
DOTTORATO DI RICERCA IN

INGEGNERIA E TECNOLOGIA DELL’INFORMAZIONE PER IL MONITORAGGIO
STRUTTURALE E AMBIENTALE E LA GESTIONE DEI RISCHI – EIT4SEMM

Ciclo 36

Settore Concorsuale: 01/B1 - INFORMATICA

Settore Scientifico Disciplinare: INF/01 - INFORMATICA

ARCHITECTING THE EDGE-CLOUD CONTINUUM FOR IOT-BASED
MONITORING APPLICATIONS

Presentata da: Ivan Zyrianoff Supervisore

Prof. Marco Di Felice

Coordinatore Dottorato

Prof. Luca De Marchi

Co-supervisore

Prof. Tullio Salmon Cinotti

Esame finale anno 2024

Abstract

Monitoring the status and ensuring the integrity of appliances in civil and industrial scenarios
in real-time and over time is a top priority worldwide. To achieve this goal, it is necessary
to have a strong synergy between multiple tools, disciplines, and approaches, which can
be attained through a joint hardware-software co-design of the different components in
an Internet of Things (IoT) system. Layered IoT architectures facilitate understanding
of the different software components, hardware, sensing, and networking roles of smart
IoT applications. These architectures are inherently distributed, spanning from devices
installed in the field up to the cloud, passing through intermediary stages at different levels
of edge computing infrastructure – constituting a computational infrastructure known as the
edge-cloud continuum. IoT software platforms based on layered architectures are expected
to be adaptable to scenarios with varying characteristics, requirements, and constraints
from stakeholders and applications. However, they still face challenges, such as the lack
of interoperability and managing data across the edge-cloud continuum. A fine balance
exists between providing data with minimal delay and satisfying data freshness constraints.
The lack of generality also hampers using the same architecture in multiple deployment
scenarios. This thesis proposes, implements, and evaluates a multi-layer IoT architecture
that is infrastructure-agnostic and designed to meet the challenges of interconnecting system
components. The architecture seamlessly interfaces devices, applications, and subsystems
through abstractions. It efficiently manages data across the edge-cloud continuum, enabling
timely access to data by utilizing customizable proactive edge-caching techniques. Finally,
we demonstrate the architecture’s versatility by deploying it in different structural health
monitoring (SHM) settings with varying requirements, sensing units, and infrastructure
configurations.

Table of contents

List of figures ix

List of tables xiii

1 Introduction 1

2 IoT Edge-Cloud Continuum Architecture 7
2.1 Background . 7

2.1.1 The IoT Edge-Cloud Continuum 7
2.1.2 IoT Multi-layer Architectures . 9

2.2 IoT Architecture for IoT-Based Monitoring Systems 10

3 Interoperability Layer: Web of Things in the IoT Edge-Cloud Continuum 13
3.1 Background . 14

3.1.1 Device Perspective: the W3C Web of Things 16
3.1.2 Application Perspective: Open IoT Platforms 21
3.1.3 System Perspective: the Arrowhead Framework 30

3.2 Bridging Device to Application Perspective 32
3.2.1 ZION: A Scalable W3C Web of Things Directory 32
3.2.2 API Experimental . 34
3.2.3 WoT-FIWARE Integration . 37
3.2.4 Seamless Integration of RESTful Web Services with the Web of Things 45

3.3 Bridging Device to System Perspective . 51
3.3.1 Architectural Design . 52
3.3.2 Service Interaction . 53
3.3.3 Performance Analysis . 56

4 Data Management Layer: Caching in the IoT Edge-Cloud Continuum 61
4.1 Background . 62

vi Table of contents

4.1.1 IoT Edge Caching: Taxonomy and Review 62
4.1.2 IoT Edge Caching Use Cases . 66
4.1.3 Frameworks for Proactive Edge Caching 69
4.1.4 Federated Learning support in Edge Caching 73

4.2 CACHE-IT: Proactive Edge Caching in Heterogeneous IoT Scenarios 74
4.2.1 Architectural Design . 75
4.2.2 Operations . 78
4.2.3 Implementation . 85
4.2.4 Performance Analysis . 88

4.3 CACHE-IT support for Federated Learning 94
4.3.1 Architectural Design . 96
4.3.2 Performance Analysis . 99

5 Services Layer: Trustworthiness in the IoT Edge-Cloud Continuum 107
5.1 Background . 108
5.2 Blockchain-based Oracle Architecture for IoT 110

5.2.1 Architectural Design . 112
5.2.2 Use Cases . 117
5.2.3 Performance Evaluation . 118

6 Use Cases: Deployment in the IoT Edge-Cloud Continuum 123
6.1 Background . 124
6.2 MAC4PRO . 126

6.2.1 Sensing layer . 126
6.2.2 Interoperability Layer . 128
6.2.3 Data Management Layer . 129
6.2.4 Service Layer . 130
6.2.5 Performance Analysis . 132
6.2.6 Use Case #1: concrete frame under seismic excitation 134
6.2.7 Use Case #2: hydraulic circuit under Acoustic Emission leakage . . 137

6.3 Arrowhead Tools Project . 138
6.3.1 Architectural Adaptations to a Toolchain-Oriented System 140
6.3.2 The SHM Pilot: Multi-Chain Components 141
6.3.3 The SHM Pilot: Toolchains . 144
6.3.4 CACHE-IT Deployment . 148
6.3.5 Results and Discussion . 149

Table of contents vii

7 Conclusions 157
7.1 Summary of Contributions . 157

7.1.1 RQ (i) – Interoperability . 158
7.1.2 RQ (ii) – Edge Caching . 158
7.1.3 RQ (iii) – Trustworthiness . 159
7.1.4 RQ (iv) – Real-world deployments 160
7.1.5 Minor Contributions . 160

7.2 Current and future research directions . 161
7.3 Final Remarks . 163
References . 165

8 Research Publications 181

List of figures

2.1 Edge-cloud continuum regarding latency and processing power. 8
2.2 High-level four-layer IoT Architecture . 12

3.1 IoT interoperability perspectives, solutions and levels addressed 14
3.2 W3C Web Thing architecture proposed in [1]. 17
3.3 Processing Time (ms) in AWS.Medium 28
3.4 Processing Time (ms) in AWS.Large . 28
3.5 CPU Usage (%) in AWS.Medium . 28
3.6 CPU Usage (%) in AWS.Large . 28
3.7 Memory Usage (MB) in AWS.Medium 29
3.8 Memory Usage (MB) in AWS.Large . 29
3.9 WoT and FIWARE architectural definitions 31
3.10 ZION architectural design . 33
3.11 Histogram that shows the distributions of WT TDs per number of lines . . . 36
3.12 Processing times for ZION and TinyIoT with y-axis in logarithm scale. . . . 37
3.13 WoT connection to the FIWARE ecosystem dataflow 38
3.14 Dataflow of the SWAMP IoT-based Platform 40
3.15 SWAMP dataflow from infrastructure point-of-view 41
3.16 Experimental delay . 42
3.17 Experimental CPU Usage . 43
3.18 Experimental Memory Usage . 44
3.19 C3PO process of deploying proxy WTs dataflow 48
3.20 Experiment Environment . 50
3.21 Latency Results . 51
3.22 A screenshot of the C3PO interface. 52
3.23 Discovery and registration of WoT in the Arrowhead SR 54
3.24 Conversion of Arrowhead services into Web Things. 55
3.25 Percentage of the valid HTTP Methods in the analysed dataset 57

x List of figures

3.26 Histograms of API Endpoints and GET and POST methods 58
3.27 Experimental Processing Times . 59

4.1 The studies reviewed in this thesis, classified according to the features intro-
duced in Subsection 4.1.1 . 63

4.2 CACHE-IT High Level Architecture . 77
4.3 CACHE-IT operations and their timings. 83
4.4 Data characterization of processing time for the three categories of data

providers. 89
4.5 Data characterization of response size in bytes for the three categories of

data providers. 89
4.6 Representation of the different categories of client behavior modeled in the

experiments. 91
4.7 Overall Simulation results for CACHE-IT comparing different configurations.

Hatched bars represent experiments in which cooperative caching orders
were used. 93

4.8 Simulation results for CACHE-IT comparing standard and cooperative caching
orders. Each row represents a different cNN configuration, denoted as N. . . 94

4.9 Simulation results for CACHE-IT for different client types. Each row repre-
sents a different cNN caching configuration, denoted as N. 95

4.10 CACHE-IT FL High Level Architecture . 97
4.11 Model Generation Activity Diagram . 99
4.12 CACHE-IT FL Federated Learning Setup 100
4.13 CACHE-IT FL Edge-Cloud Bandwidth . 104

5.1 Different oracle architectures and their relationship with data sources 109
5.2 The DESMO layered architecture with the steps required in the query resolu-

tion process . 114
5.3 DESMO data gathering and consensus process. 115
5.4 Smart Insurance use case applied in the agricultural domain 119
5.5 Truth Inference Accuracy: the percentage of requests by a client that get

satisfied within a tolerance threshold. 120
5.6 Blacklisting Recall: the percentage of all the malicious sources that the

system is able to detect and ban over time. 121
5.7 Blacklisting Precision: the percentage of all the banned sources over time

that are actually malicious. 122

6.1 MAC4PRO implementation of the reference architecture. 127

List of figures xi

6.2 The Data Plotter depicting vibration and AE sensor data from the experi-
mental campaigns. 131

6.3 Energy consumption analysis of feature extraction on EEN. 132
6.4 Data payload size comparison when performing feature extraction in EEN

versus in the cloud. 133
6.5 Cloud application scalability. 135
6.6 The MAC4PRO deployment plan on the reinforced concrete frame (red dots

indicate the position of the AE transducers). 136
6.7 The MAC4PRO hydraulic circuit deployment plan. 139
6.8 Extension of base architecture to support toolchains 142
6.9 Toolchain architecture of the whole System-of-Systems, with a focus on

the separation and the interoperability between the Arrowhead and the WoT
ecosystems. 143

6.10 Data Toolchain . 144
6.11 Device Toolchain . 145
6.12 A screenshot of the WoT–Arrowhead Device Configurator 146
6.13 Energy Toolchain . 147
6.14 Bridge model under test. 150
6.15 The upper figure shows the accelerometer bursts that change after the vibro-

dyne is turned on. The lower figure shows how the data from the gas sensor
changes before and after the gas sensor is sprayed with gas. 151

6.16 The CACHE-IT framework deployed in a SHM case-study 152
6.17 Proactive caching (Configuration #4) predictions of battery life and solar

irradiance for seven days of training. 153
6.18 Processing time results in logarithmic scale for different edge cache configu-

rations . 154
6.19 Cache hit rate results for different edge cache configurations 154
6.20 Screenshots showing the E-Lifecycle Dashboard (above) during the operation

of changing the duty cycle of the SHM sensors from 100% to 50%. The
result of the duty cycle change is shown through on three axes of a single
SHM sensor (below): the blue line identifies the wakeup intervals of the
sensors. When the line is not set to 1 the sensors do not perform any read
operation. 156

List of tables

3.1 Summary of the interoperability comparison between the IoT Platforms . . 25
3.2 Factors and Levels . 27
3.3 Experiment Factors and Levels . 41
3.4 Delivered Messages . 42
3.5 Correspondent WoT affordances of HTTP methods 46
3.6 C3PO’s RESTful API endpoints . 49
3.7 WAE’s RESTful API endpoints . 55

4.1 Comparison of CACHE-IT with the works in literature 72
4.2 Caching Template . 78
4.3 Properties of a record . 80
4.4 Experiment Parameters . 92
4.5 Factors and Levels . 92
4.6 Experiment Parameters . 101
4.7 Factors and Levels . 102

6.1 Comparison of the proposed architecture to the literature 126

Chapter 1

Introduction

Smart applications leverage the benefits provided by the massive amount of data generated
by thousands or millions of sensors in the Internet of Things (IoT) [2]. In pair, the next
generation of engineered structures will be equipped with intelligent sensor systems featuring
on–board and advanced decision-making functionalities. Hence, implementing monitoring
architectures requires perfect coordination among the sensing, communication, and decision
subsystems to achieve a timely and reliable diagnosis [3]. To realize the potential gains of
such coordination, they have to deal with the inherently distributed nature of real-world IoT
infrastructures [4]. The end-to-end data path starts with the acquisition by sensors in the field,
spanning multiple edge computing nodes for processing, storage, and communication tasks,
ending up in a cloud data center that executes physical or data-driven models and can act as
long-term storage. Indeed, a processing, storage, and communication continuum between
sensors and the cloud composed of various infrastructure elements became clear [5]. It covers
the end-to-end path of data acquisition, processing, storage, and transmission, starting with
devices and spanning different intermediate stages, ending up in the user interface.

Requirements and Challenges

The effectiveness of monitoring systems is based on the optimal integration between the
required hardware resources for signal acquisition, conditioning, and digitalization and
the associated software infrastructure in charge of data management, data analytics, and
visualization [6]. Such integration must consider the requirements posed by the application
domains. We highlight the following challenges that currently hinder such integration:

2 Introduction

1. lack of interoperability: the developed architectures must handle the heterogeneity of
sensing units, which may differ based on the type of sensed signals, data formats, and
acquisition protocols [7].

2. scalability struggles: resilient monitoring strategies are needed to ensure operational
serviceability in burdensome workloads. Managing IoT data is a pivotal challenge
since the acquired information may exhibit all the four dimensions of big data (volume,
variety, velocity, and veracity) [8].

3. data management issues: data management policies could be implemented at any
stage of the computational continuum. For instance, damage-sensitive features can be
processed on the extreme edge, directly on the sensors’ board, on the edge (i.e., on
computational units nearby the sensors’ board) or on the cloud for scenarios involving
onerous post-processing phases [9]. Additionally, due to the sheer volume produced
and requested by IoT systems, the transmission of requests to and from the data
producers introduces augmented latency, overuse of network traffic, and increased
costs – certain web services operate on a utilization-based payment model. When
utilizing proprietary cloud services, costs are calculated also based on the usage of the
volume of downloaded data. It is necessary to optimize data management throughout
the continuum [10].

4. inadaptability: Deployment scenarios often entail non-compatible infrastructure,
posing challenges regarding adaptability, and the distribution of software components
across the edge-cloud continuum presents trade-offs. Executing processing at the
edge reduces the workload for subsequent components, resulting in bandwidth and
processing efficiencies. However, edge devices may have lower robustness compared
to cloud resources [11]. Indeed, human expertise is needed to analyze each scenario
and develop a custom-designed solution to attend to the constraints and requirements
of the analyzed use case [12].

To meet these requirements, some research studies on smart structures propose multi–
layered, IoT-based architectures involving both smart sensor devices in charge of measuring,
pre-processing, and forwarding physical data and remote processing units, which merge and
handle the huge data volume, finally executing structural assessment algorithms [13–17].
While the referred solutions have achieved considerable results, open points still need to
be tackled. Firstly, some research works fail to consistently deploy all the cyber-physical
components, as is the case of [13, 15, 17], or vice versa; they fail in test-fielding the software
components on real-world scenarios [16]. In the case of complete deployments, the system

3

often has custom-made components or assumptions that match the specific use case or
particularities of the scenario. Indeed, the lack of generality makes architectures barely
extendable to support different sensing, processing, and monitoring tasks. The deployment
of IoT architectures is a complex task. Real use cases often impose requirements, and the
rapid and straightforward solution is to make an ad-hoc modification that solves it. However,
this approach narrows the generality of the architecture. Replicate architectural solutions that
support the base data acquisition and processing process to enable versatile IoT architectures.

Research Objectives

The main objective of this thesis is to design and implement a customizable IoT moni-
toring solution that leverages the edge-cloud continuum and is adaptable to a variety of
structural health monitoring (SHM) scenarios with heterogeneous infrastructure. Four re-
search questions (RQ) arise to accomplish the mentioned objective:

i How can a seamless interconnection be established among diverse devices, applications,
and systems in the context of IoT monitoring applications?

ii What strategies can be employed to enhance the efficient management of data within
the edge-cloud continuum, emphasizing enabling low latency while considering data
freshness?

iii How can decentralized systems be integrated to enhance the trustworthiness of data
collected from diverse IoT devices in scenarios demanding reliability?

iv How can we deploy the same architecture across diverse scenarios with different edge-
continuum configurations while considering different system end-goals and requirements?

Contributions

To achieve the main objective, we advance the state of the art by introducing a novel,
infrastructure-agnostic, multi-layer IoT architecture. This architecture is a general-purpose
platform for SHM, leveraging cutting-edge technologies from the information, software, and
industrial engineering communities. Its design should be modular and customizable. Based
on the scenario requirements, components could be included to support a given feature, such
as a specific interoperability integration or a latency requirement. Based on the architectural
design and its implementation, we define our main macro-contributions:

4 Introduction

1. Solution to RQ (i): Our approach to interoperability focuses on creating solutions for
seamlessly connecting heterogeneous devices, applications, and systems. We avoid
introducing new models that could contribute to fragmentation within the current IoT
landscape. Instead, we opt for an integration strategy based on well-established and
widely adopted open standards and technologies. We adopted the W3C Web of Things
(WoT) standard [1] as a foundation for building interconnected IoT ecosystems. First,
we establish a bridge between devices and applications by integrating WoT with the
NGSI data model [18], which is utilized by the FIWARE Platform [19], and seam-
lessly connecting Web services documented through the OpenAPI Specification [20].
Subsequently, we extend this integration to encompass System-of-System solutions,
enabling interfacing with legacy subsystems by leveraging the Arrowhead Framework
[21].

2. Solution to RQ (ii): Edge caching is a potential solution to meet latency constraints
[22]. In particular, proactive edge caching explores the pattern of user requests to
predict and prefetch data to satisfy latency constraints while meeting information
freshness requirements [23]. We designed a distributed framework for proactive edge
caching called CACHE-IT. It considers the particularities of IoT scenarios and explores
the proximity of edge infrastructure to devices with cloud resources to optimize data
processing and response time. It decouples the caching strategy algorithm from
the underlying architecture to ensure customization based on application-specific
requirements.

3. Solution to RQ (iii): We have integrated a trustworthiness layer into a decentralized
system by leveraging blockchain technology, where clients pay for queries to devices
that are rewarded based on the returned data quality. Our proposal employs distributed
applications that link the blockchain to the off-chain entities referred to as oracles [24].
These oracles mediate the data access interface among IoT devices, the blockchain,
and clients.

4. Solution to RQ (iv): Our architecture enables custom choices, allowing for fine-tuning
trade-offs to cater to specific use cases due to its infrastructure-agnostic nature. This
claim was validated through its utilization in two different projects: the EU Arrowhead
Tools1 project and the MAC4PRO project [25], both of which required the archi-
tecture’s deployment in real-world use cases. MAC4PRO is a national project that
aims to integrate Industry 4.0 monitoring with advanced models for cost-effective,

1https://tools.arrowhead.eu/home/

5

safety-driven maintenance of components and infrastructure. The Arrowhead Tools
Project involves approximately 90 partners from 17 EU countries and aims to pro-
vide digitalization and automation solutions for the European industry. From the
conceptualization of the base architecture to its practical application in MAC4PRO
and its further customization for the SHM Arrowhead Tools demonstrator, we provide
a comprehensive guide to the practicalities of the proposed architecture.

Methodologies

We utilize several research methodologies to achieve the objectives described, including:

• Literature review: To characterize the current state of the art of IoT architectures for
monitoring applications and identify the main challenges and requirements for the
proposed scenario.

• Architectural design: we adopted an architectural-approach to problem-solving. Thus,
designing and structuring the system’s components, interfaces, and interactions sys-
tematically to specific challenges and requirements inherent to the IoT. This approach
creates a framework that solves immediate problems and provides flexibility, adapt-
ability, and future-proofing for evolving IoT landscapes.

• Performance evaluation: we systematically assess and measure the designed solutions’
efficiency, reliability, and scalability. It involves rigorous testing and analysis to
ensure that the proposed solutions meet the immediate functional requirements and
demonstrate their efficiency and trade-offs under various conditions, considering
varying workloads and system configurations.

• Real-world use case: we performed practical implementation and execution of the
proposed solutions in live, operational environments. This approach moves beyond
theoretical or simulated scenarios in IoT systems, allowing the architecture to interact
with actual devices, networks, and end-users. Indeed, real-world deployments pro-
vide valuable insights into the robustness and adaptability of the architectures under
authentic conditions, enabling the validation of theoretical findings in practical settings.

Thesis Structure

The thesis structure mirrors the proposed IoT architecture. Chapter 2 provides an overview of
the multi-layer IoT architecture proposed for monitoring scenarios. The following chapters

6 Introduction

are dedicated to the thesis contributions for each specific architectural layer. Chapter 3 deals
with interoperability and addresses RQ (i), while Chapter 4 covers data management and
addresses RQ (ii). Chapter 5 concludes by presenting the service layer and responding to
RQ (iii). Next, we demonstrate the applicability and versatility of the architecture in various
real-world scenarios, which is the theme of Chapter 6. Finally, Chapter 7 concludes the
thesis, summarizes the contributions made, and draws future directions. Each chapter follows
a structured methodology. We begin with an introduction to the motivation and subjects
that will be addressed in that chapter. The first section covers the literature review of the
specific theme, comparing the innovations presented in the chapter with the state-of-the-
art. Following this, each component proposed presents an architectural design to solve the
problem, which was implemented and validated through a performance evaluation. In many
cases, a real-world use case is also provided to illustrate the proposal’s applicability.

Chapter 2

IoT Edge-Cloud Continuum Architecture

Section 2.1 describes the current state-of-art of IoT architectures for monitoring scenario.
Finally, Section 2.2 presents the architecture, which is composed of four layers: Sensing,
Interoperability, Data Management, and Service. The subsequent chapters of this thesis build
upon the foundational architecture established in here. Chapter 3, Chapter 4 and Chapter 5
delve into specific aspects of interoperability, data management, and services, respectively.
Within these chapters, we explore in depth the contributions made in this thesis within each
vertical, while considering the edge-cloud continuum scenario.

2.1 Background

In this section we present the state-of-the-art on IoT monitoring architectures that leverage
the edge-cloud continuum. Subsection 2.1.1 defines the concept of the edge-cloud continuum,
while in Subsection 2.1.2 we present the main architectural solutions found in literature for
IoT monitoring applications, focusing in the SHM domain.

2.1.1 The IoT Edge-Cloud Continuum

Many authors acknowledge the existence of a processing, storage, and communication con-
tinuum composed of infrastructure elements located between the cloud and the sensors and
actuators [5, 26, 10]. The continuum receives slightly different names (e.g., cloud contin-
uum, cloud-edge-continuum, IoT-cloud-continuum) but always refers to the availability of
resources far from the cloud and close to the devices and the location where the computation
takes place. In the scope of this thesis, we refer to it as the edge-cloud continuum, which
we outline stages in the continuum between the cloud and the end-device as follow: Cloud
↔ External Edge↔ Internal Edge↔ End-Device, as illustrated by Figure 2.1. A trade-off

8 IoT Edge-Cloud Continuum Architecture

P R O C E S S I N G P O W E R

L A T E N C Y

Fig. 2.1 Edge-cloud continuum regarding latency and processing power.

emerges in determining the optimal location for performing computation, whether closer to
devices or to the cloud. Elements closer to the devices present low delay but lower computing
capacity, whereas external edge devices are closest to the cloud, providing more powerful
computing resources with higher delays [27, 28]. Besides the latency considerations, moving
applications closer to edge has the potential to save bandwidth utilization and reduce network
traffic [29].

Although the cloud-edge continuum is a novel paradigm, there are efforts in literature to
define it. Moreschini [5] is one of the most impactful works in that regard. They reviewed the
term cloud continuum and define it as "an extension of the traditional Cloud towards multiple
entities (e.g., Edge, Fog, IoT) that provide analysis, processing, storage, and data generation
capabilities.". They address the cloud continuum definitions, how they evolved, and which
types of infrastructures it spans. Other researchers, consider also mobile nodes, such as
unmanned aerial vehicles (UAV), part of the continuum [30]. Khalyeyev [31] acknowledge
the widespread use of the edge-cloud continuum, highlighting the consensus gap about its
meaning and properties, causing the lack of models and tools for reasoning about application
development and deployment. They address this issue by proposing a reference component
model for reasoning about smart applications running in the continuum.

A challenge when exploring the continuum is the vast heterogeneity of computation
nodes, which difficult the deployment of systems when considering diverse infrastructural
configurations. These concerns primarily revolve around the extensive variety of devices,
spanning from single-board computers like Raspberry Pis to robust multiprocessor servers
[26].

2.1 Background 9

2.1.2 IoT Multi-layer Architectures

In this thesis, we proposed a four-layer architecture IoT architecture for IoT monitoring
scenarios. There is a vast literature of layer architectures for IoT-based systems; however,
there is little convergence – or standards –, which led to a myriad of heterogeneous approaches
and taxonomies [32]. Hence, we identify several layered IoT architectures that can be applied
to monitoring that stand out, and we compare these to our proposed solution.

The three-layer architecture was proposed in the early development stages of IoT [33, 34],
and it represents the most simple and generic definition of an IoT-based architecture. Thus,
it can be implemented in all IoT application domains. It is composed of: (i) Perception or
Sensing Layer, which includes all the sensors and acquisition devices which are necessary to
collect data; (ii) Network Layer, which serves as the intermediate layer between the edge
devices and the central unit. Among its primary functions, it is responsible for transferring
data while ensuring a secure connection in a sensor–to–cloud direction; (iii) Application
Layer: it includes all the essential services the monitoring process requires, such as data
processing and visualization.

Despite its ease of implementation, such an IoT approach lacks consistency in that it
cannot capture the inherent complexities of the current condition monitoring requirements.
A variation of the traditional three-layer architecture for SHM was proposed by Zonzini
et al. [35]. The architecture encompasses the particular features of SHM-based sensors
(e.g., accelerometers) and introduced computing capabilities in the network edge, which is
responsible for exposing the IoT devices through an interoperable interface. The same system
was further enhanced in [36], where the importance of the edge was highlighted, making
it a layer of its own. However, this framework mixes architectural layers with computing
locations.

A four-layer variant of the IoT architecture has been proposed to distribute better the tasks
between the architectural resources of the monitoring system, thus favoring the development
of a more versatile and timely responsive framework. Compared to the three-layer archi-
tectures, the four-layer variant introduces a purposely–devoted Processing or Support layer
in between the networking substrate and the terminal application domain[37]. Regarding
architectures that focus on SHM domains, we highlight Lamonaca et al. [38], which defines
application, event detection, signal processing, and sensing as the layers of the SHM Systems.
Its goal is to create a framework where all IoT systems for SHM can fit. Finally, five-layer IoT
architectures introduce an additional level above the application services known as Business
layer, since it orchestrates the entire IoT system as a whole [39]. In the scope of SHM, there
is a known five-steps architectural guideline for implementing IoT-based systems for SHM.
The steps – or layers – are sensing, gateway, network, control, and graphic interface [40, 41].

10 IoT Edge-Cloud Continuum Architecture

Diverging from the discussed approaches, other researchers deployed monitoring systems
that do not fit in any of the mentioned layer-based IoT architectures. Wang et al. [42]
proposes and implements an architecture to perform continuous monitoring. It comprises
three tiers: edge, platform, and enterprise. The edge tier, via the IIoT gateway, connects
to the cloud and platform tier, and the enterprise tier accesses data from the platform tier.
Qian et al. [43] presents an IoT-based approach to condition monitoring of the wave power
generation system, though, they do not present a software architecture to support it. Yang et
al. [44] proposes a cloud-based monitoring platform for industrial applications, their system
also encompasses edge computing nodes for performing tasks that require low latency.

2.2 IoT Architecture for IoT-Based Monitoring Systems

We took inspiration from the 5-layer IoTecture defined in [39]. The objective is to present a
high-level generic and flexible architecture capable of supporting deployments comprised of
numerous heterogeneous devices, different communication technologies, applications with
non-uniform interfaces, and multiple end-user roles, ranging from managers to data scientists
and system administrators. Figure 2.2 depicts the layered architecture adopted. Each layer
defines a specific function, which can be performed by one or multiple applications, that
connects with the other adjacent layers. The functionalities of the upper three layers are
provided by multiple architectural components, which comprise the following chapters of
the thesis. The architecture layers are:

1. Sensing layer, encompasses devices responsible for interacting with the physical world.
This category comprises all sensors and actuators, such as accelerometers, gas, and
piezoelectric sensors. This layer also includes the physical communication medium of
the network stack –e.g., Wi-Fi, LTE, LoRa, etc. The sensing layer is out of the scope
of the current thesis and our work involves the integration of it to the upper-layers.

2. Interoperability layer, offering uniform and standard interfaces inter-layer interactions
and on-boarding tasks, as automatic discovered of applications and devices. This
category is comprised of two sets of tools:

(a) Communication-enablers: the tools responsible for data to be delivered, such
as protocol-specific message brokers (e.g., MQTT Brokers) and network layer
enablers, (e.g., the LoRaWAN server stack);

(b) Homogenization tools: provide uniform interfaces to consume data (e.g., the
WoT standard) and bridge different data structures or protocols.

2.2 IoT Architecture for IoT-Based Monitoring Systems 11

Chapter 3 explores the state-of-art advances made in this thesis which addresses
interoperability.

3. Data Management layer, encompasses tools that are responsible for the data storing,
filtering, processing, and transformation operations. A notable aspect within this is
the efficient data caching in the edge-cloud continuum. Chapter 4 presents this thesis
contributions regarding data management.

4. Service layer, is comprised of services for end-users and integration with third-party
applications or systems. This includes data visualization as well as interactions that can
potentially lead up to commands that change the current state of the system. Chapter 5
illustrates this layer by describing one system integration.

The architectural design is decoupled from the deployment plan. Based on the require-
ments and the available resources, the software components can be variously configured and
deployed through the edge-cloud continuum. For instance, they can be assigned entirely to
edge nodes near the monitored structure or distributed among the cloud and the edge nodes.
We emphasize that the flexibility in distributing software components through the continuum
pertains to deployment time rather than run-time. Nevertheless, our architecture inherently
supports run-time migration since the migration of services between edge and cloud was
already explored in literature [45–47]. We stress that our innovations rely not on specific
algorithms but on the architectural system combining hardware and software components.
We provide evidence of such decoupling in Chapter 6, in which we deploy the architecture in
different configurations.

Each architectural component designed and incorporated in the architecture is domain-
agnostic, ensuring versatility across various deployments. This characteristic enables the
components to be employed in different contexts and scenarios, showcasing the adaptability
of the architecture to diverse application domains within the IoT landscape. The architecture
follows a modular design, where applications operate independently of each other. The inde-
pendence of applications, coupled with interoperability components, enables easy integration
of new devices or applications. Those aspects promote to easily customize the architecture to
meet specific requirements of given use cases.

12 IoT Edge-Cloud Continuum Architecture

DATA MANAGEMENT LAYER

SERVICE LAYER

INTEROPERABILITY LAYER

SENSING LAYER

Fig. 2.2 High-level four-layer IoT Architecture

Chapter 3

Interoperability Layer: Web of Things in
the IoT Edge-Cloud Continuum

This Chapter answers to the RQ (i) "How can a seamless interconnection be established
among diverse devices, applications, and systems in the context of IoT monitoring applica-
tions?" by presenting the interoperability advances made in the scope of the thesis, which
focus on the creation of seamless cross-perspective interoperability solutions based on well-
established and widespread open standards and technologies. Most solutions designed to
overcome interoperability challenges focus on a specific perspective, which we categorize
into three distinct domains: device, application and system perspectives.

Figure 3.1 illustrates the relations of the different IoT interoperability perspectives, a
set of corresponding solutions and which interoperability levels their address. Despite the
availability of multiple IoT solutions addressing interoperability challenges, they typically
are restricted to address the issues in their specific perspective. Consequently, creating an
IoT ecosystem that seamlessly enables interoperability from devices to systems remains a
leading challenge in IoT research. In this chapter, we adopted the W3C Web of Things (WoT)
standard [1] as a foundation to build upon by designing and implementing solutions to create
more integrated ecosystems.

Section 3.1 presents the current state-of-art of the interoperability solutions. The remain-
der of the chapter focus on interoperability integration. Specifically, we are focusing on two
integration efforts: bridging the device perspective with the application perspective, which
is addressed in Section 3.2; and connecting both device and application perspectives to the
system perspective, addressed in Section 3.3.

14 Interoperability Layer: Web of Things in the IoT Edge-Cloud Continuum

A
pp

lic
at

io
n

Sy
st

em
D

ev
ic

e

Web Service

DEVICE

SY
N

TA
TI

C

SE
M

A
N

TI
C

D
IS

C
O

VE
RY

PLATFORM

Interoperability
Levels

In
te

ro
pe

ra
bi

lit
y

Pe
rs

pe
ct

iv
es

Interoperability
Solutions

Fig. 3.1 IoT interoperability perspectives, solutions and levels addressed

3.1 Background

Studies, such as [48], have categorized various levels of IoT interoperability, including device
interoperability, network interoperability, syntactical interoperability, semantic interoperabil-
ity, and platform interoperability. We expand that definition by adding IoT discoverability.
We present what each level encompass:

• Device Interoperability: IoT encompasses a wide range of devices, from high-end
resources such as Raspberry Pi and smartphones to resource-constrained counter-
parts such as RFID tags, sensors, and actuators. These devices exhibit variations in
micro-controller architecture, system characteristics, and communication technologies.
The presence of multiple communication protocols, including Wi-Fi, 4G/5G, Blue-
tooth, NFC, ZigBee, Z-Wave, and proprietary solutions such as LoRa and SIGFOX,
necessitates device interoperability. This level ensures the seamless integration of het-
erogeneous devices with different communication protocols, facilitating the exchange
of information and the integration of new devices into any IoT platform.

• Network Interoperability: the networks supporting IoT devices are heterogeneous,
multi-service, multi-vendor, and distributed. Unlike desktop computers, IoT devices

3.1 Background 15

rely on a variety of short-range wireless communication and networking technolo-
gies that can be intermittent and unreliable. Network interoperability addresses the
challenges associated with ensuring seamless message exchange between systems
across different networks. This includes addressing, routing, resource optimization,
security, QoS, and mobility support in the dynamic and heterogeneous IoT network
environment.

• Syntactical Interoperability: refers to the interoperability of both format and data
structure in the exchange of information or services between heterogeneous entities.
To achieve this, interfaces must be defined for resources, exposing structures according
to specific schemas such as WSDL and REST APIs. Message content is serialized for
transmission, typically using formats such as XML or JSON. Challenges arise when
the encoding rules of the message sender are incompatible with the decoding rules of
the receiver, resulting in mismatched message parse trees.

• Semantic Interoperability: IoT involves enabling different agents, services, and appli-
cations to meaningfully exchange information, data, and knowledge. Challenges arise
from different data models, incompatible data schemas, different units of measurement,
and semantic inconsistencies. As a result, IoT systems have difficulty interoperating
dynamically and automatically, even as they expose their data and resources. Achiev-
ing semantic interoperability requires addressing the differences in how IoT systems
describe and understand resources and operations.

• Platform Interoperability: exists due from the existence of different operating sys-
tems, programming languages, data structures, architectures, and access mechanisms
across different devices and platforms. IoT-specific operating systems such as Contiki1,
RIOT2, TinyOS[49], and OpenWSN[50], and platform providers such as FIWARE,
ThingsBoard, Amazon AWS IoT, and IBM Watson contribute to this disparity. De-
velopers face barriers to building cross-platform, cross-domain IoT applications that
require in-depth knowledge of platform-specific APIs and information models for
customization and integration.

• Discover Interoperability: the representation of device capabilities, automatic indexing
mechanisms, and clients’ search capabilities vary widely. Effective discoverability
interoperability addresses the challenge of harmonizing how device capabilities are
represented and providing mechanisms for clients to efficiently search and index

1www.contiki-os.org
2https://riot-os.org

16 Interoperability Layer: Web of Things in the IoT Edge-Cloud Continuum

devices. This involves standardizing approaches for device representation, indexing
protocols, and search mechanisms to enhance the overall discoverability experience in
the IoT ecosystem.

The interoperability challenges identified are distributed across diverse perspectives, as
shown in Figure 3.1. This proposed categorization serves as a complementary framework
to the highlighted interoperability issues. One aspect of the IoT is the classification of
heterogeneity, while the other aspect examines the challenges and their impact on devices,
applications, and systems. Solutions for IoT interoperability are tailored to specific levels
and perspectives. Solutions such as the W3C Web of Things (WoT) [1] standard addressed
the inter-connectivity challenges from the device perspective, by proving a standardize way
to describe and interact with devices. On the other hand, open IoT Platforms and web
services aim to establish seamless connective between application, facilitating the process of
integrating new applications. Finally, complex IoT scenarios usually require interfacing with
multiple other subsystem, which usually involve the integration with legacy IoT ecosystems.
Solutions such as the Arrowhead Tools project3, enable automatic cross-platform and cross-
domain integration between systems, including legacy ones.

The following subsections examine the a subset of the most promising interoperability
solutions which were utilized in the remainder of this thesis. Specifically, Subsection 3.1.1
discusses the device perspective, while Subsection 3.1.2 presents the application perspective
and presents a set of experiments that compared different IoT Platforms. Subsection 3.1.3
outlines the system perspective.

3.1.1 Device Perspective: the W3C Web of Things

Concepts and early ideas surrounding the WoT have been in development since 2007 [51].
However, it wasn’t until 2013 that the World Wide Web Consortium (W3C) initiated its
standardization efforts in the WoT domain. This began with the establishment of the Web
of Things Community Group and later with the Web of Things Interest and Working Group
in 2017. Unlike traditional approaches, which often propose the creation of new protocols
or middleware layers, the W3C WoT approach revolves around a descriptive information
model capable of representing diverse solutions. The core of this proposal is the definition of
a Web Thing (WT), which indicates any ”physical or a virtual entity whose metadata and
interfaces are described by a Thing Description (TD)’ ’[1]. The latter denotes a sequence
of standardized, machine-understandable metadata encoded in JSON-LD 4 that models the

3https://cordis.europa.eu/project/id/826452
4json-ld.org

3.1 Background 17

capabilities of an IoT device. The TD contains detailed instructions about the nature of

Fig. 3.2 W3C Web Thing architecture proposed in [1].

a device or service – i.e., a WT. In practice, the information model standardized by W3C
contains a set of interaction patterns (or affordances) that a service or device is capable of
supporting. The affordances group together a set of atomic functions, called operations, that
clients can use to interact with the represented WT. There are three types of affordances:

• properties: represent the inner state of a WT – e.g., the current temperature of a smart
thermometer or the configuration parameters of a coffee machine. A client can perform
the following operations: write read, observe, and unobserved.

• actions: high-level functions that WTs offer to their clients. Usually, actions operate
on the physical world or modify the WT’s state. Examples include: toggle a smart
lamp or move a robotic arm to the desired position. A client can invoke the action and
if it is a long-running function it can later query its state or cancel its execution.

• events: data sources that asynchronously push data to clients. Typically, alarms
or expected states are modeled as events, but not regular property changes that are
modeled with the Property affordances. The operations grouped under the events
affordances are: subscribe and unsubscribe.

The Listing 3.1 illustrates a TD of a Accelerometer sensor that has only one property,
which returns a object composed of three properties, each one related to an axis. The
affordances enable clients to leverage on a stable high-level interface while the Protocol
Binding Template defines how clients can perform the operations described in the TD. It
describes low-level concepts like, the protocol to use and its configuration parameters, in
an ontology. Then these terms can be imported inside a TD and used to describe how to

18 Interoperability Layer: Web of Things in the IoT Edge-Cloud Continuum

perform a specific operation. These low-level communication requirements can be paired
with security constraints enabled by the Security Schemas. Security Schemas are common
Web authentication paradigms that can be declared to be used when invoking an action or
any affordance operation. The TD only contains the methodology to access the affordance,
not the sensitive information (e.g., username and password) required to interact with the WT.
As written in the security guidelines[52] a TD should never contain sensitive information.
Figure 3.2 depicts the main WT architecture components encompassed by the TD described.

A run-time software named Servient implements the software object described by the
TD. The Servient allows to host and expose a WT (i.e., to make the TD available over a
network) and to interact with a remote WT by consuming the TD. According to W3C, [1],
a WT functionality should be available in all available protocols. Thus, Servients bind
multiple protocols and data models to enable interactions with different platforms. The W3C
description does not clarify if there is a one-to-one relationship between WTs and Servients.
Throughout this thesis, we assume that a Servient can host several WTs.

1 {
2 "title":"Accelerometer Sensor",
3 "properties":{
4 "Acceleration":{
5 "type":"object",
6 "description":"Current acceleration result",
7 "observable":false,
8 "readOnly":true,
9 "writeOnly":false,

10 "properties":{
11 "type":"object",
12 "properties":{
13 "x":{ "type":"number" },
14 "y":{ "type":"number" },
15 "z":{ "type":"number" }
16 }
17 }
18 }
19 }
20 }

Listing 3.1 Example of accelerometer sensor TD

3.1 Background 19

Discovery

A crucial WoT feature is to dynamically discover TDs at runtime. This aspect of discovery
is addressed by the normative specification of the W3C Web of Thing Discover [53]. The
document focuses on the normative steps required to obtain and publish TDs over the Web.
The approach to acquiring TDs adopts a two-phase architectural model, balancing the dual
demands of openness and controlled access to metadata, ensuring that only authorized
entities can access the necessary information. The first phase, known as "Introduction,"
is employed to discover one or more candidate URLs. These URLs are treated as opaque
strings, deliberately devoid of any substantial metadata. During this phase, the process
remains entirely open, with no restrictions applied to consumers. The candidate URLs
are acquired through one of the defined introduction methods. Presently, there exist five
introduction methods: well-known URLs, Direct (e.g., QR codes or manual URL provision),
DNS-Based Service Discovery, CoRE Link Format and CoRE Resource Directory, and DID
Documents.

Upon obtaining a set of candidate URLs, the Discoverer proceeds to the second phase,
denoted as "Exploration." This phase encompasses the operations necessary to retrieve
the TD referenced by the URLs and further processing to extract additional information.
Typically, these operations are protected by security mechanisms, such as authentication
tokens, ensuring that the TDs remain inaccessible to unauthorized users. Notice that the
URL obtained via one introduction mechanism invariably directs to a single TD hosted by
an exploration service. Discoverers must be capable of interacting with different types of
exploration services:

• Thing Description Server: "Any web service that can be referenced by a URL and
returns a TD with appropriate authentication and access controls can be used as an
exploration mechanism" [53].

• Thing Description Directory (TDD): serves as a WT that offers services for managing
a collection of TDs describing other WTs [53]. The TDD facilitates a broader set of
APIs for filtering and searching for the desired TDs.

Thing Description Directory

A TDD is an exploration service that can be used to retrieve and filter a list of TDs. Currently,
the specification is focusing on TDD based on HTTP but, in the future, it might support
other non-web-native protocols like CoAP or MQTT. Implementers of a TDD are required
to support a set of compliant APIs exposed as HTTP endpoints. Currently, those APIs are

20 Interoperability Layer: Web of Things in the IoT Edge-Cloud Continuum

grouped into three categories: things, events, and filtering. Things endpoints are further
subdivided into creation, retrieval, update, deletion, and listing. Those functions represent the
CRUDL operations for the set of TDs stored inside the service. The specification recommends
protecting relevant resources with secure protocols and credentials. The events API allows the
client to subscribe to the basic events fired by the TDD like the creation of a TD, an update,
or a deletion. Finally, the filtering API comprehends three different querying technologies
that implementers can choose to support or not: JSONPath [54], XPath [55], and SPARQL
[56].

WoT State-of-the-art

In this subsection, we introduce the current state-of-the-art research on WoT and focus on
the modern solutions of indexing and searching WTs.

One of the most prominent verticals of WoT research is to design and develop a mecha-
nism to enable the W3C WoT standard to integrate with non-WoT components seamlessly.
Indeed, a known shortcoming of the W3C WoT standard is the lack of out-of-the-box con-
version methods to dissonant interfaces to its ecosystem. Implementation efforts are often
needed to integrate third-party Web services or other standard interfaces into the WoT. Re-
cent advances filled that gap, providing seamless integration of RESTful Web services [57]
and NGSI-based interfaces [58] to the W3C WoT ecosystem. Other efforts are on the live
migration of WTs [45] to cope with the intrinsic dynamicity of IoT environments in terms of
time-varying network and computational loads.

