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Abstract

This PhD thesis consists of three essays in environmental economics, with main focus on the
adaptation to climate change.
The first work, ”Air-Conditioning and the Adaptation Cooling Deficit in Emerging Economies”,
provides a multi-country, comparative analysis of how income and climate drive air-conditioning
adoption in four developing economies, in relation to a comprehensive set of country-specific
household characteristics. We then evaluate with a top-down approach how future changes
in climate and socio-economic conditions centered around 2040 will influence air-conditioning
adoption and electricity. We show that in emerging economies the decision to purchase air-
conditioning in response to warmer climatic conditions is strongly anchored to a household’s
socio-economic conditions and demographic characteristics. Moreover, although the penetra-
tion of air-conditioning is expected to increase in the future, we find that an adaptation cooling
deficit, characterised by millions of less well-off electrified households that need but cannot ob-
tain air conditioners, will remain.
The results from the first work suggest the need for policymakers to identify resources and poli-
cies that may reduce the disparities in access to adaptation in developing economies. The second
paper, ”Adaptation to climate change: Air-conditioning and the role of remittances”, then tests
whether remittances — a fundamental additional income source for economic development in
low-income settings — can relax credit constraints, and so facilitate the heat adaptation process
in emerging economies. We rely on household data from 2008 to 2018 for Mexico — the country
with the highest percentage of GDP from remittances. Our empirical strategy is based on an in-
strumental variable approach for dealing with the potential endogeneity of remittance income.
We find that remittance income plays a key role in the adaptation process. Then, exploiting
climate and income heterogeneity across Mexican households and states, we show that remit-
tances increase the ability of households to purchase air-conditioning (i) mostly in the warmer
areas and (ii) especially when families have a relatively low-income level. We conclude under-
scoring the potential private benefits of this form of adaptation by computing the welfare gain
associated with the possession of air-conditioning.
Finally, my third paper, ”Adapting to Heat Extremes with Unequal Access to Cooling: Evi-
dence from India”, investigates the inequality in heat adaptation, examining the effectiveness of
alternative cooling technologies in mitigating mortality impacts from extreme heat in India. To
do so, we combine rich longitudinal household data with district-level mortality data and high-
resolution meteorological information. Our empirical strategy relies on micro-panel fixed-effects
regression to identify the effect of temperature as quasi-random assigned. We show that the ma-
jority of households lack the means to adapt through access to any form of cooling technology.
However, when adaptation is observed, our empirical results highlight a critical trade-off in
heat adaptation. While we find that the expensive air-conditioning proves to be highly effective
in reducing temperature-related mortality, its ownership and use remains low, predominantly
limited to high-income cities. In contrast, many Indian households, including low-income ones,
purchase cheaper evaporative coolers, which we find offering substantially reduced protection
against heat stress. This has important implications in terms of (1) number of lives saved, (2) eco-
nomic benefits, and (3) adaptation policies, since evaporative coolers are usually an important
component of sustainable cooling-for-all policies.
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Abstract

Increasing temperatures will make space cooling a necessity for maintain comfort and
protecting human health, and rising income levels will allow more people to purchase and
run air conditioners. Here we show that, in Brazil, India, Indonesia, and Mexico income and
humidity-adjusted temperature are common determinants for adopting air-conditioning, but
their relative contribution varies in relation to household characteristics. Adoption rates are
higher among households living in higher quality dwellings in urban areas, and among those
with higher levels of education. Air-conditioning is unevenly distributed across income lev-
els, making evident the existence of a disparity in access to cooling devices. Although the
adoption of air-conditioning could increase between twofold and sixteen-fold by 2040, from
64 to 100 million families with access to electricity will not be able to adequately satisfy
their demand for thermal comfort. The need to sustain electricity expenditure in response to
higher temperatures can also create unequal opportunities to adapt.
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1 Introduction

As global temperatures rise, a growing number of people around the world will be exposed
to the potential harm caused by heat stress1. Adaptation through the use of air-conditioning2

has been the subject of a recent and growing literature that looks at patterns of potential needs
and demand across major cities3, 4, countries5, 6 and world regions7, 8. Low- and middle-income
countries in the tropics or sub-tropics are under the spotlight9. About two to four billion people
living in those places have no space-cooling devices in their homes and air-conditioning usage is
highly concentrated among high-income households10. In a warming climate, air-conditioning
could contribute to maintain labor productivity11–13 and to enhance the accumulation of human
capital14 in the long-term. Better understanding how many of those people at risk will or will
not be able to adopt air-conditioning remains an important area for future research.

The adoption of air conditioners follows the “S”-shaped pattern that characterizes the uptake
of other durable goods, such as automobiles and refrigerators15, 16. In developing countries, the
growth of this curve tends to start off slowly, because of credit constraints, followed by a steeper
rise once income levels reach a certain threshold. Stylized “S”-shaped functions have also been
used to project future air-conditioning adoption and energy requirements in India5 and in other
low-income countries17, 18. The expansion of households’ air-conditioning will put increasing
pressure on future energy demand especially in hot developing countries19–21, and accounting
for this additional driver of energy demand will help improve the aggregate projections and
scenarios needed for managing long-term investments22–24. Demand-side actions will be an im-
portant element in the transition towards net zero emissions over next few decades25, but most
models used to support policy making lack the characterization of adaptation-energy feedback
mechanisms. How energy use for adaptation might influence the design of effective mitigation
actions remains to be studied26, 27.

Here we provide a multi-country, comparative analysis of how income and climate drive air-
conditioning adoption in Brazil, India, Indonesia, and Mexico, in relation to a comprehensive
set of country-specific household characteristics, and evaluate with a top-down approach28 how
future changes in climate and socio-economic conditions centered around 2040 will influence
air-conditioning adoption and electricity. We show that in emerging economies the decision to
purchase air-conditioning in response to warmer climatic conditions is strongly anchored to a
household’s socio-economic conditions and demographic characteristics. Not explicitly account-
ing for other characteristics of households can significantly bias the estimates of the marginal
contribution of income and climate, which would appear larger. Although the penetration of air-
conditioning is expected to increase in the future, an adaptation cooling deficit, characterized by
millions of less well-off electrified households that need but cannot obtain air conditioners, will
remain. Increasing the use of electricity for residential space cooling is a form of adaptation that
helps relieve population from heat stress, but the recurring electricity expenditure required lim-
its the opportunities among the lowest income deciles. In the long run, if left to uncoordinated
and autonomous actions, space cooling runs the risk of exacerbating local and global negative
externalities and of widening existing inequalities.

2 Results

2.1 An up-to-date database of households and climate

Our results are based on the analysis of a new database that combines the up-to-date household-
level survey data covering 2,172 subnational regions in Brazil, Mexico, India, and Indonesia
over the 2003-2018 period, with gridded Cooling Degree Days (CDDs). We respond to recent
demands to account for the influence of relative humidity7, 8 by using wet-bulb temperature
as a more accurate measurement of thermal discomfort that, contrary to dry-bulb temperature,
does not overestimate temperature at low humidity levels29. To better reflect tropical condi-
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tions, we use a higher baseline temperature of 24 °C as opposed to the 18 °C value used in most
studies on air temperature impacts and building energy demand30. Because temperature set-
points can vary across households4, we also consider a lower temperature threshold of 22 °C as
a robustness test. The combination of two temperature thresholds with calculations based on
dry-bulb and wet-bulb temperatures makes it possible evaluate the sensitivity of the results for
different countries to the climate metric used. For the sake of clarity, in the remainder of this
paper, CDDs refer to those computed with wet-bulb temperature and at a base temperature of
24 °C (see section ‘Climate Data’ in Supplementary Information, where results based on CDDs
computed with dry-bulb temperature are also shown). Brazil, Mexico, India, and Indonesia are
all tropical countries characterized by relatively high average wet-bulb CDDs, though there is
significant variation from one country to another (Supplementary Figure 1). Climate variation
remains significant even within each of the four countries considered. The highest long-term
average values of wet-bulb temperature are observed in Indonesia and India, although climate
heterogeneity between and within countries highlights the presence of high-CDD regions even
in Brazil (Figure 1, panel a). The diffusion of air-conditioning units across districts and states
closely mirrors patterns of hot climate conditions in the climate maps, though urbanization and
access to electricity play a mediating role (see Supplementary Figure 1). In India, for exam-
ple, the highest CDD values, observed in the states of West Bengal, Assam, Uttar Pradesh, and
Orissa, are not associated with the most widespread use of air-conditioning. Households in
those regions are mostly rural and often lack access to electricity, as implied by low ownership
rates of refrigerators. Fans, which consume less energy and do not require a stable connec-
tion, are more widespread throughout the country. In Brazil, the state of Rio de Janeiro shows
relatively high adoption rates for air conditioners, despite the lower number of annual CDDs
compared to its northern states, where urbanization is low. Although Indonesia has the highest
values of CDDs, households rarely own air-conditioning units, except for the districts of Jakarta
and the Riau Islands.

Climate is only part of the story, as shown by India and Indonesia. For the same level of
total expenditure per capita, air-conditioning ownership rates are the highest in India and the
lowest in Indonesia (Figure 1, panel b). In these Asian regions, average annual total expenditure
per capita, which we use as an indicator of lifetime income, is below 10,000 USD for nearly all
households. The expenditure distribution has a larger variance in Brazil and Mexico where, on
average, of at least a quarter of households reports annual total expenditure per capita above
10,000 USD. Across all countries air-conditioning ownership is quite low (12% in India in 2012,
14% in Mexico in 2016), even in Indonesia and Brazil where more recent data are available (8%
in Indonesia in 2017, 20% in Brazil 2018). By comparison, fans and refrigerators are more widely
used. In India, as early as 2012, fans were owned by 73% of households, even among those
with very low-income levels. Refrigerators have the highest adoption rates in Brazil and Mexico
(See Supplementary Table 4 for descriptive statistics). Electricity expenditure reflects the own-
ership patterns of energy-consuming durables. Absolute values are the highest in Brazil and
Mexico though, in relative terms, Indian households spend the largest share of their budget on
electricity, between 3.4% and 4.5%.
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Figure 1: Climate, air-conditioning, and income characteristics in four selected emerging
economies. Panel a: A 30-year average of gridded wet-bulb Cooling Degree Days (CDDs),
up to the second wave of household data used in the study (2009 for Brazil and 2012 for all
other countries). Panel b: Rates of air-conditioning (AC) ownership in relation to per capita total
expenditure (2011 US constant dollars at PPP) and comparison to other cooling devices in the
second wave of household data. The black dashed line shows the distribution of households
(HH) across income levels. Maps are generated using the sp, rgdal, and raster R packages.

2.2 Drivers of air-conditioning adoption

We estimate adoption models for air conditioners for each individual country by using the two
most recent survey waves available with a logit model (see Methods). To understand how adop-
tion patterns differ from more commonly owned goods, we also look at the adoption of refrig-
erators and fans. While fans can substitute air conditioners in the space cooling service they
provide, air conditioners are more comparable to refrigerators in terms of the budget required
to purchase them. By using two waves, we can control for country-specific, time-varying un-
observable trends that affect all households, such as changes in the prices of appliances and
country-level regulations.

Income conditions and climate are both important drivers of the decision to adopt air con-
ditioners across all countries (Table 1), but their relative contribution varies in relation to other
household characteristics (Supplementary Table 7). The marginal effect of total expenditure is
always larger than that of CDDs (except for fans in Mexico), but climate remains an important
factor, especially in Brazil and Mexico. Fans, which in the short-term have the lowest costs, are
generally more sensitive to CDDs as compared to air-conditioning. Especially in the warmer
countries, India and Indonesia, education and the quality of dwellings correlate with a house-
hold’s wealth and are more strongly related to the adoption of refrigerators and air-conditioning,
the most expensive goods. The extent to which climate affects the decision to adopt also depends
on a household’s average income level. The interaction term between CDDs and total expendi-
ture (Supplementary Table 5) indicates that households respond to rising temperature levels by
purchasing a new air-conditioning unit only when their average annual income is sufficiently
high (Figure 2, panel a). Moreover, as income increases, households tend to substitute fans with
air-conditioning. Refrigerators provide a different service that is desirable across all climates
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but, as income increases, refrigerators become less sensitive to climate. The adoption of refrig-
erators responds to CDDs at low-income levels in Brazil and Mexico – where adoption is higher
– and at medium income levels in India and Indonesia – where adoption is still quite low.

Demographic and infrastructural characteristics are also important factors in explaining adop-
tion patterns, and their relative contribution, compared to income and climate, varies across
countries and the type of good considered (Supplementary Table 6). Urbanization increases the
probability of adopting cooling durables, and so does home ownership, though this factor is
of less importance in comparison to living in major urban centers. Since for Brazil we lack in-
formation on districts, regressions only consider households located in the strata of capital and
urban regions because for these strata, the geographical climate information are more accurate.
The regressions for Brazil therefore do not include the urbanization variable. Education sub-
stantially enhances the propensity to adopt all types of goods considered in all countries. The
housing index, which combines information on the quality of roofs, toilet and walls, shows a
positive relationship with adoption propensity, indicating that households occupying higher-
quality homes are more likely to install an air-conditioning unit. Demographic factors show a
robust influence across goods and countries. Household size has a negative sign, whereas the
presence of members under 16 years of age has a positive influence. Households with older fam-
ily heads are more inclined to have a cooling appliance, probably because such persons spend
more time at home. Employed household heads, who spend less time at home, are less inter-
ested in owning air conditioners. Findings on gender are mixed, and whether having a male
head increases or not the propensity to adopt and use of cooling devices varies across countries.
Not including this rich set of households’ characteristics would significantly bias income and
CDD elasticities, which would be estimated to be larger (Supplementary Table 11). Over time,
the ability of households to adapt to climate conditions increases. When adoption behaviors
are estimated by using only the most recent wave, income and CDD elasticities are significantly
larger (Supplementary Table 11), indicating that, for the same income level, climate conditions,
as well as all other covariates (ceteris paribus), households have a higher probability to adopt air-
conditioning in the most recent waves. The higher adaptive capacity of households could also
reflect the rapid decline in air-conditioning prices observed over the last twenty years31, though
we cannot formally test this hypothesis with our current data.

While new technologies widen the space of adaptation options available to households, con-
tributing to enhancing their adaptive capacity, actual adaptation depends on behaviors and
specifically on how electricity is used. Although we do not observe the specific consumption
of electricity for space cooling, we know the total electricity consumption of households. Not
only can air-conditioning be reasonably assumed to be more sensitive to changes in temperature
than other final usages, but it is also much more energy-intensive compared to fans32. Most
of the factors that positively influence the adoption of air-conditioning adoption - CDDs, in-
come, urbanization, education, home ownership and housing index - are also positively related
to electricity consumption (Supplementary Table 9).
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Table 1: Total Marginal Effects for CDDs wet-bulbs and total expenditure from standardized logit models based on the two most recent waves for
air-conditioning (AC), fans (FAN), and refrigerators (REF).

Brazil Mexico India Indonesia

Ac Fan Ref Ac Fan Ref Ac Fan Ref Ac Ref

CDDs 0.0565*** 0.0880*** -0.0029*** 0.023*** 0.244*** 0.014*** 0.017*** 0.063*** 0.031*** 0.0037*** 0.073***
(0.00154) (0.00359) (0.00056) (0.00406) (0.0126) (0.00292) (0.00588) (0.00783) (0.00678) (0.000425) (0.00750)

Tot. Exp. (in log.) 0.0928*** 0.0888*** 0.0167*** 0.0319*** 0.119*** 0.0610*** 0.0495*** 0.0930*** 0.247*** 0.0123*** 0.307***
(0.00148) (0.00216) (0.00053) (0.00276) (0.00596) (0.00251) (0.00259) (0.00303) (0.00517) (0.000465) (0.00332)

Observations 75,290 75,290 75,290 78,607 78,607 78,607 167,648 170,470 166,402 524,112 524,112

Clustered standard errors at district level for MEX, IDN, and IND, and robust standard errors for Brazil in parentheses. State- and year-fixed effects for MEX, IDN, and IND and
region- and year-fixed effect for BRA. ***p<0.001; **p<0.05; *p<0.1. Notes: Interpretation (Brazil). For a representative household, a 1 Standard Deviation (SD) increases in CDDs
raises the probability of adopting AC by 5.65 percentage points on a probability scale 0 to 100. 1 SD increases in the log of income raises the probability of adopting AC by 9.28
percentage points. The total marginal effects include the contribution of the interaction between CDDs and total expenditure and is computed at the mean value of those variables.
Full regression results with the full list of covariates are shown in Supplementary Table 7.5



As CDDs increase above historical levels, air-conditioning generally rises more rapidly than
fans and refrigerators, especially in Brazil (Figure 2, panel b). In India and Indonesia, the speed
of diffusion aligns with that of other devices. In Mexico, fans reach a saturation point very
rapidly, reflecting the relatively higher correlation with CDDs in a country characterized by
very heterogeneous climate conditions.

Figure 2: Drivers of air-conditioning adoption. Panel a: Marginal elasticity of air-conditioning
adoption to a one-hundred increase in Cooling Degree Days (CDDs) across income levels. Panel
b: Predicted adoption rates of air-conditioning (AC) and other cooling devices for varying CDDs
wet-bulbs. All other drivers are assumed at their historical mean value (full regression results
shown in Supplementary Table 5). The vertical dashed line marks the country-specific, long-
term historical average of CDDs. Shaded areas represent the dispersion in predicted adoption
levels across households.

Even within tropical regions, temperature measurements based on dry-bulb temperature can
over-estimate CDD elasticities, depending on how air-conditioning is distributed across sub-
regions with different micro-climates and humidity levels (Supplementary Table 12). If climatic
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conditions are measured with dry-bulb CDDs, the estimated CDD elasticities are significantly
larger in Mexico and India and only slightly so in Brazil. Mexico and India have a high con-
centration of air-conditioning in the regions characterized by a particularly arid climate (warm
arid and very hot dry climate conditions). Overall, our results are robust in relation to the use of
different temperature thresholds, as well as to different measurements.

2.3 Future adoption of air-conditioning around mid-century

We simulate how changes in future climate and socio-economic conditions will influence a
household’s air-conditioning adoption and electricity use around 2040 (see Methods) by combin-
ing the change in CDDs simulated under two scenarios of moderate and vigorous warming, as
described by the mean climate model Representative Concentration Pathways (RCPs) 4.533 and
8.534 with changes in income described by five different Shared Socio-economic Pathways35, 36.
In India CDDs increase by a factor of 1.9-2.3, while total expenditure increases by a factor of
4-7 across SSPs. In Indonesia (Brazil), CDDs increase by a factor of 5-9 (6-8) across RCPs while
total expenditure by a factor of 3-4 (1.6-2.5) across SSPs. In Mexico CDDs and total expenditure
increase by a factor of 1.7-2.5 across SSPs and RCPs.

Increase in the adoption of air-conditioning is substantial (Figure 3 and Supplementary Tables
18-21). In India, the average adoption rate across Indian states increases from 12% in 2012 to 49-
69%, across SSPs and RCPs, in 2040; in Indonesia, from 8% in 2017 to 43-61%, in Mexico from 14%
in 2016 to 35-42%, and in Brazil from 20% in 2018 to 65-85%. In Brazil, the largest increases are
observed in its more affluent states in the southern and southeastern parts of the country, such as
São Paulo, where air-conditioning rises from 16% to 78% in SSP5, RCP8.5, and Mato Grosso do
Sul, which, starting from 28%, achieves full saturation (90% in SSP5, RCP8.5; results across SSPs
and RCPs are available in the Supplementary Material). Brazil’s northern states have higher
historical ownership rates and therefore see a relatively smaller increase, though they achieve
the largest shares by 2040. To mention a few examples, Amazonas, with the contribution of
the city of Manaus, Pará, and Tocantins range from 69%, 23% and 29% in 2018, respectively, to
full ownership. In Mexico, the average ownership rates in its hotter states are comparatively
high already in the historical records, reaching 73% in Sonora or 77% in Sinaloa. The country’s
average increase in air-conditioning ownership is mediated by the inland regions, which are
characterized by very low CDDs and hence no use of air-conditioning. In India, heterogeneous
conditions in the access to electricity contribute to determining a more diverse situation across
states. We do not model expansion in electricity access and therefore our projections represent
households that already have access to electricity at present. This is not an issue for Mexico and
Brazil, as they practically coincide with the total survey population (more than 97%). It might
lead to an underestimation of AC expansion in Indonesia and India where many households
still lack access. The largest increases in air-conditioning are seen in the northeastern part of
the country, close to the border with Bangladesh, in states such as Assam, Bihar, Nagaland, and
Meghalaya, where CDDs reach the highest values in the country. In India, 6 out of its 35 states,
Delhi, Chandigarh, Haryana, Punjab, Rajasthan, and Uttar Pradesh, are expected to achieve
full ownership, though only Delhi, Haryana, and Punjab do so across all scenarios. Indonesia
exhibits the smallest variation in air-conditioning ownership rates across states. Compared to
the other three countries, nearly all states show high CDDs. Still, air-conditioning ownership
rates remain relatively low when economic growth is considered. Only Jakarta will come close
to full ownership across all scenarios considered in 2040, starting from its 2017 average adoption
rates of 30%. Increasing electricity demand also appears to be a ubiquitous form of adaptation
(Supplementary Figure 7), and the interquartile range of the estimated growth factor is always
positive (Supplementary Tables 14-17).

How temperature is measured and how the comfort setpoint is defined are two important
sources of uncertainty that could generate different projections, arising from the interaction be-
tween the estimated elasticities and the changes in the temperature variables and the associated
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degree days. When the estimated elasticities are combined with future CDDs, future projected
air-conditioning can be lower when using wet-bulb CDDs (Mexico) because of the lower esti-
mated elasticities, but they can also be higher (Brazil) because only slightly smaller elasticities
interact with a larger increase in wet-bulb CDDs relative to the historical period compared to
dry-bulb CDDs. Since historical wet-bulb CDDs are much lower than dry-bulb CDDs, their
growth rate is higher. Projections based on the 22 °C temperature threshold tend to underesti-
mate projections based on the 24 °C temperature, especially when using wet-bulb measurements
(Supplementary Table 12 and Figure 8).

Figure 3: Future average air-conditioning adoption rates across country states in 2040 under
RCP8.5-warming. States are ranked from top to bottom, based on historical ownership rates.
State-level adoption rates are computed as weighted average of household-level projected adop-
tion rates (see Methods).

2.4 Adaptation cooling deficit

Changes in climate and income conditions will allow more households to have an air condition-
ing unit by 2040, even when considering the uncertainty characterizing future socio-economic
conditions. Yet, a non-negligible fraction of the population will be left behind. Our findings
show that in 2040, between 64 and 100 million households (in SSP5-RCP8.5 and SSP3-RCP45,
respectively) out of the total number of households living in the four countries considered
in the latest waves of 343 million will face an adaptation cooling deficit. These households
will face climate conditions warmer than their own country average, measured in terms of a
country-specific CDD exposure ratio, and yet they will not be able to protect themselves with
air-conditioning, as indicated by an air-conditioning availability ratio. We measure total CDD
exposure as in Biardeau et al.7 by multiplying country- and state-level CDDs by the total num-
ber of households. We then compute the CDD exposure ratio for each subnational state across
the four countries. When state-level CDD exposure is higher than the country median, the ratio
takes a value larger than one and proportional to the distance from the median. This exposure
ratio is compared to the AC ratio, which is defined in a similar way. When the state-level average
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AC ownership rate is smaller than the country median, the ratio takes a value smaller than one,
proportional to the distance from the median. When the state-level average air-conditioning
ownership rate is larger than the country respective median, the ratio takes a value greater than
one and proportional to the distance from the median.

By combining these two ratios, Figure 4 divides the four countries’ states into four groups, for
the historical (left panel) and future period (right panel). The imaginary diagonal running from
the top-left to the bottom-right quadrant sheds light on the cooling inequality characterizing
these countries. States in the top-left quadrant have high adoption rates relative to the country
median, despite having lower-than-average CDDs. The state of Rio de Janeiro in Brazil is an ex-
ample. States in the bottom-right quadrant raise concerns because they have lower-than-average
adoption rates despite the higher-than-average exposure to hot climate conditions.

Since socio-economic conditions improve at a faster rate than the increase in CDDs, in com-
parison with the historical data, the number of states with households experiencing a cooling
deficit declines. Brazil and India potentially experience the largest reduction in the adaptation
cooling deficit, going from 23 million in 2018 to 8-13 million across the 2040 socio-economic and
warming scenarios in Brazil, and from 54 million in 2012 to 29-58 million households in India.
In Indonesia, the change is from 26 million households in 2017 to 20-28 million. In Mexico, the
historical situation would not change significantly, and it could even worsen (from 5 million in
2016 to 4-6 million households). States with high urbanization levels, hot and humid climate, or
with generally poor economic conditions are more likely to face a cooling deficit. Consider, for
example, the state of Jharkhand in northeastern India. Because air-conditioning does not keep
pace with population and CDDs growth, its position shifts from the top to the bottom-right
panel.

Figure 4: Adaptation cooling deficit. Current situation (Panel a, latest wave available) and
future projections in 2040 with RCP8.5 warming and SSP5 (Panel b) computed with Cooling
Degree Days (CDDs). Bubble size proportional to the current number of households relative to
each country’s maximum. For the historical period, the following waves are used: Brazil, 2018
India, 2012, Indonesia, 2017, Mexico, 2016. Colors are used to differentiate the four countries.
See http://www.energy-a.eu/cooling-deficit/ for the interactive online version.

The greatest increase in the adoption of air conditioners will be among middle-class and
wealthy families, though actual electricity use will rise especially among the wealthiest house-
holds (Figure 5). Electricity use increases with income (Supplementary Table 9 and 10), though
families sharing similar socio-economic conditions might still have very different usage pat-
terns due to building characteristics, appliance efficiency, climate, and infrastructure conditions,
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which we can only imperfectly account for. The adaptation cooling deficit persists, especially
within the lowest income groups. In 2040, median adoption rates in the first total expenditure
decile vary between about 1% (SSP3, RCP4.5) and 27% (SSP5, RCP8.5) in India, between less
than 0.1% and 40% in Brazil, between in 0% and 3% in Mexico, and between less than 0.1% and
5% in Indonesia. The wealthiest households drive the aggregate implications in terms of energy
use, which are substantial. Electricity increases by about two to three times in Indonesia and
India, while the increase is less dramatic in the Latin American countries (Supplementary Tables
14-17). Results show a higher sensitivity to socio-economic scenarios. The distribution of pro-
jected air-conditioning and electricity growth rates are not statistically different across climate
scenarios, whereas they are across SSPs.

Figure 5: Future increase in air-conditioning and electricity use. Air-conditioning adoption
rates (panel a) and total final electricity use (panel b) by income decile in the SSP5 RCP8.5 sce-
nario (historical values refer to the latest available wave, Brazil, 2018; India, 2012; Indonesia,
2017; Mexico, 2016). Horizontal lines show the historical (thin line) and future (thick line) me-
dian share across states, as influenced by changes in total expenditure and CDDs. Colors are
used to differentiate the four countries and shaded areas highlight the increase between today
and 2040.
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3 Discussion

While rising temperature and increasing income are likely to exert a positive pressure on the
adoption and use of air-conditioning, here we show that the dynamics of air-conditioning are
country-specific and relate to demographic and infrastructural characteristics, including edu-
cation and housing conditions. Access to air-conditioning is highly uneven, indicating that
households’ ability to adapt to climate change through the use of energy is linked to their socio-
economic conditions.

The empirical evidence obtained for Brazil, India, Indonesia, and Mexico contrasts in three
key respects with the result from the more studied wealthier countries. First, income has a com-
paratively more important role than climate in explaining the adoption of air-conditioning, and
income critically determines a household’s ability to respond to increased exposure to CDDs.
By contrast, findings from more developed countries suggest that climatic conditions play a
relatively larger role in comparison to income37–39 since, on average, industrialized countries
are above the income threshold at which CDD elasticities rise. Second, better educated heads of
households have a consistently stronger propensity to adopt and use air-conditioning. This find-
ing may suggest that the influence of better education goes hand in hand with income and is not
associated with a greater awareness of the environmental implications of using air-conditioning,
which is in contrast with what is found in richer countries. Third, the relative role of urbaniza-
tion is an important factor in air-conditioning use, though it plays a smaller role in Brazil, India,
Indonesia, and Mexico than in the OECD countries.

With respect to the role of relative humidity, we show that projections based on CDDs com-
puted with the 24 °C wet-bulb temperature threshold lead to higher adoption rates and increases
in electricity demand compared to simulations based on lower temperature thresholds or dry-
bulb-temperature (Supplementary Figure 8). India and Mexico are two exceptions. We con-
clude that whether temperature measurements based on dry-bulb-temperature lead to larger
or smaller elasticities and projections depends on how air-conditioning is distributed across
sub-regions with different micro-climates and humidity levels, and therefore is country-specific.
Moreover, the higher density of wet-bulb CDD distribution around small values, especially in
Brazil and Mexico, contributes to determining a wider dispersion in the simulated rates of future
adoption and electricity consumption.

Aggregate results are in line with the evidence provided by recent single-country studies,
such as Gertler and Davis6 for Mexico. We extend to India, Indonesia, and Brazil concerns
regarding a potentially enormous impact from air-conditioning. Over the next twenty years, de-
mand for air-conditioning could rise rapidly with income and CDDs, if households will adjust
as they have been doing in the recent past, and so will their demand for electricity. Average
electricity growth factors vary across SSPs and RCPs: between 1.3 and 1.8 in Brazil, 2.4 and 3.5
in India, 2.3 and 3.2 in Indonesia, and 1.4 and 1.9 in Mexico, with most of the variation driven
by differences across socio-economic scenarios (SSPs), and not so much by differences across cli-
mate scenarios (RCPs). Urbanization, education, housing conditions, and electrification, which
are taken as given in the simulations, can only further amplify these trends, unless structural
changes modify their relationship with mechanical space cooling.

We emphasize that these countries have a vast unmet demand for air-conditioning, and that
the uneven distribution of economic resources prevents less affluent households from acceding
to this means of adaptation. In 2040, these four countries taken together will face a cooling deficit
of up to almost 100 million households, considering only those that already have access to elec-
tricity. Not only will the cooling deficit persist for a non-negligible fraction of the population, but
even those with air-conditioning will be exposed to a new condition of vulnerability related to
supply shortage in the power sector40 or degraded power stability41. It is therefore imperative to
manage the growing appetite for residential space cooling by using a mix of technology-oriented
and behavioral or social measures and policies42, 43. Multiple sources of uncertainties will play
out over the next twenty years, layered on top of climate and socio-economic uncertainties, and
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we account for them by utilizing combinations of models and scenarios (see Methods). Behav-
ioral adaptive responses themselves can change, as suggested by the way our estimated elas-
ticities vary not only across countries, but also over time. These differences can reflect changes
in technology, characteristics of infrastructure, and market conditions, all of which contribute to
propagating uncertainty. Although our database makes it possible to check for a wide set of a
household’s characteristics, unobserved elements, such as culture, institutions, can always bias
cross-sectional estimates. Electricity costs, as well as appliance costs, certainly play a role in a
household’s decisions concerning adoption and utilization. Our estimates can only include fixed
effects that are meant to capture the influence of a state’s fixed characteristics, as well as time
varying factors common to all states within each country. Higher elasticities obtained when esti-
mating results only with the latest waves could indeed suggest that unobserved declining costs
of appliances have made adoption easier over time.

Our simulations for the future focus on the potential influence of CDDs and income with-
out considering the further adjustments that could be induced by the evolution of prices, tech-
nology, and by structural changes. Our estimates for air-conditioning adoption and electricity
demand can be used as inputs by quantitative system models to analyze the macroeconomic
consequences induced by the simultaneous adjustments across multiple sectors. Integrated As-
sessment Models (IAMs) or Computable General Equilibrium models (CGEs) can also be used
to examine the tension between adaptation and mitigation in terms of economic costs, welfare
implications, policy effectiveness and design.

Methods

Empirical Analysis

McFadden’s basic utility framework (1974, 1982)44, 45 provides the theoretical framework de-
scribing the adoption behavior of households. The utility of household i is modelled as a func-
tion of expenditure and ownership of goods under the budget constraint given by the house-
hold’s resources. We distinguish between a vector of cooling durables, ki with price p and ex-
penditure on all other items ci:

Ui = U(ci, ki)

s.t. ci + p
′
ki = yi

(1)

A household’s preferences with respect to the decision to purchase a cooling durable goods
are revealed by the latent variable k∗ij with ∈ AC, FANS, REF, which can be modelled as a func-
tion of a vector of explanatory variables Xiβ and a random independent error term, ϵj:

k∗ij = Xiβ + ϵj (2)

The latent variable is revealed once adoption of a given technology is observed.
We model the decision to adopt a cooling durable as a dichotomous variable, k j, determined

by the following decision rule:

kij =

{
1 if k∗ij > 0

0 otherwise
(3)

and the probability of a household’s purchasing device j as a logistic function:

P(kij = 1|X) = exp(Xiβ)

1 + exp(Xiβ)
)) = Λ(Xiβ) (4)

where Λ() is the logistic cumulative distribution function.
In our specification we want to focus on the relative contribution of climate and income,

proxied by total expenditure and their interaction. Following a number of studies evaluating

12



the electricity-temperature response function in Brazil46 and India47, as well as that of AC own-
ership5 showing how adjustments in electricity demand to climate change vary with income, we
assume that the marginal effect of CDDs on the adoption of cooling assets depends on the level
of income (y). The marginal effect of income, approximated by total household expenditure, also
depends on climatic conditions:

P(kij = 1|CDD, yi, Xi) = Λ(β1CDD + β2yi + β3CDD yi + Xiβ) (5)

∂P(kij = 1|CDD, yi, Xi)

∂CDD
= Λ(.)

′
[β1 + β3 yi] (6)

∂P(kij = 1|CDD, yi, Xi)

∂yi
= Λ(.)

′
[β2 + β3 CDD] (7)

This specification implies that the marginal effects of climate and income are not constant.
The CDD-response function of electricity consumption is estimated for each individual coun-

try by applying Ordinary Least Squares (OLS) with a sandwich cluster estimator to the most re-
cent wave available for each country. We model electricity use in average annual kilowatt-hours
for each household, qi, as a function of CDDs, income, yi, and a set of control variables, Xi:

ln(qi) = β1CDD + β2yi + β3CDD yi + Xiβ + ϵi (8)

By omitting the ownership of air-conditioning and other energy-using appliances, the model
captures the long-term response of electricity use to climate and income, as discussed in Depaula
and Mendelsohn46. Not including air-conditioning, fans, and other appliances means that we are
assuming they can change over time, and the effect of the changes in these variables is implicitly
captured by the coefficient of the CDD variable. The energy demand literature has long made
a distinction between the so-called intensive margin, i.e. how electricity demand varies with
temperature for a given stock of equipment, and the extensive margin, namely how the adoption
of appliances changes with temperature, income, and other covariates. Earlier studies discuss
how the two decisions are jointly related, and how not accounting for common determinants
can lead to biased estimates48. Unfortunately, the data gathered for the four countries do not
make it possible to develop a two-stage approach that accounts for the short-term effect of air-
conditioning on electricity consumption, as in Randazzo et al.38. We can therefore only evaluate
the long-term responses.

Data

We build a household-level database using survey data over the 2003-2018 period for four
emerging and developing countries - Brazil, India, Indonesia and Mexico. Three waves are
available for Brazil, Indonesia and Mexico, including the most recent years (2016-2018), whereas
only two waves are available for India. In Table 1, we estimate adoption models for air condi-
tioners, fans, and refrigerators for each individual country by using the two most recent survey
waves available. The use of two waves makes it possible to include time dummies that check
for country-specific, time-varying unobservable variables. However, our projections, as shown
in Figures 3-5 for both air-conditioning and electricity, are based on regression results that only
use the most recent wave, since it better reflects the most recent conditions of these fast-growing
countries. Supplementary Table 11 shows the sensitivity of CDDs and total expenditure elastic-
ities when different waves are used.

Validation

We evaluate the predictive power of our logit models by using the Area under the Receiver Op-
erating Characteristic curve (AUC and ROC)49. The most important component of our model
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is the AC adoption model, which is based on a logistic regression that studies determinants of
a dichotomic outcome, such as having or not having air-conditioning. Validation techniques
for approaches based on logistic regressions exploit a classifier algorithm. Predicted probabili-
ties are computed for all observations, and then the classifier algorithm assigns each predicted
probability to class 0 or 1, based on a threshold (usually 0.5). If the predicted probability is
larger than 0.5 the observation is classified in class 1, namely as having air-conditioning. If the
predicted probability is smaller than 0.5 the observation is classified in class 0, namely as not
having air-conditioning. The results are predicted classes for all the observations that are subse-
quently compared with the truly observed classed, in order to check the accuracy of the model.
The justness of a logistic regression is evaluated by building a confusion matrix, a table of fitted
versus observed observation classes that makes it possible to identify, after choosing the classifi-
cation threshold, the number of false positives and negatives that the model predicts. Since the
threshold choice for classification is arbitrary, the validation practice computes such a confusion
matrix for multiple thresholds and visualizes the results by using a ROC curve displaying the
two types of errors for all possible thresholds. The overall performance of the logistic regression
is evaluated over an infinite number of thresholds by computing the area under the ROC curve,
called AUC. The AUC has a value of between 0.5 and 1. The larger the AUC the better the per-
formance of the logistic regression. We first train our logistic regression on a training dataset
defined as a random subsample of our dataset – containing 3/5 of total observations - and then
we predict households with air-conditioning in the test dataset, as the remaining subsample of
2/5 of total observations. For three countries, the ROC exhibits an area under the curve (AUC)
of more than 0.9 (it is 0.83 which is still very good in Brazil) for air-conditioning, and more than
0.8 for both fans and refrigerators (Supplementary Figure 2). This suggests a good performance
of our models in predicting owners of a cooling asset.

Projections

We use the Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways
(RCPs), a set of five socioeconomic and GHG emission scenarios that have been developed by
the research community to make scenario-based mitigation and impact studies more compa-
rable across the literature36. The socio-economic scenarios (SSPs) describe five plausible and
internally consistent storylines, named SSP1 to SSP5, that narrate how socio-economic variables
might unfold over the century35. Representative Concentration Pathways (RCPs) are trajectories
of total future radiative forcing that have been used as input by climate models that generate
projections of temperature and other climate variables36.

We use nationwide growth rates of per capita Gross Domestic Product (GDP), considering
a long-term average GDP per capita between 2020 and 2060, and assuming that household
expenditure will increase at the same rate. In all countries, per capita GDP grows the most
in SSP1 and SSP5, followed by SSP2, which is the continuation of historical trends. Growth
rates are particularly high for India (between 289% and 528% compared to 2010) and Indonesia
(263%-409%), whereas in Mexico and Brazil GDP per capita approximately doubles. Projec-
tions of future dry-bulb (CDDdb) and wet-bulb (CDDwb) cooling degree-days are obtained by
using two different sources of meteorological variables from climate model simulations. Data
for bias-corrected daily mean temperature dry-bulb (Tdb) for 2021-2060 mid-century are from
NEX-GDDP. NEX-GDDP is a broad combination of downscaled and biased-corrected 0.25 grid-
ded daily meteorological fields from 21 Global Climate Models (GCMs) that simulate vigorous
(RCP 8.5) and moderate (RCP 4.5) warming under the Coupled Model Intercomparison, Phase
V (CMIP5) climate modelling exercise. Because the NEX-GDDP does not include projections
of humidity, CDDwb are computed by using variables from the ISIMIP2b scenarios50, which
include bias-corrected data51 from four CMIP5-models over the same period and for the same
two RCP scenarios (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC5). The multi-model
median CDDwb of the four GCMs (21 GCMs in the case of CDDdb) are then utilized for the sub-
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sequent aggregation to sub-national levels in each country. The projections of the subnational-
level population weighted degree-days for the four countries use population data from Jones
and O’Neill52, who provide decadal population (2020-2100) at 0.125° gridded resolution, for the
five SSPs. We utilize projected populations for the year 2040 in each SSP as being representa-
tive of the midpoint of our mid-century projections. The 0.125° gridded population are matched
to the gridded degree-days by using CDO remapping operators, with a prior weighting of the
degree-days by population to the district level boundaries in R53.

To predict the percentage of households with air-conditioning we estimate a logit model by
using the latest available wave for each country. We then replace each household’s current total
expenditure and CDDs with the projected CDDs and expenditure around the year 2040. Pro-
jected CDDs are computed by applying state-level growth rates to the historical (as simulated by
climate models 1986-2005) district-level CDDs. Projected household-level expenditure is com-
puted by scaling up household expenditure with the country-level income growth projected
by different SSPs. We use the fitted equation from the logit model to calculate the adoption
probability for each household. In Figure 4, to estimate the future number of households with
air-conditioning, we used the 0.5 probability cutoff. Figure 5 shows state-level averages in air-
conditioning ownership rates by expenditure decile computed from the household-level adop-
tion rates. To predict future household-level electricity demand, we have fitted the estimated
OLS equations with updated income and CDD values, keeping all other covariates to their his-
torical value. The increase in electricity demand shown in Figure 5 and in Supplementary Tables
9-10 has been computed at the household level, and then aggregated to the state level by taking
the mean value.

Data availability

The output data generated in this study are available in the Github repository: [https://github.
com/Energy-a/Comparative_paper_NatComms]. No access code is required and the following
DOI can be used for citation: https://zenodo.org/badge/latestdoi/363125121. This repos-
itory also contains R-scripts to regenerate all figures in this paper. An interactive visualization
of the adaptation cooling deficit is available at [http://www.energy-a.eu/cooling-deficit/].
The input data used in this analysis are available at in the Data Mendeley repository: [https:
//data.mendeley.com/datasets/ws7cmwbnfg/1] and can be cited using the following [https:
//doi.org/10.17632/ws7cmwbnfg.1]. Additional raw input data used in this analysis are avail-
able at the following public locations: NASA/NOAA GLDAS: [https://disc.gsfc.nasa.gov/
datasets/GLDAS_NOAH025_3H_2.0/summary?keywords=GLDAS_NOAH025_3H_2.0]; CMIP5-NASA
NEX GDDP climate data: [https://www.nccs.nasa.gov/services/data-collections/land-
based-products/nexgddp]; ISMIP: [https://esg.pik-potsdam.de/projects/isimip2b/]; GDP
and population for the Shared Socioeconomic Pathways: [https://tntcat.iiasa.ac.at/SspDb].
Spatial population data for the historical period: [https://beta.sedac.ciesin.columbia.edu/
data/set/gpw-v4-population-count-rev10]; Spatial population projections for the SSPs: [https:
//doi.org/10.7927/H4RF5S0P]. The raw data for Indonesia are protected and are not available
due to data privacy laws.
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1 Data overview

We have built a household-level database using survey data over the period 2002-2018 for
four emerging and developing countries - Brazil, India, Indonesia, and Mexico. The aim is to
create a homogeneous database, where variables of interest are constructed in a uniform way
across four different consumption expenditure surveys. These data have then been combined
with sub-national regional climate data.

These four countries have a long tradition in collecting data on household characteristics
and behaviors, and conduct expenditure surveys on a regular basis. In Brazil, since 1987, the
IBGE (the Brazilian Institute of Geography and Statistics) has conducted household expenditure
surveys covering the entire national territory every six or seven years. In India, since 1972-
73, the National Sample Survey Office (NSSO) has conducted broad surveys every five years
on household expenditures by. The Indonesian Government fields the National Socioeconomic
Survey (SUSENAS), a set of large-scale multi-purpose socioeconomic surveys that were initiated
in 1963-1964 and have been fielded every year or two since 1993 on a nationally representative
level. In Mexico the National Institute of Geography and Statistics (INEGI) has conducted a
household survey on income and expenditure every two years since 1992 (less regularly even
since 1984).

In every country, surveys run over different years and periods. Supplementary Table 1 sum-
marizes the data availability and the reference period across the four countries considered in
this study. The information regarding the period of implementation is important when merging
surveys with climate information. As of now, three waves are available for Brazil, Indonesia,
and Mexico, including the most recent years (2016-2018), whereas only two waves are available
for India.

Two levels of administrative units are included in the database. Level 1 includes adminis-
trative units such as States or Union Territories (these are similar to states but managed by the
central government). These can be very large, such as Amazonas in Brazil, which has a territo-
rial area of 1,559,000 square kilometers. Level 2 provides the level of administrative division and
includes districts or municipalities (Supplementary Table 2). It is available for India, Indonesia,
and Mexico. The survey on Brazil does not give information regarding the municipality or dis-
trict where the households are located, as they want to preserve the identity of the families.
States can be further stratified into stratum units: one for rural locations and three for urban
locations - the capital of the State, the metropolitan region or other urban municipalities.

The weight variables available in the survey datasets have been used to obtain population-
representative descriptive statistics. We have omitted strata and primary sampling unit (PSU)
variables, given strong the incompatibilities and missing values among countries and across
waves (e.g. in ENIGH 2004 and in all POF waves there are no PSU and strata variables).

