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Abstract

Solving general sequential decision-making problems with unknown complex and highly

non-linear dynamics has been a central goal of Artificial Intelligence since the conception

of the research field. Reinforcement Learning (RL) offers an extremely general framework

for solving such problems. Its approach of solving sequential decision-making problems

by direct interaction with the environment, allowing for speculation on the value of

candidate solutions, testing, and counter-factual reasoning, has allowed researchers to

achieve remarkable achievements in a multitude of challenging problems both simulated

and real-world. Advances in deep learning have brought about the rise of the Deep

Reinforcement Learning (DeepRL) field as a general framework for solving almost all

sequential decision-making tasks. Nonetheless, the successful application of RL to new

problems requires a large degree of task-specific tuning, and many tasks still represent a

challenge for the current algorithms.

One of the main open challenges in RL remains the exploration-exploitation dilemma.

An agent that optimizes a cumulative objective in an unknown environment while learning

faces the question of whether to trust the current information gathered and exploit it

by executing the best-known strategies or take explorative strategies to gather more

information with the hope of finding better strategies. The exploration problem has been

thoroughly studied in the literature, and a multitude of solutions have been given for

tabular domains or continuous domains with known structure. However, when moving

to complex domains where neural networks are employed as function approximators,

deep and directed exploration is still a challenge. Numerous attempts have been made

to extend provably efficient techniques from the tabular case to the DeepRL case with

mixed results.

iii



i
i

“main” — 2024/5/13 — 14:52 — page iv — #4 i
i

i
i

i
i

A general recipe for achieving efficient exploration has been to endow agents with an

estimate of the uncertainty on the value functions to allow for decisions that account

for the agent’s lack of complete information. While these techniques allow for provable

efficient exploration in tabular settings, their extension to DeepRL still faces numerous

challenges. The main techniques to achieve uncertainty estimates in DeepRL are currently

model-based methods where a distribution over the possible models of the environment

is used to recover uncertainty estimates over the value function or ensemble methods

where multiple value functions are trained to give an estimate of the variance of these

estimates. While both methods have achieved some remarkable results in various domains,

model-based methods require learning multiple models of the environment, increasing

the computational domains of the methods and adding the complexity of learning the

model, while ensemble methods are hard to justify theoretically.

In this dissertation, we tackle the exploration problem in RL by proposing Wasserstein

TD-Learning (WTD), a novel framework that directly models the uncertainty over the

value function estimates in a model-free manner and propagates it across the state-action

space by employing inexpensive variational updates that allow us enough control over the

updates to show some desirable theoretical properties in the tabular setting while allowing

the method to be easily scalable in the DeepRL setting. The extension of WTD with

function approximators allows us to generalize the uncertainty estimates across complex

high-dimensional state-action spaces. This allows us to adapt WTD in a multitude of

different settings by adapting algorithms from the literature to handle the distributional

nature of our value function, allowing for deep and directed exploration.
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CHAPTER1
Introduction

When starting to write this dissertation, we took some time to decide on the initial

sentence of the introduction. “It should be interesting”, we thought. It should capture

the reader, while also setting forth a train of thought that allows us to effectively express

all the ideas presented in this work. The goal of the dissertation was clear. The tools at

our disposal too, i.e., the English language vocabulary. Good then, we can now write the

whole dissertation, we just need to decide the complete sequence of thousands of words

that will effectively convey to the reader the information developed during our work.

Now, if we actually took this approach to writing, we would probably require another

four years to write about the work we developed in four years. Deciding beforehand

the whole sequence of words of the dissertation would require us to plan ahead over an

extremely large horizon, where in each step of this horizon we have a choice between a

large list of words. Obviously, we opted for a different approach. We started with an

“interesting” (hopefully interesting to the reader too) sentence and then continued the

flow of ideas with a general goal in mind. This allowed us to write much faster, stopping

from time to time to think ahead the next sentences or to review what we wrote before

and correct some ideas if needed. Many times we explored a flow of thought that we

considered promising but we did not know how to develop it further after some time, so

1
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we came back and started rewriting, exploring other flows. In this way, we completed this

dissertation, conveying to the reader all the information we aimed to convey, in a clear,

straightforward manner. The complete dissertation might not be the best manuscript

we could have written for our purposes. We might have written a clearer more concise

thesis if we had taken the first approach of planning the text ahead without writing a

single word first. We chose the second approach, opting for an approximate solution to

our thesis writing problem to keep writing times manageable. We used our intuition to

evaluate our writing at intermediate sections of the task to decide how to continue this

chain of thought. Some times our intuition proved wrong and we had to go back and

rewrite.

In our writing example, we already have all the information we need. We know all

the information that needs to be conveyed to the reader, we know our contribution, the

fundamentals of the field, the literature we build upon, and our conclusions. We learn

no new information while writing. Furthermore, there is no uncertainty. We are not

conversing with other people in this dissertation, so there is no uncertainty on their reply

to our writing. Despite this complete information about the task, it was still beneficial

to explore the solution space to reach a good enough solution in a reasonable time.

In our daily lives, we tackle a multitude of other sequential tasks where we do not have

complete information. Consider the example of finding a parking space after reaching

our destination, say a restaurant. After reaching the restaurant, we would like to find a

parking space as close as possible, so that we minimize the walking time to and from our

car. If all the parking spaces outside our destination are taken, we could just wait until

one of them frees up, but we do not know how long that will take. Alternatively, we

could continue looking for a space along the road. We reach a crossroads without finding

a space. Should we turn left, right, or continue straight? Where are we most likely to

find a space? Have we parked around here before? Was it at this time, at this day of the

week? How much previous information can we use to inform this decision? We can see

on the right side many empty spaces along the street. We turn right thinking we found

our parking spot. Then we see that at each of those free spaces, there is a sign that says

that parking is only allowed for residents of this street. We do not live around here so

we cannot park. We could not have seen the signs from the crossroad. Differently from

the writing example, we cannot just go back and turn left instead (driving backward on

a single-lane street while technically possible is still not advisable). We need to continue

in the street and hope we make a better decision (or be luckier) at the next crossroads.

Meanwhile, we keep in mind that this street was not a good option to explore for the

next time we are at that crossroad. We continue this exploration until we find a suitable

parking spot and then walk to our destination. While finding the parking spot we took

2
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many streets around the area. Some we had driven before, and some were new. We

learned while doing the task at hand. This will be useful the next time we need to find

parking in this area. We increased our knowledge of the area (we know not to try to find

parking on the right of that first crossroad) but there are still many streets that we do not

know. Even if we knew all of them, we still do not know how many (if any) free spaces

are there going to be at any given time. Our next parking time will still be uncertain,

but we have more information to exploit for next time. We enter the restaurant knowing

next time we will still probably need to explore the area for 15 minutes before parking.

Maybe we should leave our house a bit earlier to account for that.

These two examples share some characteristics with many tasks we face in our society.

Sequential goal-maximizing decision-making tasks (whether with our without uncertainty)

are ubiquitous. With the advances in technology, more and more of these tasks are

being delegated to complex computer systems, shaping a society that leans heavily on

computers for decision-making and action execution. The classical approach for building

these computer systems has been to heavily shape their behavior, determining a fixed

behavior in advance in response to environmental conditions. This approach yields agents

that fail to adapt to unforeseen situations limiting their application to highly controlled

environments. To be able to tackle complex tasks in the real world, autonomous agents

need to be able to replicate our ability to learn and adapt to unforeseen situations.

Learning agents need to continuously make decisions that impact their future, be able

to reason over the long-term effects of their actions, and be proactive. Self-driving cars,

with different levels of autonomy, are already on our streets. While they have access to a

great amount of information, still they are far from being completely autonomous. In

our parking example, while an autonomous car would have access to the map of the area,

hence knowing not to take that right turn with the resident-only parking, it would still

struggle more than us to find parking, because accounting for all the uncertainty in busy

city streets is practically impossible beforehand. New solutions need to be discovered in

real time, even when solutions to similar problems are known. Moreover, our agents need

not only to estimate the value of possible approximate solution, but also their uncertainty

on these values to be able to better determine which candidate solutions to explore next.

The writing and the parking example are obviously not the focus of this work. They

represent useful examples of the kind of tasks we are interested in solving automatically.

Reinforcement Learning (RL, Sutton and Barto, 2018) represents one of the most useful

frameworks for solving sequential decision-making tasks where the optimal solution is

not known apriori but a limited feedback signal is given as a response to the agent’s

actions. RL agents observe the state of the environment, which contains all the available

information that is relevant to the task and the environment. The agent makes a decision

3
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by executing one of the available actions, observes the evolution of the environment in

the next state and receives feedback in the form of a scalar reward signal. By repeating

this process, RL agents aim to maximize the (possibly discounted) sum of the gathered

rewards during their activity and discover the optimal behavior as fast as possible. While

learning the optimal behavior, RL agents will iterate many partial approximate solutions

of the task. They continuously face the choice of whether to trust these partial solutions

and follow them or explore new possible strategies with the hope that they are better than

the previous strategies, or with the hope of gaining new knowledge of the environment to

be used in the future. Going back to our parking example, do I turn left where I have

found a parking space in the past or continue straight where I might find a spot even

faster? In our writing example, given what I have written so far, what should I write

next? How can I evaluate what I have written so far? These are instances of the famous

exploration-exploitation dilemma (Sutton and Barto, 2018), which is still one of the most

important open problems in the field. While we will not provide a definitive solution

to this problem, we will make several contributions that bring us closer to autonomous

learning agents. In this dissertation, a great focus will be given to devising methods that

allow autonomous agents to estimate not only the value of candidate solutions but also

our uncertainty over these estimates. By having estimates of how uncertain they are in

any given situation, our agents can better decide which solutions to explore next. Going

back again to our writing example, not only will we be able to evaluate our text partially

with our “intuition” but we will also have some estimates of when to trust our intuition

and when not to trust it.

1.1 Motivation

Reinforcement Learning has achieved incredible results in recent years in solving complex

sequential decision-making tasks like video-game-playing (Mnih et al., 2015), board

games (Silver et al., 2017a), robotics (Liu et al., 2022), autonomous driving (Likmeta

et al., 2020) and financial trading (Bisi et al., 2021). These results have been achieved

both in tasks where learning is done online while performing the task with no additional

information on the environment (like in our parking example) or when a model of the

environment is available and can be used to simulate experience before acting (like in

our writing example). The combination of RL with deep learning allowed researchers to

tackle many simulated or real-world tasks, where the number of states and actions is

too large (or infinite) to represent solutions exactly. The combination of Deep RL with

search methods like Monte Carlo Tree Search(MCTS, Browne et al., 2012) allowed the

extension of these methods to domains with abysmally large search spaces like the game

4
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of Go, previously thought as an unsolvable problem with the current methods. Despite

these remarkable achievements, the application of RL to solve sequential decision-making

problems still faces challenges.

The main challenge for the application of RL algorithms is the large sample complexity

of current algorithms, i.e., the amount of experience needed to reach a desired level

of performance. Deep RL algorithms are extremely data-hungry, and in RL, this data

is usually generated online while interacting with the environment. A multitude of

techniques have been proposed for increasing the efficiency of RL agents like pre-training

agents with simulated environments, reusing samples from similar tasks through transfer

learning (Zhu et al., 2023), training general agents in a multitude of similar tasks through

meta-learning (Finn et al., 2017b) or maximizing the usage of the available experience

samples through the study update-to-data ratio (Dorka et al., 2023). In this work, we

focus on methods that decrease the sample complexity of RL agents by exploring the

environment more efficiently.

The effective exploration problem has been extensively studied in the RL literature.

Efficient exploration requires striking a balance between minimizing learning time and

maximizing the agent’s performance during the learning process. This balance necessitates

a certain degree of exploration to uncover effective behaviors. However, identifying an

optimal exploration strategy is a challenging task, given that what proves effective in one

environment might not be suitable for another. The impact of exploration techniques

on learning time varies significantly, highlighting the crucial need for adaptive and

environment-specific strategies. RL researchers typically focus on tabular settings first,

where the theoretical properties of algorithms are more tractable. These algorithms

are subsequently extended for use with general function approximators, although the

theoretical guarantees do not hold anymore. This emphasizes the need for general

algorithms that are theoretically grounded but also easily scalable to the Deep RL

setting.

A multitude of frameworks have been developed to improve the exploration of RL

agents including pseudo-counts (Ostrovski et al., 2017), intrinsic motivation (Bellemare

et al., 2016), entropy maximization (Mutti et al., 2021), ensemble methods (Osband

et al., 2016a), distributional RL(Bellemare et al., 2017b). We will focus on methods that

explore efficiently through the use of epistemic uncertainty estimates, i.e., measures of

how confident we are on the estimated performance of the current (or optimal) policy.

In this work, we introduce Wasserstein Temporal Difference learning (WTD), a novel

framework for representing epistemic uncertainty, propagate it across the state-action

space and exploit it to perform deep and directed exploration. We provide a provably

efficient algorithm based on this framework in the tabular setting and then focus on

5
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several extensions of the framework to tackle problems with large state spaces, continuous

action spaces and settings when a forward model of the environment is available. This

way, we make several contributions toward our goal of having autonomous agents that

explore their environments more efficiently by exploiting estimates of the uncertainty of

their current and future strategies.

1.2 Contributions and Overview

In Chapter 2, we start by introducing the fundamentals of Reinforcement Learning and

planning for solving sequential decision-making problems. We spread the discussion over

relevant background and literature on the use of uncertainty estimates in Reinforcement

learning and efficient exploration in Chapter 4, Chapter 5, and Chapter 6 where we focus

on the specific settings of tabular domains, domains with discrete actions, continuous

control, and model-based methods.

Our original contributions start from Chapter 3, where we illustrate the exploration

problem in Reinforcement Learning by studying the performance of modern Deep RL

algorithms like AlphaZero in goal-directed tasks where the reward function is generally

sparse and uninformative. We propose a simple solution to improve the sample com-

plexity of the algorithm in this setting, based on the combination of AlphaZero with

Hindsight Experience Replay (HER, Andrychowicz et al., 2017) and study its performance

empirically in a number of simulated domains, including a novel application to quantum

compiling. The material of this chapter has been published as a conference paper in

ICLR2022 (Moro et al., 2022).

In Chapter 4, we take a step back and tackle the exploration problem in the model-

free setting. We propose a novel framework, Wasserstein Temporal-Difference (WTD)

learning that represents the epistemic uncertainty over the value function by means of

parametrized posteriors over the possible value functions and propagates this uncertainty

across the state-action space by employing barycenters in Wasserstein space to average

the posteriors to account for aleatoric uncertainty. Furthermore, we present Wasserstein

Q-learning, a model-free RL algorithm based on the WTD framework, and prove some

desirable theoretical properties of WQL related to its sample complexity in tabular

environments. Moreover, we propose a simple extension of the algorithm to the setting

of large or continuous state spaces, where the use of function approximators is required,

by combining it with the DQN algorithm (Mnih et al., 2015). Finally, we perform

a thorough experimental campaign demonstrating the exploration capabilities of the

proposed algorithm. The material of this chapter has been published as a conference

paper in NeurIPS2019 (Metelli et al., 2019).
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We continue in Chapter 5, where we extend the WTD framework to the setting

of continuous control. We introduce Wasserstein Actor-Critic, a model-free algorithm

that extends Soft Actor-Critic (SAC, Haarnoja et al., 2018) by employing distributional

critics to represent and propagate epistemic uncertainty and exploit it to perform deep

exploration by optimizing an optimistic objective. Moreover, we consider some practical

issues that arise when generalizing uncertainty in the WTD framework and propose a

simple regularization of the uncertainty estimates that proves effective in several hard

exploration tasks. The material of this chapter has been published as a conference paper

in AAAI2023 (Likmeta et al., 2023).

In Chapter 6, we present our final contribution, where we combine the WTD framework

with MCTS to propose Wasserstein AlphaZero. We highlight the main differences

compared to the base AlphaZero framework, related to the use of temporal difference

estimates instead of Monte Carlo (MC), and observe empirically how this affects the

exploration capabilities of the agent in several simulated domains.

We conclude our dissertation in Chapter 7, where we recap our contributions and

discuss some interesting future directions related to the use of epistemic uncertainty in

reinforcement learning.
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CHAPTER2
Reinforcement Learning and Planning

In this chapter, we introduce the fundamentals of Reinforcement Learning (RL) and

planning as frameworks for solving sequential decision-making problems. We will restrain

ourselves with a brief introduction of the main solution concepts and methods and refer

the readers to (Puterman, 1994) for a more thorough read.

Reinforcement Learning is an integral framework of machine learning, heavily inspired

by behavioral psychology. It focuses on determining the optimal behavior for agents

within their environment to maximize a predefined utility function. The agent engages in

exploration of its surroundings, gathering data from interactions to inform future decisions.

This process can be viewed as similar to the way a baby explores its environment and

plays in a playground. The driver of the agent’s actions is the reward signal it receives

from the environment. In the context of a baby exploring a playground, the motivation

to engage in activities is tied to humans’ intrinsic drive to understand and explore their

surroundings—an internal, or intrinsic, reward signal. External, or extrinsic, reward

signals are evident in scenarios such as teaching rats to navigate a maze for food upon

reaching the end. Regardless of whether the reward is intrinsic or extrinsic, the reward

function defines the learning task for the agent (Sutton and Barto, 2018). While we

typically assume the agent receives rewards after each action, in complex situations,

9
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Figure 2.1: The Reinforcement Learning framework Sutton and Barto (2018).

actions may impact not only immediate rewards but also future ones. Consequently,

the agent must possess the capability to connect environmental sensations (states) to

actions, considering the potential repercussions on future rewards. The MDP framework

is particularly suitable for formalizing such problems. The whole process is formalized in

Figure 2.1.

Reinforcement Learning stands in stark contrast to Supervised Learning(SL). In

SL, the training process relies on a labeled set of samples provided by an external

authority, hence the term "supervised". Each sample encapsulates a scenario along with

a specification of the system’s correct behavior in that context. The objective is to

generalize from this training dataset, enabling the system to apply appropriate behavior

in novel situations beyond the training set. While crucial in machine learning (and as we

will see also to reinforcement learning), supervised learning alone falls short in addressing

control problems. In sequential decision-making problems, the agents need to identify the

best possible behavior without observing it beforehand in a fixed dataset. Agents must

possess the capability to generate their own datasets and learn from their own experiences.

This leads us to a key aspect that sets reinforcement learning apart from other machine

learning paradigms: the exploration vs exploitation dilemma (Sutton and Barto, 2018).

It stands as one of the most significant challenges in the realm of reinforcement learning.

Agents are tasked with selecting the "best" actions in each situation. To assess the value

of these actions, they leverage knowledge gained from interacting with the environment.

However, to uncover the optimal actions, they must explore the environment by trying

out new actions. Exclusive reliance on either exploration or exploitation is inadequate

for achieving the goal of maximizing rewards. Balancing the two becomes crucial. This

predicament becomes even more crucial in stochastic tasks, where actions need to be

attempted multiple times before a reliable estimate of their value can be obtained.

Although extensively studied for decades, it still remains an open problem. The question

of how to explore better while learning (or planning) is going to be crucial in this thesis,

and we will introduce novel methods to explicitly quantify and leverage the agent’s
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uncertainty regarding the utility of its actions.

Reinforcement Learning seeks a global solution to control problems by learning a

solution that performs well across the entire state space. While this appears desirable,

finding a solution that generalizes effectively across diverse state regions can be challenging.

Monte Carlo Tree Search (MCTS, Browne et al., 2012) algorithms have demonstrated

remarkable efficacy in addressing sequential decision-making challenges, particularly in

deterministic transition tasks like games. MCTS planners leverage a forward environment

model to construct a search tree, assess the value of each action in the current state,

and execute the best-estimated action. This process allows for the derivation of a “local”

solution at each decision step by sampling potential future behaviors through the forward

model. While this localized approach can be advantageous in certain contexts, it incurs

a significant computational burden, as acting in the environment necessitates interleaved

planning phases and potentially large search trees. This family of algorithms is based on

some of the results presented in this thesis, so we formalize the method in this chapter.

In the remainder of the chapter, we start by giving a brief introduction of Markov

Decision Processes in Section 2.1 as the mathematical tool used to formalize sequential

decision-making and define the concept of solving an MDP. We continue by introducing

solution methods when the model of the MDP is known in Section 2.2. Section 2.3

discusses model-free solution methods. Finally in Section 2.4, we formalize MCTS as one

of the main “hybrid” methods where a model of the MDP is available but can only be

used to generate samples.

2.1 Markov Decision Processes

Markov Decision Processes (MDPs) offer a mathematical framework for modeling sequen-

tial decision-making problems in scenarios where outcomes result from a combination of

randomness and the controlled actions of a goal-directed agent. This agent interacts with

an environment, making decisions and receiving sensory feedback. This thesis focuses

on discrete-time MDPs, where the agent’s task involves selecting actions in each state

to maximize their utility function. At each time step, the agent perceives the current

state of the environment. Upon taking an action, the agent then observes the resulting

state and receives an immediate reward associated with this transition. This immediate

reward is a crucial element in decision-making. Typically, the agent’s utility function

involves a cumulative reward calculated over an extended time frame. While maximizing

immediate rewards is important, it may not suffice for maximizing cumulative rewards.

Consequently, the agent often needs to make decisions that involve sacrificing immediate

gains to secure long-term benefits.
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More formally: A Markov Decision Process is a tupleM = (S,A,P,R, µ, γ) , where:

• S is a the set of states , called state space;

• A is the action set , called action space;

• P is a function P : S ×A →P(S)1 called transition model, that for all s ∈ S and

for all a ∈ A, assigns P(· | s, a), a probability measure over S;

• R is a function R : S ×A →P(R) called the reward function, that for all s ∈ S
and for all a ∈ A, assigns a probability measure over R, r(s, a) = E

R∼R(·|s,a)
[R] is

the state-action expected reward;

• µ is a distribution over states in S, called the initial state distribution;

• γ ∈ [0, 1] is the discount factor.

The agent’s sensor and actuator capabilities are defined by the state space S and

action space A. These spaces can take on either finite or infinite, discrete or continuous

forms. The immediate payoff is modeled by means of a scalar reward that, given the

current state s and the current action a, assigns a scalar reward sampled from R(s, a).

R(·|s, a) is the corresponding density function. In most common applications the state-

action expected reward R(s, a) is used, defined as the expected value of the reward taken

over all next states s′ and all real rewards r. We assume that the reward function is

upper bounded in absolute value, i.e., ‖ R ‖∞= maxs∈S maxa∈A | R(s, a) |≤M < +∞.

Time is represented as a discrete set of time steps T = 0, 1, . . . , T , where T is referred

to as the horizon. The horizon can be either finite (T ∈ N) or infinite (T = ∞). In

the former case, the MDP is termed finite horizon, while in the latter case, it is labeled

infinite horizon. An MDP is episodic if its state space includes a terminal (or absorbing)

state, denoted as s, from which no other states can be reached for any action a ∈ A
(P (s|s, a) = 1). It is conventionally assumed that actions performed in a terminal state

yield zero reward.

The discount factor γ, typically set to a value strictly less than 1, plays a crucial

role in attenuating the weight of rewards perceived in the distant future. While this

is particularly relevant in infinite horizon MDPs, it can also prove beneficial in finite

horizon scenarios. An illustrative example involves financial applications, where receiving

monetary rewards in the present generally holds more value than receiving them in the

future, owing to interest rates.

To summarize, the dynamics of MDPs unfold as follows. The process begins with an

initial state s0 ∼ µ. At each time step, the agent selects an action from the available set
1Given a set X , we denote with P(X ) the set of all probability measures over X
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of actions A. Following the transition model P(· | s, a), the agent transitions to state s′

and observes the reward signal r. By iteratively repeating these actions, the agent moves

through a sequence of states, accumulating a series of rewards. The agent’s objective is

to maximize the discounted cumulative sum of these rewards.

2.1.1 Policies

The set of rules that map an agent’s history to actions are referred to as policies. Due

to the Markovian property inherent in Markov Decision Processes (MDPs), the current

state st alone suffices to determine the subsequent action at (Sutton and Barto, 2018)

for most objectives. Such policies are termed Markovian Policies. Additionally, if the

actions mapped are independent of the time step t, the policy is labeled as stationary.

For simplicity in this thesis, when we mention the term "policy", we specifically refer to

Markovian Stationary Policies. More formally:

A Markovian Stationary Policy π is a function π : S → ∆(A) that for every state

s ∈ S maps a probability distribution, π(· | s), over the action space A. If the policy is

deterministic then π : S → A.
The objective of reinforcement learning (loosely defined) is to identify the policy that

maximizes the accumulated reward. An MDP combined with a policy π gives rise to

what is commonly referred to in the literature as a "Markov Reward Process," denoted

by the tuple (S,Pπ,Rπ, µ, γ). For all states s ∈ S, Pπ(· | s) represents a probability

measure over S. P π is the probability density function derived by marginalizing the

transition model of the MDP over the actions:

P π(s′|s) =
∑
a∈A

π(a|s)P (s′|s, a), ∀s, s′ ∈ S. (2.1)

P π(s′|s) gives the probability of ending up in state s’, starting from state s, in one

time step. Similarly,Rπ(·|s, s′) for all s, s′ ∈ S is a probability measure over R with the

corresponding density function R obtained from the reward model of the MDP as:

Rπ(r|s, s′) =
∑
a∈A

π(a|s)R(r|s, s′, a), ∀s, s′ ∈ S. (2.2)

(MRPs) serve as effective models for uncontrolled processes where the concept of action

is irrelevant. They find utility in representing stochastic processes occurring in the

environment, yielding rewards, e.g., evaluation of a fixed policy π. When the notion

of reward is eliminated from MRPs, as previously noted, we are then left with Markov

Chains or Markov Processes.
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Value Functions

As discussed earlier, the goal of reinforcement learning is to find the optimal policy the

agent can play to maximize the sum of rewards in the long term. The most trivial way

to do this is to list all the possible behaviors the agent can exhibit and choose the one

with the highest utility. Fortunately, we can do better than this. A better way is to use

the value function of each state, defined as : The value function in state s, V π(s), of an

MDP is the expected return starting from state s and following policy π:

V π(s) = E
π

[
T∑
t=0

γtR(st, at)|s0 = s

]
, ∀s ∈ S, (2.3)

where the expectation is taken w.r.t. trajectories generated by following policy π starting

from state s. The problem of finding the optimal policy becomes finding the optimal

value function and determining the optimal behavior from it.

For control purposes, it is often more beneficial to define the action-value function,

Qπ(s, a), where instead of taking the first action from policy π, we fix it to a, and then

follow the policy for the remainder of the trajectory. Formally: The action-value function

in state s executing action a, Qπ(s, a), of an MDP is the expected return starting from

state s, applying action a and then following policy π:

Qπ(s, a) = E
π

[
T∑
t=0

γtR(st, at)|s0 = s, a0 = a

]
, ∀(s, a) ∈ S ×A. (2.4)

There is a clear relationship between the value function and the state value function.

The former is computed by averaging the latter over the actions taken by policy π:

V π(s) = E
a∼π(·|s)

[Qπ(s, a)] , ∀s ∈ S. (2.5)

Sometimes it is useful to estimate the advantage function, Aπ(s, a), which represents

how much a given action, a, is better in state s, w.r.t., the average utility of that state.

Aπ(s, a) is defined as:

Aπ(s, a) = Qπ(s, a)− V π(s), ∀(s, a) ∈ S ×A. (2.6)

Bellman Equations and Operators

We defined the state value function, V π(s), as the expected return collected starting

from state s and then following policy π. The value function also admits a recursive

definition, decomposing it further as the sum of the immediate reward in state s with

the expected discounted reward in the following state. This recursive definition will show
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itself as useful in solving MDPs. The Bellman Expectation Equation (Bellman, 1957) is

defined as :

V π(s) = E
π

[rt+1 + γV π(st+1)|st = s]

=
∑
a∈A

π(a|s)
(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V π(s′)

)
.

(2.7)

The action-value function can be decomposed in the same way as :

Qπ(s, a) = E
π

[rt+1 + γQπ(st+1, at+1)|st = s, at = a]

= R(s, a) + γ
∑
s′∈S

P (s′|s, a)V π(s′)

= R(s, a) + γ
∑
s′∈S

P (s′|s, a)
∑
a′∈A

π(a′|s′)Qπ(s′, a′).

(2.8)

When the MDP is finite, by using the Markov Reward Process induced by policy π, we

can write the Bellman Expectation Equation in a concise matrix form of the equation as

follows:

V π = Rπ + γP πV π, (2.9)

which yields the solution:

V π = (I − γP π)−1Rπ. (2.10)

While this is an exact solution of the MDP , unfortunately, inverting the matrix (I − γP π)

has high computational complexity. A way to solve the MDP while avoiding the complexity

of the matrix inversion is to use the Bellman Expectation Operator (Bellman, 1957) defined

as T π : R|S| → R|S|) :

(T πV )(s) =
∑
a∈A

π(a|s)
(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V (s′)

)
, ∀s ∈ S. (2.11)

This operator maps value functions to value functions. It can be shown that the

operator is a γ-contraction and the value function V π is the unique fixed point of the

operator, T π , i.e., it satisfies T π[V π] = V π (Puterman, 1994).

We can define the Bellman Expectation Operator for the action-value function as

well ,T π : R|S|×|A| → R|S|×|A| , defined as:

(T πQπ)(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a)
∑
a′∈A

π(a′|s′)Qπ(s′, a′), ∀(s, a) ∈ S ×A.

(2.12)

Like for the value function, Qπ is the unique fixed point of T π , i.e., T π[Qπ] = Qπ.It is

worth noticing that both operators are linear. Furthermore, they satisfy the contraction

property in L∞ norm, i.e., ‖T πf1−T πf2‖∞ ≤ γ‖f1−f2‖∞ , thus the repeated application
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of T π makes any function converge to the value function. Value functions are very

important in reinforcement learning. They define a partial order over policies. Namely

for any two policies π, π′:

π ≥ π′ if V π(s) ≥ V π′(s), ∀s ∈ S.

2.1.2 Optimality Conditions

We have stated repeatedly that the goal of reinforcement learning algorithms is that of

identifying the optimal policy of the MDP, i.e., the policy that maximizes the agent’s

utility function. It can be shown that such optimal policy, is endowed by the optimal

value function. The optimal value function maximizes the expected return for every state.

If Π is the set of all possible Markovian stationary policies then the optimal value

function,V ∗ is defined as:

Given an MDPM, the optimal value function in any state s ∈ S is given by :

V ∗(s) = max
π∈Π

V π(s), ∀s ∈ S. (2.13)

The optimal value function specifies the best possible performance an agent can reach in

any state of the MDP. Similarly we can define the optimal action-value function, Q∗(s, a)

as:

Given an MDPM, the optimal action-value function in any state-action pair (s, a) ∈
S ×A is given by :

Q∗(s, a) = max
π∈Π

Qπ(s, a), ∀(s, a) ∈ S ×A. (2.14)

The optimal value function also accepts a recursive definition:

V ∗(s) = max
a∈A

Q∗(s, a)

= max
a∈A

(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V ∗(s′)

)
.

(2.15)

Note that there is no specific dependence on a policy π. The Bellman optimality operator,

T ∗ : R|S| → R|S| is defined as:

(T ∗V )(s) = max
a∈A

(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V (s′)

)
, ∀s ∈ S. (2.16)

The optimality operator has the same properties as the Bellman Expectation Operator

mentioned before; namely, it is a contraction w.r.t. ‖ · ‖∞, and the optimal value function

V ∗ is a unique fixed point of the operator. Differently from the Expectation operator, it

is not a linear map, so it does not accept a closed-form solution in matrix form as in

Equation 2.10.
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Optimal Policies

After establishing the optimal value function and its significance, the question arises: is

there any policy, denoted as π∗, whose associated value function aligns with the optimal

value function? (Puterman, 1994) gives us the following result:

For any Markov Decision Process

• There exists an optimal policy π∗ that is better than or equal to all other policies

π ∈ Π;

• All optimal policies achieve the optimal value function, V π∗(s) = V ∗(s);

• All optimal policies achieve the optimal action-value function, Qπ∗(s, a) = Q∗(s, a);

• There is always a deterministic optimal policy for any MDP.

The last result is extremely important. As a result of the theorem above we can find

the optimal policy of an MDP by finding the optimal Q function, Q∗, and taking the

“greedy” action in each state. More formally :

π∗(s) = arg max
a∈A

Q∗(s, a), ∀s ∈ S. (2.17)

It is noteworthy that having knowledge of the optimal action-value function Q∗ is sufficient

for computing an optimal policy in a model-free manner. In contrast, obtaining the

optimal value function V ∗ necessitates knowledge of the transition model P . This is the
main reasoning of Model-free Reinforcement Learning algorithms which are designed to

estimate Q∗ from trajectories and use it to derive the optimal policy.

2.2 Solving MDPs

Knowing all the elements of the tuple enables us to solve the MDP and determine the

optimal policy without actually executing any actions in the environment (Mausam

and Kolobov, 2012). This ability to resolve a decision-making problem without actively

making decisions is referred to as "planning." In the subsequent sections, we will delve

into the explanation of several key planning algorithms.

2.2.1 Dynamic Programming

The primary objective when solving an MDP is to identify an optimal policy. Specifically,

our interest usually lies in finding a singular optimal policy rather than exploring the

entire space of optimal policies. The conventional approach involves determining the

optimal value function (or action-value function) and subsequently deriving the optimal
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Figure 2.2: Policy iteration algorithm (Sutton and Barto, 2018).

policy from it. When the state transition model P is known, the prevalent method for

solving MDPs is through Dynamic Programming (Bellman, 1957).

Dynamic programming is a widely employed technique for solving problems that can

be broken down into subproblems. It is particularly effective for problems that exhibit

two key properties:

• Optimal Substructure: The solution can be decomposed into subproblems.

• Overlapping Subproblems: Subproblems recur frequently, allowing solutions to be

cached and reused.

This recursive approach aligns with the principles of the Bellman operator, as described

earlier. Notably, MDPs possess both of these properties:

• The Bellman equation provides a recursive decomposition.

• The value function stores and reuses solutions.