The WoT standard enables abstracting the device’s physical properties and creating
interoperable interfaces that facilitate seamless communication within IoT systems. How-
ever, efficient indexing and searching of WTs are fundamental aspects for the widespread
adoption of WoT [59]. Numerous techniques have been proposed to address WT search
challenges [60], varying in the adopted query language and overall technology. Among
these, IoT-SVKSearch [61] stands out as a promising approach, supporting searches based
on both spatial-temporal attributes and value-based criteria, effectively incorporating the dy-
namism of IoT environments into the search mechanism. GOLDIE [62] offers a hierarchical
location-based WoT directory architecture that includes federated identity management and
IoT-specific features like discoverability, aggregation, and geospatial queries. DBAC [63]
innovates in the access-control vertical, enabling decentralized attributed access without the
need for complete trust or credential provision while preserving user privacy. Other efforts
have focused on indexing WTs for specific scenarios, such as indoor devices [64]. In [64],
device features are automatically extracted using machine learning techniques and clustered
to group similar devices. Although these works advance the state-of-the-art in WT indexing

3.1 Background 21

and searching, they do not align with current W3C standards for discoverability, leading to
an increasingly fragmented landscape with multiple heterogeneous solutions for indexing
and querying devices.

There are two other W3C-compatible implementations, namely TinyIoT [65] and WoT
Hive [66]. TinyIoT holds a historical significance as the first implementation of the APIs
outlined within the specification. Originating as a research project within the Fraunhofer
Institute, it has since evolved into an independent open-source endeavor. The service,
implemented in Go, uses an integrated LevelDB instance for the storage and querying of TDs.
It supports a comprehensive feature set, including DNS-SD as an introduction service for the
TDD, complete implementation of all mandatory APIs, and a JSON-Path query endpoint.
While the software solution is robust, the queries are performed entirely in memory, which
could potentially pose challenges when deploying TinyIoT in large-scale environments.

WoT Hive has been developed inside the European project AURORAL5 and wants to be
the most feature-rich implementation of the TDD APIs. The service is written in Java with
the help of the Spark framework and it supports SPARQL endpoints as storage for the list of
TDs. In contrast to TinyIoT, WoT Hive boasts more robust semantic and syntactic capabilities
due to its backend support for Triple stores, supporting both JSONPath, SPARQL-based
discovery and semantic validation. On the other hand, the expanded feature set compromises
scalability with a large set of TDs as demonstrated in [66].

3.1.2 Application Perspective: Open IoT Platforms

Currently, there is a plethora of new and different IoT Platforms, each with its own set of
features, requirements, and trade-offs – the Unify-IoT [67] project identified more than 300
different IoT platforms. In this myriad of options, stakeholders often make a choice based
on assumptions not supported by reliable data, as “the more interoperability features an IoT
platform provides, the worse its overall performance and scalability." We aim to provide a
preliminary analysis of open-source IoT Platforms qualitatively in terms of interoperability
and comparing them with a quantitative performance analysis that asses the scalability of
each platform. to Due to the vast number of IoT platforms, a single study cannot encompass
a detailed evaluation of each of them. First, we restrict our analysis to only open-source
platforms. Second, we identify three classes of platforms and select a single representative
from each. We categorized IoT Platforms if they are maintained by (1) a collaborative
community of independent developers (e.g., FIWARE Platform[19] founded and fostered by
the European Commission); (2) a start-up (e.g., Konker6 supported by a Brazilian company);

5https://www.auroral.eu/
6https://www.konkerlabs.com/index-en.html

22 Interoperability Layer: Web of Things in the IoT Edge-Cloud Continuum

(3) an already established company (e.g., ThingsBoard7 is one of the market-leading IoT
platforms). Our goal is to provide an initial assessment through a small-scale performance
evaluation to understand if the selected platforms have a trade-off regarding its interoperability
features. Further studies are required to in fact proof the hypothesis stated.

FIWARE

The FIWARE platform [19] is an open-source IoT framework fostered and funded by the
European Commission under Horizon 2020 program. It comprises software modules that
perform functions needed in various IoT-based applications – Generic Enablers (GE). There
are another set of applications that integrate with FIWARE and usually are domain-specific.
Those are labeled as Powered by FIWARE.

IoT Agent applications are data model-specific, so each different data structure requires
a new IoT Agent. There are currently agents for the following data models and protocols:
LWM2M over CoAP, JSON or UltraLight over HTTP/MQTT, OPC-UA, Sigfox LoRaWAN
[68]. Further, a NodeJS library to enable IoT Agent development allows developers to build
custom agents to connect non-support data structures/network protocols to the FIWARE
ecosystem.

Applications in the FIWARE ecosystem adopt a standard NGSI (Next Generation Service
Interface) data exchange model that enables communication between them. IoT Agents
are components that handle IoT data heterogeneity in FIWARE, translating IoT-specific
protocols into the NGSI context information protocol [68]. Additionally, IoT Agents map
NGSI information as virtual representations of the IoT devices in JSON entities, stored and
managed by Orion, a publish/subscribe context broker.Applications can consume and publish
IoT data through Orion using NGSI REST-based web interfaces. Hence, interoperability is
granted once applications are in the FIWARE ecosystem and use the NGSI data model. IoT
Agents have a standard API that enables CRUD (Create, Read, Update and Delete) operations
of devices - and defines the corresponding translation to the NGSI model. IoT Agents store
device metadata in a database.

IoT Agent applications are data model-specific, so each different data structure requires
a new IoT Agent. There are currently agents for the following data models and protocols:
LWM2M over CoAP, JSON or UltraLight over HTTP/MQTT, OPC-UA, Sigfox LoRaWAN
[68]. Further, a NodeJS library to enable IoT Agent development is available to build custom
agents to connect non-support data-structures/network protocols to the FIWARE ecosystem.

7https://thingsboard.io

3.1 Background 23

ThingsBoard

ThingsBoard is an open-source platform that enables device management, data collection,
and visualization for IoT-based systems. It enables connectivity via industry standard IoT
protocols – HTTP, MQTT, and CoAP. ThingsBoard allows users to build dashboards and
offers multiple options of widgets and graphs to improve IoT data visualization.

ThingsBoard IoT Gateways integrate devices connected to legacy and third-party systems
with the IoT platform. There are gateways for external MQTT brokers, OPC-UA servers,
Sigfox Back-end, Modbus slaves, or CAN nodes. Additionally, ThingsBoard offers a guide
for developers to build custom IoT Gateway to integrate not supported protocols. A critical
ThingsBoard feature is to connect several different data sources, enabling users to build a
data processing rule chain – based on Node-Red8 – capable of transforming, processing,
triggering actions to devices, and integrating with other third-party applications – only in
paid versions.

Konker

Konker is a cloud-based open-source IoT Platform that collects data and connects devices.
It aims to offer intuitive and simple features to enable users to prototype solutions within
minutes. Konker supports HTTP and MQTT devices and adds a security layer on top – each
device is connected to a unique ID and password-authenticated by the platform. Devices and
applications are connected in Konker through a processing pipeline which the actors can the
following roles:

• Device: a JSON representation of a physical or virtual device that transmits or receives
data;

• Channel: groups message with similar content to be processed as a single unit;

• Route: connects input devices to output applications or devices;

• Transformation: enables payload structure manipulation of messages connected
through a channel.

A Qualitative Comparison of IoT Open Platforms

Our analysis of platform interoperability perspective focuses on how well platforms bridge
different network protocols and data models from heterogeneous IoT-based devices. We

8https://nodered.org/

24 Interoperability Layer: Web of Things in the IoT Edge-Cloud Continuum

consider the out-of-the-box supported integration and whether the platform provides a
framework or a generic gateway to assist in interfacing non-compatible devices. Additionally,
we investigate whether platform interfaces can connect to third-party applications or other
platforms for mashing IoT data. Table 3.3 summarizes the comparison of the mentioned
characteristics of the analyzed platforms.

One core aspect of any IoT Platform is being able to bring heterogeneous device data to
the platforms. Hence, all platforms provide a way to bridge IoT devices that communicate
in different network protocols and data structures. FIWARE and ThingsBoard adopted a
similar approach, both utilized middleware applications that translate IoT-specific protocols
to data that the platform can process. However, an essential difference between the two
is that FIWARE IoT Agents are tied to the network protocol and data model, and the
ThingsBoard IoT Gateways are only associated with the network protocol and the user
needs to provide a code-snipped to integrate a given data model. As Table 3.3 showcases,
ThingsBoard is the platform that supports more different network protocols, followed by
FIWARE. However, both provide a framework to assist the development of new translation
middleware applications – Generic Gateway column of Table 3.3.

In contrast with the other platforms, Konker adopts restrictions to receive data. Each
device must send a payload message with an individual user and a password automatically
created by the platform. The additional overhead to configure each specific device with an
individual authentication excludes several devices, such as those that do not allow changes
in the payload; or low-powered IoT devices with payload size limitations. Compared to the
other platforms, Konker offers the least amount of support to different network protocols
(MQTT and HTTP only), and it only receives structured as JSON.

A common feature of all platforms is the representation of IoT devices as JSON-based
virtual entities that model the capabilities of that device. Other components of the system can
be represented as a virtual entity to describe its meta-information as static data or relationships
with other physical entities – i.e., a room temperature can be inferred as the average of all the
temperature sensors located there. The entity-based model is a characteristic that hinders the
fragmentation in IoT environment at the platform level. It provides a platform-agnostic way
to model data and represent devices; thus, combining data from different platforms with few
efforts is possible.

Another ubiquitous feature of IoT Platforms is that they provide a REST API to access
and manipulate services. However, each platform has its custom endpoints, specific data
models, and specific capabilities. FIWARE allows users to query time series data with several
parameters and aggregations. In contrast, ThingsBoard does not provide a direct way to

3.1 Background 25

query and aggregate time-series data. The lack of uniformity hinders the development of
cross-platform applications, requiring development efforts to implement such solutions.

Although the analyzed platforms lack standard interfaces, they offer built-in integration
with other industry-established platforms. FIWARE and ThingsBoard offer integration with
know LPWANs platforms, particularly those that support LoRaWAN. ThingsBoard also
integrates with other proprietary platforms like AWS IoT, IBM Watson, Microsoft Azure.
However, all the platform integration supported by ThingsBoard is only available in its
paid Professional Edition (indicate by the * in Table 3.3). There is also the possibility in
ThingsBoard to create custom integration with other applications, but that requires coding
efforts and pipeline modeling in a graphical interface.

Table 3.1 Summary of the interoperability comparison between the IoT Platforms

Application Protocols Generic
Gateway Platform Integration Entity Rep-

resentation

Data
Exchange
Protocol

FIWARE HTTP, MQTT, CoAP,
OPC-UA yes

LPWANs: ChirpStack,
The Things Network,

SigFox
JSON NGSI

Konker HTTP, MQTT no No Integrations
Available JSON none

ThingsBoard

HTTP, MQTT, CoAP;
Supported throught IoT

Gateways: OPC-UA,
Modbus, BLW, CAN,

BACnet, ODBC, SNMP,
FTP

yes

IoT Platforms: AWS IoT,
IBM Watson, Microsoft

Azure*;LPWANs:
ThingPask, The Things
Network, TEKTELIC,

LORIOT, SigFox,
NB-IoT Network *

JSON none

Konker does not provide direct integration with other platforms, but with the transforma-
tion concept, it is feasible to connect Konker data streams to third-party applications. Hence,
a transformation is a code-snipped that can be connected to a data stream to format the data
in a structure that comply with other interfaces. Thus, it is possible to convert to the format
of other platforms and trigger an action to send data to that platform or through an MQTT
broker or the application REST API.

FIWARE provides two ways of integrating non-NGSI-based applications in its ecosystem:
(i) IoT Agent-based: FIWARE provides an IoT Agent Node.js library to enable developers
to build custom agents to connect applications or devices to the FIWARE ecosystem by
translating the data structure and network protocol to NGSI on top of HTTP – to communicate
with RESTful APIs; (ii) Wrapper-based: build a GE that encapsulates the third-party service
with an NGSI interface, for instance: Cygnus9 that encapsulates Apache Flume10, and

9https://github.com/telefonicaid/fiware-cygnus
10https://flume.apache.org/

26 Interoperability Layer: Web of Things in the IoT Edge-Cloud Continuum

Draco11 that encapsulates Apache NiFi12. One advantage of FIWARE is that the numerous
GEs often offered capabilities not well supported by the other platforms, as querying and
aggregating time-series data through APIs – three GEs enable such features: QuantumLeap13,
STH Comet14, Cygnus. Performing time-series query operations in Konker or ThingsBoard
is more complex and limited than in FIWARE QuantumLeap.

Although the three platforms provide a way to assist developers in integrating with other
non-supported platforms it is still required for developers to know the specific data structures
and interfaces to integrate third-party applications and services.

A Quantitative Comparison of IoT Open Platforms

We designed and conducted experiments to quantitative compare the performance and
scalability of each platforms in close to real IoT scenarios. One goal was to answer the
hypothesis: “the more interoperability features an IoT platform provides, the worse its overall
performance and scalability." In every experiment, we recorded : (i) CPU and RAM usage
from the IoT Platform; (ii) end-to-end processing time. In the experiments, a synthetic IoT
sensor workload generator (SenSE)[69] transmits sensor data through the HTTP protocol
to the IoT Platform, responsible for forwarding the data to an application consumer. The
consumer is responsible for handling the data, recording, and calculating the processing time.
Each component was executed in a different virtual machine to guarantees that the execution
of one component does not hinder the performance of others.

Table 3.2 presents factors and levels used in each scenario, consisting of 36 possibilities.
The scenarios consider the implementation of all three analysed IoT Platforms in two different
IoT smart applications: Smart City (SC) and Smart Health (SH).

In the Smart Cities scenarios, we used a 25-byte payload to simulate a simple sensor
sending a single data, such as temperature or humidity. In the Smart Health scenarios, the
payload is increased to represent better typical medical data such as patient identification,
glucose levels, heart rate, steps, location, medicines, ECG, and blood pressure, totaling 3.865
bytes [70, 71]. To evaluate how each platform manages system resources, we analyze the
performance of each platform on two separate infrastructures based on AWS15 standards,
an AWS.Medium (2 vCPUs and 4Gb RAM) and an AWS.Large (4 vCPUs and 8Gb RAM)
virtual machines.

11https://github.com/ging/fiware-draco
12https://nifi.apache.org/
13https://github.com/orchestracities/ngsi-timeseries-api
14https://github.com/telefonicaid/fiware-sth-comet
15https://aws.amazon.com

3.1 Background 27

Table 3.2 Factors and Levels

Factor Level
Payload Size smart city: 25 bytes

smart health: 3685 bytes
Infrastructure AWS.Medium 2CPUs 4Gb RAM

AWS.Large 4CPUs 8Gb RAM
Workload (messages per second)

AWS.Medium 8,16,24
AWS.Large 24,32,40

Platforms FIWARE, ThingsBoard and Konker

Another factor analyzed was how each scenario performs with different workloads. In
AWS.Medium scenarios, we use a workload of 8, 16, and 24 messages per second (mps). On
the other hand, in the AWS.Large scenarios, the workload is increased to 24, 32, and 40 mps.
For all evaluations, the asymptotic confidence intervals were computed at the level of 95%.

Figure 3.3 depicts the processing time of each platform in an AWS.Medium virtual
machine, while Figure 3.4 shows the processing time in an AWS.Large virtual machine. Both
in Figure 3.4 and Figure3.3 ThingsBoard had a better overall performance compared to the
other analyzed solutions, as it presented the lowest processing times in almost all experiments.
Further, ThingsBoard utiliz computational resources in a efficient manner – as show Figure
3.17 and Figure 3.18. ThingsBoard has a stable and regular increase in processing time, CPU
and memory, and is compatible with the workload and payload.

Even though the Konker platform does not have the best performance, it shows to be
stable since its processing time did not suffer meaningful variations when we altered the
workload, scenario, and infrastructure. However, Konker stability comes with a trade-off
regarding resource usage. Figure 3.5 depicts that Konker demands 10% of CPU at the lowest
workload – i.e., 8mps. The same behavior can be seen in Figure 3.18, illustrating that Konker
demands more than half memory available in all AWS.Medium scenarios while using almost
all resources available in the AWS.Large.

FIWARE platform was the most impacted by the workload increase. FIWARE had the
worst performance when analyzing the processing time in Figure 3.3 and Figure 3.4, even
operating with the workload of 8mps. In terms of scalability, FIWARE could not complete
the 40mps scenario, crashing before the end of the experiments – depicted by the white bars
in Figure 3.4. Analyzing the usage of hardware resources in Figure 3.5, Figure 3.6, Figure
3.7 and Figure 3.8, we can conclude that FIWARE depends more on CPU than memory.
Comparing the workload of 24mps in AWS.Medium with AWS.Large in both SC and SH, it
is clear that the CPU is more demanded while the memory usage is still the same.

28 Interoperability Layer: Web of Things in the IoT Edge-Cloud Continuum

Fig. 3.3 Processing Time (ms) in
AWS.Medium

Fig. 3.4 Processing Time (ms) in AWS.Large

Fig. 3.5 CPU Usage (%) in AWS.Medium Fig. 3.6 CPU Usage (%) in AWS.Large

The experiment’s results invalidate our initial hypothesis that related interoperability
features provided by an IoT Platform with its performance. As stated in Section 3.1.2,
ThingsBoard provides different interoperability features both in the device- and platform-
level, being the platform that offers more out-of-the-box integration. Despite all these features,
ThingsBoard presented the overall best results in terms of processing time. On the other hand,
Konker’s lack of interoperability features did not reflect better performance or more efficient
usage of computational resources. There is no insights that a specific interoperability feature
originated FIWARE’s poor performance under high workloads. The results did not indicate
that there is a trade-off between interoperability features and performance. However, the
platform’s ability to develop, maintain and support impacted both interoperability features

3.1 Background 29

Fig. 3.7 Memory Usage (MB) in
AWS.Medium

Fig. 3.8 Memory Usage (MB) in AWS.Large

and scalability. ThingsBoard platform is a product of an already settled company. Hence,
there have dedicated teams to support and develop different aspects of their platform – as
implement integration with third-party applications. On the other hand, Konker is supported
by a small start-up that primary business model is to provide the entire IoT system to other
companies. Thus, it is probable that they cannot spend time and resources to develop
new integration with different IoT devices. Finally, FIWARE is an open-source platform
supported and developed by a community of independent developers or companies that
utilize the tool. Hence, an integration with a protocol or platform is often only available if
one of the developers had that same necessity – and it is only supported by a long period if
there is still interest in the community in that integration.

WoT and FIWARE Comparison

Since both FIWARE and the W3C WoT emphasizes open standards and community-driven
development, we compared their interoperability solutions. Both FIWARE and WoT handle
the heterogeneity in IoT environments through a common philosophy: map IoT devices
as virtual entities with well-defined data structures that other applications can consume to
interact with IoT devices. However, they differ in many aspects, as their interoperability
perspective. FIWARE, which adhere to the application perspective, connects multiple entities
through its context broker, while the WoT focus on increasing the connectivity of single
entities, which are WTs. Figure 3.9 illustrates the interoperability approaches of WoT (A)
and FIWARE (B). The architectural differences may also introduce qualitative differences on
system deployments, reflected by the following aspects:

30 Interoperability Layer: Web of Things in the IoT Edge-Cloud Continuum

Implementation efforts: the FIWARE interoperability solution is an out-off-shelf applica-
tion. Thus, programming efforts are only required if there is the need to implement a new IoT
Agent for a previously unsupported data model or protocol. Opposite to that, there is not an
out-of-the-shelf WoT application. However, there exist frameworks (e.g., the node-wot[72]
tool) for assisting the development and the run-time execution of WTs.

Interfacing other applications: IoT Agents communicate only to FIWARE-based context
brokers. However, FIWARE provides a vast catalog of generic and specific enablers that
easily interface to any application with its ecosystem, third-party applications that do not
communicate via NGSI standard require a connector to be bridged to FIWARE. A similar
issue emerges in the WoT context: WT can be consumed through a Servient or by processing
the WoT-specific format that is often not compatible with other IoT Platforms.

Flexibility: Both solutions require the development efforts for dealing with unknown
protocols. However, the W3C WoT architecture descriptions provides clear guidelines that
assist the implementation of new solutions.

Adaptability - i.e., adapt to new situations minimizing the need of a new deployment:
IoT devices can be created, read, updated, and deleted to IoT Agent at run-time using its
API. There is no specification in the WoT architecture of a similar interface. Although it is
possible to implement such a feature in a Servient, it requires programming efforts.

Based on the aforementioned comparison, we can conclude that both solutions could
gain from integrating one with the other. Although FIWARE already has an interoperability
solution, it might extend the supported protocols and data formats, especially towards IoT
devices that the IoT Agents do not already support. For WoT, integrating with FIWARE
would vastly expand the support towards applications/platforms working with the NGSI
model.

3.1.3 System Perspective: the Arrowhead Framework

The last decade has been dominated by a fast-paced industrial revolution, particularly af-
fecting IoT-based ecosystems. In particular, Industry 4.0 no longer relies on legacy and
monolithic SCADA/DCS systems, instead, they are supported by flexible Service-Oriented
Architectures (SOA), where modular systems consume or provide services, ensuring loose
coupling between modules and their reusability across multiple domains[73]. The Eclipse
Arrowhead Framework is a software platform released as an open source product of the
Arrowhead Project16 that structures closed environments as Local Clouds: controlled ecosys-
tems that implement the base concepts of SOA – loose coupling, late binding, and discovery

16http://www.arrowheadproject.eu/

http://www.arrowheadproject.eu/

3.1 Background 31

Fig. 3.9 WoT and FIWARE architectural definitions

– and hosts a single instance of a central coordination entity, called the Core Services [21].
Then, each Local Cloud acts as a System-of-Systems in which each system is either an
application system (if an integral part of the baseline) or a tool . Regardless, they behave as
service providers or service consumers. Service consumption is supervised and managed
by the Core Services, which must be deployed in the Local Cloud in a minimum set. The
latter defines the “mandatory” Core Services in order to be Arrowhead-compliant; which are
the Service Registry, the Authorization, and the Orchestration. The Service Registry retains
a service record – a set of metadata – for each of the services in the Local Cloud acting
as a registrar which enables discovery and loose coupling. Service providers can register
themselves or a modeling facility may be used in the design phase of the Local Cloud, such
as SysML [74]. Each service record contains the essential details for interacting with such
service (i.e., the endpoint and the service name) as well as additional details in case the
service is annotated via a well-known standard (e.g., OAS). Each service provider all its
offered services independently all its offered services in the Service Registry via its API,
so that service consumers can subsequently fetch the necessary reference to the services of
interest. The Authorization is a storage of a set of authorization rules that specify whether
a consumer is authorized to use a certain service. In addition, it provides a token-based
authentication mechanism. Finally, the Orchestration is the enabler of late binding, as it
allows an additional actor, the cloud manager, to associate directly consumers to providers

32 Interoperability Layer: Web of Things in the IoT Edge-Cloud Continuum

at run-time. This way, consumers cannot autonomously decide which service provider to
query, instead, they query the Orchestration service to obtain the provider that was assigned
to them.

3.2 Bridging Device to Application Perspective

Referring to the IoT interoperability perspectives Figure 3.1, this section describes our
contributions to bridge the device perspective to the application perspective using the WoT
standard.

Subsection 3.2.1 presents the design and implementation of ZION, an open source
scalable W3C TDD. Its scalability is supported by a performance evaluation that demonstrates
its efficiency compared to other TDDs. The discovery allows applications to automatically
find and register WTs as such, serving as a first enabler to bridge both perspectives.

The following two subsections aim to provide connectivity from the WoT standard to
another ecosystem. Since the W3C WoT addresses do not provide methods or guidelines
for converting dissonant interfaces to their ecosystem, development effort and component
knowledge are required to integrate an application to the WoT standard, and such a developed
solution is often strongly tied to the specific application interface, operations, and data models.
The subsection 3.2.3 outlines the design and implementation of a connector that bridges the
WoT architecture to the FIWARE [19] ecosystem, leveraging the strengths of both solutions.
The seamless connection of both ecosystems creates a cross-perspective ecosystem. The
subsection 3.2.4 presents a technique to seamlessly integrate RESTful web services into the
WoT ecosystem. Our solution enables the translation of any RESTful interface – provided its
OpenAPI Specification (OAS) 17 – into a WT description and the procedures to instantiate
the translated description into a WT that acts as a proxy for the actual Web application. Our
mechanism decouples the application interface from the underlying network logic.

3.2.1 ZION: A Scalable W3C Web of Things Directory

ZION is an scalable, open-source TDD fully aligned with the W3C Discovery standard
[53]. Its core values revolve around speed, flexibility, and user-friendliness. It comprises
a standard API that facilitates CRUDL (Create, Read, Update, Delete, List) operations
managing TDs. The same interface supports querying TDs metadata through JSONPath,
following the IETF JSONPath standard [54], and offers robust pagination capabilities. To
validate ZION’s scalability, we conducted a comparative analysis with two other open-source

17https://spec.openapis.org/oas/latest.html

3.2 Bridging Device to Application Perspective 33

TDD implementations, specifically, WoT Hive [66], and TinyIoT [65]. We evaluated the
querying performance of each TDD while indexing various quantities of WT.

Architectural Design

ZION’s software architecture is modular, ensuring scalability and maintainability. The archi-
tecture is divided into:the API Reference, API Experimental, Authentication, Introduction,
and Persistence modules. Each of these modules serves a distinct purpose, ensuring that the
software can handle the diverse requirements of an IoT device directory. ZION’s architecture
is illustrated by Figure 3.10

API Reference

Things Events

API Experimental

Authentication/Authorization

In
tro

du
ct

io
n

Persistence

GeoSearch

Fig. 3.10 ZION architectural design

API Reference

The API Reference offers a comprehensive implementation of the functionalities outlined in
the W3C WoT Discovery document. It is structured into three distinct sub-modules: Events,
Search, and Things.

The Events module handles API endpoints related to device events, allowing the tracking
and monitoring of device activities. Clients can subscribe to all events or a specific event,

34 Interoperability Layer: Web of Things in the IoT Edge-Cloud Continuum

such as when a device is added, modified, or deleted. This real-time subscription mechanism
is implemented using Server-Sent Events (SSE), ensuring immediate updates and efficient
communication between the server and clients.

Within the W3C-specified Search API, advanced searching mechanisms are proposed,
including JSONPath, XPath, and SPARQL. However, in our Search module, we prioritized
the JSONPath implementation due to its flexibility and intuitive nature for querying JSON
data structures which is the default encoding format for TDs.

The Things module provides comprehensive endpoints for TD operations, including
creation, retrieval, modification, and deletion. Authentication mechanisms secure these
operations, limiting modifications to authorized clients. Advanced querying options are
available, allowing clients to filter and enrich TD listings with additional metadata and
related information. The module’s design adheres to RESTful API principles, offering
intuitive endpoints and standard HTTP methods for simplified client integration and consistent
interactions.

3.2.2 API Experimental

The API Experimental module is designed to host innovative features that extend beyond
the current W3C WoT Discovery standard. While these features are still in the conceptual
phase, the module’s architecture is primed to accommodate them, ensuring that when they are
developed, integration will be seamless. Among the anticipated features for this module are
the geospatial API and a high-level tagging system for TDs. The geospatial API is envisioned
to offer capabilities for managing and querying devices based on their geographical locations.
On the other hand, the tagging system aims to provide a sophisticated mechanism for
categorizing and organizing TDs, enhancing search and retrieval efficiency.

Authentication

The authentication module supports token-based authentication via username and password.
This self-contained support model doesn’t necessitate the use of an external service. However,
we are actively working on refactoring this feature to adopt a more extensible approach. In
the future, users will have the flexibility to select their preferred authentication mechanisms to
suit their specific needs. For instance, they can opt for username and password authentication
for smaller setups or utilize OIDC (OpenID Connect) for cloud-based deployments, ensuring
enhanced security and user convenience.

3.2 Bridging Device to Application Perspective 35

Introduction

The introduction module implements the first phase of the WoT Discovery proccess and
it currently supports DNS-SD, CoRE-RD, and the Well-known introduction methods. Its
architecture is designed to be adaptable and open to further extensions in the future, enabling
the inclusion of additional introduction methods as needed.

Persistence

The Persistence module serves as an abstraction layer for data storage and retrieval. It utilizes
the Knex.js18 query builder to establish a robust connection with the PostgreSQL database and
generate the needed queries. This module not only ensures the efficient management of user
data and TDs but also adeptly handles TD lifecycle events. The AbstractRepository offers a
generic blueprint for basic CRUDL operations promoting modularity and reusability, with
specialized repositories like the UserRepository and ThingDescriptionRepository extending
these operations for their specific needs. The ThingDescriptionRepository’s capability to
process JSONPath queries is particularly noteworthy. To achieve this, a dedicated library19

was developed to translate JSONPath queries into SQL/JSON Path, the language natively
supported by PostgreSQL. This translation covers 90% of the language, and it’s sufficient
to support the querying of almost every TD. The TDLifecycleEventRepository is currently
in-memory, but there are considerations to migrate to more persistent storage solutions like
Redis to enhance scalability.

Performance Analysis

We conducted a performance analysis to assess the scalability of the various implementations
of TDDs compatible with the W3C WoT Discovery standard; namely: ZION, TinyIoT,
and WoT Hive. Our focus was on characterizing the query resolution time under different
workloads, as it represents the most critical metric in this context. Unlike the less frequent
operations of inserting, removing, and updating TDs, querying TDs occurs more frequently
under real-world conditions – as searching and consuming internet content is a more common
activity than the tasks of creating or removing content.

In our experimental setup, we performed experiments where we systematically varied the
quantity of TDs stored in the database across different scenarios. In detail, we conducted
experiments for 10, 100, 1,000, 10,000, and 100,000 TDs. We categorized the TDs into
different complexity levels according to their number of lines: simple, medium, and complex.

18https://knexjs.org
19https://github.com/vaimee/jsonpath-to-sqljsonpath

36 Interoperability Layer: Web of Things in the IoT Edge-Cloud Continuum

0 500 1000 1500
Number of Lines

0

10

20

30

40

50

Fr
eq

ue
nc

y

Fig. 3.11 Histogram that shows the distributions of WT TDs per number of lines

To guarantee a greater similarity with real-world scenarios, we distributed the categories
of TDs stored in each experiment replication mimicking a Pareto distribution (the Pareto
distribution is commonly employed to model the sizes of files on the internet) as Figure 3.11
depicts. Hence, from the collected dataset of TDs, we ordered the TDs by quantity of lines
and the 5% percent with most lines were consider complex, the 15% below where considered
medium TDs, and the 80% remaining ones were classified as simple. We emphasize that
the TDs utilized in the experiments represented real devices and are publicly available in a
GitHub repository20. Before each experiment, we populated the TDD with the TDs according
to the specified distribution and complexity levels.

In each experiment, we conducted a hundred sequential calls to the TDD JSONPath
search endpoint. For each call, we randomly select a query from the following options:

• $[?(@.properties.lightColor)]: this query searched for TDs containing the
lightColor property.;

• $[?(@.properties.lightColor && @.properties.brightness)]: This query
searches TDs featuring both the lightColor and brightness properties.

• $[?(@.properties.sensorInformation)]. properties..state: This query
searches TDs with state as a sub-property within the sensorInformation prop-
erty.property.

20https://github.com/vaimee/tdd-workload-generator/tree/main/src/populate-db/examples-td

3.2 Bridging Device to Application Perspective 37

10 1000 1k 10k 100k
Number of TDs

101

102

103

Ti
m

e
(m

s)
Zion
TinyIoT

Fig. 3.12 Processing times for ZION and TinyIoT with y-axis in logarithm scale.

Preliminary experiments unveiled that all three queries have similar processing times.
In each replication, we reset the database and re-populated it. The workload generator and
the analyzed TDD were deployed in the same machine (12GB of RAM and an Intel Core
i5-7200U CPU running at 2.50GHz with 4 cores). We containerized ZION and TinyIoT
using Docker. Each experiment was replicated 30 times and asymptotic confidence intervals
were computed at the level of 99%.

The results are depicted in Figure 3.12, note that the y-axis is in logarithm scale. We
omitted WoT Hive from the graphs due to its unfeasible high processing time in all tested
workloads. In the lowest workload scenario with 10 TDs, the average processing time was
0.94 seconds. This average increased to 1.85 seconds with 100 TDs and further extended to
8.61 seconds with 1,000 TDs. During all WoT Hive experiments, we encountered numerous
error replies and experienced denial of service from the server. Our experiments support that
WoT Hive is not suitable for the use cases defined in this study. Regarding the performance
comparison for TinyIoT with ZION, we can note that the effect of increasing workload on
ZION results in a steady, linear rise in its processing time. In contrast, TinyIoT experiences
an exponential surge in processing time as the workload intensifies.

3.2.3 WoT-FIWARE Integration

We developed a generic application that bridges the WoT and the FIWARE ecosystems
by translating the WoT data to the NGSI format. We opted to develop a standalone WoT

38 Interoperability Layer: Web of Things in the IoT Edge-Cloud Continuum

Fig. 3.13 WoT connection to the FIWARE ecosystem dataflow

mash-up application instead of implementing a direct connection from a WoT Servient to
FIWARE due to two main reasons: 1) Generality: developing the Adapter as an application
enables the communication between FIWARE and WoT for any system, not only for our
scenario. 2) WoT best practices: the WoT Architecture [1] does not have a way of actively
sending data in a specific network protocol to another software module. Instead, the mash-up
application subscribes to a TD event, which transfers the data via a WoT-specific interface
when triggered.

We developed the WoT-FIWARE Adapter in JavaScript, using NodeJS21 on top of the
node-wot framework [72]. Our Adapter subscribes to the ngsiOutput event in the TD and
maps the WT as an Orion entity. The WT triggers this event whenever there is an update in
one of its properties. The Adapter iterates through such properties and encapsulates them in
a JSON object represented in NGSI. We virtualized the WoT-FIWARE Adapter as a Docker
container, available as an open-source project22.

Figure 3.13 illustrates the WoT connection to the FIWARE ecosystem dataflow. The
complete steps depicted in Figure 3.13 are:

1. an IoT device sends a message using a WoT supported protocol (e.g., MQTT) to the
WoT Servient and then to the WT associated with the device;

2. the WT processes the IoT message and updates the TD properties related to that device.
In turn, it triggers the ngsiOutput event, which notifies the WoT-FIWARE Adapter;

3. The Adapter maps the received WT to a corresponding FIWARE Orion entity. If this
entity does not exist in Orion, the WoT-FIWARE Adapter creates it;

4. Orion receives the message and stores the entity information in MongoDB.

21https://nodejs.org/
22https://github.com/UniBO-PRISMLab/WoT-FIWARE-adapter

3.2 Bridging Device to Application Perspective 39

Performance Analysis

In the following, we present a performance evaluation of the two interoperability solutions
on a real-world IoT deployment. The goal of the evaluation is twofold: (i) to validate
the operations of the WoT-FIWARE Adapter; (ii) to investigate further the performance
trade-offs, scalability, and requirements of IoT Agent and WoT solutions. The quantitative
comparison is influenced by the current implementations of the interoperability solutions.

We consider a performance analysis scenario based on a real IoT environment using
the SWAMP Platform [75] for smart irrigation. In detail, sensor probes obtain soil data
and transmit it to the SWAMP FIWARE-based Platform through LoRaWAN, where a set
of mathematical and data-driven models are processed to generate an irrigation prescription
map [76]. Figure 3.15 illustrates the complete dataflow from an infrastructural point-of-view,
with real pictures of a SWAMP Pilot located in a Brazilian agriculture frontier [12].

Although the SWAMP reference sensor probe communication technology is LoRaWAN23,
some off-the-shelf soil sensors use the basic LoRa modulation. Those probes transmit data to
a simple LoRa gateway that sends the sensor payload directly to the platform in a raw MQTT
structure, thus bypassing ChirpStack [77], which is a LoRaWAN server implementation
responsible for handling networking, authorization, and authentication issues. Soil probes
sense the soil and transmit data to the LoRa Gateway every 10 minutes, structuring the
payload according to the UltraLight2.0 (UL) protocol - a lightweight text-based protocol
for constrained devices and communications where bandwidth and device memory may be
limited [78].

Figure 3.19 depicts the core SWAMP Platform dataflow, including the two LoRa-based
transmission methods. In the Interoperability Solution block, we tested two alternatives: 1)
WoT software layer: composed of a Servient and the WoT-FIWARE Adapter that enables the
communication with the FIWARE Orion. To this aim, we developed WTs for each SWAMP
soil probes; the WTs are fed by the UL data and from the ChirpStack Server; 2) Native
FIWARE environment: We used the UL IoT Agent in the experiments with basic LoRa
modulation and the SWAMP LoRaWAN IoT Agent [12] for the LoRaWAN experiments.
Currently, there is an official version of the LoRaWAN IoT Agent, but it is not fully integrated
into the ChirpStack Server.

Regarding our testing environment, we used SenSE (Sensor Simulation Environment)
as the synthetic IoT sensor workload generator that can abstract real devices and model
complex scenarios [69].As the performance analysis focuses primarily on the interoperability
solution, we emulated all the data flow modules prior to the interoperability application. In
the experiments, SenSE produces synthetic data (i.e., simulating the soil probes transmitting

23https://resources.lora-alliance.org/technical-specifications/lorawan-specification-v1-1

40 Interoperability Layer: Web of Things in the IoT Edge-Cloud Continuum

Fig. 3.14 Dataflow of the SWAMP IoT-based Platform

data) and sends it to the interoperability solution. The corresponding soil probe entity is
updated in Orion, which sends a notification with the data to the Consumer. The software
components used in the experiments were deployed as Docker containers. The Consumer
represents a generic application that consumes sensor data - e.g., data visualization tool,
mobile app, or a third-party application. It is implemented as a simple data sink.

The number of sensors and the sensor message periodicity - each emulated sensor sends
a message each 10 min - does not vary during the experiment. We utilized two Virtual
Machines (VM) to perform the experiments. In VM #1, we deployed the modules that
enable the performance analysis - SenSE and Consumer - and in VM #2, we deployed
the applications under test: the interoperability solution, FIWARE Orion, and MongoDB.
We configured both VMs as the standard Amazon AWS t2.medium instance configuration
(2vCPU - 4GB of RAM).

We conducted 18 experiments, varying the levels of three factors - workload, protocol,
and interoperability solution - as depicted by Table 3.3. We evaluated WoT and FIWARE IoT
Agent as interoperability solutions and UL and LoRaWAN as protocols - mixed protocol as
appears in Table 3.3 refers to experiments where both UL and LoRaWAN protocols were used
simultaneously. Also, the workload was varied from low (1,000 sensors), medium (5,000
sensors), and high (10,000 sensors). SenSE emulates SWAMP sensor probes generating
one packet every 10 minutes. Each experiment was replicated 30 times, and asymptotic
confidence intervals were computed at the level of 99%.

We focused on the following metrics in the analysis: end-to-end delay (i.e. the average
time taken since a sensor data point is generated until the Consumer application receives it),
percentage of delivered messages, and system metrics (i.e. CPU and RAM usage per Docker
container of the evaluated modules, collected every five seconds.).

3.2 Bridging Device to Application Perspective 41

Table 3.3 Experiment Factors and Levels

Factor Level

Interoperability Solution Web of Things - FIWARE IoT Agent
Protocol Ultralight2.0 - LoRaWAN - Mixed

Number of Sensors 1000 - 5000 - 10000

Fig. 3.15 SWAMP dataflow from infrastructure point-of-view

Figure 3.16 summarizes the key results of the performance evaluation, depicting the total
experiment delay for the IoT Agent and the WoT software layer in low, medium, and high
workloads for the three different types of traffic: LoRaWAN messages, UL messages, and
mixed traffic - half of the sensors sending UL messages and the other half sending LoRaWAN
messages. The y-axis is expressed on a logarithmic scale.

When comparing the IoT Agent and the WoT software layer’s performance, it is important
to stress that we utilized two different IoT Agent implementations. Thus, when observing
Figure 3.16, we can conclude that the WoT (plus Connector) delay is similar to the official
FIWARE IoT Agent. Nevertheless, it is worst than the SWAMP LoRaWAN implementation.
In the experiments with mixed traffic, the WoT interoperability solution improved its perfor-
mance regarding delay compared to its performance in experiments using LoRaWAN traffic.
However, the IoT Agent performed better because both applications divided the processing
between them, acting as a workload balancing.

Analyzing the delay for high workload, we conclude that neither application can keep up
with 10,000 sensors, considering the computer resources allocated, since the experiments
overall had delays from 18s to 51s. All messages were delivered in the IoT Agent experiment;
however, some messages were lost when utilizing WoT. This loss is reported in Table 3.4,
which shows the delivered message rate for all the experiments and reveals packet loss events
under high workloads.

The computer resources usage are shown in Figure 3.17 - CPU usage - and Figure 3.18 -
memory usage. We can observe that MongoDB is the application with the highest demand
for CPU, caused by Orion. Each Orion entity is stored in MongoDB, and if an attribute is
updated, Orion will also update that attribute in MongoDB, thus increasing the processing
demand for the database. Regarding memory usage, there is a significant difference between

42 Interoperability Layer: Web of Things in the IoT Edge-Cloud Continuum

Table 3.4 Delivered Messages

Interoperability App. Traffic Workload Delivered Messages

Web of Things LoRaWAN High 84.04 ± 6.10%
Web of Things UltraLight High 90.13 ± 3.57%
Web of Things Mix Medium 98.32 ± 1.14%
Web of Things Mix High 89.81 ± 2.80%

Fig. 3.16 Experimental delay

the WoT solution and the IoT Agents, which we believe is caused by the soil probe TD. A TD
is verbose and individual to each different soil probe. Also, the node-wot implementation
does not use a database. Thus all information needed is stored in the RAM. The depletion of
RAM in the WoT experiments is the cause of losing messages. The usage of a DB is also
reflected in the RAM usage, which was higher for WoT since the Servient allocated the TDs
in memory.

The higher overall delay of the WoT software layer is expected since the latter is composed
of two modules (WT and the Adapter); this solution may introduce more processing and
networking steps that are not needed in the IoT Agent implementation. However, this is not
true when comparing the WoT software layer with the official IoT Agent - i.e., in experiments
solely with UL traffic - in this case, the delay is similar.

Moreover, the WoT requirement of not having protocol/platform-specific endpoints
prevents integration with other IoT Platforms that have well-defined interfaces and protocols.
A direct consequence of this decision is implementing a specific adapter for bridging the
generic WoT interface to specific ones, such as the WoT-FIWARE Adapter. Although the
evaluation analysis demonstrated the effectiveness and validated the correct operations of
our software, the need for an adapter may introduce a possible system failure point or a

3.2 Bridging Device to Application Perspective 43

Fig. 3.17 Experimental CPU Usage

44 Interoperability Layer: Web of Things in the IoT Edge-Cloud Continuum

Fig. 3.18 Experimental Memory Usage

3.2 Bridging Device to Application Perspective 45

bottleneck. Similar concerns about the usage of the adapter can be raised from a software
architectural perspective. Nonetheless, in our scenario, interoperability is not guaranteed by
WoT but by the WoT-FIWARE Adapter. Thus, the conceptual requirements of WoT impacted
its performance and required additional programming efforts compared to the IoT Agent
solution: WoT enables interoperability only if all applications that communicate with it adopt
the TD standard interfaces.

3.2.4 Seamless Integration of RESTful Web Services with the Web of
Things

This Subsection details the proposed method to translate OAS into WoT TD and instantiated
the generated TD as a WT proxy of the real application.

Syntaxical Translation of OAS to WoT TD

A formal description of the RESTful API is required to be eligible for a translation. We
utilized the OAS to translate the API documentation in a TD, but our technique is extensible
to other methods. The OAS defines a standard, language-agnostic JSON-based description
interface to RESTful APIs (Swagger24 adopted standard). We opted for OAS since it is
widely adopted in commercial and academic applications. Additionally, it partially adopts
the JSON schema[79] to structure its document, as does the WoT TD. As both support the
JSON schema, the information described in the OAS regarding the request and response data
models and their descriptions is also added to the WoT TD with minimal re-structuring. Far
from providing the complete endpoints description, the OAS is necessary to obtain some
critical values required by the WoT TD, namely: the WT name – the former OAS title –and
the server that hosts the web service described by the OAS. The server address is essential to
instantiate the WT proxy since it needs to know the URL to forward the requests.

The conversion process of the RESTful interface in a WoT TD is challenging since there
is no exact match between the RESTful architecture and the WoT affordances. Further, the
W3C TD[80] is decoupled from the underlying network protocols. However, both are virtual
interfaces that allow users to access and manage resources. Hence, some similarities can be
found:

• The GET method requests a representation of the specified resource, as the reading a
WoT property affordance;

24https://swagger.io/specification/

https://swagger.io/specification/

46 Interoperability Layer: Web of Things in the IoT Edge-Cloud Continuum

Table 3.5 Correspondent WoT affordances of HTTP methods

HTTP Method WoT Affordance
GET readable property or readable and writable property
POST action
PUT writable property
PATCH writable property
DELETE action

• The PUT method aims to replace a specified resource, and the PATCH method to
partially update the resource, similarly as writing to a WoT property;

• The POST method request and the WoT action both submit data to a specified resource;

• The DELETE method represents removing a specific resource, thus invoking an action.