The database has been broken down into six main sections describing, respectively, demo-
graphics and household characteristics, house features, income and expenditure patterns, en-
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ergy use, durables ownership, and climate indicators.

For the first two sections, we have selected and harmonized basic information on the house-
holds. These include the number of total members and the number of members divided by
gender and age. We have considered as adults individuals aged 16 and above, and as infants
from newborns to 5 years of age.

To make information on the household heads coherent across surveys, we have elaborated
common variables on education level, gender, literacy, and occupation’s type and sector. Ed-
ucation level is based on school attainment data divided among 1) primary, 2) secondary or
3) higher educational levels. We have assumed 0) no education for no or incomplete primary
schooling. We have not used data on years of education because none are available for India and
Mexico. For the occupation sector we have distinguished between employees in the agricultural
sector, including forestry, fishing, livestock, and those not. We have also gathered data on the
living area and characteristics of dwellings. These include dummy variables to classify house-
holds dwelling in an urban area or not, as well as whether they own the house they live in or
not and whether they have electricity access. Common categories across the different countries
are identified to homogenize information on energy sources for cooking and lighting, sources of
drinking water and types of toilet facilities (Supplementary Table 3).

To compare and summarize information on the characteristics of dwellings across countries
and waves, we have created a set of categorical variables and used them to build a housing
index. The housing index is a composite measure of a household’s living conditions. It is cal-
culated by using data about assets related to housing construction materials (walls and roof),
as well as about the type of toilet facilities and access to drinking water. Each household is as-
signed a standardized score for each asset, depending on the type and quality of the selected
asset. These scores are summed by household, and the final score is then ranked according
to three categories, namely Low, Middle and High housing quality. The housing index sets a
minimum value of 1 for low quality dwelling conditions, and a maximum value of 3 for high
dwelling conditions.

We have gathered data on household income and expenditure. As figures about income are
only available for Brazil and Mexico, we have used the total expenditure as a measurement of
a household’s economic level. Single survey expenditure values are reported in local currency
units (LCU) by different reference periods. For each of them, we compute annual values and
convert them into constant (2011) purchasing-power-parity (PPP) US dollars. To convert LCU
to current USD PPP we have used the World Bank’s PPP conversion factor for private consump-
tion1. For converting from current USD PPP to 2011 constant USD PPP we have used the CPI
Inflation Calculator from the U.S. Bureau of Labor Statistics2.

Our final dataset includes five expenditure categories (Supplementary Table 4): total expen-
diture, energy expenditure, electricity expenditure, food expenditure and medical expenditure.
Total expenditure is based on aggregate reported values, except for Mexico, for which we noted
some inconsistencies affecting the computation of non-monetary expenses across waves (see sec-
tion on Mexico). To ensure consistency across years, Mexico’s total expenditure comprises only
its monetary expenditure. We have used total household expenditure in USD2011 PPP to com-
pute total expenditure per adult equivalent (i.e. divided by the number of household members,
imposing a weight of 1 for adults and a weight of 0.5 for minors).

Household ownership of a broad number of appliances (including air-conditioning, fans and
1https://data.worldbank.org/indicator/ PA.NUS.PRVT.PP
2https://www.bls.gov/data/inflation calculator.htm
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refrigerators) and other devices (e.g. car, tv, radio) is reported through a set of dummy vari-
ables, where 0 = ”Not owned” and 1 = ”Owned”. For each country, we have constructed two
variants of climate variables – annual Cooling Degree Days (CDDs), Units: °C days– by using
daily dry-bulb and wet-bulb temperature. We have merged climate and survey data at the dis-
trict level, since it is the most pinpointed disaggregated geographical information available for
India, Indonesia, and Mexico, except for Brazil, whose data have been merged at the state level
(Federal Unit), by stratum type. To do so, first the climate data are aggregated from the grid-cell
level to the district (or state) levels utilizing (i) within country administrative boundaries (from
geo-spatial shape files) at the respective admin level3; and (ii) routines in R (R Core Team, 2018)
made available by open-source packages sp, rgdal, raster and spatialEco.

The remainder of this section provides a detailed description of the survey dataset for each
country and its climate data.

3Admin levels 2 and 3 are for States and Districts, respectively.
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Brazil - POF

Survey Name Consumer Expenditure Survey (Pesquisa de Orçamentos Familiares -
POF)

Institution Brazilian Institute of Geography and Statistics (Instituto Brasileiro de Ge-
ografia e Estatistica - IBGE)

Frequency Every six or seven years

Survey Waves 2002-2003, 2008-2009, 2017-2018

Period of obser-
vation

POF 2002-2003: July 2002 to June 2003. POF 2008-2009: May 2008 to May
2009. POF 2017-2018: June 2017 to July 2018

Type Cross-Sectional

Coverage Occupied permanent private housing units and their residents in the area
covered by the survey in both urban and rural areas

Geographic In-
formation

National, federation units and stratum (1 rural, 3 urban)

Observation-
Level

Household members

Weight Each household of the subsample is associated with a sample weight or
expansion factor that, attributed to the characteristics investigated by the
POF, makes it possible to estimate the quantities of interest for the entire
population

Total Observa-
tions

162,363 (2002-2003: 48,473; 2008-2009: 55,970; 2017-2018: 57,920)

Data URL https://www.ibge.gov.br/estatisticas/sociais/trabalho/9050-

pesquisa-de-orcamentos-familiares.html?=&t=downloads

We have concatenated NÚMERO SEQUENCIAL4 (the sequential number for each of the Sam-
ple Sectors), DV DO SEQUENCIAL (one-digit code that verifies the sequential number assigned
to the Sector Sample) and NÚMERO DO DOMICÍLIO (two-digit code, identifying the domicile,
assigned sequentially to each household selected in each sector) in order to obtain a unique iden-
tifier for each household (hhid).

To elaborate descriptive statistics that are population-representative, we have used a weight
variable available in the survey. For both waves POF reports two weight variables: FATOR DE
EXPANSÃO 1 and FATOR DE EXPANSÃO 2. Both variables identify the expansion factor at-
tributed to the household. The former is the weight used for the survey design; the latter, which
is the one we have opted for, is the adjusted weight that should be used to calculate estimates
from the survey data.

In the first two waves we have created the dummy variable, urban, starting from ESTRATO
GEOGRÁFICO, to identify whether the household lives in an urban or rural settlement. The
variable consists of a sequence of two numbers that identify either the municipality of the capi-
tal, or the rest of the metropolitan region or the rest of the federative units or a rural area. Thus,

4Where not otherwise specified we report the original name of the variables common to the greatest number of
waves. In some cases, small differences may emerge between waves.
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we associate the first three categories with living in an urban area, while the latter category with
dwelling in a rural area. In the 2017-2018 wave we have used the available specific variable
TIPO SITUAÇÃO REG, which takes a value of 1 for urban households and a value of 2 for rural
ones.

Aggregate (total, energy, electricity and food) expenditures are reported on a monthly basis in
local currency (Brazilian real).

In POF waves revenues are reported on monthly basis in local currency. Among the differ-
ent income variables available in the survey we have opted for RENDA TOTAL MENSAL DA
UC. This corresponds to the value of the gross monthly gross income of the consumption unit
(family), and it is obtained through the sum of the gross monetary income of all residents of the
unit of consumption, obtained through labor, transfers, other income and the positive balance
of the financial transaction, plus the portion related to the non-monetary income of the unit of
consumption. Then, we compute it on an annual basis in $2011 PPP.

POF survey considers only employed respondents, without considering those that are inac-
tive or unemployed. POSIÇÃO NA OCUPAÇÃO identifies a detailed range of possible positions
as principal occupation. We have distributed them among our unique five occupation categories
defining the household head’s employment status (see Supplementary Table 3).

For the other categorical variables we have adopted SEXO for a household head’s gender;
CÓDIGO DE ATIVIDADE PRINCIPAL for the household head’s occupation sector; CONDIÇÃO
DE OCUPAÇÃO for housing ownership; MATERIAL QUE PREDOMINA NAS PAREDES EX-
TERNAS for house walls; MATERIAL QUE PREDOMINA NA COBERTURA for house roof;
PROVENIÊNCIA DA ÁGUA (TIPO DE ABASTECIMENTO DE ÁGUA in 2004) for drinking wa-
ter; ESCOADOURO SANITÁRIO for toilet facilities.

For cooking fuel we combine the following POF variables:

• FOGÃO A GÁS

• FOGÃO A LENHA

• FOGÃO A CARVÃO

• FOGÃO A ENERGIA ELÉTRICA

• FOGÃO COM OUTRA FONTE

For electricity access and lighting energy source we combine the following POF variables:

• REDE GERAL DE ENERGIA ELÉTRICA

• FONTE PRÓPRIA PARA ENERGIA ELÉTRICA

• DIESEL/GASOLINA/GÁS PARA ENERGIA ELÉTRICA

• ENERGIA SOLAR PARA ENERGIA ELÉTRICA

• ENERGIA EÓLICA PARA ENERGIA ELÉTRICA

• ÁGUA PARA ENERGIA ELÉTRICA

• BIODIESEL PARA ENERGIA ELÉTRICA

• SISTEMA MISTO PARA ENERGIA ELÉTRICA

• OUTRA FONTE PARA ENERGIA ELÉTRICA

In POF 2002 there are no information on house walls and roof materials and toilet type
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India - NSS

Survey Name Household Consumer Expenditure, National Sample Survey (NSS)

Institution National Sample Survey Office (NSSO), Ministry of Statistics and Pro-
gramme Implementation, Government of India

Frequency Quinquennial from 1972-735

Survey Waves 2004-2005, 2011-2012

Period of obser-
vation

Over 12 months, from July through June

Type Cross-Sectional

Coverage Randomly selected households based on sampling procedure

Geographic In-
formation

The whole Indian Union except (i) Leh (Ladakh) and Kargil districts of
Jammuand Kashmir (in 2004-2005), (ii) interior villages of Nagaland situ-
ated beyond five kilometres of the bus route and villages in Andaman and
Nicobar Islands inaccessible throughout the year (in 2004-2005 and 2011-
2012)

Observation-
Level

Household members

Weight The level sample size of State/Union Territories (UT) is allocated between
two sectors (urban and rural) in proportion to population as per census
2001

Total Observa-
tions

226,306 (2004-2005: 124,644; 2011-2012: 101,662)

Data URL http://microdata.gov.in/nada43/index.php/catalog/central/

about

A unique household identification number (HHID) is provided across the different waves. It is a
9 digit sequence, composed by concatenating First Stage Unit Serial number of the village/urban
block (FSU), Hamlet Group Sub Stratum number, Second stage stratum number and Sample
household number.

Double weighting is applied to an urban sector subject, provided that urban sample size
for larger states not exceed the rural sample size. A variable reporting weights (or multipliers)
is given at the end of each record (combined multiplier), and is used to compute population-
representative statistics.

Sector is the variable that in the surveys identifies households living in a rural or urban area.
We use it to create the dummy variable urban across all waves.

Information about household members and composition were derivable from demographic
variables available in the survey, including Sex, Age, HH Size (respectively B4 q4, B4 q5, B3 q1 in
2004-2005). We have used them to construct variables on a household head’s gender and age, as
well as the number of members, adults, children and infants within the household.

No variables reporting income values are available in the survey.
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Two reference periods are reported for monthly per capita consumer expenditure (MPCE): a
Uniform Reference Period (URP) based on data collected with a 30-day reference period for all
items, a Mixed Reference Period (MRP) based on data with a 365-day reference period wherever
available, and a 30-day reference period for other items. For the purpose of this work we have
used the MRP estimate of per capita consumption (MPCE MRP). Expenditure amounts include
the sum total of monetary values of all the items (i.e. goods and services) consumed by the
household on domestic account during the reference period. It is provided on a per capita basis
(divided by the household size) and in local currency units (Rs).

Monthly household expenditure values are available for energy and electricity. As for food
expenditure, values are provided in sub-categories (e.g. cereals, pulses, milk and milk products,
etc.) that need to be aggregated. Medical expenditure includes figures on institutional (incurred
as an in-patient of a medical institution) and non-institutional expenses.

Categorical variables are constructed starting from the following variables:

• Education (B4 q7 in 2004-2005) for the household head’s education level (edu head 2);

• HH Type code (B3 q4 in 2004-2005) for the household head’s occupation (occupation head);

• NIC 2008 (NIC 1998 in 2004-2005) for the occupation sector of the household head (sec-
tor head). NIC codes are provided for each economic activity according to the National
Industrial Classification. We use them to distinguish households working in the agricul-
ture, forestry and fishing sectors (codes starting with 01, 02, 03) from those involved in
other economic sectors;

• Dwelling unit Code (B3 q16 in 2004-2005) for the house ownership (ownership); Information
on other characteristics of the house (i.e. size, walls, roofs) are not available;

• Lighting Code (B3 q18 in 2004-2005) to determine whether household has access to electric-
ity (ely access) and the lighting source (lighting);

• Cooking Code (B3 q17 in 2004-2005) for the energy sources used for cooking (cooking);

• Information on sources of drinking water and type of toilet facility are not available;

• Ownership of durables and the respective expenditure are reported for a large number
of items (Whether Possesses and Expenditure Durables in 2011-2012, B11 q3, B11 q14 in 2004-
2005).
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Indonesia - SUSENAS

Survey Name National Socio-Economic Survey (Survei Sosial Ekonomi Nasional - SUSE-
NAS)

Institution Indonesian Central Statistics Agency (Badan Pusat Statistik - BPS)

Frequency Irregular since 1963, nationally representative since 1993

Survey Waves 2004, 2012, 2017

Period of obser-
vation

July (2004), March to December (2012), March (2017)

Type Cross-Sectional

Coverage Covers a large representative sample of households across Indonesia

Geographic In-
formation

National, province, regency/city (district), sub-district and village levels.
Sub-district and village identification not available after 2012

Observation-
Level

Household members

Weight Frequency weights computed within each stratum (census block which is
an administrative/geographical unit) as the inverse of the sampling frac-
tion

Total Observa-
tions

648,643 (2004: 65,254; 2012: 286,113; 2017: 297,276)

Data URL https://mikrodata.bps.go.id/mikrodata/index.php/catalog/

SUSENAS

To uniquely identify SUSENAS households across waves (hhid), we have used the available
variable urut. As of 2017, there are 34 provinces (povinsi) and 514 districts (kabupaten/kota) in In-
donesia. However, the number of states and districts has changed in the period 2004-2017. The
number of provinces has increased from 30 to 34 and the number of districts from 373 to 514.

To make descriptive statistics that are population-representative, we have used weights avail-
able in the survey, namely wert.

The variable b1r5 identifies households dwelling in a rural or urban settlement. We use it to
create the dummy variable urban across all waves.

In SUSENAS there is no information about income. Total expenditure at monthly level in
local currency is reported in the variable expend.

There is no total energy expenditure, but single fuel expenditures are available (tri-monthly).
They are identified by different codes (kode) in variable b42k6 (electricity = 238, lpg = 242, city gas
= 244, kerosene = 246, generator fuel = 248, charcoal= 253, firewood = 254).

For the categorical variables we adopt jk for the household head’s gender; b6r3 for housing
ownership; b6r6 for house walls; b6r5 for house roof; b6r14a for electricity access and lighting
energy source; b6r15 for cooking fuel; b6r9a for drinking water; b6r13b for toilet facilities.
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Information on education is available as number of years attended in school. Both education
and occupation of the household head are created by using a combination of different variables
(b5r14 to b5r17 for education, b5r24a1, b5r25, b5r26, b5r31 for occupation).

Information on the ownership of a wide range of goods is provided under variable b7r4.
Ownership of air conditioning is not available in the 2004 wave, whereas ownership of fans is
unavailable in all waves.
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Mexico - ENIGH

Survey Name Household Income and Expenditure Survey (Encuesta Nacional de Ingre-
sos y Gastos de los Hogares - ENIGH)

Institution Instituto Nacional de Estadistica, Geografia e Informatica

Frequency Bilennial (since 1992)

Survey Waves 2004, 2012, 2016

Period of obser-
vation

August to November

Type Cross-Sectional

Coverage It is constituted by households of national or foreign people, who habitu-
ally reside in private housing units within the national territory.

Geographic In-
formation

National, federal entity and municipality levels

Observation-
level

Household members

Weight Probability survey weights. Taking account of the weights, the sample is
representative at both the national level and subnational levels (urban vs
rural)

Total observa-
tions

101, 907 (2004: 22, 595; 2012: 9002; 2016: 70, 310)

Data URL https://www.inegi.org.mx/programas/enigh/nc/2016/

There are two versions of the ENIGH survey: the traditional and the new construction. In 2008,
INEGI started to publish the results of the survey under a new construction methodology. The
main difference among the two versions relies on how revenues are aggregated in reported in-
come variables. For the new construction, the aggregation rules are in accordance with UN
recommendations. In our analysis, we have opted for the traditional version for the 2004 wave
(since it was the only one available), while we have used the new construction for both the 2012
and the 2016 waves.

There are two identifiers of the respondent, one associated with the house, folio viv, and an-
other associated with the household, folio hog. We concatenate the two in order to obtain a
unique identifier for each household (hhid).

In 2004 INEGI collected households and dwellings variables in the same dataset, and these
have a unique identifier FOLIO - a sequence of 11 digits. The first 10 digits are associated with
the dwelling. The last one identifies the household living in that house. If the eleventh digit of
FOLIO is equal to 0, this refers to the main household; while, if FOLIO ends with a digit greater
than 0, this refers to the other households dwelling in the same house. Since INEGI reports data
about dwellings’ characteristics - e.g. having an air conditioner, house wall materials - only for
the main household, we assume that they also apply to the secondary families.

To elaborate descriptive statistics that are population-representative, we have used the weight
variable factor in the ENIGH survey 2016. In 2012 and in 2004 there were two factor of expan-
sion, factor viv and factor hog (HOG in 2004). Since our analysis is at the household level, we use
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factor hog as weighting variable.

In all the three waves we have created the dummy variable urban starting from tam loc (ES-
TRATO in 2004) to identify whether the household dwells in an urban or a rural settlement. This
variable identifies urban areas as localities of 2500 or more inhabitants, while rural areas as lo-
calities with fewer than 2500 inhabitants.

Aggregate (total, energy, electricity and food) expenditures are reported at tri-monthly basis in
local currency (pesos).

As income we use the total current income (ingcor), which corresponds to the sum of both
monetary and non-monetary revenues. Other revenues are reported on a tri-monthly basisin lo-
cal currency. Thus, we compute annual income and converted it in $2010 PPP through the same
procedure for expenditure.

We construct occupation head variable through the following procedure:

• Using id trabajo (COD TRAB in 2004), we only focus on the household-head’s primary job
occupation;

• We have divided household-heads between those that worked in the previous month and
those that did not (trabajo mp in 2012-2016; TRABAJO in 2004). From inactive respondents,
we have removed household-heads who declared to be looking for a job, identifying them
as ”unemployed” (act buscot in 2012-2016; BUS TRAB in 2004). Based on their contract, we
have distinguished workers between the self-employed, employees and seasonal workers
(indep, subor, tipocontr in 2012-2016; POSICION09, CONTR171 in 2004).

For the other categorical variables we adopt sexo jefe (SEXO in 2004) for the household head’s
gender; educa jefe (ED FORMAL in 2004) for the household head’s education level; scian (SCIAN151
in 2004) for the household head’s occupation sector; tenencia (TENENCIA12 2004) for housing
ownership; mat pared (MUROS01 in 2004) for house walls; mat techos (TECHOS02 in 2004) for
house roof; disp elect (LUZ21 in 2004) for electricity access and lighting energy source; combustible
(COMBUS11 in 2004) for cooking fuel; disp agua (AGUA15 in 2004) for drinking water; sanit agua
(BANO17 in 2004) for toilet facilities.

There is no information on household energy and electricity consumption in kWh. Hence,
we have gathered state-level electricity price information from INEGI’s Consumer Price Index.6

We have then divided households’ electricity expenditure by prices to get electricity demand.

For most goods, ENIGH waves provide the number of durables owned. We use this number
to generate the ownership dummy variables.

6https://www.inegi.org.mx/programas/inpc/2010/

29

https://www.inegi.org.mx/programas/inpc/2010/


Climate Data

Data Type ’DegDays 0p25 1970-2018’

Raw Data 3-hourly temperature (°C) (GLDAS, Rodell et al., 2004) aggregated to daily
timesteps

Climate variable Long-term average Dry (CDDdb) and Wet Bulb (CDDwb) Cooling Degree
Days

Frequency Annual

Resolution State and District level

Period of obser-
vation

1970-2016

Data source Mistry M.N., 2019a; Mistry M.N., 2019b

Two climate variables (annual CDD dry-bulb and CDD wet-bulb - CDDdb and CDDwb) have
been computed at the grid-cell level before being spatially aggregated to the district or state/stratum
level. Our preferred variable, CDD wet-bulb, takes into account the influence of relative humid-
ity on evaporative cooling, which can have an important role in the countries in our study, as
they are tropical countries that feature not only spatial heterogeneity in relative humidity, but
also coastal regions with high relative humidity. When relative humidity is 100%, dry-bulb and
wet-bulb temperature measurements coincide; otherwise wet-bulb temperature (and therefore
also CDD wet-bulb), are always lower.

Both variants of the CDDs, measured in annual °C days, are assembled by using the input
meteorological fields at a high-spatial resolution (0.25°gridded, about 27 km x 27 km at the equa-
tor) from the Global Land Data Assimilation System (GLDAS), covering the 1970-2016 period.
At each grid-cell the CDDs are calculated by using the American Society of Heating, Refrigerat-
ing and Air-Conditioning (ASHRAE) method, and by fixing the baseline temperature at 24 °C,
as opposed to the more commonly used threshold of 18 °C, which works better for temperate
countries. As sensitivity checks, we also use a baseline temperature of 22 °C for both dry- and
wet- bulb CDDs.

We have computed long-term climatological averages of degree-days at the administrative
level in two ways: 1) starting in 1970 up to the year the survey was conducted, 2) considering
the ten years preceding the individual survey years. Since for Brazil and India the survey was
carried out over two years, we have opted for the year the wave started - namely, 2002, 2008 and
2017 for Brazil, and 2004, 2011 for India.

We have merged climate and survey data at the district level for India, Indonesia, and Mexico,
while for Brazil at the lowest administrative unit at which we can locate households, which is
the state (Federal Unit). Within each state, we have been able to distinguish household locations
across four strata: rural, capital, metropolitan region, and other urban areas. Gridded CDDs are
subsequently aggregated to subnational boundaries in each of the four countries. Subnational
population weighted degree-days for the four countries have been assembled by using popula-
tion data from CIESIN7. The 1°gridded populations are matched to the gridded degree-days by

7Center for International Earth Science Information Network - CIESIN - Columbia University. 2017. Gridded
Population of the World, Version 4 (GPWv4): Population Count, Revision 10. Palisades, NY: NASA Socioeconomic
Data and Applications Center (SEDAC). https://doi.org/10.7927/H4PG1PPM
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using CDO8 remapping operators, with prior weighting of the degree-days by population to the
district level boundaries.

8Schulzweida, Uwe (Max Planck Institute for Meteorologie). 2018. “Climate Data Operators (CDO) User Guide,
Version 1.9.0.
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Supplementary Table 1: Overview of data availability

Brazil India Indonesia Mexico
Wave 1 July 2002 - June 2003 July 2004 - June 2005 July 2004 Aug - Nov 2004
Wave 2 May 2008 - May 2009 July 2011 - June 2012 March - Dec 2012 Aug - Nov 2012
Wave 3 June 2017 - July 2018 n.a. March 2017 Aug - Nov 2016

Supplementary Table 2: Administrative divisions

Brazil India Indonesia Mexico
Level 1 Federation Units States & Union Territories Provinces Provinces

27 35/35 30/33/33 32
Level 2 Stratum Districts Regencies Municipalities

4x27 577/583 360/497/491 490/369/919
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Supplementary Table 3: Categorical variables

Variables Var. Code Description Categories

Urban urban Living or not in an urban area 0 = Rural ; 1 = Urban

Gender Head sex head Household head’s gender 1 = Male; 2 = Female

Education Head edu head 2 Household head’s education level 0 = No education; 1 = Primary; 2 =
Secondary; 3 = Above

Occupation Head occupation head Household head’s employment
status

0 = Inactive; 1 = Unemployed; 2 =
Self-employed; 3 = Regular wage

earning; 4 = Casual worker; 5 = Other

Sector Head sector head Household head’s occupation sector 0 = Other sectors; 1 = Agriculture
(including forestry, fishing, livestock)

Dwelling Ownership ownership d Whether household owns the
dwelling where it lives

0 = No; 1 = Yes

House Walls house walls Materials of the dwelling’s walls 1 = Masonry; 2 = Wood; 3 = Earth
structures; 4 = Metal and asbestos; 5 =

Waste materials 6 = Other

House Roof house roof Materials of the dwelling’s roof 1 = Tile; 2 = Concrete; 3 = Wood; 4 =
Metal and asbestos; 5 = Earth structure;

6 = Waste materials; 7 = Other

Electricity Access ely access Access to electricity 0 = No; 1 = Yes

Lighting Energy Source lighting source Energy source for lighting in the
dwelling

0 = No lighting; 1 = Public
supply/electric utilities; 2 = Renewable

plant; 3 = Fossil fuels; 4 = Other

Cooking Energy Source cooking source Energy source for cooking 0 = No arrangements; 1 = Electricity; 2 =
Gas; 3 = Coal; 4 = Firewood; 5 = Other

Drinking Water Source drinking water Source of fresh and drinking water 1 = Piped water; 2 = bottled water; 3 =
Wells and springs (including lakes,

river); 4 = other

Toilet toilet Toilet type 0 = No toilet; 1 = Flush; 2 = Pit and
latrine; 3 = Other

Housing Index housing index lab Synthesis measure of dwelling
conditions

1 = Low quality; 2 = Medium quality; 3
= High quality
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Supplementary Table 4: Descriptive statistics. Selected variables in the database

Brazil Brazil Brazil Mexico Mexico Mexico
2003 2009 2018 2004 2012 2016

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
AC 0.01 0.09 0.09 0.28 0.20 0.40 0.04 0.19 0.12 0.33 0.14 0.35
Fan 0.60 0.49 0.62 0.49 0.76 0.43 0.54 0.50 0.47 0.50 0.48 0.50
Refrigerator 0.86 0.35 0.92 0.28 0.98 0.14 0.79 0.41 0.82 0.39 0.86 0.35
Urban 0.85 0.36 0.85 0.35 0.86 0.35 0.77 0.42 0.78 0.41 0.78 0.41
Total exp (USD2011 PPP) 14644.32 22198.35 19344.54 29309.79 22879.01 31150.79 8941.12 10964.58 11309.29 12866.61 12502.30 12813.61
Exp pae (USD2011 PPP) 5550.61 9400.03 7815.43 13358.90 9747.70 14383.69 3031.42 4585.54 4162.75 6021.74 4631.66 5772.92
Energy exp (USD2011 PPP) 506.75 398.59 626.98 555.28 824.58 574.54 468.06 591.98 472.84 597.29 520.85 541.54
Ely exp (USD2011 PPP) 360.08 360.94 465.89 514.86 607.50 528.09 375.11 519.55 274.61 455.34 281.71 422.10
Medical exp (USD2011 PPP) 1243.15 7074.99 1345.80 3168.54 2862.72 4295.45 343.61 1810.12 281.62 1366.05 337.52 1644.36
Food exp (USD2011 PPP) 2745.60 2852.61 3261.98 3234.13 3631.78 3726.63 2730.26 3335.88 3810.63 2789.03 4375.67 3286.14
Electricity consump (kWh) 1766.52 1323.02 1956.01 1551.76 1953.88 1556.37 n/a n/a 2071.65 2002.14 2098.60 2023.17
N. members 3.63 1.83 3.30 1.65 3.01 1.49 4.04 1.99 3.72 1.88 3.67 1.83
Share under 16 0.24 0.23 0.21 0.23 0.16 0.21 0.28 0.24 0.23 0.23 0.23 0.23
Share infants 0.09 0.15 0.07 0.13 0.06 0.12 0.10 0.15 0.09 0.15 0.08 0.14
Literacy head 0.77 0.42 0.90 0.29 0.85 0.36 0.89 0.31 0.90 0.29 0.92 0.26
House ownership 0.72 0.45 0.73 0.45 0.73 0.45 0.73 0.45 0.68 0.46 0.69 0.46
Electricity access 0.96 0.20 0.98 0.13 0.99 0.07 0.99 0.12 0.99 0.09 1.00 0.07
Housing index 1.48 0.50 2.81 0.43 2.85 0.37 2.81 0.47 2.85 0.42 2.89 0.35
Car 0.30 0.46 0.33 0.47 0.46 0.50 0.27 0.44 0.27 0.44 0.28 0.45
TV 0.89 0.31 0.94 0.23 0.97 0.18 0.92 0.27 0.92 0.27 0.94 0.25
CDDs dry-bulb (24 deg) 529.17 380.66 500.21 391.90 492.15 402.52 343.35 393.56 373.10 414.55 388.31 412.46
CDDs wet-bulb (24 deg) 193.79 203.71 189.03 213.09 187.36 226.64 102.61 158.41 124.80 177.02 118.48 170.27
CDDs dry-bulb (22 deg) 1053.49 583.21 1001.31 598.01 979.50 617.42 593.06 622.46 651.18 652.12 675.89 638.38
CDDs wet-bulb (22 deg) 482.45 339.81 463.06 351.58 452.84 366.18 217.87 292.81 250.09 317.14 240.15 305.29

Indonesia Indonesia Indonesia India India
2004 2012 2017 2005 2012

Mean SD Mean SD Mean SD Mean SD Mean SD
AC n/a n/a 0.05 0.21 0.08 0.27 0.08 0.26 0.12 0.32
Fan n/a n/a n/a n/a n/a n/a 0.52 0.50 0.73 0.45
Refrigerator 0.21 0.41 0.36 0.48 0.54 0.50 0.12 0.33 0.20 0.40
Urban 0.48 0.50 0.50 0.50 0.53 0.50 0.27 0.44 0.32 0.46
Total exp (USD2011 PPP) 3058.30 3820.84 7388.83 9531.56 10058.63 9810.02 3332.24 2810.94 5514.13 5098.54
Exp pae (USD2011 PPP) 969.04 1025.58 2389.18 2843.42 3310.71 3045.11 927.70 822.38 1642.18 1611.93
Energy exp (USD2011 PPP) 312.37 345.24 272.08 247.60 390.86 499.21 323.29 229.89 464.04 307.27
Ely exp (USD2011 PPP) 144.82 180.17 118.79 186.81 248.66 449.01 149.09 183.83 185.62 243.81
Medical exp (USD2011 PPP) n/a n/a 210.66 1514.16 425.65 1947.33 308.87 734.28 468.14 1242.36
Food exp (USD2011 PPP) n/a n/a 3673.80 2458.50 5120.81 3364.60 1626.25 1025.58 2410.25 1564.59
Electricity consump (kWh) 957.94 1061.26 890.37 8649.57 1392.84 1740.10 798.41 1427.65 931.76 975.85
N. members 3.93 1.69 3.87 1.68 3.76 1.65 4.74 2.41 4.43 2.21
Share under 16 0.27 0.22 0.27 0.21 0.24 0.21 0.31 0.25 0.27 0.24
Share infants 0.10 0.14 0.10 0.14 0.09 0.14 0.11 0.16 0.09 0.14
Literacy head 0.89 0.31 0.92 0.27 0.94 0.23 0.62 0.49 0.68 0.47
House ownership 0.80 0.40 0.80 0.40 0.80 0.40 0.85 0.36 0.84 0.37
Electricity access 0.91 0.29 0.96 0.20 0.98 0.13 0.65 0.48 0.80 0.40
Housing index 2.51 0.57 2.64 0.54 2.79 0.44 n/a n/a n/a n/a
Car 0.05 0.22 0.08 0.27 0.11 0.31 0.02 0.14 0.04 0.20
TV 0.68 0.47 0.09 0.29 0.13 0.34 0.39 0.49 0.59 0.49
CDDs dry-bulb (24 deg) 705.58 472.68 663.42 446.09 658.39 428.99 1037.23 439.16 1045.07 448.12
CDDs wet-bulb (24 deg) 318.59 315.16 327.01 326.62 328.20 327.47 297.15 196.23 299.49 197.71
CDDs dry-bulb (22 deg) 1299.55 630.89 1247.22 607.76 1248.98 585.56 1547.99 567.49 1552.28 577.83
CDDs wet-bulb (22 deg) 678.71 511.54 676.47 515.02 671.57 511.16 527.54 271.48 523.48 271.46
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Supplementary Figure 1: Spatial distribution of ownership of AC, fans, refrigerators, per adult
equivalent (pae) expenditure, electricity access, urbanization in 2012 (Brazil 2009). Maps are
generated using the sp, rgdal, and raster R packages.

2 Empirical results
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Supplementary Table 5: Logit models with state fixed effects using CDD wet-bulbs. Marginal Effects

Brazil India Indonesia Mexico
AC FAN REF AC FAN REF AC REF AC FAN REF

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Mean CDD wet-bulb -0.000277*** 0.000455*** 0.000111*** -0.000373*** -0.000322* 0.000168 -2.58e-05*** 5.20e-05 -0.000609*** 0.000929** 9.62e-06
(0.00006) (0.00013) (0.00002) (8.68e-05) (0.000173) (0.000195) (6.84e-06) (0.000108) (0.000223) (0.000428) (9.09e-05)

Total Expenditure (Log) 0.0930*** 0.102*** 0.0212*** 0.0558*** 0.113*** 0.356*** 0.0162*** 0.423*** 0.0277*** 0.135*** 0.0717***
(0.00184) (0.00314) (0.00072) (0.00456) (0.00766) (0.00946) (0.000650) (0.00655) (0.00341) (0.00838) (0.00335)

CDD wb x Log Exp 5.49e-05*** -7.78e-06 -1.31e-05*** 5.56e-05*** 7.92e-05*** -1.36e-08 4.26e-06*** 1.97e-05 8.23e-05*** 5.52e-05 7.87e-06
(0.00001) (0.00001) (1.99e-06) (1.06e-05) (2.27e-05) (2.35e-05) (7.67e-07) (1.23e-05) (2.55e-05) (4.91e-05) (1.03e-05)

Urban (Yes = 1) 0.0318*** 0.0588*** 0.129*** 0.0145*** 0.178*** 0.0202*** 0.0794*** 0.0257***
(0.00293) (0.00361) (0.00485) (0.000712) (0.00640) (0.00467) (0.0116) (0.00383)

HH size -0.0130*** -0.00573*** 8.79e-05 -0.00457*** -0.00895*** -0.0284*** -0.00179*** -0.0208*** -0.00695*** -0.0138*** 0.00162*
(0.00079) (0.00127) (0.00033) (0.000404) (0.000665) (0.000985) (0.000101) (0.00114) (0.000786) (0.00219) (0.000880)

Share < 16 0.0176*** -0.0264*** 0.00189 -0.00293 -0.00904* 0.000631 0.00565*** 0.166*** 0.0182*** -0.0110 0.00255
(0.00564) (0.00937) (0.00212) (0.00245) (0.00468) (0.00721) (0.000500) (0.00987) (0.00377) (0.0144) (0.00633)

House Ownership (Yes = 1) 0.0243*** -0.000467 0.00856*** 0.0183*** 0.0399*** 0.0913*** 0.00323*** 0.127*** 0.0186*** 0.0328*** 0.0403***
(0.00211) (0.00364) (0.00097) (0.00157) (0.00465) (0.00396) (0.000227) (0.00559) (0.00251) (0.00718) (0.00342)

Education Head (Primary) 0.0321*** 0.0668*** 0.00788*** 0.0162*** 0.0449*** 0.0629*** -0.000503** 0.0584*** 0.0114*** 0.0932*** 0.0596***
(0.00261) (0.00487) (0.00127) (0.00126) (0.00289) (0.00250) (0.000254) (0.00315) (0.00131) (0.00746) (0.00403)

Education Head (Secondary) 0.0750*** 0.0796*** 0.0117*** 0.0313*** 0.0662*** 0.151*** 0.00572*** 0.183*** 0.0209*** 0.112*** 0.0856***
(0.00309) (0.00498) (0.00126) (0.00205) (0.00358) (0.00496) (0.000354) (0.00387) (0.00257) (0.00837) (0.00437)

Education Head (Above) 0.133*** 0.0228*** 0.0117*** 0.0527*** 0.0669*** 0.226*** 0.0180*** 0.168*** 0.0468*** 0.148*** 0.106***
(0.00479) (0.00671) (0.00175) (0.00355) (0.00455) (0.00569) (0.000857) (0.00709) (0.00481) (0.0102) (0.00470)

Age Head 0.000747*** -0.000189 0.000184*** 0.000584*** 0.000706*** 0.00346*** 0.000101*** 0.00370*** 0.000351*** 0.00248*** 0.00297***
(0.00007) (0.00012) (0.00003) (5.20e-05) (9.30e-05) (0.000149) (9.09e-06) (0.000205) (8.90e-05) (0.000252) (0.000113)

Gender Head (Female = 1) -0.0130*** 0.00487 0.00275*** 0.0141*** 0.0169*** 0.0784*** 0.000267 -0.00413 -0.00133 -0.00209 0.0148***
(0.00194) (0.00328) (0.00077) (0.00213) (0.00251) (0.00566) (0.000214) (0.00383) (0.00120) (0.00628) (0.00220)

House Quality (Medium) 0.0567*** 0.285*** 0.0377*** 0.00267*** 0.108*** 0.00779*** 0.00528 0.0696***
(0.01128) (0.03591) (0.00922) (0.000604) (0.00766) (0.00245) (0.0284) (0.0153)

House Quality (High) 0.0661*** 0.302*** 0.0461*** 0.00900*** 0.380*** 0.0361*** 0.0818** 0.133***
(0.01087) (0.03557) (0.00921) (0.000682) (0.00887) (0.00291) (0.0340) (0.0162)

Observations 75,290 75,290 75,290 167,648 170,470 166,402 524,112 524,112 78,607 78,607 78,607
Clustered standard errors at district level for MEX, IDN and IND, and robust standard errors for Brazil in parentheses
State fixed effects for India, Indonesia and Brazil. Region fixed effects for Brazil
*** p<0.01, ** p<0.05, * p<0.1
We have also included (but not above-reported) occupation of the household head in MEX and IND regressions
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Supplementary Table 6: Logit models with state fixed effects using CDD wet-bulbs. Total Marginal Effects

Brazil India Indonesia Mexico
AC FAN REF AC FAN REF AC REF AC FAN REF

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Mean CDD wet-bulb 0.000245*** 0.000381*** -1.27e-05*** 9.31e-05*** 0.000340*** 0.000168*** 1.14e-05*** 0.000225*** 0.000135*** 0.00143*** 8.05e-05***
(0.00001) (0.00002) (2.41e-06) (3.19e-05) (4.22e-05) (3.67e-05) (1.30e-06) (2.30e-05) (2.37e-05) (7.35e-05) (1.70e-05)

Total Expenditure (Log) 0.105*** 0.100*** 0.0188*** 0.0713*** 0.134*** 0.356*** 0.0173*** 0.429*** 0.0379*** 0.142*** 0.0726***
(0.00167) (0.00245) (0.00060) (0.00374) (0.00438) (0.00745) (0.000650) (0.00465) (0.00329) (0.00709) (0.00299)

Urban (Yes = 1) 0.0320*** 0.0586*** 0.129*** 0.0142*** 0.177*** 0.0205*** 0.0794*** 0.0257***
(0.00294) (0.00361) (0.00485) (0.000700) (0.00640) (0.00470) (0.0116) (0.00383)

HH size -0.0131*** -0.00573*** 8.91e-05 -0.00459*** -0.00891*** -0.0284*** -0.00175*** -0.0208*** -0.00703*** -0.0138*** 0.00161*
(0.00080) (0.00127) (0.00033) (0.000406) (0.000663) (0.000986) (9.75e-05) (0.00114) (0.000797) (0.00219) (0.000880)

Share < 16 0.0178*** -0.0264*** 0.00192 -0.00295 -0.00900* 0.000631 0.00553*** 0.166*** 0.0184*** -0.0110 0.00255
(0.00570) (0.00938) (0.00215) (0.00247) (0.00467) (0.00721) (0.000487) (0.00987) (0.00382) (0.0144) (0.00632)

House Ownership (Yes = 1) 0.0246*** -0.000467 0.00867*** 0.0184*** 0.0397*** 0.0913*** 0.00317*** 0.127*** 0.0188*** 0.0327*** 0.0403***
(0.00214) (0.00364) (0.00098) (0.00158) (0.00464) (0.00396) (0.000222) (0.00558) (0.00257) (0.00718) (0.00342)

Education Head (Primary) 0.0324*** 0.0669*** 0.00799*** 0.0163*** 0.0447*** 0.0629*** -0.000493** 0.0584*** 0.0115*** 0.0932*** 0.0596***
(0.00264) (0.00488) (0.00128) (0.00127) (0.00289) (0.00250) (0.000249) (0.00315) (0.00134) (0.00746) (0.00404)

Education Head (Secondary) 0.0758*** 0.0796*** 0.0118*** 0.0315*** 0.0659*** 0.151*** 0.00560*** 0.183*** 0.0212*** 0.112*** 0.0855***
(0.00313) (0.00499) (0.00127) (0.00206) (0.00358) (0.00495) (0.000345) (0.00387) (0.00263) (0.00837) (0.00437)

Education Head (Above) 0.134*** 0.0228*** 0.0119*** 0.0530*** 0.0667*** 0.226*** 0.0176*** 0.167*** 0.0473*** 0.148*** 0.105***
(0.00485) (0.00671) (0.00178) (0.00357) (0.00455) (0.00568) (0.000834) (0.00709) (0.00487) (0.0102) (0.00471)

Age Head 0.000755*** -0.000189 0.000186*** 0.000588*** 0.000703*** 0.00346*** 9.91e-05*** 0.00370*** 0.000355*** 0.00248*** 0.00297***
(0.00007) (0.00012) (0.00003) (5.24e-05) (9.27e-05) (0.000149) (8.85e-06) (0.000205) (9.03e-05) (0.000251) (0.000113)

Gender Head (Female = 1) -0.0131*** 0.00487 0.00279*** 0.0142*** 0.0169*** 0.0784*** 0.000261 -0.00413 -0.00135 -0.00209 0.0148***
(0.00197) (0.00328) (0.00078) (0.00214) (0.00251) (0.00566) (0.000210) (0.00383) (0.00122) (0.00628) (0.00220)

House Quality (Medium) 0.0573*** 0.285*** 0.0381*** 0.00262*** 0.108*** 0.00789*** 0.00528 0.0695***
(0.01142) (0.03592) (0.00934) (0.000591) (0.00765) (0.00248) (0.0284) (0.0153)

House Quality (High) 0.0669*** 0.302*** 0.0467*** 0.00881*** 0.380*** 0.0365*** 0.0818** 0.133***
(0.01101) (0.03557) (0.00932) (0.000668) (0.00887) (0.00293) (0.0340) (0.0162)

Observations 75,290 75,290 75,290 167,648 170,470 166,402 524,112 524,112 78,607 78,607 78,607
Clustered standard errors at district level for MEX, IDN and IND, and robust standard errors for Brazil in parentheses
State fixed effects for India, Indonesia and Brazil. Region fixed effects for Brazil
*** p<0.01, ** p<0.05, * p<0.1
We have also included (but not above-reported) occupation of the household head in MEX and IND regressions
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Supplementary Table 7: Standardised logit models with state fixed effects using CDD wet-bulbs. Marginal Effects

Brazil India Indonesia Mexico
AC FAN REF AC FAN REF AC REF AC FAN REF

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Std. Mean CDD wet-bulb 0.0558*** 0.0880*** -0.00290*** 0.0171*** 0.0633*** 0.0311*** 0.00381*** 0.0735*** 0.0228*** 0.244*** 0.0138***
(0.00152) (0.00362) (0.00055) (0.00585) (0.00790) (0.00677) (0.000434) (0.00750) (0.00399) (0.0126) (0.00292)

Std. Total Expenditure (Log) 0.0918*** 0.0888*** 0.0165*** 0.0492*** 0.0933*** 0.247*** 0.0126*** 0.307*** 0.0315*** 0.119*** 0.0610***
(0.00145) (0.00218) (0.00053) (0.00258) (0.00303) (0.00516) (0.000475) (0.00331) (0.00272) (0.00596) (0.00251)

Std. CDD wb x Log Exp 0.0112*** -0.00159 -0.00268*** 0.00712*** 0.0102*** -1.74e-06 0.000992*** 0.00459 0.0118*** 0.00793 0.00113
(0.00121) (0.00285) (0.00041) (0.00136) (0.00292) (0.00301) (0.000179) (0.00286) (0.00366) (0.00706) (0.00148)