A cornerstone algorithm of the dynamic programming family for solving MDPs is

Policy Iteration. This method tackles the problem by iteratively engaging in policy

evaluation and policy improvement phases (Howard, 1960). Figure 2.2 illustrates the

Policy Iteration algorithm, which commences with an initial policy, π0. The policy

evaluation phase seeks to estimate the value function of the current policy. Multiple

methods can achieve this, as discussed in the preceding section. While a closed-form

solution (refer to Equation 2.10) offers precision, it comes with substantial computational

costs. Alternatively, a recursive application of the Bellman Expectation Operator

provides an approximation of the true value function for the policy by exploiting the

contraction property. In many applications, the focus is on obtaining a sufficiently
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accurate approximation of the value function. Indeed, this allows the algorithm to be

applied also in settings where the full model is not available but only the ability to

sample from it as well as in settings with infinite state spaces where approximate policy

evaluation schemes can be employed. Following the policy evaluation phase, policy

improvement generates the greedy policy from the value function. In each state, it selects

the action maximizing the value function.

πt+1(s) = arg max
a∈A

Qπ
t
(s, a), s ∈ S. (2.18)

The policy generated is deterministic, and moreover, it is guaranteed to be an improvement

over the previous one (Puterman, 1994). While we can perform the policy evaluation

case even without access to the full model of the MDP, the policy improvement phase is

different. When deriving the greedy policy for the next phase after policy evaluation,

the state transition model P becomes a prerequisite. However, in scenarios where the

model is not accessible, Q-iteration emerges as a viable alternative. In this approach,

instead of evaluating the value function of the policy, we direct our focus toward the

action-value function, undertaking a similar evaluative process. In summary, while policy

iteration necessitates the availability of the state transition model for policy improvement,

Q-iteration offers a solution in cases where the model is unavailable by concentrating

on the action-value function with the added cost of estimating the value for all actions

separately.

While policy iteration explicitly represents polices and iterates through them, Value

iteration is a method that seeks the optimal value function without relying on intermediate

policies. This technique relies on iteratively applying the Bellman Optimality operator,

discussed in the preceding section by exploiting the contraction policy. The algorithm

begins with an initial (random) value function, denoted as V 0, and iteratively applies

the Bellman operator until a stopping condition is met. The stopping condition can be

determined by reaching a maximum number of iterations or based on a minimal metric of

the distance between two consecutive estimations of the value function. In the end, the

optimal policy is obtained in a manner similar to policy iteration, by adopting the greedy

policy induced by the optimal value function. It’s important to note that, once again, the

state transition model is required; otherwise, we need to estimate the optimal action-value

function. The convergence to the optimal value function is guaranteed (Puterman, 1994).

While policy iteration explicitly represents the policy, value iteration concentrates solely

on the value function. This implies that intermediate value functions may not necessarily

correspond to any policy. Both methods exhibit polynomial time complexity for Markov

Decision Processes (MDPs) with a fixed discount factor Mansour and Singh (2013). In

terms of a single iteration, policy iteration is computationally more demanding than
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Algorithm 1 Value Iteration
1: Input: initial estimate Q0

2: for t = 0, 1, ..., until convergence do
3: Qt+1 ← T ∗(Qt)(s, a) ∀s, a ∈ S ×A
4: end for
5: π∗(s) = arg maxa∈AQt(s, a), s ∈ S
6: Output: π∗

value iteration since it necessitates evaluating the policy and performing the greedy

improvement. However, policy iteration tends to converge in fewer iterations. Besides

Dynamic Programming (DP), Linear Programming (LP) can also be employed to recover

the optimal value function. Nevertheless, LP becomes impractical for a much smaller

number of states compared to DP methods. the pseudocode for action-value iteration is

given in Algorithm 1.

2.3 Reinforcement Learning

A significant drawback of Dynamic Programming (when employed for solving MDPs) lies

in its dependency on the knowledge of the model. The necessity of the state transition

model to resolve the MDP poses a limitation, as this model is frequently unavailable in

real-life scenarios. Moreover, Dynamic Programming becomes impractical swiftly as the

action-state spaces of the MDP expand, rendering it clearly unsuitable for infinite MDPs.

In Reinforcement Learning we aim to transform Dynamic Programming algorithms into

a sample-based nature. By adapting the algorithms in a sample-based manner, we can

often marginalize the effects of the environment by sampling from it in the absence of

the transition model.

2.3.1 A Taxonomy of Reinforcement Learning Algorithms

Reinforcement Learning, as a prominent paradigm within Machine Learning, encompasses

a vast array of algorithms that can be classified in several dimensions:

• Model-based vs Model-free:

– Model-based techniques involve estimating the state transition probabilities,

denoted as P. These methods first seek to estimate the transition dynamics

and reward function and then apply Dynamic Programming to derive the

optimal policy.
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– In contrast, model-free techniques aim to directly discover the optimal pol-

icy from samples of trajectories without explicitly estimating the transition

probabilities and reward function.

• On-Policy vs Off-Policy:

– On-policy algorithms estimate the value function associated with the policy

used to collect data (behavioral policy). Consequently, they apply some form

of policy improvement steps to generate a new policy.

– Conversely, off-policy algorithms learn the value function of a target policy

(often the optimal policy) while using a different policy to collect the samples.

This comes with additional issues related to the difficulty of evaluating the

target policy from samples of one or several behavior policies. This generally

makes off-policy algorithms more unstable than on-policy algorithms.

• Online vs Offline:

– Online methods engage in learning while actively collecting samples. This

requires the ability to be able to sample from the environment but generally

makes the algorithm more robust since the policy collecting the data is the

same (or at least similar in the off-policy case) as the policy being optimized.

– On the other hand, offline methods conduct learning after acquiring all the

data. This is generally done by one or more behavioral policies beforehand.

While offline algorithms are considered safer as the behavioral policies are

generally safe, they often struggle due to the limited exploration of the state

action space and the inability to further explore and test the estimates created

during learning.

• Value-based vs Policy-based vs Actor Critic:

– Value-based algorithms focus on estimating the value function of the optimal

policy and derive the optimal policy from it. No explicit policy is ever

maintained by the algorithm.

– Policy-based algorithms attempt to directly estimate the optimal policy by

iterating multiple steps of policy optimization.

– Actor-critic methods combine two components: an actor (or policy) that

collects samples from the environment and a critic (value function) that

estimates the value function of the actor. The actor also uses the estimates

by the critic to perform policy improvement steps.
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• Tabular vs Function Approximation:

– Tabular methods explicitly store the value function for each state in a table.

This approach is applicable solely in finite MDPs.

– Function approximation algorithms leverage approximators such as neural

networks to estimate the value function, allowing for more scalability in

handling larger state spaces. This often comes with a loss of convergence

guarantees to the optimal policy.

This short classification provides a basic understanding of the various Reinforcement

Learning algorithms and their distinctive characteristics. In the following sections, we

present some important model-free algorithms for prediction and control.

2.3.2 Policy Evaluation

Before delving into approximate optimization algorithms for solving MDPs, it is ad-

vantageous to introduce the concept of model-free prediction. This entails the accurate

estimation, from samples, of the value (or action-value) function associated with a fixed

policy π. Our focus will be on the model-free scenario, where the transition model of

the MDP is neither known nor estimated. At this point, the process transforms into

an MRP, considering the MDP in conjunction with a policy. Our attention will be

directed towards two prominent classes of algorithms: Monte Carlo approaches (MC)

and Temporal Difference approaches (TD) (Sutton and Barto, 2018). Both methods

are able to estimate the value function of a policy directly from episodes of experience,

despite lacking knowledge of the transition model of the MDP. This is achieved through

iterative updates to their estimations of the value function in each state:

V t+1(st) = V t(st) + αt
(
V ∗t − V t(st)

)
, (2.19)

where v∗t is an estimation of the value function in state st and αt is the learning rate.

The two approaches differ on how the estimator V ∗t is calculated. The Monte Carlo

estimator employs a straightforward approach where the target value function is the

sum of (discounted) returns over samples of a trajectory generated using policy π, given

by π, VMC
t =

∑T−1
i=t γ

tri+1. However, this estimator comes with the drawback of being

applicable solely to episodic MDPs, meaning that all episodes must conclude for the value

function to be estimated. Additionally, the MC estimator encounters challenges when

states are visited multiple times within the same trajectory. In such cases, a decision

must be made whether to compute the value function solely for the first visit of the state

(first-visit MC) or for every instance the state is visited (every-visit MC). The choice
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between these options hinges on the classical bias-variance trade-off (Sutton and Barto,

2018).

On the other hand, TD makes use of bootstrapping by using the current approximation

of the value function as a prediction target. The estimator now adopts the form of the

temporal difference target, expressed as V TD
t = rt+1 +γV t(st+1) resulting in the temporal

difference update rule:

Vt+1(st) = (1− αt)Vt(St) + αt (Rt+1 + γVt(st+1)) , (2.20)

This approach offers the added advantage of facilitating online learning methods and is

not confined to episodic MDPs. Bootstrapping in TD can be applied after multiple steps,

rather than a single step, resulting in the emergence of TD(n) methods where n denotes

the number of true samples before the application of bootstrapping. The selection of n

plays a role in the bias-variance trade-off; higher values mitigate the bias introduced by

bootstrapping but elevate the variance due to the utilization of longer trajectories from

the environment. Moreover, multiple n-steps estimators can be combined into the TD(λ)

class of algorithms. For further details, we refer to (Sutton and Barto, 2018).

2.3.3 Model-free Control

The prediction problem involves estimating the value function for a fixed policy. What

makes RL algorithms particularly useful is their capacity to learn an optimal policy of

an MDP from samples of experience, constituting the model-free control problem. We

are interested in the setting in which this experience is generated sequentially from the

environment, either in a single stream of experience or by collecting multiple (possibly

partial trajectories) Control algorithms derived from the methods discussed in the previous

section, integrating improvement steps in a Dynamic Programming (DP) fashion. A key

distinction from previous DP algorithms is the inability to execute the policy improvement

step simply by selecting the optimal action based on the current estimate. In the context

of learning from samples and starting with an initial (potentially random) estimate, unlike

value iteration, we cannot update value estimates across the entire state-action space

since we lack the ability to query the environment for state-action pairs of our choosing.

Our sampling is restricted to complete trajectories originating from initial states drawn

from the initial state distribution µ. Some algorithms also assume that trajectories can

be interrupted and reset from another initial state. Consequently, challenging-to-reach

states are visited only if the correct sequence of actions leading to them is generated

during the learning process. Opting for the optimal action based solely on our current

estimate risks (almost surely) converging to sub-optimal policies, as the samples collected

depend on our estimation of the Q function. This presents an instance of the exploitation

23



i
i

“main” — 2024/5/13 — 14:52 — page 24 — #34 i
i

i
i

i
i

vs exploration problem, i.e., utilize existing information (exploitation) or choose new

actions to acquire fresh information (exploration), enabling exploration of uncharted

areas in the state-action space.

One option involves employing an ε-greedy policy, which is a stochastic policy selecting

a random action from the available options with a probability of ε and choosing the

current optimal action with a probability of 1 − ε. The ε-greedy Policy Improvement

Theorem (Sutton and Barto, 2018) establishes that the new policy represents an improve-

ment over the previous one. As we accumulate samples, our confidence in the estimate

of the Q function grows, allowing for a reduction in exploration. This can be achieved,

in its simplest form, by defining a schedule for the exploration rate ε that converges to

zero. The update rule for the Q function can now be expressed as:

Qt+1(st, at) = Qt(st, at) + αt
(
v∗t −Qt(st, at)

)
. (2.21)

Again, different algorithms differ on their estimate of the value function, v∗t . MC uses the

estimator vMC
t =

∑T (τ)−1
i=t γtri+1, while TD as before uses vTDt = rt+1 +Qt(st+1, at+1).

The observations made in the previous section regarding the application of these

algorithms remain pertinent in the control setting. It is crucial to note that both Monte

Carlo (MC) and TD are on-policy methods, implying that they estimate the value

function of a policy while actively following it. This is especially significant during

bootstrapping in TD, as it dictates the selection of the next action, at+1, appearing in

the TD target. The on-policy version of the TD algorithm is the well-known SARSA

algorithm (Rummery and Niranjan, 1994). Both algorithms come with convergence

guarantees, provided they adhere to the Robbins-Monro conditions on the learning rate:
∞∑
t=0

αt = +∞ and
∞∑
t=0

(
αt
)2 ≤ +∞. (2.22)

and each state-action pair is visited infinitely many times (Jaakkola et al., 1994; Sutton

and Barto, 2018), i.e., ε remains larger than 0. A simple case that respects these conditions

is αt = 1
t .

We conclude this section with the introduction of Q-Learning (Watkins, 1989a), an

off-policy algorithm that extends Value Iteration to the model-free scenario. Q-learning

employs a sample-based version of the Bellman Optimality Equation, enabling the

learning of the optimal action-value function without the necessity of playing an optimal

policy. The update rule for Q-learning is expressed as:

Qt+1(st, at) = Qt(st, at) + αt
(
rt+1 + γmax

a′∈A
Qt(st+1, a

′)−Qt(st, at)
)
. (2.23)

The pseudocode of the Q learning algorithm is shown in Alg. 2. Q-learning will serve

as the basis for some of the algorithms developed in this thesis, extending it with more
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sophisticated exploration schemes that leverage uncertainty estimates on the action-value

estimates maintained during learning.

Algorithm 2 Q-learning
Input: States S = {1, . . . , ns}, Actions A = {1, . . . , na}, Reward function

R : S ×A → R, Learning rate α ∈ [0, 1], Exploration rate ε ∈ [0, 1], Discount factor

γ ∈ [0, 1], initial state distribution µ.

Output: Q function

Initialize Q : S ×A → R arbitrarily

while Q is not converged do

Start in state s ∼ µ
while s is not terminal do

Select action a accoring to ε-greedy policy

Take a and receive the reward r and the new state s′

Q(s, a)← (1− α) ·Q(s, a) + α · (r + γ ·maxa′ Q(s′, a′))

s← s′

Update learning rate α according to learning rate schedule

Update exploration rate ε according to exploration rate schedule

end while

end while

return Q

2.4 Monte Carlo Tree Search

Sequential decision-making problems can be solved with two main approaches in a machine-

learning context: Reinforcement Learning (RL) and online planning. RL algorithms

solve these problems by interacting with the environment, or in the case of Batch RL

by optimizing a policy in a fixed dataset of demonstrations from the environment. In

both cases, the algorithm returns a global solution to the problem, which might be

unfeasible or too expensive to do when the state-action space is too large or it is hard to

generalize from. Online planning has proved itself to be a viable alternative to recover

local solutions of the MDP while also leveraging function approximators to generalize

across the state-action space (Silver et al., 2017a). The most used family of algorithms in

the Online Planning realm is Monte Carlo Tree Search (MCTS). In MCTS a generative

model of the environment is used to simulate future trajectories before taking a step in

the true model. Specifically, a 1-step model of the environment and use it in each step

to construct a search-tree to evaluate the different available actions. In this section, we

25



i
i

“main” — 2024/5/13 — 14:52 — page 26 — #36 i
i

i
i

i
i

provide the general scheme of MCTS, focusing on 2 specific algorithms that are built

upon in this thesis.

The family of MCTS algorithms integrates tree-search techniques with Monte Carlo

sampling to progressively construct a search tree depicting potential future scenarios.

This tree is then utilized to derive an estimate of the optimal value for each action in the

current state of the environment. These algorithms follow a structured process generally

consisting of four distinct phases:

• Selection: Commencing from the root of the planning tree, a tree policy is iteratively

applied until an unexpanded node (a node with unvisited children) is reached.

• Expansion: One or more successors of the reached node are incorporated into the

tree. A common best practice is to include only the first newly visited node.

• Simulation: A Monte Carlo simulation (rollout) is initiated from the expanded

node to provide an initial estimate of the node’s value.

• Backpropagation: The values of the states visited during the tree traversal and

simulation are backpropagated up the tree until reaching the root, consequently

updating the pertinent statistics.

In this thesis, our focus centers on Upper Confidence Tree (UCT)(Kocsis and

Szepesvári, 2006). UCT employs the well-known Multi-Armed Bandit (MAB) algo-

rithm, Upper Confidence Bounds (UCB1)(Auer et al., 2002), as a tree policy. At iteration

n, UCB1 selects the action that maximizes a high-probability upper bound of the action

values according to:

an = arg max
i=1..K

Xi,Ti(n−1) + C

√
2 log n

Ti(n− 1)
, (2.24)

where K is the number of actions, C is a constant that regulates the exploration-

exploitation tradeoff, Ti(n− 1) is the number of times action i has been played up to

time n− 1 and Xi,Ti(n−1) is the average payoff observed from arm i. UCT recursively

updates the values of the nodes from the leaf to the root of the tree, during the backup

phase. The algorithm is proved to be consistent, i.e., it converges to the optimal policy

in the limit. In addition to the convergence guarantees of UCT, the algorithm also

enjoys some other properties that have made it highly popular in the literature. First,

the algorithm is anytime, which means it does not need to know the planning budget

in advance and can return its best guess at any moment. This makes it particularly

attractive for real-time scenarios like race-strategy identification (Piccinotti et al., 2021)

or financial applications (Vittori et al., 2022). Secondly, UCT is asymmetric, which
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means that it iteratively builds the search tree by favoring the most promising regions

of the tree while still giving a probability of selection to all branches. Such propriety is

paramount in some applications where the search tree is extremely large. This, in fact, is

also one of the reasons why UCT has no theoretical guarantees on its sample complexity.

This asymmetric tree building is based on the confidence bound kept from the UCB

algorithm employed in each node, which, in turn, is not valid in high probability and

might delay the discovery of the optimal paths if the reward function is misleading in

the top levels of the tree.

Initially designed for deterministic environments where the variance of the transition

and reward functions is 0, UCT has demonstrated success in numerous applications

such as games and industrial optimization problems (Browne et al., 2012). However,

its application becomes challenging when the environment involves a continuous action

space or stochastic transitions with infinite state spaces. Various extensions have been

proposed to address these cases (Browne et al., 2012).

In scenarios with a continuous action space, the application of UCB in the search tree

nodes is not feasible due to the infinite number of actions and, consequently, the search

tree itself is infinite. Progressive Widening (PW) (Couetoux, 2013) is a commonly used

technique for handling MCTS in infinite search spaces. With PW, actions are explored

progressively as the node visitation counts increase, based on the intuition that nodes

visited more frequently are more promising. Specifically, when a node is visited for the

n-th time, if the number of children of a node |Cn(N )| exceeds nα, where 0 < α < 1,

a new action is explored by sampling from the action space. Otherwise, one of the

previously selected actions is explored, often chosen according to UCB1. It is crucial to

note that PW determines when to add new nodes to the search tree but does not specify

which new actions to explore. Typically, new actions are uniformly sampled in the action

space in the literature, although the empirical performance of the algorithms heavily

relies on the chosen action sampling distribution. In problems involving continuous

state spaces and stochastic transition models, where the true search tree is infinite, the

open-loop planning approach (Lecarpentier et al., 2018) is commonly employed. In this

context, the goal is to find the optimal sequence of actions at the root state of the tree

without considering the states visited during the search. This transformation turns the

infinite search tree of the original problem into a finite tree with a branching factor equal

to the number of actions. This comes at the cost of optimal performance since we are

looking for the solution to a simpler problem by averaging between the states visited by

a fixed sequence of actions.
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2.4.1 Leveraging Generalization in MCTS

AlphaZero (Silver et al., 2016) bridges the gap between RL and MCTS by incorporating

a parametric policy, πθ, and a value function, vρ, with the aim of exploiting the local

solution property of MCTS while exploiting the generalization of the global RL solution.

The policy and value networks guide the MCTS algorithm to influence tree search, while

the resulting search tree is used to generate training targets for the value and policy

networks.

Contrary to the conventional MCTS, AlphaZero introduces modifications in the

selection and evaluation phases. During the former, it employs the policy πθ to bias

exploration based on policy recommendations. Additionally, AlphaZero replaces the

traditional UCT algorithm with PUCT (Rosin, 2011), adjusting the selection according

to:

an = arg max
i=1..K

B(ai) = Ri,Ti(n−1) + Cπθ(s, ai)

√
n

1 + Ti(n− 1)
. (2.25)

By combining the PUCT confidence interval with the probability assigned to ai by πθ,

AlphaZero prioritizes actions with high probability and low visit count initially, gradually

favoring actions with high values as the search progresses. In the latter phase, AlphaZero

evaluates leaf nodes using estimates from the value network vρ, eliminating the need for

expensive simulations with a default rollout policy.

During each time step t, AlphaZero conducts M search iterations of MCTS, starting

from the current environment state st, using πθ in the selection phase and vρ during

leaf evaluation. After the search phase, policy targets pt are constructed based on visit

counts at the root of the tree:

pt(ai) =
Nt,i∑
j Nt,j

∀i = 1, . . . ,K, (2.26)

where Nt,i represents the visit count of the i-th action in the root of the tree at step

t, and K is the number of actions. Subsequently, at is sampled according to pt and

executed, observing the next state st+1 and the reward signal rt. In practice, pt is often

times constructed as a greedy policy over the action counts, executing only the most

explored action. At the end of each episode, the collected rewards contribute to building

the value network targets Rt. The triples (st,pt, Rt) are then added to a replay buffer B
used for network training.

In the original AlphaZero paper, the policy and value networks share the parameter

vector θ, and AlphaZero minimizes the following objective function:

E
(s,p,R)∼B

[
(R− vθ(s))2 − pT log πθ(s) + c‖θ‖2

]
(2.27)
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where c controls the amount of L2 regularization. Despite a lack of theoretical guarantees

on convergence, even in simple cases, AlphaZero has demonstrated success across a

variety of complex tasks, particularly in board games such as chess and, most notably,

Go (Silver et al., 2017a). As we will explore in subsequent chapters, despite the enormous

practical success in games, the algorithm encounters challenges in exploration-heavy

environments where sparse feedback is received during optimization
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CHAPTER3
Planning Under Sparse Returns

3.1 Introduction

Monte Carlo Tree Search (MCTS) (Browne et al., 2012) algorithms have shown outstand-

ing results in solving sequential decision-making problems, especially in deterministic

transition tasks, such as games. MCTS planners use a forward environment model to

build a search tree, estimate the value of each action in the current state, and execute

the best-estimated one, respectively. Such a procedure allows finding a “local” solution

to the decision problem in every decision step by sampling trajectories of possible future

policies using the forward model. Although providing local solutions is advantageous in

some contexts, it comes at a high computational cost since acting in the environment

requires interleaved planning phases and possibly large search trees. These high compu-

tational costs have hindered applying MCTS to larger problems, especially those with

long planning horizons and huge tree-branching factors (number of actions). However,

MCTS does not require a training phase and can be deployed immediately.

On the other hand, Reinforcement Learning (RL) (Sutton and Barto, 2018) aims to

find a global solution to the control problem by learning a policy that performs adequately

in the whole state space. While this may seem a more desirable outcome, it can often
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be hard to produce a policy that generalizes satisfactorily across different state regions.

For this reason, MCTS algorithms have achieved tremendous success in a wide range of

tasks (Enzenberger et al., 2010; Ikehata and Ito, 2011). The AlphaZero (Silver et al.,

2016) family of algorithms made it possible to use sequential planners like MCTS in more

challenging environments, such as the game of Go, where the AlphaGo agent defeated the

world champion, achieving super-human performance. AlphaGo was, in turn, defeated

by AlphaZero, a version of the algorithm without any heuristic related to the game of

Go. AlphaZero combines MCTS with the ability of RL algorithms to generalize across

the state-action space by keeping a parametrized policy and value network. Specifically,

the policy network biases the exploration during the tree search, and the value network

estimates the value of the states corresponding to the search tree leaves, replacing the

trajectory-based evaluation usually performed with an ad-hoc evaluation policy called

rollout policy. On the other hand, the MCTS algorithm acts as a policy improvement step.

It takes as input the current state, as well as the policy and value networks, therefore

improving the parametrized policy and generating the samples used to train the networks

in a supervised manner. Although a tree search is still required, the deployment is

cheaper since it usually requires a smaller planning budget, thanks to the policy and

value networks that bias the search by making it more efficient. The algorithm has been

successfully applied to different games such as Go, Chess, and Shogi (Silver et al., 2017a)

without game-specific heuristics. However, despite its success, the algorithm suffers from

a high sample complexity, especially prominent in tasks with sparse reward functions.

Indeed, sparse return tasks still prove to be a challenge for RL algorithms in general, and

in this chapter, we will investigate this challenge for the AlphaZero algorithm. We will

consider goal-directed planning as a testbed for the exploration capabilities of AlphaZero.

In goal-directed tasks, the agent aims to reach a goal state, and in general, the policies

take both the current state of the environment and the goal state as input. Usually, the

actual reward function in these problems is zero for any transition except the one to

the goal state, which gives a positive reward. RL algorithms struggle to optimize sparse

reward functions since it might be hard to reach goal states, or even practically impossible

during exploration if the task is quite challenging. Therefore, there is no reward signal

to guide the exploration. While in practice, in specific tasks, it is possible to use more

informative reward functions, such as a distance from the goal state, such a choice is not

possible for every task. Furthermore, it might also lead to sub-optimal solutions since

a reward function based on a state distance might generate local-optima in the policy

space (Grzes and Kudenko, 2009). Hindsight Experience Replay (HER) (Andrychowicz

et al., 2017) is a straightforward method to tackle the problem of sparse-reward functions

in goal-directed tasks. HER can be used with any off-policy RL algorithm to extend
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the training dataset for the value networks. Practically, whenever the goal state is not

reached during a training episode, the states visited during the episode are used as

alternative goal states and are fed to the network during training. It allows reward signals

to be given to the value networks and generalize them to reach the input goal state.

In this chapter, we investigate and identify exploration issues with the current

performance of AlphaZero in sparse reward tasks and we consider the problem of

applying HER to AlphaZero to tackle goal-directed tasks. We provide a scheme that

does not involve computationally heavy tree re-weighting procedures or high additional

computational costs. Finally, we benchmark the method with simulated environments,

and we show a novel application to quantum compiling, where it is extremely hard to

find unitary gate sequences from a set to approximate arbitrary single-qubit unitary

operators.

3.2 Preliminaries

3.2.1 Goal-Directed Reinforcement Learning

In this chapter, we focus on goal-directed Reinforcement Learning problems. We will

provide a brief introduction of goal-directed MDPs. In such a setting, an autonomous

agent interacts with an environment to maximize the sum of observed reward signals.

Formally, in deterministic goal-directed MDPs transition models, the environment consists

of a state space S, a set of goal states G (that can also be equal to S), an action space

A, a goal-state dependent reward function R : S × A × G → R, a transition model

P : S × A → S, a probability distribution over S for the initial state s0 ∼ µ, and a

probability distribution over G for the goal state sg ∼ ν.
The behavior of the agent is described by a Markovian stationary goal-dependent

policy, π : S × G → ∆(A), which takes as input the current state s and the goal state sg,

and outputs a probability distribution over the actions in A. At the beginning of each

episode, an initial state s0 ∼ µ and a goal state sg ∼ ν are sampled. Then, at time step

t, the agent observes the current state st, selects an action at ∼ π(st, sg), observes the

next state st+1 = P(st, at) and it gets the reward signal rt = r(st, at, sg).

The goal of the agent is to maximize the expected return E[Rt] defined as the

expectation of the discounted sum of future rewards Rt =
∑∞

i=t γ
i−tri taken over the

initial state and goal state. Given a policy π, the value of each state is encoded by

the value function V π(s, sg) = E
at∼π

[R0|s0 = s]. Similarly, the action-value function is

defined for each state-action pair, conditioning on the first action of the trajectories,

Qπ(s, a, sg) = E
at∼π

[R0|s0 = s, a0 = a]. The goal of maximizing the return can be
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expressed as finding an optimal policy, π∗ = arg maxπ V
π(s, sg), ∀(s, sg) ∈ S × G.

3.2.2 Hindsight Experience Replay

Hindsight Experience Replay (Andrychowicz et al., 2017) is a method of extending off-

policy RL algorithms to improve sample efficiency even in the presence of sparse reward

functions. HER requires parameterizing the reward, policy, and value as a function

of the current and the goal state. The basic idea behind HER is to extend the replay

buffer D after each episode {s0, s1, . . . , sT } with the returns calculated based on a set

of subgoals. While the main goal influences the agent’s actions during training, it does

not influence the state transitions. Consequently, we can generate additional training

samples by considering a subset of the states visited during the episode as subgoals. This

is extremely beneficial in cases with sparse rewards, such as a reward function of the

type r(st, at, sg) = 1(st+1 = sg), where reward signals would be null until the goal state

is visited by chance. However, HER enables the reward signals to be generalized across

the state space.

3.3 AlphaZero with Hindsight Experience Replay

This section describes the AlphaZeroHER algorithm. AlphaZero has been successfully

applied to challenging games such as Go and Chess with outstanding results. The

complexity of these games stands in the vast state-action spaces and the highly sparse

reward function, since the agents will only know at the end of the game whether they

have won (a reward of +1), lost (a reward of −1) or drawn (a reward of 0). Although in

the context of TD algorithms, Chess and Go technically fall under the definition of sparse

reward environments, when considering returns observed at the end of the episode (Monte

Carlo returns), such games have a clear reward function: the game’s result is either a

win, a loss or a draw. This reason may give the impression that AlphaZero doesn’t suffer

in a sparse reward setting. However, in goal-directed planning, the Monte Carlo returns

are often sparse, in the sense that the whole episode might finish without a reward signal.

This problem was also mitigated in the original AlphaGo Zero paper (Silver et al., 2017b),

where the authors employed ad-hoc board evaluators to compute the Monte Carlo returns

when episodes of Go were interrupted because they were too long. Due to the criticality

of sparse return tasks, we extend AlphaZero with HER to tackle goal-directed tasks.
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3.3.1 AlphaZeroHER

The basic idea of AlphaZeroHER, is to extend AlphaZero by using a goal-directed policy

and value network and injecting HER into such a setting. Exploiting a goal-directed policy

and value network in AlphaZero is effortless since the experience samples also include

the goal state sg. However, AlphaZero is not an off-policy algorithm since the value

network is trained with the returns collected while playing the MCTS augmented policy.

Moreover, it is not straightforward how to evaluate the new policy when considering a

new goal st 6= sg without introducing additional prohibitive computational costs and

tree re-weighting procedures. Ideally, we aim at estimating a new policy conditioned on

a subgoal st 6= sg. However, estimating such a policy requires building an additional

tree since the policy targets in AlphaZero are a function of the action counts in the

tree’s root node, and this with an obvious additional computational cost. An alternative

approach could keep the original goal’s search tree and re-weight the statistics in the

nodes conditioned on the reward function for the new goal st. However, such a procedure

would require at least traversing the whole tree once, which would be computationally

prohibitive for a large search tree. Such problems represent the main obstacle to the

introduction of HER.

We propose a simple procedure that extends AlphaZero with HER without adding

high computational costs. The basic idea is to neglect its on-policy nature, generating

additional training samples at the end of each episode by sampling additional subgoals

from the visited states. In fact, even though the MCTS augmented policy of AlphaZero

did not reach the goal state, it successfully reached all the states visited during the

episode. More precisely, we employ HER after finishing an episode of length T and

having generated the sequence of states, reward, and policies, {st,pt, rt}Tt=1. The episode

is retraced so that at each state st, M subgoals are sampled from future visited states,

{si}Ti=t+1. After selecting the subgoals states for state st, we need to compute these

states’ policy and value targets. This task is not straightforward since AlphaZero is

an on-policy algorithm. If we computed, in some way, a different policy target from

the actual policy played pt, these would generate a different sequence of state and

rewards after timestep t, which are not available. We could use the built tree to evaluate

these returns related to the subgoals, but these would come with heavy tree-reweighting

schemes for an already computationally heavy algorithm such as AlphaZero. For this

reason, we select as additional policy targets the policies played during the episode pt
since, although these are not the optimal policies that the MCTS agent would have

played if the subgoal states were the goal during the search, they successfully reached the

alternative goal states. Therefore, these samples still represent an improvement over the
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Algorithm 3 AlphaZeroHER
1: Initialize memory buffer D
2: Initialize policy πθ and value network vθ
3: for epoch = 1, · · · , N do
4: for episode = 1, · · · ,M do
5: experiences ← {}
6: Sample initial state st ∼ µ
7: while not done do
8: pt, at ← MCTS(st, πθ, vθ)
9: st+1, rt, done ← applyAction(at)

10: experiences ← experiences
⋃

(st,pt, rt)

11: st ← st+1

12: end while
13: Store every experience (st,pt, zt) in D, where zt =

∑T
i=t γ

i−tri

14: for t in episode experiences do
15: G← Sample k goals from future visited states sj where j > t

16: for g ∈ G do
17: rgt ← r(st, at, g)

18: end for
19: Store every (st,pt, z

g
t ) in D, where zgt =

∑T
i=t γ

i−trgi

20: end for
21: update πθ, vθ according to Equation 2.27
22: end for
23: end for

current policy pθ, which can be used as policy improvement steps. Finally, we compute

the new returns based on the states visited only by computing the new reward signals for

each new subgoal. This procedure is done once for each episode and involves negligible

additional computation. We call this method AlphaZeroHER. Algorithm 3 shows the

pseudocode of the proposed procedure. We notice that the main loop of AlphaZero,

where target values are generated from the policy targets given from MCTS and the

Monte Carlo returns observed during the episodes, is extended with a set of additional

experiences based on the secondary goal states. In our implementation, the goal states

are sampled uniformly from the states visited during each episode.

3.3.2 Motivating Example

To highlight the AlphaZero criticality in sparse return environments, we consider a simple

BitFlip domain from (Andrychowicz et al., 2017), described in detail in Section 3.5.

In this domain, the goal is to modify a long series of n bits to reach the desired bit
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Figure 3.1: Performance of the AlphaZero agent in the BitFlip environment varying the number
of bits using 20 search iterations. Average over 10 runs, 95% c.i.

configuration. While it might be easy to achieve the goal configuration by applying a

random policy when considering a few bits only, it is practically impossible to reach the

goal state if the bit length is increased.

Figure 3.1 shows the performance of plain AlphaZero in the bit-flip environment,

where we have plotted the expected return and the percentage of solved episodes as

a function of the training epochs for three different scenarios. While AlphaZero can

consistently solve an “easy” scenario of 10 bits achieving almost perfect performance, it

struggles with a modest increase in the number of bits, dramatically failing to solve the

task with 18 bits.

3.4 Related Literature

Goal-Directed Reinforcement Learning has been extensively studied over the years.

The optimization of multiple goals has been largely investigated in multi-goal policy

optimization, curriculum learning, goal-directed planning, and multiple-task off-policy

learning.