For instance, an endpoint that implements both PUT and POST methods are translated
into two different affordances – one action and one writable property. The naming of the
converted affordance is composed by the HTTP method-endpoint name – e.g., HTTP GET
/weather→ get-weather affordance. Table 3.5 summarises the WoT correspondent of
each translatable HTTP method.

Parameters are a key aspect of RESTful web interfaces that are strongly tied to the HTTP
protocol. Several HTTP endpoints implement parameters as optional or required fields. Four
types of parameters are supported by HTTP APIs: path parameters (e.g. /device/{id}), query
parameters (e.g. /weather?city=Bologna), header parameters (e.g. X-MyHeader:Value) and
cookie parameters. As the TD is independent of the underlying network protocol, the WoT
does not support HTTP-specific parameters. Hence, we include the parameters in the request
body, as an object where each of its keys is a parameter containing at least two keys: in
that can assume the value of (query|header|path|cookie), and required, a Boolean
attribute. GET endpoints that have parameters are translated as a readable and writable
property.

Unfortunately, not all features of RESTful services can be easily translated into a WoT
equivalent since there are some mismatches between generic REST interfaces and the W3C
WoT interface [1]. The hierarchical tree structure of paths in a REST API does not have
an equivalent in WoT. Hence, all endpoints are mapped as a plain affordance – e.g. a GET
endpoint as /sensor/moisture is translated to a get-sensor.moisture WoT property.

/device/{id}
/weather?city=Bologna
X-MyHeader: Value

3.2 Bridging Device to Application Perspective 47

WT Proxy Instantiation

The translated TD is instantiated in a servient as a WT that acts as a proxy of the actual
service. When a property is queried or an action is evoked, the WT makes the correspondent
HTTP request to the service – it reassembles the URI from its affordance title and adds
parameters when present. Next, it forwards the server reply in a WoT-understandable way.
The communication only involves the instantiated WT and the proxied service. Consequently,
the interactions of the instantiated WTs are entirely decoupled from the translation process.

C3PO: A Tool to instantiate RESTful services into WT

C3PO (Converter of OPen API SPecification to WoT Objects)25 is an open-source application
developed in JavaScript using the NodeJS v10 engine. The node-wot26 framework supports
the creation of WTs. The tool is lightweight virtualized as a Docker container and its
container image is publicly available at DockerHub27.

Through C3PO, users can instantiate WT proxies of any web service that has an OAS
– both OAS version 2 and 3. The tool provides two main features: (i) Convert OAS to
TD: Users provide an OAS and our tool replies with the correspondent conversion to WoT
TD (this increases the tool flexibility, as it enables the translated TD to be used in other
implementations not directly tied with C3PO); (ii) Instantiate WT proxies of Web Applications:
C3PO instantiates a WT proxy from the web service described through an OAS and returns
the URL of the WT proxy.

Table 3.7 presents a complete list of all C3PO API endpoints and their description. Figure
3.19 illustrates the operation of C3PO, specifically the service interactions performed by the
tool when it receives a request on /deployWoT/url endpoint. The numbered steps depicted in
Figure 3.19 represent:

1. A user performs a request on C3PO API with a URL as the input;

2. CP3O fetches the OAS from the web service API at the given URL;

3. The tool checks if the retrieved description complies with the OAS specification. C3PO
returns the user a report of the errors found in case of a mismatch. Then, it converts
the OAS into a WoT TD and deploys a WT proxy of the RESTful web service;

4. The user can connect their sensors and WoT-based applications with the web service
API through the WT proxy.

25https://github.com/UniBO-PRISMLab/c3po
26https://github.com/eclipse/thingweb.node-wot/
27https://hub.docker.com/repository/docker/ivanzy/c3po

/deployWoT/url
https://github.com/UniBO-PRISMLab/c3po
https://github.com/eclipse/thingweb.node-wot/
https://hub.docker.com/repository/docker/ivanzy/c3po

48 Interoperability Layer: Web of Things in the IoT Edge-Cloud Continuum

Fig. 3.19 C3PO process of deploying proxy WTs dataflow

C3PO has an open-source28 graphic interface exposed on the Internet at https://wot-translator.
iot-prism-lab.cs.unibo.it/. The GUI allows users to translate their OAS to TD easily and
rapidly, without the need to install or deploy any software. Users need to provide an OAS in
the left-side editor, and the WoT TD correspondent appears on the right side of the screen, as
depicted by Figure 3.22.

Performance Analysis

Our proposed conversion method of RESTful services to WTs is based on instantiating
a WT proxy of the real application, inherently adding a latency overhead to the overall
system. Many IoT-based systems have strict delay restrictions, and the addition of another
processing layer – i.e., resulting in a latency increase – must be carefully considered. Further,
IoT real-world deployments are characterized by their complexity, since they are usually

28https://github.com/UniBO-PRISMLab/wot-translator-front

https://wot-translator.iot-prism-lab.cs.unibo.it/
https://wot-translator.iot-prism-lab.cs.unibo.it/
https://github.com/UniBO-PRISMLab/wot-translator-front

3.2 Bridging Device to Application Perspective 49

Table 3.6 C3PO’s RESTful API endpoints

Name Method Description

/translateOpenApi POST
receives an OAS and returns its conversion to a WoT

TD

/translateOpenApi/url POST
receives an URL that hosts a OAS and returns its

conversion to a WoT TD

/deployWoT POST
receives an OAS and instantiates a WT proxy of the

service

/deployWoT/url POST
receives an URL that hosts a OAS and instantiates a

WT proxy of the service
/health GET returns the status of the service and the current up-time
/api-docs GET C3PO Swagger GUI interface
/openapi GET returns C3PO OAS specification in JSON

composed of numerous IoT devices transmitting data continuously. Hence, applications need
to be scalable to suit such constraint-driven environments.

Based on those considerations, we conducted a performance analysis of our conversion
method and its implementation (i.e., the C3PO tool) with two goals: (i) demonstrating the
scalability of our application, even in high workloads; (ii) quantifying the latency impact
imposed by our solution.

For supporting the experiments, we developed the Professor29, an open-source tool for
synthetically generating workload. The Professor performs HTTP requests to previously
configured endpoints. We assume that the arrival process of HTTP requests occurs according
to Poisson distribution. Consequently, the interval between requests follows the exponential
distribution, and users can configure the λ variable – i.e., the number of requests per second.

In the experiments, we assume that the distribution of HTTP methods in the requests
follows the occurrence of HTTP operations in commercial RESTful APIs, as mapped by
[81]. Hence, the requests in the experiments were: 46% GET, 31% POST, 10% DELETE,
7.3% PUT, and 5.7% PATCH.

The experiments were performed in two different servers in the same network – hence,
the network delay is negligible. We deployed the C3PO and the Professor in one server, and
in the other, we deployed a generic RESTful web service that exposes its OAS in one of its
endpoints. C3PO converted the OAS to a WT TD and instantiated a proxy of the generic
service. Then, we performed experiments in two different scenarios: (i) Scenario A: the
Professor performed request directly to the generic web service API; (ii) Scenario B: the
Professor made requests to the WT proxy that forwards the queries to the generic web server.

29https://github.com/ivanzy/professor

/translateOpenApi
/translateOpenApi/url
/deployWoT
/deployWoT/url
/health
/api-docs
/openapi
https://github.com/ivanzy/professor

50 Interoperability Layer: Web of Things in the IoT Edge-Cloud Continuum

The described experimental environment is illustrated by Figure 3.20. All the applications
utilized in the experiments were lightweight virtualized as Docker containers. The maximum
computation resources available to each container were defined to mimic an AWS t2.medium
instance (2 vCPU and 4GB of RAM).

The generic web server30 utilized in the experiment was developed using NodeJS, and it
is also open-source to assure that experiment reproducibility. The server has a single endpoint
– in addition to the one that exposes its OAS –, in which we implemented five different HTTP
operations: GET, POST, DELETE, PUT, and PATCH. The server does not perform any
computation, it just replies to requests with a successful status code. In case the request has
an input, the server replies with the request body as payload and the successful status code.

We performed experiments under three different workloads – 25 requests/s, 50 requests/s,
and 100 requests/s – in both scenarios. Each experiment was replicated 30 times, and each
replication lasted 3 minutes with 6s of cool-down between replications, totalling 9.3 hours of
experiment execution. The asymptotic confidence intervals were computed at the level of
99%.

Fig. 3.20 Experiment Environment

Figure 3.21 summarizes the results of the performance evaluation, depicting the total
experience delay for both evaluated scenarios in low, medium, and high workloads. The
results showcase that both scenarios are scalable, as the workload increase did not generate a
correspondent rise in the delay. The significantly low delay time in both scenarios can be
explained by three factors: (i) the web server did not perform any computation; (ii) the server
and the WT proxy were implemented in NodeJS31, an engine designed to build scalable
network applications; (iii) the two servers were in the same local network and connected
through a high-speed link.

30https://github.com/UniBO-PRISMLab/mockApi
31https://nodejs.org/en/about/

https://github.com/UniBO-PRISMLab/mockApi
https://nodejs.org/en/about/

3.3 Bridging Device to System Perspective 51

The experiments unveiled that the additional delay imposed by querying applications
through a WT proxy is approximately 0.4 ms – even in high workloads. The average network
latency and operation time of real applications is much more than the added amount by the
WT proxy. Therefore, the overhead impact by adding a WT proxy layer is negligible to
the system’s overall performance.

Fig. 3.21 Latency Results

3.3 Bridging Device to System Perspective

Referring to the IoT interoperability perspectives Figure 3.1, this Section describes our
contributions to bridge the device perspective to the system perspective.

To achieve this goal, we propose a tool that enables a two-way translation between a WoT
ecosystem and a System-of-Systems composed of well-described Web services. In detail, we
present the following contributions:

• We propose and implement a middleware, namely, WoT-Arrowhead Enabler (WAE),
capable of discovering and converting Arrowhead services into WTs and vice-versa.
Thus, seamlessly connecting both ecosystems. For this aim, we leverage C3PO
presented in Section 3.2.4 to convert Arrowhead services into WoT TDs and deploy
those as fully functional WTs.

52 Interoperability Layer: Web of Things in the IoT Edge-Cloud Continuum

Fig. 3.22 A screenshot of the C3PO interface.

• We validate the proposed solution through a series of performance analysis experi-
ments that enlighten the scalability of the application when tested in a close-to-real
environment under high workloads.

• We implemented a rule-based engine that bridges different systems thought the Arrow-
head framework and the WAE tool. It reasons by evaluating the values of WTs which
actions within a legacy system.

3.3.1 Architectural Design

Not all systems can communicate directly with WTs, due to the strict WoT interfaces defined
by the W3C [1]. Further, applications may not know the location of those WTs, unless
implementing a discovery service. The Arrowhead SR solves both problems. It can expose
the location and interface – as a REST API – of WTs. Thus, our application first automatically
registers WTs as Arrowhead services; a detailed explanation of those interactions can be
found at [82]. On the other hand, the Arrowhead ecosystem encompasses different services
for several purposes and application domains. Hence, it will be a significant advantage
for WoT-based applications to interact with those services. This feature enables seamless

3.3 Bridging Device to System Perspective 53

integration of both ecosystems, i.e., from WoT to Arrowhead and vice-versa, to reduce the
fragmentation issue among interoperability solutions previously mentioned.

Therefore, we propose the WAE, an application that spawns a WT proxy for each Arrow-
head service. In this manner, WoT applications can interact with a variety of applications
that do not follow the W3C standard architecture and interfaces [1]. In a typical Arrow-
head implementation, there are numerous services registered onto the SR. Our proposal
does not aim to convert all services to individual WTs since it would generate unnecessary
computational resource usage. Instead, WAE monitors an array of services using a specific
identifier. Whenever a new service is registered with the monitored identifier, our solution
automatically detects it and attempts to convert it into a new WT. The instantiation of a WT
into a service proxy leverages the C3PO, which convert Arrowhead services interfaces into
TDs and deploy them as WTs. Clearly, the approach can be extended to other methods,
provided that appropriate translators – other than C3PO – are developed. All WTs created
by WAE are automatically registered in a TDD (e.g., ZION), ensuring that the WTs can be
discovered and managed within the WoT ecosystem.

3.3.2 Service Interaction

This subsection details the interactions between the software modules from an architectural
standpoint to enable the two-sided integration: (i) the automatic discovery of new WT
and their registration in Arrowhead SR, and (ii) the automatic discovery and conversion of
Arrowhead services into WTs.

WT Discovery and Registration in Arrowhead

Figure 3.23 depicts the service interactions performed by the WAE to discover new WTs
and register them in the Arrowhead SR. The WAE application periodically queries the TDD,
monitoring if a new WT was created. Figure 3.23 illustrates this 3-step process:

1. The WAE retrieves the list of all current WTs in the TDD;

2. The WAE checks if each WT is registered and up-to-date in the Arrowhead SR. Hence,
the WAE issues a GET request in the Arrowhead SR API with the metadata information
for each WT. An empty reply means that the WT is not registered. Further, the WAE
compares the TD of the WT with the one register in the Arrowhead. If any difference
is detected, there is the need to update the WT in the Arrowhead.

3. The WAE registers or updates the WTs identified in the previous step.

54 Interoperability Layer: Web of Things in the IoT Edge-Cloud Continuum

Fig. 3.23 Discovery and registration of WoT in the Arrowhead SR

Discovery and Conversion of Arrowhead Services into Web Things

Figure 3.24 depicts the service interactions performed by the WAE to filter and convert
Arrowhead services into WTs. To this aim, the WAE periodically queries the Arrowhead SR
and checks if a new service was created matching the service names it is currently monitoring.
If so, the WAE instantiates a WT that acts as a proxy of that service. The detailed steps
illustrated in Figure 3.24 are:

1. The user specifies one or more service names in a JSON format via the WAE API.
Then, the WAE starts monitoring all services with such names.

2. The WAE obtains all services in Arrowhead SR and filters those that match the service
names currently being monitored. Next, it checks if the filtered services have not been
already deployed as WTs.

3. If the WAE identifies one or more applications deployed as WT, it gets the application
OAS specification and converts it to a TD, applying the translation rules previously
mentioned in Section 3.3.1.

4. The WAE instantiates a WT that acts as a proxy of the real service with the converted
TD.

3.3 Bridging Device to System Perspective 55

Fig. 3.24 Conversion of Arrowhead services into Web Things.

5. The WAE registers the new WT in the TDD.

WAE is an open-source application (available at [83]) developed in JavaScript using the
NodeJS v10 engine. Table 3.7 presents a complete list of WAE API endpoints and their
descriptions.

Table 3.7 WAE’s RESTful API endpoints

Name Method Description

/arrowhead
GET

returns metadata regarding the Arrowhead polling for the
conversion of Arrowhead services to WTs

POST
adds a new serviceName to be monitored and translated as a

Web Thing

/wotRepository GET
returns metadata regarding the Thing Repository polling for the

discovery and registration of WTs to Arrowhead

/management GET
returns the metadata in both /arrowhead and /wotRepository

endpoints in a single object
/health GET returns the status of the service and the current uptime
/api-docs GET Swagger GUI interface of OAS specification
/openapi GET returns WAE OAS specification in JSON

/arrowhead
/wotRepository
/management
/health
/api-docs
/openapi

56 Interoperability Layer: Web of Things in the IoT Edge-Cloud Continuum

3.3.3 Performance Analysis

We conducted a performance analysis study with a twofold scope: (i) to validate WAE
conversion of Arrowhead Services to WTs; (ii) to investigate the application’s scalability in
scenarios in which thousands of services need to be translated and instantiated.

Data Analysis: REST API Statistical Inference and OAS Generation

To run and control the experiments, we developed the OpenAPIGenerator [84], an open-
source application for generating a configurable number of random OAS and exposing them
in predetermined URIs. The OpenAPIGenerator also registers each generated OAS in the
Arrowhead SR as a service.

A synthetic OAS needs to have size and complexity mimicking a real-world set of
service APIs to approximate the experiments to a real scenario. Hence, we made statistical
inferences in the public directory of REST API definitions available at APIs.guru32 in OAS
format. The APIs.guru directory filters out private and non-reliable APIs, thus consists of
public, persistent, and helpful APIs –i.e., that provide useful functions not only for its owner.
The dataset is composed of 2,283 different APIs, resulting in 52,203 endpoints and 77,171
methods.

Figure 3.25 depicts the occurrence percentage of each operation, i.e., HTTP method, in
the directory. We filter operations that are not IANA-valid HTTP methods [85] – specific to
a particular domain or company – and methods that represent less than 0.5% of the total. The
histograms in Figure 3.26 depict the probability distributions of API Endpoints and GET and
POST methods. Both distributions are similar and follow a long tail behavior. The x-axis
in both histograms was limited to 100 to improve the graph visualization, encompassing
96.2% of the API Endpoints data and 95.6% of the GET and POST method data. Thus,
we utilize the dataset to create an empirical probability distribution of the occurrence of
those operations. The OpenAPIGenerator uses such distribution to generate OAS in the
experiments synthetically.

Experimental Design

In a single server, we instantiated the three services utilized in the experiments: the WAE,
the OpenAPIGenerator, and the Arrowhead SR, each virtualized as a Docker container.
Preliminary to each experiment, the OpenAPIGenerator creates a set of OAS, exposes them,
and registers them in the Arrowhead SR. A subgroup of the services has the same service
name. Each experiment consists of the WAE converting the OAS of that subgroup of

32https://apis.guru/

https://apis.guru/

3.3 Bridging Device to System Perspective 57

Fig. 3.25 Percentage of the valid HTTP Methods in the analysed dataset

Arrowhead services to TDs and deploying them as WTs. We performed four experiments,
varying the number of services of the subgroup, starting from a single service, then increasing
by a factor of 10 for each experiment (i.e., 1, 10, 100, 1,000). In every experiment, we record
the time that the WAE takes to: (i) fetch the OAS once detects an Arrowhead service that
needs to be converted; (ii) translate the OAS to a TD; (iii) deploy the service as a WT.

We set the initial time reference for all the recorded metrics as the last Arrowhead SR
response time - the timestamp of the last poll operation performed by WAE.

Results

Figure 4.4 summarizes the key results of the performance analysis, depicting the processing
time for all recorded metrics in the different evaluated workloads. The y-axis is expressed on
a logarithmic scale. Overall, the experiments validated the WAE conversion of Arrowhead
services to WTs and showcased that it can scale to convert a significant amount of services
in a suitable time. The WAE can convert a batch of 1,000 services to WT in less than 16s,
and, for a single service, it takes less than 50ms. The step taking more processing time in all
workloads is the deployment of a new WT. This behavior is expected, especially for WTs that
comply with the specifications of the W3C standard, thus needing to bind different protocols
and support complex interactions. The fastest process is the translation, as it parses the OAS
and maps it to another format via plain string manipulations. The process of fetching the
OAS can potentially take more time in a real environment due to network latency issues and
real application times.

58 Interoperability Layer: Web of Things in the IoT Edge-Cloud Continuum

Fig. 3.26 Histograms of API Endpoints and GET and POST methods

3.3 Bridging Device to System Perspective 59

Fig. 3.27 Experimental Processing Times

A WoT and Arrowhead Closed-Loop Automation

We propose a system that exploits the WAE to enable closed-loop automation between legacy
monitoring systems and actuation systems in an industrial scenario. In particular, we focus on
the integration of an SHM scenario with a power control actuation subsystem. This system
consists of three main blocks connected by the Arrowhead Tool Framework: (i) an SHM
subsystem, (ii) a power control subsystem, and (iii) a control logic. The SHM subsystem can
monitor the inertial and physical state of a building to assess its health or predict potential
threats to the structure. The power control subsystem can monitor the power consumption of
industrial equipment and turn it on and off remotely and on demand. We enable automatic
discovery of system components through WAE. Through a set of well-defined rules, the
control logic is able to automatically manage the state of the power control subsystem
components based on the sensor values from the SHM subsystem.

The SHM subsystem is a monitoring environment that is divided into various layers,
from edge to cloud. Sensors collect data regarding the monitored structure and produce
data streams for the components above. These sensors are abstracted by the W3C WoT
standard as WTs. The power control subsystem is used as an actuation subsystem within the
SHM loop. The system consists of a legacy system, a custom module for translating WoT
to legacy devices, and a TDD – e.g., ZION.). The legacy system is responsible for power
monitoring and control through a set of custom power plugs that behave like smart circuit
breakers. Real-time measurements of active and reactive power, voltage, and current are
possible through power monitoring, while power control enables remote powering on or off
of an appliance through a latching relay

60 Interoperability Layer: Web of Things in the IoT Edge-Cloud Continuum

The control logic depends on the WoT Arrowhead Drawbridge (WAD), an application
that interfaces with other system components and interacts with them based on a set of
well-defined rules. These rules dictate how the system should respond based on observed
conditions in the monitored components. We propose a JSON-based syntax that utilizes
WoT affordances to enable a standardized way of describing rules. These rules are based on
monitoring a set of WTs properties that trigger a set of actions. Further details on the
WAD can be found in [86].

Chapter 4

Data Management Layer: Caching in the
IoT Edge-Cloud Continuum

This Chapter encompasses the contributions made in this thesis concerning the data manage-
ment layer according to the reference architecture (Section 3.3.1). In particular, it addresses
the RQ (ii), which is: What strategies can be employed to enhance the efficient management
of data within the edge-cloud continuum, emphasizing in enabling low latency while consid-
ering data freshness?. To answer to this research question, we choose to concentrate on a
specific facet of the data management layer, which is particularly relevant when considering
the latency aspects in the IoT edge-cloud continuum: edge caching.

Section 4.1 presents a comprehensive review of the state-of-art in IoT edge caching and
proposes a novel taxonomy focused on five orthogonal features of edge caching: placement,
distance , strategy, metrics, and design. The literature review highlighted proactive edge
caching [87–89] as a further improvement of edge caching. However, the existing literature
has two noticeable shortcomings: (i) the solutions proposed in current literature are tailored
to domains other than IoT; (ii) While caching strategies, models, and optimizations are
the main focus of researchers, there is a lack of proposals for caching frameworks that
facilitate the design and deployment of such strategies [90]. To address these challenges,
Section 4.2 propose CACHE-IT (Connected Architecture for Caching HEterogeneous IoT), a
distributed framework for proactive edge caching in IoT scenarios. CACHE-IT decouples the
caching strategy algorithm from the underlying architecture, enabling customization based
on application-specific requirements. Subsequently, Section 4.3 explore how CACHE-IT can
be effectively applied in privacy-constrained scenarios, where the transmission of sensitive
user log data to the cloud is restricted. To address such issue, we leverage Federated Learning
(FL) techniques.

62 Data Management Layer: Caching in the IoT Edge-Cloud Continuum

4.1 Background

IoT and cloud computing have emerged as complementary paradigms and experienced joint,
exponential growth. Most existing IoT deployments are cloud-based architectures with
(big)-data produced by the smart devices and transferred towards remote infrastructures for
storage and analytics. Nonetheless, several new applications demand more flexible resource
allocation schemes. This is the case of next-generation time-sensitive applications envisaged
e.g. in healthcare, industrial [91] and automotive scenarios [92] that rely on high automation
and low-latency operations.

Edge computing is emerging as a viable solution to minimize the networking latency
in IoT scenarios by pushing cloud services and data to the proximity of smart devices [93].
By leveraging the client proximity of edge devices combined with the vast resources of the
cloud, the edge-cloud continuum paradigm [94] aims to optimize data processing and storage,
providing a balance between latency-sensitive applications and resource-intensive cloud
computations. However, Not all tasks executed in the cloud can be offloaded to the edge
due to limited processing power and the lack of robustness of edge devices [95]. Further,
real IoT systems commonly require to interface with third-party services that are not under
system administrators’ control [96]. In order to achieve better exploitation of cloud-edge
continuum integration with IoT, edge caching constitutes a potential solution to satisfying
latency constraints [22]. Storing frequently accessed data at the edge reduces redundant
computation, which leads to cost savings in terms of power and cloud resources – e.g.,
serverless functions, cloud data transfer, and paid APIs.

This section discusses the state-of-the-art and the future directions of IoT edge caching.
We propose a taxonomy and a consequential survey of the existing studies based on five
orthogonal features of caching systems: placement, distance, strategy, metrics, and design.
Next, we analyze five different domains concerning the proposed taxonomy. The rest of the
section is structured as follows. Subsection 4.1.1 introduces the taxonomy and literature
review of IoT edge caching systems. Subsection 4.1.2 discusses the existing edge caching
deployments in different IoT scenarios. Finally, Subsection 4.1.3 concludes by comparing
our caching framework to other approaches in literature.

4.1.1 IoT Edge Caching: Taxonomy and Review

Caching mechanisms are well investigated in the literature on networking systems. In [93],
readers can find a broad review of the main building blocks of edge computing, including
edge learning, offloading, and caching. In the following, we provide a concise review of
the state of the art of IoT edge caching solutions based on five orthogonal features: cache

4.1 Background 63

IoT EDGE CACHING

CACHE

PLACEMENT

CACHE

DISTANCE

CACHE

STRATEGY

CACHE

METRICS

CACHE

DESIGN

DISTRIBUTED EXTERNAL
EDGE

Ruggeri et al.
[8] Deng et al. [3]

Zahed et al. [4]

CONSUMER

ORIENTED

PRODUCER

ORIENTED

Coutinho et al.
[2]

Zhang et al. [6]

Yao et al. [11]

REACTIVE PROACTIVE

Li et al. [14] Li et al. [1]

Naeem et al.
[12]

VALUE OF
INFORMATION

(VoI)

AGE OF
INFORMATION

(AoI)

Al-Turjman et
al. [10]

Zhou et al. [5]

Pappalardo et
al. [9]

SPECIALIST GENERALIST

Li et al. [1]

Yao et al. [11]

Ribeiro Jr. et
al. [13]

Pappalardo et
al. [9]

INTERNAL
EDGE

Pappalardo et
al. [9]

POPULARITY

&

FREQUENCY

Ruggeri et al.
[8]

Naeem et al.
[12]

Zhang et al.
[15]

Fig. 4.1 The studies reviewed in this thesis, classified according to the features introduced in
Subsection 4.1.1

.

64 Data Management Layer: Caching in the IoT Edge-Cloud Continuum

placement, caching distance, caching strategy, caching metrics, and caching design. Figure
4.1 summarizes the classification of reviewed studies based on these features.

Cache Placement in the IoT Compute Continuum

The integration of edge and cloud computing solutions has led to the creation of an IoT
compute continuum that spans from the connected devices to the public/private cloud and
enables the seamless orchestration of services over it.

Although no clear definition of the components of the IoT compute continuum exists,
many recent papers consider layered architecture involving smart devices and cloud services
as terminal nodes and Base Stations along with fog nodes as intermediate layers. We outline
the cache placement in the continuum between the cloud and the end-device as follow: Cloud
↔ External Edge↔ Internal Edge↔ End-Device, as previous mentioned in Chapter 2. Edge
caching mechanisms can be deployed on the smart end-devices directly or on intermediate
edge nodes geographically and topologically close to them that can be either: internal to the
local network – i.e., cluster heads, proxy nodes–; or external – i.e., BS. However, given the
significant differences in computing capabilities, where to cache is crucial since it can impact
both the communication latency and the amount of data cachable.

The presence of cached IoT data at the BSs can also drive the offloading of computational
tasks. For instance, in [97], the authors investigate a joint caching/computation optimization
problem to select the tasks to execute at each BS and the IoT data to cache so that the
associated energy cost is minimized. Fog-layer caching systems work as data proxies,
receiving requests from the applications and deciding whether to fetch the last update from
the sensor or to send the cached data [98]. Device-layer caching systems exploit local
computational/storage resources and fetch contents from other peers through the cooperative
approaches reviewed in [99]. However, while these solutions have been widely investigated
in the case of edge servers and smartphones in MEC scenarios [93], they can be unfeasible
for most resource-constrained smart devices. Finally, recent studies investigate the possibility
of dynamically distributing cached data over multiple layers of the continuum so that the
associated distance between the data source and the requesting devices is minimized. An
example is the caching orchestration mechanism in [100], which is deployed on top of a
software-defined networking controller and is in charge of distributing the data to cache over
multiple edge nodes in order to limit the average retrieval delay.

4.1 Background 65

Caching Distance: Consumer-oriented vs Producer-oriented

We can further classify IoT edge caching systems based on the distance of the cache from the
data consumer and the data producer. More specifically, we distinguish between consumer-
oriented and producer-oriented solutions. In the first case (consumer-oriented), data is cached
in the edge and utilized by the devices and mash-up applications nearby. This is the case of
IoT scenarios where smart devices request remote data or API services. Here, the caching
system stores the cloud response to minimize the latency of subsequent requests. Vice versa,
in producer-oriented caching, data produced from smart devices are cached at nearby nodes
of the continuum, with the applications fetching data from the edge cache rather than from
the devices directly. This approach may reduce the number of activation and hence the energy
consumption of battery-constrained devices, though impacting the freshness of information
retrieved. In [101], the producer-oriented cache is embedded within the gateway. When
the user request arrives, the requested data can be fetched directly from the gateway cache
if the requested data is cached. Otherwise, the corresponding IoT sensor is awakened and
recharged via energy transmitters. Producer-oriented caching is suitable for specific scenarios
where sensing features do not change rapidly and do not need constant monitoring.

Caching Strategy: Proactive vs Reactive

Existing IoT edge caching systems mainly fall into two categories of data retrieval, i.e.,
reactive or proactive strategies. Reactive caching solutions update their storage when a
new request-response from the cloud or the smart device originates in the system. In [102],
reactive in-network caching strategies are proposed for Named Data Networking (NDN)
IoT scenarios. Here, contents are selected based on their popularity, i.e., how many times
they have been fetched; in a second phase, contents are distributed over nodes further
selected based on their number of connections. Vice versa, proactive caching strategies
determine which contents should be cached before they are effectively requested; hence
they are based on the prediction of future requests. For instance, in [91], an industrial IoT
scenario is considered with edge servers caching big data on behalf of mobile clients. A
proactive caching strategy based on the distributed Hungarian algorithm is proposed to fetch
data in advance by taking into account the users’ mobility patterns and the edge servers’
computational capacities.

Caching Metrics

Several metrics have been proposed for content fetching and replacement in networking
caching systems. Content popularity measured in terms of requests is used, among others, in

66 Data Management Layer: Caching in the IoT Edge-Cloud Continuum

[100] and [102]. While such a metric can be suitable for consumer-oriented caching, it is
unsuitable for IoT scenarios, as pointed in Section I. For these reasons, other adopted metrics
proposed in the literature are the Age of Information (AoI) and the Value of Information
(VoI). The first metric reflects the freshness of cached data and can be measured as the time
elapsed since the data was fetched from the IoT data source. In [98] the authors propose an
analytical formulation of the AoI and investigate its relationship with the network overhead
of the smart device, which sends its periodic updates to a proxy server. The VoI has a less
precise characterization and is interpreted in many studies as a generic function reflecting
the importance of each cached data. In [103] the authors propose a caching replacement
strategy for wireless body area network where the VoI function combines three parameters
related to delay-based content, age-based content, and demand-based content. Therefore,
through a single VoI metric, different caching services for multiple WBAN applications can
be supported.

Caching Design: Generalist vs. Specialist

Despite the generality of the IoT paradigm, data belonging to different IoT applications
are quite different in acquisition mechanisms, contents, and scopes. Such differences may
reflect in the caching operations leading to customization and specialization driven by the
use case. We can classify the existing IoT-based edge caching solutions as generalist or
specialist approaches. The first category includes the studies proposing caching solutions
for IoT scenarios without considering the data content and data source characteristics. Most
of the works reviewed so far fall within this category. Machine Learning (ML) techniques
for proactive caching, e.g., the one reviewed in smart agriculture scenarios [104], can be
considered generalist in the way traditional ML algorithms are used. However, the trained
model is dependent on the local data. Conversely, specialist solutions are tailored to a specific
domain and typically feature higher performances, while they may underperform in other
conditions. In [91] the authors include their proactive caching strategy features of industrial
mobile nodes. Further, producer-oriented caching solutions as [98] and [101] have unique
features that are only suitable for low-power sensor network scenarios.

4.1.2 IoT Edge Caching Use Cases

This section presents several use cases in which IoT edge caching plays a crucial role in the
applications’ outcomes.

4.1 Background 67

Industry 4.0

The application of IoT concepts in Industry 4.0 (IIoT) is changing how industrial production
occurs. Industrial appliances in smart manufacturing highly interact with their environment.
Industrial processes demand a continuous and low-latency exchange of data that needs to be
processed by different components of the IIoT ecosystem. Due to the intrinsic characteristics
of the latter, the deployed smart devices can be both data generators – e.g., sensors – and
data consumers – e.g., actuators. To reduce the amount of exchanged data, IIoT edge
caching solutions must be deployed close to the data origin (producer-oriented) to reduce
data acquisition and close to the data users (consumer-oriented) to make task execution
faster. In time-critical industrial scenarios, such as motion control in closed loop systems
and massive wireless sensor networks, the applications necessitate of time constraints and
hard deadlines for detection and response to events [92]. Legacy solutions based on caching
systems for cloud services cannot reduce the burden of transferring data back and forth from
the local and the remote locations. Moreover, existing IoT edge caching solutions in Industry
4.0 mainly rely on fixed external edge devices (usually placed in 5G network small cells)
that fail in achieving the real-time requirements of IIoT systems. For this reason, and due to
the increasing complexity of the environments and the privacy concerns, a more pervasive
internal edge caching deployment must be taken into account [92]. Proactive caching systems
can fit the characteristics of IIoT applications well due to the factory production process that
must follow a specific path to complete a task, such as a workpiece conveyance along the
plant [91]. Hence, using IoT edge cache nodes along the assembly line permits proactive
caching to fulfil the time-critical applications’ requests at the IoT terminal devices.

Smart Grids

Nowadays, Smart Grids (SGs) are composed of sophisticated tools and devices used to
control and monitor the power system to connect power stations (producers) and end-users
(consumers). Moreover, thanks to the advances in IoT technologies, a social movement has
been promoting more participative energy processes that redefine citizens’ roles as energy
prosumers, i.e., both consumers and producers/co-owners of energy facilities. Given the
complexity in the SG management, the legacy cloud approach may no longer be able to
fulfill the system requirements, like latency, bandwidth, reliability, and scalability [105].
Due to prosumers paradigm shift, where the energy trade and exchange in the SG moves
from centralized management to a distributed one, the inclusion of service caching in the
edge/fog paradigm shows attractive advantages in handling the massive amount of data traffic
inside the SGs [106]. Indeed, edge devices frequently need to collect data from sensors

68 Data Management Layer: Caching in the IoT Edge-Cloud Continuum

and cloud services – e.g., weather forecast and energy prices for intelligent monitoring
tasks. If the external services are not adequately cached, the latency for the task execution
increases drastically due to the continuous requests to remote servers. In this case, a proactive
caching strategy is pivotal to an efficient data distribution system. IoT edge caching is a key
feature in SGs for time-sensitive applications like energy load balancing for smart meters and
micro-grids. Depending on energy demand, availability, and price, the micro-grid devices are
able to automatically select alternative energy sources [105]. Additionally, due to the large
amount of data coming from the SG sensors and the limited caching capacity of each edge
device, a specialized caching system must be considered for data distribution and service
deployment design.

Smart Agriculture

IoT applications for smart agriculture may face severe networking challenges due to the lack
of high-speed or reliable Internet connection. The caching system fulfills a different role in
those environments than in the previous domains. The cache can store the acquired sensory
data and transmit them opportunistically whenever the network connection is re-established.
The caching system should support both consumer-oriented and producer-oriented placements
due to sensor devices and actuators. Furthermore, it needs to face the limited storage capacity
that characterizes the network devices – terminal nodes and internal edge servers – used in
smart agriculture. Several solutions can be used to reduce the data dimensionality, from ML
approaches to optimization techniques based on AoI and VoI metrics. Also, a specialist cache
design can assist the development of ad-hoc solutions better exploiting the characteristics of
smart agriculture environments [104].

Vehicular Networks

Vehicular networks are often characterized by the high speed and the autonomous mobility of
the network nodes. Hence, the data orchestration services must face the dynamicity of the net-
work topology. In-ground vehicular networks, the caching of multimedia content delivery has
been largely investigated in the last years due to the high demand for content delivery [107].
Since the main caching distance is on the consumer-oriented side, a significant challenge is
constituted by choosing the best edge locations, which must be as close as possible to the
requesting vehicles. However, in the case of IoT edge caching, the generated and requested
data can derive both from bandwidth-consuming infotainment services (IS), such as media
entertainments, as well as from time-critical driving-related context information services
(CIS), such as sensory data for assisted/autonomous mobility or emergency applications.

4.1 Background 69

The management of CIS data differs from the IS data due to the time-critical nature of the
driving environment that imposes short delay for the context-related data delivery. [108].
In cache-enabled vehicular networks, the vehicles may become information producers and
consumers of local data and, consequently, the cache distance can be both consumer-oriented
and producer-oriented. In these applications, the cache placement for real-time data man-
agement and delivery can be an issue due to the high mobility of the vehicles. For the same
reason, the AoI metric can be used as a key index for deciding content management and
delivery strategies [108]. Moreover, a hierarchical caching system deployment – that exploits
the presence of edge nodes on RSUs (Roadside Units) and cellular base stations, i.e. from
end devices to the cloud – can support the operations of vehicular networks due to the high
flexibility offered by the presence of different cache units [92].

Low Power Sensors

Several IoT applications rely on low-power devices with limited computing capabilities and
constrained lifetime. Caching techniques are paramount to improving the system performance
while enabling multiple applications on top. Most of the studies related to low-power IoT
sensor networks assume a producer-oriented edge caching approach. Here, the acquired
sensory data are stored at the internal edge layer to make them available to third entities,
hence avoiding continuous requests to the sensors. As a result, the number of activation
of the sensor devices can be reduced and their energy power consumption prolonged. The
general placement of the caching system is close to the data source – i.e., on the network
gateway[101]. Depending on the deployed vertical application, both proactive and reactive
caching strategies can be applied, while a key factor is constituted by the storage capacity
and computational power of the gateway which may manage multiple low-power sensors.

4.1.3 Frameworks for Proactive Edge Caching

In this subsection, we review the recent literature and highlight the differences concerning
our work by focusing on the following aspects:

• The goal of the caching strategy, i.e., what the caching strategy aims to optimize.

• The overall caching strategy, focusing on the underlying scientific method adopted.

• Whether the caching solution is domain-agnostic or is particularly tied to one applica-
tion, e.g., video streaming.

70 Data Management Layer: Caching in the IoT Edge-Cloud Continuum

• Whether the caching solution is infrastructure-agnostic or is particularly tied to a
certain physical deployment, e.g., 5G macro-cells.

• Whether the caching solution is proactive, i.e., it tries to cache the content before it is
requested.

• Whether the caching solution is cooperative, meaning that the edge Cache Nodes
exchange content or information for tuning their decisions.

We do not utilized the taxonomy created because it refers to the classification of caching
solutions and it is not useful to compare frameworks. Indeed, the caching placement or the its
distance are not relevant as features to be compared when analysing different architectures.
Related information about each of the analyzed papers is collected and summarized in
Table 4.1, while the rest of the section is dedicated to their description and the analysis of the
gaps our work aims to tackle.

First, a substantial quantity of works proposed in the literature are bound to a definite
application scenario or deployment. It is the example of [91], which deals specifically with
industrial scenarios where mobile nodes need data from a central server and wander near
wireless sensors. Here, the authors propose a centralized optimization algorithm where all the
computation takes place in the cloud to proactively offload data to edge servers by predicting
client mobility. Prediction of mobility patterns is also employed in [109], where proactive
caching is used in urban scenarios to deliver content to vehicles promptly. In [110], authors
cache and transcode video content on UAVs to alleviate the backhaul load through a heuristic
model. Authors in [111] propose a deep learning model for proactive caching that predicts
the content popularity of videos and music only. In contrast with our work, the mentioned
approaches are vertical in one application context and lack adaptability.

One recurrent scenario for which a consistent number of works have been proposed is 5G
cellular networks. In [112], authors overview the state-of-the-art and the current challenges
and potential solutions for 5G edge caching. They also propose a caching framework that
leverages blockchain transactions and non-negative matrix factorization. In [113], authors
inspect cooperative micro-caching as a network function that should be embedded in 5G
networks to minimize latency. A similar 5G scenario is analyzed in [92], where results
aim to motivate the introduction of new caching policies to deal with high mobility nodes
(e.g., vehicles). Again, in [114], authors focus on mobile content caching for 5G networks,
tackling the problems of edge caching and radio resource allocation separately, using a deep
reinforcement leaning for the first one and a branch & bound approximation algorithm for
the second. The work in [88] proposes DeepCacheNet, a deep learning-based framework for
proactive caching that uses stacked denoising autoencoders to classify content popularity and

4.1 Background 71

instruct base stations to cache such content. In [115], the authors present a framework for
proactive and cooperative edge caching that aims to cluster base stations to establish intra-
cluster collaboration through a deep reinforcement learning technique. Caching-as-a-Service
[116] is a caching virtualization framework along with the development of Cloud-based
Radio Access Networks (C-RAN). It focuses on virtualizing the cache through Network
Function Virtualization (NFV) and exploring the possibilities of detaching the software
application from the underlying hardware. These approaches, unlike ours, are tied to the 5G
infrastructure, requirements, and characteristics, which do not reflect many IoT systems.

Most edge caching works in literature present a similar core structure: they aim to
optimize several parameters (e.g., the hit rate and the backhaul load) of a specific caching
policy. Therefore, they propose a mathematical structure to model the system, an algorithmic
or learning-based solution, and numerical results supported by simulations. Some solutions
are numerical or probabilistic, such as Smart-Edge-CoCaCo [117], or [118], which proposes
a cooperative caching mechanism for scenarios where edge nodes offload computing tasks to
edge cloudlets. A D2D solution is adopted in [119], where authors consider data freshness
and client mobility. However, most of the solutions in the literature rely on deep learning, as
[87], where content popularity in the future is predicted by using bidirectional deep recurrent
neural networks, or [120], which uses a distributed deep learning algorithm to predict the
content demand by single users, or in [121], where deep reinforcement learning is adopted by
each caching agent so that they learn to cooperate and share cached resources. Other related
deep learning-based works use federated learning [122] or deep learning in conjunction with
attention mechanisms [123]. In [124], authors present a very different solution: proactive
caching is done locally in each user’s equipment, and cache hit can occur locally or with direct
D2D communication, eliminating the structural constraints enforced by cellular networks.
With such a focus on the single caching strategy, very few efforts are dedicated to proposing
an edge caching architecture for IoT scenarios capable of accommodating different caching
policies. Furthermore, most of the solutions proposed are not complemented by a real
implementation or guidelines of the software components.

It is also important to mention Information-Centric Networking (ICN), which, in the past
decade, has established itself as an alternative to conventional TCP/IP networks. ICN, in
particular in its guise of Named Data Networking (NDN), fulfills a content-centric design
and a location-independent naming mechanism, giving this paradigm several advantages
in the scope of mobility and efficiency. One powerful and native feature of ICN is its in-
network caching in intermediate network routers [125]. The recent study in [126] presents an
all-encompassing solution based on NDN, encompassing network topology, data freshness,

Table 4.1 Comparison of CACHE-IT with the works in literature

Paper Goal Strategy Domain Infrastructure Proactive Cooperative

[88] Backhaul Load Deep Learning ✓ ✗ ✓ ✗

[87] Hit Rate Deep Learning ✗ ✗ ✓ ✗

[117] Delay No strategy ✓ ✓ ✗ ✗

[120] Delay, Hit rate Deep Learning ✓ ✓ ✓ ✓

[118] Response Time Heuristic ✗ ✓ ✗ ✓

[121] Hit Rate Deep R. Learning ✓ ✓ ✗ ✓

[91] Delay, Goodput Optimization ✗ ✗ ✓ ✗

[113] Delay Fuzzy inference ✓ ✗ ✗ ✓

[92] Delay Statistical ✓ ✗ ✗ ✗

[89] Hit Rate LSTM & Ensemble ✓ ✗ ✓ ✗

[114] Hit Rate & Delay Deep R. Learning ✓ ✗ ✓ ✓

[109] Hit Rate & Delay Probabilistic ✗ ✗ ✓ ✗

[110] Hit Rate & Delay Heuristic ✗ ✗ ✗ ✗

[124] Hit Rate & Delay LSTM ✓ ✓ ✓ ✓

[122] Hit Rate & Profit Federated Learning ✓ ✓ ✓ ✓

[123] Traffic Load Deep Learning ✗ ✗ ✓ ✗

[126] Hit Rate, Delay Heuristic ✓ ✗ ✗ ✗

[119] User Utility Probabilistic ✗ ✗ ✗ ✓

[112] Delay Optimization ✓ ✗ ✓ ✗

[115] Hit Rate Deep R. Learning ✓ ✗ ✓ ✓

[111] Hit Rate, Load Deep Learning ✗ ✗ ✓ ✗

[116] Traffic Load Greedy ✓ ✗ ✗ ✓

CACHE-IT Flexible Flexible ✓ ✓ ✓ ✓

4.1 Background 73

and content popularity, thus attempting to design a common solution to all previous works
on caching in ICN.