Urban (Yes = 1) 0.0318*** 0.0588*** 0.129*** 0.0145*** 0.178*** 0.0202*** 0.0794*** 0.0257***
(0.00293) (0.00361) (0.00485) (0.000712) (0.00640) (0.00467) (0.0116) (0.00383)

Std. HH size -0.0209*** -0.00924*** 0.000142 -0.0108*** -0.0212*** -0.0674*** -0.00305*** -0.0354*** -0.0129*** -0.0256*** 0.00299*
(0.00127) (0.00205) (0.00053) (0.000958) (0.00158) (0.00233) (0.000172) (0.00194) (0.00145) (0.00404) (0.00163)

Share < 16 0.00389*** -0.00583*** 0.000419 -0.000674 -0.00208* 0.000145 0.00123*** 0.0361*** 0.00424*** -0.00256 0.000594
(0.00125) (0.00207) (0.00047) (0.000564) (0.00108) (0.00166) (0.000109) (0.00214) (0.000880) (0.00336) (0.00148)

House Ownership (Yes = 1) 0.0243*** -0.000467 0.00856*** 0.0183*** 0.0399*** 0.0913*** 0.00323*** 0.127*** 0.0186*** 0.0328*** 0.0403***
(0.00211) (0.00364) (0.00097) (0.00157) (0.00465) (0.00396) (0.000227) (0.00559) (0.00251) (0.00718) (0.00342)

Education Head (Primary) 0.0321*** 0.0668*** 0.00788*** 0.0162*** 0.0449*** 0.0629*** -0.000503** 0.0584*** 0.0114*** 0.0932*** 0.0596***
(0.00261) (0.00487) (0.00127) (0.00126) (0.00289) (0.00250) (0.000254) (0.00315) (0.00131) (0.00746) (0.00403)

Education Head (Secondary) 0.0750*** 0.0796*** 0.0117*** 0.0313*** 0.0662*** 0.151*** 0.00572*** 0.183*** 0.0209*** 0.112*** 0.0856***
(0.00309) (0.00498) (0.00126) (0.00205) (0.00358) (0.00496) (0.000354) (0.00387) (0.00257) (0.00837) (0.00437)

Education Head (Above) 0.133*** 0.0228*** 0.0117*** 0.0527*** 0.0669*** 0.226*** 0.0180*** 0.168*** 0.0468*** 0.148*** 0.106***
(0.00479) (0.00671) (0.00175) (0.00355) (0.00455) (0.00569) (0.000857) (0.00709) (0.00481) (0.0102) (0.00470)

Std. Age Head 0.0119*** -0.00301 0.00292*** 0.00793*** 0.00958*** 0.0469*** 0.00137*** 0.0502*** 0.00562*** 0.0397*** 0.0476***
(0.00117) (0.00193) (0.00047) (0.000706) (0.00126) (0.00202) (0.000123) (0.00278) (0.00142) (0.00403) (0.00181)

Gender Head (Female = 1) -0.0130*** 0.00487 0.00275*** 0.0141*** 0.0169*** 0.0784*** 0.000267 -0.00413 -0.00133 -0.00209 0.0148***
(0.00194) (0.00328) (0.00077) (0.00213) (0.00251) (0.00566) (0.000214) (0.00383) (0.00120) (0.00628) (0.00220)

House Quality (Medium) 0.0567*** 0.285*** 0.0377*** 0.00267*** 0.108*** 0.00779*** 0.00528 0.0696***
(0.01128) (0.03591) (0.00922) (0.000604) (0.00766) (0.00245) (0.0284) (0.0153)

House Quality (High) 0.0661*** 0.302*** 0.0461*** 0.00900*** 0.380*** 0.0361*** 0.0818** 0.133***
(0.01087) (0.03557) (0.00921) (0.000682) (0.00887) (0.00291) (0.0340) (0.0162)

Observations 75,290 75,290 75,290 167,648 170,470 166,402 524,112 524,112 78,607 78,607 78,607
Clustered standard errors at district level for MEX, IDN and IND, and robust standard errors for Brazil in parentheses
State fixed effects for India, Indonesia and Brazil. Region fixed effects for Brazil
*** p<0.01, ** p<0.05, * p<0.1
We have also included (but not above-reported) occupation of the household head in MEX and IND regressions
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Supplementary Table 8: Logit models with state fixed effects using dry-bulb CDDs. Marginal effects

Brazil India Indonesia Mexico
AC FAN REF AC FAN REF AC REF AC FAN REF

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Mean CDD dry-bulb -0.000277*** -0.0000410 0.0000345*** -0.000105*** -0.000268*** 7.29e-06 -2.61e-05*** -0.000265*** 5.97e-07 0.00128*** 7.19e-05*
(0.00003) (0.00006) (0.00001) (3.73e-05) (5.96e-05) (8.49e-05) (5.28e-06) (7.95e-05) (2.94e-05) (0.000140) (3.97e-05)

Total Expenditure (Log) 0.0794*** 0.0858*** 0.0206*** 0.0396*** 0.0790*** 0.347*** 0.0150*** 0.401*** 0.0260*** 0.168*** 0.0731***
(0.00201) (0.00337) (0.00093) (0.00561) (0.00938) (0.0130) (0.000636) (0.00807) (0.00274) (0.00780) (0.00311)

CDD db x Log Exp 4.45e-05*** 4.07e-05*** -3.46e-06** 2.42e-05*** 5.10e-05*** 8.98e-06 3.86e-06*** 4.61e-05*** 1.42e-05*** -8.07e-05*** -2.42e-06
(3.13e-06) (0.00001) (1.39e-06) (4.29e-06) (7.79e-06) (1.02e-05) (5.85e-07) (9.12e-06) (2.87e-06) (2.01e-05) (4.30e-06)

Urban (Yes = 1) 0.0310*** 0.0548*** 0.129*** 0.0142*** 0.177*** 0.0168*** 0.0733*** 0.0253***
(0.00243) (0.00365) (0.00486) (0.000670) (0.00643) (0.00274) (0.0110) (0.00374)

HH size -0.0123*** -0.00627*** 2.72e-06 -0.00449*** -0.00884*** -0.0286*** -0.00182*** -0.0211*** -0.00586*** -0.0143*** 0.00167*
(0.00076) (0.00126) (0.00033) (0.000337) (0.000637) (0.000986) (9.95e-05) (0.00115) (0.000620) (0.00203) (0.000877)

Share < 16 0.0176*** -0.0210** 0.00220 -0.00229 -0.0105** 8.37e-05 0.00586*** 0.168*** 0.0147*** -0.00327 0.00253
(0.00549) (0.00932) (0.00217) (0.00219) (0.00436) (0.00716) (0.000485) (0.00982) (0.00279) (0.0141) (0.00630)

House Ownership (Yes = 1) 0.0242*** -0.00162 0.00848*** 0.0173*** 0.0356*** 0.0910*** 0.00329*** 0.128*** 0.0142*** 0.0308*** 0.0401***
(0.00205) (0.00361) (0.00099) (0.00142) (0.00444) (0.00401) (0.000215) (0.00563) (0.00138) (0.00687) (0.00337)

Education Head (Primary) 0.0310*** 0.0660*** 0.00795*** 0.0156*** 0.0438*** 0.0634*** -0.000500** 0.0585*** 0.00906*** 0.0915*** 0.0595***
(0.00251) (0.00486) (0.00128) (0.00107) (0.00284) (0.00253) (0.000250) (0.00313) (0.00110) (0.00774) (0.00405)

Education Head (Secondary) 0.0752*** 0.0797*** 0.0116*** 0.0306*** 0.0640*** 0.151*** 0.00566*** 0.183*** 0.0157*** 0.108*** 0.0853***
(0.00301) (0.00496) (0.00127) (0.00192) (0.00348) (0.00494) (0.000340) (0.00380) (0.00156) (0.00874) (0.00434)

Education Head (Above) 0.131*** 0.0253*** 0.0115*** 0.0516*** 0.0656*** 0.226*** 0.0179*** 0.167*** 0.0428*** 0.143*** 0.105***
(0.00470) (0.00670) (0.00178) (0.00284) (0.00439) (0.00567) (0.000835) (0.00713) (0.00380) (0.0102) (0.00464)

Age Head 0.000725*** -0.000165 0.000188*** 0.000576*** 0.000745*** 0.00347*** 0.000101*** 0.00369*** 0.000287*** 0.00240*** 0.00296***
(0.00007) (0.00012) (0.00003) (4.53e-05) (8.53e-05) (0.000149) (8.86e-06) (0.000205) (4.75e-05) (0.000248) (0.000111)

Gender Head -0.0128*** 0.00431 0.00274*** 0.0146*** 0.0178*** 0.0789*** 0.000222 -0.00464 -0.000300 -0.00144 0.0148***
(0.00189) (0.00326) (0.00078) (0.00200) (0.00229) (0.00561) (0.000210) (0.00386) (0.000973) (0.00639) (0.00219)

House Quality (Medium) 0.0539*** 0.286*** 0.0412*** 0.00273*** 0.110*** 0.00524*** 0.0226 0.0694***
(0.01052) (0.03704) (0.00979) (0.000596) (0.00751) (0.00176) (0.0256) (0.0153)

House Quality (High) 0.0637*** 0.301*** 0.0498*** 0.00906*** 0.381*** 0.0259*** 0.0934*** 0.133***
(0.01012) (0.03670) (0.00978) (0.000671) (0.00863) (0.00332) (0.0304) (0.0162)

Observations 75,290 75,290 75,290 167,648 170,470 166,402 525,918 525,918 78,607 78,607 78,607
Clustered standard errors at district level for MEX, IDN and IND, and robust standard errors for Brazil in parentheses
State fixed effects for India, Indonesia and Brazil. Region fixed effects for Brazil
*** p<0.01, ** p<0.05, * p<0.1
We have also included (but not above-reported) occupation of the household head in MEX and IND regressions
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Supplementary Table 9: OLS regression models for electricity quantity with state fixed effects
using wet-bulb CDDs.

Brazil India Indonesia Mexico
Variables (1) (2) (3) (4)

Mean CDD wet-bulb -0.00220*** -4.24e-05 -0.000549** -0.00240***
(0.000181) (0.000480) (0.000275) (0.000326)

Total Expenditure (Log) 0.270*** 0.582*** 0.490*** 0.262***
(0.00520) (0.0211) (0.0107) (0.00819)

CDD wb x Log Exp 0.000246*** 3.26e-05 9.42e-05*** 0.000328***
(1.88e-05) (5.62e-05) (2.86e-05) (3.72e-05)

Urban (Yes = 1) 0.286*** 0.266*** 0.123***
(0.0115) (0.0119) (0.0140)

HH size 0.0891*** -0.00953*** 0.00527*** 0.0465***
(0.00273) (0.00217) (0.00189) (0.00219)

Share < 16 -0.0735*** 0.00286 0.126*** -0.0441***
(0.0182) (0.0143) (0.0134) (0.0152)

House Ownership (Yes = 1) 0.0421*** 0.237*** 0.119*** 0.0710***
(0.00681) (0.0103) (0.00954) (0.00845)

Education Head (Primary) 0.114*** 0.0724*** 0.0276*** 0.0824***
(0.0124) (0.00620) (0.00627) (0.00748)

Education Head (Secondary) 0.190*** 0.136*** 0.104*** 0.114***
(0.0132) (0.00813) (0.00733) (0.00820)

Education Head (Above) 0.261*** 0.199*** 0.135*** 0.160***
(0.0151) (0.00938) (0.0115) (0.0106)

Age Head 0.00331*** 0.00541*** 0.00541*** 0.00560***
(0.00023) (0.000276) (0.000296) (0.000261)

Gender Head (Female = 1) -0.00117 0.0695*** -0.0130** 0.0180***
(0.00593) (0.00770) (0.00546) (0.00530)

House Quality (Medium) 0.107 0.180*** 0.0927***
(0.127) (0.0264) (0.0249)

House Quality (High) 0.0993 0.437*** 0.224***
(0.126) (0.0301) (0.0281)

Observations 34,459 85,371 268,310 61,421
R-squared 0.325 0.523 0.395 0.503
Clustered standard errors at district level for MEX, IDN and IND, and robust standard errors for Brazil in parentheses
State fixed effects for India, Indonesia and Brazil. Region fixed effects for Brazil
*** p<0.01, ** p<0.05, * p<0.1
We have also included (but not above-reported) occupation of the household head in MEX and IND regressions
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Supplementary Table 10: OLS regression models for electricity quantity with state fixed effects
using dry-bulb CDDs.

Brazil India Indonesia Mexico
Variables (1) (2) (3) (4)

Mean CDD dry-bulb -0.00108*** -0.000600*** -0.000459** -0.00121***
(8.74e-05) (0.000198) (0.000188) (0.000106)

Total Expenditure (Log) 0.254*** 0.498*** 0.469*** 0.228***
(0.00584) (0.0301) (0.0138) (0.00682)

CDD wb x Log Exp 0.000127*** 8.72e-05*** 7.47e-05*** 0.000188***
(9.06e-06) (2.35e-05) (2.07e-05) (1.20e-05)

Urban (Yes = 1) 0.285*** 0.263*** 0.121***
(0.0117) (0.0116) (0.0114)

HH size 0.0883*** -0.00955*** 0.00545*** 0.0470***
(0.00272) (0.00214) (0.00186) (0.00213)

Share < 16 -0.0690*** 0.00365 0.128*** -0.0475***
(0.0182) (0.0141) (0.0133) (0.0147)

House Ownership (Yes = 1) 0.0424*** 0.237*** 0.120*** 0.0670***
(0.00680) (0.0102) (0.00955) (0.00743)

Education Head (Primary) 0.109*** 0.0724*** 0.0279*** 0.0862***
(0.0125) (0.00617) (0.00614) (0.00710)

Education Head (Secondary) 0.185*** 0.136*** 0.103*** 0.115***
(0.0133) (0.00812) (0.00724) (0.00756)

Education Head (Above) 0.258*** 0.199*** 0.134*** 0.167***
(0.0151) (0.00945) (0.0115) (0.00974)

Age Head 0.00330*** 0.00548*** 0.00540*** 0.00560***
(0.000228) (0.000270) (0.000296) (0.000257)

Gender Head (Female = 1) -0.000698 0.0707*** -0.0146*** 0.0186***
(0.00593) (0.00768) (0.00539) (0.00504)

House Quality (Medium) 0.117 0.183*** 0.0897***
(0.125) (0.0258) (0.0221)

House Quality (High) 0.106 0.441*** 0.218***
(0.124) (0.0293) (0.0244)

Observations 34,459 85,371 269,277 61,421
R-squared 0.326 0.525 0.398 0.525
Clustered standard errors at district level for MEX, IDN and IND, and robust standard errors for Brazil in parentheses
State fixed effects for India, Indonesia and Brazil. Region fixed effects for Brazil
*** p<0.01, ** p<0.05, * p<0.1
We have also included (but not above-reported) occupation of the household head in MEX and IND regressions
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Supplementary Table 11: Logit models: sensitivity to omitted variables and waves

AC-Brazil AC-Brazil AC-Brazil AC-Mexico AC-Mexico AC-Mexico AC-India AC-India AC-India AC-Indonesia AC-Indonesia AC-Indonesia
CDD wb 0.000480*** 0.000491*** 0.000245*** 0.000150*** 0.000145*** 0.000135*** 0.000133** 0.000126*** 0.0000931*** 0.0000303*** 0.0000161*** 0.0000114***

(0.00002) (0.00002) (0.00001) (0.00003) (0.00003) (0.00002) (0.00005) (0.00004) (0.00003) (0.00000) (0.00000) (0.00000)
Log Tot. exp. 0.220*** 0.186*** 0.105*** 0.0559*** 0.0395*** 0.0379*** 0.134*** 0.0995*** 0.0713*** 0.0485*** 0.0253*** 0.0173***

(0.00314) (0.00364) (0.00167) (0.00468) (0.00348) (0.00329) (0.00545) (0.00496) (0.00374) (0.00202) (0.00094) (0.00065)
Other vars. NO YES YES NO YES YES NO YES YES NO YES YES
State FE YES YES YES YES YES YES YES YES YES YES YES YES
Year FE NO NO YES NO NO YES NO NO YES NO NO YES
Two waves NO NO YES NO NO YES NO NO YES NO NO YES
Clustered standard errors at district level for MEX, IDN and IND, and robust standard errors for Brazil in parentheses
State fixed effects for India, Indonesia and Brazil. Region fixed effects for Brazil
*** p<0.01, ** p<0.05, * p<0.1
We have also included (but not above-reported) occupation of the household head in MEX and IND regressions.
The specifications that do not use the two waves only use the latest wave.
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Supplementary Table 12: Marginal elasticity of air-conditioning to CDDs across temperature
measurements and temperature thresholds

24 deg - wb 24 deg - db
AC-Brazil AC-Mexico AC-India AC-Indonesia AC-Brazil AC-Mexico AC-India AC-Indonesia

CDDs 0.0565*** 0.0230*** 0.0172*** 0.00373*** 0.0608*** 0.0533*** 0.0444*** 0.00339***
(0.00154) (0.00406) (0.00588) (0.00042) (0.00194) (0.00556) (0.00440) (0.00034)

Log Tot. exp. 0.0928*** 0.0319*** 0.0495*** 0.0123*** 0.0930*** 0.0265*** 0.0456*** 0.0123***
(0.00148) (0.00276) (0.00259) (0.00046) (0.00151) (0.00216) (0.00247) (0.00045)

22 deg - wb 22 deg - db
AC-Brazil AC-Mexico AC-India AC-Indonesia AC-Brazil AC-Mexico AC-India AC-Indonesia

CDDs 0.0696*** 0.0366*** 0.0158** 0.00408*** 0.0774*** 0.0578*** 0.0469*** 0.00350***
(0.00177) (0.00680) (0.00636) (0.00040) (0.00222) (0.00511) (0.00469) (0.00032)

Log Tot. exp. 0.0928*** 0.0299*** 0.0493*** 0.0120*** 0.0935*** 0.0236*** 0.0450*** 0.0120***
(0.00148) (0.00261) (0.00262) (0.00044) (0.00149) (0.00238) (0.00252) (0.00042)

Clustered standard errors at district level for MEX, IDN and IND, and robust standard errors for Brazil in parentheses

State fixed effects for India, Indonesia and Brazil. Region fixed effects for Brazil

*** p<0.01, ** p<0.05, * p<0.1

We have also included (but not above-reported) occupation of the household head in MEX and IND regressions.

Supplementary Table 13: Total number of households with at least one AC unit around 2040
under different climate change scenarios (in million)

Historical RCP4.5 RCP8.5

Brazil 10.931 [29.591-36.197] [35.099-40.377]
India 28.904 [142.004-183.668] [151.822-190.327]
Indonesia 5.498 [29.597-40.809] [31.584-42.564]
Mexico 4.795 [9.924-12.300] [10.536-13.012]
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Brazil Mexico

India Indonesia

Supplementary Figure 2: Diagnostic of air conditioning logit model performance through the
inspection of the Area Under the Receiver Operating Characteristic (ROC) curve.
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Supplementary Figure 3: Top: Average marginal effect (in percentage points) of dry-bulb CDDs
on air conditioner, fan and refrigerator adoption for different levels of total expenditure. Bottom:
Predicted adoption rates of air-conditioning and other durable goods used for cooling across
different levels of dry-bulb CDDs.
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3 Projected changes in air-conditioning adoption and electricity use

Brazil Mexico India Indonesia

Supplementary Figure 4: Historical and future state-level adoption rates of air conditioners in
the year 2040 under RCP4.5
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Supplementary Figure 5: Ownership of air conditioners in relation to historical per capita ex-
penditure (2011 US constant dollars at PPP). Adoption scenarios across SSPs
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Supplementary Figure 6: Spatial distribution of historical (latest wave) and future (2040, SSP5
RCP 8.5) ownership of AC. Maps are generated using the sp, rgdal, and raster R packages.
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Brazil Mexico India Indonesia

Supplementary Figure 7: Electricity change compared to historical levels - growth factors in the
year 2040 under RCP4.5 and RCP8.5
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Supplementary Table 14: Growth rate in electricity use: Brazil. Summary statistics computed
on state-level averages.

Variable Obs Mean Std. Dev. Min Max P25 P50 P75
RCP85 - SSP1 27 0.686 0.233 0.317 1.298 0.486 0.672 0.819
RCP85 - SSP2 27 0.588 0.202 0.27 1.135 0.417 0.563 0.701
RCP85 - SSP3 27 0.465 0.167 0.209 0.935 0.329 0.441 0.555
RCP85 - SSP4 27 0.437 0.159 0.194 0.894 0.31 0.41 0.522
RCP85 - SSP5 27 0.791 0.267 0.367 1.47 0.566 0.777 0.945

RCP45 - SSP1 27 0.562 0.165 0.292 0.882 0.431 0.57 0.706
RCP45 - SSP2 27 0.48 0.141 0.248 0.77 0.369 0.482 0.603
RCP45 - SSP3 27 0.375 0.112 0.189 0.63 0.289 0.371 0.475
RCP45 - SSP4 27 0.352 0.106 0.176 0.601 0.272 0.345 0.446
RCP45 - SSP5 27 0.65 0.192 0.339 0.999 0.496 0.664 0.815
Note on interpretation. The value of 0.686 represents a 68.6% increase in 2040 compared to the latest wave.

Supplementary Table 15: Growth rate in electricity use: Mexico. Summary statistics computed
on state-level averages.

Variable Obs Mean Std. Dev. Min Max P25 P50 P75
RCP85 - SSP1 31 0.775 0.736 0.235 2.934 0.254 0.462 0.989
RCP85 - SSP2 31 0.705 0.679 0.207 2.704 0.229 0.43 0.897
RCP85 - SSP3 31 0.61 0.603 0.169 2.406 0.188 0.368 0.777
RCP85 - SSP4 31 0.557 0.56 0.149 2.245 0.163 0.316 0.713
RCP85 - SSP5 31 0.875 0.821 0.273 3.249 0.293 0.53 1.116

RCP45 - SSP1 31 0.588 0.432 0.235 1.685 0.248 0.395 0.82
RCP45 - SSP2 31 0.534 0.4 0.207 1.531 0.219 0.364 0.745
RCP45 - SSP3 31 0.459 0.357 0.169 1.327 0.18 0.31 0.644
RCP45 - SSP4 31 0.417 0.332 0.149 1.228 0.158 0.267 0.589
RCP45 - SSP5 31 0.666 0.48 0.273 1.904 0.287 0.454 0.926
Note on interpretation. The value of 0.775 represents a 77.5% increase in 2040 compared to the latest wave.

We exclude Morelos from the computation as it is an outlier after the simulation.

49



Supplementary Table 16: Growth rate in electricity use: India. Summary statistics computed on
state-level averages.

Variable Obs Mean Std. Dev. Min Max P25 P50 P75
RCP85 - SSP1 34 2.236 0.133 1.92 2.511 2.146 2.226 2.285
RCP85 - SSP2 34 1.904 0.114 1.631 2.146 1.825 1.896 1.964
RCP85 - SSP3 34 1.427 0.09 1.211 1.618 1.369 1.42 1.489
RCP85 - SSP4 34 1.446 0.091 1.226 1.637 1.385 1.44 1.485
RCP85 - SSP5 34 2.52 0.149 2.169 2.827 2.419 2.508 2.573

RCP45 - SSP1 34 2.172 0.114 1.92 2.41 2.088 2.148 2.201
RCP45 - SSP2 34 1.848 0.097 1.631 2.048 1.779 1.836 1.873
RCP45 - SSP3 34 1.381 0.076 1.211 1.541 1.33 1.372 1.399
RCP45 - SSP4 34 1.4 0.078 1.226 1.566 1.345 1.387 1.418
RCP45 - SSP5 34 2.449 0.127 2.169 2.713 2.354 2.421 2.483
Note on interpretation. The value of 2.236 represents a 223.6% increase in 2040 compared to the latest wave.

Supplementary Table 17: Growth rate in electricity use: Indonesia. Summary statistics com-
puted on state-level averages.

Variable Obs Mean Std. Dev. Min Max P25 P50 P75
RCP85 - SSP1 33 1.966 0.537 1.232 2.931 1.431 2.051 2.459
RCP85 - SSP2 33 1.75 0.476 1.098 2.619 1.277 1.832 2.183
RCP85 - SSP3 33 1.488 0.405 0.931 2.238 1.086 1.562 1.844
RCP85 - SSP4 33 1.438 0.398 0.89 2.148 1.042 1.498 1.796
RCP85 - SSP5 33 2.189 0.599 1.372 3.266 1.592 2.285 2.745

RCP45 - SSP1 33 1.817 0.442 1.228 2.607 1.393 1.808 2.23
RCP45 - SSP2 33 1.617 0.391 1.095 2.329 1.242 1.608 1.961
RCP45 - SSP3 33 1.373 0.332 0.928 1.987 1.055 1.368 1.654
RCP45 - SSP4 33 1.325 0.326 0.887 1.906 1.013 1.321 1.63
RCP45 - SSP5 33 2.024 0.493 1.369 2.906 1.55 2.013 2.486
Note on interpretation. The value of 1.966 represents a 196.6% increase in 2040 compared to the latest wave.

Supplementary Table 18: Air-conditioning adoption: Brazil. Summary statistics computed on
state-level averages.

Variable Obs Mean Std. Dev. Min Max P25 P50 P75
RCP85 - SSP1 27 0.825 0.17 0.405 0.996 0.766 0.857 0.96
RCP85 - SSP2 27 0.799 0.182 0.363 0.995 0.721 0.844 0.948
RCP85 - SSP3 27 0.759 0.197 0.311 0.992 0.659 0.799 0.912
RCP85 - SSP4 27 0.75 0.199 0.297 0.992 0.646 0.791 0.9
RCP85 - SSP5 27 0.85 0.16 0.444 0.998 0.792 0.891 0.977

RCP45 - SSP1 27 0.743 0.197 0.33 0.993 0.622 0.769 0.915
RCP45 - SSP2 27 0.711 0.207 0.297 0.992 0.581 0.722 0.896
RCP45 - SSP3 27 0.663 0.218 0.253 0.989 0.515 0.664 0.859
RCP45 - SSP4 27 0.652 0.221 0.245 0.986 0.494 0.649 0.846
RCP45 - SSP5 27 0.774 0.187 0.362 0.995 0.67 0.816 0.944
Note on interpretation. The value of 0.825 represents a 82.5% residential air-conditioning market saturation.
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Supplementary Table 19: Air-conditioning adoption: Mexico. Summary statistics computed on
state-level averages.

Variable Obs Mean Std. Dev. Min Max P25 P50 P75
RCP85 - SSP1 31 0.406 0.396 0 0.982 0.004 0.191 0.911
RCP85 - SSP2 31 0.396 0.391 0 0.977 0.008 0.177 0.894
RCP85 - SSP3 31 0.382 0.383 0 0.972 0.008 0.166 0.864
RCP85 - SSP4 31 0.374 0.379 0 0.97 0.003 0.146 0.843
RCP85 - SSP5 31 0.417 0.4 0 0.987 0.005 0.207 0.928

RCP45 - SSP1 31 0.386 0.389 0 0.978 0.001 0.149 0.859
RCP45 - SSP2 31 0.376 0.383 0 0.976 0.001 0.142 0.844
RCP45 - SSP3 31 0.361 0.375 0 0.97 0.001 0.129 0.812
RCP45 - SSP4 31 0.352 0.369 0 0.967 0.001 0.118 0.775
RCP45 - SSP5 31 0.399 0.396 0 0.984 0.001 0.167 0.889
Note on interpretation. The value of 0.406 represents a 40.6% residential air-conditioning market saturation.

We exclude Morelos from the computation as it is an outlier after the simulation.

Supplementary Table 20: Air-conditioning adoption: India. Summary statistics computed on
state-level averages.

Variable Obs Mean Std. Dev. Min Max P25 P50 P75
RCP85 - SSP1 33 0.656 0.278 0.124 1 0.488 0.682 0.917
RCP85 - SSP2 33 0.605 0.289 0.089 1 0.429 0.596 0.887
RCP85 - SSP3 33 0.523 0.301 0.05 0.993 0.306 0.45 0.835
RCP85 - SSP4 33 0.528 0.3 0.053 0.993 0.316 0.459 0.836
RCP85 - SSP5 33 0.691 0.267 0.162 1 0.544 0.73 0.939

RCP45 - SSP1 33 0.623 0.292 0.095 1 0.451 0.632 0.905
RCP45 - SSP2 33 0.571 0.3 0.07 1 0.37 0.566 0.855
RCP45 - SSP3 33 0.488 0.305 0.042 0.993 0.263 0.397 0.79
RCP45 - SSP4 33 0.494 0.305 0.043 0.993 0.273 0.4 0.801
RCP45 - SSP5 33 0.663 0.28 0.132 1 0.477 0.678 0.919
Note on interpretation. The value of 0.656 represents a 65.6% residential air-conditioning market saturation.

Supplementary Table 21: Air-conditioning adoption: Indonesia. Summary statistics computed
on state-level averages.

Variable Obs Mean Std. Dev. Min Max P25 P50 P75
RCP85 - SSP1 33 0.568 0.23 0.106 0.994 0.382 0.535 0.725
RCP85 - SSP2 33 0.526 0.233 0.085 0.989 0.333 0.485 0.692
RCP85 - SSP3 33 0.47 0.231 0.066 0.981 0.278 0.435 0.629
RCP85 - SSP4 33 0.458 0.23 0.062 0.979 0.267 0.424 0.627
RCP85 - SSP5 33 0.607 0.225 0.127 0.997 0.429 0.581 0.775

RCP45 - SSP1 33 0.543 0.226 0.104 0.99 0.36 0.498 0.701
RCP45 - SSP2 33 0.499 0.227 0.084 0.984 0.319 0.458 0.658
RCP45 - SSP3 33 0.442 0.223 0.065 0.973 0.27 0.408 0.588
RCP45 - SSP4 33 0.429 0.222 0.062 0.969 0.256 0.399 0.569
RCP45 - SSP5 33 0.584 0.222 0.126 0.994 0.418 0.542 0.732
Note on interpretation. The value of 0.568 represents a 56.8% residential air-conditioning market saturation.
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Supplementary Figure 8: Top panel: Predicted air-conditioning adoption rates in 2040 (between
0 and 1, full adoption). Bottom: Predicted growth rates of electricity demand. Sensitivity to
temperature thresholds and to temperature measurement.
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Adaptation to climate change: Air-conditioning and the role of
remittances*

Teresa Randazzo† Filippo Pavanello‡ Enrica De Cian§

Abstract

Do remittances improve the ability of households to adapt to global warming? We try
to answer this question by studying the behaviours of households in Mexico, a country that
experiences a large and stable flow of remittances. Using an instrumental variable approach,
we find an important role of remittances in the climate adaptation process. Remittances
are used for adopting air-conditioning, which is an important cooling device for responding
to high temperatures and to maintain thermal comfort at home. We exploit climate and
income heterogeneity by showing that large differences exist in the use of remittances for
climate adaptation between coastal and inland regions, as well as among different income
groups. We conclude by quantifying the overall increase in welfare that households attain
by adopting air-conditioning.
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1 Introduction

Air-conditioning is increasingly penetrating countries worldwide (IEA, 2018) and upward trends
are especially observed in the emerging economies of the tropics and subtropics. A growing
literature has highlighted the relative importance of income in relation to climatic conditions
(Sailor & Pavlova, 2003; McNeil & Letschert, 2010; Auffhammer, 2014; De Cian et al., 2019; Ran-
dazzo et al., 2020), especially in the developing countries (Akpinar-Ferrand & Singh, 2010; Davis
& Gertler, 2015; DePaula & Mendelsohn, 2010), and the fact that more households are about to
reach an affluence level that makes air conditioners affordable. Prolonged exposure to extreme
heat not only leads to thermal discomfort and reductions in working (Zander et al., 2015) and
scholastic performance (Park et al., 2020), but can also cause dizziness, cramps, and cardiovas-
cular and respiratory diseases (Basu & Samet, 2002; Barreca et al., 2016; Burgess et al., 2017). If
heat stress affects the ability to accumulate human capital, in the long-term it can exacerbate
existing inequalities. Access to air-conditioning is highly uneven, and current adoption rates are
lower in the countries that need it most because more frequently exposed to high temperatures
(Mastrucci et al., 2019). Within countries, adoption is highly concentrated among high-income
deciles, leaving low-income households greatly exposed (Davis et al., 2021; Pavanello et al.,
2021).

In the climate change literature, the process of adjustment to actual or expected changes in cli-
mate conditions is called adaptation (Smit & Wandel, 2006). Adaptive capacity refers to the abil-
ity to modify behaviours in order to better cope with existing or anticipated external stresses
(Adger, 2006). Operating air-conditioning is a form of private or individual adaptation to cli-
mate change. Socio-economic conditions determine a household’s adaptive capacity, which in-
volves purchasing power and access to technology. The literature on adaptive capacity is highly
fragmented (Siders, 2019), with heterogeneous contributions from diverse and disconnected dis-
ciplines. Still, scientific contributions from different fields of study agree on the importance of
certain recurring determinants of adaptive capacity, namely education, technology, knowledge,
and physical and financial resources. Financial assets have long been recognized as a crucial
determinant of adaptive capacity (Smit & Wandel, 2006), and financial constraints are one of the
barriers that can drive a wedge between desirable adaptation options and those that are actu-
ally implemented (Chambwera et al., 2015). Existing work on the drivers of adaptive capacity
mainly focuses on the role of labour-related income and wealth (Yohe & Tol, 2002; Siders, 2019),
while the potential contribution of non-labour-related income, such as remittances, remains in-
adequately studied.

Remittances are an important additional source of income that enables recipient households
to invest also in riskier assets and activities. Officially recorded remittance flows to low- and
middle-income countries reached $540 billion in 2020 (World Bank, 2021). Even during the
COVID-19 pandemic, remittances remained stable, registering in 2020 a very limited decline
of just 1.6% below 2019 levels (World Bank, 2021). Remittances have received much less at-
tention compared to the direct migration or displacement of people caused by climate change
(Gray & Mueller, 2012; Belasen & Polachek, 2013; Mastrorillo et al., 2016; Baez et al., 2017; Bosetti
et al., 2018; Cattaneo & Peri, 2016). Independently of why people migrate, remittances can serve
as an economic safety net for recipient households that remain in the sending countries (Yang
& Choi, 2007; Defiesta et al., 2014) and, especially in poor and emerging countries with stark
inequalities, remittances are an important financial resource for improving the adaptive capac-
ity of recipient households unable to relocate (Gemenne & Blocher, 2017; Giannelli & Canessa,
2021). Remittances are not only a source of income, but they also enable social transactions that
create new social values (Rahman & Fee, 2012). Migrants sending remittances can also transfer
back to the sending country of origin new skills, knowledge, ideas, and social practices acquired
in the destination regions. Remitters might control how their transfers are spent by modifying
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intra-household bargaining power in expenditure allocation. Through these intangible mech-
anisms, remittances can contribute to re-orientating expenditure decisions (Anghel et al., 2015;
Levitt, 1998).

Within the economic literature of migration, several studies show that remittance income has a
positive effect on the acquisition of durable goods (Airola, 2007; Adams Jr & Cuecuecha, 2010a),
but little attention has been given to what kind of durable goods are mostly affected. A few iso-
lated contributions more closely related to our research have examined the relationship between
remittances and energy consumption (Rahman & Fee, 2012; Akçay & Demirtaş, 2015), implicitly
highlighting the role of more affordable energy-intensive appliances. Remittances are gener-
ally spent on consumption (Chami et al., 2005; Adams Jr & Cuecuecha, 2010b; Clément, 2011),
but also on productive goods and activities with positive effects on economic development.
Remittances contribute to children’s education (Cox-Edwards & Ureta, 2003; Kifle, 2007; Yang,
2008; Adams Jr & Cuecuecha, 2010a; Mansour et al., 2011; Randazzo & Piracha, 2019), housing
(Adams Jr & Cuecuecha, 2010a), health (Taylor & Mora, 2006) and/or investments (Taylor &
Mora, 2006; Woodruff & Zenteno, 2007; Mendola, 2008; Veljanoska, 2021). Income constraints
limit a household’s consumer preferences, and receiving remittances relaxes that constraint by
expanding the range of budgetary allocations. According to the permanent income hypothesis,
remittances represent a transitory source of income that is used differently from the more stable
labour income. The latter, such as expected income, is more likely to be saved, while less pre-
dictable income streams – such as remittances – encourage asset accumulation. Several studies
support the stronger effect of remittance income than other income sources on asset accumula-
tion by households (e.g. Adams Jr, 1998; Amuedo-Dorantes & Pozo, 2014).

Our paper builds upon the two streams of literature on climate adaptation and development
economics, in order to investigate whether and how remittances on the acquisition of a specific
type of durable good, namely air-conditioning, serves the purpose of adapting to rising tem-
peratures. A recent paper by Veljanoska (2021), closely related to our work, looks at whether
remittances promote fertilizer use among Uganda farmers as a means of coping with rainfall
variability. The paper sees remittances as a source of financing new investments, and within the
climate adaptation literature this is a way to improve adaptive capacity.

We focus our analysis on the impact of remittances on climate adaptation in Mexico, an emerg-
ing economy that is experiencing a rapid increase in the adoption of air-conditioning, in the
context of a long tradition in remittance inflows. Because of its heterogeneous climate, Mexico is
an ideal subject for an empirical study of air-conditioning. The country is 2,000+ miles long and
its climate zones range from hot and humid tropics to arid deserts and high-altitude plateaus.
Most of Mexico’s remittances are sent by the millions of Mexicans living in the United States,
where the household penetration rate of air-conditioning is above 85%.1

We use the Encuesta Nacional de Ingresos y Gastos de los Hogares (ENIGH), a nationally rep-
resentative household income and expenditure survey that the Mexican Statistical Institute has
carried out biennially since 1984. We rely on household data from 2008 to 2018. Our empirical
strategy is based on an instrumental variable approach for dealing with the potential endogene-
ity of remittance income. In line with previous studies, we find that climate and income are
among the main drivers of the adoption of air-conditioning. Moreover, our variable of interest,
remittance income, plays an additional role in the adaptation process. The probability of adopt-
ing air-conditioning increases by 8 percentage points when remittance income increases by 1000
pesos.2 We exploit climate and income heterogeneity across Mexican households and states in
order to show that remittances increase the ability of households to purchase air-conditioning (i)

1https://www.enerdata.net/publications/executive-briefing/the-future-air-conditioning-global-demand.html
21000 Mexican pesos correspond to 49 US$
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mostly in the coastal areas and (ii) especially when they have a relatively low-income level. We
then underscore the potential private benefits of this form of adaptation by computing the 2018
consumer surplus gain associated with the possession of air-conditioning. The possession of
air-conditioning increases the consumer surplus by between $231 and $988 million (2012 PPP),
depending on the estimation model and method employed.

The remaining part of the paper is structured as follows. Section 2 provides some background
on remittances and air-conditioning penetration in Mexico. Section 3 presents the descriptive
statistics, while Section 4 describes our theoretical and empirical approach. Results are discussed
in Sections 5 and 6, and the concluding remarks in Section 7.

2 Study context

Mexico is the third country in the world and the first in Latin America and the Caribbean region
for inflows of international remittances, which reached 43 billion USD in 2020 (World Bank,
2021). The vast majority of these remittances are generated in the US, where almost 11 million
Mexican nationals live.3 Since the 1980s, the total value of remittances has steadily increased
(Figure 1), and in Mexico, more than in other emerging countries, remittances have significantly
contributed to the country’s economic development, accounting for 4% of its Gross Domestic
Product (GDP) in 2020.

In US$ Nominal As % of GDP

Figure 1: Remittance Inflows in Five Main Emerging Economies

Mexico’s steady inflow of remittances has attracted the attention of researchers and policy mak-
ers, who have analysed its implications for Mexican households and economy. Several stud-
ies on how recipient households perceive and use remittances in Mexico have found that mi-
gration and remittances reshape expenditure in favour of investments (Taylor & Mora, 2006;
Chiodi et al., 2012; Woodruff & Zenteno, 2007). In Mexico, remittances affect schooling (Alcaraz
et al., 2012; McKenzie & Rapoport, 2011; Borraz, 2005; Hanson & Woodruff, 2003), health (Hilde-
brandt et al., 2005), poverty, and labour supply (Amuedo-Dorantes & Pozo, 2006) and Amuedo-
Dorantes & Pozo (2011b) show that remittances can also help to contrast income volatility. The
empirical work on remittances conducted in Mexico provides evidence of how remittances pro-
mote growth and development. The role of remittances in the adaptation process has been ne-

3https://www.migrationpolicy.org/article/mexican-immigrants-united-states-2019
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glected and we attempt to fill this gap in the literature by showing how remittances in Mexico
can promote climate adaptation through the adoption of air-conditioning.

Over the last ten years, air-conditioning penetration rates have doubled (Davis & Gertler, 2015),
but not all households are equally able to afford this form of investment for adaptation and, in
2018, only around 18% of Mexican households had at least one air conditioner installed in their
dwellings.4 Mexico’s highly heterogeneous climate determines an uneven distribution between
inland and coastal areas (Figure 2). Temperatures are mild in the inland regions, where air-
conditioning is relatively uncommon and adoption rates are close to zero. The coastal areas are
exposed to much higher temperature levels, leading to higher penetration rates, reaching over
70% in some Pacific coastal states.

Air-conditioning Climate

Figure 2: Left: Share of households with Air-conditioning in 2018 (ENIGH); Right: Mean (1970-
2018) CDD dry-bulb (GLDAS)

3 Data

The Encuesta Nacional de Ingresos y Gastos de los Hogares (ENIGH) is a nationally representative
repeated cross-section survey carried out biannually by the Mexican statistical institute, INEGI.
We use the last six available waves,5 covering the 2008-2018 period and consisting of 229,236
sample households. The survey provides information on the size, origin and distribution of
the income and expenditures of Mexican households. We focus our attention on international
remittances, defined as monetary transfers that households have received from abroad during
the previous three months.6 The survey also contains a comprehensive module on housing
and household appliances, which makes it possible to determine whether households have air-
conditioners installed in their homes. However, we cannot differentiate between the various
kinds of air-conditioning units (e.g. window, split, central), hence our results aim at capturing

4Authors’ calculation based on ENIGH 2018.
5Starting in 2008, INEGI has changed how it constructs income variables (Nueva construcción), making it difficult

to consider previous waves
6In our analysis we focus only on international remittances. This is because for domestic remittances generated

within Mexico, we do not have any information on where the remitter is located, and how internal migration is
distributed inside Mexico. We follow Amuedo-Dorantes & Pozo (2006, 2011a,b), among others, who perform an
empirical analysis based on international remittances only.
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the impact of remittance income on the adoption of undifferentiated forms of air-conditioning.

We merge this data set with climate data taken from the reanalysis data set Global Land Data As-
similation System (GLDAS). Our climatic variable is the long-term annual average of dry-bulb
Cooling Degree Days (CDDs), which measures typical intensity and duration of hot climate, and
is widely used in the literature as determinants of space cooling (Davis & Gertler, 2015; De Cian
et al., 2019; Pavanello et al., 2021). CDDs have been calculated by using daily temperature (◦C)
data computed from the 3-hourly global surface gridded temperature (0.25◦× 0.25◦resolution)
fields obtained from the GLDAS (Rodell et al., 2004), from 1970 up to the corresponding wave
year. For each grid-cell the CDDs are calculated by using the American Society of Heating, Re-
frigerating and Air-Conditioning (ASHRAE) method (ASHRAE, 2009), and fixing 24 ◦C as tem-
perature baseline. We use this threshold, rather than 18 ◦C, because Mexico is located between
subtropical and tropical regions.