In the context of universal value function approximators, in (Schaul et al., 2015), the

authors consider the problem of approximating multiple value functions in a single archi-

tecture. In this line of work, various works study the problem of compact representations

of multiple tasks (Dhiman et al., 2018; Ghosh et al., 2018). In such context, the use of

sub-goals (intermediate states between the current state and the goal state) has been

studied to accelerate learning and generalize over the state-space (Nasiriany et al., 2019;

Jurgenson et al., 2020). In (Parascandolo et al., 2020), the authors move the problem

of goal-directed planning from the space of possible policies to the problem of finding

suitable sub-goals. While this has some advantages in certain situations, it cannot be

applied in large state spaces since the complexity of the algorithm scales linearly with

the number of states. Approximate value iteration has also been used with great results
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to solve the Rubik’s cube with a goal-directed framework in (McAleer et al., 2019).

In the context of policy search, (Pinto and Gupta, 2016) and (Caruana, 1997) aim

to learn policies to solve multiple tasks simultaneously. Meta-learning has also been

extensively studied in recent years and can be seen as closely related to multi-task

learning. In meta-learning, a meta-learner is trained to learn swiftly in ever-changing

tasks to adapt to learning in new untested tasks quickly. While meta-learning has been

investigated early in the literature (Schmidhuber, 1987, 2007), recent work has shown

impressive results in the context of Deep RL (Finn et al., 2017a, 2018). Hierarchical

Reinforcement Learning is also closely related to meta-learning (and our work). Here the

goal is to (automatically) learn to perform multiple tasks by splitting the main problem

into sub-tasks (Schmidhuber, 2002; Fruit et al., 2017). This is also closely related to the

options framework (Sutton and Barto, 2018).

3.5 Experiments

In this section, we provide an experimental evaluation of AlphaZeroHER on simulated

domains, including a novel application on a quantum compiling task, modeled as a

deterministic goal-directed MDP. In the following, “search iteration” refers to a single

application of the 4 MCTS phases. More details are given in Appendix B.1.1.

3.5.1 BitFlip

We consider a BitFlip environment where the individual bits of a long series of n bits

are changed to reach a desired final configuration. More precisely, the state space is

S = {0, 1}n, as well as the goal space G. The action space A = {0, 1, . . . , n− 1} specifies
which bit of the current state changes from 0 to 1 or vice-versa. At the beginning of each

episode, the starting bits and goal state are set randomly with uniform measures over

the state space. We use a “sparse” reward of −1 for each transition unless the goal state

is reached.

We tested such an environment as a motivating example for the application of HER in

AlphaZero and a benchmark test since increasing the number of bits can vary the task’s

difficulty sensibly. In all the runs in BitFlip, we use 20 neurons for the shared layer, 8

neurons for the policy layer and 4 for the value layer. The network hyper-parameters were

not optimized. Figure 3.2 reports the performance of AlphaZeroHER in the scenario of

70 bits for different numbers of subgoals sampled (0 subgoals refers to plain AlphaZero).

While AlphaZero struggles with 12 bits and fails with 18 bits, AlphaZeroHER manages

to achieve great results in the case of 70 bits. Moreover, the agent achieves better
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Figure 3.2: Comparison between AlphaZero (red line) and AlphaZeroHER (green, blue, and
orange lines) in the BitFlip environment varying the number of sampled subgoals, using 20 search
iterations and 70 bits. Average over 10 runs, 95% c.i.

performance by increasing the number of additional goals, getting perfect performance

by using 4 subgoals only.

3.5.2 2D Navigation Task

In this section, we consider a 2D navigation task built on top of the Mujoco (Todorov

et al., 2012) robotics simulator, called Point. The purpose of this experiment is to observe

the performance of AlphaZero and AlphaZeroHER in a more challenging task, that

requires a fair amount of exploration. More precisely, the agent’s goal (orange ball) has

to reach the goal state highlighted by the green rectangle as shown in Figure 3.4. The

task is made more challenging by the presence of a wall in the center of the environment.

At the beginning of each episode, the starting state and the goal state are sampled on

the left and right sides of the wall, respectively. The agent observes its current position

and its current velocities in both directions and the coordinates of the goal state, while

the action space is represented as control over two actuators of the agent. Although the

original action space is continuous over the domain [−1, 1]2, we restricted the space to 9

discrete actions, representing the center (no action) and 8 points on the circle centered at

action (0, 0) with radius 1. The reward function is −1 at each step, making the optimal

policy the shortest path that reaches the green rectangle while circumventing the wall.

We use a simple MLP with 20 neurons for the shared layer, 10 neurons for the policy

layer, and 4 for the value layer. Figure 3.3 shows the results of the experiments in this

domain. We use a large horizon of 200 steps, after which we interrupt if the goal state

is not reached. While AlphaZero fails to solve the environment, only reaching the goal

state in 10% of the episodes, by applying HER, we manage to solve most of the episodes,

with only sampling 2 additional goals for each episode of experience.
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Figure 3.3: Comparison between AlphaZero and AlphaZeroHER in the 2D Navigation task using
70 search iterations. Average over 5 runs, 95% c.i.

Figure 3.4: Visual representation of the Point (left) and Maze (right) environments.
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Figure 3.5: Comparison between AlphaZero and AlphaZeroHER in the 2D Maze task using 120

search iterations. Average over 5 runs, 95% c.i.

3.5.3 2D Maze

This section considers an environment of 2D procedurally generated mazes whose struc-

ture changes at each episode, as shown in Figure 3.4. This experiment aims to test

the algorithm’s performance in a challenging image task, where Convolutional Neural

Networks represent the policy and value space. At each episode, the agent is spawned on

a free cell (shown in red) and moves to reach the goal cell (shown in green). The action

space consists of four directional movements, which move the agent to one of the adjacent

cells. However, if the action points towards a wall, the agent does not move. The reward

function employed in this environment is a constant reward of −1, prompting the agent

to find the shortest path to the goal. The state space corresponds to a 2D image of the

complete maze.

We employ the same network architecture in all the experiments, consisting of a

3-Layer CNN, with a kernel size of 3, a Layer Normalization after each convolutional

layer, and strides of [1,1,2]. The policy and value network heads have two additional fully

connected layers of 128 and 64 neurons each. We run experiments in 10x10 mazes, using

a horizon of 60 steps, after which we interrupt if the goal state is not reached. Figure 3.5

shows the results of the experiments in this domain. We can see that AlphaZeroHER

clearly outperforms plain AlphaZero in this environment, although it does not itself

achieve a perfect score. We attribute this low general performance to the fact that the

hyperparameters of the training process were not optimized, and in an image-based

task, with CNNs as policy and value space, the architecture and training procedure are

crucial. Nonetheless, AlphaZeroHER manages to substantially clearly improve over plain

AlphaZero with only 2 additional goals.
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3.5.4 Quantum Compiler Environment

Gate-model quantum computers achieve quantum computation by applying quantum

transformations on quantum physical systems called qubits (Nielsen and Chuang, 2002).

Due to hardware constraints and quantum disturbances (Linke et al., 2017; Maslov, 2017;

Leibfried et al., 2007; Debnath et al., 2016), quantum computers require compilers to

approximate any quantum transformations as ordered sequences of quantum gates that

can be applied on the hardware. In this work, we employ AlphaZeroHER to address the

problem of quantum compilation. We consider a Quantum Compiler (QC) environment

consisting of a sequence Un =
∏n
j=1Aj of quantum gates Aj that starts empty at the

beginning of each episode, as fully described in Moro et al. (2021). Such sequence is built

incrementally at each time-step by the agent, choosing from a finite set of quantum gates

B corresponding to the action space. More specifically, we chose the base composed of

six finite rotations, i.e B =
(
Rx̂(± π

128), Rŷ(± π
128), Rẑ(± π

128)
)
.

The goal of the agent consists of approximating a single-qubit unitary transformation

U that is chosen at each episode from Haar matrices. Pictorially, sampling Haar unitary

matrices can be seen as choosing a number from a uniform distribution (Russell et al.,

2017). The observation used as input at time-step t corresponds to the vector of the

real and imaginary parts of the elements of the matrix On, where U = Un · On. Such

representation encodes all the useful information required to achieve the task, i.e., the

unitary transformation to approximate U and the current sequence of gates. We exploited

average gate fidelity (AGF) (Nielsen, 2002) as a metric to evaluate the distance between

the target gate U and the current sequence of gates Un. The task is solved whenever the

agent reaches a distance equal to or greater than 0.99 AGF. The base of gates B allows

defining a distance-based reward, which allows solving the problem with relative ease,

although it leads to sub-optimal solutions as shown in Moro et al. (2021). However, in

this work, we employ a sparse reward equal to −1 regardless of the action performed by

the agent. For such reason, the task is very challenging since a high number of steps are

required to approximate Haar unitary targets on average.

In all the experiments, we use the same network architecture, consisting of a simple

MLP with one initial layer of 16 hidden neurons. The policy and value network heads have

an additional layer of 8 and 4 hidden neurons respectively. Figure 3.6 shows the results

of the experiments in the QC task. In this task, the planning horizon is substantially

longer than in previous environments. We interrupted the episodes at 300 steps since a

perfect policy achieves an average episode length of 180 steps and 95% of the solution

can be achieved using less than 200 steps (Moro et al., 2021). AlphaZero shows a slow

performance improvement, but after 100 training epochs it fails to learn the optimal
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Figure 3.6: Comparison between AlphaZero and AlphaZeroHER in the quantum compiling
environment with 20 search iterations. Average over 10 runs, 95% c.i.
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Figure 3.7: Varying the number of subgoals in the BitFlip environment. Average of 10 runs, 95%
c.i..

policy. On the other hand, AlphaZeroHER consistently improves the performance and

achieves almost perfect resolution of the problem.

3.5.5 Dependece on Number of Subgoals

We briefly study the effect of increasing the number of sampled subgoals in AlphaZeroHER.

Figure B.1 and Figure B.2 show the results of varying the number of subgoals in the

BitFlip and quantum compiling environments, respectively. We can see that in both

enviroments the performance increases as we increase the number of subgoals k until

we reach a (problem dependent) threshold, after which the performance starts falling

until it reaches the lower levels when we use as subgoals, all the available ones (label

All). This is in line with the results presented in the original HER paper (Andrychowicz

et al., 2017).

3.5.6 Comparison with DQN + HER

In this section, we compared the proposed AlphaZeroHER with DQN+HER used in

the original HER paper. The goal of this experiment is to answer whether using HER

in an MCTS method like AlphaZero was needed, or using “more traditional” HER
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Figure 3.8: Varying the number of subgoals in the quantum compiling environment. Average of
10 runs, 95% c.i..

implementations, like DQN, was enough to solve the considered environments. We

use the implementation of DQN and HER given from stable-baselines 1. To make the

comparison fair, we first employed the same network architecture used by our agents.

However, except for the bitflip domains of less than 20 bits, the DQN agents could not

solve any of the domains. For this reason, in the following results, we have employed a

more complex network architecture for all domains (except Maze where we use the same

CNN), namely an MLP with a single hidden layer of 128 neurons. We optimized the

DQN hyperparameters using hyperopt2. The best hyperparameters used in all domains

are listed in Table B.3. It is worth noting that the hyperparameters for AlphaZero and

AlphaZeroHer presented in Section 5 were not tuned.

Figure 3.9 shows the results of DQN+HER in the Bitflip domain for different numbers

of bits. We used four additional subgoals like in the AlphaZero case but with a more

complex network architecture. We can reproduce the results presented in the HER paper,

as the top-performing policies solve the problems 100% of the time. When comparing

the average performance, though, DQN+HER still performs worse than AlphaZeroHER,

only solving on average 80% of the episodes up to 60 bits, and even less when increasing

to 70 bits.

We also achieved satisfactory results in the quantum compiling domain, solving

around 80% of the episodes within the given horizon, yet still less than the 95% achieved

from the AlphaZeroHER agent presented in Section 5. Figure 3.10 shows the performance

in this domain. There, a more complex network structure was needed to achieve this

performance too. DQN+HER starts to fail in the 2D navigation task. Figure 3.11

presents the results in this domain. Even after tuning the DQN parameters, we only

can achieve around 5% of solved episodes on average, in contrast to the 80% achieved

by AlphaZeroHER. Finally, in the Maze domain, even after tuning, DQN+HER could

1https://github.com/hill-a/stable-baselines
2http://hyperopt.github.io/hyperopt/
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Figure 3.9: Performance of DQN+HER in Bitflip by varying the number of bits. Average of 5
runs, 95% c.i..
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Figure 3.10: Performance of DQN+HER in QC using 4 additional subgoals. Average of 5 runs,
95% c.i..

not resolve a single episode of the task against the 60% solve rate of AlphaZeroHER.

These experiments confirm again that sparse return tasks remain a problem not only for

an MCTS algorithm like AlphaZero but also for a TD value-based algorithm like DQN,

which despite the additional samples from HER, still fails to solve most of the tasks we

investigated.
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Figure 3.11: Performance of DQN+HER in the 2D navigation task. Average of 5 runs, 95% c.i..
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3.6 Discussion

In this chapter, we identified how sophisticated Deep Reinforcement Learning algorithms

like AlphaZero and DQN still can struggle in sparse return tasks, even in limited planning

horizons. We illustrated this in the context of goal-directed tasks, where a single positive

reward is received when reaching a goal state. For the specific case of goal-dependent

tasks, we introduced a novel algorithm, consisting of the extension of AlphaZero with

the Hindsight Experience Replay (HER) method to overcome the issues caused by

sparse reward functions typical of goal-directed planning. We provide a straightforward

procedure that does not involve high computational costs by sampling other goals from

the visited states and addressing the intrinsic on-policy nature of AlphaZero. The

proposed approach outperforms AlphaZero in several test domains, including a novel

application to quantum compiling, with negligible additional computation compared to

plain AlphaZero.

While this simple method was enough to improve performance in the considered

goal-based benchmarks the exploration problem remains when considering classical RL

tasks where the reward function is not goal-dependent. In goal-dependent tasks, we can

generate new samples by changing the goal states and generalizing across them. In tasks

where we cannot choose our own goals or we do not have access to the reward function

we cannot apply HER to augment our samples. In these kinds of tasks, AlphaZero or

any other MCTS or RL algorithm is completely dependent on randomly reaching the

goal without any additional information.

In the following chapter, we will investigate novel approaches for improving exploration

in RL. We will investigate epistemic uncertainty, as a tool to direct the exploration of

our agents toward more promising regions of the state-action space. In sparse return

settings, this would translate to incentivizing “new” regions of the state space, since they

would come with a higher uncertainty even though no reward is collected, avoiding the

undirected exploration we observed in this chapter. Specifically, we aim to devise methods

that generalize uncertainty estimates, with the goal of improving exploration even in

planning algorithms like AlphaZero, biasing the search in the tree towards promising

regions of the state-action space, instead of towards regions favored by the policy as in

Equation 2.25.
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CHAPTER4
Propagating Uncertainty in TD-Learning

4.1 Introduction

As discussed and illustrated in previous chapters, effectively balancing exploration and

exploitation is a key challenge in Reinforcement Learning. When an agent takes decisions

under uncertainty, it faces the dilemma between exploiting the information collected so far

to execute what is believed to be the best action or to choose a possibly suboptimal action

to explore new portions of the environment and gather new information, leading to more

profitable behaviors in the future. Traditional exploration strategies, such as ε-greedy

and Boltzmann exploration (Sutton and Barto, 2018), inject random noise into the action-

selection process, i.e., the policy, to guarantee that each action is tried often enough.

Although these methods allow RL algorithms to learn the optimal value function under

mild assumptions (Singh et al., 2000), they are not efficient, since exploration is random

and not driven by confidence on the value function estimate. Therefore, they might

converge towards the optimal behavior after an exponential number of steps (Kakade

et al., 2003).

The exploration-exploitation dilemma has been extensively analyzed in the RL

community, focusing on the definition of proper indices for provably-efficient exploration
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and devising algorithms with strong theoretical guarantees (Kearns and Singh, 2002;

Brafman and Tennenholtz, 2002; Jaksch et al., 2010a; Osband et al., 2016a). Most of these

algorithms are inherently model-based, i.e., they need to maintain and update estimates

of the environment dynamics and the reward function during the learning process. For

this reason, model-based methods are rather unsuited to problems with large state

spaces and inapplicable to continuous environments. Apart from rare exceptions (Strehl

et al., 2006), the RL community has only recently focused on devising efficient model-

free exploration strategies. Some works have succeeded in obtaining provably-efficient

algorithms (Pazis et al., 2016; Osband et al., 2016b; Jin et al., 2018); whereas others are

more empirically-oriented (Osband et al., 2016a, 2018; Azizzadenesheli et al., 2018).

A fundamental step towards efficient exploration is the quantification of the uncertainty

of the value function. The notion of uncertainty is formalized in Bayesian statistics

by means of a posterior distribution. Bayesian Reinforcement Learning incorporates

the Bayesian inference tools to provide a principled way to address the exploration-

exploitation dilemma (Ghavamzadeh et al., 2015). However, these methods rarely exploit

the specific way in which the uncertainty propagates through the Bellman equation.

Recently, in (O’Donoghue et al., 2018) a partial answer has been provided, proposing an

uncertainty Bellman inequality; although no posterior distribution is explicitly considered.

In this chapter, we propose a novel Bayesian framework to address the problem of

exploration using posterior distributions over the value function. Specifically, we focus

on how to model directly this epistemic uncertainty and propagate it when performing

temporal-difference learning (Section 4.3). Moreover, we show how to use this uncertainty

information to effectively explore the environment. Finally, we combine these elements to

build our algorithm: Wasserstein Q-Learning (WQL, Section 4.4). Similarly to Bayesian

Q-Learning (Dearden et al., 1998), we equip each state-action pair with an approximate

posterior distribution (named Q-posterior), whose goal is to quantify the uncertainty

of the value function. Whenever a transition occurs, we update our distribution, in a

temporal difference (TD, Sutton and Barto, 2018) fashion, in order to incorporate all

sources of uncertainty: i) the one due to the sample estimate of the reward function and

environment dynamics; ii) the uncertainty injected using the estimate of the next-state

value function. Rather than employing a standard Bayesian update, we resort to a

variational approach to approximate the posterior distribution, based on Wasserstein

barycenters (Agueh and Carlier, 2011). Recently, several works have embedded into RL

algorithms notions coming from Optimal Transport (OT, Villani, 2008), especially the

Wasserstein metric, to improve the learning abilities of policy search algorithms (Pacchiano

et al., 2019) or in the field of robust RL (Abdullah et al., 2019). We will show that, when

paired with proper choices of the approximate posterior distribution model, this method
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has remarkable properties and allows accounting also for the correlation of samples.

This will prove important, as we avoid costly updates while still being able to provide

theoretical guarantees on the algorithm’s performance. These variational updates also

make it easy for us to extend the algorithms to the use of function approximators as

discussed in Section 4.7. This will prove important, as it allows us to generalize our

uncertainty estimate and use them in a variety of algorithms and settings, including

continuous action spaces which are out of the scope of this chapter and will be addressed

in Chapter 5 and online planning addressed in Chapter 6. In this way, we propose a novel

framework that is theoretically grounded with provable guarantees in the tabular setting

but can also be easily extended to DeepRL with limited additional computational costs.

Indeed, we prove in Section 4.5, that a slight modification of WQL, in tabular domains,

is PAC-MDP in the average loss setting (Strehl and Littman, 2008). After examining

the related literature (Section 4.6), we present an experimental evaluation on tabular

environments to show the effectiveness of WQL, compared to the classic RL algorithms,

some of which specifically designed for exploration (Section 4.7.1). Finally, we provide

some preliminary results on the application of WQL to deep architectures (Section 4.7.2).

The proofs of all results are reported in Appendix A.2. The implementation of the

proposed algorithms can be found at https://github.com/albertometelli/wql.

4.2 Preliminaries

In this section, we recall some notation and basic notions we will use in the following.

Given a measurable space (X ,F ), where X is a set and F is a σ-algebra over X , we
denote by P(X ) the set of all probability measures over (X ,F ).

4.2.1 Wasserstein Barycenters

Let (X , d) be a complete separable metric (Polish) space and x0 ∈ X be an arbitrary

point. For each p ∈ [1,+∞) we define Pp(X ) as the set of all probability measures µ

over (X ,F ) such that EX∼µ[d(X,x0)p] < +∞. Let µ, ν ∈Pp(X ), the Lp-Wasserstein

distance between µ and ν is defined as (Villani, 2008):

Wp(µ, ν) =

(
inf

ρ∈Γ(µ,ν)
E

X,Y∼ρ
[d(X,Y )p]

)1/p

, (4.1)

where Γ(µ, ν) is the set of all probability measures on X × X (couplings) with marginals

µ and ν. With little abuse of notation, we will indicate with Wp(X,Y ) = Wp(µ, ν),

whenever clear from the context. The Wasserstein distance comes from the optimal

transport community. Intuitively, it represents the “cost” to move the probability mass
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Definition 4.3.2 (V-posterior). Given a policy π and a state s ∈ S, we define the V-posterior V(s) induced by the

Q-posteriors Q(s, a) with a ∈ A as the Wassertein barycenter of the Q(s, a):

V(s) ∈ arg inf
V∈Q

{
E

A∼π(·|s)

[
W2 (V,Q(s,A))2

]}
. (4.3)
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to turn one distribution into the other. Given a set of probability measures {νi}ni=1,

belonging to the class N , and a set of weights {ξi}ni=1,
∑n

i=1 ξi = 1 and ξi ≥ 0, the

L2-Wasserstein barycenter is defined as (Agueh and Carlier, 2011):

ν = arg inf
ν∈N

{
n∑
i=1

ξiW2(ν, νi)
2

}
. (4.2)

4.3 How to Model and Propagate Uncertainty?

In this section, we introduce a unifying Bayesian framework for exploration in RL that

employs (approximate) posterior distributions to model uncertainty of value functions

(Section 4.3.1) and Wasserstein barycenters to propagate uncertainty when performing

TD updates (Section 4.3.2). Furthermore, we discuss how to leverage on the Q-posteriors

to estimate the action that attains the maximum return in each state (Section 4.3.3) and

to effectively explore the environment (Section 4.3.4).

4.3.1 Modeling Uncertainty via Q-Posteriors

Taking inspiration from Bayesian approaches to RL (Dearden et al., 1998; Ghavamzadeh

et al., 2015), for each state s ∈ S and action a ∈ A we maintain a probability distribution

Q(s, a), which we call Q-posterior, representing a (possibly approximate) posterior

distribution of the Q-function estimate. This distribution will depend on the underlying

MDP, in particular, the environment dynamics P and reward model R, and on the

updates of the Q-function estimates performed. Given a learning algorithm, at each

iteration t, the estimation of the Q-function will follow a certain distribution that is

the result of two contributions: i) the underlying MDP, in particular the environment

dynamics P and reward model R; ii) the learning algorithm itself, especially the policies

played and the update rules executed up to time t. Furthermore, when considering TD

algorithms, these distribution are likely to be dependent across different state-action pairs,

since samples are shared when performing TD update rules (2.20). As in a model-free

scenario we cannot represent such distribution exactly, we employ a class of approximating

probability distributions Q ⊆P(R). Similarly to usual value functions, we introduce

the V-posterior V(s) which represents the (possibly approximate) posterior distribution

of V-function, that combines the uncertainties modeled by the Q-posteriors Q(s, a).

Furthermore, being the V-function defined, in the usual framework, as the expectation of

the Q-function over the action space, i.e., V π(s) = EA∼π[Qπ(s, a)], it is natural to define,

in our setting, the V-posterior V(s) as the Wasserstein barycenter of the Q-posteriors
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Definition 4.3.3 (Wasserstein Temporal Difference). Let Qt be the current Q-posterior, given a transition (St, At, St+1, Rt+1),

we define the TD-target-posterior as Tt = Rt+1 + γVt(St+1). Let αt ≥ 0 be the learning rate, we define the Wasserstein

Temporal Difference (WTD) update rule as:

Qt+1(St, At) ∈ arg inf
Q∈Q

{
(1− αt)W2 (Q,Qt(St, At))2 + αtW2 (Q, Tt)2

}
. (4.5)
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Q(s, a).1

Definition 4.3.2 (V-posterior). Given a policy π and a state s ∈ S, we define the

V-posterior V(s) induced by the Q-posteriors Q(s, a) with a ∈ A as the Wassertein

barycenter of the Q(s, a):

V(s) ∈ arg inf
V∈Q

{
E

A∼π(·|s)

[
W2 (V,Q(s,A))2

]}
. (4.4)

When the policy π is known, the expectation over the action space can be computed

as we are assuming that A is finite. In a prediction problem, policy π is a fixed policy,

whereas, in a control problem, π is a policy aimed at properly selecting the best action

in state s accounting for the uncertainty modeled by the Q-posterior (see Section 4.3.3).

Moreover, whenQ(s, a) are deterministic distributions, V(s) is a deterministic distribution

too centered in the mean of the Q(s, a). In this way, we obtain the usual V-function

definition (see Proposition A.1.3).

It is important to stress that our approach is rather different from Distributional

Reinforcement Learning (Bellemare et al., 2017a; Dabney et al., 2018a; Rowland et al.,

2018). Indeed, we employ a distribution to represent the uncertainty of the Q-function

estimate and not the intrinsic randomness of the return. The two distributions are clearly

related and both depend on the stochasticity of the reward and of the transition model.

However, in our approach the stochasticity refers to the uncertainty on the Q-function

estimate which reduces as the number of updates increases, being a sample mean.2

4.3.2 Propagating Uncertainty via Wasserstein Barycenters

In this section, we discuss the problem of uncertainty propagation, i.e., how to deal

with the update of the Q-posteriors when experiencing a transition (St, At, St+1, Rt+1).

Whenever a TD update is performed, there are two sources of uncertainty involved.

First, we implicitly estimate the environment dynamics P(·|St, At) and the reward model

R(·|St, At) using a set of sampled transitions (St, At, St+1, Rt+1). Second, when using

the V-function estimates of the next states Vt(St+1) we bring into Qt+1(St, At) part of

the uncertainty of Vt(St+1) and they become correlated. This phenomenon poses new

challenges in the correct use of Bayesian approaches to model the uncertainty of the

Q-function estimates. For this reason, the standard Bayesian posterior update, used for

instance in Bayesian Q-learning (Dearden et al., 1998), becomes rather inappropriate
1The Wasserstein barycenter can be regarded as a way of averaging distributions (Agueh and Carlier,

2011).
2A notable difference w.r.t. the distributional RL is that the variance of our posterior distribution

Var
Q∼Q(s,a)

[Q] vanishes as the number of updates grows to infinity.
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Definition 4.3.5 (Wasserstein Temporal Difference). Let Qt be the current Q-posterior, given a transition (St, At, St+1, Rt+1),

we define the TD-target-posterior as Tt = Rt+1 + γVt(St+1). Let αt ≥ 0 be the learning rate, we define the Wasserstein

Temporal Difference (WTD) update rule as:

Qt+1(St, At) ∈ arg inf
Q∈Q

{
(1− αt)W2 (Q,Qt(St, At))2 + αtW2 (Q, Tt)2

}
. (4.7)
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as it assumes that the samples are independent, which is clearly not true. We argue

that, rather than using a Bayesian update, when we have a Q-posterior Qt(St, At) and a

V-posterior Vt(St+1) we can combine them using a notion of barycenter, which does not

require the independence assumption. We formalize this idea in the following update

rule.

Definition 4.3.4 (Wasserstein Temporal Difference). Let Qt be the current Q-posterior,

given a transition (St, At, St+1, Rt+1), we define the TD-target-posterior as Tt = Rt+1 +

γVt(St+1). Let αt ≥ 0 be the learning rate, we define the Wasserstein Temporal Difference

(WTD) update rule as:

Qt+1(St, At) ∈ arg inf
Q∈Q

{
(1− αt)W2 (Q,Qt(St, At))2 + αtW2 (Q, Tt)2

}
. (4.6)

Therefore, the new Q-posterior Qt+1(St, At) is the Wasserstein barycenter between

the current Q-posterior Qt(St, At) and the TD-target posterior Tt = Rt+1 + γVt(St+1),

which in turn embeds information of the current transition (i.e., the reward Rt+1 and the

next state St+1) and the next-state V-posterior Vt(St+1). It is worth noting that the two

terms appearing in Equation (4.13) account for all sources of uncertainty. Indeed, the first

term W2 (Q,Qt(St, At)) avoids moving too far from the current estimation Qt(St, At), as
we are performing the update experimenting a single transition, whereasW2 (Q, Tt) allows
bringing in the new Q-posterior the V-posterior of the next-state Vt(St+1) (including its

uncertainty). It is worth noting, that other common distributional divergences are rather

inappropriate in this context. For instance, the class of α-divergences (which include the

widely used KL-divergence) are non-well defined for deterministic distributions. However,

we want to be able to average deterministic distributions too. Indeed, as the learning

process goes, we expect that the variance of our approximate posterior vanishes as we are

gathering more information and reducing the uncertainty. We stress the analogy with

the standard TD update in the following result.

Proposition 4.3.1. If Q is the set of deterministic distributions over R, then the WTD

update rule (Equation (4.13)) has a unique solution that corresponds to the TD update

rule.

The choice of the prior for Q0 plays an important role, along with the learning

rate schedule αt. We will show in Section 4.5 that specific choices of Q0 and αt, for a

particular class of distributions Q, allow achieving PAC-MDP property in the average

loss setting.
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Definition 4.3.6 (Wasserstein Temporal Difference). Let Qt be the current Q-posterior, given a transition (St, At, St+1, Rt+1),

we define the TD-target-posterior as Tt = Rt+1 + γVt(St+1). Let αt ≥ 0 be the learning rate, we define the Wasserstein

Temporal Difference (WTD) update rule as:

Qt+1(St, At) ∈ arg inf
Q∈Q

{
(1− αt)W2 (Q,Qt(St, At))2 + αtW2 (Q, Tt)2

}
. (4.12)
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4.3.3 Estimating the Maximum Expected Value

The TD-target-posterior Tt = Rt+1 + γVt(St+1) is defined in terms of the next state

V-posterior Vt(St+1). In a control problem, we aim at learning the optimal Q-function Q∗

and, thus, we are interested in propagating back to Qt+1(St, At) a V-posterior Vt(St+1)

related to the optimal action to be taken in the next state.3 This can be performed by a

suitable choice of the policy π, as in Definition 4.3.1.

A straightforward approach consists in propagating the Q-posterior Q(St+1, a) of the

action with the highest estimated mean:

πM (·|s) ∈P

(
arg max
a∈A

{ E
Q∼Q(s,a)

[Q]}
)
. (4.8)

We refer to this approach as Mean Estimator (ME) for the maximum. However, when

posterior distributions are available, we can use them to define a wiser way to estimate

the V-posterior of the next state.4 A first method based on Optimism in the Face of

Uncertainty (OFU, Auer et al., 2002) consists in selecting the action that maximizes

a statistical upper bound uδ(s, a) of the Q-posterior, where δ ∈ [0, 1] is a confidence

parameter andthe upper bound is defined as:

uδt (s, a) = min{F−1
s,a (1− δ), Qmax}, (4.9)

where F−1
s,a is the quantile function of the Q-posterior Q(s, a). The policy in this case is

given by:

πO(·|s) ∈P

(
arg max
a∈A

{uδ(s, a)}
)
. (4.10)

We will refer to this method as Optimistic Estimator (OE). However, if we want to make

full usage of the Q-posteriors, we can resort to the Posterior Estimator (PE) of the

maximum, based on Posterior Sampling (PS, Thompson, 1933). In this case, each action

contributes to the update rule weighted by the probability of being the optimal action:

πP (a|s) = Pr
Qs,a∼Q(s,a)

(
a ∈ arg max

a′∈A
{Qs,a′}

)
(4.11)

Table 4.1 reports the definitions of the policy π for the three presented estimators.

4.3.4 Exploring using the Q-posteriors

Up to now, we have shown how to use distributions to model the uncertainty in the

Q-function estimate and how to use the notion of Wasserstein barycenter to propagate
3We stress that we are uninterested in modeling the distribution maxa∈A{Q(s, a)}, but rather in

exploiting the uncertainty modeled by Q(s, a) to properly perform the computation of the optimal action.
4This problem was treated in RL, without distributions, proposing several estimators, such as the

double estimator (Van Hasselt, 2010) and the weighted estimator (D’Eramo et al., 2016, 2017).
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Definition 4.3.7 (Wasserstein Temporal Difference). Let Qt be the current Q-posterior, given a transition (St, At, St+1, Rt+1),

we define the TD-target-posterior as Tt = Rt+1 + γVt(St+1). Let αt ≥ 0 be the learning rate, we define the Wasserstein

Temporal Difference (WTD) update rule as:

Qt+1(St, At) ∈ arg inf
Q∈Q

{
(1− αt)W2 (Q,Qt(St, At))2 + αtW2 (Q, Tt)2

}
. (4.13)
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Table 4.1: Definition of the three policies π to be used in Definition 4.4 for computing the Mean
(ME), Optimistic (OE) and Posterior (PE) estimators of the maximum.

Maximum Estimator Policy

Mean (ME) πM (·|s) ∈P
(
arg maxa∈A EQ∼Q(s,a)[Q]

)
Optimistic (OE) πO(·|s) ∈P

(
arg maxa∈A u

δ(s, a)
)

Posterior (PE) πP (a|s) = PrQs,a∼Q(s,a) (a ∈ arg maxa′∈AQs,a′)

Table 4.2: Probability density function (pdf), Wasserstein Temporal Difference (WTD) update
rule and computation of the V-posterior for Gaussian and Particle posterior distributions.

Q pdf WTD and V-posterior

Gaussian exp

{
−1

2

(
x−m(s,a)
σ(s,a)

)2
}

√
2πσ2(s, a)

mt+1(St, At) = αtmt(St, At) + (1− αt) (Rt+1 + γmt(St+1))

σt+1(St, At) = αtσt(St, At) + (1− αt)γσt(St+1)

m(s) = EA∼π(·|s) [m(s,A)]

σ(s) = EA∼π(·|s) [σ(s,A)]

Particle

∑M
j=1wjδ(x− xj(s, a))

x1(s, a) ≤ ... ≤ xM (s, a)∑M
i=j wj = 1 and wj ≥ 0

xj,t+1(St, At) = αtxj,t(St, At) + (1−αt) (Rt+1 + γxj,t(St+1))

xj(s) = EA∼π(·|s) [xj(s,A)] , j = 1, 2, ...,M

uncertainty across state-action pairs when performing TD learning. In this section, we

show that we can use these distributions to devise also exploration policies. Clearly, the

choice of a suitable policy depends on the goal of the experiment. We might be interested

in learning the Q-function as fast as possible with no need of showing a good on-line

performance or we might be interested in provably efficient algorithms.