A final aspect to consider is modeling the pattern of requests from clients. A meaningful
amount of the mentioned works assume time-invariant content popularity and primarily cater
to human clients. This may differ if the system actors are IoT devices, such as sensors or
robots. Furthermore, they disregard the system aspects of how to collect, share, store, and
process client traces to obtain the popularity values of each resource. In [89], authors apply
proactive caching to mobile edge networks at the base stations based on content popularity;
however, they evaluate the method over a movie dataset, assuming to know the demographic
information of the clients through the usage of cameras. In contrast to existing approaches,
our work focuses on crucial aspects of IoT environments, including time-variant conditions
and interoperability. Additionally, we evaluated CACHE-IT under different client behaviors,
which was modeled based on the real behavior of agents in IoT scenarios.

4.1.4 Federated Learning support in Edge Caching

The evolution of IoT technologies and their requirements has prompted researchers to
address the limitations of traditional caching techniques by moving the cache to the network
edge. Alongside the developments in edge caching, there have been recent advancements in
proactive edge caching, which focus on exploring the relationships between client and data to
predict and preemptively store the next cached requests. Most solutions in the literature aim
to optimize a given feature of the caching system, such as the cache hit rate, and minimize
the backhaul load by proposing a specific caching strategy that leverages a given machine-
learning algorithm. From those, we highlight [120], which uses a distributed deep learning
algorithm to predict the content demand by single clients, and [87], which the future content
popularity predicted using bidirectional deep recurrent neural networks. A hierarchical deep
learning-based content caching strategy for mobile edge computing in IoT networks was
proposed in [89]. However, they evaluate the method over a movie dataset, assuming to know
the demographic information of the clients through the usage of cameras.

The initial attempt to combine edge computing with FL was proposed by Yu et al. [127]
as a proactive caching technique to predict file popularity and cache them in advance. Another
noteworthy contribution was made by Wang et al [128], as a framework to combine Deep
Reinforcement Learning and FL to decide which resources to cache. However, they did
not consider proactive caching. Relevant progress was made by Qiao et al. [129], who
proposed an adaptive FL-based proactive content caching strategy for 5G edge networks
while considering non-identically distributed (Non-IID) client data and constrained edge

74 Data Management Layer: Caching in the IoT Edge-Cloud Continuum

resources. Other recent advances focus on specific domains, such as in intelligent Connect
Vehicles (ICV)[130], self-driving cars[131] and video data[132]. They design and implement
specific caching strategies considering domain-specific conditions – such as high-speed
movement – are considered. To our knowledge, no FL solution considered the Age of
Information of the cached content as an essential constraint.

Given the predominant emphasis on developing caching strategies, none of the listed
studies proposes an edge caching architecture that allows for the easy modification or change
of the caching policy. CACHE-IT [10] proposes a proactive edge caching architecture agnostic
of the underlying caching strategy. This thesis extends this work by introducing the possibility
of executing FL-based strategies and leveraging the edge node capabilities of computation.

4.2 CACHE-IT: Proactive Edge Caching in Heterogeneous
IoT Scenarios

This section presents CACHE-IT, a proactive edge caching framework designed for IoT sce-
narios. CACHE-IT allows rapid deployment, modification, and replacement of the caching
strategy. The framework feeds the history of clients requests to the caching strategy, han-
dled as modular component, which is responsible to determined what and where to cache.
CACHE-IT components are based on current Web technology standards, ensuring compatibil-
ity and easy integration with existing systems. The contributions of this section are:

• Flexibility: CACHE-IT allows the deployment of customized and flexible caching in
the C2T continuum by decoupling the edge caching architecture from the caching
strategy, enabling use-case-driven caching strategy customization. Consequently, it
provides versatility in the technique utilized (e.g., Deep Learning, Heuristic) and the
caching goal (e.g., minimize latency, minimize AoI). The framework allows handling
different specific users or requests that impose specific constraints.

• IoT oriented design: we address interoperability issues of IoT by providing a dedicated
device abstraction layer that seamlessly integrates heterogeneous IoT devices through
a standard and well-defined interface. We tackle the dynamism of IoT environments
regarding the volatile nature of sensors by incorporating mechanisms that adapt the
caching strategy to reflect these changes. Finally, CACHE-IT components were designed
to be distributed in the C2T continuum, considering edge nodes ranging from base
stations to constrained computational devices.

4.2 CACHE-IT: Proactive Edge Caching in Heterogeneous IoT Scenarios 75

• Advanced Caching Mechanism: CACHE-IT utilizes cooperative and proactive caching
mechanisms for increased performance with no additional complexity. It optimizes the
capacity of the system to share resources in a twofold manner. First, caching strategies
are able to redirect specific Cache Node requests to query directly other edge nodes.
Second, when a cache miss occurs, the Cache Node queries its nearest neighbors. We
intentionally avoided mechanisms that might be bound to specific caching strategies to
ensure CACHE-IT flexibility and adaptability.

• Validation: we performed extensive simulations varying numerous parameters to
understand the impact of CACHE-IT features under different scenarios and client
behaviors – modeled according to patterns commonly found in IoT scenarios.

In the remainder of this section, Subsection 4.2.1 introduces the CACHE-IT framework,
providing a comprehensive overview of its architecture, while Subsection 4.2.2 details its
operations. Subsection 4.2.3 describes CACHE-IT implementation. In Subsection 4.2.4, we
evaluate the framework performance through large-scale simulations.

4.2.1 Architectural Design

CACHE-IT is an architectural framework for proactive edge caching in heterogeneous IoT
scenarios that provides high customization and flexibility. Following, we describe the
guidelines that support CACHE-IT design, then we detail its high-level architecture.

Designing Guidelines

Our architecture aims to provide proactive caching capabilities through a fully customized
framework. Additionally, our solution aims to be deployed on top of operational IoT systems.
Four general guidelines supported our architectural design:

1. Interoperability: we adopt standards-based approaches and open interface solu-
tions that enable seamless communication between heterogeneous devices and data
providers.

2. Generality: IoT systems are employed in a wide range of domains, each with unique
requirements and characteristics. These domains include areas that are orthogonally
different from each other, such as Industry 4.0 and smart agriculture. Specific scenarios
may have their own particularities that must be addressed. The architecture should be
domain-agnostic and capable of handling different constraints.

76 Data Management Layer: Caching in the IoT Edge-Cloud Continuum

3. Adoption: The fundamental elements of the architecture must rely on established,
real-world technologies that are widely adopted in the industry. Nonetheless, the
architecture description must remain independent of the underlying technology

4. Flexibility: The architecture must be flexible regarding the caching deployment in
the C2T continuum by decoupling it from the caching strategy regarding its goal,
constraints, and requirements. The ability to easily switch between caching policies
allows organizations to react rapidly to alterations in their requirements or constraints.

CACHE-IT High Level Architecture

CACHE-IT is a distributed microservice-oriented architecture; each software component is
modular and independent. This design addresses scalability concerns by allowing multiple
replicas of the same services to be instantiated simultaneously, effectively managing a
high demand of requests to the framework. Figure 4.2 illustrates CACHE-IT high-level
architecture, which comprises clients – at the bottom – that request data from providers – at
the top. Requests are routed through the caching framework, which checks if the requested
content is cached and valid. If so, data is returned to the client without forwarding the request
to the provider.

CACHE-IT comprises two classes of computational nodes: a single Cache Controller and
NC Cache Nodes. The set of Cache Nodes is denoted as C = {c1,c2, . . . ,cNC}. The Cache
Manager – a Cache Controller component – generates a set of instructions, called caching
orders, for each Cache Node that determine: what, when, and how long to cache. The Cache
Workers – one per Cache Node – are responsible for carrying out the caching orders – i.e.,
performing requests and storing data – and managing clients’ requests, thus returning the
cached content or forwarding their request to the specified provider. Typically, Cache Nodes
are located at the edge, and the Cache Controller is deployed in the cloud. Any device with an
operating system and storage capabilities is suitable as a Cache Node. It can be deployed in a
dedicated configuration, such as on a Raspberry Pi, or as an independent and isolated process
within a shared environment. The latter setup is better suited for more powerful and stable
equipment (e.g., base stations). However, we highlight that the Cache Node does not engage
in resource-intensive processing tasks (which are executed by the Cache Manager), resulting
in minimal impact on the node’s computational metrics. A caching order is a well-defined
structure that contains an instruction to be performed by the specified Cache Node at a certain
execution time, and its output is valid until the specified expiration time. A caching order has
two different modes:

4.2 CACHE-IT: Proactive Edge Caching in Heterogeneous IoT Scenarios 77

C
lie

nt
s

Device Abstraction Interface:
W3C WoT Thing Description

Pr
ov

id
er

s
C

ac
he

 F
ra

m
ew

or
k

Interface
Translator

 HTTP / CoAP / MQTT / OPC-UA / ...

Cache Node Cache Controller

Strategy #1

Strategy #2

Strategy #3

St
ra

te
gi

es
 T

oo
lb

ox

History Transfer History Storage

G2

R1

O1

O2

Request History

G3

G1

Caching
Orders

O3

B3

B4

Cache

B2B5

B6 B1

Cache Worker
Cache Manager

R2

Interoperability Enabler History Management Proactive Caching and Strategy
Execution

Request Forwarding and Caching
RetrievalR G O B

Fig. 4.2 CACHE-IT High Level Architecture

• Standalone: the caching order contains the provider to be requested and all the metadata
needed to formulate the request. Each cache order makes the Cache Worker perform a
request to a given provider; the corresponding response is cached for a predetermined
time.

• Cooperative: besides the content in standard mode, the caching order includes an
additional parameter: a Cache Node address. In this case, instead of requesting data
directly to the service provider, the Cache Worker checks if the Cache Node specified
has the requested resource; if so, the requests to the specified provider will be fetched
from that Cache Node until the defined expiration time.

78 Data Management Layer: Caching in the IoT Edge-Cloud Continuum

By employing cooperative caching orders, the Cache Manager can minimize the number
of requests made to the providers. This is achieved by storing a particular resource in one
Cache Node and directing the remaining Cache Nodes to retrieve it from that specific Cache
Node. Before initialization, the user defines the Caching Template, a well-defined structure
that holds all the system configurations – including the caching strategy. Table 4.2 lists the
attributes included in the Caching Template along with a brief description. There are four
independent data flows in CACHE-IT (as depicted in Figure 4.2 legend), and for each Caching
Template attribute, we denote the data flow it impact.

Table 4.2 Caching Template

Attribute Description Data Flow
providers data providers to be trans-

lated to a seamless interface
interoperability

record attributes what attributes to register
from clients’ requests

history management

logs longevity retention time of log files history management
t time slot duration the time slot in which a new

set of caching orders is gen-
erated

caching strategy execution

caching strategy a set of three functions that
generate caching orders

caching strategy execution

cache node storage the maximum storage avail-
able in each cache node

caching strategy execution

cache replacement resource replacement strat-
egy

request forwarding and data
retrieval

cNN the number of neighbor
Cache Nodes visited if the
resource is found locally

request forwarding and data
retrieval

reactive caching if the data resulting from a
cache miss is stored

request forwarding and data
retrieval

cache expiration time The default time that cached
resources are valid in the
cache in case that it is not
specified by the caching or-
der

request forwarding and data
retrieval

4.2.2 Operations

After initialization, CACHE-IT has a short bootstrap phase for enabling interoperability,
followed by the caching strategy execution, which is also triggered every t time slots (the

4.2 CACHE-IT: Proactive Edge Caching in Heterogeneous IoT Scenarios 79

time slot duration set in the Caching Template). Both the history manager, the request
forward, and data retrieval data flows (Subsection 13) are triggered by the arrival of the
client’s requests.

Interoperability Enabler

An important aspect to consider when designing an IoT caching framework is the heteroge-
neous nature of the devices, which vary greatly in software and communication protocols. As
illustrated by Figure 4.2, CACHE-IT clients can be diverse, ranging from constrained sensors
to robots and even regular humans. IoT devices do not usually adopt compatible interfaces
with current Web technologies, which makes integration with non-IoT solutions difficult. To
address this issue, CACHE-IT provides a standardized and interoperable interface, allowing
clients to abstract the specific interface adopted by the data providers.

CACHE-IT bootstrap operation aims to enable interoperability, as illustrated in red in
Figure 4.2. The active component in this data flow is the Interface Translator, which bridges
dissonant ecosystems, namely the traditional Web, with a standard and interoperable interface
for IoT devices.

We adopt the W3C WoT as a interoperability standard; and, as WoT does not provide
methods or guidelines to convert dissonant interfaces to its ecosystem, we utilized C3PO
presented in 3.2.4 as the current implementation of the Interface Translator. It converts
traditional Web services interfaces into TDs and instantiates them in WTs that act as a proxy
of the original provider. Step R1 in Figure 4.2 refers to the syntactical translation of the
provider interface into a TD, and Step R2 depicts its instantiation into a proxy WT. The set of
data providers to translate are defined by the providers attribute of the Caching Template.

History Management

CACHE-IT defines a pipeline to manage the clients’ request history, which the caching
strategies may use. Each request performed by a client – through the interoperability layer –
is registered in a log file, as depicted in the Step G1 of the dataflow. The lightweight nature
of log files makes them well-suited for resource-constrained IoT environments. Additionally,
the system also supports a configurable data-pruning mechanism to ensure the efficient
management of the log files. This functionality allows the user to define record retention
parameters, namely logs longevity defined in the Caching Template. Logs surpassing
a pre-set age threshold are automatically pruned based on these parameters, ensuring the
lightweight nature of the log files over an extended duration.

80 Data Management Layer: Caching in the IoT Edge-Cloud Continuum

Each record’s core information is its arrival time (i.e., its timestamp) and the Cache
Node where the record was registered. The complete content of a record is depicted in
Table 4.3. Some record properties are optional. Namely, the returned data, which might be
too burdensome to store, manage, and process, and the client identification, which might
be concealed for privacy reasons. The user defines through the Caching Template which
optional properties will be registered; this choice is based on the information and metadata
that the employed caching strategy utilizes.

Table 4.3 Properties of a record

Property Description Optional

request IP Address or DNS, port, and URI ✗

parameters query, path, header, and cookie parameters ✗

cached boolean value that is true if the requested content was retrieved
from the cache

✗

delay time elapse to retrieve the response (from cache or the response
time from performing the request to the provider)

✗

timestamp request arrival timestamp ✗

cache node the Cache Node received and registered the record ✗

client client identification (IP and MAC address) ✓

data returned request data ✓

Step G2 and Step G3 refer to transferring the request history of a single Cache Node
to the centralized Cache Controller storage, a process that occurs in batches. The History
Transfer is a lightweight shipper for forwarding and centralizing log data. In detail, Step
G2 illustrates the operation of finding and managing all the log files that will be transferred
to the Cache Controller. The History Transfer needs to keep track of the state of each log
file and what portion of the file was not sent already. Step G3 refers to the periodical data
transfer of the collected request history to the centralized storage in the Cache Controller.
We define as Dpast the subset of data points stored in the last past time. The History Transfer
needs to attend to some requirements:

• Disconnection Handling: as the Cache Nodes often are unreliable computation nodes
in the network edge, they might suffer occasional disconnections from the Internet;
hence, they lose communication with the Cache Controller. In such cases, the History
Transfer should keep track of the unsent batches and send them once the connection is
re-established.

• Lightweight implementation: the History Transfer should use limited system re-
sources and not impact the other process executing in the Cache Node.

4.2 CACHE-IT: Proactive Edge Caching in Heterogeneous IoT Scenarios 81

• Multi-environment deployment: there are virtually no constraints on what devices
can fulfill the role of a Cache Node. The History Transfer should be able to support
multi-heterogeneous deployment environments.

• History Update Management: as common scenarios comprise multiple Cache Nodes,
those can potentially overwhelm the History Storage. The History Transfer must
employ techniques to find an adequate pace to transmit data to the History Storage.

Caching Strategy Execution

The Cache Manager comprises three distinct operations, each with different execution
periodicity and detailed in its own Subsection. The modification and deployment of a Caching
Template occur upon direct user intervention, and it is a long-term operation. Adapting the
caching strategy to new environmental conditions is a medium-term operation. Lastly, the
generation and transmission of caching orders are considered a short-term operation. Figure
4.3 depicts each operation and its interactions. Additionally, CACHE-IT short-term operations
are depicted through the orange dataflow in Figure 4.2. Although they are explained in detail
in the following text, an introduction is necessary to understand the big picture, as these
operations are a core system component: every t time slot (the duration of which is specified
in the Caching Template) the Cache Manager – located in the Cache Controller – invokes a
function that generates and transmits (Step O1 and Step O2) instructions (i.e., caching orders)
to each Cache Worker. We count the time slots as t0, t1, . . . , tn. When a Cache Worker receives
a new batch of caching orders, it reports its caching accuracy in the previous time slot (i.e.,
ti−1) to potentially trigger medium-term operations that adjust the generation of such caching
orders (such as retraining a model), meaning that the conditions may have changed.

Long-Term: User Intervention Before system initialization, the user defines the caching
strategy in the Caching Template. In proactive edge caching, the strategies can employ
diverse techniques that impose different data flows and operations [133]. For instance, a
statistical-based strategy requires re-execution for generating each new set of caching orders,
while a machine learning-based strategy relies on a pre-trained model, which requires an
understanding of the timing for training (and retraining) the model. To encompass variability
in the strategies processing steps, we define a generic workflow comprising three functions
that compose the caching strategy in CACHE-IT. Those functions are:

• gen function: the core function that sets the strategy goal and implements a technique
(e.g., Deep Learning). It is a higher-order function that produces a function cOrder,

82 Data Management Layer: Caching in the IoT Edge-Cloud Continuum

which generates a set of caching orders in each time slot (short-term operation). The
gen function is analogous with the machine learning process of training a model,
while the cOrder function pairs with the model execution itself in inference mode.
Other techniques that do not involve pre-computing steps can be integrated into the
framework by defining gen as a deterministic function that always outputs the same
cOrder function.

• period function: the function accesses the historical storage and outputs a time slot,
determining the size of the data chunk utilized by the gen function upon execution. The
aim is to determine the last homogeneous time segment of historical storage data. It is
possible to utilize a simple rolling window method (e.g., always get the last 1-month
of data) or an advanced technique (e.g., an auto-regression model that, based on the
prediction errors, determines the last time segment of homogeneous data).

• trigger function: it is executed every time slot (i.e., short-term), taking as input the
accuracy of all the caching nodes in the last time window and returns a Boolean value.
If true, it prompts the execution of the period and the gen functions to regenerate the
cOrder. The output of the function can be bounded to the Cache Nodes accuracy (e.g.,
if less than 20%), time (e.g., every 12h), or both.

Upon system initialization or when the user uploads a new Caching Template, CACHE-IT
executes the newly defined period and gen functions to generate an updated cOrder function
considering the newly set configurations, such as the maximum available storage for each
Cache Node. Figure 4.2 omits the component in charge of managing the Cache Nodes and
gathering data related to their status – i.e., online or offline – and their connectivity. However,
we adopted IoTManA[134] as our chosen management system, which provides tools for
managing, controlling, and monitoring software, hardware, and communication components.
Specifically, it facilitates monitoring network delay and system entities’ availability – i.e.,
the Cache Controller and Cache Nodes.

Medium-Term: Caching Strategy Adaption Due to changes in the context, such as the
inclusion, removal, or behavior change of IoT devices, a historical system snapshot may not
represent its current state. To periodically adapt the generation of caching orders to reflect
the system conditions better, CACHE-IT performs a check (e.g., executes trigger function)
each time slot to determine if conditions have changed. From CACHE-IT point-of-view, an
alteration in system conditions means that the output of trigger function is true or that a new
Caching Template was uploaded. In such cases, CACHE-IT regenerates the cOrder function
by executing the period function followed by the gen function.

4.2 CACHE-IT: Proactive Edge Caching in Heterogeneous IoT Scenarios 83

Short-Term: Generation of Caching Orders The short-term operations encompass the
generation of caching orders in each time slot. Algorithm 1 is executed in fixed slots of t
time to generate and transmit a new set of caching orders, detailing Step O1 and Step O2
from Figure 4.2. Line 2 denotes the generated function cOrder producing caching orders
for the next ti+1 time slot. Then, the Cache Manager transmits to each Cache Worker its set
of caching orders, which reply with their caching accuracy in the last ti−1 time slot (lines
3 to 5). A Cache Worker accuracy is defined as the total amount of cache hits divided
by the total number of requests. The algorithm checks if gen is already in execution (line
6). Then, if the trigger function outputs true (lines 7 and 8) the medium-term operations
are triggered. Namely, the execution of period (line 9), followed by gen (line 10); which
updates the caching order generating function cOrder.Figure 4.3 illustrates an example of
the three distinct caching operations. The upload of a new Caching Template (long-term)
triggers the execution of period and gen to generate a new cOrder (medium-term). In the
example, the gen function performs the retraining of an LSTM Neural Network model, which
becomes the updated cOrder. Then, the Neural Network (i.e., cOrder) generates a new batch
of caching orders in every time slot (e.g., 2h), which are transmitted to each Cache Node
(short-term). The Cache Nodes reply with their accuracy. The trigger function then takes
the set of accuracies as input and, if their average is below 20%, prompts the execution of the
medium-term operations to retrain the Neural Network.

cNN 3

Time Slot 2h

Reactive Caching True

Caching Strategy

Gen

Trigger

Period

LSTM NN

accuracy < 20%

auto-regression Trigger

Gen

cOrder

Period

History Storage

Cache Manager

LONG TERM MEDIUM TERM SHORT TERM

TI
M

E

creates

true false

Cache Node

Time Slot 2hEveryWhen user updates Trigger accuracy < 20%When

Caching Template

Caching Template

Fig. 4.3 CACHE-IT operations and their timings.

84 Data Management Layer: Caching in the IoT Edge-Cloud Continuum

Algorithm 1: The CACHE-IT caching orders generation
1Every ti time passed:
2 caching_ordersti ← cOrder(Dpast)

3 for c from 0 to Nc do
4 ordersc← filter caching_ordersti for caching orders that match c
5 transmit to the c Cache Node the ordersc and receive accuracyti−1,c of all Cache Workers
6 if gen is not executing then
7 isTrigger← trigger(

⋃
c∈C accuracyti−1,c)

8 if isTrigger then
9 past← period(D)

10 cOrder← gen(Dpast)

11 end
12 end
13 end

Request Forwarding and Caching Retrieval

The request forwarding and caching retrieval process employed by each Cache Node is
triggered upon receiving a request; the overall flow is depicted in blue in Figure 4.2. A client
requests data from a given provider in any protocol supported by the Device Abstraction
Interface, as depicted by Step B1, which translates the request and forwards it to the Cache
Worker. In turn, the Cache Worker checks if the requested data is cached (Step B3). If so,
the data is returned to the client (Step B5 and Step B6). The role of Step B6 is mapping the
data to the format and protocol used by the client. When a cache miss occurs (Step B4), the
Cache Worker forwards the request to the provider.

Algorithm 2 is executed by each Cache Worker to handle client data requests and
to perform caching orders. One particular feature described in the Algorithm 2 is the
cNN (CACHE-IT Nearest Neighbors) strategy. In cNN, when a cache miss occurs, the
Cache Worker checks if its N nearest neighbors (i.e., other Cache Nodes) have the resource
requested cached. This feature can be integrated into any caching strategy and capitalizes on
the assumption that geographic proximity influences the request pattern. The amount of N of
neighbors visited is defined in the Caching Template.

Algorithm 2 keeps track of the received caching orders, the local cache hit rate (i.e., its
accuracy), and the set of N neighboring Cache Nodes and their latency towards the originating
Cache Node. The Algorithm 2 uses two event handlers for dealing with the arrival of caching
orders and client requests. For the sake of simplicity, we adopt the dot notation (.) to access
the properties of a caching order – e.g., order.type.

When a set of caching orders arrives (line 5), the algorithm checks if any client requests
were made since the last batch of caching orders was received (line 6); if so, it computes the
cache accuracy by dividing the number of cached requests by the total number and transmits

4.2 CACHE-IT: Proactive Edge Caching in Heterogeneous IoT Scenarios 85

it to the Cache Controller (lines 7-9). For each caching order in the set, the algorithm checks
whether the order is of standalone or cooperative (lines 11-17). For standalone orders, the
algorithm performs the request at the designated execution time and caches the response data
until its expiration time – if a given caching order did have its expiration time specified by
the caching strategy, it uses the default expiration time set in the Caching Template; if the
caching order is cooperative, the Cache Worker adds it to a list of cooperative orders (line
15). The list of cooperative orders is periodically updated to remove expired orders – omitted
from the algorithm for clarity.

When a request arrives from a client (line 18), the algorithm first checks if the content
is present in the local cache (line 20). If so, the corresponding data is returned to the client,
and the cachedRequests variable is incremented (line 21). If not, the Cache Worker checks
if there is a valid cooperative caching order that matches the request (lines 22 - 27). If so, the
Cache Worker tries to retrieve data from the Caching Node specified in the cooperative order,
returning it to the client and incrementing cachedRequests in case of success. If the data is
not found, the algorithm performs the cNN strategy (lines 28 - 31) by verifying if the content
requested is cached in any of the N nearest Cache Nodes. Finally, if data is not found, the
algorithm performs the request directly to the data provider and returns the data to the client
(lines 32 - 36). The returned resource is only cached if the variable reactiveCaching is set to
true. This behavior considers the reliability of the prediction solution, as a cache miss may
be an outlier, and caching its returned resource might be unnecessary.

CACHE-IT default cache replacement strategy is Least Recently Used (LRU). However,
users can configure it to use other strategies such as Least Frequently Used (LFU), random,
or maximum idle time.

4.2.3 Implementation

This Section describes CACHE-IT implementation. We utilize industry-adopted applications
to fulfill some framework components while the others perform specific CACHE-IT tasks,
which we implemented ourselves. A first version of an Interface Translator was proposed
in [96] and its implementation, namely C3PO (Converter of OPen API SPecification to WoT
Objects), was detailed in [135]. It can convert RESTful Web services APIs documented
through the OpenAPI Specification (OAS) [20] into WTs. The current implementation
requires a formal description of the provider interface (including its endpoints, inputs, outputs,
and parameters) for the translation process. The OAS provides a language-independent
standard to describe RESTful interfaces using a JSON-based description, and it is the de
facto standard for API documentation.

86 Data Management Layer: Caching in the IoT Edge-Cloud Continuum

Algorithm 2: The Cache Worker caching retrieval and request forwarding.
1 cooperativeOrders← []
2 cacheNodes← list of CacheNodes and their respective latency
3 totalClientRequests← 0
4 cachedRequests← 0
5 upon the arrival of a set of caching orders orders: (every t intervals)
6 if totalClientRequests is not 0 then
7 accuracy← cachedRequests/totalClientRequests
8 else
9 accuracy← 1

10 end
11 transmit accuracy to Cache Controller and reset totalClientRequests and cachedRequests
12 for order in orders do
13 if order.type = standard then
14 data← per f ormRequest(order)
15 store(data,order.expirationTime)
16 else
17 cooperativeOrders.push(order)
18 end
19 end
20 upon the arrival of a request r from client:
21 increment totalClientRequests
22 data← getLocalCache(r)
23 if data is not null increment cachedRequests and return data to the client
24 for order in cooperativeOrders do
25 if match(order, r) then
26 data← getFromCacheNode(order.cacheNode,r)
27 if data is not null increment cachedRequests and return data to the client
28 end
29 end
30 for cacheNode in cacheNodes do
31 data← getFromCacheNode(cacheNode,r)
32 if data is not null increment cachedRequests, return data to the client and break
33 end
34 data← per f ormRequest(r)
35 if reactiveCaching then
36 store(data, presetTime)
37 end
38 return data to client

We adopted the ELK stack1 to fulfill the role of the History Transfer and the History
Storage, as it satisfies the requirements listed. The ELK stack is a set of open-source tools
that provide a flexible and scalable platform for collecting and storing distributed log data.
ELK is an acronym built with the union of its three main components – i.e., Elasticsearch,
Logstash, and Kibana. Elasticsearch is employed for indexing and storing data; Logstash is a
data processing pipeline that collects and parses the log data to be stored in Elasticsearch.

1https://www.elastic.co

4.2 CACHE-IT: Proactive Edge Caching in Heterogeneous IoT Scenarios 87

Logstash and Elasticsearch together fulfill the role of History Storage. The History Transfer
is implemented by Filebeat, a lightweight shipper that is used to collect and transfer log data
to Logstash. It can be instantiated in practically any computational environment and utilizes
a back-pressure sensitive protocol to send data to Logstash, thus preventing overloading.

While the ELK stack was chosen for its scalability and flexibility, many other alternatives
follow different approaches, like Fluentd2 and Graylog3. Fluentd is built around an extensible
architecture. Like Logstash, it offers a unified logging layer, but where it distinguishes itself
is in its pluggable architecture. Fluentd supports numerous input and output sources via
plugins, enabling it to integrate with various systems without core modifications. Also, it uses
a lightweight core and is written in Ruby and C, which might provide efficiency benefits in
specific environments. Graylog is centered on simplicity and ease of use. While Elasticsearch
can be used as a backend for both ELK and Graylog, Graylog provides a more streamlined
setup process and a centralized management interface for various logging pipelines. A
notable feature of Graylog is its built-in alerting and reporting capabilities, allowing users
to generate insights from their log data more seamlessly. However, based on the particular
requirements and design principles of CACHE-IT, the ELK stack was determined to be most
aligned with our goals.

The Cache Manager invokes the caching strategy functions through a POST request
towards a user-specified address (defined in the Caching Template). The caching strategy
needs to be wrapped in an application that exposes a REST API. That way, we preserve
CACHE-IT separation of concerns and provide the user a rapid way to deploy and test different
versions of their caching strategy since REST API can be hosted through a lightweight
virtualization technique. This design allows caching strategy functions to implement more
complex operations, including components tailored to specific scenarios or domains, such as
mobility prediction. Finally, Cache Worker and the Cache Manager were developed as
NodeJS4 applications to be executed in a container environment [136].

As for the cache storage, we adopted Redis5, considered the de facto standard database
for caching. It is a lightweight key-value store implementation that operates entirely in
memory, making it suitable for use cases demanding low latency. Additionally, Redis
currently supports various operating systems and hardware architectures, and its low resource
requirements make it compatible with edge scenarios. The framework is designed to be
deployed using lightweight virtualization (e.g., Docker containers6).

2https://www.fluentd.org
3https://graylog.org
4https://nodejs.org
5https://redis.io
6https://www.docker.com/

88 Data Management Layer: Caching in the IoT Edge-Cloud Continuum

4.2.4 Performance Analysis

This section evaluates different CACHE-IT features under different client behaviors. Specif-
ically, we aim to quantify the effects of (1) the number of neighbors visited by the cNN
ranging from zero to two, (2) the caching strategy accuracy, and (3) the usage of cooperative
caching orders as opposed to standalone orders. The objective is to understand how these
factors impact the overall system performance, demonstrating the flexibility, applicability,
and performance of CACHE-IT.

We designed and implemented an open-source simulator [137] to perform large-scale
simulations by modeling the Cache Workers, the Cache Manager, and the network behavior.

In the experiments, we do not implement an explicit caching strategy. Instead, we
emulate the caching strategy accuracy as a percentage that dictates the number of requests
it could predict. Introducing a specific caching strategy would divert the evaluation toward
the effectiveness of that particular strategy, overshadowing the evaluation of the cache
architecture as a whole. By abstracting the specific caching strategy operations from our
evaluation, we isolate the impact of the unique features and benefits provided by CACHE-IT.
To emulate the caching strategy, the Cache Manager probabilistically selects a number
of requests according to the caching strategy accuracy, sets them as a simulation input,
and transforms those into standard caching orders. The caching order execution time is
determined by the request execution time subtracted from a Gaussian time to represent the
lack of precision in determining the specific request arrival time. The request expiration time
is set to a default value of 10 min. If the experiment utilizes cooperative orders, the Cache
Manager analyzes the caching orders and identifies duplicate resources cached in the same
time slot; in those cases, it converts one of the orders to cooperative, pointing to the Cache
Node that holds the resource in that time. Finally, the Cache Manager performs a redundancy
check to eliminate duplicate caching orders. Standalone caching orders that store resources
used by cooperative orders are excluded from this process.

For simplicity and without loss of generality, the data providers are abstracted as entities
that generate resources over time. Its application and network behavior are modeled based
on real datasets. We utilized [138] to model the network latency between the edge nodes and
the data providers. The mentioned work characterizes cloud-to-user latency from different
geographically distributed vantage points towards several data centers in distinct locations
on the infrastructures of Amazon Web Services7 and Microsoft Azure8. Upon initialization,
each data provider randomly selects a specific cloud data center and emulates its network
latency. We utilized the encrypted web traffic dataset as a base to model the data providers’

7https://aws.amazon.com/
8https://azure.microsoft.com/

https://aws.amazon.com/
https://azure.microsoft.com/

4.2 CACHE-IT: Proactive Edge Caching in Heterogeneous IoT Scenarios 89

behavior [139], specifically, the returned data size in bytes and the application processing
time. The dataset comprises 800 real web services monitoring data – including the mentioned
metrics. We select three significant web applications to represent high, medium, and low
values regarding the returned data size of the data providers since this feature had non-
overlapping distributions as opposed to processing time, which is similar to all services.
The characterization of the selected web services is shown in Figure 4.4 and in Figure 4.13
regarding processing time and bytes returned. Data providers were assigned to each category
equally. We disregard the latency added by the Device Abstraction Layer since a previous
work [96] demonstrates it is insignificant.

high medium low
workload

0

200

400

600

800

1000

1200

1400

tim
e

(m
s)

Fig. 4.4 Data characterization of process-
ing time for the three categories of data
providers.

high medium low
workload

0k

20k

40k

60k

80k

by
te

s

Fig. 4.5 Data characterization of response
size in bytes for the three categories of
data providers.

The simulator deploys a configurable number of edge nodes within the experiment dimen-
sions in random positions. These edge nodes serve as network gateways – e.g., base stations.
Each edge node is equipped with a dedicated cache storage, and the caching replacement
strategy employed in our experiments is the Least Recently Used (LRU) algorithm. We
modeled the network between the client and the edge node following the wireless latency
dataset present in [140], and the inter-edge nodes communications were modeled using the
wired LAN dataset of the same source [140].

Clients in IoT scenarios often are mobile, ranging from industry 4.0 devices [141] to
intelligent vehicles [109], so we add client mobility in the evaluation scenario. Each client
moves in a trajectory determined by a list of random reference points within the experiment
dimensions. The simulator generates a list of requests for each client for the experiment
duration, and clients perform these requests by querying its closest edge node. The inter-

90 Data Management Layer: Caching in the IoT Edge-Cloud Continuum

arrival times between requests follow an exponential distribution corresponding to a Poisson
process. The choice of which provider to query follows a Zipf popularity distribution since
the latter is widely used to simulate the popularity of requests to data providers in the context
of edge caching [142, 88, 121, 92, 109, 110, 119, 116]. We utilized the Zipf parameter as 1.1
[121] independent of the client category. Additionally, we modeled three different patterns
of client behavior based on observation in IoT systems; each client category alters how
providers are selected. The popularity distribution in this context means that the popularity
order of each data provider was randomly shuffled while still adhering to the same underlying
Zipf distribution. The categories are:

• ID: clients in this category are independent of each other and follow their particular
popularity distribution.

• type: Each client in this category is assigned a specific type with its own popularity
distribution. This behavior was modeled assuming that devices of the same type (e.g.,
a specific brand and model of UAV) tend to consume data from similar providers.

• location: clients in this category have popularity distributions associated with their
respective areas. The simulation considers the total area and divides it into a parame-
terized number of subareas, each with its popularity distribution.

Each category is illustrated in Figure 4.6. We perform experiments for each client type and
an experiment configuration in which we deploy all client types in the same experiment
equally distributed – this experiment configuration is called “mix”.

During the simulation, we track and record the following metrics:

• Latency: captures the time taken for each request to be returned to the client.

• AoI: represents the time difference between the generation of a resource and its arrival
to the clients.

• Number of Requests to Providers: the total number of requests sent to the data
providers.

• Cache Hit Rate: the percentage of requests retrieved from the cache as opposed to
those forwarded to the data provider.

Finally, Table 4.6 lists the experiment parameters kept constant in all simulations. Table
4.7 depicts the factors and levels utilized in the performance evaluation. We perform exper-
iments combining all the levels and factors. The caching order type denotes experiments
executed only with standalone orders instead of the ones in which cooperative orders were

4.2 CACHE-IT: Proactive Edge Caching in Heterogeneous IoT Scenarios 91

ID TYPE LOCATION

C
LI

EN
T

C
LA

SS

REQ. PATTERN
A

REQ. PATTERN
B

REQ. PATTERN
A

REQ. PATTERN
B

REQ. PATTERN
C

REQ.
PATTERN

A

REQ.
PATTERN

B

REQ.
PATTERN

C

Each client follows a specific pattern Each type of client follows a specific pattern Client follows a pattern base on its location

Fig. 4.6 Representation of the different categories of client behavior modeled in the experi-
ments.

used. For clarity, we refer to the experiments utilizing standard and cooperative orders
as "cooperative." Each experiment was replicated 30 times, and the calculated confidence
interval was 99%. In each replication, all entities involved were re-instantiated, increasing
the inter-experiment variability – e.g., the clients’ trajectories and initial positions, the edge
nodes placement, the assignment of providers to their category, and a network trace.

Figure 4.7 depicts a handful selection of the most significant experiment configurations,
which allows for a comprehensive analysis of the performance and behavior of our proposed
framework. Those results were all executed with "mix" as the client category. We adopt
a consistent naming pattern for our experiments: "accX-NY-Z," where X represents the
accuracy percentage, Y denotes the number of neighbors visited (for the c-NN strategy),
and Z indicates the caching order employed, "s" for standalone and "c" for cooperative.
Exceptions are "baseline," which denotes the experiments without cache, and "regular-
cache," which refers to experiments only applying the current reactive caching. The results
showcase that the greater the caching strategy accuracy and the number of neighbors visited,
the better the outcome for all metrics, except for AoI – since cached resources are less fresh
than those fetched directly from the data providers.

It is noteworthy that CACHE-IT impacts positively in terms of latency, hit rate, and the
number of requests sent to providers. The framework features enhance caching strategy
accuracy, and we numerically show that the c-NN mechanism meaningfully improves the
system. One experiment parameter that influences the results is the default time to keep
resources cached (10 min), as the clients tend to query the same provider, which increases

92 Data Management Layer: Caching in the IoT Edge-Cloud Continuum

Table 4.4 Experiment Parameters

Property Value

Experiment Duration 1h
Area dimensions 10000 units2

Number of edge nodes 10
Edge storage size 4 GB
Minimum distance between edge nodes 1000 units
Number of clients 500
Client Speed 10 units/s
Number of client types 5
Number of subareas 5
Default resource expiration time 10 min
Reactive caching ✓

Number of providers 750
Rate of requests per client (Poisson λ) 0.1 event/s
Popularity distribution (Zipf α) 1.1

Table 4.5 Factors and Levels

Factor Level

Caching Strategy Accuracy 0%, 20%, 40%
Caching Orders Type standalone, cooperative
c-NN (N neighbors visited) 0, 1, 2
Client Category location, ID, type, mix

the overall hit rate, though it also increases the AoI. The baseline configuration value in
Figure 4.7, approximately 0.25 seconds, reflects the minimal time difference from resource
generation to client delivery, as the resource was not cached for a period of time. System
administrators deploying CACHE-IT must consider the trade-off between lower latency and
data freshness. In scenarios where it is key to have low AoI, the amount of time to keep
resources cached should be bounded by the maximum AoI.

Figure 4.8 deepens the comparison between the experiments that use cooperative orders
and experiments that do not. In general, the outcome of those experiments differs for the
number of requests sent to providers and AoI. The number of requests is lower due to the
cooperative aspect of the system sharing the predicted resource without performing additional
requests. Consequently, the resources returned are less fresh, which increases the AoI. The
difference in latency and hit rate between cooperative and standalone caching is attributed to
removing redundant caching orders. Removing redundant caching orders does not eliminate

4.2 CACHE-IT: Proactive Edge Caching in Heterogeneous IoT Scenarios 93

baseline

regular-cache
acc20-N0-s

acc20-N0-c

acc20-N2-s

acc20-N2-c

acc40-N0-s

acc40-N0-c

acc40-N2-s

acc40-N2-c
0

250

500

750

1000

1250

La
te

nc
y

(m
s)

baseline

regular-cache
acc20-N0-s

acc20-N0-c

acc20-N2-s

acc20-N2-c

acc40-N0-s

acc40-N0-c

acc40-N2-s

acc40-N2-c
0k

25k
50k
75k

100k
125k
150k
175k

Re
qu

es
ts

baseline

regular-cache
acc20-N0-s

acc20-N0-c

acc20-N2-s

acc20-N2-c

acc40-N0-s

acc40-N0-c

acc40-N2-s

acc40-N2-c
0

100

200

300

Ao
I (

s)

baseline

regular-cache
acc20-N0-s

acc20-N0-c

acc20-N2-s

acc20-N2-c

acc40-N0-s

acc40-N0-c

acc40-N2-s

acc40-N2-c
0.00

0.25

0.50

0.75

1.00

Hi
t R

at
e

(%
)

Fig. 4.7 Overall Simulation results for CACHE-IT comparing different configurations.
Hatched bars represent experiments in which cooperative caching orders were used.

caching orders that serve as pointers for cooperative ones, resulting in a higher number of
requests and a greater average number of cached resources per Cache Node. However, when
the number of visited neighbors (N) increases, this aspect is mitigated as resources are shared
with the closest nodes.

That behavior is observed by comparing the different Figure 4.8 rows – each row corre-
sponds to a number of neighborhoods visited, ranging from zero to two. This disparity in
latency arises due to the additional one-hop requirement for cooperative orders to retrieve the
requested data. When comparing the experiments with cNN equals two, both cooperative and
standalone caching strategies exhibit similar high hit rates. However, the incremental latency
introduced by cooperative orders (i.e., the additional hop to retrieve a resource) becomes
more noticeable. In our experiments with ten edge nodes, configurations with two visited
neighbors had access to approximately 30% of the total cached resources.

Figure 4.9 shows sets of graphs characterizing the performance of the different client cat-
egories: each row represents a c-NN value, starting from zero until two. All the experiments
were performed using standalone orders only. The results show that the client categories
"type" and "location" have the best overall results since clients share a similar requesting
pattern. In contrast, the "id" client category had slightly worse results since each client is
independent of the other. Due to the heterogeneity of clients’ behaviors, the experiments with

94 Data Management Layer: Caching in the IoT Edge-Cloud Continuum

20 40
Accuracy (%)

0
100
200
300
400

La
te

nc
y

(m
s)

Latency (N=0)

20 40
Accuracy (%)

0k

20k

40k

60k

Re
qu

es
ts

Requests to Providers (N=0)

20 40
Accuracy (%)

0

100

200

300

Ao
I (

s)

AoI (N=0)

20 40
Accuracy (%)

0.00

0.25

0.50

0.75

1.00

Hi
t R

at
e

(%
)

Hit Rate (N=0)

20 40
Accuracy (%)

0
100
200
300
400

La
te

nc
y

(m
s)

Latency (N=1)

20 40
Accuracy (%)

0k

20k

40k

60k

Re
qu

es
ts

Requests to Providers (N=1)

20 40
Accuracy (%)

0

100

200

300

Ao
I (

s)

AoI (N=1)

20 40
Accuracy (%)

0.00

0.25

0.50

0.75

1.00

Hi
t R

at
e

(%
)

Hit Rate (N=1)

20 40
Accuracy (%)

0
100
200
300
400

La
te

nc
y

(m
s)

Latency (N=2)

20 40
Accuracy (%)

0k

20k

40k

60k

Re
qu

es
ts

Requests to Providers (N=2)

20 40
Accuracy (%)

0

100

200

300

Ao
I (

s)

AoI (N=2)

20 40
Accuracy (%)

0.00

0.25

0.50

0.75

1.00

Hi
t R

at
e

(%
)

Hit Rate (N=2)

standard cooperative

Fig. 4.8 Simulation results for CACHE-IT comparing standard and cooperative caching orders.
Each row represents a different cNN configuration, denoted as N.

all the types – i.e., "mix" – follow the same pattern as observed in the experiments performed
with the "id" client category, which means that in those scenarios, the clients’ popularity
distribution was, in practice, independent from each other. However, Figure 4.9 makes
evident that the client category differences are minor when compared to the impact wielded
by other simulation configurations, as the caching strategy accuracy. This behavior indicates
that CACHE-IT is versatile enough to be exploited in different contexts regarding client
interactions. The results presented in this section are open-source to guarantee transparency
and replicability; they can be found in the project’s GitHub repository [137].