Table 1: Descriptive Statistics for the period 2000-2018

Full Sample
Mean SD

Recipient (Yes = 1) 0.057 0.232
Remittance Income (pesos) - if > 0 7,459.068 11,013.469
Air-conditioning (Yes = 1) 0.166 0.372

Non Recipients Recipients
Mean SD Mean SD Diff. p-value

Air-conditioning (Yes = 1) 0.170 0.375 0.101 0.302 0.068 0.000
Long-term Mean CDD 383.879 419.002 298.275 392.776 85.604 0.000
Labour Income (pesos) 28,080.213 36,943.167 15,297.375 23,484.161 12,782.839 0.000
Total Income (pesos) 41,612.908 102,065.718 32,752.788 32,453.372 8,860.120 0.000
Urban (Yes = 1) 0.685 0.465 0.453 0.498 0.232 0.000
Female Head (Yes = 1) 0.252 0.434 0.425 0.494 -0.173 0.000
Head Age 48.830 15.775 53.710 17.269 -4.880 0.000
Head Education (None = 1) 0.257 0.437 0.447 0.497 -0.189 0.000
Head Education (Primary = 1) 0.212 0.409 0.222 0.416 -0.010 0.009
Head Education (Secondary = 1) 0.284 0.451 0.226 0.418 0.059 0.000
Head Education (Above = 1) 0.246 0.431 0.106 0.308 0.140 0.000
Child (< 15, Yes = 1) 0.549 0.498 0.549 0.498 -0.000 0.990
Elderly (> 65, Yes = 1) 0.213 0.409 0.343 0.475 -0.130 0.000
Home Ownership (Yes = 1) 0.717 0.450 0.747 0.435 -0.029 0.000
Head Employed (Yes = 1) 0.790 0.407 0.612 0.487 0.177 0.000
Household Size 3.733 1.885 3.730 2.069 0.003 0.819
Hist. Rem. 1992 0.176 0.100 0.228 0.114 -0.052 0.000
Avg. US Wage 25.409 2.118 25.587 2.115 -0.178 0.000
Hist. Rem. 1992 x Avg. US Wage 4.481 2.591 5.840 2.917 -1.359 0.000

Observations 216,158 13,078

Descriptive statistics in Table 17 show that over the period 2008-2018 almost 6% of the house-
holds are remittance recipients, and they receive on average 7,459 pesos per quarter.8 The
air-conditioning adoption rate was around 17%, a figure that was significantly higher in non-
recipient households (+6.8 percentage points). At the same time, households owning an air-
conditioner received a significantly larger amount of international income remittance, show-
ing that significant differences existed between households that owned an air-conditioner and
those that did not (Table A2). On average, remittance recipients received 12,782 pesos less in tri-
monthly labour income than non-recipients and tended to be less educated. These two results
suggest that recipient households, in order to overcome income constraints, are liable to resort
to the strategy of migration and remittance. Our argument is also supported by the household

7In the Appendix we define each variable used in the empirical analysis (Table A1).
8This corresponds to around 770$ per quarter.
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head’s employment status. Household heads in recipient families are less likely to be employed
(61%), compared to non-recipient households (79%). We do not find significant differences in
household size and presence of children based on household remittance status, whereas recip-
ients are substantially more likely to have an elderly family member in the household (34%).
The household head, on average, is older by five years in recipient households. As expected,
recipient households also have a higher proportion of female heads compared to non-recipient
households. Finally, remittance-recipient households are less concentrated in urban areas (45%)
compared to non-recipients (68%), and they also experience lower temperatures - on average a
difference of 86 CDDs between remittance-recipient and non-recipient households.

4 Empirical Framework

4.1 Modelling Demand for Air-conditioning

We introduce a simple model for the demand for thermal comfort, following the framework used
by Amuedo-Dorantes & Pozo (2011b) in the context of health care expenditure. We assume that
each household i in a given location maximises a utility function that depends on consumption
of market good (X) and the availability of for thermal comfort (T):

Ui = U(Xi, Ti) (1)

Households may invest in thermal comfort (T) according to a production function that depends
on the availability of air-conditioning (AC), the climatic conditions (C) in the given location d,
and a set of households’ characteristics (H) such as demographics (e.g. age, household size),
socio-economic conditions that include wealth and education, and unobservable factors (e.g.
preferences).

Ti = f (ACi, Cd, Hi) (2)

Assuming preferences do not change over time, each household maximises its utility by reaching
the highest indifference curve possible subject to a budget constraint. The budget constraint is
a function of both non-labour income, which we identify in remittances (R), and labour income
(I). Income from any source is used to pay for market good X (with price PX) and for air-
conditioning appliances (priced at PAC). That is:

max
X,T

Ui = U(Xi, Ti)

s.t. PXXi + PAC ACi ≤ Ri + Ii (3)

The solution to this problem yields the optimal demand for air-conditioning:

ACi = g(Ri, Ii, PX, PAC, Cd, Hi) (4)

An increase in remittances, all else being equal, produces an income effect that shifts a house-
hold’s budget constraint to the right, enabling households to reach a higher indifference curve.
Households with a higher disposable income can have access to a higher range of goods and
consume more of the two normal goods, X and AC.

While both generic and remittance income are measured in monetary units, the literature pro-
vides ample evidence that a dollar (or peso) of remittance income is not the same as a dollar
(peso) of wage income, because (i) remittance income is transitory as opposed to the permanent
nature of wage income (Adams Jr & Cuecuecha, 2010a) and (ii) the remitter has a bargaining
power in orientating transfer allocation (Amuedo-Dorantes & Pozo, 2011b). While expected
wage income is more likely to be saved (permanent income hypothesis), less predictable in-
come streams such as remittances encourage asset accumulation (precautionary savings). Air-
conditioning can be seen as a risky asset that in the long-term benefits health and human capital
(e.g. protecting health). Hence, we expect remittance income to have a positive impact on the
adoption of air-conditioning.
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4.2 Empirical Strategy

Starting from Equation 4, we pool the six waves of data available over time to obtain our empir-
ical model describing a household’s adoption of air-conditioning:

ACi(t) = β0 + β1Ri(t) + β2CDDd(t) + Fi(t)β3 + µs + δ(t) + ϵi(t) (5)

where ACi(t) is a dummy variable taking value 1 if household i has an air-conditioner installed
in its dwelling in year t, 0 otherwise. Ri(t) indicates the tri-monthly international remittance in-
come from migrants living abroad (in thousand pesos). Hence, our coefficient of interest β1 is to
be interpreted as the effect of an additional 1000 pesos of remittance income every three months
on the likelihood of having an air-conditioner. The variable CDDd(t) is the long-term average of
dry-bulb Cooling Degree Days (CDD) experienced in district d across the 1970-t period. We also
include a vector Fi(t) which groups income Ii and a household’s characteristics Hi from equation
4.9 We check for unobservable time-unvarying effects on the state level, as well for time-varying
common trends by the means of state- and year-fixed effects, µs and δ(t), respectively, and cap-
ture the remaining unobserved factors with an error term ϵi(t).

It is however problematic to estimate Equation 5 by using a Linear Probability Model (LPM).
Remittance income is likely to be endogenous for adopting air-conditioning, and so the dis-
turbance term ϵi(t) is to be correlated with Ri(t). In our study, households are likely to turn to
remittance according to their socio-economic status (observable selection bias). Negative selec-
tion may imply that poor households receive more remittances, but at the same time they are
less likely to invest in air-conditioning. This would induce a downward bias in the LPM esti-
mates which we limit by checking for labour income and family size that are determinants of
poverty status. In addition, because we exploit repeated cross-sectional data, we cannot net out
unobservable household determinants of receiving remittance income that may also be corre-
lated with the adoption of air-conditioning. Because of omitted variable bias, we again expect
the LPM estimates to be downward biased. For instance, more risk adverse households might
be less likely to send a family member abroad because successful migration itself (e.g. settling
down and finding a good job) is uncertain. At the same time, risk-adverse households with
limited resources are less likely to invest in new appliances since negative income shocks may
always occur.

To address the endogeneity of remittance income, we exploit a two-stage least squares (2SLS)
approach and model the remittance equation as follows:

Ri(t) = γ0 + γ1HRu(s) × Ws(t) + γ2CDDd(t) + Fi(t)γ3 + µs + δ(t) + vi(t) (6)

here Ri(t) is the remittance income of household i at time t. The component HRus × Ws(t) is
our instrumental variable, which is given by the interaction between the historical share of re-
mittances in stratum u of state s10 and the weighted average of the US hourly wage assigned
to state s at time t, Ws(t).11 The error component vi(t) is assumed to be independent of the set
of control variables. In order to identify the model, we need to include in the first stage equa-
tion variables that are correlated with the remittance income but are not directly affecting the

9We include in F: labour income, dummy for living in an urban area, household head’s education, household
head’s employment status, household head’s gender and age, household size, home ownership, and dummy vari-
ables for the presence of elderly persons and minors in the household. Given that income tends to be particularly
skewed in developing countries, as a robustness we run our empirical model adding a quadratic term of labour
income. Results are qualitatively the same, and therefore we present the regression with linear labour income only.

10For each state we can identify four strata: urban, suburban, small village and rural. This means that in total the
historical share of recipient households in 1992 has 128 different values, 4 for each of the 32 states.

11All time variation in our instrument comes from the variation in US wages, which vary over time (t). Instead,
the historical share of remittances in stratum u of state s is collected just for the year 1992 and therefore the variation
is only between state and stratus and is fixed over time.
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adoption of air-conditioning. As presented above, the instrumental variable chosen is an inter-
action between: (i) a historical share of households receiving remittances in 1992, varying by
state and stratum level; (ii) the annual average in hourly wage in US destination states weighted
by Mexican share of migrants by state of residence, varying by state and year level. Using this
interaction, rather than the two components separately, allows to introduce more variability,12

which we can exploit to identify the effect of remittance income.

For the first component, we follow the studies using historical migration rates and migration
networks as instruments for remittances (Woodruff & Zenteno, 2007; McKenzie & Rapoport,
2011; Acosta, 2011; Salas, 2014; Veljanoska, 2021). They have proven to be a good proxy for local
remittance norms, namely places that are used to receiving remittances. Specifically, we use the
share of households receiving remittances taken from the 1992 ENIGH wave. The ratio is that
Mexican locations where households are historically more likely to be recipients also have better
infrastructure for receiving remittances, and so at present receive a higher amount of remittance
income. Here the assumption is that, once we check for all the other exogenous covariates,
the historical share of households receiving remittances in 1992 does not affect the present-day
adoption of air-conditioning, apart from the impact through current remittance transfers.

For the second component, we follow the approach of Amuedo-Dorantes & Pozo (2011a,b). We
first compute an annual average hourly wage for each wave-year and US state.13 Then, we
gather public data from the Instituto de los Mexicanos en el Exterior (IME) to determine the
migrants’ preferred US destination states from each Mexican state.14 Finally, we assign to each
Mexican state a weighted US country average hourly wage based on these stock of emigrants.15

The idea is that the wage level in US destinations for Mexican emigrants are correlated with
their remittance outflows. Here, we assume that US labour market conditions over the years do
not affect AC adoption in Mexico other than via their remittance inflows.

One possible concern related to our instrumental variable is a correlation between the historical
share of recipient households and the current level of development in the Mexican states. We re-
solve this issue by including the state’s fixed effects, µs, and we also double-check for state-level
per capita GDP as well as for state-time linear trends. In the next sections we provide several
tests for conducting a thorough inspection of the econometric validity of our instrument.

We estimate Equation 6 by using an OLS estimator, even though we observe remittance income
for only 6% of the sample. We do not exploit a Tobit model, since a non-linear first stage would
lead to inconsistent results in the second stage (Angrist & Krueger, 2001). Moreover, assuming
censoring of the dependent variable does not allow for the possibility of true zeros. For ro-
bustness, we combine both internal and international remittances to see whether our estimates
remain unaffected. Finally, in both first- and second-stage regression standard errors are clus-
tered at a district-year level to correlate observations within the same municipality included in
the survey wave.

12To build this instrument we refer to the shift-share literature – see e.g., Borusyak et al. (2022)
13https://www.bls.gov/
14http://www.ime.gob.mx/
15Take as an example the Mexican states of Sonora. 38.7% and 30.6% of the Mexican migrants from Sonora go to

Arizona and California, respectively. This means that we assign to Sonora the annual US average hourly wage in
Arizona and California, weighted with the share of migrants, 0.387 and 0.306, respectively.
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5 Results

5.1 Impact of Remittance Income on Air-conditioning Adoption

Table 2 presents the summary of our main estimates of the impact of remittance income on the
adoption of air-conditioning, whose full results are included in the Appendix (Table A5). We
first run an LPM as a baseline for the analysis (Columns (1)-(3), Table 2). When the endogeneity
of remittances is not considered, we find that a thousand-peso increase in tri-monthly remittance
income is associated with a rise in the probability of adopting air-conditioning by between -0.10
and 0.24 percentage points, depending on the specification. Yet, as discussed above, these esti-
mates are likely to be downward biased.

Column (4) in Table 2 reports the second-stage estimates related to the impact of remittances on
the adoption of air-conditioning when the potential endogeneity bias is addressed with a 2SLS
IV model. Compared to the coefficient from the LPM estimates, we find a larger, significant
effect. This is in line with the empirical literature on remittances showing that the remittance co-
efficient gets much larger when an IV-strategy is implemented.16 In our case, a 1000-pesos rise in
tri-monthly remittance income increases the probability of adopting air-conditioning by 8 per-
centage points.17 This result suggests that remittances play a fundamental role in satisfying the
cooling demand of Mexican households by relaxing credit constraints in accessing the technol-
ogy. Our results also align with the existing evidence (Amuedo-Dorantes & Pozo, 2014) suggest-
ing that the transitory nature of remittance income encourages asset accumulation. When that
same specification is re-estimated by using fans (Table A8), which are a much cheaper alterna-
tive to air-conditioning, remittance income reduces the purchase of this good. That is, recipient
households tend to invest more in a “riskier” asset such as air-conditioning than in a less-risky
asset such as fans. When we divide our sample into recipient and non-recipient households and
re-estimate our main specification to include total income as the only income covariate,18 we
find that households that receive remittances are more likely to buy an air-conditioner. This re-
sult suggests that the two sub-samples have a different propensity to invest in air-conditioning
(Table A9).

The coefficients of the other covariates (Table A5) are in line with recent studies that have ex-
plored the determinants of air-conditioning adoption in Mexico (Davis & Gertler, 2015; Pa-
vanello et al., 2021). Climate conditions are also an important driver of the demand for air condi-
tioners. A hundred-unit increase in CDDs raises the likelihood of adopting air-conditioning by 3
percentage points. We also find a positive effect of labour income on the adoption. A 1000-pesos
rise in labour income increases the likelihood of adopting the technology by 0.11 percentage
points, a much smaller marginal effect compared to the remittance income discussed above.1920

16See for example Alcaraz et al. (2012); Amuedo-Dorantes & Pozo (2006); Cuadros-Meñaca (2020); Cuadros-Meñaca
& Gaduh (2020); Quisumbing & McNiven (2010); Veljanoska (2021).

17In other words, if we interpret our results in terms of elasticities, a 1% increase in remittance income leads to a
3.61 percentage points increase in air-conditioning adoption.

18Total income includes labour income, remittance income as well as other sources of income (such as capital
income).

19We use labour income as opposed to total income because labour income excludes the income from physical
and human capital assets, rents and interest. This distinction between labour income and capital income is impor-
tant because capital income is generated by previous investment decisions in assets which remittances income may
contribute to determine and this paper tries to explain (Adams Jr, 1998). In the Appendix, Table A5 allows for a
direct comparison between linear remittance income and linear labour income showing a close to 73 fold difference
between remittance and labour income effects. Our remittances-income ratio is in line with the literature (e.g. Vel-
janoska, 2021).

20The stronger effect of remittance income compared to labour income should be interpreted with caution. Alcaraz
et al. (2012) state clearly that including income may cause some endogeneity problems. Additionally, from an econo-
metric point of view, the effect of remittance income is a local average treatment effect (LATE) or complier average
casual effect; the effect of income is an average treatment effect (ATE) which includes compliers and not compliers
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By keeping labour income and climate constant, several demographics, economic and techno-
logical characteristics remain important factors in explaining adoption patterns. Urbanisation
increases the likelihood of adopting the cooling durable (+9.3 percentage points) and so does
home ownership. Education too substantially enhances the propensity to adopt the technology.
Findings on gender suggest that the presence of a female family head decreases the propensity
to adopt a cooling device (-4.7 percentage points).

Our first-stage results (Table A4) indicate that the recipient households are negative selected,
confirming what the descriptive statistics already suggested. For instance, both a household
head’s education and his/her employment have a negative impact on remittance income. Home
ownership, which represents a measure of wealth, is negatively associated with remittances. In
line with previous studies, we find that female-headed households are more likely to receive
international remittances (+595 pesos) and that the presence of children in the household is an-
other important determinant of remittances (+116 pesos) (e.g Acosta, 2011; Amuedo-Dorantes &
Pozo, 2011b). Our instrumental variable, given by the interaction between: (i) a historical share
of households receiving remittances in 1992; (ii) the annual average in hourly wage in US desti-
nation states, is quite positively correlated with received remittances. This means that locations
with greater remittance norms receive higher remittance income when there is an increase in the
US hourly wage.

To verify the validity of our IV approach, we first implement Montiel Olea & Pflueger (2013)’s
heteroscedasticity robust test, in which instruments are considered weak when the 2SLS bias
is large relative to a benchmark. In our case, the effective F-statistic results are equal to 45.87,
hence well above the Montiel-Pueger TSLS critical value at τ = 5%, with significance level set at
5%. We can therefore reject the null hypothesis of weak instrument and be confident that our
estimates are unlikely to be biased by a weak instrument. To further inspect our instrument, we
also report the 95% Anderson-Rubin confidence interval.21 This confidence interval is robust to
the presence of weak instruments and has the correct size under a variety of violations of the
standard assumptions of the IV regression.

Table 2: Impact of Remittance Income on Air-conditioning Adoption

LPM LPM LPM 2SLS
(1) (2) (3) (4)

Remittance Income (in 1000s) -0.0010** 0.0012*** 0.0024*** 0.0801**
(0.0004) (0.0002) (0.0002) (0.0337)

Mean CDD 0.0003*** 0.0003***
(3.97e-05) (3.91e-05)

Covariates No No Yes Yes
State FE No Yes Yes Yes
Time FE No Yes Yes Yes
Effective F statistic 45.869
Montiel-Pflueger TSLS (τ = 5%) 37.418
Anderson-Rubin CI [0.017, 0.153]
Observations 229,236 229,236 229,236 222,777

Notes: (1), (2), (3) and (4) clustered std. errors at district-year level in parentheses; * p < 0.10, **
p < 0.05, *** p < 0.01. Each equation includes as covariates: labour income, dummy for living
in an urban area, household head’s education, household head’s employment status, household
head’s gender and age, household size, home ownership, and dummy variables for the presence
of elderly persons and minors in the household. The table summarizes the estimation results
presented in Table A5 available in the Appendix.

together.
21We conduct the Anderson-Rubin test, and we can reject the null hypothesis of no effect of remittance income on

air-conditioning adoption at 0.01 significance level. Results of the test are available through the replication code.
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5.2 Heterogeneity: Coast and Inland

Given Mexico’s great climate heterogeneity, we explore whether remittances have a heteroge-
neous impact in warm and cold regions. We may indeed expect that only the recipient house-
holds living in high-temperature areas invest remittance income in air-conditioning purchase.
We therefore divide our sample between households living in the warm coastal states and those
living in the cold inland ones.22 Table 3 shows the 2SLS estimates for these two subsamples. We
find that remittance income is a significant driver of air-conditioning adoption in the coastal ar-
eas, whereas it has null effect in the inland areas. In terms of magnitude, in the coastal locations,
remittances have an effect that is double in size compared to the estimates obtained when coastal
and non-coastal locations are pooled together in the full sample specification. A 1000-pesos in-
crease in tri-monthly remittance income increases the likelihood of adopting air-conditioning by
19 percentage points. As expected, recipient households tend to use the received remittances to
increase their adaptive capacity, and adaptation opportunities only when they are exposed to
high temperatures. Remittances are not only a source of income but can also have a social and
cultural value that connect receiving to sending country communities and that can orientate ex-
penditure decisions. Since most remittances are generated in the U.S., where air-conditioning
is widely adopted, they might also have a contagious behavioural effect, especially in coastal
areas where the temperatures are higher. In the inland regions, air-conditioning can be seen as
a luxury good and not as a necessary need for a decent living, and therefore only the wealthy
decide to adopt it, based on their income levels. In this case, remittances play no additional
marginal role. However, the null effect of remittances for the inland households may not be
precisely estimated. With a relatively weak instrument, the results for this subsample need to be
interpreted with caution. Moreover, for the coastal sample we can reject the null hypothesis of a
weak instrument only at 10% significance level, as we impose the Montiel-Pueger TSLS critical
value at τ = 5%.23 This suggests there might be some bias in these subsample estimates.24

22Table A3 presents descriptive statistics by area. Around 49% of the sample lives close to the coast (117,522
households) and 51% in inland areas (111,714 households). As expected, 24% of households living in the coastal
areas possess air-conditioning while the percentage reduces to 8% in inland areas.

23The effective F statistic is slightly lower than the Montiel-Pueger TSLS critical value at τ = 5%, with significance
level set at 5% (Table 3 and Table A6). With τ = 10%, the same critical value is 25.8, and so it is smaller than our
effective F statistic.

24The difference in instrument performance for the two sub-samples might be related to significant differences in
the instrument mean and standard deviation across the two sub-samples (Table A3).
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Table 3: Heterogeneous Impact of Remittance Income
on Air-conditioning Adoption: Inland vs Coast

Inland Coast
(1) (2)

Remittance Income (in 1000s) -0.0309 0.191**
(0.0318) (0.0764)

Mean CDD 0.0004*** 0.0003***
(3.31e-05) (5.19e-05)

Covariates Yes Yes
State FE Yes Yes
Time FE Yes Yes
Effective F statistic 11.881 25.833
Montiel-Pflueger TSLS (τ = 5%) 37.418 37.418
Anderson-Rubin CI [-0.125, 0.031] [0.061, 0.381]
Observations 108,564 114,213

Notes: (1) and (2) clustered std. errors at district-year level in parenthe-
ses; * p < 0.10, ** p < 0.05, *** p < 0.01. Each equation includes as
covariates: labour income, dummy for living in an urban area, household
head’s education, household head’s employment status, household head’s
gender and age, household size, home ownership, and dummy variables
for the presence of elderly persons and minors in the household. The table
summarizes the estimation results presented in Table A6 available in the
Appendix.

5.3 Heterogeneity: Income Groups

Due to asymmetries in access to financial markets, remittances might be more important for
lower-income households facing tighter budget constraints than for higher-income households.
We therefore study whether poorer households are more likely than richer households to spend
remittance income on their cooling needs. We divide the sample into three groups, based on
income terciles, and we re-estimate our model for low-, medium- and high-income households.
Table 4 presents the 2SLS estimates for the three subgroups. We find households are less respon-
sive to increases in remittance income as household income increases. For low-income house-
holds a 1000-pesos increase in tri-monthly remittance income makes it more likely to adopt
air-conditioning by 6.8 percentage points. The effect is smaller for medium-income households
– 4.6 percentage points, whereas it becomes non-significantly different from zero to high-income
households.25 Interestingly, labour income is not significant in the low and middle-income sub-
sample. This suggests that poorer households can adopt the technology only if they receive
resources in addition to labour income. Indeed, for poor households, labour income is primarily
geared towards primary goods. Remittances, as an additional income source, can be invested
in assets such as air-conditioning only after basic needs are fulfilled. These results are in line
with Gertler et al. (2016), demonstrating that households faced with credit constraints become
much more likely to purchase energy-using assets with additional income once their income
passes a threshold level. In their paper they study the role of an unconditional cash program,
which, like remittance income, can be seen as transitory. In our context, remittance income may
make it possible to surpass that threshold by increasing the adoption of air-conditioning. The
situation is different for medium-income families, who can invest part of their labour income,
together with remittances, in air-conditioning. Table 4 shows that the impact of remittances on
air-conditioning is lower in comparison to poor households. Finally, high-income households
do not need remittances to purchase air-conditioning, and we do not find any significant effect
of remittances on its purchase. The impact of remittances on cooling needs has to be analysed
by labour income levels. Our findings shed light on different perceptions that households in

25For the high-income sub-sample the first-stage regression F-test may suggest a weaker instrument. This might be
due to the fact that richer households are less likely to receive remittances. For the high-income households labour
income drives the adoption of air-conditioning (see Table A7).
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different income groups might have of air-conditioning. It might represent a normal good for
high-income households and a luxury good for low-income households. We conclude that re-
mittance income contributes to equalising household adoption of air-conditioning by financing
the purchase.

Table 4: Heterogeneous Impact of Remittance Income on Air-conditioning Adoption: Income
Groups

Low-Income Med-Income High-Income
(1) (2) (3)

Remittance Income (in 1000s) 0.0681** 0.0467* 0.0569
(0.0290) (0.0271) (0.0398)

Mean CDD 0.000136*** 0.000343*** 0.000516***
(0.0000220) (0.0000457) (0.0000483)

Covariates Yes Yes Yes
State FE Yes Yes Yes
Time FE Yes Yes Yes
Effective F statistic 67.22 60.68 12.40
Montiel-Pflueger TSLS (τ = 5%) 37.42 37.42 37.42
Anderson-Rubin CI [0.014, 0.129] [-0.004, 0.106] [-0.020, 0.169]
Observations 74,625 74,090 74,062

Notes: (1), (2) and (3) clustered std. errors at district-year level in parentheses; * p < 0.10,
** p < 0.05, *** p < 0.01. Each equation includes as covariates: labour income, dummy for
living in an urban area, household head’s education, household head’s employment status,
household head’s gender and age, household size, home ownership, and dummy variables
for the presence of elderly persons and minors in the household. The table summarizes the
estimation results presented in Table A7 available in the Appendix. Income groups are based
on total income.

5.4 Robustness checks

We perform some robustness checks for our analysis. In Column (1), Table 5, we report our 2SLS
estimates when we include the state-level per capita GDP. The estimates remain close to those
obtained with the main specification, suggesting that state fixed effects are sufficient to check
for the correlation between the historical share of recipient households and the current level of
development in the Mexican states.

In Mexico City about 1% of households have air-conditioning, but here recipient households
receive the highest amount of remittance income. We check whether excluding the capital may
affect our estimates. In Column (2) we report the results, which remain robust.

In Column (3) we re-estimate our econometric model, including multiple instruments. Particu-
larly, we use the interaction together with the two components alone. The objective is twofold:
(i) to provide an over-identification test to examine the instruments’ exogeneity; and (ii) to ex-
amine whether introducing a plurality of instruments may affect the magnitude of the effect of
remittance income. We find a similar effect of remittance on the adoption of air-conditioning.
Moreover, results for the Hansen J test allows us to reject the null exogeneity of our instruments.
However, adding a plurality of instruments reduces the variability we can exploit to identify the
effect of remittance income. Consequently, the first-stage regression F-test is much lower than
before – but it remains above the commonly used threshold of 10.

One further concern for our analysis is that only 6% of our sample receives international remit-
tances, and the large number of zeros might affect our estimates. For this reason, we create an
alternative measure of remittance income, which combines remittances from both internal and
international migrants. As a result, around 20% of households are now recipients. Column (4)
reports the estimate by using the new definition of remittance. The results remain similar to our
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baseline estimate. Nevertheless, not unexpectedly, we note that our instrumental variables work
better when applied only to international remittances.26 Finally, in Column (5) we add state-time
linear trends to check state-specific business cycles – also related to US employment conditions
- that may influence both the penetration of air-conditioning and the amount of remittance in-
come that Mexican households receive from abroad. The positive impact of remittance income
is robust to this addition.

Table 5: Robustness Checks

Per Capita GDP No Mexico City More Instruments Total Remittances Linear Trend
(1) (2) (3) (4) (5)

Remittance Income (in 1000s) 0.0795** 0.0817** 0.0780*** 0.0855** 0.0823**
(0.0337) (0.0339) (0.0301) (0.0336) (0.0344)

Mean CDD 0.0003*** 0.0003*** 0.0003*** 0.0003*** 0.0003***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Covariates Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes
Linear State-trend No No No No Yes
Kleibergen-Papp rk Wald F statistic 45.872 45.371 17.970 28.833 45.198
Montiel-Pflueger TSLS (τ = 5%) 37.418 37.418 22.085 37.418 37.418
Anderson-Rubin CI [0.0167, 0.153] [0.019, 0.156] [0.003, 0.177] [0.020, 0.161] [0.018, 0.157]
Lagrange multiplier K test 7.881
Lagrange multiplier K test (p-value) 0.005
K test CI [0.024, 0.143]
Hansen J 0.103
Hansen J (p-value) 0.950
Observations 222,777 213,466 222,777 222,777 222,777

Notes: (1), (2), (3), (4) and (5) clustered std. errors at district-year level in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01. Each
equation includes as covariates: labour income, dummy for living in an urban area, household head’s education, household head’s
employment status, household head’s gender and age, household size, home ownership, and dummy variables for the presence of
elderly persons and minors in the household.

6 Quantifying the Welfare Gain from Air-conditioning Adoption

We have shown that providing Mexican households with additional non-labour income can
relax credit constraints, making air conditioners more affordable. Air-conditioning has been
shown to bring benefits in terms of reduced heat-related mortality (Barreca et al., 2016), and
increased productivity and learning (Zivin & Kahn, 2016; Park et al., 2020). To quantify these
gains in welfare, we estimate the full consumer surplus of Mexican households that owned an
air-conditioner in 2018. In doing so, we closely follow Barreca et al. (2016), who compute the
same measurement that is applied to the US. We specify the following conditional electricity
demand function:

Qi = β0 + β1ACi + β2Ps + β3ACi × Ps + β4CDDd + Ziβ5 + µs + ϵi (7)

where Qi is the annual electricity demand (in 1000s kWh) of household i living in state s. ACi
indicates whether the household i as an air-conditioning system installed in its dwelling. Ps is
the unit price of electricity in state s. The interaction ACi × Ps allows air-conditioning to affect the
slope of the electricity demand. Zi vector containing household characteristics, including total

26In some specifications, based on correlation and not on causation, we differentiate international remittance from
internal remittance income. We find that both types of remittances have a positive and similar impact, in terms of
magnitude, on the adoption of air-conditioning. However, without solving for internal remittance endogeneity, we
cannot really compare the coefficients. Results available upon request.
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income, and CDD indicates Cooling Degree Days.27 Finally, µs represents state fixed-effects and
ϵi is the error component. In this setting air-conditioning induces a shift in the electricity demand
curve for adopters.28 The surplus gain is then quantified by computing the area between the
demand curves of adopters and non-adopters. Moreover, as opposed to Barreca et al. (2016),
we also subtract the externality costs due to the CO2 emissions from air-conditioning use.29 In
doing so, we use three different median estimates30 for the scenario RCP4.5-SSP2 of the Mexican
Social Cost of Carbon (SCC) from Ricke et al. (2018). We estimate Equation 7 by means of Dubin
& McFadden (1984)’s discrete-continuous approach.31 This allows us to simultaneously estimate
both the intensive margin, i.e. the change in electricity use for a given level of air-conditioning
stock, and the extensive margin, i.e. the change in electricity use due to an increase in the air-
conditioning stock.

27We include the same household characteristics used in the previous sections. However, for the sake of consistency
with Barreca et al. (2016), in Table 6 we specify all household characteristics and Cooling Degree Days as dummies.
Specifically, we create quintiles for CDD, total income and household size, and quartiles for household head age. We
then conduct a robustness check by using both continuous and dichotomic covariates (Table A11).

28See the area “abcd” highlighted in Figure A1 for the case of perfectly elastic supply.
29See the area “bcfe” in red in Figure 1. We compute the externality cost by: (1) Multiplying the marginal ef-

fect of air-conditioning on electricity demand by the average carbon intensity in Mexico – 0.21 kgCO2/kWh in
2018 (https://ourworldindata.org/co2/country/mexico); (2) Transforming CO2 from Kg to tons; (3) Multiplying
the emissions by the Mexican SCCs and the total number of households in Mexico. We thank the reviewers for
suggesting this extension.

30These are, respectively, the minimum, the median and the maximum value across all Ricke et al. (2018)’s median
estimates for the RCP4.5-SSP2 scenario.

31Dubin & McFadden (1984) propose three methods to estimate discrete-continuous models. As in Barreca et al.
(2016) we exploit the third alternative, which consists of correcting for the selection of air-conditioning adopters by
including a selection term. The latter is constructed by using predicted probabilities from a logit regression with
air-conditioning as a dependent variable. Similar to Barreca et al. (2016), in the first stage we include interactions
between the dummies for household size and electricity price. These interactions are then dropped in the electricity
equation to have identification.
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Table 6: Regression of Electricity Quantity on Air-
conditioning Adoption - Surplus Gain Computation in
2018

OLS OLS OLS DMcF
(1) (2) (3) (4)

Panel A: Electricity Demand

Air-conditioning 1.564*** 5.028*** 4.115*** 3.048***
(0.149) (0.598) (0.376) (0.340)

Electricity Price -0.860*** -0.523*** -0.893*** -1.067***
(0.078) (0.024) (0.169) (0.163)

Elec. Price × AC -1.226*** -1.024*** -0.592***
(0.200) (0.119) (0.127)

Covariates No No Yes Yes
State FE No No Yes Yes
Selection Corr. No No No Yes
Observations 65,832 65,832 65,832 65,832

Panel B: Consumer Surplus Gain (in Billions $2012 PPP)

No CO2 Externality 0.928*** 0.594*** 0.334*** 0.988***
(0.102) (0.062) (0.058) (0.241)

SCC = 6.85 $/tCO2 0.849*** 0.542*** 0.295*** 0.932***
(0.099) (0.057) (0.056) (0.235)

SCC = 18.16 $/tCO2 0.719*** 0.457*** 0.231*** 0.839***
(0.097) (0.050) (0.052) (0.226)

SCC = 69.11 $/tCO2 0.133 0.074 -0.059 0.422***
(0.104) (0.057) (0.044) (0.187)

Notes: (1), (2), (3) and (4) clustered std. errors at district-year level in paren-
theses; * p < 0.10, ** p < 0.05, *** p < 0.01. Equation (3) and (4) include as
covariates: quintiles for total income, CDDs, and household size, quartiles
for household head’s age, dummy for living in an urban area, household
head’s education, household head’s employment status, household head’s
gender, home ownership, and dummy variables for the presence of elderly
persons and minors in the household. SCC values for Mexico are taken from
Ricke et al. (2018). The number of households in Mexico in 2018 is about 35
million. Consumer surplus gain SEs are computed using Delta Method.

Table 6 shows our estimates for residential electricity demand. We find that air-conditioning
raises residential electricity demand by 773-1564 kWh per year. Moreover, Columns (2)-(4) sug-
gest that air-conditioning causes an even more precipitous rise in residential electricity demand.
That is, air-conditioning makes electricity costs more sensitive to the increase in electricity quan-
tity, indicating that households with air-conditioning are more sensitive to price changes.

Assuming a perfectly elastic supply of electricity, we then estimate that the gain in consumer
surplus associated with the adoption of air-conditioning ranges from about $231 to $988 million
(2012 PPP) at the 2018 air-conditioning penetration rate of 18% (Table 6). This translates into an
increase in consumer surplus per household in 2018 of $7– $28 (2012 PPP). The per household
gains in welfare double once we focus only on the coastal sample (Table A10), where the increase
is between 12$ and 50$ (2012 PPP) per household at the 2018 air-conditioning penetration rate
(25%). Environmental costs reduce the welfare gains. In 2018, between 6% and 57% of the wel-
fare gain from adopting air-conditioning is lost to due to the social costs of the additional CO2
emissions produced.
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If we compare the case with no externality cost, the results are smaller than in Barreca et al.
(2016), which find an increase by between $112 and $225 (2012 PPP) in consumer surplus per
US household at the 1980 air-conditioning saturation rate (57%). This is likely due to country-
specific characteristics. For instance, there might exist differences in the preferences for electric-
ity consumption between Mexican and US households. Moreover, the large gap between the
air-conditioning adoption rates likely influences the total surplus gain. While the computation
provides an insightful approximate measurement of the expected private benefits associated
with the adoption of air-conditioning in the specific context of Mexico, there are some important
caveats. First, we have assumed a perfectly elastic supply, which is likely to be an oversimplifi-
cation.32 Second, we have no information on the capital cost of adopting the technology. Third,
we do not take account of the possible endogeneity of electricity costs.33

The penetration of air-conditioning in Mexico is still low, and households owning this technol-
ogy may be highly selective. The estimation of electricity demand may be sensitive to selection
bias. Column (3) shows estimates with no selection correction, while Column (4) presents esti-
mates based on the Dubin-McFadden approach, which through the selection term corrects the
potential bias of electricity demand. This explains why the gain in welfare calculated on the ba-
sis of estimates in Column (3), which does not include the selection term, is much lower than the
one calculated by using estimates provided by Column (4). The evidence we provide indicates
that a certain bias exists.

7 Conclusion

Our paper contributes to understanding what role remittances can have in the climate adapta-
tion process of households. By focusing on space cooling investments, we show that receiving
remittance income strongly increases the likelihood of purchasing air-conditioning. This finding
suggests that the availability of additional financial resources can indeed enhance the adaptive
capacity of households, enabling them to adopt technologies that otherwise would not be afford-
able and that can contribute to reducing their vulnerability to climate change. For low-income
households and for those exposed to a warm climate, remittance income can make a significant
difference in their ability to adapt to climate change. For these households, remittances repre-
sent an additional financial resource that can be allocated for space cooling in the presence of
income constraints. Moreover, we believe that remittances are not only a transitory source of
income but that they also incorporate an additional social value. Mexican remittances originate
prevalently from the United States, which is where the widespread use of air-conditioning was
pioneered. From being a luxury system used originally in manufacturing to control indoor en-
vironmental quality, by 1980 it became a common feature in nearly all American households
(Biddle, 2008). Migrant household members acquire new behaviours and social practices that
can be transferred back to household members in their country of origin.

We use a revealed preference approach based on the change in electricity expenditure induced
by the availability of air-conditioning to determine a household’s gains in welfare related to the
purchase of this space cooling technology. We show that air-conditioning is an important means
of adapting to climate change. In 2018, ownership of air conditioners generated an increase in
consumer surplus of from $231 to $988 million (2012 PPP). These estimates should be taken with
care. At the household level, they are expected to provide a lower boundary because the adop-
tion of air-conditioning in Mexico is on an exponential growth trajectory. From a perspective

32This would be a more plausible assumption if in Mexico electricity generation mainly came from renewables –
which have zero marginal cost. However, according to the International Energy Agency, in 2019, fossil-fuel based
power plants provided 73% of Mexico’s electricity.

33We reduce the impact of this issue by exploiting average electricity costs rather than marginal electricity costs,
gathering cost data from an external source: https://www.inegi.org.mx/app/preciospromedio/?bs=18
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of social well-being, we account for the negative externalities associated with air-conditioning.
However, our estimates depend highly on the assigned social cost of carbon in Mexico, which is
uncertain.

Warming temperatures will have harmful health impacts for exposed populations, particularly
in emerging economies (Burgess et al., 2017), and air-conditioning has been shown to remarkably
reduce mortality (Barreca et al., 2016). Yet, powering air-conditioning requires more electricity
consumption, and this could contribute to creating new forms of vulnerability related to energy
poverty. Socio-economic systems that depend on air-conditioning are more susceptible to col-
lapsing under the impact of extreme weather events, such as heat waves, which will likely take
place with ever-increasing frequency. Power outages that often occur during heat waves would
then leave those households that depend on air-conditioning once again vulnerable.