In the previous section, we have introduced two approaches that exploit the Q-

posterior to properly define the V-posterior of the next state, using specific policies π.

These policies can also be used to implement effective exploration strategies aware of

the uncertainty. Using the optimistic policy πO in each state, we play (deterministically)

the action that maximizes the statistical upper bound on the estimated Q-function

uδ(s, a), we call this strategy Optimistic Exploration (OX). Instead, we can directly use

the posterior policy πP to sample the action from the Q-posterior Q(s, a). Thus, in

Posterior Exploration (PX), each action is played with the probability of being optimal.
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Definition 4.5.1 (Modified Wasserstein Temporal Difference). Let Qt be the current Q-posterior and Qb be a zero-mean

distribution, given a transition (St, At, St+1, Rt+1), we define the TD-target-posterior as Tt = Rt+1 + γVt(St+1). Let

αt , βt ≥ 0 be the learning rates, we define the Modified Wasserstein Temporal Difference (MWTD) update rule as:

Q̃t+1(St, At) ∈ arg inf
Q∈Q

{
(1− αt)W2

(
Q, Q̃t(St, At)

)2
+ αtW2 (Q, Tt)2

}
,

Qt+1(St, At) ∈ arg inf
Q∈Q

{
W2

(
Q, Q̃t+1(St, At) + βtQb

)2
}
,
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4.4 Wasserstein Q-Learning

Algorithm 4 Wasserstein Q-Learning.
1: Input: a prior distribution Q0, a step size schedule (αt)t≥0, an exploration policy schedule

(πt)t≥0

2: Initialize Q(s, a) with the prior Q0

3: for t = 1, 2, ... do
4: Take action At ∼ πt(·|St)
5: Observe St+1 and Rt+1

6: Compute Vt(St+1) using Equation (4.4)
7: Update Qt+1(St, At) using Equation (4.13)
8: end for

The ideas presented so far can be combined in an algorithm, Wasserstein Q-Learning

(WQL), whose pseudocode is reported in Algorithm 4.

We developed our approach for a generic class of distributions Q, however, in practice,

we focus on two specific classes: Gaussian posteriors (G-WQL) and Particle posteriors

(P-WQL), i.e., a mixture of M > 1 Dirac deltas. For both classes the Wasserstein

Barycenter is unique and can be computed in closed form (see Appendix A.1.3).5 In

Table 4.2, we summarize the main relevant features of these distributions classes. It is

worth noting, that when using policy πOFU paired with OO maximum estimator and

when using policy πPS paired with PE, we are using the same policy to explore the

environment and to select the action whose approximate posterior will be propagated. In

a sense, this can be thought as a distributional version of Expected SARSA (Van Seijen

et al., 2009).

WQL simply needs to store the parameters of the Q-posterior for every state-action

pair (m(s, a) and σ(s, a) for G-WQL and xj(s, a) for P-WQL). Therefore, unlike the

majority of provably-efficient algorithms, it can be extended straightforwardly to con-

tinuous state spaces as long as we adopt a function approximator for the parameters of

the posterior. For instance, we could approximate m(s, a) and σ(s, a) or the particles

xj(s, a) using a neural network with multiple heads. For this reason, our method easily

applies to deep architecture by adopting a network that directly outputs the posterior

parameters, instead of the value function (see Section 4.7.2).

5It is worth noting that, even for the Gaussian case, using the standard Bayesian posterior update

is inappropriate, as the independence of the Q-function estimates across state-action pairs cannot be

assumed.
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Definition 4.5.3 (Modified Wasserstein Temporal Difference). Let Qt be the current Q-posterior and Qb be a zero-mean

distribution, given a transition (St, At, St+1, Rt+1), we define the TD-target-posterior as Tt = Rt+1 + γVt(St+1). Let

αt , βt ≥ 0 be the learning rates, we define the Modified Wasserstein Temporal Difference (MWTD) update rule as:

Q̃t+1(St, At) ∈ arg inf
Q∈Q

{
(1− αt)W2

(
Q, Q̃t(St, At)

)2
+ αtW2 (Q, Tt)2

}
,

Qt+1(St, At) ∈ arg inf
Q∈Q

{
W2

(
Q, Q̃t+1(St, At) + βtQb

)2
}
,
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Algorithm 5 Modified Gaussian Wasserstein Q-Learning
1: Input: m0, σ0, σb
2: for t = 1, 2, ... do
3: Take action At ∈ arg maxa∈A u

δ
t (St, At)

4: Observe St+1 and Rt+1

5: Update the posterior distribution

mt+1(St, At) = (1− αt)m̃t(St, At) + αt (Rt+1 + γmt(St+1))

σ̃t+1(St, At) = (1− αt)σ̃t(St, At) + αtγσt(St+1)

σt+1(St, At) = σ̃t+1(St, At) + βtσb

nt+1(St, At) = nt(St, At) + 1

6: end for

4.5 Theoretical Analysis

In this section, we show that WQL, with some modifications, enjoys desirable theoretical

properties in the tabular setting. We start providing a modification of the WTD update

rule that will be used for the analysis; then we prove that with such modification our

algorithm, under certain assumptions, is PAC-MDP in the average loss setting (Strehl

and Littman, 2008).

Definition 4.5.2 (Modified Wasserstein Temporal Difference). Let Qt be the current

Q-posterior and Qb be a zero-mean distribution, given a transition (St, At, St+1, Rt+1), we

define the TD-target-posterior as Tt = Rt+1 + γVt(St+1). Let αt , βt ≥ 0 be the learning

rates, we define the Modified Wasserstein Temporal Difference (MWTD) update rule as:

Q̃t+1(St, At) ∈ arg inf
Q∈Q

{
(1− αt)W2

(
Q, Q̃t(St, At)

)2
+ αtW2 (Q, Tt)2

}
,

Qt+1(St, At) ∈ arg inf
Q∈Q

{
W2

(
Q, Q̃t+1(St, At) + βtQb

)2
}
,

We will denote the algorithm employing this update rule as Modified Wasserstein

Q-Learning (MWQL). We provide the pseudocode for this modified version in Algorithm 5.

The reason why we need to change the WTD lies in the fact that the uncertainty on

the Q-function value (the Q-posterior) is, as already mentioned, the contribution of

two terms: i) the uncertainty on the reward and transition model; ii) the uncertainty

on the next-state Q-function. These terms need to be averaged into the Q-posterior

at different speeds. If nt(s, a) is the number of times (s, a) is visited up to time t, (i)

has to reduce proportionally to 1/
√
nt(s, a) being a sample mean, while (ii) is averaged

with coefficients proportional to 1/nt(s, a). Therefore, we should keep the two sources of
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Definition 4.5.5 (Definition 4 of (Strehl and Littman, 2008)). Suppose a learning algorithm A is run for T steps.

Consider partial sequence S0, R1, ..., ST−1, RT , ST visited by A. The instantaneous loss of the agent at time t is ilA(t) =

V ∗(St)−
∑T

i=t γ
i−tRi+1. The quantity LA = 1

T

∑T
t=1 ilA(t) is called the average loss.
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uncertainty separated. To this end, we use an additional distribution Qb to prevent the

uncertainty from reducing too fast.

The notion of PAC-MDP in the average loss setting (Strehl and Littman, 2008) is

a relaxation of the classical PAC-MDP notion introduced in (Kakade et al., 2003), in

which we consider the actual reward received by the algorithm while learning, instead of

the expected values over future policies. We recall the definitions given in (Strehl and

Littman, 2008).

Definition 4.5.4 (Definition 4 of (Strehl and Littman, 2008)). Suppose a learning

algorithm A is run for T steps. Consider partial sequence S0, R1, ..., ST−1, RT , ST visited

by A. The instantaneous loss of the agent at time t is ilA(t) = V ∗(St)−
∑T

i=t γ
i−tRi+1.

The quantity LA = 1
T

∑T
t=1 ilA(t) is called the average loss.

Then, a learning algorithm A is PAC-MDP in the average loss setting if for any

ε ≥ 0 and δ ∈ [0, 1], we can choose a value T , polynomial in the relevant quantities

(1/ε, 1/δ, |S|, |A|, 1/(1− γ)), such that the average loss LA of the agent (following the

learning algorithm A) on a trial of T steps is guaranteed to be less than ε with probability

at least 1− δ.
In the following, we will restrict our attention to MWQL with Gaussian posterior,

optimistic estimator (OE) and optimistic exploration policy (OX). We leave the analysis

of the posterior sampling exploration (PX) as future work. To prove the main result we

need an intermediate result.

Theorem 4.5.1. Let S0, ..., ST−1, ST be the sequence of states and actions visited by

MWQL with Gaussian posterior, OE and OX. Then, there exists a prior Q0 and a

zero-mean distribution Qb and a learning rate schedule for (αt, βt)t≥0 (whose values are

reported in Appendix A.2.1), such that for any δ ∈ [0, 1], with probability at least 1− δ it

holds that:6

T∑
t=1

[V ∗(St)− VA(St)] ≤ O
(

Qmax

(1− γ)
3
2

√
|S||A|T log

|S||A|T
δ

)
, (4.14)

where VA is the value function induced by the (non-stationary) policy played by algorithm

A.

From this result, we can exploit an analysis similar to (Strehl and Littman, 2008) to

prove that MWQL with Gaussian posterior, OE and OX is PAC-MDP in the average

loss setting.
6This performance index resembles the regret (Jaksch et al., 2010a). However, it is a weaker notion,

being defined in terms of the trajectory generated by algorithm A, instead of the trajectories of an

optimal policy.
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Definition 4.6.1 (Definition 4 of (Strehl and Littman, 2008)). Suppose a learning algorithm A is run for T steps.

Consider partial sequence S0, R1, ..., ST−1, RT , ST visited by A. The instantaneous loss of the agent at time t is ilA(t) =

V ∗(St)−
∑T

i=t γ
i−tRi+1. The quantity LA = 1

T

∑T
t=1 ilA(t) is called the average loss.
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Theorem 4.5.2. Under the hypothesis of Theorem 4.5.1, MWQL with Gaussian posterior,

OE and OX is PAC-MDP in the average loss setting, i.e., for any ε ≥ 0 and δ ∈ [0, 1],

after

T = O
(
Q2

max|S||A|
ε2(1− γ)3

log
Q2

max|S|2|A|2
δε2(1− γ)3

)
steps we have that the average loss LA ≤ ε with probability at least 1− δ.

The per-step computational complexity of MWQL is O(log |A|) as we can maintain

the upper bounds of the Q-function as a max-priority queue (Strehl et al., 2009) and the

space complexity is O(|S||A|).
Despite the theoretical guarantees, MWQL turns out to be often impractical for two

main reasons. First, MWQL cannot be extended to continuous MDPs, as αt and βt

are defined in terms of number of visits n(s, a) (Equation (A.14)), which can only be

computed for finite MDPs. Second, as many provably efficient RL algorithms, MWQL

is extremely conservative, leading to very slow convergence. This is why most provably

efficient RL algorithms, when used in practice, are run with non-theoretical values of

hyperparameters. In this sense, WQL can be seen as a “practical” version of MWQL in

which αt is treated as a normal hyper-parameter and βt = 0. Although the PAC-MDP

property in the average loss setting is a weaker notion of provable efficiency compared

to the most used PAC-MDP or regret, we stress the fact that our main goal is not to

provide an algorithm with tight theoretical guarantees rather to propose a theoretically

grounded method that can be employed, with suitable modifications, beyond tabular

domains.

4.6 Related Literature

A variety of approaches have been proposed in the RL literature to tackle the exploration-

exploitation trade-off (Szepesvári, 2010). We recall here only those that do not assume

the availability of a simulator of the environment (Koenig and Simmons, 1992). A first

dimension of classification is the RL setting they consider: finite-horizon, discounted

or undiscounted. Finite-horizon MDPs are a convenient framework to devise provably-

efficient exploration algorithms with theoretical guarantees on the regret (Osband et al.,

2013; Dann and Brunskill, 2015; Azar et al., 2017). Recently, in (Jin et al., 2018) it was

shown that Q-learning, in the finite-horizon setting, can be made efficient by resorting to

suitable exploration bonuses. Similar results have been proposed in the infinite-horizon

undiscounted case. The main challenge of this class of problems is the connection structure

of the MDP (Bartlett and Tewari, 2009). Early approaches (Kearns and Singh, 2002;

Auer and Ortner, 2007; Tewari and Bartlett, 2008; Jaksch et al., 2010a) impose restrictive
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Definition 4.7.1 (Definition 4 of (Strehl and Littman, 2008)). Suppose a learning algorithm A is run for T steps.

Consider partial sequence S0, R1, ..., ST−1, RT , ST visited by A. The instantaneous loss of the agent at time t is ilA(t) =

V ∗(St)−
∑T

i=t γ
i−tRi+1. The quantity LA = 1

T

∑T
t=1 ilA(t) is called the average loss.
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requirements on either mixing/hitting times or diameter, which have been progressively

relaxed (Fruit et al., 2018). A significant part of the early provably-efficient algorithms

considers the discounted setting (Kearns and Singh, 2002; Brafman and Tennenholtz, 2002;

Strehl et al., 2006; Szita and Szepesvári, 2010; Lattimore and Hutter, 2014). However,

their theoretical guarantees are based on the notion of PAC-MDP (Kakade et al., 2003)

rather than on regret.

Another relevant dimension is the kind of policy used for exploration. Taking

inspiration from the Multi Armed Bandit (MAB, Berry and Fristedt, 1985) framework,

two main approaches have been proposed: Optimism in the Face of Uncertainty (Auer

et al., 2002) and Thompson Sampling (Thompson, 1933). Most exploration algorithms

employ the optimistic technique, selecting actions from the optimal policy of an optimistic

approximation of the MDP (Jaksch et al., 2010a) or of the value function directly (Strehl

et al., 2006; Jin et al., 2018). Some methods, instead, use a posterior sampling approach in

which either the entire MDP or a value function is sampled from a (possibly approximate)

posterior distribution.

Inspired by these methods, numerous practical variants have been devised. Exploration

bonuses, based on pseudo-counts (Bellemare et al., 2016; Ostrovski et al., 2017), mimicking

optimism, have been applied with positive results to deep architectures. Likewise, with

the idea of approximating a posterior distribution, Bootstrapped DQN (Osband et al.,

2016a) and Bayesian DQN (Azizzadenesheli et al., 2018) succeeded in solving challenging

Atari games. Recently, new results of sample-efficiency beyond tabular domains have

been derived (Jiang et al., 2017).

4.7 Experiments

In this section, we provide an experimental evaluation of WQL on tabular domains along

with some preliminary results on Atari games (implementation details are reported in

Appendix B.2).

4.7.1 Tabular Domains

We evaluate WQL on a set of RL tasks designed to emphasize exploration: the Taxi

problem (Dearden et al., 1998), the Chain (Dearden et al., 1998), the River Swim (Strehl

and Littman, 2008), and the Six Arms (Strehl and Littman, 2008). We extensively test

several WQL variants that differ on: i) the Q-posterior model (Gaussian G-WQL vs

particle P-WQL); ii) the exploration strategy (optimistic OX vs posterior sampling PX),

iii) the estimator of the maximum (ME, OE, and PE). We compare these combinations

with the classic Q-learning (QL, Watkins, 1989b) (Boltzmann exploration), Bootstrapped
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Definition 4.7.2 (Definition 4 of (Strehl and Littman, 2008)). Suppose a learning algorithm A is run for T steps.

Consider partial sequence S0, R1, ..., ST−1, RT , ST visited by A. The instantaneous loss of the agent at time t is ilA(t) =

V ∗(St)−
∑T

i=t γ
i−tRi+1. The quantity LA = 1

T

∑T
t=1 ilA(t) is called the average loss.
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Figure 4.1: Online average return as a function of the number of samples, comparison of P-WQL
and G-WQL with QL, BQL, Delayed-QL, and MBIE-EB. 10 runs, 95% c.i.
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Definition 4.7.3 (Definition 4 of (Strehl and Littman, 2008)). Suppose a learning algorithm A is run for T steps.

Consider partial sequence S0, R1, ..., ST−1, RT , ST visited by A. The instantaneous loss of the agent at time t is ilA(t) =

V ∗(St)−
∑T

i=t γ
i−tRi+1. The quantity LA = 1

T

∑T
t=1 ilA(t) is called the average loss.
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Q-learning (BQL, Osband et al., 2016a) both with the double estimator (Van Hasselt,

2010), Delayed Q-learning (Delayed-QL, Strehl et al., 2006) and MBIE-EB (Strehl and

Littman, 2008).7

Figure 4.1 shows the online performance on the considered tabular tasks. While we

tried all the WQL variants, for clarity, we present here only the best combination of

exploration strategy and maximum estimator for both Gaussian and particle models

(complete results are reported in Appendix B.2). We can see that WQL learns substantially

faster than classical approaches, like QL, in tasks that require significant exploration,

such as Taxi, Six Arms, or River Swim. Our algorithm also outperforms BQL in most

tasks, except in the River Swim, where performances are not substantially different.

Finally, we can see that across all the tasks WQL displays a faster learning curve w.r.t. to

Delayed-QL. MBIE-EB outperforms WQL in small domains like Chain and RiverSwim,

but not in SixArms. MBIE-EB was not tested on the Taxi domain as the number of

states (∼ 200) makes the computational time demands prohibitive. We cross-validate

the hyperparameters of Delayed Q-Learning and MBIE-EB.

Among the variants of WQL, we discovered that the choice of the exploration strategy

and the maximum estimator are highly task dependent. However, we can see a general

pattern across the tasks. As intuition suggests, being the exploration strategy and the

maximum estimator closely related, the best combinations are: OX exploration with

OE estimator and PX exploration with PE estimator. We illustrate in Figure 4.2 all

the possible combinations of G-WQL on Six Arms, a domain in which exploration is

essential. We can notice that the “hybrid” combinations, such as OX with PE and PX

with OE are significantly outperformed by the more “coherent” ones.

Effect of initialization in Particle WQL

Finally, We explore the effect of the initialization of the prior distributions in the particle

case. We argue that the particle algorithm performs better when used with particles

equally spaced in a given interval [Qmin, Qmax]. To show this we added noise to these

equally spaced particles and ran the learning algorithm in the same domain. Figure 4.3

shows our results as a function of α, denoting how spaced are the particles between each

other. More specifically, α = 0 means the particles were drawn uniformly random in the

interval [Qmin, Qmax] and α = 1 means the particles are equally spaced in this interval.

Any value in between is a combination of the two. For each α, we averaged the learning

7We are considering a discounted setting, thus, several provably efficient algorithms, like

UCRL2 (Jaksch et al., 2010a), PSRL (Osband et al., 2013), RLSVI (Osband et al., 2016a), opti-

mistic Q-learning (Jin et al., 2018) and UCBVI (Azar et al., 2017), cannot be compared as they consider

either average reward or finite-horizon setting.
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Definition 4.7.4 (Definition 4 of (Strehl and Littman, 2008)). Suppose a learning algorithm A is run for T steps.

Consider partial sequence S0, R1, ..., ST−1, RT , ST visited by A. The instantaneous loss of the agent at time t is ilA(t) =

V ∗(St)−
∑T

i=t γ
i−tRi+1. The quantity LA = 1

T

∑T
t=1 ilA(t) is called the average loss.
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curves of the agent. It seems clear to us that using equally spaced particles to represent

the prior yields better results.
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Figure 4.3: Effects of the initialization of the particles in Particle WQL. 10 runs.

4.7.2 Extending WQL to Deep Reinforcement Learning

As discussed earlier, the main advantage of modeling the epistemic uncertainty

directly as posteriors over the value functions and applying variational updates is that

this allows to model, propagate and generalize uncertainty in domains with continuous

states where function approximation is required. For this reason, in this section, we

present a simple adaption of WQL in the deep RL setting. We focus now only in the

particle model, leaving the Gaussian model for the following chapter where we will better

study the complications related to generalizing uncertainty over value functions.

We adapted WQL with the particle model to be used paired with deep architectures.

For this purpose, similarly to Bootstrapped DQN (BDQN, Osband et al., 2016a), we
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Definition 4.7.5 (Definition 4 of (Strehl and Littman, 2008)). Suppose a learning algorithm A is run for T steps.

Consider partial sequence S0, R1, ..., ST−1, RT , ST visited by A. The instantaneous loss of the agent at time t is ilA(t) =

V ∗(St)−
∑T

i=t γ
i−tRi+1. The quantity LA = 1

T

∑T
t=1 ilA(t) is called the average loss.
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Algorithm 6 Particle DQN.
Input: a prior distribution {xi}Mi=1, a step size schedule (αt)t≥0, an exploration policy schedule
(πt)t≥0

Initialize a Q-function network with M outputs {Qj}Mj=1 and parameters θ and the target
network with parameters θ− = θ

for t = 1, 2, ... do
Take action At ∼ πt(·|St;θ)

Store transition (St, At, St+1, Rt+1) in the replay buffer
Sample random a batch of transitions (Sl, Al, Sl+1, Rl+1) from the replay buffer
Compute targets yj(Sl+1) = EA∼π(·|Sl+1)[Qj(Sl+1, A;θ−)] for each output Qj where π ∈
{πM , πO, πP } as in Section 4.3.3
Perform a gradient descent step w.r.t. θ on the objective

∑M
j=1(yj(St+1)−Qj(Sl, Al;θ))2

and using the step size αt
Periodically update target network θ− = θ

end for

use a network architecture with a head for each particle while the convolutional layers

are shared among them. We compare the resulting algorithm, which we call Particle

DQN (PDQN), with Double DQN (DDQN, van Hasselt et al., 2016), a classic benchmark

in Deep-RL, and Bootstrapped DQN, specifically designed for deep exploration using

Q-posteriors. To compare algorithms we consider offline scores, i.e., the scores collected

using the current greedy policy. The goal of this experiment, conducted on three Atari

games, is to prove that WQL, although designed to work in finite environments, can

easily be extended to deep networks with potentially good results. We test the algorithms

using the Arcade Learning Environment (ALE). Each step of the agent corresponds

to four steps of the emulator, where the same action is repeated. The reward values

observed by the agents are clipped between -1 and 1 for stability. We evaluate our agents

and report performance based upon the raw scores and not the discounted scores. As

it is common in literature, we do not show the online performance of the agent during

training. We show the scores collected, when exploiting the greedy policies derived from

the Q-function after each training period.

The convolutional part of the network used is identical to the one used in Osband

et al. (2016a). The input to the network is 4× 84× 84 tensor with a rescaled, grayscale

version of the last four observations. The first convolutional layer has 32 filters of size 8

with a stride of 4. The second layer has 64 filters of size 4 with stride 2. The last layer

has 64 filters of size 3. We split the network beyond the final layer into M = 10 distinct

heads, each one is fully connected and identical to the network in Osband et al. (2016a).

This consists of a fully connected layer to 512 units followed by another fully connected
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Definition 4.7.6 (Definition 4 of (Strehl and Littman, 2008)). Suppose a learning algorithm A is run for T steps.

Consider partial sequence S0, R1, ..., ST−1, RT , ST visited by A. The instantaneous loss of the agent at time t is ilA(t) =

V ∗(St)−
∑T

i=t γ
i−tRi+1. The quantity LA = 1

T

∑T
t=1 ilA(t) is called the average loss.
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Figure 4.4: Offline average return of the greedy policy as a function of the number of collected
frames, comparing PDQN, DDQN and BDQN on Asterix, Enduro and Breakout games. 5 runs,
95% c.i.

layer to the Q-Values for each action. The fully connected layers all use Rectified Linear

Units (ReLU) as a non-linearity. We trained the networks with RMSProp optimizer.

The discount was set to γ = 0.99, the number of steps between target updates was

set to τ = 10000 steps. The agents were evaluated every 1M frames. The experience

replay contains the 1M most recent transitions. We update the network every 4 steps by

randomly sampling a minibatch of 32 transitions from the replay buffer to use the exact

same minibatch schedule as Bootstrapped DQN.

An important question is how to initialize the heads of the deep network. In the

tabular case, we initialized the particles equally spaced in the interval [Qmin, Qmax]. We

found it is equally simple to extend this in the deep RL setting. We initialized the

networks heads near the same interval by setting the bias of the last layer to the desired

values. In Figure 4.4, we can see that PDQN, compared to BDQN and DDQN, manages to

achieve higher scores in Asterix and Enduro, where exploration is needed, while achieving

similar scores in Breakout. A relevant feature of PDQN is the particle initialization

interval. Indeed, a narrower initial interval causes faster learning but might lead to

premature convergence. In this sense, the initial interval becomes a hyperparameter of

PDQN, which influences the amount of exploration and it is likely task-dependent. The

pseudocode of PDQN is shown in Algorithm 6.
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Definition 4.8.1 (Definition 4 of (Strehl and Littman, 2008)). Suppose a learning algorithm A is run for T steps.

Consider partial sequence S0, R1, ..., ST−1, RT , ST visited by A. The instantaneous loss of the agent at time t is ilA(t) =

V ∗(St)−
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i=t γ
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T

∑T
t=1 ilA(t) is called the average loss.
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4.8 Discussion and Conclusions

In this chapter, we introduced Wassertein TD-Learning, a novel framework for TD-

learning that accounts for and propagates epistemic uncertainty and Wasserstein Q-

Learning, a novel reinforcement learning algorithm designed to address challenges associ-

ated with efficient exploration in model-free RL. Our approach revolves around modeling

uncertainty in the estimated Q-function through approximate posterior distributions

which we call Q-posteriors. We developed a variational method to propagate uncertainty

across state-action pairs during Temporal Difference learning, leveraging Wasserstein

barycenters and avoiding costly classical Bayesian updates which assume independence

of samples. Despite potential theoretical challenges from a Bayesian perspective, this

variational update method enabled explicit control over uncertainty updates, and it

allowed us to demonstrate the convergence rate of a modified version of our algorithm.

Additionally, the reduced computational cost facilitated the extension of our algorithm

to incorporate function approximators.

The experimental evaluation allowed us to appreciate the properties of WQL. In

tabular domains, whenever exploration is really necessary, our approach is able to

significantly outperform TD methods even if designed specifically for exploration (e.g.,

Bootstrapped Q-Learning and Delayed Q-Learning). Although preliminary, the results on

the Atari games are promising and need to be further investigated in order to make WQL

scale on complex environments. We believe that our algorithm contributes to bridging the

gap between theory and practice of exploration in RL. WQL is a theoretically grounded

method, equipped with guarantees in the average loss setting, but, at the same time, it

is a very simple algorithm, easily extensible to deal with continuous domains.

It is important to underline the differences between our proposed framework with

more traditional model-based Bayesian RL methods. While we make use of probability

distributions representing the uncertainty over the Q-value estimates, similar to Bayesian

methods, WTD (and WQL consequently) should not be thought as a Bayesian method.

Indeed, in the update rules derived in our work, we do not make use of the Bayes rule

for updating our distributions as in classical Bayesian methods. These comes for two

main reasons. Firstly, as discussed in Sections 4.4, we are interested in deriving online

model-free algorithms that learn from samples of experience of the form (st, at, rt+1, st+1)

and apply bootstrapping to estimate the values in the next states st+1. The bootstrapping

operation in the next states, makes all samples of experience intrinsically dependent which

invalidates the assumptions of the update rule. Secondly, our variational updates allow us

to effectively control the speed of the updates of the uncertainty estimates, allowing for an

easier theoretical understanding of the proposed algorithm and its convergence rate. On
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the other hand, in model-based Bayesian RL, a more rigourous approach is usually taken,

where a prior belief over model parameters is used to derive a posterior over the value

functions. This generally allows for tighter regret bounds and more efficient algorithms

in terms of sample complexity, but generally comes with an increased computational

complexity in simple cases or intractable updates in more complex scenarios. On the

other hand, having an explicit dependence of the algorithm on the choice of the prior over

the value function, generally gives more insight on the impact of the prior on empirical

performance too. The main difference compared to WTD is that, given a prior over value

functions, in Bayesian RL, we are tasked with computing the exact posterior over value

functions after observing new experience. This is intractable in all but the simplest of

cases, so generally this true posterior is approximated when devising practical algorithms.

In the case of WTD, we take the approach of avoiding the computation of the exact

posterior and substitute it with the Wasserstein Barycenter of the input priors over value

functions. While this makes our uncertainty estimates different from typical bayesian

epistemic uncertainty estimates, they still quantify the absense of information due to

limited data, and degenerate to 0 as we collect more samples and estimate the correct

value functions as demonstrated by our theoretical analysis. The question whether to take

a more classical Bayesian approach or take a more variational approach on uncertainty

estimates is still open and outside the scope of this thesis. Since our main goal remains

to devise theoretically grounded algorithms that employ uncertainty estimates for faster

learning, while also being easily extensible in domains where function approximation is

needed, we further explore the use of the WTD framework as a means of more efficient

exploration in RL.

In the next chapter, we investigate further how to extend the proposed algorithm to

the continuous action setting. This will allow us also to better study the effect of our

variational updates on the uncertainty estimates and whether the exploration properties

that we achieve in tabular domains can be successfully transferred empirically in domains

with complex state-action spaces where exploration is crucial. Moreover, we believe

generalizing uncertainty estimates is fundamentally different from generalizing the value

function estimates. For this reason, we expand our focus on continuous domains, where

we can better study how our Q-posteriors generalize uncertainty across the state-action

space.
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CHAPTER5
The Case of Infinite States and Actions

5.1 Introduction

Reinforcement Learning (RL, Sutton and Barto, 2018) is one of the most widely used

frameworks for solving sequential decision-making problems, especially in model-free

settings, where a model of the environment dynamics is not available. When an agent

acts in an uncertain environment, it faces the choice between exploring with the hope

of discovering more profitable behaviors or exploiting the current information about

the actions’ values. This exploration-exploitation dilemma is particularly challenging in

continuous-state spaces, where function approximation is required to generalize across

states, and an accurate estimate of the uncertainty on the value estimates is not available

point-wise. Continuous-action tasks pose additional challenges since most exploration

methods require the maximization of some objective (e.g., upper bound of the Q-value)

over the action space. While in the discrete case, this maximization can be performed by

enumeration, in the continuous case it requires solving a complex optimization problem,

increasing the computational demands.

Actor-Critic (AC) methods (Haarnoja et al., 2018; Ciosek et al., 2019; Schulman

et al., 2015) represent the current state of the art for continuous control. Despite their
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widespread adoption, these methods still suffer from high sample complexity. Efficient

exploration strategies have been extensively studied in the literature as a means of

reducing sample complexity mainly in tabular domains (Auer et al., 2008; Ian et al.,

2013; O’Donoghue et al., 2018; Metelli et al., 2019). Classical exploration strategies, like

ε-greedy or Boltzmann (Sutton and Barto, 2018), inject noise around the current greedy

policy to enforce exploration. Although in simple settings, this is enough to guarantee

convergence (Szepesvári, 1997), this exploration strategy is not efficient in the general

case.

Another line of approaches considers the maximum entropy setting to improve explo-

ration and avoids the deterministic collapse of the policies, e.g., Soft Actor Critic (SAC,

Haarnoja et al., 2018). In this setting, stochastic policies are preferred by optimizing the

expected return regularized with an entropy term. Moreover, to improve stability and

avoid over-estimation bias (Hasselt, 2010; Fujimoto et al., 2018) most methods use an

ensemble of (at least 2) parameterized critics (trained with the same samples and differ

only by the initialization of the parameters) in order to estimate a “lower bound” of the

value functions. This also represents a form of undirected exploration since the policies

are forced to be stochastic, thanks to the entropy bonus, but the induced noise does not

consciously shift its focus towards promising regions of the state space.

A common trend in the RL literature consists of endowing existing methods with

some form of uncertainty quantification and using it to perform directed exploration

while focusing on the most promising regions. For instance, optimistic approaches

have been applied to both Q-learning (Jin et al., 2018) and SAC. In particular, a recent

extension of Soft Actor-Critic (SAC, Haarnoja et al., 2018), Optimistic Actor-Critic (OAC,

Ciosek et al., 2019), proved to improve sample efficiency over the standard SAC. As

we shall see, SAC is particularly impacted by local maximums of the return due to

this undirected exploration, since it only depends on the entropy regularized objective

for exploration. Indeed, uncertainty quantification is a fundamental step in defining

efficient exploration strategies. Exploration strategies, coming from the Multi-Armed

Bandit (MAB, Lattimore, 2020) literature, have been extended for the RL settings,

starting from tabular domains (Auer et al., 2008; Ian et al., 2013; Metelli et al., 2019),

with theoretical guarantees on the sample complexity and/or regret. In turn, they have

been extended to the Deep Reinforcement Learning (DRL) settings too, but the guarantees

no longer hold up. Ensemble methods allow quantifying the uncertainty but do not

propagate it across the stat-action space when performing the critic updates. Uncertainty

propagation is a fundamental tool of any principled uncertainty estimation approach

since most AC methods rely on bootstrapping when updating the critics. This results

in Q-value estimates that also incorporate uncertainty about the bootstrapped values.
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Distributional RL (O’Donoghue et al., 2018) allows for uncertainty propagation but

considers only aleatoric uncertainty, being aimed at estimating the full return distribution.

These methods propagate uncertainty by means of the distributional Bellman equation,

whose goal is to estimate the full return distribution. This is not straightforward in

practice, and, furthermore, it is not strictly necessary in the classical RL setting where

the goal is to maximize the expected return. To the best of our knowledge, the only

method capable of propagating the epistemic uncertainty, without the need to learn the

return distribution is Wasserstein Q-learning, introduced in the previous Chapter.

In this chapter, we address the problem of uncertainty estimation and propagation

in the context of continuous-action RL. Starting from the methodology introduced

in the previous chapter, we devise a novel actor-critic algorithm, Wasserstein Actor-

Critic (WAC), which employs Q-posteriors both to quantify uncertainty on the critic

estimates to drive exploration, as well as a tool to propagate it across the state-action

space (Section 5.3). The Q-posteriors quantify the epistemic uncertainty of the Q-values

and incorporate both the uncertainty due to the empirical estimate of the stochastic

transition and immediate reward sample, as well as the Q-value uncertainty of the next

states imported during the bootstrapping of the Temporal Difference (TD, Sutton and

Barto, 2018) updates.