4.3 CACHE-IT support for Federated Learning

This section details how CACHE-IT can be utilized in privacy-aware scenarios. We denote
as CACHE-IT FL the extension of CACHE-IT that allows it to perform Federated Learning

4.3 CACHE-IT support for Federated Learning 95

0 20 40
Accuracy (%)

0
250
500
750

1000

La
te

nc
y

(m
s)

Latency (N=0)

0 20 40
Accuracy (%)

0k

50k

100k

150k

Re
qu

es
ts

Requests to Providers (N=0)

0 20 40
Accuracy (%)

0
50

100
150
200
250

Ao
I (

s)

AoI (N=0)

0 20 40
Accuracy (%)

0.00

0.25

0.50

0.75

1.00

Hi
t R

at
e

(%
)

Hit Rate (N=0)

0 20 40
Accuracy (%)

0
250
500
750

1000

La
te

nc
y

(m
s)

Latency (N=1)

0 20 40
Accuracy (%)

0k

50k

100k

150k

Re
qu

es
ts

Requests to Providers (N=1)

0 20 40
Accuracy (%)

0
50

100
150
200
250

Ao
I (

s)

AoI (N=1)

0 20 40
Accuracy (%)

0.00

0.25

0.50

0.75

1.00

Hi
t R

at
e

(%
)

Hit Rate (N=1)

0 20 40
Accuracy (%)

0
250
500
750

1000

La
te

nc
y

(m
s)

Latency (N=2)

0 20 40
Accuracy (%)

0k

50k

100k

150k

Re
qu

es
ts

Requests to Providers (N=2)

0 20 40
Accuracy (%)

0
50

100
150
200
250

Ao
I (

s)

AoI (N=2)

0 20 40
Accuracy (%)

0.00

0.25

0.50

0.75

1.00

Hi
t R

at
e

(%
)

Hit Rate (N=2)

mix id type location

Fig. 4.9 Simulation results for CACHE-IT for different client types. Each row represents a
different cNN caching configuration, denoted as N.

strategies. Based on the privacy requirements, CACHE-IT FL supports three categories of
edge-caching strategies, i.e., local, global or federated, while being agnostic of the specific
prediction algorithm in use. Two main contributions are provided in this section:

• Privacy awareness: our architecture seamlessly accommodates various forms of data
sharing between edge and cloud nodes, enabling proactive caching strategies. This
capability allows the system owners to strike the wanted balance between optimizing
the Age of Information and cache hit rate (enhancing application performance) while
also prioritizing privacy preservation (improving client performance) through federated
strategies.

• IoT-cloud computing continuum exploitation: The location where the data is pro-
cessed to generate the information exchanged with the central node can be in the edge

96 Data Management Layer: Caching in the IoT Edge-Cloud Continuum

node, the cloud, or somewhere inside the continuum; allowing optimal adaptation to
diverse scenario and domain requirements.

We simulate the CACHE-IT FL architecture and some proposed caching strategies with
a dataset generated according to IoT common patterns. For each device in the IoT system,
the strategies forecast the most appropriate time to update the cache to guarantee that the
AoI meets the application requirements whenever the data is needed. The CACHE-IT FL
architecture is detailed in Section 4.3.1, which also encompasses a FL approach for CACHE-IT
FL, and Section 4.3.2 shows performance results.

4.3.1 Architectural Design

CACHE-IT FL is a set of extensions applied in CACHE-IT to support a spectrum of heteroge-
neous caching strategies, from the traditional centralized machine learning-based techniques
to FL-based ones. Further, it allows to balance the processing between edge and cloud instead
of offloading the computing tasks solely to the cloud.

Figure 4.10 illustrates the CACHE-IT FL architecture, which is based on a simplified
depiction of the architecture of Figure 4.2 in Section 4.2. CACHE-IT FL introduces an addi-
tional layer of computational component: the cache steward, which have a 1:1 relationship
to cache workers. The naming comes from labor relationships, in which workers carry out
the instructions determined by managers, and stewards manage the communication between
managers and workers. In CACHE-IT FL the cache strategy is collaboratively computed
between the Cache Manager and the Cache Stewards. Typically, the Cache Stewards are
located together with the Cache Workers, i.e., at the edge. However, other configurations are
possible, such as placing the Stewards in the cloud or somewhere within the continuum be-
tween the edge and the cloud. The log file generated by each Cache Worker are periodically
transferred to its corresponding Cache Steward – instead of the Cache Manager.

On system initialization, the system administrator must specify a caching template defin-
ing CACHE-IT FL configurations with certain attributes: CACHE-IT FL adds an additional
attribute to the Caching Template. The Model Execution Layer (MEL), a binary configura-
tion specifying whether the generation of cache orders is centralized by the Cache Manager
or distributed to the Cache Stewards. While CACHE-IT FL offers greater customization
regarding privacy and the choice of where to execute the Caching Strategy, it constraints the
type of strategy to those based on ML that produce a model. This limitation arises due to the
requirement of having a model to operate in a FL setting. In this context, the gen function is
divided into two model generation functions (the steward model generation and the manager

4.3 CACHE-IT support for Federated Learning 97

Ed
ge

C
lo

ud

St
ew

ar
d

W
or

ke
r

M
an

ag
er

Pr
ov

id
er

s

Ed
ge

 o
r

C
lo

ud
C

lie
nt

Fig. 4.10 CACHE-IT FL High Level Architecture

model generation) which collaborate to produce a model (cOrder function) that generates
caching orders for each Cache Worker.

The activity diagram in Figure 4.11 summarizes the operations of CACHE-IT FL– as a
simplification, we represent only one Cache Worker and one Cache Steward in the diagram.
The colored blocks represent the configured functions that compose the model generation
functions (i.e., CACHE-IT gen function). The activity diagram executes in each t time slot
(from the caching template) and initializes with the caching order generation (cOrder), which
executes the cOrder function generated by the model generation functions. Depending on
the MEL, the orders are generated by the Stewards or the Manager. Following this operation,
the set of caching orders is transmitted to each Cache Worker, which triggers two parallel
activities:

1. Iterate through the set of caching orders, awaiting the next order execution time to
make a request to the specific provider and cache the returned content – i.e., the Cache
Worker performs the operations described in the caching orders;

2. The calculation of the cache accuracy in the last t time slot is transmitted to the Cache
Manager.

The Cache Manager averages the cache accuracy of all Cache Workers and executes of the
trigger function passing as input the aggregated accuracy result. If trigger returns true, the

98 Data Management Layer: Caching in the IoT Edge-Cloud Continuum

model generation functions are re-executed to generate an updated model, which will replace
the current cOrder function. Otherwise, the procedure finishes. To retrain the model, the first
function executed is the Steward Model Generation. According to the Caching Template, the
function can execute a local model (if the caching strategy is FL-based), transmit the request
historical data to the Cache Manager, or execute data transformation and preprocessing steps
before sending it to the Cache Manager. Following the Steward Model Generation, the
Manager Model Generation function is executed using the data received from the Stewards
to execute the centralized model training, validation, and evaluation. The output of this
function is a new model to generate caching orders that will update the current Caching Order
Generation – in the Steward or the Manager, depending on the MEL. The execution of the
Steward Model Generation and the Manager Model Generation functions is repeated until
a stopping criterion is reached, such as a maximum number of rounds, achieving a desired
performance level, or when convergence is reached.

Federated Learning in CACHE-IT FL

This subsection details how the CACHE-IT FL can support a FL-based architecture. Figure
4.12 presents a visual representation of the operations to generate a model using FL through
the two functions that compose a caching strategy deployed across the CACHE-IT FL compo-
nents. The diagram of Figure 4.12 depicts the main operations as colored boxes – the ones
that have continuous lines are the functions that compose the caching strategy.

The operation initializes with the Local Model execution in the Steward (i.e., Caching
Order Generation function as Figure 4.12 depicts), resulting in the generation and transmis-
sion of caching orders to the Cache Workers. When a Cache Worker receives a new batch
of orders, it transfers the cache accuracy from the most recent time window to the Cache
Steward. In case that the trigger function returns true, the model is retrained. This operation
comprises the following steps (illustrated in 4.12):

1. Steward Model Gen.: each Cache Steward trains its local model with new data and
transfer it to the Cache Manager;

2. Manager Model Gen.: the Cache Manager performs the aggregation of the new local
models and update the global model according with the defined strategy (e.g., FedAvg).

Then, the Stewards download the model generated by the Manager and update their local
models. The execution of those two functions continues until the stopping criteria is met.

4.3 CACHE-IT support for Federated Learning 99

CACHE-FL Dataflow Diagram
Worker

Calculate
Cache Acc.

Steward

cOrder
Caching

Order Gen

Manager

Aggregate
Cache Acc.

cOrder
Caching

Order Gen

Manager
MEL

execute
trigger

Steward
MEL

trigger
met

Steward
Model Gen.

Update
Model

continue

Manager
MEL

trigger
not met

Manager
Model Gen.Execute

Caching Order

Caching Orders

wait next
exec time

<<
ite

ra
tiv

e>
>

Caching Orders

Steward
MEL

Fig. 4.11 Model Generation Activity Diagram

4.3.2 Performance Analysis

Experimental Setup

We validate CACHE-IT FL by implementing the model proposed in Section 6.3.1 in three
different categories of edge-caching strategy:

100 Data Management Layer: Caching in the IoT Edge-Cloud Continuum

St
ew

ar
d

W
or
ke
r

M
an
ag
er

LM
Update LM

Execution and
Transfer

LMs
Aggregation

Global Model

Caching
Orders

GM
Distribution

LM
Execution

Upload Steward
Centralized Computing
Download Steward
Caching Order Gen

Last
t accuracy

execute
trigger

Local Model

History
Storage

1

2

3

trigger function

Fig. 4.12 CACHE-IT FL Federated Learning Setup

• centralized: when the MEL is the Cache Manager, the complete dataset is processed
by the Manager Model Generation function.

• local: when the MEL is the Cache Steward and each local dataset is processed by the
Steward Model Generation function.

• federated: when the MEL is the Cache Steward and the Stewards and the Manager
collaborate to create the model through FL.

We aim to quantify the trade-offs of each CACHE-IT FL configuration regarding privacy
levels and performance. In the next subsection, we will delve deeper into the specifics
of the learning model, providing a comprehensive understanding of its architecture and
functionality.

We modeled a scenario where clients’ request pattern is associated with their distance
from a Point of Interest (PoI), assuming a direct correlation between their location and their
request frequency. This assumption is based on the observation that clients near a certain
PoI tend to have similar data needs and request patterns. In our experiments, we randomly

4.3 CACHE-IT support for Federated Learning 101

placed a single PoI in the area dimensions, that act as hubs that attract clients’ requests.
The closer devices are to a PoI, the more frequent their requests become. To perform the
experiments, we utilized the open-source IoT caching simulator presented in Section 4.2
which was modified to simulate the pattern of requests described, based on the distance to a
PoI.

Table 4.6 lists the parameters kept constant in all experiments. An important parameter
is the data expiration time, which defines when the cached resource becomes invalid due to
modifications in the request content in the provider. For simplicity, we model it as a constant
time. Table 4.7 depicts the factors and levels utilized to understand the effect of different
configurations. Different experiments vary all levels and factors, with 30 replications, and
results are presented with asymptotic confidence intervals at the level of 99%.

During the experiments, we collected metrics of three categories:

• Model Analysis Metrics: we focused on comparing the Mean Absolute Error (MAE)
across the three caching strategies for the different system configurations.

• Caching Related Metrics: the set of domain metrics extracted from the simulator,
which are the average AoI and latency per client request and the cache hit rate of the
system.

• Continuum Evaluation Metrics: we analyzed the data transferred between edge
and cloud in all configurations to understand how different strategies can impact
bandwidth-limited scenarios.

Table 4.6 Experiment Parameters

Property Value

Experiment Duration 12h
Area dimensions 1 km2

Edge storage size 4 GB
Number of clients 100
client Speed 10 m/s
cache expiration time 100s
Nback 10

Learning Model and Caching Strategy

The learning model in the CACHE-IT FL architecture is designed for adaptability and ro-
bustness. Its main role is to forecast caching orders using historical data and real-time

102 Data Management Layer: Caching in the IoT Edge-Cloud Continuum

Table 4.7 Factors and Levels

Factor Level

Caching Strategy Category centralized, local, federated
Number of Edge Nodes 3, 6, 9, 12

location from client requests. We designed a strategy that forecasts the next user requests
and proactively caches the anticipated resources, reducing the need to fetch real-time data
from remote servers. The steps involved in this caching strategy are the following:

• Data collection: gather historical data from the logs of the Cache Stewards, including
intervals between client requests and their geographical locations which – in our use
case, we modeled a location-based service, which provides the advantage of utilizing
location information to implement proactive caching. For the centralized strategy, the
model has access to the collects data from all the Stewards, thus accessing the data
from all clients. In contrast, for the local and federated strategies, the model only
has access to local data, specific to a subset of clients. This distinction ensures that
the centralized strategy benefits from a holistic view, while the local and federated
strategies operate with more constrained, edge-specific datasets.

• Forecast: use the ML model to forecast a client’s next request.

• Resource caching: based on predictions, proactively cache resources that are likely to
be requested next.

It is important to clarify that the goal of our analysis is showcasing the CACHE-IT FL benefits
rather than creating a novel neural network design. While we provide a general architecture
for the neural network, we remark that any ML technique can be used depending on the
specific application. Our findings center around the effectiveness of CACHE-IT FL as a
system and the impact of its different configurations in the system performance. The model
used for the analysis is a feed-forward neural network whose architecture includes:

• Input features: divided into two categories. The first one comprises the historical data
that consists of intervals between requests from a specific client. The model considers
Nback historical intervals. The second category is the geographical location of the client
request, represented by two features – latitude and longitude.

• Output value: the model predicts a single continuous value as a regression task,
representing the time of the next request for each client, which latter are transformed
in a set of caching orders transferred to the Cache Workers.

4.3 CACHE-IT support for Federated Learning 103

Results

Figure 4.13(a) depicts the MAE for each configuration. As expected, the local configuration
has worse performance than federated and centralized since it only has access to a subset of
the dataset. Remarkably, the federated solution achieves results that closely match those of
the centralized approach but without sharing clients’ data.

Regarding caching metrics, Figure 4.13(b) illustrates the cache hit rate while Figure 6.5
depicts the average client latency. The two metrics are correlated since the bigger the hit
rate, the lower the latency, as more requests are returned from the local cache rather than
from the provider. The same performance pattern from Figure 4.13(a) can be observed in
these experiments since the accuracy in forecasting requests directly impacts the cache hit
rate. However, this pattern is not observed in Figure 4.13(d), which depicts AoI box plots
of the aggregate replications. These results demonstrate that the experiment setup does not
impact AoI distributions. This behavior is due to the cache expiration time set in the Caching
Template, which constrains the AoI to a maximum value. The cache hit rate results are also
connected with the cache expiration time since increasing it affects the time that a request
remains in the cache. In turn, this increases the probability of getting data retrieved from the
cache.

3 6 9 12
Number of Edges Nodes

0

50

100

150

200

250

M
AE

local federated centralized

(a) CACHE-IT FL Mean Absolute Error

3 6 9 12
Number of Edges Nodes

0.0

0.2

0.4

0.6

0.8

Hi
t R

at
e

local federated centralized

(b) CACHE-IT FL Cache Hit Rate

Finally, Figure 4.13 shows the network impact of federated and centralized approaches
– local is omitted since there is no traffic between edge and cloud in that configuration.
We considered the amount of bytes transferred for the strategy and not the data traffic that
is generated by requests from clients toward providers. For centralized, the amount of
transferred data is constant as it represents the request history of clients being transferred to
the cloud – the number of clients is constant. On the other hand, federated linearly scales
according to the number of edge nodes since each edge node needs to transfer its model to the

104 Data Management Layer: Caching in the IoT Edge-Cloud Continuum

3 6 9 12
Number of Edges Nodes

0

500

1000

1500

2000

To
ta

l L
at

en
cy

 (m
s)

local federated centralized

(c) CACHE-IT FL average client latency (d) CACHE-IT FL consolidated AoI distributions

Manager in the cloud and download the centralized model from it. Other factors that impact
the data exchange between edge and cloud in federated mode are the number of epochs and
the model size. Noteworthy, the amount of data transferred in all configurations is considered
small when compared with the capabilities of existing network technologies.

3 6 9 12
Number of Edges Nodes

0

2

4

6

8

Ki
lo

by
te

s

federated centralized

Fig. 4.13 CACHE-IT FL Edge-Cloud Bandwidth

In summary, this study has evaluated different CACHE-IT FL configurations in various
scenarios. The local configuration showcases inherent privacy advantages but at the expense
of performance, while the centralized approach leans towards superior performance with
limited privacy preservation. Notably, the federated approach offers a balanced compromise,
maintaining client data privacy while achieving performance results closely aligned with
the centralized configuration. This flexibility underscores CACHE-IT FL’s applicability to

4.3 CACHE-IT support for Federated Learning 105

a range of use cases, enabling organizations to tailor their caching strategies to specific
privacy-performance trade-offs while exploring the edge-cloud continuum computation
features.

Chapter 5

Services Layer: Trustworthiness in the
IoT Edge-Cloud Continuum

This Chapter addresses the RQ (iii) of the thesis, namely: How can decentralized systems be
integrate to enhance the trustworthiness of data collected from diverse IoT devices in scenar-
ios demanding reliability? To tackle this issue we integrate blockchain technologies in the
IoT domain. Since centralized architectures face challenges of transparency and the creation
of data silos, the objective is to create a distributed and trustworthy system that allows clients
to pay for data, and device owners are rewarded for providing it, based on the data quality of
the returned valued. The system leverages interoperability solutions presented in Chapter
3, such as the W3C WoT and ZION, to seamlessly connect devices and applications. Our
solution is implemented through the Service layer of our proposed architecture, functioning
as a bridge that enables transparent interactions between the architecture and its users. This
layer provides integration with external systems and it offers graphical user interfaces (GUIs)
to enhance the user experience within in the ecosystem. The implementation of visualization
tools lacks a dedicated section in this Chapter due to its limited scientific contribution.

In the subsequent sections, Section 5.1 introduce the readers to the fundamentals of
the blockchain technology that overlap with IoT and the current state-of-the-art of oracle
architectures to collect IoT data, while Section 5.2 delves into our architectural integration
proposed.

108 Services Layer: Trustworthiness in the IoT Edge-Cloud Continuum

5.1 Background

This section provides the background for contributions related the blockchain integration to
provide trustworthiness to IoT. We shortly explain the basis of blockchain technology and
we delve into the main oracle architectures for IoT systems.

Blockchains are innovative technologies to store and share data between a network of
nodes without relying on a single centralized authority. They are instances of Distributed
Ledger Technologies (DLTs) that use cryptography to create a secure, immutable, and
transparent record of transactions. These technologies have undergone substantial changes
recently, evolving dramatically from the first Bitcoin-related implementations. Blockchains
are an innovative way to store and share data between a network of nodes without relying
on a single centralized authority. Blockchains are Distributed Ledger Technologies (DLTs)
that use cryptography to create a secure, immutable, and transparent record of transactions.
This technology has undergone substantial changes recently, evolving dramatically from
its first Bitcoin-related implementation. Among the most significant advances, we cite the
emergence of blockchain-based platforms such as Ethereum [143], which introduced the
concept of “smart contracts” as executable programs that enforce an agreement between two
or more parties in a secure and verifiable way. Thanks to their pre-defined functions, they
can store information, process inputs, and write outputs. Their capabilities have opened the
doors to exploring new synergies not only related to decentralized finance but to other sectors
such as supply chain management, insurance, voting systems, health care, and IoT.

Smart contracts only have access to data stored on the chain. This limitation is because
their execution must be deterministic to be fully verifiable by other nodes in the network.
Therefore, injecting external data into the blockchain requires an off-chain component, the
oracle. An oracle is a software entity capable of retrieving external data and making it
available on-chain for smart contracts[24]. Hence, the oracle is not the data source per se, but
the layer that queries, verifies, and authenticates external data sources and then forwards such
information. In other words, it is a bridge connecting the blockchain to the outside world,
enabling the consumption of data from APIs, sensors, devices, and more. The use of oracles
brings back the centralization that blockchain was supposed to remove from the equation,
reintroducing issues related to architectures with a single point of failure (e.g., bringing
corrupt, malicious, and incorrect data to the chain). This dilemma is known as “The Oracle
Problem”. It deals with the issue of finding a balance between efficiency and decentralization
when data is retrieved from the outside through these systems [144]. Numerous approaches
have been proposed to solve this problem, and they can be grouped into two macro-categories:
centralized and decentralized solutions.

5.1 Background 109

Centralized
oracles

Decentralized
oracles

Decentralized
oracles

with
decentralized
data sources

C
lie

nt
s

O
ra

cl
es

D
at

a
so

ur
ce

s

Fig. 5.1 Different oracle architectures and their relationship with data sources

Examining Figure 5.1, we can notice that a centralized oracle is based on a single-server
architecture and relies on a single data source. Typically, these solutions employ Trusted
Execution Environments to secure the critical processes of oracles, in combination with
technologies, such as TLSNotary [145] , for generating proofs of data authenticity. An
example of an oracle that leverages this type of architecture is TownCrier[146]. On the
other hand, a distributed oracle is implemented through multiple nodes providing data to
the blockchain. Each node usually relies on one or more specific data sources to fulfill the
requests. Witnet[147], for instance, is a decentralized oracle network based on reputation
points. Augur[148] is another reputation-based decentralized oracle designed to resolve the
outcome of markets. ChainLink[149], for instance, is a decentralized oracle network based
on reputation mechanisms and can be considered a general-purpose system. ASTRAEA[150]
uses a voting mechanism to establish the authenticity of a specific assessment: submitters
enter propositions into the system, while voters and certifiers play a game to determine the
truth value of each proposition. Aeternity[151] is an oracle network that uses a system of
stake-weighted voting to ensure the reliability and accuracy of the data provided by the
oracles. Although some of these oracles can be used to retrieve IoT data, there are specialized
solutions that are designed for this task. DiOr-SGX [152] uses multiple oracle servers to
minimize the risk of a single point of failure while ensuring data integrity. STB[153] is a
distributed and hierarchical blockchain architecture with a peer-to-peer oracle network. It has
a lightweight consensus algorithm for IoT-constrained devices and specialized components
for scaling and verifying the reliability of external information before storing them on-chain.

110 Services Layer: Trustworthiness in the IoT Edge-Cloud Continuum

Finally, OIB[154] is a system to facilitate the deployment of smart contracts-based Industrial
IoT applications. The core of the system lies in a distributed oracle network that extends the
computing capabilities of the contracts.

Looking at the solutions presented, it is possible to realize how the risk of centralization
is always around, especially when it comes to selecting and managing data sources[24].
Furthermore, in the specific case of oracle architectures for the IoT, the heterogeneity of
devices is not considered, even if a clear methodology for integration and communication
would be needed, since IoT devices do not usually have compatible interfaces with current
Web technologies, as they employ a different stack of protocols. This Section advances state-
of-the-art by proposing a novel, fully decentralized oracle system specialized for retrieving
IoT data. Differently from the cited studies, our solution detaches the oracles layer entirely
from the data sources, pushing to the limit the concept of decentralization and trust. Our
objectives are threefold: (i) maintain the highest possible level of decentralization of the
system enabling multiple oracle nodes to retrieve data from a set of different data sources
each time; (ii) treat the data sources as first-class citizens of the system, keeping track of
their reputation and rewarding them for the provided data; (iii) unify device discovery and
communication through a well-defined interface that can serve as a homogeneous abstraction
layer for the various actors in our system.

5.2 Blockchain-based Oracle Architecture for IoT

A decentralized IoT global market would allow the end users to easily and seamlessly gather
data from IoT devices connected to a global network. Additionally, anyone could effortlessly
connect its device and expose its capabilities throughout the network – monetizing its usage
[155]. For instance, smart insurance companies can utilize reliable sensory data as automatic
triggers to release contract compensation, inherently benefiting from blockchain security and
fraud-proof features – further description of this use case is provided later in the manuscript.

Many approaches have been proposed to fulfill such a vision. However, they all share
similar pitfalls. On the one hand, centralized approaches inherently bind users to trust a
single entity and to stick to specific standards and technologies[24]. This unavoidably creates
silos that are hardly interoperable with one another and do not guarantee the necessary
transparency to the final users. On the other hand, decentralized solutions fail to provide
the required trust for users to consume data. Trust plays an essential role in the IoT global
market since clients need to ensure the quality of the queried data.

Blockchain technology has the potential to become a pivotal enabler for a global IoT
market[153], as it creates trustworthiness in totally decentralized systems by sharing among

5.2 Blockchain-based Oracle Architecture for IoT 111

all the nodes of a network a single and immutable history of transactions. However, many
challenges still impede unleashing the full potential of blockchain for IoT-based applications.
In this Section, we tackle four of them:

1. IoT devices have limited processing and storing capabilities and are often battery-
powered, imposing energy efficiency constraints. Thus, it is unfeasible for IoT devices
to be blockchain network nodes since they cannot spend energy and computation
to verify other transactions and cannot store the transaction history. Furthermore,
blockchains themselves are not able to actively access external IoT data.

2. IoT devices are unreliable per design; they are made to be numerous, inexpensive,
and interchangeable. Moreover, they could be more susceptible to tampering than
traditional devices since computational-intensive security mechanisms cannot be sup-
ported. Hence, a substantial overhead – imposed by the blockchain – is in place to
query unreliable data from cheap sensors.

3. A common and well-known problem of IoT is the lack of interoperability. IoT devices
comply with several different communication protocols, data structures, and interfaces,
which contribute to a fragmented landscape that hinders the adoption of IoT global
markets.

4. Blockchain and related consensus mechanisms rely upon deterministic outputs. IoT
sensor measurements are inherently nondeterministic, meaning that IoT data sources
may return different results even if operating in the same conditions. This calls for an
accurate method for selecting multiple data sources and safely aggregating their results
to ensure trustworthiness.

To address such challenges, we propose DESMO, a novel architecture – founded by the
ONTOCHAIN European project 1 – to enable an IoT Global Market based on distributed
data oracles paired with decentralized IoT data sources. Oracles are special applications that
connect blockchains to the off-chain world[154]. In order to increase their trustworthiness
and maintain decentralization, we adopted a layer of distributed oracles and enabled the
client applications to retrieve data from multiple data sources that share the same features
in a specified geolocation. We need to trust not only the oracles but – and mainly – the
data coming from the IoT devices. For this reason, our architecture includes reputation
algorithms for the ranking and automatic selection of trustworthy data sources. DESMO is
able to connect with the reference IoT architecture since it is a integration on the service
level. Finally, to address IoT inherent heterogeneity, we utilize the the W3C WoT [156].

1https://ontochain.ngi.eu/

112 Services Layer: Trustworthiness in the IoT Edge-Cloud Continuum

In the following subsections, we provide further details of our proposal. We outline its
unique features and technical characteristics compared to existing blockchain solutions. Next,
we describe its architectural design and showcase two applications enabled by the DESMO
IoT global market. To exemplify its operation, we conducted a case study that demonstrated
the system’s robustness to malicious nodes while maintaining data quality.

5.2.1 Architectural Design

In this section, we analyze the DESMO architecture and how it supports the concept of global
IoT market. As we will see, the DESMO architecture spans from on-chain components
(smart contracts) to off-chain components (oracles, indexers, and data sources). All these
concur in achieving a fully decentralized system organized in the following layers:

• The Clients are the buyers of IoT data and can be on-chain or off-chain components.

• The DESMO Protocol layer is composed of smart contracts that register requests,
store responses and payments and detain the reputation ranking of data sources.

• The Decentralized oracles layer collects the requests from smart contracts and queries
the designated sources.

• The Decentralized IoT data sources layer contains the devices that provide the data
and the directories that index them. Users can register new directories by staking
tokens. In this way, if a directory behaves fraudulently, the protocol can punish it by
draining from these funds.

As illustrated by Figure 6.9, the top layer of the platform contains the clients, which
can be different: smart contracts – e.g., protocols – that need to access IoT data to perform
automatic actions, Dapps implementing IoT use cases, server-side applications in need of
retrieving IoT data in a trusted and distributed way. Immediately below, we find the DESMO
distributed protocol, a set of smart contracts that cooperate to manage the various aspects of
the system. The Portal contract is the entry point of the client, receiving requests for data
and initiating the data retrieval process. The Hub is the repository for registered data sources
and their reputation score, which quantifies the trustability of each source. Finally, the Token
contract (omitted in Figure 6.9) holds the currency that powers the system’s economy. The
amount paid by each client is distributed between the oracle nodes and the data sources
participating in the process. The oracles layer contains the worker nodes capable of executing
the DESMO oracle application, which queries a defined set of data sources and computes

5.2 Blockchain-based Oracle Architecture for IoT 113

a result to the client request through a consensus algorithm between oracles, as explained
later. The bottom layer includes the data sources, and its structure is divided into two distinct
blocks: directories and end devices. Directories are responsible for indexing the metadata of
physical devices and making them discoverable via a well-defined interface that supports
both semantic and geo-spatial queries. On the other hand, to be compatible with the system,
devices must expose a semantic descriptor that allows both directories and oracles to interact
with them. We decided to use the W3C WoT standard in our implementation as it provides a
homogeneous interface to access IoT devices that abstract from their particular interfaces
and heterogeneous network protocols. Specifically, we adopted in the system architecture
W3C WoT directories to index the devices, they have to implement the W3C WoT Discovery
specification[156] with the addition of support for spatial queries – ZION is an example
of a suitable TDD. To store off-chain, accessible, nondeterministic data we make use of
IPFS (InterPlanetary File System) [157]. IPFS is a decentralized, peer-to-peer file system
that provides storage and retrieval of data on the Internet. It replaces traditional methods
with a content-based addressing system for files and their versions. IPFS allows for saving
arbitrarily big files and, by writing only their hash on the actual blockchain, we ensure always
to store a constant amount of data on-chain.

The complete flow of a single data request is then depicted in Figure 6.9.

Step 1 A client submits a new request to the system by calling a function of the Portal
smart contract. The payload of a request includes the semantic query for identifying the
desired data type and the geospatial filter – e.g., the temperature in the metropolitan area of
New York City.

Step 2 The Portal contract asks the Hub for the TDDs to associate with the request. TDDs,
as said, can become part of the system (i.e., included in the list detained by the Hub) by
staking a certain amount of tokens. Each of them starts with a neutral reputation value – we
set it to 0 – and gets selected by the Hub to reply to a data request through a round-robin
selection process. The process uses reputations as weights, so high-reputation TDDs are
more likely to be selected.

Step 3 and 4 A subset of oracle instances takes on the request and queries the selected
TDDs. It is essential to highlight that each oracle makes the same query on each of the
elected TDDs and collects the descriptors of all devices that semantically match the request.

114 Services Layer: Trustworthiness in the IoT Edge-Cloud Continuum

Portal Hub

Generic Smart Contract Backend Application

C
lie

nt
s

D
ES

M
O

Pr
ot

oc
ol

D
ec

en
tr

al
iz

ed
or

ac
le

s
D

ec
en

tr
al

iz
ed

da
ta

 s
ou

rc
es

1

2

45

DApp

Discovery Interface:
W3C WoT Discovery

Device Abstraction Interface:
W3C WoT Thing Description

Stake

3

6

7

Devices (e.g. sensors) Device directories

Fig. 5.2 The DESMO layered architecture with the steps required in the query resolution
process

Step 5 The oracles retrieve sensor data from the end devices and need to reach a consensus
on which data point best represents reality and how good and reliable the sensor data is. The
process that implements the above actions (the “consensus process”) is depicted over five
phases in Figure 5.3, and supports the explanation of steps 5, 6, and 7 of the query resolution
process. We can abstract from the concept of TDD and assume that each oracle queries the
same data sources – i.e., the sensors – and obtains from each of them a single data point
corresponding to the sensor reading. In Figure 5.3, data points generated by different sources
– phase I of the consensus process – are depicted as squares of different colors. In this case,
each oracle, within a single request round, ends up with as many data points as the number of
queried data sources, represented in phase II of the consensus process. Note that two oracles
may obtain two different data points from the same source. This inherently belongs to the
nature of IoT and can be dictated by several factors: for instance, oracle queries could have

5.2 Blockchain-based Oracle Architecture for IoT 115

taken place at two different moments in time, thus triggering two different sensor readings,
causing nondeterminism. Nonetheless, within a single request round, we expect a data source
to reply consistently to multiple oracles, meaning that data points shall differ negligibly. The
subsequent steps will address the nondeterminism problem.

#
#
#

★ ★★★

I

II

III

IV

V

Data sources

Data sources are
assigned for a request

Oracles

Each oracle retrieves
data from the same

data sources

Blockchain &
IPFS

Each oracle saves the
retrieved data on IPFS
and the hash on the
blockchain

Oracles

Each oracle retrieves
the other oracles' data
from IPFS and runs

the Truth Inference
algorithm and
the Rating algorithm

Blockchain

The consensus is
achieved and data are
written on-chain

★
★★★

Fig. 5.3 DESMO data gathering and consensus process.

Step 6 Oracles store the reply they obtained from data sources onto IPFS. In phase III of
the consensus process, the collection of replies on IPFS is represented as a matrix, where
each row is associated with a single oracle and each column with a single data source. Upon
saving the reply on IPFS, each oracle also hashes its content and saves the hash onto the
blockchain. This ensures the amount of space that a single client request occupies on-chain
to be solely dependent on the number of selected oracles (which is constant), not on the
number of queried sources (which can be arbitrarily high, depending on how much the client
pays). In phase IV of the consensus process, oracles can use the hashes stored on the Portal
to retrieve the full matrix from IPFS. At this point, each of them executes two actions: (i) The
Truth Inference algorithm, which outputs a single data point in the matrix – the “inferred

116 Services Layer: Trustworthiness in the IoT Edge-Cloud Continuum

truth” – that is believed to be the closest to the ground truth.; (ii) The Rating algorithm,
which outputs a score for each data source on top of their output with respect to the inferred
truth. The score will be integrated with the overall reputation of the data source. The Truth
Inference algorithm is a function τ that takes in input the matrix of results M and returns a
single sensor reading t ∈M. The Rating algorithm is a function ρ that takes in input M and
returns an array of n scores S, where n is the number of queried data sources. Each score
must be constrained to a definite interval, in our case we defined scores to be between −1
and 1.

Step 7 Finally, in phase V of the consensus process, oracles need to reach a consensus by
all executing τ(M) and ρ(M) and perform majority voting, then the two results are written
on the Portal contract. Note that both functions are deterministic, which means that, if all
oracles execute them onto the same matrix M, they should end up with the same results. The
Portal then stores the result of τ(M), which is the reply to the client request, and uses the
result of ρ(M) to update the reputation of the sources in the Hub contract. This is done, for
each source, by linearly combining its score with its previous reputation, which is constrained
between −1 and 1 as well, in order to obtain again a reputation value between −1 and 1.
Upon performing this operation, the Hub contract may choose to blacklist a source, if its
reputation falls below a certain threshold. This operation, as we will see in the section
about the Case Study, is necessary to mitigate the chances for attacks as well as untrusted or
defective data sources.

The interaction of DESMO with the blockchain is a crucial aspect of its architecture,
specifically regarding the transactions generated from data queries. When a user makes an
initial query, both the query and the final result are recorded on the blockchain, resulting
in two separate transactions. Further, each oracle involved in a query stores the hash of
the queried data on the blockchain to make it available for other oracles to calculate the
Truth Inference algorithm – as outlined in Step 6. The output generated by each oracle is
also recorded in the blockchain to enable the process described in Step 7. Current scalable
blockchains have a high throughput of thousands of transactions per second (TPS) and are
pushing to keep increasing those numbers – e.g., Solana can process more than 8,000 TPS
[158]. Considering those numbers and an average of five oracles involved in each query,
theoretically DESMO could support millions of daily queries. A first implementation of the
different components of the architecture can be found on GitHub[159].

5.2 Blockchain-based Oracle Architecture for IoT 117

5.2.2 Use Cases

In this section, we explore new applications that are enabled by DESMO. We selected
one insurance scenario that leverages sensor data and one urban scenario related to noise
pollution.

Smart Insurances

Currently, insurance claims are a long and costly process. Insurances companies desire
to combat fraud, at the same time, to reduce time and costs by automating the claim-
related administrations and execution process. On the other hand, customers want rapid
compensation and clear insurance terms. A trustworthy automatic process for insurance will
be beneficial for both parties.

An example application enabled by DESMO is insurance in the intelligent farming
domain. Figure 5.4 depicts an example application in the intelligent farming domain enabled
by DESMO. In the illustrated example, suppose that a given company commercializes
insurance for farmers to protect their crops against extreme environmental hazards – e.g.,
storms. The customer and the company agreed on specific terms to trigger the farmers’
payment. Those conditions and their associated triggers are established on a smart contract
that acts as a client of DESMO – interacting with the Portal contract. –as the first step in
Figure 5.4 showcases.

The insurance company smart contract defines features – e.g., wind speed , temperature –
to be queried in a specific geolocation without specifying the set of devices that provide such
data. The data sources providers could be both sensors deployed by a trusted partner of the
insurance company, as well as already deployed devices in the farm and nearby locations –
as step 2 of Figure 5.4 depicts, in which three sensors act as the data source, two deployed in
farms and one in the wilds that was deployed for a different purpose but still provides the
requested features. DESMO Truth Inference and Rating algorithm will assure data quality
and prioritize the selections of trustworthy data sources to avoid malicious users tampering
with the system – e.g., falsifying a storm’s conditions. In case the conditions are met, the
smart contract automatically releases the tokens (i.e., funds) to the farmers to keep their
businesses running. – step 3 of Figure 5.4.

Figure 5.4 illustrates an example application in the intelligent farming domain. First, the
farmer and the company established the policies of a smart contract based on the damage
that a crop is likely to suffer under specific environmental conditions – e.g., 100 mph winds –
and the appropriated values to be paid in case of damage. Then, the smart contract deployed
on-chain reads sensor data through DESMO, and in case of the conditions are met, the

118 Services Layer: Trustworthiness in the IoT Edge-Cloud Continuum

farmers automatically receive the funds to keep their business running. There are other
initiatives of blockchain-based insurance that would also leverage our system from different
domains, such as transportation[160].

Urban Noise Pollution Monitoring

Noise pollution is a common hazard in urban environments, and its sources range from social
activity to construction. It is estimated that the cost of noise-related health issues in the
EU is between 0.3% to 0.4% GDP[161]. Public authorities commonly incentivize noise
mitigation by imposing fines on noise emitters above a certain threshold. However, it is
challenging to enforce noise regulations in large urban environments. We envision such
systems to leverage the usage of DESMO. The appointed public authority would hire several
small and medium enterprises to cover a city with noise monitoring sensors. Different set
companies could cover different neighborhoods, with some overlap. Another third-party
actor – employed by the public authorities – would deploy a smart contract that queries the
DESMO Portal contract to get noise pollution data in different parts of the city. Once a code
violation is detected, the smart contract automatically warns the competent authorities to take
appropriate action. The advantage of using DESMO in such a setup is threefold: (i) DESMO
geo-spatial filter allows clients to utilize different granularity of boundaries in successive
queries to narrow the precise location of the noise pollution source; (ii) Given the truth
inference and rating algorithm, malfunctioning data sources would not hinder the overall
system data quality, and their data would be requested less often. Consequently, reliable data
sources would be queried frequently and – as each request in DESMO is paid – be more
profitable, incentivizing the continuous maintenance of the system; (iii) Different companies
would deploy sensors with diverse technologies regarding communication protocols and data
structure. DESMO, by design, handles IoT heterogeneity via W3C WoT solutions.

5.2.3 Performance Evaluation

We developed a case study to assess the proposed system’s resilience and effectiveness in
a theoretical scenario in presence of malicious data sources. As we motivate our work on
trustworthiness, we need to punish or ban possible malicious data sources while maintaining
satisfactory data quality. The case study comprises clients interested in environmental
temperature values and 1,000 sensor sources capable of producing temperature readings
registered to various TDDs.

These systems can be prone to collusion attacks, where a group of malicious sources
may cooperate in injecting false data on the blockchain. In our scenario, we represent this

5.2 Blockchain-based Oracle Architecture for IoT 119

1

2

3

DESMO

+

Fig. 5.4 Smart Insurance use case applied in the agricultural domain

attack as follows: the temperature ground truth is set to 25°C, and the response from the
Truth Inference algorithm is considered to be accurate if it falls within a tolerance of ±3°C.
Honest sources produce temperature values according to a normal distribution, with the
mean equal to the ground truth and the standard deviation uniformly generated between 0
and 4

3 of the tolerance, representing a few honest sources making occasional mistakes. We
modeled malicious sources to generate temperature readings by replacing the ground truth
with a fairly distant common value (10°C) to simulate a collusion attack, where all attackers
concur in redirecting the output to a fake verdict. We then simulated a period composed of
5,000 epochs; a single epoch corresponds to a client request, a response by the system, and a
single run of the Truth Inference and the Rating algorithms. We experimentally found that
all configurations running more than a few hundred of epochs yield consistent results, hence
our choice.

During the first 2,500 epochs, we assume that 50% of the sources are already registered in
the system, and all of them are honest – this assumption of a “warm start” is realistic because
most of the blockchain-based applications run an initial genesis phase, where the chain is
populated with a solid history of valid blocks in a controlled way. During the remaining
2,500 epochs, we add the remaining sources, including the malicious ones. These can join

120 Services Layer: Trustworthiness in the IoT Edge-Cloud Continuum

12.5% 25.0% 37.5% 50.0%
Percentage of Malicious Sources

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ut

h
In

fe
re

nc
e

Ac
cu

ra
cy

Med (uniform)
Med (bursty)

Med-R (uniform)
Med-R (bursty)

Med-RB (uniform)
Med-RB (bursty)

Fig. 5.5 Truth Inference Accuracy: the percentage of requests by a client that get satisfied
within a tolerance threshold.

the network following either a uniform distribution, thus randomly picking an epoch, or a
bursty distribution. In the latter case, we ensure that all malicious sources join the network
at once, simulating the worst case of colluding sources operating simultaneously.

Our first experiment aims to validate the solidity of the Rating algorithm and the use-
fulness of blacklisting sources that are identified as malicious. For this reason, we ran
simulations adopting a single Truth Inference metric: the median – i.e., we consider τ(M) to
return the median of all sensor values in M, obtained with a single request. We name this
baseline algorithm “Med”. We then compare its performance against “Med-R”, in which
we additionally perform the Rating algorithm. In particular, our implementation of ρ(M)

outputs, for each t ∈M, the distance of t from τ(M), normalized as 1
1+((t−τ(M))/TOL)2 −1,

to output a value between 1 and −1 (in our case, if the distance is more than 3°C, the
score will be below 0), picking the minimum value for each source. Next, the reputation of
each source is calculated as a convex combination of R and ρ(M), tuned by a parameter α ,
(1−α)R+αρ(M) where R is the old reputation value, and α is a parameter that tunes how
much the new score affects the reputation – in the simulations, we set it to 0.5. Finally, we
show the performance of “Med-RB”, where we perform both the above Rating algorithm
and the blacklisting step, excluding sources with a reputation below a threshold.

5.2 Blockchain-based Oracle Architecture for IoT 121

0 1000 2000 3000 4000 5000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
Re

ca
ll

Threshold
-0.8
-0.6
-0.4
-0.2

Fig. 5.6 Blacklisting Recall: the percentage of all the malicious sources that the system is
able to detect and ban over time.