Future research is needed for understanding whether there exist valid alternatives in a context
such as Mexico, and what role remittances can play. Even when moving abroad, migrants re-
main in contact with their relatives living in their places of origin, and therefore they contribute
to re-orientating expenditure and modifying the preferences of those remaining in the sending
country by sharing new social norms or practices (Anghel et al., 2015). Whether the social value
of remittances can support adaptive capacity through network effects and through changes in
social preferences is difficult to quantify (Boccagni & Decimo, 2013), and this is left for future
studies. A better understanding of the extent to which the social value of remittances can con-
tribute to widespread adaptation practices can only be acquired by future research.
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Appendix

Additional Details on Data, Descriptives, and Analysis

Table A1: List of variables

Type Description
Recipient (Yes = 1) Dummy HH receives international remittances
Remittance Income (pesos) Continuous International remittance income
Air-conditioning (Yes = 1) Dummy HH has at least one AC
Mean CDD Continuous Long-term Average Cooling degree days
Labour Income (pesos) Continuous Labour income (wage)
Total Income (pesos) Continuous Total income
Urban (Yes = 1) Dummy HH lives in an urban area
Female Head (Yes = 1) Dummy HH head is female
Head Age Continuous HH head age
Head Education Categorical HH education level (4 categories)
Child (< 15, Yes = 1) Dummy HH has at least one member below 15 yrs
Elderly (> 65, Yes = 1) Dummy HH has at least one member above 65 yrs
Home Ownership (Yes = 1) Dummy HH owns its dwelling
Head Employed (Yes = 1) Dummy HH head is employed
Household Size Ordinal N◦members
Hist. Rem. 1992 x Avg. US Wage Continuous Instrument

Table A2: T-tests: Air-conditioning group

No AC AC Difference
Recipient (Yes = 1) 0.061 0.035 0.027***
Remittance Income (pesos) 7,094.243 10,700.584 -3,606.341***
Long-term Mean CDD 298.827 782.799 -483.972***
Labour Income (pesos) 24,512.561 41,647.830 -17,135.269***
Total Income (pesos) 36,113.754 66,260.482 -30,146.728***
Urban (Yes = 1) 0.639 0.834 -0.195***
Female Head (Yes = 1) 0.262 0.258 0.005*
Head Age 49.237 48.457 0.780***
Head Education (None = 1) 0.297 0.121 0.176***
Head Education (Primary = 1) 0.224 0.158 0.065***
Head Education (Secondary = 1) 0.279 0.292 -0.013***
Head Education (Above = 1) 0.200 0.429 -0.228***
Child (< 15, Yes = 1) 0.555 0.519 0.036***
Elderly (> 65, Yes = 1) 0.226 0.192 0.034***
Home Ownership (Yes = 1) 0.709 0.771 -0.062***
Head Employed (Yes = 1) 0.781 0.771 0.010***
Household Size 3.771 3.540 0.232***

Observations 191,264 37,972
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Figure A1: Above: Graphical representation of the Consumer Surplus Gain (abcd) with per-
fectly elastic supply S. DN and DAC are the demand of electricity from households without and
with air-conditioning respectively. Below: Graphical representation of the Consumer Surplus
Gain (abcd) with negative externalities (bcfe) from additional CO2 emissions. MPC and MSC
respectively represent the marginal private cost (supply S) and the marginal social cost (supply
S′)
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Table A3: Descriptives: Coastal vs Inland Areas

Inland Coast
Mean SD Mean SD Difference

Recipient (Yes = 1) 0.062 0.242 0.051 0.220 0.009***
Remittance Income (pesos) 8029.213 10974.966 6825.022 11022.432 1204.190***
Air-conditioning (Yes = 1) 0.087 0.281 0.241 0.428 -0.154***
Mean CDD 150.612 264.583 618.670 416.692 -462.901***
Labour Income (pesos) 28,398.917 37,160.588 26,354.769 35,694.454 2,044.148***
Total Income (pesos) 42,411.103 130,782.922 39,868.195 54,992.844 2,542.908***
Urban (Yes = 1) 0.680 0.466 0.663 0.473 0.017***
Female Head (Yes = 1) 0.258 0.438 0.265 0.441 -0.006**
Head Age 49.396 15.869 48.834 15.934 0.562***
Head Education (None = 1) 0.242 0.428 0.293 0.455 -0.051***
Head Education (Primary = 1) 0.221 0.415 0.205 0.404 0.016***
Head Education (Secondary = 1) 0.305 0.460 0.258 0.438 0.046***
Head Education (Above = 1) 0.232 0.422 0.244 0.429 -0.012***
Child (< 15, Yes = 1) 0.552 0.497 0.545 0.498 0.007***
Elderly (> 65, Yes = 1) 0.224 0.417 0.217 0.410 0.006***
Home Ownership (Yes = 1) 0.711 0.453 0.727 0.446 -0.015*
Head Employed (Yes = 1) 0.771 0.420 0.663 0.473 -0.016***
Household Size 3.776 1.901 3.692 1.890 0.083***
Hist. Rem. 1992 0.179 0.109 0.184 0.093 -0.011***
Avg. US Wage 25.011 1.944 25.807 2.202 -0.796***
Hist. Rem. 1992 x Avg. US Wage 4.334 2.769 4.774 2.470 -0.441***

Observations 111,714 117,522

Notes: Mean and SD for Remittance Income are only for recipients HHs.
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Additional Results

Table A4: First Stage Estimation

OLS
(1)

Hist. Rem. 1992 x Avg Wage US 0.0496***
(0.00732)

Mean CDD 2.39e-05
(4.34e-05)

Labour Income (in 1000s) -0.0019***
(0.0003)

Urban (Yes = 1) -0.327***
(0.0242)

Female Head (Yes = 1) 0.595***
(0.0284)

Head Age -0.0058***
(0.0008)

Head Edu. (Primary = 1) -0.0481**
(0.0200)

Head Edu. (Secondary = 1) 0.00857
(0.0212)

Head Edu. (Above = 1) 0.0215
(0.0248)

Child (< 15, Yes = 1) 0.116***
(0.0206)

Elderly (> 65, Yes = 1) -0.0898***
(0.0234)

Home Ownership (Yes = 1) 0.0344*
(0.0187)

Head Employed (Yes = 1) -0.656***
(0.0341)

Household Size 0.0174***
(0.0058)

State FE Yes
Time FE Yes
Observations 222,777
R-sq 0.031
F-test 45.869

Notes: Clustered std. errors at district-year level in parenthe-
ses;
* p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A5: Impact of Remittance Income on Air-conditioning Adoption

LPM LPM LPM 2SLS
(1) (2) (3) (4)

Remittance Income (in 1000s) -0.0010** 0.0012*** 0.0024*** 0.0801**
(0.0004) (0.0002) (0.0002) (0.0337)

Mean CDD 0.0003*** 0.0003***
(3.97e-05) (3.91e-05)

Labour Income (in 1000s) 0.0010*** 0.0011***
(8.60e-05) (0.0001)

Urban (Yes = 1) 0.0627*** 0.0936***
(0.0057) (0.0146)

Female Head (Yes = 1) -0.0010 -0.0470**
(0.0016) (0.0199)

Head Age 0.0008*** 0.0013***
(9.45e-05) (0.0002)

Head Edu. (Primary = 1) 0.0375*** 0.0406***
(0.0024) (0.0034)

Head Edu. (Secondary = 1) 0.0713*** 0.0708***
(0.0040) (0.0043)

Head Edu. (Above = 1) 0.1630*** 0.1610***
(0.0080) (0.0081)

Child (< 15, Yes = 1) 0.0094*** 0.0002
(0.0020) (0.0047)

Elderly (> 65, Yes = 1) -0.00297 0.00316
(0.0024) (0.0040)

Home Ownership (Yes = 1) 0.0421*** 0.0397***
(0.0028) (0.0037)

Head Employed (Yes = 1) -0.0142*** 0.0371*
(0.0024) (0.0219)

Household Size -0.0034*** -0.0048***
(0.0007) (0.0010)

State FE No Yes Yes Yes
Time FE No Yes Yes Yes
Effective F statistic 45.869
Montiel-Pflueger TSLS (τ = 5%) 37.418
Anderson-Rubin CI [0.017, 0.153]
Observations 229,236 229,236 229,236 222,777

Notes: (1), (2), (3) and (4) clustered std. errors at district-year level in parentheses; * p < 0.10, ** p < 0.05, ***
p < 0.01.
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Table A6: Heterogeneous Impact of Remittance Income on Air-conditioning Adoption: Inland
vs Coast

Inland Coast
(1) (2)

Remittance Income (in 1000s) -0.0309 0.191**
(0.0318) (0.0764)

Mean CDD 0.000406*** 0.000279***
(0.0000331) (0.0000519)

Labour Income (in 1000s) 0.000559*** 0.00162***
(0.0000909) (0.000274)

Urban (Yes = 1) 0.0441*** 0.111***
(0.0166) (0.0210)

Female Head (Yes = 1) 0.0250 -0.0817**
(0.0247) (0.0323)

Head Age -0.0000454 0.00193***
(0.000296) (0.000379)

Head Edu. (Primary = 1) 0.0202*** 0.0587***
(0.00302) (0.00791)

Head Edu. (Secondary = 1) 0.0414*** 0.0979***
(0.00418) (0.00811)

Head Edu. (Above = 1) 0.0943*** 0.215***
(0.00891) (0.0133)

Child (< 15, Yes = 1) 0.00653 -0.00705
(0.00495) (0.0102)

Elderly (> 65, Yes = 1) -0.00516 0.0150
(0.00385) (0.0101)

Home Ownership (Yes = 1) 0.0286*** 0.0456***
(0.00367) (0.00690)

Head Employed (Yes = 1) -0.0319 0.0867*
(0.0241) (0.0443)

Household Size -0.000990 -0.00536***
(0.00124) (0.00189)

State FE Yes Yes
Time FE Yes Yes
Effective F statistic 11.881 25.833
Montiel-Pflueger TSLS (τ = 5%) 37.418 37.418
Anderson-Rubin CI [-0.125, 0.031] [0.061, 0.381]
Observations 108,564 114,213

Notes: (1) and (2) clustered std. errors at district-year level in parentheses; * p < 0.10, **
p < 0.05, *** p < 0.01.
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Table A7: Heterogeneous Impact of Remittance Income on Air-conditioning Adoption: Income
Groups

Low-Income Med-Income High-Income
(1) (2) (3)

Remittance Income (in 1000s) 0.0681** 0.0467* 0.0569
(0.0290) (0.0271) (0.0398)

Mean CDD 0.000136*** 0.000343*** 0.000516***
(0.0000220) (0.0000457) (0.0000483)

Labour Income (in 1000s) 0.00144 0.00223 0.000642***
(0.00115) (0.00177) (0.000158)

Urban (Yes = 1) 0.0476*** 0.0784*** 0.116***
(0.00715) (0.0145) (0.0383)

Female Head (Yes = 1) -0.0124 -0.0264* -0.0554
(0.00795) (0.0159) (0.0338)

Head Age 0.000568*** 0.00102*** 0.00180***
(0.000157) (0.000387) (0.000635)

Head Edu. (Primary = 1) 0.0195*** 0.0400*** 0.0694***
(0.00251) (0.00629) (0.0173)

Head Edu. (Secondary = 1) 0.0324*** 0.0657*** 0.107***
(0.00333) (0.00794) (0.0162)

Head Edu. (Above = 1) 0.0727*** 0.121*** 0.205***
(0.00605) (0.0106) (0.0228)

Child (< 15, Yes = 1) -0.00642 0.00879* 0.00475
(0.00404) (0.00489) (0.0108)

Elderly (> 65, Yes = 1) 0.00684* 0.00695 0.00121
(0.00391) (0.00835) (0.00644)

Home Ownership (Yes = 1) 0.0122*** 0.0360*** 0.0492***
(0.00236) (0.00353) (0.00585)

Head Employed (Yes = 1) 0.0225*** 0.0103 0.0182
(0.00869) (0.0117) (0.0347)

Household Size 0.00224*** -0.00833*** -0.0120***
(0.000657) (0.000916) (0.00163)

State FE Yes Yes Yes
Time FE Yes Yes Yes
Effective F statistic 67.224 60.685 12.401
Montiel-Pflueger TSLS (τ = 5%) 37.418 37.418 37.418
Anderson-Rubin CI [0.014, 0.129] [-0.004, 0.106] [-0.020, 0.169]
Observations 74,625 74,090 74,062

Notes: (1), (2) and (3) clustered std. errors at district-year level in parentheses; * p < 0.10, ** p < 0.05, ***
p < 0.01. Income groups are based on total income.
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Table A8: Impact of Remittance Income on Fan Adoption

LPM 2SLS
(1) (2)

Remittance Income (in 1000s) 0.00292*** -0.0577**
(0.0004) (0.0249)

Mean CDD 0.0004*** 0.0004***
(0.0000) (0.0000)

Covariates Yes Yes
State FE Yes Yes
Time FE Yes Yes
Kleibergen-Papp rk Wald F statistic 45.866
Montiel-Pflueger TSLS (τ = 5%) 37.418
Anderson-Rubin CI [-0.112,-0.011]
Observations 229,234 222,775

Notes: (1) and (2) clustered std. errors at district-year level in parentheses; * p < 0.10, **
p < 0.05, *** p < 0.01. Each equation includes as covariates: labour income, dummy for
living in an urban area, household head’s education, household head’s employment status,
household head’s gender and age, household size, home ownership, and dummy variables
for the presence of elderly persons and minors in the household.

Table A9: Impact of Total Income on Air-conditioning
Adoption of Recipient and Non-recipient Households

Recipients Non-recipients
(1) (2)

Total Income (in 1000s) 0.00103*** 0.000208*
(0.0001) (0.0001)

State FE Yes Yes
Time FE Yes Yes
Observations 13,078 216,158

Notes: (1) and (2) clustered std. errors at district-year level in parentheses;
* p < 0.10, ** p < 0.05, *** p < 0.01. Coefficients are LPM estimations.
Total income is the sum of labour income and remittance income. Each equa-
tion includes as covariates: dummy for living in an urban area, household
head’s education, household head’s employment status, household head’s
gender and age, household size, home ownership, and dummy variables for
the presence of elderly persons and minors in the household.
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Table A10: Regression of Electricity Quantity on Air-
conditioning Adoption - Surplus Gain Computation for
Coastal Areas

OLS OLS OLS DMcF
(1) (2) (3) (4)

Panel A: Electricity Demand

Air-conditioning 1.894*** 4.563*** 4.159*** 2.691***
(0.159) (0.624) (0.411) (0.364)

Electricity Price -1.015*** -0.640*** -0.790*** -1.047***
(0.109) (0.039) (0.159) (0.154)

Elec. Price × AC -0.980*** -1.002*** -0.399***
(0.220) (0.135) (0.127)

Covariates No No Yes Yes
State FE No No Yes Yes
Selection Corr. No No No Yes
Observations 32,720 32,720 32,720 32,720

Panel B: Consumer Surplus Gain (in Billions $2012 PPP)

No CO2 Externality 0.757*** 0.548*** 0.350*** 0.621***
(0.094) (0.070) (0.123) (0.087)

SCC = 6.85 $/tCO2 0.716*** 0.513*** 0.325*** 0.589***
(0.093) (0.068) (0.123) (0.085)

SCC = 18.16 $/tCO2 0.648*** 0.454*** 0.283** 0.535***
(0.091) (0.065) (0.122) (0.083)

SCC = 69.11 $/tCO2 0.344*** 0.190*** 0.0942 0.294***
(0.088) (0.058) (0.117) (0.075)

Notes: (1), (2), (3) and (4) clustered std. errors at district-year level in paren-
theses; * p < 0.10, ** p < 0.05, *** p < 0.01. Equation (3) and (4) include as
covariates: quintiles for total income, CDDs, and household size, quartiles
for household head’s age, dummy for living in an urban area, household
head’s education, household head’s employment status, household head’s
gender, home ownership, and dummy variables for the presence of elderly
persons and minors in the household. SCC values for Mexico are taken from
Ricke et al. (2018). The number of households in the coastal states of Mexico
in 2018 is about 15 million. Consumer surplus gain SEs are computed using
Delta Method.
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Table A11: Regression of Electricity Quantity on Air-
conditioning Adoption - Surplus Gain Computation us-
ing Continuous Covariates

OLS OLS OLS DMcF
(1) (2) (3) (4)

Panel A: Electricity Demand

Air-conditioning 1.564*** 5.028*** 4.256*** 2.902***
(0.149) (0.598) (0.377) (0.327)

Electricity Price -0.860*** -0.523*** -0.845*** -1.071***
(0.078) (0.024) (0.163) (0.159)

Elec. Price × AC -1.226*** -1.099*** -0.553***
(0.200) (0.119) (0.116)

Covariates No No Yes Yes
State FE No No Yes Yes
Selection Corr. No No No Yes
Observations 65,832 65,832 65,832 65,832

Panel B: Consumer Surplus Gain (in Billions $2012 PPP)

No CO2 Externality 0.928*** 0.594*** 0.309* 1.121***
(0.102) (0.062) (0.181) (0.173)

SCC = 6.85 $/tCO2 0.850*** 0.543*** 0.275 1.066***
(0.099) (0.057) (0.180) (0.168)

SCC = 18.16 $/tCO2 0.720*** 0.458*** 0.220 0.975***
(0.097) (0.050) (0.178) (0.161)

SCC = 69.11 $/tCO2 0.134 0.074 -0.029 0.565***
(0.104) (0.058) (0.173) (0.133)

Notes: (1), (2), (3) and (4) clustered std. errors at district-year level in paren-
theses; * p < 0.10, ** p < 0.05, *** p < 0.01. Equation (3) and (4) include as co-
variates: total income, CDDs, dummy for living in an urban area, household
head’s education, household head’s employment status, household head’s
gender and age, household size, home ownership, and dummy variables for
the presence of elderly persons and minors in the household. The Social Cost
of Carbon (SCC) values for Mexico are taken from Ricke et al. (2018). The
number of households in Mexico in 2018 is about 35 million. Consumer sur-
plus gain SEs are computed using Delta Method.
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Adapting to Heat Extremes with Unequal Access to Cooling:
Evidence from India*

Filippo Pavanello† Ian Sue Wing‡

Abstract

As global temperatures rise, the unequal access to residential cooling technologies, es-
pecially air-conditioning, poses a critical challenge for heat adaptation in developing coun-
tries. To mitigate this disparity, affordable alternatives like evaporative coolers have been
proposed. However, the extent to which they provide protection against extreme heat is
uncertain. This paper investigates the inequality in heat adaptation, examining the effective-
ness of alternative cooling technologies in mitigating mortality impacts from extreme heat
in India for the period 2014-2019. Our empirical results highlight a critical trade-off in heat
adaptation. While we find that the expensive air-conditioning proves to be highly effective in
reducing temperature-related mortality, its ownership and use remains low, predominantly
limited to high-income cities. In contrast, many Indian households, including low-income
ones, purchase and use cheaper evaporative coolers, which we estimate offer reduced pro-
tection against heat stress. Our analysis then reveals that heat adaptation technologies have
collectively reduced heat-related deaths by 21%, generating an annual gross welfare gain of
$32 billion. Notably, the wide prevalence of evaporative coolers contributes to two-thirds
of these benefits. Yet, our counterfactual scenario demonstrates that air conditioners, if as
widespread as evaporative coolers, could have prevented 47% of the heat-related deaths. We
conclude showing that subsidising air-conditioning is a cost-effective way to reduce heat-
related mortality in India.
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1 Introduction

As global temperatures rise, the impact of extreme heat on human health and well-being be-
comes increasingly concerning. High temperatures have been indeed linked to a range of ad-
verse effects.1 A related literature highlights households’ attempts to shield themselves from
extreme heat exposures by using cooling technologies, particularly air conditioners (Davis and
Gertler, 2015; De Cian et al., 2019; Davis et al., 2021; Pavanello et al., 2021). Air-conditioning
provides thermal comfort by moderating indoor temperatures, which has the protective effect
of reducing adverse health and well-being effects associated with heat exposures (Barreca et al.,
2016; Park et al., 2020; Somanathan et al., 2021; Hua et al., 2022).

Yet, especially in developing countries, credit constraints limit the adoption of expensive
cooling appliances such as air-conditioning units, resulting in highly uneven access to cooling
and its associated benefits. To address this disparity, more affordable alternatives like evapora-
tive coolers have emerged, offering potential solutions to bridge the cooling gap. However, the
level of perfect substitution between the two technologies remain unclear. Evaporative coolers do
not reduce indoor temperatures to the same degree as air-conditioning units, and they cannot
maintain precise temperature control in most climates.2 The upshot is the potential for tech-
nological inequality, whereby poorer households with limited access to effective cooling tech-
nologies end up systematically more vulnerable to heat-related threats to health and well-being.
Understanding the consequences of this phenomenon is crucial to the design of interventions
that can effectively address the challenges of adapting to heat in ways that ensure equitable
access to the health-protective benefits of cooling.

This paper provides the first empirical evidence of the trade-off between the cost and health
protection of different technologies for adapting to extreme heat. To do so, we combine a rich
high-frequency longitudinal household-level survey data set with district-level mortality data
and high-resolution meteorological information in India for the period 2014-2019. The empirical
analysis is divided into four parts.

In the first part we employ micro fixed-effects regressions to examine the heterogeneous tech-
nological adaptation responses of Indian households to extreme heat. Our findings indicate that
the majority of households still lack the means to adapt through access to any form of cooling
technology. However, over our sample period we observe rapid increases in the penetration of
cooling technologies, driven mainly by economic development, including rising incomes and
reliable electricity supplies. Despite this overall trend, important differences exist across house-
holds. When we observe such adaptation, only high-income urban households purchase air-
conditioning, while low- and middle-income households living in the warmer regions primarily
rely on the more affordable coolers.

The second part shows how the choice of the cooling technology modulates households’
electricity consumption behaviour, particularly in response to ambient high temperature ex-
tremes. To do so, we test how plausibly exogenous shocks in daily temperature distribution
affect household monthly electricity consumption. Our quasi-experimental identification relies
on the exogenous nature of short-term weather variations within the same unit of observation.
Once we control for all time-invariant differences between units and all common differences be-
tween time periods, these variations are akin to random draws from the climate distribution,
making them unexpected (Hsiang, 2016). We so estimate that on average, relative to a day with
an average temperature of 17-20 °C, an additional ≥ 35 °C day is associated with an increase

1The non-market costs of extreme heat include impacts on mortality (Barreca et al., 2016; Burgess et al., 2017; Yu
et al., 2019; Carleton et al., 2022; Liao et al., 2023; Weinberger et al., 2020; Asseng et al., 2021), morbidity (Basu and
Samet, 2002; Sun et al., 2021), mental health (Burke et al., 2018; Hua et al., 2022; Mullins and White, 2019; Nori-Sarma
et al., 2022), mood (Baylis, 2020; Noelke et al., 2016), aggressive behaviour and crime (Ranson, 2014; Baysan et al.,
2019; Blakeslee et al., 2021), learning (Park et al., 2020) and labour productivity (Somanathan et al., 2021; Dasgupta
et al., 2021).

2Information on cooling appliances from the U.S. Department of Energy: https://www.energy.gov/

energysaver/home-cooling-systems
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in monthly electricity consumption of 0.53%. However, this response is highly heterogeneous
across income and installed technology. Households in the bottom decile of the income distri-
bution exhibit smaller responses (0.42%), while the responses of high-income households are
twice as large, and even greater if they live in urban areas. Similarly, households equipped with
an air-conditioning are almost three times more responsive to very hot days compared to those
relying on evaporative cooler. This is also because air conditioners are more energy intensive of
evaporative coolers. This marked difference persists even when focusing solely on high-income
families adopting different technologies. These findings remain robust across various specifica-
tion checks.

Our intensive margin results reinforce the patterns observed in technology adoption at the
extensive margin. Specifically, we find that households more inclined to own an air conditioner
also exhibit greater responsiveness to elevated temperatures. Moreover, even when they have
access to the the same technology, only richer households are really able to respond to extreme
heat. Notably, these results unveil the crucial role of the synergy of income with technological
choice for heat adaptation in emerging economies like India.

The third part quantifies the health protective benefits of air conditioners and coolers, charac-
terising their mediating effects on district-level annual mortality. We initially exploit presumably
quasi-random variation in temperature distributions to determine the impact of extreme heat on
mortality rates. We find that, relative to a day with average temperatures of 15-20 °C, an addi-
tional day at or exceeding 35 °C is associated with an increase in the annual mortality rate by 1%.
This effect is amplified during very humid days. Moreover, it is concentrated in rural areas and
districts with larger shares of low-income households. This suggests that poorer populations
face elevated risk of heat-related mortality. We then augment the regression model interacting
temperature with the annual penetration rates of both technologies. When we include adapta-
tion, we estimate that an air-conditioning unit is more than three times more effective than an
evaporative cooler at reducing temperature-related mortality. Focusing on days with tempera-
tures at or above 35 °C, we then compute how much of the uninteracted effect of these days is
reduced by the interaction terms with the technologies. In our preferred specification we find
that, on average, increasing air-conditioning prevalence by 1% reduces the mortality impact of
an additional at or above 35 °C day by 1.3%, whereas the same increase in cooler prevalence
yields only a 0.4% reduction. Consistent with the different modes of operation of the two tech-
nologies, we also find that in humid conditions air-conditioning is even more protective, while
coolers produce smaller thermal comfort.

Importantly, although quasi-random variation in air-conditioning and coolers ownership
rates is not available for our analysis, several robustness checks corroborate our results. Indeed,
we do not find any impact of the cooling appliances interacted with temperature below 30 °C,
suggesting that the adoption of these technologies does not relate with factors that determine
the overall mortality rate. Moreover, our findings about temperature, mortality and adaptation
are robust to a wide variety of specification tests, such as the inclusion of interactions between
temperature and income.

In the fourth part, we present estimates of lives saved through the adoption of these different
cooling technologies. Utilising a conservative estimate of the Value of Statistical Life (VSL) at
180 thousand dollars, we then asses the associated monetary benefits. Furthermore, we con-
duct a cost-benefit analysis by comparing the benefits stemming from saved lives with the costs
involved in a policy intervention aimed at subsidising air conditioners to achieve penetration
rates comparable to evaporative coolers. Over our sample period, we find that heat adaptation
has avoided 21% of the excess deaths due to temperature at or above 35 °C, generating annually
gross welfare gains equal to 32 billion dollars (2.1% of the annual GDP). Notably, the widespread
adoption of evaporative coolers contribute to two-third of these benefits, due to their presence
in more than five times as many households compared to air-conditioning systems. However,
our counterfactual analysis reveals that had the penetration rate of air conditioners equalled
that of evaporative coolers, air conditioners alone could have prevented a substantial 47%, cor-
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responding to a gross economic benefit of 73 billion dollars (4.9% of the annual GDP). Critically,
these benefits substantially outweigh the costs associated with subsidising air conditioners. This
result holds even when considering additional household electricity expenses and the social
cost of new CO2 emissions. These findings underscore the cost-effectiveness of subsidising air-
conditioning as a policy measure to mitigate heat-related mortality in the Indian context.

Related Literature.— Our results contribute to several strands of literature. We provide new ev-
idence about the adaptation opportunities that are available in response to climate change with
existing technologies (Barreca et al., 2016; Davis and Gertler, 2015; Auffhammer and Schlenker,
2014; Auffhammer and Mansur, 2014). We also contribute to the literature on inequality in heat
adaptation (Davis and Gertler, 2015; Davis et al., 2021; Pavanello et al., 2021; Mastrucci et al.,
2019). While income inequality is a key determinant of disparities in access to air-conditioning
(Davis and Gertler, 2015; Davis et al., 2021; Pavanello et al., 2021; Romitti et al., 2022), we shed
light on the additional technological layer of this issue. The important implication is that when
households attempt to adapt to heat exposures, income constraints can limit the scope of feasible
actions to those that yield only modest benefit, resulting in an unequal distribution of residual
mortality risk. Moreover, differently from what the literature have done so far, our data feature
allows to explore not only how the technology are distributed across households — the cross-
sectional variation —, but also what determines its adoption — the within-household variation.
This provides new insights about what drives the cooling demand in developing countries.

Our paper also estimates temperature-related response functions, which in developing coun-
tries are very limited due to data availability and reliability issues.

First, we shed light on the channels through which cooling adaptation drives residential
electricity consumption responses to temperature (Deschênes and Greenstone, 2011; Davis and
Gertler, 2015; Auffhammer, 2022). Our household-level estimates complement those of Colelli
et al. (2023) based on aggregate load data, and we exploit the richness of our micro data to high-
light heterogeneity in the relationship. Second, we contribute to the burgeoning literature on
temperature as a driver of mortality (Barreca et al., 2016; Carleton et al., 2022; Burgess et al.,
2017; Liao et al., 2023). While we are not the first to characterise the relationship between heat
and mortality in India — Burgess et al. (2017) do so using annual district-level mortality data
for 1957-2001 —, we provide updated responses for the period 2014-2019.3 Moreover, we also
introduce humidity as a key driver of mortality in India, showing that most of the deaths due
to heat occur during extreme hot and humid days. Finally, whereas Burgess et al. (2017) focuses
on bank expansion as a mediator of the impact of temperature on mortality, our paper aims at
isolating a different form of adaptation.

Our work also closely relates to the few studies that combine empirical analysis of both the
impacts of temperature extreme on mortality and the related-heat adaptation. On the one hand,
Deschênes and Greenstone (2011) and Yu et al. (2019) document the relationship between daily
temperatures and annual mortality rates and daily temperatures and annual residential energy
consumption in the United States and in China respectively. However, in their study the two
dose-responses are only studied separately. On the other hand, Barreca et al. (2016) combines
information on adaptation, particularly air-conditioning, daily temperatures, and state-level
monthly mortality rates in the United States. They find that the diffusion of residential air con-
ditioning has reduced hot day–related fatalities by 80% in the United States. We mainly differ
from this study as (i) we provide a more comprehensive analysis of heat adaptation responses,
exploring heterogeneities across margins, income and technologies; (ii) we compare the protec-
tive effects of two alternative cooling technologies, shedding light on the existing trade-offs in
the choice of the technology; and (iii) we emphasise how income levels profoundly shape the
distribution of the benefits arising from cooling technologies across the population. Notably,
Barreca et al. (2016) also proposes a measure of welfare gains coming from heat adaptation,

3Burgess et al. (2017) digitises mortality data from various issues of the publication Vital Statistics of India, which,
as of today, are only available from 2009.
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particularly through the adoption of air-conditioning.4 Our estimates of such welfare improve-
ments align closely with theirs, reinforcing the robustness and relevance of our findings.

Finally, our work has crucial policy implications. Our results unveils an overlooked form of
inequality in accessing cooling technologies. The technological inequality exacerbates the chal-
lenges faced by policymakers who strive to promote sustainable cooling for all, as it perpetuates
a situation where households with limited means must make trade-offs between affordability
and the efficacy of cooling technologies.

The remained of the paper is structured as follows. Section 2 provides a background about
extreme heat and adaptation in India. Section 3 presents an adaptation theoretical framework
that guides the empirical analysis. Section 4 describes the data. Empirical results are discussed
in sections 5 to 7. Section 8 discusses the welfare and policy implications of our findings. Last
section concludes our work.

2 Heat Extremes and Residential Cooling in India

Temperatures in India have risen by 0.7 °C between 1901 and 2018, thereby changing the climate
in India (Chakraborty et al., 2020). As a consequence, India is also facing unprecedented extreme
heat periods. Between March and May 2022 severe heatwaves were recorded in India, with
temperature reaching 51 °C. With future global warming, heatwaves like this will become even
more common and hotter. At the global mean temperature scenario of +2°C such heatwaves
would become an additional factor of 2-20 times more likely and 0.5-1.5°C hotter compared to
2022 Zachariah et al. (2022).

These extreme temperatures are already posing clear and present dangers, particularly in
rural areas (Burgess et al., 2017). Deaths caused due to heat in India increased by 55% between
2000-2004 and 2017-2021 (Romanello et al., 2022). For instance, the 2015 heatwave alone claimed
more than 2,500 Indian lives.5 Under a business-as-usual scenario with no mitigation effort
(RCP8.5), even with adaptation extreme heat would pose 60 deaths per 100,000 people per year,
a rate as high as the death rate from all infectious diseases in India today (Carleton et al., 2022).

In response to the threats posed by extreme heat, Indian households are increasingly turning
to cooling energy solutions. High summer temperatures in the north, and high humidity levels
in the west and south are driving this growth, along with rapid increase in disposable incomes.
The two primary cooling technologies utilised are evaporative coolers and air conditioning sys-
tems, each with distinct characteristics.

Evaporative coolers offer a more affordable option compared to air conditioning systems.6

They work passing outdoor air over water-saturated pads, and as the water in the pads evap-
orates, it reduces the air temperature. Operating on the basis of a power source and water
supply, evaporative coolers do not require complex installation procedures or extensive duct-
work. They so consume less electricity and have lower upfront costs. These advantages have
contributed to their popularity among Indian households, with an average penetration rate of
33% in 2019.7 Furthermore, the efforts to improve electricity accessibility in remote locations of
the country have further increased their demand, even in rural regions (28%) and among lower-
income households (15%). In terms of performance, coolers are effective in dry climates and can
provide localised cooling for specific areas or rooms. However, they cannot cool rooms as much
as air conditioners, and, critically, they perform badly in regions with high humidity.

4Barreca et al. (2016) identifies welfare improvement as the surplus gain by computing the area between the de-
mand curves of adopters and non-adopters of air-conditioning. Deschênes and Greenstone (2011) also quantifies a
heat-related welfare measure. However, in their work they determine the welfare loss (willingness-to-avoid) associ-
ated with a climate change-induced increase in temperatures.

5However, in India vital statistics are known to be under-reported (Romanello et al., 2022).
6The average purchasing costs of an air conditioner and evaporative cooler are 35 and 6 thousand rupees respec-

tively.
7Authors’ own calculation.
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On the other hand, air conditioning systems entail higher upfront costs and consume more
electricity than coolers. They work through the application of a refrigerant gas and a compressor
that cools the surrounding air down in an air-recirculation process. Moreover, they require pro-
fessional installation, involving indoor and outdoor units, refrigerant piping, electrical connec-
tions, and potentially ductwork. In turn, they can reduce air temperature more than evaporative
coolers. They offer comprehensive and consistent cooling throughout the day. They enable pre-
cise temperature control, dehumidify the air, and are capable of cooling larger spaces. Moreover,
they are suitable for various climates, encompassing both dry and humid regions.

The air-conditioning market has also been growing fast at the rate of 15-20% annually (AEEE,
2015), with imports value of air conditioners almost doubled in the last decade (Figure A1). Ac-
cording to IEA, by 2050, around 2/3 of the world’s households could have an air conditioner,
and India, together with China and Indonesia, will account for half of the total number (IEA,
2018). However, as of today at the household level air-conditioning still remains a luxury good.
Its penetration rate is low, reaching on average 6% in the country in 2019. Moreover, access to
air-conditioning is highly uneven, indicating that households’ ability to adapt to climate change
through the use of air-conditioning energy is linked to their socio-economic conditions. Only
richer people are indeed currently able to install the good, whereas for poorer people the access
to the technology remains prohibitive (Davis et al., 2021). Moreover, future increasing income
and temperatures are not expected to alone fill the cooling gaps, leaving 29–58 million house-
holds unable to properly adapt to extreme heat through air conditioners (Pavanello et al., 2021).

The Indian government has acknowledged this cooling emergency. It has also recognised
the importance of meeting this need effectively but in a sustainable manner, so that it does not
result in runaway climate change or an energy crisis. In 2019 the government has developed the
Indian Cooling Action Plan. This provides a 20-year perspective and outlines actions needed to
provide access to sustainable cooling and improve thermal comfort.8 India has so become the
first major country in the world to approve a national cooling policy. However, the plan has not
been implemented yet, and it is still not clear how the government concretely intends to pursue
its goals.

3 Theoretical Framework

In this section we provide a simple adaptation model, where in response to direct temperature-
induced utility damages households simultaneously choose how much cooling energy to con-
sume and own. The results from the maximisation problem are used to first discuss the source of
inequality in the cooling adaptation response, and then the potential trade-off between cooling
technologies with different investment costs and effectiveness. These model implications then
guide the subsequent empirical analysis.

We begin by assuming that a representative household solves the following utility maximi-
sation problem:

max
qS,qN ,k,x

{u = D[T, qS, k] · z[qN , x] | y ≥ p(qS + qN) + rk + x} (1)

where z is the net utility from electricity for other uses, qN and the composite (numeraire) good
x. Equation 1 also introduces a direct utility penalty D from exposure to temperatures, T, that
exceed the household’s optimum temperature, T∗:

D = 1 − δ

{
1

A[qS, k]
T − T∗

}
(2)

8The Plan seeks to (1) reduce cooling demand across sectors by 20% to 25% by 2037-38; (2) reduce refrigerant
demand by 25% to 30% by 2037-38; (3) reduce cooling energy requirements by 25% to 40% by 2037-38; (4) recognise
“cooling and related areas” as a thrust area of research under national Science and Technology Programme; (v)
training and certification of 100,000 servicing sector technicians by 2022-23 (Cell, 2019).
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In Equation 2 the coefficient δ is marginal disutility of higher-than-optimal temperature, and A
is a cooling adaptation function that describes the attenuating effects of space conditioning on
ambient temperature, T, such that A−1T ≥ T∗. We assume that A is a Leontieff function that
represents the household’s decision to adjust the quantities of electricity for cooling (qS, at price
p) or space conditioning capital (k, at rental rate r):

A = a−1 min [qS, k] (3)

The parameter a (with units of °C/kWh) represents the amount of electricity consumed for cool-
ing that is not effectively used in reducing the disutility from ambient temperature. Moreover,
in our framework, both qS and k are expressed in kWh as they respectively signify the actual
electricity consumption for cooling and the maximum capacity of cooling appliances a house-
hold can consume. Consequently, k reflects the upper limit of cooling capacity based on the
owned appliances. This has two implications. Firstly, when qS < k, the household consumes
less cooling than its cooling appliances’ maximum capacity allows. Conversely, when qS = k,
the household is operating its cooling appliances at their full capacity. Secondly, any changes
in k correspond to adjustments in either the amount or the capacity of the cooling appliances
owned by the household. The piecewise character of adaptation then implies that we can write
the indirect utility function in two cases corresponding to the household’s adaptation at the in-
tensive margin qS (i.e., adjusting space conditioning energy use conditional on fixed durable
stocks) and the intensive-extensive margin k (i.e., adjusting both cooling appliances’ capacity
and space conditioning energy use simultaneously).

To solve the model, for simplicity, we assume z is a quasi-linear sub-utility:

z = x +
v

v − 1
q1− 1

v
N (4)

which implies that ∂z
∂x = 1. This simplifies the last FOC, and it leads to the solution of qN :

qN = p(−v)

This trick then allows us to derive closed-form expressions for the responses of qS and k to
temperature at the intensive and extensive margins:

q∗S =

√√√√δaT
(

y − rk − 1
1−v p1−v

)
p(1 + δT∗)

∝
√

T
√

y (5)

We can use this expression to back out the maximum intensive-margin space-conditioning
energy demand threshold, q∗S = k. In the limit,

k =
−δaTr +

√
δaT

(
r2 + 4

(
y − 1

1−v p1−v
)

p(1 + δT∗)
)

2p(1 + δT∗)
∝
√

T
√

y (6)

above this level,

q∗S = k∗ =

√
δaT

(
y − 1

1−v p1−v
)

(p + r)(1 + δT∗)
∝
√

T
√

y (7)

Equations 5 to 7 show that adaptation responses saturate with temperature and income,
suggesting a concave response of cooling, and so reflecting diminishing returns to adaptation.
Moreover, the solutions also highlight the importance of temperature-income interactions for
determining the cooling adaptation response function.
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We can also substitute these quantities in the disutility (Equation 2). For instance, for the case
qS = k, we get the following optimal disutility chosen by the representative household:

D∗ = 1 − δ

√
a

√
p + r√

y − 1
1−v p1−v

√
(1 + δT∗)

δ

√
T − T∗

 (8)

Equation 8 suggests that the disutility from ambient temperature is decreasing in income y,
and it is increasing in the cost of cooling appliances r, electricity prices p and the share of cooling
electricity lost a.

Finally, if we assume that there exists two type of cooling technologies θ, evaporative cooler
(C) and air conditioners (AC), this leads to a conditional maximisation problem, where we can
re-write the optimal disutility as follows:

D∗
θ = 1 − δ

√
aθ

√
p + rθ√

y − 1
1−v p1−v

√
(1 + δT∗)

δ

√
T − T∗

 (9)

where we assume that the two technologies may only differ in effectiveness a and cost r.
Since we can safely take as given that evaporative cooler are cheaper than air conditioners (rC <
rAC), a household faces a technological trade-off to determine its optimal response to ambient
temperature only if evaporative cooler are less effective at bringing thermal comfort (aC > aAC).

In the empirical analysis, the focus is then threefold. First, we aim at identifying which type
of households are adapting and through which technology. We explore how the interaction
between temperature and income level shape the access and use to the two technologies. Second,
we estimate the marginal disutility to temperature, δ, for various level of temperature through
the mortality-temperature relationship. Finally, we determine whether the two technologies
differ at reducing thermal discomfort, aθ .

4 Data

This section presents the data utilised in our analysis.9 To address our research questions, we re-
quire data with several features. First, we need a household survey that provides information on
ownership of heat adaptation appliances and electricity consumption, as well as socio-economic
and demographic characteristics of households to also exploring the inequality dimension. Sec-
ond, we require data that allows us to determine the impact of temperature on mortality in
India, while also studying its heterogeneity effects across socioeconomic groups, and the miti-
gation effects of cooling adaptation. All the data sources must provide sufficiently disaggregated
geographical information that we can merge with meteorological data sets.

4.1 Household Data

Our primary data to study cooling adaptation is the Consumer Pyramids Household Survey
(CPHS) conducted by Center for Monitoring Indian Economy (CMIE) for the period 2014-2019.
CPHS provides a large and representative panel survey of Indian households, covering nearly
the whole of India. It employs stratified sampling to ensure representativeness at various level,
particularly national and regional level, and regions × urban status.

CPHS surveys each household every four month, and sampling is staggered so that a repre-
sentative 25% of all households are sampled each month. The survey provides information on
size, origin, and distribution of Indian households’ income and expenditures levels. Particularly,
we use data on electricity expenditure and income, which are reported at the monthly level. The

9Table A1 summarises which data set we use for each analysis.
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survey also collects information on households’ characteristics, housing, and owned assets at
each wave. This makes it possible to determine whether households have air conditioners and
evaporative coolers installed in their dwelling every four months.

We enrich the data set with information on electricity prices from the 2011 (67th round) Na-
tional Sample Survey (NSS). We use these data to compute electricity quantity of the CPHS
households, as CHPS only provides electricity expenditure data. NSS indeed provides the elec-
tricity prices paid by its interviewed households. We so aggregate these prices at the state ×
district × urban and state × district × rural levels, and we assign them to CHPS households.10

We finally actualise electricity prices to our survey period using a monthly wholesale price in-
dex for electricity from the Office of Economic Adviser - Department for Promotion of Industry
and Internal Trade.11

4.2 Mortality Data

To obtain evidence on the impact of temperature on mortality in India we collect district-level
information from the Indian Civil Registration System. Particularly, we digitise their public
reports on ”Vital Statistics of India” for the years 2014-2019. Each report provides tables with
the number of all-age all-causes deaths that occurred in each Indian district and state. It also
distinguishes between number of deaths occured in rural and urban areas.12

For the analysis, we are interested into district-level mortality rates rather than deaths counts.
To construct them, we get gridded-level population information from the Gridded Population of
the World (GPW), v4 (CIESIN, 2018). This provides estimates of population count for the years
2000, 2005, 2010, 2015, and 2020, consistent with national censuses and population registers. We
then aggregate cells at the district, and we exponentially interpolate population counts between
each five year-period in each district. Finally, we divide the number of deaths by population in
each district to get mortality rates. To get urban and rural populations, we multiply the total
populations by the state-level urbanisation rates obtained from 2011 Census.13

4.3 Meteorological Data

Household and mortality data are merged with population-weighted14 meteorological data us-
ing the most disaggregated geographical information available, the district.

We compute gridded daily average temperature, specific humidity and total precipitation
data from ECMWF’s ERA5 historical climate reanalysis data set with a resolution of 0.25 arc-
degrees (Hersbach et al., 2020). Relying on information from weather stations, satellites, and
sondes, this reanalysis data is less prone to station weather bias but might be biased via the
climate models that are used to generate a gridded product (Auffhammer et al., 2013). Fur-
thermore, this type of data set is increasingly being used in climate econometrics, especially in
developing countries, where the quality and quantity of weather data is limited.

We employ the daily information to construct several exposure measures at the monthly,
quarterly, and annual level, including temperature and humidity bins, and 24-degree Cooling
Degree Days (CDD).15

10When the information in NSS was not available in some state × district × urban/rural areas surveyed in CHPS,
we impute the average prices using state × urban and state × rural averages.

11The time series of the wholesale price index can be found at the following website: https://eaindustry.nic.
in/

12Each report also provides the distinction between male and female deaths. However, this information is not
always available for all the districts. For this reason, we prefer focusing on all-gender number of deaths.

13This means that we are not taking account changes over time of urbanisation rates, as well as differences across
districts.

14To weigh our climate data we again use gridded-level population information from the Gridded Population of
the World (GPW), v4 (CIESIN, 2018).

15Cooling Degree Days are defined as the sum of the degree-days above a certain threshold: CDD = ∑n
i=1(Ti − T).

As a threshold we impose 24 °C.
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As a robustness, we also collect gridded monthly average temperature and rainfall data at
0.5° resolution from the Climate Research Unit (CRU TS v4.05) of the University of East Anglia
(Harris et al., 2014).

4.4 Descriptive Statistics

Heat Adaptation.— Table 1 provides household-level representative descriptive statistics for the
whole India and by income quintile across our sample period. Our descriptive evidence reveals
that, on average, approximately one-third of Indian households own at least one evaporative
cooler, while air conditioners are relatively rare, with an ownership rate of 6%. However, income
levels significantly influence the ownership rates of both appliances, with wealthier households
showing higher rates of ownership.

Furthermore, the two technologies exhibit different behaviors across the income distribution.
Evaporative coolers demonstrate characteristics of a normal good, as they are purchased even by
some of the poorest households (11%), and the ownership rate steadily increases — by around 10
percentage points –— across income quintiles. In contrast, air-conditioning resembles a luxury
good, as the majority of households do not have air conditioners installed (1-3%), and only high-
income households can afford this technology, with an ownership rate of 21%.

Consistently with the distribution of the two technologies, wealthier households also con-
sume 20 to 60 kWh of electricity more per month compared to all other households.

Table 1: Descriptive Statistics at the Household Level - Income Quintiles

CHPS

Air Conditioner Evaporative Cooler Electricity Quantity Income Urban Power
(Dummy) (Dummy) (kWh) (Rupee) (Dummy) Availability

Total 0.06 0.33 104.85 16021.86 0.33 21.73
(0.23) (0.47) (99.22) (18849.37) (0.47) (3.78)

Income Quintile:

1st 0.01 0.11 62.53 6866.80 0.14 21.43
(0.07) (0.25) (36.71) (3209.29) (0.28) (3.25)

2nd 0.01 0.24 80.59 9876.61 0.23 21.09
(0.10) (0.39) (56.30) (5766.23) (0.38) (3.76)

3rd 0.02 0.34 97.10 12794.75 0.30 21.67
(0.13) (0.46) (80.48) (8734.34) (0.45) (3.74)

4th 0.03 0.42 117.92 17183.12 0.39 22.08
(0.19) (0.52) (109.06) (12989.78) (0.51) (3.68)

5th 0.21 0.54 166.12 33382.87 0.59 22.35
(0.49) (0.60) (168.85) (39263.90) (0.59) (3.80)

N°Households 210560

Notes: Means and standard deviations (in parentheses) across the survey period are reported. Air-conditioning, evaporative
cooler, urban and power availability are at the four-monthly level. All other variables are at the monthly level. Survey weights for
country-level representativeness are applied.

An additional factor that potentially contributes to the disparity in cooling adaptation is
whether households reside in urban or rural areas.16 Within our sample, the majority of house-
holds (67%) are situated in rural areas, and these tend to be predominantly lower-income house-

16CMIE uses 2011 Census to define urban and rural areas. Particularly, an area with a population of minimum
5000, population density of at least 400 persons per square km, and at least 75% of the male working population in
non-agricultural occupations is defined as urban. The remaining is defined as rural.
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holds (70% to 86%). Conversely, wealthier households are more commonly found in urban set-
tings (59%). This discrepancy partly explains the higher prevalence of expensive air conditioners
among urban households, particularly in the fifth quintile (31%). In contrast, the more afford-
able evaporative coolers are consistently purchased, even in rural areas, and both urban and
rural families exhibit similar adoption curves along the income distribution (Table A2).

However, it is not solely income that can account for the patterns in cooling adaptation. Sig-
nificant differences in the quality of electricity supply, as measured by the hours of electric con-
nection availability per day, may emerge as an additional key determinant.17 The operation
of an air conditioner indeed necessitates a reliable grid connection. Since rural areas experience
more frequent disconnections (-1.5 hours) compared to urban regions, this disparity may further
explain the predominance of air conditioner purchases in cities. Contrary, evaporative coolers
do not have the same stringent requirements, and they can operate effectively even with less
reliable electricity grid.

Looking at the changes over time, Table A3 indicates the ownership of evaporative cooler
rapidly increases over our sample period, moving from 24% to 44%. The spread of air condi-
tioners also grows from 4% to 7%. However, on the one hand, almost only urban households
purchased air conditioners across the period — from 11% to 17%. On the other hand, the growth
in coolers’ adoption is almost equally driven by rural (+22 percentage points) and urban areas
(+17 percentage points). Increasing income and quality of electricity supply may explain the in-
creasing demand for both appliances, as there are no significant changes in the number of urban
and rural households.

Going more in detail on these trends, Figure A2 divide households in nine categories based
on long-term temperature conditions — expressed using CDD — and sample average income.
Two key findings emerge. First, the prevalence of evaporative coolers appears to be climate
sensitive. That is, they are mainly present in areas where temperatures are warmer on average.
Contrary, the distribution of air conditioner seems to be independent from the climatic condi-
tions. Second, the graph underlines the differences in the technological choice across income
levels. The spread of evaporative coolers is more rapid for low- and middle-income families in
warmer areas, whereas in percentage points the demand for air conditioners grows similarly to
the demand for coolers in high-income families.

Figure A3 then separates households based on their residence at the state level. The trends
across states accentuate the disparities in technological choices along the income distribution.
On one hand, high-income urban settings such as Chandigarh and Delhi demonstrate almost
full saturation of evaporative cooler ownership at the beginning of the sample period, while the
adoption of air conditioners quickly increases over the years, with an upsurge of more than 25
percentage points.18 Contrary, the other part of India is still in the process of catching up to
the saturation of demand for evaporative coolers. This highlights the variations in cooling tech-
nology preferences and access to higher-income households and urban areas compared to other
regions and income groups.

Mortality and Extreme Weather.— Moving to Table 2, this summarises the mortality rates,
extreme temperature variables, and precipitation, for the whole India, across India Zonal Coun-
cils, and at the beginning and end of our sample period. The average annual mortality rates
across the period 2014-2019 is 5.20 per 1,000 population, and this rate reaches 5.74 in 2019. The
highest mortality rates are registered in urban areas, and in the Central, Southern and Western
regions.