Furthermore, we consider some practical problems that arise while quantifying uncer-

tainty by means of Q-posteriors coped with function approximators, especially neural

networks. To this end, we propose a regularization approach for the uncertainty networks

to avoid the collapse of the uncertainty estimates due to uncontrolled generalization (see

Section 5.4). WAC uses the Q-posteriors to explore efficiently, by optimizing an upper

bound of the Q-values. Unlike OAC, which employs bootstrapped uncertainty estimates

from an ensemble of critics (two) to define the upper bound, we employ the Q-posteriors,

which will eventually shrink to point estimates. Furthermore, WAC recovers SAC for a

specific hyperparameter configuration and, more importantly, is able to explore more

efficiently with negligible additional computational costs. After reviewing the related

literature (Section 5.5), we present a thorough experimental evaluation over some simple

1D navigation domains, as well as some MujoCo (Todorov et al., 2012) tasks designed for

exploration to assess the effect of uncertainty estimation and propagation on exploration

and sample complexity (Section 5.6).
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5.2 Preliminaries

In this section, we recall some fundamental notions from which we built upon.

5.2.1 Actor-Critic Methods

In large continuous domains, it is required to generalize across the state-action space by

means of parameterized policies and value functions. One of the most used frameworks in

this setting, especially for continuous action spaces, is the Actor-Critic (Schulman et al.,

2015; Haarnoja et al., 2018; Ciosek et al., 2019) family of algorithms. In this framework,

the agent maintains a parameterized value-function Qω (critic) to estimate the value of

the current (or a given target) policy, and a parameterized policy πθ (actor), trained

through gradient descent. In particular, SAC, employs an entropy-regularized architecture,

i.e., the agents optimize a modified objective regularized with the entropy of the policy

favoring stochastic policies over deterministic ones, shown in Equation 5.2. Specifically, it

maintains two parameterized action-value functions {Qω1 , Qω2} to estimate the entropy-

regularized value function of policy πθ. They are trained on the same samples and

differ only on the initialization of ω1 and ω2. The actor optimizes a “lower bound”

of the action-value function, QLB(s, a) = min{Qω1(s, a), Qω2(s, a)}. To update the

critic, given a sample (s, a, r, s′), SAC uses the SARSA (Sutton and Barto, 2018) update

rule, Q{ω1,ω2}(s, a)← r + γQLB(s′, a′), where a′ ∼ πθ(s′). Specifically, SAC maintains

experience collected with previous policies πθ in a replay buffer D (Sutton and Barto,

2018). The critic is trained to minimize the (entropy regularized) Bellman error over this

replay buffer, as follows:

JC({ω1,ω2}) = E
s,a,r,s′∼D

[
(Q{ω1,ω2}(s, a)− (r + γQ̃(s′, a′)))2

]
, (5.1)

where Q̃(s, a) = QLB(s, a) − α log πθ(s′, a′), QLB(s, a) = min{Qω1(s, a), Qω2(s, a)} is

the lower bound of the Q-values given by two target networks which are updated slowly

to improve stability (Mnih et al., 2015), a′ ∼ πθ(s′), and α > 0 specifies the level of

entropy regularization. The actor-network is trained to optimize an entropy-regularized

objective. Since the target Q-function is a parameterized function approximator, the

policy can directly follow the gradient of the critic:

JA(θ) = E
st∼D

at∼πθ(st)

[log πθ(st, at)−QLB(st, at)] . (5.2)

For more details, we refer the reader to the original SAC paper (Haarnoja et al., 2018).
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Algorithm 7 Wasserstein Actor-Critic.

Input: critic parameters ω1,ω2, policy parameters θ,θT

Initialize Q{1,2}(s, a) with the prior Q0

Initialize replay buffer D ← ∅
for epoch = 1, 2, ... do

for t = 1, 2, ... do
Take action at ∼ πθ(·|st)
Observe st+1 and rt+1

D ← D ∪ {(st, at, rt+1, st+1)}
end for
σ
{1,2}
old ← σω{1,2}

for iteration = 1, 2, ... do
Update critic weights ω{1,2} using Equation (5.7)
Update actor (resp. target) weights θ (resp. θT ) using Equation (5.5) (resp. Equa-
tion (5.6))

end for
end for

5.3 Wasserstein Actor-Critic

In this section, we introduce Wasserstein Actor-Critic (WAC), which extends WQL

to handle environments with continuous-action spaces. We present the algorithm, define

the update rules, and a regularization for the uncertainty estimates.

5.3.1 Distributional Critic

For each state-action pair (s, a) ∈ S × A, we maintain an approximate distribution

Q(s, a) ∼ Q(s, a), to model the uncertainty estimate on the value function. While these

distributions will generally depend on the aleatoric uncertainty of the environment (state

transition and reward), our updates will vanish the variance as we collect samples. This

represents our main difference w.r.t. Distributional RL (Bellemare et al., 2017b), as we

do not require learning the whole return distribution, while still propagating uncertainty

across the state-action space. More specifically, given a replay buffer of past behavior

D, our critic minimizes the L2-Wasserstein distance between the Q-posterior Qω and

the target posterior r + γQω, defined through the target parameters ω and target policy

πθT :

JC(ω) = E
s,a,s′,r∼D

[
W2

(
Qω(s, a), r + γQω(s′, πθT (s′)

)2]
. (5.3)

Different flavors of the algorithm can be proposed, based on the combination of: (i)

distribution classes Q, (ii) behavioral policy πθ, and (iii) target policy πθT . We focus on
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optimistic exploration, that requires optimizing upper bounds. Moreover, although other

distribution classes, like particle models, could be employed, we limit our discussion to

Gaussian posteriors, as their parametrization allows for direct control over the distribution

variance.

Similar to WQL, we maintain a parameterized distributional critic using a function

approximator (e.g., neural network) that outputs the parameters of the distribution. For

the Gaussian case, Q(s, a) ∼ N (µω(s, a), σω(s, a)), the Wasserstein distance has a closed

form, and the critic objective becomes:

JC(ω) = E
s,a,s′,r∼D

[(
µω(s, a)− (r + γµ̃ω(s′, πθT (s′)))

)2
+
(
σω(s, a)− γσω(s′, πθT (s′))

)2]
, (5.4)

where µ̃ω(s, a) = µω(s, a) − α log πθT (s, a). In practice, µω and σω can use either

a shared network architecture or two different networks. We initialize the posterior

networks using the bias of the last layer of the network. If the reward function is

limited in the interval [rmin, rmax], the Q values will be in the range [qmin, qmax] with

qmin = rmin/(1 − γ) and qmax = rmax/(1− γ). We therefore initialize the uncertainty

networks to σ0 = (qmax − qmin)/
√

12, i.e. variance of the Gaussian minimizing the KL

divergence with the uniform distribution in [qmin, qmax] (Metelli et al., 2019).

5.3.2 Policy Optimization

Behavioral Policy

The actor in WAC is updated by optimizing an upper bound U δω of the estimated Q-

value, which we can efficiently compute using Gaussian posterior: U δω(s, a) = µω(s, a) +

σω(s, a)Φ−1(δ), where Φ−1 is the quantile function of the standard normal and δ ∈ (0, 1).

When actions are finite, no actor is needed, as we can compute the maximum by

enumeration. However, in the continuous-action case, we need an actor that follows

U δω(s, a), which is differentiable in ω, leading to the minimization of the objective:

JA(θ) = E
st∼D

at∼πθ(st)

[
log πθ(st, at)− U δω(st, at)

]
, (5.5)

where θ are the parameters of the behavioral policy.

Target Policy

We propose two alternatives for the target policy πθT , corresponding to different estimators

for the target posterior Tt. First, we can use the same policy we use for exploration,

i.e., θ = θT , like SAC. This has the advantage of not requiring a second parameterized
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Figure 5.1: Example of uncertainty estimates. σ0 shows the initial constant high value.

policy. We call this version Optimistic Estimator-WAC (OE-WAC), which represents

an on-policy algorithm. Alternatively, we can use a greedy policy that optimizes the

expected value of the Q-posteriors (the mean critic µω(s, a) in the Gaussian case). In

this case, the target policy minimizes:

JT (θT ) = E
st∼D

at∼πθT (st)

[
log πθT (st, at)− µω(st, at)

]
. (5.6)

We call this version Mean Estimator-WAC (ME-WAC). The best version to use between

the two is task-dependent. Generally, OE-WAC is more suitable for environments that

require large exploration, whereas ME-WAC is more suitable for simpler environments

where OE-WAC might over-explore and might suffer from some instability.

We underline that our distributional critic maintains uncertainty about the Q∗ and not

about the Q-function of the current policy Qπθ . Indeed, the method starts with an initial

high-uncertainty estimate and updates it as we collect samples from the environment. In

the tabular case, it can be proven that these upper bounds on the value of Q∗ are valid

with high probability for every timestep t, under some conditions on the learning rate

αt (Metelli et al., 2019). When extending the method to DeepRL, these guarantees are no

longer valid since the uncertainty estimates are outputs of general function approximators,

and local updates are no longer possible.

5.4 Regularized Uncertainty Estimation

Our Q-posteriors are initialized to high uncertainty at the beginning of the learning

process. Since they represent epistemic uncertainty, their variance will shrink as we

observe more samples. This is apparent in Equation (5.4), where the targets σω are

multiplied with γ. In tabular settings, the updates are localized, i.e., they affect a

single state-action pair, without interfering with the others. However, when function
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approximators are involved, generalizing uncertainty in an uncontrolled way might cause

non-visited areas of the state-action space to take low uncertainty values, which might

be undesired.1 Consider the example in Figure 5.1 showing the uncertainty estimate as a

function of the action, in a fixed state s. Starting from an initial high constant estimate of

σ0, at the beginning of the learning process, we will observe samples like the red crosses in

the figure, i.e., with lower uncertainty since it gets shrunk with γ. Among all the possible

fitting lines, we would prefer an estimate like σ3
1 , which keeps high uncertainty in unseen

regions, and would like to avoid failures like σ1
1 . This requires controlling the “smoothness”

properties of the approximator. To avoid the additional computational burden, we propose

a simple scheme based on synthetic samples. Specifically, we periodically save the weights

of the uncertainty network σold and use it as the target for state-action pairs drawn

uniformly from the state-action space. More formally, our distributional critic minimizes:

J ′C(ω{1,2}) = JC(ω{1,2}) + λ E
s,a∼U(S×A)

[(
σω{1,2}(s, a)− σold(s, a

)2
]
, (5.7)

where JC(ω{1,2}) is defined in Equation (5.4) and λ ≥ 0 defines the relative weight of

the regularization. Furthermore, in practice we add a second parameter, ρ ∈ [0, 1] which

represents the fraction of fake samples (w.r.t. the samples used for JC(ω{1,2})) drawn

for regularization. Specifically, if we estimate JC(ω{1,2}) using N samples from replay

buffer D, we will estimate the expectation in Equation (5.7) with M = ρN samples from

U(S × A). Algorithm 7 reports the pseudocode of WAC, embedding the regularized

uncertainty estimation.

To investigate the effectiveness of the regularized uncertainty loss, on an illustrative

example, we trained two different agents, in a one-dimensional Linear Quadratic Reg-

ulator (LQG, Dorato et al., 2000). This task has a one-dimensional state and action

spaces, which allows us to visualize the uncertainty estimates. Figure 5.2 shows the

resulting uncertainty estimates. On the left, we show the empirical state-action visitation

distribution. The agent starts in one of the borders of the state space and has to reach

the center in a few steps while calibrating the actions. This is apparent in the histogram,

with the highest densities in the borders and the center. We consider it desirable to

obtain uncertainty estimates that mirror these state-action densities, as the epistemic

uncertainty is inversely proportional to the state-action visitation. While in both cases,

the state-action densities are similar, the uncertainty estimates are completely different.

In Figure 5.2b, we see that without regularization, the critic completely fails to represent

the uncertainty. In Figure 5.2c, we can see that the regularized uncertainty critic almost
1This generalization phenomenon happens for the mean too, but, as visible in Equation (5.4), is

particularly critical for the variance that gets updated with the next-state-action variance scaled by

γ < 1.
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perfectly matches the state-action densities. In Section 6 and Appendix B, we show a

more thorough investigation of the effect of the regularized uncertainty loss.

While WAC is a direct extension of Wasserstein TD-learning to the actor-critic

architecture, it does come with some modifications (mostly to regularize the learning

process). Indeed, the entropy setting we employ in the critic and actor fit is not a

part of the base framework. Wasserstein TD-learning, in its pure form, would employ

deterministic policies. In practice, we observed that this, coupled with optimistic

exploration, caused instability in the learning process. Adding entropy regularization

improves stability while not decreasing significantly the exploration capabilities of the

method. Moreover, the regularization term in Equation (5.7) is added due to the use of

general function approximators for generalizing uncertainty and was not found in the

main Wasserstein TD framework. We use the regularization term as a way to control the

“smoothness” of the function approximator. The synthetic samples do not necessarily need

to be “valid” state-action pairs. They need to be in the input space of the approximator.

Indeed, in our implementation, we simply uniformly sample in [−1, 1]nS+nA (where nS

and nA are the dimensions of the state and action space, each normalized in [−1, 1]).

5.5 Related Literature

There exists a large body of literature studying efficient exploration techniques in RL. In

the tabular settings, provably efficient methods have been devised, both in the model-

based (Jaksch et al., 2010b; Ian et al., 2013) and model-free (Strehl et al., 2006; Jin

et al., 2018) settings. These methods cannot be easily extended to the Deep RL setting,

or when extensions are proposed, they lose their theoretical guarantees. In this section,

we focus on tractable exploration methods proposed for Deep RL for continuous action

spaces. Two main exploration frameworks exist: uncertainty-based methods and intrinsic

motivation methods (Houthooft et al., 2016; Zhang et al., 2021; Mutti et al., 2021). For

space reasons, we will focus our discussion on uncertainty-based methods.

Classical value-based methods (including ACs) maintain a point estimate of the value

functions for each state (or state-action pairs). Exploration policies, like ε-greedy or

Boltzmann (Sutton and Barto, 2018), add noise around the greedy action derived from

these point estimates. These methods are not efficient, mainly because the exploration

is not directed towards unvisited regions of the state space. The entropy regularization

of SAC is a form of undirected exploration too, as the policies are trained to sacrifice

some returns to preserve stochastic behavior. In recent years, several methods that move

away from point estimates have been proposed. Ensemble methods (Chen et al., 2021;

Wang et al., 2021) implicitly model the epistemic uncertainty of the Q-value estimates
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(a) State-action density

(b) Without regularization (c) With regularization

Figure 5.2: Comparison on the uncertainty estimates after training with and without uncertainty
regularization in the LQG illustrative example (action on the y axis and state on the x axis).
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by maintaining multiple Q-function approximators. OAC (Ciosek et al., 2019) explicitly

models the uncertainty on the value estimates by computing the variance of two critics,

and it uses it to compute an exploration policy that optimizes an upper bound of the

Q-values. This uncertainty estimate stems from the disagreement between the two

Q-networks with different initialization. Indeed, the networks are also trained with the

same samples and the same target Q-values, so any disagreement is purely due to the

random initialization only. Recently, SUNRISE (Lee et al., 2021) proposes a framework

to unify ensemble methods for epistemic uncertainty estimation and shows considerable

performance improvements in discrete and continuous action spaces. Distributional RL,

on the other hand, models the aleatoric uncertainty, as its goal is to estimate the whole

return distribution. First proposed for problems with a discrete action space (Bellemare

et al., 2017b; Dabney et al., 2018b; Mavrin et al., 2019), it has been successfully extended

also to the AC setting in TOP (Moskovitz et al., 2021). TOP models both aleatoric

and epistemic uncertainty and adapts the level of optimism/pessimism by means of a

MAB approach. While TOP deals with uncertainty propagation, it mixes epistemic and

aleatoric uncertainty while estimating the return distribution.

Tractable model-free methods based on intrinsic motivation have been proposed in

recent years. Methods based on pseudo-counts (Bellemare et al., 2016; Ostrovski et al.,

2017) assign exploration bonuses according to the novelty of the state-action pairs visited.

While they have been applied with good results to deep architectures, they generally

rely on (often pre-trained) density models, which are not straightforward to maintain.

Other methods apply exploration bonuses based on the state-action visitation density

of the policy. MADE (Zhang et al., 2021) adds an exploration bonus, based on the

deviation of the state visitation density of the new policy from the last observed policies.

While it has been applied to continuous state-action spaces, it comes with a considerable

computational cost to estimate the state densities and also requires pre-training of density

models.

State entropy maximization (Mutti et al., 2021; Seo et al., 2021; Yarats et al., 2021)

has also been applied as an incentive to explore the whole state-action space, including

hard-to-reach regions. These methods generally scale better to continuous domains, as

they do not explicitly need to estimate the state occupancy but only the entropy of this

distribution. Numerous methods have also been proposed, with bonuses based on the

information-gain (Houthooft et al., 2016; Achiam and Sastry, 2017; Pathak et al., 2019),

but come with considerable computational costs to estimate these bonuses.

To the best of our knowledge, WAC is the first method able to propagate epistemic

uncertainty in continuous action spaces, without the need for estimating the full return

distributions.
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5.6 Experiments

In this section, we present the empirical evaluation of WAC in various continuous

control domains. We start from simple 1D-navigation, where we can better visualize

the effects of the Q-posteriors in the learning and exploration process. In Appendix B,

we show an evaluation on several standard MujoCo tasks, which show that this suite

of environments does not pose significant exploration challenges. Hence, we focus our

evaluation of WAC on multiple versions of the 2D navigation tasks used in (Moro et al.,

2022), where we can control the “level of exploration” needed to solve the task. We

consider 2 versions of the environment, one with an “informative” reward function based

on the distance from a goal state (which generates local maximums of the return) and

evaluate whether the different algorithms can escape these local maximums. Moreover,

we consider also sparse rewards, which avoid local maximums but make exploration

harder. We compare WAC to SAC and OAC since for δ = 0, WAC becomes exactly SAC,

and OAC also extends SAC with optimistic exploration by using an “heuristic” estimation

of the uncertainty. Details on the implementation, environments, and hyperparameter

tuning are presented in Appendix B.3. Our results can be reproduced using the source

code in https://github.com/amarildolikmeta/wac_explore.

1D Navigation To measure the effect of uncertainty estimation on exploration, we

keep track of the cumulative coverage of the state-action space, i.e., the portion of

the total volume visited with relative frequency larger than ε > 0. We consider a

one-dimensional LQG, an environment with no particular exploration challenges, and a

more challenging continuous-action version of the Riverswim (Strehl and Littman, 2008),

where long sequences of rewardless actions are needed to reach high reward states. A full

description of the environments is reported in Appendix A. Figure 5.3 shows the results

(a) Coverage in LQG. (b) Coverage in Riverswim.

Figure 5.3: Coverage in LQG and Riverswim as function of λ and ρ; average of 5 seeds, 95% c.i..

of these experiments. For each environment, we train WAC, varying the parameters λ
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(a) Average return in 4 2D navigation tasks.

(b) Number of episodes completed in 3000 steps in 4 2D navigation tasks.

(c) Number of episodes completed in 3000 steps in 4 2D navigation tasks with sparse reward function.

Figure 5.4: Experimental results in 4 2D navigation tasks starting from the easiest (left) to the
hardest (right); average of 5 seeds, 95% c.i..
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and ρ of the regularized uncertainty loss in Equation (5.7). For each value, we report

the coverage averaged over all training epochs. Thus, higher coverage values suggest

higher exploration on average. meaning that even when agents reach full coverage at the

end of the training, our plots will report lower values as it is averaged over the epochs.

Nonetheless, higher values suggest higher exploration. The scale of ρ is measured as a

percentage of the batch size used for the Q-value critic gradient estimation.

Firstly, we observe that the coverage is monotonically increasing with both λ and ρ.

As expected, low values of ρ cause higher variance, as fewer samples are employed to

estimate the uncertainty regularization. This can be seen in all the curves of the leftmost

plot, as well as in the third plot, where the black curve corresponding to ρ = 0.25 suffers

from high variance. In Appendix B, we perform a similar study for OAC and we observe

that the coverage is not so easily controllable. We attribute this to the ensemble-based

nature of the uncertainty estimation of OAC. While this disagreement between the

two critics does give some useful signals to explore due to the variance over different

initializations of the critics, it does seem to be enough to allow directed exploration

towards unseen regions of the state-action space.

5.6.1 2D Navigation

To assess whether a principled uncertainty estimation and propagation translate into

lower sample complexity, we perform an empirical evaluation in a set of MujoCo (Todorov

et al., 2012) tasks, where the amount of exploration needed to solve the task can be

controlled. We start from the 2D navigation task used in (Moro et al., 2022), where

the agent has to reach a goal state in a 2D world, by avoiding obstacles. The reward

is the negative Euclidean distance from the goal state. While this is a dense reward,

the obstacle presence generates local optima which the agent needs to overcome by

exploring efficiently. We progressively make the task more challenging by constructing

more difficult configurations with the addition of walls and obstacles. In the following,

we briefly describe the chosen evaluation tasks.

This environment models a sphere moving inside a two-dimensional maze. The goal

of the agent is to get close enough to a goal state on the right side of the maze while

avoiding obstacles. Once the agent gets close enough to the goal (Euclidean distance < 2)

the episode ends. The state space includes the agent position in the 2-dimensional space,

as well as the velocities. The action space is also 2-dimensional, controlling the actuators

in both directions. We use 2 reward functions for this task. In the dense reward version

of the environment, the reward is the negative Euclidean distance of the sphere from

the center of the goal. This represents a dense reward signal, which makes optimization
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easier but also introduces local maximums due to the presence of obstacles. In the sparse

version, the reward is always −1, so the optimal policy is to reach the goal as quickly as

possible so that the episode ends. We devise 4 environment configurations, with different

levels of difficulty.

The first environment (Figure 5.5a) has a U-shaped wall in the middle. The agent

has to overcome it by either running into it and then moving back to outflank it, so it

can escape the local maximum, or preferably, it has to go around it without touching

it. The U-shaped of the wall makes the task more difficult since the agent is unlikely to

be able to escape the local maximum once it has hit the wall by simply playing random

actions.

The second environment (Figure 5.5b) has 2 simpler obstacles to overcome compared

to the first environment, yet the agent now has to learn how to overcome two obstacles,

which overall makes the second task more difficult than the first one.

To overcome the obstacle of the third environment (Figure 5.5c) the agent has to

perform a rather complete exploration of the space since the gateway to the second room

is quite narrow and it is easy to be stuck in a local maximum at the border due to the

reward function based on the Euclidean Distance.

The fourth and last environment, shown in Figure 5.5d, puts together the challenges

of the previous two. It has 2 obstacles to overcome, and it also requires a rather complete

exploration of the space to advance to the goal.

We name the tasks as “Point x” with x ∈ {1, 2, 3, 4}, where a higher x means a more

difficult exploration challenge. We compare the performance of WAC, in both versions

defined in Section 5.3, with SAC and OAC. In each task, we track the cumulative return,

as well as the number of episodes completed in a fixed number of steps (higher is better).

We use the implementation of SAC and OAC used in (Ciosek et al., 2019) and extend

the repository with our implementation to guarantee comparable results. The same

network architectures are used for all algorithms. For the common hyperparameters, we

only tune SAC and use the same values for WAC and OAC by additionally tuning the

algorithm-specific parameters (δ and β for OAC and λ and ρ for WAC). Details on the

hyperparameter tuning are in Appendix B.3.

In Figure 5.4a, we present the average return as a function of the training epochs,

whereas in Figure 5.4b we present the number of episodes completed in 3000 steps of

interaction. Starting from left to right, we increase the difficulty of the task. We can

see that for the easiest task, all algorithms are able to find the optimal policy of quickly

avoiding an obstacle in the middle to reach the goal state, even though SAC learns slower

compared to the others. Being a simple exploration task, ME-WAC performs better and

is more stable than OE-WAC. OAC is also able to quickly solve the task. While the

81



i
i
Definition 5.6.6 (Definition 4 of (Strehl and Littman, 2008)). Suppose a learning algorithm A is run for T steps.

Consider partial sequence S0, R1, ..., ST−1, RT , ST visited by A. The instantaneous loss of the agent at time t is ilA(t) =

V ∗(St)−
∑T

i=t γ
i−tRi+1. The quantity LA = 1

T

∑T
t=1 ilA(t) is called the average loss.

“main” — 2024/5/13 — 14:52 — page 82 — #92 i
i

i
i

i
i

(a) Point 1 (b) Point 2

(c) Point 3 (d) Point 4
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difference in return is negligible, the number of completed episodes shows an advantage

for ME-WAC, which completes more episodes faster.

We underline that even though the task does not require particular exploration, WAC

does not over-explore, but rather solves with a speed comparable with the other baselines.

The clear advantages of WAC in terms of exploration can be seen starting from the

second task, where the exploration requirements are increased. Both versions of WAC

learn faster and with less variance compared with both SAC and OAC. The difference is

even more apparent in the number of episodes completed, where SAC and WAC have

disjoint confidence intervals. In the third task, SAC completely fails in learning to reach

the goal, while OAC succeeds in some of the seeds only, showing a high variance. WAC,

on the other hand, outperforms them both in terms of return and completed episodes.

ME-WAC performs better, even though the task requires a good amount of exploration.

Compared to ME-WAC, OE-WAC over-explores, and shows a slower learning curve.

The last task is solved by the WAC agents only. SAC and OAC never reach the goal

state. WAC outperforms them, in both versions, with statistical significance. We also

see the need for larger exploration, apparent from the difference in performance between

OE-WAC and ME-WAC.

Finally, Figure 5.4c presents the number of episodes completed in a sparse reward

version of the same tasks. In this scenario, we do not show the return as it is proportional

to the number of completed episodes. We only trained OE-WAC agents in these tasks,

as they present a substantial exploration challenge. The advantage of WAC is extremely

evident in these tasks. SAC and OAC are only able to solve the simplest task. In a

sparse reward setting, SAC and OAC will only explore randomly so they fully rely on the

chance of reaching the goal state with random actions. OAC explores more compared

to SAC, but since the exploration does not depend on the state-action visitations, but

only on the disagreement between the critics, sparse reward tasks are a great challenge.

WAC, instead, will still explore, even when facing sparse rewards since the uncertainty

will gradually decline in visited regions, so the upper bounds will favor reaching unvisited

ones. Indeed, OE-WAC outperforms both baselines in all the tasks with sparse rewards.

5.6.2 Exploration Heatmaps

To better appreciate the differences in exploration of the considered algorithms, we show

some additional heatmaps which represent the visited states (we have ignored velocities

so we could visualize the location of the agent) over 300 epochs of all algorithms we have

tested throughout the paper. Figure 5.6 shows the heatmaps from runs on the Point 3

environment with dense rewards. In Figure 5.6a we see that SAC cannot get past the
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(a) SAC
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(b) OAC exploration policy

x

y

(c) WAC exploration policy
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y

(d) WAC evaluation policy

Figure 5.6: Cumulative visited states in 300 epochs in Point 3 environment (Dense Reward)

first wall and does not explore the space around the local maximum enough to reach

other maxima. In Figure 5.6b we see that OAC finds a better maximum but still a local

one. WAC does find the same local maximum as OAC, in fact we can see in Figure 5.6c

it visits it many times, yet once the uncertainty estimate is low enough it is able to keep

exploring and ultimately reach the goal. We have also reported in Figure 5.6d the same

heatmap created by the target policy, which follows the critic of the mean instead of the

upper bound.

Figure 5.7 shows the cumulative visited states in the Point 2 environment with sparse

reward. We can observe that SAC, having no uncertainty estimate and no informative

rewards, mostly explores around the starting states with very simple policies that follow

straight lines. OAC is able to reach areas of the maze that are further away from the
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(b) OAC exploration policy
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(c) WAC exploration policy
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(d) WAC target policy

Figure 5.7: Cumulative visited states in 300 epochs in Point 2 environment (Sparse Reward)

starting point, but it still can’t reach the goal. Finally, WAC manages to reach the goal

of the maze and explores almost every area of it.

5.6.3 Standard MujoCo Experiments

The environments we employed for evaluation are characterized by relevant exploration

challenges. This choice, in our view, is motivated by the fact that we propose an approach

to effectively address exploration in continuous state-action environments. Nevertheless,

for completion, we present here some additional evaluations in the environments of

HalfCheetah-v2, Hopper-v2, and Walker2d-v2.

The results are shown in Figure 5.8. We do not perform tuning on the WAC

exploration parameters, whereas OAC and SAC are run with the (tuned) parameters
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reported in the OAC paper. We are outperformed by OAC in HalfCheetah-v2, outperform

both SAC and OAC in Hopper-v2 and perform the same in Walker2d-v2. This supports

our claim that standard MujoCo tasks are not suitable benchmarks for exploration.
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Figure 5.8: Empirical evaluation in 3 standard MujoCo tasks. Average of 4 seeds, 95 % c.i..
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5.7 Conclusions

In this chapter, we extended the Wasserstein TD-Learning (WTD) framework to be

able to handle continuous action spaces. We presented a novel Actor-Critic algorithm

based on the WTD with the goal of performing deep and directed exploration. We

presented WAC, which extends the recently proposed WQL to the continuous-actions

case. Furthermore, we addressed a problem of uncertainty estimation that arises when

using function approximation, related to the generalization of the uncertainty estimates.

We proposed a simple yet effective regularization method based on synthetic samples that

allowed us to better generalize the uncertainty across the state-action space. Finally, we

performed a thorough empirical evaluation to investigate the advantages of performing

principled uncertainty estimation and propagation in continuous-action domains. We

observed that the uncertainty estimates of WAC can effectively steer exploration towards

promising regions of the state-action space, even under sparse rewards, especially when

comparing it with heuristic uncertainty estimation based on ensemble methods.

In the next chapter, we will extend the WTD framework to the MCTS setting, similar

to the extension we provided in this chapter for the actor-critic setting. In Chapter 3

we observed how AlphaZero struggles when sparse or misleading rewards are optimized

and illustrated this issue in the goal-directed setting. While we proposed AlphaZeroHER

to handle goal-directed tasks, in the general RL settings the exploration problem still

persists. The exploration problem in AlphaZero is mainly related to the tree-search

phase, where to avoid exploring the full (huge) search tree, AlphaZero biases the search

to regions where the current policy assigns more probability mass. It is clear that this

bias of the search phase makes the algorithm exploit more the current policy. Moreover,

the PUCT tree policy employed considers each node in the tree as an independent bandit

problem, ignoring the temporal dependency between the nodes. By exploiting the WTD

framework, we aim to address both these issues. First, the WTD framework allows

us to directly generalize uncertainty estimates, and use them to bias the tree search

instead of the current policy. This way we perform directed exploration during the

tree-search instead of exploitation. Secondly, the WTD framework allows us to propagate

the uncertainty estimates through the tree nodes, propagating the uncertainty of deeper

nodes up until the root of the tree.
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CHAPTER6
Epistemic Uncertainty in MCTS

6.1 Introduction

In the previous chapters, we have highlighted the remarkable advances the combination of

Monte Carlo Tree Search (MCTS) and Reinforcement Learning (RL) has brought during

recent years. The ability of MCTS to provide local solutions to sequential decision-making

problems, coupled with the ability of RL agents to store and reuse solutions has proved

a viable approach to solve many large decision-making tasks. We recall again how the

combination of MCTS and RL has demonstrated success in challenging tasks, such as

board games, robotics, and complex strategy games such as Go, where DeepMind’s

AlphaZero utilized an MCTS-based approach coupled with deep neural networks to

achieve superhuman performance (Silver et al., 2017a). In all of these domains, MCTS

proved effective in taking the partial solutions represented by the parametrized value

function and policy and improving them via MCTS, outputting a better policy, and

providing, in this way, the policy improvement step. After this policy improvement via

MCTS, AlphaZero performs a simple policy evaluation step by estimating the new policy

performance via the Monte Carlo (MC) estimator introduced in Chapter 2. In this way,

we can interpret the AlphaZero algorithm as an iterative process of policy improvement
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and policy evaluation, just as many of the algorithms we have discussed in this thesis.

While the policy evaluation step is straightforward in this case, limiting itself to the

standard unbiased MC estimator, the policy improvement step is crucial for achieving

good performance in practice.

Despite these successes, challenges persist in the integration of MCTS and RL. One

significant challenge is the computational cost associated with extensive tree exploration,

particularly in domains with large state and action spaces. Scalability remains an issue,

limiting the application of MCTS-RL in real-time, resource-constrained environments.

Additionally, striking the right balance between exploration and exploitation is an ongoing

challenge, especially when the complexity of the environment increases. In scenarios

where there is no opponent to compete against, such as navigating complex environments

or solving puzzles, MCTS faces challenges related to the need for prolonged and deep

exploration. Single-agent tasks often involve vast state spaces and intricate decision

landscapes, making it challenging for MCTS to efficiently discover optimal solutions.

While the computational cost and scalability issues remain a barrier to the application of

these methods, we will only focus in this chapter on improving the exploration capabilities

of MCTS.

In Chapter 3, we highlighted how AlphaZero still struggles with exploration-heavy

tasks, like the goal-directed tasks we investigated. While we proposed a simple solution

via the application of Hindsight Experience Replay (HER) (Andrychowicz et al., 2017),

this is only achievable when we have access to the reward function and when this reward

function accepts a goal-dependent definition. When the decision-making task cannot be

mapped in a goal-dependent setting, and when the reward function is sparse or even

dense but misleading, the policy improvement step of AlphaZero will struggle to improve

the current policy, as demonstrated empirically in this thesis.

The struggle of MCTS in single-agent tasks highlights the algorithm’s dependence on

competitive interactions for effective exploration. While it excels in exploiting adversarial

relationships to improve decision-making, its performance diminishes when the goal is

to explore an environment without a clear adversary. Developing effective strategies for

balancing exploration and exploitation in the absence of external competition remains a

key research area to enhance MCTS’s applicability in diverse sequential decision-making

contexts.

In the course of this thesis, we discussed how efficient and deep exploration is not

a problem only for MCTS, but for RL agents too. Indeed, the ability to effectively

decide when to exploit the current information collected or to explore with the hope of

finding better paths is crucial for developing intelligent and efficient agents. In its basic

form, UCT (and its variants like PUCT used in AlphaZero), simplifies the exploration of
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the search tree by considering it an independent sequence of bandit problems. While

this greatly simplifies the algorithm and its theoretical study, it comes with significant

effects on its performance in hard exploration problems, where UCT has been shown to

display arbitrarily slow convergence (Munos, 2014). Many attempts have been made to

improve the tree-exploration of MCTS by incorporating techniques developed in the RL

literature (Browne et al., 2012). These methods go from simple extensions of the bandit

exploration methods to incorporate and propagate information about the variance of

the updates in UCB-V (Lieck et al., 2017), to more sophisticated methods that employ

Bayesian frameworks to estimate the complete return distribution instead of just its

expectation (Bai et al., 2018). Indeed, given the ability of MCTS to locally discretize

the state-action space representing it with the search tree, most of the RL exploration

techniques developed for the tabular setting can be adapted to be incorporated in MCTS.