Figure 5.5 shows the results obtained by executing the three algorithms over different
percentages of malicious sources, with the maximum being set to 50%, as a higher value,
according to the well-known 51% problem, would compromise the entire network [162]. The
bar chart shows the Truth Inference accuracy, the ratio of client requests that get an accurate
response, for uniform and bursty arrival rates. Results show how the rating step significantly
affects resilience against a certain number of malicious sources. We also expect a much
better effect against defective or low-quality sources, as in our simulations, malicious sources
are performing a joint attack, which is the worst possible scenario. The chart also depicts
how blacklisting always has a better impact on inference accuracy. In particular, it allows the
system to hold up as many as 50% of malicious sources joining all at once, still yielding a
high accuracy – around 0.7. Simulations were performed taking into account different values
of blacklisting threshold and multiple repetitions.

Furthermore, we study the impact of our Med-RB strategy in terms of “blacklisting preci-
sion and recall”. The rationale is that different use cases may privilege certain requirements
over others. For instance, it may be more important to timely get rid of all malicious sources,
while tolerating a reasonable number of honest sources to be kicked out as well (high recall).
Conversely, it may be affordable to keep few malicious sources, while ensuring that all
banned sources are malicious (high precision). The first case is shown in Figure 5.6 over

122 Services Layer: Trustworthiness in the IoT Edge-Cloud Continuum

0 1000 2000 3000 4000 5000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on

Threshold
-0.8
-0.6
-0.4
-0.2

Fig. 5.7 Blacklisting Precision: the percentage of all the banned sources over time that are
actually malicious.

time for different suitable values of “blacklisting threshold”. We can see the recall values to
be consistent with the expectations: higher thresholds mean less permissive scenarios, thus
higher recall. However, we notice that only the most permissive threshold underperforms
and, yet, yields a high recall value – above 0.8 – at the end of the simulation. An even
better result is shown in Figure 5.7, where, no matter the threshold, the precision stabilizes
between 0.9 and 1.0, with only tiny differences that are in line with the expectations: the
more permissive the policy, the higher the precision and vice versa. High precision scores
indicate high reliability and the ability of the technique to identify and kick out malicious
data sources with high accuracy, regardless of the threshold. The evaluation confirms that
Med-RB is a solid baseline for our scenario, as its only additional cost is to store the result
of the Rating algorithm on-chain, which can be easily controlled by setting an upper bound
to the number of selected sources. Med-RB can be used as a first building block for further
evolution, including more parameters.

Chapter 6

Use Cases: Deployment in the IoT
Edge-Cloud Continuum

This Chapter demonstrates the versatility and extensibility of the architecture by using it
in different projects , namely: the Arrowhead Tools1 and the MAC4PRO [25]. The use
of the architecture in different conditions addresses RQ (iv): How can we deploy the same
architecture in different scenarios that have different edge-continuum configurations, while
considering different system end goals and requirements?.

Section 6.1 provides a comprehensive review of the state-of-the-art of modern SHM
systems. Our literature review shows that the majority of proposals feature a tailor-made
deployment for a specific use case, and the system components are bound to a specific
location (i.e., the cloud or the edge). The remainder of this chapter demonstrates how the
proposed architecture addresses these issues. Section 6.2 illustrates the use of the architecture
in the MAC4PRO project. In the context of the project, the challenge is to deploy the
same architecture across different SHM pilots, each with diverse edge-cloud continuum
configurations. Section 2.2 exemplifies how the the architecture adapts to the requirements of
the Arrowhead Tools project. The Arrowhead Tools project encapsulate different engineering
pipelines that must be cohesively encompassed by the proposed architecture. The architecture
was deployed in the Arrowhead SHM pilot to achieve the following goals: reduction of
engineering costs, integration of legacy systems, and interoperability with IoT frameworks.
To address these issues, we leverage most of the solutions presented in the Chapter 3 that
address interoperability challenges. We also illustrate the caching solutions from Chapter 4
applied in the SHM Arrowhead pilot.

1https://tools.arrowhead.eu/home/

124 Use Cases: Deployment in the IoT Edge-Cloud Continuum

6.1 Background

This section provides the background on the use of IoT systems for monitoring tasks. We
describe the current state of the art of IoT-based system for SHM, then we compared our
solution with the others in the literature.

Several recent studies investigate the integration of the IoT paradigm for IoT monitoring
applications. In addition to connecting smart sensors to the Internet, such integration consists
of deploying software architectures in the continuum to collect, store, and analyze monitoring
data. A reference architecture is discussed in [13], including four different components: (i)
smart objects, (ii) gateway, (iii) cloud, and (iv) remote station for data access and visualization.
Two IoT-SHM use cases related to the safety and protection of masonry buildings are
presented, although the development of the software component is still in a preliminary
stage. As previously observed, structural assessment through non-destructive techniques
can involve a large amount of data collection due to high frequency sensor sampling and
long measurement periods necessary for high quality information retrieval [163]. For this
reason, cloud infrastructures often provide the storage and computing resources of IoT SHM
platforms. In [14], the authors use the AWS IoT cloud platform to manage smart sensors
installed on a single-track railroad bridge; the raw sensor data is stored using DynamoDB and
displayed through a custom web interface. Similar sensor-to-cloud workflows are proposed
and tested in [15] and [164]. Finally, in [17], the authors propose a Digital Twin framework
for SHM that uses edge nodes for data cleaning and preprocessing tasks. However, the paper
focuses on the modeling of the DT rather than the underlying platform that supports it. We
emphasize that the aforementioned approaches propose architectures tailored to a specific
use case; moreover, the application components are usually bound to a specific processing
location - e.g., the cloud. Much less attention has been paid to the design of general-purpose
monitoring software architectures that can abstract from domain-specific industrial and civil
engineering information and support heterogeneous sensor devices. We review the most
promising solutions available in the literature, focusing on those that address problems related
to SHM (see Table 6.1), and highlight the differences with respect to our work by focusing
on the following features:

• Interoperability: the ability to easily integrate dissonant interfaces and data structures
from sensors and software components into the system.

• Modularity: The ability to divide the system into independent modules that can be
developed, maintained, and managed separately.

• Agnostic design:

6.1 Background 125

– Infrastructure: The ability to remain agnostic to the underlying hardware infras-
tructure across different deployment scenarios to accommodate different edge
and cloud computing node configurations.

– Application: the flexibility to work with different software configurations without
being locked into specific technologies or implementations.

• Edge-Cloud Continuum Support: The ability to work seamlessly across edge and cloud
computing environments.

In their study, Seongwoon et al. (2018) [16] examine the benefits of using Service
Oriented Architectures (SOA) for monitoring systems. They argue that the ability to compose
independent and reusable software components is advantageous for this purpose. The
architecture developed in this thesis follows a similar approach, but considers the entire edge-
cloud continuum rather than centralizing computation solely in the cloud. In [165], an SHM
architecture is proposed where software components are distributed across the edge-cloud
continuum. They adopt a modular design that can accommodate different infrastructures.
Our architecture differs by prioritizing interoperability and maintaining the flexibility of
software components that are not tied to specific technology implementations. A collection
and classification of several SHM systems deployed on bridges has been presented in [166].
The authors analyze the different sensing and communication technologies and the most
common data processing algorithms for early warning. Although many aspects were covered,
an architectural design that allows replicability of the proposed solution was not considered,
nor was the potential of the edge-cloud continuum. The work in [167] presents the integration
of a bridge SHM system with a BIM model, allowing a 3D bridge model to directly access
bridge health data in real time. IoT sensors were deployed and communicated via WiFi
to an IoT web platform. The limitation of this work is that it focuses on the BIM aspects
of the system and the specifics of bridge modeling, rather than the software architecture
to support it. The work presented in [168] designed and implemented an architecture to
support fiber optic sensors for SHM. This architecture enables real-time data processing
using an Apache Kafka-based stream processing system. Their system was custom-built
to meet stringent time constraints while processing large amounts of data. As a result, the
architecture is tightly coupled to its specific technological implementation and underlying
infrastructure, with limited consideration for interoperability. Our approach prioritizes
interoperability, which simplifies the integration of new sensors and software components
and enables efficient updates. This design greatly enhances the deployment of our system
across different surveillance structures, which often require different hardware and software
components.

126 Use Cases: Deployment in the IoT Edge-Cloud Continuum

Table 6.1 Comparison of the proposed architecture to the literature

Solution interoperability modularity agnostic-design continuum support
infrastructure application

[16] ✗ ✓ ✗ ✓ ✗
[165] ✗ ✓ ✓ ✗ ✓
[166] ✗ ✓ ✗ ✓ ✗
[167] ✗ ✗ ✓ ✗ ✗
[168] ✗ ✓ ✗ ✗ ✓
Our proposal ✓ ✓ ✓ ✓ ✓

6.2 MAC4PRO

In this section, we described how the proposed architecture was implemented and deployed in
the context of the MAC4PRO2 project, a research effort aimed at developing an infrastructure-
agnostic and general-purpose monitoring platform for the condition assessment of industrial
and civil infrastructures leveraging the ultimate technologies delivered by the Information,
Software, and Industrial Engineering communities.

We present a complete implementation of the abstract architecture, illustrated in Figure
6.1, which meets the aforementioned requirements and validate the architecture versatility in
two distinct experimental campaigns related to the condition monitoring of real facilities in
their operative environment. The first test-bed refers to the monitoring of a concrete building
during seismic events simulated through a shaking table. The second use case pertains
to identifying leakage in hydraulic circuits via acoustic emissions. For both campaigns,
we discuss the deployment of the architectural components in the edge-cloud continuum
and present diagnostic results. Additionally, we conducted a comprehensive performance
evaluation to assess the architecture capabilities.

The design of each architectural layer are within MAC4PRO are presented in their
respective subsections. Thus, Subsection 6.2.1 delves into the sensing layer, Subsection 6.2.2
provides a comprehensive overview of the interoperability layer, Subsection 6.2.3 details
the data management layer, and Subsection 6.2.4 expounds on the service layer. Subsection
6.2.5 presents the performance evaluation conducted for the proposed deployment. Finally,
Subsection 6.2.6 and Subsection 6.2.7 are dedicated to an extensive experimental validation
phase on two representative benchmark scenarios for condition monitoring.

6.2.1 Sensing layer

The Sensing layer corresponds to the Sensor Networks (SNs) in charge of data gathering.
As a general observation, for a large-scale structure, we expect that the deployment of a

2https://site.unibo.it/mac4pro/

https://site.unibo.it/mac4pro/

6.2 MAC4PRO 127

Se
ns

in
g

La
ye

r
In

te
ro

pe
ra

bi
lit

y
La

ye
r

D
at

a
M

an
ag

em
en

t
La

ye
r

Se
rv

ic
e

La
ye

r

Sensor WT Network WT Processing WT

Persister MashupData Aggregator Anomaly Detection

Data
Plotter

Device
Configurator

Blockchain
Integration

Third-party
Application

Thing Description Directory

Fig. 6.1 MAC4PRO implementation of the reference architecture.

128 Use Cases: Deployment in the IoT Edge-Cloud Continuum

single, multi-hop SN will introduce some pitfalls in terms of both end-to-end performance
and reliability, as largely discussed in the literature [169]. For this reason, we assume that
the same structure can be instrumented with multiple SNs consisting of Extreme Edge Nodes
(EENs), geographically isolated or with some spatial redundancy. These EENs may be
heterogeneous regarding sensing and computational capabilities, communication protocols,
and generated data formats. This heterogeneity is important for full-scale structural inspection
to overcome the limitations of individual sensing technologies and their operative ranges.
To capitalize on that, we have designed a distributed SN consisting of small-footprint, low-
power, and light-weight EENs, i.e., peripheral devices integrating, in a thin form factor,
all the circuitry necessary for heterogeneous data sampling, conditioning, and pre- and
post-processing [170].

Despite the advantages in terms of electrical characteristics [171], the designed EEN is
unique in that it offers computing functionalities implementing sensor-near feature extraction
for structural diagnostics. The embedded algorithms comprise, among others, an exhaustive
list of parameters (e.g., amplitude, energy, count) for acoustic and vibration data processing.

6.2.2 Interoperability Layer

The Interoperability layer allows the platform to abstract as much as possible from the
characteristics of the sensing units. The interoperability support takes advantage of the WoT
standard. In MAC4PRO, the Interoperability layer is composed of three classes of WTs as
shown in Figure 6.1:

• Sensor-related WTs. We associate a WT to each sensing unit of the SN, exposing
the data produced from that EEN as readable properties, the configuration settings as
writable properties, and supported commands as actions. For instance, for the case of
tri-axis accelerometers illustrated in Section ??, the properties include the raw signal
values in each direction and the sampling frequency, while the actions include the
possibility to turn on/off the data acquisition on a specific axis. Thanks to the WT
abstraction, we utilize the MODRON platform [?] to establish a bidirectional, logical
communication channel with each device of the Sensing layer through a uniform and
well-defined software interface. MODRON is an IoT platform developed by researchers
at the University of Bologna. It provides features such as automatic integration with
WTs, time-series storage, and visualization.

• Network-related WTs. We assign a WT to each SN, modeled as a whole. In such
case, the WT includes links to the Sensor WTs composing that SN. In addition, it
may expose aggregated properties (e.g., the average network performance) and global

6.2 MAC4PRO 129

commands (e.g., turning on/off the SN by issuing the same command on each sensor
WT).

• Processing-related WTs. We associate WTs with software tasks in charge of processing
the sensor data, extracting second-layer information from the monitored structure, and
enabling error-handling capabilities. In such case, the WT is not connected to any
physical device but acquires data from multiple Sensor WTs, acting as virtual sensors.
However, since it exposes a TD with its own properties, actions, and events, it can be
displayed and controlled by tools such as the Device Configurator as a real device. For
instance, the implementation of vibration data analysis tasks, such as natural frequency
identification, can be provided with a dedicated WT, acquiring data from Sensor WT
(i.e., the accelerometers) and providing peak spectral values in output as TD properties.

The users and applications must be able to discover the WTs of an SHM scenario in order to
interact with them. To this aim, the Interoperability Layer includes a TDD (namely, ZION),
which is a register of available WTs that provide search capabilities upon the metadata
description of the devices (i.e., their TD) to the upper layer.

6.2.3 Data Management Layer

The Data Management layer collects the SHM data, aggregates it, and supports the analytics.
To this aim, it leverages the facilities of the underlying Interoperability layer, specifically
the WT abstractions, to gather data from heterogeneous sensing units. The data acquisition
is performed via the Persister Mashup through a three-stage procedure called task. First, a
task retrieves the TDs of the WTs of interest from the TDD. Then, it establishes a direct
connection to each WT. Finally, it issues a sampling sequence of actions and saves the
returned data to the designated databases. The user can fully configure each task through a
REST API; for instance, it is possible to specify the start time and frequency of execution, as
well as its type (one-shot or periodic). In addition, the user must indicate the data source(s) to
be queried (i.e., the WTs), the interaction affordance necessary for sampling the sensory value
(e.g., a property), and a proper mapping function if the received data must fit a predefined
database scheme.

Finally, SHM data are stored in the target database. To increase performance and
scalability, the process of persisting SHM data to the target database(s) is queued during
execution and the queue is processed using the maximum number of available threads. It can
also be distributed by splitting the workload across multiple instances, allowing tasks to be
parallelized, increasing system throughput and reducing processing time.

130 Use Cases: Deployment in the IoT Edge-Cloud Continuum

The collected data are immediately available to the Service layer above and, simultane-
ously, are also used by the other two components on the Data Management layer shown in
Figure 6.1. The Data Aggregator extracts features from the time-series data retrieved from
the Persister. It includes standard statistical aggregation methods (e.g., mean, maximum, and
minimum of a time-series), allowing for easy integration of context- and sensor-dependent
aggregation methods through an extendable interface. The extracted features are stored to be
quickly accessible for later processing or visualization steps.

The Data Management pipeline includes collaboration between the Data Aggregator
and the Anomaly Detection module: the first extracts features that the second utilizes to
perform its computation. Both components use raw and feature data to assess the condition
of the monitored structure, detect anomalies, and provide insights for maintenance operations.
Different technical appliances may require specific analysis strategies and models to identify
defects accurately; for this reason, the component is designed to be highly modular, allowing
for the dynamic loading of new algorithms. This need for modularity is justified because the
resource utilization of the involved diagnostic algorithms may vary depending on multiple
causes: the nature of processed waveforms (vibrations vs. AEs) and the global/local value
of the computed damage-sensitive features. Global damage indexes are employed for the
analysis of vibration data, which can be computed only in a post-processing phase upon
aggregating EEN-related information. Therefore, vibration data’s data aggregation and
anomaly detection components work asynchronously, with periodic queries extracting data
from the databases, processing it on the cloud, and storing the computed outputs. Conversely,
local processing is suitable for AE data. AE techniques are recommended when the primary
source of defects is intrinsically related to energy release. The key AE parameters for real-
time assessment are signal peak amplitude, signal energy and AE count, which are strictly
EEN-dependent. Time analysis of these parameters allows early detection and localization of
incipient faults such as growing cracks in reinforced concrete, corrosion processes in metal
structures, or leaks from pipelines [172].

6.2.4 Service Layer

The Service layer uses the data access APIs of the Data Management layer to provide
user functionalities. Third parties can develop these or be custom implemented directly
by the MODRON platform. The built-in services include the Data Plotter, MODRON’s
dashboard for visualizing the stored data (raw and processed), the Device Configurator, a
graphic interface to manage devices, and the Blockchain Integration, which guarantees data
transparency and immutability.

6.2 MAC4PRO 131

Fig. 6.2 The Data Plotter depicting vibration and AE sensor data from the experimental
campaigns.

The Data Plotter offers a wide range of functionalities allowing users to create custom
charts, filter data based on the WTs time interval, and apply various transformations to the
displayed data. A representative screenshot of the Data Plotter is reported in Figure 6.2,
considering real-world data of the two experimental campaigns presented in Section ??. In
addition, it supports exporting charts and data in multiple formats, making it easy to embed
it into other applications and share it with different collaborators.

Through the Device Configurator, which is also utilized in the Arrowhead Tools project,
end users can observe the value of a property, issue an action for modifying WT configura-
tions, and subscribe to events to receive real-time updates from the WT.

Finally, the Blockchain Integration service provides an additional layer of security and
trust to the architecture in SHM scenarios of critical facilities (e.g., buildings, bridges, indus-
trial plants, as described in Section 5.2. The data logging system exploits the blockchain’s
feature of maintaining a permanent and unalterable history of transactions to guarantee the
immutability and transparency of the SHM data. Specifically, events related to detecting an
anomaly in the structure are stored on the chain, making them easily verifiable by external
auditors.

132 Use Cases: Deployment in the IoT Edge-Cloud Continuum

6.2.5 Performance Analysis

This section aims to comprehensively characterize the proposed architecture and its imple-
mentation by examining its key variables and identifying potential bottlenecks. We conducted
a thorough evaluation encompassing the most significant metrics at each infrastructure level
– i.e., EEN, edge, and cloud. We examined the effects of task execution under different
edge-cloud continuum configurations, focusing on the trade-offs associated with the feature
extraction task detailed in Subsection 6.2.3. This task holds particular significance as it
reduces the data dimensionality. To evaluate its impact, we analyzed the deployment of this
task on both the EEN and in the cloud.

Concerning the EEN, we analyzed the impact on energy consumption when performing
feature extraction onboard or not. To this end, the number of collected samples per sensor
(single acquisition) was varied (1024, 4096, and 16384), and the energy spent to compute
these features and transmit them (or raw data) has been analyzed, encompassing different
wireless transmission technologies [173]. Figure 6.3 summarizes the results and highlights
that performing feature extraction on the EEN is more efficient: this is coherent with the fact
that the energy expenditure in data processing is minimal if compared to the transmission
costs of wireless modulus. This pattern characterizes all the evaluated communication
technologies and is enhanced when the data payload increases. An IoT analyzer[174] has
been used for energy profiling, considering the hardware and software components of our
specific architecture. In particular, in computational terms, we have assumed the electrical
properties of the STM32F3 family of microprocessors (maximum clock frequency of 72 MHz,
40 mA and 10 µA in run and sleep mode, respectively).

BLE 5.0 802.15.4 802.11 PSM 802.11 ah LoRa
Transmission Technology

100

101

102

103

104

En
er

gy
 (m

J)

1024 Samples
EEN
cloud

BLE 5.0 802.15.4 802.11 PSM 802.11 ah LoRa
Transmission Technology

100

101

102

103

104

En
er

gy
 (m

J)

4096 Samples
EEN
cloud

BLE 5.0 802.15.4 802.11 PSM 802.11 ah LoRa
Transmission Technology

100

101

102

103

104

En
er

gy
 (m

J)

16384 Samples
EEN
cloud

Fig. 6.3 Energy consumption analysis of feature extraction on EEN.

The placement of feature extraction within the edge-cloud continuum directly impacts
the amount of data transferred between the edge and the cloud. Edge-cloud data transfer is a
key variable in SHM scenarios, where poor network connectivity is a common challenge.
Structures under monitoring often lack dedicated networking infrastructure and are exposed
to various environmental hazards, including adverse weather conditions. Therefore, we

6.2 MAC4PRO 133

evaluated data payload sizes when performing feature extraction at the EEN or in the cloud.
We assume that each data acquisition generates 2,500 samples, which are transformed into
human- and machine-readable formats through the WT abstractions. Each edge device is
equipped with a tri-axial acceleration sensor and with three-channel AE SNs. In the AE
case, we extract eleven features (summing all the energy and time-related features), while
in the accelerometer case, we extract six features – the number of frequencies of interest.
Consequently, the feature extraction payload size varies between these two types of SNs.
The results of this evaluation, depicted in Figure 6.4, illustrate the byte size of the payload
for different configurations. Notably, performing feature extraction in the cloud results in a
higher workload on the network.

5 10 15 20 25
Edge Nodes

103

104

105

106

By
te

s

EEN accelerometer EEN Acoustic cloud

Fig. 6.4 Data payload size comparison when performing feature extraction in EEN versus in
the cloud.

Finally, we aim to understand how the increasing workload impacts the cloud, especially
when receiving raw data and performing feature extraction. As the same cloud application
can monitor several structures, we scaled up the number of monitored structures to analyze
how the cloud application performs under these conditions. We assume that each monitored
structure is equipped with 10 edge nodes. As such, we are modeling dense and realistically
complicated geometries, which require a fine sensor installation plan to capture different
damaging phenomena. We realize that in real use cases, this number is different depending on
the physical properties of each structure. For our experiments, we simulated data transmission
frequencies based on real-world scenarios. Each edge node transmits an accelerometer
payload every hour and an AE payload every minute. This higher AE sampling rate is
typically necessary when monitoring degraded structures, we opt for evaluating the system in
this configuration as the deployed cloud applications needs to able to support the system in

134 Use Cases: Deployment in the IoT Edge-Cloud Continuum

critical scenarios. To scale the data generation process, we developed a workload generator
that emulates the edge transmission of accelerometer and AE data. The cloud application
in this scenario comprised two components: the Data Aggregator and the Persister Mashup,
consisting of a NodeJS and InfluxDB Docker container, respectively. Each container had
access to one logical CPU (Intel(R) Xeon(R) Gold 6238R CPU @ 2.20GHz) and 4 GB of
RAM. The workload generator is connected via LAN to accurately assess the performance of
the cloud application under controlled and consistent network conditions. Each experiment
represents a time window of 10 minutes of continuing transmitting data. Figure 6.5 shows the
processing latency from data generation to its inclusion in the database and it demonstrates
that the feature extraction component is scalable, as increasing the workload does not
significantly impact its execution time. Additionally, the system bottleneck is associate to
managing multiple connections and efficiently transforming and storing data in the database.
Notably, the system showcases high scalability, as even with constrained resources, it can
handle multiple monitored structures. To further enhance the system scalability, scaling the
cloud computational nodes horizontally or vertically is a viable option.

Summarizing the conducted evaluation, performing feature extraction in the EEN de-
creases its energy consumption the amount of bytes transferred between the edge and the
the cloud. On the other hand, the additional computation imposed by performing the feature
extraction in the cloud is minimal, and the cloud offers greater stability compared to the
edge. Moreover, conducting feature extraction in the edge increases the complexity of the
EEN, which may require more expensive equipment. In conclusion, there is no universally
optimal component placement within the continuum. Instead, a careful analysis of trade-offs
is essential to address each scenario’s unique characteristics. Fortunately, our architecture
versatility enables the exploration of various deployment configurations, empowering users
to adapt it to their specific needs.

6.2.6 Use Case #1: concrete frame under seismic excitation

The structure

The specimen used within this experimental campaign is a two-story reinforced concrete
(RC) frame, 3×3m (x and y in-plane directions), 4m tall (z direction), having columns and
beams with cross-sections 20×20cm and 20×30cm, respectively. The frame was purposely
designed according to non-seismic codes, namely without joint resources for ductility as
requested by recent seismic provisions, to represent a bulk of existing non-recent buildings.
The structure is built upon two one-way ribbed floor slabs lightened by hollow clay blocks,

6.2 MAC4PRO 135

10 20 30 40 50
Monitored Structures

0

200

400

600

800

1000

La
te

nc
y

(m
s)

FE

Fig. 6.5 Cloud application scalability.

with the possibility of applying additional masses by steel plates at different points: a picture
is shown at the bottom of Figure 6.6.

Testing was conducted at the seismic hall of the ENEA Casaccia Research Center, which
is equipped with a 4×4m shaking table capable of applying seismic inputs on large mock-ups
of structures up to 30 t of weight. To this end, the seismic acceleration recorded in Norcia at
Savelli Station on 30 October 2016 was selected as the input shaking force since it provoked
a disastrous earthquake in Italy. Signals were applied with increasing levels of maximum
Peak Ground Acceleration (PGA), from 0.1 to 0.8 g, to damage the frame progressively.

The sensor network

Two SNs comprising three EEN devices (one per floor) were installed on two opposite
columns of the frame: the positions were selected after a preliminary numerical simulation
of the elasto-mechanical properties of the structure. Splitting the EENs in two different
SNs has been preferred over the deployment of one single network in order to minimize the
length and the number of cables to be deployed, which would have otherwise been affected
by high electromagnetic noise and interference. Two EENs (one per SN) were connected to
three G150 AE transducers: the bonding to the structure was realized via metal platforms
for landing magnetic sensor holders. All EENs were programmed to acquire, at the same
time, tri-axial accelerations; for those connected to AE transducers, the sensing and on–board
processing of AE features was also enabled.

136 Use Cases: Deployment in the IoT Edge-Cloud Continuum

Internet

Ex
tr

em
e

Ed
ge

Ed
ge

C
lo

ud

Sensor WT

Network WT

Pe
rs

is
te

r M
as

hu
p

Data Aggregator Anomaly Detection Data Plotter

Thing VisualizerTDD

Sensor WT Sensor WT

Processing WT

Sensor WT

Network WT

Sensor WT Sensor WT

Processing WT

Edge Node #1 Edge Node #2

EEN #1.1

EEN #1.2

EEN #1.3

EEN #2.1

EEN #2.2

EEN #2.3

Fig. 6.6 The MAC4PRO deployment plan on the reinforced concrete frame (red dots indicate
the position of the AE transducers).

MAC4PRO Deployment Plan

Figure 6.6 illustrates the deployment plan of MAC4PRO to enable the monitoring of the
concrete structure. In this scenario, each SN was connected to an edge device (i.e., Raspberry
Pi), which abstracts the particularities of the SN and EENs, instantiating them as WTs.
Additionally, a processing WT was utilized to perform edge computation tasks. Specifically,

6.2 MAC4PRO 137

it reads raw sensor data – as a binary data stream – and converts it to a well-structured human-
and machine-understandable format, including additional metadata (i.e., collected data
timestamp, unique universal sensor id). It performs the first step of data cleaning and error
handling. The processing WT handles exceptions and ill-formed data (generated by sensor
or communication errors) not to jeopardize the whole processing pipeline. It is strategically
placed at the edge for a twofold reason: (i) there is intense data communication between the
processing WT and the other WTs that could occupy a large portion of the available bandwidth
between cloud and edge; (ii) some error handling strategies trigger device commands, which
need to be executed with low latency not to propagate errors and, thus, minimize the data
loss. Finally, the edge is the first infrastructure component of our platform connected to the
Internet. For this reason, it implements security mechanisms. The data transmission from the
cloud to the edge is encrypted through the HTTPS protocol. Additionally, we leverage the
usage of unique identifiers assigned to authenticated applications and users to control and
monitor the access for the exposed WTs.

Regarding the continuum configuration, the computation-intensive tasks were deployed
in the cloud server – namely, the Data Management and Service layers components. The
TDD is the only component of the Interoperability layer (see Section 6.2.2) deployed in the
cloud since it indexes the WTs from all edges nodes, and it is the entry point enabling the
discovery of the MAC4PRO WTs. In this scenario, the vibration data analysis – performed
by the data aggregator and the anomaly detection – was not performed in real-time since it
was not the test-bed goal. The vibration data was first acquired through the SNs, then stored,
and finally processed to investigate the effects of the emulated earthquake. On the other hand,
feature extraction of AE data was computed directly at acquisition time by exploiting the
unique on-sensor computing capabilities of the developed EEN devices. The EEN processing
is crucial to diminish the burden of the subsequent applications in the computing pipeline,
saving considerable bandwidth and storage. Considering only AE data, the performed EEN
computation imposes a reduction of 99.8% in the transmitted payload [175].

6.2.7 Use Case #2: hydraulic circuit under Acoustic Emission leakage

The structure

The second experimental campaign aims to validate the ability of MAC4PRO architecture to
detect fluid leakage that might arise during the pressurization of industrial facilities, such as
vessels. To this purpose, the hydraulic circuit in Figure 6.7 has been built and exploited as
a target structure. The circuit comprises a pipe loop that can independently pressurize two

138 Use Cases: Deployment in the IoT Edge-Cloud Continuum

1000-liter vessels; moreover, it can be controlled from a dedicated control room or remotely
through a dashboard.

The sensor network

As depicted in Figure 6.7, one SN consisting of three EENs, each connected to one AE
transducer (i.e., S1, S2, and S3) installed by magnetic connections along the pipeline of the
pressure circuit. One sensor (S2) was attached in proximity to the opening valve (inset in the
center of the figure) used to simulate leakage, while the remaining two are far apart along the
pipe components.

MAC4PRO Deployment Plan

Figure 6.7 depicts the placement of the MAC4PRO architectural components in the hydraulic
circuit. Compared to the previous test-bed presented in Section 6.2.6, we introduced the
following changes in the deployment plan. First, we deployed a single edge node since
only one SN exists in the scenario. Second, the Data Aggregator component was deployed
only in each EEN, while in the previous test-bed the feature extraction was performed in
the cloud and the EEN. Moreover, the Thing Visualizer component was not deployed in this
test-bed since updating sensor configurations and metadata at run-time was unnecessary. We
highlight that such changes to the deployment plan were possible thanks to the modularity
and versatility of the MAC4PRO architecture can be easily customized to support many SHM
scenarios.

6.3 Arrowhead Tools Project

Condition Monitoring (CM) is a critical application of IoT in Industry 4.0 and Smart City
scenarios, especially following the recent energy crisis. CM aims to monitor the status of
a physical appliance over-time and in real-time in order to react promptly when anomalies
are detected, as well as perform predictive maintenance tasks. Current deployments suffer
from both interoperability and management issues within their engineering process at all
phases – from their design to their deployment, to their management –, often requiring human
intervention. Furthermore, the fragmentation of the IoT landscape and the heterogeneity of
IoT solutions hinder a seamless onboarding process of legacy devices and systems.

In this section, we demonstrate how Arrowhead Tools project tackle those issues by
integrating the architecture proposed (Section 2.2) into a toolchain context for CM of
industrial scenarios. The architecture was slighted adapted to leverage the concept of

6.3 Arrowhead Tools Project 139

Network WT Pe
rs

is
te

r M
as

hu
p

Data Plotter

TDD

Sensor WT

Internet

Edge Node

Anomaly Detection

Processing WT

Sensor WT Sensor WT

Cloud

Data Aggregator

S1 S2

S3

Leak Source

Extreme Edge
Node #1

Data Aggregator
Extreme Edge

Node #3

Data Aggregator
Extreme Edge

Node #2

Fig. 6.7 The MAC4PRO hydraulic circuit deployment plan.

toolchains, in order to meet certain project objectives. In particular, we focused into three
different and generalizable toolchains, altogether concurring in achieving the following three
specific goals:

1. integrating third-party and legacy devices through a seamless onboarding procedure
supported by translation of standards;

2. automatically adjusting the working conditions of the devices in order to optimize their
maintenance and management costs according to the conditions of the environment;

3. supporting the integration with well-established IoT frameworks and cloud services to
lower the need for on-site intervention.

Within our proposal, the main enabler of toolchains is the Eclipse Arrowhead framework,
which provides local clouds with service-oriented capabilities, such as loose coupling,

140 Use Cases: Deployment in the IoT Edge-Cloud Continuum

discovery, and orchestration, and represents a single fruition channel for service providers
and consumers.

As a proof-of-concept implementation, we then discuss a use-case related to SHM, which
is also a demonstrator for the Arrowhead Tools project, also available in a video3. The
current pilot setting is composed of an SHM sensor network, hosting a number of inertial
sensors that monitor the vibrations of a model building. We firstly provided sensors with a
degree of interoperability by leveraging the W3C WoT standard. The use case is enriched by
the development of a number of engineering tools that comply with our proposed toolchain
architecture, making the use case an instance of our proposal.

The section is structured as follows: Subsection 6.3.1 presents the modifications made
on the reference architecture to encompass the toolchains. Subsection 6.3.2 presents our
demonstrator pilot, the sensor used, and the tools for their interoperability. Subsection 6.3.3
details the implemented tools and components for the three proposed toolchains within our
demonstrative implementation. Subsection 6.3.4 details the implementation of caching – i.e.,
CACHE-IT from Chapter 4 – within the system. Subsection 6.3.5 describes the experiments
and the validation results with a particular focus on the project objectives and discusses
takeaway messages.

6.3.1 Architectural Adaptations to a Toolchain-Oriented System

We set three project objectives for a CM scenario, in order to satisfy a number of KPIs that
are necessary for the current standards. In order to fulfill said objectives, we propose three
different toolchains which are compatible with the thesis overall architecture – as illustrated
in Figure 6.8 –, each one enabling a distinct functionality and composing software tools, that
perform tasks determined by their own layer, into pipelines.

Notably, the architecture utilized in Arrowhead Tools is an adaption of the reference
architecture to suit a toolchain setting. The first layer is shared among the toolchains since
the physical components are the base of any IoT-based system. The Interoperability layer
operates as a toolbox, providing general-purpose tools to each of the toolchains, each of
which selects a subset of components in order to enable its own interoperability. Tools from
the interoperability layer up to service layer may be deployed in the cloud, or in a local cloud
(i.e., locally with the structure). Interactions among tools and application systems in a local
cloud are mediated by a local instance of the Eclipse Arrowhead framework, which also
holds a connection with the outer world (i.e., the cloud). Following is the description of our
proposed three toolchains:

3https://youtu.be/1nEOJpXu9l8

https://youtu.be/1nEOJpXu9l8

6.3 Arrowhead Tools Project 141

• Data Toolchain: it is the traditional IoT pipeline – i.e., data acquition –, enabling the
main goal of the system. In the specific case of SHM, it provides end-users with infor-
mation about the physical health of the structures over time and can potentially identify
structural damages, which can lead to predictive maintenance and the avoidance of
accidents.

• Device Toolchain: it supports the management of physical devices of the system. The
toolchain utilizes device metadata to support system administrators with information
about device location, capabilities, version, and current configuration. Also, it allows
users or tools to alter the current devices’ settings in order to enhance or optimize a
certain feature of the system.

• Energy Toolchain: energy is a crucial factor for IoT-based systems. Devices are
numerous and designed to last for years, thus, a delicate balance exists between battery
lifetime and device operation. Improper use of the energy in the system can lead up
to a meaningful increase in costs related to maintenance. We leverage the energy
management of the system bringing it to the application level. The energy toolchain
monitors the energy harvesters, the consumption of each device, and the current and
future environmental conditions that may impact the energy.

The high-level design of each toolchain is a guideline to assist the implementation of
IoT-based systems for the CM domain and can be accomplished with a myriad of differ-
ent implementations that perform the roles described. However, in the next sections, we
exemplify and illustrate how we implemented each toolchain in the scope of our use case.

6.3.2 The SHM Pilot: Multi-Chain Components

As an instance of the above described toolchain architecture, we present here its concrete
implementation into the SHM pilot use case within the Arrowhead Tools project, reported
in Figure 6.9. The baseline of the use case features a structure to monitor and a set of
inertial sensors for SHM permanently attached to it. Each sensor cluster is managed by
a Cluster Head (CH) that acts as a sink for the data and interacts with any external actor.
Sensors are abstracted into WTs. Other legacy sensors, in our case a gas sensor, may be
added. Compliance between the WoT and Arrowhead is achieved through WAE, presented
in Section 3.2. All elements of our pilot that we identify with the sensing and interoperability
layer of our toolchain architecture are described in this section.

142 Use Cases: Deployment in the IoT Edge-Cloud Continuum

SENSING

INTEROPERABILITY

OPERATION

SERVICE Data
Service

Energy
Service

Device
Service

Network
Server

Device
Operation

Data
Operation

Energy
Operation

IoT
Protocol

Translator

Device
Interface

DATA
TOOLCHAIN

DEVICE
TOOLCHAIN

ENERGY
TOOLCHAIN

Service
Registry

Fig. 6.8 Extension of base architecture to support toolchains

The description of each toolchain is presented in Subsection 6.3.3. All the interactions
taking place among tools and application systems are mediated and overseen by an instance
of the Arrowhead Core Services.

We assume that the monitored structure is in a poorly connected environment, in which
providing cable connection to all the sensors is hard, therefore edge devices communicate
with each other via wireless connections and are powered by batteries. Sensing layer devices
employed in the pilot are either connected to a sensor network tailored for SHM or third-party
devices not easily integrated to an already deployed network. The devices that compose this
layer are utilized by the three toolchains, and are:

• SHM Sensor Network: The adopted monitoring network consists of intelligent sensor
nodes (SN) and related network interfaces. Each peripheral device is a micro-system
unit equipped with a microcontroler and sensors that capture triaxial accelerations and
angular velocities in a broad frequency range. Once signals are sensed by the peripheral
node, information is then transmitted to the CH controller through the companion
gateway network interface (referred to as SAN interface in [170] and in Figure 6.9).

6.3 Arrowhead Tools Project 143

Fig. 6.9 Toolchain architecture of the whole System-of-Systems, with a focus on the separa-
tion and the interoperability between the Arrowhead and the WoT ecosystems.

• The Gas Sensor Node: The gas sensor node is an autonomous end-device that embeds
an experimental gas sensor by STMicroelectronics [176]. The sensor supports SHM
scenarios in a number of ways – e.g., detecting the presence of heavy traffic load. In
addition to the sensor, the node integrates: a micro-controller unit, a LoRa transceiver,
and all the circuitry needed for the smart power supply system. Additionally, it is
equipped with a solar energy harvester, a battery management system, and a module
that monitors the condition in which the energy harvester works.

The Arrowhead framework is a key interoperability enabler; and, due to its pervasive
presence in all toolchains, it was omitted for clarity in all the following diagrams that illustrate
each toolchain, namely Figure 6.10, Figure 6.11, and Figure 6.13. Besides, the major tools
that enable interoperability are the ones presented and discussed in Chapter 3. In detail, each
device that composed the SHM network was abstracted as a WT, which had its TD indexed
by ZION. Besides, the WAE was responsible to bridge the communication between WT and

144 Use Cases: Deployment in the IoT Edge-Cloud Continuum

Arrowhead services. Additionally, the Arrowhead Adapter (AHA) was developed by other
partners of the project to facilitated the integration of legacy devices (e.g., the gas sensor)
with the Arrowhead ecosystem.

6.3.3 The SHM Pilot: Toolchains

This subsection presents the implementation of the three toolchains described in Subsec-
tion 6.3.1. The toolchains deployed in the pilot are modular and independently from each
other. However, it is common for them to be deployed together since their functionalities are
complementary.

Data Toolchain

GrafanaInfluxDB

WoT

L1 L2 L3 L4

AHA

Fig. 6.10 Data Toolchain

The Data Toolchain is the main functional toolchain in the use case, as its goal is to
acquire data from the sensors deployed on the structure and report it to the internet for
analysis. In this toolchain the data of both typology of sensors are send to MODRON
through their interoperability abstractions and store in a InfluxDB, which is connected to a
Grafana(i.e., the Data Plotter), providing live visualization of the sensor data. Data can also
be queried by third-party applications through MODRON’s interface.

Device Toolchain

The Device Toolchain enables a user to interact directly with the devices and issue them with
commands that change their operating conditions at run-time. The toolchain includes the
baseline application systems (i.e., the SHM sensor network), the gas sensor, AHA, the WAE,
ZION, and the Device Configurator. While both category of devices are wrapper through
their respective adapters (i.e., WAE and AHA), WAE is the component responsible to manage
and integration with ZION. To do so, it registers the WTs directly in ZION and it transforms
the AHA Arrowhead Service in a TD to be stored and managed by ZION. Connected to the

6.3 Arrowhead Tools Project 145

L1 L2 L3 L4

Fig. 6.11 Device Toolchain

indexer, is the Device Configurator, which lists all the WTs affordances and allows to the
user to trigger a specific actions that will change the targeted device behavior. A screenshot
of the Configurator is depicted by Figure 6.12.

Energy Toolchain

Wireless sensors are one of the key elements for many IoT applications because they are
easy to install and simple to connect to existing networks and infrastructures. One of the
main hardware enhancements to the initial baseline is a shift from cable-connected edge
devices to wireless ones. However, the latter are traditionally battery-powered, and this is the
main limiting factor to their extensive use in real applications [177]. To be compliant with
application-specific requirements (e.g., data sampling and transmission rate), the node power
consumption often does not guarantee an acceptable recharge rate of the battery leading
to not sustainable maintenance costs and too frequent short interruption of service. The
adoption of Energy Harvesting (EH) solutions helps to extend the battery life or even obtain
battery-less autonomous devices.Unfortunately, the design of an energy harvesting module is
usually a complex and strictly application-specific task requiring a lot of design efforts in
terms of both time and costs. It is in this context that an EH toolchain has been developed,
composed of the energy harvesters and a number of software tools: Dr. Harvester and the
E-Lifecycle Tool.

An EH circuit is comprised of three main functional blocks: i) the energy source module
(e.g., solar panel) to collect energy from the environment where the device works; ii) the
energy conversion and management circuit to efficiently power supply the device by using the
collected energy; iii) the energy buffer (e.g., rechargeable battery) to store the collected energy.
Customization based on application-specific requirements is needed to obtain effective EH
solutions. For example, the two considered case studies – the Gas Sensor and the SHM
sensor network (entirely powered by the CH, which is hosting the harvester) – have very

146 Use Cases: Deployment in the IoT Edge-Cloud Continuum

Fig. 6.12 A screenshot of the WoT–Arrowhead Device Configurator

6.3 Arrowhead Tools Project 147

WoT

L1 L2 L3 L4

AHA
Dr.

Harvester

E-Lifecycle
Dashboard

E-Lifecycle
Processor

E-LIFECYCLE TOOL

Fig. 6.13 Energy Toolchain

different power consumption and consequently, they need two different EH circuits. In this
work, the design effort to obtain suitable solutions for both case studies has been reduced
thanks to the developed Dr. Harvester tool.

Dr. Harvester

The tool implements a DT of the energy harvest system. It is comprised of a MATLAB-based
core application able to interact with an electrical circuit simulator. It is based on a set of
pre-designed EH circuits, each circuit is designed to match a given set of environmental
working conditions (i.e., solar irradiance, thermal gradients, and mechanical vibrations) and
a range of load power consumption (i.e., power consumption of the edge device).

Dr. Harvester is used to forecast the behavior of a remote-controlled edge device (e.g.,
Gas Sensor or SHM sensor network) under the provided working conditions. Here the
main outputs of Dr. Harvester are the remaining battery lifetime or the remaining time to
fully recharge the battery depending on the simulated working conditions. All the tasks
are triggered by the E-Lifecycle Tool through an Arrowhead-enabled REST interface. To
decouple the interaction with other tools, Dr. Harvester was converted into an Arrowhead
Service Provider. The tool, by registering services on the Arrowhead Framework of the local
cloud, allows remote submissions of simulations via a REST interface and retrieves results
on the remaining battery life that will then be used for optimization. Each request causes the
input to be validated, which is then forwarded to the MATLAB process to start the job. Since
a simulation might take time, it is handled asynchronously.