17In the CHPS data electricity access is about 100%, even in rural areas. This is because CMIE defines access to
electricity as given by any means (excluding battery). That is, it does not question whether the connection to the grid
is legal or illegal.

18To put it into perspective, in the United States between 1960 and 1970 air-conditioning saturation increased by
about 25% (Barreca et al., 2016). In Delhi ownership of air conditioners has increased by 30 percentage points in an
even shorter period.
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Extreme warm days (≥ 35) are on average infrequent (about 5 days per year) in the country.
However, they are significantly more frequent in Northern and Eastern areas, where we may
expect the identification of this effect. Critically, days with average daily temperature between 30
°C and 35 °C are instead very frequent (about 52 days per year), and more widespread across the
whole country. Interestingly, Southern regions, which are characterised by a tropical weather,
are significantly much less exposed to warm days, but they more exposed to more days with
high level of humidity.
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Table 2: Descriptive Statistics at the District Level - Mortality Rates and Extreme Weather

All-Age Mortality Rates ERA5

Total Rural Urban T(< 10 °C) T(30 °C - 35 °C) T(≥ 35 °C) Precipitation H(0 - 3 g/kg) H(≥ 18 g/kg)
(per 1,000s) (per 1,000s) (per 1,000s) (N° Days) (N° Days) (N° Days) (m) (N° Days) (N° Days)

Total 5.20 3.96 6.83 3.10 55.48 6.99 1.21 1.47 93.89
(5.48) (3.13) (10.69) (21.94) (30.66) (18.46) (0.60) (14.72) (61.42)

Region:

Northern 6.05 4.75 7.19. 28.06 59.50 9.02 0.92 9.13 63.01
(4.83) (3.37) (8.13) (60.75) (35.35) (17.11) (0.48) (39.81) (34.51)

Central 7.17 5.70 8.02 0.00 48.09 1.78 1.21 0.00 66.05
(5.51) (3.79) (10.40) (0.00) (36.08) (4.65) (0.59) (0.00) (72.24)

Eastern 3.92 3.07 5.19 1.75 65.98 10.80 1.08 0.78 93.44
(2.26) (2.73) (5.23) (11.07) (14.79) (8.74) (0.28) (10.90) (33.64)

North Eastern 3.93 3.12 5.33 0.00 49.52 1.96 1.48 0.00 148.54
(3.34) (2.24) (8.85) (0.00) (18.16) (3.77) (0.34) (0.00) (34.27)

Western 6.57 4.10 8.07 0.00 57.76 11.18 1.04 0.00 68.60
(8.99) (2.73) (15.55) (0.00) (29.65) (39.97) (0.45) (0.00) (54.45)

Southern 3.82 3.59 9.59 2.41 2.23 0.00 2.76 0.70 115.61
(5.72) (2.12) (16.58) (31.71) (6.63) (0.00) (1.35) (16.63) (113.72)

Year:

2014 5.03 3.82 6.59 3.26 59.22 6.53 1.11 1.57 81.18
(5.72) (3.09) (10.86) (23.48) (30.24) (18.12) (0.60) (15.80) (58.42)

2019 5.74 4.55 763.12 4.53 59.51 9.53 1.39 1.47 97.51
(5.38) (3.02) (10.98) (22.34) (28.95) (19.36) (0.59) (14.17) (60.65)

N°Districts 657

Notes: Means and standard deviations (in parentheses) across the analysed period are reported. Population weights for country-level representativeness are applied.
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5 Extensive Margin: The Choice of the Cooling Technology

In this section we infer the interplay between temperature and income in the choice of the heat
adaptation technology across Indian households. Moreover, we show the role of the other socio-
economic and demographic drivers in determining the choice of the technology.

5.1 Empirical Framework

To study the household’s investment decision on cooling technologies, we separately estimate
the following linear probability model (LPM) for each appliance:

Caiw = γ0 + β1CDDd(i)w + β2 Iiw + β3(CDDd(i)w × Iiw) + β4g(Pd(i)w)+

+ λXiw + µk + δw + θs(i)w + θ2
s(i)w

2 + ζiw
(10)

where the outcome variable is a dummy 0 or 1 indicating whether a household i owns at least
an unit of the appliance a — either cooler or air conditioner — in wave w; g(Pd(i)w) is a second-
degree polynomial of cumulative precipitations experienced by household i in district d during
the quarter w; and ζiw is the error term, which we cluster at the district level.

To measure temperature, we use Cooling Degree Days (CDD) as they are standard measure-
ments designed to reflect the demand for cooling. However, the crucial point is that we do not
use contemporaneous CDD. Contrary, CDDd(i)w is a 10-year moving average of quarterly CDD
in district d in the decade before the surveyed quarter w,19 capturing households’ medium-term
expectations of climatic conditions where they live. The extensive margin — the investment de-
cision — is a slow adjustment process. This is because cooling appliances have long lifetimes,
and so households make the investment based on expectations about climatic conditions, i.e.,
average weather over long periods (Auffhammer and Mansur, 2014; Cohen et al., 2017).20

Equation 10 also includes the natural algorithm of household i’s income across each wave
period, Iiw, and an interaction with the moving average of CDD to determine how income levels
shape the response of households to changes in climatic conditions.

The specification in Equation 10 also includes unrestricted wave fixed-effects, δw. These fixed
effects control for time-varying differences in the dependent variable that are common across
Indian regions. Since shocks and unobserved time-varying factors may vary across states in
India, we also include state-level quadratic trends, θs(i)w and θs(i)w2.

Furthermore, we control for a vector of time-varying and -invariant households’ characteris-
tics, for Xiw. This includes a dummy variable indicating whether a household i lives in an urban
area, household head’s education, age, and gender, roof material of the dwelling, and leave-one-
out averages21 of the power availability22 (in hours) and ownership of generators in the area23

where a household i resides.
Importantly, our specification also carefully accounts for unobserved time-invariant hetero-

geneity µk. Unlike existing works, the unique feature of our data set allow us to investigate the
influence of climatic conditions not only on the prevalence of cooling appliances — the cross-
sectional variation across households, or the stock of appliances —, but also their actual adop-
tion — the within-household variation, or the flows of appliances. Based on how we model the
time-invariant unobserved heterogeneity, we can estimate the coefficients for each one of the
two dimensions.

19That is, for the quarter January-April 2014 cooling degree days are averaged for the same months across the
period 2003-2013

20Cohen et al. (2017) finds that in US households mostly rely on expectations about the past 7-8 years.
21We prefer to use local leave-one-out averages rather than household-level information to avoid simultaneity.
22Each household declares for how many hours per day they have electrical power in the dwelling. We use this

information as a proxy of power quality.
23We take the averages at the district-urban/rural-wave level.
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Critically, the choice about µk influences how we then interpret the resulting coefficients for
CDDd(i)w. When we model prevalence, we make use of state-level fixed effects, µs(i). We can
so document how the differences in expectations for the climate conditions between house-
holds has shaped the distribution of air-conditioning and evaporative cooler in India. Contrary,
when the focus is adoption, we use household fixed effects, µi, and we capture whether within-
household shocks in climatic expectations influences household’s investment decision.24

In this context, it is however worth noting at the outset the limitations of our data. The ideal
data set to shed light on the adoption decision would be a long panel of households spread
across different climate regimes that the econometrician was able to observe start out with no
cooling, and then progressively acquire various technologies in response to differential long-run
heat exposures. By contrast, our panel data set revisits households trimonthly over a compara-
tively short five-year period, at the beginning of which air conditioners and, particularly evap-
orative coolers, had already been acquired by a fraction of households. This makes difficult to
identify the causal effect of climatic conditions on adoption, as there is not sufficient variation
over time in the average weather conditions (Figure A2 and Figure A3).25

Given the rapid spread of the two heat technologies in our sample period, we then expect
economic development variables, such as income, to have a key role in the adoption of the two
technologies. However, for evaporative coolers we expect the effect of economic development
to be conditional on climatic conditions. That is, being the appliance already more spread in
warmer regions, economic development should drive adoption faster in these areas (Figure A2).
We provide a test for this hypothesis.

Symmetrically, the ideal data set to elucidate the determinants of the prevalence of cooling
appliances among Indian families is a large cross section of heterogeneous households spread
across different climates, or multiple such cross sections repeated over a long enough interval
that the econometrician can observe substantial locational differences in the spread of different
cooling technologies (Pavanello et al., 2021; Davis et al., 2021). Our data set well responds to
these requirements, and it allows to identify how climate conditions influence the distribution
of the cooling appliances across Indian households.

5.2 Results

Prevalence.— Table 3 presents the coefficients of CDD and income, when we model the preva-
lence of the cooling appliances.

Columns 1 and 2 show the results when the dependent variable does not distinguish the
type of cooling appliances that is owned. Columns 2 to 6 depict the same estimates for each
specific cooling appliance. Our estimates suggest that the distribution of evaporative cooler is
climate sensitive, and families living in warmer areas are more likely to own the appliance. We
find that a 100 degree-day increase in CDD is associated with an increase in the probability of
having an evaporative cooler by 1.45 percentage points. Column 5 also indicates that this effect
of CDD is increasing in income. This means that in warmer, and so more exposed to heat, areas
richer families are more likely to have coolers. Contrary, the prevalence of air conditioner does
not depend on climatic conditions, as the effect of CDD is small and not precisely estimated.
Moreover, the null effect of CDD is common across the income distribution.26

Our findings also highlight that household income has a large positive effect for both appli-
ances, with similar elasticities. This suggests the existence of inequality in the access to heat
adaptation: the likelihood of owning a cooling appliance is increasing in income. An increase

24With household fixed effects, all controls but power availability and ownership of generators are dropped from
the regression, as they do not vary over time.

25This is especially evident for air conditioners, where the variation we would capture through adoption would
mainly come from the cities of Delhi and Chandigarh (Figure A3).

26This is in line with anecdotal evidence from Avikal Somvanshi (Urban Lab, Centre for Science and Environment,
New Delhi) suggesting that in India air conditioners are mainly considered as a status good.
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by 10% in four-month income is associated with an increase in the probability that a household
owns an air conditioner by 0.59 percentage points, while in the probability of owning an air
cooler by 0.61 percentage points. Our estimates for air-conditioning are consistent with previ-
ous cross-sectional works on India (Davis et al., 2021; Pavanello et al., 2021), which suggest a
fundamental role of income.

Looking at the other coefficients (Table B1), we estimate statistical significant coefficients of
the linear term of precipitation only for coolers, highlighting that households living in more arid
regions are more likely to have an evaporative cooler. This is consistent with the technology
being more effective in dry conditions. Contrary, we do find large positive effect of urbanisation
only for air conditioners. Moving from a rural to an urban area is associated with an increase in
the probability of owning an air conditioner by 3.8 percentage points. This is in line with the de-
scriptive analysis suggesting that rural households are catching up urban households in terms
of ownership of coolers. In addition, we estimate that one-hour increase in the electricity power
available in the dwelling is associated with an increase in the probability of having evaporative
cooler by 1.3 percentage points, while the ownership of generators is a positive determinant of
the presence of the two appliances. This suggest that even when power is not reliable, having
generators may allow to run appliances in the dwelling. Our results also suggest a primary role
of demographic characteristics of the household. The saturation of both appliances is increas-
ing with age of the household head. Particularly for air conditioners, education also enhances
the probability of owning the technologies, whereas household size diminishes it. Findings on
gender instead suggest that the presence of a female family head does not affect the ownership
of the two appliances. Finally, estimates for roof materials — a proxy of housing quality —
highlight that both appliances are more likely to be found in more insulated houses.

Table 3: The Impact of Temperature and Income on the Prevalence of Cooling Appliances

Both Appliances Air Conditioner Evaporative Cooler

(1) (2) (3) (4) (5) (6)

CDD (100s) 0.0146*** -0.0373*** 0.0000375 -0.0101 0.0145*** -0.0423***
(0.002) (0.010) (0.001) (0.007) (0.003) (0.013)

Log(Income) 0.0863*** 0.0637*** 0.0592*** 0.0547*** 0.0611*** 0.0363**
(0.007) (0.010) (0.006) (0.006) (0.010) (0.015)

CDD × Log(Income) 0.00548*** 0.00107 0.00600***
(0.001) (0.001) (0.002)

Precipitations Controls Yes Yes Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes Yes Yes Yes

R2 0.51 0.51 0.21 0.21 0.51 0.51
Observations 2442730 2442730 2442730 2442730 2442730 2442730

Notes: The dependent variable is a dummy variable (0,1) indicating the ownership of the appliance. (1)-(6)
clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions
are conducted using survey weights. Results from the full regression are in Table B1.

Adoption.— The results for the adoption regressions are presented in Table 4. Our results are
consistent with our hypothesis that in our sample period the main driver of adoption is eco-
nomic development. We find that an average India household does not respond to shocks in
climatic expectations adopting any of the technology. Even if we estimate that the interaction
between income and climate is positive and significant for coolers, the magnitude is very small
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— for a high-income household a one-hundred increase in CDD increases the probability of
adopting air-conditioning by 0.01 percentage points. Contrary, income keep having a large ef-
fect, with a positive shock of 10% in income leading to an increase in the probability of adopting
air-conditioning and evaporative cooler by 0.13 and 0.35 percentage points respectively. More-
over, Table B2 shows that a positive shock in the power availability in the area where a household
lives positively affects the adoption of evaporative coolers, and the average share of households
with a generator remains a key driver for both appliances.

Table 4: The Impact of Temperature and Income on the Adoption of Cooling Appliances

Both Appliances Air Conditioner Evaporative Cooler

(1) (2) (3) (4) (5) (6)

CDD (100s) -0.000669 -0.00723** 0.000215 0.00151 -0.000767* -0.00943***
(0.000) (0.003) (0.000) (0.001) (0.000) (0.003)

Log(Income) 0.0413*** 0.0383*** 0.0134*** 0.0140*** 0.0348*** 0.0310***
(0.003) (0.003) (0.001) (0.002) (0.003) (0.003)

CDD × Log(Income) 0.000693** -0.000137 0.000914***
(0.000) (0.000) (0.000)

Precipitations Controls Yes Yes Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes Yes Yes
Household FE Yes Yes Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes Yes Yes Yes

R2 0.05 0.05 0.02 0.02 0.06 0.06
Observations 2432366 2432366 2432366 2432366 2432366 2432366

Notes: The dependent variable is a dummy variable (0,1) indicating the ownership of the appliance. (1)-(6)
clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are
conducted using survey weights. Results from the full regression are in Table B2.

Heterogeneity.— The findings from the prevalence regressions identify the drivers of the dis-
tribution of cooling appliances across Indian households. Exploring the heterogeneity in the
adoption response, we can reconcile the estimates from the prevalence and adoption regres-
sions, showing that in our sample period economic development, especially through incomes,
drives the rapid spread across household groups that are more likely to own the good.

First, Table B3 divides households based on whether they live in a rural or an urban setting.
We can evince that for air conditioner income elasticity for urban households is 7 times the same
elasticity for rural areas. Contrary, for evaporative coolers the income elasticities are similar.

Next, we investigate difference along the distribution of income. We categorise households
into three income groups: ”Poor,” ”Middle,” and ”Rich”. The results are presented in Table B4.
Critically, based on income level households invest their earnings in different appliances. On
the one hand, our estimates suggest only rich families invest household income installing an air
conditioner. The income coefficient for wealthiest families is 11 and 6 times greater than for low-
and middle-income households. On the other hand, middle-income families are two times more
likely than other households to invest their income in evaporative coolers.

Separating households based on both income distribution and urban/rural setting provides
additional insights (Table B5). For air conditioners, income elasticity tends to be increasing in
income and higher in urban areas. Contrary, income coefficients are more homogeneous across
income level for evaporative coolers, with middle-income and urban poor families emerging as
the main household groups that invest in the technology.

Finally, Table B6 presents the coefficients for adoption after dividing households in three cat-
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egories based on temperature levels. It is evincible that in warmer areas households are more
likely to invest their income for evaporative cooler, whereas for air conditioners income elastic-
ity is steady across climatic conditions.

Robustness Checks.— Our main estimates remain robust to various robustness tests. For preva-
lence we propose alternative fixed-effects specifications (Table B7-B9). For both prevalence and
adoption regressions we test clustering standard errors at state level (Table B10-Table B11); mod-
elling CDD non-linearly up to degree 3 polynomials (Table B12-B17); and calculating CDD at a
threshold of 18 °C rather than 24 °C (Table B18-B19). Finally, for prevalence we also employ dif-
ferent estimation methodologies, particularly logit (Table B20) and multinomial logit regressions
(Table B21).27 Our results and conclusions remain consistent.

To summarise, our results highlight the importance of considering both cross-sectional and
within-household dimensions to comprehend the influence of initial conditions on the adoption
of heat adaptation cooling appliances. The extensive margin estimates complement the descrip-
tive evidence presented earlier, revealing two distinct segments in Indian households’ cooling
technology choices. Evaporative coolers are prevalent in warmer regions, with low- and middle-
income families, and rural households increasingly catching up due to rising incomes and im-
proved electricity access. Conversely, air conditioners are predominantly concentrated among
high-income, highly educated, urban households, regardless of climatic conditions. Further-
more, the rapid income growth has accelerated adoption only among the wealthiest households,
exacerbating disparities in technology access. In the next section, we show how this different
distribution of the cooling appliances across households then modulates electricity consump-
tion responses to temperature shocks.

6 Intensive Margin: Electricity Consumption

This section explores the relationship between temperature, income and electricity use. Along
the intensive margin temperature impacts electricity quantity through an increasing use of a
fixed amount of cooling devices — such as air conditioners and evaporative coolers —, whereas
income shocks affect the use of all energy appliances. By then identifying heterogeneous effects
of temperature changes along income levels, climatic conditions, and across urban and rural
areas, we aim to highlight the unequal distribution of cooling energy use. The findings should
be confirmatory of the results obtained in the extensive margin section. That is, we expect to find
a higher responsiveness to temperature shocks in urban areas and for high-income households,
as it is where air-conditioning, the more energy-intensive appliance, is mostly spread.

6.1 Empirical Framework

To determine the impact of temperature and income on electricity consumption, we estimate the
following equation:

Qimy = α + ∑
j

θjT
j
d(i)my + g(Pd(i)my) + β Iimy + µi + δmy + ε imy (11)

where Qimy represents the natural logarithm of electricity quantity of household i in month
m and year y; g(Pd(i)my) is a second-degree polynomial of district d’s cumulative precipitation
in month m and year y; Iimy the natural logarithm of household income in month m and year y;
µi are household fixed-effect; δmy are month-year fixed, absorbing all unobserved time-varying
differences in electricity quantity that are common across households; ϵimy is the stochastic error
term. We assume the residuals are heteroskedastic and serially correlated within a district.

27In the multinomial logit the outcome variable is modelled as a categorical variable with three choices: ”No
Appliance”, ”Evaporative Cooler”, ”Air conditioner”.
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Our main interest relies in the relationship between electricity quantity and temperature. In
the baseline specification we model temperature using ten 3-degree temperature bins, T j

d(i)my.
Particularly, for each district d and month-year my, we count the number of days the mean daily
temperature falls into each bin. This non-parametric approach allows to (1) capture potential
non-linearities in the relationship electricity-temperature, and (2) is able to capture the response
at temperature cold and hot extremes. Each temperature bin’s coefficient measures the impact
of one more day with a mean temperature falling into the bin on the log of household daily
electricity, relative to the reference bin 17-20 °C. As we exploit the plausibly-random variation in
weather realisations of T j

d(i)my within households and month-year, we interpret these coefficients
as short-run effects (Dell et al., 2014; Hsiang, 2016).

To better understand the role of the extensive margin in shaping the dose-response func-
tion, we then separately estimate the relationship for different income levels, and across urban
and rural areas. We so take into account that the distribution of air-conditioning and air cooler
changes as we move along the income distribution and urbanisation levels. We expect richer
and urban households to be more responsive to temperature, as they are more likely to have,
and so use, the appliances.

6.2 Results

Main results.— Figure 1 presents the average effects of an additional day in each temperature
bin relative to the base range 17-20 °C. We find that with respect to a day between 17-20 °C, an
additional day between 32-35 °C increases electricity consumption by 0.19%, while an additional
day at or above 35 °C increases annual electricity consumption by 0.53%. Contrariwise, we
find evidence of lower use of electricity with cold temperatures. This is mainly because Indian
households do not use electric heaters, and so there is no U-shaped response function as in other
countries like US (Deschênes and Greenstone, 2011) and Mexico (Davis and Gertler, 2015).28 As
for income shocks,29 we find that a 1%-increase of monthly income induces a 0.08% increase in
monthly electricity demand (Table C1).

28Remaining in a developing context, Davis and Gertler (2015) estimates the impact of temperature bins on resi-
dential monthly electricity quantity in Mexico. Their coefficients are quite greater than ours in the warmer bins. Two
factors may explain these differences: 1) the average household in India is much poorer than the average household
in Mexico; 2) Mexico has a quite higher penetration of air-conditioning, particularly in warmer areas.

29Previous works (Davis et al., 2021; Pavanello et al., 2021) identify income as the main driver of residential elec-
tricity demand in India.
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Figure 1: Estimated Temperature-electricity Consumption Relationship

Notes: The figure plots the response function between log monthly electricity quantity and average
daily temperature bins (Equation 11). The response function is normalised with the 17-20°C category
set equal to zero so that each estimate corresponds to the estimated impact of an additional day in bin
j on the log monthly electricity quantity relative to the electricity quantity associated with a day on
which the temperature is between 17°C and 20°C. Full regression results are presented in Table C1. The
regression is weighted using survey weights. Standard errors are clustered at the district level.

Heterogeneity.— We test the heterogeneity of the temperature-electricity relationship. Our find-
ings suggest that the effect of temperature on electricity consumption is highly heterogeneous
across different types of households, and it mimics the distribution of the appliances.

First, we find that urban households are more than twice as responsive as rural households
for most temperature bins (Table C2). For instance, an additional day above 35 °C, relative to a
day between 17-20°C, increases electricity consumption of an urban household by 0.82%, while
by 0.38 for a rural household.

Second, dividing again households in three income categories, we find that temperature-
semi-elasticity is increasing in income (Table C3). This indicates that especially high-income
households are able to substantially increase their electricity demand to cope with hot tempera-
tures.

Going more in detail, we split households across both income levels and urban and rural
residence (Table C4). Critically, our estimates shows that, independently from income levels,
households living in cities tend to have higher semi-elasticity to warmer temperature bins, with
high income urban households emerging as the most responsive. Furthermore, Table C4 high-
lights two potential patterns. On the one hand, in rural areas, where only air coolers are mostly
spread, poor households responds more than middle income families, but less than the more
wealthy ones. A possible interpretation is that poor households have less efficient air coolers
— technology effect —, while richer households consume more because either they are less price
sensitive — rebound effect — or they have higher number of these appliances — scale effect. On
the other hand, in urban areas the effect of temperature monotonically increases as we move
from poor to rich families. Moreover, when we interpret the results in levels the differences
across income groups become even more striking. For instance, on average for an additional
day at or above 35 °C electricity consumption increases by 0.87 and 2.03 kWh for urban middle-
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and rich-income households respectively. This disparity is likely correlated with the different
technological choice.

Finally, we also provide a further test where we divide households based on the technology
they own. In line with the heterogeneity results, we find that the sample of families with air
conditioners consumes two to three times more electricity in response to warmer temperatures
than that one with evaporative coolers (Table C5). We find similar patterns even after restricting
these sub-samples only to high income households (Table C6). Critically, Table C6 also suggests
that poor and middle-income households having an air-conditioner are not much responsive to
the warmest temperature, while those with evaporative cooler respond only to the warmest bin.
This can be attributed to either (1) the low statistical power due to a much smaller sample or (2)
credit constraints in the utilisation of air-conditioning when it is very warm.

Robustness checks.— Our main results are robust to: using alternative time fixed-effects (Table
C7) and time-varying fixed-effects (Table C8) specifications; expressing electricity quantity in
levels (Table C9); exploiting CRU rather than ERA5 climate data (Table C10); clustering standard
errors at state level (Table C11); and specifying temperature 5-degree bins (Table C12 and Figure
C1). We also test a parametric response function by specifying temperature with up to degree
3 polynomials (Table C13). The results suggest that expressing temperature as linear can be a
good approximation. Finally, we employ alternative weather variables (Table C14) to test the
relationship, particularly Cooling Degree Days (CDD). The results remain consistent.

Collectively, the results presented in this section suggest the fundamental interrelation be-
tween income and temperature for intensive margin response. Furthermore, they underscore
the importance of considering urbanisation in shaping households’ electricity production fron-
tier. All of these results are confirmatory of what we find for the investment decision. That is,
technology modulates the responsiveness to temperature shocks, with households more likely
to own an air conditioner that consume more electricity during warmer days. Next, after ex-
ploring who is adapting and how, in the next section we identify the benefits of heat adaptation
and how they are distributed across the population. Critically, we test whether the disparities in
technological choice lead to consequences for health of Indian household.

7 Temperature, Mortality and the Benefit of Cooling

This section examines the impact of extreme temperatures on mortality, and how cooling tech-
nologies may mediate it. First, we analyse the relationship between annual mortality rates and
temperature distribution in India districts. Next, we demonstrate that the negative impact of ex-
treme temperatures disproportionately affects low-income and rural populations, where cooling
appliances are less available. Finally, we introduce cooling adaptation into our analysis, testing
whether the uptake of air conditioning and cooler can offset the negative impact of temperature,
and how the appliances differ in effectiveness.

7.1 Empirical Framework

We describe the regression model used to estimate the relationship between mortality and tem-
perature for the period 2014-2019. Similarly to Burgess et al. (2017), we specify our regression
equation as follows:

Mdt = α0 + ∑
j

θjTdtj + ∑
k

δkPdtk + ∑
h

βhHdth + µd + ρt + λr(d)t + λ2
r(d)t

2 + ϵdt (12)

where Mdt is the natural logarithm of all-age all-cause mortality rate in district d in year t.
The variable Tdtj denotes the number of days in district d and year t on which the daily mean
temperature fell in the jth of temperature bins. Particularly, for our baseline specification we
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use 5-degree temperature bins,30 and the omitted bin category is 15-20. We so estimate separate
coefficients δj for each of these temperature bin regressors. We again opt for estimating the re-
sponse function using temperature bins, since (1) as too-high and too-low temperatures can both
harm human health, it is likely that the temperature-mortality relationship is nonlinear; (2) the
nice property of temperature bins is that they are more able to capture response to temperature
extremes.

Because it is possible that temperature variation is correlated with precipitation variation,
the inclusion of precipitation is important. We then control for total precipitation Pdtk using a
categorical variable indicating whether a district d belongs to the k precipitation tercile in year t.

In our specification we also include humidity, which has been shown to have relevant effect
on mortality (Barreca, 2012). We divide daily specific humidity in three-grams-of-water-vapour
per kg bins, with the interval 9 g/kg to 12 g/kg of water vapour as omitted category. We also
specify further regressions where we enrich the covariates with interactions between tempera-
ture and humidity. We so aim to capture the impact of days with extreme hot and humid/arid
weather conditions.

Our specification also incorporate district fixed-effects µd, which absorb all unobserved region-
specific time invariant determinants of the outcomes, and year fixed-effects δt, which instead
absorb for time-varying differences in the dependent variable that are common across regions.
Finally, we control for climatic region-level quadratic time trends, λr(d)t and λ2

r(d), that take ac-
count shocks or time-varying factors that affect health may not be common across states.31

To estimate Equation 12 we employ Weighted Least Squares (WLS), where the weights are the
square root of total population in the district. The reasons are (1) the estimates of mortality rates
from large population districts are more precise, so this weighting corrects for heteroskedasticity
associated with these differences in precision; (2) the results reveal the impact on the average
person rather than on the average district, which we believe to be more meaningful.

Equation 12 estimates average population mortality-temperature responses. However, we
may expect the effect of temperature to vary based on the income distribution within each dis-
trict, generating so unequal exposure. We then test whether extreme temperatures unevenly
affects low-income populations. Specifically, we first estimate Equation 12 differentiating be-
tween urban and rural mortality rates.32 In addition, we estimate the heterogeneous effects of
temperature, differentiating between districts with a higher share of poor population. Specifi-
cally, for each district we define the share of individuals that are below the third income deciles
as poor, and we compute the share relative to the district population. Finally, we create two
subsamples of districts based on the median level of the share.

Finally, we introduce heat adaptation in the analysis. We first restrict the numbers of districts
to the CHPS sample for the years 2014-2019. We so match our mortality data with district-level
information on air-conditioning and evaporative cooler penetration shares, which we obtain by
aggregating the household data using the survey weights. We exploit this information to test
the hypothesis that cooling adaptation can serve as a critical mediator in mitigating the negative
effects of temperature extremes. We then specify our augmented equation such that we can
separate the protective effects of evaporative cooler and air conditioners:

Mdt = α0 + ∑
j

θjTdtj +
2

∑
l=1

ϕlCdtl +
2

∑
l=1

γl(T
≥35
dt × Cdtl)+

+ ∑
k

δkPdtk + ∑
h

βhHdth + µd + ρt + λr(d)t + λ2
r(d)t

2 + ϵdt

(13)

30Having annual mortality rates for few years we prefer to employ 5-degree rather 3-degree temperature bins to
avoid losing too much variability.

31Following Burgess et al. (2017) we use the information from India’s Meteorological Department, which divides
the country into five regions based on their climates.

32Burgess et al. (2017) suggests that most heat-related deaths in India occurred in rural areas.
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We hypothesise that if cooling appliances are indeed a mediator of the negative effects of
temperature extremes, then we would expect γl to be negative at the warmer temperature bins.
Heat adaptation Cdtl is a vector including air-conditioning and cooler shares at the district-year
level. In further regressions we also test for the role of humidity in determining the protective
effect of cooling appliances.

As in Barreca et al. (2016), a drawback of our analysis is that to identify the role of heat
adaptation we do not employ a quasi-experimental setting. The risk is then to capture through
the interaction coefficients correlation between the two appliances and other unobserved causes
of mortality. To rule out this possibility, we run a robustness check where we interact the two
shares with all the temperature bins. We so verify that the interactions are not significant for the
colder bins — that is, when the appliances are expected not to be used. Additionally, we provide
specifications where we include the natural logarithm of income per capita33 and its interactions
with the bins of temperature. In this way, we control that the interaction with air-conditioning
ownership does not simply capture places that are richer, and so less subject to heat-related
deaths because they have access to more private and public adaptation strategies.

7.2 Results

Main results.— Figure 2 presents the effects of an additional day in each temperature bin rela-
tive to the base range of 15-20°C. Our findings indicate that extreme warm temperatures have
significant clinical implications and may lead to potentially fatal outcomes. It is however worthy
to mention that, since we cannot distinguish the cause of death, the effect we identify includes
both the direct — such as heat strokes — and indirect impacts on individual health — that is,
through other illnesses, such as cardiovascular or renal diseases.

We observe that an additional day between 30 and 35 °C is associated with a 0.31% increase
in the annual mortality rate. However, while this effect is noteworthy and statistically signif-
icant, the majority of heat-induced deaths occur on days within the most extreme warm bin.
Comparing to a day in the range of 15-20 °C, an additional day at or above 35 °C is linked to a
1% increase in the annual mortality rate. This implies that, across our sample, about 6 deaths
per 100,000 population can be attributed to an additional day in the extreme temperature bin.34

Our results align to the estimates from Burgess et al. (2017), who find that an additional day
above 35 °C increases annual mortality rate by 0.74%. Similarly to their findings, our estimates
for the association between mortality and colder temperatures are imprecise. However, cold
temperatures are quite rare in India, as the country’s average temperature hovers around 25 °C.

33This is also obtained from the CHPS data using survey weights.
34This is obtained multiplying 0.00997 × T( ≥ 35) × 100, 000
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Figure 2: Estimated Temperature-mortality Relationship

Notes: The figure plots the response function between log annual mortality rate and average daily
temperature bins (Equation 12) for the period 2014-2019. The response function is normalised with
the 15-20°C category set equal to zero so that each estimate corresponds to the estimated impact of an
additional day in bin j on the log annual mortality rate relative to the mortality rate associated with a
day on which the temperature is between 15°C and 20°C. Full regression results are presented in Table
D1. All regressions are weighted by the square root of district population. Standard errors are clustered
at the district level.

Table D1 also provides the estimated coefficients for humidity and precipitation. We high-
light two key findings from the analysis.

First, Columns 2 to 4 show that precipitation does not directly affect mortality. Second, Col-
umn 3 indicate that humidity alone is not significantly associated with mortality in India. This
differs from the findings of Barreca (2012) for the United States, where humidity demonstrates
a U-shaped pattern of influence on mortality. However, Column 4 suggest that controlling for
humidity proves to be important in obtaining unbiased estimates of the impact of temperature.
When controlling for humidity, the estimates for the effects of temperature bins increase com-
pared to the specification in Columns 1 and 2.

In Table D2, we extend our analysis to include several types of interactions between temper-
ature and humidity. In Column 2, we introduce an interaction term between average annual
specific humidity and temperature bins. Similar to findings by Barreca (2012), our results sug-
gest that heat-related deaths are more prevalent during humid conditions. This is evident as
the non-interacted terms, particularly for temperatures ≥ 35 °C, become small and statistically
insignificant. Moving on to Columns 3 to 5, we incorporate interactions between the warmest
temperature bin and the two extreme humidity bins. These outcomes further validate the role of
humid conditions. Notably, we observe no statistically significant effect of the interaction term
with arid conditions (0 − 3 kg/g). In contrast, we estimate that the interaction with very humid
conditions (≥ 18 kg/g) significantly influences the impact of extreme heat. Specifically, under
these conditions, an additional day is associated with 6.43 deaths per 100,000 population.

All our main results are robust to various alternative specifications. This includes restricting
districts and years to the CHPS sample (Table D6-Table D7); imposing alternative fixed effects’
specifications (Table D8); controlling for income per capita (Table D9); clustering standard errors
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at the state level (Table D10); and altering the temperature bins’ interval to 3 degrees (Table D11).

Heterogeneity.— Our data also allows us to explore the hypothesis that weather vulnerability
is correlated with differences in income. This is because credit constraints limit the possibility of
individuals to respond to extreme temperature. We explore this relationship in two dimensions.

First, we estimate the temperature-mortality relationship function distinguishing between
urban and rural mortality rates. The separate regressions are reported in Table D3. Consistent
with the findings of Burgess et al. (2017), we find that majority of heat-related deaths occurs in
rural areas. An additional day at or above 35 °C is associated with a 0.9-1% increase in the annual
rural mortality rate, while with a 0.5-0.6% increase in annual urban mortality rate. Furthermore,
warm and humid days are associated with increased deaths only in rural areas.

Second, in Table D4 we examine the differential responses between districts with a high
and low share of individuals living in poverty. The results indicate that districts with a higher
poverty share are also more affected by temperature extremes. An additional day at or above
35 °C is associated with a 1.7% increase in the annual mortality rate — equivalent to 8.31 deaths
per 100,000 population. Conversely, areas where wealthier individuals reside exhibit a weaker
temperature-mortality relationship.

Lastly, in Table D5, we combine both dimensions of heterogeneity. Again, we find that the
most vulnerable individuals are those living in rural areas within districts with a higher share
of poverty. Even after accounting for the interaction between extreme heat and humidity, all the
results remain robust.

Heat Adaptation.— Table 5 presents the interaction coefficients from estimating Equation 13 to
examine the protective effect of heat adaptation. We highlight four key findings.

First, Columns 1-3 show the coefficients of our preferred specification, where we model the
interaction between the warmest temperature bin and the two technologies. We find strong
evidence that cooling adaptation is associated with a significant decrease in mortality due to hot
days. Notably, the protective effect of evaporative cooler is less precisely estimated, and once
we control for air-conditioning ownership rate it becomes non-significant. Moreover, the effect
of air-conditioning is more than three times as large as that of evaporative coolers. Specifically,
a 1 percentage points increase in residential air-conditioning and cooler ownership is associated
with a decrease in the mortality effect of a day at or above 35 °C by 0.021-0.027% and 0.006-
0.007%, respectively. This corresponds to approximately 1.3% and 0.4% of the mortality effect
of such hot days when no adaptation is taking place. The effect for air conditioners is in line
with the one found by Barreca et al. (2016). They find that a 10 percentage points increase in the
penetration rate of air-conditioning reduces by 10% the effect of a day above 32 °C (90 °F).

Second, we examine whether heat adaptation reduces the mortality effect of very humid days
(Columns 4-6). Consistent with the finding of no significant effect of humidity on mortality, we
do not observe any significant reduction in mortality from air conditioners and coolers in humid
conditions. However, the mitigation effect of air conditioner remains larger in absolute value,
and with the correct sign, with respect to the coefficient of cooler.

Third, in the last specification (Columns 7-9), we test whether the two technologies can pro-
tect households from extreme warm and humid days. We find that air conditioners are three
times more effective than air coolers. These results align with the functioning of the two tech-
nologies, as air coolers perform well in dry conditions but poorly in very humid conditions,
while air conditioners are effective in all weather conditions.

Lastly, we observe that the higher the penetration of these cooling technologies, the greater
the reduction in the impact of extreme hot days. For example, in Delhi, where air-conditioning
penetration increased by 25 percentage points between 2014 and 2019, the mortality effect of
days at or above 35 °C was reduced by a further 32%.35

35This is computed as follows: (0.25 × -0.021)/0.016
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Table 5: Protective Effect of Heat Adaptation

Temperature Humidity Temperature × Humidity

Air Conditioner Cooler Both Air Conditioner Cooler Both Air Conditioner Cooler Both
(1) (2) (3) (4) (5) (6) (7) (8) (9)

AC × T (≥ 35) -0.0270*** -0.0206**
(0.009) (0.009)

Cooler × T (≥ 35) -0.00769* -0.00629
(0.004) (0.005)

AC × H (≥ 18) -0.000662 -0.000685
(0.002) (0.002)

Cooler × H (≥ 18) 0.000507 0.000538
(0.001) (0.001)

AC × T (≥ 35) × H (≥ 18) -0.000422*** -0.000384***
(0.000) (0.000)

Cooler × T (≥ 35) × H (≥ 18) -0.0000512 -0.0000238
(0.000) (0.000)

District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Quadratic Trend × Region Yes Yes Yes Yes Yes Yes Yes Yes Yes

R2 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Observations 2753 2753 2753 2753 2753 2753 2753 2753 2753

Notes: The dependent variable is the natural logarithm of mortality rate. Estimated period is 2014-2019. Regressions also include all the temperature and humidity bins,
and precipitation terciles. Reference category for temperature is bin 15-20 ° C. Reference category for humidity is bin 9-12 g/kg. (1)-(9) clustered standard errors at district
level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are weighted by the square root of district population. Results from the full regression are in Table
D12.
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We test the robustness of our findings. First, we substitute the district-level ownership shares
with state-level penetration shares. This is because CHPS are not perfectly representative at
the district level, while they are at the state level (Table D13). The results remain consistent.
Second, in Table D14 we interact the two shares with all the temperature bins. The results are
more imprecisely estimated as we introduce many variables. However, sign and magnitude
of the interaction with the warmest bins remain consistent. In addition, we do not find that
coefficients at colder temperatures are statistically significant. Third, we introduce income and
its interactions with all temperature bins as further controls (Table D15). The coefficients remain
in the same order of magnitude. These robustness checks suggest that it is unlikely that our
estimates of the protective effect of heat adaptation are correlated with unobserved determinants
of mortality.

In summary, our findings demonstrate that high-temperature days lead to additional deaths
in India, particularly during extremely warm days. Furthermore, given the correlation between
income and access to cooling appliances, the benefits of heat adaptation are primarily experi-
enced by a few. We find that most heat-related deaths occur in rural and poorer regions. Finally,
despite the wider spread of evaporative coolers due to their lower cost, they are less effective in
protecting individuals from extremely warm conditions compared to air-conditioning.

8 Discussion

To illustrate the economic significance of our findings, we provide a back-to-the-envelope calcu-
lation of the gross welfare gains related to the number of prevented deaths from heat adaptation,
with particular attention to the differential performance of air conditioners and coolers. We also
discuss the policy implications of our results, analysing the cost of policies aiming at subsidising
heat adaptation technologies for households.

8.1 Benefits from Avoided Deaths

The estimates obtained in previous section allow to provide simple back-to-the-envelope calcu-
lations of the benefits from heat adaptation.

We begin by estimating the number of heat-induced deaths for in India. To do so, we use
the estimated coefficients from the specification specified in Equation 13 (Column 3, Table 5).36

For this exercise, we only consider the extreme bin ≥ 35 °C. Firstly, we calculate the number of
deaths in India across the years 2014-2019 under the assumption of no adaptation as follows:

DeathsNoAdapt = θ̂≥35 × T≥35 × TPOP × M

where both air conditioning and evaporative cooler ownership rates are set to zero, and we
use the average country population in the period (country population (TPOP), and the sample
averages of mortality rate (M) and number of days in the warmest bin (T≥35). Secondly, we
compute the number of deaths when adaptation takes place:

DeathsAdapt = θ̂≥35 × T≥35 × TPOP × M −
2

∑
l=1

γ̂l≥35 × T≥35 × Cl × TPOP × M

This provides the percentage of lives saved in each adaptation scenario. Finally, to estimate
the gross welfare gains related to the avoided deaths, we multiply by the estimated Indian Value
of a Statistical Life (VSL) from Madheswaran (2007), which is 0.18 million dollars (15 million
rupees).37

36We provide alternative results using the specification expressed in Column 9 of Table 5.
37Other estimates of the VSL for India have been used. For instance, Jack et al. (2022) uses 1 billion dollars. We

prefer opting for a more conservative estimate.
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Based on our estimates, during the period 2014-2019, approximately 0.865 million people in
India would have yearly died as a result of extreme heat if no adaptation technologies had been
available. However, thanks to the use of air conditioners and evaporative coolers, about 21% of
these excess deaths were avoided. This translates to a significant annual gross welfare gain of
32 billion dollars. This is equivalent to 2.1% of the average annual GDP in India in the period
2014-2019.

The largest contribution to the economic benefits comes from evaporative coolers (66%). This
is because they are five times more spread than air conditioners. Indeed, if air conditioning
had been as widely adopted as evaporative coolers, air conditioners alone would have yearly
avoided around 47% of heat-induced deaths, resulting in a larger annual gross welfare gain, 73
billion dollars. This corresponds to 4.9% of the average annual GDP. These estimates are similar
to the ones obtained from Barreca (2012) for the United States in 1980 — 85-185 billion dollars.38

Contrariwise, if evaporative coolers had been as prevalent as air conditioners, they would have
avoided only around 2% of heat-related deaths. Critically, this shows the large disparities in
terms of economic benefits that two technologies can provide.

There are however important drawbacks in our estimates. On the one hand, these estimates
represent an upper bound. Our mortality data do not allow to estimate age-specific temperature-
mortality responses. This means that we are assuming the same life expectancy for all individ-
uals who would have died without heat adaptation. On the other hand, we might also under-
estimate the true economic benefits coming from heat-related adaptation. To obtain a monetary
value, we use the VSL, which may not fully capture the value of preventing non-fatal risks for
health.

8.2 Policy Implications

Our results have several policy implications. First, our findings highlight the potential public
health benefits of using more effective cooling technologies in mitigating heat-related health
risks. Whereas evaporative coolers are cheaper and more sustainable, they appear as a stop-
gap solution to reduce the cooling gap. However, as heatwaves and extreme heat events are
becoming more frequent and severe due to climate change, not increasing the access to the most
effective technology may have significant health threats.

Second, we show that air conditioners are still not affordable most of the population in de-
veloping countries. In this sense, incentives, subsidies, or support programs are fundamental
make air conditioners more accessible to vulnerable populations. Even though these policies
may be expensive due to the price of air conditioners, the costs are likely to be outweighed by
the benefits from saved lives. To illustrate this, we can conduct a simple back-of-the-envelope
calculation. We start assuming that the average annualised upfront cost for an air conditioner
is about 3083 rupees, and the total number of households in India is about 302.4 million.39 Sub-
sidising 100% of the total cost to increase the penetration rate of air conditioner from 6% to the
same level of evaporative cooler (33%) would cost about 3 billion dollars. In addition to upfront
costs, we must consider the additional electricity expenses for each new household with air con-
ditioning following the policy. This can be estimated by multiplying the coefficient for the bin
≥ 35 °C in Column 1 of Table C6 by i) the average annual number of days in the extreme temper-
ature bin, ii) the average annual electricity consumption of a household with air conditioning,
iii) electricity prices, and iv) the number of households with air conditioning post-policy. This
calculation suggests an estimated additional electricity expenditure during days with tempera-
ture at or above 35 °C equal to 0.56 billion dollars. Finally, this increased electricity usage would

38Critically, the average level of Indian GDP in our sample period is quite near to the GDP of the United States in
1980.