For a more extended discussion on the combination of MCTS and RL, we refer the reader

to (Vodopivec et al., 2017).

While combining MCTS with effective exploration techniques has been extensively

studied in the literature, the combination with function approximators such as neural

networks presents additional challenges. In this chapter, we will explore the combination

of MCTS with the uncertainty estimation techniques presented in the previous chapters.

The crucial characteristic of AlphaZero is the ability to bias the search tree exploration

by employing the parametrized policy and value function. Extending this to the use of

uncertainty estimates to provide better exploration is not straightforward. Wasserstein

TD-Learning (WTD), on the other hand, provides intrinsically a framework to generalize

uncertainty estimates, which gave promising results even in high dimensional continuous

state-action spaces. This ability of WTD to generalize uncertainty estimates presents an

opportunity to combine it with MCTS in an AlphaZero fashion. In this way, we avoid

using the current policy alone for biasing the search, and can instead use estimates of

how much the agent is unsure of its performance.

In the next sections, we start with a brief discussion of the literature on the combina-

tion of Reinforcement Learning and planning, with a focus on efficient exploration. We

continue with the presentation of our proposed algorithm, Wasserstein Azero, which em-

ploys the (epistemic) distributional value functions presented in Chapter 3 and Chapter 4

to derive upper bounds on the value functions and discuss how MCTS can be employed

to refine these upper bounds. We conclude the chapter with an experimental campaign

and a final discussion.
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6.2 Related Literature

In this section, we provide a brief overview of the literature tackling the combination

of Reinforcement Learning techniques with online planning. As discussed earlier, the

basic idea of MCTS is to iteratively build a search tree of the future by exploiting a

forward model of the environment with the ultimate goal of identifying and evaluating

the optimal action in the current state, i.e., the root node of the tree. The key aspect of

MCTS that led to improved performance in a large number of environments and tasks

was the ability to build a highly assymetric search tree by focusing on more promising

paths of the search tree. It is clear at this point that the definition of promising greatly

affects the performance of the tree search, and generally, the best method to employ is

highly problem-dependent. Different choices of the selection policy and backprogation in

the 4 phases presented in Chapter 2, greatly affect the resulting search-trees and final

performance.

The first and most popular algorithm building incrementally an asymmetric search

tree in this form, UCT (Kocsis and Szepesvári, 2006) employs independent instances

of UCB1 (Auer et al., 2002) in each node of the tree, ignoring the sequentiality and

non-stationarity of the return processes observed in the tree. Moreover, UCT, in its basic

form, employs simple MC estimates during backpropagation. While this has proven to be

enough in many planning tasks and endows the algorithm with asymptotical convergence

guarantees, in general, it can make the algorithm converge arbitrarily slow (Munos, 2014).

A possible direction to improve the search performance of basic UCT is to employ more

sophisticated bandit algorithms while traversing the tree. Indeed, a large body of research

explores this direction (Browne et al., 2012). UCT-V(Lieck et al., 2017) combines MCTS

with the UCB-V algorithm, exploiting variance information of the returns observed in

the nodes of the search tree. The authors show that the algorithm provides the same

convergence guarantees of UCT while significantly outperforming it empirically in the

considered tasks. UCT-V also moved away from standard Monte Carlo backups, by

providing Dynamic Programming (DP) updates also for the variance information in the

tree nodes. The combination of DP with MCTS has been also studied in (Vodopivec et al.,

2017), where the authors unify the literature and terminology of MCTS and RL, and

provide a general algorithm, SARSA-UCT(λ), that combines the TD(λ) algorithm, with

MCTS, providing the same convergence guarantees, coupled with improved performance

in select tasks. More sophisticated backup operators have also been employed in the

literature, including the generalized mean backup operators in (Dam et al., 2019), where

the authors preserve the convergence guarantees of UCT while providing value estimates

that are more robust to overestimation and underestimation.
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Bayesian RL has also been successfully combined with MCTS in recent years.

In (Tesauro et al., 2012) the authors extend UCT by modeling the value estimates

as a Gaussian distribution, similar to WTD, to represent the uncertainty of the estimated

values. Similarly to WTD, they propose a fast uncertainty propagation method in the

nodes of the tree. In (Bai et al., 2018), the authors take a distributional perspective by

extending Bayesian Q-Learning (Dearden et al., 1998) to the MCTS setting, proposing

DNG-MCTS. DNG-MCTS represents the return distribution in each node as a Dirichlet-

NormalGamma distribution, which allows for fast Bayesian updates with each new sample.

Unfortunately, this does not allow showing the convergence of the algorithm, as it ignores

the dependency of the samples during these updates, but nonetheless, it shows improved

performance in the considered environments. Finally, in (Mern et al., 2021) the authors

propose the use of Gaussian processes to model the action-value function in the search

tree and select actions that maximize an upper bound of the action-value distribution.
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6.3 Wasserstein AlphaZero

In this section, we present the Wassertein AlphaZero (WAZ) algorithm, which employs

the Wassertein TD-Learning framework in the context of online planning. Effectively

exploring the search tree during MCTS is crucial for improving the sample complexity

of MCTS algorithms in environments where deep exploration is required. AlphaZero

tackles this problem by biasing the search toward actions favored by the current policy.

More formally, in each node N representing state sN of the search tree T , when
visiting the node for the n-th time, AlphaZero employs a modified PUCT (Rosin, 2011)

selection policy as follows:

an = arg max
i=1..K

Q(sN , ai, Ti(n− 1)) +B(ai)

= Q(sN , ai, Ti(n− 1)) + Cπθ(sN , ai)

√
n

1 + Ti(n− 1)
,

where a is the selected action, B(ai) is the exploration bonus, Q(sN , ai, Ti(n− 1)) is the

current estimate of the action-value function of the i-th action, Ti(n−1) is the number of

visits of the i-th action in node N and C is an exploration constant. The original PUCT

selection policy does not perform the scaling with πθ in the exploration bonus B(ai).

This means that the tree-search is unbiased, starting with equal confidence intervals

across the state-action space. AlphaZero, on the other hand, scales the exploration

bonuses directly with the probability that the current policy πθ assigns to each action.

This will favor actions that are already favored by the policy, adding more exploitation

during the tree-building phase. In this work, we argue that this could be detrimental

in certain scenarios where exploration is crucial. If the parametrized policy πθ becomes

deterministic during learning, it is straightforward to show that only one action will be

explored, and if this action is not the optimal one, the tree search will not be able to

discover that said action is suboptimal. Indeed, in the original AlphaZero paper, the

authors argue for additional exploration in the root state s0 by adding some noise to the

policy πθ(s0). In the following, we present a more principled approach for biasing the

tree search, by exploiting the distributional critics of the WTD framework.

6.3.1 Wassertein Monte Carlo Tree Search

The Wasserstein TD-learning framework, presented in Chapter 4 and Chapter 5 allowed

us to propagate uncertainty estimates across the state-action space and generalize them

through the use of parametrized function approximators, such as neural networks. In this

section, we discuss how to use these parametrized distributional critics during tree-search.

In Wasserstein AlphaZero, as in Wasserstein DQN and Wasserstein Actor-Critic, we
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maintain a parametrized distributional critic Qω, representing the distribution of possible

action-value functions for each state-action pair (s, a) ∈ S ×A, i.e., Q(s, a) ∼ Qω(s, a).

The variance of Qω(s, a) represents the uncertainty around the best current estimate

E[Qω(s, a)]. As in the previous chapters, we have the choice of the distribution class

to employ. We will focus in this chapter too, on the Gaussian case, i.e., Q(s, a) ∼
N (µω(s, a), σω(s, a)). All the details are easily extensible to other distribution classes,

such as the particle distributions discussed in Chapter 4. Compared to the MCTS

procedure employed in AlphaZero, Wasserstein Monte Carlo Tree Search differs mainly

in the selection and backpropagation phase.

Wasserstein Tree Selection

The goal of our MCTS procedure is to take in input the Q-distributions represented by

our distributional critic, which, as in Chapter 4, can be used to derive upper bounds

on the state-action value, and refine them through the search to recover tighter upper

bounds.

For the selection phase, we now have available at each node of the tree, the whole

Q-posterior Qω(s, a) for each action. We can, therefore, apply all the policies described

in Section 4.3.4. It is clear the best choice of policy is problem-dependent. We are

interested in refining the upper bounds:

U δω(s, a) = µω(s, a) + σω(s, a)Φ−1(δ),

where δ ∈ (0, 1) is the confidence level of the upper bound and Φ−1 is the quantile

function of the standard normal distribution. Hence we will only focus our attention on

the optimistic policies. More formally, when each node in the tree is created, representing

state s of the environment, we query the distributional critic to get an initial estimate of

the Q-posterior, getting an initial estimate of the mean and standard deviation for each

action:

µ0 = µω(s, a), σ0 = σω(s, a)) ∀a ∈ A.

Consequently, during the selection phase, when passing through node N for the n-th

time, we apply the optimistic selection policy:

an = arg max
i=1..K

U δn(sN , ai)

= µn−1(sN , ai) + σn−1(sN , ai)Φ
−1(δ),

(6.1)

where µn−1(sN , ai) is the current estimate of the mean of the Q-posterior for the i-th

action after n − 1 passes and σn−1(sN , ai) is the current estimate for the standard

deviation of the Q-posterior for the same action after n − 1 passes. Note that, same
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as AlphaZero, we only query the network for an initial estimate µ0 and σ0. Afterward,

we store these values in each action node of the tree and update them during the

backpropagation phase of the search. Other policies, like the mean policy that selects

according to the mean of the Q-posteriors µn−1(s, a) or the posterior sampling policy,

that samples actions according to the probability of being optimal are available but we

restrict our focus on the optimistic policy only.

Wasserstein Tree Backpropagation

In this section, we describe the backup operators employed in Wasserstein MCTS.

Following the classical MCTS scheme, after traversing the tree with the optimistic

selection policy and reaching a leaf node, we expand this node getting an initial estimate

of the Q-posterior for each action from the distributional critic Qω resulting in the

initial estimates µ0 and σ0 for each action a ∈ A. Similar to AlphaZero, we avoid an

expensive (in terms of samples from the model) evaluation of the last node, by performing

a bootstrap with these initial estimates. This section is analogous to Section 4.3.3, where

we need to define the V-posteriors of the next states, starting from the Q-posteriors of

the newly added node.

We will present three choices for the backup operator to employ. We are interested

in performing these updates after each pass of the tree during the search. Specifically,

by traversing the tree with the selection policy described earlier, we visit a series

of m − 1 nodes, Ni for i = 1..m. This defines a path of length m along the tree

τ = (s0, a0, r0..., sk−1, am−1, rm−1, sm) where sm is the state of the newly expanded node

for which we also obtain the initial Q-posterior estimates µ0,ai , σ0,ai for each action.

We start by extending the Optimistic Estimator (OE) introduced in Section 4.3.3

to MCTS. We recall that this operator applies the optimistic policy in Equation 6.1 to

define the V-posteriors starting from the Q-posteriors of each action. More formally,

given the (t+ 1)-th node Nt+1 along path τ , and current Q-posteriors Q(Nt+1, ai) in the

node, we define the V-posterior of Nt+1 according to Proposition 4.3.1 as:

a = arg max
i=1..K

U δ(Nt+1, ai),

V(Nt+1) = Q(Nt+1, a).

(6.2)

We can now propagate in the Q-posterior of the t-th node of the path, the V-posterior,
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performing the following update:

µn(Nt, at)← (1− α)µn−1(Nt, at) + α [rt + γµ(Nt+1)] ,

σn(Nt, at)← (1− α)σn−1(Nt, at) + αγσ(Nt+1),

α =
1

T (n− 1)
,

(6.3)

where at is the action taken at node Nt in path τ , rt is the reward observed after taking

that action, µ(Nt+1) and σ(Nt+1) are the mean and standard deviation of the V-posterior

defined in Equation 6.2 and T (n − 1) is the number of times action at was visited in

node Nt up to this time. This backup operator is then applied recursively along the

path τ starting from the newly added leaf node. We recall again here, that this operator

shrinks the uncertainty of the posteriors after each update with the discount factor γ.

We denote this as the OE backup operator.

It is straightforward to observe that the OE operator, being optimistic, might cause

the uncertainty to shrink too slowly, resulting in overexploration. This is because, in

every node visited along path τ , the operator applies the optimistic policy to define the

next state V-posterior, meaning that the posterior of the newly added node, might not be

propagated up to the root, but only until the corresponding action along the path is the

one with the highest upper bound. For this reason, and also to have a clearer comparison

with the base algorithm AlphaZero, we employ a TD(k) backup, where k depends on

the depth of the newly added leaf node. More formally, given a path of length m along

the tree τ = (s0, a0, r0..., sk−1, am−1, rm−1, sm), and initial Q-posterior estimates µ0,ai ,

σ0,ai for each action in the newly added node Nm, we define the value of said node as:

am = arg max
i=1..K

U δ0 (sNm , ai),

V(Nm) = Q(Nm, am),

(6.4)

where Q(Nm, am) denotes the Q-posterior of action am in node Nm and we apply

again the optimistic policy to estimate the value of the new state sNm . V(Nm) is then

propagated along path τ until reaching the roof, performing a TD(k) update with variable

k. Specifically, at the t-th node Nt of path τ , where we have taken action at in this path,

which has been visited T (n− 1) times so far, the update takes the form:

µn(Nt, at)← (1− α)µn−1(Nt, at) + α

j<m∑
j=t

γj−trt+j + µ0(Nm)

 ,
σn(Nt, ai)← (1− α)σn−1(Nt, ai) + αγm−tσ0(Nm),

α =
1

T (n− 1)
,

(6.5)
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where µ0(Nm) and σ0(Nm) are the mean and standard deviation of the V -posterior

defined in Equation 6.4. This backup operator is the closest to the PUCT update scheme

employed in AlphaZero so we include it for a better comparison with AlphaZero. Its

main characteristic is that it tends to reduce the uncertainty estimates faster during the

search phase, being that the update decreases the uncertainty of the V-posterior of the

leaf node exponentially w.r.t. the depth of the leaf node before incorporating it in the

nodes visited during the backup and this backup is performed recursively until reaching

the root node. We denote this as the TD backup operator.

Finally, we present a third backup operator that combines the characteristics of the

OE and TD backup operators, providing an uncertainty that shrinks at a slower rate

than the TD operator, while still incorporating the newly collected sample in all updates

that reach the root node. For this operator, we move away from the optimistic policy

when defining the V-posterior, using instead the counts of every action in the node to

define the next state policy. More formally, given the t+ 1-th node Nt+1 along path τ ,

and current Q-posteriors Q(Nt+1, ai) in the node, we define the V-posterior of Nt+1 as:

V(Nt+1) = E
a∼π(·)

[Q(Nt+1, a)] ,

π(a) =
T (n− 1)(a)∑

a′∈A T (n− 1)(a′)
,

(6.6)

where T (n − 1)(a) is the number of times we have tried action a in node Nt+1. After

defining the V-posterior of node Nt+1 according to Equation 6.6 we perform the backup

up the tree similar to Equation 6.3 where the only change is in the definition of the

V-posterior of the next state. In this case, the V-posterior of the newly added node will

always impact the updates that reach the root node of the tree, albeit with a smaller

weight according to the policy derived from the action counts in each node π. We note

that the policy π still tends to favor actions with higher upper bounds, since the selection

policy employed during the tree traversal is optimistic, and it is the selection policy that

generates the action counts. We denote this operator as the Wasserstein Operator (WO).

In (Dam et al., 2023), the authors propose a similar combination of Wasserstein

TD-Learning with Monte Carlo Tree Search for tackling highly stochastic environments

and POMDPs. The Wasserstein MCTS algorithm is similar to ours with the main

difference being in the Wasserstein barycenter scheme used to propagate the uncertainty

estimates. In this work, the authors employ a combination of L1-Wasserstein barycenters

and α-divergences while updating the Q-posteriors, drawing a connection with the

generalized mean estimators for MCTS introduced in (Dam et al., 2019). Moreover, they

provide a proof of polynomial convergence to the optimal policy at the root of the tree

when employing a posterior sampling strategy for sampling from the posteriors. Finally,
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they employ a thorough empirical evaluation in several simulated domains showing the

empirical benefits of the combination of WTD with MCTS. In this work, the authors

focus on pure MCTS, without the use of function approximators to bias the tree search.

The main difference of the approach described in this setting is the use of function

approximators to initialize the Q-posteriors in the nodes. In the next section, we discuss

how to train the parametrized Q-posteriors after the W-MCTS phase.
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6.3.2 Training the Wasserstein Critic

In the previous section, we described how Wasserstein MCTS can be used to refine

the Q-posteriors given by our distributional critics Qω when a forward model of the

environment is available. In the current section, we will present the main loop of the

Wasserstein MCTS algorithm.

Similar to AlphaZero, at each time step t, starting from the current environment state

st, we performM search iterations using the general MCTS scheme of selecting a leaf node

to expand by traversing the tree with the optimistic policy, expanding and evaluating

the new node with the distributional critic Qω, and propagating the V-posteriors to the

root node. Depending on the choice of backup operator, we recover three versions of the

algorithm, W-MCTS-OE, W-MCTS-TD, and W-MCTS-WO, for the OE, TD, and WO

backup operators, respectively.

The MCTS procedure provides us with new target posteriors for each of the actions

available in the current state st, Q(st, a), ∀a ∈ A. At this point, we store the Q-

posterior targets and select an action to play at the current state. We can play an

action optimistically, maximizing the upper bounds of the posteriors Q, or for a more

conservative play we can still sample actions according to the counts at the root node like

AlphaZero, following Equation 2.26. We execute the selected action at and observe the

next state st+1. After each interaction with the true environment, we store in the replay

buffer D one tuple of the form (st, a, µ(st, a), σ(st, a) for each available action a ∈ A,
where µ and σ denote the mean and standard deviation of the Q-posteriors derived via

MCTS. Consequently, we repeat the same procedure in the next state until the end of

the episode.

To maintain the comparison with AlphaZero, we repeat this for a number of episodes

and then train the parametrized value functions. Specifically, we employ a Mean Squared

Error (MSE) loss for both the mean and uncertainty networks. More formally, Wasserstein

AlphaZero minimizes the following loss:

E
(s,a,µ,σ)∼D

[
(µω(s, a)− µ)2 + (σω(s, a)− σ)2

]
. (6.7)

Like in Chapter 5, we employ separate approximators to estimate the mean and standard

deviation of the posteriors. Moreover, we also regularize the uncertainty network according

to Equation 5.7. The pseudocode of Wasserstein AlphaZero is presented in Algorithm 8.

The main difference in the training procedure employed by Wasserstein AlphaZero,

compared to base AlphaZero, is the value function targets. In AlphaZero, the authors

employ Monte Carlo estimates of the return of the played policy whereas we employ

Temporal Difference updates, where we use the output of our critic inside the search tree
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Algorithm 8 Wasserstein AlphaZero
1: Initialize memory buffer D
2: Initialize distributional critic networks µω, σω
3: for epoch = 1, · · · , N do
4: for episode = 1, · · · ,M do
5: Sample initial state s0 ∼ µ
6: while not done do
7: {µ(st, ai)}ai∈A, {σ(st, ai)}ai∈A, at ← W-MCTS(st, µω, σω)
8: st+1, rt, done ← applyAction(at)
9: D← D

⋃{(st, ai, µ(st, ai), σ(st, ai)}aiA
10: st ← st+1

11: end while
12: update µω, σω according to Equation 6.7
13: end for
14: end for

to generate the value function targets. In the next section, we perform an experimental

campaign to evaluate whether this learning procedure provides performance benefits

empirically.
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Figure 6.1: Performance of AlphaZero and Wasserstein AlphaZero in a bitflip environment with
length 10 using 30 search iterations. Average over 5 runs, 95% c.i.

6.4 Experimental Results

In this section, we perform an experimental campaign of the Wasserstein AlphaZero

algorithm, with the goal of observing if the benefits of the WTD framework introduced

in Chapter 4 can also be extended to the MCTS setting. For this reason, we perform an

evaluation in the simulated domains introduced in Chapter 3, where we saw AlphaZero

struggling to solve most of the hard exploration tasks. We test 6 versions of Wasserstein

AlphaZero, representing all the combinations of behavioral policy in the true environment

and backup operator during MCTS with the forward model. For the behavioral policy, we

consider two options, a policy based on the counts at the root of the tree like AlphaZero

(suffix C) or based on the optimistic policy derived from the posteriors at the root (suffix

O). For the backup operator, we consider all three operators introduced in the previous

section, Optimistic operator (suffix O), TD operator (suffix TD) or Wasserstein operator

(suffix W).

6.4.1 Bitflip Environment

We start with an evaluation in the Bitflip simulated environment introduced in Chapter 3.

The goal of this experiment is to evaluate the exploration capabilities of Wasserstein

AlphaZero in a simple simulated environment where we can easily control the difficulty

of the learning task, with the goal of observing the algorithm’s performance in both easy

and hard environments. We reuse the same hyperparameters used in the experiments

of Chapter 3 for both AlphaZero and Wasserstein AlphaZero. For the Wasserstein

AlphaZero we have 1 extra hyperparameter, the initialization of the Q-posteriors which

we do not tune due to computational constraints. In all the experiments, we used an

initial Q-posterior with a mean of 0 and variance of 1.
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Figure 6.2: Performance of AlphaZero and Wasserstein AlphaZero in a bitflip environment with
length 14 using 30 search iterations. Average over 5 runs, 95% c.i.

We start by considering easy cases of bit strings of lengths 10 and 14 where we

observed that AlphaZero could learn the tasks easily. In Figure 6.1 we show the results

of AlphaZero and Wasserstein AlphaZero in a bitflipt environment of length 10. We

present the agent’s return and percentage of solved episodes as a function of training

epochs. Each training epoch consists of the collection of 50 episodes of the middle loop

in line 4 in Algorithm 8.

We observe that as expected, AlphaZero solves the environment easily. When it

comes to Wasserstein AlphaZero, we observe that most configurations of the algorithm

version have no problem with solving the environment, albeit expectedly slower than

AlphaZero. We attribute this to overexploration since the 10-bit environment does not

need much exploration. The important takeaway from this environment is the fact

that the versions of AlphaZero employing an explorative behavioral policy exhibit much

instability in training. Indeed wazero_O_TD and wazero_O_O while they start by

learning quickly in all runs, show instability when some of the runs start overexploring

decreasing average performance and increasing the variance in the second part of learning.

In Figure 6.2, we present the results of the same experiment in a bitflip environment

of length 14. In this environment, the overexploration issue of Wasserstein AlphaZero

is even more evident, with most of the configurations recovering and maintaining the

optimal policy but substantially slower compared to base AlphaZero. Moreover, when

using optimistic behavioral policies, we confirm the learning instabilities observed in the

previous environment.

Next, we lengthen the bit sequence to a value of 18, when we first started observing

exploration issues in AlphaZero in Chapter 3. In Figure 6.3, we present the results of

this experiment. In the case of AlphaZero, we confirm the previous results showing that

the algorithm struggles to solve this environment, with most of the learning runs not
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Figure 6.3: Performance of AlphaZero and Wasserstein AlphaZero in a bitflip environment with
length 18 using 30 search iterations. Average over 5 runs, 95% c.i.

solving the environment and converging to a suboptimal policy resulting in a low average

performance with high variance. Wasserstein AlphaZero on the other hand, confirms the

high instability of its training observed in the previous environments. While in half of the

versions of the algorithm, we manage to outperform AlphaZero, recovering policies with

better average performance and with less variance between runs, the algorithm struggles

to maintain these good policies and overexplores. This overexploration is observed in all

versions of the algorithm, both in the case of conservative and explorative behavioral

policies. When extending the bitflip environment further to longer bit sequences, none of

the algorithms managed to solve the tasks so we omit the presentation of these results.

To conclude this section, we observed that in the bitflip environments of varying

lengths, the Wasserstein AlphaZero algorithm was prone to overexploration. While in

simple environments, when used with a conservative exploration policy derived from the

counts at the root, this overexploration did not bring instabilities, in harder environments

the algorithm showed substantial instabilities. Nevertheless, Wasserstein AlphaZero

does indeed show more directed exploration capabilities compared to base AlphaZero,

outperforming the latter often, but struggling to maintain high performance. In the

next section, we investigate the 2D navigation environment introduced in Chapter 3 to

observe if these properties of the algorithm extend to other environments.

6.4.2 2D Navigation

In the previous section, we observed how the Wasserstein AlphaZero algorithm displayed

instabilities in learning attributable to overexploration in both easy environments and

harder explorative tasks. In this section, we investigate if this behavior is observable also

in navigation tasks like the point environment used in Chapter 3 and Chapter 5. We
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Figure 6.4: Performance of AlphaZero and Wasserstein AlphaZero in the easier navigation
environment using 70 search iterations. Average over 5 runs, 95% c.i.
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Figure 6.5: Performance of AlphaZero and Wasserstein AlphaZero in the harder navigation
environment using 70 search iterations. Average over 5 runs, 95% c.i.

recall that these tasks consist in navigating in a 2D space with the goal of reaching a

fixed goal state, avoiding one or more obstacles in the environment. We employ a sparse

reward function, i.e., the agent receives a reward of -1 in each timestep until it reaches

the goal. This way the optimal behavior is reaching the goal in the smallest number of

steps. We reuse the same hyperparameters reported in Chapter 3 for both AlphaZero

and Wasserstein AlphaZero, without tuning the initialization of the Q-posteriors for the

latter due to computational constraints.

In Figure 6.4, we show the results of comparing AlphaZero and Wasserstein AlphaZero

in the easiest configuration of the 2D navigation task we introduced in Chapter 3. We

observe how AlphaZero again shows a more exploitative behavior, quickly learning an

optimal behavior in 3 of the training runs and recovering suboptimal behaviors in the

remaining 2 runs. Again after an initial learning period, AlphaZero settles on a policy for

the remaining duration of learning. On the other hand, Wasserstein AlphaZero confirms
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its overexplorative and unstable behavior, struggling to learn in most configurations but

reaching the optimal behavior in all the runs for the wazero_C_W and wazero_O_TD

configurations. This confirms our previous observations of learning instability and

overexploration. We repeat the same experiment, in a harder version of the same

navigation environment, by adding a harder obstacle on the the way to the goal and

present the results in Figure 6.5. Like in Chapter 3, AlphaZero never observes the goal

in this harder configuration. While Wasserstein AlphaZero manages to explore more and

observe the goal during learning and obtain positive solving rates, it does not manage to

maintain the learned policies demonstrating the same learning instabilities observed in

the other environments.

To conclude, while the combination of Wasserstein TD with AlphaZero resulted in

agents that explore the environment much more, this increased exploration resulted in

high learning instabilities making it harder for the resulting agents to maintain a high

performance. The TD learning procedure employed by Wasserstein AlphaZero proved

to be too unstable to recover good, stable policies in the investigated environments

indicating the need for a different learning algorithm for fitting the critic.
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6.5 Conclusions and Discussion

In this chapter, we introduced Wasserstein AlphaZero, an attempt to combine the directed

exploration of Wasserstein TD-Learning with AlphaZero to tackle hard exploration

problems where a forward model of the environment is available. Wasserstein TD-

learning provided us with the means to generalize, in a theoretically grounded way,

epistemic uncertainty over the value function estimates and to exploit them during the

Monte Carlo Tree Search. While in (Dam et al., 2023) the authors prove that a similar

combination of MCTS and Wasserstein TD converges polynomially to the optimal policy

in the pure MCTS case, when combining the algorithm with function approximators

in an AlphaZero fashion, we observed high learning instabilities due to overexploration.

Wasserstein AlphaZero, while able to explore the environment better compared to base

AlphaZero, struggled to maintain the learned policies resulting in generally lower final

performance.

An interesting future direction for research is the investigation of the effect of the

critic learning procedure on the performance. While in AlphaZero, training the value

network with Monte Carlo estimates of the return proved sufficient to recover a good

performance, in Wasserstein AlphaZero we employ TD targets recovered from MCTS

instead. Off-policy learning, paired with TD targets and function approximators has

been shown in the literature to be hard to stabilize (van Hasselt et al., 2018) so a

better investigation of the learning procedure might allow us to maintain the exploratory

behavior of Wasserstein AlphaZero, while providing more stable learning.
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CHAPTER7
Conclusions and Future Works

In this thesis, we tackled the problem of improving the sample efficiency of Reinforce-

ment Learning algorithms by exploiting theoretically grounded estimates of epistemic

uncertainty over the value function. We introduced Wassertein TD-Learning, a novel

framework for representing and propagating the uncertainty across the state-action space

and incorporated it in several model-free and model-based algorithms allowing us to

introduce provably sample-efficient algorithms in the tabular setting and extend them to

the Deep Reinforcement Learning setting to enable tackling more complex tasks. We

extend the framework to handle both continuous state spaces and continuous action

spaces, as well as investigated some practical issues that arise when generalizing uncer-

tainty estimates over the value function. Finally, we showed some promising results when

expanding the method to the online planning setting, introducing Wasserstein AlphaZero,

an extension of AlphaZero. While the resulting algorithm showed more explorative

behavior, discovering hard to reach policies in hard exploration tasks, it struggled to

maintain the performance due to high learning instabilities.

Despite the promising theoretical and practical results achieved during this research

project, several interesting open questions and future directions of research remain open.

In the following, we go over some important open questions.
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Is the Wasserstein TD-Learning scalable to large models? We were able to

extend the framework to several Deep Reinforcement Learning scenarios, ranging from

Atari games in Chapter 4, continuous-action control in Chapter 5, and Monte Carlo Tree

Search with value function approximators in Chapter 6 with promising results when

handling deep exploration tasks. In the settings investigated in this thesis, we limited

ourselves to shallow neural networks with a small number of hidden layers and a limited

number of trainable parameters. It remains an open question whether the uncertainty

estimates will remain informative in cases where the approximators used have parameters

in the range of Millions or Billions. We hope the community builds on top of our work

to scale our approach further.

How to handle over-exploration? In several of the investigated domains, while our

proposed algorithms were able to explore much more than the considered baselines and

base algorithms, they were often subject to over-exploration. This over-exploration often

resulted in instabilities in practice, especially when combined with Monte Carlo Tree

Search in Chapter 6. The hyperparameters defining the exploration budget also proved

hard to tune in this case. It remains an open problem how to deal with this issue properly.

A mechanism to tune the speed with which the uncertainty estimates decrease or increase

online could be an interesting direction of research.

Can we perform efficient posterior sampling in continuous domains? In Chap-

ter 5 We extendedWTD to handle the case of continuous actions by devising an actor-critic

algorithm that maintains an optimistic policy to collect samples as well as to define

the value targets for the distributional critic. While this showed promising results for

the considered hard exploration tasks, the question of optimizing a posterior sampling

policy, i.e., a policy that maximizes the probability of the actions being optimal under

the current Q-posteriors remains an open problem mainly due to the difficulty of defining

a differentiable posterior sampling objective for the actor. An approximate scheme of

optimizing the posterior sampling objective would allow moving away from optimistic

exploration also in the continuous action case.

How to boost exploration when the exploration budget depletes? Wasserstein

TD-learning initializes the Q-posteriors with an initial estimate of uncertainty which in

the base case is uniform across the state-action space. This initialization defines a sort of

exploration budget, which, while it is propagated and moved around across the state-

action space, it depletes over time as more samples are needed. While in the tabular case,

the initialization can be chosen so that it guarantees, in high probability, convergence
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to the optimal policy with a sublinear convergence rate, when moving to DeepRL, it

becomes a hyperparameter of the method. When initialized too large, the Q-posteriors

will result in overexploration but eventually will reach a high performance, as we observed

in our empirical studies. When the initialization of uncertainty is too low, WTD lacks a

mechanism to realize this and boost the amount of exploration. An interesting direction

would be to investigate how we can increase the uncertainty estimates when we observe

value targets that are too unlikely under the current Q-posteriors, which would indicate

an underestimation of the uncertainty.
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APPENDIXA
Technical Appendix

Index of the Appendix

In the following, we briefly recap the contents of the Appendix.

– Appendix A.1 provides additional details about the properties of the Wasserstein

metric and the Wasserstein barycenters.

– Appendix A.2 reports all proofs and derivations.

A.1 Details on Wasserstein distance

In this appendix, we provide some additional details on Wasserstein distance and some

properties of our approximate posterior distribution models. It can be proved Villani

(2008) that the functions Wp are metrics on the sets Pp(X ). Moreover, the following

monotonicity property holds: Wp(µ, ν) ≤Wq(µ, ν) if p ≤ q. We will assume that all the

involved probability measures µ admit cumulative distribution function (c.d.f.) Fµ and

probability density function (p.d.f.) fµ w.r.t. the Lebesgue measure. When X = R and

d(x, y) = |x− y| is the Euclidean distance, the Wasserstein distance can be rephrased in

129



i
i

Proposition A.1.3. Let µ be an arbitrary probability measure over the interval [a, b] ⊂ R admitting Fµ as c.d.f. and let

ν be a mixture of M Dirac deltas x̂1 ≤ x̂2 ≤ ... ≤ x̂M weighted by wj for j = 1, 2, ...,M fixed. Then, the L2-Wasserstein

W2(µ, ν) has a unique minimizer:

x̂j =
1

|Ij |

∫
Ij

F−1
µ (t)dt, j = 1, 2, . . . ,M,

where Ij = [tj−1, tj), t0 = 0, tj =
∑j

k=1wk and |Ij | = tj − tj−1 for j = 1, 2, ...N . In this case, the L2-Wasserstain distance

can be bounded as:

W2(µ, ν)2 ≤ (b− a)2

4
max

j=1,2,...,n
|Ij |.

“main” — 2024/5/13 — 14:52 — page 130 — #140 i
i

i
i

i
i

terms of the quantile functions:

Wp(µ, ν) =

(∫ 1

0

∣∣F−1
µ (t)− F−1

ν (t)
∣∣p dt

)1/p

, (A.1)

where F−1 is the quantile function, i.e., F−1
µ (t) = inf {x ∈ R : t ≤ Fµ(x)}. The L2-

Wasserstein distance admits a closed form for both the Gaussian and particle models.

For two Gaussian distributions, considering just the univariate case, µ = N (m1, σ
2
1) and

ν = N (m2, σ
2
2), we have Dowson and Landau (1982):

W2(µ, ν)2 = (m1 −m2)2 + (σ1 − σ2)2. (A.2)

For the particle models, with the same weighting wj we have the following result.