First, the E-Lifecycle Tool transforms sensor data in a data structure that complies with
Dr. Harvester’s simulation input, gathering the EH system meta-information (e.g., battery
storage capacity) and the working conditions of interest retrieved from the edge device (i.e.,
the actual electrical and environmental working conditions and the actual device’s battery
state of charge). Second, the E-Lifecycle Tool launches Dr. Harvester which executes the

148 Use Cases: Deployment in the IoT Edge-Cloud Continuum

simulation of the EH circuit corresponding to the input parameters. Third, Dr. Harvester
generates an output containing the simulation results. More precisely, the output generated
by Dr. Harvester contains the battery status (i.e., the battery is actually charging/discharging),
the rate of variation of the battery state-of-charge and the simulation status to inform the
E-Lifecycle Tool that the simulation has been completed correctly or not, and consequently
if the results are valid or have to be discarded. Figure 6.20 depicts the E-Lifecycle GUI
that supports the energy management of devices. The E-Lifecycle Tool is available as an
open–source application4.

As each simulation in Dr. Harvester can take time to execute, we deployed a caching
service within the E-Lifecycle Processor. This way, we decrease the significant waiting time
of future requests – enhancing user experience – and avoid redundant computation on the
server side [90]. The deployment of the CACHE-IT framework into the Arrowhead Tools
system is detailed in Subsection 6.3.4.

6.3.4 CACHE-IT Deployment

The Dr. Harvester has multi-thread limitations and requires considerable processing power
and time to respond to requests – a response is given after an average of ∼25s. Applications
– both GUI and back-end services – must perform several simulations encompassing all
possible duty cycles for each device, frequently leading to waiting times in the order of hours.
Adding new devices to the systems dramatically impacts its performance. The use case
presented is not time-critical compared to applications that need milliseconds of precision.
Although, high latency impacts the system in a twofold way: (i) Frequently, the environmental
conditions had already changed when all the simulations finished their execution; (ii) The
high screen loading time is a significant issue for user experience. Additionally, the evaluated
scenario implies having several identical sensors deployed. Without caching, it leads to
redundant computation performed by Dr. Harvester, wasting computation resources and
power. Consequently, we deployed the CACHE-IT framework which is responsible for caching
the outputs from the harvester DT. We detail the Caching Template utilized, providing insights
into the careful design choices and trade-offs we made to optimize performance.

This testbed caching strategy relies on domain knowledge; the data requests to Dr.
harvester contain information such as the device’s electronic features, battery percentage,
and the current solar irradiance, which is logged at the edge and transferred to the Cache
Controller by the History Transfer. We designed the caching strategy to leverage those
data to estimate each device’s battery and solar irradiance for the next period and produce

4https://github.com/UniBO-PRISMLab/arrowhead-optimizer

https://github.com/UniBO-PRISMLab/arrowhead-optimizer

6.3 Arrowhead Tools Project 149

caching orders instructing those resources’ caching. The other relevant Caching Template
configurations are the functions that define the caching strategy:

• gen function: we choose the Prophet algorithm as the underlying technique since it is
capable of forecasting time series data [178]. The gen function triggers the fit process,
which outputs a model capable of generating predictions. The function extracts the
historical solar irradiance and the battery level data points from the log and fits them
into the Prophet model. This fitting process allows Prophet to understand the trends
and seasonality present in our data. Once fitted, the model can generate a forecast for a
future period. This forecast becomes the function cOrders that we utilize to generate
caching orders.

• trigger function: this function is implemented to simply return a true value every
12 hours. The periodic reevaluation is chosen to ensure that our caching strategy
could respond to changes in demand patterns that might occur from day to day but
without causing unnecessary computational overhead by recomputing the strategy too
frequently.

• period function: this function is designed to output the values from the last 7 days.
This choice was based on the results obtained in [90]. This time frame balances the
need for a sufficiently large dataset to capture trends and patterns with the need to keep
the computational demands of the strategy manageable.

6.3.5 Results and Discussion

The effectiveness of the SHM application is validated on an existing use case, which consists
of an experimental model of a bridge (Figure 6.14) located at the Laboratory of Structural
and Geotechnical Engineering (LISG) of the University of Bologna. The structure represents
a 1:4 scale reproduction of a real composite steel-concrete bridge crossing the A14 highway
in Italy, near the city of Bologna. The scale replica preserves the materials and their
properties; changes concern only the dimensions. More information about the model bridge
manufacturing process and material properties can be found in [179].

The deployed SHM sensor network and its main components are displayed in the middle
callout of Figure 6.14, in which one CH (red point) and seven SNs (green points) are
noticeable, placed at strategic positions for vibration analysis, i.e., in correspondence of the
anti-nodal points of the first modal components. A snapshot of one SN installed at the bridge
deck joint has also been enclosed in the upper part of Figure 6.14. Besides, a vibrodyne
(Figure 6.14 blue point) has been applied to the bridge in order to apply a variable-intensity

150 Use Cases: Deployment in the IoT Edge-Cloud Continuum

Fig. 6.14 Bridge model under test.

harmonic excitation up to its power supply settings. In addition to the SHM network outlined
above, the deployment includes the gas sensor (Figure 6.14 orange points). Both the gas
sensor and the CH are powered by an EH circuit attached to a solar panel.

Integration with Legacy Systems

The three toolchains are composed of several tools that altogether concur in achieving the first
project objective: the seamless interoperability and the integration of legacy systems. This
is most evident for the tools that compose the Data and the Device Toolchains. The demo
environment illustrated above contains a number of off-the-shelf legacy devices and systems
that need an integration step in order to be fully operational in our heterogeneous scenario.
The SHM sensors were originally abstracted into WTs, however, they lacked interoperability
towards the Arrowhead Local clouds services. Hence, only with the WAE, we achieved a
fully interoperable layer, so that the interaction with the devices from the upper layers is
totally agnostic of the standard they comply with.

6.3 Arrowhead Tools Project 151

(a) Sensor readings of the SHM sensors on MODRON with the vibrodyne on.

(b) Sensor readings of the gas sensor on MODRON.

Fig. 6.15 The upper figure shows the accelerometer bursts that change after the vibrodyne is
turned on. The lower figure shows how the data from the gas sensor changes before and after
the gas sensor is sprayed with gas.

The validation of this aspect has taken place by means of the sensor values shown through
the Grafana dashboard via the Data Toolchain. Figure 6.15 shows the sensor values reported
into said dashboard. In particular, the upper figure shows how we solicit sensor readings by
turning on the vibrodyne and, thus, injecting vibrations into the structure. These are captured
by the accelerometers and reported in one of the last bursts on their Y and Z axes, also
visible in the picture (the X axis is not very significant as the bridge does not vibrate much
longitudinally). The exact same system is used to detect variations in the concentration of
gas, as captured by the gas sensor in the lower part of the figure. The validation shows a small
real-world fully operational system, however, the main advantage here is the interoperability:
in fact, adding more physical sensors or other systems does not cause the complexity to
increase, as the “hub” systems such the proposed architecture do not need any additional
interface to cope with onboarding processes, rather they take place seamlessly.

152 Use Cases: Deployment in the IoT Edge-Cloud Continuum

Performance Evaluation: Caching in an SHM

Fig. 6.16 The CACHE-IT framework deployed in a SHM case-study

To validate the impact of the caching added to the Energy toolchain, we validate our
design of edge caching experimented with a subset of the taxonomy features mentioned in
Section 4.1, and the CACHE-IT default approach of proactive edge caching. The architecture is
illustrated in Figure 6.16, which illustrates the scenario and the deployment of the CACHE-IT
framework. We evaluated the system with different configurations of cache design – specialist
and generalist – and caching strategy – proactive and reactive – and analyzed their impact
in terms of latency and cache hit rate. The four caching configurations developed for the
experiments are the following:

• Baseline: no-cache was deployed, and no edge device was used.

• Configuration #1 - Reactive Generalist Cache: it represents the traditional cache
system: once a request is made to Dr. Harvester, its response is then cached on the
edge.

6.3 Arrowhead Tools Project 153

• Configuration #2 - Reactive Specialist Cache: this is a simple algorithm that analyzes
the similarities between the input request data and the requests that it has cached. If
equivalent, then it replies with the cached data.

• Configuration #3 - Proactive Specialist Cache: Throught CACHE-IT we employed an
algorithm to forecast future requests and proactively cache them for a specific period.
Besides the static electronic features of the input payload, two attributes change over
time: battery percentage and solar irradiance. As described into Subsection 6.3.4,
we utilize the cache size period as the training dataset (the reason being that it is not
possible to evaluate the proactive cache with zero cache size), and we use the Prophet
data forecast algorithm to generate the predictions. Then we proactively cache twelve
hours of data – the duration of a single replication. Figure 6.17 depicts the forecast
and real values by Prophet for a single replication when we have 7-days of training
data, the dotted line separates the training set from the actual forecast.

We evaluated the configurations above against three different cache sizes – i.e., empty
cache, one day of cache, and 7-days of cache. Each experiment emulated ten cluster heads
for 12 and was replicated twenty times.

2020-05-21 2020-05-22 2020-05-23 2020-05-24 2020-05-25 2020-05-26 2020-05-27 2020-05-28 2020-05-29
Date

0

200

400

600

800

1000

irr
ad

ia
nc

e
(W

/m
2)

irradiance predicted irradiance battery predicted battery

70

75

80

85

90

95

100

ba
tte

ry
 (%

)

Fig. 6.17 Proactive caching (Configuration #4) predictions of battery life and solar irradiance
for seven days of training.

We deployed the Dr. Harvester in a server in our private cloud. The edge caching was
deployed in a computational node with low processing power – a Raspberry Pi –, and we
synthetically generated requests following a Poisson distribution from a personal computer.
The traffic generator and the edge caching devices were in the same LAN, connected through
WiFi. The traffic generator emulated the cluster head battery depletion, and the irradiance
data was provided by the National Solar Radiation Database5. In each experiment replication,

5https://joint-research-centre.ec.europa.eu/pvgis-photovoltaic-geographical-information-system/
pvgis-data-download/nsrdb-solar-radiation_en

https://joint-research-centre.ec.europa.eu/pvgis-photovoltaic-geographical-information-system/pvgis-data-download/nsrdb-solar-radiation_en
https://joint-research-centre.ec.europa.eu/pvgis-photovoltaic-geographical-information-system/pvgis-data-download/nsrdb-solar-radiation_en

154 Use Cases: Deployment in the IoT Edge-Cloud Continuum

0 1 7
Cache Duration (days)

0.1

1

10

Pr
oc

es
sin

g
Ti

m
e

(s
) -

 L
og

 sc
al

e

Baseline
Configuration #1
Configuration #2
Configuration #3

Fig. 6.18 Processing time results in logarithmic scale for different edge cache configurations

0 1 7
Cache Duration (days)

0

0.2

0.4

0.6

0.8

1

Hi
t R

at
e

(%
)

Configuration #1
Configuration #2
Configuration #3

Fig. 6.19 Cache hit rate results for different edge cache configurations

6.3 Arrowhead Tools Project 155

a random start date and an hour were selected from the solar irradiance database. Although
the edge device has limited storage capabilities, the data cached is a small payload. The cache
storage did not fill the device’s storage in any of the experiments. Consequently, we did not
need to utilize caching replace techniques. The impact of the different configurations through
different cache sizes is depicted in Figure 6.18 and Figure 6.19. As the time difference
between a cached response – a few milliseconds – and a response from the DT – ∼25s – is
substantial, the y-axis is on a logarithmic scale. Such a time difference further highlights the
need for a cache mechanism.

Configuration #1 is the simplest solution; though it has the worst performance, it still
significantly improves the latency compared to not using a cache. Configuration #2 is
a significant improvement metric-wise from the generalist – configuration #1 – solution,
obtaining more than 90% hit rate in all experiments and, consequently, a low response time.
However, its design has restricted a subset of solutions and requires higher engineering effort
to be adapted. Finally, the configuration #3 shows similar results to the configuration #2. The
main difference is that the proactive cache made requests beforehand rather than replying
with previously cached results. Both methods are effective; however, the proactive cache is
potentially more advantageous in scenarios where either AoI is essential.

Reduction of Engineering Costs

All illustrated toolchains increase the automation of the baseline as well as reduce the need
for human intervention, which implies a significant reduction in the cost of manual effort.
However, the major evidence of cost reduction was brought in by the Energy Toolchain,
presented in Subsection 6.3.3, which introduces a number of decision-making tools that
support the engineering process both at design time and run-time, greatly simplifying the
interaction with the physical components as well as guiding their parameters towards an
optimal resource consumption.

Controlling the data rate at which information is gathered is of utmost importance
in energy-efficient monitoring scenarios, especially when this parameter can be changed
remotely.Figure 6.20 shows the E-Lifecycle Dashboard with two tabs: one for the Gas Sensor
and one for the SHM sensors. The bottom of Figure 6.20 shows the Grafana-based dashboard
after the duty cycle was changed to 50%, it depicts the sensor bursts and their wake-up and
sleep state via the blue line. The caching system deployed was fundamental to enable the
operation of the Energy Toolchain, since it enable a decrease in more than 90% in the delay
time. The customization features of CACHE-IT enabled the energy toolchain deployment in
the scenario.

156 Use Cases: Deployment in the IoT Edge-Cloud Continuum

(a) The E-Lifecycle Dashboard.

(b) Sensor readings and duty cycles on MODRON.

Fig. 6.20 Screenshots showing the E-Lifecycle Dashboard (above) during the operation of
changing the duty cycle of the SHM sensors from 100% to 50%. The result of the duty
cycle change is shown through on three axes of a single SHM sensor (below): the blue line
identifies the wakeup intervals of the sensors. When the line is not set to 1 the sensors do not
perform any read operation.

The possibility to forecast the amount of energy available at a given time and for a given
set of working conditions and reconfigure all the devices of a remote complex system is the
key factor to obtaining a context-aware dynamic optimization of the performance of both
single edge device and the whole system. This methodology can be applied in many IoT
and IIoT emerging applications and contributes significantly to the engineering, deploying,
commissioning and maintenance costs reduction.

Chapter 7

Conclusions

This thesis aimed to design, develop, and deploy a flexible IoT monitoring system that
utilizes the edge-cloud continuum for SHM scenarios. This solution is intended to be
customizable and easily adaptable to diverse use cases. To reach such a goal, we divided our
objective into four main research questions (RQ): (i) How can a seamless interconnection be
established among diverse devices, applications, and systems in the context of IoT monitoring
applications?; (ii) What strategies can be employed to enhance the efficient management of
data within the edge-cloud continuum, emphasizing in enabling low latency while considering
data freshness?; (iii) How can tools be designed and implemented to enable end-user usability
and integration with other systems?; (iv) How can we deploy the same architecture across
diverse scenarios, which have different edge-continuum configurations, while considering
different system end-goals and requirements?.

In the sequence of this chapter, Section 7.1 summarizes the contributions of this thesis.
Section 7.2 presents directions for the future. Finally, Section 7.3 presents the final thoughts
and conclusions.

7.1 Summary of Contributions

We developed a flexible multi-layer IoT architecture that is infrastructure-agnostic. This
architecture is a versatile platform for SHM projects. It utilizes cutting-edge technologies
from information technology, software, and industrial engineering. It comprises four layers:
Sensing, Interoperability, Data Management, and Service. Each of those layers – except the
sensing layer, which is out of the scope of this work – was designed to respond to one of
the raised questions, while the RQ (iv) was addressed by the deployment and usage of the
architecture in different domains.

158 Conclusions

7.1.1 RQ (i) – Interoperability

To answer the RQ (i), the interoperability layer integrates current solutions to establish
an IoT ecosystem that facilitates seamless connectivity between devices, applications, and
systems, which involves designing integration between widely adopted interoperability
solutions, including the W3C Web of Things standard, which enables connectivity at the
device perspective, the FIWARE IoT Platform, which seamlessly connects applications,
and the Arrowhead framework, which facilitates the onboarding and integration of systems,
including legacy ones. Analyzing the contributions discussed in Chapter 3, we identified two
key contributions that have had a significant impact:

• FIWARE integration: WoT and FIWARE boast large communities advocating for
their adoption and usage. The integration of these two ecosystems merges the advan-
tages of both worlds. On the one hand, FIWARE does not have strict specifications for
defining entities compared to WoT’s specifications for TDs, and it faces difficulties in
dealing with various network protocols and data formats. On the other hand, the WoT
does not have mechanisms to: search WTs by localization, to orchestrates flows based
on property values; and to automatically integrates time-series storage — all features
enabled by FIWARE.

• Web Service integration: one of the goals of the Web of Things is to seamlessly
interconnect IoT devices with the Web by utilizing concepts already familiar in that
context. However, the W3C WoT initiative does not provide methods or guidelines to
convert dissonant interfaces to its ecosystem. Integrating third-party applications into
the W3C WoT demands custom code, significantly burdening application developers.
In response, we introduced techniques that automate converting RESTful web services
–comprising most of the current Web- into WTs. This approach separates the business
logic of web applications from the underlying network stack and establishes a uniform
interface for all actors within an IoT system.

Interoperability is a crucial enabler to reach the main objective of this thesis, which
is to establish a versatile architecture. A versatile system must adapt to different settings,
which require an interface with diverse components. Interoperability prevents the proposed
architecture from becoming overly restrictive to a specific scenario or use case.

7.1.2 RQ (ii) – Edge Caching

To optimize data management throughout the continuum, specifically addressing RQ (ii), we
designed and developed the CACHE-IT framework within the Data Management layer. It is a

7.1 Summary of Contributions 159

distributed framework that enables efficient, proactive edge caching strategies in IoT-based
scenarios. CACHE-IT represents a step forward of the current IoT edge caching landscape by:

• IoT oriented design: Unlike network-oriented proactive caching, IoT application-
oriented caching must consider varying constraints, such as low latency and constraints
regarding AoI. CACHE-IT addresses interoperability issues of IoT by providing a
dedicated device abstraction layer that integrates heterogeneous IoT devices. We tackle
IoT environments’ dynamism regarding sensors’ volatile nature by incorporating
mechanisms that adapt the caching strategy to reflect these changes.

• Easy design and implementation of caching strategies: we separate the caching
strategy from the underlying architecture, allowing for customization based on the
distinctive requirements of individual applications. The other features and caching
optimization mechanism enabled by CACHE-IT are orthogonal to the strategy chosen.

CACHE-IT is transparent to the system that utilizes it, which enables it to adhere to
basically any IoT system. We have included the possibility of utilizing FL-based strategies in
the framework. This approach allows for the maintenance of client privacy since there is no
need to centralize all clients’ data. The results showed that the FL strategy’s performance
was slightly below the global one, still a privacy versus performance trade-off to be explored.

7.1.3 RQ (iii) – Trustworthiness

To answer RQ (iii) effectively, we developed a blockchain-based oracle framework that
provides trustworthiness for IoT data. The proposed system is modular and suitable for
critical applications that need trustworthiness but do not require real-time data collection.
Two of its notable characteristics are:

• no specific hardware required: We have demonstrated that a fully decentralized
system can be achieved with sufficient trustworthiness without requiring authenticated
hardware, such as Trusted Execution Environments. This lack of specific hardware
greatly expands the number of nodes that can join the system.

• distributed data producers: IoT devices are designed to be numerous, inexpensive,
and interchangeable, which makes them inherently unreliable. We rely on distributed
oracles and multiple data sources that share the same features in a specified geolocation
to retrieve trustworthiness data. We need to trust not only the oracles but also— and
mainly– the data coming from the IoT devices. Our architecture includes reputation
algorithms for ranking and automatically selecting trustworthy data sources.

160 Conclusions

7.1.4 RQ (iv) – Real-world deployments

We address RQ (iv) by demonstrating the architecture’s applicability in real-world deploy-
ments. The architecture was utilized in two diverse projects, MAC4PRO and Arrowhead
Tools, which impose diverse infrastructure and requirements. In MAC4PRO, we deployed
the same architecture in different monitoring domains with distinct edge-cloud continuum
configurations. In the Arrowhead Tools project, we further explore the architecture to support
multiple engineering pipelines, such as device management and energy optimization, which
must be cohesive and encompassed by the proposed architecture. Our field experiments
demonstrate the versatility of the architecture in addressing contrasting IoT monitoring
scenarios.

The MAC4PRO project allowed us to explore different edge-cloud continuum configura-
tions to demonstrate that the architectural layers are not bound to infrastructural locations
(e.g., the cloud). We move parts of the data management processing to the extreme edge – the
device microcontroller – which decreases the energy consumption and the number of bytes
transferred between the edge and the cloud. On the other hand, the additional computation
imposed by performing the feature extraction in the cloud is minimal, and the cloud offers
greater stability compared to the edge. There is no universal optimal placement, but a careful
trade-off should be analyzed in each scenario.

In the Arrowhead Project, it was necessary to interface with the subsystem developed by
other partners, which greatly increased the system’s heterogeneity. Components developed in
this thesis, such as ZION (Section 3.2) and WAE (Section 3.3), were utilized to interconnect
those ecosystems. Caching was proved a crucial enabler of the demonstrator – and it was the
motivation for the development of CACHE-IT –, since without it, we could not produce a live
demo in which we showed the energy and battery forecast of the devices by utilizing the Dr.
Harvester simulator.

The architecture deployment in both projects demonstrated that architectural solutions are
needed to support the data acquisition, processing, and visualization pipeline when deploying
systems in real environments. When applying the architectural design to the field, many
unexpected issues arise – such as the mentioned Dr. Harvester problem that sparked the
development of CACHE-IT – and robust solutions are needed to overcome those problems.

7.1.5 Minor Contributions

Four minor contributions were produced as a side-effect of the main objective. Those are:

• Quantitative comparison of IoT platforms: In the background section of Chapter
3, we performed a small-scale performance evaluation to understand the behavior of

7.2 Current and future research directions 161

different open IoT platforms. We had an assumption that there was a clear trade-off
between interoperability features offered by a given platform and its performance.
However, the experiments demonstrated that such a relationship does not exist. Our re-
sults indicated that the more well-structured and organized the community or company
that fosters the development of the platforms, the better its scalability.

• ZION: a reliable TDD implementation is a key element for real WoT-based systems
as it enables efficient indexing and searching of WTs. ZION’s usage throughout the
thesis reflects this aspect. We developed ZION because the other implementation fell
short of the feature that we valued the most: querying TDs. The WoT Hive utilized a
semantic approach, which lacked performance, as demonstrated by the experiments
in Subsection 3.2.1. TinyIoT resolves JSONPath queries by loading all the TDs into
memory and searching through them, which is inefficient. Through ZION, we leverage
the efficient JSONPath implementation of Postgres to achieve high scalability. We
believe that ZION is a strong candidate to become the default TDD implementation.

• IoT edge caching taxonomy: caching IoT data on the edge has its challenges and
features that deviate from the standard methods of network caching, such as the content
dynamicity and the power constraints. In section 4.1 we proposed a novel IoT edge
caching taxonomy to fulfill this gap. Subsequently, in Section 6.3.4, we conduct a
performance evaluation of edge caching deployed in a real SHM scenario, investigating
the impact of different taxonomy classes on the system performance.

• Cache simulator: we developed an open-source caching simulator. Currently, caching
strategies, models, and optimizations are the main focus of researchers. Researchers
typically evaluate proposed techniques for algorithmic efficiency and accuracy. How-
ever, there is a lack of studies that showcase domain metrics. Notably, CACHE-IT can
calculate metrics such as latency and AoI for each data request, considering network
delay and application time. On the network side, it models the delay from the user to
the base station, the LAN communication between base stations, and the delay from the
base station to the cloud hosting the application. It also supports client mobility, allows
users to modify various configurations and parameters, and extends its functionality.

7.2 Current and future research directions

The work presented in this thesis provides a foundation for further research in the field of
multi-layer architectures for IoT monitoring scenarios that consider the edge-cloud continuum.
Possible future studies that can be pursued to build upon this work include the following:

162 Conclusions

• Automatic Distribution of System Across the Edge-Cloud Continuum: a prospec-
tive research direction involves exploring the automated distribution of applications
throughout the edge-cloud continuum. The concept is to define the system as a monolith
– instead of the typical microservices distributed architectures –and have a dedicated
component that would analyze the code produced and the available infrastructure to
partition the system and deploy it across computational nodes. This optimizes resource
utilization while cutting development efforts.

• Harnessing Artificial Intelligence for IoT Interoperability: the goal is to harness
the potential of artificial intelligence, particularly capitalizing on the advancements in
Large Language Models (LLMs). The idea is to employ LLMs to parse the documenta-
tion or manuals associated with IoT devices and applications to automatically generate
integration to other systems. An example would be to provide the documentation of a
commercial sensor to this LLM, and it would return the respective Thing Description
that maps the capabilities of the device as a W3C Web Thing.

• Development of an IoT Caching Strategy Marketplace: Another prospective study
involves the development of a community-driven marketplace dedicated to IoT edge
caching strategies that would be deployed utilizing CACHE-IT. This platform could
be a repository for various caching strategies applicable across domains. We are
particularly interested in exploring more complex strategies, potentially incorporating
deep-learning neural networks to enhance caching efficiency. This research avenue
seeks to optimize the current performance of caching mechanisms while enabling
customization to each user’s particular scenario.

• Expansion of Performance Evaluation: To further validate the proposed architecture,
future investigations should expand the scope of evaluations. This involves extensive
experiments under varied conditions and scenarios, including edge-cloud continuum
configurations. Additionally, evaluations should consider scenarios where the same
system monitors multiple sensing structures. The objective is further to assess the ro-
bustness and adaptability of the architecture, identifying specific areas for improvement
and optimization in real-world deployment scenarios.

These research directions have the potential to significantly expand upon the work
presented in this thesis and contribute to the adaptability of IoT architectures in various
application domains.

7.3 Final Remarks 163

7.3 Final Remarks

The work presented in this document establishes a sound foundation for further studies on
flexible IoT monitoring architectures that leverage the edge-cloud continuum. The solutions
built and developed in this thesis support the end applications of the traditional IoT pipeline,
composed of sensor data collection, data processing, and visualization. As demonstrated in
Chapter 6, deploying and operating an architecture in real-world scenarios requires other
components due to the emerging complexities. The solutions developed in each architectural
layer worked as a toolbox, which, depending on the requirements of the scenario, could be
seamlessly included.

Our architecture enables us to connect heterogeneous devices, applications, and subsys-
tems. The ability to easily integrate components proved to be a must in real systems and
enables versatility since other deployments have requirements to interconnect with other
components. Regarding data management, it is still a challenge in a distributed edge-cloud
continuum setting to have the data in the exact location and time it needs to be. Edge caching
solutions can improve this problem, and we believe that CACHE-IT represents a step closer to
actually implementing complex caching solutions in real systems. Finally, our blockchain
integration enables the retrieval of trustworthiness data of unreliable (but numerous) IoT
devices.

In conclusion, this thesis advances the state-of-the-art IoT architecture by proposing and
implementing a flexible architecture suitable for IoT monitoring scenarios that address key
problems of the IoT landscape. The proposed architecture was validated by deploying it in
real scenarios that leverage the edge-cloud continuum.

References 165

References
[1] W3C Working Group. Wot reference architecture (w3c recommendation 9 april 2020).

http://www.w3.org/TR/wot-architecture, . Accessed on Jun 1, 2023.

[2] Maggi Bansal, Inderveer Chana, and Siobhán Clarke. A survey on iot big data: current
status, 13 v’s challenges, and future directions. ACM Computing Surveys (CSUR), 53
(6):1–59, 2020.

[3] Md Zakirul Alam Bhuiyan, Jie Wu, Guojun Wang, and Jiannong Cao. Sensing and
decision making in cyber-physical systems: The case of structural event monitoring.
IEEE Transactions on Industrial Informatics, 12(6):2103–2114, 2016. doi: 10.1109/
TII.2016.2518642.

[4] Yang Zhang, Junliang Chen, and B. Cheng. Integrating events into soa for iot services.
IEEE Communications Magazine, 55:180–186, 2017. doi: 10.1109/MCOM.2017.
1600359.

[5] Sergio Moreschini, Fabiano Pecorelli, Xiaozhou Li, Sonia Naz, David Hästbacka, and
Davide Taibi. Cloud continuum: The definition. IEEE Access, 10:131876–131886,
2022. doi: 10.1109/ACCESS.2022.3229185.

[6] Gang Wang, M. Nixon, and Mike Boudreaux. Toward cloud-assisted industrial iot
platform for large-scale continuous condition monitoring. Proceedings of the IEEE,
107:1193–1205, 2019. doi: 10.1109/JPROC.2019.2914021.

[7] Ren Li, Tianjin Mo, Jianxi Yang, Shixin Jiang, Tong Li, and Yiming Liu. Ontologies-
based domain knowledge modeling and heterogeneous sensor data integration for
bridge health monitoring systems. IEEE Transactions on Industrial Informatics, 17
(1):321–332, 2021. doi: 10.1109/TII.2020.2967561.

[8] Jianqing Fan, Fang Han, and Han Liu. Challenges of big data analysis. National
science review, 1(2):293–314, 2014.

[9] Mayank Mishra, Paulo B Lourenço, and Gunturi Venkata Ramana. Structural health
monitoring of civil engineering structures by using the internet of things: A review.
Journal of Building Engineering, 48:103954, 2022.

[10] Ivan Zyrianoff, Lorenzo Gigli, Federico Montori, Luca Sciullo, Carlos Kamienski,
and Marco Di Felice. Cache-it: A distributed architecture for proactive edge caching
in heterogeneous iot scenarios. Available at SSRN 4481856.

[11] Guangming Cui, Qiang He, Feifei Chen, Hai Jin, and Yun Yang. Trading off between
user coverage and network robustness for edge server placement. IEEE Transactions
on Cloud Computing, 10:2178–2189, 2020. doi: 10.1109/TCC.2020.3008440.

[12] Ivan Zyrianoff, Alexandre Heideker, Dener Silva, João Kleinschmidt, Juha-Pekka
Soininen, Tullio Salmon Cinotti, and Carlos Kamienski. Architecting and deploying
iot smart applications: A performance–oriented approach. Sensors, 20(1):84, 2020.

166 References

[13] C. Scuro, F. Lamonaca, S. Porzio, G. Milani, and R.S. Olivito. Internet of things (iot)
for masonry structural health monitoring (shm): Overview and examples of innovative
systems. Construction and Building Materials, 290:123092, 2021. ISSN 0950-0618.

[14] Visvesh Naraharisetty, Venkat Surendar Talari, Sairam Neridu, Prafulla Kalap-
atapu, and Venkata Dilip Kumar Pasupuleti. Cloud architecture for iot based
bridge monitoring applications. In 2021 International Conference on Emerging
Techniques in Computational Intelligence (ICETCI), pages 39–42, 2021. doi:
10.1109/ICETCI51973.2021.9574044.

[15] Marco Claudio De Simone, Angelo Lorusso, and Domenico Santaniello. Predic-
tive maintenance and structural health monitoring via iot system. In 2022 IEEE
Workshop on Complexity in Engineering (COMPENG), pages 1–4, 2022. doi:
10.1109/COMPENG50184.2022.9905441.

[16] Seongwoon Jeong and Kincho Law. An iot platform for civil infrastructure monitoring.
In 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMP-
SAC), volume 01, pages 746–754, 2018. doi: 10.1109/COMPSAC.2018.00111.

[17] Hung V. Dang, Mallik Tatipamula, and Huan X. Nguyen. Cloud-based digital twinning
for structural health monitoring using deep learning. IEEE Transactions on Industrial
Informatics, 18(6):3820–3830, 2022. doi: 10.1109/TII.2021.3115119.

[18] Gilles Privat and A Medvedev. Guidelines for modelling with ngsi-ld. ETSI
White Paper. Available online: https://www. etsi. org/images/files/ETSIWhitePaper-
s/etsi_wp_42_NGSI_LD. pdf (accessed on 21 June 2022), 2021.

[19] FIWARE Foundation. Fiware: The open source platform for our smart digital future, .
www.fiware.org, Accessed Mar. 10, 2021.

[20] Swagger. Openapi specification 3.1.0. https://swagger.io/specification/, Feb 2021.
Accessed on Jun 1, 2023.

[21] Jerker Delsing. Iot automation: Arrowhead framework. Crc Press, 2017.

[22] Jingjing Yao, Tao Han, and Nirwan Ansari. On mobile edge caching. IEEE Commu-
nications Surveys Tutorials, 21(3):2525–2553, 2019. doi: 10.1109/COMST.2019.
2908280.

[23] Lorenzo Gigli, Ivan Zyrianoff, Federica Zonzoni, Denis Bogomolov, Nicola Testoni,
Luca De Marchi, Giuseppe Augugliaro, Canio Mennutti, Alessandro Marzani, and
Marco Di Felice. Proactive caching in the edge-cloud continuum with federated
learning. accepted for publication in the CCNC 2024 proceedings, 2024.

[24] Hamda Al-Breiki, Muhammad Habib Ur Rehman, Khaled Salah, and Davor Svetinovic.
Trustworthy blockchain oracles: Review, comparison, and open research challenges.
IEEE Access, 8:85675–85685, 2020. doi: 10.1109/ACCESS.2020.2992698.

[25] Lorenzo Gigli, Ivan Zyrianoff, Federica Zonzoni, Denis Bogomolov, Nicola Testoni,
Luca De Marchi, Giuseppe Augugliaro, Canio Mennutti, Alessandro Marzani, and
Marco Di Felice. Next generation edge-cloud continuum architecture for structural
health monitoring. under review in IEEE Transactions on Industrial Informatics, 2023.

References 167

[26] Dragi Kimovski, Roland Mathá, Josef Hammer, Narges Mehran, Hermann Hellwagner,
and Radu Prodan. Cloud, fog, or edge: Where to compute? IEEE Internet Computing,
25(4):30–36, 2021. doi: 10.1109/MIC.2021.3050613.

[27] Luiz Bittencourt, Roger Immich, Rizos Sakellariou, Nelson Fonseca, Edmundo
Madeira, Marilia Curado, Leandro Villas, Luiz DaSilva, Craig Lee, and Omer Rana.
The internet of things, fog and cloud continuum: Integration and challenges. Internet
of Things, 3:134–155, 2018.

[28] Amine Abouaomar, S. Cherkaoui, Zoubeir Mlika, and A. Kobbane. Resource provi-
sioning in edge computing for latency-sensitive applications. IEEE Internet of Things
Journal, 8:11088–11099, 2021. doi: 10.1109/JIOT.2021.3052082.

[29] Lianhai Wang, Yannan Li, Qiming Yu, and Yong Yu. Outsourced data integrity
checking with practical key update in edge-cloud resilient networks. IEEE Wireless
Communications, 29(3):56–62, 2022. doi: 10.1109/MWC.002.2100597.

[30] Zhipeng Cheng, Zhibin Gao, Minghui Liwang, Lianfen Huang, Xiaojiang Du, and
Mohsen Guizani. Intelligent task offloading and energy allocation in the uav-aided
mobile edge-cloud continuum. IEEE Network, 35(5):42–49, 2021. doi: 10.1109/
MNET.010.2100025.

[31] Danylo Khalyeyev, Tomáš Bureš, and Petr Hnětynka. Towards a reference component
model of edge-cloud continuum. In 2023 IEEE 20th International Conference on
Software Architecture Companion (ICSA-C), pages 91–95, 2023. doi: 10.1109/
ICSA-C57050.2023.00030.

[32] Sarah A Al-Qaseemi, Hajer A Almulhim, Maria F Almulhim, and Saqib Rasool
Chaudhry. Iot architecture challenges and issues: Lack of standardization. In 2016
Future technologies conference (FTC), pages 731–738. IEEE, 2016.

[33] Miao Wu, Ting-Jie Lu, Fei-Yang Ling, Jing Sun, and Hui-Ying Du. Research on the
architecture of internet of things. In 2010 3rd International Conference on Advanced
Computer Theory and Engineering(ICACTE), volume 5, pages V5–484–V5–487,
2010. doi: 10.1109/ICACTE.2010.5579493.

[34] Omar Said and Mehedi Masud. Towards internet of things: Survey and future vision.
International Journal of Computer Networks, 5(1):1–17, 2013.

[35] Federica Zonzini, Cristiano Aguzzi, Lorenzo Gigli, Luca Sciullo, Nicola Testoni, Luca
De Marchi, Marco Di Felice, Tullio Salmon Cinotti, Canio Mennuti, and Alessandro
Marzani. Structural health monitoring and prognostic of industrial plants and civil
structures: A sensor to cloud architecture. IEEE Instrumentation & Measurement
Magazine, 23(9):21–27, 2020.

[36] Cristiano Aguzzi, Lorenzo Gigli, Luca Sciullo, Angelo Trotta, Federica Zonzini, Luca
De Marchi, Marco Di Felice, Alessandro Marzani, and Tullio Salmon Cinotti. Modron:
A scalable and interoperable web of things platform for structural health monitoring.
In 2021 IEEE 18th Annual Consumer Communications & Networking Conference
(CCNC), pages 1–7, 2021.

168 References

[37] Jie Lin, Wei Yu, Nan Zhang, Xinyu Yang, Hanlin Zhang, and Wei Zhao. A survey
on internet of things: Architecture, enabling technologies, security and privacy, and
applications. IEEE internet of things journal, 4(5):1125–1142, 2017.

[38] Francesco Lamonaca, Carmelo Scuro, Domenico Grimaldi, Renato Sante Olivito,
Paolo Francesco Sciammarella, and Domenico Luca Carnì. A layered iot-based
architecture for a distributed structural health monitoring system system. Acta Imeko,
8(2):45–52, 2019.

[39] Ivan Zyrianoff, Alexandre Heideker, Dener Silva, João Kleinschmidt, Juha-Pekka
Soininen, Tullio Salmon Cinotti, and Carlos Kamienski. Architecting and deploying
iot smart applications: A performance–oriented approach. Sensors, 20(1), 2020. ISSN
1424-8220. doi: 10.3390/s20010084. URL https://www.mdpi.com/1424-8220/20/1/
84.

[40] Carmelo Scuro, Paolo Francesco Sciammarella, Francesco Lamonaca, Renato Sante
Olivito, and Domenico Luca Carni. Iot for structural health monitoring. IEEE
Instrumentation & Measurement Magazine, 21(6):4–14, 2018.

[41] C Scuro, F Lamonaca, S Porzio, G Milani, and RS Olivito. Internet of things (iot) for
masonry structural health monitoring (shm): Overview and examples of innovative
systems. Construction and Building Materials, 290:123092, 2021.

[42] Gang Wang, Mark Nixon, and Mike Boudreaux. Toward cloud-assisted industrial iot
platform for large-scale continuous condition monitoring. Proceedings of the IEEE,
107(6):1193–1205, 2019. doi: 10.1109/JPROC.2019.2914021.

[43] Peng Qian, Bo Feng, Dahai Zhang, Xiange Tian, and Yulin Si. Iot-based approach to
condition monitoring of the wave power generation system. IET Renewable Power
Generation, 13(12):2207–2214, 2019.

[44] Hanbo Yang, Zheng Sun, Gedong Jiang, Fei Zhao, Xufeng Lu, and Xuesong Mei.
Cloud-manufacturing-based condition monitoring platform with 5g and standard
information model. IEEE Internet of Things Journal, 8(8):6940–6948, 2020.

[45] Cristiano Aguzzi, Lorenzo Gigli, Luca Sciullo, Angelo Trotta, and Marco Di Felice.
From cloud to edge: Seamless software migration at the era of the web of things.
IEEE Access, 8:228118–228135, 2020. doi: 10.1109/ACCESS.2020.3045632.

[46] Kaihua Fu, Wei Zhang, Quan Chen, Deze Zeng, and Minyi Guo. Adaptive resource
efficient microservice deployment in cloud-edge continuum. IEEE Transactions on
Parallel and Distributed Systems, 33(8):1825–1840, 2022. doi: 10.1109/TPDS.2021.
3128037.

[47] Yan Chen, Yanjing Sun, Chenyang Wang, and Tarik Taleb. Dynamic task allocation
and service migration in edge-cloud iot system based on deep reinforcement learning.
IEEE Internet of Things Journal, 9(18):16742–16757, 2022. doi: 10.1109/JIOT.2022.
3164441.

[48] Mahda Noura, Mohammed Atiquzzaman, and Martin Gaedke. Interoperability in
internet of things: Taxonomies and open challenges. Mobile networks and applications,
24:796–809, 2019.

https://www.mdpi.com/1424-8220/20/1/84
https://www.mdpi.com/1424-8220/20/1/84

References 169

[49] Philip Levis, Samuel Madden, Joseph Polastre, Robert Szewczyk, Kamin Whitehouse,
Alec Woo, David Gay, Jason Hill, Matt Welsh, Eric Brewer, et al. Tinyos: An operating
system for sensor networks. Ambient intelligence, pages 115–148, 2005.

[50] Thomas Watteyne, Xavier Vilajosana, Branko Kerkez, Fabien Chraim, Kevin Weekly,
Qin Wang, Steven Glaser, and Kris Pister. Openwsn: a standards-based low-power
wireless development environment. Transactions on Emerging Telecommunications
Technologies, 23(5):480–493, 2012.

[51] Dominique Guinard. A Web of Things Application Architecture. Integrating the Real-
World into the Web. Doctoral thesis, ETH Zurich, Zürich, 2011.

[52] Elena Reshetova and Michael McCool. Web of things (wot) security and privacy
guidelines. W3C recommendation, November 2019. https://www.w3.org/TR/wot-
security/.

[53] Andrea Cimmino, Michael McCool, Farshid Tavakolizadeh, and Kunihiko Toumura.
Web of things (wot) discovery. Proposed recommendation, World Wide
Web Consortium (W3C), July 11 2023. URL https://www.w3.org/TR/2023/
PR-wot-discovery-20230711/.

[54] Stefan Gössner and C. Bormann. Jsonpath – xpath for json. Ietf internet draft, January
2021. https://www.ietf.org/archive/id/draft-goessner-dispatch-jsonpath-00.html.

[55] Jonathan Robie, Michael Dyck, and Josh Spiegel. Xml path language (xpath) 3.1.
W3C recommendation, March 2017. https://www.w3.org/TR/xpath-31/.

[56] Steve Harris, Andy Seaborne, and Eric Prud’hommeaux. Sparql 1.1 query language.
W3C recommendation, March 2013. https://www.w3.org/TR/sparql11-query/.

[57] Ivan Zyrianoff, Lorenzo Gigli, Federico Montori, Carlos Kamienski, and Marco Di
Felice. Two-way integration of service-oriented systems-of-systems with the web of
things. In IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics
Society, pages 1–6, 2021. doi: 10.1109/IECON48115.2021.9589619.

[58] Ivan Zyrianoff, Alexandre Heideker, Luca Sciullo, Carlos Kamienski, and Marco
Di Felice. Interoperability in open iot platforms: Wot-fiware comparison and integra-
tion. In 2021 IEEE International Conference on Smart Computing (SMARTCOMP),
pages 169–174, 2021. doi: 10.1109/SMARTCOMP52413.2021.00043.

[59] Luca Sciullo, Lorenzo Gigli, Federico Montori, Angelo Trotta, and Marco Di Felice.
A survey on the web of things. IEEE Access, 10:47570–47596, 2022. doi: 10.1109/
ACCESS.2022.3171575.

[60] Yuchao Zhou, Suparna De, Wei Wang, and Klaus Moessner. Search techniques for the
web of things: A taxonomy and survey. Sensors, 16(5), 2016. ISSN 1424-8220. doi:
10.3390/s16050600. URL https://www.mdpi.com/1424-8220/16/5/600.

[61] Zhiming Ding, Zhikui Chen, and Qi Yang. Iot-svksearch: a real-time multimodal
search engine mechanism for the internet of things. International Journal of Commu-
nication Systems, 27(6):871–897, 2014. doi: https://doi.org/10.1002/dac.2647. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.2647.

https://www.w3.org/TR/2023/PR-wot-discovery-20230711/
https://www.w3.org/TR/2023/PR-wot-discovery-20230711/
https://www.mdpi.com/1424-8220/16/5/600
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.2647

170 References

[62] Luoyao Hao and Henning Schulzrinne. Goldie: Harmonization and orchestration
towards a global directory for iot. In IEEE INFOCOM 2021 - IEEE Conference on
Computer Communications, pages 1–10, 2021. doi: 10.1109/INFOCOM42981.2021.
9488752.

[63] Luoyao Hao, Vibhas Naik, and Henning Schulzrinne. Dbac: Directory-based access
control for geographically distributed iot systems. In IEEE INFOCOM 2022 - IEEE
Conference on Computer Communications, pages 360–369, 2022. doi: 10.1109/
INFOCOM48880.2022.9796804.

[64] Muhammad Rehan Faheem, Tayyaba Anees, Muzammil Hussain, Allah Ditta, Hani
Alquhayz, and Muhammad Adnan Khan. Indexing in wot to locate indoor things.
IEEE Access, 11:53497–53517, 2023. doi: 10.1109/ACCESS.2023.3272691.

[65] Farshid Tavakolizadeh and Shreekantha Devasya. Thing directory: Simple and
lightweight registry of iot device metadata. Journal of Open Source Software, 6
(60):3075, 2021.