39To obtain this estimate we use the equation from Hausman (1979): ( d
1+d )× (

ρ
1−(1+d)−q ). In the equation d is the

discount rate and is set equal to 0.05; q is the durability and is assumed equal to ten years; and ρ is the capital cost of
an air conditioner and is set equal to 25000 rupees.
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result in additional emissions, incurring a social cost for Indian society. We can estimate this
emission-related social cost by multiplying the previously calculated additional electricity con-
sumption (kWh) by i) Indian carbon intensity (0.28), ii) the mean estimate (185 $/tCO2) of the
Social Cost of Carbon from Rennert et al. (2022), and once again, iii) the number of the new
households with air-conditioning. This computation yields a social cost from emissions during
days with temperature at or above 35°C equal to 3.7 million dollars. Thus, in conclusion, the
estimated cost associated with subsidising air conditioners is notably smaller than the economic
benefit such a policy would generate.

9 Conclusions

Our study contributes to understanding the critical nexus of climate adaptation, household tech-
nology choices, and mortality outcomes in the context of rising temperatures and energy de-
mand in India.

We underline the pivotal role of economic development in shaping cooling technology adop-
tion and use. Rising incomes drive the adoption and use of heat mitigation tools. Yet, house-
holds’ adaptive capacity to extreme heat is still not uniform. Lower and middle-income house-
holds predominantly opt for evaporative coolers, whereas wealthier households invest in air
conditioning.

Critically, this technological disparity have important consequences for households’ health.
Our estimate indicate a clear difference in the protective effect of the two technologies against
extreme heat. Air conditioners prove to highly effective at reducing heat-related deaths, accen-
tuating the role of more advanced technologies. In contrast, evaporative coolers, while more
accessible to credit constrained households, exhibit a comparatively quite modest effect. As a
result, even when lower income households adapt, they remain exposed to the health effect of
extreme heat. This disparity in outcomes underscores the pressing need for equitable technology
dissemination, ensuring that economic benefits from lives saved are not prerogative of few.

Our work opens avenues for future research. Firstly, we provide an example of how two
competing adaptation technologies may contribute to inequality in exposure to climate change.
In this sense, new applications to other adaptation strategies, such as in the agriculture sector,
would be key to provide the right framework for policymakers to operate. Secondly, framing our
findings within a projection context could yield valuable insights. In India income is expected
to keep quickly growing in the next decades. This would relax credit constraints, allowing even
lower income families to have access to the benefits of air-conditioning. However, rising income
will not be able to solve cooling inequality alone (Pavanello et al., 2021; Davis et al., 2021). We can
so expect to still have part of the population exposed to extreme heat. Thirdly, our investigation
underscores the significance of the cost of cooling appliances. Exploring structural simulations
of policies aimed at alleviating inequality could be highly informative. Such policies might
encompass subsidies on capital costs and investments in technological advancements for these
appliances. Fourthly, extending our analysis to determine the external validity of our results is
an intriguing prospect. This entails investigating whether the observed technological inequality
in heat adaptation is a distinctive feature of India or if it characterises other countries as well.

Yet, it is important to acknowledge relevant limitations of our study. First, due to variations
in the timing of the questions, in the household data we cannot directly isolate the impact of air
conditioners and evaporative coolers on electricity demand. This would have allowed to esti-
mate appliance-specific electricity consumption to employ in the mortality analysis. Owning an
electric appliance is indeed not necessarily a synonym of utilising it. Additionally, our mortality
data lack the granularity to differentiate across age categories, which impacts our back-of-the-
envelope calculations for the economic benefits of heat adaptation. Moreover, the relatively
short time span and annual frequency of our data limit the variation we can exploit to identify
the effect of temperature and adaptation.
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Peubey, C., Radu, R., Schepers, D., et al. (2020). The ERA5 global reanalysis. Quarterly Journal
of the Royal Meteorological Society, 146(730):1999–2049.

Hsiang, S. (2016). Climate econometrics. Annual Review of Resource Economics, 8:43–75.

Hua, Y., Qiu, Y., and Tan, X. (2022). The effects of temperature on mental health: evidence from
China. Journal of Population Economics, pages 1–40.

IEA (2018). The Future of Cooling: Opportunities for energy-efficient air conditioning. IEA,
Paris https: // www. iea. org/ reports/ the-future-of-cooling .

Jack, B. K., Jayachandran, S., Kala, N., and Pande, R. (2022). Money (Not) to Burn: Payments
for Ecosystem Services to Reduce Crop Residue Burning. Technical report, National Bureau
of Economic Research.

115

https://doi.org/10.7927/H4JW8BX5
https://doi.org/10.7927/H4JW8BX5
https://www.iea.org/reports/the-future-of-cooling


Liao, H., Zhang, C., Burke, P. J., Li, R., and Wei, Y.-M. (2023). Extreme temperatures, mortality,
and adaptation: Evidence from the county level in China. Health Economics.

Madheswaran, S. (2007). Measuring the value of statistical life: estimating compensating wage
differentials among workers in India. Social indicators research, 84:83–96.

Mastrucci, A., Byers, E., Pachauri, S., and Rao, N. D. (2019). Improving the SDG energy poverty
targets: Residential cooling needs in the Global South. Energy and Buildings, 186:405–415.

Mullins, J. T. and White, C. (2019). Temperature and mental health: Evidence from the spectrum
of mental health outcomes. Journal of health economics, 68:102240.

Noelke, C., McGovern, M., Corsi, D. J., Jimenez, M. P., Stern, A., Wing, I. S., and Berkman, L.
(2016). Increasing ambient temperature reduces emotional well-being. Environmental research,
151:124–129.

Nori-Sarma, A., Sun, S., Sun, Y., Spangler, K. R., Oblath, R., Galea, S., Gradus, J. L., and Welle-
nius, G. A. (2022). Association between ambient heat and risk of emergency department visits
for mental health among US adults, 2010 to 2019. JAMA psychiatry, 79(4):341–349.

Park, R. J., Goodman, J., Hurwitz, M., and Smith, J. (2020). Heat and learning. American Economic
Journal: Economic Policy, 12(2):306–39.

Pavanello, F., De Cian, E., Davide, M., Mistry, M., Cruz, T., Bezerra, P., Jagu, D., Renner, S.,
Schaeffer, R., and Lucena, A. F. (2021). Air-conditioning and the adaptation cooling deficit in
emerging economies. Nature communications, 12(1):1–11.

Ranson, M. (2014). Crime, weather, and climate change. Journal of Environmental Economics and
Management, 67(3):274–302.

Rennert, K., Errickson, F., Prest, B. C., Rennels, L., Newell, R. G., Pizer, W., Kingdon, C., Wingen-
roth, J., Cooke, R., Parthum, B., et al. (2022). Comprehensive evidence implies a higher social
cost of CO2. Nature, 610(7933):687–692.

Romanello, M., Di Napoli, C., Drummond, P., Green, C., Kennard, H., Lampard, P., Scamman,
D., Arnell, N., Ayeb-Karlsson, S., Ford, L. B., et al. (2022). The 2022 report of the Lancet
Countdown on health and climate change: health at the mercy of fossil fuels. The Lancet,
400(10363):1619–1654.

Romitti, Y., Sue Wing, I., Spangler, K. R., and Wellenius, G. A. (2022). Inequality in the availabil-
ity of residential air conditioning across 115 US metropolitan areas. PNAS Nexus, 1(4):pgac210.

Somanathan, E., Somanathan, R., Sudarshan, A., and Tewari, M. (2021). The impact of tem-
perature on productivity and labor supply: Evidence from Indian manufacturing. Journal of
Political Economy, 129(6):1797–1827.

Sun, S., Weinberger, K. R., Nori-Sarma, A., Spangler, K. R., Sun, Y., Dominici, F., and Wellenius,
G. A. (2021). Ambient heat and risks of emergency department visits among adults in the
United States: time stratified case crossover study. bmj, 375.

Weinberger, K. R., Harris, D., Spangler, K. R., Zanobetti, A., and Wellenius, G. A. (2020). Esti-
mating the number of excess deaths attributable to heat in 297 United States counties. Envi-
ronmental Epidemiology, 4(3).

Yu, X., Lei, X., and Wang, M. (2019). Temperature effects on mortality and household adaptation:
Evidence from China. Journal of Environmental Economics and Management, 96:195–212.

Zachariah, M., Arulalan, T., AchutaRao, K., Saeed, F., Jha, R., Dhasmana, M., Mondal, A., Bonnet,
R., Vautard, R., and Philip, S. (2022). Climate Change made devastating early heat in India
and Pakistan 30 times more likely. World Weather Attribution.

116



Appendix

A. Data: Additional Statistics

Figure A1: Total Value (USD Millions) of Air-Conditioning Imports in India (1987-2021)

Notes: The black line represents the observed total value of air-conditioning imports in India. The red
line is a locally weighted regression to capture the trend.
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Figure A2: Air-conditioning and Evaporative Coolers Penetration Rates by Income Level and
Climatic Conditions (2014-2019)

Notes: Red and blue lines: the trends in household ownership rate of the two appliances across our
sample period. Grey line: 10-year moving average of quarterly CDD in the previous decade. ’Poor’,
’Middle’ and ’Rich’ respectively refer to households between the 1st and 2nd decile, between the 3rd
and 8th decile, and between the 9th and 10th decile. ’Cold’, ’Mild’ and ’Warm’ are terciles of a 30-year
average of annual CDD.
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Figure A3: Air-conditioning and Evaporative Coolers Penetration Rates by Indian State (2014-
2019)

Notes: Red and blue lines: the trends in household ownership rate of the two appliances across our
sample period. Grey line: 10-year moving average of quarterly CDD in the previous decade. Indian
states are sorted by increasing household income.
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Table A1: Data Sources for Each Analysis

Source Type Unit Frequency Years Variables

Extensive Margin
CHPS Panel Household Four-monthly 2014-2019 Air-conditioning,

Evaporative Cooler,
Household Income,

Household characteristics
ERA5 Panel Grid Daily 1981-2019 Cooling Degree Days,

Precipitation
CRU Panel Grid Daily 1981-2019 Temperature,

Precipitation

Intensive Margin
CHPS Panel Household Monthly 2014-2019 Electricity Consumption,

Household Income
NSS Cross-sectional Household Yearly 2011 Electricity Price
ERA5 Panel Grid Daily 1981-2019 Temperature,

Precipitation

Mortality
CRS Panel District Annual 2014-2019 Mortality Rates
CHPS Panel Household (Four-)Monthly 2014-2019 Household Income,

Air-conditioning,
Evaporative Cooler

ERA5 Panel Grid Daily 1981-2019 Temperature,
Precipitation,

Humidity

120



Table A2: Descriptive Statistics at the Household Level - Urban vs Rural Areas and Income Quintiles

Rural Urban

Total 1st 2nd 3rd 4th 5th Total 1st 2nd 3rd 4th 5th

CHPS:

Air-conditioning (Dummy) 0.02 0.01 0.01 0.01 0.02 0.07 0.13 0.01 0.02 0.03 0.06 0.31
(0.09) (0.05) (0.07) (0.08) (0.10) (0.20) (0.49) (0.15) (0.20) (0.22) (0.33) (0.65)

Evaporative Cooler (Dummy) 0.29 0.10 0.21 0.33 0.42 0.56 0.42 0.20 0.33 0.37 0.41 0.52
(0.31) (0.18) (0.27) (0.33) (0.36) (0.40) (0.70) (0.57) (0.69) (0.69) (0.70) (0.70)

Electricity Quantity (kWh) 89.28 60.49 76.82 91.78 109.88 138.06 137.09 75.35 93.00 109.63 130.61 85.94
(57.51) (27.62) (39.17) (53.45) (70.77) (104.21) (173.22) (81.73) (104.01) (132.65) (158.72) (205.30)

Income (Rupee) 13406.28 6822.23 9817.41 12702.13 16981.04 29796.09 21435.13 7146.55 10087.13 13013.10 17501.73 35917.25
(11867.20) (2615.27) (4541.54) (6863.16) (10294.84) (30454.94) (30286.02) (4403.73) (6267.55) (8648.15) (12414.11) ( 40270.70)

Power Availability 21.24 21.22 20.69 21.23 21.66 21.69 22.70 22.65 22.45 22.67 22.73 22.80
(2.84) (2.62) (2.86) (2.83) (2.79) (3.03) (4.01) (4.43) (4.58) (4.15) (3.93) (3.67)

N°Households 71232 139328

Notes: Means and standard deviations (in parentheses) across the survey period are reported. Air-conditioning, air cooler, and power availability are at the four-monthly level. All other variables
are at the monthly level. Weights for country-level representativeness are applied.
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Table A3: Descriptive Statistics at the Household Level across Years - Urban vs Rural Areas and Income Quintiles

Total Rural Urban

2014 2019 2014 2019 2014 2019

CHPS:

Air-conditioning (Dummy) 0.04 0.07 0.01 0.02 0.11 0.17
(0.21) (0.25) (0.07) (0.09) (0.46) (0.52)

Evaporative Cooler (Dummy) 0.24 0.44 0.19 0.41 0.34 0.51
(0.45) (0.49) (0.27) (0.35) (0.71) (0.70)

Electricity Quantity (kWh) 92.35 113.56 76.19 99.65 125.94 142.04
(95.47) (100.83) (50.14) (61.20) (176.61) (173.05)

Income (Rupee) 13251.31 20313.84 10949.97 17460.70 18035.89 26157.00
(16556.57) (23917.88) (10575.25) (16877.12) (24602.18) (33885.25)

Urban 0.34 0.33 - - - -
(0.49) (0.47) - - - -

Power Availability 20.61 22.67 19.88 22.35 22.03 23.31
(4.95) (2.45) (3.47) (1.92) (5.58) (2.50)

N° Households 210560

Notes: Means and standard deviations (in parentheses) across the survey period are reported. Air-conditioning, air cooler, and power
availability are at the four-monthly level. All other variables are at the monthly level. Weights for country-level representativeness are
applied.
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B.1 Extensive Margin: Main Results

Table B1: Impact of Temperature on the Prevalence of Cooling Appliances

Both Appliances Air Conditioner Evaporative Cooler
(1) (2) (3) (4) (5) (6)

CDD (100s) 0.0146*** -0.0373*** 0.0000375 -0.0101 0.0145*** -0.0423***
(0.002) (0.010) (0.001) (0.007) (0.003) (0.013)

Log(Income) 0.0863*** 0.0637*** 0.0592*** 0.0547*** 0.0611*** 0.0363**
(0.007) (0.010) (0.006) (0.006) (0.010) (0.015)

CDD × Log(Income) 0.00548*** 0.00107 0.00600***
(0.001) (0.001) (0.002)

Urban (Yes = 1) 0.0143 0.0149 0.0380*** 0.0381*** -0.00945 -0.00878
(0.014) (0.014) (0.006) (0.006) (0.016) (0.016)

Precipitation -0.0517*** -0.0488*** 0.000392 0.000959 -0.0556*** -0.0524***
(0.017) (0.017) (0.005) (0.005) (0.019) (0.019)

Precipitation2 0.00709 0.00654 0.000998 0.000891 0.00693 0.00633
(0.013) (0.013) (0.002) (0.002) (0.014) (0.014)

Power Availability 0.0107*** 0.0107*** -0.000245 -0.000245 0.0126*** 0.0126***
(0.003) (0.003) (0.001) (0.001) (0.003) (0.003)

Generators (%) 0.610*** 0.609*** 0.129*** 0.129*** 0.643*** 0.641***
(0.048) (0.047) (0.022) (0.022) (0.052) (0.051)

Head Age 0.00119*** 0.00119*** 0.00104*** 0.00104*** 0.000871*** 0.000879***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Head Gender (Female = 1) -0.00138 -0.00138 -0.00100 -0.00101 -0.00138 -0.00138
(0.003) (0.003) (0.002) (0.002) (0.003) (0.003)

Primary 0.0451*** 0.0452*** 0.0118*** 0.0118*** 0.0382*** 0.0383***
(0.004) (0.004) (0.002) (0.002) (0.004) (0.004)

Secondary 0.0846*** 0.0847*** 0.0321*** 0.0322*** 0.0721*** 0.0723***
(0.006) (0.006) (0.005) (0.005) (0.007) (0.007)

Post-secondary 0.144*** 0.143*** 0.152*** 0.152*** 0.0976*** 0.0974***
(0.011) (0.011) (0.013) (0.013) (0.008) (0.008)

2-5 Members 0.00722 0.00632 -0.0371*** -0.0372*** 0.0273** 0.0263**
(0.011) (0.011) (0.005) (0.005) (0.012) (0.012)

5-10 Members -0.0115 -0.0123 -0.0606*** -0.0608*** 0.0175 0.0165
(0.013) (0.012) (0.007) (0.007) (0.015) (0.015)

≥ 11 Members -0.0138 -0.0145 -0.0865*** -0.0867*** 0.0255 0.0248
(0.021) (0.020) (0.013) (0.013) (0.023) (0.023)

Plastics -0.0473*** -0.0480*** -0.00942** -0.00957** -0.0355** -0.0363**
(0.014) (0.014) (0.005) (0.005) (0.016) (0.016)

Wood and Grass -0.106*** -0.106*** 0.00127 0.00130 -0.102*** -0.102***
(0.014) (0.014) (0.003) (0.003) (0.014) (0.014)

Stone 0.0760*** 0.0759*** -0.0350*** -0.0350*** 0.0792*** 0.0791***
(0.025) (0.025) (0.011) (0.011) (0.025) (0.025)

State FE Yes Yes Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes Yes Yes Yes

R2 0.51 0.51 0.21 0.21 0.51 0.51
Observations 2442730 2442730 2442730 2442730 2442730 2442730

Notes: The dependent variable is a dummy variable (0,1) indicating the ownership of the appliance. For the
categorical variables the omitted categories are: ’No Education’, ’1 Member’, and ’Tile’. (1)-(3) clustered standard
errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are conducted using
survey weights.
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Table B2: Impact of Temperature on the Adoption of Cooling Appliances

Both Appliances Air Conditioner Evaporative Cooler

(1) (2) (3) (4) (5) (6)

CDD -0.000669 -0.00723** 0.000215 0.00151 -0.000767* -0.00943***
(0.000) (0.003) (0.000) (0.001) (0.000) (0.003)

Log(Income) 0.0413*** 0.0383*** 0.0134*** 0.0140*** 0.0348*** 0.0310***
(0.003) (0.003) (0.001) (0.002) (0.003) (0.003)

CDD × Log(Income) 0.000693** -0.000137 0.000914***
(0.000) (0.000) (0.000)

Power Availability 0.00429** 0.00430** -0.000902* -0.000903* 0.00384** 0.00384**
(0.002) (0.002) (0.001) (0.001) (0.002) (0.002)

Generators (%) 0.358*** 0.358*** 0.126*** 0.126*** 0.351*** 0.351***
(0.057) (0.057) (0.019) (0.019) (0.057) (0.057)

Precipitation -0.00374 -0.00345 -0.00350 -0.00355 -0.00179 -0.00141
(0.005) (0.005) (0.002) (0.002) (0.005) (0.005)

Precipitation2 0.0000601 0.0000564 0.00215* 0.00215* -0.00155 -0.00156
(0.002) (0.002) (0.001) (0.001) (0.003) (0.003)

Household FE Yes Yes Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes Yes Yes Yes

R2 0.05 0.05 0.02 0.02 0.06 0.06
Observations 2432366 2432366 2432366 2432366 2432366 2432366

Notes: The dependent variable is a dummy variable (0,1) indicating the ownership of the appliance. (1)-(6) clustered
standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are conducted
using survey weights
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Table B3: Impact of Temperature on the Adoption of Cooling Appliances — Urban and Rural

Air Conditioner Evaporative Cooler

Rural Urban Rural Urban
(1) (2) (3) (4)

CDD (100s) 0.000512 0.000903 -0.0130*** -0.00288
(0.001) (0.002) (0.004) (0.003)

Log(Income) 0.00554*** 0.0342*** 0.0316*** 0.0284***
(0.001) (0.003) (0.003) (0.004)

CDD × Log(Income) -0.0000104 -0.0000845 0.00128*** 0.000225
(0.000) (0.000) (0.000) (0.000)

Precipitations Controls Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes
Household FE Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes Yes

R2 0.01 0.03 0.07 0.06
Observations 786354 1646012 786354 1646012

Notes: The dependent variable is a dummy variable (0,1) indicating the ownership
of the appliance. (1)-(4) clustered standard errors at district level in parentheses. *
p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are conducted using survey weights.

Table B4: Impact of Temperature on the Adoption of Cooling Appliances — Income Level

Air Conditioner Evaporative Cooler

Poor Middle Rich Poor Middle Rich
(1) (2) (3) (4) (5) (6)

CDD (100s) 0.00105 -0.000831 0.000590 -0.0310*** -0.0250*** 0.0000605
(0.001) (0.001) (0.006) (0.005) (0.006) (0.004)

Log(Income) 0.00320*** 0.00752*** 0.0437*** 0.0184*** 0.0324*** 0.0159***
(0.001) (0.001) (0.003) (0.004) (0.004) (0.004)

CDD × Log(Income) -0.000115 0.000104 -0.0000134 0.00346*** 0.00256*** -0.0000619
(0.000) (0.000) (0.001) (0.001) (0.001) (0.000)

Precipitations Controls Yes Yes Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes Yes Yes
Household FE Yes Yes Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes Yes Yes Yes

R2 0.01 0.01 0.03 0.10 0.07 0.02
Observations 485084 1219147 485420 485084 1219147 485420

Notes: The dependent variable is a dummy variable (0,1) indicating the ownership of the appliance. (1)-(6) clus-
tered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are
conducted using survey weights.
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Table B5: Impact of Temperature on the Adoption of Cooling Appliances — Income Level and Urban and Rural

Air Conditioner Evaporative Cooler

Rural Urban Rural Urban

Poor Middle Rich Poor Middle Rich Poor Middle Rich Poor Middle Rich
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

CDD (100s) 0.00194 0.00131 0.00768 -0.00438** -0.00698** -0.00896 -0.0315*** -0.0287*** -0.000432 -0.0230*** -0.0139** 0.00206
(0.001) (0.002) (0.007) (0.002) (0.003) (0.007) (0.006) (0.007) (0.007) (0.008) (0.006) (0.004)

Log(Income) 0.00305*** 0.00449*** 0.0237*** 0.00391*** 0.0156*** 0.0631*** 0.0163*** 0.0312*** 0.0226*** 0.0327*** 0.0363*** 0.0103**
(0.001) (0.001) (0.005) (0.001) (0.002) (0.005) (0.004) (0.005) (0.006) (0.008) (0.005) (0.004)

CDD × Log(Income) -0.000208 -0.000109 -0.000629 0.000470** 0.000719** 0.000880 0.00353*** 0.00291*** -0.0000609 0.00249*** 0.00142** -0.000266
(0.000) (0.000) (0.001) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000)

Precipitations Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Household FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

R2 0.01 0.01 0.04 0.01 0.02 0.05 0.10 0.07 0.04 0.09 0.08 0.03
Observations 243703 407412 79366 241381 811735 406054 243703 407412 79366 241381 811735 406054

Notes: The dependent variable is a dummy variable (0,1) indicating the ownership of the appliance. (1)-(12) clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, ***
p < 0.01. All regressions are conducted using survey weights.
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Table B6: Impact of Temperature on the Adoption of Cooling Appliances — Climate

Air Conditioner Evaporative Cooler

Cold Mild Warm Cold Mild Warm
(1) (2) (3) (4) (5) (6)

CDD (100s) 0.00306 0.000877 0.000374 -0.0156*** -0.000243 -0.00156
(0.003) (0.001) (0.001) (0.006) (0.004) (0.004)

Log(Income) 0.0152*** 0.0134*** 0.0128*** 0.0122*** 0.0370*** 0.0435***
(0.003) (0.002) (0.002) (0.005) (0.004) (0.005)

CDD × Log(Income) -0.000353 -0.0000251 -0.0000400 0.00159*** -0.0000936 0.0000270
(0.000) (0.000) (0.000) (0.001) (0.000) (0.000)

Precipitations Controls Yes Yes Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes Yes Yes
Household FE Yes Yes Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes Yes Yes Yes

R2 0.02 0.03 0.01 0.08 0.08 0.05
Observations 829670 739207 863489 829670 739207 863489

Notes: The dependent variable is a dummy variable (0,1) indicating the ownership of the appliance. (1)-(6) clus-
tered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are
conducted using survey weights.

B.2 Extensive Margin: Robustness Checks

Table B7: The Impact of Temperature and Income on the Prevalence of Cooling Appliances —
Alternative Fixed-effects Specification

FE FE FE FE FE
(1) (2) (3) (4) (5)

CDD (100s) 0.00638*** -0.000320 0.0154*** 0.0146*** 0.0146***
(0.001) (0.000) (0.002) (0.002) (0.002)

Log(Income) 0.0928*** 0.101*** 0.0858*** 0.0868*** 0.0863***
(0.008) (0.004) (0.007) (0.007) (0.007)

Precipitations Controls Yes Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes Yes
State FE Yes No No No No
District FE No Yes Yes Yes Yes
Wave FE No No Yes Yes Yes
Linear State × Year Trend No No No Yes No
Quadratic State × Year Trend No No No No Yes

R2 0.49 0.57 0.50 0.51 0.51
Observations 2442730 2442730 2442730 2442730 2442730

Notes: Column (5) shows the main specification. The dependent variable is a dummy variable
(0,1) indicating the ownership of the appliance. (1)-(5) clustered standard errors at state level in
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are conducted using survey
weights

127



Table B8: The Impact of Temperature and Income on the Prevalence of Air-conditioning —
Alternative Fixed-effects Specification

FE FE FE FE FE
(1) (2) (3) (4) (5)

CDD (100s) -0.000631** -0.000546*** -0.000194 0.0000269 0.0000375
(0.000) (0.000) (0.001) (0.001) (0.001)

Log(Income) 0.0541*** 0.0520*** 0.0593*** 0.0591*** 0.0592***
(0.005) (0.005) (0.006) (0.006) (0.006)

Precipitations Controls Yes Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes Yes
State FE Yes No No No No
District FE No Yes Yes Yes Yes
Wave FE No No Yes Yes Yes
Linear State × Year Trend No No No Yes No
Quadratic State × Year Trend No No No No Yes

R2 0.20 0.24 0.21 0.21 0.21
Observations 2442730 2442730 2442730 2442730 2442730

Notes: Column (5) shows the main specification. The dependent variable is a dummy variable (0,1)
indicating the ownership of the appliance. (1)-(5) clustered standard errors at state level in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are conducted using survey weights

Table B9: The Impact of Temperature and Income on the Prevalence of Cooler — Alternative
Fixed-effects Specification

FE FE FE FE FE
(1) (2) (3) (4) (5)

CDD (100s) 0.00681*** -0.00000913 0.0156*** 0.0145*** 0.0145***
(0.001) (0.000) (0.003) (0.003) (0.003)

Log(Income) 0.0711*** 0.0840*** 0.0611*** 0.0617*** 0.0611***
(0.010) (0.005) (0.010) (0.010) (0.010)

Precipitations Controls Yes Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes Yes
State FE Yes No No No No
District FE No Yes Yes Yes Yes
Wave FE No No Yes Yes Yes
Linear State × Year Trend No No No Yes No
Quadratic State × Year Trend No No No No Yes

R2 0.49 0.58 0.49 0.51 0.51
Observations 2442730 2442730 2442730 2442730 2442730

Notes: Column (5) shows the main specification. The dependent variable is a dummy variable
(0,1) indicating the ownership of the appliance. (1)-(5) clustered standard errors at state level in
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are conducted using survey
weights
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Table B10: The Impact of Temperature and Income on the Prevalence of Cooling Appliances —
Alternative Standard Errors Specifications

Both Appliances Air-conditioning Evaporative Cooler
(1) (2) (3)

CDD (100s) 0.0146** 0.0000375 0.0145**
(0.006) (0.001) (0.007)

Log(Income) 0.0863*** 0.0592*** 0.0611**
(0.015) (0.008) (0.022)

Precipitations Controls Yes Yes Yes
Household Controls Yes Yes Yes
State FE Yes Yes Yes
Wave FE Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes

R2 0.51 0.21 0.51
Observations 2442730 2442730 2442730

Notes: The dependent variable is a dummy variable (0,1) indicating the ownership of the appli-
ance. (1)-(3) clustered standard errors at state level in parentheses. * p < 0.10, ** p < 0.05, ***
p < 0.01. All regressions are conducted using survey weights.

Table B11: The Impact of Temperature and Income on the Adoption of Cooling Appliances —
Alternative Standard Errors Specifications

Both Appliances Air-conditioning Air Cooler
(1) (2) (3)

CDD (100s) -0.000669 0.000215 -0.000767*
(0.000) (0.000) (0.000)

Log(Income) 0.0413*** 0.0134*** 0.0348***
(0.005) (0.002) (0.006)

Precipitations Controls Yes Yes Yes
Household Controls Yes Yes Yes
Household FE Yes Yes Yes
Wave FE Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes

R2 0.05 0.02 0.06
Observations 2432366 2432366 2432366

Notes: The dependent variable is a dummy variable (0,1) indicating the ownership of
the appliance. (1)-(3) clustered standard errors at state level in parentheses. * p < 0.10,
** p < 0.05, *** p < 0.01. All regressions are conducted using survey weights.
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Table B12: The Impact of Temperature and Income on the Prevalence of Cooling Appliances —
Nonlinear Specification

FE FE FE
(1) (2) (3)

CDD (100s) 0.0146*** 0.00237 0.00935
(0.002) (0.004) (0.010)

CDD
2

0.00125*** -0.000477
(0.000) (0.002)

CDD
3

0.000109
(0.000)

Log(Income) 0.0863*** 0.0863*** 0.0862***
(0.007) (0.007) (0.007)

Precipitations Controls Yes Yes Yes
Household Controls Yes Yes Yes
State FE Yes Yes Yes
Wave FE Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes

R2 0.51 0.51 0.51
Observations 2442730 2442730 2442730

Notes: The dependent variable is a dummy variable (0,1) indicating the
ownership of the appliance. (1)-(3) clustered standard errors at district
level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions
are conducted using survey weights.
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Table B13: The Impact of Temperature and Income on the Prevalence of Air-conditioning —
Nonlinear Specification

FE FE FE
(1) (2) (3)

CDD (100s) 0.0000375 0.00369*** -0.000971
(0.001) (0.001) (0.004)

CDD
2

-0.000372** 0.000780
(0.000) (0.001)

CDD
3

-0.0000730
(0.000)

Log(Income) 0.0592*** 0.0592*** 0.0592***
(0.006) (0.006) (0.006)

Precipitations Controls Yes Yes Yes
Household Controls Yes Yes Yes
State FE Yes Yes Yes
Wave FE Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes

R2 0.21 0.21 0.21
Observations 2442730 2442730 2442730

Notes: The dependent variable is a dummy variable (0,1) indicating the
ownership of the appliance. (1)-(3) clustered standard errors at district level
in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are
conducted using survey weights.
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Table B14: The Impact of Temperature and Income on the Prevalence of Coolers — Nonlinear
Specification

FE FE FE
(1) (2) (3)

CDD (100s) 0.0145*** 0.000153 0.00619
(0.003) (0.004) (0.010)

CDD
2

0.00147*** -0.0000261
(0.000) (0.002)

CDD
3

0.0000945
(0.000)

Log(Income) 0.0611*** 0.0610*** 0.0610***
(0.010) (0.010) (0.010)

Precipitations Controls Yes Yes Yes
Household Controls Yes Yes Yes
State FE Yes Yes Yes
Wave FE Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes

R2 0.60 0.60 0.60
Observations 2442730 2442730 2442730

Notes: The dependent variable is a dummy variable (0,1) indicating the
ownership of the appliance. (1)-(3) clustered standard errors at district
level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions
are conducted using survey weights.
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Table B15: The Impact of Temperature and Income on the Adoption of Cooling Appliances —
Nonlinear Specification

FE FE FE
(1) (2) (3)

CDD (100s) -0.000669 -0.00154 0.000413
(0.000) (0.001) (0.003)

CDD
2

0.0000890 -0.000394
(0.000) (0.001)

CDD
3

0.0000307
(0.000)

Log(Income) 0.0413*** 0.0413*** 0.0413***
(0.003) (0.003) (0.003)

Precipitations Controls Yes Yes Yes
Household Controls Yes Yes Yes
Household FE Yes Yes Yes
Wave FE Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes

R2 0.05 0.05 0.05
Observations 2432366 2432366 2432366

Notes: The dependent variable is a dummy variable (0,1) indicating the
ownership of the appliance. (1)-(3) clustered standard errors at district
level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions
are conducted using survey weights
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Table B16: The Impact of Temperature and Income on the Adoption of Air-conditioning —
Nonlinear Specification

FE FE FE
(1) (2) (3)

CDD (100s) 0.000215 0.000398 0.000593
(0.000) (0.000) (0.001)

CDD
2

-0.0000187 -0.0000668
(0.000) (0.000)

CDD
3

0.00000306
(0.000)

Log(Income) 0.0134*** 0.0134*** 0.0134***
(0.001) (0.001) (0.001)

Precipitations Controls Yes Yes Yes
Household Controls Yes Yes Yes
Household FE Yes Yes Yes
Wave FE Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes

R2 0.02 0.02 0.02
Observations 2432366 2432366 2432366

Notes: The dependent variable is a dummy variable (0,1) indicating the
ownership of the appliance. (1)-(3) clustered standard errors at district
level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions
are conducted using survey weights

134



Table B17: The Impact of Temperature and Income on the Adoption of Coolers — Nonlinear
Specification

FE FE FE
(1) (2) (3)

CDD (100s) -0.000767* -0.00144 -0.000377
(0.000) (0.001) (0.003)

CDD
2

0.0000685 -0.000194
(0.000) (0.001)

CDD
3

0.0000167
(0.000)

Log(Income) 0.0348*** 0.0348*** 0.0348***
(0.003) (0.003) (0.003)

Precipitations Controls Yes Yes Yes
Household Controls Yes Yes Yes
Household FE Yes Yes Yes
Wave FE Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes

R2 0.06 0.06 0.06
Observations 2432366 2432366 2432366

Notes: The dependent variable is a dummy variable (0,1) indicating the
ownership of the appliance. (1)-(3) clustered standard errors at district
level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions
are conducted using survey weights

Table B18: The Impact of Temperature and Income on the Prevalence of Cooling Appliances —
CDD18

Both Appliances Air Conditioner Evaporative Cooler

(1) (2) (3) (4) (5) (6)

CDD18 (100s) 0.00805*** -0.0136** 0.000358 -0.00645 0.00784*** -0.00608
(0.001) (0.006) (0.000) (0.004) (0.002) (0.006)

Log(Income) 0.0861*** 0.0624*** 0.0592*** 0.0517*** 0.0609*** 0.0456***
(0.007) (0.011) (0.006) (0.007) (0.010) (0.014)

CDD18 × Log(Income) 0.00229*** 0.000718 0.00147**
(0.001) (0.000) (0.001)

Precipitations Controls Yes Yes Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes Yes Yes Yes

R2 0.51 0.51 0.21 0.21 0.51 0.51
Observations 2442730 2442730 2442730 2442730 2442730 2442730

Notes: The dependent variable is a dummy variable (0,1) indicating the ownership of the appliance. (1)-(6)
clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions
are conducted using survey weights.
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Table B19: The Impact of Temperature and Income on the Adoption of Cooling Appliances —
CDD18

Both Appliances Air Conditioner Evaporative Cooler

(1) (2) (3) (4) (5) (6)

CDD18 (100s) -0.000642** -0.00286 0.000141 -0.000597 -0.000646** -0.00325
(0.000) (0.002) (0.000) (0.001) (0.000) (0.002)

Log(Income) 0.0413*** 0.0388*** 0.0134*** 0.0126*** 0.0348*** 0.0320***
(0.003) (0.003) (0.001) (0.002) (0.003) (0.003)

CDD18 × Log(Income) 0.000234 0.0000778 0.000274
(0.000) (0.000) (0.000)

Precipitations Controls Yes Yes Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes Yes Yes
Household FE Yes Yes Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes Yes Yes Yes

R2 0.05 0.05 0.02 0.02 0.06 0.06
Observations 2432366 2432366 2432366 2432366 2432366 2432366

Notes: The dependent variable is a dummy variable (0,1) indicating the ownership of the appliance. (1)-(6)
clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are
conducted using survey weights.

Table B20: The Impact of Temperature and Income on the Prevalence of Cooling Appliances —
Logit

Both Appliances Air Conditioner Evaporative Cooler

(1) (2) (3) (4) (5) (6)

CDD (100s) 0.0162*** -0.0509*** 0.0000764 0.00233 0.0160*** -0.0537***
(0.002) (0.011) (0.000) (0.004) (0.002) (0.013)

Log(Income) 0.0826*** 0.0529*** 0.0460*** 0.0469*** 0.0587*** 0.0283*
(0.008) (0.012) (0.002) (0.002) (0.010) (0.015)

CDD × Log(Income) 0.00715*** -0.000223 0.00743***
(0.001) (0.000) (0.002)

Precipitations Controls Yes Yes Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes Yes Yes Yes

Observations 2442730 2442730 2442730 2442730 2442730 2442730

Notes: Average marginal effects (AMEs) are reported. The dependent variable is a dummy variable (0,1)
indicating the ownership of the appliance. (1)-(6) clustered standard errors at district level in parentheses. *
p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are conducted using survey weights.
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Table B21: The Impact of Temperature and Income on the Prevalence of Cooling Appliances —
Multinomial Logit

Multinomial Logit Multinomial Logit
(1) (2)

CDD (100s) ×

Evaporative Cooler 0.0168*** -0.0483***
(0.002) (0.012)

Air Conditioner 0.00105** -0.00887**
(0.000) (0.003)

Log(Income) ×

Evaporative Cooler 0.0388*** 0.0100
(0.008) (0.013)

Air Conditioner 0.0484*** 0.0442***
(0.002) (0.002)

(CDD × Log(Income)) ×

Evaporative Cooler 0.00696***
(0.001)

Air Conditioner 0.00103***
(0.000)

Precipitations Controls Yes Yes
Household Controls Yes Yes
State FE Yes Yes
Wave FE Yes Yes
Quadratic State × Year Trend Yes Yes

Observations 2442958 2442958

Notes: Average marginal effects (AMEs) are reported. The dependent vari-
able is a dummy variable (0,1) indicating the ownership of the appliance. (1)-
(2) clustered standard errors at district level in parentheses. * p < 0.10, **
p < 0.05, *** p < 0.01. All regressions are conducted using survey weights.
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C.1 Intensive Margin: Main Results

Table C1: The Impact of Temperature on Electricity Quantity using Temperature Bins

FE FE FE
(1) (2) (3)

< 11 -0.000434 -0.000842 -0.000748
(0.001) (0.001) (0.001)

11 − 14 -0.000783 -0.000966* -0.000950*
(0.001) (0.001) (0.001)

14 − 17 0.000180 0.0000694 0.0000429
(0.001) (0.001) (0.001)

20 − 23 0.000454 0.000395 0.000365
(0.000) (0.000) (0.000)

23 − 26 0.00111*** 0.00105*** 0.00100***
(0.000) (0.000) (0.000)

26 − 29 0.00183*** 0.00176*** 0.00170***
(0.000) (0.000) (0.000)

29 − 32 0.00212*** 0.00228*** 0.00226***
(0.000) (0.000) (0.000)

32 − 35 0.00180*** 0.00200*** 0.00194***
(0.000) (0.000) (0.000)

≥ 35 0.00495*** 0.00527*** 0.00527***
(0.001) (0.001) (0.001)

Log(Income) 0.0797***
(0.006)

Precipitations Controls No Yes Yes
Household FE Yes Yes Yes
Month-Year FE Yes Yes Yes

R2 0.00 0.00 0.02
Observations 8317298 8317298 8317298

Notes: The dependent variable is log of monthly electricity quan-
tity (in kWh). Reference bin category is 17-20. (1), (2) and (3) clus-
tered standard errors at district level in parentheses. * p < 0.10, **
p < 0.05, *** p < 0.01. All regressions are conducted using survey
weights.
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Table C2: The Heterogeneous Impact of Temperature on Electricity Quantity using Temperature
Bins — Urban and Rural Areas

Rural Urban
(1) (2)

< 11 -0.000738 -0.000119
(0.001) (0.001)

11 − 14 -0.000817 -0.00123*
(0.001) (0.001)

14 − 17 0.000346 -0.000243
(0.001) (0.001)

20 − 23 0.000303 0.000822
(0.000) (0.001)

23 − 26 0.000805** 0.00163***
(0.000) (0.001)

26 − 29 0.00139*** 0.00274***
(0.000) (0.001)

29 − 32 0.00168*** 0.00364***
(0.001) (0.001)

32 − 35 0.00151*** 0.00329***
(0.001) (0.001)

≥ 35 0.00375*** 0.00820***
(0.001) (0.001)

Log(Income) 0.0523*** 0.221***
(0.004) (0.013)

Precipitations Controls Yes Yes
Household FE Yes Yes
Month-Year FE Yes Yes

R2 0.01 0.06
Observations 2601924 5715374

Notes: The dependent variable is log of monthly elec-
tricity quantity (in kWh). Reference bin category is 17-
20. (1) and (2) clustered standard errors at district level
in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
All regressions are conducted using survey weights.
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Table C3: The Heterogeneous Impact of Temperature on Electricity Quantity using Temperature
Bins — Income Levels

Poor Middle Rich
(1) (2) (3)

< 11 0.00197* -0.000227 -0.00201**
(0.001) (0.001) (0.001)

11 − 14 0.00199** -0.00164*** -0.000513
(0.001) (0.001) (0.001)

14 − 17 0.000164 0.000495 -0.00128
(0.001) (0.001) (0.001)

20 − 23 0.000611 0.000506 -0.000400
(0.001) (0.000) (0.001)

23 − 26 0.000999** 0.000968** 0.000949*
(0.000) (0.000) (0.001)

26 − 29 0.00181*** 0.00165*** 0.00185***
(0.001) (0.000) (0.001)

29 − 32 0.00187*** 0.00213*** 0.00294***
(0.001) (0.001) (0.001)

32 − 35 0.00150** 0.00168*** 0.00319***
(0.001) (0.001) (0.001)

≥ 35 0.00422*** 0.00449*** 0.00814***
(0.001) (0.001) (0.001)

Log(Income) 0.108*** 0.0610*** 0.117***
(0.010) (0.004) (0.013)

Precipitations Controls Yes Yes Yes
Household FE Yes Yes Yes
Month-Year FE Yes Yes Yes

R2 0.02 0.01 0.04
Observations 1062253 4879764 2375281

Notes: The dependent variable is log of monthly electricity quantity
(in kWh). Reference bin category is 17-20. ”Poor”, ”Middle” and
”Rich” respectively refers to households between the 1st and 2nd
decile, between the 3rd and 8th decile, and between the 9th and 10th
decile. (1), (2) and (3) clustered standard errors at district level in
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are
conducted using survey weights.
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Table C4: The Impact of Temperature on Electricity Quantity using Temperature Bins — Income
Levels and Urban and Rural Areas

Rural Urban

Poor Middle Rich Poor Middle Rich
(1) (2) (3) (4) (5) (6)

< 11 0.00189* -0.000497 -0.00168* 0.00242 0.000880 -0.00175
(0.001) (0.001) (0.001) (0.002) (0.001) (0.001)

11 − 14 0.00235** -0.00153** -0.000875 -0.000291 -0.00188** -0.00103
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

14 − 17 0.000224 0.000156 0.000230 0.000353 0.00165* -0.00282
(0.001) (0.001) (0.001) (0.001) (0.001) (0.002)

20 − 23 0.000556 0.000149 -0.000177 0.00135* 0.00166** -0.000534
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

23 − 26 0.000997** 0.000620 0.000675 0.00147** 0.00209*** 0.000922
(0.000) (0.000) (0.001) (0.001) (0.001) (0.001)

26 − 29 0.00156** 0.00111** 0.00180*** 0.00361*** 0.00326*** 0.00186**
(0.001) (0.000) (0.001) (0.001) (0.001) (0.001)

29 − 32 0.00163*** 0.00143** 0.00219*** 0.00353*** 0.00402*** 0.00323***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

32 − 35 0.00128* 0.00117** 0.00259*** 0.00316*** 0.00334*** 0.00343***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

≥ 35 0.00387*** 0.00329*** 0.00530*** 0.00607*** 0.00749*** 0.00973***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.002)

Log(Income) 0.0989*** 0.0441*** 0.0485*** 0.205*** 0.184*** 0.266***
(0.010) (0.004) (0.005) (0.015) (0.012) (0.016)

Precipitations Controls Yes Yes Yes Yes Yes Yes
Household FE Yes Yes Yes Yes Yes Yes
Month-Year FE Yes Yes Yes Yes Yes Yes

R2 0.02 0.01 0.01 0.05 0.04 0.09
Observations 550374 1636916 414634 511879 3242848 1960647

Notes: The dependent variable is log of monthly electricity quantity (in kWh). Reference bin category is 17-
20. ’Poor’, ’Middle’ and ’Rich’ respectively refer to households between the 1st and 2nd decile, between the
3rd and 8th decile, and between the 9th and 10th decile. (1) to (6) clustered standard errors at district level
in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are conducted using survey weights.

