeasible due to the large number of samples required to
carry out the integration. For this reason, the so-called information criteria are defined
as alternatives to the Bayes factor. These criteria are based on the likelihood but also
penalize a model depending on the number of parameters, to take into account the fact
that a model with more parameters leads to higher likelihood values. One of the most
popular information criterion, also employed in chapter 2, is the Akaike information
criterion (AIC) [169], defined as

AIC = −2 lnL+ 2p, (A.7)

where p is the number of parameters, and the quantity −2 lnL is often denoted with the
symbol χ2. Among all the models considered in order to fit the data, the model with
lower AIC is the preferred one. The AIC, however, can only quantify the quality of a
model relative to other models and it doesn’t quantify how good a given model fits the
data. Another limitation of the AIC is that it penalizes extra parameters regardless of
whether they are constrained by the data or not [252].
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Appendix B

Linearly perturbed equations in scalar-
tensor theories

B.1 Einstein equations

Using the same formalism developed in the section 1.6 we present here in the synchronous
gauge the linearly perturbed Einstein and scalar field equations for the modified gravity
theory given by Eqs. (2.6) and (2.7). The perturbed Einstein equations are

k2η − 1

2
Hh′ = −a

2

2

(
δρ̃+ δρ̃(G)

)
, (B.1)

k2η′ =
a2

2

[(
ρ̃+ P̃

)
θ̃ +

(
ρ̃(G) + P̃ (G)

)
θ̃(G)

]
, (B.2)

h′′ + 2Hh′ − 2k2η = −3a2
(
δP̃ + δP̃ (G)

)
, (B.3)

h′′ + 6η′′ + 2H(h′ + 6η′)− 2k2η = −3a2
(
ρ̃+ P̃

)
Θ̃ , (B.4)

where a tilde denotes the effective perturbations defined below.
In Eqs. (B.1) to (B.4) we distinguished explicitly between the quantities coming from

IG and the ones arising from the Galileon term to make as manifest as possible the
reduction of IGG and BDG to the IG equations of [79, 253] when g(σ) = ζ(σ) = 0.

The coefficients appearing in the perturbed Einstein equations are

δρ̃ ≡− 2

a2

{
F,σ

2F
δσ

[
a2ρM +

Zσ′ 2

2
+ a2

(
V

F
− V,σ
F,σ

)
+ 3Hσ′

(
F,σσ

F,σ

− F,σ

F

)
+ k2

]

+
δσ′

2F

(
3HF,σ − Z σ′)}+

δρM
F

− h′σ′

2a2
F,σ

F
, (B.5)

δρ̃(G) ≡ − 2σ′ 2

a4F

{
δσ

[
3Hσ′

(
g F,σ

F
− g,σ

)
+
σ′ 2

2

(
g,σ,σ −

g,σF,σ

F

)
− k2g

+
3σ′ 2

2

(
ζF,σ

F
− ζ,σ

)]
+ δσ′

(
σ′(2g,σ − 6ζ)− 9Hg

)
− 1

2
h′σ′g

}
, (B.6)

(
ρ̃+ P̃

)
θ̃ ≡ (ρM + PM)

F
θM +

k2

a2F

{
δσ
[
σ′ (Z + F,σσ

)
−HF,σ

]
+ δσ′ F,σ

}
, (B.7)(

ρ̃(G) + P̃ (G)
)
θ̃(G) ≡ 2k2σ′ 2
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δP̃ ≡ δPM
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B.2. Scalar field equation

B.2 Scalar field equation

The equation for the evolution of the scalar field fluctuation in Fourier space is

δσ′′ = δG̃
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, (B.12)

where the explicit expression for δG̃ is given below:
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