Proposition A.1.1. Let µ and ν be two mixture of M Dirac deltas with the same weight-

ing wj for j = 1, 2, ...,M having fµ(x) =
∑M

j=1wjδ(x−xj) and fν(x) =
∑M

j=1wjδ(x−yj)
as p.d.f.s with x1 ≤ x2 ≤ ... ≤ xM and y1 ≤ y2 ≤ ... ≤ yM . Then, the L2-Wasserstein

distance between µ and ν is given by:

W2(µ, ν)2 =
M∑
j=1

wj(xj − yj)2. (A.3)

Proof. We use Equation (A.1), thus we need to compute the quantile function of a mixture

of M Dirac deltas. Let us introduce the intervals Ij = [tj−1, tj), t0 = 0, tj =
∑j

k=1wk

and |Ij | = tj − tj−1 for j = 1, 2, ...N . It is clear that:

F−1
µ (t) =

M∑
j=1

xj1Ij (t), F−1
µ (t) =

M∑
j=1

yj1Ij (t),

where 1X is the indicator function of the set X . Thus we can compute the Wasserstein

distance by employing Equation (A.1):

W2(µ, ν)2 =

∫ 1

0

∣∣F−1
µ (t)− F−1

ν (t)
∣∣2 dt

=
M∑
j=1

∫
Ij

∣∣F−1
µ (t)− F−1

ν (t)
∣∣2 dt

=

M∑
j=1

∫
Ij

(xj − yj)2dt

=
M∑
j=1

(xj − yj)2

∫
Ij

dt

=

M∑
j=1

wj(xj − yj)2,

where we observed that
∫
Ij

dt = tj − tj−1 = wj .
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Proposition A.1.4. Let µ be an arbitrary probability measure over the interval [a, b] ⊂ R admitting Fµ as c.d.f. and let

ν be a mixture of M Dirac deltas x̂1 ≤ x̂2 ≤ ... ≤ x̂M weighted by wj for j = 1, 2, ...,M fixed. Then, the L2-Wasserstein

W2(µ, ν) has a unique minimizer:

x̂j =
1

|Ij |

∫
Ij

F−1
µ (t)dt, j = 1, 2, . . . ,M,

where Ij = [tj−1, tj), t0 = 0, tj =
∑j

k=1wk and |Ij | = tj − tj−1 for j = 1, 2, ...N . In this case, the L2-Wasserstain distance

can be bounded as:

W2(µ, ν)2 ≤ (b− a)2

4
max

j=1,2,...,n
|Ij |.
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A.1.1 Approximation of an arbitrary distribution with a mixture of
Deltas

In this section, we show that we are able to approximate an arbitrary distribution with a

mixture of Deltas, provided that we consider a sufficiently large number of components.

Proposition A.1.3. Let µ be an arbitrary probability measure over the interval [a, b] ⊂ R
admitting Fµ as c.d.f. and let ν be a mixture of M Dirac deltas x̂1 ≤ x̂2 ≤ ... ≤ x̂M

weighted by wj for j = 1, 2, ...,M fixed. Then, the L2-Wasserstein W2(µ, ν) has a unique

minimizer:

x̂j =
1

|Ij |

∫
Ij

F−1
µ (t)dt, j = 1, 2, . . . ,M,

where Ij = [tj−1, tj), t0 = 0, tj =
∑j

k=1wk and |Ij | = tj − tj−1 for j = 1, 2, ...N . In this

case, the L2-Wasserstain distance can be bounded as:

W2(µ, ν)2 ≤ (b− a)2

4
max

j=1,2,...,n
|Ij |.

Proof. Let us first compute the quantile function of ν, i.e., F−1
ν :

F−1
ν (t) =

M∑
j=1

xj1Ij (t). (A.4)

Using Equation (A.1), the L2-Wasserstein distance can be written as:

W2(µ, ν)2 =

∫ 1

0

(
F−1
µ (t)− F−1

ν (t)
)2

dt

=

M∑
j=1

∫
Ij

(
F−1
µ (t)− xj

)2
dt.

The objective is clearly convex, thus, we take the derivative w.r.t. xj and we get:

∂W 2
2

∂xj
= −2

∫
Ij

(
F−1
µ (t)− xj

)
dt = 0, (A.5)

from which the first result follows, by observing that
∫
Ij

dt = |Ij |. Let us now observe,

since F−1
µ is monotonically increasing, that for every j:∫

Ij

(
F−1
µ (t)− x̂j

)2
dt ≤

∫
Ij

(
F−1
µ (t)−

F−1
µ (tj) + F−1

µ (tj−1)

2

)2

dt (A.6)

≤ 1

4

∫
Ij

[
(F−1

µ (t)− F−1
µ (tj)) + (F−1

µ (t)− F−1
µ (tj−1))

]2
dt

≤ 1

4

∫
Ij

[
(F−1

µ (t)− F−1
µ (tj−1))− (F−1

µ (tj)− F−1
µ (x))

]2
dt (A.7)

≤ 1

4

∫
Ij

(
F−1
µ (tj)− F−1

µ (tj−1)
)2

dt

≤ 1

4
|Ij |
(
F−1
µ (tj)− F−1

µ (tj−1)
)2
,
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Proposition A.1.5. Let µ be an arbitrary probability measure over the interval [a, b] ⊂ R admitting Fµ as c.d.f. and let

ν be a mixture of M Dirac deltas x̂1 ≤ x̂2 ≤ ... ≤ x̂M weighted by wj for j = 1, 2, ...,M fixed. Then, the L2-Wasserstein

W2(µ, ν) has a unique minimizer:

x̂j =
1

|Ij |

∫
Ij

F−1
µ (t)dt, j = 1, 2, . . . ,M,

where Ij = [tj−1, tj), t0 = 0, tj =
∑j

k=1wk and |Ij | = tj − tj−1 for j = 1, 2, ...N . In this case, the L2-Wasserstain distance

can be bounded as:

W2(µ, ν)2 ≤ (b− a)2

4
max

j=1,2,...,n
|Ij |.
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where (A.6) follows from the fact that x̂j is the minimizer and (A.7) derives from observing

that F−1
µ (t)−F−1

µ (tj−1) ≤ 0 by definition of F−1
µ (tj−1) whereas F−1

µ (t)−F−1
µ (tj−1) ≥ 0.

Let us rename ∆j = F−1
µ (tj)− F−1

µ (tj−1), the error can be bounded overall as:

W2(µ, ν)2 ≤ 1

4

M∑
j=1

|Ij |∆2
j

≤ 1

4
max

j=1,2,...,M
|Ij |

n∑
j=1

∆2
j

≤ 1

4
max

j=1,2,...,M
|Ij |

 M∑
j=1

∆j

2

≤ 1

4
max

j=1,2,...,M
|Ij | (b− a)2 ,

where we used Cauchy–Schwarz inequality in the last passage, observing that ∆j ≥ 0

from the monotonicity of F−1
µ .

When we consider a uniform particle model, i.e., wj = 1/M , the result reduces to:

W2(µ, ν)2 ≤ (b− a)2

4M
. (A.8)

The result tells us that when M → ∞ the error vanishes as expected. Up to now, we

considered the error introduced by representing a given distribution with a mixture of

deltas. It is interesting to investigate the properties of the approximating distribution ν.

Lemma A.1.1. Let ν be the best mixture of deltas L2-Wasserstein approximation of an

arbitrary distribution µ, as defined in Proposition A.2.11. If µ admits expectation, then

it holds that:

E
X∼µ

[X] = E
X∼ν

[X]. (A.9)

Proof. We are going to assume that µ admits a p.d.f. fµ and we indicate with fν the

p.d.f. of ν. We first observe that by making the substitution x = F−1
µ (t), we have the

identity: ∫
Ij

F−1
µ (t)dt =

∫ F−1
µ (tj)

F−1
µ (tj−1)

xfµ(x)dx. (A.10)
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Proposition A.1.7. Let µ be an arbitrary probability measure over the interval [a, b] ⊂ R admitting Fµ as c.d.f. and let

ν be a mixture of M Dirac deltas x̂1 ≤ x̂2 ≤ ... ≤ x̂M weighted by wj for j = 1, 2, ...,M fixed. Then, the L2-Wasserstein

W2(µ, ν) has a unique minimizer:

x̂j =
1

|Ij |

∫
Ij

F−1
µ (t)dt, j = 1, 2, . . . ,M,

where Ij = [tj−1, tj), t0 = 0, tj =
∑j

k=1wk and |Ij | = tj − tj−1 for j = 1, 2, ...N . In this case, the L2-Wasserstain distance

can be bounded as:

W2(µ, ν)2 ≤ (b− a)2

4
max

j=1,2,...,n
|Ij |.
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Therefore:

E
X∼ν

[X] =

∫ b

a
xfν(x)dx

=

M∑
j=1

wj x̂j

=
M∑
j=1

wj
1

|Ij |

∫
Ij

F−1
µ (t)dt

=
M∑
j=1

∫
Ij

F−1
µ (t)dt

=
M∑
j=1

∫ F−1
µ (tj)

F−1
µ (tj−1)

xf(x)dx

=

∫ b

a
xfµ(x)dx = E

X∼µ
[X].

Thus, our approximation preserves the mean, but unfortunately, this does not hold

for the higher order moments.

A.1.2 Combining Posteriors via Wasserstein Barycenters

In this section, we introduce the notion of Fréchet mean, we show how it reduces to the

Wasserstein barycenter when selecting the Wasserstein distance as a metric.

Definition A.1.2. Let (X , d) be a complete separable metric (Polish) space and µ ∈
P2(X ) a probability measure over X . The Fréchet mean is defined as:

x = arg inf
x∈X

E
Y∼µ

[
d(x, Y )2

]
. (A.11)

The Fréchet mean generalizes the notion of mean by minimizing the expected value

of a metric. In the particular case in which X = R, and d(x, y) = |x− y| is the Euclidean

distance, the Fréchet mean is the expectation of X under µ, i.e., x = EX∼µ [X].1

In our scenario, we have that X = Q is a set of probability measures (the Q-

posteriors) and we select as metric d = W2, i.e., the L2-Wasserstein distance. Therefore,

Equation (A.11) defines the Wasserstein barycenter Agueh and Carlier (2011). Typically,

the notion of barycenter is defined in terms of a finite set of distributions Agueh and

Carlier (2011). However, we can also consider infinite (possibly continuous) sets of

distributions. For our posterior distribution models, the Wasserstein barycenter is unique

and we have a closed form expression.
1Different choices of exponent to which d(x, Y ) is raised generate different indexes of central tendency,

like median for exponent 1 and mode for the exponent going to 0 in the limit.
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Proposition A.1.8. Let µ be an arbitrary probability measure over the interval [a, b] ⊂ R admitting Fµ as c.d.f. and let

ν be a mixture of M Dirac deltas x̂1 ≤ x̂2 ≤ ... ≤ x̂M weighted by wj for j = 1, 2, ...,M fixed. Then, the L2-Wasserstein

W2(µ, ν) has a unique minimizer:

x̂j =
1

|Ij |

∫
Ij

F−1
µ (t)dt, j = 1, 2, . . . ,M,

where Ij = [tj−1, tj), t0 = 0, tj =
∑j

k=1wk and |Ij | = tj − tj−1 for j = 1, 2, ...N . In this case, the L2-Wasserstain distance

can be bounded as:

W2(µ, ν)2 ≤ (b− a)2

4
max

j=1,2,...,n
|Ij |.
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A.1.3 Closed-Forms for Wasserstein Barycenters of Gaussians and
Particle models

We show in the following that the standard close forms for finite sets, when using Gaussian

and particle models, naturally extends for continuous spaces.

Proposition A.1.7. Let (T ,F ) be a measurable space and let µ ∈P(T ) be a probability

measure over T . Let {ν(t)}t∈T be a family of probability measures. Then,

inf
ν∈N

E
T∼µ

[
W2 (ν, ν(T ))2

]
has a unique solution both for Gaussian and uniform particle models. In particular, for

the Gaussian model, the parameters of the L2-Wasserstein barycenter are:

m = E
T∼µ

[µ(T )] , σ = E
T∼µ

[σ(T )] ,

and for equally weighted particle models:

xj = E
T∼µ

[xj(T )] , j = 1, 2, ...,M.

Proof. All it takes is to write down the objective function and compute its minimizer. Let

us start with the Gaussian model. The L2-Wasserstein distance between two Gaussians

is given in Equation (A.2), therefore our objective becomes:

L(µ, σ) = E
T∼µ

[
W2 (ν, ν(T ))2

]
= E

T∼µ

[
(m−m(T ))2 + (σ − σ(T ))2

]
,

where ν(T ) = N (m(T ), σ2(T )) and ν = N (m,σ2). The objective is clearly convex,

therefore we just need to take the derivatives w.r.t. µ and σ:

∂L
∂µ

= 2 E
T∼µ

[m−m(T )] = 0 =⇒ m = E
T∼µ

[m(T )] ,

∂L
∂σ

= 2 E
T∼µ

[σ − σ(T )] = 0 =⇒ σ = E
T∼µ

[σ(T )] ,

from which the result follows. Similarly, for the equally weighted particle models, using

Proposition A.1.1, we have:

L(x1, x2, ..., xM ) = E
T∼µ

[
W2 (ν, ν(T ))2

]
= E

T∼µ

 M∑
j=1

wj(xj − xj(T ))2


=

M∑
j=1

wj E
T∼µ

[
(xj − xj(T ))2

]
.
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Proposition A.2.1. Let µ be an arbitrary probability measure over the interval [a, b] ⊂ R admitting Fµ as c.d.f. and let

ν be a mixture of M Dirac deltas x̂1 ≤ x̂2 ≤ ... ≤ x̂M weighted by wj for j = 1, 2, ...,M fixed. Then, the L2-Wasserstein

W2(µ, ν) has a unique minimizer:

x̂j =
1

|Ij |

∫
Ij

F−1
µ (t)dt, j = 1, 2, . . . ,M,

where Ij = [tj−1, tj), t0 = 0, tj =
∑j

k=1wk and |Ij | = tj − tj−1 for j = 1, 2, ...N . In this case, the L2-Wasserstain distance

can be bounded as:

W2(µ, ν)2 ≤ (b− a)2

4
max

j=1,2,...,n
|Ij |.
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We take the derivatives again and we obtain for every j = 1, 2, ...,M :

∂L
∂xj

= 2wj E
T∼µ

[xj − xj(T )] = 0 =⇒ xj = E
T∼µ

[xj(T )] .

In other words, the L2-Wasserstein barycenter of a set of Gaussians is a Gaussian

distribution having as mean the expectations of the mean and standard deviation the

expectations of the standard deviations. Similarly, the L2-Wasserstein barycenter of a

set of uniform mixtures of deltas is a uniform mixture of deltas where each particle is

located at the expectation of the locations.

A.2 Proofs and Derivations

Proposition 4.3.1. If Q is the set of deterministic distributions over R, then the WTD

update rule (Equation (4.13)) has a unique solution that corresponds to the TD update

rule.

Proof. It is a simple application of Proposition A.1.6 for the particle model settingM = 1,

µ = (1− αt, αt)T , ν1 = Qt(St, At) and ν2 = Rt+1 + γVt(St+1).

A.2.1 Provable Efficiency

In this section, we provide a series of results about the provable efficiency of a slightly

modified version of WQL. We restrict our attention to the Gaussian model and we

consider the optimistic estimator (OE) for the maximum and optimistic exploration

(OX). We will consider w.l.o.g. the following assumption.

Assumption A.2.1. The reward function is deterministic and positive.

As a consequence we have that 0 ≤ Qπ(s, a) ≤ Qmax. Several parts of the proofs we

are going to present are inspired to Jin et al. (2018). We now illustrate how to modify

WQL in order to have the desired theoretical guarantees.

Modified Gaussian WQL

First of all, we need to particularize the MWTD for the Gaussian case:

m̃t+1(s, a) = (1− αt)m̃t(s, a) + αt (Rt+1 + γmt(St+1)) ,

σ̃t+1(s, a) = (1− αt)σ̃t(s, a) + αtγσt(St+1),

mt+1(s, a) = m̃t+1(s, a) + βtmb,

σt+1(s, a) = σ̃t+1(s, a) + βtσb,
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Proposition A.2.2. Let µ be an arbitrary probability measure over the interval [a, b] ⊂ R admitting Fµ as c.d.f. and let

ν be a mixture of M Dirac deltas x̂1 ≤ x̂2 ≤ ... ≤ x̂M weighted by wj for j = 1, 2, ...,M fixed. Then, the L2-Wasserstein

W2(µ, ν) has a unique minimizer:

x̂j =
1

|Ij |

∫
Ij

F−1
µ (t)dt, j = 1, 2, . . . ,M,

where Ij = [tj−1, tj), t0 = 0, tj =
∑j

k=1wk and |Ij | = tj − tj−1 for j = 1, 2, ...N . In this case, the L2-Wasserstain distance

can be bounded as:

W2(µ, ν)2 ≤ (b− a)2

4
max

j=1,2,...,n
|Ij |.
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with mb = 0 by definition. We also define the auxiliary quantities that account for the

accumulated effect of the learning rate:

α0
t =

t∏
i=0

(1− αi), αit = αi

t∏
j=i+1

(1− αj)

It is clear that, by definition, for any t = 0, 1, ... we have that αt0 +
∑t

i=1 α
t
i = 1. Using

these quantities we can rewrite the update rules for the mean and the standard deviation:

mt(s, a) = αnt(s,a)m0 +

nt(s,a)∑
i=1

αint(s,a) [Rti+1 + γmti(Sti+1)] ,

σt(s, a) = αnt(s,a)σ0 + γ

nt(s,a)∑
i=1

αint(s,a)σti(Sti+1) + βtσb,

where nt(s, a) is the number of times pair (s, a) was visited up to time t, ti is the time at

which pair (s, a) was visited for the i-th time, mti(Sti+1) = mti(Sti+1, a) and σti(Sti+1, a),

where a = arg maxa∈A u
δ
ti(Sti+1, a) is the action that maximizes the upper bound of the

Q-function, defined as:

uδt (s, a) = mt(s, a) + z1−δσt(s, a), uδt (s, a) = min
{
uδt (s, a), Qmax

}
(A.12)

Notice that we can define an update rule for the upper bound uδt (s, a) too:

uδt (s, a) = αnt(s,a) [m0 + z1−δσ0]

+

nt(s,a)∑
i=1

αint(s,a) [Rti+1 + γ (mti(Sti+1) + z1−δσti(Sti+1))] + βtσb

= αnt(s,a) [m0 + z1−δσ0] +

nt(s,a)∑
i=1

αint(s,a)

[
Rti+1 + γuδt (Sti+1)

]
+ βtσb

where ut(Sti+1) is the upper bound of the V-function defined as:

uδt (s) = max
a∈A

{
uδt (s, a)

}
. (A.13)

Learning Rate

In this section, we introduce the learning rates αt and βt we will use to prove our

theoretical results and we will present some properties we are going to exploit for the

subsequent proofs:

αt =
a

b+ t
, βt =

c√
d+ t

. (A.14)

with 0 < a ≤ b+ 1, b ≥ 1, 0 < c2 ≤ d, d ≥ 1 and d ≤ b, whose values will be specified

later. This choice of learning rates allows us to prove the following properties.
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Let µ be an arbitrary probability measure over the interval [a, b] ⊂ R admitting Fµ as c.d.f. and let ν be a mixture of M

Dirac deltas x̂1 ≤ x̂2 ≤ ... ≤ x̂M weighted by wj for j = 1, 2, ...,M fixed. Then, the L2-Wasserstein W2(µ, ν) has a unique

minimizer:

x̂j =
1

|Ij |

∫
Ij

F−1
µ (t)dt, j = 1, 2, . . . ,M,

where Ij = [tj−1, tj), t0 = 0, tj =
∑j

k=1wk and |Ij | = tj − tj−1 for j = 1, 2, ...N . In this case, the L2-Wasserstain distance

can be bounded as:

W2(µ, ν)2 ≤ (b− a)2

4
max

j=1,2,...,n
|Ij |.
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Lemma A.2.1. If a > 1 and b > 1, the following relations hold for any t = 1, 2, ... and

i = 1, 2, ...:

1.
+∞∑
t=1

αit ≤
a

a− 1
;

2.
+∞∑
t=1

α0
t =

b

a− 1
− 1;

3.
t∑
i=1

(αit)
2 ≤ a

b+ t
.

Proof. Let us start with 1. By using the properties of the Gamma function, we have

that:
M∑
t=1

αit =
a

a− 1

Γ(b+ i)

Γ(1− a+ b+ i)

[
Γ(2− a+ b)

Γ(1 + b)
− Γ(2− a+ b+M)

Γ(1 + b+M)

]
.

Since a > 1 we have that 2 − a + b + M < 1 + b + M , thus for M → +∞ the second

addendum goes to zero. Moreover, for the same reason Γ(b+i)
Γ(1−a+b+i) ≤ 1 and Γ(2−a+b)

Γ(1+b) ≤ 1.

The result follows immediately. A similar argument can be stated for 2. By using the

properties of the Gamma function, we have the following equality:

M∑
t=1

α0
t =

b

a− 1
− 1− Γ(1 + b)Γ(2− a+ b+M)

(a− 1)Γ(1− a+ b)Γ(1 + b+M)
.

Since a > 1 we have that 2− a+ b+M < 1 + b+M and therefore for M → +∞ the

ratio of Gamma functions goes to zero, from which the result follows. Finally, for 3 we

employ an argument similar to that of Lemma 4.1 (b) of Jin et al. (2018):

αit =
a

b+ i

(
b+ i+ 1− a
b+ i+ 1

· b+ i+ 2− a
b+ i+ 2

. . .
b+ t− a
b+ t

)
=

a

b+ t

(
b+ i+ 1− a

b+ i
· b+ i+ 2− a

b+ i+ 1
. . .

b+ t− a
b+ t− 1

)
≤ a

b+ t
,

where we exploited the fact that b+i+j−a
b+i+j−1 ≤ 1 for all j = 1, ...t − i being a > 1. Now,

observing that
∑t

i=1 α
i
t ≤ 1, we have:

t∑
i=1

(αit)
2 ≤ a

b+ t

t∑
i=1

αit ≤
a

b+ t
.
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Proposition A.2.4. Let µ be an arbitrary probability measure over the interval [a, b] ⊂ R admitting Fµ as c.d.f. and let

ν be a mixture of M Dirac deltas x̂1 ≤ x̂2 ≤ ... ≤ x̂M weighted by wj for j = 1, 2, ...,M fixed. Then, the L2-Wasserstein

W2(µ, ν) has a unique minimizer:

x̂j =
1

|Ij |

∫
Ij

F−1
µ (t)dt, j = 1, 2, . . . ,M,

where Ij = [tj−1, tj), t0 = 0, tj =
∑j

k=1wk and |Ij | = tj − tj−1 for j = 1, 2, ...N . In this case, the L2-Wasserstain distance

can be bounded as:

W2(µ, ν)2 ≤ (b− a)2

4
max

j=1,2,...,n
|Ij |.
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Optimism

We now prove that with a suitable choice of m0, σ0 and σb we are able to guarantee that

uδt (s, a) is optimistic w.r.t. Q∗(s, a) with high probability. We start proving the following

intermediate result.

For any δ ∈ [0, 1], with probability at least 1− δ, we have simultaneously for all s ∈ S,
a ∈ A and t ∈ {1, 2, ..., T}:

nt(s,a)∑
i=1

αint(s,a)

[
uδti(Sti+1)− E

S′∼P(·|s,a)

[
uδti(S

′)
]]
≤ Qmax

√√√√nt(s,a)∑
i=1

(
αint(s,a)

)2
log
|S||A|T

δ
.

Proof. Let us provide a formal definition of ti:

ti = min ({t ∈ {1, 2, ..., T} : t > ti−1 ∧ (st, at) = (s, a)} ∪ {T + 1}) , (A.15)

where we have assigned the value T + 1 if (s, a) is experienced less than i times. Consider

the filtration Fi = σ(S0, A0, R1, ..., Sti−1, Ati−1, Rti) generated by all the random vari-

ables realized until time ti. The random variableXti = 1{ti≤T}
[
uδti(Sti+1)− ES′∼P(·|s,a)

[
uδti(S

′)
]]

is a martingale difference sequence (MDS) w.r.t. the filtration {Fi}i=1,2,..., as E[Xti |Fi] = 0

and |Xti | < Qmax a.s.. Using Azuma-Hoeffding inequality and a union bound over the

time {1, 2, ..., T}, the states S and the actions A we have that w.p. at least 1 − δ the

statement holds.

We are now ready to prove that uδt (s, a) are optimistic with high probability.

Theorem A.2.1. (Optimism) Let m0 = Qmax, σ0 = 0 and σb = γQmax

cz1−δ

√
a log |S||A|Tδ

for all s ∈ S, a ∈ A. Then, for any δ ∈ [0, 1], with probability at least 1 − δ, we have

simultaneously for all s ∈ S, a ∈ A and t ∈ {1, 2, ..., T}:

uδt (s, a) ≥ Q∗(s, a). (A.16)

Proof. The proof is by induction on t. For t = 0, we have that uδ0(s, a) ≥ Qmax ≥ Q∗(s, a).

Let us assume the statement hold up to time t−1, we prove that it holds for t. Recall that

uδt (s, a) = min{uδt (s, a), Qmax}. If uδt (s, a) = Qmax then the statement hold. Otherwise

we have uδt (s, a) = uδt (s, a). Let us write explicitly the expression of the upper bound
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Let µ be an arbitrary probability measure over the interval [a, b] ⊂ R admitting Fµ as c.d.f. and let ν be a mixture of M

Dirac deltas x̂1 ≤ x̂2 ≤ ... ≤ x̂M weighted by wj for j = 1, 2, ...,M fixed. Then, the L2-Wasserstein W2(µ, ν) has a unique

minimizer:

x̂j =
1

|Ij |

∫
Ij

F−1
µ (t)dt, j = 1, 2, . . . ,M,

where Ij = [tj−1, tj), t0 = 0, tj =
∑j

k=1wk and |Ij | = tj − tj−1 for j = 1, 2, ...N . In this case, the L2-Wasserstain distance

can be bounded as:

W2(µ, ν)2 ≤ (b− a)2

4
max

j=1,2,...,n
|Ij |.
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uδt (s, a). With probability at least 1− δ we have:

uδt (s, a) = αnt(s,a) [m0 + z1−δσ0] +

nt(s,a)∑
i=1

αint(s,a)

[
Rti+1 + γuδt (Sti+1)

]
+ βnt(s,a)z1−δσb

= αnt(s,a) [m0 + z1−δσ0] + βnt(s,a)z1−δσb

+

nt(s,a)∑
i=1

αint(s,a)

[
r(s, a) + γ E

S′∼P(·|s,a)

[
uδti(S

′)
]]

(A.17)

+ γ

nt(s,a)∑
i=1

αint(s,a)

[
uδti(Sti+1)− E

S′∼P(·|s,a)

[
uδti(S

′)
]]

≥ α0
nt(s,a)Q

∗(s, a) +

nt(s,a)∑
i=1

αint(s,a)

[
r(s, a) + γ E

S′∼P(·|s,a)

[
V ∗(S′)

]]
(A.18)

+ βnt(s,a)z1−δσb − γQmax

√√√√nt(s,a)∑
i=1

(
αint(s,a)

)2
log
|S||A|T

δ
(A.19)

≥ Q∗(s, a) + βnt(s,a)z1−δσb − γQmax

√
a

b+ nt(s, a)
log
|S||A|T

δ
, (A.20)

where line (A.17) derives from the fact that the reward is deterministic (Rti+1 = r(s, a)),

line (A.18) is an application of the inductive hypothesis being all ti < t and observing

that uδti(S
′) = maxa∈A{uδti(S′, a)} ≥ maxa∈A{Q∗(S′, a)} = V ∗(S′) and we applied

Lemma A.2.2 at line (A.19). Line (A.20) follows from the application of Bellman

equation and using Lemma A.2.1 to bound the summation in the square root. In order to

guarantee that this expression is non-negative for all t ∈ {1, 2, ..., T} we need to satisfy:

βnt(s,a)z1−δσb ≥ γQmax

√
a

b+ nt(s, a)
log
|S||A|T

δ

=⇒ σb ≥ γqmax

√
d+ nt(s, a)

cz1−δ

√
a

b+ nt(s, a)
log
|S||A|T

δ
.

The term depending on t can be bounded recalling that d ≤ b and that nt(s, a) ≤ T :√
d+ nt(s, a)

b+ nt(s, a)
≤
√
d+ T

b+ T
≤ 1.

Therefore, we choose:

σb =
γQmax

cz1−δ

√
a log

|S||A|T
δ

.

Main Result

We now provide this central lemma that we will use to state a bound on the sample

complexity considering our running algorithm as a non stationary policy A.
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Proposition A.2.6. Let µ be an arbitrary probability measure over the interval [a, b] ⊂ R admitting Fµ as c.d.f. and let

ν be a mixture of M Dirac deltas x̂1 ≤ x̂2 ≤ ... ≤ x̂M weighted by wj for j = 1, 2, ...,M fixed. Then, the L2-Wasserstein

W2(µ, ν) has a unique minimizer:

x̂j =
1

|Ij |

∫
Ij

F−1
µ (t)dt, j = 1, 2, . . . ,M,

where Ij = [tj−1, tj), t0 = 0, tj =
∑j

k=1wk and |Ij | = tj − tj−1 for j = 1, 2, ...N . In this case, the L2-Wasserstain distance

can be bounded as:

W2(µ, ν)2 ≤ (b− a)2

4
max

j=1,2,...,n
|Ij |.
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Let s ∈ S be any state and let ∆t(s) = V ∗(s)− VA(s) be the instantaneous regret of

state s at time t and define Ψt(s) = uδt (s)− VA(s). Let δ ∈ [0, 1], then with probability at

least 1− δ the following chain inequalities holds simultaneously for all s ∈ S, a ∈ A and

t ∈ {1, 2, ..., T}: ∆t(s) ≤ Ψt(s) and

Ψt(s) ≤ α0
nt(s,a)Qmax + γ

nt(s,a)∑
i=1

αint(s,a)Ψti(sti+1) + 2γQmax

√
a

d+ nt(s, a)
log
|S||A|T

δ
,

(A.21)

where a ∈ arg maxa′∈A{uδt (s, a′)}.

Proof. Consider a state s ∈ S, we decompose the instantaneous regret at time t, i.e.,

∆t(s). It is important to notice that s is not necessarily the state visited by our algorithm

at time t, i.e., st. With probability at least 1− δ we have simultaneously for all t:

∆t(s) = V ∗(s)− VA(s)

= max
a∈A
{Q∗(s, a)} − VA(s)

≤ max
a′∈A
{uδt (s, a′)} − VA(s) (A.22)

= uδt (s)− VA(s) = Ψt(s) (A.23)

≤ uδt (s, a)−QA(s, a), (A.24)

were a ∈ arg maxa′∈A u
δ
t (s, a

′). Line (A.22) follows from the optimism (Theorem A.2.1)

and line (A.24) is obtained by observing that maxa′∈A{QA(s, a′)} ≥ QA(s, a) for any
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Proposition A.2.7. Let µ be an arbitrary probability measure over the interval [a, b] ⊂ R admitting Fµ as c.d.f. and let

ν be a mixture of M Dirac deltas x̂1 ≤ x̂2 ≤ ... ≤ x̂M weighted by wj for j = 1, 2, ...,M fixed. Then, the L2-Wasserstein

W2(µ, ν) has a unique minimizer:

x̂j =
1

|Ij |

∫
Ij

F−1
µ (t)dt, j = 1, 2, . . . ,M,

where Ij = [tj−1, tj), t0 = 0, tj =
∑j

k=1wk and |Ij | = tj − tj−1 for j = 1, 2, ...N . In this case, the L2-Wasserstain distance

can be bounded as:

W2(µ, ν)2 ≤ (b− a)2

4
max

j=1,2,...,n
|Ij |.
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a ∈ A. We now apply the Bellman equation on the upper confidence bound:

uδt (s, a)−QA(s, a) ≤ uδt (s, a)−QA(s, a) (A.25)

= α0
nt(s,a) (m0 −QA(s, a)) + βnt(s,a)z1−δσb

+

nt(s,a)∑
i=1

γαint(s,a)

(
uδti(sti+1)− E

S′∼P(·|s,a)

[
VA(S′)

])
= α0

nt(s,a) (m0 −QA(s, a)) + βnt(s,a)z1−δσb

+ γ

nt(s,a)∑
i=1

αint(s,a)

(
uδti(sti+1)− VA(sti+1)

)

+ γ

nt(s,a)∑
i=1

αint(s,a)

(
VA(sti+1)− E

S′∼P(·|s,a)

[
Vπt(S

′)
])

≤ α0
nt(s,a)Qmax + γQmax

√
a

d+ nt(s, a)
log
|S||A|T

δ
(A.26)

+ γ

nt(s,a)∑
i=1

αint(s,a)

(
uδti(Sti+1)− VA(Sti+1)

)

+ γQmax

√√√√nt(s,a)∑
i=1

(
αint(s,a)

)2
log
|S||A|T

δ
(A.27)

≤ α0
nt(s,a)Qmax + 2γQmax

√
a

d+ nt(s, a)
log
|S||A|T

δ
+ γ

nt(s,a)∑
i=1

αint(s,a)Ψti(Sti+1),

where line (A.26) follows from observing that m0 −QA(s, a) = Qmax −QA(s, a) ≤ qmax

and by substitution of the value of σ(2)
0 (s, a) and line (A.27) is obtained by applying

Azuma-Hoeffding inequality, like in Lemma A.2.2 (all it takes it to consider VA instead

of uδti) and recalling that d ≤ b.

Using the previous lemma we are able to state the following theorem that represents

the core of our analysis. In this case, we are going to evaluate how well is our algorithm

performing (in terms of value function) over the states visited by the algorithm itself. This

will allow us to derive immediately a guarantee on the sample complexity of PE-WQL.