141



Table C5: The Heterogeneous Impact of Temperature on Electricity Quantity using Temperature
Bins — Technology

Air Conditioner Evaporative Cooler
(1) (2)

< 11 -0.00257* -0.00316**
(0.001) (0.002)

11 − 14 0.000296 -0.00301***
(0.001) (0.001)

14 − 17 -0.00191 -0.00158
(0.002) (0.001)

20 − 23 0.0000987 -0.00124
(0.001) (0.001)

23 − 26 0.00169*** -0.000260
(0.001) (0.001)

26 − 29 0.00228*** 0.000805
(0.001) (0.001)

29 − 32 0.00441*** 0.00167**
(0.001) (0.001)

32 − 35 0.00469*** 0.00176**
(0.001) (0.001)

≥ 35 0.0112*** 0.00469***
(0.002) (0.001)

Log(Income) 0.169*** 0.0493***
(0.021) (0.004)

Precipitations Controls Yes Yes
Household FE Yes Yes
Month-Year FE Yes Yes

R2 0.05 0.01
Observations 785745 3707868

Notes: The dependent variable is log of monthly electricity quantity
(in kWh). Reference bin category is 17-20. (1) and (2) clustered stan-
dard errors at district level in parentheses. * p < 0.10, ** p < 0.05, ***
p < 0.01. All regressions are conducted using survey weights.
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Table C6: The Heterogeneous Impact of Temperature on Electricity Quantity using Temperature
Bins — Technology and Income Level

Poor-Middle Rich

Air Conditioner Evaporative Cooler Air Conditioner Evaporative Cooler
(1) (2) (3) (4)

< 11 -0.000258 -0.00272 -0.00345** -0.00378*
(0.002) (0.002) (0.002) (0.002)

11 − 14 0.0000337 -0.00396*** 0.000386 -0.000606
(0.001) (0.001) (0.001) (0.001)

14 − 17 0.000766 -0.000738 -0.00257 -0.00274
(0.001) (0.001) (0.003) (0.002)

20 − 23 -0.000252 -0.00144* 0.00200** 0.000356
(0.001) (0.001) (0.001) (0.001)

23 − 26 0.000460 -0.000478 0.00200** 0.000356
(0.001) (0.001) (0.001) (0.001)

26 − 29 0.00107 0.000535 0.00265** 0.00130
(0.001) (0.001) (0.001) (0.001)

29 − 32 0.00118 0.000956 0.00576*** 0.00366***
(0.001) (0.001) (0.001) (0.001)

32 − 35 0.00205** 0.00102 0.00572*** 0.00383***
(0.001) (0.001) (0.001) (0.001)

≥ 35 0.00123 0.00350*** 0.0147*** 0.00909***
(0.002) (0.001) (0.003) (0.002)

Log(Income) 0.0699*** 0.0378*** 0.198*** 0.0875***
(0.013) (0.003) (0.027) (0.011)

Precipitations Controls Yes Yes Yes Yes
Household FE Yes Yes Yes Yes
Month-Year FE Yes Yes Yes Yes

R2 0.01 0.01 0.06 0.02
Observations 161766 2264280 538787 1018452

Notes: The dependent variable is log of monthly electricity quantity (in kWh). Reference bin category is 17-
20. (1)-(4) clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All
regressions are conducted using survey weights.
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C.2 Intensive Margin: Additional Figures

Figure C1: Electricity-temperature Response Function — 5-degree Temperature Bins
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C.3 Intensive Margin: Robustness Checks

Table C7: The Impact of Temperature on Electricity Quantity — Alternative Time Fixed Effects

FE FE FE FE
(1) (2) (3) (4)

< 11 -0.00204*** -0.000748 -0.00231*** -0.00102
(0.001) (0.001) (0.001) (0.001)

11 − 14 -0.00209*** -0.000950* -0.00180*** -0.000620
(0.001) (0.001) (0.001) (0.001)

14 − 17 0.000125 0.0000429 -0.0000898 -0.0000491
(0.001) (0.001) (0.001) (0.001)

20 − 23 0.000130 0.000365 0.0000187 0.000392
(0.000) (0.000) (0.000) (0.000)

23 − 26 0.00131*** 0.00100*** 0.00110*** 0.000985***
(0.000) (0.000) (0.000) (0.000)

26 − 29 0.00208*** 0.00170*** 0.00209*** 0.00173***
(0.000) (0.000) (0.000) (0.000)

29 − 32 0.00294*** 0.00226*** 0.00252*** 0.00206***
(0.000) (0.000) (0.000) (0.000)

32 − 35 0.00268*** 0.00194*** 0.00246*** 0.00207***
(0.000) (0.000) (0.000) (0.000)

≥ 35 0.00656*** 0.00527*** 0.00523*** 0.00506***
(0.001) (0.001) (0.001) (0.001)

Log(Income) 0.0938*** 0.0797*** 0.0797*** 0.0803***
(0.007) (0.006) (0.006) (0.006)

Precipitations Controls Yes Yes Yes Yes
Household FE Yes Yes Yes Yes
Month FE Yes No No No
Month-Year FE No Yes No Yes
Month-Year Trend No No Yes No
Quadratic State × Year Trend No No No Yes

R2 0.03 0.02 0.02 0.02
Observations 8317298 8317298 8317298 8317298

Notes: Column (2) shows main specification results. The dependent variable is log of
monthly electricity quantity (in kWh). Reference bin category is 17-20. (1), (2), (3) and (4)
clustered std. errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
All regressions are conducted using survey weights.
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Table C8: The Impact of Temperature on Electricity Quantity — Alternative Time-Invariant
Fixed Effects

FE FE FE
(1) (2) (3)

< 11 -0.000748 -0.000505 -0.00293*
(0.001) (0.001) (0.002)

11 − 14 -0.000950* -0.000911 0.00192*
(0.001) (0.001) (0.001)

14 − 17 0.0000429 0.000380 -0.000481
(0.001) (0.001) (0.001)

20 − 23 0.000365 0.000456 -0.0000230
(0.000) (0.000) (0.001)

23 − 26 0.00100*** 0.00113*** 0.00202***
(0.000) (0.000) (0.001)

26 − 29 0.00170*** 0.00181*** 0.00506***
(0.000) (0.000) (0.001)

29 − 32 0.00226*** 0.00246*** 0.00751***
(0.000) (0.000) (0.001)

32 − 35 0.00194*** 0.00198*** 0.00416***
(0.000) (0.000) (0.001)

≥ 35 0.00527*** 0.00559*** 0.0108***
(0.001) (0.001) (0.001)

Log(Income) 0.0797*** 0.188*** 0.232***
(0.006) (0.010) (0.014)

Precipitations Controls Yes Yes Yes
Household FE Yes No No
District FE No Yes No
State FE No No Yes
Month-Year FE Yes Yes Yes

R2 0.02 0.10 0.13
Observations 8317298 8319814 8319814

Notes: Column (1) shows main specification results. The depen-
dent variable is log of monthly electricity quantity (in kWh). Refer-
ence bin category is 17-20. (1), (2) and (3) clustered standard errors
at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
All regressions are conducted using survey weights.
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Table C9: The Impact of Temperature on Electricity Quantity — Electricity in Level

FE FE FE
(1) (2) (3)

< 11 -0.440*** -0.508*** -0.493***
(0.155) (0.157) (0.154)

11 − 14 -0.462*** -0.494*** -0.491***
(0.111) (0.113) (0.114)

14 − 17 -0.0516 -0.0705 -0.0747
(0.121) (0.120) (0.121)

20 − 23 -0.0589 -0.0703 -0.0750
(0.070) (0.070) (0.070)

23 − 26 0.0503 0.0382 0.0307
(0.050) (0.050) (0.049)

26 − 29 0.132** 0.120** 0.110*
(0.058) (0.059) (0.059)

29 − 32 0.191*** 0.219*** 0.217***
(0.072) (0.071) (0.071)

32 − 35 0.0976 0.130* 0.120
(0.075) (0.074) (0.075)

≥ 35 0.735*** 0.789*** 0.789***
(0.173) (0.174) (0.172)

Log(Income) 12.83***
(1.175)

Precipitations Controls Yes Yes Yes
Household FE Yes Yes Yes
Month-Year FE Yes Yes Yes

R2 0.00 0.00 0.01
Observations 8317298 8317298 8317298

Notes: The dependent variable is monthly electricity quantity
(in kWh). Reference category is bin 17-20. (1), (2) and (3) clus-
tered standard errors at district level in parentheses. * p < 0.10,
** p < 0.05, *** p < 0.01. All regressions are conducted using
survey weights.
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Table C10: The Impact of Temperature on Electricity Quantity — CRU Weather Data

FE FE FE
(1) (2) (3)

T (°C) 0.00449*** 0.00473*** 0.00458***
(0.001) (0.001) (0.001)

Log(Income) 0.0778***
(0.006)

Precipitations Controls No Yes Yes
Household FE Yes Yes Yes
Month-Year FE Yes Yes Yes

R2 0.00 0.00 0.02
Observations 8317298 8317298 8317298

Notes: The dependent variable is log of monthly electricity quan-
tity (in kWh). (1), (2) and (3) clustered standard errors at district
level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All re-
gressions are conducted using survey weights.
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Table C11: The Impact of Temperature on Electricity Quantity — Alternative Standard Errors
Specifications

District State
(1) (2)

< 11 -0.000748 -0.000748
(0.001) (0.001)

11 − 14 -0.000950* -0.000950
(0.001) (0.001)

14 − 17 0.0000429 0.0000429
(0.001) (0.001)

20 − 23 0.000365 0.000365
(0.000) (0.001)

23 − 26 0.00100*** 0.00100**
(0.000) (0.000)

26 − 29 0.00170*** 0.00170***
(0.000) (0.000)

29 − 32 0.00226*** 0.00226***
(0.000) (0.000)

32 − 35 0.00194*** 0.00194***
(0.000) (0.001)

≥ 35 0.00527*** 0.00527***
(0.001) (0.001)

Log(Income) 0.0797*** 0.0797***
(0.006) (0.020)

Precipitations Controls Yes Yes
Household FE Yes Yes
Month-Year FE Yes Yes

R2 0.02 0.02
Observations 8317298 8317298

Notes: Column (1) shows main specification results.
The dependent variable is log of monthly electricity
quantity (in kWh). Reference bin category is 17-20.
(1) clustered standard errors at district level in paren-
theses. (2) clustered standard errors at state level in
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All
regressions are conducted using survey weights.
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Table C12: The Impact of Temperature on Electricity Quantity — 5-degree Temperature Bins

FE FE FE
(1) (2) (3)

< 10 -0.000366 -0.000703 -0.000631
(0.001) (0.001) (0.001)

10 − 15 -0.000497 -0.000643 -0.000650
(0.000) (0.000) (0.000)

20 − 25 0.000644** 0.000621** 0.000587**
(0.000) (0.000) (0.000)

25 − 30 0.00170*** 0.00169*** 0.00164***
(0.000) (0.000) (0.000)

30 − 35 0.00172*** 0.00190*** 0.00188***
(0.000) (0.000) (0.000)

≥ 35 0.00466*** 0.00493*** 0.00490***
(0.001) (0.001) (0.001)

Log(Income) 0.0797***
(0.006)

Precipitations Controls No Yes Yes
Household FE Yes Yes Yes
Month-Year FE Yes Yes Yes

R2 0.00 0.00 0.02
Observations 8317298 8317298 8317298

Notes: The dependent variable is log of monthly electricity quan-
tity (in kWh). Reference category is bin 15-20. (1), (2) and (3) clus-
tered standard errors at district level in parentheses. * p < 0.10, **
p < 0.05, *** p < 0.01. All regressions are conducted using survey
weights.
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Table C13: The Impact of Temperature on Electricity Quantity — Non-linearities

FE FE FE
(1) (2) (3)

T (°C) 0.00479*** 0.00170 0.00333***
(0.001) (0.001) (0.001)

T2 0.0000742*** -0.0000422
(0.000) (0.000)

T3 0.00000221
(0.000)

Log(Income) 0.0796*** 0.0796*** 0.0796***
(0.006) (0.006) (0.006)

Precipitations Controls Yes Yes Yes
Household FE Yes Yes Yes
Month-Year FE Yes Yes Yes

R2 0.02 0.02 0.02
Observations 8293964 8293964 8293964

Notes: The dependent variable is log of monthly electricity quantity
(in kWh). (1), (2) and (3) clustered std. errors at district level in paren-
theses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are
conducted using survey weights.

Table C14: The Impact of Temperature on Electricity Quantity — Cooling Degree Days

FE FE FE
(1) (2) (3)

CDD (in 100s) 0.0149*** 0.0183*** 0.0174***
(0.003) (0.003) (0.003)

Log(Income) 0.0766***
(0.006)

Precipitations Controls No Yes Yes
Household FE Yes Yes Yes
Month-Year FE Yes Yes Yes

R2 0.00 0.00 0.02
Observations 8293964 8293964 8293964

Notes: The dependent variable is log of monthly electricity
quantity (in kWh). CDDs are constructed using 24 °C as thresh-
old. (1), (2) and (3) clustered standard errors at district level in
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions
are conducted using survey weights.
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D.1 Mortality: Main Results

Table D1: Impact of Temperature on Mortality Rate

FE FE FE FE
(1) (2) (3) (4)

T (< 10) 0.00272 0.00275 0.00304
(0.002) (0.002) (0.002)

T (10 − 15) 0.00241* 0.00249* 0.00276**
(0.001) (0.001) (0.001)

T (20 − 25) 0.00202* 0.00211* 0.00211**
(0.001) (0.001) (0.001)

T (25 − 30) 0.00161 0.00179 0.00202*
(0.001) (0.001) (0.001)

T (30 − 35) 0.00247** 0.00263** 0.00307**
(0.001) (0.001) (0.001)

T (≥ 35) 0.00932*** 0.00944*** 0.00997***
(0.002) (0.002) (0.002)

P (2nd) -0.00645 0.00263 -0.00458
(0.025) (0.024) (0.025)

P (3rd) 0.0448 0.0560* 0.0469
(0.035) (0.033) (0.036)

H (0 − 3) 0.000660 -0.000503
(0.003) (0.003)

H (3 − 6) -0.00195* -0.00255**
(0.001) (0.001)

H (6 − 9) 0.000907* 0.000412
(0.001) (0.001)

H (12 − 15) 0.000170 0.000190
(0.001) (0.001)

H (15 − 18) 0.000436 0.000914
(0.001) (0.001)

H (≥ 18) -0.000102 0.000755
(0.001) (0.001)

District FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Quadratic Trend × Region Yes Yes Yes Yes

R2 0.03 0.03 0.02 0.03
Observations 3908 3908 3908 3908

Notes: The dependent variable is the natural logarithm of mortality rate. Estimated
period is 2014-2019. Reference category for temperature is bin 15-20 °C. Reference
category for humidity is bin 9-12 g/kg. (1)-(4) clustered standard errors at district
level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are
weighted by the square root of district population.
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Table D2: Impact of Temperature and Humidity Interactions on Mortality Rate

FE FE FE FE FE
(1) (2) (3) (4) (5)

T (< 10) 0.00305 0.00544 0.00306 0.00294 0.00297
(0.002) (0.006) (0.002) (0.002) (0.002)

T (10 − 15) 0.00276** 0.00151 0.00276** 0.00279** 0.00279**
(0.001) (0.005) (0.001) (0.001) (0.001)

T (20 − 25) 0.00211** -0.00547 0.00210** 0.00199* 0.00199*
(0.001) (0.003) (0.001) (0.001) (0.001)

T (25 − 30) 0.00202* -0.00348 0.00202* 0.00187 0.00186
(0.001) (0.003) (0.001) (0.001) (0.001)

T (30 − 35) 0.00307** 0.00642 0.00306** 0.00302** 0.00301**
(0.001) (0.004) (0.001) (0.001) (0.001)

T (≥ 35) 0.00996*** -0.0101 0.00994*** 0.000320 0.000195
(0.002) (0.011) (0.002) (0.003) (0.003)

Humidity × T (< 10) -0.000428
(0.001)

Humidity × T (10 − 15) 0.0000728
(0.000)

Humidity × T (20 − 25) 0.000585**
(0.000)

Humidity × T (25 − 30) 0.000439**
(0.000)

Humidity × T (30 − 35) -0.000197
(0.000)

Humidity × T (≥ 35) 0.00162*
(0.001)

T (≥ 35) × H (0 − 3) 0.000500 0.00109
(0.001) (0.001)

T (≥ 35) × H (≥ 18) 0.000123*** 0.000124***
(0.000) (0.000)

Precipitation Terciles Yes Yes Yes Yes Yes
Humidity Bins Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Quadratic Trend × Region Yes Yes Yes Yes Yes

R2 0.03 0.03 0.03 0.04 0.04
Observations 3908 3908 3908 3908 3908

Notes: The dependent variable is the natural logarithm of mortality rate. Estimated period is 2014-
2019. Reference category for temperature is bin 15-20 °C. Reference category for humidity is bin 9-12
g/kg. (1)-(4) clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, ***
p < 0.01. All regressions are weighted by the square root of district population.
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Table D3: Impact of Temperature and Humidity on Mortality Rate — Urban and Rural Deaths

Rural Urban

(1) (2) (3) (4) (5) (6)

T (< 10) -0.00326 -0.00285 -0.00304 -0.00130 -0.00106 -0.00113
(0.005) (0.005) (0.005) (0.005) (0.006) (0.006)

T (10 − 15) 0.00592* 0.00602* 0.00586* 0.00222 0.00261 0.00259
(0.003) (0.003) (0.003) (0.002) (0.002) (0.002)

T (20 − 25) 0.000624 0.000549 0.000230 0.000751 0.000902 0.000851
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

T (25 − 30) 0.000420 0.000623 0.000200 0.00176 0.00209 0.00203
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

T (30 − 35) 0.00178 0.00230 0.00204 0.00230 0.00276 0.00279
(0.003) (0.002) (0.002) (0.002) (0.002) (0.002)

T (≥ 35) 0.00909** 0.00993*** -0.00191 0.00549* 0.00622** 0.00229
(0.004) (0.004) (0.005) (0.003) (0.003) (0.004)

P (2nd) 0.0563 0.0594 0.0632 0.0429 0.0416 0.0434
(0.061) (0.061) (0.061) (0.043) (0.044) (0.045)

P (3rd) 0.102 0.104 0.103 0.107** 0.105* 0.105*
(0.086) (0.087) (0.087) (0.053) (0.054) (0.054)

H (0 − 3) -0.00230 -0.00123 -0.000814 -0.000762
(0.006) (0.006) (0.006) (0.006)

H (3 − 6) -0.00406** -0.00304 -0.00113 -0.000847
(0.002) (0.002) (0.002) (0.002)

H (6 − 9) 0.000427 0.000222 -0.000838 -0.000915
(0.001) (0.001) (0.001) (0.001)

H (12 − 15) 0.00104 0.000933 -0.000723 -0.000746
(0.001) (0.001) (0.001) (0.001)

H (15 − 18) 0.00136 0.00150 -0.0000322 0.0000330
(0.001) (0.001) (0.001) (0.001)

H (≥ 18) 0.00130 0.000335 0.000143 -0.000109
(0.002) (0.002) (0.001) (0.001)

T (≥ 35) × H (≥ 18) 0.000153** 0.0000533
(0.000) (0.000)

District FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Quadratic Trend × Region Yes Yes Yes Yes Yes Yes

R2 0.03 0.03 0.04 0.02 0.02 0.02
Observations 2520 2520 2520 1549 1549 1549

Notes: The dependent variable is the natural logarithm of mortality rate. Estimated period is 2014-2019.
Reference category for temperature is bin 15-20 °C. Reference category for humidity is bin 9-12 g/kg. (1)-(6)
clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions
are weighted by the square root of district rural and urban population.
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Table D4: Impact of Temperature and Humidity on Mortality Rate — Share of Poverty

Below Median Above Median

(1) (2) (3) (4)

T (< 10) 0.000192 -0.000254 0.0354 0.0315
(0.002) (0.003) (0.027) (0.025)

T (10 − 15) 0.00241 0.00312* 0.00462 0.00433
(0.002) (0.002) (0.004) (0.004)

T (20 − 25) 0.000549 0.000314 0.00315** 0.00255
(0.001) (0.001) (0.002) (0.002)

T (25 − 30) 0.000667 0.000827 0.00416** 0.00342*
(0.002) (0.002) (0.002) (0.002)

T (30 − 35) 0.00204 0.00262 0.00625*** 0.00558***
(0.002) (0.002) (0.002) (0.002)

T (≥ 35) 0.00430* 0.00410 0.0173*** 0.00147
(0.003) (0.003) (0.004) (0.006)

P (2nd) 0.0272 0.0274 0.0915 0.100*
(0.023) (0.024) (0.056) (0.057)

P (3rd) 0.0245 0.0176 0.196*** 0.201***
(0.033) (0.034) (0.068) (0.069)

H (0 − 3) 0.00463 0.0479
(0.007) (0.031)

H (3 − 6) -0.00203 -0.00253
(0.002) (0.003)

H (6 − 9) -0.000357 0.000601
(0.001) (0.001)

H (12 − 15) -0.000987 0.000670
(0.001) (0.001)

H (15 − 18) 0.000440 0.00133
(0.001) (0.001)

H (≥ 18) 0.000790 -0.000446
(0.001) (0.002)

T (≥ 35) × H (≥ 18) 0.0000199 0.000168**
(0.000) (0.000)

District FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Quadratic Trend × Region Yes Yes Yes Yes

R2 0.04 0.04 0.06 0.07
Observations 1369 1369 1384 1384

Notes: The dependent variable is the natural logarithm of mortality rate. Esti-
mated period is 2014-2019. Reference category is bin 15-20 °C. Reference category
for humidity is bin 9-12 g/kg. (1)-(4) clustered standard errors at district level in
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are weighted by
the square root of district population.
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Table D5: Impact of Temperature and Humidity on Mortality Rate — Share of Poverty and
Urban and Rural Deaths

Rural Urban

Below Above Below Above

(1) (2) (3) (4) (5) (6) (7) (8)

T (< 10) -0.00501 -0.00420 0.0619 0.0539 0.000282 0.000651 -0.0213 -0.0177
(0.005) (0.005) (0.049) (0.047) (0.005) (0.006) (0.023) (0.023)

T (10 − 15) 0.00417 0.00521 0.00984 0.00981 0.00241 0.00253 0.00586** 0.00591*
(0.003) (0.003) (0.007) (0.007) (0.002) (0.003) (0.003) (0.003)

T (20 − 25) -0.00191 -0.00281 0.00201 0.000751 0.000855 0.00160 0.00126 0.00234
(0.002) (0.002) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002)

T (25 − 30) -0.00193 -0.00242 0.00115 -0.0000706 0.00129 0.00220 0.00418 0.00538**
(0.002) (0.002) (0.003) (0.004) (0.002) (0.002) (0.003) (0.003)

T (30 − 35) -0.000230 0.000530 0.00290 0.00192 0.00242 0.00314 0.00422 0.00501
(0.003) (0.003) (0.004) (0.004) (0.003) (0.002) (0.004) (0.004)

T (≥ 35) 0.00450 0.00427 0.0146** -0.00494 0.00435 0.00367 0.0109** 0.00932
(0.005) (0.005) (0.006) (0.009) (0.004) (0.005) (0.005) (0.009)

P (2nd) 0.0253 0.0152 0.112 0.140 0.0363 0.0450 0.0834 0.0785
(0.037) (0.041) (0.113) (0.117) (0.051) (0.053) (0.075) (0.080)

P (3rd) 0.0214 0.00198 0.203 0.230* 0.0823 0.0935* 0.197* 0.186*
(0.061) (0.063) (0.135) (0.139) (0.052) (0.056) (0.110) (0.108)

H (0 − 3) -0.00115 0.0399 -0.00123 —
(0.006) (0.047) (0.006) (—)

H (3 − 6) -0.00203 -0.00321 0.0000841 -0.00893
(0.002) (0.004) (0.002) (0.006)

H (6 − 9) 0.00202 -0.000896 -0.00282** 0.00149
(0.001) (0.002) (0.001) (0.002)

H (12 − 15) 0.000118 0.00158 -0.000873 -0.00120
(0.002) (0.002) (0.001) (0.002)

H (15 − 18) 0.00251 0.00132 -0.000898 0.00102
(0.002) (0.002) (0.001) (0.002)

H (≥ 18) 0.00367 -0.00167 -0.00115 0.000536
(0.002) (0.002) (0.002) (0.003)

T (≥ 35) × H (≥ 18) 0.0000170 0.000208** 0.0000296 0.0000268
(0.000) (0.000) (0.000) (0.000)

District FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Quadratic Trend × Region Yes Yes Yes Yes Yes Yes Yes Yes

R2 0.05 0.07 0.03 0.04 0.02 0.03 0.04 0.05
Observations 1208 1208 1312 1312 856 856 693 693

Notes: The dependent variable is the natural logarithm of mortality rate. Estimated period is 2014-2019. Reference
category is bin 15-20 °C. Reference category for humidity is bin 9-12 g/kg. (1)-(8) clustered standard errors at district
level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are weighted by the square root of district
population.
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D.2 Mortality: Robustness

Table D6: Impact of Temperature on Mortality Rate — CHPS Sample

FE FE FE FE
(1) (2) (3) (4)

T (< 10) 0.00566** 0.00240 -0.000651 -0.000167
(0.003) (0.002) (0.002) (0.002)

T (10 − 15) 0.0111*** 0.00286** 0.00250 0.00291*
(0.004) (0.001) (0.002) (0.002)

T (20 − 25) 0.00849*** 0.00121 0.00214** 0.00210**
(0.002) (0.001) (0.001) (0.001)

T (25 − 30) 0.00854*** 0.00119 0.00234** 0.00290**
(0.002) (0.001) (0.001) (0.001)

T (30 − 35) 0.00580** 0.00301** 0.00376*** 0.00457***
(0.003) (0.001) (0.001) (0.001)

T (≥ 35) 0.0129*** 0.00971*** 0.00973*** 0.0101***
(0.004) (0.002) (0.002) (0.002)

P (2nd) 0.0543*
(0.029)

P (3rd) 0.113***
(0.038)

District FE No Yes Yes Yes
Year FE No Yes Yes Yes
Quadratic Trend × Region No No Yes Yes

R2 0.15 0.02 0.04 0.02
Observations 2758 2753 2753 2753

Notes: The dependent variable is the natural logarithm of mortality rate. Estimated
period is 2014-2019. Reference category is bin 15-20 °C. (1)-(4) clustered standard
errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All
regressions are weighted by the square root of district population.
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Table D7: Impact of Temperature and Humidity on Mortality Rate — CHPS Sample

FE FE FE FE
(1) (2) (3) (4)

T (< 10) -0.000167 -0.000757 -0.000937
(0.002) (0.003) (0.003)

T (10 − 15) 0.00291* 0.00302* 0.00293*
(0.002) (0.002) (0.002)

T (20 − 25) 0.00210** 0.00219** 0.00199**
(0.001) (0.001) (0.001)

T (25 − 30) 0.00290** 0.00315*** 0.00288***
(0.001) (0.001) (0.001)

T (30 − 35) 0.00457*** 0.00493*** 0.00480***
(0.001) (0.001) (0.001)

T (≥ 35) 0.0101*** 0.0105*** 0.000885
(0.002) (0.002) (0.003)

P (2nd) 0.0543* 0.0495* 0.0551* 0.0580*
(0.029) (0.029) (0.030) (0.030)

P (3rd) 0.113*** 0.106*** 0.112*** 0.111***
(0.038) (0.036) (0.039) (0.038)

H (0 − 3) 0.00348 0.00379 0.00447
(0.006) (0.007) (0.007)

H (3 − 6) -0.00225* -0.00307** -0.00231*
(0.001) (0.001) (0.001)

H (6 − 9) 0.00117** 0.000528 0.000359
(0.001) (0.001) (0.001)

H (12 − 15) -0.0000303 -0.0000257 -0.0000989
(0.001) (0.001) (0.001)

H (15 − 18) -0.000202 0.000436 0.000566
(0.001) (0.001) (0.001)

H (≥ 18) -0.000666 0.000450 -0.000270
(0.001) (0.001) (0.001)

T (≥ 35) × H (≥ 18) 0.000126**
(0.000)

District FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Quadratic Trend × Region Yes Yes Yes Yes

R2 0.04 0.03 0.05 0.05
Observations 2753 2753 2753 2753

Notes: The dependent variable is the natural logarithm of mortality rate. Estimated
period is 2014-2019. Reference category is bin 15-20 °C. Reference category for humid-
ity is bin 9-12 g/kg. (1)-(4) clustered standard errors at district level in parentheses. *
p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are weighted by the square root of
district population.
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Table D8: Impact of Temperature on Mortality Rate — Alternative Fixed Effects

FE FE FE FE FE FE
(1) (2) (3) (4) (5) (6)

T (< 10) 0.000827 0.00376* 0.00293 0.00327 0.00355* 0.00305
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

T (10 − 15) 0.0113** 0.00261** 0.00250* 0.00288** 0.00304** 0.00276**
(0.005) (0.001) (0.001) (0.001) (0.001) (0.001)

T (20 − 25) 0.0107*** 0.00187* 0.00237** 0.00169 0.000173 0.00211**
(0.003) (0.001) (0.001) (0.001) (0.001) (0.001)

T (25 − 30) 0.0100*** 0.00151 0.00235* 0.00141 -0.000250 0.00202*
(0.003) (0.001) (0.001) (0.001) (0.001) (0.001)

T (30 − 35) 0.00884*** 0.00256** 0.00329** 0.00238* 0.000195 0.00307**
(0.003) (0.001) (0.001) (0.001) (0.001) (0.001)

T (≥ 35) 0.0160*** 0.00955*** 0.0107*** 0.00960*** 0.00893*** 0.00996***
(0.003) (0.002) (0.002) (0.002) (0.002) (0.002)

P (2nd) -0.178*** -0.000990 -0.00400 -0.00977 -0.0151 -0.00458
(0.064) (0.025) (0.026) (0.025) (0.023) (0.025)

P (3rd) -0.0479 0.0601* 0.0493 0.0448 0.0103 0.0469
(0.122) (0.036) (0.038) (0.036) (0.035) (0.036)

H (0 − 3) 0.00509** 0.0000676 -0.00393 -0.0000155 0.000683 -0.000505
(0.002) (0.003) (0.003) (0.003) (0.003) (0.003)

H (3 − 6) 0.00879*** -0.00230** -0.00373*** -0.00265** -0.00199* -0.00255**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

H (6 − 9) -0.00220* 0.000505 0.000527 0.000472 0.000265 0.000412
(0.001) (0.001) (0.001) (0.000) (0.000) (0.001)

H (12 − 15) -0.00232** -0.0000733 0.000179 -0.000329 -0.000420 0.000190
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

H (15 − 18) 0.000658 0.000175 0.00102 0.000286 0.000119 0.000915
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

H (≥ 18) 0.000680 -0.000351 0.000909 -0.000119 0.000326 0.000756
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

District FE No Yes Yes Yes Yes Yes
Year FE No Yes Yes Yes Yes Yes
Year × Region No No Yes No No No
Linear Trend × Region No No No Yes No No
Linear Trend × State No No No No Yes No
Quadratic Trend × Region No No No No No Yes

R2 0.23 0.02 0.03 0.03 0.10 0.03
Observations 3911 3908 3908 3908 3908 3908

Notes: Column (6) shows main specification results. The dependent variable is the natural logarithm of
mortality rate. Estimated period is 2014-2019. Reference category for temperature is bin 15-20 ° C. Reference
category for humidity is bin 9-12 g/kg. (1)-(6) clustered standard errors at district level in parentheses. *
p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are weighted by the square root of district population.
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Table D9: Impact of Temperature on Mortality Rate — Controlling for Income per capita

FE FE
(1) (2)

T (< 10) -0.000757 -0.000829
(0.003) (0.003)

T (10 − 15) 0.00302* 0.00300*
(0.002) (0.002)

T (20 − 25) 0.00219** 0.00219**
(0.001) (0.001)

T (25 − 30) 0.00315*** 0.00316***
(0.001) (0.001)

T (30 − 35) 0.00493*** 0.00494***
(0.001) (0.001)

T (≥ 35) 0.0105*** 0.0105***
(0.002) (0.002)

P (2nd) 0.0551* 0.0553*
(0.030) (0.030)

P (3rd) 0.112*** 0.112***
(0.039) (0.039)

H (0 − 3) 0.00379 0.00365
(0.007) (0.007)

H (3 − 6) -0.00307** -0.00313**
(0.001) (0.001)

H (6 − 9) 0.000528 0.000526
(0.001) (0.001)

H (12 − 15) -0.0000257 -0.0000399
(0.001) (0.001)

H (15 − 18) 0.000436 0.000406
(0.001) (0.001)

H (≥ 18) 0.000450 0.000418
(0.001) (0.001)

Income per capita Yes Yes
District FE Yes Yes
Year FE Yes Yes
Quadratic Trend × State Yes Yes

R2 0.05 0.05
Observations 2753 2753

Notes: The dependent variable is the natural logarithm
of mortality rate. The estimated period is 2014-2019.
Reference category for temperature is bin 15-20 °C. Ref-
erence category for humidity is bin 9-12 g/kg. (1) and (2)
clustered standard errors at district level in parentheses
respectively. * p < 0.10, ** p < 0.05, *** p < 0.01. All
regressions are weighted by the square root of district
population.
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Table D10: Impact of Temperature on Mortality Rate — State-level Clustered Standard Errors

FE FE
(1) (2)

T (< 10) 0.00305 0.00305
(0.002) (0.003)

T (10 − 15) 0.00276** 0.00276
(0.001) (0.003)

T (20 − 25) 0.00211** 0.00211
(0.001) (0.001)

T (25 − 30) 0.00202* 0.00202
(0.001) (0.001)

T (30 − 35) 0.00307** 0.00307**
(0.001) (0.001)

T (≥ 35) 0.00996*** 0.00996*
(0.002) (0.005)

P (2nd) -0.00458 -0.00458
(0.025) (0.018)

P (3rd) 0.0469 0.0469
(0.036) (0.041)

H (0 − 3) -0.000505 -0.000505
(0.003) (0.003)

H (3 − 6) -0.00255** -0.00255
(0.001) (0.002)

H (6 − 9) 0.000412 0.000412
(0.001) (0.001)

H (12 − 15) 0.000190 0.000190
(0.001) (0.002)

H (15 − 18) 0.000915 0.000915
(0.001) (0.001)

H (≥ 18) 0.000756 0.000756
(0.001) (0.001)

District FE Yes Yes
Year FE Yes Yes
Quadratic Trend × Region Yes Yes

R2 0.03 0.03
Observations 3908 3908

Notes: Column (1) shows main specification results. The
dependent variable is the natural logarithm of mortality
rate. The estimated period is 2014-2019. Reference cate-
gory for temperature is bin 15-20 °C . Reference category
for humidity is bin 9-12 g/kg. (1) clustered standard er-
rors at district level in parentheses. (2) clustered standard
errors at state level in parentheses * p < 0.10, ** p < 0.05,
*** p < 0.01. All regressions are weighted by the square
root of district population.
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Table D11: Impact of Temperature on Mortality Rate — 3-degree Bins

FE FE FE FE
(1) (2) (3) (4)

T (< 11) -0.0000731 0.00124 0.000274 0.000274
(0.001) (0.001) (0.002) (0.002)

T (11 − 14) 0.0159*** 0.000365 0.0000645 0.0000645
(0.003) (0.001) (0.002) (0.002)

T (14 − 17) -0.0126*** -0.00269** -0.00315** -0.00315**
(0.003) (0.001) (0.001) (0.001)

T (20 − 23) 0.00437* 0.000784 0.00115 0.00115
(0.002) (0.001) (0.001) (0.001)

T (23 − 26) 0.00688*** 0.000453 0.000512 0.000512
(0.002) (0.001) (0.001) (0.001)

T (26 − 29) 0.00433** -0.000400 0.000172 0.000172
(0.002) (0.001) (0.001) (0.001)

T (29 − 32) 0.00525** -0.000259 0.000205 0.000205
(0.002) (0.001) (0.001) (0.001)

T (32 − 35) 0.00217 -0.000636 0.0000182 0.0000182
(0.002) (0.002) (0.002) (0.002)

T (≥ 35) 0.0129*** 0.00629*** 0.00691*** 0.00691***
(0.003) (0.002) (0.002) (0.002)

P (2nd) -0.178*** -0.0146 -0.0164 -0.0164
(0.044) (0.025) (0.025) (0.025)

P (3rd) -0.0868 0.0387 0.0286 0.0286
(0.075) (0.036) (0.035) (0.035)

H (0 − 3) 0.00121 0.000491 -0.0000610 -0.0000610
(0.002) (0.003) (0.003) (0.003)

H (3 − 6) 0.00624*** -0.00205* -0.00210* -0.00210*
(0.001) (0.001) (0.001) (0.001)

H (6 − 9) -0.00141 0.000720 0.000717 0.000717
(0.001) (0.001) (0.001) (0.001)

H (12 − 15) -0.00206** -0.000322 0.0000720 0.0000720
(0.001) (0.001) (0.001) (0.001)

H (15 − 18) -0.000258 -0.000425 0.000373 0.000373
(0.001) (0.001) (0.001) (0.001)

H (≥ 18) 0.000740 -0.00120 -0.0000892 -0.0000892
(0.001) (0.001) (0.001) (0.001)

District FE No Yes Yes Yes
Year FE No Yes Yes Yes
Quadratic Trend × Region No No Yes Yes

R2 0.27 0.02 0.03 0.03
Observations 3911 3908 3908 3908

Notes: The dependent variable is the natural logarithm of mortality rate. Estimated
period is 2014-2019. Reference category for temperature is bin 17-20 °C. Reference
category for humidity is bin 9-12 g/kg. (1)-(4) clustered standard errors at district
level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are weighted
by the square root of district population.
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Table D12: Protective Effect of Heat Adaptation

Temperature Humidity Temperature × Humidity

Air Conditioner Cooler Both Air Conditioner Cooler Both Air Conditioner Cooler Both
(1) (2) (3) (4) (5) (6) (7) (8) (9)

T (< 10) 0.000184 -0.000632 0.0000770 -0.000653 -0.000838 -0.000721 0.000312 -0.000760 0.000235
(0.003) (0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.002) (0.003)

T (10 − 15) 0.00335** 0.00270* 0.00300* 0.00300* 0.00310** 0.00308** 0.00316** 0.00274* 0.00305*
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

T (20 − 25) 0.00229** 0.00199** 0.00209** 0.00221** 0.00218** 0.00220** 0.00226** 0.00200** 0.00218**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

T (25 − 30) 0.00321*** 0.00287*** 0.00295*** 0.00318*** 0.00313*** 0.00315*** 0.00312*** 0.00288*** 0.00302***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

T (30 − 35) 0.00502*** 0.00462*** 0.00473*** 0.00495*** 0.00496*** 0.00498*** 0.00500*** 0.00469*** 0.00489***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

T (≥ 35) 0.0120*** 0.0160*** 0.0161*** 0.0105*** 0.0106*** 0.0106*** 0.00563** 0.00662** 0.00593**
(0.002) (0.004) (0.005) (0.002) (0.002) (0.002) (0.003) (0.003) (0.003)

T (≥ 35) × H (≥ 18) 0.0000866** 0.0000816 0.0000947*
(0.000) (0.000) (0.000)

AC × T (≥ 35) -0.0270*** -0.0206**
(0.009) (0.009)

Cooler × T (≥ 35) -0.00769* -0.00629
(0.004) (0.005)

AC × H (≥ 18) -0.000662 -0.000685
(0.002) (0.002)

Cooler × H (≥ 18) 0.000507 0.000538
(0.001) (0.001)

AC × T (≥ 35) × H (≥ 18) -0.000422*** -0.000384***
(0.000) (0.000)

Cooler × T (≥ 35) × H (≥ 18) -0.0000512 -0.0000238

Precipitation Terciles Yes Yes Yes Yes Yes Yes Yes Yes Yes
Humidity Bins Yes Yes Yes Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Quadratic Trend × Region Yes Yes Yes Yes Yes Yes Yes Yes Yes

R2 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Observations 2753 2753 2753 2753 2753 2753 2753 2753 2753

Notes: The dependent variable is the natural logarithm of mortality rate. Estimated period is 2014-2019. Regressions also include all the temperature
and humidity bins, and precipitation terciles. Reference category for temperature is bin 15-20 ° C. Reference category for humidity is bin 9-12 g/kg.
(1)-(9) clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are weighted by the square root of
district population.
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Table D13: Protective Effect of Heat Adaptation — State-level Penetration Rates

Temperature Humidity Temperature × Humidity

Air Conditioner Cooler Both Air Conditioner Cooler Both Air Conditioner Cooler Both
(1) (2) (3) (4) (5) (6) (7) (8) (9)

AC × T (≥ 35) -0.0444*** -0.0373***
(0.013) (0.014)

Cooler × T (≥ 35) -0.0109** -0.00770
(0.005) (0.005)

AC × H (≥ 18) -0.00228 -0.00521
(0.005) (0.005)

Cooler × H (≥ 18) -0.000857 -0.000746
(0.002) (0.002)

AC × T (≥ 35) × H (≥ 18) -0.000390** -0.000397**
(0.000) (0.000)

Cooler × T (≥ 35) × H (≥ 18) -0.0000427 -0.00000122
(0.000) (0.000)

Precipitation Terciles Yes Yes Yes Yes Yes Yes Yes Yes Yes
Humidity Bins Yes Yes Yes Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Quadratic Trend × Region Yes Yes Yes Yes Yes Yes Yes Yes Yes

R2 0.05 0.06 0.06 0.05 0.06 0.07 0.05 0.06 0.06
Observations 2753 2753 2753 2753 2753 2753 2753 2753 2753

Notes: The dependent variable is the natural logarithm of mortality rate. Estimated period is 2014-2019. Reference category is bin 15-20 °C. Reference category for humidity
is bin 9-12 g/kg. (1)-(9) clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are weighted by the square root of
district population.
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Table D14: Protective Effect of Heat Adaptation — Interactions with All Temperature Bins

Air Conditioner Evaporative Cooler Both
(1) (2) (3)

AC × T (≤ 10) 0.00109 -0.000206
(0.009) (0.009)

Cooler × T (≤ 10) 0.0000828 0.000279
(0.003) (0.003)

AC × T (10 − 15) -0.0114* -0.0102
(0.006) (0.007)

Cooler × T (10 − 15) -0.00219 -0.000694
(0.004) (0.004)

AC × T (20 − 25) -0.00499 -0.00523
(0.004) (0.004)

Cooler × T (20 − 25) -0.00195 -0.00153
(0.002) (0.002)

AC × T (25 − 30) -0.00293 -0.00278
(0.005) (0.005)

Cooler × T (25 − 30) 0.000724 0.00104
(0.002) (0.002)

AC × T (30 − 35) -0.00903 -0.0101
(0.006) (0.006)

Cooler × T (30 − 35) 0.00309 0.00365*
(0.002) (0.002)

AC × T (≥ 35) -0.0246** -0.0155
(0.010) (0.011)

Cooler × T (≥ 35) -0.00752 -0.00646
(0.005) (0.005)

Precipitation Terciles Yes Yes Yes
Humidity Bins Yes Yes Yes
District FE Yes Yes Yes
Year FE Yes Yes Yes
Quadratic Trend × Region Yes Yes Yes

R2 0.05 0.06 0.06
Observations 2753 2753 2753

Notes: The dependent variable is the natural logarithm of mortality rate. Estimated
period is 2014-2019. Reference category for temperature is bin 15-20 ° C. Reference
category for humidity is bin 9-12 g/kg. (1)-(3) clustered standard errors at district
level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are weighted
by the square root of district population.
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Table D15: Protective Effect of Heat Adaptation — Controlling for Income

FE FE
(1) (2)

AC × T (≥ 35) -0.0208** -0.0178*
(0.009) (0.010)

Cooler × T (≥ 35) -0.00636 -0.00629
(0.005) (0.005)

Income Per Capita Yes Yes
Income × Temperature Bins No Yes
Precipitation Terciles Yes Yes
Humidity Bins Yes Yes
District FE Yes Yes
Year FE Yes Yes
Quadratic Trend × Region Yes Yes

R2 0.05 0.06
Observations 2753 2753

Notes: The dependent variable is the natural logarithm
of mortality rate. Estimated period is 2014-2019. Ref-
erence category for temperature is bin 15-20 ° C. Refer-
ence category for humidity is bin 9-12 g/kg. (1)-(3) clus-
tered standard errors at district level in parentheses. *
p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are
weighted by the square root of district population.
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