[66] Raul Garcıa-Castro Andrea Cimmino. Wothive: Enabling syntactic and semantic
discovery in the web of things. Open Journal of Internet of Things (OJIOT), 8(1):
54–65, 2022.

[67] A Gluhak, O Vermesan, R Bahr, F Clari, TM Maria, T Delgado, A Hoeer, F Bösenberg,
M Senigalliesi, and V Barchett. Bdeliverable d03. 01 report on iot platform activities-
unify-iot, 2016.

[68] FIWARE Foundation. Iot agents. https://fiware-academy.readthedocs.io/en/latest/iot-
agents/idas/index.html, Accessed Mar. 9, 2021.

[69] Ivan Zyrianoff, Fabrizio Borelli, Gabriela Biondi, Alexandre Heideker, and Carlos
Kamienski. Scalability of real-time iot-based applications for smart cities. In 2018
IEEE Symposium on Computers and Communications (ISCC), pages 00688–00693,
2018. doi: 10.1109/ISCC.2018.8538451.

[70] Alessandra Galli, Giada Giorgi, and Claudio Narduzzi. Multi-user ecg monitoring
system based on ieee standard 802.15.6. pages 1–6, 2019. doi: 10.1109/IWMN.2019.
8805046.

[71] Elisa Spanò, Stefano Di Pascoli, and Giuseppe Iannaccone. Low-power wearable ecg
monitoring system for multiple-patient remote monitoring. IEEE Sensors Journal, 16
(13):5452–5462, 2016. doi: 10.1109/JSEN.2016.2564995.

[72] W3C Working Group. Eclipse thingweb node-wot, .
https://github.com/eclipse/thingweb.node-wot, Accessed Mar. 9, 2021.

[73] Diego GS Pivoto, Luiz FF de Almeida, Rodrigo da Rosa Righi, Joel JPC Rodrigues,
Alexandre Baratella Lugli, and Antonio M Alberti. Cyber-physical systems architec-
tures for industrial internet of things applications in industry 4.0: A literature review.
Journal of Manufacturing Systems, 58:176–192, 2021.

References 171

[74] Géza Kulcsár, Kadosa Koltai, Szvetlin Tanyi, Bálint Péceli, Ákos Horváth, Zoltán
Micskei, and Pál Varga. From models to management and back: Towards a system-of-
systems engineering toolchain. In NOMS 2020-2020 IEEE/IFIP Network Operations
and Management Symposium, pages 1–6. IEEE, 2020.

[75] Carlos Kamienski, Juha-Pekka Soininen, Markus Taumberger, Ramide Dantas, Attilio
Toscano, Tullio Salmon Cinotti, Rodrigo Filev Maia, and André Torre Neto. Smart
water management platform: Iot-based precision irrigation for agriculture. Sensors,
19(2), 2019. ISSN 1424-8220. doi: 10.3390/s19020276. URL https://www.mdpi.com/
1424-8220/19/2/276.

[76] Rodrigo Togneri, Carlos Kamienski, Ramide Dantas, Ronaldo Prati, Attilio Toscano,
Juha-Pekka Soininen, and Tullio Salmon Conic. Advancing iot-based smart irrigation.
IEEE Internet of Things Magazine, 2(4):20–25, 2019.

[77] ChirpStack. Chirpstack, open-source lorawan® network server stack.
https://www.chirpstack.io/, Accessed Mar. 9, 2021.

[78] FIWARE Foundation. Fiware iot agent ultralight, . https://fiware-iotagent-
ul.readthedocs.io/en/latest/usermanual, Accessed Mar. 9, 2021.

[79] Felipe Pezoa, Juan L Reutter, Fernando Suarez, Martín Ugarte, and Domagoj Vrgoč.
Foundations of json schema. In Proceedings of the 25th International Conference on
World Wide Web, pages 263–273, 2016.

[80] Sebastian Kaebisch, Takuki Kamiya, Michael McCool, Victor Charpenay, and
Matthias Kovatsch. Web of things (wot) thing description. W3C recommendation,
April 2020. https://www.w3.org/TR/wot-thing-description/.

[81] Ivan Zyrianoff, Lorenzo Gigli, Federico Montori, Carlos Kamienski, and Marco Di
Felice. Two-way integration of service-oriented systems-of-systems with the web of
things. In IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics
Society, pages 1–6, 2021. doi: 10.1109/IECON48115.2021.9589619.

[82] Luca Sciullo, Lorenzo Gigli, Angelo Trotta, and Marco Di Felice. Wot store: Managing
resources and applications on the web of things. Internet of Things, 9:100164, 2020.
ISSN 2542-6605. doi: https://doi.org/10.1016/j.iot.2020.100164. URL https://www.
sciencedirect.com/science/article/pii/S254266052030007X.

[83] Ivan Dimitry Zyrianoff. Wot-arrowhead adapter, . https://github.com/UniBO-
PRISMLab/wot-arrowhead-adapter, Accessed Jul. 22, 2021.

[84] Ivan Dimitry Zyrianoff. Openapi generator, . https://github.com/UniBO-
PRISMLab/openAPIgenerator, Accessed Jul. 22, 2021.

[85] IANA. Hypertext transfer protocol (http) method registry.
https://www.iana.org/assignments/http-methods/http-methods.xhtml, Accessed
Jul. 27, 2021.

https://www.mdpi.com/1424-8220/19/2/276
https://www.mdpi.com/1424-8220/19/2/276
https://www.sciencedirect.com/science/article/pii/S254266052030007X
https://www.sciencedirect.com/science/article/pii/S254266052030007X

172 References

[86] Carlo Puliafito, Lorenzo Gigli, Ivan Zyrianoff, Federico Montori, Antonio Virdis,
Stefano Di Pascoli, Enzo Mingozzi, and Marco Di Felice. Joint power control and
structural health monitoring in industry 4.0 scenarios using eclipse arrowhead and web
of things. In 2022 IEEE 5th International Conference on Industrial Cyber-Physical
Systems (ICPS), pages 1–6, 2022. doi: 10.1109/ICPS51978.2022.9816975.

[87] Laha Ale, Ning Zhang, Huici Wu, Dajiang Chen, and Tao Han. Online proactive
caching in mobile edge computing using bidirectional deep recurrent neural network.
IEEE Internet of Things Journal, 6(3):5520–5530, 2019. doi: 10.1109/JIOT.2019.
2903245.

[88] Shailendra Rathore, Jung Hyun Ryu, Pradip Kumar Sharma, and Jong Hyuk Park.
Deepcachnet: A proactive caching framework based on deep learning in cellular
networks. IEEE Network, 33(3):130–138, 2019. doi: 10.1109/MNET.2019.1800058.

[89] The-Vi Nguyen, Nhu-Ngoc Dao, Van Dat Tuong, Wonjong Noh, and Sungrae Cho.
User-aware and flexible proactive caching using lstm and ensemble learning in iot-mec
networks. IEEE Internet of Things Journal, 9(5):3251–3269, 2022. doi: 10.1109/
JIOT.2021.3097768.

[90] Ivan Zyrianoff, Angelo Trotta, Luca Sciullo, Federico Montori, and Marco Di Felice.
Iot edge caching: Taxonomy, use cases and perspectives. IEEE Internet of Things
Magazine, 5(3):12–18, 2022. doi: 10.1109/IOTM.001.2200112.

[91] Xiaomin Li and Jiafu Wan. Proactive caching for edge computing-enabled industrial
mobile wireless networks. Future Generation Computer Systems, 89:89–97, 2018.
ISSN 0167-739X. doi: https://doi.org/10.1016/j.future.2018.06.017. URL https:
//www.sciencedirect.com/science/article/pii/S0167739X17329588.

[92] Rodolfo W. L. Coutinho and Azzedine Boukerche. Modeling and analysis of a shared
edge caching system for connected cars and industrial iot-based applications. IEEE
Transactions on Industrial Informatics, 16(3):2003–2012, 2020. doi: 10.1109/TII.
2019.2938529.

[93] Shuiguang Deng, Hailiang Zhao, Weijia Fang, Jianwei Yin, Schahram Dustdar, and
Albert Y. Zomaya. Edge intelligence: The confluence of edge computing and artificial
intelligence. IEEE Internet of Things Journal, 7(8):7457–7469, 2020. doi: 10.1109/
JIOT.2020.2984887.

[94] Mung Chiang, Sangtae Ha, Fulvio Risso, Tao Zhang, and I. Chih-Lin. Clarifying
fog computing and networking: 10 questions and answers. IEEE Communications
Magazine, 55(4):18–20, 2017. doi: 10.1109/MCOM.2017.7901470.

[95] Keyan Cao, Yefan Liu, Gongjie Meng, and Qimeng Sun. An overview on edge
computing research. IEEE Access, 8:85714–85728, 2020. doi: 10.1109/ACCESS.
2020.2991734.

[96] Ivan Zyrianoff, Lorenzo Gigli, Federico Montori, Cristiano Aguzzi, Sebastian Kae-
bisch, and Marco Di Felice. Seamless integration of restful web services with the
web of things. In 2022 IEEE International Conference on Pervasive Computing and
Communications Workshops and other Affiliated Events (PerCom Workshops), pages
427–432, 2022. doi: 10.1109/PerComWorkshops53856.2022.9767531.

https://www.sciencedirect.com/science/article/pii/S0167739X17329588
https://www.sciencedirect.com/science/article/pii/S0167739X17329588

References 173

[97] M. Ishtiaque A. Zahed, Iftekhar Ahmad, Daryoush Habibi, and Quoc Viet Phung.
Green and secure computation offloading for cache-enabled iot networks. IEEE
Access, 8:63840–63855, 2020. doi: 10.1109/ACCESS.2020.2982669.

[98] Martina Pappalardo, Enzo Mingozzi, and Antonio Virdis. A model-driven approach
to aol-based cache management in iot. In 2021 IEEE 26th International Workshop
on Computer Aided Modeling and Design of Communication Links and Networks
(CAMAD), pages 1–6, 2021. doi: 10.1109/CAMAD52502.2021.9617772.

[99] Jingjing Yao, Tao Han, and Nirwan Ansari. On mobile edge caching. IEEE Com-
munications Surveys Tutorials, 21(3):2525–2553, 2019. doi: 10.1109/COMST.2019.
2908280.

[100] Giuseppe Ruggeri, Marica Amadeo, Claudia Campolo, Antonella Molinaro, and Anto-
nio Iera. Caching popular transient iot contents in an sdn-based edge infrastructure.
IEEE Transactions on Network and Service Management, 18(3):3432–3447, 2021.
doi: 10.1109/TNSM.2021.3056891.

[101] Jingjing Yao and Nirwan Ansari. Caching in energy harvesting aided internet of things:
A game-theoretic approach. IEEE Internet of Things Journal, 6(2):3194–3201, 2019.
doi: 10.1109/JIOT.2018.2880483.

[102] Muhammad Ali Naeem, Tu N. Nguyen, Rashid Ali, Korhan Cengiz, Yahui Meng, and
Tahir Khurshaid. Hybrid cache management in iot-based named data networking. IEEE
Internet of Things Journal, 9(10):7140–7150, 2022. doi: 10.1109/JIOT.2021.3075317.

[103] Fadi M Al-Turjman, Muhammad Imran, and Athanasios V Vasilakos. Value-based
caching in information-centric wireless body area networks. Sensors, 17(1):181, 2017.

[104] Franklin M. Ribeiro Junior, Reinaldo A.C. Bianchi, Ronaldo C. Prati, Kari
Kolehmainen, Juha-Pekka Soininen, and Carlos A. Kamienski. Data reduction
based on machine learning algorithms for fog computing in iot smart agriculture.
Biosystems Engineering, 2022. ISSN 1537-5110. doi: https://doi.org/10.1016/j.
biosystemseng.2021.12.021. URL https://www.sciencedirect.com/science/article/pii/
S1537511021003299.

[105] Mengyu Li, LanLan Rui, Xuesong Qiu, Shaoyong Guo, and Xiuzhi Yu. Design of
a service caching and task offloading mechanism in smart grid edge network. In
2019 15th International Wireless Communications Mobile Computing Conference
(IWCMC), pages 249–254, 2019. doi: 10.1109/IWCMC.2019.8766672.

[106] Huan Zhou, Zhenyu Zhang, Dawei Li, and Zhou Su. Joint optimization of computing
offloading and service caching in edge computing-based smart grid. IEEE Transactions
on Cloud Computing, pages 1–1, 2022. doi: 10.1109/TCC.2022.3163750.

[107] Ke Zhang, Jiayu Cao, Sabita Maharjan, and Yan Zhang. Digital twin empowered
content caching in social-aware vehicular edge networks. IEEE Transactions on Com-
putational Social Systems, 9(1):239–251, 2022. doi: 10.1109/TCSS.2021.3068369.

https://www.sciencedirect.com/science/article/pii/S1537511021003299
https://www.sciencedirect.com/science/article/pii/S1537511021003299

174 References

[108] Shan Zhang, Hongbin Luo, Junling Li, Weisen Shi, and Xuemin Shen. Hierarchical
soft slicing to meet multi-dimensional qos demand in cache-enabled vehicular net-
works. IEEE Transactions on Wireless Communications, 19(3):2150–2162, 2020. doi:
10.1109/TWC.2019.2962798.

[109] Genghua Yu, Yixin He, Jian Wu, Zhigang Chen, and Jianping Pan. Mobility-aware
proactive edge caching for large files in the internet of vehicles. IEEE Internet of
Things Journal, pages 1–1, 2023. doi: 10.1109/JIOT.2023.3240423.

[110] A.H.M. Ahmadullah Chowdhury, Irfanul Islam, M. Ishtiaque A. Zahed, and Iftekhar
Ahmad. An optimal strategy for uav-assisted video caching and transcoding. Ad Hoc
Networks, 144:103155, 2023. ISSN 1570-8705. doi: https://doi.org/10.1016/j.adhoc.
2023.103155.

[111] Kyi Thar, Thant Zin Oo, Yan Kyaw Tun, Do Hyeon Kim, Ki Tae Kim, and
Choong Seon Hong. A deep learning model generation framework for virtualized
multi-access edge cache management. IEEE Access, 7:62734–62749, 2019. doi:
10.1109/ACCESS.2019.2916080.

[112] Dinh Thai Hoang, Dusit Niyato, Diep N. Nguyen, Eryk Dutkiewicz, Ping Wang, and
Zhu Han. A dynamic edge caching framework for mobile 5g networks. IEEE Wireless
Communications, 25(5):95–103, 2018. doi: 10.1109/MWC.2018.1700360.

[113] Muhammad Umar Farooq, Muhammad Zeeshan, Muhammad Talha Jahangir, and
Muhammad Asif. A novel cooperative micro-caching algorithm based on fuzzy infer-
ence through nfv in ultra-dense iot networks. Journal of Network and Systems Man-
agement, 30(1):20, Oct 2021. ISSN 1573-7705. doi: 10.1007/s10922-021-09632-6.

[114] Fan Zhang, Guangjie Han, Li Liu, Miguel Martínez-García, and Yan Peng. Joint
optimization of cooperative edge caching and radio resource allocation in 5g-enabled
massive iot networks. IEEE Internet of Things Journal, 8(18):14156–14170, 2021.
doi: 10.1109/JIOT.2021.3068427.

[115] Siya Xu, Xin Liu, Shaoyong Guo, Xuesong Qiu, and Luoming Meng. Mecc: A mobile
edge collaborative caching framework empowered by deep reinforcement learning.
IEEE Network, 35(4):176–183, 2021. doi: 10.1109/MNET.011.2000663.

[116] Xiuhua Li, Xiaofei Wang, Chunsheng Zhu, Wei Cai, and Victor C. M. Leung. Caching-
as-a-service: Virtual caching framework in the cloud-based mobile networks. In 2015
IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
pages 372–377, 2015. doi: 10.1109/INFCOMW.2015.7179413.

[117] Yixue Hao, Yiming Miao, Long Hu, M. Shamim Hossain, Ghulam Muhammad, and
Syed Umar Amin. Smart-edge-cocaco: Ai-enabled smart edge with joint computation,
caching, and communication in heterogeneous iot. IEEE Network, 33(2):58–64, 2019.
doi: 10.1109/MNET.2019.1800235.

[118] Chang Kyung Kim, TaeYoung Kim, SuKyoung Lee, Seungkyun Lee, Anna Cho, and
Mun-Suk Kim. Delay-aware distributed program caching for iot-edge networks. Plos
one, 17(7):e0270183, 2022.

References 175

[119] Xu Zhao and Qi Zhu. Mobility-aware and interest-predicted caching strategy based on
iot data freshness in d2d networks. IEEE Internet of Things Journal, 8(7):6024–6038,
2021. doi: 10.1109/JIOT.2020.3033552.

[120] Yuris Mulya Saputra, Dinh Thai Hoang, Diep N. Nguyen, Eryk Dutkiewicz, Dusit
Niyato, and Dong In Kim. Distributed deep learning at the edge: A novel proac-
tive and cooperative caching framework for mobile edge networks. IEEE Wireless
Communications Letters, 8(4):1220–1223, 2019. doi: 10.1109/LWC.2019.2912365.

[121] Yuming Zhang, Bohao Feng, Wei Quan, Aleteng Tian, Keshav Sood, Youfang Lin,
and Hongke Zhang. Cooperative edge caching: A multi-agent deep learning based
approach. IEEE Access, 8:133212–133224, 2020. doi: 10.1109/ACCESS.2020.
3010329.

[122] Tan Li and Linqi Song. Federated online learning aided multi-objective proactive
caching in heterogeneous edge networks. IEEE Transactions on Cognitive Communi-
cations and Networking, pages 1–1, 2023. doi: 10.1109/TCCN.2023.3262243.

[123] Yin Zhang, Yujie Li, Ranran Wang, Jianmin Lu, Xiao Ma, and Meikang Qiu. Psac:
Proactive sequence-aware content caching via deep learning at the network edge.
IEEE Transactions on Network Science and Engineering, 7(4):2145–2154, 2020. doi:
10.1109/TNSE.2020.2990963.

[124] Dongyang Li, Haixia Zhang, Hui Ding, Tiantian Li, Daojun Liang, and Dongfeng
Yuan. User preference learning-based proactive edge caching for d2d-assisted wireless
networks. IEEE Internet of Things Journal, pages 1–1, 2023. doi: 10.1109/JIOT.2023.
3244621.

[125] Haibo Wu, Jun Li, and Jiang Zhi. Could end system caching and cooperation replace
in-network caching in ccn? In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, pages 101–102, 2015.

[126] Haibo Wu, Yaogong Xu, and Jun Li. Ptf: Popularity-topology-freshness-based caching
strategy for icn-iot networks. Computer Communications, 204:147–157, 2023.

[127] Zhengxin Yu, Jia Hu, Geyong Min, Haochuan Lu, Zhiwei Zhao, Haozhe Wang, and
Nektarios Georgalas. Federated learning based proactive content caching in edge
computing. In 2018 IEEE Global Communications Conference (GLOBECOM), pages
1–6, 2018. doi: 10.1109/GLOCOM.2018.8647616.

[128] Xiaofei Wang, Yiwen Han, Chenyang Wang, Qiyang Zhao, Xu Chen, and Min Chen.
In-edge ai: Intelligentizing mobile edge computing, caching and communication by
federated learning. IEEE Network, 33(5):156–165, 2019. doi: 10.1109/MNET.2019.
1800286.

[129] Dewen Qiao, Songtao Guo, Defang Liu, Saiqin Long, Pengzhan Zhou, and Zhetao
Li. Adaptive federated deep reinforcement learning for proactive content caching in
edge computing. IEEE Transactions on Parallel and Distributed Systems, 33(12):
4767–4782, 2022. doi: 10.1109/TPDS.2022.3201983.

176 References

[130] Chunlin Li, Yong Zhang, and Youlong Luo. A federated learning-based edge caching
approach for mobile edge computing-enabled intelligent connected vehicles. IEEE
Transactions on Intelligent Transportation Systems, 24(3):3360–3369, 2023. doi:
10.1109/TITS.2022.3224395.

[131] Subina Khanal, Kyi Thar, and Eui-Nam Huh. Route-based proactive content caching
using self-attention in hierarchical federated learning. IEEE Access, 10:29514–29527,
2022. doi: 10.1109/ACCESS.2022.3157637.

[132] Yijing Li, Shihong Hu, and Guanghui Li. Cvc: A collaborative video caching frame-
work based on federated learning at the edge. IEEE Transactions on Network and
Service Management, 19(2):1399–1412, 2022. doi: 10.1109/TNSM.2021.3135306.

[133] Mohammad Reiss-Mirzaei, Mostafa Ghobaei-Arani, and Leila Esmaeili. A review
on the edge caching mechanisms in the mobile edge computing: A social-aware
perspective. Internet of Things, 22:100690, 2023. ISSN 2542-6605. doi: https:
//doi.org/10.1016/j.iot.2023.100690.

[134] Dener Silva, Alexandre Heideker, Ivan D. Zyrianoff, João H. Kleinschmidt, Luca Rof-
fia, Juha-Pekka Soininen, and Carlos A. Kamienski. A management architecture for
iot smart solutions: Design and implementation. Journal of Network and Systems Man-
agement, 30(2):35, Jan 2022. ISSN 1573-7705. doi: 10.1007/s10922-022-09648-6.
URL https://doi.org/10.1007/s10922-022-09648-6.

[135] Ivan Zyrianoff, Lorenzo Gigli, Federico Montori, Cristiano Aguzzi, Sebastian Kae-
bisch, and Marco Di Felice. Artifact: C3po - converter of open api specification to
wot objects. In 2022 IEEE International Conference on Pervasive Computing and
Communications Workshops and other Affiliated Events (PerCom Workshops), pages
185–186, 2022. doi: 10.1109/PerComWorkshops53856.2022.9767293.

[136] Ivan Zyrianoff. Cache-it cache worker. https://github.com/ivanzy/cache-worker, .

[137] Ivan Zyrianoff. Cache-it simulator. https://github.com/UniBO-
PRISMLab/cache_simulator, .

[138] Fabio Palumbo, Giuseppe Aceto, Alessio Botta, Domenico Ciuonzo, Valerio Persico,
and Antonio Pescapé. Characterization and analysis of cloud-to-user latency: The
case of azure and aws. Computer Networks, 184:107693, 2021. ISSN 1389-1286. doi:
https://doi.org/10.1016/j.comnet.2020.107693.

[139] Stanislav Špaček, Petr Velan, Pavel Čeleda, and Daniel Tovarňák. Encrypted web
traffic dataset: Event logs and packet traces. Data in Brief, 42:108188, 2022. ISSN
2352-3409. doi: https://doi.org/10.1016/j.dib.2022.108188.

[140] Gary A. Stafford. Lan network stability.
https://www.kaggle.com/datasets/garystafford/ping-data. "Accessed on May
31, 2023".

[141] Marco Pettorali, Francesca Righetti, Carlo Vallati, Sajal K. Das, and Giuseppe Anas-
tasi. Mobility management in industrial iot environments. In 2022 IEEE 23rd
International Symposium on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM), pages 271–280, 2022. doi: 10.1109/WoWMoM54355.2022.00046.

https://doi.org/10.1007/s10922-022-09648-6

References 177

[142] Zihao Sang, Songtao Guo, Quyuan Wang, and Ying Wang. Gcs: Collaborative video
cache management strategy in multi-access edge computing. Ad Hoc Networks, 117:
102516, 2021. ISSN 1570-8705. doi: https://doi.org/10.1016/j.adhoc.2021.102516.

[143] Vitalik Buterin et al. A next-generation smart contract and decentralized application
platform. white paper, 3(37):2–1, 2014.

[144] Giulio Caldarelli. Understanding the blockchain oracle problem: A call for action.
Information, 11(11):509, 2020.

[145] Pawel Szalachowski. Blockchain-based tls notary service. ArXiv, abs/1804.00875,
2018. URL https://api.semanticscholar.org/CorpusID:4626463.

[146] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. Town crier: An
authenticated data feed for smart contracts. In Proceedings of the 2016 aCM sIGSAC
conference on computer and communications security, pages 270–282, 2016.

[147] Adán Sánchez de Pedro, Daniele Levi, and Luis Iván Cuende. Witnet: A decentralized
oracle network protocol. arXiv preprint arXiv:1711.09756, 2017.

[148] Jack Peterson, Joseph Krug, Micah Zoltu, Austin K Williams, and Stephanie Alexander.
Augur: a decentralized oracle and prediction market platform (v2. 0). Whitepaper,
https://augur. net/whitepaper. pdf, 2019.

[149] Lorenz Breidenbach, Christian Cachin, Benedict Chan, Alex Coventry, Steve Ellis,
Ari Juels, Farinaz Koushanfar, Andrew Miller, Brendan Magauran, Daniel Moroz,
et al. Chainlink 2.0: Next steps in the evolution of decentralized oracle networks.
Chainlink Labs, 2021.

[150] John Adler, Ryan Berryhill, Andreas Veneris, Zissis Poulos, Neil Veira, and Anastasia
Kastania. Astraea: A decentralized blockchain oracle. In 2018 IEEE international
conference on internet of things (IThings) and IEEE green computing and communi-
cations (GreenCom) and IEEE cyber, physical and social computing (CPSCom) and
IEEE smart data (SmartData), pages 1145–1152. IEEE, 2018.

[151] Zackary Hess, Yanislav Malahov, and Jack Pettersson. Æternity blockchain. Online].
Available: https://aeternity. com/aeternity-blockchainwhitepaper. pdf, 2017.

[152] Sangyeon Woo, Jeho Song, and Sungyong Park. A distributed oracle using intel sgx
for blockchain-based iot applications. Sensors, 20(9):2725, 2020.

[153] Hajar Moudoud, Soumaya Cherkaoui, and Lyes Khoukhi. Towards a scalable and
trustworthy blockchain: Iot use case. In ICC 2021-IEEE International Conference on
Communications, pages 1–6. IEEE, 2021.

[154] Yu Du, Jun Li, Long Shi, Zhe Wang, Taotao Wang, and Zhu Han. A novel oracle-aided
industrial iot blockchain: Architecture, challenges, and potential solutions. IEEE
Network, pages 1–8, 2022. doi: 10.1109/MNET.103.2100395.

[155] Shaimaa Bajoudah, Changyu Dong, and Paolo Missier. Toward a decentral-
ized, trust-less marketplace for brokered iot data trading using blockchain. In
2019 IEEE International Conference on Blockchain, pages 339–346, 2019. doi:
10.1109/Blockchain.2019.00053.

https://api.semanticscholar.org/CorpusID:4626463

178 References

[156] W3C. Web of things. URL https://www.w3.org/WoT/documentation. (accessed:
14.12.2022).

[157] Juan Benet. Ipfs-content addressed, versioned, p2p file system. arXiv preprint
arXiv:1407.3561, 2014.

[158] Giuseppe Antonio Pierro and Roberto Tonelli. Can solana be the solution to the
blockchain scalability problem? In 2022 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 1219–1226, 2022. doi: 10.
1109/SANER53432.2022.00144.

[159] Desmo main repository. URL https://github.com/vaimee/desmo. (accessed:
13.12.2022).

[160] Zhe Xiao, Zengxiang Li, Yechao Yang, Piao Chen, Ryan Wen Liu, Wei Jing, Yauheni
Pyrloh, Ekanut Sotthiwat, and Rick Siow Mong Goh. Blockchain and iot for insurance:
A case study and cyberinfrastructure solution on fine-grained transportation insurance.
IEEE Transactions on Computational Social Systems, 7(6):1409–1422, 2020.

[161] Markus Maibach, Christoph Schreyer, Daniel Sutter, HP Van Essen, BH Boon, Richard
Smokers, Arno Schroten, Claus Doll, Barbara Pawlowska, and Monika Bak. Handbook
on estimation of external costs in the transport sector. Ce Delft, 336, 2008.

[162] Muhammad Saad, Jeffrey Spaulding, Laurent Njilla, Charles Kamhoua, Sachin Shetty,
DaeHun Nyang, and David Mohaisen. Exploring the attack surface of blockchain: A
comprehensive survey. IEEE Communications Surveys & Tutorials, 22(3):1977–2008,
2020.

[163] Pietro D’Antuono, Wout Weijtjens, and Christof Devriendt. On the minimum required
sampling frequency for reliable fatigue lifetime estimation in structural health monitor-
ing. how much is enough? In European Workshop on Structural Health Monitoring:
EWSHM 2022-Volume 1, pages 133–142. Springer, 2022.

[164] Juan Wang, Jinhua Yang, and Zhentao Zhang. Design of cloud computing platform
based accurate measurement for structure monitoring using fiber bragg grating sensors.
In 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence
and Internet of Things Engineering (ICBAIE), pages 807–811, 2021. doi: 10.1109/
ICBAIE52039.2021.9389950.

[165] Cristian Martín, Daniel Garrido, Luis Llopis, Bartolomé Rubio, and Manuel Díaz.
Facilitating the monitoring and management of structural health in civil infrastructures
with an edge/fog/cloud architecture. Computer Standards Interfaces, 81:103600,
2022. ISSN 0920-5489. doi: https://doi.org/10.1016/j.csi.2021.103600.

[166] Zhiguo He, Wentao Li, Hadi Salehi, Hao Zhang, Haiyi Zhou, and Pengcheng Jiao.
Integrated structural health monitoring in bridge engineering. Automation in Construc-
tion, 136:104168, 2022. ISSN 0926-5805. doi: https://doi.org/10.1016/j.autcon.2022.
104168.

https://www.w3.org/WoT/documentation
https://github.com/vaimee/desmo

References 179

[167] Muhammad Fawad, Marek Salamak, Grzegorz Poprawa, Kalman Koris, Marcin
Jasinski, Piotr Lazinski, Dawid Piotrowski, Muhammad Hasnain, and Michael Gerges.
Automation of structural health monitoring (shm) system of a bridge using bimification
approach and bim-based finite element model development. Scientific Reports, 13(1):
13215, Aug 2023. ISSN 2045-2322. doi: 10.1038/s41598-023-40355-7.

[168] Ambarish G. Mohapatra, Jaideep Talukdar, Tarini Ch. Mishra, Sameer Anand, Ajay
Jaiswal, Ashish Khanna, and Deepak Gupta. Fiber bragg grating sensors driven
structural health monitoring by using multimedia-enabled iot and big data technology.
Multimedia Tools and Applications, 81(24):34573–34593, Oct 2022. ISSN 1573-7721.
doi: 10.1007/s11042-021-11565-w.

[169] Shweta Sharma and Amandeep Kaur. Survey on wireless sensor network, its applica-
tions and issues. In Journal of Physics: Conference Series, volume 1969, page 012042.
IOP Publishing, 2021.

[170] Nicola Testoni, Cristiano Aguzzi, Valentina Arditi, Federica Zonzini, Luca De Marchi,
Alessandro Marzani, and Tullio Salmon Cinotti. A sensor network with embedded data
processing and data-to-cloud capabilities for vibration-based real-time shm. Journal
of Sensors, 2018, 2018.

[171] Federica Zonzini, Michelangelo Maria Malatesta, Denis Bogomolov, Nicola Testoni,
Alessandro Marzani, and Luca De Marchi. Vibration-based shm with upscalable and
low-cost sensor networks. IEEE Transactions on Instrumentation and Measurement,
69(10):7990–7998, 2020.

[172] Martine Wevers and Kasper Lambrighs. Applications of Acoustic Emission for SHM:
A Review, pages 9–15. 09 2009. ISBN 9780470061626. doi: 10.1002/9780470061626.
shm011.

[173] Federica Zonzini, Vasilis Dertimanis, Eleni Chatzi, and Luca De Marchi. System
identification at the extreme edge for network load reduction in vibration-based
monitoring. IEEE Internet of Things Journal, 9(20):20467–20478, 2022. doi: 10.
1109/JIOT.2022.3176671.

[174] Élodie Morin, Mickael Maman, Roberto Guizzetti, and Andrzej Duda. Comparison
of the device lifetime in wireless networks for the internet of things. IEEE Access, 5:
7097–7114, 2017. doi: 10.1109/ACCESS.2017.2688279.

[175] D Bogomolov, N Testoni, F Zonzini, M Malatesta, L de Marchi, and A Marzani.
Acoustic emission structural monitoring through low-cost sensor nodes. In Pro-
ceedings of the 10th International Conference on Structural Health Monitoring of
Intelligent Infrastructure, Porto, Portugal, volume 30, 2021.

[176] Claudia Bruno, Antonella Licciardello, Giuseppe Antonio Maria Nastasi, Fabio Pas-
saniti, Carmen Brigante, Francesco Sudano, Alessandro Faulisi, and Enrico Alessi.
Embedded artificial intelligence approach for gas recognition in smart agriculture
applications using low cost mox gas sensors. In 2021 Smart Systems Integration (SSI),
pages 1–5. IEEE, 2021.

180 References

[177] Kyriakos Georgiou, Samuel Xavier-de Souza, and Kerstin Eder. The iot energy
challenge: A software perspective. IEEE Embedded Systems Letters, 10(3):53–56,
2017.

[178] Sean J Taylor and Benjamin Letham. Forecasting at scale. The American Statistician,
72(1):37–45, 2018.

[179] Mirco Tarozzi, Giacomo Pignagnoli, and Andrea Benedetti. Identification of damage-
induced frequency decay on a large-scale model bridge. Engineering Structures, 221:
111039, 2020.

Chapter 8

Research Publications

This is a list of publications resulting from the research conducted during the pursuit of the
PhD thesis.

Journal Articles

1. Zyrianoff, I., Gigli, L., Montori, F., Sciullo, L., Kamienski, C., & Di Felice, M. (2024).
Cache-it: A Distributed Architecture for Proactive Edge Caching in Heterogeneous
IoT Scenarios. Elsevier Ad Hoc Networks.

2. Gigli, L., Zyrianoff, I., Zonzoni, F., Bogomolov, D., Testoni, N., De Marchi, L.,
. . . Di Felice, M. (2023). Next Generation Edge-Cloud Continuum Architecture for
Structural Health Monitoring. IEEE Transactions on Industrial Informatics. doi:
10.1109/TII.2023.3337391.

3. Gigli, L., Zyrianoff, I., Montori, F., Aguzzi, C., Roffia, L., & Di Felice, M. (2023).
A decentralized oracle architecture for a blockchain-based IoT global market. IEEE
Communications Magazine, 61(8), 86–92. doi:10.1109/MCOM.007.2200906

4. Montori, F., Zyrianoff, I., Gigli, L., Calvio, A., Venanzi, R., Sindaco, S., . . . Cinotti, T.
S. (2023). An IoT toolchain architecture for planning, running and managing a com-
plete condition monitoring scenario. IEEE Access, 11, 6837–6856. doi: 10.1109/AC-
CESS.2023.3237971

5. Zyrianoff, I., Trotta, A., Sciullo, L., Montori, F., & Di Felice, M. (2022). IoT edge
caching: Taxonomy, use cases and perspectives. IEEE Internet of Things Magazine,
5(3), 12–18. doi:10.1109/IOTM.001.2200112

182 Research Publications

6. Silva, D., Heideker, A., Zyrianoff, I. D., Kleinschmidt, J. H., Roffia, L., Soininen,
J.-P., & Kamienski, C. A. (2022). A management architecture for IoT smart solutions:
Design and implementation. Journal of Network and Systems Management, 30(2), 35.
doi:10.1007/s10922-022-09648-6

Conference Proceedings

1. Zyrianoff, I., Montecchiari, L., Trotta, A., Gigli, L., Kamienski, C., & Di Felice,
M. (2024). Proactive Caching in the Edge-Cloud Continuum with Federated Learn-
ing.CCNC 2024 proceedings.

2. Aguzzi, C., Gigli, L., Zyrianoff, I., & Roffia, L. (2024). Zion: A Scalable W3C Thing
Description Directory. CCNC 2024: 3rd International Workshop on IoT Interoperabil-
ity and the Web of Things (IIWOT’24).

3. Brunelli, C., Pappacoda, G., Zyrianoff, I., Bononi, L., & Felice, M. D. (2024). Water
Wastage Detection in Smart Homes Through IoT and Machine Learning. CCNC 2024
proceedings as a work-in-progress.

4. Sciullo, L., Montori, F., Zyrianoff, I., Gigli, L., Tinti, D., & Di Felice, M. (2023).
Designing a hybrid push-pull architecture for mobile crowdsensing using the Web of
Things. In 2023 IEEE International Conference on Smart Computing (SmartComp)
(pp. 332–337). doi:10.1109/SMARTCOMP58114.2023.00081

5. Kamienski, C., Cavalcanti, D., Batista, D., Zyrianoff, I., & Virdis, A. (2022). The 1st
International Workshop on the Internet of Time-Critical Things (IoTime 2022). In 2022
IEEE 8th World Forum on Internet of Things (WF-IoT) (pp. 1–2). doi:10.1109/WF-
IoT54382.2022.10152076

6. Ottolini, D., Zyrianoff, I., & Kamienski, C. (2022). Interoperability and scalability
trade-offs in open IoT platforms. In 2022 IEEE 19th Annual Consumer Communica-
tions & Networking Conference (CCNC) (pp. 1–6). doi:10.1109/CCNC49033.2022.9700622

7. Puliafito, C., Gigli, L., Zyrianoff, I., Montori, F., Virdis, A., Di Pascoli, S., . . . Di
Felice, M. (2022). Joint power control and structural health monitoring in Indus-
try 4.0 scenarios using Eclipse Arrowhead and Web of Things. In 2022 IEEE 5th
International Conference on Industrial Cyber-Physical Systems (ICPS) (pp. 1–6).
doi:10.1109/ICPS51978.2022.9816975

183

8. Zyrianoff, I., Gigli, L., Montori, F., Aguzzi, C., Kaebisch, S., & Di Felice, M.
(2022a). Artifact: C3PO - Converter of Open API Specification to WoT Objects.
In 2022 IEEE International Conference on Pervasive Computing and Communica-
tions Workshops and Other Affiliated Events (PerCom Workshops) (pp. 185–186).
doi:10.1109/PerComWorkshops53856.2022.9767293

9. Zyrianoff, I., Gigli, L., Montori, F., Aguzzi, C., Kaebisch, S., & Di Felice, M.
(2022b). Seamless integration of RESTful Web services with the Web of Things.
In 2022 IEEE International Conference on Pervasive Computing and Communica-
tions Workshops and Other Affiliated Events (PerCom Workshops) (pp. 427–432).
doi:10.1109/PerComWorkshops53856.2022.9767531

10. Montori, F., Zyrianoff, I., Gigli, L., Venanzi, R., Sindaco, S., Aguzzi, C., . . . Cinotti,
T. S. (2021). A toolchain architecture for condition monitoring using the Eclipse
Arrowhead framework. In IECON 2021 – 47th Annual Conference of the IEEE
Industrial Electronics Society (pp. 1–6). doi:10.1109/IECON48115.2021.9589532

11. Prati, R. C., Borelli, F., Zyrianoff, I., Silva, D., Togneri, R., & Kamienski, C. (2021).
Irrigasim: An irrigation simulation, processing, and animation environment. In 2021
IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgri-
For) (pp. 305–309). doi:10.1109/MetroAgriFor52389.2021.9628455

12. Sciullo, L., Zyrianoff, I., Trotta, A., & Felice, M. D. (2021). WoT Micro Servient:
Bringing the W3C Web of Things to Resource Constrained Edge Devices. In 2021
IEEE International Conference on Smart Computing (SmartComp) (pp. 161–168).
doi:10.1109/SMARTCOMP52413.2021.00042

13. Zyrianoff, I., Gigli, L., Montori, F., Kamienski, C., & Felice, M. D. (2021). Two-
Way Integration of Service-Oriented Systems-of-Systems with the Web of Things. In
IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society (pp.
1–6). doi:10.1109/IECON48115.2021.9589619

14. Zyrianoff, I., Heideker, A., Sciullo, L., Kamienski, C., & Di Felice, M. (2021).
Interoperability in Open IoT Platforms: WoT-Fiware Comparison and Integration. In
2021 IEEE International Conference on Smart Computing (SmartComp) (pp. 169–174).
doi:10.1109/SMARTCOMP52413.2021.00043

15. Zyrianoff, I., Neto, A. T., Silva, D., Cinotti, T. S., Di Felice, M., & Kamienski, C.
(2021). A Soil Moisture Calibration Service for IoT-Based Smart Irrigation. In 2021

184 Research Publications

IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgri-
For) (pp. 315–319). doi:10.1109/MetroAgriFor52389.2021.9628393

16. Augusto Sales Dantas, R., Vasconcelos da Gama Neto, M., Zyrianoff, I., & Al-
berto Kamienski, C. (2020). The Swamp Farmer App for IoT-Based Smart Wa-
ter Status Monitoring and Irrigation Control. In 2020 IEEE International Work-
shop on Metrology for Agriculture and Forestry (MetroAgriFor) (pp. 109–113).
doi:10.1109/MetroAgriFor50201.2020.9277588

17. Heideker, A., Ottolini, D., Zyrianoff, I., Neto, A. T., Salmon Cinotti, T., & Kamienski,
C. (2020). IoT-Based Measurement for Smart Agriculture. In 2020 IEEE International
Workshop on Metrology for Agriculture and Forestry (MetroAgriFor) (pp. 68–72). doi:
10.1109/MetroAgriFor50201.2020.9277546

18. Queté, B., Heideker, A., Zyrianoff, I., Ottolini, D., Kleinschmidt, J. H., Soininen, J.-P.,
& Kamienski, C. (2020). Understanding the Tradeoffs of LoRaWAN for IoT-Based
Smart Irrigation. In 2020 IEEE International Workshop on Metrology for Agriculture
and Forestry (MetroAgriFor) (pp. 73–77). doi:10.1109/MetroAgriFor50201.2020.9277566

	Table of contents
	List of figures
	List of tables
	1 Introduction
	2 IoT Edge-Cloud Continuum Architecture
	2.1 Background
	2.1.1 The IoT Edge-Cloud Continuum
	2.1.2 IoT Multi-layer Architectures

	2.2 IoT Architecture for IoT-Based Monitoring Systems

	3 Interoperability Layer: Web of Things in the IoT Edge-Cloud Continuum
	3.1 Background
	3.1.1 Device Perspective: the W3C Web of Things
	3.1.2 Application Perspective: Open IoT Platforms
	3.1.3 System Perspective: the Arrowhead Framework

	3.2 Bridging Device to Application Perspective
	3.2.1 ZION: A Scalable W3C Web of Things Directory
	3.2.2 API Experimental
	3.2.3 WoT-FIWARE Integration
	3.2.4 Seamless Integration of RESTful Web Services with the Web of Things

	3.3 Bridging Device to System Perspective
	3.3.1 Architectural Design
	3.3.2 Service Interaction
	3.3.3 Performance Analysis

	4 Data Management Layer: Caching in the IoT Edge-Cloud Continuum
	4.1 Background
	4.1.1 IoT Edge Caching: Taxonomy and Review
	4.1.2 IoT Edge Caching Use Cases
	4.1.3 Frameworks for Proactive Edge Caching
	4.1.4 Federated Learning support in Edge Caching

	4.2 CACHE-IT: Proactive Edge Caching in Heterogeneous IoT Scenarios
	4.2.1 Architectural Design
	4.2.2 Operations
	4.2.3 Implementation
	4.2.4 Performance Analysis

	4.3 CACHE-IT support for Federated Learning
	4.3.1 Architectural Design
	4.3.2 Performance Analysis

	5 Services Layer: Trustworthiness in the IoT Edge-Cloud Continuum
	5.1 Background
	5.2 Blockchain-based Oracle Architecture for IoT
	5.2.1 Architectural Design
	5.2.2 Use Cases
	5.2.3 Performance Evaluation

	6 Use Cases: Deployment in the IoT Edge-Cloud Continuum
	6.1 Background
	6.2 MAC4PRO
	6.2.1 Sensing layer
	6.2.2 Interoperability Layer
	6.2.3 Data Management Layer
	6.2.4 Service Layer
	6.2.5 Performance Analysis
	6.2.6 Use Case #1: concrete frame under seismic excitation
	6.2.7 Use Case #2: hydraulic circuit under Acoustic Emission leakage

	6.3 Arrowhead Tools Project
	6.3.1 Architectural Adaptations to a Toolchain-Oriented System
	6.3.2 The SHM Pilot: Multi-Chain Components
	6.3.3 The SHM Pilot: Toolchains
	6.3.4 CACHE-IT Deployment
	6.3.5 Results and Discussion

	7 Conclusions
	7.1 Summary of Contributions
	7.1.1 RQ (i) – Interoperability
	7.1.2 RQ (ii) – Edge Caching
	7.1.3 RQ (iii) – Trustworthiness
	7.1.4 RQ (iv) – Real-world deployments
	7.1.5 Minor Contributions

	7.2 Current and future research directions
	7.3 Final Remarks
	References

	8 Research Publications