Theorem A.2.2. Let S0, S1, ..., ST be the sequence of states and actions visited by the

algorithm. Let a = 2+γ
2(1−γ) and b = a − 1. Then, under the same assumptions as

Lemma A.2.1, for any δ ∈ [0, 1], with probability at least 1− δ it holds that:

T∑
t=1

∆t(St) ≤ O
(

Qmax

(1− γ)3/2

√
|S||A|T log

|S||A|T
δ

)
. (A.28)
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Proposition A.2.8. Let µ be an arbitrary probability measure over the interval [a, b] ⊂ R admitting Fµ as c.d.f. and let

ν be a mixture of M Dirac deltas x̂1 ≤ x̂2 ≤ ... ≤ x̂M weighted by wj for j = 1, 2, ...,M fixed. Then, the L2-Wasserstein

W2(µ, ν) has a unique minimizer:

x̂j =
1

|Ij |

∫
Ij

F−1
µ (t)dt, j = 1, 2, . . . ,M,

where Ij = [tj−1, tj), t0 = 0, tj =
∑j

k=1wk and |Ij | = tj − tj−1 for j = 1, 2, ...N . In this case, the L2-Wasserstain distance

can be bounded as:

W2(µ, ν)2 ≤ (b− a)2

4
max

j=1,2,...,n
|Ij |.
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Proof. We are now going do deal with the summation
∑T

t=1 Ψt(st+1):

T∑
t=1

Ψt(st+1) = Qmax

T∑
t=1

α0
nt(st+1,at+1)

(i)

+γQmax

√
a log

|S||A|T
δ

T∑
t=1

1√
d+ nt(st+1, at+1)

(ii)

+ γ

T∑
t=1

nt(st+1,at+1)∑
i=1

αint(st+1,at+1)Ψti(st+1,at+1)(sti(st+1,at+1)+1)

(iii)

We make the following observation we are going to use throughout the proof

nt(st+1, at+1) = nt+1(st+1, at+1)− 1. (A.29)

Let us start with (i):

T∑
t=1

α0
nt(st+1,at+1) =

T∑
t=1

α0
nt+1(st+1,at+1)−1

=

T+1∑
h=2

α0
nh(sh,ah)−1 (A.30)

≤
T+1∑
h=1

α0
nh(sh,ah)−1

=
∑
s∈S

∑
a∈A

nT+1(s,a)∑
i=1

α0
i−1 (A.31)

=
∑
s∈S

∑
a∈A

nT+1(s,a)−1∑
i=0

α0
i

≤
∑
s∈S

∑
a∈A

+∞∑
i=0

α0
i =

(
b

a− 1
+ 1

)
|S||A|, (A.32)

where we made the change of variable h = t+ 1 to get line (A.30), we decomposed the

summation over the state action pairs obseving that each of them appears nT+1(s, a)

times to get line (A.31) and we used Lemma A.2.1 to get line (A.32).
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Proposition A.2.9. Let µ be an arbitrary probability measure over the interval [a, b] ⊂ R admitting Fµ as c.d.f. and let

ν be a mixture of M Dirac deltas x̂1 ≤ x̂2 ≤ ... ≤ x̂M weighted by wj for j = 1, 2, ...,M fixed. Then, the L2-Wasserstein

W2(µ, ν) has a unique minimizer:

x̂j =
1

|Ij |

∫
Ij

F−1
µ (t)dt, j = 1, 2, . . . ,M,

where Ij = [tj−1, tj), t0 = 0, tj =
∑j

k=1wk and |Ij | = tj − tj−1 for j = 1, 2, ...N . In this case, the L2-Wasserstain distance

can be bounded as:

W2(µ, ν)2 ≤ (b− a)2

4
max

j=1,2,...,n
|Ij |.
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Let us now consider (ii); using Equation (A.29) we get:

T∑
t=1

1√
d+ nt(st+1, at+1)

=
T∑
t=1

1√
d+ nt+1(st+1, at+1)− 1

=
T+1∑
h=2

1√
d+ nh(sh, ah)− 1

≤
T+1∑
h=1

1√
d+ nh(sh, ah)− 1

=
∑
s∈S

∑
a∈A

nT+1(s,a)∑
i=1

1√
d+ i− 1

(A.33)

≤ 2
∑
s∈S

∑
a∈A

√
nT+1(s, a) (A.34)

≤ 2
√
|S||A|(T + 1), (A.35)

where line (A.33) derives from decomposing the summation over state-action pairs and

observing that each state-action pair appears nT+1(s, a) times. Line (A.34) is obtained by

bounding the summation with the integral:
∫ nT+1(s,a)+1

1
1√

b+x−1
dx = 2

√
d+ nT+1(s, a)−

2
√
d ≤ 2

√
nT+1(s, a), where the last inequality derives from the subadditivity of the

square root. Finally, line (A.35) is obtained by observing that
∑

s∈S
∑

a∈A nT+1(s, a) =

T + 1 and the expression is maximized by taking nT+1(s, a) = T+1
|S||A| .

Now we consider the term (iii). First observe that nt(st+1, at+1) ≥ 1 in order to
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Proposition A.2.10. Let µ be an arbitrary probability measure over the interval [a, b] ⊂ R admitting Fµ as c.d.f. and let

ν be a mixture of M Dirac deltas x̂1 ≤ x̂2 ≤ ... ≤ x̂M weighted by wj for j = 1, 2, ...,M fixed. Then, the L2-Wasserstein

W2(µ, ν) has a unique minimizer:

x̂j =
1

|Ij |

∫
Ij

F−1
µ (t)dt, j = 1, 2, . . . ,M,

where Ij = [tj−1, tj), t0 = 0, tj =
∑j

k=1wk and |Ij | = tj − tj−1 for j = 1, 2, ...N . In this case, the L2-Wasserstain distance

can be bounded as:

W2(µ, ν)2 ≤ (b− a)2

4
max

j=1,2,...,n
|Ij |.
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appear in the inner summation. Consider the derivation:

T∑
t=1

nt(st+1,at+1)∑
i=1

αint(st+1,at+1)Ψti(st+1,at+1)(sti(st+1,at+1)+1)

=

T∑
t=1

nt+1(st+1,at+1)−1∑
i=1

αint+1(st+1,at+1)−1Ψti(st+1,at+1)(sti(st+1,at+1)+1)

=

T+1∑
h=2

nh(sh,ah)−1∑
i=1

αinh(sh,ah)−1Ψti(sh,ah)(sti(sh,ah)+1)

≤
T+1∑
h=1

nh(sh,ah)−1∑
i=1

αinh(sh,ah)−1Ψti(sh,ah)(sti(sh,ah)+1) (A.36)

=

T+1∑
t=1

Ψt(st+1)

nT+1(st,at)∑
i=nt(st,at)

α
nt(st,at)
i−1 (A.37)

≤
T+1∑
t=1

Ψt(st+1)

+∞∑
i=2

α
nt(st,at)
i−1 (A.38)

≤
T+1∑
t=1

Ψt(st+1)
+∞∑
i=1

α
nt(st,at)
i

≤ a

a− 1

T+1∑
t=1

Ψt(st+1) (A.39)

≤ a

a− 1

T∑
t=1

Ψt(st+1) +
a

a− 1
Qmax. (A.40)

where line (A.37) is obtained by observing that given Ψt(st+1) it is going to appear

in the summation for all t ≥ ti(st, at). The first time it will appear multiplied by

α
nt(st,at)
nt(st,at)−1, the second time with αnt(st,at)nt(st,at)

and so on. Line (A.38) derives from observing

that nt(st+1, at+1) ≥ 1, thus nt+1(st+1, at+1) ≥ 2. Line (A.39) is obtained by applying

Lemma A.2.1.

Now, we put all together into the bound on the summation:

T∑
t=1

Ψt(st+1) ≤ Qmax

(
b

a− 1
+ 1

)
|S||A|+ 2γqmax

√
a log

|S||A|T
δ

√
|S||A|(T + 1)

+
aγ

a− 1

T∑
t=1

Ψt(st+1) +
aγ

a− 1
Qmax.

In order to solve the inequality, we must require aγ
a−1 < 1, i.e., a > 1

1−γ . In such a case,
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Proposition A.2.11. Let µ be an arbitrary probability measure over the interval [a, b] ⊂ R admitting Fµ as c.d.f. and let

ν be a mixture of M Dirac deltas x̂1 ≤ x̂2 ≤ ... ≤ x̂M weighted by wj for j = 1, 2, ...,M fixed. Then, the L2-Wasserstein

W2(µ, ν) has a unique minimizer:

x̂j =
1

|Ij |

∫
Ij

F−1
µ (t)dt, j = 1, 2, . . . ,M,

where Ij = [tj−1, tj), t0 = 0, tj =
∑j

k=1wk and |Ij | = tj − tj−1 for j = 1, 2, ...N . In this case, the L2-Wasserstain distance

can be bounded as:

W2(µ, ν)2 ≤ (b− a)2

4
max

j=1,2,...,n
|Ij |.
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we obtain:

T∑
t=1

Ψt(st+1) ≤
(

1− aγ

1− a

)−1 [
Qmax

(
b

a− 1
+ 1

)
|S||A|

+ 2γQmax

√
a log

|S||A|T
δ

√
|S||A|(T + 1) +

aγ

a− 1
Qmax

]
.

Now, we propose a value for a and b that fulfills all the conditions. In particular, among

all possible values we select:2 a = 2+γ
2(1−γ) . Then we take the smallest possible value for b,

i.e., b = a− 1. From which we get:

T∑
t=1

Ψt(st+1) ≤ 3

1− γ

[
2qmax|S||A|+ 2γQmax

√
2 + γ

2(1− γ)
log
|S||A|T

δ

√
|S||A|(T + 1) +

2 + γ

3
Qmax

]

≤ 3

1− γ

[
Qmax(|S||A|+ 1) + 2γQmax

√
3

2(1− γ)
log
|S||A|T

δ

√
|S||A|(T + 1)

]

≤ O
(

Qmax

(1− γ)3/2

√
|S||A|T log

|S||A|T
δ

)
,

where the last passage is obtained by observing that: if T + 1 ≥
√
|S||A|(T + 1) then√

|S||A|(T + 1) ≥ |S||A|; on the contrary
∑T

t=1 Ψt(st+1) ≤ T ≤
√
|S||A|(T + 1) − 1.

Thus, we can discard the first term.

Theorem A.2.2 allows us to bound the per-step regret over the trajectories visited by

the algorithm.

Corollary A.2.1. Let a = 2+γ
2(1−γ) and b = a− 1. Then, under the same assumptions as

Lemma A.2.1, for any δ ∈ [0, 1], with probability at least 1− δ for T ≥ T0:

T0 = O
(
Q2

max|S||A|
ε2(1− γ)3

log
Q2

max|S|2|A|2
δε2(1− γ)3

)

we have that:
1

T

T∑
t=1

∆t(St) ≤ ε.

Proof. Following the reasoning of Jaksch et al. (2010a), we just need to find a sufficiently

large T0 such that for all T ≥ T0 the per step regret is smaller than ε:

1

T
O
(

Qmax

(1− γ)3/2

√
|S||A|T log

|S||A|T
δ

)
< ε =⇒ T ≥ O

(
Q2

max|S||A|
ε2(1− γ)3

log
|S||A|T

δ

)
2It can be easily proved that taking the value of a that minimizes

(
1− aγ

1−a

)−1√
a just changes the

bound by a constant and does not modify the dependence on (1− γ).
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Definition A.2.2 (Definition 5 of Strehl and Littman (2008)). Suppose a learning algorithm A is run for one sequence

of T1 + T2 − 1 steps. Consider partial sequence S0, R1, ..., St−1, Rt, St visited by A. For any policy π and integer t such

that t ≤ T1, let RπT2(t) =
∑t+T2−1

t′=t γt
′−tRt′+1 + γT2vπ(St+T2) be the adjusted return. Let IπT2(t) = V π(St)−RπT2(t) be the

adjusted instantaneous loss. Let LπT1,T2 = 1
T1

∑T1
t=1 I

π
T2

(t) be the adjusted average loss.
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We rename τ = Q2
max|S||A|
ε2(1−γ)3

. We select T0 = O
(

2τ log τ |S||A|
δ

)
. Therefore, we have:

T0 = O
(

2τ log
τ |S||A|

δ

)
= O

(
τ log

(
τ |S||A|

δ

τ |S||A|
δ

))
≥ O

(
τ log

(
2
τ |S||A|

δ
log

τ |S||A|
δ

))
= O

(
τ log

T0|S||A|
δ

)
= O

(
Q2

max|S||A|
ε2(1− γ)3

log
|S||A|T0

δ

)
,

where we exploited the inequality x > 2 log x for x > 0.

Finally, we prove that MWQL is PAC-MDP in the average loss setting. We import

several ideas from Strehl et al. (2006). First of all, we recall the notion of adjusted loss.

Definition A.2.1 (Definition 5 of Strehl and Littman (2008)). Suppose a learning

algorithm A is run for one sequence of T1 + T2 − 1 steps. Consider partial sequence

S0, R1, ..., St−1, Rt, St visited by A. For any policy π and integer t such that t ≤ T1,

let RπT2(t) =
∑t+T2−1

t′=t γt
′−tRt′+1 + γT2vπ(St+T2) be the adjusted return. Let IπT2(t) =

V π(St)−RπT2(t) be the adjusted instantaneous loss. Let LπT1,T2 = 1
T1

∑T1
t=1 I

π
T2

(t) be the

adjusted average loss.

We are now ready to prove the result.

Theorem 4.5.2. Under the hypothesis of Theorem 4.5.1, MWQL with Gaussian posterior,

OE and OX is PAC-MDP in the average loss setting, i.e., for any ε ≥ 0 and δ ∈ [0, 1],

after

T = O
(
Q2

max|S||A|
ε2(1− γ)3

log
Q2

max|S|2|A|2
δε2(1− γ)3

)
steps we have that the average loss LA ≤ ε with probability at least 1− δ.

Proof. A running algorithm can be viewed as a non stationary policy A. Define T =

T1 + T2 − 1 and define the adjusted average loss of At w.r.t. itself.

LA
T1,T2 =

1

T1

T1∑
t=1

IAT2(t). (A.41)

In Strehl and Littman (2008) it is proven that for any algorithm A and for

T1 ≥ max

{
1 + 2 log(1/δ)Q2

max

ε2(1− γ)2
, 2 log(1/δ)Q2

max(T2 − 1)

}
, (A.42)
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Definition A.2.3 (Definition 5 of Strehl and Littman (2008)). Suppose a learning algorithm A is run for one sequence

of T1 + T2 − 1 steps. Consider partial sequence S0, R1, ..., St−1, Rt, St visited by A. For any policy π and integer t such

that t ≤ T1, let RπT2(t) =
∑t+T2−1

t′=t γt
′−tRt′+1 + γT2vπ(St+T2) be the adjusted return. Let IπT2(t) = V π(St)−RπT2(t) be the

adjusted instantaneous loss. Let LπT1,T2 = 1
T1

∑T1
t=1 I

π
T2

(t) be the adjusted average loss.
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we have that LA
T1,T2

≤ ε with probability at least 1− δ. We now consider the adjusted

average loss w.r.t. to the optimal policy π∗ and we decompose it:

Lπ
∗
T1,T2 =

1

T1

T1∑
t=1

Iπ
∗

T2 (t) (A.43)

=
1

T1

T1∑
t=1

Iπ
∗

T2 (t)± 1

T1

T1∑
t=1

IAT2(t)

≤ ε+
1

T1

T1∑
t=1

(
Iπ
∗

T2 (t)− IAT2(t)
)

(A.44)

= ε+
1

T1

T1∑
t=1

(
V ∗(St)−Rπ

∗
T2 (t)−

(
VA(St)−RA

T2(t)
))

(A.45)

= ε+
1

T1

T1∑
t=1

(V ∗(St)− VA(St)) +
1

T1

T1∑
t=1

γT2 (VA(St+T2)− V ∗(St+T2)) (A.46)

≤ ε+
1

T1

T1∑
t=1

∆t(St) (A.47)

≤ 2ε, (A.48)

where (A.44) derives from the fact that LA
T1,T2

≤ ε, (A.45) is from the definition of

adjusted instantaneous loss, (A.46) derives from the definition of adjusted return, (A.47)

is obtained by observing that VA(St+T2) ≤ V ∗(St+T2) and the definition of ∆t(St) and

(A.48) derives from Corollary A.2.1. Therefore, the inequality hold for T1 satisfying

condition (A.42) and Corollary A.2.1, with probability at least 1 − 2δ. Proposition 3

of Strehl and Littman (2008) proves that for T1 ≥ 2T2
ε and T2 ≥ log(ε(1−γ))

log γ we have that

the adjusted loss Lπ∗T1,T2 is ε-close to the average loss LA. Therefore we have that LA ≤ 3ε

with probability at least 1− 2δ provided that:

T1 = O
(
Q2

max|S||A|
9ε2(1− γ)3

log
Q2

max|S|2|A|2
2δε2(1− γ)3

)
= O

(
Q2

max|S||A|
ε2(1− γ)3

log
Q2

max|S|2|A|2
δε2(1− γ)3

)
.

(A.49)

It can be easily proved that among all the conditions T1 has to satisfy the most restrictive

is the one imposed by Corollary A.2.1.
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Definition A.2.4 (Definition 5 of Strehl and Littman (2008)). Suppose a learning algorithm A is run for one sequence

of T1 + T2 − 1 steps. Consider partial sequence S0, R1, ..., St−1, Rt, St visited by A. For any policy π and integer t such

that t ≤ T1, let RπT2(t) =
∑t+T2−1

t′=t γt
′−tRt′+1 + γT2vπ(St+T2) be the adjusted return. Let IπT2(t) = V π(St)−RπT2(t) be the

adjusted instantaneous loss. Let LπT1,T2 = 1
T1

∑T1
t=1 I

π
T2

(t) be the adjusted average loss.
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Definition B.1.1 (Definition 5 of Strehl and Littman (2008)). Suppose a learning algorithm A is run for one sequence

of T1 + T2 − 1 steps. Consider partial sequence S0, R1, ..., St−1, Rt, St visited by A. For any policy π and integer t such

that t ≤ T1, let RπT2(t) =
∑t+T2−1

t′=t γt
′−tRt′+1 + γT2vπ(St+T2) be the adjusted return. Let IπT2(t) = V π(St)−RπT2(t) be the

adjusted instantaneous loss. Let LπT1,T2 = 1
T1

∑T1
t=1 I

π
T2

(t) be the adjusted average loss.
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APPENDIXB
Experimental Appendix

B.1 Experimental Details of Chapter 4

B.1.1 Reproducibility Details

In this section, we provide the hyper-parameters employed in the experiments presented

in this work. Table B.1 and Table B.2 provide a list of hyperparameters employed for

both AlphaZero and AlphaZeroHER, without being optimized. Moreover, Table B.3 lists

the hyperparameters employed in thr DQN+HER experiments. We ran each experiment

in a single multi-core machine, with no GPUs.

Table B.1: List of the hyperparameters and their values used in all environments.

Hyperparameter Value

Optimizer Adam

cuct 2.0

Discount factor 0.999

Episodes per epoch 50
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Definition B.2.1 (Definition 5 of Strehl and Littman (2008)). Suppose a learning algorithm A is run for one sequence

of T1 + T2 − 1 steps. Consider partial sequence S0, R1, ..., St−1, Rt, St visited by A. For any policy π and integer t such

that t ≤ T1, let RπT2(t) =
∑t+T2−1

t′=t γt
′−tRt′+1 + γT2vπ(St+T2) be the adjusted return. Let IπT2(t) = V π(St)−RπT2(t) be the

adjusted instantaneous loss. Let LπT1,T2 = 1
T1

∑T1
t=1 I

π
T2

(t) be the adjusted average loss.
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Table B.2: List of the hyperparameters and their values used in each environment.

Hyperparameter Environment Value

Learning rate

BitFlip 0.0005

2D Navigation 0.001

2D Maze 0.0005

Quantum Compiling 0.00005

Batch size

BitFlip 256

2D Navigation 512

2D Maze 512

Quantum Compiling 512

Search Iterations

BitFlip 20

2D Navigation 70

2D Maze 120

Quantum Compiling 20
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Figure B.1: Varying the number of subgoals in the BitFlip environment. Average of 10 runs,
95% c.i..

B.1.2 Varying the number of subgoals sampled

In this section, we study the effect of increasing the number of sampled subgoals in

AlphaZeroHER. Figure B.1 and Figure B.2 show the results of varying the number of

subgoal in the BitFlip and quantum compiling environments respectively. We can see that

in both enviroments the performance increases as we increase the number of subgoals k,

until we reach a (problem dependend) threshold after which the performance starts falling

until it reaches the lower levels when we use as subgoals, all the available ones (label

All). This is in line with the results presented in the original HER paper (Andrychowicz

et al., 2017).
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Definition B.2.2 (Definition 5 of Strehl and Littman (2008)). Suppose a learning algorithm A is run for one sequence

of T1 + T2 − 1 steps. Consider partial sequence S0, R1, ..., St−1, Rt, St visited by A. For any policy π and integer t such

that t ≤ T1, let RπT2(t) =
∑t+T2−1

t′=t γt
′−tRt′+1 + γT2vπ(St+T2) be the adjusted return. Let IπT2(t) = V π(St)−RπT2(t) be the

adjusted instantaneous loss. Let LπT1,T2 = 1
T1

∑T1
t=1 I

π
T2

(t) be the adjusted average loss.
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Table B.3: List of the hyperparameters and their values used in DQN+HER for each environment.

Hyperparameter Environment Value

Target net update frequency

BitFlip 100

2D Navigation 500

Quantum Compiling 500

Final exploration epsilon

BitFlip 0.21

2D Navigation 0.21

Quantum Compiling 0.15

Train Frequency

BitFlip 4

2D Navigation 4

Quantum Compiling 1

Learning Rate

BitFlip 0.00064

2D Navigation 0.0007

Quantum Compiling 0.00022

Batch Size

BitFlip 32

2D Navigation 128

Quantum Compiling 64

Buffer Size

BitFlip 500000

2D Navigation 1000000

Quantum Compiling 1000000
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Figure B.2: Varying the number of subgoals in the quantum compiling environment. Average of
10 runs, 95% c.i..
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Definition B.2.3 (Definition 5 of Strehl and Littman (2008)). Suppose a learning algorithm A is run for one sequence

of T1 + T2 − 1 steps. Consider partial sequence S0, R1, ..., St−1, Rt, St visited by A. For any policy π and integer t such

that t ≤ T1, let RπT2(t) =
∑t+T2−1

t′=t γt
′−tRt′+1 + γT2vπ(St+T2) be the adjusted return. Let IπT2(t) = V π(St)−RπT2(t) be the

adjusted instantaneous loss. Let LπT1,T2 = 1
T1

∑T1
t=1 I

π
T2

(t) be the adjusted average loss.
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B.2 Experimental Details of Chapter 5

In this section, we provide the experimental setup we adopted and some additional results

we did not include in the main paper.

B.2.1 Tabular RL

Experimental Setup

We train each agent for 100 episodes, the length of each episode is domain dependent.

During the training periods we collect the rewards and use them to calculate the online

scores. After each training period, we turn off exploration and evaluate the greedy policies

learned by the agent. The length of the evaluation episodes is the same as the training

episodes. We use the rewards collected during evaluation to calculate the offline scores.

We perform this process in each domain, for each algorithm considered and show the

mean scores of 10 runs with 95% c.i.. We calculate the undiscounted scores, even though

we use a discount factor γ = 0.99 in each domain during learning.

For our particle algorithms, we initialize the particles equally spaced in an interval

[qmin, qmax], for each state action-pair. For the Gaussian model we initialized µ0(s, a) =

(qmax + qmin)/2 and σ0(s, a) = (qmax − qmin)/
√

12. The range of this interval is problem

dependent and we see these hyperparameters as a way to incorporate prior knowledge

about the domain. We consider Bootstrapped Q-learning with two policy models, the

Bootstrapped policy defined in Osband et al. (2016a) and the posterior sampling policy.

We initialize the Q-tables with values drawn from a Gaussian distribution with parameters

µ = qmin+qmax

2 , σ = qmax − qmin. Furthermore, we consider Q-learning algorithm with ε-

greedy and Boltzmann exploration. In both Q-learning versions, the Q-table is initialized

to 0. We compare our results with Delayed Q-learning Strehl et al. (2006), a model-free

PAC-MDP algorithm. In each of the problems considered we tuned the m parameter,

the number of visits necessary to attempt an update for each state-action pair, to find

the one that yields better results. We did not employ the theoretical values being too

much conservative.

For all algorithms, we use an exponentially decaying learning rate given by:

αt(s, a) =
b

t(s, a)a
, (B.1)

where t(s, a) is the visit count for state-action pair (s, a), b is the initial value which we

set to 1 and a is the decay exponent. We cross validated the value of a, which was set to

a = 0.2, for all our experiments.

For the Q-learning algorithms, we had to chose also the schedules for ε and β, for

ε-greedy and Boltzmann exploration respectively. For ε we used an exponentially decaying
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Definition B.2.4 (Definition 5 of Strehl and Littman (2008)). Suppose a learning algorithm A is run for one sequence

of T1 + T2 − 1 steps. Consider partial sequence S0, R1, ..., St−1, Rt, St visited by A. For any policy π and integer t such

that t ≤ T1, let RπT2(t) =
∑t+T2−1

t′=t γt
′−tRt′+1 + γT2vπ(St+T2) be the adjusted return. Let IπT2(t) = V π(St)−RπT2(t) be the

adjusted instantaneous loss. Let LπT1,T2 = 1
T1

∑T1
t=1 I

π
T2

(t) be the adjusted average loss.

“main” — 2024/5/13 — 14:52 — page 153 — #163 i
i

i
i

i
i

schedule as in (B.1) with b = 1 and a = 0.5 whereas for the Boltzmann policy we used

an exponentially decaying β with initial value, b = 1.5qmax and decay exponent, a = 0.5.

Here we show the results on more domains: Taxi, Chain and Loop domain from Dear-

den et al. (1998), River Swim and Six Arms from Strehl and Littman (2008) and Knight

Quest from Fruit et al. (2018).
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Definition B.2.5 (Definition 5 of Strehl and Littman (2008)). Suppose a learning algorithm A is run for one sequence

of T1 + T2 − 1 steps. Consider partial sequence S0, R1, ..., St−1, Rt, St visited by A. For any policy π and integer t such

that t ≤ T1, let RπT2(t) =
∑t+T2−1

t′=t γt
′−tRt′+1 + γT2vπ(St+T2) be the adjusted return. Let IπT2(t) = V π(St)−RπT2(t) be the

adjusted instantaneous loss. Let LπT1,T2 = 1
T1

∑T1
t=1 I

π
T2

(t) be the adjusted average loss.
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Comparison of WQL with State of the Art Algorithms

In Figure B.3, we show a comparison between the best version of WQL, using the two

models to approximate posteriors, and the considered RL algorithms.
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Figure B.3: Comparison of G-WQL, P-WQL, QL, BQL and Delayed QL. 10 runs, 95% c.i.
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Definition B.3.1 (Definition 5 of Strehl and Littman (2008)). Suppose a learning algorithm A is run for one sequence

of T1 + T2 − 1 steps. Consider partial sequence S0, R1, ..., St−1, Rt, St visited by A. For any policy π and integer t such

that t ≤ T1, let RπT2(t) =
∑t+T2−1

t′=t γt
′−tRt′+1 + γT2vπ(St+T2) be the adjusted return. Let IπT2(t) = V π(St)−RπT2(t) be the

adjusted instantaneous loss. Let LπT1,T2 = 1
T1

∑T1
t=1 I

π
T2

(t) be the adjusted average loss.
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Results of WQL algorithm

Figure B.4 provides a full empirical analysis of the different flavors of WQL algorithms

in the domains we considered.
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Figure B.4: Results of different variations of WQL algorithm. 10 runs, 95% c.i.
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Definition B.3.2 (Definition 5 of Strehl and Littman (2008)). Suppose a learning algorithm A is run for one sequence

of T1 + T2 − 1 steps. Consider partial sequence S0, R1, ..., St−1, Rt, St visited by A. For any policy π and integer t such

that t ≤ T1, let RπT2(t) =
∑t+T2−1

t′=t γt
′−tRt′+1 + γT2vπ(St+T2) be the adjusted return. Let IπT2(t) = V π(St)−RπT2(t) be the

adjusted instantaneous loss. Let LπT1,T2 = 1
T1

∑T1
t=1 I

π
T2

(t) be the adjusted average loss.
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B.3 Experimental Details of Chapter 6

B.3.1 Environments Description

RiverSwim We extend the classical Riverswim domain (Strehl and Littman, 2008) to

a continuous setting. In this environment, the agent has to navigate a 1 dimensional state

space, ranging from 0 to max_state, by applying a 1 dimensional action, representing the

intended movement a ∈ [−1 1]. The initial state is a uniformly distributed in [0 0.5].

When an action is chosen the agent moves left or right on the state space. The distance

of the movement is equal to the absolute value of the action (if the result is outside the

state space a clip operations brings it back inside). The direction d ∈ {−1, 0, 1} of the
movement is stochastic, according to the following probabilities:

P (d = −1|a) =

1− 0.9 · (a+ 1) if a ≤ 0

0.1 if a > 0

P (d = 0|a) =

0.9 · (a+ 1) if a ≤ 0

0.9− 0.3a if a > 0

P (d = 1|a) =

0 if a ≤ 0

0.3a if a > 0

Given the current state st, the action at and the direction dt sampled according the

previous probabilities, the next state is st+1 = clip(st + dt|at|), where clip clips the state

in the range [0 max_state] The reward depends on the starting state s and the action

sign:

r =


5 · 10−4 if s ≤ 1

1 if s ≥ (max_state− 1) and a > 0

0 otherwise

The optimal policy is to always perform a = 1 which gives the agent the best chance

of moving toward high reward states.

In our experiments:

• max_state = 25

LQG We test our agents also on an instance of a Linear Quadratic Gaussian control.

Given a state x, an action a, and v ∼ N (0, 0.5) the next state and the cost c (= −r) are

defined as:

156



i
i

Definition B.4.1 (Definition 5 of Strehl and Littman (2008)). Suppose a learning algorithm A is run for one sequence

of T1 + T2 − 1 steps. Consider partial sequence S0, R1, ..., St−1, Rt, St visited by A. For any policy π and integer t such

that t ≤ T1, let RπT2(t) =
∑t+T2−1

t′=t γt
′−tRt′+1 + γT2vπ(St+T2) be the adjusted return. Let IπT2(t) = V π(St)−RπT2(t) be the

adjusted instantaneous loss. Let LπT1,T2 = 1
T1

∑T1
t=1 I

π
T2

(t) be the adjusted average loss.
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x′ = Ax+Ba+ v

c = Qx2 +Ra2

In our experiments, we use A = 1, B = 1, Q = 0.9, R = 0.9. The agents starts from

the borders of the state space and, with this configuration, the goal is to reach the origin

of the state space while balancing the actions.

B.3.2 Reproducibility Details

In this appendix, we present the hyperparameter tuning employed, as well as the final

values used in our experiments. For all the approximators employed, including critics and

actors, we use 2 layer MLPs. For what concerns LQG all algorithms could solve it easily

independently from the hyper-parameters chosen. The same can be said for RiverSwim,

except for SAC which could not solve for any set of hyper-parameters contained in the

grid search we performed.

In point environment we performed a grid search on all environments with dense

rewards starting with SAC (3 runs with 3 different seeds for each node of the grid). We

choose the set of hyper-parameters that could solve the most runs for the two most

difficult environments in which at least one run could learn a policy that reached the

goal. The best recovered values are reported in Table B.4.

Table B.4: SAC parameters

Parameter best value

networks’ number of layers 2

layers’ size 256

replay buffer size 106

number of train steps per train loop 1000

number of exploration steps per train loop 1000

batch size 256

learning rates 10−3

Afterwards, we performed a grid search on OAC and WAC, where we fixed all the

hyper-parameters they share with SAC to the best values we found on SAC hyper-

parameter tuning and we tuned only on their additional hyper-parameters. Once again,

we choose the hyper-parameters sets that allow each algorithm to perform best the 2

most difficult environment it could solve. The final values are reported in Table B.5 and

Table B.6.

157



i
i

Definition B.4.2 (Definition 5 of Strehl and Littman (2008)). Suppose a learning algorithm A is run for one sequence

of T1 + T2 − 1 steps. Consider partial sequence S0, R1, ..., St−1, Rt, St visited by A. For any policy π and integer t such

that t ≤ T1, let RπT2(t) =
∑t+T2−1

t′=t γt
′−tRt′+1 + γT2vπ(St+T2) be the adjusted return. Let IπT2(t) = V π(St)−RπT2(t) be the

adjusted instantaneous loss. Let LπT1,T2 = 1
T1

∑T1
t=1 I

π
T2

(t) be the adjusted average loss.
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Table B.5: OAC parameters

Parameter best value

δ 18

βUB 6.5

Table B.6: WAC parameters

Parameter best value

δ 0.95

λ 0.6

ρ 0.6
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(a) Coverage in LQG.
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(b) Coverage in Riverswim.

Figure B.5: Coverage in LQG and Riverswim as function of δ; average of 5 seeds, 95% c.i..

B.4 Additional Experiments

B.4.1 Tuning on δ

In Section 3.5 we have shown how by tuning λ and ρ we can control the amount of

exploration. We now show some experiment that illustrate how the hyper parameter δ

can also be use to control exploration, since it defines what percentile of the estimated

Gaussian distribution we use as upper bound. The results are reported in Figure B.5.

We observe that also δ is directly related with the coverage. Indeed by increasing δ, we

employ larger upper bounds for the value estimates, and this directly translates to larger

coverage of the state-action space.

B.4.2 Coverage in OAC

We performed a similar study to the one presented in Section 3.5 on WAC for OAC,

to investigate whether we could control how much the algorithm explores based on the

values of the hyper-parameters. However, what we found is that is hard to predict OAC’s
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Definition B.4.3 (Definition 5 of Strehl and Littman (2008)). Suppose a learning algorithm A is run for one sequence

of T1 + T2 − 1 steps. Consider partial sequence S0, R1, ..., St−1, Rt, St visited by A. For any policy π and integer t such

that t ≤ T1, let RπT2(t) =
∑t+T2−1

t′=t γt
′−tRt′+1 + γT2vπ(St+T2) be the adjusted return. Let IπT2(t) = V π(St)−RπT2(t) be the

adjusted instantaneous loss. Let LπT1,T2 = 1
T1

∑T1
t=1 I

π
T2

(t) be the adjusted average loss.
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Figure B.6: Coverage in LQG as function of δ and βUB ; average of 5 seeds, 95% c.i..

exploration based on its hyper parameters δ and βUB. In OAC, δ controls how much

the exploration policy differs from the target policy. From Figure B.6, we can see that δ

can even negatively affect exploration, if we allow the exploration policy to differ too

much from the target policy. The dependence on β, which controls the definition of

the upper bound (similar to our δ in OAC), suggests that the uncertainty estimate of

OAC is not directly related to exploration either. We attribute both these results to the

heuristic estimation of uncertainty that OAC employees, based only on the disagreement

between the two critics. We argue that this uncertainty estimation is not enough to

direct exploration meaningfully.
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